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Background: Ambient particulate matter is a public health concern in East Asia as it

contributes to a growing number of all-cause and cancer deaths. This study aimed to

estimate lung cancer death attributable to ambient particulate matter (PM) < 2.5µm

(PM2.5) in East Asia countries.

Methods: The attributable death rates of lung cancer were estimated based on the

calculation of population attributable fraction. We performed joinpoint regression analysis

and age-period-cohort (APC) model to estimate temporal trends of the attributable death

to PM2.5.

Results: In 2019, PM2.5 was estimated to have caused 42.2% (nearly 0.13

million) of lung cancer deaths in East Asia men. During 1990–2019, the increase in

age-standardized death rates of lung cancer attributable to PM2.5 was highest in China,

which increased by 3.50% in males and 3.71% in females. The death rate caused

by PM2.5 also significantly increased in the Democratic People’s Republic of Korea

(2.16% in males; 3.06% in females). Joinpoint analysis showed that the rates generally

increased in younger and older people in both the Democratic People’s Republic of Korea

and Mongolia, while it only increased in elderly people in other countries’. Age effect

from APC analysis demonstrated the risk of lung cancer death attributable to PM2.5

generally increased from young to old age. Period effect indicated that from 1994–1998

to 2019–2023 period risk continuously increased by 1.77, 1.68, and 1.72 times in China,

the Democratic People’s Republic of Korea, and Japan, respectively. The period risk

decreased from 1999 to 2009 and subsequently increased from 2009 to 2019 in both

the Republic of Korea and Mongolia.

Conclusions: The death rate of lung cancer attributable to PM2.5 is increasing in the

Democratic People’s Republic of Korea, Mongolia, and China. In East Asia, China is

facing the highest attributable death rate in recent decades. The period effect suggested

a remarkably increased risk of lung cancer death caused by PM2.5 in China, the

Democratic People’s Republic of Korea, and Japan during the long-term period. It is

recommended that the governments of these countries should continuously concentrate

on particulate matter pollution governance and improvement.

Keywords: death, lung cancer, YLL, PM2.5, elder, population attributable fraction (PAF)
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INTRODUCTION

Ambient particulate matter of <2.5µm (PM2.5) pollution is
recognized as a major health concern worldwide. PM2.5 was
associated with an increased risk of disease mortality and
morbidities (1–4), and a 10-µg/m3 increment in PM2.5 was
associated with a 4.3% increment in total mortality (5). However,
ambient particulate matter pollution continues to be one of
the largest increases in risk exposures from 1990 to 2019
worldwide (6).

In 2019, according to the Global Burden of Disease (GBD)
2019 study, among the 87 risk factors identified, long-term
exposure to PM2.5 caused 118.2 million disability-adjusted life-
years (DALYs), representing 4.7% of global DALYs in 204
countries and territories (7). Approximately 4,140,971 all-causes
deaths and 307,680 lung cancer deaths in 2019 were attributed
to ambient PM2.5 globally. However, the ambient PM2.5 risk-
oriented health problems have mainly occurred in low- and
middle-income countries (LMICs) according to previous studies
(1, 8). In 2017, ambient particulate matter pollution ranked as the
eighth leading risk for death, with a total of 2.94 million deaths
globally and 1.05 million deaths in Southeast Asia, East Asia, and
Oceania (2). Based on a newly published global comparative risk
assessment in 2019, nearly all locations in south Asia, many parts
of Southeast Asia, and most provinces in China had 10–15% of
DALYs attributable to air pollution (6).

Lung cancer has been the leading cause of cancer deaths
for many years worldwide, with the incidence and mortality
markedly varying between countries (9, 10). Asia has extremely
diverse lung cancer incidences, and it is the leading cause of
cancer death in China (10, 11). The major risk factor for the
burden of lung cancer was tobacco smoking, followed by air
pollution-related age-standardized rates (12). This study aims
to focus on lung cancer death caused by particulate matter
pollution. Previous studies have evaluated the association of
ambient air pollution with lung cancer (13–15). Few studies have
been conducted regarding ambient air pollutant-related lung
cancer death (16), while no national study has comprehensively
evaluated the long-term trend in lung cancer death due to
long-term exposure to ambient particulate matter in East Asia
countries. Although a recent study reported that the age-
standardized death rate attributable to air pollution decreased
by 60.6% for China overall between 1990 and 2017 (17), the
temporal trend in lung cancer death attributable to air pollution
was not clearly analyzed. Therefore, this study aimed to estimate
the trend and risk for long-term exposure to PM2.5 caused by
lung cancer death from 1990 to 2019 among East Asia countries,
including China, Mongolia, the Democratic People’s Republic of
Korea, the Republic of Korea, and Japan.

MATERIALS AND METHODS

Data Sources and Methods for Quantifying
the Health Burden
The attributable burden of lung cancer data (1990–2019) for
China, the Democratic People’s Republic of Korea, the Republic
of Korea, Japan, andMongolia was collected from themost recent

GBD project. The datasets analyzed during the current study are
published and available in the Global Burden of Disease Database
repository. Due to the publicly available nature of data, ethical
approval and patient consent to participate were not required in
this study.

The GBD 2019 provides a systematic scientific assessment of
published, publicly available, and contributed data on incidence,
prevalence, mortality, and risk factors for a mutually exclusive
and collectively exhaustive list of diseases and injuries. It
contains data on 87 behavioral, environmental, occupational, and
metabolic risks or clusters of risks, 369 diseases and injuries,
and the healthy life expectancy (HALE) for 204 countries and
territories (http://ghdx.healthdata.org/).

The original data on lung cancer death were obtained from
the local Center for Disease Control and Prevention (CDC),
Disease Surveillance Points (DSPs), and the Maternal and
Child Surveillance System. Ambient air quality was estimated
by extracting the annual average mass concentration data of
ambient PM2.5 from the multiple-source data, including satellite
observation, ground measurement, and chemical migration
model simulation, etc., and the grid-level exposure to ambient
PM2.5 was estimated by data integration model for air quality
(DIMAQ) (6, 18). The relative risks (RR) of ambient particulate
matter pollution at different exposure levels for different health
outcomes were estimated as the Integrated Exposure Response
function of exposure based on 81 published systematic reviews,
the specific methods are outlined in a previous study (6).

Population attributable fraction (PAF) was defined as if the
exposure of a certain risk factor was reduced to the theoretical
minimum exposure level in a certain population, the proportion
of related diseases or deaths in the population would reduce
(2, 19). In this study, the exposure level associated withminimum
risk, known as the theoretical minimum risk exposure level, for
ambient particulate matter pollution was between 2.4 and 5.9
µg/m3. Lung cancer deaths caused by PM2.5 were estimated
based on defining PAF through combining the distribution of
exposure to air pollution with exposure-risk estimates at each
level of exposure.

PAF =

∑n
i pi(RRi − 1)

∑n
i pi(RRi − 1)+ 1

(1)

where Pi is the percentage of the population exposed to level i of
ambient air exposure, RRi is the relative risk at exposure level i,
and n is the total number of exposure levels.

Attributable death numbers were computed by multiplying
PAFs by the relevant outcome quantity for each age-sex-location-
year (6, 20). For example, the attributable deaths (AD) were
calculated by multiplying the number of the deaths for lung
cancer (N) and the PAF:

AD = PAF × N (2)

The age-standardized rate of attributable deaths caused by PM2.5

was calculated by the world standard population (21).
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Statistical Analysis
Joinpoint Regression Analysis
Temporal trends for lung cancer death rates attributable to
PM2.5 were assessed using the joinpoint regression analysis
(Joinpoint regression software, Version 4.5.0.1, available through
the Surveillance Research Program of the United States National
Cancer Institute). Joinpoint analysis was based on regressionwith
age-standardized mortality rates as the dependent variables and
with year as the independent variable. Gender and age groupwere
the by-variables. In the model, logarithmic transformation of the
rates was carried out and the standard errors were calculated
based on binomial approximation (22). An average annual
percentage of change (AAPC), along with the corresponding
95% confidence interval (95%CI), was calculated for each trend.
The statistically significant AAPC values indicated a temporal
change in mortality trend over the time period. We used the
Monte Carlo Permutationmethod for tests of significance. In this
analysis, age groups under 25 years old were excluded due to very
low probabilities.

