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High-density electroencephalography (hd-EEG) provides an accessible indirect method to
record spatio-temporal brain activity with potential for disease diagnosis and monitoring.
Due to their highly multidimensional nature, extracting useful information from hd-EEG
recordings is a complex task. Network representations have been shown to provide an
intuitive picture of the spatial connectivity underlying an electroencephalogram recording,
although some information is lost in the projection. Here, we propose a method to
construct multilayer network representations of hd-EEG recordings that maximize their
information content and test it on sleep data recorded in individuals with mental health
issues. We perform a series of statistical measurements on the multilayer networks
obtained from patients and control subjects and detect significant differences between
the groups in clustering coefficient, betwenness centrality, average shortest path length
and parieto occipital edge presence. In particular, patients with a mood disorder display a
increased edge presence in the parieto-occipital region with respect to healthy control
subjects, indicating a highly correlated electrical activity in that region of the brain. We also
show that multilayer networks at constant edge density perform better, since most
network properties are correlated with the edge density itself which can act as a
confounding factor. Our results show that it is possible to stratify patients through
statistical measurements on a multilayer network representation of hd-EEG recordings.
The analysis reveals that individuals with mental health issues display strongly correlated
signals in the parieto-occipital region. Our methodology could be useful as a visualization
and analysis tool for hd-EEG recordings in a variety of pathological conditions.

Keywords: high density electroencephalogram, multilayer networks, bipolar disorder, maximum information, first
episode psychosis
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1 INTRODUCTION

Recent developments in neuroscience are giving rise to an increasing
amount of data on the functioning of the brain at different scales,
from molecular processes at the level of single neurons to
macroscopic signals encompassing the whole brain, as in
electroencephalogram (EEG) or functional magnetic resonance
imaging (fMRI). Despite the trove of accumulating data,
disentangling the complexity of brain function is still a largely
open issue. A particularly important goal is to develop tools that
are able to extract useful information from brain activity
measurements on individual subjects in order to identify
potential network dysfunction and support diagnosis (Bassett, 2021).

It is becoming increasingly clear that brain activity is strongly
interconnected and hierarchically organized, requiring a
sophisticated mathematical description to infer its underlying
properties from measurements. The emerging field of network
neuroscience is advocating the use of networks descriptions for a
statistical analysis of brain functions at multiple spatio-temporal
scales (Bassett and Sporns, 2017). As in many other applications,
a network representation can be derived by suitably thresholding
the covariance matrix of the signal recorded at different locations
(Masuda et al., 2018) with sophisticated metodologies to chose an
optimal threshold (De Vico Fallani et al., 2017) or using singular
value decomposition of the multidimensional signal (Worsley
et al., 2005). A typical feature of many complex networks that
appears promising to describe the hierarchical brain organization
is the small-world topology involving at the same time small-scale
local clusters and long-range connections between distant areas
(Bassett and Bullmore, 2006). Networks provide a visual
representation of brain connectivity (Rubinov and Sporns,
2010), but extracting robust statistical information from brain
network is a challenging task. Measures at the intersection
between neuroscience and complexity theory have emerged
such as topological data analysis (Phinyomark et al., 2017) or
multivariate auto-regressive models (Astolfi et al., 2007).

EEG recordings have attracted a wide interest for many years in
the study of brain function due to the relative simplicity in which
spatially localized time dependent data can be acquired through
non-invasive instrumentation. EEG data are conventionally
analyzed by sampling time depended signals into different
frequency bands at different locations on the scalp and then
looking for specific signatures in each band. For instance, resting
state EEG in patients diagnosed with First Episode Psychosis and
Bipolar Disorder revealed a general trend of increased delta
(0.5–4 Hz) and theta (4–8 Hz) activity, and a decrease in alpha
(8–13 Hz) activity (Clementz et al., 1994). Resting state EEG of
bipolar patients has also been studied using complex network
analysis in Kim et al. (2013), yielding differences from healthy
control subjects across several network measures such as
clustering coefficient or characteristic path length. More recently,
machine learning combined with complex network analysis was
used to classify non-epileptic and epileptic EEG signals (Gao et al.,
2020). Network analysis was also performed for EEG signals
recorded in Alzheimer Disease patients during cognitive tasks
and resting state (Das and Puthankattil, 2020), revealing a higher
betweenness centrality in patients compared to controls subjects.

Since EEG signals are highly multidimensional, considering
their dependence on time, location and frequency band, a
projection into a single network may overshadow some
essential feature of the system. To overcome this limitation,
multilayer netwroks have been recently proposed as a
promising tool to study the dynamics of brain activity,
reducing the information loss due to the projection into a
single network (Muldoon and Bassett, 2016; De Domenico,
2017). A multilayer network can be seen as an interconnected
set single-layer networks where each layer represents a
particular dimension of the original signal (Aleta and
Moreno, 2019; Bianconi, 2018). In the context of EEG we
can assign distinct layers to different time windows and/or
different frequency bands and assign each electrode to a node
in each single-layer network. For example, a time-based
multilayer complex network analysis was perfomed on EEG
recordings in patients with epilepsy (Leitgeb et al., 2020). The
central issues in multilayer network based methods for EEG
signal is to find a representation that minimizes information
loss and introduce suitable statistical tools to extract readable
information from the networks.

FIGURE 1 | Overview of the method. (A) Short description of the
dataset, see Methods for complete details. (B) Example of the eye-artifact
correction method, showing the correlation of the signal from electrodes AF8,
F7, Fp1, and Fp2 (black lines) with horizontal eye movements (HEOG,
orange line) before (Raw data panel) and after (HEOG correction panel) the
eye-artifact correction method. (C) Example of a electrode-to-electrode
correlation matrix, depicted as a heatmap. Correlation goes from −1 (blue
shading) to +1 (red shading). Correlations are both time- and band-specific.
(D) Example of the resulting band- and time-depended multilayer networks,
where nodes represent electrode and edges represent high correlations, see
Methods for the details of the different thresholding procedures.
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In this paper, we propose a multilayer network representation of
EEG signals that maximize the information content and apply it to a
set of sleep EEG data from patients diagnosed with First Episode
Psychosis (FEP) or BipolarDisorder (BD) and comparedwith control
subjects. We then use a set of network measures and show that it is
easier to reliably stratify patients from control subjects when using
network representations with constant edge densities.

2 RESULTS

2.1 Maximization of Total Information
Change Over Time
Sleep hd-EEG recordings from 12 FEP, seven BD patients, and 13
control subjects were analyzed, see Methods for details and
Figure 1. Raw data are extremely fine-grained: the sampling
frequency of 500 Hz during an average of 8 h of sleep, multiplied
by the 64 electrodes that comprise the EEG headset yields
approximately, 1,000,000,000 measurements per patient.
Clearly, these measurements are not all independent of each
other, but they encode information that spans several sleep phases
and brain regions. Therefore, we aim at finding a satisfactory
compromise between compression and information.

To do so, we process the raw sleep EEG records through our
pipeline as described inMethods in detail and illustrated in Figure 1.
The first step is to remove artifacts from the data. Eye-movement
artifacts are well known to influence raw sleep EEG data. Tomitigate
their impact on our results, we use a fast linear regression model to
correct for eyemovements, seeMethods for details and Figure 1B: in
this illustrative figure, the horizontal electro-oculogram potential
(HEOG) well correlated with channels AF8, F7, FP2 and FP1 in the
top plot. After the correction step (bottom plot in pannel B), this
dependence was almost completely eliminated. After splitting the
signal into different frequency bands (see Methods for details), we
compute time- and band-specific electrode-to-electrode correlations
of the form Cb

ij(t), represented as a heatmap in Figure 1C. Finally,
we construct time-varying multilayer networks using an innovative
strategy that takes into account the whole dataset (and not each time
snapshot individually), maximising the total amount of information
contained in the time-varying dataset. Figure 1D offers a visual
representation of the final output we obtain after processing the raw
EEG data: a set of time-varying multilayer networs, where different
layers correspond to different frequency bands, network nodes
represent electrodes and edges represent high EEG correlations.

Networks offer a simplified and effective representation of
interactions between nodes, but deciding the correlation
threshold beyond which edges are added to the network is a
nontrivial subject. In order to make an informed choice, here we
introduce the Integrated Jensen-Shannon Divergence (IJSD),

I(θ) � ∑θ
t�1

D(ρt−1, ρt), (1)

a measure of the total information change over time (Grosse et al.,
2002), computed as the sum of the Jensen-Shannon divergence of
each epoch with respect to the previous one. Here ρt are the density
matrices associated to each network in the framework of spectral

entropies (Domenico and Biamonte, 2016), see Methods for details.
The value of I depends on θ in non-trivial ways, but the limit cases
are clear: if θ is too low (high), all edges are present (absent) at all
time steps, so there is no information change over time and thus
I � 0 for both θ � 0 and θ � 1. It is only for intermediate values of
the correlation threshold θ that the sequence of multilayer networks
can display richer temporal variations, yielding a higher information
change. This can be clearly seen in Figure 2 panels (A, B, C), which
show the value of I as a function of θ for one BD, one FEP and one
control example. As anticipated, I(θ) � 0 for both θ � 0 and θ � 1,
with a clear maximum at around θ ∼ 0.7 for most frequency bands.

2.2 Fixed-Threshold and Fixed-Density
Networks
We implement two strategies to choose the optimal correlation
threshold θ* from the analysis of the information content
quantified by IJSD. In the first approach, we set a global
absolute value for the correlation threshold, while in the
second approach that value is relative to each network and
chosen to maintain a constant edge density, keeping only the
interactions with highest absolute correlation. In both cases, the
adjacency matrices can be build as

Ab
ij(t) � 1 if |Cb

ij(t)|≥ θ*
0 else

{ (2)

that is, we place edges for both large positive and large negative
correlations.

The optimal correlation threshold θ* for fixed-threshold networks
is computed as the average of the band- and patient-specific optimal
values that result from optimizing each case separately,

θ* � 〈θ*b,p〉b,p (3)

θ*b,p � argmaxθ∈[0,1]I b,p(θ) (4)

where I θ(b, p) denotes the IJSD of patient p at frequency band b. In
other words, for each patient p we compute a band-specific optimal
threshold θ*b,p. The group averages and variability of these are shown
in Figure 2. Taking the average of all θ*b,p, we reach an overall value
of θ* � 0.72, shown as a black solid line in Figure 2. Overall, the
figure shows that a single global threshold can reasonably
accommodate for the band- and patient-specific optimal values.

The second approach consists in keeping the same fraction of
edges in all networks, yielding what we call fixed-density networks.
The optimal density value in this case is set so that it coincides with
the average density of the fixed-threshold networks. This second
approach takes into account that different patients, time point or
bands might have different intrinsic correlation levels, and presents
additional advantages from the network analysis point of view.

2.3 Network Edge Presence Shows
Differences Between Groups
We investigate the group differences between BD and control
patients, as well as between FEP and control patients. To do so, we
need to condense the information contained in our multilayer
and time-varying networks into simpler summary statistics. A
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simple yet useful measure in this case is what we coin as edge
presence, which is the fraction of time an edge is present (that is,
Ab
ij(t) � 1) during one full EEG sleep session. Formally,

Pb
ij � 〈Ab

ij(t)〉t (5)

Figure 3 shows the group differences ofPb
ij for each edge (i, j) and

each band when comparing BD patients with controls (panels A, C),
as well as FEP patients with controls (panels B, D). This analysis is
shown both for fixed-density networks (A, B) and for fixed-
threshold networks (C, D). In both cases we see differences in
the parieto-occipital area, but the signal is stronger for fixed-density
networks. If we focus on Figure 3A, for instance, we see that BD
patients tend to have a lower edge presence in the parieto-occipital
area (strong blue edges). Notice that we employ a colorbar that goes
from red to transparent to blue, so that edges that do not have strong
differences are effectively not drawn. Overall, the figure shows
important differences in the parieto-occipital area, with a similar
but stronger signal for fixed-density networks.

2.4 Parieto-Occipital Correlations and
Clustering Measures Differ Between
Groups
Motivated by the results shown visually in Figure 3, we construct
a parieto-occipital (PO) specific measure. Selecting the 18
electrodes of that region (see methods for details), we compute
the difference of PO presence between the PO area and the rest.

PPO � 〈Pb
ij〉(ij)∈PO − 〈Pb

ij〉(ij) ∉ PO (6)

Additionally, we also consider the average clustering
coefficient, the average shortest path length and the
betweenness centrality as measures related to clustering and
information navigability as candidates to better quantify the
differences that we see in Figure 3.

Figure 4 shows boxplots of these four measures comparing,
BD and FEP patients with control subjects. Statistically
significant differences are marked with a star, see Methods
for details. Panels (A, B) show that for bands 1 to 4 (that is,
between 1 and 16 Hz), FEP patients have a higher clustering
coefficient when compared to controls, while panels (C, D)
shows some significant results on the same range of
frequencies for the average shortest path length, both for
BD and for FEP patients. Turning to betweenness centrality,
panel E shows that when using fixed-threshold networks, FEP
patients significantly differ from controls in bands 2, 3, and 4
(2–16 Hz) Interestingly, when looking at the parieto-occipital
relative presence (panels G, H), we observe a different pattern
of marked differences between BD and control patients for
lower frequency bands, 0.5–4 Hz. This is consistent with the
fact that the more standard network measures used in panels A
to F treat all nodes under the same footing, independently of
the brain region they correspond to, while PO presence is a
tailor-made measure, specifically designed to capture the
visual results of Figure 3 taking into account the location of
parieto-occipital electrodes.

FIGURE 2 |Choice of correlation thresholds. (A–C)CheckWhich Patient. Integrated Jensen-Shannon divergence (JSD) as a function of the correlation threshold θ,
for each band (colored lines), for BD (A), Control (B) and FEP (C) patients. The panel shows a consistent maximum of the integrated JSD at around θ � 0.7. (B) Threshold
that maximizes the integrated JSD. The errorbars correspond to the average over different patients. The overall chosen best threshold is marked as a solid horizontal
black line, see Methods for details. The panel shows that a single correlation threshold value can accommodate all patient groups and frequency bands.
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2.5 Network Measures Correlate With Edge
Density
It is interesting to ask if the networkmeasures shown in Figure 4 are
correlated with network edge density, for the case of fixed-threshold
networks. Figure 5 shows how indeed edge density is a strong driver
of average clustering coefficient, average shortest path length and
betweenness centrality for all patient groups, but not of parieto-
occipital presence. This is consistent with the fact that, by

construction, PPO is a relative difference of two averages taken on
the same network.

3 DISCUSSION

Hd-EEG represents an attractive method to study brain function
by providing non-invasive spatio-temporal measurements of
brain activity with possible applications to disease diagnosis

FIGURE 3 | Network edge presence highlights differences between groups. Multilayer EEG fixed-density (A, B) or fixed-threshold (C, D) networks, with edges colored
according to the averageBD (A,D)or FEP (C,D)presenceminus the corresponding average value of control patients. Edgepresence is ameasure of the fractionof time an edge is
active, see Methods for details. The four panels use a divergent colormap that is blue for negatives values, red for positive values, and becomes gradually transparent as values
approach zero. Overall, the panel visually shows clear differences between BD and control patients, and between FEP and control patients.
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and monitoring. While it is relatively easy to obtain large amount
of data from individual subjects, extracting useful information
from hd-EEG recordings is a challenging task. Hd-EEG only
provides an indirect far-field measurement of the underlying
electrical activity and is intrinsically subject to noise.
Furthermore, hd-EEG recordings typically involve noisy
signals recorded in parallel through different electrodes for
long time periods so that even the mere visualization of the
data is complex.

Network representations have been shown in the past to
provide a useful tool to highlight the connectivity and
spatio-temporal correlation of brain activity as revealed
from EEG or other measurments such as fMRI. Due to the
complexity of hd-EEG recordings, multilayer networks are
more appropriate to represent the data since they provide
separate visualization for potentially crucial features of EEG

signals such as the frequency band and/or the time
dependence. An effective network representation of hd-EEG
recordings should be able to extract most of the relevant
information from the signal cross-correlation. To address
this issue, we use the IJSD to quantify information content
in the multilayer network (Domenico and Biamonte, 2016)
and adjust correlation threshold parameters to maximize it. In
this way, we obtain a multilayer networks that maximizes the
information content of the underlying hd-EEG recordings and
test it on a set of EEG data obtained from patients with mental
health issue, as well as healthy control subjects.

Statistical analysis on the resulting multilayer networks reveals
a number of distinguishing topological features between patients
and the control group. In particular, observed differences in
parieto-occipital edge presence appear to be particularly
relevant. These results indicate a stronger correlation of EEG

FIGURE 4 | EEG network measures evidence differences between groups. Boxplots of average clustering (A, B), average shortest path length (C, D),
betweenness centrality (E, F) and parieto-occipital presence (G, H) for control (gray), BD (blue) and FEP (pink) patients. Panels in the left column correspond to fixed-
threshold networks, while panels in the right column correspond to fixed-denstiy networks.
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signals in that area for BD patients with respect to control
subjects, a feature that warrants further study and could
potentially be used as a diagnostic tool.

An important issue in our analysis is that most statistical
indicators crucially depend on the density of edges present in the
network. To discount this effect, we constructed and analyzed
constant-density multilayer networks. While our analysis only
considers pairwise correlations, future work could also extend our
analysis to the study of interactions between groups of nodes
(Battiston et al., 2020).

We applied our strategy to a particular set of EEG recordings
from patients with mental disorders, but the methodology could
readily be generalized and applied to a variety of pathological
conditions. It would be interesting for instance to use our
multilayer network approach to predict the response of
individual patients to specific drugs. Finally, the analysis of
EEG signals could be enriched by measuring at the same time
other physiological signals, such as heartbeat or respiration
adding further layers to the network, in the spirit of the
emerging field of network physiology (Bashan et al., 2012;
Bartsch et al., 2015; Ivanov et al., 2016).

4 METHODS

4.1 Data
Hd-EEG recordings where obtained from San Paolo Hospital in
Milano. In particular, the dataset consists of sleep EEG recordings
from 12 FEP patients (Eight males and four females, mean age
21.0 ± 3.77), seven BD patients (Three males and four females,
mean age 34.57 ± 7.09), and 13 control subjects (Six males and
seven females, mean age 25.61 ± 10.64). All participants
underwent an in-laboratory sleep hd-EEG recording with a
64-electrode Easycap net designed to enhance electrode
contact with the scalp (BrainAmp, Brain Products GmbH,
Gilching, Germany). The night of the recording, all subjects
were accommodated in a sleep suite and allowed to sleep
within 1 h of their usual bedtime. All subjects were recorded
throughout the night and until they woke up naturally the next
morning. Table 1 shows the average length of recording sessions
and total sleep time for each participant group. The headset has
64 unipolar electrodes positioned following the standard 10–20
system, and include two channels that record eye movements
(one for vertical movements and one for horizontal movements).

FIGURE 5 | Fixed-threshold networks yield measures that correlate with edge density. Scatter plots of average clustering (A), average shortest path length (B),
betweenness centrality (C) and parieto-occipital presence (D) vs. network density, for fixed-threshold networks. Overall, the panel shows that all measures except
parieto-occipital presence correlate with network density.

TABLE 1 | Recording time and sleep time. Sleep time is obtained by visual scoring according to the American Academy of Sleep Medicine (AASM) Manual for the Scoring of
Sleep and Associated Events (Berry, R. B., Brooks, R., Gamaldo, C. E. and Susan, M. 2012). All values expressed in minutes.

FEP BD Healthy control

Recording Time (mean ± S.D.) 431.02 ± 136.94 526.06 ± 44.84 489.22 ± 42.44
Total Sleep Time (mean ± S.D.) 300.02 ± 115.75 351.77 ± 102.38 361.47 ± 73.92
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All recordings had a sampling frequency of 500 Hz. Data was
provided in anonymized form as pairs of .set and .fdt files.

4.2 Data Preprocessing
Our preprocessing pipeline transforms the raw EEG recordings
into correlation tensors of the form Cb

ij(t), with (i, j) denoting and
edge between electrodes i and j, b a specific frequency band, and t
a 30-s epoch. The steps we carry are as follows:

1. Epochs division: divide the raw signal into epochs of
approximately 30 s, see below for details, obtaining a signal
Si(t) for electrode i and epoch t.

2. Artifact correction: apply eye-movement correction.
3. Bands division: divide the corrected signal into seven

frequency bands. This gives a signal Sbi (t) with b ∈ {0, . . ., 6}.
4. Correlation analysis: compute electrode-to-electrode Pearson

correlations, obtaining a correlation tensor of the form Cb
ij(t).

Epochs division: We divide EEG recordings into epochs of
around 30 s following Aboalayon et al. (2016). To be precise, each
epoch has a length of 214 raw time points which, at a sampling
frequency of 500 Hz, corresponds to 32.768 s. This choice is
particularly convenient because pure powers of two allow for
faster discrete Fourier transform calculations.

Artifact correction: Following Gratton et al. (1983), we correct
for eye-movements using a linear regression equation of the form

Y � XB (7)

where Y corresponds to the EEG data (62 channels in our case), X
corresponds to the eye-movement data (Two channels in our
case), and B is the regression coefficient matrix to be determined.
Solving for B via least squares, the corrected signal X* is
computed as

X* � (X − YB)T (8)

Bands division: We use seven frequency bands, numbered
from 0 to 6 throughout the manuscript, which logarithmically
interpolate the 0.5–64 Hz range typical of brain waves.

• Band 0: (0.5, 1) Hz.
• Band 1: (1, 2) Hz.
• Band 2: (2, 4) Hz.
• Band 3: (4, 8) Hz.
• Band 4: (8, 16) Hz.
• Band 5: (16, 32) Hz.
• Band 6: (32, 64) Hz.

4.3 Correlation Analysis
We use the Pearson correlation coefficient to measure the
strength and direction of dependence between the signals xi, xj
recorded by two electrodes i, j,

Cij � cov(xi, xj)
σxiσxj

. (9)

Repeating this measurement for each band b and timepoint t,
we get a full correlation tensor Cb

ij(t).

4.4 Jensen-Shannon Divergence
We use Jensen-Shannon Divergence (JSD) as a distance measure
between networks, in the framework of spectral entropies
(Domenico and Biamonte, 2016). For a pair of networks with
density matrices ρ and σ, the JSD is defined as

J(ρ‖σ) � S
ρ + σ

2
( ) − 1

2
[S(ρ) + S(σ)], (10)

where S(ρ) is the spectral entropy of the network,

S(ρ) � log2Z + τ

ln 2
Tr[Lρ], (11)

with L denoting the Laplacian, τ diffusion time and the density
matrix ρ defined as

ρ � e−τL

Z
, Z � Tr(e−τL) (12)

4.5 Network Measures
Parieto-occipital edge presence: The parieto-occipital area is
mapped to the following electrodes: P7, P5, P3, P1, PZ, P2,
P4, P6, P8, PO7, PO3, PO4, PO8, O1, OZ, O2, and IZ. From
this list, the parieto-occipital presence is computed as explained
in the main text, mainly the difference of average presence
between nodes in the parieto-occipital area and the rest.

Clustering Coefficient: We use the standard definition of
clustering coefficient,

ci � 2 · ti
ki · (ki − 1) (13)

as implemented in the networkx python library (Hagberg
et al., 2008), where ti is the number of triangles in which
node i is involved and ki is the node degree. Averaging over
all nodes, we define the clustering coefficient of the
network as

c � 1
N

∑N
i�1

ci (14)

Betweenness Centrality: We use the convention of Brandes
(2008), which defines a node-dependent quantity as follows:

cB(i) � 2
(N − 1)(N − 2) ∑

j,k∈V

σ(j, k|i)
σ(j, k) (15)

where σ( j, k|i) is the number of shortest path that connect nodes j
and k that passes through i and σ( j, k|i) � 0 if i � j, k. σ( j, k) is the
total number of shortest path connecting j and k and σ( j, k) � 1 if
j � k. By convention the fraction σ(j,k|i)

σ(j,k) is considered zero if both
elements are zero. We then average over all nodes to get a single
measure for each network:

BC � 1
N

∑N
i�1

cB(i). (16)

Average Shortest Path Length: We start from the standard
definition of average shortest path length (ASPL) for a connected
graph G
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aG � 1
N · (N − 1) ∑i≠j d(i, j). (17)

where d(i, j) is defined as the length of the shortest path
connecting two nodes, j. If i and j belong to two different
connected components d(i, j) is said to be infinite, while
d(i, j) � 0 if i � j.

In our setting, networks can have more than one
connected component, and we do not want to limit
ourselves to the largest connected component as important
information could be missed. Hence we employ a weighted
version of the ASPL,

waG � ∑nc
c�1ac · wc∑nc

c�1wc
(18)

where nc is the number of connected components with more than
two nodes and wc � Nc · (Nc − 1), Nc is the number of nodes of
component c. This formulation takes into account the ASPL of all
nodes but effectively gives more weight to the larger components.

4.6 Statistical Analysis
Group differences are assessed with a two-sided T-test without
assuming equal variances between groups, as implemented in the
ttest_ ind function from the scipy Python scientific library. Cases
marked as significant (p) in Figure 4 correspond to a p-value
below 0.05.

4.7 Ethical Approval
Data from the SPINDLE-1 study, approved by the Milan Area A
Interhospital Ethics Committee (Approval n. 22864). All
participants signed an informed consent for participation in
the SPINDLE-1 study.
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Treatment Tone Spacing and Acute
Effects of Acoustic Coordinated Reset
Stimulation in Tinnitus Patients
Tina Munjal 1,2*†, Alexander N. Silchenko3†, Kristina J. Pfeifer2†, Summer S. Han2,4,
Jessica K. Yankulova2, Matthew B. Fitzgerald1, Ilya Adamchic5 and Peter A. Tass2

1Department of Otolaryngology—Head and Neck Surgery, Stanford University, Stanford, CA, United States, 2Department of
Neurosurgery, Stanford University, Stanford, CA, United States, 3Institute of Neuroscience and Medicine (INM-7: Brain and
Behavior), Jülich Research Center, Jülich, Germany, 4Quantitative Sciences Unit, Stanford University School of Medicine,
Stanford, CA, United States, 5Department of Radiology, Klinikum Friedrichshain, Berlin, Germany

Acoustic coordinated reset (aCR) therapy for tinnitus aims to desynchronize neuronal
populations in the auditory cortex that exhibit pathologically increased coincident firing.
The original therapeutic paradigm involves fixed spacing of four low-intensity tones
centered around the frequency of a tone matching the tinnitus pitch, fT, but it is
unknown whether these tones are optimally spaced for induction of desynchronization.
Computational and animal studies suggest that stimulus amplitude, and relatedly, spatial
stimulation profiles, of coordinated reset pulses can have a major impact on the degree of
desynchronization achievable. In this study, we transform the tone spacing of aCR into a
scale that takes into account the frequency selectivity of the auditory system at each
therapeutic tone’s center frequency via a measure called the gap index. Higher gap indices
are indicative of more loosely spaced aCR tones. The gap index was found to be a
significant predictor of symptomatic improvement, with larger gap indices, i.e., more
loosely spaced aCR tones, resulting in reduction of tinnitus loudness and annoyance
scores in the acute stimulation setting. A notable limitation of this study is the intimate
relationship of hearing impairment with the gap index. Particularly, the shape of the
audiogram in the vicinity of the tinnitus frequency can have a major impact on tone
spacing. However, based on our findings we suggest hypotheses-based experimental
protocols that may help to disentangle the impact of hearing loss and tone spacing on
clinical outcome, to assess the electrophysiologic correlates of clinical improvement, and
to elucidate the effects following chronic rather than acute stimulation.

Keywords: coordinated reset, tinnitus, auditory filter, ERB, gap index, sensorineural hearing loss (SNHL),
neuromodulation, neuroplasticity

INTRODUCTION

Network dynamics—occurring at multiple levels and spatio-temporal scales—play a crucial role in
several physiologic and pathophysiologic domains (Bashan et al., 2012; Ivanov et al., 2016). Chronic
tinnitus is such a network phenomenon, across both auditory and non-auditory brain areas (Schlee
et al., 2008). An EEG study revealed that acoustic coordinated reset (aCR) induced spread of
desynchronization of tinnitus-related abnormal neuronal synchrony from auditory to non-auditory
brain areas (Silchenko et al., 2013; Adamchic et al., 2014b). Optimizing the spread of
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desynchronization effects, e.g., by selecting optimal
parameters of aCR stimulation, may be key to further
improving therapeutic outcome. In general, a number of
studies have dealt with the spreading dynamics on complex
brain dynamics (O’Dea et al., 2013; Misic et al., 2015). Stimuli
of different frequency (i.e., pitch) may be fed into the complex
tinnitus-related brain network in a multitude of different ways,
e.g., with stimulus frequencies being narrowly or widely
spaced, confined to only one auditory perceptual channel or
widely spread across several channels. We here study a first
and fundamental step in manipulating the complex network of
auditory and non-auditory brain areas by analyzing the impact
of the spacing of aCR stimulation tones on acute therapeutic
effects of aCR stimulation.

Tinnitus, or the perception of sound in the absence of any
external stimuli (Henry et al., 2005), affects approximately 10% of
the adult population (Bhatt et al., 2016). Primary tinnitus is
idiopathic and may or may not be associated with sensorineural
hearing loss (SNHL). Secondary tinnitus is associated with a specific
underlying cause other than SNHL or an identifiable organic
condition (Tunkel et al., 2014). There are three proposed
mechanisms for the generation of primary tinnitus: increased
neural synchrony, reorganization of tonotopic maps, and
increased spontaneous firing rates (Eggermont and Tass, 2015).
These mechanisms are hypothesized to be an attempt by the central
nervous system (CNS) to restore evoked neural activity to pre-
hearing loss levels. Nevertheless, only approximately 30% of
individuals with hearing loss have tinnitus (Nondahl et al.,
2011). Thus, it stands to reason that there are some purely CNS-
driven factors that contribute to its generation. However, map
reorganization seems not to be strictly required for the
generation of tinnitus (Langers et al., 2012), and reorganization
of cortical maps takes weeks, whereas abnormal synchrony can be
seen rapidly following initial insult (Ortmann et al., 2011). Thus,
pathological neuronal synchrony is the mechanism targeted in
this study.

Abnormal neuronal synchrony has also been demonstrated to
play an important role in a number of other brain disorders,
including Parkinson’s disease (PD) (Lenz et al., 1994; Nini et al.,
1995; Hammond et al., 2007), migraine (Angelini et al., 2004;
Bjork and Sand, 2008), and epilepsy (Wong et al., 1986). To
specifically counteract abnormal neuronal synchrony,
coordinated reset (CR) stimulation was computationally
developed based on methods from non-linear dynamics and
statistical physics (Tass, 2003). CR stimulation employs
sequences of phase resetting stimuli administered to neuronal
sub-populations involved in abnormal synchronization processes
(Tass, 2003). As shown in computational studies, in the presence
of spike-timing-dependent plasticity (STDP) (Gerstner et al.,
1996; Markram et al., 1997; Bi and Poo, 1998), CR stimulation
may cause long-lasting desynchronization (Tass and Majtanik,
2006; Hauptmann and Tass, 2007; Popovych and Tass, 2012;
Kromer and Tass, 2020). CR stimulation may reduce the rate of
coincidences, which, mediated by STDP, causes a reduction of
synaptic weights, ultimately shifting the network from an
attractor with abnormal synaptic connectivity and abnormal
neuronal synchrony to an attractor with weak connectivity

and synchrony. This long-term desynchronization mechanism
was coined anti-kindling (Tass and Majtanik, 2006).

The CR approach was initially developed for the treatment of
PD, essential tremor, and epilepsy (Tass, 2003; Tass and
Majtanik, 2006). Sustained, long-lasting (i.e., resistant to
tolerance) after-effects on motor function lasting for several
weeks were demonstrated in parkinsonian nonhuman primates
treated with electrical CR stimulation administered to the
subthalamic nucleus (STN) for a few hours only (Tass et al.,
2012b; Wang et al., 2016). In contrast, effects of standard deep
brain stimulation (i.e., periodic stimulation at rates greater than
100 Hz) vanished within 30 min (Tass et al., 2012b; Wang et al.,
2016). Analogously, cumulative and lasting after-effects of
electrical CR stimulation of the STN on Unified Parkinson’s
Disease Rating Scale (UPDRS) motor scores and beta band local
field power were also demonstrated in PD patients (Adamchic
et al., 2014a).

As shown computationally, anti-kindling can robustly be
induced in networks with STDP regardless of whether CR
stimulation is administered directly to the soma or through
synapses (Popovych and Tass, 2012). Subsequently, non-
invasive CR was developed to treat tinnitus with acoustic
stimuli (Tass et al., 2012a) and PD with vibratory stimuli
(Tass, 2017; Syrkin-Nikolau et al., 2018; Pfeifer et al., 2021).
Non-invasive aCR makes use of the tonotopic organization of the
central auditory system and aims to desynchronize the abnormal
tinnitus-related synchronized neural activity by periodically
delivering sequences of randomly ordered sinusoidal tones
with frequencies adapted to the tinnitus frequency (Tass et al.,
2012a; Tass and Popovych, 2012). A randomized, single-blind,
placebo-controlled 12-week proof of concept study in 63 patients
with chronic subjective tonal tinnitus receiving aCR stimulation
for 4–6 hours per day revealed significant therapeutic and
electrophysiological effects compared to baseline (Tass et al.,
2012a).

By design, effective CR stimulation requires phase resetting
stimuli to be delivered to different subpopulations of a
synchronized population of neurons (Tass, 2003). Accordingly,
careful selection of the stimulation amplitude is key to the effects
of CR. For instance, in parkinsonian nonhuman primates treated
with CR deep brain stimulation (DBS) delivered to the
subthalamic nucleus, it was shown that both acute effects
(during five consecutive days with 2 hours of stimulation per
day) and long-lasting after-effects (following cessation of
stimulation) were weak when using strong stimulation
amplitudes as are employed in conventional DBS. However,
the effects became pronounced and lasted for a month when
the stimulation amplitudes were one-third of those used in
conventional DBS (Tass et al., 2012b). For a given spatial
stimulation profile, the stimulation amplitude determines the
amount of spatial overlap of the separately stimulated
neuronal subpopulations (Tass, 2003; Manos et al., 2018). To
that end, the present study aims to elucidate the optimal spatial
stimulation profiles for aCR tones in order to achieve higher levels
of desynchronization in the tinnitus focus of the auditory cortex.

For acoustic stimulation of the inner ear, auditory filters
provide an equivalent concept to spatial stimulation profiles
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for electrical stimulation of neuronal tissue (Fletcher, 1940).
Different auditory frequencies cause mechanical resonances at
different points along the basilar membrane in the cochlea of the
inner ear. Its spatially dependent mechanical sensitivity gives rise
to a tonotopic organization of the basilar membrane to audio
frequencies which can be represented as an array of “auditory
filters”, i.e., overlapping band-pass filters (Fletcher, 1940), which
continue to be represented tonotopically throughout the
ascending auditory pathway to the level of the cortex. A
second tone administered within the frequency range of an
auditory filter causes auditory masking, i.e., it affects the
perception of a first tone (Fletcher, 1940).

In psychoacoustics, the bandwidth of an auditory filter in
human hearing is approximated by the corresponding
equivalent rectangular bandwidth (ERB). An ERB describes a
rectangular band-pass filter that passes the same amount of
energy as its corresponding auditory filter (Moore and Glasberg,
1983; Glasberg and Moore, 1990). In this study, we use a
mathematic model for tinnitus frequency and hearing
impairment-induced increase of ERB width (Tass et al.,
2019). This provides us with the possible range of spatial
stimulation profiles achievable by regular aCR stimulation
(Tass et al., 2012a). Second, given the validity and limitations
of the mathematical ERB model (Tass et al., 2019), we here
elucidate which spacing arrangements of CR tone ERBs may be
favorable for tinnitus suppression. In particular, we focus on
whether CR tones should be densely packed with corresponding
ERBs overlapping or more widely spaced with gaps in between
their ERBs. The ERB width depends on the ERB’s center
frequency as well as the hearing impairment at that
frequency (Moore and Glasberg, 1983; Glasberg and Moore,
1990; Tass et al., 2019). Hence, ERB widths of the original four
CR tones (Tass et al., 2012a), as well as their mutual spatial
arrangement, may vary depending on the tinnitus frequency
and the hearing impairment.

On the whole, the findings presented herein are a re-analysis of
the data acquired from 18 subjects with tinnitus from (Adamchic
et al., 2017) who were treated with aCR stimulation. The method
of re-analysis is based on the mathematical model of the ERB-
scale, with dependencies on tinnitus frequency and hearing loss,
described in (Tass et al., 2019). To detect favorable ERB spacing
arrangements, we define in this manuscript a quantity called the
“gap index” which quantifies the spacing between adjacent
auditory filters. As will be described in the manuscript, the
gap index serves as a comprehensive index of tone spacing,
regardless of whether the ERBs of the CR tones have gaps or
overlaps between them.We then assess the relationship of the gap
index with the corresponding degree of clinical tinnitus
suppression in a study of patients with chronic subjective
tinnitus stimulated with two different variants of aCR
stimulation which differ with respect to CR tone selection and,
importantly, tone spacing (Adamchic et al., 2017). Regular aCR
makes use of four tones with fixed spacing that is consistent
across cycles. On the contrary, in noisy aCR, the tones are
randomized prior to each cycle, resulting in a distinct spacing
profile with each cycle (Tass et al., 2012a).

METHODS

Participants
This study was approved by the Ethics Committee of Cologne
University’s Faculty of Medicine. Written informed consent was
obtained from all subjects according to the Declaration of
Helsinki and Good Clinical Practice. Participants were 18
individuals with subjective bilateral chronic tonal tinnitus (15
males and 3 females). Individuals with pulsatile, buzzing, roaring,
or hissing tinnitus and subjects with a history of auditory
hallucinations, Ménière’s disease, middle ear disorders, and
diagnosed neurological or mental disorders, as well as
individuals taking CNS-acting medication or using hearing
aids, were excluded. The mean age was 45.89 (±12.97 standard
deviation, SD) years, and the mean tinnitus duration was 9.83
(±7.08) years. Otoscopic examination was performed in all
participants. Additional details can be found in (Adamchic
et al., 2017).

Audiometric Testing
Extended high-frequency air conduction audiometry was
performed in all subjects, ranging from 125 Hz to 16 kHz,
with thresholds measured in dB HL. While estimates of the
frequency distribution of the tinnitus pitch match (fT) vary
across studies (Reed, 1960; Meikle and Taylor-Walsh, 1984;
Savastano, 2004), the prevalence of fT above 4,000 Hz in these
studies is consistently sizeable. Thus, in order to comprehensively
estimate hearing in the ranges possibly affected by the tinnitus, a
five-frequency pure tone average (5-PTA) was calculated for each
subject as the average of thresholds at 500, 1,000, 2000, 4,000, and
8,000 Hz.

The tinnitus pitch was determined by means of a pure tone
matching procedure (from 0.5 to 13 kHz) (Adamchic et al.,
2017). Starting from either well above or well below the
subject’s tinnitus frequency, subjects had to adjust the
frequency of a pure tone to the perceived pitch of their
tinnitus. The tinnitus pitch matching procedure required
patients to confirm the best matching pitch twice with a
maximum modulus of the difference between two matched
tones <100 Hz. Tinnitus pitches obtained ranged from 675 to
9,800 Hz. Audiometric data, tinnitus pitch, and tinnitus
duration can be found in Supplementary Table S1.

Stimulation Protocols and Symptom
Scoring
Figure 1A illustrates the stimulation patterns for aCR. The aCR
stimulation comprises the four tones whose frequencies are
specified as fixed percentages relative to fT . There are two
forms of aCR, referred to as “regular” and “noisy.” In regular
aCR, two tones are placed below fT and two are placed above
fT (f1 � 0.76 · fT , f2 � 0.9 · fT , f3 � 1.1 · fT , f4 � 1.4 · fT)
(Figure 1B). For the noisy aCR stimulation, prior to each cycle,
four frequencies f1 , . . . ., f4 are randomly chosen out of a set of
frequencies c1 to c12 with equal probability (Figure 1B) in the
following way: f1 is chosen from the set S1 � {c1, c2, c3}, f2 is
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chosen from the set S2 � {c4, c5, c6}, f3 is chosen from the set
S3 � {c7, c8, c9}, and f4 is chosen from the set S4 � {c10, c11, c12},
where cj � djfT and d1 � 0.69, d2 � 0.728, d3 � 0.766, d4 �
0.810, d5 � 0.855, d6 � 0.900, d7 � 1.100, d8 � 1.182, d9 �
1.265, d10 � 1.400, d11 � 1.505, d12 � 1.610. The duration of
the acoustic tones is 150 ms for both protocols.

The frequency span for regular aCR stimulation reads
f4 − f1 � 0.63 · fT. For noisy aCR stimulation, the frequency
span ranges from c12 − c1 � 0.920 · fT to c10 − c3 � 0.634 · fT

with an average (over stimulation cycles) of S4 − S1 � 0.777 · fT.
Thus, the average frequency span of noisy aCR stimulation is
approximately 23% greater than that of aCR stimulation, which
means an even higher total span for the ERBs centered at the
stimulation tone frequencies. In the case of aCR stimulation, the
distances between adjacent tones are f2 − f1 � 0.134 · fT,
f3 − f2 � 0.2 · fT, f4 − f3 � 0.3 · fT. For the noisy aCR
stimulation, the average distance between adjacent sets of
tones is given by S2 − S1 � 0.127 · fT, S3 − S2 � 0.327 · fT,
S4 − S3 � 0.323 · fT , where S1, .., S4 are the mean frequencies
of the corresponding sets defined above. Thus, the distance
between the inner sets of tones of the noisy aCR stimulation is
on average 64% greater than the distance between the inner CR
tones f2 and f3. Accordingly, aCR stimulation is more closely
spaced around the tinnitus frequency fT than is noisy aCR. More
details about the frequency spacing for both protocols can be
found in the article (Adamchic et al., 2017). For both stimulation
protocols in this study, stimulation tones were equally loud. The
loudness of the stimulation tones was set using the following

procedure: First the intensity of the stimulation tone with the
lowest frequency was set at threshold +20 dB. Loudness of
the other stimulation tones was set so that they were perceived
by the participant as equally loud as the first tone. Participants
who were not able to hear all stimulation tones were excluded
from the study.

The first part of each experimental session consisted of a 10-
min period of silence (Figure 1C). The participants sat still and
listened to their tinnitus. At the end of this baseline period, the
participants were asked to indicate the mean tinnitus loudness
and annoyance during the baseline resting period on a 100 mm
long visual analogue scale (VAS) verbally anchored at the
endpoints (Adamchic et al., 2012). VAS for loudness (VAS-L;
tinnitus is not audible � 0, tinnitus is extremely loud � 100) and
annoyance (VAS-A; tinnitus is not annoying � 0, tinnitus is
extremely annoying � 100) were obtained. After the rating, CR
stimulation (Figure 1B) was presented for exactly 16 min. At the
end of this stimulation period, the participants were asked to
indicate the mean tinnitus loudness and annoyance during the
stimulation period on the VAS-L and VAS-A. The stimulus
presentation was followed by a 2-min-long resting period with
eyes closed, followed by a final VAS-L and VAS-A rating between
2 and 4 minutes after the stimulation. The order of the
experimental sessions—whether regular aCR first or noisy aCR
first—was pseudorandomly counterbalanced across subjects. The
subjects thus underwent both types of aCR. The sequence of
events in a typical experimental session is also illustrated in
Figure 1C. Since the VAS-A and -L scores were measured

FIGURE 1 | Schematic of the experimental paradigm and the two types of acoustic CR stimulation. (A) aCR stimulation pattern. For aCR, we employ the tonotopic
organization of the primary auditory cortex (left panel, brain adapted from (Chittka and Brockmann, 2005) with kind permission of the authors) and deliver brief sinusoidal
tones of different frequencies (pitch) f1, . . . , f4 equidistantly in time at a cycle repetition rate of 1.5 Hz (Tass et al., 2012a). Three CR cycles, each comprising a randomized
sequence of four tones (right panel), were followed by two silent cycles without stimuli (“pause”). The 3 cycles stim ON-2 cycles stim OFF pattern was repeated
periodically (Tass, 2003; Tass and Majtanik, 2006; Lysyansky et al., 2011). Right panel from (Tass et al., 2012a) with kind permission by the authors. Copyright by
Forschungszentrum Jülich GmbH. (B) Schematic illustration of the stimulus tones and repetition rates of regular aCR and noisy aCR. Panel partly redrawn from (Tass
et al., 2012a) with kind permission by the authors. Copyright by Forschungszentrum Jülich GmbH. (C) Experimental session. During the first 10 min of silence, the
baseline VAS-L and VAS-A scores were obtained. Thereafter, one of the two stimulation paradigms, i.e., regular aCR or noisy aCR, was performed for 16 min. VAS-L and
VAS-A were obtained during stimulation and at the end of this stimulation period. After each session, participants received a pause during which tinnitus returned to the
normal level. Thereafter the next session was started. Panel partly redrawn from (Adamchic et al., 2017) with kind permission by the authors. Copyright by
Forschungszentrum Jülich GmbH.
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both for the right and left ears, we used their arithmetic mean
values normalized to their baseline values (Adamchic et al., 2017).
Since the values were normalized to their baseline, the final score
used in the analysis is a proportion (with 1.0 indicating a score
unchanged from baseline). From this point on, all reference to
VAS-A and VAS-L refers to the normalized score unless
indicated otherwise. All subjects’ normalized VAS-L and VAS-
A scores during and after therapy for regular and noisy aCR can
be found in Supplementary Table S2.

ERB Concept for Acoustic Stimulation
In the present study, we used a frequency scale based on the
equivalent rectangular bandwidth (ERB) of the auditory filter, as
determined from masking experiments using notched noise or
spectrally rippled noise with human listeners (Moore and
Glasberg, 1983; Glasberg and Moore, 1990). The average value
of the ERB for young listeners with normal audiometric
thresholds measured at moderate sound levels is denoted as
ERBN. Its value in Hz is given by

FIGURE 2 | The alignment of CR tones, tinnitus tone fT and corresponding ERBs in the case when the ERBs of neighboring CR tones are non-overlapping. The
symbols used to designate the band edges and center frequencies of the ERBs around the center frequencies of each of the four original CR tones and fT . The gaps
between the ERBs centered at the CR tones are illustrated by gray stripes.

FIGURE 3 | Illustration of the range of possible gap index values for regular aCR stimulation (A) and for noisy aCR stimulation (B). The gap indices g(fT , h) from Eq. 9
(A) and g(fT , h) from Eq. 17 (B) are plotted against tinnitus frequency fT for homogenous hearing loss of 0 dB (“HL 0 dB”), 16 dB (“HL 16 dB”), 26 dB (“HL 26 dB”),
41 dB (“HL 41 dB”), 50 dB (“HL 50 dB”) at all corresponding CR tones, delineating ranges of maximum gap index for normal hearing as well as slight, mild, andmoderate
hearing loss. Additionally, for regular aCR in part (A), we plot curves “HL 26 dB LF,” “HL 26 dB HF,” and “HL 26 dB TC,” to demonstrate how alternatively shaped
audiograms with hearing loss in the lower-frequency, higher-frequency, and tinnitus-centered regions, respectively, affect the gap index. Despite all audiograms having
average hearing loss of 26 dB, the shape of the audiogram is of critical importance in determining the gap index.
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ERBN � 24.7 · (0.00437 · f + 1), (1)

where f is the center frequency in Hz (Glasberg and Moore,
1990). This equation provides a good prediction of ERB values

estimated psychoacoustically using masking experiments for
center frequencies spanning almost the entire range of human
hearing from about 50 to 15,000 Hz (Zhou, 1995). The edges of
the ERB-wide frequency intervals were estimated at low sensation

TABLE 1 | Multiple linear regression models using tinnitus duration, gap index, and residual variance of 5-PTA to gap index as predictor variables. The primary outcome
variable chosen was VAS-L during therapy. The additional variables of VAS-L after therapy and VAS-A during and after therapy are also shown. Findings are shown for
both regular aCR and noisy aCR. B (SE) represents unstandardized beta with standard error in parentheses.

VAS-L during therapy

Regular aCR (n =18, R2 = 0.582, F(3,14) = 6.490, p =0.006a) B (SE) β Partial Part p-value

Constant 0.595 (0.162) 0.003a

Duration 0.002 (0.001) 0.350 0.415 0.295 0.110
Gap index −2.175 (0.754) −0.499 −0.611 −0.499 0.012a

Residual variance of 5-PTA 0.020 (0.014) 0.295 0.359 0.249 0.172

Noisy aCR (n =18, R2 = 0.551, F(3,14) = 5.730, p =0.009a) B (SE) β Partial Part p-value

Constant 1.097 (0.238) <0.001a
Duration 0.001 (0.001) 0.216 0.268 0.187 0.315
Gap index −2.657 (0.786) −0.609 −0.670 −0.605 0.004a

Residual variance of 5-PTA 0.016 (0.014) 0.240 0.296 0.208 0.265

VAS-L AFTER THERAPY

Regular aCR (n =18, R2 = 0.442, F (3,14) = 3.696, p =0.038a) B (SE) β Partial Part p-value

Constant 0.642 (0.129) <0.001a
Duration 0.002 (0.001) 0.511 0.499 0.431 0.049a

Gap index −1.020 (0.600) −0.339 −0.413 −0.339 0.111
Residual variance of 5-PTA 0.004 (0.011) 0.085 0.095 0.071 0.726

Noisy aCR (n =18, R2 = 0.437, F (3,14) = 3.617, p =0.040a) B (SE) β Partial Part p-value

Constant 1.022 (0.251) 0.001a

Duration 0.001 (0.001) 0.277 0.304 0.240 0.252
Gap index −2.125 (0.828) −0.518 −0.566 −0.515 0.022a

Residual variance of 5-PTA 0.010 (0.015) 0.151 0.172 0.131 0.524

VAS-A DURING THERAPY

Regular aCR (n =18, R2 = 0.674, F(3,14) = 9.633, p =0.001a) B (SE) β Partial Part p-value

Constant 0.647 (0.162) 0.001a

Duration 0.002 (0.001) 0.357 0.466 0.301 0.069
Gap index −2.726 (0.750) −0.555 −0.697 −0.555 0.003a

Residual variance of 5-PTA 0.025 (0.014) 0.319 0.426 0.269 0.100

Noisy aCR (n =18, R2 = 0.530, F(3,14) = 5.270, p =0.012a) B (SE) β Partial Part p-value

Constant 0.968 (0.244) 0.001a

Duration 0.001 (0.001) 0.276 0.328 0.238 0.215
Gap index −2.424 (0.806) −0.554 −0.626 −0.551 0.009a

Residual variance of 5-PTA 0.016 (0.015) 0.234 0.284 0.203 0.286

VAS-A AFTER THERAPY

Regular aCR (n =18, R2 = 0.699, F(3,14) = 10.841, p <0.001a) B (SE) β Partial Part p-value

Constant 0.689 (0.140) <0.001a
Duration 0.003 (0.001) 0.489 0.600 0.412 0.014a

Gap index −2.566 (0.649) −0.580 −0.726 −0.580 0.001a

Residual variance of 5-PTA 0.011 (0.012) 0.153 0.230 0.129 0.392

Noisy aCR (n =18, R2 = 0.449, F(3,14) = 3.804, p =0.035a) B (SE) β Partial Part p-value

Constant 1.090 (0.254) <0.001a
Duration 0.001 (0.001) 0.260 0.289 0.224 0.278
Gap index −2.360 (0.838) −0.562 −0.601 −0.559 0.014a

Residual variance of 5-PTA 0.007 (0.015) 0.105 0.122 0.091 0.652

aDenotes statistically significant result for alpha level <0.05.
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levels using data presented by Moore and others, where the value
of the ERB was provided for center frequencies 2,000, 4,000, and
6,000 Hz and audiometric thresholds from 0 to 80 dB HL (Moore
et al., 1999). From these data, the following equation was
generated for hearing loss h in the range of 0–50 dB HL (Tass
et al., 2019):

ERB(h) � ERBN · (1 + h/50 dBHL), (2)

The values of frequencies at the upper edges aT and lower
edges bT of the ERB-wide band centered around fT are
defined by

aT � fT − 0.5 · ERB(h(fT)), (3)

bT � fT + 0.5 · ERB(h(fT)), (4)

Analogously, the frequencies at the upper and lower edges of
the ERB band centered at the frequency of CR tone j, aj, and bj,
read

aj � fj − 0.5 · ERB(h(fj)), (5)

bj � fj + 0.5 · ERB(h(fj)), (6)

Figure 2 illustrates the alignment of CR tones f1, . . .f4, tinnitus
tone fT together with the corresponding ERBs for the case when
the ERBs of neighboring CR tones are not overlapping.

Gap Index for Psychophysical ERBs
Gaps and Overlaps for Regular aCR Stimulation
For subjects with normal hearing, neighboring ERBs of CR tones
do not overlap for tinnitus frequencies fT greater than 560 Hz
(Tass et al., 2019). With increasing hearing impairment, the width
of the gaps between the CR tone ERBs may decrease or even
vanish (Tass et al., 2019). To quantify the spacing of the CR tones,
we introduce different quantities measuring gaps and overlaps.
To this end, we introduce the relative gap between ERB(fj) and
ERB(fk), where fj <fk, by

FIGURE 4 | The primary outcome variable was chosen to be the normalized VAS-L during therapy. These are the partial regression plots demonstrating the
relationship of the residuals of the normalized VAS-L to the residuals of the gap index after regressing on the residual variance of 5-PTA during (A) regular aCR and (B)
noisy aCR. It should be noted that partial regression plots demonstrate the residuals of the represented variables, rather than the variables themselves.

Frontiers in Network Physiology | www.frontiersin.org October 2021 | Volume 1 | Article 7343447

Munjal et al. Treatment Tone Spacing in Tinnitus

20

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


G(fj, fk) � Gabs(fj, fk)
ERB(fk) � ak − bj

ERB(fk) , (7)

where Gabs(fj, fk) denotes the absolute gap between ERB(fj)
and ERB(fk), wherefj <fk.G(fj, fT)> 0means thatERB(fj)
and ERB(fk) do not overlap and are separated by a gap, whereas
G(fj, fk)< 0, if ERB(fj) and ERB(fk) overlap. G(fj, fk) � 0
if both ERBs touch each other, so that the edges of ERB(fj) and
ERB(fk) coincide.

For regular aCR stimulation, themean relative gap between all
pairs of neighboring ERBs, ERB(fj) and ERB(fj+1) (with
j � 1, 2, 3), reads

G � ∑3

j�1 G(fj, fj+1), (8)

For regular aCR stimulation, the entire frequency range spanned
by the ERBs centered around four CR tones is given by the ERB
span E � [a1, b4] (Figure 2). As an alternative means to assess
the spacing of the CR tone ERBs, we introduce the gap index g by

g � [∑3
j�1
[Gabs(fj, fj+1)]+]/(b4 − a1), (9)

where [ . . . ]+ is defined by

[x]+ � { x : x> 0
0 : x≤ 0 .

Thus, the gap index provides us with the percentage of E covered
by the gray stripes as shown in Figure 2.

As shown in Supplementary Figure 1A, the relative gap
G(fj, fj+1) is highly correlated with the gap index (with the r
ranging from 0.92 to 0.99, depending on which tone pair is
assessed), regardless of whether the relative gap is negative,
zero, or positive. Further, as shown in Supplementary
Figure 2A, the mean relative gap G between all pairs of
neighboring ERBs is also highly correlated with the gap index g
(r � 0.99). This motivates the use of the gap index as a summary
index of the spacing of the ERBs of all four CR tones, rather than
the behavior of individual pairwise ERBs.

In addition, we determine the number of gaps (i.e., gray stripes
in Figure 2) between the four ERBs belonging to the regular aCR
tones. To this, in analogy to Eq. 7we determine whether there is a
gap between ERB(fj) and ERB(fk), where fj <fk, by

H(j, k) � { 1 : ak − bj > 0
0 : else

, (10)

H(j, k) � 1 if there is a gap betweenERB(fj) andERB(fk) and 0 else.
To count the number of gaps between neighboring ERBs belonging to
the regular aCR tones, we introduce the gap count c is then defined by

c � ∑3
j�1

H(j, j + 1), (11)

c(fT, h) can attain integer values between 0 and 3.
Supplementary Figure 3A demonstrates the relationship
between the gap count c and the gap index g (r � 0.94).