Age-Period-Cohort Analysis
APC analysis could decompose the accumulation of health risks
for incidence and death of disease (23). This analysis is developed
to reflect the relative risks of disease by estimates on age,
period, and cohort effects. Age effect indicates that the risk of
death from disease increases with the process of aging. The
period effect represents influential factors that simultaneously
affect all age groups with advanced periods. The cohort effect
represents variations across groups of individuals born in the
same year or years. These effects influence morbidity and
mortality risk of diseases in specific ways. An intrinsic estimator
(IE) method used in this APC analysis could decompose the
three effects simultaneously. In this model, the death rates of
lung cancer attributed PM2.5 were recoded into successive 5-
year age groups (25–29, 30–34, . . . , 90–94), consecutive 5-year
periods (1994–1998, 1999–2003, 2004–2008, 2009–2013, 2014–
2018, 2019–2023) and correspondingly consecutive 5-year birth
cohort groups (1904–1908, 1909–1913, . . . , 1994–1998).

The estimated coefficients of age, period, and cohort effects
are plotted in Figure 2, and their exponential values [exp(coef.)
= ecoef.] denote the relative risk (RR) of the age, period,
or birth cohort effect. Age, period, and cohort effects were
analyzed by Stata 12.0 software (StataCorp, College Station,
TX, USA). Deviance, Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC), and represent the loss of
information caused by using models to represent the process of
generating the actual data.

RESULTS

Lung Cancer Attributable Death to PM2.5 in
East Asia Countries for Males and Females
In 2019, there were 2,042,639 deaths and 2,259,998 new cases
of lung cancer worldwide, with a 25.18/100,000 ASDR and
27.66/100,000 ASIR. Importantly, a significant number of these
1,508,993 deaths were attributed to ambient particulate matter
pollution that occurred in these East Asia countries, accounting

for 36.4% of the global deaths attributed to ambient particulate
matter pollution, and 12.3% of the attributed deaths were due to
lung cancer. The death rate of lung cancer attributable to PM2.5

among men was 2.34 times higher than that in women.
The global number of lung cancer deaths due to ambient

particulate matter pollution were 307,680, 60.1% (185,041
deaths) of which were concentrated in East Asia countries,
especially in male patients (42.2%). Table 1 shows lung cancer
attributable death to PM2.5 in East Asia countries for both male
and female patients.

Figure 1 shows the secular trends of the age-standardized rate
of lung cancer death attributable to PM2.5 in East Asia during
1990–2019. We observed a significant increase in the death rate
among patients in China, the Democratic People’s Republic of
Korea, and Mongolia. We found a continuously decreasing trend
in Japan for both male and female patients. In contrast, the death
rate from the Republic of Korea peaked in 1999 while a slight rise
in female patients has been observed since 2005.

Results of Joinpoint Regression Analysis
We conducted Joinpoint regression analysis to estimate the
average annual percent changes in age-standardized and age-
specific death rates of lung cancer attributable to PM2.5 in East
Asia (Table 2). Between 1990 and 2019, the increase in the death
rate to PM2.5 was highest in China [AAPC: 3.50 [95% CI, 3.05–
3.94] in male and 3.71 [95% CI, 3.26–4.17] in female patients],
and a small decrease was observed in Japan (AAPC: −0.76 [95%
CI, −0.92 to −0.60] in male and −0.43 [−0.67 to −0.18] in
female patients). As a high SDI country, the Republic of Korea
showed no obvious change in the death rate. Similar to China,
there was also a substantial increase in the Democratic People’s
Republic of Korea over the past 30 years (AAPC: 2.16 [95% CI,
2.01–2.32] in male and 3.06 [2.83–3.30] in female patients). We
observed a slight increase in Mongolia, and the average percent
changes increased by 1.63 (1.19–2.07) annually.

We also estimated changes in the age-specific rates of lung
cancer death attributed to PM2.5 across age groups (from 25–29
to 90–94 age group) (Table 2). We noted that the death rates in
all age groups rose significantly in both the Democratic People’s
Republic of Korea and Mongolia. Other East Asia counties
showed declines in the death rate for younger age groups but
increases in older age groups. In China, the death rate to PM2.5

rose significantly among people aged 65 years and over for male
patients, and among people aged 75 years and over for female
patients. In Japan, for both sexes, the rate generally declined for
most age groups except for 85–89 and 90–94 age groups. In the
Republic of Korea, an increase in the rate was also observed in
elderly age groups (≥75 years in males and≥80 years in females).
Therefore, lung cancer death due to PM2.5 generally increased
in the Democratic People’s Republic of Korea and Mongolia but
decreased for all age groups in Japan. We almost observed a
significant increase among elderly people aged 75 years and above
in China and the Republic of Korea.

Results of Age-Period-Cohort Analysis
The coefficients of age effect on lung cancer death attributed
to PM2.5 increased from the 25–29 to 90–94 age group in
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TABLE 1 | Lung cancer death and YLL attributable to PM2.5 in East Asia in 1990 and 2019.

East Asia 1990 2019

Death YLL* Death YLL*

Number Age-

standardized

Number Age-

standardized

Number Age-

standardized

Number Age-

standardized

Per 100,000 Per 100,000 Per 100,000 Per 100,000

Male

China 20,576.26 5.42 548,863.25 123.69 120,186.42 13.36 2,704,360.07 271.65

Democratic People’s

Republic of Korea

243.67 4.09 7,097.63 99.15 899.90 7.04 23,694.74 164.94

Republic of Korea 862.99 7.06 24,070.02 167.94 3,085.32 8.31 60,056.13 147.69

Japan 2,709.53 3.89 57,200.87 76.31 5,513.54 3.21 88,070.16 58.29

Mongolia 28.30 6.55 695.62 144.09 95.61 11.43 2,518.83 240.23

Female

China 7,060.43 1.69 183,062.82 40.27 51,113.34 4.99 1,107,912.93 105.28

Democratic People’s

Republic of Korea

85.01 0.89 2,288.95 22.18 367.73 1.94 8,661.43 47.23

Republic of Korea 300.29 1.82 7,878.83 42.89 1,240.90 2.43 21,475.66 44.36

Japan 1,054.48 1.09 21,248.93 22.47 2,516.99 1.02 34,851.02 19.27

Mongolia 6.40 1.17 149.19 26.21 24.35 2.28 577.58 45.55

*YLL, Years of Life Lost.

FIGURE 1 | The age-standardized rates of lung cancer attributable death to PM2.5 in East Asia for both sexes at all ages, during 1990–2019.

East Asia countries, except for in the Democratic People’s
Republic of Korea, where the age risk peaked in the 70–
74 age group (Figure 2A). The age effect showed that in
the from 25–29 to 90–94 age group, the risk for lung
cancer death attributed to PM2.5 increased by 58.99, 36.51,
113.04, 190.68, and 101.86 times in China, the Democratic
People’s Republic of Korea, Republic of Korea, Japan, and
Mongolia, respectively.

The period effect showed different trends in the death rates
among East Asia countries (Figure 2B). In the from 1994–1998

to 2019–2023 period, the risk increased by 1.77, 1.68, and 1.72
times in China, the Democratic People’s Republic of Korea, and
Japan, respectively. The period effect in the Republic of Korea and
Mongolia showed an N-shape trend, which decreased from 1999
to 2009 and increased from 2009 to 2019.

The cohort effect showed an ongoing decreasing trend from
1904–1908 to 1994–1998 birth cohort in all these countries
(Figure 2C). From the earliest birth cohort to the most
recent cohorts, the risk decreased by around 90% for all East
Asia counties.
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FIGURE 2 | Lung cancer death attributable to PM2.5 estimated coefficients for the age (A), period (B), and cohort effects (C).
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TABLE 2 | The average annual percent changes (AAPC) in lung cancer deaths attributable to PM2.5 in East Asia during 1990–2019 for male and female patients.