Gap index and gap count quantify the overall spacing of the
entire ERB arrangement of the CR therapy tones. In addition, as
an alternative means to describe the spatial CR tone
arrangement, we use the tinnitus ERB(fT) as reference. To
assess to which extent the tinnitus ERB(fT) is covered by
ERB(fj) of the CR therapy tones j � 1, 2, 3, 4, we determine
the relative overlap between the tinnitus ERB(fT) and the CR
tone ERB(fj)

O(fj, fT) � ⎧⎨⎩ (bj − aT)/ERB(fT) : fj <fT

(bT − aj)/ERB(fT) : fj >fT

, (12)

O(fj, fT)> 0 means that ERB(fT) and ERB(fj) overlap, whereas
O(fj, fT)< 0 corresponds to ERB(fT) and ERB(fj) being
separated by a gap. O(fj, fT) � 0 if ERB(fT) and ERB(fj)
touch each other with coincident ERB edges.

With this the mean relative overlap between the tinnitus
ERB(fT) and all other CR tone ERBs, ERB(f1), . . . , ERB(f4),
reads

O(fT) � ∑4

j�1 O(fj, fT), (13)

As shown in Supplementary Figure 4A, the relative overlap
and the gap index are highly correlated (r ranges from −0.99
to −0.95, depending on which tone pair is assessed). As shown
in Supplementary Figure 5A, the mean relative overlap is
also highly correlated with the gap index (r � −0.98). Thus,
the overlaps of the CR tone ERBs with the tinnitus ERB are
also captured by the gap index.

The advantage of using the gap index, a single, integral spacing
measure for all CR tones (rather than, for example, multiple such
metrics for single ERB pairs) is that the gap index reflects the
spacing of CR tone ERBs in their entirety and enables a
comprehensive correlation to different clinical outcome
measures. It also captures the relationship of CR tone ERBs to
the tinnitus ERB.

Gaps and Overlaps for Noisy aCR Stimulation
To determine the mean gap between all pairs of CR tone
frequencies fj and fk, we first determine the relative gap
defined by Eq. 7 according to

GN(cm, cn) � an − bm
ERB(cn), (14)

for cm ∈ Sj and cn ∈ Sk, and an and bn denote the lower and upper
edge of ERB(cn) (see Figure 2).

With this, the mean relative gap between all pairs of
neighboring CR frequencies fj and fj+1 (j � 1, 2, 3) for noisy
aCR stimulation reads

GN(fj, fj+1) � ∑ cm∈Sj, cn∈SkG(cm, cn), (15)

For noisy aCR stimulation, the ERB span depends on the lowest
and highest CR tone of the respective noisy aCR cycle (see
Stimulation Protocols and Symptom Scoring). To determine the gap
index for noisy aCR stimulation, for each realization of noisy aCR
cycles we consider the percentage ERB span consisting of gaps in
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between the CR tone ERBs and average over all (equally frequent)
possible realizations, where the set of realizations is given by

R � {(fj, fk, fl, fm)}j�1,2,3;k�4,5,6;l�7,8,9;m�10,11,12
� : {(j, k, l, m)}j�1,2,3;k�4,5,6;l�7,8,9;m�10,11,12

(16)

(see Stimulation Protocols and Symptom Scoring). To this end,
we use Eq. 7 for the absolute gap Gabs(fj, fk) between ERB(fj)
and ERB(fk) and calculate the gap index g(fT, h) for each
single realization (j, k, l, m). Denoting the gap index for
realization (j, k, l, m) by g(fT, h, j, k, l, m), the gap index for
noisy aCR reads

g(fT, h) � 1
81

∑ j�1,2,3;k�4,5,6;l�7,8,9;m�10,11,12g(fT, h, j, k, l, m),
(17)

The relationship of relative gap to gap index for noisy aCR is
shown in Supplementary Figure 1B (r ranges from 0.93 to 0.98
depending on which tone pair is assessed) and mean relative gap to
gap index for noisy aCR in Supplementary Figure 2B (r � 0.999).

For noisy aCR stimulation, we additionally determine the gap
count

c(fT, h) � 1
81

∑ j�1,2,3;k�4,5,6;l�7,8,9;m�10,11,12c(fT, h, j, k, l, m),
(18)

To this end, we replace the term for the gap, ak − bj, by the
corresponding Heaviside function H(j, k) (Eq. 10).
Supplementary Figure 3B demonstrates the relationship
between the gap count c and the gap index g (r � 0.97).

In addition, we describe the spatial CR tone arrangement by
using the tinnitus ERB(fT) as reference. To assess to which extent
the tinnitus ERB(fT) is covered by ERB(cm), in analogy to Eq. 12,
we determine the relative overlap between the tinnitus ERB(fT)
and ERB(cm)

O(cm, fT) � { (bm − aT)/ERB(fT) : cm <fT

(bT − am)/ERB(fT) : cm >fT
, (19)

For noisy aCR stimulation, themean relative overlap between all three
realizations of a CR frequency fj and the tinnitus ERB(fT) reads

ON(fj, fT) � ∑ cm∈SjO(cm, fT), (20)

With this themean relative overlap between the tinnitus ERB(fT)
and all other CR tone ERBs, ERB(f1), . . . , ERB(f4), reads

ON(fT) � ∑ 4
j�1 ON(fj, fT), (21)

The relative overlap vs. gap index for noisy aCR is shown in
Supplementary Figure 4B (r ranges from −0.97 to −0.95
depending on which tone pair is assessed). The mean
relative overlap vs. gap index for noisy aCR is shown in
Supplementary Figure 5B (r � −0.97). As is the case with
regular CR, the gap index once again represents a single
measure that captures multiple relationships among the
noisy aCR tone ERBs and between the noisy aCR tone ERBs
to the tinnitus ERB.

Spacing of CR Tones
According to the American Speech-Language-Hearing
Association (ASHA), the hearing thresholds relevant to our
study can be classified with the following descriptors: normal
hearing (0–15 dB), slight hearing loss (16–25 dB), mild hearing
loss (26–40 dB), and moderate hearing loss (41–55 dB)
(Goodman, 1965; Clark, 1981). Due to deterioration in
estimates of the ERB width beyond hearing thresholds of
50 dB, we do not plot severe-to-profound hearing loss here.
Nine of the eighteen subjects had at least one threshold above
50 dB in at least one ear at the frequencies included in the
5-PTA.

To illustrate how the range of possible gap index values for
aCR stimulation depends on tinnitus frequency fT and hearing
loss, we plot the gap index against tinnitus frequency fT ,
assuming homogenous hearing loss, where 0, 16, 26, and
41 dB hearing loss applies to all corresponding CR frequencies,
respectively (“HL 0dB”, . . ., “HL 41dB” in Figure 3A). In these
cases, h(f1), . . . , h(f4) � 0, 16, 26, and 41 dB, respectively. This is
to illustrate maximum ranges of the gap index belonging to
normal hearing as well as slight, mild, and moderate
homogenous hearing loss. Analogously, we plot the same
curves for noisy aCR stimulation (Figure 3B). The maximum
range of possible gap index values increases with increasing
tinnitus frequency and begins to broaden even for milder
degrees of homogenous hearing loss. The tinnitus frequency-
dependent increase is more pronounced for aCR stimulation than
for noisy aCR stimulation. In general, the values of the gap index
for aCR stimulation are smaller than for noisy aCR stimulation.

However, the gap index not only depends on the average
hearing loss in the vicinity of the tinnitus frequency fT (i.e., the
frequency range between f1, the lowest CR tone, and f4, the
highest CR tone) but may strongly vary depending on the actual
shape of the audiogram in that frequency range. For illustration,
for aCR stimulation we consider different types of non-
homogenous hearing impairment. For this, we introduce the
mean hearing impairment belonging to all four CR tones by

h(fT) � 1
4
∑ 4

j�1 h(fj) .
We consider different shapes of (model) audiogram with the
same mean h(fT) as for the homogenous hearing impairment at
26 dB shown in Figure 3A:

On average 26 dB hearing loss:
For h(fT) � 26 dB we consider three different cases with non-

homogenous (model) hearing impairment (Figure 3A):

1) Lower-frequency hearing loss (“HL 26 dB LF”):
h(f1) � h(f2) � 50 dB, h(f3) � 4 dB, h(f4) � 0 dB.

2) Higher-frequency hearing loss (“HL 26 dB HF”):
h(f4) � h(f3) � 50 dB, h(f2) � 4 dB, h(f1) � 0 dB.

3) Tinnitus-centered hearing loss (“HL 26 dB TC”): h(f3) � 50
dB, h(f2) � 14 dB, h(f1) � h(f4) � 0 dB.

As shown in Figure 3A, the lower-frequency (model) hearing
impairment has the greatest gap values, even exceeding the HL
16 dB curve for homogenous hearing impairment. Conversely,
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for frequencies between 800 Hz and 1,500 Hz the gap index of the
higher-frequency (model) hearing impairment approaches gap
index values of the HL 41 dB curve for homogenous hearing
impairment. Similar audiogram-shape dependent variations of
the gap index were also observed for h(fT) � 16 dB and
h(fT) � 41 dB, as described in the Supplementary Methods. In
summary, the gap index does not simply depend on the average
hearing impairment around fT. The gap index rather strongly
depends on the actual shape of the audiogram in the vicinity of
the tinnitus frequency fT.

Calculation of Gap Index
To compute the distances between adjacent ERBs and the overall
gap index (Eq. 9, above) for the aCR tones used in the clinical
study, we used the following procedure:

1) The audiogram of every tinnitus patient was linearly
interpolated on a logarithmic frequency axis.

2) The frequencies of the tones used for regular CR
stimulation and for noisy aCR stimulation were computed
for every tinnitus patient, and the hearing thresholds at the
frequencies of the stimulation tones were interpolated from
the audiometric thresholds.

3) The edges of the ERB-wide frequency intervals centered at the
frequencies of CR tones were estimated using Eqs. 5, 6.

4) The gaps between the ERBs centered at the neighboring CR
tones were calculated using Eq. 7 for every tinnitus patient.

5) The values of the gap index were calculated using Eq. 9 for
every tinnitus patient in the case of regular aCR stimulation
and Eq. 17 for noisy aCR stimulation.

a) Notably, if the tinnitus frequency was the same in both ears,
the gap index for both ears was calculated with the mean
values of the linearly interpolated audiograms of both ears.

b) However, if the tinnitus frequency was different between the
ears, the gap index was initially calculated for each ear
separately (using the individual thresholds for each ear).
Then, the two indices for the ears were averaged for the
final gap index.

Statistical Analysis
All statistical analyses were performed using IBM SPSS Statistics
(2020).

Primary Analysis
VAS-L score during stimulation was chosen as the primary
outcome variable. This was motivated by several factors.
Firstly, the most pronounced clinical effect seen in
Adamchic et al., 2017 was the acute effect on loudness and
annoyance. Stimulation-induced reduction of VAS-L and
VAS-A was quite similar (Adamchic et al., 2017). However,
tinnitus loudness appears to be the more elementary measure
as opposed to tinnitus annoyance, the latter possibly prone to
complex psychological factors (Hiller and Goebel, 2007;
Guimaraes et al., 2014), such as a high degree of self-
attention and somatic attention (Newman et al., 1997).
Additionally, the score during stimulation rather than after
stimulation was chosen as the primary outcome variable. The

goal of CR stimulation is to induce long-lasting effects.
However, this requires stimulation of sufficient duration.
Based on the 2012 proof-of-concept study (Tass et al.,
2012a), we could not expect to induce full-scale effects
after only 16 min. In addition, it is not known to which
extent the required stimulus duration depends on factors
like disease duration. Onset and time course of neuronal
plastic changes may depend on several factors. From
computational studies in simple neural networks, we know
that acute after-effects reflect the CR stimulation-induced
changes and reduction of synaptic weights (Khaledi-Nasab,
2021). However, we focus on the most pronounced acute
effects that may be less dependent on several other factors
intrinsic to patients. Thus, overall, the VAS-L score during
stimulation may be a relatively “purer” metric of stimulus
efficacy less dependent on patient-specific factors, more so
than the VAS-A score during or after stimulation, or VAS-L
score after stimulation.

The primary analysis thus included linear regression models
to determine the effects of tinnitus duration, gap index, and 5-
PTA on the VAS-L score during regular and noisy aCR. Bi-
variate correlations amongst the predictor variables
demonstrated multicollinearity of the gap index and 5-PTA.
For aCR, the gap index and 5-PTA had an r � −0.659 for
regular aCR. The gap index and 5-PTA had an r � −0.705 for
noisy aCR. This indicates that higher 5-PTA is correlated with
lower gap indices, as would be expected due to broadening of
ERBs with increasing threshold. Because the 5-PTA is a
function of the patient’s underlying hearing loss and cannot
be modified when selecting CR parameters, we chose the gap
index as the more preferred predictor variable in this study
over 5-PTA. To that end, we calculated the residual variance of
5-PTA toward the response variable of gap index for both
regular aCR and noisy aCR. Residual variance is the
unexplained variance between 5-PTA and the gap index.
This method enabled us to correct for multicollinearity
between these predictor variables. Of note, patient age was
not included in the regression models, as hearing loss has a
known significant impact on cochlear tuning, while age may
have a smaller impact (Lutman et al., 1991). The bivariate
correlation between the two variables of age and 5-PTA
demonstrated an r � 0.635. Thus, 5-PTA was preferentially
selected over age to minimize further multicollinearity,
considering the known smaller effect of age on cochlear
tuning relative to the effect of hearing loss.

Gap index, tinnitus duration, and residual variance of 5-PTA
(calculated from the relationship to the gap index of either regular
or noisy aCR) were included in the models with the VAS-L during
therapy as the primary outcome variable.

Secondary Analyses
Additionally, we chose to perform secondary analyses that
were exploratory in nature and therefore had no formal
hypotheses. The secondary analyses were performed with
the outcome variables of VAS-L after stimulation, as well as
VAS-A during and after stimulation. Furthermore, the mean
relative overlap and mean relative gap were also assessed as
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part of the secondary analyses. As in the primary analysis, the
5-PTA was residualized in all secondary analyses to account
for multicollinearity.

RESULTS

Primary Analysis
As shown in Table 1, in the linear models for VAS-L during both
regular and noisy aCR, the gap index was the only significant
predictor variable. Partial regression plots for the primary
analysis are shown in Figure 4. It should be noted that partial
regression plots demonstrate the residuals of the represented
variables, rather than the variables themselves. For this reason,
the y-axis in each subfigure of Figure 4 represents the residual of
VAS-L during CR, and the x-axis represents the residual of the
gap index after removing the linear effects of the residual variance
of 5-PTA. The slope of each plot is the same as the
unstandardized beta coefficient (B) for the gap index for each
multiple linear regression, the values of which can be found in
Table 1.

Secondary Analyses
Gap Index
As shown in Table 1 and Supplementary Table 6, in the
linear models for VAS-L after regular aCR, only the duration
was a significant predictor variable. However, in noisy aCR,
the gap index was once again significant. In looking at VAS-
A during therapy, the gap index was significant for both
regular and noisy aCR. In looking at the VAS-A after
therapy, both the duration and gap index were significant
for regular aCR, while only the gap index was significant for
noisy aCR.

Mean Relative Gap
As shown in Supplementary Table 4 and Supplementary
Table 6, the findings for the mean relative gap were very
similar to those seen with the gap index. The mean relative
gap was a significant predictor variable for all models except the
VAS-L after regular aCR, in which only the duration was
significant. For VAS-A after regular and noisy aCR, both the
duration and mean relative gap were significant.

Mean Relative Overlap
As shown in Supplementary Table 5 and Supplementary
Table 6, for VAS-L during regular aCR, only the residual
variance of 5-PTA was significant. For VAS-L during noisy
aCR, the mean relative overlap was significant. For VAS-L
after regular aCR, the duration was trending toward
significance, while in noisy aCR, the duration was again
trending, with mean relative overlap as significant. For VAS-A
during regular aCR, the mean relative overlap and residual
variance of 5-PTA were significant. For VAS-A during noisy
aCR, only the mean relative overlap was significant. For VAS-A
after regular and noisy aCR, the duration and mean relative
overlap were both significant.

Tone Spacing Relationships
Some additional findings from observing tone spacing
relationships are described herein. Notably, only for regular
aCR do the pairwise relative gaps increase with increasing
tone frequency, as seen in Supplementary Figure 1 (i.e., in
(A), G (1, 2)< G(2, 3)<G(3, 4) on average, while in (B),
G (1, 2)< G(3, 4)<G(2, 3). Additionally, when looking at the
relative overlap, as in Supplementary Figure 4, for regular
aCR, even at large values of the gap index, there is overlap of
the ERBs for tones 2 and 3 with the tinnitus ERB. In noisy aCR,
however, the ERBs for tones 2 and 3 do not overlap with the
tinnitus ERB.

DISCUSSION

Overall Findings
Coordinated reset was developed computationally to lead to
desynchronization of populations of neurons with abnormal
degrees of coincident firing (Tass, 2003; Tass and Popovych,
2012). However, the optimal values of overlap of spatial
stimulation profiles for aCR—leading to maximal
desynchronization and clinical benefit—remain an unknown in
clinical practice. Several lines of evidence suggest that stimulus
amplitudes and the intimately associated parameter of spatial
stimulation profiles can have major impacts on the degree of
desynchronization achievable. Tass et al. demonstrated that CR-
DBS with one-third the stimulus amplitude of conventional DBS
leads to more pronounced clinical effects in parkinsonian
monkeys (Tass et al., 2012b). Additional computational studies
have demonstrated the presence of the “spacing principle,”
whereby spaced CR stimulation at weaker intensities can
effectively induce anti-kindling (Popovych et al., 2015).

This study aims to shed light on the impact of tone spacing on
clinical efficacy of regular and noisy aCR, as measured by the
changes to self-reports of tinnitus loudness and annoyance during
and after stimulation. The existing tone paradigms were
transformed into an ERB-scale, which allowed for an analysis
of the impact of aCR spatial stimulation profiles on clinical
outcome. The gap index—or fraction of the target spectral
range uncovered by stimulation—was introduced as a measure
of spacing between adjacent auditory filters. We carefully
analyzed several possible metrics, as described in the Methods,
and found the gap index to be a useful composite measure that
captures multiple relationships, both among the therapeutic tones
and also between the therapeutic tones and the tinnitus
frequency.

To that end, several multiple linear regression models were
developed, using tinnitus duration, the gap index, and residual
variance of 5-PTA (after controlling for multicollinearity with the
gap index) as predictor variables. The primary outcome variable
was VAS-L during therapy, with additional secondary analyses
performed on the response variables of VAS-L after therapy and
VAS-A during and after stimulation with the two CR paradigms.
The gap index was found to be the primary predictor variable for
the primary outcome variable of VAS-L during regular aCR and
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during noisy aCR. This suggests that, as the gap index becomes
smaller, i.e., the ERBs corresponding to the CR tones have less
space between them, there is a decrease in the response to
treatment, with higher symptom scores during and after
stimulation. Thus, higher gap indices—and thus loosely spaced
CR tones—are associated with a more pronounced treatment
response in the acute stage. These results hold true when
controlling for both tinnitus duration and 5-PTA.

When examining VAS-L after regular aCR, only the
duration was significant. When examining VAS-A after
regular aCR, both gap index and duration were significant.
The results of these exploratory analyses suggest that having
had tinnitus for longer duration had a possible negative impact
on therapeutic efficacy for the acute after-effect. In contrast, in
a prospective, randomized, single-blind, placebo-controlled
12-week proof of concept study in 63 patients with chronic
tonal tinnitus, up to 50 dB hearing loss and tinnitus duration
characteristics comparable to the sample considered here, it
was shown that tinnitus duration was not a confounding factor
for patients treated with aCR stimulation for 4–6 hours per day
(Tass et al., 2012a). Hence, while the acute effects studied in
this paper may depend on tinnitus duration, long-term effects
of aCR stimulation may evolve irrespective of tinnitus
duration. The results of this study are applicable specifically
to the acute effects of aCR during short, 16-min epochs. With
these results in hand, it will be important to assess whether
loosely spaced CR tones will also be favorable in a chronic
stimulation setting, with the goal of inducing plastic changes
furthering sustained long-term desynchronization and
corresponding symptom relief. With regards to the other
indices considered—mean relative gap and mean relative
overlap—there were fewer models in which the VAS scores
were explained solely by those variables, as summarized in
Supplementary Table 6.

Of note, acute desynchronizing effects (obtained during
stimulation) are not necessarily predictive of long-term
desynchronizing effects emerging after cessation of
stimulation. For instance, a theoretical study in spiking
neuronal networks with STDP receiving periodic stimulation
revealed complex and counterintuitive stimulus-response
relationships between acute (de)synchronization during
stimulation and sustained, long-lasting (de)synchronization
emerging as time evolves after cessation of stimulation
(Kromer and Tass, 2020). In particular, synchronization
during stimulation may be followed by long-lasting
desynchronization, and desynchronization during stimulation
may end up in long-lasting synchronization. From a
computational standpoint, acute desynchronizing effects of CR
stimulation are favorable but not predictive of long-term
desynchronization (Manos et al., 2018; Kromer and Tass,
2020), for which reason the gap index is not necessarily
predictive of long-term effects.

There are some important differences between regular and
noisy aCR that are worth mentioning. First, regular and noisy
aCR differ slightly with respect to acute after-effects. In the
original Adamchic et al., 2017 study, while both stimulation
protocols caused significant after-effects on tinnitus loudness,

only noisy aCR led to a significant reduction of tinnitus
annoyance after the end of stimulation. From an
electrophysiologic standpoint, regular aCR caused a
significantly longer and stronger decrease of the delta band
power, longer and stronger increase of alpha band power, and
significantly longer decrease of gamma band power (Adamchic
et al., 2017). However, interestingly in the window of 80–90 s
after stimulation, the reduction in gamma band power is
superior after noisy aCR. There is evidence to suggest that
the gamma band is more pertinent to the loudness of the
tinnitus percept (Van Der Loo et al., 2009), so once again,
this may be why only noisy aCR showed a statistically significant
acute after-effect in VAS-L after therapy, while regular aCR does
not (and hence also why the gap index is only a significant
predictor for VAS-L after noisy aCR).

These electrophysiologic differences suggest a likely
underlying mechanistic difference. The two protocols also
differ with respect to long-term effects. While noisy aCR
does have an acute on-effect, this effect is not long-lasting.
After cessation of stimulation, only regular aCR has a lasting
off-simulation effect, while noisy aCR does not (Tass et al.,
2012a). Because regular and noisy aCR demonstrate marked
differences in the duration of effect as well as in
electrophysiologic changes induced, it stands to reason that
the underlying mechanism of the two protocols may be
different. For example, as described in (Adamchic et al.,
2017), the reduction of delta band power after the end of
regular aCR was more pronounced and lasted longer than
that after noisy aCR. Noisy aCR may behave similar to a
masker, suppressing the tinnitus via feed-forward inhibition
rather than strictly via long-lasting desynchronization
(Roberts, 2007), though this is not known. Despite the
possible differences in underlying mechanism between
regular and noisy aCR, we found in this study that wider
ERB spacing was found to be beneficial for both regular and
noisy aCR. The reason for this is yet unknown. One possibility
is that wider ERB spacing in noisy aCR leads to a greater degree
of masking. As shown in Supplementary Figure 5, the mean
relative overlap of CR tones 2 and 3 is negative for noisy aCR,
indicating greater spacing. Evidence suggests that masking may
be most efficient for sounds of frequency just below the tinnitus
frequency (Terry et al., 1983). With a higher degree of spacing
between tones, it may be that the functional spectrum of noisy
aCR is wider on average, thus possibly contributing to greater
residual inhibition, but this is speculative and requires further
investigation. Furthermore, as was seen in (Tass et al., 2012a),
the pitch of patients’ tinnitus tended to shift downward over the
course of therapy in regular aCR. One possible explanation for
this may be evident from the relative gaps. As seen in
Supplementary Figure 1, in regular aCR, the pairwise
relative gaps increase with increasing tone frequency in
regular aCR (i.e., in (A), G (1, 2)< G(2, 3)<G(3, 4) on
average), while in noisy aCR this is not true (i.e., in (B),
G (1, 2)< G(3, 4)<G(2, 3) on average). This may contribute to
the lowering of the tinnitus pitch with therapy which has been
observed with regular aCR only, on account of a possible
downshifting of the tinnitus focus due to disproportionately
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effective desynchronization at higher stimulus frequencies in
regular aCR.

Additional studies are required to validate the findings of this
acute effects clinical study. To that end, there are several
important considerations discussed herein that impact the
interpretation of these results and the design of future
experiments. Firstly, the ERB model itself utilizes several
assumptions, which may limit the generalizability of this
approach to specific subgroups of tinnitus patients. Secondly,
various cochlear nonlinearities can impact the frequency
specificity and thus the frequency-to-place match of auditory
tonotopy which are unaccounted for in the existing ERB-
transformation of CR tones. Thirdly, peripheral estimations of
frequency selectivity are reasonable but imperfect representations
of cortical tuning, i.e., the ERB model represents the behavior at
the level of the basilar membrane more closely than it may
represent the auditory cortex in full, which is more difficult to
probe non-invasively. And finally, ascertaining an accurate pitch
match is a necessity of aCR in order to determine the correct fT
around which to place the therapeutic tones, whether using fixed
spacing or ERB-based spacing. Each of these considerations is
discussed in detail in the Supplementary Discussion.

Limitations of the ERB Model as Applied to
Tinnitus
Auditory filter widths tend to broaden in individuals with cochlear
deficits (Florentine et al., 1980; Glasberg and Moore, 1986), with the
bandwidth typically increasing with increasing threshold. As
described in Eq. 2, the ERB widths for hearing-impaired listeners
can be estimated as a function of threshold at a given center
frequency. However, there are some limitations to this approach.
Firstly, this relationship does not hold for thresholds greater than
50 dB HL (Moore et al., 1999). Secondly, the relationship between
ERB width and center frequency is best established for frequencies
from 2,000 to 6,000 Hz (Moore et al., 1999), thus it is harder to
comment on relationships outside of this spectral range. The tinnitus
frequency in this cohort ranged from 675 to 9,800 Hz. Of the 36 ears
across 18 patients, seven ears had a tinnitus pitch match between
2,000 and 6,000 Hz.

Notably, there is a weak correlation between threshold
elevation on audiometry and the widening of the filter
bandwidth, as there is variability on an individual level in the
degree of broadening and in the asymmetry of the filter, possibly
due to varying patterns of cochlear damage (Moore, 1995). This
points to a need for measuring the ERB directly rather than
estimating it from the absolute threshold, as was done in Eq. 2, in
order to attain truly perceptually relevant tone spacing for aCR in
any given individual.

Furthermore, the analysis was done on previously acquired data.
As a result, it was not possible to manipulate the spacing of CR tones
independently of the hearing thresholds, for which reason the 5-PTA
demonstrated multicollinearity, i.e., high intercorrelation, with the
gap index, mean relative gap, and mean relative overlap. In each of
thesemultiple linear regressions, the 5-PTA variable was residualized
to help reduce the effect of multicollinearity, as described in Primary

Analysis. This involves regressing the two predictor variables and
using the resulting residual variance in the overall multiple linear
regression instead of one of the original predictors. However, this is a
statistical estimation of the residual variance of the 5-PTA, and as a
result, it is not possible within the framework of this re-analysis to
definitively eliminate the relationship of hearing loss to each of these
measures of tone spacing. In the future, additional experiments
would require a within-subject approach to vary the tone spacing on
the frequency axis (rather than the estimated ERB axis alone) while
holding the underlying hearing thresholds constant in order to
eliminate the effect of hearing loss on the ERB spacing
arrangements. Ultimately, on account of these limitations, direct
measurements of auditory filters may be required in individual
patients rather than estimations based on tinnitus pitch and
hearing thresholds. In the Supplementary Methods, we describe
several methods by which the ERB widths may be directly measured
in future studies. Additionally, in the Supplementary Discussion,
we describe in further detail several other limitations and
considerations unique to the ERB model, as introduced in
Overall Findings.

Recommendations for Future Studies
Based on the results of this study, we hypothesize that a larger gap
index—and thus more loosely spaced CR tones—may improve the
ability of tinnitus patients to respond positively to aCR acutely.
Follow-up studies would involve the direct measurement of the
ERBs of the auditory filters centered at the therapeutic tone
frequencies, such as with one or more of the “rapid” methods
described above. A first experiment may involve traditional, fixed
spacing aCR compared head-to-head with aCR with some specified
larger gap index between the ERBs of the therapeutic tones, on both
an acute and chronic stimulation basis. Furthermore, our study at
present was limited to the analysis of self-reported questionnaire
data. Subsequent experiments should consider electrophysiologic
measures of desynchronization as well, to assess the power changes
that may result from different ERB-based aCR paradigms.

As a result of the afore mentioned cochlear nonlinearities and the
related effect of stimulus level used to probe the auditory system’s
frequency selectivity, it is evident that the desynchronization ability
of individual CR tones may depend on more than simply the degree
of overlap or gap between the corresponding ERBs. Upward and/or
downward spread of masking, as well as lateral suppression, may
have additional effects on CR efficacy, dependent on the magnitude
and perhaps directionality of the individual inter-tone effects. As an
example, if in fact there is pathologic downward spread of masking
in SNHL, then higher frequency tones above fT may themselves to
some extent mask the tinnitus frequency. High-frequency CR tones
may in theory also decrease the efficacy of lower-frequencyCR tones.
The inverse could be seen in excess upward spread of masking. To
parse out these effects, follow-up experiments in tinnitus subjects
may involve pairs of tones above and below the tinnitus frequency.
The distance between the CR tones themselves and the distance
between the CR tones and fT could be varied systematically in order
to determine degree of subjective tinnitus relief as well as degree of
electrophysiologic desynchronization resulting from various spacing
configurations. Considering as well that CR tonesmay be susceptible
to the effects of forwardmasking, in which a probe tone ismasked by
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a precedingmasker tone, the temporal spacing of CR—in addition to
frequency spacing—may also be an avenue of further exploration.

It should be noted that when reversing the residualization
procedure in the methods, such that the residual variance of the
gap index is calculated toward the 5-PTA, the model yields the same
adjusted R2 and p-value as the original analysis, as shown in
Supplementary Table 3. However, the only significant predictor
variable now is the 5-PTA, rather than the residual variance of the
gap index. From this, one could ask whether the hearing loss is the
true predictor variable of the effect on VAS-L during aCR, rather
than the tone spacing driving the effect. However, as shown in
Figure 3A, the gap index does not simply depend on the average
hearing impairment around fT. The gap index strongly depends on
shape of the audiogram around fT. To that end, several studies will
be necessary in further disentangling the impact of hearing loss
versus the impact of tone spacing on clinical outcome.

As shown in Figure 3A, the largest values of the gap index are,
on average, for normal hearing, and the gap span (or the range of
gap values dependent on the hearing impairment) increases with
increasing fT. If normal hearing is more favorable, rather than
inherently larger gap indices, we could provide a normal hearing
subject with a relatively high fT, such as on the order of 8 kHz,
regular CR tones (in which the predicted gap index would be low
for this patient). If the acute effect is favorable with significant
tinnitus suppression during therapy, it may be that the absence of
hearing impairment, rather than the tone spacing, is associated
with clinical improvement. Further, if we were to provide wider
tone spacing to this subject (essentially the spacing one would
expect for an individual with moderate hearing loss) and the
patient does not have clinical benefit, again this would suggest
that the absence of hearing impairment is associated with
improved outcomes, rather than loosely spaced tones on the
ERB scale. The same effect should be observable throughout the fT
range. However, due to the fact that the gap span increases with
increasing fT, we hypothesize that the difference between regular
CR tone spacing and the mimicked hearing impairment spacing
would be greatest when fT is on the higher end of the spectrum
(such as in the aforementioned hypothetical patient with an fT of
8 kHz).

In an additional related experiment, one could test a patient
with moderate hearing loss. With hearing loss, the gap index
tends to decrease. To compensate for hearing impairment, we
could increase the spacing and thereby the gap index. If the
patient has a clinical reduction in tinnitus loudness during CR,
this could mean the tone spacing is the more salient predictor
than the hearing loss. In each of these cases, whether normal
hearing or moderate hearing loss, we could provide the aCR tone
spacing expected in the opposite scenario to differentiate the
effects of hearing threshold and tone spacing. Furthermore, it
would be of immense utility to test patients whose audiograms
demonstrate hearing loss above the fT, hearing loss below the fT,
and hearing loss in the vicinity of fT, thereby directly measuring
outcomes with differently shaped audiograms, as was done in
Figure 3A for the 26 dB hearing loss.

Overall, the results of this study are a first step in the clinical
optimization of tone spacing for aCR in order to obtain maximal
anti-kindling and long-term therapeutic benefit. Broader spatial
stimulation of CR tones, as indicated by higher gap indices, may
result in improved relief from tinnitus loudness and annoyance in
the acute stage of therapy. Additional studies are required to
determine electrophysiologic correlation of these findings, to
assess the impacts of chronic stimulation, and to correlate
measured rather than estimated auditory filter widths with
symptom and electrophysiologic data.
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Linear and Nonlinear Directed
Connectivity Analysis of the
Cardio-Respiratory System in Type 1
Diabetes
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In this study, we explored the possibility of developing non-invasive biomarkers for patients
with type 1 diabetes (T1D) by quantifying the directional couplings between the cardiac,
vascular, and respiratory systems, treating them as interconnected nodes in a network
configuration. Towards this goal, we employed a linear directional connectivity measure,
the directed transfer function (DTF), estimated by a linear multivariate autoregressive
modelling of ECG, respiratory and skin perfusion signals, and a nonlinear method, the
dynamical Bayesian inference (DBI) analysis of bivariate phase interactions. The
physiological data were recorded concurrently for a relatively short time period (5 min)
from 10 healthy control subjects and 10 T1D patients. We found that, in both control and
T1D subjects, breathing had greater influence on the heart and perfusion with respect to
the opposite coupling direction and that, by both employed methods of analysis, the
causal influence of breathing on the heart was significantly decreased (p < 0.05) in T1D
patients compared to the control group. These preliminary results, although obtained from
a limited number of subjects, provide a strong indication for the usefulness of a network-
based multi-modal analysis for the development of biomarkers of T1D-related
complications from short-duration data, as well as their potential in the exploration of
the pathophysiological mechanisms that underlie this devastating and very widespread
disease.

Keywords: directional connectivity, type 1 diabetes (T1D), dynamical Bayesian inference, directed transfer function
(DTF), cardio-respiratory system

INTRODUCTION

Type 1 diabetes (T1D) is a chronic condition affecting roughly 5% of the world’s diabetic population
(Ogurtsova et al., 2017), which is estimated to reach 642 million (95% CI: 521–829 million) by 2040
(it was 151 million in 2000 (Wild et al., 2004)) with dramatic social and financial implications. T1D is
associated with pathogenetic mechanisms that lead to the apoptosis of pancreatic beta cells and, thus,
to an inadequate production of the insulin hormone. There is no currently available cure for T1D,
and its clinical care is focused primarily on the normalization of blood glucose levels for averting the
onset of long-term complications including cardiovascular disease and renal failure. The treatment of
diabetic-related chronic complications accounts for a considerable percentage [about 80% in the
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United Kingdom (Ogurtsova et al., 2017)] of the total medical
costs of diabetes mellitus. Studies show that timing of medical
intervention is key to reducing effects of comorbidities of T1D,
with earlier interventions resulting in lower disease impact (Doria
et al., 2012). Thus, there would be benefits to patients and
healthcare systems alike from development of novel diagnostic
techniques for early and non-invasive detection of T1D-related
complications. Such diagnostic regimes could also have
implications in outpatient monitoring and disease progression
assessment.

The complex function of the cardiovascular system is realized
by the synergistic activity of self-sustained cardiac, respiratory,
and vascular oscillators (Ticcinelli et al., 2017), which is deemed
to convey the necessary adaptability to sudden variations in the
metabolic requirements of the organism or to changing
environmental conditions (Penzel et al., 2017). There is a wide
variety of clinically available devices for non-invasively
monitoring the physiological systems that may be impacted by
the progression of T1D. Such systems generate oscillatory modes
that span a wide range of characteristic time scales, which can be
isolated and separately characterized by means of established
time-frequency representation (TFR) techniques (Clemson et al.,
2016). In this regard, the wavelet transform (WT) analysis of laser
Doppler flowmetry (LDF) signals of microvascular perfusion
(Stefanovska et al., 1999) has contributed to the identification
of myogenic (Aalkjaer et al., 2011), neurogenic (Söderström et al.,
2003) and endothelial (Kvandal et al., 2006) frequency ranges in
the microcirculatory vasomotion, in addition to the ones of the
extrinsic cardiac and respiratory components (Stefanovska and
Hozic, 2000) transmitted to the distal microvascular beds
(Table 1). This, in turn, has enabled the non-invasive
assessment of the underlying vasomotor mechanisms in
pathological states.

Furthermore, the wavelet cross-spectrum (Clemson et al.,
2016) and the phase coherence of bivariate data, (Sheppard
et al., 2012; Tankanag et al., 2014; Perrella et al., 2018), along
with statistical properties translated from information theory
[e.g., Granger causality (Granger, 1969) and transfer entropy
(Vejmelka and Palus, 2008; Sabesan et al., 2009)], have been used
to gain insights into the presence of significant relations between
oscillatory sources, and to determine the existence of a mutual
physiological coordination, e.g., the well-known synchronous
modulation of the heartbeat period by the breathing rhythm,
produced at the respiratory centers located within the medulla
oblongata and pons of the brainstem (Eckberg, 2003). However,
beyond the effects manifested in the oscillators’ phase dynamics,

the fundamental functional mechanisms underlying these
interactions can be probed via more sophisticated techniques,
able to provide information about the directional strength of the
coupling and hence about the causality of the interaction
(Rosenblum and Pikovsky, 2001; Palus and Stefanovska, 2003;
Faes et al., 2004). Since the cardiovascular system must handle
time-varying conditions, the employed methods should be
capable of capturing non-stationary functional couplings. The
dynamical Bayesian inference (DBI) technique, more recently
introduced by Stankovski et al. (2012), seeks to account for such
non-stationarities. In DBI, the cardiovascular system is modelled
as a network of phase oscillators coupled by time-dependent
functions, which are identified dynamically through a Bayesian
estimation framework within subsequent time windows of the
oscillators’ phase time series. Several researchers have employed
DBI to investigate potential changes in the direct and indirect
coupling between the cardiac, respiratory and vasomotor
activities; their studies have detected a reduction in the
respiratory sinus arrhythmia with ageing (Shiogai et al., 2010;
Iatsenko et al., 2013; Stankovski et al., 2014; Ticcinelli et al., 2015;
Ticcinelli et al., 2017), and a weakening of the coupling between
the microvascular myogenic vasomotion and the central cardiac
and respiratory oscillations in the elderly population and in
primary hypertension (Ticcinelli et al., 2017). Since metabolic
diseases, such as obesity and diabetes, have been recognized as
models of accelerated ageing, the aforementioned alterations may
also be present in subjects diagnosed with T1D.

Non-stationary metrics of time-frequency activity could
elucidate stochastic coupling but require an adequate number of
data points over stationarywindows for inferences to be statistically
significant. Linearly modelling the data may provide a valuable
alternative. Multivariate autoregressive (MVAR) models have been
used for describing interactions between time series originating
fromdifferent nodes within a network (Baccalá et al., 2007; Vlachos
et al., 2017). In detail, MVAR-based parametric techniques can be
utilized to elucidate inter-node connections via coherence-based
measures of implicit causality. One such measure is the directed
transfer function (DTF), a frequency-domain descriptor of directed
network connectivity with fundamental implications fromGranger
causality (Baccalá et al., 2007). DTF measures cascaded direct and
indirect interactions, emphasizes source-based outflow and has
been employed in several neuroscience applications (Kamiński
et al., 2001; Blinowska et al., 2013; Kamiński and Blinowska, 2014;

TABLE 1 | Physiological frequency ranges in microvascular perfusion signals.

Oscillation Nominal range (Hz)

Cardiac (0.6, 2.0)
Respiratory (0.145, 0.6)
Myogenic (0.052, 0.145)
Sympathetic (0.021, 0.052)
Endothelial (NO-dependent) (0.0095, 0.021)
Endothelial (NO-independent) (0.005, 0.0095)

TABLE 2 | Study participants: general characteristics.

Characteristics Control T1D p-value

Gender (M/F) 7/3 5/5 0.361α

Age (years) 26.7 ± 1.5 29.7 ± 13.3 1.000β

Smokers (Y/N) 1/9 4/6 0.121α

Heart rate (bpm) 70.7 ± 7.2 74.1 ± 9.5 0.406β

Breathing rate (Hz) 0.25 ± 0.06 0.28 ± 0.03 0.149β

LDF cardiac power (%) 90.6 ± 6.6 91.7 ± 7.8 0.450β

T1D duration (years) - 13.8 ± 10.0 -
HbA1c (%) - 7.5 ± 1.1 -

α: via Pearson’s χ2 test.
β: via Mann-Whitney U test.
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Vlachos et al., 2017; Adkinson et al., 2018; Hutson et al., 2018).
DTF and other MVAR-based measures of directional connectivity
may also be applied to the evaluation of the directional coupling
between the cardiac, respiratory, and peripheral blood flow
systems. The utility of these measures in neuro-cardio-
respiratory network interactions has been shown lately in
animal studies of sudden unexpected death in epilepsy
(SUDEP), a condition that involves potential failure of central
control units of cardiac and respiratory behavior (Hutson et al.,
2020).

Employing directed connectivity measures to quantify the
inter-modulation of the biological oscillations originating from

separate but interconnected systems could have valuable
diagnostic potential for assessing the deterioration of the
cardiovascular and respiratory function in prevalent high-risk
conditions such as T1D. According to the results of a recent
review article (Klein et al., 2010), adult subjects diagnosed with
type 2 diabetes are characterized by reduced respiratory
parameters, which appear to be inversely related to blood
glucose levels and the time since the initial diagnosis. This
review has linked chronic hyperglycemia and inflammation,
autonomic neuropathy, microangiopathy of the pulmonary
arterioles, and stiffening of the lung parenchyma to the
possible biological mechanisms underlying the lung function

FIGURE 1 | Experimental recording setup.

FIGURE 2 | Example of (A) ECG, (B) breathing and (C) LDF perfusion signals recorded from a young control subject.
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impairment. This may then result in a detrimental impact on the
mutual physiological coupling between the breathing and heart
function. In light of the above, in the present study we employed
the DBI and DTF frameworks with the aim to non-invasively
detect characteristics of the potential decline of connectivity in
the cardio-respiratory oscillatory network in a preliminary,
relatively small group of healthy controls and patients
diagnosed with T1D.

MATERIALS AND METHODS

Experimental Setup and Subjects
10 healthy controls (age: 26.7 ± 1.5 years; M/F: 7/3) and 10 T1D
patients (age: 29.7 ± 13.3 years; M/F: 5/5) were recruited for the
present study. Research activities were carried out in accordance
with the guidelines of the Declaration of Helsinki of the World
Medical Association: the included subjects received detailed
information on the research protocol and its purpose and
signed an informed consent form. The general characteristics
of the participants are summarized in Table 2; one control subject
(i.e., 10%) and four T1D subjects (40%) were smokers. ECG,
breathing and microvascular perfusion signals were
simultaneously recorded. Microvascular perfusion was
measured on the distal phalanx of the right forefinger using a
Periflux 5,000 laser Doppler flowmetry (LDF) system (Perimed
AB, Sweden). The time constant of the output low-pass filter of
the instrument was set to 0.03 s in order to preserve pulse
waveforms. The heart and spontaneous respiratory activities
were instead monitored by means of a BioHarness 3.0
wearable chest strap sensor (Zephyr Technology,
United States) and transmitted to a PC via Bluetooth. A
graphical illustration of the recording setup is shown in Figure 1.

The above three signals were concurrently recorded and
digitized at a sampling frequency of 250 Hz (being synchronized
through a dedicated data acquisition software). Each recording
session lasted 5 min and took place in thermally stable conditions
(T ≈ 23°C) following a preliminary acclimatization time interval of
10 min. During signal acquisition, subjects were seated in a chair
with back support and leaned their right forearm on a table;
furthermore, they were instructed to carefully avoid abrupt
movements to prevent the displacement of the LDF probe and
thus the introduction of motion-related artifacts in the recorded

perfusion signals. An example of the raw signals acquired from a
young control individual is shown in Figure 2.

The mean breathing rate of all subjects was inside the nominal
physiological range, that is (0.145, 0.6) Hz (Table 1).
Furthermore, LDF perfusion signals recorded from the
pathological group did not exhibit a significantly different (p =
0.450) power within the nominal frequency range of the cardiac
rhythm (0.6, 2) Hz. However, T1D subjects included a larger
proportion of smokers and were on average older than the control
subjects. Nevertheless, these differences did not reach statistical
significance according to Pearson’s χ2 and Wilcoxon rank-sum
tests, respectively.

Dynamical Bayesian Inference
The functional physiological interaction between cardiac and
respiratory processes was investigated by means of the
dynamical Bayesian inference (DBI) technique (Duggento
et al., 2012; Stankovski et al., 2012). This method regards
the cardio-respiratory system as a network of coupled self-
sustained nonlinear phase oscillators and uses a Bayesian
inference scheme to dynamically estimate their time-
evolving coupling strength and causality (i.e., the direction
of interactions). Myogenic, sympathetic, and endothelial
microvascular oscillations (Table 1) were not considered in
the present study, due to the insufficient duration of the
recorded signals. A comprehensive description of the
approach can be found elsewhere (Duggento et al., 2012;
Stankovski et al., 2012; Iatsenko et al., 2013; Clemson et al.,
2016; Ticcinelli et al., 2017). Briefly, in DBI, the phase
dynamics of two interacting oscillatory processes p1 and p2

is modelled as follows:

_φ1(t) � ω1(t) + d1(φ2, t) + k1(φ1,φ2, t) + ε1(t) (1)
where ω1(·) is the natural frequency of the first oscillator, d1(·) and
k1(·) are the coupling functions that describe the direct and indirect
driving of the second oscillator (with the acceleration/deceleration of
the first oscillator’s phase φ1 depending on the second’s φ2), whereas
the stochastic term, ε(·), represents the noise (usually assumed to be
Gaussian and white (Stankovski et al., 2012)). Since the above
coupling functions are hypothesized to be 2π-periodic, the right-
hand side of Eq. 1 can be decomposed into a linear combination of
Fourier basis functions Φn � exp[i(n1φ1 + n2φ2)]:

FIGURE 3 | Time-frequency ridges of the (A) ECG, (B) breathing and (C) LDF perfusion signals shown in Figure 2. Ridges were estimated bymeans of the adaptive
parametric approach developed in (Iatsenko et al., 2016).
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_φ1(t) � ∑N
n�−N

c1,n · Φ1,n(φ1, φ2) + ε1(t) (2)

where N is the order of the expansion and Φi,0 � 1 (where
i � 1, 2). In general, the DBI technique sequentially applies the
Bayesian theorem to adjacent time windows of the oscillators’
instantaneous phases, φi(t), in order to infer the bank of time-
varying parameters ci,n characterizing the functional interaction
between the underlying physiological processes, and the noise
term, εi. The inferred ci,n values are then used to estimate a
dynamic index of directional coupling strength and directionality
of influence. In the present study, DBI analysis was based on the
related Matlab toolbox developed by the research group on
Nonlinear and Biomedical Physics at Lancaster University
(http://www.physics.lancs.ac.uk/research/nbmphysics/diats/tfr/).

In detail, DBI analysis usually requires the extraction of the
instantaneous frequency of the oscillations of interest, in order to
track their characteristic time-dependent phase φi(t). In this
regard, an adaptive parametric ridge reconstruction scheme

(Iatsenko et al., 2016) was applied to the time-frequency
representation (TFR) of the acquired signals in order to isolate
the breathing and cardiac oscillatory components. In the present
study, the cardiac component was isolated from both the ECG
and the LDF signals of cutaneous perfusion. The adjustable
parameters of the algorithm, which respectively tune the
tolerance to deviations from the component’s mean rate of
frequency change and mean frequency, were set to their
default value of 1. The wavelet transform (WT) was adopted
as TFR technique because of its logarithmic frequency resolution
(Stefanovska et al., 1999); specifically, a Morlet wavelet with
central frequency f0 � 1 was chosen as the mother function:

γm(t) �
1���
2π

√ ⎛⎜⎜⎜⎜⎜⎜⎝ei2πt − e−
(2π)2
2
⎞⎟⎟⎟⎟⎟⎟⎠e−t

2/2 (3)

Prior to the application of the WT, signals were downsampled to
50 Hz, detrended by means of a third order polynomial fit, and
band-passed inside the cardiac and respiratory frequency

FIGURE 4 |Cardio-respiratory directional coupling strength parameters estimated viaDBI (Eqs 4, 5; two per panel), and respective directionality indices (Eq. 6; one
per panel) obtained from a control subject (left) and a T1D patient (right).
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intervals listed in Table 1, to remove the influence of components
lying outside the physiological range of interest. The
discretization of the frequency domain was performed with a
density of 128 voices/octave, which enabled the extraction of
smooth ridge curves. DBI was then applied to consecutive
overlapping windows of the original time series, with an
overlap factor of 50%. The window width was set so as to
include approximately five cycles of the slowest oscillatory
component for inference of the coupling parameters ci,n, as
reported in (Iatsenko et al., 2015; Clemson et al., 2016). For
the analysis of cardio-respiratory interactions, this resulted in the
adoption of 23 overlapping windows of 25 s. Thus, the lowest
frequency we could theoretically observe was 1/25 s = 0.04 Hz.
The characteristic time-frequency ridges extracted from the
signals in Figure 2 are shown in Figure 3.

As done by Iatsenko et al. (2013) and Ticcinelli et al. (2017), a
Fourier decomposition up to the second order (i.e., N = 2) was
chosen for the phase dynamics model expressed in Eq. 1.
Moreover, the propagation constant pw, that weights the
diffusion of information between consecutive data windows w
(Stankovski et al., 2012), was set to an arbitrary value of 0.2.
Iatsenko et al. (2013) have nonetheless reported that this internal
parameter of the DBI algorithm does not significantly affect the
outcome of the Bayesian inference. The Euclidean norm of the
coupling parameters ci,n estimated within each data window w
was finally used to quantify the overall influence (including direct
and indirect couplings) of the phase of the second oscillator on
the first one’s, and vice versa, yielding the following directional
coupling strength signals:

s1→2(w) �

������������
∑N
n�−N

(c1,n(w))2
√√

(4)

s2→1(w) �

������������
∑N
n�−N

(c2,n(w))2
√√

(5)

where w indicates the dependence of the coupling coefficients on
the particular time window.

Furthermore, a directionality index d1,2 (d1,2 ∈ [−1,+1]) was
estimated from each window w, in order to quantify the dynamic
asymmetry of the bi-directional interaction:

d1,2(w) � s1→2(w) − s2→1(w)
s1→2(w) + s2→1(w) (6)

This index, proposed by Rosenblum and Pikovsky (2001) has been
used in the recent literature for detecting the predominant
direction of influence between the cardiac and respiratory
oscillators (Stankovski et al., 2012; Iatsenko, et al., 2013;
Ticcinelli, et al., 2017). Namely, if d1,2 ∈(0,+1], then the first
oscillator drives the second more than the other way around;
conversely, if d1,2 ∈[−1, 0), the second drives the first one.
However, as reported in (Duggento et al., 2012), directional
coupling strengths si→j(w) obtained via DBI represent an
overall estimate of the combined phase relationships between
the analyzed time series. Thus, spurious non-zero values can be
inferred even when no functional interaction exists between the
underlying oscillatory processes. This is why the reliability of
si→j(w) should be ascertained by surrogate testing, i.e., rejecting
directional coupling strengths below a specified acceptance
threshold estimated from an adequately large set of surrogate
interactions. In this regard, we adopted the inter-subject
surrogate approach followed by Toledo et al. (2002) and
Ticcinelli et al. (2017) validating our coupling strength estimates
against the median value obtained from 100 unique combinations
of randomly selected inter-group signals and subjects. Each of the
100 surrogate datasets was composed of mutually independent
time series recorded from different individuals (e.g., ECG from
control subject A, breathing from T1D patient B, LDF perfusion
from control C). This technique allowed us to exclude from further
consideration any directional couplings whose strength was
equivalent to the one whichmight have arisen from chance or bias.

Directed Transfer Function
Multivariate autoregressive (MVAR)modelling of the data within
short-time segments, each data window aligned in time with
concurrent ones frommore than one time series, is recommended
for network connectivity analysis assuming that these signals are
recorded from different parts of a multi-dimensional, linear and
wide-sense stationary system. For each window, the estimated
array of MVARmodel coefficients can then be further analyzed in
the frequency domain and, depending on different types of
normalization utilized, provides frequency-specific measures of
directional functional connectivity between the nodes of the
assumed network configuration of the system (Baccalá et al.,
2007). We have successfully employed such measures in network
analyses of intracranial EEG (iEEG) (Vlachos et al., 2017;
Adkinson et al., 2018), and magnetoencephalographic (MEG)
recordings (Krishnan et al., 2015) from patients with focal
epilepsy for localization of their epileptogenic focus, as well as
the assessment of the dynamics of brain’s network connections en
route to a life-threatening neurological event, status epilepticus
(T. N. Hutson et al., 2018). In the current study we fitted a MVAR
model to each of 60-s consecutive non-overlapping data segments
from the three recorded signals (ECG, breathing, perfusion) over
5 min. By using a 60-s time window, our frequency resolution is
1/60 s = 0.017 Hz = 0.05 Hz/3, and thus the lowest frequency we
can deal with moving the analysis in the frequency domain is
three times less than the 0.05 Hz, the lowest frequency in the
frequency band of (0.05, 2) Hz we are interested in here. Thus, the
MVAR model was of dimension D = 3 [i.e., the data to be fitted
were placed in three-dimensional column vectors X(t)], and of

TABLE 3 | Median coupling strength values obtained from 100 inter-subject
surrogates.

Interaction DBI connectivity Median
surrogates (Nw = 2,300)

Lungs ↔ Pulse spulse→bre 0.08
sbre→pulse 0.24

Lungs ↔ Heart sECG→bre 0.09
sbre→ECG 0.19

Heart ↔ Pulse spulse→ECG 0.28
sECG→pulse 0.25
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order M = 7 per subject. Also, the window length of 60 s (15,000
data points x three channels = 45,000 data points) is enough for a
confident estimation of the 7 × 3 × 3 = 63 MVAR parameters as
we are using more than 100 times as many data points as we have
parameters to fit.

For each set of three 60-s running windows extracted at the
same time from all three signals, the model linearly fits the data in
the column vectors X(t) as follows:

X(t) � ∑M
τ�1

A(τ)X(t − τ) + E(t) (7)

where the time index t is from 1 to N, with N being the number of
data points per time series within a time window (N = 15,000), M
is the order of the model (M = 7), and τ is increasing in steps of
the time delay between samples (we used τ = 1, that is, in time
units, equal to the sampling period 1/(250 Hz) = 4 ms). Matrices
A(τ) contain the model’s coefficients, whereas the fitting error
values are the components of the vector E (in the ideal MVAR
model fit,E is multivariate Gaussian white noise). The coefficients
of the MVAR model were estimated via the Vieira-Morf partial
correlation method. Taking the discrete Fourier Transform of
both sides of Eq. 7 and rearranging, we have:
[I −∑p

τ�1A(τ)e−i2πfτ] ·X(f) � E(f), where I is the unitary
matrix. Then, by defining:

�B(f) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I −∑p
τ�1

Aij(τ)e−i2πfτ , for i � j

−∑p
τ�1

Aij(τ)e−i2πfτ , for i ≠ j

(8)

where i � ���−1√
in the exponents of Eq. 8, the directed transfer

function (DTF) can be derived by utilizing the transfer matrix,
H(f), defined as:

H(f) � �B
−1(f) (9)

Specifically, DTF is estimated via the following equation:

DTFj→i(f) �
∣∣∣∣Hij(f)∣∣∣∣2

∑D

k�1
∣∣∣∣Hik(f)∣∣∣∣2 (10)

The statistical significance of the DTF values of each interaction
derived from each 60-s window was determined. The statistical
criteria for inferring the statistical significance and confidence
interval of the derived frequency-domain Granger causality-
based connectivity measures are recent and have been discussed
by a small number of researchers. In this study, we have followed
an asymptotic analysis for evaluation of the connectivity measures
from theMVARmodelling of our data (Baccalá et al., 1997; Baccalá
et al., 2016). In detail, the significance of the connectivity measures
DTFj→i(f) at a specific frequency f between two nodes i and j
was tested according to the following null hypothesis:

H0:
∣∣∣∣DTFj → i(f)∣∣∣∣2 � 0 ∀i, j∈{1, . . . , D} (11)

RejectingH0 at a specified significance level (typically α = 0.05)
also required to reject non-statistically significant DTF values.
Confidence intervals for the existing connections were
estimated by determining the asymptotic distribution of
DTF according to (Toppi et al., 2016). Only the thus
identified statistically significant DTF values (ssDTF) were
further analyzed in this study. Analogously to the DBI

FIGURE 5 | Box plots of DBI measures of connectivity (Eqs 4–6). Top panel: comparison of all (six) cardio-respiratory coupling parameters estimated with DBI for
the control (blue) and T1D (red) groups. Bottom panel: comparison of the (three) directionality indices per pair interaction for the control (blue) and T1D (red) groups.
Statistically significant decreases, identified by one-tailed Wilcoxon rank-sum tests, are denoted by (*) above the respective boxes.
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analysis, an index of directionality was finally obtained from
the ssDTF estimates as follows:

di,j(f) � ssDTFi→j(f) − ssDTFj→i(f)
ssDTFi→j(f) + ssDTFj→i(f) (12)

RESULTS

Dynamical Bayesian Inference
Figure 4 shows sample coupling strength signals of the time-
evolving pairwise interactions among peripheral pulse,

respiratory and ECG signals, estimated using DBI in a control
subject and a T1D patient. Directional coupling strength
estimates below the corresponding median values of the
surrogates reported in Table 3 (100 surrogate subjects, for a
total of Nw = 2,300 windows), were rejected. Also, only those
windows for which both directional coupling strengths per paired
interaction were found to be statistically significant according to
the above rule were further considered in the statistical analysis of
the directionality index, di,j. The overall results of the DBI
analysis of the control and pathological groups including their
statistical comparison (p-values) are shown in Figure 5 and
summarized in Table 4. Statistically significant differences

TABLE 4 | Median of statistically significant (p < 0.05, vs. surrogates) DBI coupling strengths and directionality indices per interaction in controls and T1D patients. The
statistical significance of the differences observed between the groups was estimated by one-tailedWilcoxon rank-sum tests comparing the null hypothesis H0 (medians
in the two groups are equal) to two alternative hypotheses: H1a, the median of controls being greater than that of T1D; and H1b, the median of T1D being greater than that of
controls. The p-values for each of the two performed Wilcoxon tests (last two columns) refer to the probability of accepting hypothesis H0 to be true over the alternative
hypotheses H1a or H1b.

Interaction DBI connectivity Median (controls) Median (T1D) p-value H1a p-value H1b

Lungs ↔ Pulse spulse→bre 0.120 0.134 0.949 0.051
sbre→pulse 0.361 0.363 0.326 0.674
dbre, pulse 0.539 0.455 0.011a 0.990

Lungs ↔ Heart sECG→bre 0.127 0.140 0.887 0.113
sbre→ECG 0.360 0.314 <0.001a 1.000
dbre, ECG 0.503 0.396 <0.001a 0.999

Heart ↔ Pulse spulse→ECG 59.21 37.51 <0.001a 0.999
sECG→pulse 82.86 33.44 <0.001a 1.000
dECG, pulse 0.013 0.042 0.556 0.445

aStatistically significant at α = 0.05 level (one-tailed Wilcoxon rank-sum test).

FIGURE 6 |Box plots of DTF measures of connectivity in the (0.05, 2) Hz frequency band (Eqs 10, 12). Top panel: median ± first and third quartiles of ssDTF values
across all directed interactions for control (blue) and T1D (red) groups. Bottom panel: directionality indices per pair interaction for the control (blue) and T1D (red) groups
(*) above boxes denotes p-value < 0.05 estimated from non-parametric one-tailed Wilcoxon rank-sum tests comparing T1D and control groups.
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between the two groups were detected by means of one-tailed
Wilcoxon rank-sum tests for independent samples.

Lungs–Heart interaction. Compared to controls, T1D patients
exhibited a significant reduction in the directionality index dbre, ECG
(p < 0.001), which reflects a lowered asymmetry of the cardio-
respiratory interaction in the pathological group. This was due to a
weakened influence of the breathing activity on the cardiac rhythm,
as expressed by the statistically significant decrease in the directional
coupling strength sbre→ECG (p < 0.001; Table 4, row 4). Conversely,
the directional coupling from the heart to the lungs was not
significantly different between the two groups (Table 4, row 5).

Lungs–Pulse interaction. T1D patients also exhibited a significant
decrease in the dbre,pulse index (p = 0.011), which indicates a higher
symmetry of the interaction between the breathing activity and the
cardiac oscillatory mode of the LDF signals. However, in this case,
none of the corresponding directional coupling strengths was
significantly different between the compared subjects (Table 4,
rows 1 and 2).

Heart–Pulse interaction. With respect to the healthy group,
T1D patients were characterized by significantly lowered
directional coupling strengths, spulse→ECG (p < 0.001; Table 4,
row 7) and sECG→pulse (p < 0.001; Table 4, row 8). However, no
statistically significant difference emerged in the overall
directionality of influence, as expressed by the dECG,pulse index
across the control and pathological groups (Table 4, row 9).

Directed Transfer Function
The statistically significant DTF values (ssDTF) of directional
connectivity estimated per interaction from MVAR modelling
(six directional interactions between the three recorded signals)
were aggregated over all windows (60-s non-overlapping data
segments) and subjects within the same group (control or T1D)
and averaged over the physiologically relevant frequency band
(0.05, 2) Hz. The median and quartiles of the ssDTF values
obtained from the control and T1D groups are shown in
Figure 6. It is relevant to highlight that MVAR modelling
evaluate signals across identical frequencies over the entire
physiological range of interest, in contrast to DBI which is
based on the extraction of the specific time-varying frequency
component of the cardiac pulsatility, within an effectively tighter
range. Therefore, in this section interactions involving LDF signals

are denoted as “perfusion”, rather than “pulse”. From Figure 6, we
make the following statistically significant observations about the
assessed directional interactions: “Perfusion→Breathing”,
“Perfusion→ECG” and “ECG→Breathing” connectivity
strengths are elevated in T1D subjects compared to controls.
Conversely, the “Breathing→ECG” interaction in T1D is lower
than the controls’. It is also noteworthy that “Breathing→ECG” is
significantly higher in connectivity than “ECG→Breathing” for
both T1D and controls. Also, the “Perfusion→ECG” coupling is
higher than “ECG→Perfusion” in both groups.

Statistically significant directional interactions (p < 0.05)
between the network nodes for each pair of recorded signals
are reported in Table 5 (columns 3 and 4) together with their
directionality index di,j. Inter-group comparisons were
conducted via one-tailed Wilcoxon rank-sum statistical tests,
whose p-values are also included in Table 5 (last two columns).

Lungs–Heart interaction. In agreement with the results from the
DBI method, DTF shows that T1D patients exhibit a statistically
significant reduction (p < 0.001) in the directional coupling strength
from the lungs to the heart, as well as in the directionality index
dbre, ECG, compared to controls. The latter is due to a statistically
significant increase (p < 0.001) in the directional strength
ssDTFECG→bre observed in the pathological group, with a parallel
significant decrease (p< 0.001) in ssDTFbre→ECG (Table 5, rows 4–6).

Lungs–Perfusion interaction. Similarly to the DBI analysis, the
DTF measures of connectivity showed a decrease in the dbre,pulse
index of T1D patients compared to the one estimated from the
control group (0.729 vs. 0.276), implying a lowered asymmetry of
the interaction between breathing and LDF signals. However, this
decrease was not as significant (p = 0.084) as the one estimated via
DBI (p = 0.011). This outcome is due to the mixed results
(decrease with p = 0.031, and increase with p = 0.019) related
to the directional coupling strengths ssDTFbre→perf and
ssDTFperf→bre, respectively (Table 5, rows 1 and 2).

Heart–Perfusion interaction. T1D patients exhibited increased
connectivity compared to the controls in both directions, with the
difference in the “Perfusion→ECG” coupling reaching statistical
significance (p = 0.002) (Table 5, rows 7 and 8). The above trends
contributed to a diminished absolute value of the directionality
index dECG,perf in the pathological group, which implies a more
balanced interaction with respect to controls (Table 5, row 9).

TABLE 5 |Median of statistically significant (p < 0.05, vs. surrogates) DFT values (ssDTF) and directionality indices aggregated over subsequent timewindows, and averaged
over the frequency range (0.05, 2) Hz. The statistical significance of the differences observed between the control and T1D groups is also illustrated as in Table 4.

Interaction DTF connectivity Median (controls) Median (T1D) p-value H1a p-value H1b

Lungs ↔ Perfusion ssDTFperf→bre 0.027 0.074 0.982 0.019a

ssDTFbre→perf 0.310 0.129 0.031a 0.970
dbre, perf 0.729 0.276 0.084 0.918

Lungs ↔ Heart ssDTFECG→bre 0.002 0.011 1.000 <0.001a
ssDTFbre→ECG 0.897 0.634 <0.001a 1.000

dbre, ECG 0.992 0.954 <0.001a 1.000

Heart ↔ Perfusion ssDTFperf→ECG 0.055 0.121 0.998 0.002a

ssDTFECG→perf 0.002 0.006 0.763 0.258
dECG, perf −0.940 −0.865 0.646 0.379

aStatistically significant at α = 0.05 level (one-tailed Wilcoxon rank-sum test).
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Finally, within each group, a few interesting features were also
observed from the DTF results in relation to the difference in the
strength of the directional couplings per interaction. In particular,
in both control subjects and T1D patients, the median coupling
strengths from the lungs to the heart and from the lungs to the
microcirculation were considerably higher than in the opposite
direction (the same outcome of the DBI analysis). However, the
inter-group differences in the directional strengths between heart
and microcirculation were contradictory with respect to the DBI
analysis, which associated a higher level of bidirectional
connectivity to the control group (Table 5, columns 3 and 4).

DISCUSSION

Towards the goal of developing reliable and non-invasive
biomarkers for T1D, we employed both nonlinear (bivariate)
and linear (multivariate) measures to assess possible impairments
in the coupling strength and directionality of influence between
three representative nodes of the cardiovascular and respiratory
systems (heart, lungs, microcirculation) in patients diagnosed
with T1D compared to control subjects. The two adopted
methods can capture equivalent or different features in the
communication between the nodes of a physiological network
because of their different capabilities, that is: linearity (DTF) vs.
nonlinearity (DBI) in the data; multivariate (DTF) vs. bivariate
(DBI) data analysis; measure of connectivity between signals at
the same frequency (DTF) vs. different frequencies (DBI).
Employing these two techniques, we did identify impairments
(by both or one of the approaches) in the functional directional
interactions between heart, lungs, and microcirculation in T1D
patients. In detail, an impairment was defined as a statistically
significant difference (p < 0.05) in the directional coupling
strengths between the respective nodes, compared to the
homologous estimate obtained from the control group
(i.e., rejection of the null hypothesis H0).

Regarding the functional interactions between heart and lungs,
DBI, the nonlinear framework, revealed a significantly reduced
(p < 0.001) influence of the respiratory activity on the phase of the
cardiac rhythm in the T1D group. A similar, statistically
significant (p < 0.001) finding also emerged from the linear
network analysis, using DTF. Moreover, the imbalance in the
two communication channels from the lungs to the heart and vice
versa, as captured by the directionality index, was also highly
significantly different in both methods (p < 0.001). It is well
known that the phase of the respiratory activity directly
influences the action of the heart pump, as breathing-related
changes in the intrathoracic volume alter the cardiac pre-load,
thus affecting cardiac filling, post-load and other circulatory
variables. Furthermore, respiration gates the timing of
autonomic motoneuron firing (Eckberg, 2003), thus
modulating the peripheral autonomic nervous system’s outflow
to the heart, an indirect cardio-respiratory coupling occurring via
neuronal control (Iatsenko et al., 2013; Kralemann et al., 2013).
Therefore, our finding of a reduced driving relationship of the
lungs to the heart in T1D patients could be related to autonomic
neuropathy, vascular degeneration or lung tissue stiffening,

common co-morbidities associated with diabetes mellitus
(Klein et al., 2010).

An analogous decrease of the influence of respiration on the
microvascular perfusion in the T1D group compared to
controls was observed by DTF analysis (p = 0.031) but
could not be verified by DBI (p > 0.05). However, like for
the lungs-heart interaction, the imbalance in the directional
coupling strengths between lungs and microcirculation, as
reflected by the directionality index, was significantly less
(p = 0.011) in T1D than in controls as shown by DBI as
well as by DTF, though without reaching a statistical
significance level (p = 0.084). Also, regarding the DBI
analysis of phase interactions, it is notable that control
subjects exhibited similar statistics with respect to the
evaluation of breathing and ECG signals. This result would
be in line with previous findings by Jamšek and Stefanovska on
the coupling information among cardiac and respiratory
processes which propagates to the distal microvascular beds
(Jamšek and Stefanovska, 2007), and can be characterized
through the analysis of LDF signals recorded non-invasively
from the skin.

In T1D subjects, the DBI analysis highlighted a significantly
decreased communication in both directions between the ECG
and the microvascular pulse signal extracted from LDF signals.
This finding, however, could not be validated by DTF too. It is
noteworthy that these directional interactions were associated
with significantly higher coupling strength values (Table 4). This
could be due to the way DBI evaluates causal relationships and
what it can capture. In this case, DBI basically assesses the phase
coupling between ECG and pulse signals that, although recorded
at different anatomical locations, originate from the same source,
representing the electrical and mechanical activities of the heart,
respectively (Kralemann et al., 2013).

Finally, the estimated directional couplings from the lungs to
the heart and microvasculature, via either the DBI or DTF
methods, were considerably higher than the ones from the heart
and vasculature towards the lungs, in both control subjects and
T1D patients. Since this outcome was common in both groups, it
cannot be used as a biomarker for T1D. However, it agrees with the
findings of Palus and Stefanovska (2003), which have shown that
the respiratory process drives the heart activity at all breathing
frequencies, whether paced or spontaneous, and may shed more
light on the involved physiological mechanisms en route to a better
understanding of the cardio-respiratory system.

A potential limitation of this study is the availability and
analysis of signals from only a small number of nodes (lungs,
heart, microcirculation) in the network under investigation.
Both DTF and DBI measure the global (direct and indirect)
interactions between two nodes A and B, the indirect
interactions from A to B or from B to A occurring through
other node(s) C that we may not have access to in the network
(Kamiński et al., 2001; Baccalá et al., 2016). In this regard, it is
established that each respiratory cycle is tightly controlled by
four separate control centers in the pons and medulla (Smith
et al., 1991; Hilaire and Pásaro, 2003; Dampney, 2017), which
cannot operate without central intervention from the brain,
and direct feedback from the heart. Furthermore, central
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autonomic neural control has a well-known role in the low-
and high-frequency variability of the heart rate (Shaffer and
Ginsberg, 2017). Thus, ignoring the brain (EEG) and
investigating this complex neuro-cardio-respiratory network
from only three nodes (lungs, heart, microcirculation) could
have skewed the level of the estimated bivariate interactions in
both T1D and control groups. However, the comparative
statistical analysis of each measure across the two groups
may take care of this skewness if it were in the same
direction in both groups, per interaction.

In summary, we found that in both control and T1D subjects,
breathing had greater influence on the heart and peripheral
microvascular perfusion, compared to the opposite directional
couplings and that, by both the employed methods of
connectivity analysis, the causal influence of the respiratory
activity on the heart was significantly decreased (p < 0.05) in
T1D patients compared to the control group. These preliminary
results can be linked to established comorbidities of T1D and,
although obtained from a limited number of subjects, provide a
strong indication for the usefulness of a network-based multi-
modal analysis for the development of biomarkers from short-
duration data, and for monitoring the disease and T1D-related
complications over time, as well as its potential in the exploration
of the pathophysiological mechanisms that underlie this
devastating and very widespread disease.
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Body Weight Control Is a Key Element
of Motor Control for Toddlers’Walking
Jennifer N. Kerkman, Coen S. Zandvoort, Andreas Daffertshofer*† and Nadia Dominici *†

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science
Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands

New-borns can step when supported for about 70–80% of their own body weight. Gravity-
related sensorimotor information might be an important factor in developing the ability to
walk independently. We explored how body weight support alters motor control in toddlers
during the first independent steps and in toddlers with about half a year of walking
experience. Sixteen different typically developing children were assessed during (un)
supported walking on a running treadmill. Electromyography of 18–24 bilateral leg and
back muscles and vertical ground reaction forces were recorded. Strides were grouped
into four levels of body weight support ranging from no (<10%), low (10–35%), medium
(35–55%), and high (55–95%) support. We constructed muscle synergies and muscle
networks and assessed differences between levels of support and between groups. In
both groups, muscle activities could be described by four synergies. As expected, the
mean activity decreased with body weight support around foot strikes. The younger first-
steps group showed changes in the temporal pattern of the synergies when supported for
more than 35% of their body weight. In this group, the muscle network was dense with
several interlimb connections. Apparently, the ability to process gravity-related information
is not fully developed at the onset of independent walking causing motor control to be fairly
disperse. Synergy-specific sensitivity for unloading implies distinct neural mechanisms
underlying (the emergence of) these synergies.

Keywords: motor development, muscle synergies, muscle networks, gravity, toddlers

INTRODUCTION

Gravity greatly affects early motor development as body weight control is of great importance for
human locomotion (Dietz and Duysens, 2000; Duysens et al, 2000). New-borns can generate
coordinated alternations of the lower limbs (Thelen and Fisher, 1983; Thelen et al, 1987; Dominici
et al., 2011) but are not able to walk unsupported, yet. Since they can step when they only have to
support about 20–40% of their own body weight, the integration of loading-related information to
oppose gravity and the ability to control the own body weight appears crucial.

Loading of the limbs influences the walking pattern. It arguably modulates the efferent output
(Harkema et al., 1997) via the activation of Ib-afferents that appears in weight acceptance muscles
(Finch et al, 1991), i.e., in extensors. In adults, it enhances the activity of (anti-gravity) muscles during
stance and delays the initiation of the swing phase (Duysens and Pearson, 1980). When adults are
unloaded, muscle activity and kinetics change, while kinematic and spatiotemporal parameters are
merely affected (Ivanenko et al, 2002; Ivanenko et al., 2004; Apte et al, 2018). In contrast, toddlers
show clear changes in their kinematic coordination during their first independent steps, when
supported for more than 30% of their body weight (Dominici et al, 2007). This suggests that the
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reduction in gravity affects motor control during walking in
toddlers differently than in adults (Ivanenko et al, 2007). Like
in adults, in infants unloading may elongate the stance phase
duration of walking (Pang and Yang, 2000) and infant stepping
already renders adaptation to loading and other environmental
changes (e.g., external perturbations, walking in different
directions or at different speeds; Lam et al, 2003; Lam and
Yang, 2000; Pang and Yang, 2000; Thelen and Cooke, 1987;
Yang et al, 2005; Yang et al, 1998). Infants that are responsive to
load changes tend to acquire functional motor skills at very young
age (Vaal et al., 2000). This suggests the importance of early
neurodevelopment to integrate load-related sensory information
(Chang et al, 2006; Lacquaniti et al, 2012).

Stepping movements of infants are thought to emanate from
embryonic interneurons in locomotor spinal circuitry (Forssberg,
1985; Lacquaniti et al., 2012). Inhibition of these spinal networks
by descending cortico-spinal input appears mandatory to refine
muscle activity (McGraw, 1940; Harkema et al., 1997; Grillner,
2011; Petersen et al., 2012; Vasudevan et al, 2016). Yet, whether
this inhibition includes the sensorimotor integration of load-
related information is unclear. If it does, one has to realise that
neuromaturation is not completed at birth (McGraw, 1940;
Berger et al, 1987; Vaughan et al, 2003), which may—in
fact—explain why cortical control seems limited at a young
age and the effect of unloading is different between toddlers
and adults.

During the first year of life, motor behaviour develops
gradually towards independent walking (McGraw, 1940). This
development is accompanied by an increase in the number of
locomotor muscle synergies from two to four, a number that
persists in adults (Dominici et al., 2011). Locomotor muscle
synergies are orchestrated patterns of co-activations in (groups
of) muscles that are often considered essential for interlimb
coordination, in particular, during walking. Here, we forward
the hypothesis that the maturation of the cortico-spinal tract and,
especially, that of afferent loading-related feedback are
paramount for the emergence and control of the two
supplementary locomotor synergies.

The contribution of neural circuits to motor control can be
summarised as a network with a modular structure of neural
structures and pathways. Network analysis has proven successful
when mapping structural and functional connectivity in the brain
(Sporns and Betzel, 2016), studying more general anatomy
(Esteve-Altava et al, 2015; Molnar et al, 2017; Murphy et al.,
2018; Powell et al., 2018) and unravelling physiologically
interacting subsystems (Jeong et al, 2000; Bashan et al, 2012;
Faes et al., 2014; Ivanov et al, 2016) or basic physiologic states (Liu
et al, 2015; Ivanov et al, 2017; Rizzo et al, 2020). Casting such a
diversity of subsystems in a network provides a comprehensive
overview of many tomany interactions (Bassett and Sporns, 2017;
Balagué et al, 2020). Networks may “rewire” through changes in
the task, coordination, or evolutional development (Lacquaniti
et al, 2013) and, hence, can serve as an excellent means to identify
corresponding changes in the (interactions of the) subsystems.

We altered body weight support (BWS) and explored its
influence on motor output in toddlers at the onset of walking
and in children about 6 months after their first independent steps.

By this, we zoomed in on body weight control during the first
experience of independent walking. We employed synergy
analysis and determined the minimal number of locomotor
muscle synergies. Expectedly, around the occurrence of the
first independent steps, the two supplementary locomotor
muscle synergies emerge and settle. We constructed functional
networks with multi synergy-specific layers, so called muscle
synergy networks (Kerkman et al, 2020). While traditional
synergy analysis combines muscle groups by their co-
activation, combining a set of synergies into a network
provides direct insight into the interaction between them. As
such, it allows for an encompassing study of functional changes in
muscle activity during a transition in physiological coupling
(Bashan et al, 2012; Ivanov et al., 2014).

We investigated the temporal activation patterns of locomotor
muscle synergies as a function of BWS and complemented the
analysis by muscle synergy networks to detail changes in spatial
representation between groups. All children were likely to show a
mature motor output that we expected to turn towards less
mature temporal patterns in the presence of high BWS
because of the unloading-induced lack of sensory feedback.
This primarily applied to the younger, first-steps group. We
predicted changes to mainly occur in the two just emerged (or
still emerging) locomotor synergies (Dominici et al., 2011), in
particular by their altered strength (or amplitude). We
anticipated changes in muscle activation to be also visible in
the spatial representation, or synergies’ weightings, given the
known changes in co-contraction within and between the legs
around the onset of independent walking (Yang et al., 1998).
Accordingly, we expected that muscle synergies were
accompanied by densely connected networks containing
several (functional) clusters associated with the BWS level.

MATERIALS AND METHODS

Participants
Sixteen typically developing children were included in this study
(age range between 10.9 and 23.1 months, all born at term).
Children were divided into two groups based on their walking
experience, the FS and FS+ groups. In the FS group, we included
toddlers during their first independent steps (within 3 weeks of
walking experience) and in the FS+ group toddlers with around
6 months of walking experience. Seven children were measured
two times (Supplementary Table A.1). Subjects visited the
BabyGaitLab of the Department of Human Movement
Sciences, Vrije Universiteit Amsterdam, wore a diaper during
all measurements and walked without shoes. Familiarisation time
was incorporated such that children had time to get comfortable
to the lab and the experimenters. Ethical approval conform the
Declaration of Helsinki was obtained at the Faculty of
Behavioural and Movement Sciences (VCWE-2016–082) and
parents signed the informed consent after a written and verbal
explanation of the study.

To assess the first independent steps, we established regular
contact with the parents that were monitoring their child’s
walking ability. Recording sessions were scheduled as soon as

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 8446072

Kerkman et al. Body Weight Control in Toddlers

43

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


the parents reported that the child was able to walk independently
for at least four consecutive steps. This moment was defined as
“walking onset” with which we determined the corresponding
“walking age” (Supplementary Table A.1). We recorded the first
unsupported steps in fourteen toddlers, (FS group, mean age 14.1,
range (10.9–17.2) months old), and nine children were recorded
about 6 months after the first independent steps (FS+ group,
mean age 19.6, range (16.5–23.1) months old).

Setup
The experimental procedure was adapted to the children such
that one experimenter and one parent were located next the child
to reduce the risks of falling and tomake sure that the child always
felt comfortable. Children were encouraged to make steps while
supported by their hands or their trunk above a running
treadmill. An additional weighting trial was recorded during
each session while the child was standing or sitting quietly on
the non-running treadmill for at least 2 seconds.

Treadmill speed was tuned to elicit stepping movements and
adjusted to a comfortable speed for the child based on his/her
walking capacity; mean walking speed 0.7 ± 0.3 and 1.0 ± 0.3 km/
h for the FS and FS+ group, respectively. To assess the influence of
body support on the motor output, we recorded trials while an
experimenter firmly supported the child’s trunk with both hands
while sitting on a bench behind the child and applied an
approximately constant vertical force during several
consecutive strides on the treadmill (Supplementary Figure
A.1 A). In addition, the forearm of the experimenter holding
the toddlers were supported to guarantee that an approximately
constant vertical force was applied during consecutive strides and
limit the possibility of imposing movements on the toddlers
(Supplementary Figure A.1 B). Manual unloading was
previously used in infants (Thelen and Cooke, 1987; Yang
et al, 1998; Lam and Yang, 2000; Pang and Yang, 2000; Lam
et al, 2003; Yang et al, 2005; Dominici et al., 2007; Vasudevan et al,
2016). It is a natural strategy adopted by parents to support their
children during walking and avoids potential changes in the
walking patterns through external equipment. The amount of
body unloading was varied trial by trial to cover a wide range of
levels from low until high level of BWS. Whenever feasible,
additional trials were recorded while the experimenter held
one or two hands or the trunk to stabilise the body during
walking and supplied only limited vertical force, which was
typically less than 20% of the body weight.

Data Acquisition
Kinematic and video data were collected with a Vicon motion
capture system (10 Vicon Vero v2.2 cameras and Vue Vicon
camera, Oxford, UK) and sampled at 100 Hz. Vertical ground
reaction forces were recorded with a force plate and sampled at
1 kHz (N-Mill 60 × 150 cm, Motek Medical BV, Amsterdam, the
Netherlands). Force sensors with a sensitivity of 3N were installed
in the force platform to measure low body weight values.

Electromyography (EMG) was recorded of 18–24 bilateral leg
and back muscles. The following set of muscles was recorded
simultaneously from both body sides: tibialis anterior (TA),
gastrocnemius medialis (GM), gastrocnemius lateralis (GL),

soleus (SOL), rectus femoris (RF), vastus medialis (VM),
vastus lateralis (VL), biceps femoris (BF), semitendinosus
(SEM), tensor fascia latae (TFL), gluteus maximus (GLM),
erector spinae recorded at L2 (ES). The skin was cleaned with
alcohol and micro golden Cometa golden disc-electrodes pairs
(acquisition area of 4 mm2) were placed at the approximate
location of the muscle with an inter-electrode distance of
10 mm. To minimise movement artefacts, pre-amplified EMG
sensor units were attached with double tape to the skin of the
child and fixed with elastic gauzes. EMG data were recorded using
Cometa Mini WaveWireless EMG system (Cometa srl, Italy) and
sampled at 2 kHz after online band-pass filtering between 10 and
500 Hz. EMG, kinematic, force and video data were synchronised
online.

Data Analysis
Kinematics
We analysed the video recordings frame by frame to identify the
foot strike and foot off events of both feet. A gait cycle was defined
from the right leg starting with the foot strike (0%) to the
consecutive strike of the right foot (100%). We considered a
sequence of strides successful if at least three consecutive strides
were present. The first and last stride in each sequence as well as
jumps or other interruptions were excluded from subsequent
analyses.

Body Weight Support
The vertical force data were low pass filtered (12th order bi-
directional Butterworth filter, cut-off frequency at 20 Hz) and the
average amount of force was computed per gait cycle. We
specified the amount of external BWS as the percentage
reduction of the mean vertical force during a stride compared
to the estimated body weight that we determined during the
weighting trial. In our previous work (Dominici et al., 2007), we
showed significant differences in foot coordination when toddlers
were supported for more than 30% of their body weight, while
adults and older children showed only minimal changes. Based
on these results, four levels of BWS were selected. Per subject, gait
cycles were hence grouped into four different BWS levels: no
(<10%), low (10–35%), medium (35–55%) and high (55–95%)
support (Supplementary Table A.1).

Electromyography
EMG signals were visually inspected and pre-processed by
linearly interpolating ±150 ms epochs around peaks that
exceeded ten times the signal’s standard deviation. These data
were high-pass filtered (30 Hz) with a second order bi-directional
Butterworth filter and notch filtered (fourth order) to remove the
power line artefact. Subsequently, EMG envelopes were extracted
as modulus of the analytic signal (Myers et al., 2003; Boonstra and
Breakspear, 2012). We applied a low-pass filter (second order
Butterworth filter, cut-off frequency at 5 Hz) to obtain the slow-
temporal changes in muscle activity. Finally, envelopes were time
normalised to 200 samples per gait cycle (Ivanenko et al., 2005;
Cappellini and Ivanenko, 2006; Dominici et al., 2011) and scaled
to the mean amplitude per muscle of the low level of support
(10–35% BWS). For every BWS level, we used the bilateral EMG
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patterns for all individual subjects and pooled all gait cycles of all
subjects to determine the grand averages for both groups.

Muscle Synergies
Muscle synergies were estimated using non-negative matrix
factorisation (NNMF, Lee and Seung, 1999) by a multiplicative
update algorithm over one to seven synergies. Briefly, NNMF
decomposes the original EMG matrix into (small number of)
temporal patterns and weighting coefficients:

EMG � ∑n
i�1
Pi ·Wi + error

where P represents the temporal activation patterns of the
synergies (n × s matrix, where n denotes a pre-defined number
of synergies, n≤m, where m is the number of muscles) andW the
synergies’ weighting coefficients (m × n matrix).

Per group, we estimated muscle synergies for the grand-
averaged EMG activities of the four BWS levels and
concatenated them to obtain a (s × k) × m matrix, where s �
200 is the number of samples, m � 24 the number of muscles and
k � 4 the levels of body weight support, yielding a 800 × 24
matrix. In this form, our NNMF resulted in temporal patterns
per BWS level and fixed synergies’ weighting coefficients across
the levels of support. We also decomposed the original EMG
signals for all individual subjects, for which we used the averaged
EMG activities per subject for every BWS level; the corresponding
results can be found in Supplementary Figure A.2. The
reconstruction quality of the synergies was determined as the
contribution of the synergies to the Frobenius norm λ of the
original signal (EMG):

λ(n) � (1 − ‖EMG −W(n)P(n)‖2F
‖EMG‖2F

) × 100%

The number of synergies was selected such that the
reconstruction of the synergies should exceed 88% of the
Frobenius norm of the original signal per level of support
(Zandvoort et al, 2019; Kerkman et al., 2020; Bach et al., 2021).

For every resulting synergy, the mean amplitude of the
temporal pattern was determined for every BWS level relative
to the no-support level to assess changes in the amount of muscle
activity across the gait cycle. We normalised the amplitude of the
temporal pattern to the maximum value over the gait cycle to
discard amplitude effects and to verify whether changes in the
temporal pattern were induced by a change in the waveform itself.
An enlarged normalised amplitude indicated a longer peak
duration of the temporal pattern. Finally, to quantify the
similarity between temporal patterns independent of
amplitude, we estimated the circular cross correlation
(Oppenheim et al., 2001) between different levels of support.

Muscle Synergy Networks
Network analysis (Bullmore and Sporns, 2009; Betzel and
Bassett, 2017) was performed to compare the spatial
representation of the muscle synergies between groups
(Boonstra et al., 2015; Kerkman et al., 2018; Murphy et al.,
2018). We constructed muscle networks (Kerkman et al., 2020)

for which we first scaled the synergies’ weightings coefficients by
the sum of the integrals of the temporal patterns to correct for
overall amplitude effects. Using the outer product of the scaled
synergies’weightings, we obtained a 24 × 24 connectivity matrix
per synergy. A bipartite muscle network (Murphy et al., 2018)
was created, in which muscles served as nodes and where edges
were given as the afore-defined weighted appearance of two
muscles in the same synergy (i.e., the elements of the
connectivity matrix). The connectivity matrices of all
synergies were thresholded with an absolute threshold of
5·10−5 and we determined the density and the transitivity of
every synergy network (Kerkman et al., 2020). Network density
and transitivity served to quantify (changes of) network
topology in terms of the number and clustering of
connections, respectively (Rubinov and Sporns, 2010).

RESULTS

Effect of Body Weight Support on Muscle
Activity
The mean muscle activity over subjects per level of support
showed a decreased amplitude and increased duration of the
peak activity of several—mainly upper leg—muscles active at the
foot strikes when weight support was increased (Figure 1). This
effect was most pronounced in the FS group between low and
medium BWS.

Effect of Body Weight Support on Muscle
Synergies
For both groups, four synergies were required to cover 88% or
more of the original signal’s Frobenius norm (Table 1).

Toddlers in the FS group displayed four synergies, of which
two were primarily active during the right (S1) and left foot strike
(S3), while the other two were active during the stance phase of
the right (S2) and left leg (S4, Figure 2A). These right and left
synergies appeared to be symmetric by mean of contributions of
muscles of the right and left side (Figure 2B). The mean
amplitude of the foot strike synergies decreased incrementally
with respect to no support with unloading: −17, −39 and −49%,
and −36, −51 and −62% for S1 and S3, respectively, whereas the
mean amplitude in S2 mainly increased (+13, +6 and −2%) and in
S4 remained almost constant between low, medium and high
support (+25, +23 and +22%, respectively; Figure 2C). Next to
the change in amplitude, the shape of the temporal patterns of S3
and S4 changed substantially: The circular cross correlation
between no and high and low and high support decreased to
0.959 and 0.944 in S3, and in S4 between no and medium to 0.969
and between no and high support to 0.934 (Figure 2E). These
changes seemingly reflected an elongated peak duration
(Figure 2D).

The FS+ group also showed four synergies, which were like
those in the FS group (Figure 3). Again, there was a foot strike
synergy for both right and left leg (S1 and S3) and two synergies
active during the right and left stance phase (S2 and S4). The
mean amplitude of the temporal pattern decreased compared to
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the no BWS condition in S1 and S3 (−18, −37 and −49%, and −19,
−44 and −67% in S1 and S3, respectively), while the mean
amplitude of S2 and S4 increased (+8, +7 and +14%, and +2,
+7, and +25%) in low, medium and high BWS, respectively. The

similarity in shape of the temporal patterns (circular cross
correlation) decreased to a minimum of 0.966 in S3 between
no and high BWS, which implies that the temporal pattern barely
changed in waveform in the FS+ group.

FIGURE 1 |Muscle activities—grand average per group. Green, cyan, blue and dark blue represent no, low, medium, and high body weight support, respectively.
Error patches represent the standard errors of the mean, which turned out very small.

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 8446075

Kerkman et al. Body Weight Control in Toddlers

46

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


Effect of Body Weight Support on Muscle
Synergy Networks
The spatial representation of the muscle synergies of both groups
revealed similarities in their muscle networks (Figures 2F and
3F). Yet, their network characteristics differed: the number of
connections (density) of one muscle to another, i.e., whether
muscles were active in the same synergy, was larger in FS
compared to FS+ across synergies: +9, +70, +10 and +45%.
Especially in the foot strike synergies (S1 and S3), we found a
larger number of interlimb connections in the FS compared to the
FS+ group. The transitivity was higher in FS compared to FS+ in
all synergies except of S3 indicating more clusters in the synergy
networks in toddlers at the onset of walking (cf. Table 2).

DISCUSSION

For the currently study, we asserted the importance of body
weight control in the development of independent walking. As
expected, we found adaptations in temporal patterns of the
muscle synergies when toddlers around their first independent
steps were supported. We also found differences between the
spatial representation between toddlers at the onset of walking
and with half a year of walking experience. The motor pattern of
these toddlers were similar to those of older children and adults as
reported in the literature (Ivanenko et al., 2004; Ivanenko et al.,
2005; Yokoyama et al, 2016). Both groups revealed four synergies
with separate foot strike and stance phase synergies; the mean
amplitude of the foot strike synergies decreased with increasing
body weight support. It seems that, at the onset of walking, the
coordination of muscle activity is reasonably developed allowing
for independent walking, presuming a sufficient amount and
quality of sensory feedback. However, the shape of the temporal
pattern of the left foot strike and left stance phase synergies
changed in toddlers at their first independent steps suggesting
that the motor pattern in toddlers depends on the amount of
support, while this dependency may be absent in older children,
similar to adults (Ivanenko et al., 2004). Differences in spatial
representation identified here demonstrated higher connectivity
in the FS group compared to the FS+ group. This might have been
caused by increased co-contractions and less specified
contributions of muscles to the muscle synergies. The changes
and differences arguably imply that the ability to control the body
weight is a key element in the development of independent
walking in children. In addition, the large number of interlimb
connections found in the FS group are compatible with the idea
that spinal network of interneurons project to multiple motor
neurons pools, including distant motor neurons pools (Levine

et al., 2014; Takei et al., 2017; Hug et al., 2021). These spinal
networks seem to be largely involved in the coordination of
toddler’s muscle activity during their first independent steps.
Our results are in line with recent studies showing task-specific
connectivity in the neuromuscular system during postural and
walking tasks (Boonstra et al., 2015; Conway et al., 1995; Farmer
et al., 1993; Kerkman et al., 2018; 2020).

Even when toddlers are only able to walk a few steps
unsupported, four muscle synergies suffice to explain muscle
activities during walking. This agrees with findings in older
children and adults (Dominici et al., 2011). Here, the shapes
of the temporal patterns were consistent across BWS levels. The
amplitudes of the foot strike synergies, however, were clearly
affected by BWS. This was probably due to a decrease in muscle
effort to support the own body weight. It seems that the primary
walking pattern is present at the onset of walking but that it can be
modulated to account for body weight control requirements.

Despite the growing interest in the application of BWS in
pediatric rehabilitation until now just few studies investigated the
effect of body weight unloading in young children. We found
changes in the muscle synergies of toddlers at the onset of
independent walking in the shape of some of the temporal
patterns when supported for more than 35%. This indicates
that unloading affects motor control in these children. When
unloaded, the available gravity-related information that can be
transferred via Ib-afferents is reduced (Harkema et al., 1997; Pang
and Yang, 2000). In toddlers at the onset of independent walking,
the sensitivity and gain of the load-receptors might not be fully
developed, and the motor systemmay not be able to account for a
change in body weight support by modulating the gain of the
feedback. The inability to integrate these load changes is
supported by the observed overshoot of the foot in the swing
phase in this age group (Dominici et al., 2007). When toddlers are
unloaded for more than one third of their body weight, the
information received by the neuromuscular system seems
insufficient to preserve the primary motor pattern for walking,
while this effect on motor control disappears in older children
and adults when unloaded (Ivanenko et al., 2004).

BWS training has shown positive effects in the rehabilitation
after stroke (Sale et al., 2012; Moraru and Onose, 2014) and spinal
cord injury (Hubli and Dietz, 2013), and in the presence of
Parkinson’s disease (Miyai et al., 2000; Picelli et al., 2013). In
children with cerebral palsy, however, appear less promising
(Damiano and DeJong 2009; Mutlu et al., 2009; Willoughby
et al., 2009). Whether or not the diversity of finding in this
degenerative disease has been cause by the age range of include
patients remain opaque. Our results suggest that targeting load-
regulating mechanisms in children should be most effective at
very early age.

TABLE 1 | Contribution of the synergies to the Frobenius norm (λ) of the original concatenated EMGs. λ was computed across all conditions as well as per level of support.

Group # of
synergies

Across conditions
(%)

No (%) Low (%) Medium (%) High (%)

FS 4 89 88 89 90 92
FS+ 4 89 89 88 90 90
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Striking is that only the newly developed synergies that are
active during the foot strikes decreased in amplitude when
unloaded. This suggests a phase-specific effect of body weight
unloading, which has also been found in adults (Finch et al.,
1991; Harkema et al., 1997; Sylos-Labini et al, 2014). The foot

strike synergies may have a different origin than the stance
phase synergies and they may be differently controlled. This
supports a synergy-specific sensitivity for changes in the
amount of body weight control. Some synergies may need
proprioceptive feedback in the modulation of the synergy,

FIGURE 2 |Muscle synergies and muscle synergy network in the FS group. (A) Temporal patterns and (B) synergies’ weighting coefficients. (C)Mean amplitude
and (D) normalisedmean amplitude of the synergy temporal pattern over the gait cycle, and (E) the circular cross correlation between the temporal pattern of the different
levels of support. (F) Muscle synergy network on the toddler’s body mesh (MakeHuman 2018) based on the synergies’ weightings; node size represents the muscle
degree and edge thickness the connection strength between muscles. Green, cyan, blue and dark blue represent no, low, medium, and high body weight support,
respectively, in (A,C,D).
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while others operate without any proprioceptive or supra-
spinal input (Grillner, 1973; Harkema et al., 1997) and, hence,
remain largely unaltered despite of weight-bearing
experiences during the first year (Yang et al, 2019).
Cortico-muscular coherence found during the double
support phase (Roeder et al., 2018) may suggest that the

foot strike synergies are cortically controlled, while the other
synergies may be controlled by brainstem and spinal
networks (Labini et al., 2011; Lacquaniti et al., 2012). This
arguably points at distinct neural origins of the synergies with
different functions and sensitivities for gravity-related
information.

FIGURE 3 |Muscle synergies and muscle synergy network in the FS+ group. (A) Temporal patterns and (B) synergies’weighting coefficients. (C)Mean amplitude
and (D) normalisedmean amplitude of the synergy temporal pattern over the gait cycle, and (E) the circular cross correlation between the temporal pattern of the different
levels of support. (F) Muscle synergy network on the toddler’s body mesh (MakeHuman 2018) based on the synergies’ weightings; node size represents the muscle
degree and edge thickness the connection strength between muscles. Green, cyan, blue and dark blue represent no, low, medium, and high body weight support,
respectively, in (A,C,D).
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By comparing toddlers at the onset of walking and half a
year later, we found a changed spatial representation with a less
densely connected muscle network in the younger group.
Despite of similar muscle synergy activity patterns, the
muscle clustering, and the contribution of muscles within
the synergies evolved after a child started to walk
independently. Yet, this reorganisation did not merely result
from unloading (Supplementary Figure A.3), and changes in
the networks were not consistent across synergies (e.g., no
increased density in FS in all synergies). Hence, they could be
the result of a combination of a decrease in co-contraction
(Teulier et al, 2012) and a phase-specific reorganisation of
muscle clustering.

Limitations
The children involved in the current study were small, yielding
limited space for EMG electrodes. Recall that we recorded multi-
EMGs were recorded simultaneously. Potentially that may
jeopardise data quality due to electrical crosstalk between
adjacent muscles. However, the small size of the EMG
electrodes used in our recordings and the chosen
interelectrode distance should have minimised the pickup
from adjacent muscles. Although it is not possible to separate
co-activation from crosstalk in nearby muscles, muscle synergy
analysis can identify whether a muscle is activated independent
from a nearby muscle even in the presence of such crosstalk.
Previous studies reported that if crosstalk did exist, it would likely
have affected only the synergies’ weighting coefficients and not
the number of muscle synergies or the temporal patterns
(Ivanenko et al., 2004; Chvatal and Ting, 2013). Despite a
proper skin preparation and EMG electrodes attachment,
motion artefacts were still observed during foot strike in some
of the lower limb muscles (TA, SOL). A pre-processing step was
performed to the EMG signals to minimise these artefacts.

Muscle synergies are often estimated per subject (e.g.,
Ivanenko et al., 2004; Dominici et al., 2011). We must admit
that in our toddlers’ group, it was quite difficult to collect EMG
data from all muscles with sufficient steps in the four different
BWS levels. To accommodate this, we averaged all steps across
subjects. One may question the degree to which this grand
average is representative for muscle synergies at single subject
level. As expected, the single subject results were variable. Yet,
when temporal patterns and synergies’ weightings coefficients
were averaged over subjects, the results revealed similar temporal
and spatial characteristics compared to the grand average results
(Supplementary Figure A.2).

CONCLUSION

Our results confirm that the ability for toddlers to control
their own body weight is important in motor control during
walking. Being at the onset of walking implies that the motor
system can control independent walking. Yet, control
processes continue to undergo modifications, arguably to
integrate sensory feedback. Here, this was reflected in an
amplitude decrease of the foot strike synergies when
supported, i.e., a synergy-specific sensitivity of unloading.
This can be a result of distinct neural mechanisms that
may underlie the formation of synergies. Toddlers at the
onset of walking showed a reorganisation of the spatial
grouping of the muscles presumably due to immature
motor control resulting in high co-contraction and less
muscle-specific activity during the gait cycle. Unloading-
induced motor adaptation was pronounced in these
children when supported for more than 35% of their body
weight. Apparently, motor control at the onset of walking is
not fully developed, yet, and is modulated by loading-related
feedback stressing its importance in the motor development of
independent walking.
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The Fractal Tapestry of Life: II
Entailment of Fractional Oncology by
Physiology Networks
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This is an essay advocating the efficacy of using the (noninteger) fractional calculus (FC) for
the modeling of complex dynamical systems, specifically those pertaining to biomedical
phenomena in general and oncological phenomena in particular. Herein we describe how
the integer calculus (IC) is often incapable of describing what were historically thought to be
simple linear phenomena such as Newton’s law of cooling and Brownian motion. We
demonstrate that even linear dynamical systems may be more accurately described by
fractional rate equations (FREs) when the experimental datasets are inconsistent with
models based on the IC. The Network Effect is introduced to explain how the collective
dynamics of a complex network can transform a many-body noninear dynamical system
modeled using the IC into a set of independent single-body fractional stochastic rate
equations (FSREs). Note that this is not a mathematics paper, but rather a discussion
focusing on the kinds of phenomena that have historically been approximately and
improperly modeled using the IC and how a FC replacement of the model better
explains the experimental results. This may be due to hidden effects that were not
anticapated in the IC model, or to an effect that was acknowledged as possibly
significant, but beyond the mathematical skills of the investigator to Incorporate into
the original model. Whatever the reason we introduce the FRE used to describe
mathematical oncology (MO) and review the quality of fit of such models to tumor
growth data. The analytic results entailed in MO using ordinary diffusion as well as
fractional diffusion are also briefly discussed. A connection is made between a time-
dependent fractional-order derivative, technically called a distributed-order parameter, and
the multifractality of time series, such that an observed multifractal time series can be
modeled using a FRE with a distributed fractional-order derivative. This equivalence
between multifractality and distributed fractional derivatives has not received the
recognition in the applications literature we believe it warrants.
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INTRODUCTION

All phenomena are equally susceptible of being calculated, and all that is necessary, to reduce the
whole of nature to laws similar to those which Newton discovered with the aid of the calculus, is to
have a sufficient number of observations and a mathematics that is complex enough (Marquis de
Cordorcet, 2022).
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The modern science of medicine, like many other non-
physical disciplines, has been guided in its early mathematical
development by the successful mechanical models of physics.
That strategy has proven to be extraordinarily successful, even
surviving the introduction of fractals into its modeling, until quite
recently. The true complexity of medical networks has been
revealed with the development and implementation of ever
more sensitive sensors and mathematically sophisticated data
processing techniques (Niu et al., 2021). These developments
have led to a divergence of the modeling strategies appropriate for
the physical sciences from those for the life sciences.

Complex phenomena in any of the science disciplines have
complicated and intricate behaviors, typically balancing
randomness against order, with no consensus among scientists
or poets as to what constitutes a reasonable scientific measure of
complexity. Any list of traits of complexity is arbitrary and
idiosyncratic and mine consists of eight traits which is
recorded in Where Medicine Went Wrong (West, 2006). It
would not serve our purpose to reproduce the details of that
list here except to note that it contained such things as the
number of time-dependent variables, along with the nonlinear
relations among them, a dependence on their environment,
scaling is space and time, and a mixture of order and randomness.

Recognizing the different ways each of these complexity
properties are treated in the physical, social, and life sciences,
led to further divergences of the modeling strategies developed for
each. Therefore, we review how far the fractional calculus (FC) or
alternatively fractional dynamics (FD) has taken us into the non-
mechanical interpretation of medicine. On the one hand, network
science has had a significant growth spurt over the last 2 decades
with the recognition of its utility in describing the dynamic
behavior of all manner of complex phenomena. This includes
the recent establishing of new journal on Network Physiology
(Ivanov, 2021). On the other hand, although the developers of
network science have put such topics as scaling (Schmitt and
Ivanov, 2007), renormalization group theory, fractal statistics
(Bernaola-Galván et al., 2012), and other ostensibly esoteric
mathematical tools into their bag of tricks, they have been
slow to incorporate FD and the FC as a primary modeling
strategy. Hopefully, the present essay will help to rectify that
situation.

This essay is an unapologetic advocacy for the use of FC in the
effective modeling of complex phenomena in biology and
medicine. What emerges herein is the increasing importance
of criticality (West, 2020), the cooperative nature of networks in
healthy physiologic behavior (West et al., 2014), and the
importance of the FC in characterizing the dynamics of living
networks (West et al., 2008; West and Grigolini, 2021). In
particular, we examine how and why the dynamic behavior of
such pathologies as cancer may lend themselves to description by
the FC (Nasrolahpour, 2018).

Historical Perspective
The present paper is the sequel to The Fractal Tapestry of Life: A
review of Fractal Physiology (West, 2021). The prequel contains a
critique of the reliance that physiology theory has had on the
mechanical models of physics for its development, pointing out

the extraordinarily success this strategy has enjoyed, see for
example (Ruch and Patton, 1979). However, with the
introduction of fractals by Mandelbrot (Mandelbrot, 1977)
into the modeling strategy of science and engineering, the true
complexity of physiological networks was revealed and led to the
parting of the ways for the modeling strategies appropriate for the
physical sciences from those for the life sciences. In the prequel
we emphasized how far the fractal concept has taken us in the
non-mechanical interpretation of physiology since the term
fractal physiology was coined by Bassingthwaighte et al.
(Bassingthwaighte et al., 1994) a quarter century ago. The
prequel drew largely from papers published in the frontiers in
Physiology, Fractal Physiology over my 2 decade tenure as its
founding editor. The intent of that review was to demonstrate
how far the modeling community has come in accepting fractals
as a part of natural history.

As done in the prequel, the discussion presented herein draws
inspiration for its rationale from Daniel Kahneman’s book,
Thinking, fast and slow (Kahneman, 2011). Kahneman is a
psychologist who was awarded the 2002 Noble Prize in
Economics, suggesting that disciplinary borders, between
economics and psychology in that case, are self-imposed
barriers not supported by experiments done on the
phenomena being studied. One consequence of the psychology
experiments done and interpreted by him and his long time
friend and collaborator Amos Tversky was that the historical
assumptions about how humans make decisions, and in
particular, how economic decisions on which microeconomics
was based, had to be reexamined and some needed to be
abandoned altogether. The assumption of strict rationality in
humans, foundational to modern economic theory, turned out to
be at odds with the empirical findings (Ariely, 2008).

The purpose of the present work is to demonstrate that we are
now entering a new era inmedicine, or rather in themathematical
modeling of medical phenomena, and what that entails for the
future. It is useful to recall that in the Principia Newton
introduced motion as a central idea of mechanics into physics,
and although he never used the term fluxion, his word for a
differential, in this major work he drew inspiration from his new
mathematics to explore its implications. It was the mathematical
notion of a differential that led Newton to identify motion as the
central concept in celestial mechanics. He communicated this
using the scientific language of the day, that being geometry,
which explains some of the more torturous geometric arguments
one finds in that remarkable book. His use of the differential
historically guided the mechanics-based development of
quantitative physiologic models, with some extraordinary
successes, see, e.g., (Ruch and Patton, 1979) for a
comprehensive discussion of the IC modeling of physiological
systems.

On the other hand, this new era of medicine argues against
relying on borrowing as a strategy for model building. It is not
much of a stretch to say that typical phenomena in the life
sciences are significantly more complex than those typically
addressed in the physical sciences. Consequently, how one
incorporates this complexity into the dynamic description of
living cells, tissue and organs is uniquely defined by the
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phenomenon being considered (Magin, 2006;West et al., 2008). It
is also the case that the way in which complexity enters the
mathematical model determines the sensitivity of the model’s
reaction to changes in parameter values. In other words the
complexity of the phenomenon being modeled determines the
degree of disruption that can be tolerated without the network
degenerating into pathological behavior.

It is also the case that the standard training of the life scientist relies
less on mathematical formalism, a reliance that enabled the success of
the physical scientist in constructing useful physics-based
mathematical models. However, scientists from both the physical
and medical camps saw, almost immediately, the benefit of the fractal
concepts for their respective domains of interest after it was introduced
by Mandelbrot (Mandelbrot, 1977). But unlike Newton, who was
working to understand a clearly observed physical phenomenon,
Mandelbrot was attempting to understand not just the way we
model change in the physical world, but change in every scientific
discipline. To accomplish this ambitious goal he introduced the fractal
concept through an endless succession of exemplars, including
mathematical measures, noise, error, stellar matter, turbulence,
statistics, polymers, and so on. These and many other applications
of his ideas were based on his phenomenal intuition, using a kind of
mathematics that neither the physical nor life sciences had seen before,
much less implemented in the understanding of complex phenomena.
Consequently, scientists in each discipline began developing fractal
models based onwhat was needed to understand the unique processes
and phenomena in their respective areas of study. It was equally clear
that the fractal behavior of phenomena in living systems is the norm,
and not the exception it seemed to be, at first, in the physical sciences
(Mandelbrot, 1982).

In general, the complexity of a phenomenon molds the
characteristics of the function used to describe its behavior.
This is particularly true in describing how a function
describing a phenomenon changes in time. The Weierstrass
function, although expressed as an infinite Fourier series, does
not have a finite integer derivative and was for that reason chosen
by Richardson (Richardson, 1926) to describe the diffusion of a
passive scalar in the turbulent flow of a fluid. It has been shown
(Rocco and West, 1999) that such a function can have a finite
fractional derivative, even when its integer derivative diverges. So
what does this divergence property entail? It was determined
during the last quarter century that an amazing number of
familiar medical phenomena are described by fractal functions
(West, 2006; West, 2021). Subsequently, it was argued that the
equations of motion for such complex phenomena must be
fractional, since a fractal function does not have integer-value
derivatives and consequently cannot have Newtonian equations
of motion (West, 2016). Thus, this essay is devoted to the whys
and ways the FC enters into the dynamics of medicine and
provides insight into certain medical pathologies including
MO (Durrett, 2013).