ASR* and

Age-group

(year)

Average annual percent changes (AAPC), male Average annual percent changes (AAPC), female

China

(95% CI)

Democratic

people’s republic

of korea

(95% CI)

Republic of

korea

(95% CI)

Japan

(95% CI)

Mongolia

(95% CI)

China

(95% CI)

Democratic

people’s republic

of korea

(95% CI)

Republic of

korea

(95% CI)

Japan

(95% CI)

Mongolia

(95% CI)

ASR 3.50 (3.05, 3.94) 2.16 (2.01, 2.32) −0.35 (−0.81,

0.12)

−0.76 (−0.92,

−0.60)

1.52 (1.23, 1.81) 3.71 (3.26, 4.17) 3.06 (2.83, 3.30) −0.07 (−0.52,

0.39)

−0.43 (−0.67,

−0.18)

1.63 (1.19, 2.07)

25–29 −1.28 (−1.52,

−1.04)

1.63 (1.35, 1.92) −4.46 (−4.99,

−3.94)

−2.07 (−2.26,

−1.87)

1.09 (0.56, 1.62) −2.83 (−3.77,

−1.87)

2.84 (2.57, 3.11) −3.55 (−4.02,

−3.08)

−1.64 (−1.87,

−1.40)

2.92 (2.68, 3.16)

30–34 −1.25 (−1.49,

−1.01)

1.24 (0.95, 1.53) −3.65 (−4.07,

−3.23)

−2.81 (−3.05,

−2.57)

2.93 (2.62, 3.23) −2.73 (−3.43,

−2.02)

2.66 (2.42, 2.90) −2.86 (−3.18,

−2.53)

−2.09 (−2.37,

−1.80)

0.79 (0.31, 1.28)

35–39 −1.88 (−2.18,

−1.58)

0.87 (0.68, 1.06) −3.47 (−3.83,

−3.11)

−2.78 (−2.98,

−2.58)

1.97 (1.63, 2.30) −2.01 (−2.33,

−1.70)

2.55 (2.34, 2.76) −1.84 (−2.04,

−1.63)

−2.22 (−2.43,

−2.00)

1.11 (0.57, 1.65)

40–44 −1.81 (−2.08,

−1.54)

1.01 (0.85, 1.18) −3.50 (−3.69,

−3.30)

−2.66 (−2.93,

−2.38)

1.54 (1.21, 1.87) −1.87 (−2.13,

−1.61)

2.52 (2.29, 2.76) −1.89 (−2.12,

−1.66)

−2.27 (−2.59,

−1.95)

0.62 (1.12, 2.56)

45–49 −1.07 (−1.33,

−0.81)

1.39 (1.22, 1.57) −3.66 (−3.89,

−3.44)

−2.29 (−2.58,

−1.99)

1.78 (1.45, 2.11) −2.01 (−2.47,

−1.54)

2.71 (2.49, 2.94) −1.25 (−1.35,

−1.15)

−2.06 (−2.37,

−1.74)

1.32 (0.80, 1.85)

50–54 −1.15 (−1.42,

−0.88)

1.61 (1.44, 1.77) −3.56 (−3.75,

−3.38)

−1.31 (−1.60,

−1.01)

2.00 (1.85, 2.16) −1.44 (−1.72,

−1.15)

2.86 (2.62, 3.10) −1.32 (−1.60,

−1.04)

−1.53 (−1.82,

−1.23)

−0.12 (−0.74,

0.51)

55–59 −0.61 (−0.78,

−0.43)

1.96 (1.82, 2.10) −3.11 (−3.39,

−2.82)

−0.92 (−1.07,

−0.77)

1.63 (1.33, 1.94) −0.78 (−1.12,

−0.44)

2.99 (2.74, 3.24) −1.44 (−1.65,

−1.24)

−0.93 (−1.07,

−0.79)

−0.31 (−0.96,

0.35)

60 - 64 0.05 (−0.14, 0.24) 2.03 (1.89, 2.18) −2.42 (−2.71,

−2.12)

−0.84 (−1.13,

−0.56)

1.61 (1.16, 2.05) −0.45 (−0.57,

−0.34)

2.96 (2.70, 3.22) −1.36 (−1.51,

−1.20)

−0.37 (−0.55,

−0.19)

0.10 (−0.49, 0.69)

65–69 0.26 (0.07, 0.45) 2.29 (2.13, 2.44) −1.59 (−1.97,

−1.21)

−1.05 (−1.39,

−0.70)

0.45 (−0.09, 0.99) −0.25 (−0.44,

−0.08)

2.99 (2.73, 3.25) −1.35 (−1.69,

−1.00)

−0.28 (−0.58,

0.02)

0.63 (0.06, 1.21)

70–74 0.57 (0.32, 0.83) 2.44 (2.25, 2.62) −0.53 (−1.08,

0.02)

−1.29 (−1.61,

−0.97)

0.69 (0.19, 1.19) 0.30 (−0.04, 0.65) 3.07 (2.83, 3.31) −0.82 (−1.36,

−0.28)

−0.64 (−0.98,

−0.29)

2.03 (1.56, 2.51)

75–79 1.13 (0.81, 1.46) 2.51 (2.35, 2.67) 0.46 (−0.29, 1.22) −1.32 (−1.47,

−1.17)

0.79 (0.35, 1.23) 0.99 (0.64, 1.33) 3.22 (2.98, 3.46) −0.18 (−0.89,

0.54)

−0.97 (−1.30,

−0.65)

1.64 (1.25, 2.04)

80–84 1.77 (1.39, 2.15) 2.46 (2.29, 2.62) 1.62 (0.74, 2.52) −0.44 (−0.58,

−0.29)

2.20 (1.83, 2.58) 1.78 (1.43, 2.13) 3.37 (3.16, 3.57) 0.80 (−0.17, 1.78) −0.38 (−0.68,

−0.07)

2.86 (2.55, 3.17)

85–89 2.57 (2.15, 2.98) 2.37 (2.22, 2.53) 2.88 (2.19, 3.57) 0.46 (0.28, 0.64) 3.87 (3.67, 4.07) 1.65 (1.36, 1.95) 3.59 (3.42, 3.77) 2.50 (1.93, 3.09) 0.31 (0.08, 0.54) 4.28 (4.01, 4.56)

90–94 2.08 (1.66, 2.50) 2.17 (2.06, 2.29) 1.97 (1.36, 2.59) 1.15 (1.04, 1.25) 4.19 (3.89, 4.49) 1.37 (1.17, 1.56) 3.75 (3.56, 3.94) 2.72 (2.18, 3.26) 1.53 (1.38, 1.68) 5.52 (5.08, 5.96)

*ASR, age-standardized rate, which was age-standardized by the GBD 2019 global age-standard population; CI, Confidence interval.
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FIGURE 3 | The age-standardized rates of lung cancer attributable YLL to PM2.5 in East Asia for both sexes at all ages, during 1990–2019. (A) male patients; (B)

female patients; (C) The proportion of lung cancer YLL attributed to ambient PM2.5 in East Asia countries from 1990 to 2019.
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Lung Cancer Attributable YLL to PM2.5 in
East Asia Countries
The YLL rate of lung cancer attributable to PM2.5 also showed
a significant increase for male and female patients in the three
regions (Figure 3).

In 2019, in male patients, the age-standardized YLL rate
of lung cancer attributed to PM2.5 was highest in China
(271.65/100,000), closely followed by Mongolia (240.23/100,000)
(Table 1). The YLL rate to PM2.5 was relatively lower in the
Democratic People’s Republic of Korea (164.94/100,000) and the
Republic of Korea (147.69/100,000). The YLL rate to PM2.5 was
lowest in Japan (58.29/100,000). In females, the highest YLL rate
was observed in China (105.28/100,000) and the lowest rate in
Japan (19.27/100,000). Overall, the YLL rates of lung cancer due
to PM2.5 were much lower in females than males among all East
Asia countries. Compared with 1990, the age-standardized YLL
rate of lung cancer attributed to PM2.5 increased by 1.20 and
1.61 times in male and female patients in China, respectively
(Table 1). However, the age-standardized YLL rate of lung cancer
attributed to PM2.5 decreased inmale (24.0%) and female (14.0%)
patients in Japan. In the Republic of Korea, the rate decreased by
12.0% in male and increased by 3.0% in female patients.

We also plotted the distribution proportion of lung cancer
YLL attributed to ambient PM2.5 in East Asia from 1990 to
2019 (Figure 3C). The YLLs from East Asia were mainly driven
by China. Indeed, 94.08, 0.08, 0.80, 2.01, and 3.03% of YLLs
attributable to PM2.5 in 2019 were due to lung cancer in
China, Mongolia, the Democratic People’s Republic of Korea, the
Republic of Korea, and Japan, respectively. Overall, apart from
death, China also has a substantially increased lung cancer YLL
attributed to PM2.5 and mainly contributed to the YLLs from
East Asia.