THE NETWORK EFFECT

The new millennium has witnessed the blossoming of two quite
different strategies for the mathematical modeling of the complex

dynamics of large collections of interacting elements that appear
in medicine, those being network science (West et al., 2014;
Barabasi, 2016; Newman, 2018) and the fractional calculus
(Podlubny, 1999; West et al., 2003a; Magin, 2006). The
adoption of the network science strategy for the study of
complex phenomena such as epidemic spreading of diseases
(Pastor-Satorras et al., 2015), neuronal avalanches
(Hernandez-Urbina et al., 2016), and social dynamics (Bak,
1996; Castellano et al., 2009; Mahmoodi et al., 2017) is a
consequence of the fact that these networks are composed of
many simple, interconnected, and dynamically interacting
elements (West, 2014). In a similar way, the popularity of the
FC in research has grown in the modeling of processes
characterized by long-term memory as well as spatial
heterogeneity (Herrmann, 2011; West, 2016). This FC
popularity stems from its particular mathematical formulation,
based on various definitions of non-local differentiation and
integration operators and its utility in describing the dynamics
of fractal phenomena, both in space and time. Therefore, since the
effects of spatial heterogeneity and memory are frequently
observed in biological, social, and artificial networks (Magin,
2016; Meerschaert et al., 2017), the application of FC in the
domain of complex networks is a natural step toward providing
novel analytical tools that are capable of addressing research
questions arising in the field of medicine, such as fractional
dynamics (FD). For example, FD has been used to model the
complex dynamics in biological tissue (Magin, 2010) and
biomedicine (Nasrolahpour, 2017; Nasrolahpour, 2018), as well
as in the growth of cancer cells (Valentim et al., 2021), the signal
decay in MRIs (Magin, 2016), and finally in the bizarre statistical
fluctuations in dilute suspensions of algae and bacteria (Zaid
et al., 2011), to name a few applications that are subsequently
discussed.

At the turn of the 20th century the foundation of biology
started moving from the concept of homeostasis, which is
compatible with the physical notion of regression to
equilibrium, to the concept of homeodynamics, which involves
periodicity (Lloyd et al., 2001; Tu and McKnight, 2006), chaos
and complexity (Guzm´an et al., 2017). As far as the important
biological role of periodicity is concerned, we invite the readers to
consult the excellent review paper of Strogatz (Strogatz, 2000),
which reveals a connection between homeodynamics and
neurophysiology.

Despite how simple the basic elements of complex networks
are assumed to be, such as in cooperative behavior of animals
(Flack et al., 2018), in the flow of highway traffic (Bette et al.,
2017), or in the cascades of load shedding on power grids
(Yang et al., 2017), the network dynamics are invariably
characterized by rich self-organized emergent behavior
(West and Grigolini, 2021). However, in most cases solving
a network of coupled nonlinear equations to describe the
behavior of a network composed of N units is at best labor
intensive and at worst it is intractable. Consequently, the
primary focus of investigations into the behavior of
complex networks has been on their global behavior
(Dorogovtsev et al., 2008). This approach travels the path
taken by classical statistical physics, starting from insights
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of Maxwell and Boltzmann that the description of the state of a
gas or a solid could only be achieved over the scale of the entire
system (Toda et al., 2004).

In the same way, the ability to portray the global behavior of
a complex network is not free but comes at the price of not
being able to quantify the Newtonian dynamics of the
components of which it is composed. Typically, one
attempts to infer the global dynamics by averaging the
behavior of single elements within the system, following a
bottom-up approach of mean field theory (Turalska and West,
2018). Turalska and West (Turalska and West, 2018)
addressed the issue of depicting global dynamics by turning
the question around and rather than joining the behaviors of
single elements within the dynamic network, they asked
whether it is possible to construct a description of the
dynamics of the individual elements from information
provided about the network’s global behavior. They
approach the problem by considering statistical properties
of the global variable.

Frequently, the macro, or coarse-grained, variables
observed in complex networks display emergent properties
of scale invariance in space and/or in time. This scale
invariance is manifest by, for example, the inverse power
law (IPL) scaling of waiting-time probability density
functions (PDFs) that reveals the variability of the time
intervals between events. These time intervals are manifest
in heart rate variability (HRV), in stride interval variability
(SIV) and breath interval variability (BIV), or in the
occurrence of brainquakes (West and Grigolini, 2021). The
IPLs that characterize the emergent macroscopic behavior are
reminiscent of particle dynamics near a critical point, where a
dynamic network undergoes a phase transition (Christensen
and Moloney, 2005). However, despite the mathematical
advances made by the renormalization group approach and
self-organized criticality theories that have shown how scale-
free phenomena emerge at critical points, the issue of
determining how the emergent properties influence the
micro-dynamics of individual units, such as the growth of a
single cell within a network of cells, whether healthy or
pathological, is still in its nascent phase.

The Entailment of Network Dynamics
Grinstein et al. (1985) demonstrated that any discrete network,
whose dynamics are defined in terms of local interactions,
having symmetric transitions between states and random
fluctuations originating from a thermal bath or internal
dynamics is a member of the Ising universality class. One
such dynamic complex network is given by the decision
making model (DMM) (Bianco et al., 2008; Turalska et al.,
2009; Turalska et al., 2011) and for clarity of discussion this is
the dynamic model we implement in this section. Each
individual unit of the DMM is a stochastic oscillator that
statistically dithers between the two states, +1 and -1. The
dynamics are modeled on a two-dimensional lattice and
defined in terms of the probability of an individual at lattice
point i to be in either state, by the coupled two-state master
equation:

dp(i)(t)
dt

� Gi(t)p i( )(t), (1)

p i( )(t) ≡ p i( )
1 (t)

p i( )
2 (t)( ), (2)

where p(i)(t) is the probability of the element i = 1, 2, . . ., N
within the network at the time t is normalized such that p(i)

1 (t) +
p(i)
2 (t) � 1 for every i and changes with the fundamental

transition rate g0 < 1 between states. The matrix of time-
dependent coupling rates for individual i is given by:

Gi(t) � −g i( )
12 t( ) g i( )

21 (t)−g i( )
21 (t) g i( )

22 (t)( ); (3)

where the individual transition rates are:

g i( )
12 (t) � g0 exp − K

M i( ) M i( )
1 (t) −M i( )

2 (t)( )[ ],
g i( )
21 (t) � g0 exp

K

M i( ) M i( )
1 (t) −M i( )

2 (t)( )[ ], (4)

and 0 ≤ K < ∞ is the strength of the interaction. On the regular
two-dimensional lattice considered here the number of nearest
neighbors is given by M(i) � 4 and 0≤M(i)

1,2(t)≤ 4 denotes the
count of nearest neighbors in states si (K, t) = ±1 at time t for every
individual i. The probability that the single unit in isolation
changes its state corresponds to the case of K = 0. When the
coupling constant K > 0, a unit in state +1 (-1) makes a transition
to the state -1 (+1) faster or slower according to whether
M(i)

1 (t)<M(i)
2 (t) or M(i)

1 (t)>M(i)
2 (t), respectively.

This DMM network is defined by N such coupled equations,
which gives rise to the problem of finding an analytic solution to a
highly nonlinear network (Turalska et al., 2011) containing 2N
dynamic variables. Given this number of dynamic variables
extensive numerical calculations are supplemented by an
analytic formulation of the evolution of a global variable. As
depicted in Figure 1B, the global behavior of the model is defined
by the fluctuations of the mean field variable:

ξ(K, t) � 1
N
∑N
i�1

si(K, t), (5)

which shows a pronounced transition as a function of the control
parameter K as it passes through the critical value K = Kc. The
network dynamics for various quantities are depicted in the figure
for the control parameter being subcritical (K < Kc), critical (K =
Kc) and supercritical (K > Kc). While in Figure 1A a typical single
element appears to be essentially unchanged by its interactions
with the rest of the network elements. On the other hand, the
global variable shifts from a configuration dominated by
randomness (subcritical) to one in which strong interactions
give rise to long-lasting majority states (supercritical) shown in
Figure 1B. Note that the source of the random fluctuation in the
DMM is the finite size of the network, having a strength of 1/

		
N

√
and has nothing to do with the thermal fluctuations arising in the
modeling of phase transitions in physics phenomena such as the
freezing of water or magnetization (West et al., 2014).

To characterize the changes in temporal properties of the
network elements and those of the emergent properties of the
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macro variables, we evaluate the survival probability function
Ψ(τ), where τ is the time interval between consecutive events.
These events are defined as changes of state or crossings of the
zero-axis, for a single element or the global variable, respectively.
These calculations reveal a modest deviation of the survival
probability function for a single individual from the
exponential form, Ψ(τ) � exp(−g0τ), that characterizes a
single non-interacting element, as shown in Figure 1C. The
network’s influence on the behavior of the individual appears
to induce only a small change in the behavior of the latter. Despite
this apparently small change in the individual’s behavior, the
global variable changes dramatically, manifesting IPL statistics, as
depicted in Figure 1D.

In this last panel three different aspects of dynamic behavior
are revealed. The potential for the global variable is bimodal with
the height of the barrier between the two potential minima
determined by the parameter K. The dynamics are given by a
Langevin equation with the strength of the random fluctuations
driving the network from one well to the other decreasing with
the size of the network as 1/

		
N

√
. The subcritical and critical

domains have dominant IPL survival probabilities trailing off into
exponentials for long times. In the supercritical domain (green
curve) a new phenomenon emerges called the Kramers shoulder.
In his study of chemical reactions involving two states Kramers
determined that the process becomes ergodic for times larger
than what is now called the Kramers time, which increases
exponentially with the size of the network, see West et al.
(2014) for a detailed discussion.

Thus, to what extent are individual opinions within a complex
network influenced by the network dynamics?

Complex Network Subordination
To determine the network’s influence on the dynamics of the
individual unit we adapt a subordination argument, and relate the
time scale of the macro variable ξ(K, t) to the time scale of the
micro variable si(t) following the arguments presented in
(Turalska and West, 2018). The notion of different clocks
associated with different aspects of a complex network
dynamics dates back to the middle of the 19th century where
the two clocks defined subjective and objective times and were

FIGURE 1 | Behavior of a discrete, two-state dynamic unit on a two-dimensional lattice. Temporal evolution and corresponding survival probability Ψ(τ) for the
transitions between two states for the single unit si(t) of the network, presented on panels (A,C), respectively, are compared with the behavior and statistical properties
of the global order parameter ξ(t), shown on panels (B,D). Simulations were performed on a lattice of sizeN = 50 × 50 nodes, with periodic boundary conditions, for g0 =
0.01 and increasing values of the control parameter K. Blue, red, and green lines correspond to K = 1.50, 1.70, and 1.90, respectively. The critical value of the
control parameter is KC ≈ 1.72. Black dashed line on the plots of Ψ(τ) denotes an exponential distribution, with the decay rate g0. From (Turalska and West, 2018) with
permission.
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used to justify the empirical Weber-Fechner law (Fechner, 1860).
More recently, due to the availability of time resolved datasets, life
science has begun adopting the notion of multiple clocks to
distinguish between cell-specific and organ-specific clocks in
biology, which is analogous to person-specific and group-
specific clocks in sociology. While the global activity of an
organ, such as the brain or the heart, might be characterized
by quite regular, often periodic behaviors, the activity of single
neurons or pacemaker cells demonstrate burstiness and noisiness.
Thus, because of the stochastic behavior of the clocks, a
transformation between clock times is necessary. An example
of such a probabilistic transformation is the subordination
procedure, see for example (Feller, 1966).

The two-state master equation for a DMM single isolated
individual in discrete time n in steps of Δτ can be written in terms
of the single variable:

φ n + 1( ) − φ n( ) � −g0Δτφ n( ) (6)
in the notation φ(n) � φ(nΔτ) ≡ p1(nΔτ) − p2(nΔτ) being the
difference in probabilities for the typical individual to assume one
of two states. The solution to this discrete equation is after n ticks
of the individual’s clock is:

φ n( ) � (1 − g0Δτ)nφ 0( ), (7)
which, in the limit g0Δτ ≪ 1, becomes an exponential.
However, when the individual interacts with the other
members of a network, the dynamics are no longer simple.
Assuming a renewal property for events, an event being a
transition from one state to the other, so that each event is
independent of every other event, one can relate the discrete
time of the unit to the clock time of the network using
subordination theory.

Introducing subordination, we define the discrete index n as
the operational time of the individual that is connected to the
chronological time t recorded by the ticking of the network’s clock
in which the global behavior is observed. If each tick of the
discrete clock n is thought of as an event, then the relation
between the operational time and the continuous chronological
time can be given by the waiting-time PDF of those events in
chronological time ψ(t). The chronological time lies in the
interval (n − 1)Δτ ≤ t ≤ nΔτ for each operational tick and
consequently the equation for the average dynamics of the
individual probability difference is given by (Pramukkul et al.,
2013):

〈φ t( )〉 �∑∞
n�1
∫
0

t

Ψ t − t′( )ψn t′( )φ n( )dt′. (8)

Every tick of the operational clock is an event and occurs in
chronological time at the drawing from the renewal waiting-time
PDF ψ(t) determined by the derivative of the survival probability.
The empirically determined analytic expression for the survival
probability from the numerical simulation of DMM is:

Ψ t( ) � T

T + t
( )μ−1e−ϵt. (9)

The dominant behavior of the empirical survival probability is
IPL as indicated in Figure 1D. However, at early times the
probability of not making a transition approaches the constant
value of unity, whereas at late times the probability of not making
a transition in a given time decays exponentially. It is in the
middle range, where the survival probability is IPL. The extent of
the IPL range of the survival probability is determined by the
empirical values of T, μ and ϵ and from Figure 1D the value of ϵ is
seen to become smaller as the control parameter K increases. The
IPL functional form of the PDF results from the behavior of the
survival probability Ψ(τ) of the global variable depicted in
Figure 1D with μ = 3/2.

Using a renewal theory argument Pramukkul et al. (2013)
show that Eq. 8 expressed in terms of Laplace transform variables
indicated by f̂(u) for the time-dependent function f(t) has the
form:

〈φ̂ s( )〉 � φ 0( )
u + ϵ + λ0Φ̂ u + ϵ( ) (10)

where λ0 ≡ g0Δτ and Φ̂(u + ϵ) is the Laplace transform of the
Montroll-Weiss memory kernel (Pramukkul et al., 2013):

Φ̂ u + ϵ( ) � u + ϵ( )ψ̂ u + ϵ( )
1 − ψ̂ u + ϵ( ) . (11)

Note that u is replaced by u + ϵ in the Laplace transforms,
because the exponential truncation of the empirical survival
probability shifts the index on the Laplace transform
operation. The asymptotic behavior of an individual in time is
determined by considering the waiting-time PDF as u + ϵ → 0:

ψ̂ u + ϵ( ) ≈ 1 − Γ 1 − α( )Tα u + ϵ( )α ; 0< α � μ − 1< 1, (12)
so that Eq. 10 reduces to:

〈φ̂ u( )〉 � φ 0( )
u + ϵ + λα u + ϵ( )1−α. (13)

The inverse Laplace transform of Eq. 13 yields the tempered
non-integer rate equation:

zt + ϵ( )α〈φ t( )〉 � −λα〈φ t( )〉, (14)
where the operator zμ−1t [·] is the Caputo fractional derivative For
the moment we define the Caputo fractional derivative in terms of
its Laplace transform:

LT zαt f(t)[ ]; u[ ] � uαf̂(u) − uα−1f(0),
where f (0) is the initial value of f(t) and f̂(u) is its Laplace
transform for 0 < α = μ − 1 < 1 (West, 2016) and:

λT � g0Δτ/Γ 2 − μ( )[ ] 1
μ−1. (15)

Note that due to the dichotomous nature of the states that
〈φ(t)〉 is the average opinion of the individual si(t).

A technique for obtaining the solution of the asymptotic
fractional master equation Eq. 14 is given in the following
section in some detail. For the moment we solve the equation
for a randomly chosen unit within the social network and obtain
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an exponentially attenuated Mittag–Leffler function (MLF)
(Turalska and West, 2018):

〈φ(t)〉 � φ 0( )Eα − λt( )α( )exp −ϵt[ ]. (16)
and the MLF is defined by the series:

Eα(z) ≡ ∑
n�0

∞ zn

Γ nα + 1( ), α> 0. (17)

TheMLF is a stretched exponential at early times and an IPL at
late times, with α = μ − 1 being the IPL index in both domains
(West et al., 2003a). The MLF will be discussed more fully in
subsequent sections.

Comparisons With Numerics
We test the above solution against the numerical simulations of
the dynamic network consisting of N = 104 units on a two-
dimensional lattice with nearest-neighbor interactions in all three
regions of DMM dynamics; subcritical, critical and supercritical.
The time-dependent average opinion of a randomly chosen
individual is presented in Figure 2, where the average is taken
over 104 independent realizations of the dynamics in the three
regimes.

A comparison with the exponential form of 〈φ(t)〉 for an
isolated individual depicted by the dashed line segment depicted
in Figure 2 indicates that the influence of the network on the
individual’s dynamics clearly persists for increasingly longer
times with increasing values of the control parameter within
the network. The parameters μ and λ of Eq. 16 obtained through
fitting numerical results of Figure 2 with the MLF are
summarized in the table given in Figure 3. It is evident that
the influence of the network dynamics on the individual is
greatest at long times. The deviation of the analytic solution to
the FRE from the numerical calculation is evident for values of the
control parameter at and below the critical value. The analytic
prediction is least reliable at extremely long times in the
subcritical domain. Consequently, the response of the
individual to the group, mimics the group’s behavior most
closely when the control parameter is equal to or greater than
the critical value.

Complex Networks Entail Fractional Space
Diffusion Equations
Herein the subordination procedure provides an equivalent
description of the average dynamics of a single individual
within a complex network in terms of a linear fractional
stochastic rate equation (FSRE). The fractional dynamics given
by Eq. 14 is solved exactly, determining that the Poisson statistics
of the isolated individual, becomes attenuated Mittag–Leffler

FIGURE 2 | The probability difference 〈φ(t)〉 estimated as an average
over an ensemble of 104 independent realizations of single element trajetories.
Each trajectory corresponds to evolution of a randomly selected node within a
N = 100 × 100 lattice network, with g0 = 0.01 and the same initial
condition si (0) = 1. The parameter values for the numerical data are given in
Figure 1 and from top to bttom K = 1.0, 1.7, 2.5, respectively. The fit of the

(Continued )

FIGURE 2 | exponentially truncatedMLF to the numerical calculations over the
time interval [a,b] yields the parameter values: K = 1.0, ϵ = 4 × 10−3, λ = 1.47 ×
10−2, α = 0.892 [1, 300]; K = 1.70, ϵ = 1.4 × 10−11, λ = 2.06 × 10−2, α = 0.805,
[1, 103]; K = 2.50, ϵ = 5.58 × 10−12, λ = 2.93 × 10−2, α = 0.558 [1, 104].
Adapted from (Turalska and West, 2018) with permission.
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statistics, due to the interaction of that individual with the other
members of the complex dynamic network. The numerical
simulation of the network dynamics consisting of ten
thousand nonlinearly interacting units collapses onto a one-
dimensional fractional dissipative rate equation for a typical
single unit. Note that the average influence of the other 9,999
units in the nonlinear dynamic network on the unit of interest is
predicted by the MLF solution of the linear FRE without
linearizing the dynamics. Let me say this again the FRE is an
exact representation of the complete response of a typical unit to
the rest of the nonlinear dynamic network without linearizing the
dynamics. The effect of the other 9,999 units on the typical one is
two-fold giving rise to an attenuated MLF dynamics with an
attenuation rate ε and the noninteger-order derivative α,
apparently without approximation.

As Pointed out in West (West, 2016): The results in this
section provide a partial answer to a question in
sociophysics identified by Kulakolwski and
Nawojczyk (Kulakolwski and Nawojczyk, 2008)
concerning how empirical regularities such as
prejudice or tolerance can be derived from global
social properties such as entropy or temperature. We
can interpret their use of the nomenclature
“temperature” as the control parameter in the DMM
network. Here again we have demonstrated how the
state of the network, as described by the global
dynamics, can influence the decision making
behavior of the individual.

This quote can be recast in the form where sociophysics is
replaced by medical biophysics and the same partial answers can
be obtained for how the empirical regularities such that the
ubiquity of IPL statistics can be derived from global properties
of physiological networks. We shall pursue this more fully in
subsequent sections.

We conjecture that the behavior of the individual units are
generic, given that the DMM network dynamics belong to the
Ising universality class. Members of this universality class
share the critical temporal behavior (West et al., 2014)
driving the subordination process. It is the renewal property
of the event statistics, which through the subordination
process, gives rise to the linear fractional master equation
for the typical unit’s dynamics. The solution to the
tempered FRE manifests a subsequent robust behavior of
the individual. It remains to determine just how robust the

behavior of the individual is relative to control signals that
might be used to manage healthy dynamics, as well as any
pathologies that arises in the dynamics over the lifetime of the
living network.

Thus, a unit’s simple random behavior, when isolated, is
replaced with behavior that could serve a more adaptive role
in social and medical networks. Think of the difference in the
dynamics of an isolated pacemaker cell and that of the sinus node,
the heart’s natural pacemaker. One might consider the solution to
the following FSRE:

zt + ϵ( )αξ t( ) � −λαξ t( ) + V(t), (18)
and V(t) represents parasympathetic and sympathetic fluctuating
signals from the autonomic nervous system and ξ(t) is the mean
field electrical output of the sinus node. The two branches of the
nervous system are in an on-going tug-of-war in driving the sinus
node, one decreasing and the other increasing the heart’s rate
thereby producing the HRV time series in healthy subjects.

We close this section with the observation that the aggregate
effect of the network dynamics is to reduce the 2N − dimensional
master equation description of the nonlinear evolution of the
probability to a 1 − dimensional description of the linear
fractional dynamics of the global variable. Therefore, Eq. 18 is
a generic representation of such dynamics with the formal
solution in Laplace space:

ξ̂ u( ) � u + ϵ( )α−1ξ 0( )
u + ϵ( )α + λα

+ V̂(u)
u + ϵ( )α + λα

, (19)

where the homogeneous solution ξh(t) is obtained from Eq. 16:

ξh t( ) � ξh 0( )Eα − λt( )α( )exp −ϵt[ ], (20)
and the complete time-dependent solution is obtained by Laplace
inversion to be (West et al., 2003a):

ξ t( ) � ξh t( ) + ∫
0

t

dt′(t − t′)α−1Eα,α − λ t − t′( )[ ]α( )exp −ϵ(t − t′)[ ]V(t′),
(21)

where we have introduced the generalized MLF:

Eα,β(z) ≡ ∑
∞

n�0

zn

Γ nα + β( ), α, β> 0. (22)

The formalism represented here in the solution given by Eq.
21 is probably overwhelming if you are seeing it for the first time.
So for the sake of clarity let us take a step back and systematically

FIGURE3 | The probability difference 〈φ(t)〉 of Figure 2 is fitted with theMLF using an algorithm developed by Podlubny (Gorenflo et al., 2002). Assuming T = 0.10,
Δτ = 1 and g0 = 0.01 the parameters of analytic solution are μ = 3/2 and λ = 0.031 8. The mean-square goodness of fit R2 is discussed in (Turalska and West, 2018).
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prepare the ground for solving differential equations involving
noninteger operators before interpreting the above solution. The
take away message from introducing such FDEs is that the
solution to a ten thousand component master equation using
IDEs has been expressed as a global variable solution to an
appropriate FDE. As a medical application consider a tissue
consisting of a large number of cells and what a practitioner
could do with a model that exploited such a startling
mathematical simplification.

APPLICATIONS OF FRACTIONAL
CALCULUS

Since the time of Newton science has accepted the explanation
that the myriad kinds of motions of the objects in the physical
world around us are determined by energy. Electrical energy
provides the power that runs social media, the internet and
lights our cities; chemical energy supplies the power to drive the
engines in our transportation systems, and solar energy is
converted by photosynthesis into the foods we eat. Physics
provides a detailed description of how changes in energy
over spatial intervals produce forces, which moves things
around. A kite pulling at its tether, the invariant order of the
colors in a rainbow, moon rise, and sunset, all have their causal
explanations in terms of forces. But the force laws, even when
generalized to continuous media such as fluids, are not able to
explain everything. We talk of individuals exerting forces on one
another, of stress in a relationship or in the work place. Is the
latter force merely an analogue of the mechanical forces and
thereby lacking material substance, or is it something more? Or
are the dynamics of living networks really no different from
those for inanimate matter?

We do not have complete answers to such profound questions,
but what we can say is that models using IC from theoretical
physics when applied to the complex phenomena of social and life
sciences have, by and large, been disappointing. Here we argue
that much of the disappointment encountered in the
development and application of models outside the physical
sciences has been the result of the simplifying assumptions
made. Very often the simplifying assumption were known to
be wrong but were necessary to satisfy the known properties of
the mathematics used to construct the models. Other times the
assumptions were idealizations that although not entirely
accurate, were thought to capture the dominant characteristic
of the phenomenon being investigated, and therefore the
idealized model was wrong, but conveyed the truth. This is
not unlike the children stories in Aesop’s Fables that teach
abstract lessons in ethics and morality in a language children
can understand.

The purpose here is not to belittle the mathematical
techniques used in the past to understand the unifying nature
of physical laws, but rather to highlight the fact that the only way
we can formulate questions is by means of language and
mathematics is the language of science: for Galileo the
language was geometry and algebra; for Newton and scientists
for the following three centuries the language was primarily the

differential calculus. Consequently, much of what is presented is
concerned with the mental map of the world we construct from
such mathematics. An exhaustive treatment of the social
implications of the limit concept has been treated by Amir
Alexander in his remarkable book Infinitesimal, How a
Dangerous Mathematical Theory Shaped the Modern World
(Alexander, 2014):

On 10 August 1,632, five men in flowing black robes
convened in a somber Roman palazzo to pass
judgment on a simple proposition: that a
continuous line is composed of distinct and
infinitely tiny parts. The doctrine would become
the foundation of calculus, but on that fateful day
the Jesuit fathers ruled that it was forbidden. With the
stroke of a pen they launched a war for the very soul
of the modern world.

This dramatic depiction of the dispute over a mathematical
concept lay at the heart of what was the Catholic Church’s role
in interpreting how we humans were to understand the world
in which we live. It is not my purpose here to present
Alexander’s brilliant historical arguments on how the
concepts of continuity and limit became a fundamental
theological issue. Instead I wish to emphasize that then, as
now, our understanding of the world is based on the language
we use to describe it and which necessarily determines how we
can think about it. Our mental models of the world and its
events are all we have, so when we embark on scientific
investigations it is in our fundamental interest to refine
those models as best we can.

This is where the FC enters the discussion. It is not
surprising that colleagues should ask about noninteger
differentials and integrals and they did so in Newton’s
lifetime, asking Leibniz the cofounder of the differential
calculus if such noninteger operators could be defined.
Other than these technical questions addressed in private
letters the noninteger aspect of the calculus was mostly
ignored by the social, physical, and life scientists,
intermittently emerging from the shadows of formalism
with an application over the centuries. The international
scientific community saw no need for a new calculus. As a
body, the science community tacitly agreed that the ordinary
differential calculus, along with the analytic functions entailed
by solving the equations resulting from Newton’s force law, are
all that was required to provide a scientific description of the
macroscopic physical world.

As pointed out elsewhere (West, 2020) the evidence is all
around us that the domain of application of Newton’s view of
the physical world is contracting dramatically. This is one
result of the increase in sensitivity of diagnostic tools, advances
in data processing techniques, and expanded computational
capabilities, which have all contributed to the broadening of
science in ways that have pushed many phenomena from
borderline interest to center stage. These curious complex
processes are now catalogued under the heading of fractal
scaling phenomena and their impact has nowhere been more
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emphatic than in medical science (West, 2016). The
understanding of the fundamental dynamics underlying
such scaling requires the new mathematical perspective
obtained using fractional operators and such descriptions
have apparently ushered in the sunset for much of what
remains of Newton’s world view.

Fractional Differential Equations
FC is concerned with the quantitative analysis of functions using
non-integer-order operators that generalize the traditional
meaning of integration and differentiation. The non-integer
order of a FC operator can be a real number, a complex
number, or even the function of a variable, as we shall see. But
this is less an essay on mathematics, than it is a presentation of the
remarkable scientific utility of the FC, whose scope is intended
here for medical scientists who recognize the need for such
methods but may be less interested in learning the formal
details of the methodology. So let us begin by examining well-
accepted, simple, linear, dynamic processes that turn out to be not
so simple.

Newtonian Cooling
We begin with an example presented by Mondol et al. (Mondol
et al., 2018) who used a FDE to examine Newton’s linear cooling
law. This law states that the rate of heat loss from a body is
directly proportional to the difference in the temperatures
between that of the body at time t denoted as T(t) and that of
its surroundings Ta given by the IRE:

dT(t)
dt

� −λ T(t) − Ta[ ], (23)

with loss rate λ, provided the temperature difference is not too
large and the nature of the radiating surface remains the same
throughout the time of the cooling process. The prediction of this
law is that cooling proceeds at a constant rate from the initial
temperature of the object T0 to the ambient temperature Ta and is
exponential in time:

T(t) � T0e
−λt + Ta 1 − e−λt( ), (24)

since it is the solution to a linear rate equation. This solution
allows the medical examiner to unambiguously establish the
time of death in every television murder mystery ever made.
However, in the real world Mondol et al. determined
experimentally that the cooling problem is not so simple
and does in fact depend more subtilely on the properties of
the objects being cooled.

In general, they replace Newton’s cooling equation with
the FRE:

zαt T(t)[ ] � −λ T(t) − Ta[ ], (25)
where again the ambient temperature is Ta. Notice also that the
solution to cooling equation given by Eq. 25 using a Caputo
noninteger derivative zαt [·] has the same form as Eq. 24 with the
exponential replaced with a MLF:

T(t) � T0Eα −λtα( ) + Ta 1 − Eα −λtα( )[ ], (26)
a complete discussion of this solution is given elsewhere (West,
2016; Mondol et al., 2018). In Figure 4 the dashed curve
depicts the “best” exponential solution to Newton’s cooling
law, which clearly deviates from the experimental data given
for 300 ml of water. The solution to the FRE is given by Eq. 26
and is depicted by the solid curve, fitting the experimental data
extremely well.

Of course, this is just one example selected from the many
experimental results Mondol et al. present. These IRE and FRE
predictions compared to the experimental datasets emphasize
the error one can make in modeling even familiar linear
dynamic phenomena that one has no reason to believe are
not simple. But this is a cautionary tale. One should consider
every phenomenon to be complex or nonsimple until it is
verified by both experiment and theory to be simple. In the case
of an object cooling over time the nonsimplicity has to do with
memory that is built into the definition of the FC derivatives
irrespective of their detailed forms. Mondol et al. (Mondol
et al., 2018) demonstrate experimentally that some cooling
phenomena are represented by Newton’s law of cooling, others

FIGURE 4 | Comparison of the experimental cooling data with solutions
using the Caputo derivative in Eq. 25 with α = 0.79 and the exponential for
300 ml of water. Adapted from Mondol et al. (2018) with permission.
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by the Caputo noninteger form as in the example shown in
Figure 4 and still others by the Reiman-Liouville form of the
FC derivative operator, both of which will be defined in due
course. The need for the fractional (noninteger)
differential is explained in the following manner (Mondol
et al., 2018):

Thus, it is all about taking rate of change of a
variable. . .with respect to fractional differential of
time which defines Δt, the “window of observation.”
While the classical differential is Δtα with α = 1, the
fractional differential is Δtα with α < 1. . .(thus) the
fractional differential will always be greater than
classical differential as Δt → 0. This makes the
“window of observation” to view complex dynamics
effectively larger, as compared toΔt . . .as wemakeΔt go
from milli, to micro, to pico. . .the fractional differential
. . .grows, helping us to view the dynamics whichmay be
complex with several relaxation processes and
relaxation rates, better.

They go on to say that if the dynamics is governed by a
unique cooling rate, there is no need to increase the viewing
window by using a fractional (noninteger) differential and
Newton’s cooling law prevails. Thus, if you are convinced that
the process you are dealing with is linear, but the data deviate
systematically from any linear IDE model you have examined,
the deviation may be the result of non-locality and not a
nonlinearity. The questions you need to answer is which
calculus Nature has chosen for the dynamics of the
phenomena under investigation and why?

Brownian Motion
The only exposure to stochastic processes that typically
resonates with non-mathematically oriented scientists is the
phenomenon of Brownian motion. The phenomenon was
observed by the botonist Robert Brown in 1827, who studied
the erratic motion of a pollen mote suspended in a fluid using a
microscopic. He hoped that his observation would explain the
‘life force’ he thought at first he was observing, which he
admittedly did not accomplish. Of course, it turned out that
he was watching the reaction of the pollen mote to the thermal
motion of the invisible molecules of the ambient fluid as
explained by Einstein in his 1905 paper on diffusion
(Einstein, 1905). In a 1907 sequel to this paper Einstein
speculated, after informally hearing of these early
experiments, that Brown could well have been observing a
diffusive process (Einstein, 1907). This off-hand remark in a
published paper was sufficient to insure Brown’s scientific
immortality.

Einstein did however recognize a problem with his
formulation of what is now known as Brownian motion. If
X(t) is the instantaneous position of a free Brownian particle its
mean-square displacement (MSD) from its initial position is
predicted by Einstein’s theory to be X(0):

〈ΔX t( )2〉 � 〈 X(t) −X(0)[ ]2〉 � 2Dt, (27)

where D is the diffusion coefficient and t is the time. Without
going into the underling physics of molecular diffusion we can
observe, as did Einstein, that the average velocity �V over a time t
can be estimated using the MSD:

�V � ΔX
Δt �

								
〈ΔX t( )2〉
√

t
�
			
2D

√
	
t

√ . (28)

Consequently, for very short times, where one might expect
the estimate to be better, the mean velocity diverges to infinity
and therefore cannot represent a real velocity (Einstein, 1907).
Using an argument based on the equipartition theorem of
statistical physics Einstein concluded (Einstein, 1907):

We must conclude that the velocity and direction of
motion of the particle will be already very greatly altered
in the extraordinary short time θ, and, indeed, in a
totally irregular manner. It is therefore impossible - at
least for ultramicroscopic particles - to ascertain

			
V2
√

by
observation.

As Li and Raizen (2013) point out, it took more than a
century for Einstein’s conclusions to be experimentally
challenged because of the technical difficulties of doing an
experiment that can resolve a Brownian particle at times on
the order of nanoseconds and within distances on the order of
the radius of a hydrogen atom. Li et al. (2010) were able to
achieve the incredibly high resolution in space and time
necessary to measure the ballistic motion of the Brownian
particle between molecular collisions using optical trapping
interferometry.

FIGURE 5 | The MSDs of a 3 μm silica bead trapped in air at 99.98 kPa
(red squares) and 2.75 kPa (black circle). They are calculated from 4 × 107

measurements for each pressure. The “noise” signal (blue triangles) is
recorded when there is no particle in the optical trap. The solid lines are
the theoretical predictions of Eq. 31. The prediction of Eistein’s theory of free
Brownian motion in the diffusive regime is shown in dashed lines for
comparison. From (West, 2016) with permission originally published by (Li and
Raizen, 2013).
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Langevin’s theory of Brownian motion (Langevin, 1908),
based as it is on dynamic equations and not on probability
arguments, is ostensibly valid at all times including for times
much smaller than that for diffusion of the Brownian particle. It
predicts ballistic motion for such short times and as a
consequence the MSD is independent of the diffusion
coefficient D and is given directly in terms of the fluid
temperature T, Boltzmann’s coefficient kB, and the mass of the
Brownian particle M:

〈ΔX t( )2〉 � kBT

M
t2, (29)

yielding the average velocity:

�V �
								
〈ΔX t( )2〉
√

t
�
				
kBT

M

√
, (30)

a well-defined constant.
Li et al. (2010) determined the position and velocity of a 3 μm

diameter silicon sphere confined in an air optical trap configured
in a vacuum chamber. Without presenting the details of the
experiment it is sufficient to note that the optical trap
harmonically confines the particle in physical space where it is
subject to thermal collisions with the air particles in the chamber.
It is evident from Figure 5 that the measured MSD deviates
markedly from Einstein’s theory of Brownian motion in the early
time regime.

Langevin theory gives the proper ballistic behavior for a
harmonic oscillator driven by random noise and the MSD was
originally obtained in 1930 by Uhlenbeck and Ornstein
(Uhlenbeck and Ornstein, 1930):

〈 X(t) − 〈X(t)〉[ ]2〉 � 2kBT
Mω2

0

1 − e−t/τD cosω1t + sinω1t

2ω1τD
[ ]{ }

(31)
where τD is the diffusion time scale, ω0 is the resonant frequency
of the optical trap and ω1 �

												
ω2
0 − (1/2τD)2

√
. Note that the

strength of the fluctuations driving the Langevin equation in
the experiment are not proportional to the diffusion coefficient
but to the temperature of the ambient air in the chamber. This
solution is given by the solid curve in Figure 5with the parameter
values determined from the experiment the fit to the data is
excellent.

Like the story of Newton’s linear theory of cooling the
present tale of Brownian motion does not end here. You
may have noticed that Einstein’s theory was based on a
Brownian particle in water, whereas Langevin’s theory is
applied to one in air and this highlighted the difference
between the two theories at short times. The properties of
the ambient fluid turn out to make a tremendous difference in
which theory to apply because the momentum relaxation time
scale in a liquid phase is 50 times greater than in a gas phase
due to the difference in the ambient fluid density. It turns out
that neither Einstein nor Langevin got it entirely right, because
the dynamics of a freely moving Brownian particle is more
subtle than either of them imagined. Brownian motion had
been separated into microscopic and macroscopic by both men

but the phenomenon actually lives in the in-between world of
the mesoscopic.

The force equation used to describe Brownian motion by
Langevin is given by the direct application of Newton’s Third Law
to a spherical particle in water and that turned out to be the wrong
approach. The phenomenon is more subtle than that. It requires
taking into account the inertia of the ambient fluid. The
derivation of the equation for the motion of a heavy spherical
particle in a fluid, requires taking into account the back-reaction
of the ambient fluid in contact with the Brownian particle. This
back-flow of the fluid was first derived in 1885 by Boussinesq
(Boussinesq, 1885) and independently 3 years later by Basset
(Basset, 1888).

For a spherical particle of radius R in a fluid with a viscosity η
the force law is given by (Clercx and Schram, 1992):

m*
dV(t)
dt

� −γV(t) − U′(X) + η(t) − λ∫
0

t
dτ				
t − τ

√ dV(τ)
dτ

, (32)

where m* = 1 + 0.5M0/M is the ratio of the mass of the Brownian
particleM to its value shifted by half the virtual mass of sphere of the
same size in an incompressible fluidM0; the ordinary Stokes friction
with coefficient γ = 6πηR/M is the first term on the right hand side of
Eq. 32; the second term is a mechanical force modeled by the
potential function U(X); the third is the random force generated by
the ambient fluid η(t) = f(t)/M; the final term is the memory
associated with the hydrodynamic retardation effects with λ �
6R2 				πρη

√
/M and is today called the Basset force. Clercx and

Schraom (Clercx and Schram, 1992) solve this equation using

FIGURE 6 | Experimental and theoretical correlation functions from
recorded trajectories of two different bead-fluid combinations. Double
logarithmic plot of theMSD for an optically trapped barium titanate glass (BTG)
bead (3.7 μm diameter) in acetone (blue circles; τp = 11.0μs, τf = 8.5μs,
τv = 11.0μs), and a silica bead (2.8 μm in diameter) in water (green squares; τp
= 1.2μs, τf = 2.01μs, τv = 0.57μs). The red dashed lines indicate the MSD of a
particle moving at constant velocity. Adapted from (Kheifets et al., 2014) with
permission.
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Laplace transforms and the time-dependent solution fits
experimental data over the entire time domain (Huang et al., 2011).

Mainardi and Pironi (Mainardi and Pironi, 1996) discuss the
solution to Eq.(32) in terms of a FDE:

M
dV(t)
dt

+ λ0z
1/2
t V(t)[ ] � −γ0V(t) − U′(X) + η(t), (33)

expressed here in terms of the Caputo fractional derivative z1/2t [·]
and the parameters λ0 and γ0 are known functions of the fluid
viscosity coefficient, the particle masses, and the radius of the
Brownian particle, see the excellent paper (Mainardi and Pironi,
1996) for details. The optical trap previously used by the scientists
in Raizen’s lab to measure the instantaneous velocity of a
harmonically bound particle in air (Li et al., 2010) and a bead
in fluid (Huang et al., 2011) was again employed to test the
theoretical predictions and interpretations of the Langevin
equation modified to include the Basset force. The fit of
theory (Clercx and Schram, 1992) to experiment is excellent
(Kheifets et al., 2014) as indicated for the fit to the experimental
MSD depicted in Figure 6 by the solid black line segments.

We note that fractional Brownian motion and fractional
diffusion in general has attracted significant attention recently
and now techniques have been developed to identify the
fractional diffusion equation from datasets (Znaidi et al.,
2020). This is part of the vast literature due to space
limitations we can only mention in passing.

Inanimate and Living Particles
As emphasized a number of times the FD term in Eq. 33 is the
result of the back-reaction onto the Brownian particle by the
ambient fluid flowing around it, inducing the retarded viscous
force. The solution to this equation is asymptotically dominated
by viscous dissipation and the Brownian particle being ‘heavy’
accounts for the success of the usual description of Brownian
motion without the inclusion of the FD term. However, when the
ambient fluid is not homogeneous, or the Brownian particle is not
‘heavy’, the derivation of the forces acting on the Brownian
particle need to be re-examined.

Leptos et al. (2009) conducted experiments on the motion of
tracers (Brownian particles) suspended in a living fluid of
swimming Eukaryotic micro-organisms of varying
concentrations. The interplay between the inanimate Brownian
particles and the advection by flows from the swimming micro-
organisms results in their displacement having a self-similar PDF
with a Gaussian core and exponential tails. Eckhardt and
Zammert (2012) re-analyzed these data and obtained an
excellent fit to a MLF PDF based on the continuous time
random walk (CTRW) model.

A theoretical study of a simplified tracer-swimmer interaction
by Zaid et al. (2011) show that the non-Gaussian effect of the tails
of the PDF can also arise from a combination of truncated Lévy
statistics for the velocity field and the IPL decay of correlations in
the ambient fluid. They further show that the dynamics of the
PDF leading to the truncated Lévy statistics is given by a
fractional diffusion equation, which we discuss subsequently. It
is evident that rigorous modeling of Brownian motion in

heterogeneous fluids such as microbial suspensions in marine
ecologies would potentially benefit from applications of the FDC.

Fractional Brownian Motion and the Fractional
Calculus
It occurs to me that the above discussion of Brownian motion
contained no mention of the fact that one of Mandelbrot’s first
formal applications of the fractal concept was to a generalization
of this stochastic process. In the paper where Mandelbrot and van
Ness (Mandelbrot and van Ness, 1968) introduced the term
fractional Brownian motion (FBM) they made use of the
fractional calculus, but did not think the FC was sufficiently
significant to develop further given the context of its utilization
and their interpretation of it as a moving average. The fractional
operator they used in the definition of FBM had been defined by
Weyl (1917) in 1917:

BH(t1) − BH(t2) � 1
Γ α( ) ∫

t1

−∞

dB(τ)
t1 − τ( )1−α − ∫

t2

−∞

dB(τ)
t2 − τ( )1−α

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (34)

where dB(t) is aWiener process, α =H + 1/2 and as they point out
the properties of FBM corresponding to the Hurst parameter 0 <
H < 1/2, 1/2 < H < 1, and H = 1/2, respectively, differ in many
significant ways. This in itself has led to a vast literature some of
which are summarized in Crucial Events (West and Grigolini,
2021).

Fractional Differential Equation Models of
Cell Growth
In the prequel (West, 2021) we discussed the ubiquity of fractal
time series, factal dynamics and fractal geometric structure in
physiological phenomena. The analysis gave rise to scaling as a
way to directly interconnect the very large with the very small, as
well as the very fast with the very slow. The prequel closed with a
suggestion that the FC is a systematic way to incorporate spatial
inhomogeneity into describing how information is transported
across a complex dynamic network. That suggestion was
augmented by another involving memory effects in physiologic
networks being generic (Goldberger et al., 2002) and the FC was
also pointed out by Nasrolahpour (Nasrolahpour, 2017) as being
the natural way to incorporate memory effects into the modeling
of various complex phenomena including the growth of cancer
tumors.

He (Nasrolahpour, 2017) proposed a new model which is a
member of a class of simple models that have been extensively
used to describe the growth of stem and cancer cells. Following up
on his comment about the utility of this mathematical technique
in modeling cancer cells I found that over the past decade it had
become a cottage industry with hundreds of papers being
published each year on the modeling of cancer.

The mathematician Durrett (Durrett, 2013) in a personal
perspective on cancer modeling pondered that 80% of the
problem is figuring out what the appropriate question is in the
biological application and what mathematical tools to use in
answering it. This is unlike physics where the applications are
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typically formulated in such a way that a mathematician may
immediately see how s/he might be able to help solve the problem.
Or in some cases, like Dirac’s introduction of the delta function in
quantum mechanics based solely on his intuition of the physics
problem, he saw that the problem required the existence of such
an object for its solution. The delta function led to the
development of new area of mathematics providing
justification of that intuition and provides a useful tool to the
broader scientific community once they had caught up with
Dirac’s intuition.

With this in mind I have elected to concentrate the
following remarks on those aspects of biology and medicine
which I believe provide the reasons for FDE being the
appropriate mathematics for oncological modeling. We use
the master equation for the size distribution of cancer cell
colonies P(x, t), defined as the probability that a single cancer
cell gives rise to a colony consisting of x cells at time t. The PDF
evolves according to the master equation with nearest neighbor
interactions and constant coefficients from (Nasrolahpour,
2017) with a slight change in notation:

dP(x, t)
dt

� a − a + b( )x b( ) P(x − 1, t)
P(x, t)

P(x + 1, t)
⎛⎜⎝ ⎞⎟⎠, (35)

where b is the probability per unit time that a cell dies and a is
the probability per unit time a cell divides into 2 cells. The
equation for the growth of the average colony size is obtained
by multiplying Eq. 35 by x and summing such that after some
algebra we obtain the integer rate equation (IRE) for the
average size of the colony:

d〈x(t)〉
dt

� (a − b)〈x(t)〉, (36)

which has the exponential solution for the initial value P (x, t = 0)
= δx,1:

〈x(t)〉 � e a−b( )t. (37)
Nasrolahpour (2018) states without discussion that his new

model of cancer replaces the IRE for the average cancer cell
colony size with a FRE. Note that this could be viewed as an
adaptation to the cancer problem of the DMM social
interaction model introduced in Section 2. We propose
doing that here, but instead of an ansatz we apply the
network effect argument to the interaction of the cell of
interest, the one that gives rise to the cancer colony, and
transform the IRE into the FRE:

zαt 〈x(t)〉[ ] � λα〈x(t)〉. (38)
Here we have raised the rate λ = a − b to the power of the

noninteger derivative α in order to retain the same
dimensionality on both sides of the equality. Like most
differential equations, integer or fractional, we guess the
form of the solution and explicitly determine whether or
not it solves the equation of interest. The network effect

argument applied to a growing population of cells leads to
the FDE given by Eq. 14 and the solution Eq. 16 which also
solves Eq(38) for ε = 0.

Solving the Linear Fractional Rate Equation
It is time to introduce some of the new mathematics that show
how to solve this class of linear FREs. Can we use the Taylor series
expansion technique to solve a linear FRE or a more general FDE?
The answer is yes, as long as we are sufficiently cautious in doing
so. The first caution involves generalizing the Taylor series. We
start as with IDEs and introduce a Taylor series for the assumed
form of the solution. But with a little thought realize that the
Taylor series must be generalized to accommodated the
noninteger order of the derivative (West, 2017) in the
following way:

〈x(t, α)〉 �∑∞
n�0

Ant
nα, (39)

where we have tagged the proposed solution with the index α to
match the FRE that is solves. The noninteger derivative zαt [·] in
the FRE must satisfy the familiar derivative relation from the
ordinary calculus:

zαt tβ[ ] � Γ β + 1( )
Γ β + 1 − α( )tβ−α, (40)

when all exponents are integers and Γ(·) is a gamma function.
This same relation holds when the exponents are not integers
(Podlubny, 1999; West et al., 2003a) in which case substituting
the generalized Taylor series into the FRE given by Eq. 38 yields:

A0
t−α

Γ 1 − α( ) + A1
Γ α + 1( )
Γ 1( ) + A2

Γ(2α + 1)tα
Γ α + 1( ) + · · ·

� λα A0 + A1t
α + · · ·{ }. (41)

Equating coefficients of equal powers of time from both sides
of the equation yields:

A1 � λαA0

Γ α + 1( ); A2 � λαΓ α + 1( )A1

Γ 2α + 1( ) ; A3 � λαΓ 2α + 1( )A2

Γ 3α + 1( ) ; etc.,

all of which can be generated from the compact form:

An � λnα

Γ nα + 1( )A0, (42)

and the n = 0 term is a tautology. A A0 term is left over in the
process of equating coefficients since the IPL in time given by t−α

only appears on the LHS of Eq. 41 and must be otherwise
accounted for in the analysis. This is the second place where
we must be cautious.

Collecting the coefficients from Eq. 42 into the generalized
Taylor series after some algebra yields the curious result:

zαt 〈x(t, α)〉[ ] − t−α

Γ 1 − α( ) 〈x(0, α)〉 � λα〈x(t, α)〉, (43)

and since the n = 0 term in the generalized Taylor series is not
excluded Eq. 43 is a new FRE. The new FRE explicitly displays the
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term that was not canceled when the generalized Taylor series was
introduced to solve the original FRE and here the unknown
coefficient is identified with initial value of the average cancer
colony: A0 � 〈x(0, α)〉. With the coefficients inserted into Eq. 39
the generalized Taylor series yields the exact solution to the
revised FRE:

〈x(t, α)〉 � 〈x(0, α)〉∑∞
n�0

λt( )nα
Γ nα + 1( ). (44)

Remarkably the fractional derivative on the LHS of Eq. 43 has
a name, the Riemann-Liouville (RL) fractional derivative (FD),
and has a long lineage. To make contact with that long history
and for notational clarity we rewrite Eq. 43:

Dα
t 〈x(t)〉[ ] − t−α

Γ 1 − α( ) 〈x(0)〉 � λα〈x(t)〉, (45)

where we have suppressed the α − dependence of the solution and
added a new symbolDα

t [·] to denote theRL-fractional derivative.
The exact solution to theRL FRE is expressed in terms of a series
first obtained by the mathematician Mittag–Leffler in the early
20th century and which now bears his name:

〈x(t)〉 � 〈x(0)〉Eα λt[ ]α( ). (46)
The MLF in simplest form is given by the series:

Eα z( ) �∑∞
j�0

zj

Γ jα + 1( ), (47)

and is here called out explicitly because it appears over and over in
both the discussion of applications and in the formal theory of the
FDC. Note that the MLF series sums to an exponential for α = 1,
which accounts for the identical form of the solutions in the linear
cooling example. It should also be stressed that like the
exponential in the ordinary calculus the MLF appears as the
backbone to the solutions of more complicated FDEs, as seen
elsewhere (Podlubny, 1999; West, 2016; West, 2017).

Altrock et al. (2015) point out that a branching process is a
powerful mathematical tool for the study of cancer population
growth. In addition they emphasize that this growth model is
based on the assumption that cellular events, such as mutation,
replication and death, are independent of one another and is
assumed for mathematical simplicity. This independence
assumption would be partially removed by taking into
account the network effect. The resulting generalization of
Eq. 46 would be the case where, at any time, each cell is
fully described by cell-intrinsic probability rates of
proliferation, mutation, and death, as well as the parameter
of the FRE noninteger order. The latter parameter α provides a
measure of the level of internal dependency of the intrinsic
dynamic processes.

Tumor Nonlinear Dynamics
In the previous subsection we took advantage of the linear master
equation to show how probabilistic arguments can be generalized
using the FC for a linear dynamic system. In the present section
we take a different tack and instead briefly review a number of

growth models that have been borrowed from the social sciences
and adapted for the modeling of tumor growth. Each of these
borrowed and adapted models is nonlinear and that provides a
new degree of difficulty in solving the resulting equations. Recall
that the FRE obtained from the network effect took such
nonlinearities into account without explicitly linearizing the
full dynamics of a network.

The most famous of the nonlinear growth equations was
introduced into social science by Verhulst in 1838 in order to
provide a rationale for a way to limit the world’s population and
thereby alay the fears resulting from the dismal forecasts of Maltus,
who predicted unflagging exponential population growth that
would all too soon quench the world’s linearly growing food
supply, resulting in world-wide famine. The nonlinear equation
of Verhulst has become known as the logistic growth model and as
pointed out by Varalta et al. (2014) has been used to successfully
describe the growth of populations in both the laboratory and in
natural habitats, limiting the growth by influencing factors of
competition, mortality and fertility. As more complex effects
enter into the modeling, such as interactions within food webs,
a number of investigators have generalized the logistic equation
using the FC to help slow the convergence to the population’s
carrying capacity.

Much of the previous work in this regard has been on the
numerical simulation of fractional nonlinear growth models
(FNGMs) and a number of these numerical methods were
used to test analytic results, see e.g., the 51 papers devoted to
the Future Directions in FC Research and Applications
(Meerschaert et al., 2017) as an exemplar of the rigorous
mathematics being done in this area.

Fractional Logistic Equation
Varalta et al. (2014) are investigators whose work bridges the gap
between the complexity of medicine and the mathematics on
which medical models can be based. The Malthusian model of
exponential growth flies in the face of observation, whether it is
the growth of a population of humans or of cells. What all
growth processes have in common is that the population must
be continually supplied with nutrients, the individual members
must be born and they eventually die. This is the process that
Malthus modeled and is incorporated into the master equation
Eq. 35 with a modest generalization in the form of the
distribution of possible futures, but with the pessimism of
Malthus being the final average outcome. Verhulst
introduced the idea that a society has a finite carrying
capacity, such that the rate of growth is dependent on the
population and this rate goes to zero as the carrying capacity
of the population is approached:

dX(t)
dt

� λ[1 −X(t)]X(t), (48)

where if N(t) is the instantaneous population and NT is the
carrying capacity (the maximum population the society can
maintain) we have X(t) ≡ N(t)/NT. The Verhulst or logistic
equation is popular because it: 1) provides a reasonable
explanation for why the exponential growth is suppressed; 2)
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the growth is eventually sub-exponential and saturates at a finite
value; 3) the logistic equation has an analytic solution.

The analytic solution to the logistic equation is obtained by
making the substitution of variables Y(t) = 1/X(t) to obtain the
linear growth equation:

dY(t)
dt

� λ[1 − Y(t)], (49)

which is solved in terms of eλt and the initial population X (0).
Inverting the substitution variable in the solution to this linear
equation yields the sigmoidal solution to the logistic equation:

X(t) � X 0( )
e−λt + 1 − e−λt( )X 0( ) ''''→t→∞

1, (50)

which asymptotically approaches the carrying capacity, which
is 1 in these units.

There are a number of ways to introduce the fractional
calculus into the logistic model of growth. One way is
through the introduction of the Carleman embedding
technique, which follows from the theorem that any finite
order nonlinear equation of motion can be replaced by an
infinite order set of linear equations (West, 2015). Another is
a spectral technique to solve a nonlinear FDE (Turalska and
West, 2017). Both these approaches start from the fractional
logistic equation:

zαt X(t)[ ] � λα[1 −X(t)]X(t), (51)
where one might have used the subordination method introduced
in Section 2.1 to replace the integer order time derivative with the
Caputo time derivative. We now know that the fractional
derivative in time incorporates memory into the population
dynamics. Both the Carleman embedding and spectral

techniques yields the same solution to the fractional logistic
equation (Turalska and West, 2017):

X(t) �∑∞
n�0

X(0) − 1
X(0)( )

n

Eα −nλαtα( ), (52)

which is an expansion over a set of eigen functions given by the
MLFs, and the coefficients are in terms of powers of the initial
value. Note that asymptotically all the MLFs go to zero except the
n = 0 term which yields the carrying capacity of the network. The
choice α = 1 reduces the MLF to the exponential enλt and the sum
over eigen functions in Eq. 52 reduces the solution to the ordinary
logistic equation given by Eq. 50.

The analytic series solution to the fractional logistic equation
given by Eq. 52 is compared with the numerical integration of the
FDE in Figure 7 each for the same time step and initial condition.
It is evident by inspection that the closer the fractional order is to
unity the closer the correspondence between the analytic and
numerical results. There are some technical issues with this
solution which are addressed in (Turalska and West, 2017),
but their discussion would take us too far into the
mathematical weeds to be of value here.