Lung Cancer Attributable Death and YLL to
PM2.5 in East Asia Compared With the
Global Level in 2019
Compared with the global level, we plotted the ASDR, ASIR, and
death and YLL attributable to the PM2.5 of lung cancer in East
Asia countries (Figure 4 and Supplemental Table 1). The ASDR
and ASIR of lung cancer in these East Asia countries were about
1.0–1.5 times higher than those of the global average in both
sexes, while the low ASDR of Japan was 0.84 times that of the
global average. In addition, the ASDR and ASIR of lung cancer
were higher in male than female patients. In 2019, the death and
YLL rates of lung cancer attributable to PM2.5 in China were
more than 2.0 times higher than those of the world average. In
Mongolia, the rates were around 1.5 times that of global levels.
It was 1.0–1.3 times more than global levels in the Democratic
People’s Republic of Korea and the Republic of Korea than the
global level, while the level differed in the two countries. There
were about 0.4 and 0.5 times higher levels in Japan for lung
cancer death and YLL attributable to PM2.5. In terms of genders,
the death and YLL rates of lung cancer attributed to PM2.5

in male patients were higher than that in female patients for
most East Asia countries when compared with global levels. The
gender difference was exactly different for China (Attributable to

death: 231.15% in male patients, and 239.46% in female patients;
Attributable to YLL: 217.31% in male patients, 229.92% in female
patients). Generally, compared with the global level, China had
the highest attributable death and YLL of lung cancer due to
PM2.5 in East Asia.

DISCUSSION

This study comprehensively estimates on temporal trends in lung
cancer death caused by long-term exposure to ambient PM2.5

in East Asia. We found that the lung cancer attributable death
caused by PM2.5 generally increased in younger and older people
in both the Democratic People’s Republic of Korea and Mongolia
by Joinpoint analysis. APC analysis demonstrated that the risk of
lung cancer death attributed to PM2.5 generally increased from
young to old age, and the risk increased continuously in China,
the Democratic People’s Republic of Korea, and Japan from 1994–
1998 to 2019–2023 period. The Republic of Korea and Mongolia
showed a different period risk trend. The cohort effect declined to
the most recent birth cohorts, which demonstrated a decreasing
risk from the old generation to the new generation.

This section discusses the attributable death of lung cancer
due to ambient particulate matter. Among East Asia countries,
we found that China and Mongolia had high mortality and YLL
rates attributable to ambient PM2.5. The high population density
in China exhibited a huge lung cancer burden attributed to
ambient PM2.5 and was a major contributor to the death and YLL
burden caused by PM2.5 in East Asia. This finding was related
to the fact that more than a quarter of global deaths caused by
ambient particulate matter pollution occurred in China, which is
the third risk factor affecting the health of Chinese people (16).
A huge proportion of attributable YLL to PM2.5 was related to
China, which is consistent with studies by the World Bank and
the WHO. The Chinese Academy for Environmental Planning
on the effect of air pollution on health concluded that between
350,000 and 500,000 people die prematurely each year as a result
of outdoor air pollution in China (18, 24). This finding could
be contributed to the fact that PM2.5 pollution in the winter is
worse in China (4), in addition to the increasing high mortality
of lung cancer in China (7). Mongolia has a relatively high level
of age-standardized attributable death and YLL rates. This is
because, during the cold wintertime in Mongolia, a lot of coal
is burnt for domestic heating. As reported, ambient particulate
levels frequently exceed 100 times the WHO-recommended
safety level for sustained periods and account for the majority
of personal particulate matter exposure (25). Reducing home
heating emissions in traditional housing areas has been the
primary focus of air pollution control efforts for Mongolian
cities (26). Moreover, we observed that Mongolia still has a
much higher level of lung cancer mortality in 2019, which is
only second to China, although it has been decreasing over the
past decades. Differing from China and Mongolia, Japan’s age-
standardized attributable death and YLL rates were the lowest
from 1990 to 2019. This may be related to the fact that Japan has
a declining relatively low level of air pollution, and its mortality
rate from lung cancer is relatively low compared with other Asian
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FIGURE 4 | Age-standardized rates of lung cancer attributable death and YLL to PM2.5 in East Asia compared with those globally in 2019.

countries (14, 27). A relatively low level of attributable burden
was observed in both the Democratic People’s Republic of Korea
and the Republic of Korea, while the difference was that the death
and YLL rate of lung cancer due to PM2.5 increased in the former
but declined in the latter. Ambient air pollution is recognized as
a major environmental health hazard in the Republic of Korea
and the average PM2.5 exposure concentration for the whole
period was estimated to be 30.2 µg/m3 during 1990–2013 (28).
However, the mortality rate from lung cancer was much lower
than in other countries. Therefore, although the Republic of
Korea’s air pollution is relatively high, the lung cancer attributable
burden related to PM2.5 is not at a high level. During 1990–
2019, lung cancer death and YLL rates to PM2.5 have increased in
China, the Democratic People’s Republic of Korea, andMongolia,
and decreased in Japan and the Republic of Korea. In East
Asia countries, these trends were consistent with mean PM2.5

concentrations, which showed substantial increases in China,
with decreases observed in Japan during 1990–2013 (29).

We observed gender and area-specific distributions of lung
cancer attributable burdens due to PM2.5. Lung cancer deaths
caused by ambient particulate matter were 2.34 times higher
in East Asia men than women in 2019. Furthermore, the age-
standardized death and YLL rates of lung cancer attributed to
PM2.5 were much higher in men than women in all countries,
which was consistent with the gender difference in trends of lung

cancer mortality. A previous study also reported that long-term
PM2.5 exposure has led to a much higher number of lung cancer
premature death in male patients than in female patients (28).

In East Asia, the YLL burden of lung cancer caused by
PM2.5 was also mainly driven by China, especially in men.
This finding was consistent with another previous study, which
indicated that the elderly and men had higher health risks than
younger people and women. When the PM2.5 concentrations
meet the WHO air quality guidelines of 10 µg/m3, 84% of the
premature deaths would be avoided (30). Compared to 1990,
the age-standardized death rate of lung cancer attributed to
PM2.5 increased in 2019, while the increase rate was smaller
in males than females in the Democratic People’s Republic of
Korea, Republic of Korea, and Mongolia. Outdoor air pollution
occurs predominantly in developing countries, particularly in
Asia (1, 31). In China, industrial and residential sources were
the two leading sources of mortality due to exposure to ambient
PM2.5 (32), and annual concentrations of ambient PM2.5 are
more than 5 times higher than the WHO guideline values in
many populous cities. In Mongolia, sources concentrated on
increased coal consumption in the cold season (33). Whether
females were exposed to a higher risk of death in these countries,
need to be further explored in relation to the different sources of
mortality caused by ambient PM2.5. In Japan, we observed that
lung cancer death attributable to PM2.5 decreased in both sexes.
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Increasing automobile traffic has caused considerable increases
in concentrations of particulate matter, and concentrations
have gradually decreased since control measures based on the
automobile PM law were enforced in 2001 (34).

It is well-known that the major risk factor for lung cancer is
tobacco smoking (12). Reactive oxygen or nitrogen species (ROS,
RNS) and oxidative stress in the respiratory system could initiate
or promote mechanisms of carcinogenesis, and the lungs are
likely exposed to oxidants generated exogenously (air pollutants,
cigarette smoke, etc.) daily (35). As reported, inhalable quartz,
metal powders, mineral asbestos fibers, ozone, soot from gasoline
and diesel engines, tobacco smoke, and ambient PM are involved
in various oxidative stress mechanisms (35–38). It seems to be
highly possible that PM2.5 not only adds to lung cancer risk but
also smoking habits over the years might be related to some of
the differences of lung cancer, especially for men and women.
Because smoking significantly increases the risk of lung cancer,
which has been reported to be the main cause of lung cancers in
90% of male and 79% of female patients (39, 40). China is still
facing heavy tobacco use, and lung cancer is the leading cause
of cancer death and morbidity. A series of policies to control
tobacco consumption and prevent lung cancer have been carried
out. However, the burden of lung cancer is still serious, and the
smoking rate in men is still very high (41).

In terms of age difference, the attributable death to PM2.5 of
lung cancer generally increased among elderly people (age ≥75
years) in both China and the Republic of Korea. This finding
was also observed in other studies, which showed that long-
term exposure to PM2.5 was associated with an increased risk
of disease death among people aged 65 years and older (42, 43).
However, it is noteworthy that lung cancer death attributable to
PM2.5 increased for all age groups in the Democratic People’s
Republic of Korea and Mongolia. We also found that the
percentage change of ASR of lung cancer death caused by PM2.5

for China was significantly higher than that in any age groups
in Table 2. This result was related to the age-standardized rate,
which eliminates the influence of different age components of
the population, and ensures the comparability of the lung cancer
death rate.