A very different way of introducing the influence of the FC on
the logistic growth is made by (Varalta et al., 2014). They cleverly
introduce the fractional derivative into the linear growth of the
transformed variable Y(t), which was introduced in Eq. 49 rather
than in the nonlinear equation given by Eq. 51. This choice for
the insertion of the fractional derivative essentially introduces the
network effect into the time rate of change of the population-
dependent growth rate:

zαt Y(t)[ ] � λα[1 − Y(t)], (53)
rather than into the population dynamics directly. Taking the
Laplace transform of the linear equation, after some algebra the
Laplace equation can be inverted to yield the solution to the initial
value problem:

X(t) � X(0)
Eα −λαtα( ) +X(0) 1 − Eα −λαtα( )[ ]. (54)

However, these solutions are equal when α = 1 and MLF
becomes an exponential, just as did Eq. 52 even though these two
solutions appear to be very different from one anothe for α < 1.

These authors (Varalta et al., 2014) point out that the use of
such sophisticated mathematical techniques in the modeling of
medical pathologies is of recent vintage, particularly in the study
of cancer tumors. They consider this to be one of the reasons that
the methods are still finding difficulty in modeling the growth of
tumors satisfactorily:

In the case of tumor dynamics saturation of various
types of tumors is not well modeled by the exponential
model. For this reason, this model applies only to
avascular tumors, i.e., when angiogenesis has not
occurred. . .Indeed, tumor cells compete for oxygen
and vital resources that is the reason why the logistic
model fits well in several cases. . .

FIGURE 7 | Analytic solutions to the fractional logictic equation (solid) for
a number of fractional derivatives are compared to the numerical solutions
(dashed) for the values of the fractiona-order α indicated with X (0) = 0.75, λα =
0.1, and time step 0.001. From (West, 2015) with permission.
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We can here answer the question as to whether the fractional
forms of the logistic equation and that of the linear form in the
transformed variable have the same solution. Taking the solution
given by Eq(54) and expanding it is an infinite series yields:

X(t) �∑∞
n�0

X(0) − 1
X(0)( )

n

Eα −λαtα( )[ ]n, (55)

and the inequality:

Eα −nλαtα( ) ≠ Eα −λαtα( )[ ]n, (56)
establishes proof that the solutions given by Eqs. 52 and 54 are not
the same. The relation between theMLFs becomes an equality in the
singular case α = 1 and the MLF becomes an exponential. However,
this does not tell us which of the two models better describes the
growth of tumors. In fact since there is no universal law to describe
tumor growth these two contenders remain in competition with a
host of others, all of which await the detailed fit to extended datasets.

Mathematical Oncology and Fits to Data
Oncology is the branch of medicine that deals with the treatment,
diagnosis, and prevention of cancer and the models of tumor

growth are within the ever broadening domain ofMO. As pointed
out by Valentim et al. (2020) all solid cancers originate with the
growth of a primary tumor, and the majority of the growth
patterns follow a sigmoidal shape determined by the population’s
growth rate and carrying capacity. They go on to argue that the
IDE models for tumor growth possesses certain deductive-
reductionistic characteristics that are maintained when such
models are generalized to fractional form, for example, the
inclusion of memory and heterogeneity effects in fractional
MO (FMO).

Valentim et al. (2020) study the deviation in tumor growth
from a simple exponential for the analytic solutions for four
distinct nonlinear growth models in the IDE as well as the
solutions to their fractional generalizations. The FDE and IDE
(α � 1) models considered have the generic form:

zαt u(t)[ ] � af(u) − bg(u), (57)
here V(t) is the size of the tumor volume at time t, the two
functions f and g determine the functional form of the growth:
fractional exponential u = V, f = V, g = 0; fractional logistic u = 1/

FIGURE 8 | Fitted tumor growth: clinical data (circles), numerical fits to
data (first seven data points). Themodels used are indicated for IDE (top, α = 1)
and FDE with indicated values of α (bottom). Adapted from (Valentim et al.,
2020) with permission.

FIGURE 9 | Predicted tumor growth: clinical data (circles). The models
used are indicated for IDE (top, α = 1) and FDE with indicated values of α
(bottom) and the last seven data points are predicted using the model
parameters obtained in Figure 8. Adapted from (Valentim et al., 2020)
with permission.
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V, f = au, g = 1; fractional Gompertz u = lnV, f = 0, g = u; fractional
Bertalanffy u = Vp, f = p, g = pu where p is a rational fraction. The
solutions to the exponential and logistic forms have been
presented in previous sections and the remaining models are
solved using the methods discussed and may be expressed in
terms of MLFs (Valentim et al., 2020).

The algebraic form of the various solutions are not as
important as their flexibility in fitting tumor growth datasets.
Such fits are indicated in Figure 8 where the first seven tumor
volume data points are indicated along with fits to the IDEmodels
(top) and their FDE generalizations (bottom).

Using the parameters fit of the first seven data points to the
model parameters the prediction of the next seven data points are
indicated in Figure 9 with the IDE models (top) and their FDE
generalizations (bottom). Valentim et al. (2020) discuss the
relative merits of the modeling of tumor growth using integer
versus fractional time derivatives:

If one also considers fractional models instead of only
their classical versions, the indicator for how close the
best model replicates experimental data would rise
from 67.5 to 88.8% - a very significant improvement.
This reveals a major convenience of using fractional
models as they keep a higher degree of information
regarding the fitted time series, decreasing the chance
of misfitting while still maintaining a relatively simple
and reductionist form. Such advantage is mainly
attributed to the memory effect, a characteristic
inherently linked to the definition of fractional
operators allowing models to consider not only
elements at the evaluation instant but also those
occurring before. This feature naturally favors
fractional models to describe biological phenomena.

This improvement in the mean-square error supports the
interpretation that the FDE models include more information
of the cancer time series being fitted than do the IDE models.

In spite of the positive observations made regarding the
fractional models it is evident from the comparison with real
data that neither the IDE nor FDE models provide an accurate
prediction of the asymptotic size of the tumor. On the other hand,
even slightly better predictions may improve clinical assessments
so the choice of FDE model should be made very carefully
(Valentim et al., 2020).

Our intent here is not to argue for the superiority of one
numerical fitting technique over another. Rather it is to
provide insight provided by a new mechanism available to a
FDE model that is not reachable using IDE models. The fitting
of the fractional derivative order to the first seven data points
provides a mechanism not available to IC fitting procedures.
This fitting of the order of the fractional derivative to the early
data means that any early change in the internal
dynamics can be captured and influences the later system
behavior.

The closest analog to this situation in the IC modeling of
complex systems is the telegrapher’s equation (TE). The diffusion
process is generalized in two important respects for telegraphic

processes: 1) the TE allows for a finite velocity of information
propagation which is infinite in the diffusion equation and 2) the
TE at short times describes nearly deterministic wave
propagation, whereas at long times the TE supports diffusive
behavior.

In the one-dimensional case the MSD for the solution to the
time-fractional TE at early times describes wave motion with
damping and at late times diffusion with a finite velocity
(Masoliver, 2021):

〈X(t)2〉 ~ t2α, t → 0
~ tα, t → ∞ .
{

For the IC TE we have α = 1 and obtain the familiar IC results.
When generalized to the fractional order TE with α < 1 the
solution is a bi-fractal with the fractal dimension halving from
one asymptotic time regime (t→ 0) to the other (t→∞). We refer
the interested reader to the excellent review by Masoliver
(Masoliver, 2021) for details and we shall have more to say on
the notion of multifractal behavior and its relation to FC
subsequently.

Variable Fractional Order
The fitting of the fractional growth models to the tumor dataset
has so far not exploited the full flexibility of the FC. We have
replaced the IDE growth models, both linear and nonlinear, with
their FDE generalizations. In making these replacements we have
used two distinct arguments. One based on the network effect and
the other on the time subordination method.We now examine an
additional generalization of both these techniques and consider
what might make the fractional order of the time derivative itself a
function of time, that is, what property of tumor growth would
entail:

zαt ·[ ] → zα t( )
t ·[ ], (58)

where α(t) is a time-dependent fractional order derivative and is
called a time profile in (Valentim et al., 2021). Such a time-
dependency could incorporate into the growth process the
changes in physical characteristics and biomechanical
modifications that tumors undergo while advancing toward
their malignant final state.

When a mechanical force is applied to a solid body that
body changes shape in response to the applied force; these
deforming forces are collectively called stresses (σ) and the
deformation the body undergoes under stress is called strain
(ε). An object that undergoes deformation can do one of two
things after the stress is released. An elastic material object
returns to its original shape immediately, whereas a plastic
material object will retain its deformation for some length of
time including permanently. The branch of physics dealing
with study of the dynamics of plastic materials goes by a
number of different names including rheology,
viscoelasticity and hereditary solid mechanics, all of which
address the solution of dynamic stress-strain relations. It is in
this context that the time-dependent fractional derivative
expressed in Eq. 60 has been most fully motivated for
application in MO (Di Paola et al., 2020; Valentim et al., 2021).

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84549518

West Physiology Networks Entail Fractional Oncology

71

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


Di Paola et al. (2020) note that the response of a linear
viscoelastic material to a generic imposed strain or stress
history is obtained by applying Boltzmann’s linear
superposition principle:

σ t( ) � ∫
0

t

Φ t − τ( )dε τ( ), (59)

ε t( ) � ∫
0

t

J t − τ( )dσ τ( ), (60)

where Φ(t) is the relaxation function from a constant strain
ε(t) � ε0Θ(t), and J(t) is the creep function for a constant stress
σ(t) � σ0Θ(t) andΘ(t) = 1 for t ≥ 0, and = 0, for t < 0. Under the
linearity assumption these expressions are readily extended to
complex FDE form with a constant power law index, see e.g.,
West et al. (2003a). In the linear regime the creep law is:

J(t) � tα

EαΓ 1 + α( ), (61)

and the relaxation function is:

Φ(t) � Eαt−α

Γ 1 − α( ), (62)

and 0 < α < 1 and the standard generalizations to the FC for the
stress-strain relations can be made. Note that this is the physical
basis for the failure of linear IDEs to describe what appeared to be
simple phenomena until the environment was more completely
analyzed and found to introduce either memory or spatial
heterogeneity into the dynamics.

However even the more familiar arguments breakdown when
the dynamics become nonlinear, because in that situation the
Boltzmann superposition principle no longer applies. However, if
α and Eα are constant and the nonlinearity involves only the level
of stress, the Boltzmann superposition principle holds in a space
different from the traditional (ε, σ)-space and the response
properties may be represented by the FC operations of
constant order. As stated by Di Paola et al. (2020):

However, for the purpose of handling systems where Eα

and α may change during the time interval of interest
new and pertinent fractional calculus tools should be
considered rather than variable-order fractional-
operators, as obtained from classical fractional
operators upon replacing the constant order with a
variable one; indeed, these operators implicitly rely
on the assumption that the Boltzmann linear
superposition holds true in the classical form, which
may not be a rigorous assumption in the presence of the
nonlinearity associated with changing values of α.

The approach developed by Di Paolo et al. is not presented
here due to space constraints, but does warrant a number of
additional comments. As they point out their proposed approach
is an effective way to build the stress (strain) response of a

nonlinear viscoelastic material body having time-dependent
fractional order operators to a general imposed strain (stress)
history. Throughout the observation time interval it is assumed
that the evolution of the parameters α and Eα are known at each
instant of interest.

Here we demonstrate the utility of a time-varying order α(t)
using the previously fitted tumor growth dataset. This is done
even though such a mathematical description of specific time-
dependent tumor features are not known a priori. Valentim et al.
(2021) use an exploratory approach and capture the 14 data point
history of the tumor in the value of the order of the time
derivative with a Taylor series:

α t( ) �∑N
n�0

αnt
n, (63)

where the n = 0 coefficient corresponds to the fixed-order FC
model. The FRE for tumor growth is given by Eq. 38 with time-
varying order and has the MLF solution for the growth of the
tumor volume V(t):

V(t) � V0Eα(t) λtα t( )( ), (64)
where the MLF has the form defined by Eq. 47. The fitting of the
MLF solution with time-varying order to the 14 data points is
given in Figure 10 for four consecutive orders of the polynomial
in the Taylor series. The variable-order models fit the dataset
better than either the solution to the IRE or to the FRE with errors
to the fit that decrease with the order of the polynomial N in
Eq. 63.

Note the two very different strategies for fitting the same
dataset in Figures 9, 10. The former uses a nonlinear FRE with a
fixed order whose numerical value varies with the model
nonlinearity to fit the early time well but does not do well in
predicting the tumor volume at late times. The latter multistep
experimental model tunes the profile of the time varying order to
a third-order polynomial that appears to capture the nuances of
the pattern of growth of the tumor volume extremely well.
Valentim et al. (2021) emphasize that these latter results
indicate the superiority of the proposed strategy for describing
experimental data and provides a new perspective for modeling
tumor growth. They also explain the difference between a time
varying rate of growth λ(t) and the variable-order α(t). While it is
true that the time variable order does in fact ultimately dictate the
time changes in the growth rate the biomedical interpretation of
α(t) goes a great deal deeper. A possible source of the time-
variability is the fractional stress-strain relations just discussed to
take into account the tumor evolution, but in addition how that
influence may change during the separate growth stages.

Valentim et al. (2021) make a strong case for interpreting α(t)
as a memory index, which may potentially translate the time
variation to the activation and/or development of identifiable
hallmarks of tumor evolution:

When α ≈ 1 tumors follow an exponential increase
“programmed” in their original cells (activating
hallmarks related to the evasion of growth
suppressors and sustainability of proliferative
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signaling). On the other hand, when α is lower tumors
evolve at a slower growth rate, potentially due to
challenges from the microenvironment (e.g., shortage
of nutrients, extracellular matrix resistance). In this
case, they “forget” (or inactivate) part of their
original programming, developing traits suitable to
their current evolution stage (hallmarks related to
angiogenesis and invasion).

Distributed Fractional Order Derivative and
Multifractality
Another of the avenues we have not explored is signal
processing and here again Mandelbrot was the first to
recognize that signals that are singular at almost every
point are encountered everywhere including in physiological
datasets. One historical strategy for interpreting a signal in
communication theory is to construct the reciprocal integral
relations of Fourier and although the method is
mathematically unassailable the interpretation of the
various derived quantities have been called into question.
The basis for these questions is the mutually exclusive
treatment of time and frequency in the specification of the
signal, that is, the time series is assumed to have infinite length
and each frequency is defined for an infinite monochromatic
wave train. In the real world, particularly in medicine, all time
series are of finite duration and frequencies change over time.
The recognition of this limitation of the (time, frequency)

-representation of Fourier signals led to the development of the
wavelet transform method for representing one-dimensional
signals as a function of time and frequency (Mallat, 1999).

Here let us define the wavelet transform Tg (a, b) of a time
seriesX(t) with respect to a wavelet g, which is broadly interpreted
as being equivalent to a mathematical microscope whose
magnification is 1/a, whose position in the time series is b,
and whose optics are given by the choice of the specific
wavelet function g (West, 1990). I bring this up here because
one can relate this formalism to the FC by applying a wavelet
transform to a fractal function, say a function describing the
growth of a tumor, as we sketch below.

A fractal function is self-affine and can be generalized by
examining the local scaling properties of the function at small
scales. Consider an arbitrary point t0 in the time series X(t):

X(t0, t) � X(t + t0) −X(t), (65)
and the function remains the same up to a scale factor at different
length scales. In this case self-affinity at the point t0 < tmeans that
by scaling the local variable t with a parameter λ > 0 yields:

X(t0, λt) � λα t0( )X(t0, t). (66)
The parameter α is the local scaling exponent at t0 and can be

shown to be the fractal dimension of the process being measured
X(t). The fact that α is a function of t0 means that the time series
X(t) is multifractal; when the scaling index is independent of t0
then X(t) is a homogeneous fractal. Equation 66 was established

FIGURE 10 | Tumor growth: comparison between clinical data (open circles) and the best-fit variable-order models (solid line segment) given by the MLF solution
Eq. 64 with λ = 0.090 8. The time-varying order is given by the Taylor series with N terms Eq. 63. Adapted from (Valentim et al., 2021) with permission.

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84549520

West Physiology Networks Entail Fractional Oncology

73

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


using the wavelet transform to construct the scaling relation
(West, 1990):

Tg λa, λb + t0( )X(t) � λα t0( )+1/2Tg a, b + t0( )X(t), (67)
thereby establishing the underlying process to be multifractal.

Halsey et al. (1986) posit that if a dynamic system is
partitioned into pieces of size l then the number of times the
exponent takes on the value α is:

N(l) ~ l−f(α), (68)
where f(α) is the continuous spectrum of singularities of strength
α. They go on to show that the generalized fractal dimension Dq

can be computed directly from the singularity spectrum:

q � df(α)
dα

→ Dq � 1
q − 1

qα − f α( )[ ], (69)
and consequently the scaling properties of the multifractal is
determined by:

α � d

dα
q − 1( )Dq[ ]. (71)

Measurements of the Dq’s and the spectrum of singularities
provide global and statistical information of the scaling properties
of fractal measures. This information is similar to the power
spectral density obtained from the Fourier transform of a time
series that quantifies the relative contributions of the underlying
frequencies. The function f(α) quantifies the relative
contribution of the underlying singularities. Just as the Fourier
transform does not keep track in time of the frequencies
contributing to a power spectral density, neither does f(α)
denote the locations of the singularities. Thus, a multifractal
spectrum can only give an indication of the span of dimensions
being accessed by the dynamic process and not the order in time
at which they occur.

A vast literature has become available on multifractals and
their processing techniques over the last quarter century, and
there is every indication that the complex dynamics evident in
tumor growth from early insights (Baish and Jain, 1998;
Nonnenmacher et al., 1993; Losa et al., 1998; ibid, 2002; ibid,
2005; Meakin, 1998) to the development of analytic methods
based on multifractal analysis to characterize the emergent
properties of complex biological patterns (Balaban et al., 2018)
will be facilitated by multifractal data processing techniques
(Ivanov et al., 1999; Ivanov et al., 2009).

OM AND DIFFUSION

No discussion of OM would be complete without at least a brief
review of the phenomenon of diffusion in a reaction-diffusion
type of modeling of cancer growth, even without an extension
beyond IDEs to include the fractional derivatives in space as well
as in time. An excellent review of diffusion starting from the
simple Brownian motion of tracer particles but focusing on the
deviations from the laws of Brownian motion is given by Metzler
et al. (2014), who provide an overview of different popular

anomalous diffusion models paying special attention to their
loss of ergodic properties. They highlight several of these models
concentrating on the long-time averaged mean squared
displacement, showing that the data obtained from time
averages are different from ensemble averages. Thus, the
workhorse of statistical physics, the ergodic hypothesis,
breaks down.

The oncological application of anomalous diffusion is made
by Debbouche et al. (2021), who remark that the first
mathematical tumor growth models were integer partial
differential equation (IPDE) models taking into account
tumor, normal and dead cells, nutrition, various inhibitory
substances and immune system response. Cells of a healthy
organism are mortal with apoptosis being the end of the life
cycle, whereas the lack of apoptosis is a main feature of
tumor cells.

Here we take a different route and offer various mechanisms
that modulate the diffusion process as well as compliment the
growth laws already discussed. In this section we are concerned
with characterizing the growth of a single species, both in
isolation in the presence of other species. The growth of a
species in isolation is modeled by means of a growth function
which is intended to represent the influence of the fluctuations in
the environment on the population. The influences being
modeled will, of course, vary from species to species and will
often be left quite general in the discussion so as not to
unnecessarily limit the applicability of the growth function
being used. The total rate of growth of a species is only partly
given by such a function. As the population grows in a region of
space, it may also migrate into the surrounding territory; also,
members in other regions of space may migrate into the given
region. This migration may be motivated by the avoidance of
competition for common food sources with other species, the
depletion of local food stuffs and/or becoming the food source of
another species.

Our discussion centers on the three components of the
multi-species network: 1) the growth in time of a single species
in isolation, 2) the diffusion of that species in space, and 3) the
modification of the growth and redistribution (diffusion) of a
given species due to its interaction with other species.

Diffusion, Growth and Interactions
The non-homogeneous diffusion equation for the density of cells
is given by:

zρ(x, t)
zt

� D
z2ρ(x, t)

zx2
+ f(x, t), (71)

where ρ(x, t) is the concentration of cells at spatial location x and
time t and D denotes the diffusion coefficient throughout this
chapter. When we consider a specific type of cell the
concentration will carry an index to indicate the cell type, and
the initial state will be denoted by ρ(x, t � 0) � ρ0(x). The non-
homogeneous term is a growth function for the concentration
that we write as:

f(x, t) � ρ x, t( )G(ρ), (72)
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G ρ( ) ≡ κ
1 − ρ x, t( )μ

μ
, (73)

and logistic growth is identified with μ = 1 and the Gompertz
growth with the limit μ → 0, although the latter equation was
developed to model the mortality of the elderly rather than
population growth.

The Verhulst and Gompertz models, as well as those with
more general forms of G(ρ) were constructed to predict the
growth of a single species at a rate κ in a stable environment with
limited resources. A growing population can circumvent the
saturation inherent in such growth laws (D = 0) by
redistributing (diffusing D ≠ 0) into nearby unoccupied
territory as the resources become depleted at their existing
locations. The diffusion does not stop the saturation but it
does retard it. These complementary mechanisms are
subsequently discussed in the oncology context.

We can express the self-limiting growth equation by
neglecting diffusion and setting D = 0 in Eq. 71:

dN(t)
dt

� NG
N

NT
( ), (74)

and NT is the carrying capacity of the growth model, i.e., ρ = N/
NT. The first restriction we relax here in the discussion of Eq. 74 is
that of the stability of the environment. For example, in the case
of human populations, such things as a vacillating economy or
war could have extremely large effects on the population; whereas
for lower-level biological species, violent weather changes or
short-term food shortages could be major influences in the
population’s growth. Finally, a tumor’s environment may
disrupt the growth by invading with blood vessels as well as
other things. Since it is their unpredictability which all these
impacts have in common, the most elementary way to model
their effects and still maintain a degree of generality is to assume
them to be random. We model these external influences by
adding a random forcing term F(t) to the IRE, which we scale
to the instantaneous growth rate by choosing the function to be
proportional to N(t):

dN(t)
dt

� NG
N

NT
( ) +N(t)F(t). (75)

If we introduce a new variable by the transformation:

U(t) � ln N/NT[ ] ; N � NTe
U,

then by substituting the new variable into Eq. 75 we obtain:

dU(t)
dt

� G eU(t)( ) + F(t), (76)

which has the structure of a nonlinear Langevin equation
with a deterministic forcing term G(eU(t)) and a random
force F(t). Equation 76 may be solved quite generally by
means of a finite difference scheme for the deterministic
function and a random walk (RW) process for the random
force. If the RW is sufficiently simple, then analytic forms for
the probability that the population grows to a level U(t) in a
time t may be obtained from the nonlinear Langevin

equation. To determine the PDF centered on the
deterministic growth we must make some assumptions
about the RW process generating F(t), that is, about the
statistical character of the fluctuating environment. If we
assume the random force is generated by a memoryless
Wiener process we have:

〈F(t)F(t′)〉 � 2Dδ(t − t′). (77)
This assumption enables us to construct the Fokker-Planck

equation (FPE) for the PDF:

zP(u, t|u0)
zt

� − z

zu
G eu( )P(u, t|u0)[ ] +D

z2P(u, t|u0)
zu2

(78)

where P (u, t|u0)du is the probability that the dynamic variable
U(t) is in the phase space interval (u + du, u) at time t given the
initial value U (0) = u0.

The FPE may be put in a more recognizable form to physicists
by ignoring the dependence on the initial condition and
introducing the nonlinear transformation:

P(u, t) � ψ u, t( )exp 1
2D
∫
0

u

G(eu′)du′⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (79)

into the FPE to yield:

zψ

zτ
� z2ψ

zU2 −
zG

zU + G2( )ψ, (80)

where we have scaled the time τ = Dt/4 and the population
u � 2DU . Note that this last equation has the form of the
Schrödinger equation in Quantum Mechanics and therefore
makes available a vast literature on the solution to Eq. 80 for
prescribed forms of G (eu). The Verhulst growth law [G(x) � 1 −
x] is the analogue of theMorse potential in molecular physics and
that of Gompertz corresponds to the harmonic oscillator. The
solution to Eq.80 for these cases, among others, was explored and
the equilibrium PDF for the Gompertz case was determined to be
Gaussian and that for the Verhulst case to be Poisson (Goel et al.,
1971).

Multiple Species
The single species equation of growth was intended to model
all the stable environmental effects determining the growth law
of a particular cell. We now wish to generalize this expression
to include the interaction between multiple kinds of cells. We
postulate that a single kind of cell grows in proportion to its
instantaneous population with a nonlinear growth rate, which
is coupled to all the other cell species in the tissue:

dNj

dt
� NjGj N1, N2, N3( ), (81)

here cell type #1 is healthy, #2 is cancerous and #3 is dead. The
function Gj(N1, N2, N3) is a normalized growth law for the jth
cell type and an interaction function, i.e., the interaction with
other cell types has been removed from the fluctuating force of the
model just discussed and made explicit. We assume that the
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functions Gj{ } do not depend explicitly on the time, and that
there exists a set of equilibrium populations nj{ } such that Gj (n1,
n2, n3) = 0 and none of the equilibrium populations vanish.
Consequently in the vicinity of an equilibrium point the growth
functions can be expressed as the Taylor series expansions:

Gj � �Gj +∑
3

k�1
(Nk − nk) z

�Gj

zNk
+ ∑3

l,k�1
(Nk − nk)(Nl − nl) z2 �Gj

zNkzNl

+ · · ·,
(82)

where �Fj( �Gj � 0) is the value of the function calculated at the
equilibrium level. Substituting the Taylor series into the rate
equation and defining the coefficients:

ajk ≡
z �Gj

zNk
; bjkl ≡

z2 �Gj

zNkzNl
, (83)

gives rise to:

dNj

dt
�∑3

k�1
ajkNj(Nk − nk) + ∑

3

l,k�1
bjklNj(Nk − nk)(Nl − nl) + · ··

(84)
Note that if one neglects the second order and higher terms in

the deviation from equilibrium and introduces the constants:

κj � −∑3
k�1

ajknk ; a
j
k � ajk/βj,

then Eq. 85 can be written:

dNj

dt
� κjNj + 1

βj
∑
k�1

3

ajkNjNk (85)

which is the form of the multi-species interaction modeled by
Lotka and Volterra as well as other investigators. In the LVmodel
the quadratic terms are interpreted as binary collisions between
species j and kwith ajk being positive if j eats (kills) k and negative
for the reverse. The 1/βj represents exchange rates of the various
species so that (βj/βk)−1 is the ratio of k’s lost (or gained) to j’s
gained (or lost). Volterra postulated that the coefficient ajk is
antisymmetric (ajk = − akj) as required for the eating (killing)
order mentioned above, and showed the existence of a constant of
the motion for the dynamic system. The Volterra model has,
therefore, been shown to be a first approximation to any situation
in which the growth rate of a variable is proportional to its
instantaneous value when the population is small and in which a
steady-state value exists when there are interactions with other
species.

Montroll (1972) used the general growth function to extend
the LV model to the new form:

dNj

dt
� αjNj + 1

βj
∑
k�1

3

ajkNj
Nμ

k − 1( )
μ

, (86)

which becomes the Volterra system when μ = 1 and the linear
growth rate is:

αj � κj + 1
βj
∑
k�1

3

ajk.

On the other hand, as μ → 0, after some algebra Eq. 86
becomes the linear interaction equation in terms of the
transformed variable Uj = ln (Nj/nj):

dUj

dt
� 1
βj
∑
k�1

3

ajkUk, (87)

which may be solved by usual methods for linear IREs.

Fisher-Like Equation
We begin the discussion on the effects of diffusion on the growth
of a species with a brief review of the classic problem in genetics
developed by Fisher (1937). He was interested in the propagation
of a virile mutant in a population living in a linear habitat, an
example of which would be a species living along a seacoast. He
developed his dynamic equations with a RW argument involving
finite difference equations defined on a lattice. We skip to the
continuous limit of his RW argument and write:

z

zt
p(x, t) � D

z2

zx2
p(x, t) + κp(x, t) 1 − p(x, t)[ ], (88)

which has both the features of self-limited (saturated) growth and
diffusion. Here, p (x, t)dx is the relative frequency of the mutant
strain in the population at the position x and time t, and κ is the
advantage of the mutant strain under conditions of random
mating.

Skellam (1951) considered a linear RW in space consisting of
computation cells containing a growing population and
obtained an equation of the same form as Fisher’s, as well
as others. A slightly more general form for this diffusion
equation was obtained for the population ρ(x, t) = NTp (x,
t) with a finite saturation levelNT, but that equation has proven
to be no more amenable to general closed form solution than
Fisher’s original equation. However, if we can obtain analytic
solutions in the region near saturation and another exact
solution in a region far from saturation NT ≫ ρ they can be
used to bracket the exact solution to Fisher’s equation, if it
exists. Moreover if the solution to Fisher’s equation is
continuous, then it must join the two asymptotic solutions
at the extremes of population growth.

The direct solution of Eq. 88 is extremely difficult to obtain
due to the nonlinear structure of the equation. Fisher (Fisher,
1937) and Skellam (Skellam, 1952) obtained numerical solutions
assuming the form of a diffusion wave p (x, t) = p (x − vt). A more
general analytic solution may be obtained in a restricted region,
say near saturation. Let us consider the expansion:

ρ x, t( )
NT

� eln ρ x,t( )/NT[ ] ≈ 1 + ln ρ x, t( )/NT[ ] + · · ·, (89)

the first two terms of which give a good representation of the ratio
ρ(x, t)/NT in the region near saturation. Substituting this
expansion into Eq. 88 and introducing the new variable u(x, t) �
ln[ρ(x, t)/NT] into the resulting equation yields:
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z

zt
u(x, t) � D

z2

zx2
u(x, t) − κu(x, t), (90)

It is clear that this equation provides a solution to the Fisher
equation near saturation. To obtain a closed form solution, we
strain Fisher’s example of a linear habitat and require that the
population lie along the perimeter L of an island such that u
(x + L, t) = u (x, t). With this assumption of periodicity it is
straightforward to show that the solution to Eq. 90 for an
initial distribution u0(x) = u(x, t = 0) is:

u(x, t) � e−κt ∫
∞

−∞
G(x − x′, t)u0 x′( )dx′, (91)

where G(x, t) is the Gauss distribution solution of the
homogeneous diffusion equation and here plays the role of a
Greens function.

If we transfer Eq. 90 back to the population variable ρ, we
obtain after a little algebra:

zρ

zt
� D

z2ρ

zx2
− 1
ρ

zρ

zx
( )

2

[ ] − κρ ln
ρ

NT
( ), (92)

as the approximate form of the Fisher equation in the region near
saturation, whose analytic solution is:

ρ(x, t) � θ exp e−κt ∫
∞

−∞
G(x − x′, t) ln ρ0 x′( )

NT
[ ]dx′⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (93)

A similar solution may be found in the region
far from saturation ρ≪NT, that being the solution to the equation:

zρ(x, t)
zt

� D
z2ρ(x, t)

zx2
+ κρ(x, t). (94)

Thus, we are able to bracket the exact solution the Fisher
equation even though we do know its analytic form.

Comments on Fractional Diffusion
From previous sections we know that we can introduce memory
into the population dynamics through a subordination process
and thereby obtain a fractional time diffusion equation (FTDE) of
the form:

zαt ρ x, t( )[ ] � D
z2ρ x, t( )

zx2
, (95)

which is expressed in terms of the Fourier transform of the
population ~ρ(k, t) as:

zαt ~ρ k, t( )[ ] � −Dk2~ρ k, t( ). (96)
Alternatively, the FTDE can be expressed in terms of the

Laplace transform of the population ρ̂(x, s) as:

sαρ̂ x, s( ) − sα−1ρ0 x( ) � D
z2ρ̂ x, s( )

zx2
, (97)

where the fractional time derivative is of the Caputo type. The
most efficient way to solve the FTDE is to invert the joint

Fourier-Laplace transform of the population ρ*(k, s) which
assumes the form:

ρ*(k, s) � sα−1~ρ0 k( )
sα +Dk2

. (98)

For a point source initial condition ρ0(x) � δ(x)we have ~ρ0(k) �
1 and the inversion of this equation yields:

ρ x, t( ) � FT −1 Eα −Dk2tα( );x{ }, (99)
with the solution to the FTDE in terms of the inverse Fourier
transform of the MLF.

We also know from previous discussions that spatial
heterogeneity can be introduced into the population dynamics
through the network effect and thereby obtain a fractional space
diffusion equation (FSDE) of the form:

zρ x, t( )
zt

� Dzβx| | ρ x, t( )[ ], (100)

where zβ|x|[·] is the Riesz-Feller fractional derivative (West, 2016).
The solution to this FSDE can be expressed in terms of the inverse
of the Fourier-Laplace transform:

ρ*(k, s) � ~ρ0 k( )
s +D k| |β, (101)

where the Fourier transform of the Riesz-Feller fractional
derivative in one spatial dimension is −|k|β. Inverting Eq. 101
for the same point source initial condition used previously
gives us:

ρ x, t( ) � ∫
−∞

∞
dk

2π
eikxe−D k| |βt, (102)

which is a Lévy stable PDF. Note that when α = 1 the MLF in Eq.
99 becomes an exponential and the PDF reduces to a Gauss PDF
which is a β = 2 Lévy stable form (West, 2017).

It is worth mentioning that the FTDE is a version of
(Evangelista and Lenzi, 2018):

zαt ρ x, t( )[ ] � D
z2ρ x, t( )

zx2 − z

zx
F(x, t)ρ x, t( )[ ], (103)

� zJ(x, t)
zx

, (104)

where is the influence of the environment is modeled as an
external force F (x, t) and J (x, t) is the population current density.
A exhaustive mathematical discussion of fractional anomalous
diffusion is given by Evangelista and Lenzi in their remarkably
timely book (Evangelista and Lenzi, 2018).

CLOSING THOUGHTS

In this all too brief introduction to the growing area of application
of the fractional calculus to MO we have covered many
mathematical concepts, each new wrinkle capturing a different
nuance in the complexity of biomedical phenomena. Rather than
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attempting a detailed summary of what has been presented
herein, we instead identify and articulate a number of general
results. We will then attempt to put these remarks into a larger
context and anticipate some of the future research directions that
may facilitate the modeling of biomedically complex phenomena
and pathologies.

We begin by identifying the most important points covered in
this essay:

1) The simple analytic functions of the IC have been shown in
the prequel to be insufficient to describe the time dependence
of most physiology networks. The notion of fractality was
introduced to capture the true complexity of such biomedical
networks through fractal geometry, fractal statistics and
fractal dynamics.

2) A fractal function diverges when an integer-order derivative
is taken, so that such a fractal function cannot be the solution
to a Newtonian equation of motion. However, when a
fractional-order derivative of a fractal function is taken it
results in a new fractal function. Consequently, a time-
dependent fractal process can have an equation of motion
that is a FDE.

3) The Network Effect is the influence exerted by a complex
dynamic network on each member of the network. When the
network dynamics is a member of the Ising universality class
the interconnected set of IDEs for the probability of an
individual being in one of two states during its nonlinear
interaction with the other members of the network can be
replaced by an equivalent linear FDE.

4) One of the simplest FDEs has a built-in memory resulting
from the hidden interaction of the observable with its
environment, which is manifest in the non-integer order of
the time derivative, as in the network effect. Examples include
the deviation of experimental results of Newton’s Law of
Cooling from predictions using an IRE and the dynamics
of the very early time description of Brownian motion also
using an IRE.

5) Another simple FDE has a built-in non-locality in space and
is the FSDE. The solution to this fractional diffusion
equation in space is a Lévy PDF, whose index is given by
the order of the spatial fractional derivative. Yet another
fractional diffusion equation differs in having a built-in
memory and is the FTDE. The solution to this fractional
diffusion equation in time is expressed in terms of the inverse
Fourier transform of a MLF.

6) The solution to a linear FRE is aMLF for α < 1 and becomes an
exponential function for α = 1. The MLF is the workhorse of
the FC just as the exponential is for the IC.

7) A truly complex stochastic dynamic process can have more
than one fractal dimension. A multifractal process is
characterized by a uni-modal spectrum f(h) peaked at the
value of the Hurst exponent h = H.

8) The time-dependent fractional-order index α(t) specifies a
distributed-order fractional operator. As a sufficiently rich
complex process evolves over time its fractal dimension
changes to explore the full range of dimensionality
0< α(t)≤ 1 through the multifractal spectrum f(α).

The short term goal of this essay has been, in part, to describe
how the growth of natural biological phenomena differs from the
growth of physical phenomena.We explored this by showing how
to incorporate memory effects into the growth process of
biological cells by replacing IREs with FREs. The replacement
of integer-order with fractional-order derivatives in time required
a brief foray into the solving of the FREs that describe the growth
of cells over time, including the saturation of growth using
Verhulst (logistic) and Gompertz models. Such descriptions
are important in order to understand the multiscale processes
that emerge when tissues are electrically stimulated or
mechanically stressed (Magin, 2010), as well as being
pathologically disrupted.

We close these remarks by emphasizing the nexus between
distributed-order differentiation and multifractality. The
invariance of scale is a property relating time series across
multiple scales and has provided a new perspective regarding
medicine, physiological phenomena and their associated control
systems. The historical engineering paradigm of ‘signal-plus-
noise’ was first replaced by a model of biological time series
that had fractal statistics. This however was also shown to be too
restrictive when a number of physiological signals were found to
be characterized by more than one scaling parameter and

FIGURE 11 | The average multifracal spectrum for middle CBF time
series is depicted by f(h). (A) The spectrum is the average of 10 time series
measurements of five healthy subjects (filled circles). The solid line is the best
least-squares fit of the parameters to the predicted spectrum. (B) The
spectrum is the average of 14 time series measurements of eight migraineurs
(filled circles). The solid curve is the best least-squares fit to a predicted
spectrum. From (West et al., 2003b) with permission.
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therefore to belong to a class of complex processes known as
multifractals. Such multifractal time series appear in the rich
healthy variability of both human gait and heart rate (Ivanov
et al., 1999; West, 2006; Bogdan et al. 2020).

We use blood flow within the brain as an exemplar of how the
multifractal character of health can be described and subsequently
explained using the FC. West et al., 2003b) demonstrated that the
scaling properties of the time series associated with cerebral blood
flow (CBF) significantly differs between that of normal healthy
individuals and migraineurs. The CBF time series discussed here
is typical of physiologic signals generated by complex self-regulated
networks that handle inputs having a broad range of scales. An
indirect way of measuring CBF is by monitoring the blood flowing
into the brain through the middle cerebral artery. This can be
accomplished using an instrument that operates like a radar gun, but
instead of scattering electromagnetic waves from your car back to the
gun to determine your speed, it scatters acoustic (sound) waves from
the fluctuations in the blood back to the gun to determine the flow
velocity. The instrument is a transcranial Doppler ultrasonograph
and provides a high resolution measurement of middle cerebral
artery flow velocity. We look for the signature of the migraine
pathology in the scaling properties of the human middle cerebral
artery CBF velocity time series.

The properties of monofractals are determined by the local
scaling exponent, but as mentioned multifractals are made up of
many interwoven subsets with different local scaling exponents.
The statistical properties of these subsets are characterized by the
spectral distribution of fractal dimensions f(h) as depicted in
Figure 11. In this figure we compare the multifractal spectrum for
the middle CBF velocity time series for a healthy group of five
subjects and a group of eight migraineurs.

A significant change in the multifractal properties of the middle
CBF velocity time series from the control group to that of the
migraineurs. is apparent. Namely, the width the multifractal
spectrum of the local scaling exponent is vastly constricted, being
reduced by a factor of three from 0.038 for the control group to 0.013
for the migraineurs. The multifractal spectrum for migraineurs is
centered at 0.81, the same as that of the control group, so the average
scaling behavior would appear to be the same. However, the
narrowing of the fractal dimension spectrum suggests that the
underlying process has lost its flexibility. The advantage of
multifractal processes is that they are highly adaptive, so that in
this case the brain of a healthy individual adapts to themultifractality
of the interbeat interval time series of the heart. We see that the
disease, in this case migraine, may be associated with the loss of
complexity (Goldberger et al., 1990), due to the narrowing of the
spectral width, and consequently the loss of adaptability, thereby
suppressing the normal healthy multifractality of CBF time series.

The experimental evidence presented in the prequel supports the
interpretation that the greater the complexity of the physiologic
time series, as measured by the width of the multifractal spectrum,
the healthier the physiological network. In addition, theory (West
and Grigolini, 2021) suggests that the information transfer between
two coupled networks is from the network with the wider spectrum
(greater complexity) to that with the narrower spectrum (lesser

complexity). We hypothesize that the multifractal dynamics of
oncological processes may be well represented by distributed-order
FDEs that captures the loss of complexity in the transition from
healthy multifractal physiologic processes with a substantial
spectral width to a pathological process with a significantly
narrower spectral width. This hypothesis will be the focus of the
next essay in this sequence.

To end this essay on a positive note, we brieflymention a number
of the topic areas suggested by thoughtful reviewers of the
manuscript, which although relevant to the theme of this essay
we lacked the skill to incorporate them into the present text. There
have been numerous efforts dealing with observability and
controllability of physiological networks while considering the FD
observed inmedicine, see for example, (Bogdan, 2019; Kyriakis et al.,
2020). Another is to use what we know concerning the information
exchange between complex networks (West et al., 2008; West and
Grigolini, 2021) to implement the FC for reducing the risk of closed
loop control of blood glucose in artificial pancreas (Ghorbani and
Bogdan, 2014), but also in optimal control theory where it may lead
to a new branch of control techniques such as time-dependent
fractal optimal control.

The acknowledgement of this new perspective is nowhere more
evident than in the timely launching of a journal that recognizes the
emergening field of Network Physiology (Ivanov et al., 2016; Ivanov,
2021). I wholeheartedly endorse this new journal with but a single
reservation, Ivanov’s reference to Network Physiology as being
‘multi-disciplinary’ (Ivanov, 2021). I much prefer the less
restrictive term ‘trans-disciplinary’, in large part because with the
future application of the FC to Network Medicine as well as to
Network Physiology will itself generate disciplines that will not fit
into our present day taxonomy of scientific disciplines.
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Simulating Multi-Scale Pulmonary
Vascular Function by Coupling
Computational Fluid DynamicsWith an
Anatomic Network Model
Behdad Shaarbaf Ebrahimi1, Haribalan Kumar1, Merryn H. Tawhai1, Kelly S. Burrowes1,
Eric A. Hoffman2 and Alys R. Clark1*

1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand, 2Department of Radiology, University of Iowa,
Iowa City, IA, United States

The function of the pulmonary circulation is truly multi-scale, with blood transported
through vessels from centimeter to micron scale. There are scale-dependent mechanisms
that govern the flow in the pulmonary vascular system. However, very few computational
models of pulmonary hemodynamics capture the physics of pulmonary perfusion across
the spatial scales of functional importance in the lung. Here we present a multi-scale model
that incorporates the 3-dimensional (3D) complexities of pulmonary blood flow in the major
vessels, coupled to an anatomically-based vascular network model incorporating the
multiple contributing factors to capillary perfusion, including gravity. Using the model we
demonstrate howwe can predict the impact of vascular remodeling and occlusion on both
macro-scale functional drivers (flow distribution between lungs, and wall shear stress) and
micro-scale contributors to gas exchange. The model predicts interactions between 3D
and 1D models that lead to a redistribution of blood between postures, both on a macro-
and a micro-scale. This allows us to estimate the effect of posture on left and right
pulmonary artery wall shear stress, with predictions varying by 0.75–1.35 dyne/cm2

between postures.

Keywords: pulmonary circulation, computational fluid mechanics, network flow modelling, lung, computational
model

INTRODUCTION

The pulmonary circulation carries almost the entire cardiac output to the pulmonary alveoli, in order
to expose deoxygenated blood to the higher partial pressure of oxygen in the alveolar airspaces. Its
function is truly multi-scale, in that blood traverses through vessels of 2–3 cm diameter at the main
pulmonary artery Edwards et al. (1998) down to the order of μm diameters in the pulmonary
capillaries Fung and Sobin (1969). The distribution of blood flow within this circulation is critical to
providing good matching of perfusion to ventilation (air flow) at the alveolar level. This matching is
determined by a combination of the effect of gravity acting to deform lung tissue locally, the
hydrostatic effect of gravity which acts directly on blood, and a contribution from the anatomic
structure of the pulmonary airways and blood vessels Kang et al. (2018). The distribution of
perfusion has been demonstrated to be dependent on each of these mechanisms Clark et al. (2011b);
Hlastala and Glenny (1999); Hopkins et al. (2007); West et al. (1964), with anatomic structure
playing a greater role in the distribution of perfusion than ventilation in the normally functioning
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adult lung Clark et al. (2011b); Kang et al. (2018). Overall, the
nature of blood flow in the largest and smallest blood vessels is
different, and this means that the physics of computational
models derived to capture their function relies on different
assumptions and biomechanical models. For example, blood
flow in the main pulmonary arteries has significant 3-
dimensional (3D) complexities, and is functionally altered in
patients with pathologies such as pulmonary hypertension
Schäfer et al. (2017). In contrast, flow rates and Reynolds
numbers are lower in the pulmonary micro-circulation,
leading to reduced complexity in flow patterns. However, the
pulmonary capillaries directly interact with the expanding alveoli,
and are recruited and de-recruited dynamically in response to
changes in local air and blood pressure Fung and Sobin (1969);
West et al. (1964); Yen et al. (1980).

Several computational models of the branching network of
arteries and veins in the pulmonary circulation have been
proposed. These range from 3D computational fluid dynamics
(CFD) simulations representing the branching network of large
arteries Kheyfets et al. (2015); Tang et al. (2011, 2012), through to
1-dimensional (1D) network models that aim to capture the
distribution of blood flowwithin the entire pulmonary circulation
Clark et al. (2011b, 2014); Ebrahimi et al. (2021). These models
typically target two main areas: 1) wall shear stress (WSS)
distribution in pulmonary artery networks which is intimately
associated (and correlated) with endothelial dysfunction Kheyfets
et al. (2015); Tang et al. (2012), but that cannot be measured
experimentally; 2) the major drivers of pulmonary perfusion
distribution in the lung in health and disease, and how local
perfusion contributes to ventilation-perfusion matching and gas
exchange Clark et al. (2014); Kang et al. (2018). 3D CFD is far
more accurate in predictingWSS than simplified 1Dmodels. One
of the well known challenges of such models is the boundary
condition prescription, with small deviations in boundary
conditions sometimes yielding large differences in observed
velocities Kheyfets et al. (2013). 1D networks on the other
hand can well-predict micro-scale perfusion and the impact of
vascular structure and gravity on this function, but cannot be
used to accurately simulate flow in the major pulmonary arteries
Clark et al. (2017). In pathological lungs, this is particularly
important, as micro-vascular changes may impact pressure,
flow and WSS in the major vessels, and vice versa Wang and
Chesler (2011). Previous models have coupled 3D CFD to
downstream models via imposed boundary conditions, for
example by a structured tree approach Kheyfets et al. (2015),
or in other organ systems by using measured values of flow over
time from Doppler ultrasound as boundary conditions Oshima
et al. (2001); Perktold and Rappitsch (1995). However, no model
exists that can predict the multi-scale function in the complex
network of the pulmonary vasculature across spatial scales.

Here, we present an integrated model of the pulmonary
circulation that includes a 3D representation of the major
pulmonary arteries coupled to an anatomically realistic 1D
network model that comprises the entire circulation that lies
downstream of these major arteries. Importantly, the network
model incorporates each of the major contributors to perfusion
distribution in the lung (anatomical structure across scales, and

gravitational effects), alongside the capability to predict WSS
accurately in the major pulmonary arteries.

METHODS

Themethodological framework proposed here employs a subject-
based model that represents the anatomical structure of an
individual’s lungs generated from computed tomography (CT)
imaging. An illustration of the 3D geometrical model and its
connectivity to a 1D network model is shown in Figure 1. The
methodology is demonstrated in a whole lung with the main
pulmonary artery and left and right pulmonary arteries simulated
as 3D structures. While the number of generations that may be
incorporated into the 3D model is arbitrary, two generations of
arteries were chosen in this study to test the hypothesis that
posture may impact the distribution and nature of flow between
the left and right lungs. The 3D structure is connected to an
anatomically-based 1D tree representing morphological
branching to the level of the pulmonary acini. For this study,
the model geometry was derived from CT images of a healthy
adult male (age: 23; weight: 80.9 kg; body mass index: 23.1 kg/m2)
representative of a population of 30 normal subjects aged between
20–30 years old, derived from the Human Lung Atlas Database
Hoffman et al. (2004). The subject has the closest lung shape to
the mean lung shape for this population determined by a
principal component analysis Osanlouy et al. (2020).
Functional Residual Capacity (FRC) measured seated was
3.4 L. Imaging was acquired supine with lung volume held
constant at 50% of vital capacity.

Model Geometry
The model geometry employed in this study aims to capture the
lung shape and the distribution of the largest blood vessels to one
generation beyond the sub-segmental level, as measured from CT
imaging. The first two generations of blood vessels were
represented by their 3D structure, then the centerlines of
blood vessels were derived from CT to one generation beyond
the segmental level. Blood vessels beyond this level, to the level of
the pulmonary acinus are generated as a branching network that
is consistent with morphometric data on typical branching
structures of pulmonary arteries and veins Burrowes et al.
(2005); Horsfield (1978); Horsfield and Gordon (1981); Huang
et al. (1996); Tawhai et al. (2004). Lungs, lobes, airways and intra-
pulmonary blood vessels were segmented using PASS
(Pulmonary Analysis Software Suite, University of Iowa). This
study used non-contrast-enhanced imaging, therefore extra-
pulmonary blood vessels were segmented manually, starting
from the point of attachment of the main pulmonary artery to
the heart. Three scales of model geometry were created. The first
represents a 3D volume mesh of the first two generations of
pulmonary arteries. The second is a spatially distributed network
of 1D elements that represents segments of the centerlines of the
branching vascular tree. The final scale represents the acinar
structure.

Figure 1 provides a schematic of the interface between the 3D
volume and the 1D representation of the blood vessel network. A
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3D surface model is generated to reflect the vessel surface of the
main pulmonary artery and its left and right branches
(Figure 1A). A centerline representation of the main
pulmonary artery and distal branches to one generation
beyond the segmental level was extracted, and a 1D network
template mesh was manipulated to assign nodal locations to each
bifurcation of the pulmonary arteries down to one level beyond
the segmental arteries (Figure 1B). The surface of the 3D
geometry has a bicubic-Hermite element structure, and this is
fit to a cloud of datapoints representing the vessel surface by a
least squares minimization process - optimizing the sum of
squared differences between each surface point and the nearest
surface element Fernandez et al. (2004); Tawhai et al. (2009). The
surface was converted to a volume mesh using CFMesh (version
1.1, Creative Fields, United Kingdom)—a library implemented in
OpenFOAM for mesh generation (Version 7, OpenCFD Ltd.1).
The meshing process produces hexahedral cells, with polyhedra
in the transition zones between cells of various sizes with
hexahedral elements at the boundary layers.

To generate a morphological vascular network beyond the
major vessels, the volume filling branching algorithm proposed
by Tawhai et al. (2004), and presented for the pulmonary blood
vessels by Burrowes et al. (2005) was employed. The
segmentations of the lobes were converted to a surface data
cloud, and a bicubic-Hermite template surface mesh was fitted
(following Tawhai et al. (2009)). The surface mesh was filled with
an equi-distributed array of datapoints. Using the branching
upper vasculature derived from imaging (to one generation
beyond the segmental level) as an initial condition, a volume
filling algorithm was used to generate branching vessels that fill
the volume, and that terminate at ≈ 32,000 terminal blood vessels
feeding the pulmonary acini. For simplicity, the pulmonary
venous structure is assumed to follow the pulmonary arterial
structure except at the pre-segmental level (which is derived
manually from imaging). Each blood vessel represented in the

1D network model is described by an element representing its
centerline, and its radius.

The acinus is modeled as a 9-generation symmetric network of
arterioles and venules that are connected in series, and are
connected in parallel by ‘sheets’ of capillary bed (Clark et al.
(2010); Fung and Sobin (1969); Haefeli-Bleuer and Weibel
(1988)). This anatomically-based intra-acinar structure has
been termed a ‘ladder’ model (Clark et al. (2010; 2011a)). A
symmetric structure is assumed to allow the model solution in
≈30,000 acinar units, and our previous modeling suggests that
while within-acinus branching asymmetry impacts sub-acinar
heterogeneity in perfusion, its impact on acinar resistance is small
Clark et al. (2011a). It allows a direct connection between the
capillary structure (which is influenced primarily by local air
pressure and inflation), and a physiological stratification of
function within them from the most proximal to distal
capillary (Read (1969a,b)). The ladder model also facilitates
coupling micro-circulatory function to the intra-pulmonary
macro-vasculature (which is under the influence of lung
tethering pressure, related to elastic recoil) and outwards to
the extra-pulmonary vessels with their more complex flow
patterns and direct connection to the heart.

3D Computational Fluid Dynamics
Simulations
To simulate flow in the pulmonary arteries, the 3D CFD solver
OpenFOAM was used. The blood within these arteries was
assumed Newtonian, incompressible and laminar. The
PimpleFoam solver based on the PIMPLE algorithm was used
Passalacqua and Fox (2011). This algorithm combines the PISO
(Pressure-Implicit Splitting Operator) Issa (1986) and SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations)
algorithms Caretto et al. (1973); Ferziger et al. (2002); Jasak
(1996); Passalacqua and Fox (2011); Patakar (1980). Outer
correction loops are used in the PIMPLE method to specify
number of iterations. To guarantee that the explicit sections of
the equations converge, outer corrector loops are enabled. In the

FIGURE 1 | Schematic representation of the 3D/1D model of the pulmonary circulation. (A) The 3D model mesh. (B) A schematic of how 3D and 1D models are
related, including an illustration of the interface, Γ, between the twomodels. (C) Depicts the whole lung model, with the largest blood vessels explicitly meshed in 3D, and
the smaller blood vessels represented by elements defined by branch points and their radii.

1www.openfoam.org
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PIMPLE algorithm, a dynamic time step technique, allows the
time step to vary in relation to the maximum Courant number
allowed. Courant number is a dimensionless measure that
provides the rate at which data is transported from one cell to
another. Adjustable time step is utilized in all of the current
simulations, with a maximum Courant number of 1.0. Steady
state simulations were performed. Flow inlet boundary
conditions were prescribed at the main pulmonary artery (the
inlet), and fixed pressure boundary conditions were imposed at
each outlet of the 3Dmodel, when not coupled to the 1Dmodel. A
mesh dependence analysis on the 3D model was performed to
ensure that the mesh resolution does not affect the final results.

To estimate WSS on the pulmonary vasculature, a quantitative
metric was chosen that is considered to be independent of the 3D
model reconstruction Kheyfets et al. (2015). The WSS magnitude
is averaged over the luminal surface (S) of the 3D geometry to
define a spatially averaged wall shear stress (SAWSS)

SAWSS � 1
A
∫∫
S

WSS zS, (1)

where A is the total surface area of the luminal surface of
the mesh.

1D Network Flow Simulations
The 1D network flowmodel, that allows for a functional connection
between the macro- and micro-vasculatures is based on a compliant
electrical analogue described in detail by Clark et al. (2011b) This
model is available as an installable library within the lungsim library
of Aether.2 The model incorporates key features of extra-capillary
anatomy and blood flow, and employs a sheet flow model for the
pulmonary capillaries (derived by Fung Fung and Sobin (1969))
which includes the recruitment and derecruitment of capillary bed in
response to air and blood pressures. In each extra-capillary blood
vessel the relationship between blood pressure and blood flow ( _Q) is
described by a modified Poiseuille equation that accounts for the
impact of gravity on blood flow

ΔP � 128μL
πD4

_Q + ρbgL cos θ, (2)

where ΔP is the blood pressure drop along the length of the vessel,
μ is the viscosity of blood, L is the axial length of the vessel, D is
the diameter of the vessel, ρb is the density of blood, g is
gravitational acceleration, and θ is the angle the vessel
centerline makes with the direction of gravity. The
gravitational term is neglected in small intra-acinar vessels
where the resistance term dominates. A linear relationship
between transmural pressure (Ptm), defined as blood minus
extra-vascular pressure, is assumed with compliance constant
α Clark et al. (2011b); Krenz and Dawson (2003). In vessels with
D < 200 μm the extra-vascular pressure is defined as alveolar
pressure Yen et al. (1980), and in larger vessels, extra vascular
pressure is defined as local elastic recoil, which is assumed in this
model to vary linearly with gravitational height.