Days of heavy pollution regularly occur in Asian megacities
(23). China and the Democratic People’s Republic of Korea
had increasing attributable deaths rates of lung cancer caused
by PM2.5, and the period risk has also increased over the
past few decades. According to the most up-to-date risk factor
assessment, global exposure to harmful environmental risks has
been declining, with the notable exception of ambient particulate
matter pollution (6). In China, a large proportional increase in
PM2.5 was observed between 1990 and 2013 (29). While the
early air pollution policies were ineffective at reducing emissions
since the 1980s, and air pollution problems dominated by PM2.5

have emerged and worsened since 2005 (44). As PM2.5 was
not been included in the National Air Reporting System until
2013, we collected data on the national annual mean PM2.5

concentrations in China and found that it declined with a range
of 72–36 µg/m3 from 2013 to 2019 (Supplemental Figure 1).
Another previous study also reported that the average annual
population-weighted PM2.5 exposure in China was 52.7 µg/m3

in 2017, which is 9% lower than in 1990 (17). This decline is
because of effective air pollution control policies after the winter-
long PM2.5 episode in China (44). However, the annual average
PM2.5 concentration in China was 36 µg/m3 in 2019 and the
planned reductions in annual average PM2.5 concentration from
the current level to 10µg/m3 still have not been achieved. As early
as 2013, 87% of the global population lived in areas exceeding the
WHO air quality guideline of 10 µg/m3 PM2.5 (annual average)
(29). Thus, the changes derived from the policy evolution have
implications for future studies, as well as further reforming
the management of health risk and air quality control. More
interventions are required to achieve the guideline levels of PM2.5

as the Chinese population is still facing a high exposure level. The
lung cancer death attributable to PM2.5 declined in Japan but the
period risk in this country still be increasing. This is possibly
related to long-term exposure to particulate matter causing
health problems, such as normal lung function not being restored
even after the improvement of air pollution in Japan (45). It
is therefore essential for countries in East Asia to prevent air
pollution.

This study has limitations. Although GBD 2019 collected
missing data and improved the quality of data and its
comparability by modifying and adjusting data sources
and collection and evaluation methods, there might be
uncertainty about exposure estimates, as there was no
measurement in some areas or the data was not available
in the GBD 2019 study. Therefore, the results should
be carefully interpreted for these countries. Second, the
majority of air quality monitoring stations were located in
urban areas where air pollution mean concentrations are
expected to be high. Third, the APC analysis only takes
the effects of age, period, and cohort into account and
does not further analyze other risk factors underlying lung
cancer death.

CONCLUSIONS

Our study showed that ambient air pollution could impose
a substantial burden in terms of lung cancer death in East
Asia, where China is facing the highest attributable death
rate for lung cancer caused by PM2.5. An increasing trend
of lung cancer death attributed to PM2.5 was observed in
East Asia from 1990 to 2019, except for Japan and the
Republic of Korea. However, the period effect nevertheless
suggests a remarkably increasing risk in China, the
Democratic People’s Republic of Korea, and Japan in the
long-term, and overall reduction of air pollution would
have significant benefits for the health of the populations in
these countries.
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Background: Traffic-related pollution is associated with the onset of asthma and the

development of different phenotypes of asthma. Few studies have investigated the

association between traffic proximity and late-onset of asthma (LOA) and early-onset

asthma (EOA). This study was conducted to investigate the associations of LOA

phenotypes with a function of the distance between residence and heavy traffic

roads (HTRs).

Methods: The study group consisted of 280 patients who were (LOA: 78.4%)

recruited consecutively from a pay-for-performance asthma program to clarify the patient

characteristics and proximity to HTRs within 1,000m from their residences between EOA

and LOA in three urban centers in Taiwan. The subsequent analysis focused on patients

with LOA (n = 210) linking phenotypes and distance to HTRs.

Results: Subjects with LOA tended to be older than those with EOA and had shorter

asthma duration, poorer lung function, lower atopy, and less exposure to fumes or dust

at home. Patients with LOA were more likely than those with EOA to live within 900m

of two or more HTRs (14.3 vs. 3.4%, p = 0.02). Among patients with LOA, minimum

distance to an HTR was negatively associated with numbers of specific IgE as well

as positively associated with the age of onset and body weight significantly. A higher

proportion of patients with atopy (26.3 vs. 20.6%, p = 0.001. odds ratio [OR]: 2.82) and

anxiety/depression (21.0 vs. 18.1%, p= 0.047. OR: 1.81) and a trend of lower proportion

of patients with obese (5.7 vs. 12.4%, p = 0.075) were found to be living within 900m

from HTRs.

Conclusions: Late-onset of asthma (LOA) tended to live in areas of higher HTR density

compared to EOAs. Among patients with LOA living close to HTRs, the interaction

between traffic-related pollution, allergy sensitization, and mood status were the factors

associated with asthma onset early. Obesity may be the factor for later onset who live far

from HTRs.

Keywords: late onset asthma, traffic proximity, urban environment, asthma phenotype, traffic density
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BACKGROUND

After an initial appearance in childhood, asthma may remain
inactive for an extended period or reappear later in life. A
number of recent studies have also described the onset of
asthma during adulthood (1). Thus, early-onset asthma (EOA)
and late-onset asthma (LOA) can be viewed as two distinct
phenotypes, based on the categorization of disease entities
according to underlying mechanisms or endotypes, such as risk
factors, remission rates, co-morbidities, and gene expression
profiles (2–4). The age at diagnosis determining the early vs.
late-onset asthma varies from 12 or 18 years (4–6) of age to
40 (7) years of age. However, emerging evidence indicates that
environmental factors also play a critical role in the development
of asthma. The risk factors of EOA include single nucleotide
polymorphisms on chromosome 17q21, atopic status, rhinovirus
infection, and exposure to traffic-related air pollution (TRAP)
(8–12). TRAP is one of the major environmental impacts of
urbanization and previous research has shown the long-term
effects on asthma onset in children (5, 13). Among children,
proximity to traffic has been linked to an elevated risk of asthma
(12, 14–16).

Despite the non-negligible incidence of adult-onset asthma,
the causes have not been extensively investigated. Identifying the
risk factors of LOA is crucial to understanding the underlying
mechanisms and LOA was identified as the most significant
independent risk factor for non-remission in patients with
asthma (17). It should be noted however that the risk factors
for LOA are more complex than those for EOA. Specific
characteristics have been mentioned for their different influence
on EOA and LOA. A population-based study in Finland showed
the incidence of allergic asthma decreases with advancing age
and after the age of 40, new asthma cases are almost non-atopic
(18). The other study in Finland discovered the influence of
the family history of asthma is higher on EOA than LOA (risk
ratio (RR): 4.10 vs. 1.44) (9). A European survey discovered
patients with chronic rhinosinusitis reported less EOA (RR:
0.45) but more LOA (RR: 3.09) (19). In the cluster study of
asthma phenotypes, obese female is one of the major cluster
of LOA (20). One large-scale genome-wide association study
(GWAS) suggested that non-genetic risk factors play a more
important role in LOA than in EOA. This is a clear indication that
environmental factors are worthy of further consideration (21).
The important role of TRAP in adult-onset asthma has also been
emphasized (22). The association between traffic proximity and
LOA has been identified by a certain amount of traffic volume
and patients in risk (23–25). One study of our adult asthma
cohort reported that higher IL-17A expression in the epithelium
of patients among those living within 1,000m from heavy traffic
roads (HTRs) than among those living more than 1,000m from
HTRs (26).

In the current study, we were interested in whether the

traffic proximity was different in EOA and LOA. We sought to

determine whether proximity or density of HTRs is associated

with the LOA in the asthma cohort of an urban medical center.
We also examined patient characteristics in order to identify
factors significantly associated with traffic proximity in LOA.

MATERIALS AND METHODS

Study Design and Subject Recruitment
This was a cross-sectional study of asthma patients recruited
consecutively in a pay-for-performance program at Chang
Gung Memorial Hospital, Linkou branch, which has been
implemented by the National Health Insurance Administration
(NHIA) in Taiwan since 2001 (27). Certified physicians and
case managers provide in-person training pertaining to asthma
control, asthma care planning, and proper inhaler usage.
The outcomes are regularly monitored by the NHIA (https://
www.nhi.gov.tw/Content_List.aspx?=nEBDEAEDEC639490C&
topn=5FE8C9FEAE863B46). Inclusion criteria included the
diagnosis of asthma by a pulmonologist in accordance with
ICD-10 code J45 at least twice within 90 days. Note that
diagnoses were based on episodic respiratory symptoms
(wheezing, breathlessness, chest tightness, and cough), variable
or persistent obstructive pulmonary function, and response to
asthma therapy. All patients provided written informed consent.
The study protocol was approved by the Chang Gung Medical
Foundation Institutional Review Board (No. 201900211B0).

Patient Data Collection
At the initial recruitment, we recorded the characteristics of the
subjects based on questionnaires or medical records, including
age at the time of asthma diagnosis by a physician, asthma
control test (ACT) results, family history of asthma, the use
of asthma medication, co-morbidities, childhood history of
dyspnea, frequency of bronchitis, exposure to fumes or dust
at home or work, smoking status, and current residence (in
the last 6 months). Pulmonary function and allergy-related
biomarkers, including eosinophils, eosinophil cation protein
(ECP), immunoglobulin E (IgE), and specific IgE (ImmunoCAP,
Phadia, Sweden) were recorded. Patients with any positive
specific IgE to allergens (>0.35 KU/L,) were considered atopic.
The tests above were done at physicians’ discretion in real-world
practice. For example, according to the regulation of Taiwan
healthcare insurance, the reimbursement of specific IgE would
not be offered unless the total IgE > 25 KU/L. Therefore, a test of
specific IgE was not mandatory and the numbers of sIgE to check
were based on the physicians’ discretion.

Outcome Measurement
The total cohort of 283 patients was divided into two groups
according to age at the time of asthma onset. Patients who
were ≥ 18 years old at the time of asthma onset without a
childhood history of dyspnea and frequency of bronchitis were
defined as LOA. Otherwise, they were considered as EOA. It was
determined that 94.7% of the total cohort were living in major
urban centers: EOA (n = 58) and LOA (n = 210). This group of
urban patients was subjected to further analysis to determine the
proximity to HTRs within 1,000m from their residences (26, 28)
and whether distance to HTRs affected the age of asthma onset
(analysis plan was illustrated in Supplementary Figure S1).

Definition of Heavy Traffic Roads (HTRs)
Heavy traffic roads (HTRs) were identified using open-data
daily PCU (Passenger Car Unit) statistics from the Directorate
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General of Highways of Taiwan (https://www.thb.gov.tw/sites/
en/). Based on the geographic distribution of patients, we
selected the ten busiest traffic monitoring sites, each of which
had a daily mean bidirectional PCU exceeding 36,329 in 2018
(Supplementary Figure S2).

Model of Geometric Analysis
Geometric data were extracted from maps obtained from
the open-data service – Open Street Map (https://www.
openstreetmap.org/export). Data covered the region between
latitudes from 24.74 to 25.33N and longitudes from 120.86
to 122.04 E. All map data other than roads and streets were
excluded. Criteria for the selection of routing vectors were
based on the Top-10 PCU routes. We sought to mitigate
sphere projection bias by re-projecting the coronadite system of
geometrics (e.g., routes or patient locations) from EPSG:4326
(WGS84 – World Geodetic System 1984, used in GPS) to
EPSG:32651 (WGS 84 – UTM Zone 51N). This converted
the spherical representation in radian units into a 2D flat
surface presentation in meters, which is a convenient format
for subsequent calculation. Geodata was processed using a
custom script written in JavaScript under the NodeJS (version
12.9.1. OpenJS Foundation. San Francisco, California. Joyent,
Inc.) runtime environment, and all exchangeable data formats
were standardized according to GeoJSON format. The graphical
representation of input variables and calculation results was
handled using QGIS software (version 3.10.1. QGIS.org, 2021.
QGIS Geographic Information System. QGIS Association.
https://www.qgis.org).

Linear algebra (i.e., point to vector distance) was used
to calculate the minimum distance between the domicile of
each patient and the nearest HTR based on geometric data
(Supplementary Figure S3). We also calculated the overall
density of traffic in the areas surrounding the domicile of each
patient by counting the number of HTRs within circles of various
sizes, starting at 100m and extending to a maximum distance of
1,000m (26, 28).

Statistical Analysis
All data were expressed as mean ± SD or percentage. The
Student’s t-test was used to compare the means of continuous
variables and normally distributed data; otherwise, the Mann-
Whitney test was used. Categorical variables including patients
with EOA and LOA living in ≥ 1 or 2 heavy-traffic roads
within indicated distance were tested using the Chi-square test
or Fisher exact test. For tests done by physicians’ discretion,
the numbers are tested were smaller than the total cohort.
The analysis was done on the patients who were checked and
the number of participants who provided information and the
number of participants with positive results were specified.
Unadjusted odds ratio (OR) and 95% CI were calculated for
selective variables in geometric analysis during the Chi-square
test. The association between the minimum distance to an
HTR and patient factors was tested using the Spearman rank
correlation because the distance was not normally distributed.
All analysis was performed using IBM SPSS Statistics version
19. Armonk, NY: IBM Corp. Statistically significant results were
defined as p ≤ 0.05.

TABLE 1 | The characteristics of patients with early and late-onset asthma.

Variables EOA LOA p value

(n = 61) (n = 222)

Age, years, mean (SD) 46.6 (19.2) 60.9 (15.5) <0.001

Male, n (%) 29 (47.5) 108 (48.6) 0.9

Body mass index, kg/m2 25.7 (4.9) 25.8 (5.0) 0.8

Never smoker 48 (81.4) 142 (64.3) 0.006

ACT score, mean (SD) 19.7 (5.1) 21.0 (4.3) 0.1

Age of asthma onset, years, mean (SD) 8.6 (5.4) 52.2 (17.9) <0.001

Asthma duration, years, mean (SD) 38.0 (21.1) 9.0 (12.9) <0.001

Family history of asthma, n (%) 26 (42.6) 48 (21.6) 0.02

Home exposure to fumes or dust, n (%) 28 (45.9) 71 (32.0) 0.049

Occupational exposure to fumes/dust, n (%) 25 (41.0) 76 (34.2) 0.4

Comorbidities, n (%)

Gastroesophageal reflux 29 (47.5) 110 (49.5) 0.9

Allergic rhinitis 42 (68.9) 137 (61.7) 0.3

Rhinosinusitis with or without polyp 14 (23.0) 53 (23.9) 0.9

Aspirin sensitivity 5 (8.2) 15 (6.8) 0.7

Anxiety or depression 23 (37.7) 87 (39.2) 0.8

Obstructive sleep apnea 9 (14.8) 51 (23.0) 0.2

Pulmonary function and allergic status

FVC, Liter 2.74 (1.12) 2.17 (0.87) <0.001

FVC, % of pred. 82.5 (18.9) 74.2 (20.2) 0.005

FEV1, Liter 2.12 (0.98) 1.63 (0.71) <0.001

FEV1, % of pred. 75.3 (22.0) 68.3 (21.2) 0.03

IgE level, KU/L, median (range) 209.0 (6–2,075)159.5 (2–283) 0.04

ECP level, µg/L, mean (SD) 16.1 (13.4) 15.0 (25.7) 0.8

ECP level ≥ normal range (18µg/L) 40.4 (21/52) 17.9 (29/162) 0.02

Eosinophil counts, cells/µL, mean (SD) 204.9 (182.2) 215.8 (218.8) 0.8

Atopy, % (n/N) 69.1 (38/55) 47.3 (87/184) 0.05

Data are presented as number and percentage or mean and SD, unless

otherwise indicated.

N, number of participants who provided information; n, number of participants with

positive results.

EOA, early-onset asthma; LOA, late-onset asthma; ACT, asthma control test; FVC,

forced vital capacity; FEV1, forced expiratory volume in 1 s; BD; pred., prediction. IgE,

immunoglobulin E; ECP, eosinophil cationic protein.

RESULTS

Characteristics of Patients With LOA
Differed From Those of Patients With EOA
Between July 2019 and June 2020, a total of 283 asthma
patients were consecutively enrolled in the pay-for-performance
program. Among these asthmatics, 222 subjects (78.4%) were
LOA. Table 1 shows the characteristics of patients with EOA
and LOA. Supplementary Figure S4 presents the distribution of
patient ages and ages of onset. The mean age of onset of EOA
and LOA was 8.6 years and 52.2 years, respectively. Compared
to the EOA group, participants with LOA were older, had a
shorter duration of asthma onset, less association of asthma
family history, less exposure to fumes or dust at home, and a
higher proportion of smoking habits. There was no difference
in gender, co-morbidities, weight status, exacerbation history in
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FIGURE 1 | Minimum distance from the residence of asthmatic patients to the nearest heavy traffic road in New Taipei City, Taoyuan, and Hsinchu, Taiwan. EOA

residences are indicated by X and LOA residences are indicated by circles. The heavy traffic roads in this study included three national highways (Highway 1, 2, and 3)

and five expressways (Expressway 1, 2, 3, 64, and 66).

the last year, and ACT score between the two groups. The pre-
bronchodilator forced vital capacity (FVC) and forced expiratory
volume in one second (FEV1) were lower in patients with LOA
than in patients with EOA. As for allergic biomarkers, IgE levels
were significantly higher in the EOA group than in the LOA
group. The proportion of patients with ECP levels exceeding
the normal range (18 µg/L) was higher in the EOA group
than in the LOA group. The two groups were comparable in
terms of eosinophil count. Patients with EOA tended to be
more atopic and were also more susceptible to home dust mite
(HDM), cat dander, and dog dander than patients with LOA
(Supplementary Table S1).