At the level of the capillary sheet, flow depends on the local
balance between blood and air pressures, consistent with West’s
West et al. (1964); West (1999) description of zones of capillary
flow in the lungs. With Ptm at this scale defined as blood minus air
pressure, we are able to define a capillary sheet height H across a
range of capillary recruitment conditions

H �
0, if Ptm < 0,
H0 1 + αcPtm( ) 0≤Ptm <PCU,
Hmax � H0 + αcPtm, if PCU ≤Ptm,

⎧⎪⎨⎪⎩ (3)

where PCU is defined as an upper bound for pressure beyond
which the sheet height remains constant. The relationship
between pressure and flow is then defined by

_Q � SA

μcfl
2
c

∫H3dPtm, (4)

where SA is the capillary surface area in any given sheet of
capillaries connecting arteriolar to venular circulations, μc is the
viscosity of capillary blood, f is a constant, lc is the average path
length between arteriole and venule within the capillary sheet.
Analytical relationships between _Q and P are derived in detail by
Clark et al. (2010) for conditions relevant to pulmonary capillary
perfusion. At each bifurcation in the 1D network, continuity of
pressure and conservation of flow (flow into a bifurcation equals
flow out) is prescribed. In the absence of coupling to the 3D
model, cardiac output is specified as a flow boundary condition at
the main pulmonary artery, and a pressure outlet condition is
imposed at the main pulmonary veins.

Coupling Method
There are two interfaces connecting the two domains at the
outlets of the left and right pulmonary arteries in this model
(Figure 1), however, any number of interfaces can be defined. At
each interface Γ a circle of Willis methodology is employed,
following Passerini et al. (2009). Coupling was achieved by
prescribing continuity of pressure and flow defined by

P1D � 1
|Γ|∫

Γ

p3Ddγ, _Q1D � −ρ∫
Γ

u3D.ndγ, (5)

where indexes 1D and 3D represent corresponding domains
(Figure 1B). γ represents an interface surface segment and u
and n are velocity and surface normal vectors.

To solve the coupled system, we solve the two systems
iteratively. There is a matching interface in the geometry at
the point of intersection between models, and simulations in
the 1D model are conducted with boundary conditions imposed
at these interface points. The 3D model is simulated by
prescribing a boundary condition ( _Qinlet) and pressure-outlet
boundary conditions (Pi, where i is the number of outlets in the
3D geometry, or interfaces). Solution of 3D governing equations
yields corresponding outlet flows ( _Qi). These flows are passed to
the 1D network as inlet flow boundary conditions, and the 1D
network solution is obtained. The 1D solution yields corrected
pressure values (P1

i ) that are passed to the 3D model as outlet
boundary conditions for the second coupling iteration, and so on.2https://github.com/LungNoodle/lungsim
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Additionally, at each coupling iteration, the corrected pressure
and flow are regularized using an under-relaxation factor

Pi1D
k+1 � λPi3D

k + 1 − λ( )Pi1D
k, and,

Qi1D
k+1 � λQi3D

k + 1 − λ( )Qi1D
k,

{ (6)

where λ is the under-relaxation factor, i is the interface index, and
k is the coupling iteration number between domains. The solution
procedure is illustrated in Figure 2.

Coupling Convergence
Convergence is assumed to have been reached when the pressure
and flow at the interface branches are within a specified tolerance
between two coupling iterations. Continuity at the 1D-3D
domain interface between iterations was used to define error.
If we define ϵ, which is a user-defined tolerance, to be the error
threshold for convergence, the solution is converged when�������������

∑
i

Pk
i − Pk−1

i( )2
√

≤ ϵ, (7)

is satisfied, with Pk
i being the pressure at interface i after the kth

iteration. Here, ϵ is chosen to be 0.1 Pa which is the cumulative
error allowed at both interfaces. This threshold ensures that the
error is computationally acceptable compared with typical
pressure values at this scale (≈2000 Pa in healthy, and higher
in hypertensive scenarios).

Model Parameterization and Simulations
Conducted
We conduct simulations to assess the behavior of the model under
two primary perturbations: 1) the effect of cardiac output within a
physiological range, and 2) the effect of posture. Simulations were
conducted with boundary conditions at the main pulmonary artery
reflecting a mean volumetric flow of 4, 4.8 and 5.6 L/min, in each of
zero gravity, prone, supine and upright postures. Primary output
metrics were the distribution of acinar perfusion, and SAWSS in the
major pulmonary vessels (the main pulmonary artery and the left

and right pulmonary arteries). Model parameters and key
geometrical features of the model are given in Table 1.

Results are presented first for the non-coupled 1D model (as
presented in Clark et al. (2011b)), and 3D model (full CFD model
in major arteries with fixed pressure boundary conditions) to
understand non-linearity in the two systems. Then, the full model
is presented as the coupled model, to analyze how whole lung
perfusion simulations behave. The zero gravity (0g) coupled
model can be interpreted as aligning with existing CFD
strategies which assign resistance to outlets depending on the
size of these vessels, or estimates for downstream resistances such
as structured trees, as they represent the downstream resistance
based on anatomy but in the absence of gravitational factors.
Comparisons of CFD behaviors against data from the literature
are provided in Supplementary Section S1.

RESULTS

Mesh Independence
Table 2 shows mesh quality and changes in key output metrics
(mean pulmonary artery pressure (mPAP), right pulmonary artery
flow (RPA flow), left pulmonary artery flow (LPA flow) and SAWSS)
for assessment of mesh independence of solutions. In total, six
differentmesh densities were generated to assessmesh independence
of themodel. For cell numbers > 199268 changes in each key output
metric with further mesh refinement were < 2% and so this mesh
density was selected for further simulations.

Flow-Pressure Relationships of 1D and 3D
Model
The 1D and 3D models were first analysed independently to
understand the effect of geometry on the flow-pressure
relationship (Figure 3). The 1D model was solved under
baseline parameterization and the pressure differential between
the inlet and the outlets to the 3Dmodel was reported, and the 3D
model was solved first with fixed and equal pressure boundary

FIGURE 2 | A schematic illustrating the methodologies employed in this study to couple 3D computational fluid dynamic simulations to 1D perfusion in a network
model incorporating the multiple scales of function that are important to blood flow in the lungs.
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conditions at the outlets, and again with a 10 Pa pressure
differential between LPA and RPA to establish an asymmetry
in the model. Both models show non-linear behavior, with the 3D
model exhibiting relatively small changes in pressure with
increases in flow at low flow rates than at high flow rates. The
1D model shows a flattening off of the relationship between flow
and pressure at high flow rates.

When the 1D and 3D models are solved independently, each
model also predicts a different distribution of blood flow between
LPA and RPA. The 1D model is dominated by downstream
effects due to vascular anatomy, capillary recruitment and gravity,
and as such across all postures that were simulated, 46.2%–46.9%
of flow is predicted to flow to the LPA. In the 3D model,
52.5%–53.2% of the flow is predicted to go through LPA

under equal pressure boundary conditions and 28.2%–43% of
the cardiac output flows through the LPA under a 10 Pa pressure
difference between LPA and RPA outlets, depending on the
cardiac output value. This is because the 3D model flow and
pressure drop are affected primarily by geometrical detail such as
curvature at the bifurcation. This difference between the 1D and
3D model predicted flows simply shows the importance of
capturing subject-specific large scale effects into network
models of pulmonary perfusion, and vice versa.

Macro-Scale Blood Flow
The coupled model integrates macro-scale flow dynamics from
the 3Dmodel with perfusion in smaller blood vessels from the 1D
model. This leads to a physiologically meaningful impact of

TABLE 1 | A description of model parameters, and geometric features of the 3D model. The parameterization of the 1D network model is described in detail by Clark et al.
(2011b), with key parameters outlined here.

Parameter Description Value References & Methodology

A 1D extra-acinar compliance (Pa−1) 1.49 × 10−4 Krenz and Dawson (2003): Derived from 26 studies of distensibility across species
ρb Blood density (kg/m3) 1050 Pries et al. (1996): Population average across in vitro studies
M Blood viscosity (Pa/s) 0.0035 Pries et al. (1996): Population average across in vitro studies
μc Capillary blood viscosity (Pa/s) 0.0019 Fung (1984): Combination of in vitro measurements and theoretical derivation
G Gravitational acceleration (m/s2) 9.81
SA Total capillary surface area (m2) 65.4 Gehr et al. (1978): Population average derived from electron microscopy
αc Capillary sheet compliance (m/Pa) 1.3 × 10−9 Sobin et al. (1979): Estimate from photomicrographs in ex vivo cat lung
F Numerical factor (no units) 21.6 Fung and Sobin (1972): Theoretical estimation
lc Average pathlength from arteriole to venule (m) 1186 × 10−6 Zhou et al. (2002): Theoretical estimation
H0 Unstrained capillary sheet height (m) 3.5 × 10−6 Sobin et al. (1979): Estimate from photomicrographs in ex vivo cat lung
Hmax Maximum capillary sheet height (m) 7.7 × 10−6 Sobin et al. (1979): Estimate from photomicrographs in ex vivo cat lung

Strahler diameter ratio (arteries) 1.52 Huang et al. (1996): Fit parameter to produce geometry consistent with vascular casting
Strahler diameter ratio (veins) 1.56 Huang et al. (1996): Fit parameter to produce geometry consistent with vascular casting
Main pulmonary artery area (m2) 7.72 × 10−4 Derived from CT.
Left pulmonary artery area (m2) 3.77 × 10−4 Derived from CT.
Right pulmonary 3.54 × 10−4 Derived from CT.
3D geometry volume (m3) artery area (m2) 7.967 × 10−5

Number of 1D vessel elements 153396 Output from meshing
Number of interfaces between 1D and 3D 2 User defined
Number of acinar units 30676 Output from meshing, consistent cwith vascular casting Huang et al. (1996)

TABLE 2 |Mesh quality and independence metrics. Quality metrics are: Number of faces on vessel wall, Maximum cell orthogonality for each mesh, average orthogonality of
cells and maximum cell skewness. Key output metrics are: Mean pulmonary artery pressure (mPAP), right pulmonary artery flow (RPA flow), left pulmonary artery flow
(LPA flow) and spatially averaged wall shear stress (SAWSS). Percent differences from the most refined mesh (340056 cells) are also reported.

Number of
cells

26597 95081 151469 199268 270686 340056

Number wall faces 4178 12035 17421 21645 28151 34345
Average area of s single wall cell (mm2) 0.029 0.0081 0.0051 0.0039 0.0029 0.0023
Maximum orthogonality 64.49 64.87 64.27 64.69 64.62 64.49
Average orthogonality 9.31 7.32 6.60 6.38 6.21 6.19
Maximum skewness 2.85 3.06 2.83 2.72 2.69 2.70

mPAP (Pa) 2213.0 2211.5 2212.8 2211.8 2211.9 2211.9
mPAP (% difference from refined mesh) 0.05% −0.02% 0.04% −0.005% 0.001% —

RPA flow (L/min) 2.629 2.641 2.711 2.645 2.646 2.645
RPA flow (% difference from refined mesh) −0.60% −0.15% 2.50% −0.002% 0.04% —

LPA flow (L/min) 2.171 2.159 2.089 2.155 2.154 2.155
LPA flow (% difference from refined mesh) 0.74% 0.19% −3.06% 0.03% −0.04% —

SAWSS (dyne/cm2) 5.29 5.58 5.72 5.85 5.94 5.96
RPA flow (% difference from refined mesh) −11.2% −6.38% −4.03% −1.85% −0.34% -
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gravity arising in the model across scales which is unique to this
coupled system. Figure 4 shows the proportion of the cardiac
output that enters the right and left lung in simulations of zero
gravity (0g), and in 1g in prone, supine, upright and right-lateral,
all with a fixed cardiac output of 4.8 L/min. For reference, in this
model the right lung comprises 52.5% of the total lung volume.
When model posture is altered there is a redistribution of blood,
due to gravitational distribution of lung tissue with respect to the
feeding vessels (that arise from the heart) and so the left and right
lung flow balance is altered. This redistribution is to the left lung
in prone, the right lung in supine and the left lung in left-lateral
postures. Trends predicted by the model are consistent with data
illustrating left-right flow distribution in the lungs derived from
magnetic resonance imaging Wieslander et al. (2019). In zero
gravity simulations (and in the 1Dmodel presented by Clark et al.
(2011b)) flow is distributed between left and right lungs
proportionally to lung volume, with 53.5% of volumetric blood
flow to the right lung.

Flow velocity magnitude and streamlines redistribute
within the arterial lumen with posture (Figure 5). This also
translates to a redistribution of shear stress with posture
(Figure 6), with model predictions of shear stress differing
in the LPA and RPA due to their relative size, and flow
distribution shifts between the two lungs. Predicted RPA
shear stress is typically higher than LPA shear stress, and
assuming zero gravity simulations as a reference state (where
flow is distributed relative to volume), both the left and right
pulmonary arteries can exhibit shifts of up to 0.75 dyne/cm2

from this reference in between postures. The greatest shift
simulated occurs between a prone and right lateral posture
with a predicted difference of up to 1.35 dyne/cm2.

Acinar Scale Perfusion Distribution
The coupled model predicts hemodynamics across spatial scales
relevant to the lung. At the acinar scale, there is a known
gravitational gradient in perfusion that is important in the
matching of perfusion to ventilation. Figure 7 shows
gravitational gradients in perfusion predicted by the coupled
model in zero gravity, and under 1g in prone, supine
(typically imaged) and upright (typical functional) postures at
a fixed cardiac output. Comparisons with the same measures
predicted by the 1D model and across different cardiac outputs
are presented in Supplementary Section S2. Parameters for the
right lateral posture are not reported as in this case the entire left
lung is non-dependent tissue, and so gradients over the
gravitational height become dependent on the lung in
question. All predicted perfusion distributions are consistent
with the previous model of Clark et al. (2011b), with
gravitational gradients (G) in perfusion ranging from 6.80%/
cm to 9.10%/cm and coefficient of variation (COV) ranging from
33.3%–47%. These ranges for G and COV have previously been
shown to be consistent with imaging studies, when analysed on a
spatial scale typical of imaging (e.g., the voxel size in magnetic
resonance imaging) Clark et al. (2011b). The coupled model
predicts physiologically consistent changes with cardiac output,
that is a decrease in G as the gravitationally non-dependent lung
vasculature is recruited, and a consistent decrease in COV as
perfusion becomes more uniform over the height of the lung.

In general, the coupled model predicts a more heterogeneous
distribution of perfusion within the lung than the 1D model
previously presented by Clark et al. (2011b). This is due to the
balance between resistive properties of the two scales of the model
which results in a redistribution of blood flow between the two
lungs in the 3D compared with the 1D model. Figure 8 illustrates
the change in the predicted standard deviation of perfusion with
gravitational height of the lung in the coupled model compared to
the previously published 1D model Clark et al. (2011b). In zero
gravity and upright simulations, the left and right lung flow

FIGURE 3 | Flow and pressure relationships for the 1D and 3D models
used in this work. Pressure differential is defined as the difference in pressure
between inlet and LPA outlet. This differential is plotted versus inlet flow rate
with 3D model simulations on the primary and 1D model simulations on
the secondary axis. The pressure-flow association are different for the two
models, with the 3Dmodel dominated by a flow dependent resistance and the
1D model responding to resistance-compliance relationships.

FIGURE 4 | Percentage of total inlet blood flow (cardiac output) between
left and right lungs as predicted by the coupled model with a fixed inlet flow of
4.8 L/min. There is a predicted redistribution of flow with posture due to
gravitational effects.
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distributions are approximately equivalent to the relative volume
of the two lungs and so the two models predict a similar
heterogeneity in perfusion with gravitational height. However,
in the supine and prone lungs there is a redistribution of flow
meaning that the left and right lungs do not receive a relative flow
that matches their volume and so there is overall an increase in
heterogeneity as predicted in the 3D model compared to the
previously published 1D model. The effect is greater in the
gravitationally non-dependent lung which accommodates
increases in flow. As overall flow (cardiac output) increases to
one lung or the other, the distribution of flow in that lung
becomes more uniform, so the impacts of the coupling are
most apparent at lower cardiac outputs. In these cases, an
increase in acinar perfusion heterogeneity of up to 20% in the
coupled model compared to the 1D model is observed, indicating
the inter-connectedness between macro-scale and micro-scale
function.

DISCUSSION

In this study, we have presented an open-source methodology to
couple 3D macrovascular fluid mechanics simulations to an
anatomically defined 1D network model of the distal
vasculature to allow for multi-scale analysis of pulmonary
hemodynamic function. The inclusion of an anatomic network

model in this methodology provides unique opportunities to
connect the complexity of macro-vascular fluid dynamics with
a recruitable capillary bed West et al. (1964); West (1999), that
sits within a stratified acinar structure Read (1969b) that responds
to gravitational influences West et al. (1964); Hopkins et al.
(2007).

Computational fluid dynamics of the pulmonary circulation
has been used widely, particularly in the assessment of macro-
vascular wall shear stress due to its role in the development of
pulmonary hypertensive disease Bordones et al. (2018); Kheyfets
et al. (2015); Kong et al. (2018); Tang et al. (2012). As 3D
simulations do not typically cover the full vasculature, the
choice of outflow boundary conditions is critical, and can
significantly impact simulation accuracy Kheyfets et al. (2013).
Common boundary conditions employed in models of the
pulmonary circulation include zero traction, resistance, and
Windkessel (resistance-compliance) which can be adjusted to
account for subject-specific variability but do not capture the
anatomy or function of the distal micro-vasculature Kheyfets
et al. (2013). An alternative is the structured tree approach
Kheyfets et al. (2015), which uses an analytical approximation
for downstream resistance of each 3D model outlet to
characterize the expected pulmonary vascular resistance. This
is based on the area of the outlet vessel and expected change in
vessel cross-sectional area with generation in a typical pulmonary
vascular tree. These structured trees are typically based on the

FIGURE 5 | Flow velocity magnitude and streamlines predicted from the coupled model in different postures (A) zero gravity, (B) supine, (C) prone, (D) upright and
(E) lateral right. In these images the viewer is looking down (into the page) at the main pulmonary artery. Therefore in supine simulations gravity is acting downwards with
respect to the page, in prone simulations upwards, and in upright simulations into the page. The left-right shifts in blood flow distribution predicted in the model are
evident in the flow velocity magnitude.
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same morphometric data against which we have validated our
anatomic 1D network model Horsfield (1978); Huang et al.
(1996). However, they are not constrained by the shape of the
lung nor informed by the function of the recruitable capillary
beds in the lung. Zero gravity simulations in our model can be
considered as similar to the structured tree approach as they
estimate the downstream resistance based on extra-acinar
vascular branching and the volume of the lung that is fed by a
3D model outlet.

While the distribution of perfusion in the lung has been
simulated in whole lung models, these models typically
employ simplified fluid dynamics, assuming arteries to be
tubes within which flow is axisymmetric Clark et al. (2011b);
Burrowes et al. (2005).While these simplifying assumptions allow
for physiological predictions of perfusion within the lung which
can be coupled to predictions of gas exchange (Burrowes et al.
(2011b); Clark et al. (2014)), they do not hold in the largest
pulmonary blood vessels where the flow is complex. In
pulmonary hypertension, the flow patterns in the largest
pulmonary arteries can exhibit vortices Schäfer et al. (2017).
Disruptions to flow patterns due to bifurcations are also common
in these larger arteries that have relatively high Reynolds numbers
(see for example, Figure 5). These flow patterns introduce non-
linearities between the flow rate in the major arteries and their
resistance (flow dependent resistance, Figure 3). Flow dependent
resistance is not typically captured in simplified network models
of blood flow Clark et al. (2011b, 2014). Some models of airways

have included a quasi-empirically derived resistance correction to
account for this, but this correction is derived from
experimentation and computational fluid dynamics
simulations in representative geometries Pedley et al. (1970);
Swan et al. (2012). Direct simulation in larger arteries is
preferable to capture these effects in a patient specific manner.
In addition to non-linearities in 3D models, 1D network models
are typically also non-linear, due to their incorporation of
vascular compliance and capillary recruitment, which occurs
due to the balance of air and blood pressure at the acinar
level. Capillaries can be locally collapsed, recruited and
distended regionally in the lungs West et al. (1964); West
(1999). This leads to a relatively large increase in flow with
increases in pressure at low flows (as functional vascular bed
is recruited), which then flattens as compliant limits are reached
(consistent with whole lung pressure-flow relationships Burrowes
et al. (2011a)). Although some simplified boundary conditions
(e.g., Windkessel) can capture some of this non-linearity, the
model presented here does so with an anatomical and
physiological basis which can ultimately enable simulation of
patient specific disruptions to resistance and compliance in
conditions such as pulmonary hypertension.

Posture is an important consideration in assessing lung
function, and it can have important implications in diagnosis
and treatment of lung disease. For example, prone posturing has
been shown to improve gas exchange in conditions such as
respiratory distress syndrome Gattinoni et al. (2001), due to a

FIGURE 6 | SAWSS (in Pascals) defined in axial planes plotted versus axial distance for cardiac output 4.8 L/min at different postures. Due to presence of the
bifurcation, beyond an axial distance of approximately 0.04 m two curves are shown one for left and right. In each plot, results from 0g are shown for reference in gray.
The RPA WSS in general is greater than that in the LPA.
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redistribution of both ventilation and perfusion with gravity. In
pulmonary hypertensive disease, some of the expected
gravitational gradients in perfusion may be altered, as
remodeling of small arteries and localized occlusion of vessels
can lead to loss of vascular reserves and a more gravitationally
uniform flow distribution, along with more locally heterogeneous
blood flow Lau et al. (2014). The model presented in this study
allows for gravitational influences to be investigated, and opens
the door for studies that can investigate mechanisms of
disruptions to these effects in disease. Here, we have shown
that our coupled 3D-1D model can simulate changes in
macro-vascular flow dynamics due to posture, simultaneously
with predicting micro-vascular perfusion distribution. The
volume of the two lungs are not equal, and the right lung has
been reported to have 53.6 ± 1.5% of the total lung volume in
supine (53.3 ± 1.3% upright) Yamada et al. (2020) reported. This
is consistent with 0g simulations of flow distribution, albeit in a
single patient-based model, which is distributed in a manner that
is consistent with the differential in lung volume (53.4% to the
right lung). The distribution changes with simulated posture,
with the greatest flow to the right lung being in the lateral posture
(58.8% of volumetric flow) and the lowest flow to the right lung
being in the prone posture (50.5%) of volumetric flow. These re-
distributions are consistent with imaging studies, which also show

that with changes in posture, flow does not distribute
proportionally to lung volume Wieslander et al. (2019), who
showed on average 63% of flow distributing to the right lung in
right lateral posture, compared with 52% in prone and 54% in
supine. This redistribution of blood in our model is due to the
shape of the lung, whichmeans that in different postures there is a
different volume of “dependent” tissue (tissue in which blood
travels downward from the heart in the direction of gravity). Our
previously employed 1D model does not exhibit the same
physiological distribution of blood (see Supplementary Table
S1), and this shows that at the macro-scale flow distribution is
driven by both micro-vascular compliance-resistance
relationships and the resistance of the upper vasculature. The
left-right redistribution of blood with posture is also consistent
with trends for higher heterogeneity in perfusion when using
coupled model than a 1D model alone, which is consistent with
observed perfusion heterogeneity Clark et al. (2011b). The
dependence of blood flow distribution on posture does have
functional implications for predictions of wall shear stress in
computational fluid dynamics models, as imaged posture (usually
supine) may not always reflect functional posture (often upright).
We estimate that the effect of posture is likely to impact left and
right pulmonary artery wall shear stress predictions by
0.75–1.35 dyne/cm2, which are comparable in magnitude to

FIGURE 7 | Simulated relationships between acinar perfusion and gravitational height for 4.8 L/min cardiac output in different postures. In each case, the coefficient
of variation (COV) and the gravitational gradient (G) of perfusion is indicated. Panels show posture (A) zero gravity, (B) supine, (C) prone and (D) upright, subsequently.
The y-axis shows proportional height in the gravitational direction (cranio-caudal in upright, and ventral-dorsal in supine/prone). For zero gravity (0g), no gravitational
gradient is reported since without the presence of gravity this property cannot be defined, ventral dorsal height is plotted and other axes show similar results. Supine
and prone show opposite slope direction as the gravity direction is the same but posture is inverted.
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differences in time averaged wall shear stress predicted by
computational fluid dynamics in patients at risk for or with
mild pulmonary hypertension Pillalamarri et al. (2021). The
redistribution of left-to-right blood flow with posture in the
coupled model has implications for prediction of both flow
velocity profiles and wall shear stress in computational fluid
dynamics models of the major arteries. Most computational
fluid dynamics models, including structured tree models, in
essence assume a left-right flow distribution that relates to the
relative size of model outlets. Zero gravity simulations reflect
these conditions, however, the flow redistribution that our
coupled model provides demonstrates that shifts in posture
may be functionally important.

Assessment of pulmonary artery hemodynamics can be
achieved using imaging techniques such as 4D-cine magnetic
resonance imaging (CMRI) and functional magnetic resonance
imaging (fMRI). The availability of such imaging to diagnose
pulmonary hypertensive disorders can be an issue and also the
cost of running such tests can be a burden to some patients. While
these imaging modalities can help with understanding the state of
disease in some cases, a better understanding of pulmonary artery
hemodynamics obtained by computational fluid dynamics could
lead to greater insight in conditions such as pulmonary
hypertension and tetralogy of Fallot Hu et al. (2020); Schäfer
et al. (2017, 2019). Imaging studies of the proximal pulmonary
arteries have suggested a relationship between mechanical and
flow hemodynamic domains Schäfer et al. (2017). Changes in

WSS and viscous energy loss in MPA and RPA have also been
observed in disease Hu et al. (2020); Schäfer et al. (2019), and
models such as this could provide insight without the need to
collect a significant amount of data that can be expensive and
more time consuming. The ability of the presented model for
patient-specific investigation could provide insights into
hemodynamic assessment of both children and adults, where
changes in the micro-structure of the lung may influence macro-
vascular flow properties. This may occur differently in children
compared with adults, with studies suggesting that flow
hemodynamics goes through uniform changes in adults with
pulmonary arterial hypertension whereas the flow abnormalities
are more prevalent in children with pulmonary arterial
hypertension Schäfer et al. (2019).

The coupled model presented here provides a strength in its
prediction of both macro-vascular flow dynamics and micro-
vascular perfusion. This provides a strong framework for future
studies of the pathological lung, particularly in pulmonary
hypertension. In an acute form of pulmonary hypertension
(pulmonary embolism) network models have been used to
predict the impact of vascular occlusion on pulmonary
vascular resistance, and importantly on gas exchange function
Burrowes et al. (2011a,b); Clark et al. (2014). These studies show
that the location of a vascular occlusion (for example, does it
occlude a region that typically receives a relatively high flow due
to gravity?) impacts its functional importance, and that the
location of occlusion has differential impacts on vascular

FIGURE 8 | The change in standard deviation of acinar perfusion in simulations of the coupled 3Dmacro-scale model to a 1Dmicro-scale model compared to a full
1D simulation as previously published by Clark et al., 2011a. Simulated relationships are shown at different cardiac outputs (4 L/min, 4.8 L/min 5.6 L/min). The y-axis
shows proportional height in the gravitational direction (cranio-caudal in upright, and ventral-dorsal in supine/prone). For zero gravity (0g), no gravitational gradient is
reported. Standard deviation in different postures is shows as (A) For zero-gravity, (B) supine, (C) prone and (D) upright.
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resistance and exchange. Pulmonary embolism can lead to a
chronic remodeling of the small pulmonary arteries, and
ultimately chronic thromboembolic pulmonary hypertension
(CTEPH), in which pulmonary vascular function becomes
impaired and heterogeneously distributed Lau et al. (2014).
Network models can simulate remodeling in CTEPH Colebank
et al. (2021); Ebrahimi et al. (2019, 2021); Qureshi et al. (2014).
However, without accurate coupling to macro-vascular models,
measurable changes in flow dynamics and shear stress in the
largest pulmonary arteries cannot be predicted. While we have
used 3D computational fluid dynamics here to predict flow in the
main, left and right pulmonary arteries, the methodology
employed here is transferable to 3D simulation across scales of
interest, for example to the level of segmental arteries. This could
provide new insights into the progression of pathologies such as
CTEPH in the future.

There are several coupling techniques that can be used to link
the large scale (3D) effects and network (1D) flows within a single
system. The coupling methodologies can be broadly divided into
manual or automatic depending on the method of data transfer
between models (one-way or two-way depending on whether
both systems mutually influence each other or not). Passerini
et al. (2009) proposed a method to simulate the blood flow in the
circle of Willis in the brain, which assumed a rigid 3D domain
and a compliant 1D model for their biological vessel domains. A
Dirichlet-Neumann type mapping of vascular impedance was
presented in Vignon-Clementel et al. (2006). A coupled 3D-1D
model was first introduced by Formaggia et al. (1999) and
followed up by Formaggia et al. (2001, 2002); Urquiza et al.
(2006). A number of studies have taken coupling 3D compliant
models with a reduced 1D model approach Formaggia et al.
(1999, 2001); Urquiza et al. (2006). Their approach included
maintaining a continuity of a hemodynamic quantity (flow rate or
pressure) at the interface of two models. Blanco et al. (2007)
introduced a novel method using variational formulation to
minimize the error caused by dimension mismatch in the
coupling. Our approach aims to reach an optimal compromise
between computational cost and model accuracies across spatial
scales.

To demonstrate the methodology we simulated 3D blood flow
in the main pulmonary artery and the left and right pulmonary
arteries. The number of generations modeled explicitly in CFD
studies of the pulmonary arteries ranges from two Bordones et al.
(2018); Capuano et al. (2019) to approximately 6 or 7 generations
Kheyfets et al. (2015); Tang et al. (2011, 2012). The choice of
upper artery CFD geometry depends on the application of the
model, and influences simulation time. Although the
methodology presented here is applicable to any number of
generations in a 3D model, the primary aim of this study was
to investigate the distribution of blood flow and wall shear stress
predicted by a CFD model coupled to a 1D model that includes
the effects of gravity and anatomy. The largest effects in flow
distribution are expected to be at the left/right lung scale
Wieslander et al. (2019), and flow dependent disruptions are
expected to be most significant in the main, left and right
pulmonary arteries Schäfer et al. (2017). Capuano et al. (2019)
demonstrated that including additional bifurcations to a CFD

model of the main pulmonary trunk did not significantly impact
predicted flow distributions in the main, left, or right pulmonary
arteries. Therefore, a two generation model was appropriate for
this application. With this choice of geometry our model is able to
be solved on a Desktop computer (Intel(R) Core(TM) i7-7700
CPU @ 3.60 GHz and 32GB RAM), with the 3D CFD model
taking approximately 40 min to solve with parallelization on 4
cores, and the 1D model taking approximately 20 min to solve.
These solve times can be reduced by using parallelization on high
performance computers, and by choosing realistic initial
conditions for simulations (for example, as the model
approaches convergence, simulations from one iteration can
initialize the next). Both 1D and 3D models must be solved at
each coupling iteration, however, under normal parameterization
this is well within normal solution times for CFD models (e.g.,
times cited by Tang et al. (2012)), with 25–30 iterations typically
required for convergence.

Subject specificity is incorporated into the model via 1) a 3D
description of the largest blood vessels, 2) a representation of
branching architecture and vascular dimensions in vessels that
can be resolved in CT (to one generation beyond the segmental
level), and 3) in lung shape and volume. In participants with normal
lung function patient-specific boundary conditions are difficult to
derive as invasive clinical procedures are infrequent Kheyfets et al.
(2015). However, in future studies of pulmonary hypertension
inflow boundary conditions could be derived from clinical data
including catheter measured flow and pressure profiles Tang et al.
(2012), ultrasound Su et al. (2012), or magnetic resonance imaging
Tang et al. (2011). An “atlas” based approach Capuano et al. (2019),
may also be well-aligned with our modeling methodology. In this
approach, statistically derived 3D models of the lungs and their
vasculature could be applied with a range of typically measured
boundary conditions in cohorts of patients, to understand variability
in pulmonary function between groups, without the need to solve
patient specific models for each participant in a large cohort.

The model assumes Newtonian behavior of the blood flow in the
large arteries in both 1D and 3Dmodels where the shear thinning of
blood have no substantial impact, and hence blood viscosity is
thought to be constant and irrespective of vessel radius. This
assumption is applied in other studies, which have supported the
assumption that the effects of non-Newtonian fluid on
hemodynamics in the major pulmonary arteries are negligible
Gao et al. (2013); Cho and Kensey (1991); Perktold et al. (1991).
Non-Newtonian effects in the micro-vasculature are incorporated
simply via an effective viscosity that depends on blood vessel size in
the acinar structures Clark et al. (2011b). Our model also neglects
vessel distensibility in the 3D geometry. In the steady state system
that we simulate here, transmural pressure in the macro-vasculature
is relatively consistent, and we do not consider the oscillations of
blood pressure over a heart beat. Given that the CT imaging is
acquired in vivo (at physiological pressures and volumes - 50% of
vital capacity), this assumption of a rigid macro-vasculature is
reasonable. However, more complex fluid structure-interaction
models may improve accuracy in the future. A further
improvement to the model would be the inclusion of transient
changes in the vasculature. Passerini et al. (2009) developed a
transient model which included a rigid macro-vasculature and a
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compliance-resistance model representing the distal blood vessels in
the cerebral vasculature. The rigid vessel assumption could cause
mismatch in coupling systems in the transient case, which could be
addressed in a similar manner to assess WSS over a heart cycle,
perhaps coupled to pulsatile corrections to our 1D steady state
network model presented here Clark and Tawhai (2018). Previous
CFD studies have suggested that the error in predicted spatially
averaged WSS from static versus pulsatile simulations is small
Kheyfets et al. (2015). However, pulsatile simulations in the
future would provide important insights into dynamic changes in
the circulation, which may play a role in response to disease
Ebrahimi et al. (2021).

In this study, we introduce a novel 3D/1D coupled model of
the pulmonary circulation that operates as a patient-specific
model to investigate hemodynamics. An advantage of this
model is having an anatomical 1D tree downstream of 3D
which makes it provides a subject-based boundary condition
to the 3D model. This model has the potential to be applied on a
patient-specific manner to interrogate the effects of disease
downstream on the upper vasculature. A further advantage of
this model is its ability to simulate WSS in the upper vasculature
in health and disease under different conditions such as posture
and cardiac outputs. The model is designed to provide insights
on the pulmonary vasculature to enhance the understanding of
disease and help with clinical decision making.
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Why Hearing Aids Fail and How to
Solve This
Ruedi Stoop*

Institute of Neuroinformatics, University and ETH of Zürich, Zurich, Switzerland

Hearing is one of the human’s foremost sensors; being able to hear again after suffering
from a hearing loss is a great achievement, under all circumstances. However, in the long
run, users of present-day hearing aids and cochlear implants are generally only halfway
satisfied with what the commercial side offers. We demonstrate here that this is due to the
failure of a full integration of these devices into the human physiological circuitry. Important
parts of the hearing network that remain unestablished are the efferent connections to the
cochlea, which strongly affects the faculty of listening. The latter provides the base for
coping with the so-called cocktail party problem, or for a full enjoyment of multi-
instrumental musical plays. While nature clearly points at how this could be remedied,
to achieve this technologically will require the use of advanced high-precision electrodes
and high-precision surgery, as we outline here. Corresponding efforts must be pushed
forward by coordinated efforts from the side of science, as the commercial players in the
field of hearing aids cannot be expected to have a substantial interest in advancements into
this direction.

Keywords: hearing network physiology, hearing aids, listening process, source separation, cochlear embedding,
hair cells innervation

INTRODUCTION

Comparing vision with hearing demonstrates that humans depend as much on auditory as on visual
inputs. The compensation of corresponding sensory deficits is, at least in milder cases, much simpler
and more successful in the visual domain (glasses and lenses) than in audition.

To improve hearing, in extension of the hollow hand, humans used early on animal horns and
hallow bones, cf. Figure 1. Later on, these solutions were succeeded by more efficient ear trumpets,
made of metal. All of these remedies worked via the bundling of the arriving sound waves at the level
of the outer ear. As is shown by the limited influence of the outer ear on the hearing threshold, see
Figure 2, this strategy is able to contribute to speech and sound intelligibility only to a limited extent.

Whereas weakness in visual focusing can be compensated by optical glasses, a convincing idea of
how to cope with corresponding problems in the auditory field seems to be still missing. Present
outer-ear artificial hearing aids, as well as inner-ear cochlear implants, have not yet made any serious
attempt to restore the active processes that are naturally involved in biological hearing. Digital
hearing aids use computer chip technology to convert sound waves into digital signals, which opens
the road to complex input signal processing. As most hearing aid users value speech intelligibility as
their top priority, speech enhancers, directional microphones, and noise and feedback cancellation
come standard with top-of-the-line hearing aids, helping their users to hear speech even in loud and
noisy environments. Among the biggest achievements presented, they process auditory signals
according to input volume: Soft speech is made audible, while loud speech is kept comfortable. These
implemented capabilities are mostly helpful if an intrinsically useful signal (e.g., speech) is to be
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separated from an intrinsically un-useful disturber (e.g., noise).
As soon as we deal with several signals of potential similar
importance (e.g., two speakers), the task becomes a difficult
one. Regarding a separation of individual voices from a
mixture of voices (the so-called cocktail problem), as well as
regarding the perception of music, the results remain to be rather
limited, if compared to the human faculty.

EMOCS AT THE HEART OF ARTIFICIAL
HEARING AIDS PROBLEMS

The heart of the problem that prohibits hearing aids from
making more substantial progress comes from two sides. The
most advanced hearing aids boast that, in contrast to
competitors, they start to distort by their processing input
only above 113 dB SPL “Combining this with a music
program that allows as little interaction as possible from the
more advanced features in the hearing aid, this higher maximum
input level allows musicians to enjoy music even in one of these
sophisticated hearing aids” (University of Colorado at, 2017;
Croghan et al., 2014). This hints at that digital filter and
amplification approaches applied to the input signal are too
complicated, and inefficient. For digital implementations of the
correctly understood nature of the inner ear (the cochlea),
neither this (see Figures 2, 3), nor the reproduction of all
salient features of human “psychoacoustic” hearing, are
difficult tasks (cf. Kern, 2003; Kern and Stoop, 2003; Stoop
and Kern, 2004a; Stoop and Kern, 2004b; Martignoli and
Stoop, 2010; Gomez and Stoop, 2014; Kanders et al., 2017).

As such a sensor can easily be combined with present-day
cochlear implant stimulation electrodes, the real challenge to be
solved is the cocktail-party problem. In current hearing aid
technology, directional microphones are still the top-notch
solution for this problem, although in the meantime methods
that use the properties of the sources have been demonstrated to
work extremely well (but come with some computational
demand). In one of these approaches (Kern and Stoop, 2011),

FIGURE 1 | Horns used as hearing devices. From (Kircher, 1673).

FIGURE 2 |Human hearing threshold. Black dashed vertical lines delimit
the proper frequency range of the Hopf cochlea model composed of 30
discretized sections of excitabilities (“Hopf parameters”) μ, centered around
decaying center frequencies CF (cf. text references for the model); red
vertical lines delimit the area of outer ear influence. Gray curves: data from
Zwicker’s publication Zwicker and Heinz, 1955, extrapolations thereof dashed.
Gray shading: observed human variability. Adapted from (Kanders et al., 2017).

FIGURE 3 | Close-to-biology small signal amplifier implementation, including subcritical tuning and influence of cochlear fluid (endolymph). Hopf cochlea covering
14.08–0.44 kHz with 20 sections; output at Section 5 (CF = 6.79 kHz), stimulation by pure tones. Numbers denote input levels in dB; CF: section’s central frequency. (A)
Response in dB, (B) gain in dB; a difference of 33 dB in peak gain for two input levels differing by 70 dB corresponds to observations in chinchilla (between 20 and 90 dB
SPL curves, 32.5 + dB (Ruggero et al., 1997)). (C) Tuning curves for fixed output levels. Numbers denote input levels in dB; CF: section’s central frequency.
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a speaker’s main sound properties are extracted using wavelet-like
filters and adapted to changing speech by the “matching pursuit
approach”. The work showed that deterministic signal features
can be exploited for signal separation of several voices under quite
general conditions, which reaches far beyond the noise-speech
issue handled by current-day hearing aids (Author Anonyms,
2022).

The core of this approach was borrowed from how
mammalian (and to a large extent more general: animal)
hearing is embedded into feedback loops telling the hearing

sensor what to listen to. The lack of an appropriate
embedding of the hearing aids into the natural sensory
network physiology is the main obstacle against arriving at
better hearing aids. The cochlea, the mammalian hearing
sensor, hosts in the case of humans at birth, on the order of
3,500 inner hair cells and 12,000 outer hair cells. Outer hair cells
amplify the shallow fluid surface waves into which the hearing
sensor has converted arial sounds after their arrival at the cochlea
(Kern, 2003; Kern and Stoop, 2003). Unfortunately, ageing and
inflammatory processes strongly affect—almost exclusively—the
outer hair cells in an irreversible manner; the inner hair cells that
pick up the amplified wave signals and relay them onwards to the
cortex, remain generally unaffected. Biological studies have
established that hearing is additionally embedded into several
neural loops. In the past, this has been described to great
physiological details in the works of Spoendlin (Spoendlin,
1966a; Spoendlin, 1966b), see Figure 4. Most of the current-
day’s drawings of the cochlear innervation details are based, often
without mentioning, on that work.

From these and ensuing physiological studies on, the purpose
of the eminent innervation of the organ of Corti by means of
efferent, almost exclusively inhibitory, connections has remained
an open problem. The general belief was that they could play a
role in the coding of the sound towards neural signals, cf.
(Spoendlin, 1966b). The main argument for the particular
innervation by efferent cochlear neurons appears to have been
that (quotes from Ref. (Spoendlin, 1966b)) “a great number of
even small inputs could generate and action potential at the initial
segment,” “the role of the efferent fibres for the coding of the
acoustic message at the level of the organ of Corti is not yet
entirely understood. The only directly demonstrated action is an
inhibitory effect on the afferent nerve impulses. This inhibition is,

FIGURE 4 | Mammalian listening circuit. Adapted from (Spoendlin, 1966b).

FIGURE 5 | Single Hopf amplifier response (Kern, 2003; Kern and
Stoop, 2003), describing the behaviour of outer hair cells with a preferred
frequency CF embedded into the basilar membrane. Frequency selectivity
regarding different distances μ ∈ { − 0.05, − 0.1, − 0.2, − 0.4, − 0.8} from
bifurcation point (showing slightly more asymmetry if compared to Figure 3).
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however, not very strong and it is hard to believe that such ab
extensive efferent innervation system in the cochlear receptor
would have only such a limited function. It is more likely that the
efferent fibres have a much more complex function than this

relatively restricted inhibition which can be measured. They
might influence the afferent impulses in a more qualitative
than quantitative fashion,” “Many different phenomena of the
auditory physiology might depend on the efferent innervation of

FIGURE 6 | (A) Biological vs. (B) artificial implementation of the hearing—listening circuit. Listening is a dedicated activity that requests and represents a particular
computational effort, involving “EMOCS” (efferent medial olivocochlear stimulations), adapted from (Kern and Stoop, 2011).

FIGURE 7 | EMOCS effects: (A)Gain isointensity curves at Section 5 (fch = 1.42 kHz) without (solid lines) and with (dashed lines) EMOC input. From flat tuning (μ =
−0.1 for all sections, EMOC stimulation is implemented by shifting to μ5 = −1.0 ( − 80 and − 100 dB lines collapse). (B) Upon 16 and (C) 19 kHz pure tone EMOCS,
implemented by a shift from a flat tuned cochlea from μ2 = −0.05 to μ2 = −0.5, BM levels at Section 2 (fch = 16.99 kHz) shift from open circles to full circles. Insets:
Corresponding animal experiments (Russell and Murugasu, 1997).
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the cochlea. However, only a few have been directly demonstrated
hitherto as for the adaptation phenomenon,” “As long as these
coding mechanisms can not be simulated, an artificial cochlea will
only provide a very rudimentary function”. After Spoendlin, this
view persisted, in essence, until today.

HOW EMOCS WORK

In our view, these loops, however, foster the biological need of
mammals to identify a large spectrum of pre-defined relevant
signals as follows. Mathematically, the properties of the outer
hair-cells can be represented by dynamical systems that are close
to a Hopf bifurcation and act as small-signal amplifiers

FIGURE 8 | Sounds of a cornett and a flute (left) at the same fundamental
frequency f0, superimposed (right), static case.

FIGURE 9 | Sound separation, dynamic case, where the target instrument changes the height of the generated tone: (A) Tuning patterns, dynamical case. Colors
indicate the Hopf parameter values of the sections. Left: Cornett vs. flute (disturber). Right: Flute vs. cornett (disturber). (B) TE for the two target signals of (A). Flat tuning:
black; μ-tuning: red. Full: cornett target, dashed: flute target. Arrows indicate improvements by EMOCS. (C)NSACF, NACF for the two target signals of (A,B) at a chosen
target ground frequency. Flat tuning: black, μ-tuning: red, target signal: blue. Targets at 392 Hz, disturbers at 2,216 Hz. After Ref. (Gomez et al., 2014).
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(Derighetti et al., 1985; Wiesenfeld and McNamara, 1985;
Wiesenfeld and McNamara, 1986; Camalet et al., 2000;
Eguíluz et al., 2000; Duke and Jülicher, 2003; Kern, 2003; Kern

and Stoop, 2003; Magnasco, 2003). Systems close to a Hopf
bifurcation not only depend on the input strength and
frequency of the stimulating signal, but also on how close the
system actually is to the Hopf bifurcation (whereas in the
concurrent approach of Refs. (Eguíluz et al., 2000; Magnasco,
2003), this point was left open, in Refs. (Camalet et al., 2000; Duke
and Jülicher, 2003), systems were required to be poised exactly at
the bifurcation point). The distance to the bifurcation point is the
main element that rules the amplifier’s specificity, see Figure 5.
Moreover, this feature provides the access point for the
embedding of the sensor into the physiological network.

There is strong biological evidence that EMOCS (efferent
medial olivocochlear stimulations) regulate the Hopf elements’
distances to the bifurcation point, see Figure 6, most likely in a
stronger manner than originally anticipated by Spoendlin.
Activated EMOCS drive the system away from the bifurcation
point, exerting in this way an inhibitory effect on the targeted
Hopf amplifiers, see Figure 7. Changed individual amplification
entrains striking effects at the level of the whole sensory organ. A
recent work (Stoop and Gomez, 2016) focused on the excitation
network from the nonlinear interaction of excited amplifiers
generating combination tones. It was shown that under
absence of EMOCS, signals of two complex tones of random
amplitude and frequency, generated “activation networks” with

FIGURE 10 | TE improvement by μ-tuning, static case. (A) Frequency spectrum at Section 8 (CF = 1964 Hz). Blue: Flat tuning (−80 dB, target cornett f0 = 392 Hz,
disturber flute f = 2,216 Hz). Cross-combination tones (CT, two explicitly labeled) between the flute’s fundamental f and higher harmonics of the cornett are clearly visible.
Red: Optimized tuning. f (flute) and cross-combination frequencies are suppressed, leaving a harmonic series of the target (small arrows). (B) Averaged TE over 13
different fundamental target frequencies (steps of 1 semitone) demonstrates input amplitude independence. Blue lines: flat tuning. Red lines: optimized μ-tuning.
Left panel: (full lines) target sound cornett (277–554 Hz), disturbing sound flute (at 277 Hz); (dashed lines) same target but flute at 2,216 Hz. Right panel: same
experiment with target and disturber interchanged. TE improvements: arrows in (B). From (Gomez et al., 2014).

FIGURE 11 | Cochlear hair-cells innervation.
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the size s of links being distributed according the typical critical
branching network paradigm (exponent a = 3/2, at − 60 dB input,
the typical strength of human speech). Stronger input ( − 50 dB)
yields distributions that are typical for supercritical states,
whereas upon EMOC activation, the distributions change into
a subcritical shape. This reveals that at the most relevant working
condition, the system’s information-receiving predisposition is at

criticality, whereas listening (implemented by means of EMOCS)
is characterized by subcritical states (Lorimer et al., 2015).

LISTENING TO SOUNDS

In the following we demonstrate how EMOCS represent the
faculty of listening at the biological level. For this, we reinterpret
earlier results (Gomez et al., 2014) on sound separation from
mixtures of sounds, see Figure 8.

To achieve separation, the listening process fosters a
previously identified subset of amplifiers, disposing amplifiers
that are not associated with the desired signal. This process is
implemented in biology with the help of information from the
brain, mediated by means of EMOCS: Nerves leading from the
brain to the cochlea via medial olivocochlear stimulation suppress
the efficacy of the targeted cochlea sections by, technically
speaking, pushing corresponding Hopf amplifiers further away
from their point of bifurcation, cf. Figure 4. The correctness of
this translation from biology to the model has, we re-iterate, been
fully corroborated by the available data from the biological effects
by EMOCS in Figure 7.

In Figure 9 we report the result of our biomorphic
implementation of the listening process, where in subpanel a)
we show how the tuning of the amplifiers changes, as the target
object, the musical organ, increases its fundamental frequency in
time. To assess how close we arrive to the target, we use our

tuning error measure TE that has the expression TE(x, y) �
‖norm.(∑i

ACF(fi(x+y)))−NACF(x)‖2
‖norm.(∑i

ACF(fi(x+y)))−NACF(y)‖2, where fi denotes the output at

section i of the cochlea and the summations extend over the
N sections. NACF is the full normalized summary autocorrelation
function accounting for all sound characteristics such as e.g.,
timbre); to measure how strongly a mixture of two input sounds
x, y, is biased towards component x, we use the Euclidean distance
between the full mixture’s NACF (“NSACF”)and the target signal
x’s NACF, divided by the Euclidean distance between the full

FIGURE 12 | Effects of signal coupling. Response of N = 10 systems, characteristic frequencies distributed around 200 Hz, to a test signal of amplitude − 60 dB.
(A) Uncoupled, μ = −0.2, (B) signal-coupled (blue: μ = −0.3, red: μ = −0.2), exhibiting a coherent and sharply tuned response around fc ≃ 200 Hz. From (Gomez et al.,
2016).

FIGURE 13 | Proposed solution of the listening problem: Using a
recording array for the efferent signals to the cochlea (1), the Hopf cochlea (2)
is tuned away from the “flat” (i.e., normally distributed μ’s) according to the will
of the listener. The tuned amplified signal is then sent to the stimulation
electrodes (3) of inner hair cells (4). In the recording unit (1), the efferent nerves
are grouped according to their frequency response and subject to the micro-
surgical limitations.
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mixture’s NACF (“NSACF”) and the undesired signal y’s NACF.
TE values are between 0 and ∞, where TE = 0 indicates a perfect
focus, and a larger TE is a less successful target focus. If one source
dominates the mixture, then even before tuning, TE values below
unity may emerge. The results displayed in panel b) demonstrate
the implemented processes’ efficacy also for time-varying target
signals. For fixed target ground signals, panel c) demonstrates
how close we get in terms of NACF (red) to the target signals
(blue). More information can be extracted by scrutinizing the
static case at the level of the signals’ spectra, evaluated at variable
signal strengths, which exhibits how EMOCS succeed in
suppressing in particular the combination tones among the
two signals, see Figure 10A). Also upon a variation of the
input amplitudes of the two signals, the tuning errors remain
small (see Figure 10B).

A second principle that comes to the aid of the EMOCS is the
particular efferent innervation within the cochlea, see Figure 11.
The particular arrangement of the innervation of out hair cells
expresses a feedforward signal-coupling scheme that has been
analyzed in Ref. (Gomez et al., 2016), with the result that such an
arrangement fosters a collective signal-sharping, as is
demonstrated in Figure 12. Such a signal sharpening may
explain the surprising frequency discrimination (Spoendlin,
1966b) of the mammalian hearing sensor. To exhibit this, we
consider two frequency-rescaled unforced Hopf systems that
interact via their output signals (i.e., perform a “signal-
coupling”), which yields d

dtz1 � ω1(μ + i)z1− | z1|2z1 + g21

2 z2,
d
dtz2 � ω2(μ + i)z2− | z2|2z2 + g12

2 z1, where ω1, ω2 are the
characteristic frequencies of the systems and gij captures the
coupling from system i to system j; the factor of 1/2 facilitates
the generalisation to the N systems used for Figure 12, where we
can see that signal-coupling leads to a sharpening of the response.
In our biomorphic model, the corresponding signal sharpening is
comprised in the degree of compartimalization of the cochlea
combined with appropriately chosen tuning parameters μ.

A Program for Solving the Listening
Problem
For the implementation of the full physiological hearing circuitry,
we propose to use a recording array for the efferent signals to the
cochlea, that will serve to tune the Hopf cochlea away from the

“normally” distributed μ’s (that decay slowly along the cochlea,
see (Gomez and Stoop, 2014; Kanders et al., 2017)), reflecting in
this way the will of the listener to focus on the remaining signal
part. In the recording unit, the efferent nerves are grouped
according to the intrinsic biological resolution modulo the
available micro-surgical possibilities. The grouped signal then
modifies the Hopf cochlear amplification such that the input
signal to the cochlea is selectively amplified in the described
manner, whereupon it is sent towards the stimulation electrodes
of the inner hair cells, see Figure 13. With such a setting—that we
hope to be feasible in the near future—hearing could become fully
restored, reconciling the limitations of present-day hearing aids.

Conclusion
Our work opens a perspective towards the development of more
adequate cochlear implant hearing aids, responding to the
listener’s desire for the selection of particular sounds. This is
of importance for the cocktail party problem as well as for
listening to many-instrumental music. With the recognition of
the physiological network that hearing is embedded in, and with
the proper re-embedding of the biomorphic Hopf cochlea (Stoop
et al., 2008) into this physiological network, we can reach far
beyond of what is presently achievable by present-day hearing
sensor technology. The task to achieving this in the near future
should, however, preferentially not be delegated the hearing-aid
industry, as the latter cannot be too much interested in the
corresponding shift from digital engineering to high-precision
micro-surgery, required for the embedding of the sensor into the
physiological network of hearing.
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In this paper, we studied the time-domain irreversibility of time series, which is a

fundamental property of systems in a nonequilibrium state. We analyzed a

subgroup of the databases provided by University of Rochester, namely from

the THEW Project. Our data consists of LQTS (Long QT Syndrome) patients and

healthy persons. LQTS may be associated with an increased risk of sudden

cardiac death (SCD), which is still a big clinical problem. ECG-based artificial

intelligence methods can identify sudden cardiac death with a high accuracy. It

follows that heart rate variability contains information about the possibility of

SCD, which may be extracted, provided that appropriate methods are

developed for this purpose. Our aim was to assess the complexity of both

groups using visibility graph (VG) methods. Multivariate analysis of connection

patterns of graphs built from time series was performed usingmultiplex visibility

graphmethods. For univariate time series, time irreversibility of the ECG interval

QT of patients with LQTS was lower than for the healthy. However, we did not

observe statistically significant difference in the comparison of RR intervals time

series of the two groups studied. The connection patterns retrieved from

multiplex VGs have more similarity with each other in the case of LQTS

patients. This observation may be used to develop better methods for SCD

risk stratification.

KEYWORDS

irreversibility, visibility graphs, heart rate variability, repolarization, kld

1 Introduction

Physiological systems, such as the human body, for example, are considered complex

(Seely and Macklem, 2012). Such systems use energy to build increasingly complex and

ordered structures. This ability of self-organization is related to the directivity of energy

flow and the irreversibility of the processes taking place (Costa et al., 2005). Healthy

organisms are believed to work under conditions that are far from equilibrium. Such states

are characterized by the production of entropy. This results from the fact that organisms

form an ordered structure during development, therefore, for the second law of

thermodynamics to be preserved, this process must be balanced by the production of

entropy (Seely and Macklem, 2012). There is also a hypothesis that the assessment of this
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production can be used to diagnose the state of dynamic

equilibrium of the organism (Seely and Macklem, 2012).

In physiology, the condition in which the stable conditions of

the internal environment of the body are maintained is called

homeostasis. To survive, the organism requires the maintenance

of an appropriate concentration of many quantities, such as

nutrients, oxygen concentration and various ions. In addition,

the maintaining of appropriate temperature and blood pressure

levels is required (Chladekova et al., 2012). There are gradients of

these quantities in the body, which are related to metabolism and

have a significant impact on the rate of production of entropy of

the system. In turn, it is known from statistical physics that this

rate is related to the irreversibility of the studied processes (Seely

and Macklem, 2012).

In the case of healthy and young organisms are characterized

by a greater complexity, related to the greater adaptability of such

organisms (Seely and Macklem, 2012). The decrease in the

possibility of self-organization, and, therefore, the decrease in

irreversibility over time, can be associated with aging of the

organism or may be due to diseases (Costa et al., 2005). Many

studies show that such a decrease may be associated with a

decreased heart rate variability (Seely and Macklem, 2012). In

statistical terms, a signal can be considered irreversible when its

statistical properties change after reversing the passage of time.

Different studies, e.g. (Jose and Taylor, 1969), have showed

that pharmacological blockade of cardiac autonomic control

reduces heart rate variability and increases its basal beating

rate in humans. This is due to autonomic control by both

sympathetic and parasympathetic nervous system and

dominant inhibition of cardiac pacemaker by the vagus

nerve in healthy humans. This natural rate of an

unperturbed sinus node is called intrinsic heart rate (IHR)

and it declines with age (Jose and Taylor, 1969; Opthof, 2000).

Assessing IHR may provide an insight into the pathological

mechanisms and help with antiarrhythmic therapies (Marcus

et al., 1990). The difference between IHR and mean HR defines

an operational range for neural and hormonal regulation. As

this difference diminishes in time, it is observed that heart rate

variability measures will also decline with age (Jandackova

et al., 2016).

Regarding the Long QT syndrome (LQTS), an inherited

proarrhythmic cardiac abnormality, the clinical target of our

research is not to simply diagnose the disease. There are simple

ECG-based methods to distinguish patient from healthy

individuals (Schwartz et al., 2012). We rather refer to the fact

that the patients with LQTS are more susceptible to develop fatal

cardiac arrhythmias (Mathias et al., 2013). It follows that LQTS is

a risk factor for sudden cardiac arrest (SCA) (Goldenberg et al.,

2011). The clinical goal of this study is to assess irreversibility in a

group that has an arrhythmic substrate (Vijayakumar et al.,

2014). This substrate is present in all LQTS patients, but its

severity is unknown. Risk stratification in this group will be a

difficult task which requires a prospective study.

On the other hand (Suboh et al., 2019), have shown that the

use of artificial intelligence (AI) algorithms can predict sudden

cardiac arrest from ECGs with up to 92% efficiency. This means

that the even a short ECG strip, and most notably the normal

sinus rhythm variability contains information about the

possibility of SCA. AI is usually non-conclusive, and it is

difficult to relate the results of its performance to the

measured parameters. Explainable artificial intelligence is

evolving (Samek et al., 2019), but the information it provides

is formulated in the feature space of the model, e.g., the

convolutional network, and not in the concept space of

traditional ECG or HRV analysis. However, the exceptionally

high success rate of the AI methods convinces that there is reason

to study individuals at increased risk of sudden cardiac arrest and

compare them with healthy individuals. The key feature of the

normal cardiac rhythm, which is believed to carry important

clinical information is its complexity. The concept of complexity

is complicated and can be explained using different methods, e.g.,

fractal analysis, entropy, or irreversibility (Fiskum et al., 2018).

When studying heart rate variability, the question of which

concept space will be the best to describe the patient’s clinical

condition recurs. Measures of irreversibility applied here can be

used to differentiate groups, and they become interesting

candidates to better assess the risk of SCA and improve

patient management, to increase life expectations and reduce

mortality.

In this paper, we analyze only a part of the physiological

network of the human, namely, we assess time irreversibility of

time series taken from ECG recordings. The purpose of this paper

is to analyze irreversibility in a group of patients with the LQTS

(Long QT syndrome) and compare them to a group of healthy

persons to identify dynamical correlates of the arrhythmogenic

substrate. However, comparing time irreversibility descriptors

presented below with standard statistics shows that both

approaches provide similar results in distinguishing between

groups (Figure 6 below). The mean and standard deviation of

QT intervals are greater in the LQTS group. These indicators are

simplified, however, and the use of irreversibility over time

provides a way to distinguish between differences in the

dynamics caused by reversible and irreversible processes

(Lacasa et al., 2012). The presence of time irreversibility

indicates the existence of nonlinear processes such as

dissipative chaos (Li et al., 2021). Ilya Prigogine discovered

the existence of dissipative structures (Prigogine, 1978), which

are spontaneously self-organizing complex system states that

arise far from equilibrium. Living organisms, including humans,

can be looked at as dissipative structures far from a

thermodynamic equilibrium (Li et al., 2021). They are

characterized by a high degree of complexity, which can be

estimated using non-linear properties of human heartbeat

(Seely and Macklem, 2012). To compare the results for time

asymmetric patterns with irreversibility measures using KLD, we

calculated the Porta and Guzik indices.
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LQTS is a genetically determined dysfunction of ion channels

or the proteins that regulate them. This disease leads to serious

symptoms, including fainting or loss of consciousness. It can also

cause sudden cardiac arrest (SCA). A prolonged QT interval can

be acquired or congenital. The clinical course of the disease varies

depending on which gene has been mutated. The most common

types of LQTS are LQTS 1, 2 and 3. In the case of LQTS type 1,

which is most of the cases we study in this paper, the mutation

disrupts the slow potassium current (Seebohm et al., 2008).

Symptoms of the disease most often occur during exercise, in

contrast to, for example, LQTS2, where they are induced during

increased catecholamine release in early morning (Wilde et al.,

1999).

Complex networks are increasingly used in various fields

of science. Currently, graphs are used in many practical

problems, including in computer networks, where the

representation of the network in the form of a graph

facilitates the routing of data packets on the Internet

(Oehlers and Fabian, 2021), in medicine to study the

spread of viruses (Keeling and Eames, 2005; Alarcón-

Ramos et al., 2018), or research on the dynamics of social

networks, e.g., the spread of rumors (Agliari et al., 2017).

Historically, Kullback-Leibler divergence (KLD) was

proposed for measuring time asymmetry in the beginning

of the 1950s and during the next decade its relation to entropy

production was shown (Gaspard, 2004; Parrondo et al., 2009).

In our study, we used visibility graphs (VG) methods (Lacasa

et al., 2008) to assess the time irreversibility of selected time

series. VG allow to map time series to the form of graphs. This

makes it possible to study the information contained in such

records with the use of complex network research tools. In

this way, graph theory can be used to study nonlinear signals

(Lacasa et al., 2008).

This paper is constructed as follows: in Section 2, we

introduce time irreversibility methods both for one

dimensional time series and multivariate time series. In

Section 3, we describe the data, which were used for our

analysis, and introduce our methodology for preparing data

extracted from ECG recordings from the THEW database

(University of Rochester Medical Center, 2022; University of

Rochester Medical Center Healthy Individuals, 2022). In Section

4, we present our results for nighttime recordings of

healthy people and of patients with LQTS. In Section 5, we

conclude.

2 Methods

2.1 Visibility graphs

Graphs were also looked at from the medical point of view

(Mason and Verwoerd, 2007). The authors of the publication

(Lacasa et al., 2012) showed that the increase in entropy per

unit time can be described by determining the Kullback-

Leibler divergence (KLD), usually denoted KLD (p || q) for a

given random variable x and probability distributions p(x)
and q(x). However, this measure gives only the lower bounds

of entropy production (Lacasa et al., 2012). For two

probability distributions p and q, describing the process in

accordance with and contrary to the passage of time, KLD it is

given by the relationship (Lin, 1991):

KLD(p����q) � ∑
x
p(x)log p(x)

q(x). (1)

Such a graph is created by connecting the vertices that meet a

specific visibility criterion. Figure 1 shows an example of a time

series in the form of a bar graph. When analyzing human heart

rhythm records, each bar corresponds to a single value of the RR

interval (measured as the time between two successive R-waves in

the ECG trace). Each such interval is also the vertex of the graph,

into which the time series is transformed (Iacovacci and Lacasa,

2016).

Two vertices are connected to each other when the heights of

the corresponding bars meet the following visibility criterion

(Lacasa and Flanagan, 2015). For the time series S � {x(t)}Tt�1 for
each element xi(t) being the vertex of such a graph, two vertices i
and j are connected by an edge, if each different xk(t) satisfies
condition:

xk <xi + k − i

j − i
[xj − xi], for each i< k< j. (2)

2.2 Horizontal visibility graphs

Another type of graph is the horizontal visibility graph. It

differs from the basic version in that, in this case, two vertices

are connected to each other only if they can be joined together

in a bar graph of the time series by a horizontal line without

intersecting the vertices between them (Lacasa et al., 2012).

An example is shown in Figure 2.

In general, for the time series S � {x(t)}Tt�1 the following

condition of horizontal visibility can be written (Lacasa and

Flanagan, 2015):

Two vertices xi(t) of the graph are connected with each other
if and only if the following relation is satisfied:

xi, xj > xn, for every i< n< j. (3)

2.3 Directed horizontal visibility graphs

This is a graph that is an extension of the horizontal visibility

graph. The direction of the flow of time is taken into

consideration. The temporal arrow is considered by using
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directed graphs. For each vertex, you can specify the edges that

enter it from the vertices that precede it, and the edges that

connect it to the next vertices that follow it in time. The direction

of connections is consistent with the passage of time (Lacasa and

Flanagan, 2015).

The degree of the vertex k(t) consists of the following sum:

k(t) � kin(t) + kout(t). (4)

kin(t) is the number of edges entering a given vertex,

associated with vertices in the past. On the other hand,

kout(t) is defined as the number of edges emerging from a

given vertex. This is related to the connections of a given

vertex with the “future” elements of the time series (Lacasa

and Flanagan, 2015). An example of such a graph is shown in

Figure 3.

The analysis of the dHVG allows the use of information

on the degree distributions of the incoming and outgoing

vertices. Based on the difference in these distributions, the

degree of irreversibility of the time series tested can be

estimated. This difference can be interpreted as the

distance (in the sense of distributions) between the

probability distributions of the input vertices Pin(k) and

that of the output Pout(k). Generally, P(k) is the fraction

of all nodes in the network that have degree k and it describes

the probability that a randomly selected node will have degree

k (Lacasa and Flanagan, 2015).

One of the measures that allows to describe the difference

between the distributions Pin(k) and Pout(k) is the Kullback-

Leibler divergence:

KLD[Pout(k)‖Pin(k)] � ∑
k
Pout(k) · lnPout(k)

Pin(k) , (5)

where:

k - vertex degree and k � kin + kout
Pin(k)- degree distribution of input vertices

Pout(k) - degree distribution of exit vertices.

In statistical physics, the measure KLD can be used

to measure the time irreversibility of non-equilibrium

processes and to estimate the entropy production during

such processes (Lacasa et al., 2012). It was shown in

(Lacasa et al., 2012) that this measure enables to

distinguish discrete time series obtained from reversible

and irreversible time series.

The signal is invertible when:

FIGURE 1
Graphical illustration of visibility graph (VG). This graph is based on an extract from one of the records studied in the paper.
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lim
n ����→∞

KLD[Pout(k)‖Pin(k)] � 0. (6)

where n is number of vertices in the graph. In this case, the

probability distributions Pin(k) and Pout(k) are equal.
For stationary signals, KLD is the lower limit of the non-

equilibrium entropy production during the time evolution of the

process.

The Jensen-Shannon Divergence (JSD) is a measure of

divergence based on KLD. Its main advantage is that, in

contrast to the Kullback-Leibler divergence, it always has a

finite value, which allows to avoid infinity obtained when

calculating KLD (Nielsen, 2020).

JSD can be determined as the mean KLD divergence of the

distributions Pin(k), Pout(k) and their mixed distribution M �
Pin(k)+Pout(k)

2 (Nielsen, 2020):

JSD[Pout(k)‖Pin(k)] � 1
2
(KLD[Pout(k)‖M]
+ KLD[Pin(k)‖M]. (7)

After the substitution, the final formula is:

JSD[Pout(k)‖Pin(k)] �

� 1
2
⎡⎣∑

k
Pout(k) · ln Pout(k)

1
2
· [Pout(k) + Pin(k)]

+∑
k
Pin(k) · ln Pin(k)

1
2
· [Pout(k) + Pin(k)]

⎤⎦. (8)

2.4 Multivariate methods

Now, we consider an M-dimensional real valued time series.

Using such data, an M-layer Multiplex network is constructed

(Lacasa et al., 2015). In our case, we have a set of α data (α � 3 for

the intervals RR, QT and DI of the ECG trace). Each of them is a

series of real data from index 1 to the length of signalN. For each

of them, we construct the HVG in accordance with the single-

layer algorithm (Lacasa et al., 2012; Lacasa et al., 2015; Lacasa

et al., 2017). The Multiplex Visibility graph is created in such a

way that it is described by a matrix A � {A[1], A[2], A[3]}, the

FIGURE 2
Graphical illustration of horizontal visibility graph (HVG). This graph is based on an extract from one of the records studied in the paper.
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elements of which are the adjacency matrices of the VG of each of

the examined data sets (in our case, the intervals RR, QT and DI).

Average edge overlap < o> is defined as follows (Lacasa

et al., 2015):

< o> � 1
K
∑

i,j
oij, oij � 1

M
∑

α
a[α]ij . (9)

where K is the total number of edges and oij is the overlap of the

edges between the vertices i and j situated in different layers. It is

defined as follows: we sum for each pair ij the appropriate terms

in the adjacency matrix (equal to 1 if these vertices are connected

to each other in each layer, 0 otherwise). This is then normalized

by the number of layers. oij � 0, when the nodes i and j are not

connected to each other in any layer, and 1 when they are in all of

them. Next, we sum these values over i, j and average over the

number of i, j pairs. Thus, the more similar the connection

patterns in the layers are, the larger < o> we obtain. < o> equals

1, when all the layers are identical (Lacasa et al., 2015; Lacasa

et al., 2017).

We compute the adjacency matrices for directed graphs

according to the passage of time and after inverting the sequence

of the records. Then, we will obtain matrices which in KLD are used

to determine Pin(k)—the degree distribution of input vertices and

Pout(k)—the degree distribution of output vertices. Having these

two data sets, for each of them we calculate the average edge overlap

and then calculate the absolute value from the difference of these

values. Directed average edge overlap:

davo � abs(< oin > − < oout > ). (10)

We also used interlayer mutual information (IMI) (Lacasa

et al., 2015) as another measure of quantification of the presence

of interlayer correlations. For two layers α and β, IMI between the

degree distributions kα and kβ is defined as:

Iα,β � ∑
kα
∑

kβ
P(kα, kβ)log P(kα, kβ)

P(kα)P(kβ) (11)

During the calculation of IMI, after the division of the signal

into non-overlapping windows of 600 interval length, we used the

EMDmethod (Stallone et al., 2020) to remove the trend from the

data. To do so, we separated the last four IMFs and their sum we

FIGURE 3
Graphical illustration of directed horizontal visibility graph (dHVG). This graph is based on an extract from one of the records studied in the
paper.
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subtracted from the signal. This was required for proper

calculations of mutual information (Hoyer et al., 2005).

2.5 Asymmetry indices

Porta’s Index (P%) (Porta et al., 2008) compares the number

of negative increments between consecutive members of the time

series with the number of all non-zero increments. It is defined by

the formula:

P% � N(ΔRR−)
N(ΔRR ≠ 0)*100%. (12)

This index can range from 0 to 100%. The irreversibility

over time is implied by P% values significantly different from

50%. Moreover, P% values greater than 50% indicate that the

number of negative increments ΔRR- in the signal RRi −
RRi+1 is greater than the number of positive

increments ΔRR+.

To make the values of this index more readable, below we

subtract 50 from all values obtained for the different cases

studied. In this way, the zero of this index indicates a

completely reversible time series. We treat the next index

(described below) in the same way.

Guzik’s index (G%) (Piskorski and Guzik, 2007; Porta et al.,

2008) is determined as the ratio of the sum of the squares of the

positive differences RRi − RRi+1 > 0 to the sum of all differences

RRi − RRi+1 in the signal squared. This index can also be defined

as the ratio of the sum of squared of positive differences RRi −
RRi+1 > 0 from diagonal in the Poincaré plot (this is a scatter plot

describing the dependence RRi+1 � f(RRi) (Piskorski and

Guzik, 2007)) signal to the distance of all ΔRR from the

diagonals. It is given by the formula:

G% � ∑N(ΔRR+)
i�1 ΔRR+2(i)
∑N(ΔRR)

i�1 ΔRR2(i) p 100%. (13)

G% can take values from 0 to 100%. The signal

irreversibility over time is implied, as in the case of the

Porta’s index, by G% values significantly different from

50%. For clarity, we subtract 50 form the value obtained

for each case studied. This is the same procedure that we used

for Porta’s index.

3 Data and methodology

Two databases from the THEW Project (University of

Rochester Medical Center, 2022; University of Rochester

Medical Center Healthy Individuals, 2022) were used to

provide the RR, QT, and the DI intervals (diastolic interval -

the time between the end of the T segment and the beginning of

the next QRS complex). We used the following THEW databases:

E-HOL-03-0202-003 (202 ECGs of healthy individuals) and

E-HOL-03-0480-013 (480 ECGs of the Long QT Syndrome

patients forming 4 subgroups by genotype).

In this paper, we analyze a subgroup for each of these

databases: It consists of 61 (38 women) LQTS patients and

114 (59 women) healthy persons. The range of age is limited

to 18–60 years.

FIGURE 4
Fragment selected from the IWN patient’s heart rhythm record. The total analyzed record length was from N = 100 to N = 11,200 iterations.
Successive fragments of increasing length were selected, starting at the beginning of the time series.
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FIGURE 5
(A,B)—Dependence of KLD on the length of the series for a fragment of the signal derived from the heart rhythm of a healthy person: (A)—linear
scale, (B)—logarithmic scale.

FIGURE 6
(A) Mean value of RR intervals time series, (B) Standard deviation of RR intervals time series, (C) Mean value of QT intervals time series, (D)
Standard deviation of QT intervals time series.
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FIGURE 7
Porta P% and Guzik G% indices for QT intervals. Window length equals 600 intervals. p-values for each comparison are presented in boxes
below the name of the given irreversibility parameter.

FIGURE 8
(A)—Kullback-Leibler divergence (KLD) for RR intervals. (B) Jensen-Shannon divergence (JSD) for RR intervals. Window length equals
600 intervals. p-values for each comparison are presented in boxes below the name of the given irreversibility parameter.
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To calculate the RR and QT intervals, firstly, the R waves in the

ECG signals had to be obtained. To achieve that, proper annotation

files derived from the THEW database were placed onto the signals

and then filtered to delete those R waves that had not been annotated

as either normal or arrhythmic. This method, however, resulted in

the R waves being misplaced by an irregular offset, rendering them

incorrect. To compensate for these offsets a hybrid algorithm was

developed. The algorithmused the Rwaves detection toolset available

in the Neurokit2 package for Python 3, which allowed for correct

detection of the Rwaves. However, the results of this operationwould

have had to bemanually selected for each separate file, as thismethod

gave no information if the peak was normal, arrhythmic or of other

kind. In addition, it was oversensitive towards labelling other types of

waves as R waves when the signal was of especially bad quality. The

hybrid algorithm combined the two methods, i.e., using the

annotation files and the Neurokit2 toolset, and compared the

results of both, deleting the offsets from the first method. Based

on the obtained R waves, the wave detection toolset available in the

FIGURE 9
(A)—Kullback-Leibler divergence (KLD) for QT intervals. (B) Jensen-Shannon divergence (JSD) for QT intervals. Window length equals
600 intervals. p-values for each comparison are presented in boxes below the name of the given irreversibility parameter.

FIGURE 10
(A)—Kullback-Leibler divergence (KLD) values for DI intervals. (B) Jensen-Shannon divergence (JSD) values for DI intervals. Window length
equals 600 intervals. Values presented in boxes on charts are corresponding p-values. p-values for each comparison are presented in boxes below
the name of the given irreversibility parameter.
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Neurokit2 package was used to find other waves, among which there

were the Q waves and T waves offsets. To obtain the RR and QT

intervals, the difference between R(i) and R(i+1) as well as the

differences between Q(i) and T_offset(i) were calculated.

KLD values andmultivariate methods were determined using

Matlab R2021b, while statistical tests and graphs were done using

OriginPro 2021b.

All signals were divided into non-overlapping windows of

length 600 intervals. The numbers next to the pairs of boxplots

on Figures 6–11 are the corresponding p-values (Kolgomorov-

Smirnov test). This non-parametric test was chosen because the

data distributions do not meet the criterion of fitting a normal

distribution (Shapiro-Wilk normality test).

KLD was calculated only for the nighttime recordings of the

heart rhythm. Because of the different time for every patient for

going to sleep, for each case the period of observation was

selected using the average RR value over time (Gierałtowski

et al., 2012; Żebrowski et al., 2015). These records were also

analyzed with the use of windows (the tested signal was divided

into adjacent, non-overlapping windows). Windows with the

lengths of 400, 600, 900, 1,200 and 2000 intervals were used. A

window with the length of 600 RR intervals was finally used for

the analysis, this value was considered optimal. The selection of

such a window width was made after analyzing the results for

other window widths. For the 600 interval window length, we

obtained the best results in comparing the study groups. The

window with a width of 400 intervals is too short for the method

to give perfect identification of irreversibility (Zanin and Papo,

2021), while the results for windows of 900, 1,200 and

1800 intervals showed a dispersion of the results which was

too large. The result is the average obtained from all windows of a

given length into which the time series was divided into.

FIGURE 11
Average edge overlap calculated for pairs of time series: (A) RR and QT intervals time series, (B) RR and DI intervals time series, (C) QT and DI
intervals time series. Using the Kolgomorov-Smirow test, we obtained the p-values presented in the boxes. The window length equals 600 intervals.
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The dependence of the results of irreversibility measures on

the length of the analyzed time series was also checked. For this

purpose, a fragment of a record of the heart rhythm of a healthy

male from the database of the Institute of Cardiology (patient

IWN, Figure 4) was checked. The total record length analyzed in

the study was from N = 100 to N = 11,200 intervals. Successive

fragments of increasing length were selected, starting at the

beginning of the time series.

For windows of the length 600 intervals, KLD still do not fully

stabilize, but it is the optimum between the correctness of the

method (low dependence on the length of the tested time series),

the quality of the obtained results (statistical significance

measured in the Kolgomorov-Smirnov test using the p-value

value), and the time required to carry out the calculations

(Figure 5A). To represent the dynamics more clearly for

shorter signals, for which there is a large difference between

the analyzed values, the results are also presented in a logarithmic

scale (Figure 5B).

4 Results

4.1 Assessing time irreversibility of
nighttime recordings using VG

The analysis on signal level using simple statistics shows that

statistically significant differences between groups are present in

QT mean (which follows from the definition of LQTS) and in

both standard deviations, which are greater in LQTS group

(Figure 6).

Asymmetry indices are based on differences between

adjacent values of time series intervals. On the contrary,

KLD estimates time irreversibility using number of points

that each value of time series could reach without crossing

with other points (Li et al., 2021). The asymmetry indices

show no difference between groups (Figure 7). Therefore, we

are interested in more complicated descriptors of dynamics of

time series.

FIGURE 12
Directed average edge overlap (davo) calculated for pairs of nighttime series (window length 600 intervals): (A) RR and QT intervals time series,
(B) DI and QT intervals time series, (C) RR and DI intervals time series. p-values for each comparison are presented in the boxes.
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In the case of VG, we compare the average and maximum

values obtained from the calculations in non-overlapping

windows of the selected intervals. Because in many cases the

minimum values were close to zero, they were omitted from the

results.

The comparison of the results for RR intervals for the healthy

subjects with the patients with LQTS indicates that there are no

statistically significant differences (Figures 8A,B), which would

indicate no influence of the studied disease on the irreversibility

of the heart rhythm. On the other hand, differences manifest

themselves in the case of QT intervals (Figures 9A,B). Healthy

persons are characterized by statistically significant greater

irreversibility with respect to time of the QT intervals than

that of the patients with LQTS.

However, there are also significant differences between the

KLD and JSD for the RR and QT intervals. In the former case,

they are lower. For healthy persons, the median for average KLD

for the RR intervals is 0.01984 nats and median for average JSD is

0.05071 nats, while for QT it is respectively 0.01725 nats and

0.03468 nats.

The analysis of max values of KLD and JSD using the DI

intervals (Figures 10A, B) follows the results obtained for the RR

time series, which is consistent with the results in (Ozimek et al.,

2021). There is no difference in the irreversibility between

analyzed groups. However, in the case of average KLD and

average JSD here we observe higher values for the healthy

indicating a larger irreversibility for the healthy.

For night recordings, statistically significant differences with

the use of VG were obtained only in the case of mean and

maximum values of KLD and JSD for the time series of QT

intervals. However, there are no differences in the irreversibility

in time between the healthy and the LQTS patients for heart rate

variability. In the statistically significant cases presented above,

healthy persons are characterized by a larger value of

irreversibility with respect to time.

4.2 Assessing time irreversibility of
nighttime recordings using multivariate
time series

Our next step was to analyze multivariate time series. First,

we calculated the average edge overlap between two of the three

analyzed intervals. The results are presented on Figure 11.

The difference between average edge overlaps for the healthy

and LQTS patients is present in all pairs of time series. The edge

overlaps for LQTS patients are larger, which indicates that the

graphs from these time series are more similar in all the group.

Directed average edge overlap, davo (Eq. 14) equals zero for

reversible signals, the greater the value of davo, the more

FIGURE 13
Interlayer mutual information of RR and QT time series.
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irreversible the signal, as the degree of layer similarity will vary

depending on the direction of the passage of time. In the case of

significant statistical differences, the davo obtained is, on the

average, larger for LQTS patients (Figure 12), however we

noticed this behavior only for the pair RR and DI intervals,

where davo is much lower than for RR, QT and QT, DI intervals.

The differences between groups observed in the case of average

edge overlap are significantly reduced when davo is calculated,

which indicates the level of irreversibility of the selected time

series pairs.

For our data, only in the case of the comparison interlayer

mutual information of the RR and QT intervals, we obtained

statistically significant results (Figure 13). Interlayer mutual

information was larger for the LQTS group.

5 Discussion and conclusion

It should be noted, that for the several measures presented

above, we were able to obtain a statistical significance. This

proves that the arrhythmogenic substrate manifests itself in

irreversibility measures, which is the research hypothesis of

this paper. This result encourages us to design a prospective

study, in which the irreversibility measures will be correlated

with the clinical findings in the follow-up period, to directly

assess cardiac mortality. Irreversibility measures have proved

themselves to be good candidates for such a study.

In this paper, we used signals divided into non-overlapping

windows of length of 600 intervals. Such short cardiovascular

series are processed to assess the short-term regulation of heart

rate variability (Cohen and Taylor, 2002; Porta et al., 2009)

Summarizing the results of using VG for univariate time

series, we obtained a statistically significant difference between

the healthy and LQTS patients in the time irreversibility of QT

intervals. The time irreversibility of QT intervals is larger for the

healthy. This difference is larger for the maximum values of both

KLD (Figure 9A) and JSD (Figure 9B). Moreover, using the

Jensen-Shannon divergence gives a better group differentiation

in this case. However, no significant difference between the

groups was obtained for the heart rhythm. The choice of

divergence is also important: changing from KLD to JSD

results in a better differentiation of the groups (i.e., a lower

p-value) for RR and QT intervals.

For multivariate time series, when the average edge overlap

was analyzed, the connection patterns between RR and QT

intervals were more like each other for the LQTS patients

than for the healthy. However, when we introduce time

irreversibility, namely in the form of directed average edge

overlap, the results change. In this case, we did not obtain a

statistically significant difference for pairs of the RR and QT and

as well as the DI and QT intervals. Interlayer mutual information

shows that the degree distributions between HVG obtained for

the RR and QT intervals are more correlated for the LQTS

patients. The presence of nonstationarities can affect the results

for interlayer mutual information (Hoyer et al., 2005). Before

analysis, trend-like nonstationarities were removed from the

signals using EMD (Hoyer et al., 2005).

Jiang et al. (2013) found that the degree distribution of VGof RR

intervals changes during meditation, which corresponds to an

adjustment of the autonomous neural system. Here, we compare

the difference in the degree distribution according to the direction

and opposite to the direction of the time arrow. This difference used

to calculate KLDdoes not change in LQTS subjects for the heart rate,

whereas a difference between the groups occurs for QT intervals. On

the contrary, multivariate methods show that the similarity of these

dynamics in pairs of values is greater for individuals with LQTS,

while after considering the opposite direction in time, i.e., estimating

the irreversibility of such similarity, it turns out that the only

difference is for the pair RR, DI where the direction of similarity

is also preserved, i.e., it is greater for individuals with LQTS.

A direct comparison of the results obtained for different time

series intervals can be difficult, because two systems, which have

similar 1/f scaling may have different level of complexity (Ivanov

et al., 2009). Ivanov et al. showed that comparing healthy people with

a group with cardiopulmonary instability expresses different power-

law scaling behavior (Ivanov et al., 1996). However, Mathias et al.

performed a population study (Mathias et al., 2013), where

1,206 patients with LQTS were studied. The results shows that

the estimated higher QTc (QT corrected for heart rate)

intervals variation can be associated with a higher risk of

cardiac events. This phenomenon depends on which gene

was mutated and it is greatest for persons with LQTS1. In

the case of QT, we observe lower values of KLD, i.e., a smaller

level of irreversibility for patients with LQTS.

The measures presented in this paper do not allow a risk

stratification in the LQTS group, due to insufficient patient

information. However, knowing which of these parameters

has the highest statistical power concerning distinguishing the

groups, it is possible to define them as candidates for the

identification of a clinical parameter to support the work of

physicians, especially in the evaluation of SCD.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: The data analyzed in this study is

subject to the following licenses/restrictions: Both data sets

belong to the THEW Project (http://thew-project.org/

databases.htm) available upon registration. Requests to

access these datasets should be directed to http://thew-

project.org/databases.htm.

Frontiers in Network Physiology frontiersin.org14

Andrzejewska et al. 10.3389/fnetp.2022.877474

120

http://thew-project.org/databases.htm
http://thew-project.org/databases.htm
http://thew-project.org/databases.htm
http://thew-project.org/databases.htm
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.877474


Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

All the calculations and figures, as well as the basic structure

of the paper were done by MA. The data and consultation on the

use of data in the research were provided by KR andMO. General

supervising and basic structure of manuscript were prepared by

JZ. RB was medical science supervisor.

Funding

Research was funded by (POB Biotechnology and Biomedical

Engineering) of Warsaw University of Technology within the

Excellence Initiative: Research University (IDUB) program 1820/

16/Z01/POB4/2021.

Acknowledgments

We are grateful to all members, especially Teodor Buchner

and Monika Petelczyc, of our Cardiovascular Physics Group for

fruitful discussions.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Agliari, E., Pachon, A., Rodriguez, P. M., and Tavani, F. (2017). Phase transition
for theMaki-Thompson rumour model on a small-world network. J. Stat. Phys. 169,
846–875. doi:10.1007/s10955-017-1892-x

Alarcón-Ramos, L. A., Bernal Jaquez, R., and Schaum, A. (2018). Output-
feedback control of virus spreading in complex networks with quarantine.
Front. Appl. Math. Stat. 4, 34. doi:10.3389/fams.2018.00034

Chladekova, L., Czippelova, B., Turianikova, Z., Tonhajzerova, I., Calkovska, A.,
Baumert, M., et al. (2012). Multiscale time irreversibility of heart rate and blood
pressure variability during orthostasis. Physiol. Meas. 33, 1747–1756. doi:10.1088/
0967-3334/33/10/1747

Cohen, M. A., and Taylor, J. A. (2002). Short-term cardiovascular oscillations in
man: Measuring and modelling the physiologies. J. Physiol. 542, 669–683. doi:10.
1113/jphysiol.2002.017483

Costa, M., Goldberger, A. L., and Peng, C. K. (2005). Broken asymmetry of the
human heartbeat: Loss of time irreversibility in aging and disease. Phys. Rev. Lett.
95, 198102–198105. doi:10.1103/PhysRevLett.95.198102

Fiskum, C., Andersen, T. G., Bornas, X., Aslaksen, P. M., Flaten, M. A., and
Jacobsen, K. (2018). Non-linear heart rate variability as a discriminator of
internalizing psychopathology and negative affect in children with
internalizing problems and healthy controls. Front. Physiol. 9, 561. doi:10.
3389/fphys.2018.00561

Gaspard, P. (2004). Time-reversed dynamical entropy and irreversibility inmarkovian
random processes. J. Stat. Phys. 117, 599–615. doi:10.1007/s10955-004-3455-1

Gierałtowski, J., Zebrowski, J. J., and Baranowski, R. (2012). Multiscale
multifractal analysis of heart rate variability recordings with a large number of
occurrences of arrhythmia. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85,
021915–021916. doi:10.1103/PhysRevE.85.021915

Goldenberg, I., Horr, S., Moss, A. J., Lopes, C. M., Barsheshet, A., McNitt, S., et al.
(2011). Risk for life-threatening cardiac events in patients with genotype-confirmed
long-QT syndrome and normal-range corrected QT intervals. J. Am. Coll. Cardiol.
57, 51–59. doi:10.1016/j.jacc.2010.07.038

Hoyer, D., Pompe, B., Chon, K. H., Hardraht, H., Wicher, C., and Zwiener, U.
(2005). Mutual information function assesses autonomic information flow of heart

rate dynamics at different time scales. IEEE Trans. Biomed. Eng. 52, 584–592. doi:10.
1109/TBME.2005.844023

Iacovacci, J., and Lacasa, L. (2016). Sequential motif profile of natural visibility
graphs. Phys. Rev. E 94, 052309. doi:10.1103/PhysRevE.94.052309

Ivanov, P. C., Ma, Q. D. Y., Bartsch, R. P., Hausdorff, J. M., Nunes Amaral, L. A.,
Schulte-Frohlinde, V., et al. (2009). Levels of complexity in scale-invariant neural
signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 041920. doi:10.1103/
PhysRevE.79.041920

Ivanov, P., Rosenblum, M., Peng, C. K., Mietus, J., Havlin, S., Eugene Stanley, H.,
et al. (1996). Scaling behaviour of heartbeat intervals obtained by wavelet-based
time-series analysis. Nature 383, 323–327. doi:10.1038/383323a0

Jandackova, V. K., Scholes, S., Britton, A., and Steptoe, A. (2016). Are
changes in heart rate variability in middle-aged and older people normative
or caused by pathological conditions? Findings from a large population-based
longitudinal cohort study. J. Am. Heart Assoc. 5, e002365. doi:10.1161/JAHA.
115.002365

Jiang, S., Bian, C., Ning, X., and Ma, Q. D. Y. (2013). Visibility graph analysis on
heartbeat dynamics of meditation training. Appl. Phys. Lett. 102, 253702. doi:10.
1063/1.4812645

Jose, A. D., and Taylor, R. R. (1969). Autonomic blockade by propranolol and
atropine to study intrinsic myocardial function in man. J. Clin. Invest. 48,
2019–2031. doi:10.1172/JCI106167

Keeling, M. J., and Eames, K. T. D. (2005). Networks and epidemic models. J. R.
Soc. Interface 2, 295–307. doi:10.1098/rsif.2005.0051

Lacasa, L., and Flanagan, R. (2015). Time reversibility from visibility graphs of
nonstationary processes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 022817.
doi:10.1103/PhysRevE.92.022817

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., and Nuno, J. C. (2008). From time
series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. 105 (13),
4972. doi:10.1073/pnas.0709247105

Lacasa, L., Mariño, I. P., Miguez, J., Nicosia, V., and Gómez-Gardeñes, J. (2017).
Identifying the hidden multiplex architecture of complex systems. 1-8. Available at:
http://arxiv.org/abs/1705.04661 (Accessed October 01, 2017).

Frontiers in Network Physiology frontiersin.org15

Andrzejewska et al. 10.3389/fnetp.2022.877474

121

https://doi.org/10.1007/s10955-017-1892-x
https://doi.org/10.3389/fams.2018.00034
https://doi.org/10.1088/0967-3334/33/10/1747
https://doi.org/10.1088/0967-3334/33/10/1747
https://doi.org/10.1113/jphysiol.2002.017483
https://doi.org/10.1113/jphysiol.2002.017483
https://doi.org/10.1103/PhysRevLett.95.198102
https://doi.org/10.3389/fphys.2018.00561
https://doi.org/10.3389/fphys.2018.00561
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1103/PhysRevE.85.021915
https://doi.org/10.1016/j.jacc.2010.07.038
https://doi.org/10.1109/TBME.2005.844023
https://doi.org/10.1109/TBME.2005.844023
https://doi.org/10.1103/PhysRevE.94.052309
https://doi.org/10.1103/PhysRevE.79.041920
https://doi.org/10.1103/PhysRevE.79.041920
https://doi.org/10.1038/383323a0
https://doi.org/10.1161/JAHA.115.002365
https://doi.org/10.1161/JAHA.115.002365
https://doi.org/10.1063/1.4812645
https://doi.org/10.1063/1.4812645
https://doi.org/10.1172/JCI106167
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1103/PhysRevE.92.022817
https://doi.org/10.1073/pnas.0709247105
http://arxiv.org/abs/1705.04661
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.877474


Lacasa, L., Nicosia, V., and Latora, V. (2015). Network structure of multivariate
time series. Sci. Rep. 5, 15508–15509. doi:10.1038/srep15508

Lacasa, L., Nuñez, A., Roldán, E., Parrondo, J. M. R., and Luque, B. (2012). Time
series irreversibility: A visibility graph approach. Eur. Phys. J. B 85, 217. doi:10.1140/
epjb/e2012-20809-8

Li, Y., Li, J., Liu, J., Xue, Y., Cao, Z., and Liu, C. (2021). Variations of time
irreversibility of heart rate variability under normobaric hypoxic exposure. Front.
Physiol. 12, 607356. doi:10.3389/fphys.2021.607356

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE Trans.
Inf. Theory 37, 145–151. doi:10.1109/18.61115

Marcus, B., Gillette, P. C., and Garson, A. (1990). Intrinsic heart rate in children
and young adults: An index of sinus node function isolated from autonomic control.
Am. Heart J. 119 (4), 911–916. doi:10.1016/s0002-8703(05)80331-x

Mason, O., and Verwoerd, M. (2007). Graph theory and networks in biology. IET
Syst. Biol. 1, 89–119. doi:10.1049/iet-syb:20060038

Mathias, A., Moss, A. J., Lopes, C. M., Barsheshet, A., McNitt, S., Zareba, W.,
et al. (2013). Prognostic implications of mutation-specific QTc standard
deviation in congenital long QT syndrome. Heart 10, 720–725. doi:10.1016/j.
hrthm.2013.01.032

Nielsen, F. (2020). On a generalization of the jensen-shannon divergence and the
jensen-shannon centroid. Entropy 22, E221. doi:10.3390/e22020221

Oehlers, M., and Fabian, B. (2021). Graph metrics for network robustness—A
survey. Mathematics 9, 895. doi:10.3390/math9080895

Opthof, T. (2000). The normal range and determinants of the intrinsic heart rate
in man. Cardiovasc. Res. 45, 177–184. doi:10.1016/S0008-6363(99)00322-3

Ozimek, M., Żebrowski, J. J., and Baranowski, R. (2021). Information flow
between heart rhythm, repolarization, and the diastolic interval series for
healthy individuals and LQTS1 patients. Front. Physiol. 12, 611731–611739.
doi:10.3389/fphys.2021.611731

Parrondo, J. M. R., van den Broeck, C., and Kawai, R. (2009). Entropy production
and the arrow of time.New J. Phys. 11, 073008. doi:10.1088/1367-2630/11/7/073008

Piskorski, J., and Guzik, P. (2007). Geometry of the Poincaré plot of RR intervals
and its asymmetry in healthy adults. Physiol. Meas. 28, 287–300. doi:10.1088/0967-
3334/28/3/005

Porta, A., Casali, K. R., Casali, A. G., Gnecchi-Ruscone, T., Tobaldini, E.,
Montano, N., et al. (2008). Temporal asymmetries of short-term heart period
variability are linked to autonomic regulation. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 295, 550–R557. doi:10.1152/ajpregu.00129.2008

Porta, A., D’addio, G., Bassani, T., Maestri, R., and Pinna, G. D. (2009). Assessment
of cardiovascular regulation through irreversibility analysis of heart period variability:
A 24 hours holter study in healthy and chronic heart failure populations. Philos. Trans.
A Math. Phys. Eng. Sci. 367, 1359–1375. doi:10.1098/rsta.2008.0265

Prigogine, I. (1978). Time, structure, and fluctuations. Science 201, 777–785.
doi:10.1126/science.201.4358.777

W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Müller (Editors)
(2019). Explainable AI: Interpreting, explaining and visualizing deep learning
(Cham: Springer International Publishing). doi:10.1007/978-3-030-28954-6

Schwartz, P. J., Crotti, L., and Insolia, R. (2012). Long-QT syndrome from
genetics to management. Circ. Arrhythm. Electrophysiol. 563, 868–877. doi:10.
1161/circep.111.962019

Seebohm, G., Strutz-Seebohm, N., Ureche, O. N., Henrion, U., Baltaev, R., MacK,
A. F., et al. (2008). Long QT syndrome-associated mutations in KCNQ1 and
KCNE1 subunits disrupt normal endosomal recycling of IKs channels. Circ. Res.
103, 1451–1457. doi:10.1161/CIRCRESAHA.108.177360

Seely, A. J. E., and Macklem, P. (2012). Fractal variability: An emergent
property of complex dissipative systems. Chaos 22, 013108. doi:10.1063/1.
3675622

Stallone, A., Cicone, A., and Materassi, M. (2020). New insights and best
practices for the successful use of Empirical Mode Decomposition, Iterative
Filtering and derived algorithms. Sci. Rep. 10, 15161. doi:10.1038/s41598-020-
72193-2

Suboh, M. Z., Jaafar, R., Nayan, N. A., and Harun, N. H. (2019). ECG-based
detection and prediction models of sudden cardiac death: Current performances
and new perspectives on signal processing techniques. Int. J. Onl. Eng. 15, 110–126.
doi:10.3991/ijoe.v15i15.11688

University of Rochester Medical Center (2022). Congential long QT syndrome.
Available at: http://thew-project.org/Database/E-HOL-03-0480-013.html (Accesses
December 01, 2018).

University of Rochester Medical Center Healthy Individuals (2022). Healthy
individuals - telemetric and holter ECG warehouse. Available at: http://thew-
project.org/Database/E-HOL-03-0202-003.html (Accesses December 01, 2018).

Vijayakumar, R., Silva, J. N. A., Desouza, K. A., Abraham, R. L., Strom,M., Sacher,
F., et al. (2014). Electrophysiologic substrate in congenital long QT syndrome:
Noninvasive mapping with electrocardiographic imaging (ECGI). Circulation 130,
1936–1943. doi:10.1161/CIRCULATIONAHA.114.011359

Wilde, A. A. M., Jongbloed, R. J. E., Doevendans, P. A., Düren, D. R., Hauer, R. N.W.,
van Langen, I. M., et al. (1999). Auditory stimuli as a trigger for arrhythmic events
differentiate HERG- related (LQTS2) patients from KVLQT1-related patients (LQTS1).
J. Am. Coll. Cardiol. 33, 327–332. doi:10.1016/S0735-1097(98)00578-6

Zanin, M., and Papo, D. (2021). Algorithmic approaches for assessing irreversibility in
time series: Review and comparison. Entropy 23, 1474. doi:10.3390/e23111474

Żebrowski, J. J., Kowalik, I., Orłowska-Baranowska, E., Andrzejewska, M.,
Baranowski, R., and Gierałtowski, J. (2015). On the risk of aortic valve
replacement surgery assessed by heart rate variability parameters. Physiol. Meas.
36, 163–175. doi:10.1088/0967-3334/36/1/163

Frontiers in Network Physiology frontiersin.org16

Andrzejewska et al. 10.3389/fnetp.2022.877474

122

https://doi.org/10.1038/srep15508
https://doi.org/10.1140/epjb/e2012-20809-8
https://doi.org/10.1140/epjb/e2012-20809-8
https://doi.org/10.3389/fphys.2021.607356
https://doi.org/10.1109/18.61115
https://doi.org/10.1016/s0002-8703(05)80331-x
https://doi.org/10.1049/iet-syb:20060038
https://doi.org/10.1016/j.hrthm.2013.01.032
https://doi.org/10.1016/j.hrthm.2013.01.032
https://doi.org/10.3390/e22020221
https://doi.org/10.3390/math9080895
https://doi.org/10.1016/S0008-6363(99)00322-3
https://doi.org/10.3389/fphys.2021.611731
https://doi.org/10.1088/1367-2630/11/7/073008
https://doi.org/10.1088/0967-3334/28/3/005
https://doi.org/10.1088/0967-3334/28/3/005
https://doi.org/10.1152/ajpregu.00129.2008
https://doi.org/10.1098/rsta.2008.0265
https://doi.org/10.1126/science.201.4358.777
https://doi.org/10.1007/978-3-030-28954-6
https://doi.org/10.1161/circep.111.962019
https://doi.org/10.1161/circep.111.962019
https://doi.org/10.1161/CIRCRESAHA.108.177360
https://doi.org/10.1063/1.3675622
https://doi.org/10.1063/1.3675622
https://doi.org/10.1038/s41598-020-72193-2
https://doi.org/10.1038/s41598-020-72193-2
https://doi.org/10.3991/ijoe.v15i15.11688
http://thew-project.org/Database/E-HOL-03-0480-013.html
http://thew-project.org/Database/E-HOL-03-0202-003.html
http://thew-project.org/Database/E-HOL-03-0202-003.html
https://doi.org/10.1161/CIRCULATIONAHA.114.011359
https://doi.org/10.1016/S0735-1097(98)00578-6
https://doi.org/10.3390/e23111474
https://doi.org/10.1088/0967-3334/36/1/163
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.877474


Detecting the relationships
among multivariate time series
using reduced auto-regressive
modeling
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An information theoretic reduction of auto-regressive modeling called the

Reduced Auto-Regressive (RAR) modeling is applied to several multivariate

time series as a method to detect the relationships among the components in

the time series. The results are compared with the results of the transfer

entropy, one of the common techniques for detecting causal relationships.

These common techniques are pairwise by definition and could be

inappropriate in detecting the relationships in highly complicated dynamical

systems. When the relationships between the dynamics of the components are

linear and the time scales in the fluctuations of each component are in the same

order of magnitude, the results of the RAR model and the transfer entropy are

consistent. When the time series contain components that have large

differences in the amplitude and the time scales of fluctuation, however, the

transfer entropy fails to detect the correct relationships between the

components, while the results of the RAR modeling are still correct. For a

highly complicated dynamics such as human brain activity observed by

electroencephalography measurements, the results of the transfer entropy

are drastically different from those of the RAR modeling.

KEYWORDS

multivariate time series, statistical modeling, transfer entropy, model selection, auto-
regressive models

1 Introduction

To understand the dynamical properties of any complicated systems including those in

physiology, we have to analyze a set of signals generated by the system under consideration,

varying in time and interrelated with each other, which is referred to as multivariate time

series. Though it is surely important to understand the time dependence of each component of

the time series separately, it is also crucial to detect the directed relationships among the

components, in which the structure and functionality of the system are partially embodied. In

many cases including those in physiology, however, the system is so complicated that we have

no theoretical argument to identify the relationships from the first principle and we have to

detect them only from observed data.
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There are several common techniques for such detection.

Among them, the Granger causality is probably the most classical

and well-known [Granger (1969)]. This technique tries to detect

causal relationship between two components from the

improvement of prediction errors of the one of the two

components by including the signals of the other component.

Other techniques, such as the Directed Transfer Function

[Kamiński and Blinowska (1991); Kamiński et al. (2001)] or

Partial Directed Coherence [Baccalá and Sameshima (2001)] are

based on the Vector Auto-Regressive (VAR) model with the

coefficients transformed into the frequency domain to investigate

the spectral properties. Schreiber (2000) has introduced another

measure to detect the relationships called transfer entropy by an

extension of the concept of mutual information.

An important feature of these techniques is that they are

pairwise measures. In other words, these measures are calculated

by taking all pairwise combinations out of a set of the

components contained in the time series. It is not obvious,

however, whether the relationships among components more

than three can always be broken into pairwise relationships. For

instance, let us consider the case in which two pairs of

components, (A, B) and (A, C), are directly related within

each pair. Despite that there is no direct relationship between

B and C, the pairwise measure would detect a non-zero value of

indirect relationship via A and we need an appropriately chosen

threshold to determine the acceptance of this

relationship. Though there are several procedures such as the

surrogate data method (Theiler et al. 1992) in choice of the

threshold value, it would be preferable if we have a method that

enables us to extract the direct relationships from an entire set of

components without pairwise break-up and threshold.

When the number of components are large (~ 100), it is clear
that using pairwise measures is impractical. Relating to this point,

Papana et al. (2021) have recently published a comparative study

of various causality measures in the time domain aiming at

detecting direct causality in multivariate time series. The main

focus of the authors is the detectability of the causality measures

of direct relationships among multivariate time series of

components as many as 100. The authors thus compare

causality measures with various dimension reduction

techniques, such as subset regression (Breiman 1995; Yang

and Wu 2016), model reduction (Brüggemann 2003; Shojaie

and Michailidis 2010; Siggiridou and Kugiumtzis 2016), and

non-uniform embedding (Vlachos and Kugiumtzis 2010; Faes

et al. 2011; Kugiumtzis 2013).

In this article, we investigate multivariate time series of a

moderate number of components up to 10 and show that

pairwise measures such as transfer entropy might fail in

detecting relationships among components even for time

series of this relatively small number of components. As a

technique that enables us to extract relationships from an

entire set of components without pairwise break-up and

threshold, we take the Reduced Auto-Regressive (RAR)

modeling firstly proposed by Judd and Mees (1995) and

compare the results to those of the transfer entropy proposed

by Schreiber (2000), which is one of the commonest pairwise

measures in the time domain.

This article is organized as follows. In Section 2, we

describe the RAR modeling technique and the transfer

entropy after setting the mathematical notations. In Section

3, we apply the RAR modeling technique to two artificial

systems, both of which are three-component time series

defined by linear equations. The results are compared to

the values of transfer entropy and it is shown that the

transfer entropy cannot detect correct relationships when

the time series contains different time scales in fluctuation,

even when the signals are generated by linear equations. In

Section 4, we apply the RAR modeling technique to a set of

electroencephalography (EEG) data composed of 10 channels

and compare the results with those of the transfer entropy.

Discussion and Summary are in Section 5.

2 Theoretical backgrounds

2.1 Multivariate time series

We consider a set of multivariate time series,

X � x(t){ }N−1
t�0 � x(0), x(1), . . . , x(N − 1){ }, where x(t) �

(x0(t), x1(t), . . . , xM−1(t))T is a column vector composed

from M signals generated from a system under consideration

at discrete time t with equal intervals. The superscript T stands

for taking the transpose. Throughout this article, we consider

multivariate time series observed at an equal time interval and the

source that generates the i-th signal is referred to as the i-th

component in this article. In time series, the signals at the present

time are related to the signals of at some previous time called

“lag”. In this article, we are also interested in the relationships

among the components. For example, if the present signal of

component i is determined by previous values of other

components, say, 1, 3, 6, at lag 2, 1, 5, respectively, we expect

that there might be a mathematical expression

xi t( ) � f x1 t − 2( ), x3 t − 1( ), x6 t − 5( )( ), (1)

where f is a function that determines the relationship, which

might be potentially non-linear. It should be emphasized that, in

this article, the term “relationship” is used only in this meaning

and we do not discriminate whether the relationship is “causal”

or “correlational”.

2.2 Reduced auto-regressive model

The time series modeling for multivariate time series,

x(t){ }N−1
t�0 , attempts to represent the present state of the time

series x(t) by functions of the past states, x(t − 1), x(t − 2), . . .{ },
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xi t( ) � fi x t − 1( ), x t − 2( ), . . . , x t − L( )( ) i � 0, 1, . . . ,M − 1( ),
(2)

for each i-th component, where we denote the maximum time

delay (lag) as L. When the underlying dynamics of the system

generating the multivariate time series is unknown, choosing an

appropriate function form, fi, for each component and an

appropriate value of the maximum lag, L, in practice are no

trivial tasks and necessarily become heuristic. In this article, we

limit ourselves to the function form in Eq. 2 to be linear with

respect to their arguments. This limitation might be considered

as a drawback, since quite a few time series data generated by

real-world systems are potentially non-linear. Tanizawa et al.

(2018) have shown, however, that, even for the case in which the

time series data are non-linearly distorted, the linear modeling

technique can identify the built-in periodicities correctly. We

thus believe that linear modeling has a rather wide range of

applicability if the non-linearity is not so strong as to induce the

FIGURE 1
Three-component time series data generated by Eqs. 16–18 and the relationships among the components. The plotted data are a part of results
from 1,000 to 2000 iterations. In System 1, the time scales of the fluctuations of each component are in the same order of magnitude.

FIGURE 2
The values of transfer entropy of each component from other components for time delay (lag) up to 20. We plot the values for k= l= 1 in the left
column and the values for k = l = 2 in the right column for comparison. A large value of transfer entropy indicates that a large amount of information
gain exists at the lag from the corresponding components.
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dynamics to be chaotic and if the relationships and periodicities

built in the time series are sufficiently retained. In linear

modeling, the value of the i-th component at time t is

represented as

xi t( ) � ai,0 +∑
j,k

ai,j,k xj t − li,j,k( ) + εi t( ) i � 0, 1, . . . ,M − 1( ),

(3)
where ai,0 is the constant term in the modeling of the i-th

component, which is allowed to vanish and εi(t) is a dynamic

noise, which is an independently and identically distributed

Gaussian random variable with mean zero and finite variance

at t. Apart from the constant term, the value of the i-th

component at present time is represented by a linear

combination of the values of other components, xj(t − li,j,k),

at previous time with lag li,j,k and parameter ai,j,k. The

subscripts of the lags and the parameters, i, j, k{ }, indicate
that they appear in the modeling of the i-th components with

the term of the j-th component at the k-th lag. If we take all the

terms xj(t − l) (j � 0, 1, . . . , M − 1; l � 1, 2, . . . , L) up to the

maximum lag L, this model is identical to the Vector Auto-

Regressive (VAR) model.

Here we take another model, which is an information

theoretic reduction of linear models and referred to as the

Reduced Auto-Regressive (RAR) model [Judd and Mees

(1995; 1998)]. The RAR model extracts a subset of terms that

are most relevant for describing the behaviors of the multivariate

time series selected by a suitably chosen information criterion.

To be concrete, let us assume that we have a set of observed

values of four-component multivariate time series,

xi(0), xi(1), . . . , xi(N − 1){ } (i � 0, 1, 2, 3), to be fitted in the

linear form Eq. 3,

x̂i t( ) � ai,0 +∑3
j�0

∑
k

ai,j,k xj t − li,j,k( ) i � 0, 1, 2, 3( ). (4)

Here, we represent the value of the model for the i-th

component at time t as x̂i(t), while the observed value as

xi(t). The terms xj(t − li,j,k) included in the model are selected

from a “pool of terms”, which is called a “dictionary”. For

example, if we take the maximum lag as L = 25, the

dictionary for the model of the i-th component contains

101 terms, which are

1, x0 t − 1( ), . . . , x0 t − 25( ),{ x1 t − 1( ), . . . , x1 t − 25( ),
x2 t − 1( ), . . . , x2 t − 25( ), x3 t − 1( ), . . . , x3 t − 25( )} (5)

with element 1 for the constant term. From this dictionary, we

extract the optimal subset of terms and determine the values of

parameters, ai0, ai,j,k corresponding to the extracted terms by

minimizing a suitably chosen information criterion.