The Distribution of Patients With EOA and
LOA Living in Areas of High Traffic Density
As shown in Figures 1, 2, we observed no significant differences
between the LOA and EOA groups in terms ofminimumdistance
to the nearest HTR (EOA vs. LOA: 1,124 ± 787m vs. 1,412
± 175m; p = 0.07). We further analyzed the number of HTRs
within regions that were measured from patient residences at set
distances of up to 1,000m.When patients resided with a distance
of 900m in the high-traffic road, more patients with LOA were
living in multiple HTRs areas compared to patients with EOA
(≥ 2 HTRs; 14.3 vs. 3.4%, p = 0.023. Table 2). Subgroup analysis
was performed to identify patient characteristics associated with
multiple HTRs within 900m. Briefly, this involved pooling 30
patients with LOA with two patients with EOA for analysis.
Compared to patients living in fewer than two HTRs within

900m, those living in more than two HTRs had higher IgE levels
(Table 3, mean ± SD, 426.9.1 ± 798.2 vs. 252.9 ± 360.8 KU/L, p
= 0.05), more positive atopic status (75 vs. 49.8%, p = 0.02), and
a higher sensitivity to HDM (64.3 vs. 43.2%, p= 0.04).

The Associations of Patients With LOA
With the Minimum Distance to HTRs
To clarify the influence of high traffic density on patients
with LOA, we conducted further analysis on the correlation
between the distance to HTRs and patient characteristics
in the LOA group (Figure 3 and Supplementary Table S2).
The minimum distance to an HTR was positively correlated
with age of onset (Figure 3A, Spearman’s rho 0.151, p
= 0.025), BMI (Figure 3B, Spearman’s rho 0.157, p =

0.023) as well as negatively correlated with the numbers of
positive specific IgEs (Figure 3C, Spearman’s rho −0.213, p
= 0.005).

The Characteristics of Patients With LOA
According to the Distance Away From
HTRs
For the binary variables and confirming the results of the
correlation test, we compared the atopy, mood status, and
obesity (BMI ≥ 30) of patients with LOA living within or
beyond 900m of HTRs (Figure 4). A higher proportion of
patients with LOA with atopic status (26.3 vs. 20.5%, p =

0.001, unadjusted OR: 2.82, 95%CI: 1.519–5.235. Figure 4A)
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FIGURE 2 | The minimum distance to the nearest heavy traffic road (HTR) between early-onset asthma (EOA) vs. late-onset asthma (LOA). No significant difference

was observed between patients with EOA and LOA in terms of minimum distance to HTR.

TABLE 2 | The density of heavy traffic roads proximal to residences of patients

with EOA or LOA*.

EOA (n = 58) LOA (n = 210) p-value

Road density within 900 m

Heavy traffic roads ≥1 27 (46.6) 100 (47.6) 0.86

Heavy traffic roads ≥2 2 (3.4) 30 (14.3) 0.02

Road density within 600 m

Heavy traffic roads ≥1 16 (27.6) 77 (36.7) 0.19

Heavy traffic roads ≥2 1 (1.7) 20 (9.5) 0.05

Road density within 300 m

Heavy traffic roads ≥1 9 (15.5) 47 (22.4) 0.249

Heavy traffic roads ≥2 0 5 (2.4) 0.234

Road density within 100 m

Heavy traffic roads ≥1 5 (8.6) 17 (8.1) 0.905

Heavy traffic roads ≥2 0 1 (0.5) 0.598

*Patients living in New Taipei City, Taoyuan, and Hsinchu, Taiwan.

Data are presented as patient numbers and percentages.

and depression or anxiety were found to be living within
900m from HTRs (21.0 vs. 18.1%, p = 0.047, unadjusted OR:
1.81, 95%CI: 1.031–3.165. Figure 4B). In contrast, there was
a trend of a higher proportion of obese patients were living
beyond 900m from HTRs (12.4 vs. 5.7%, p = 0.075, unadjusted
OR: 1.974, 95%CI: 0.936–4.165. Figure 4C). Interestingly, the
proportion of obese patients living beyond 1,000m from HTRs
was statistically higher than those living within 1,000m to HTRs
(data not shown).

TABLE 3 | Asthma-associated inflammatory markers in asthmatic patients living in

areas with or without high-density traffic as indicated by at least two heavy traffic

roads within 900 meters.

Residence with Residence with p value

≥ 2 major roads ≤ 1 major road

(n = 32) (n = 236)

IgE level, KU/L, median (range) 144.0 (6–3,548) 105.0 (0–2,075) 0.05

ECP level, µg/L 16.1 (13.4) 15.0 (25.7) 0.7

Eosinophil counts, cells/µL 170.6 (95.4) 217.0 (226.8) 0.3

Atopy, % (n/N) 75.0 (21/28) 49.8 (100/201) 0.02

Positive of specific IgE

Home dust mite, % (n/N) 64.3 (18/28) 43.2 (83/192) 0.04

Cockroach, % (n/N) 32.1 (9/28) 19.8 (38/192) 0.1

Cat dander, % (n/N) 10.7 (3/28) 13.0 (25/192) 1.0

Dog dander, % (n/N) 17.9 (5/28) 14.1 (27/192) 0.6

Blomia tropicalis, % (n/N) 450.0 (13/26) 40.7 (72/177) 0.4

Penicillium natatum, % (n/N) 17.6 (3/17) 5.6 (9/161) 0.09

Cladosporium herbarum, % (n/N) 11.8 (2/17) 1.9 (3/161) 0.07

Data are presented as number and percentage, mean and standard deviation (SD), or

percentage and positive proportion.

N, number of participants who provided information; n, number of participants with

positive results.

EOA, early-onset asthma; LOA, late-onset asthma; IgE, immunoglobulin E; ECP, eosinophil

cationic protein.

DISCUSSION

Our analysis revealed that patients with LOA tended to be
older than patients with EOA, to have had asthma for a shorter
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FIGURE 3 | Association between minimum distance to heavy traffic road and (A) age of onset, (B) body mass index, and (C) number of specific IgE in the patients

with LOA.

duration, were less likely to have a family history of asthma, were
less exposed to fumes or dust in the home, were less likely to
be atopic, were less sensitive to common inhaled allergens, and
were more likely to have poor lung function. In urban areas,
more patients with LOA had multiple HTRs (≥ 2 HTRs) within
a distance of 900m. Patients living within 900m from multiple
HTRs had a higher total IgE level, a more atopic status, and
a higher sensitivity to HDM, compared to patients with ≥ 1
HTRs at a comparable distance. Among patients with LOA, the
minimum distance to an HTR was positively associated with the
age of onset and BMI and was negatively associated with atopy
andmood status. Among patients with LOA, a higher proportion
of atopic patients were living within 900m from HTRs, a higher
proportion of patients with anxiety or depression were living
within 900m from HTRs and a trend of a higher proportion
of obese patients were living beyond 900m from HTRs. To the
best of our knowledge, this is the first study demonstrating the
different traffic density between EOA and LOA and different
phenotypes in LOA by geolocation, which showed the novel
relation between asthma phenotypes and the urban environment.

Correlation between TRAP and asthma is usually assessed in
terms of pollutant concentration, such as nitrogen oxide and
particulate matter (PM), or the distance to HTRs. Numerous
cohort studies have demonstrated a positive association between
exposure to TRAP and the risk of asthma (11, 23, 29, 30);
however, studies on the link between proximity to HTRs and
the risk of asthma have been inconsistent. A birth cohort
study in southwestern British Columbia failed to observe a
significant correlation between proximity to highways and major
roads (<150m) and development of childhood asthma (15).
A birth cohort study in New York City reported a significant
correlation between proximity to heavy traffic (<250m) and
childhood asthma among patients without a history of moving
prior to the age of 5 (16). In a cohort study of children with
asthma attending elementary school in an urban area of the
northeastern United States, the incidence of asthma symptoms
was shown to increase inversely with the distance to major roads
(12). One cohort study conducted in three cities in Sweden
reported a positive association between adult-onset asthma
and proximity (<50m) to major roads (≥8,000 vehicles/day)
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FIGURE 4 | The characteristics of patients with LOA according to the distance away from heavy traffic roads. (A) Atopy status, (B) anxiety or depression, and (C)

body mass index ≥30 of patients with LOA as a function of the distance between residence and heavy traffic roads (≤900 vs. >900m).