Information criteria have a general form,

Number of data( ) × log Mean square prediction error( )
+ Penalty for the number of terms( ). (6)

The mean square prediction error is the average of the

squared norm of the prediction error vector,

e � (xi(0) − x̂i(0), xi(1) − x̂i(1), . . . , xi(N − 1) − x̂i(N − 1))T,
which represents the difference between the observed values and

the values calculated from the model, Eq. 4. Since the observed

values inevitably contain dynamical and observational noise,

minimizing only the mean square prediction error leads to

over-fitting and deteriorate the ability of the model in

prediction. Information criteria compensate this deficiency

with the penalty for the number of terms, which favors a

small number of terms in the model. Among several

FIGURE 3
Three-component time series data generated by Eqs. 22–24 and the relationships among the components. The plotted data are a part of results
from 1,000 to 2000 iterations. In this artificial system, the time scales in the fluctuations of each component are different: Component x0 fluctuates
slowly, component x1 fluctuates rapidly, and component x2 fluctuates intermediately.
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information criteria proposed in the literature, we take the

Description Length (DL) suitably modified by Judd and Mees

(1995) as the information criterion in this article. This DL has

proven to be effective even in modeling nonlinear dynamics and

has fewer approximations than other information criteria (Judd

and Mees (1998); Small and Judd (1999)). Assuming that the

dynamic noise, εi(t), in Eq. 2 is Gaussian, and the parameters, ai,0
and ai,j,l, are chosen to minimize the sum of squares of the

prediction errors, eT ·e, Judd and Mees have shown that the

description length is bounded by

DL K( ) � N

2
− 1( )ln eTe

N
+ K − 1( ) 1

2
+ ln γ( ) −∑K

i�1
ln δi, (7)

where N is the length of the time series to be fitted, K is the

number of the parameters that take non-zero values (or the

model size), and the variables δi (i = 1, 2, . . ., k) can be interpreted

as the relative precision to which the parameters are specified. For

the details of the variables δi, see Judd and Mees (1995) and Judd

and Mees (1998). The number γ is a constant and typically fixed

to be γ = 32 for choosing a small model size K.

To extract the optimal subset to minimize DL(K) from the

dictionary of terms, we have to resort a practical selection

algorithm, since the exhaustive search is an NP-hard problem

when the dictionary contains over a dozen of terms. In this

article, we adopt an algorithm proposed by Nakamura et al.

FIGURE 4
The values of transfer entropy of each component from other components for various values of time delay (lag) up to 20. We plot the values for
k = l = 1 in the left column and the values for k = l = 2 in the right column for comparison. A large value of transfer entropy indicates that a large
amount of information gain exists at the lag from the corresponding components.

FIGURE 5
The placement of 10 electrodes in International
10–20 System for electroencephalography measurements. The
top (bottom) is the front (back) direction of the head. The digits
over the circles representing electrodes are the component
numbers used in the RAR modeling.
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(2004). Instead of the exhaustive search, this algorithm begins

from identifying the model of the shortest size, K = 1, then we

look for the term to be added to obtain a smaller value of DL. The

model size thus become larger one-by-one until DL ceases to

decrease, which is called the bottom-up method. To avoid to be

trapped in a local minimum, we proceed a little further to

increase the model size, K, and then go back to decrease the

model size one-by-one until DL ceases to decrease, which is

called the top-down method. We repeat these bottom-up and

top-down methods until the optimal models in two methods

coincide with each other. Nakamura et al. (2004) have proven

that this algorithm is able to obtain better models in most cases

than other algorithms with reasonable computation time.

A typical result of RAR modeling takes the form

x̂0 t( ) � 1.34 + 0.39x0 t − 1( ) − 0.20x0 t − 3( ) + 0.31x1 t − 4( )
+ 0.20x3 t − 7( ),

(8)

which includes only the terms, x0(t − 1), x0(t − 3), x1(t − 4), and

x3(t − 7), in the dictionary. The RARmodel thus includes only terms

of relevant components and lags, which is the most important

difference between the RARmodel and the VARmodel. Due to this

difference, we are able to identify the directed relationships among

components in multivariate time series. For instance, Eq. 8 implies

that component x0 is affected by x1 and x3 apart from x0 itself. It

should also be emphasized that there are strong information

theoretic arguments to support that the RAR model can detect

any periodicities built into given time series [Small and Judd (1999)].

2.3 Transfer entropy

Transfer entropy is an information theoretic measure for

quantifying the information flow between two univariate

time series, which we denote here as . . . , x(0),{
x(1), . . . , x(N − 1), . . . }and

FIGURE 6
The plots of the 10 channel electroencephalography signals analyzed in the present section. All plotted data are normalized and dimensionless.
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. . . , ~x(0), ~x(1), . . . , ~x(N − 1), . . .{ } . They are not necessarily

related to each other. Let us assume that the values x(t) and ~x(t)
at each time t are independent draws from two discrete stochastic

variables, X � (x0, . . . , xi, . . . , xI−1) and
~X � (~x0, . . . , ~xj, . . . , ~xJ−1), respectively, as the simplest

example. It is well known in information theory that the

average number of bits needed to optimally encode

independent draws from X is given by the Shannon entropy

HX � −∑I−1
i�0P(xi)log2P(xi), where P(xi) is the probability for

X = xi. The extra information gain of the state of X = xi by

obtaining the state of ~X is measured by the entropy decrease

ΔHX← ~X xi( ) � −P xi( )log2P xi( ) −∑J−1
j�0

P ~xj( )P xi|~xj( )
−log2P xi|~xj( )( )

(9)

� ∑J−1
j�0

P xi, ~xj( )log2P xi|~xj( )
P xi( ) , (10)

where P(xi, ~xj) is the joint probability for (X, ~X) � (xi, ~xj) and
P(xi|~xj) � P(xi, ~xj)/P(~xj) is the conditional probability for X =

xi under the condition of ~X � ~xj. Finally the total information

gain of X by the knowledge of ~X is obtained by the summation

over xi, which is

ΔHX← ~X � ∑I−1
i�0

ΔHX← ~X xi( ) � ∑I−1
i�0

∑J−1
j�0

P xi, ~xj( )log2P xi|~xj( )
P xi( ) . (11)

Noticing that

P xi|~xj( )
P xi( ) � P xi, ~xj( )

P xi( )P ~xj( ), (12)

we see that the information gain in this simplest case is

symmetric with respect to X and ~X and measures the mutual

correlation between X and ~X.

Schreiber (2000) extended this concept to the directional

information flow between two time series. As time series data

have correlation in time direction, the joint probability of signals

between different times, P(x(t), x(t′)) cannot be separated as the

product, P(x(t)) · P(x(t′)). By taking this feature into

consideration, Schreiber defined the transfer entropy from ~X

FIGURE 7
The values of transfer entropy of component Fz from other components with respect to the lags up to 30. All values are in the same order of
magnitude and do not show distinct peaks.

FIGURE 8
Plot of the components and the maximum values of transfer entropy of component Fz for each lag up to 30 sorted in the descending order of
the values of transfer entropy. The red bars are the top five values of transfer entropy. For component Fz, all top five values come from
component C3.

Frontiers in Network Physiology frontiersin.org07

Tanizawa and Nakamura 10.3389/fnetp.2022.943239

129

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.943239


to X as the information gain of the time series X by obtaining the

values of ~X, which is

TX← ~X L, k, l( ) � ∑N−1

t�0
P x t + L( ), x k( )

t , ~x l( )
t( ) log2P x t + L( )|x k( )

t , ~x l( )
t( )

P x t + L( )|x k( )
t( ) ,

(13)
where

x k( )
t � x t − k + 1( ), x t − k + 2( ), . . . , x t( ){ }, (14)
~x l( )
t � ~x t − l + 1( ), ~x t − l + 2( ), . . . , ~x t( ){ }. (15)

Here we slightly extend the definition by Schreiber to include

the time difference L that can be a positive integer larger than one

to measure the effect of time delay in information flow.

The transfer entropy is non-negative and becomes zero when

X and ~X are statistically independent. For the values of k and l,

the value k = l = 1 is commonly used. In this article, we compare

two cases for k = l = 1 and k = l = 2 in Section 3. It should be noted

that the transfer entropy between two time series is asymmetric

in X and ~X, which enables us to determine the directional

relationship between these two time series. Another important

point to be mentioned is that the transfer entropy is a pairwise

quantity by definition. To investigate the directional

relationships among multivariate time series whose

components are more than three, we should calculate and

compare the values of transfer entropy of all pairs in the

components of the time series.

3 Experiments on artificial linear
systems

In this section, we apply the RAR modeling technique to

two artificial systems, both of which are represented by linear

combinations of the terms of three components with various

distinctive lags to investigate the directional relationship

among the components and compare the results to the

ones obtained from the calculated values of transfer

entropy. The difference between these two time series is the

time scales of fluctuations of each component. While the time

scales of fluctuations of all components in the first system

(System 1) are similar, the time scales in the second system

(System 2) differ from each other.

3.1 System 1: A case with fluctuations in
similar time scales

The time series of System 1 are generated by the following

linear equations:

x0 t( ) � 0.4x0 t − 1( ) − 0.2x0 t − 3( ) + 0.3x1 t − 4( )
+ 0.2x2 t − 7( ) + ε0 t( ), (16)

x1 t( ) � 0.2x0 t − 2( ) + 0.3x2 t − 9( ) + ε1 t( ), (17)
x2 t( ) � 0.2x0 t − 2( ) + 0.5x2 t − 1( ) − 0.3x2 t − 3( ) + ε2 t( ),

(18)
where εi(t) (i � 0, 1, 2) are the dynamic noise that are drawn

from independently and identically distributed (IID) Gaussian

random variables with mean zero and standard deviation 1.0.

This system generates non-divergent signals. The time scales in

the fluctuations of each component are in the same order of

magnitude, as it can be seen in Figure 1. It should also be noted

that component x1 are generated by other components, x0 and x2
and not related to the previous values of x1 itself. In Figure 1, the

relationships among the components are also depicted.

We generate 10000 data points for each component of

System 1 after sufficient number of iterations to erase initial

value dependence to build the RAR model. In the modeling, we

set the maximum time delay L = 25. The dictionary contains

therefore 76 terms, which are 25 terms for the three components

plus one constant term. Having in mind that we build RAR

models from electroencephalography data with

1,025 observations in Section 4, we divide these 10,000 data

points into 10 intervals each of which contains 1,000 data points

FIGURE 9
Pictorial summary of the results of the RAR model and the
transfer entropy for component Fz. The target component Fz is
represented by the red circle. The circles from which the arrows
emanate, which are Cz and F3, represent the components
contained in the RAR model with the width of the arrows being
proportional to the number of appearance of the component in
the RAR model. For the case of component Fz, component Cz
appears two times and component F3 appears three times. The
orange circles represent the components that give the top 5 values
of transfer entropy for each lag, which is only C3.
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and compare the results of RAR modeling corresponding to each

divided interval. The results are summarized as

x̂0 t( ) � 0.41 2( )x0 t − 1( ) − 0.21 2( )x0 t − 3( ) + 0.31 4( )x1 t − 4( )
+ 0.20 3( )x2 t − 7( ),

(19)
x̂1 t( ) � 0.20 3( )x0 t − 2( ) − 0.31 2( )x2 t − 9( ), (20)
x̂2 t( ) � 0.20 2( )x0 t − 2( ) + 0.49 2( )x2 t − 1( ) − 0.28 3( )x2 t − 3( ).

(21)
The notation for the values of the parameters such as 0.41(2)

represents that the mean value of the parameter of x0(t − 1) over

the models for 10 intervals is 0.41 with the standard deviation of

0.02. Notice that all terms included in the definitions, Eqs. 16–18,

are recovered with correct values of parameters within appropriate

statistical errors and contain no other unnecessary terms.

Figure 2 shows the values of transfer entropy calculated from

the same data as used in the RAR modeling summarized in Eqs.

19–21, though all 10,000 data points for each component are used

in this calculation. To see the effect of the values of k and l in the

definition of transfer entropy, Eq. 13, we calculate the values for k =

l = 1, which aremost commonly used, and k = l = 2 for comparison.

Let us examine the results of for k = l = 1 (the left column of

Figure 2). For component x0, the large values of transfer entropy

come from component x1 at lag 4 and component x3 at lag 7.

Compared to the generator of x0 defined by Eq. 16, these peaks

are consistent with the terms x1(t − 4) and x3(t − 7) in the

generator of x0. For component x1, peaks appear at lag 2 for

component x0 and at lag 9 for component x2, which are also

consistent with the terms x0(t − 2) and x2(t − 9) in the generator

of x1, Eq. 17. For component x2, the large value of transfer

entropy at lag 2 for component x0 is consistent with the term

x0(t − 2) in Eq. 18, though there is another small peak at lag 6 for

component x0, which does not have any corresponding term in

Eq. 18. The values for component x1 are almost zero, which is

reasonable, since component x2 is independent of x1. For the

results of k = l = 2 (the right column of Figure 2), the behaviors

are almost the same as those of k = l = 1 except that there appear

FIGURE 10
Summarized results for other components. Red circles represent the target components against which the RARmodels are built. The arrows are
the directed relationships indicated by the corresponding RAR models. The orange circles are the components that gives large values of transfer
entropy to the target nodes. See the caption of Figure 9 for the details. Since the RAR model of component F3 contains only terms of F3 itself, there
are no arrows in the picture for F3.
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two consecutive peaks, since the correlation of x(t + L) with x(t),

x(t − 1), x̂(t), and x̂(t − 1) are taken into account for k = l = 2. As

it is also seen later in the results of another artificial system,

Figure 4, taking k = l = 1 would be sufficient for the purpose of

identifying the directional relationships among components in

time series. For the case of System 1, in which the time scales of

the fluctuations of each components are in the same order of

magnitude, transfer entropy is able to detect the correct

relationships among components in multivariate time series as

well as the RAR modeling does.

3.2 System 2: A case with fluctuations with
different time scales

The time series of System 2 are generated by the following

linear equations:

x0 t( ) � 1.29x0 t − 1( ) − 0.3x0 t − 4( ) + 0.25x1 t − 3( ) + ε0 t( ),
(22)

x1 t( ) � 0.3x1 t − 1( ) + 0.2x1 t − 6( ) + ε1 t( ), (23)
x2 t( ) � 5.0x1 t − 3( ) + 0.9x2 t − 1( ) + ε2 t( ), (24)

where εi(t) (i � 0, 1, 2) are the dynamic noise drawn from IID

Gaussian random variables with mean zero and standard

deviation 1.0 as in System 1. Figure 3 plots the signals

generated by these equations and the relationships among the

components. The most prominent feature of this system is the

differences in the time scale of fluctuation of each component.

Component x0 fluctuates slowly over about 50 iterations,

component x1 fluctuates rapidly in almost every iteration, and

component x2 fluctuates intermediately in time scale between

those of x0 and x1. It should also be noticed that component x1,

which has the smallest amplitude and is independent of other

components, affects components x0 and x2. In this regard, System

2 has more complicated characteristics than System 1, even

though the dynamics is represented by linear equations.

As in the case of System 1, we generate 10,000 data points for

each component of System 2 to build the RAR model, then we

divide these 10,000 data points into 10 intervals each of which

contains 1,000 data points and compare the corresponding

results of RAR modeling. We set the maximum lag as L = 25

and use the same dictionary containing 76 terms as used for

System 1. The results are summarized as

x̂0 t( ) � 1.286 7( )x0 t − 1( ) − 0.296 8( )x0 t − 4( )
+ 0.25 2( )x1 t − 3( ), (25)

x̂1 t( ) � 0.30 3( )x1 t − 1( ) + 0.19 2( )x1 t − 6( ), (26)
x̂2 t( ) � 5.01 3( )x1 t − 3( ) + 0.900 1( )x2 t − 1( ). (27)

As in the case of System 1, all terms and parameters are

correctly recovered within reasonable statistical errors for System

2 in spite of the differences in the amplitude and the time scale of

fluctuation for each components.

Figure 4 shows the values of transfer entropy calculated using

all 10,000 data points of the same data as used in the RAR

modeling summarized in Eqs. 25–27. As in the case of Systems 1,

we calculate the values of transfer entropy for both k = l = 1 and

k = l = 2 for comparison. First of all, the values of the transfer

entropy of component x0 shows no distinctive peaks, which is

remarkably different from those of components x1 and x2.

Moreover, the values from component x2 are always larger

than those of component x1, though the generator of x0
defined by Eq. 22 is independent of component x2. This

deceptive result might be caused by the fact that the

amplitudes of components x0 and x2 are in the same order.

For x1, the values are very small around 0.0075 and the large

values come from x2 at lags 2 and 3, though there are no such

terms in the generator of x1, Eq. 23. The small values might be

related to the fact that component x1 is independent of other

components, though for decisive conclusion for the

independence we need to estimate the effect of dynamical

and/or observational noise using a method like surrogate

generation based approach. For component x2, the large

values of transfer entropy come from x1 at lags 3 and 4 that

might corresponds to the term x1(t − 3) in Eq. 24, though the

values of transfer entropy show a long tail after the peak, which

might be incompatible with Eq. 24. For the results of k = l = 2 (the

right column of Figure 2), the behaviors are almost the same as

those of k = l = 1. Even if the dynamics is represented by linear

equations and the signals contain a small amount of Gaussian

noise, the transfer entropy begins to fail in capturing the correct

relationships among components for System 2 containing

different time scales in fluctuation of each component.

4 Results on electroencephalography
data

In this section, we apply the RAR modeling to

electroencephalography (EEG) data and compare the results

to the values of transfer entropy. The EEG signals used here

were recorded from a healthy human adult during resting state

with eyes closed in an electrically shielded room and have been

analyzed by other methods in Rapp et al. (2005). The data were

simultaneously obtained from 10 channels of the unipolar

10–20 Jasper registration scheme and digitized at 1,024 Hz

using a twelve-bit digitizer. In Figure 5, we show the

placement of 10 electrodes in International 10–20 System.

Artifact corrupted records were removed from the analyses.

The EEG impedances were less than 5 kΩ. The data were

amplified by gain equal to 18,000, and amplifier frequency

cut-off settings of 0.03 Hz and 200 Hz were used.

The 10 channel electroencephalography signals analyzed

here are plotted in Figure 6. It should be noted that the plotted

data are all normalized and dimensionless. The activities of

human brain are, undoubtedly, highly complicated and non-
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linear by nature. We should therefore be careful whether there

might be suitable interval and duration of time for the

dynamics to be approximated in linear forms. Tanizawa

et al. (2018) have shown that the RAR modeling is able to

detect correct relationships among components even for

dynamical systems represented by non-linear differential

equations such as the Rössler system. Since there is no

explicit description of the results of RAR modeling of the

EEG data in Tanizawa et al. (2018), we rebuild the RAR

models for these 10 EEG time series, expecting the models

contain correct information about the relationships among

the components. We use 1,025 data points (1 s) for each

component (channel) to build multivariate RAR models.

We set the maximum lag as L = 25 and the dictionary

contains therefore 251 terms, which are 25 terms for the

10 components with one constant term. We show the result

for the component Fz explicitly, which is

x̂Fz t( ) � 0.96xFz t − 1( ) + 0.46xCz t − 1( ) − 0.43xCz t − 2( )
− 0.091xF3 t − 5( ) + 0.17xF3 t − 13( )
− 0.095xF3 t − 20( ). (28)

From this model, component Fz is influenced by component

Cz at lag 1 and 2 and component F3 at lag 5, 13, and 20. In Figures

11, 12 of Appendix, we show the behaviors of simulated signals

generated from the RARmodels and their power spectral densities.

For the transfer entropy, we use the same data points as those

used in RAR model building and calculate the information gain

from the correlation in the signals between all pairs of component

Fz and each of other channels up to the maximum lag 30.

According to the analysis described in Section 3, we set k = l =

1 in calculating transfer entropy. The results of the calculation is

plotted in Figure 7. From this plot, we see that all values of transfer

entropy are in the same order of magnitude and show no distinct

peaks that suggest important components and lags. We also plot in

Figure 8 the components and the maximum values of transfer

entropy of component Fz for each lag up to 30 sorted in the

descending order of the values of transfer entropy. According to

the calculations of transfer entropy for component Fz, the

information gain from component C3 is the largest. The

component C3, however, does not appear in the RAR model of

component Fz in Eq. 28. The values of transfer entropy for other

components show similar behaviors.

We summarize these results for component Fz in Figure 9. In

this figure, the target component against which the RAR model and

the transfer entropy are calculated (in this case, Fz), is represented by

a red slightly large circle. The circles fromwhich the arrows emanate

(in this case, Cz and F3), represent the components contained in the

RAR model with the width of the arrows being proportional to the

number of appearance of the component in the RAR model. In this

case, component Cz appears two times and component F3 appears

three times. The orange circles represent the components that give

the top 5 values of transfer entropy for each lag. In this case, all top

5 values only come from component C3 (See Figure 8). From this

figure, we also see the spatial information of the components

included in the RAR model and the components that gives large

values of transfer entropy.

As for the other nine components, we show only the

summarized results in Figure 10. Generally speaking, the

components that give large values of transfer entropy are not

related to the components included in the RAR models. It is also

to be noticed that the component Oz, which is placed at the back

of the head, appears frequently as the component of large transfer

entropy values, though it is not likely the outcome of direct

influence of this component on the target components.

5 Discussion and summary

For two artificial linear systems described in Section 3, the

results of the transfer entropy are consistent with those of the

RAR modeling, if the values and the time scales in fluctuation of

the signals are in the same order of magnitude (System 1). In this

case the dynamics of the components are well separated and

pairwise methods such as the transfer entropy work well. If the

time series contain components whose values and time scale of

fluctuation are significantly different from each other (System 2),

however, the transfer entropy begins to fail in detecting correct

relationships among components, while the RARmodeling is still

able to give the correct relationships.

For the application to EEG data in Section 4, the relationships

indicated by the results of transfer entropy are drastically different

from those indicated by the RAR modeling. Though, within our

knowledge, there are no decisive research work in the literature in

this regard, we think it is partially because of the insufficiency of

pairwise measures for detecting relationships among components

that potentially contain various time scales in dynamics for those

seen in brain activity. In contrast, it is known that the RAR

modeling can detect correct relationships even when the

underlying system is non-linear (Tanizawa et al. (2018)). We

understand that it would be a controversial issue whether EEG

data can be representable by linear models or not. Even in a case in

which that the dynamics is represented by a linear system,

however, transfer entropy might fail in detecting the correct

relationships among the components in multivariate time series,

if they contain several time scales in different orders of magnitude.

Thoughwe do not claim that the relationships detected by the RAR

modeling technique are always correct, detecting the relationships

among components in multivariate time series by RAR modeling

could be a promising technique with a wide range of applicability.

In summary, we have applied the RARmodeling technique to

several multivariate time series as a method to detect the

relationships among the components in the time series and

compared the results with those of a pairwise measure,

transfer entropy in this article. When the relationships

between the dynamics of the components are linear and the
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time scales in the fluctuation of each component are in the same

order of magnitude, the results of the RARmodel and the transfer

entropy are consistent. When the time series contain

components that have large differences in the amplitude and

the time scales of fluctuation, however, the transfer entropy fails

to capture the correct relationships between the components,

while the results of the RAR modeling are still correct. For a

highly complicated dynamics such as human brain activity

observed by electroencephalography measurements, the results

of the transfer entropy are drastically different from those of the

RAR modeling.
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Appendix

In this Appendix, we show the behaviors of simulated EEG

signals generated by the RAR models and their power spectral

densities in the frequency domain. Here the RAR models are

constructed from the first 769 observations of each EEG channels

to compare the simulated signals to the last 256 observations.

Figure 11 are the plots of simulated signals generated by the

RAR models with the last 281 observed EEG signals for

comparison. The RAR signals are generated with 25 observed

signals prior to the last 256 signals as initial values and contain

Gaussian random numbers with mean 0 and standard deviations

determined from the fitting errors of each channels in RAR

modeling as dynamic noise. Though the observed signals and the

simulated ones are not identical because of the dynamic noise,

the behaviors seem to be quite similar.

Figure 12 are the plots of the power spectral densities of

simulated signals from the RAR models. Plotted values are the

averages of the power spectral densities over 100 independent

runs of simulation. Significant contributions come from

frequencies up to about 20 Hz that correspond to the region

of α waves.
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FIGURE 11
Comparative plots of the observed EEG signals and the signals generated by the RAR models, which are constructed from the first
769 observations of each channel. The observed EEG signals are the last 281 (= 25 + 256) signals of each channel and the RAR signals are generated
by the corresponding RAR models with 25 observed signals prior to the last 256 signals as initial values. Simulated signals also contain Gaussian
random numbers with mean 0 and standard deviations determined from the fitting errors of each channels in RAR modeling as dynamic noise.
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FIGURE 12
Plots of the power spectral densities of simulated signals from
the RAR models. Plotted values are the averages of the power
spectral densities over 100 independent runs of simulation.
Significant contributions come from frequencies up to about
20 Hz.
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EEG functional brain connectivity
strengthens with age during
attentional processing to faces in
children
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Studying functional connectivity may generate clues to the maturational changes

that occur in children, expressed by the dynamical organization of the functional

network assessed by electroencephalographic recordings (EEG). In the present

study, we compared the EEG functional connectivity pattern estimated by linear

cross-correlations of the electrical brain activity of three groups of children (6, 8, and

10 years of age) while performing odd-ball tasks containing facial stimuli that are

chosen considering their importance in socioemotional contexts in everyday life. On

the first task, the children were asked to identify the sex of faces, on the second, the

instruction was to identify the happy expressions of the faces. We estimated the

stable correlation pattern (SCP) by the average cross-correlation matrix obtained

separately for the resting state and the task conditions and quantified the similarity of

these average matrices comparing the different conditions. The accuracy improved

with higher age. Although the topology of the SCPs showed high similarity across all

ages, the two older groups showed a higher correlation between regions associated

with the attentional and face processing networks compared to the youngest

group. Only in the youngest group, the similarity metric decreased during the sex

condition. In general, correlation values strengthened with age and during task

performance compared to rest. Our findings indicate that there is a spatially

extended stable brain network organization in children like that reported in

adults. Lower similarity scores between several regions in the youngest children

might indicate a lesser ability to cope with tasks. The brain regions associated with

the attention and face networks presented higher synchronization across regions

with increasing age, modulated by task demands.
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functional connectivity, neural networks, EEG, children, age, attention, face
processing

OPEN ACCESS

EDITED BY

Plamen Ch. Ivanov,
Boston University, United States

REVIEWED BY

Ruben Yvan Maarten Fossion,
Universidad Nacional Autónoma de
México, Mexico
Marianna La Rocca,
Università degli Studi di Bari “A. Moro”,
Italy

*CORRESPONDENCE

Julieta Ramos-Loyo,
julieta.ramos@academicos.udg.mx

SPECIALTY SECTION

This article was submitted to
Generalized Nets and Fuzzy Sets,
a section of the journal
Frontiers in Network Physiology

RECEIVED 07 March 2022
ACCEPTED 15 September 2022
PUBLISHED 13 October 2022

CITATION

Ramos-Loyo J, Olguín-Rodríguez PV,
Espinosa-Denenea SE,
Llamas-Alonso LA, Rivera-Tello S and
Müller MF (2022), EEG functional brain
connectivity strengthens with age
during attentional processing to faces
in children.
Front. Netw. Physiol. 2:890906.
doi: 10.3389/fnetp.2022.890906

COPYRIGHT

© 2022 Ramos-Loyo, Olguín-
Rodríguez, Espinosa-Denenea, Llamas-
Alonso, Rivera-Tello and Müller. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Network Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 13 October 2022
DOI 10.3389/fnetp.2022.890906

138

https://www.frontiersin.org/articles/10.3389/fnetp.2022.890906/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.890906/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.890906/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.890906/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnetp.2022.890906&domain=pdf&date_stamp=2022-10-13
mailto:julieta.ramos@academicos.udg.mx
https://doi.org/10.3389/fnetp.2022.890906
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://doi.org/10.3389/fnetp.2022.890906


Introduction

The brain is a hyperconnected structure, enclosing

anatomically and functionally organized networks. Its intrinsic

connectivity patterns can be reconfigured dynamically and

adaptively as a consequence of environmental demands

(Cohen & D’Esposito, 2016) and may suffer maturational

changes at the functional (Smit et al., 2012; Qin et al., 2015)

and structural level (Hagmann et al., 2010; Fan et al., 2011).

A close relationship between structural and functional

connectivity has been proposed, although there is no perfect

match because function reflects complex multisynaptic

interactions in structural networks (Park & Friston, 2013;

Suárez et al., 2020). Suárez et al. (2020) remark that

functional connectivity at rest is thought to reflect the

spontaneous neural activity of a finely orchestrated spatio-

temporal pattern, which should be reproducible like those

observed during tasks performance which patterns are highly

organized, reproducible, and comparable with tasks-driven

activation patterns. Most of the studies addressing the

structural and functional brain connectivity relationships have

been conducted using functional magnetic resonance (fMRI)

(Park & Friston, 2013; Suárez et al., 2020). Nevertheless, some

related work has also been performed using brain electrical

activity (EEG) (Chu et al., 2015). Moreover, Arzate-Mena

et al. (2022) encountered a straight relationship between the

EEG stable correlation pattern (SCP) and the fMRI resting-state

network that reflects different time expressions of the same brain

activity.

EEG has proven useful to study functional connectivity, as its

fine temporal resolution allows the assessment of fast dynamic

processes. Different approaches have emerged to extract brain

dynamics information from EEG (Pereda et al., 2005; Ansari-Asl

et al., 2006; Boccaletti et al., 2006; Bullmore & Sporns, 2009;

Bakhshayesh et al., 2019). However, even when highly nonlinear

systems are under consideration, linear measures may perform

equally well or even better than nonlinear techniques (Mormann

et al., 2005; Ansari-Asl et al., 2006; Bakhshayesh et al., 2019),

which seems particularly true for the analysis of EEG-signals

(Mormann et al., 2005; Müller et al., 2011; Bakhshayesh et al.,

2019). Therefore, in the present study, we focus on linear cross-

correlations to estimate functional networks.

Regarding linear cross-correlation between selected

electrodes located in different scalp regions, Corsi-Cabrera

et al. (1997, 2007) observed high within-subject stability in

repeated measures across weeks and months in healthy

women. In the studies of Müller et al. (2014) and Olguín-

Rodríguez et al. (2018), a well-pronounced average cross-

correlation pattern was found that spans over the whole

scalp. This pattern seems to be independent from the

physiological state of a subject like different sleep stages, or

awake with open or closed eyes, and remains stable even

during a peri-ictal transition of a focal onset seizure.

Moreover, this correlation structure seems to have a universal

character, since it shows notably high similarity also between

subjects. Undoubtedly, finding stationary patterns in otherwise

highly nonstationary multivariate data is an important topic, as it

can give us insight into the main mechanisms controlling the

dynamics of a complex system such as the human brain.

The present study was motivated by the hypothesis

articulated by Olguín-Rodríguez et al. (2018) that the SCP

reflects the necessarily correlated ongoing brain activity

whose one of its principal functions consists in

maintaining the brain in an optimal dynamical mode for

information processing such that deviations or fluctuations

around this stable scaffold are expressions of the actual

physiological brain state.

However, the brain develops during the lifespan, and

particularly during childhood and adolescence, it suffers

crucial structural changes. Thus, the question remains whether

a distinct stationary pattern of relationships encompassing the

entire scalp is also found in children as in adult subjects, and

second, whether the SCP based on functional relationships also

undergoes changes such as those in the structural reorganization

of brain networks. Furthermore, it might be interesting to prove

whether also in children cognitive brain states could be better

described and characterized by deviations from the SCP.

Some hints in favor of this hypothesis can be found in the

literature. Generally, changes in frequency bands amplitude have

been described in children while they are at rest and during the

performance of cognitive tasks (i.e. Benninger et al., 1984;

Marshall et al., 2002; Clarke et al., 2001; Perone et al., 2018).

Concerning EEG functional connectivity maturation, some

studies have been conducted in the resting state. In an early

report, Marosi et al. (1992) found an increase in EEG coherence

with higher age. In another study (Thatcher et al., 2008), authors

observed maturational changes in intra-hemispheric coherence

in children and adolescents aged 6 months to 16 years. That

study reported large changes in EEG coherence and phase in

children aged 6 months to 4 years, followed by a significant linear

trend towards higher coherence in short inter-electrode

distances, and longer phase delays in long inter-electrode

distances. Along this line, Fair et al. (2009) observed that

functional brain development proceeds from a local to a

distributed communication organization. It is worth noting

that disruptions in EEG functional connectivity have been

described in different disorders such as attentional deficit-

hyperactivity disorders (Barry et al., 2002; Murias et al., 2007),

autism spectrum disorder (Kikuchi et al., 2013), and intellectual

disability (Gasser et al., 1987).

However, only sparse data exist that addressed EEG

functional connectivity during cognitive processing in

typically-developing children. Machinskaya and Kurganskiĭ

(2012) compared coherent activity between children (7-8 years

old) and adults during a working memory task. While they

reported for the adult group, an increase of the coherence in
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the alpha band between frontoparietal regions, predominantly in

the right hemisphere, in children they detect significant

coherence values in the inferior-temporal and parietal cortical

regions coherence in the theta band. These results are interpreted

in terms of a relative immaturity of the mechanisms of executive

control of working memory in children. In adults, variations in

functional connectivity during the processing of diverse tasks

include global and specific network changes associated with

information processing (i.e. Daume et al., 2017; Hearne et al.,

2017; Maurits et al., 2006; Vatansever et al., 2017).

In the present study, we were interested in exploring the

developmental changes during attentional processes using high

salient emotional stimuli such as facial expressions, due to their

relevance in social interaction and adaptation (Dekowska et al.,

2008). As Driver and Frackowiak (2001) state, selective attention

allows people to process some stimuli more thoroughly than

others, which is partly under voluntary control, and partly

determined by stimulus salience. Like other cognitive abilities,

facial and emotional recognition improves with age in school-age

children. For example, Damaskinou and Watling (2018)

presented evidence that 10-year-olds overperform 6-year-olds

on emotional recognition tasks.

One of the most widely used paradigms for studying brain

electrical responses originated during facial emotional

recognition is the odd-ball task. Fichtenholtz et al. (2007)

propose that the odd-ball task may be useful to study the

interaction of the attention and emotion processing. In this

paradigm, the participant is asked to respond to a specific

low-probability target stimulus which is presented within a

stream of high-probability non-target stimuli.

Some EEG and MEG studies employing several analysis

approaches have achieved to find functional connectivity

among the face-sensitive brain areas of the ventral visual

pathway that includes primary occipital regions, the inferior-

temporal cortex, and especially the fusiform face area (Yang et al.,

2015; Maffei & Sessa, 2021; Yin et al., 2021). However, little is

known about developmental changes in functional connectivity

during cognitive activity, particularly during face processing.

Cohen Kadosh et al. (2011) examined the fMRI connectivity

of the core face network and observed that it develops during

childhood. However, children did not show the modulation in

the functional network connections by task demands found in

adults.

A recent fMRI study (Harrewijn et al., 2021) was conducted

to test the similarity in functional connectivity between rest and

while performing a dot-probe task with neutral, happy, and angry

faces in 13 years-old children. Results revealed that functional

connectivity during rest and a dot-probe task was positively

correlated and that the similarity levels were related to threat bias.

In another study in adults, Yin et al. (2021) found that during face

processing, the EEG brain network was more efficient for

information transfer and exchange compared with non-face

processing.

To our knowledge, the presence of a SCP in EEG activity has not

been studied in children so far, neither at rest nor during task

performance. Studying EEG functional connectivity in typically-

developing children may shed light on the normal maturational

changes in the brain dynamics organization while performing a

cognitive task with salient stimuli (faces) across ages and it may

provide a basis for the understanding of functional abnormalities in

special populations. Finally, the estimation of variations from the

stationary correlation patterns may provide differentiation of

dynamical transient changes during different cognitive states in

children like those observed in adult subjects (Olguín-Rodríguez

et al., 2018). Therefore, the aims of the present study were threefold:

1) To identify a possible SCP in children similar to that found in

adults;

2) To evaluate the global variations via similarity estimates

between SCP and the correlation pattern of each condition

during an odd-ball task with facial stimuli.

3) To identify the effects of age via possible changes of

the coupling between brain regions, during the

performance of two tasks that requires attention and

face processing.

We hypothesized that a correlation pattern like that found in

adults would exist in children. The similarity metric will show

lower values during cognitive activity than during resting state,

indicating higher transient dynamical features. In addition, we

predicted that cross-correlations would increase with age and will

be modulated by task demands.

Methods

Participants

The sample consisted of 64 right-handed children,

distributed into three age groups, each with a range of

11 months (G1: 10 boys and seven girls, mean age = 6.30,

SD = 0.44; G2: 13 boys and nine girls, mean age = 8.31, SD =

0.37 and; G3: 15 boys and 10 girls, mean age = 10.2, SD = 0.45).

The children group were homogeneous with respect to their age

and school grade and normal IQ scores. None had any history of

neurological disorders. The parents provided their written

informed consent for their children´s participation in this

study. The project was approved by the Ethics Committee of

the Institute of Neurosciences following the Declaration of

Helsinki.

EEG recording

EEG was continuously recorded during the experimental

conditions: at rest with eyes opened and during task
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performance in the leads F3, F4, Fz, C3, C4, Cz, T3, T4, T5, T6,

P3, P4, Pz, O1, and O2 according to the 10/20 International

System with linked earlobes as a reference with a sampling rate of

500 Hz. To this end, we used a Medicid five acquisition device.

Electrode impedances were assured to be less than 5 kOhms. To

control artifacts caused by ocular movements an

electrooculogram was recorded simultaneously via two

electrodes located at the extreme upper corner of the right eye

and the lower outer edge of the left eye, respectively. During

acquisition, the signal was bandpass filtered between 0.01 and

50 Hz.

Experimental design

An oddball paradigm was used for the presentation of two

tasks. In one of them, the children had to recognize the facial

expressions of happiness; and in another one, they had to identify

the sex of the models. For each task, a total of 200 stimuli were

randomly presented, of which 70% were non-target frequent

stimuli and the remaining 30% were the target infrequent ones.

Each trial started with a fixation point (a white cross) in the

center of the screen with a variable duration between 800 and

1,300 ms, followed by either a frequent or a target stimulus

presented for 700 ms.

Participants were asked to respond to the target stimuli by

pressing a key. For the happiness condition, the target stimuli

were faces with a happiness expression, while the non-target

stimuli consisted of men´s and women´s faces with a neutral

expression. For the sex recognition task, the target stimuli were

female faces and the non-target male ones.

Procedure

Once the presence of the inclusion criteria for each

participant were determined, we asked the child to sit 60 cm

away in front of the computer screen and perform the task,

avoiding eye and head movements while the faces were shown.

We counterbalanced the presentation of the two tasks among

participants and allowed a 5-min rest period between them.

Before starting each task, participants underwent a training block

of 10 trials to assure that they have completely understood the

instructions.

EEG analysis

After visual inspection, data preprocessing was conducted

applying Independent Components Analysis (ICA) to remove

eye movements (Delorme & Makeig, 2004). On the average we

used 25 artifacts free EEG segments that corresponded

exclusively to correct responses to the targets which were

considered for further analysis. Anterior-temporal electrodes

(T3 and T4) were excluded because signals were contaminated

with artifacts in some children and these regions are not directly

involved in face identification or attentional processes. The

computer codes for the numerical analysis were elaborated

using MATLAB.

Continuous EEG signals were first segmented into windows

of T = 1 s length. In the case of the tasks, this window began in

synchrony with the stimulus presentation. We then, filtered the

signals by a fourth-order Butterworth filter (1-25 Hz). We

calculated for each segment the Pearson’s correlation

coefficients, viz. zero-lag cross-correlations,

Cij � 1
T
∑T
k�1

Xi(tk)Xj(tk)

between each pair of electrodes, adapting the procedure

followed in previous studies (Arzate-Mena et al., 2022; Müller

et al., 2014; Olguín-Rodríguez et al., 2018). Here Cij denotes the

cross-correlation matrix of two time series Xi(tk)Xj(tk), T
denotes the number of samples of the data segment (i,j = 1,

. . . , N and k = 1, . . . T) and N the number of electrodes. In this

formula, the data Xi(tk)Xj(tk) are normalized to zero mean and

unit variance, such that the correlation coefficient takes values

between ± 1. The resulting matrix is real-symmetric and all

diagonal elements are equal to one. Then we estimated the

individual stable correlation pattern (SCP) by averaging all the

correlation matrices of all conditions (resting state and tasks) for

each participant.

To obtain the similarity metric, we calculated the correlation

values (Pearson´s analysis) between the SCP and the correlation

matrix of each EEG segment based on the procedure used by Olguín-

Rodríguez et al. (2018) and Arzate-Mena et al. (2022). Thereby, we

ordered the triangle of each matrix in a vector and normalized its

elements to zero mean unit variance to ensure that Pearson

coefficients take values between one and minus one. Then we

estimated the Pearson coefficients between these vectors. Note,

lower similarity indicates larger topological changes of the

functional network with respect to the average. These changes, viz

deviations from the SCP might be characteristic for the condition

under consideration.

Statistical analysis

For testing behavioral differences in the number of correct

responses and reaction times between conditions as a function of

age, we applied mixed ANOVAs (age x conditions). The SCP

correlation coefficients were compared among age groups

through a Welch´s t-test. In addition, we applied a mixed

ANOVA (age x conditions) to evaluate similarity metric

differences. Greenhouse corrections were applied when

necessary and Bonferroni corrections for multiple testing of
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pairwise comparisons. A p-value less than 0.05 was considered

for significant differences.

To observe an overall effect of age and conditions, we

calculated the average difference (task–rest) of the correlation

matrices for sex and happiness, and their empirical cumulative

distribution functions using the elements below the main diagonal.

Then, a two-sample Kolmogorov-Smirnov (K-S) test was applied

to determine the probability that two samples derived for the

different age-groups (6 vs. 8, 8 vs. 10, and 6 vs. 10 years) stem from

the same probability distribution. We illustrate our results of

considerable changes of the average cross-correlation matrices

like a network upon the scalp, where “considerable” means that

the changes surpass a threshold of one standard deviation above or

below the SCP-value.

Results

Behavioral results

At the behavioral level, the percentage of correct responses

increased and the reaction times decreased with higher age

(Table 1). However, differences were apparent between the

two tasks, with the sex-based one showing greater difficulty. A

significant interaction of age X conditions (F(2,61)= 5.43, p =

0.01,η2 = 0.15) revealed that the accuracy rate was lowest in the

youngest group in relation to the other two groups on the sex task

(p < 0.01), and in relation to the 10-years-olds on the happiness

task. The sex task showed lower accuracy than the happiness one

in all groups (p < 0.01).

Reaction times to the target stimuli showed significant

differences for both age (F(2,61)= 17.69, p = 0.001,η2 = 0.36)

and conditions (F(1,61)= 11.72, p = 0.01,η2 = 0.16). Reaction times

were shorter in the older groups than in the group of 6-years-old

(p < 0.001), and shorter for the happiness than the sex condition

(p < 0.001).

Stable correlation pattern

As it can be observed in Figure 1, the structure of the

average correlation matrices is very similar across the age

groups. However, some differences are observable among the

age groups. Systematically, we observed that correlations

increase with age. In the graph on the right-hand side of

Figure 1 we show the correlation coefficients of between those

electrode pairs that resulted significant on a 5%-level

according to the t-test. The differences were basically seen

in a longitudinal arranged network that includes frontal,

central, and parietal regions, and another posterior network

that includes posterior-temporal, parietal, and occipital

regions.

Note, the SCP obtained in the present study is

qualitatively different from those presented in Müller

TABLE 1 Percentage of correct responses and the reaction times in each age group (6, 8 and 10 years old).

Correct responses Reaction times

Sex Mean (SD) Happiness Mean (SD) Sex Mean (SD) Happiness Mean (SD)

6 50.68 (17.52) 76.27 (12.11) 766.98 (73.46) 723.27 (79.24)

8 70.15 (19.75) 80.83 (15.91) 681.76 (95.04) 659.31 (58.75)

10 76.27 (12.20) 90.67 (7.33) 647.42 (55.78) 619.17 (56.50)

FIGURE 1
Stable correlation pattern (SCP) for each age
group. Connection lines indicate the age-significant differences
(6, 8, and 10-year-old) in cross-correlation values on a 5%
significance level according to the t-test. Correlation
estimates turn out to be systematically higher in the older group in
all comparisons.
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et al. (2014) and Olguín-Rodríguez et al. (2018). This

striking difference is due to the different reference

schemes used. While in those studies the median

reference has been chosen, in the present work we used

here linked earlobes. As outlined in Rios-Herrera et al.

(2019), the earlobe reference may induce redundant

information to all data channels, which provokes elevated

correlations between all electrode pairs. However, the fact

that we obtained also a pronounced stationary correlation

pattern using this reference scheme, substantiates the

argumentation expressed in those studies (Müller et al.,

2014; Olguín-Rodríguez et al., 2018).

Similarity between the stable pattern and
the correlation matrices averaged
separately for each condition

In Figure 2, the Pearson coefficients for the comparison of the

SCP and the correlation matrix averaged separately for each

condition are displayed for each age group. The

ANOVA revealed significant differences for the factors of age

(F(2,61) = 10,41, p = 0.01,η2 = 0.25), conditions (F(4,122) = 38.87,

p = 0.01,η2 = 0.38) and for interaction between them (F(4,122) =

8.77, p = 0.01,η2 = 0.22). We observed lower similarity metric

values in the youngest children compared to the eight- and 10-

year-old groups in the sex condition (p < 0.01).

Rest-to-task cumulative distributions

Figure 3A illustrates rest-to-task subtraction in correlation

values for the sex and happiness conditions according to the

thresholds obtained by the cumulative distributions functions

including the three age groups. Regions that showed an

increment (red), as well as those which showed a decrement

(blue) during performance of each task in relation to the resting

state, are presented. As it can be observed, in the 6-year-olds

group, an increase in synchronization between some electrode

pairs occurred but there was also a decrease between several pairs

FIGURE 2
Similarity estimated via Pearson correlations (mean and
standard errors) between the stable pattern and the average
correlation matrix of each condition and for each age group are
displayed.

FIGURE 3
(A) Representation of task-to-rest subtraction in correlation values (Δr). Edges are traced when Δr surpassed the positive and negative
thresholds. Red lines indicate an increase in correlation values and the negative ones a decrease. For sex condition: +Th � 0.04 and −Th � −0.04. For
happiness: +Th � 0.03 and −Th � −0.05. (B) Age differences in cumulative distribution curves of task-to-rest subtraction for each task. Dotted arrows
indicate the thresholds used for tracing the graphs.
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in both conditions. In the 8-year-olds group, there was only an

increase in correlation, on one hand, between pairs of those

regions related to the attentional network (frontal, central, and

parietal), and on the other, those related to the face core network

(posterior-temporal, parietal and occipital). Finally, in the oldest

group, there was also an increase between some of the same

regions, mainly in the sex condition, adding frontal-parietal

connections. As well, there was a decrease between some

long-distance connections including occipital regions.

The K-S test revealed significant differences among the age

groups in the cumulative distributions. In general, all

distributions were statistically different (Figure 3B).

Differences were found to be significant for the sex condition

(6 vs. 8, D(78) = 0.48, p = 0.001; 8 vs. 10, D(78) = 0.21, p = 0.04;

6 vs. 10, D(78) = 0.32, p = 0.001) and in the happiness condition

(6 vs. 8, D(78) = 0.7, p = 0.001; 8 vs. 10, D(78) = 0.41, p = 0.001;

6 vs. 10, D(78) = 0.33, p = 0.001). On both tasks, the 6-years-old

children had negative values, indicating lower correlation values

during the tasks compared to the resting condition. In contrast,

results for the groups of eight- and 10-years-old displayed

positive values, indicating increased correlation.

Discussion

We first verified the existence of a stable stationary

correlation pattern (SCP) in children aged 6-10 years.

Functional connectivity increased with age mainly in a

longitudinal network that included frontal, central, and

parietal regions, but also in a posterior network comprised of

posterior-temporal, parietal, and occipital regions. The similarity

coupling of the SCP with each condition pattern showed age-

dependent changes as a function of task demand. Overall, the

youngest children showed a lower correlation value while

executing the sex task.

Children displayed a similar SCP to that observed previously

in healthy adults in different physiological states -wakefulness

and sleep stages-as well as with epilepsy using the same analytical

approach. In addition, pronounced correlations between distant

electrode pairs has been found using the median EEG-reference,

but then with negative sign (Arzate-Mena et al., 2022; Müeller

et al., 2014; Olguín-Rodríguez et al., 2018). The finding of an SCP

indicates that children´s brains exhibit a stable functional

organization pattern from an early age, while also highlighting

the importance of spontaneous brain activity in the resting state

where, though not related to a known synchronized event,

diverse cognitive activity is occurring. Since similarities

between structural and functional connectivity have been

described (Suárez et al., 2020), and the structural pattern is

established early in development (Fan et al., 2011), one could

expect a stable functional pattern to emerge in early childhood.

Based on their study of brain connectivity in five- and 7-year-olds

in the resting-state, Boersma et al. (2011) posited that a shift from

random to more organized small-world functional networks

characterize normal brain maturation.

Although the SCP was quite similar among the three groups,

age-dependent differences appeared. Overall, correlation values

from the SCP increased with age between electrode pairs

corresponding primarily to regions related to the attentional

network (frontal, central and parietal), and those related to the

face network (posterior-temporal, parietal and occipital). The

differences between the six- and 8-year-olds were clearly

lateralized in the right hemisphere. Similar differences were

observed between the six- and 10-year-olds but with a more

local increase in the attentional network, and between regions

related to the face network. The structure of these age pattern

changes shows a relation to tasks type (odd-ball) and stimuli

(faces) used. On a working memory task, Baum et al. (2019)

described an increase of the structural-functional coupling,

primarily in the rostrolateral prefrontal cortex across

development (8-23 years), that showed higher inter-individual

variability during task performance than at rest. Shirer et al.

(2011) observed shifting patterns of fMRI connectivity associated

with distinct cognitive states in adults.

Our results partially concur with other studies which found

that EEG coherence within hemisphere regions increases as a

function of age (Marosi et al., 1992; Barry et al., 2004; Thatcher

et al., 2008). The increase in functional connectivity may be

partially due to the increase of anatomical connections in the

corpus callosum and other fibers and its myelination, which have

been associated with the maturation of various cognitive

functions (Hagmann et al., 2010; Tanaka-Arakawa et al.,

2015). In this regard, the maturation of the corpus callosum

and other cortical connections may form anatomical substrates

that facilitate information transfer during task performance in

older children. Fair et al. (2008) found that a similar default

network to the one in adults is only sparsely connected in

children aged seven to nine, and that there is a continuous

increase in correlation strength over age between long-range

connections of the network.

The similarity coupling analysis revealed global changes

in the stability of the SCP and the changes that emerged from

specific ongoing activity during execution of the odd-ball

tasks. The youngest children showed a marked decrease in

the similarity metric in the sex condition that did not happen

in the other two groups. It is noteworthy that the sex task

proved to be more difficult than the happiness one, with the

difficulty residing in the perceptual features of the faces

presented, since all the clues that facilitate identifying sex

-hair and make-up- were removed, leaving only the face

contour. Apparently, the youngest children had not

completely developed the abilities required to process

specific identifying features of faces. In contrast, happiness

expressions are the ones recognized best and more quickly

and precisely from childhood through adulthood (Juth et al.,

2005; Mancini et al., 2013; Chronaki et al., 2015; Brechet,
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2017) and may be processed using a more holistic strategy.

Another point to consider is that happiness is the emotion

that most attracts people´s attention (Becker et al., 2011), so

it could help improve performance on odd-ball tasks. Hearne

et al. (2017) described that although the increment in task

complexity did not change the established modular

architecture, it did affect selective patterns of connectivity

among frontoparietal, subcortical, cingulo-opercular, and

default-mode networks. Larger increases in network

efficiency within the newly established task modules were

associated with higher reasoning accuracy. Our results

partially agree with those obtained by Harrewijn et al.

(2021) with fMRI, as they determined that functional

connectivity patterns during rest and while executing a

dot-probe task -with neutral, happy, and angry faces-were

positively correlated, and that the similarity levels in

13 years-old children were primarily related to threat bias.

Some fMRI studies, conducted in adults, mention the

relationship between the resting-state and active cognitive

patterns. Smith et al. (2009) demonstrated that the functional

networks utilized by a brain in action are continuously and

dynamically active even when subjects are at rest. In their

work, Cole et al. (2014) identified a whole-brain network

architecture across different tasks that was quite similar to

the resting-state network architecture, suggesting an

intrinsic, standard architecture of functional brain

organization. However, the task-general network

architecture was able to distinguish task states from the

resting condition. Based on the foregoing, we propose that

the similarity metric is a global brain connectivity index that

is appropriate for estimating age-related and dynamic

changes according to task demand.

Differences across ages related to task demands were also

visible in the cumulative distributions. The 6-years-old children

had negative values on both tasks, indicating lower correlation

values during the tasks compared to the resting state. The two

older groups, in contrast, showed mainly positive values,

indicating enlarged correlation. As it can be seen in the rest-

to-task subtractions, network changes indicate that an increase in

synchronization between some electrode pairs occurred in the 6-

year-old-group, accompanied by a decrease between several pairs

in both conditions. The correlation decrements displayed a

different pattern between tasks, though. The 8-year-old group

only showed an increase in correlation, on the one hand, between

pairs of regions related to the attentional network (frontal,

central, and parietal), and on the other, those related to the

face core network (posterior-temporal, parietal and occipital).

Finally, the oldest group showed an increase between some of the

same regions, mainly in the sex condition, but added frontal-

parietal connections. There was a decrease between some long-

distance connections, including occipital regions. Miskovic et al.

(2015) observed that the oldest age group in their work (11-years-

old) exhibited the densest patterns of EEG functional

connectivity across distant cortical regions, specifically in the

alpha band. Those findings are broadly consistent with one of the

more replicable fMRI results involving a trend toward increased

integration among distant neural networks (Betzel et al., 2014;

Fair et al., 2008; 2009; Supekar et al., 2009). In an fMRI study,

Brázdil et al. (2007) found a bidirectional information flow

between frontal and parietal regions, mainly in the right

hemisphere, involved in attentional processing during an odd-

ball task. Those regions are also some of the principal structures

considered in the generation of P3b, which has been implicated

in the closure of the cognitive event encoding cycle (Halgren,

et al., 1998).

With respect to the core face network, Cohen Kadosh et al.

(2011) examined the fMRI connectivity during identity and

happiness task, observing that although the overall structure

of the final mature network was present in 7 years-old children, it

develops across childhood. The children in that study, however,

did not show the modulation in the functional network

connections by task demands that was seen in adults. The

authors suggested that the emergence of the face network is

due to continuous specialization and fine-tuning within the

regions of this network.

While most previous research has analyzed resting-state EEG

functional connectivity, we observed changes during task

performance that required the involvement of various

processes and the activation of underlying neural networks.

Briefly, our results support the notion that EEG functional

connectivity accounts for age-related developmental changes

in cognitive abilities related to processes of attention and face

identification.

Our study does, however, presents some limitations, first, the

small sample size. Second, we used only the 10/20 System

montage, including a few electrodes associated to the main

regions involved in odd-ball task performance. Further studies

could address changes in all frequency bands, since some studies

have found major changes in functional connectivity in the theta

and alpha bands during task performance. Moreover, the study of

sex differences in functional connectivity across ages would be

desirable, since there is evidence of different EEG patterns in both

sexes in adults, and during the resting stage in children.

Conclusion

Findings from this study suggest that a base EEG

functional network pattern exists from early childhood,

which reorganizes across child development. Moreover,

functional connectivity is modulated to dynamically adapt

to the demands of information processing. The similarity

metric may represent an index of global brain connectivity

that could be useful in estimating age- and task-related

changes. Rest-to-task correlation variations could indicate

that the older children in our study generated more
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efficient coupling of the areas related to the attentional- and

face networks, which may underlie the improvement

performance they achieved. The study of EEG functional

connectivity, therefore, seems to offer a promising

approach to discerning maturational changes during the

development of diverse cognitive processes and to our

understanding of functional disorders in clinical populations.
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