(23). Two cross-sectional studies examined the links between
subgroups of asthma and proximity to major roads. One study on
adults in southern Sweden discovered that proximity (>100m)
to a major road (>10 cars/min) was associated with allergic
asthma but not with non-allergic asthma (24). One study on
adults in Tasmania, Australia, (i.e., an area with low air pollution
levels) reported that proximity (<200m) to a major road was
associated with an elevated risk of asthma; however, this was
only among carriers of glutathione S-transferase theta-1 (25). The
different distances to HTR for asthma risk in the studies above
may result from the different traffic volumes, the population
in risks, and the local environment of individual cities. In the
current study, HTRs were defined by daily mean PCU exceeding
36,329, which wasmuch higher than that of other studies (23, 24).
The range of 1,000m to HTR was selected initially because the

relevant reports included one study from our asthma patients
(26, 28). By defining HTRs with the top-ten high traffic volume
from the official database, we determined that living within
900m of multiple HTRs was associated with an elevated risk
of LOA compared to EOA. The current study provides new
evidence of the greater impact of heavy traffic exposure for
LOA. In addition to the direct distance to HTRs, exposure
to the density of HTRs is also an important determinant for
asthma control.

The patient profiles revealed by the subgroup analysis of
patients living with multiple HTRs provided one of the possible
mechanisms of asthma inception of LOA (Table 3). Patients
living within 900m from multiple HTRs presented higher total
IgE levels, were more likely to be atopic and were more likely
to present sensitivity to HDM, compared to patients with fewer
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than two HTRs at a comparable distance. We also found that
asthma onset was earlier among patients with LOA living near
HTRs. This suggests that an interaction between TRAP and
allergic sensitization may be the force driving asthma inception
at an early age among LOA living near Figures 3, 4. Similar
to our results, a cross-sectional study revealed associations
between exposure to high road density and the prevalence of
allergic sensitization and small airway function in subjects with
a family history of asthma (31). Previous animal studies on
TRAP exposure and allergic sensitization support our results.
In adult and neonatal mice, co-exposure to diesel exhaust
particles (DEPs) and house dust mites was shown to promote
the persistence of TH2/TH17 effector/memory cells in the
lungs (32). In studies in an adult mouse model, DEP and
HDM co-exposure has also been shown to enhance airway
hyper-responsiveness and generate a mixed TH2 and TH17
response or the number of type 2 innate lymphoid cells (33,
34). Co-exposure to HDM and benzo(a)pyrene has also been
shown to enhance IL-33 and TSLP production in an asthma
mouse model (35). Environmental factors (e.g., ambient air
polyaromatic hydrocarbons, PM, and DEP) have been linked
to epigenetic changes that modify the gene expression of T
regulatory cells or innate response, further promoting the Th2
response (36).

Anxiety and depression contribute to asthma symptoms and
stressful life events have been shown as the risk factor of onset
of asthma (37, 38). Some studies have shown psychiatric stress
enhances allergic inflammation (39, 40). We found the risk
of anxiety or depression increased in patients living within
900m to HTRs (Figure 4B). This finding further demonstrated
the complex interactions between the psychiatric status, traffic
exposure in patients with LOA, and further studies for better
analysis are required.

The incidence of obesity in patients with LOA was higher
among those living >900m from HTRs than among those living
<900m from HTRs (Figure 4C). This conflicts with a number
of previous studies suggesting that air pollution plays a role
in the incidence of asthma among the obese (41). By contrast,
the incidence of atopic asthma in patients with LOA was lower
among those living far from HTRs (Figures 3, 4). We surmise
that exposure to TRAP may play a more important role in
the pathogenesis of atopic asthmatics than it does in obese
asthmatics. Future studies on obesity-related LOA and TRAP in
urban areas are required.

The study has several limitations. First, the cohort had
a smaller patient number of EOA compared to LOA. This
is because we recruited adult patients consecutively without
selection in the pay-for-performance program to prevent
selection bias. The higher ratio of LOA to EOA in our cohort
is possible due to the remission rate of EOA being much
higher than LOA and LOA is suggested to be more severe than
EOA (2, 42). Therefore, similar to other cohorts (43), patients
with LOA were referred from local clinics to our center more
frequently than patients with EOA. The present results from a
single center will have to be confirmed further in subsequent
longitudinal studies in a larger population. Second, self-reports
pertaining to the age of the patient at the time of diagnosis
by a physician were subject to recall bias. Note that we were

unable to obtain documented medical records related to asthma
diagnosis; however, the patient characteristics in the current
study (e.g., family history of lung function) were comparable
with those obtained in large-cohort studies and major review
articles related to LOA (2, 3, 6, 9, 18, 44). Third, covariates
of exposure to fume or dust or comorbidities were defined
by questionnaires or medical records, not by real inspection
of patients’ environments or strict medical diagnostic criteria.
The results of a negative association between exposure and
comorbidities and HTR proximity in the current study are
required further studies to confirm. Fourth, we were unable to
obtain information related to TRAP concentrations; therefore,
our findings are not necessarily generalizable to all HTRs. Our
findings could have been affected by local climatic conditions,
occupational exposure, and indoor air pollution in the individual
urban environment.

In conclusion, the characteristics of patients with LOA were
distinct from those of patients with EOA. By geolocation in
urban centers, we discovered the correlation between asthma
phenotypes and the urban environment in LOA. patients with
LOA tended to live in areas of higher HTR density, which
was associated with an elevated incidence of atopic symptoms,
sensitivity to HDM, and mood disorder. Proximity to HTRs
and obesity may be factors contributing to uncontrolled asthma
in cases of LOA. The novel evidence of patient-environment
interaction provides further explanation for asthma persistence
in the modern world.
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Background: Few is known about the long-term pulmonary sequelae after

COVID-19 infection. Hence, the aim of this study is to characterize patients with persisting

pulmonary sequelae at follow-up after hospitalization. We also aimed to explore clinical

and radiological predictors of pulmonary fibrosis following COVID-19.

Methods: Two hundred and 20 consecutive patients were evaluated at 3–6 months

after discharge with high-resolution computed tomography (HRCT) and categorized as

recovered (REC) or not recovered (NOT-REC). Both HRCTs at hospitalization (HRCT0),

when available, and HRCT1 during follow-up were analyzed semiquantitatively as follows:

ground-glass opacities (alveolar score, AS), consolidations (CONS), and reticulations

(interstitial score, IS).

Results: A total of 175/220 (80%) patients showed disease resolution at their initial

radiological evaluation following discharge. NOT-REC patients (45/220; 20%) were

mostly older men [66 (35–85) years vs. 56 (19–87); p= 0.03] with a longer in-hospital stay

[16 (0–75) vs. 8 (1–52) days; p < 0.0001], and lower P/F at admission [233 (40–424) vs.

318 (33–543); p = 0.04]. Moreover, NOT-REC patients presented, at hospital admission,

higher ALV [14 (0.0–62.0) vs. 4.4 (0.0–44.0); p = 0.0005], CONS [1.9 (0.0–26.0) vs.

0.4 (0.0–18.0); p = 0.0064], and IS [11.5 (0.0– 29.0) vs. 0.0 (0.0–22.0); p < 0.0001]

compared to REC patients. On multivariate analysis, the presence of CONS and IS at

HRCT0 was independent predictors of radiological sequelae at follow-up [OR 14.87 (95%

CI: 1.25–175.8; p = 0.03) and 28.9 (95% CI: 2.17–386.6; p = 0.01, respectively)].

Conclusions: In our population, only twenty percent of patients showed persistent lung

abnormalities at 6 months after hospitalization for COVID-19 pneumonia. These patients

are predominantly older men with longer hospital stay. The presence of reticulations and

consolidation on HRCT at hospital admission predicts the persistence of radiological

abnormalities during follow-up.

Keywords: SARS-CoV-2, coronavirus disease 2019, pulmonary fibrosis, high-resolution computed tomography,

pulmonary sequelae
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BACKGROUND

Coronavirus disease 2019 (COVID-19), which is caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has infected more than 130 million people worldwide. COVID-
19 leads to respiratory manifestations that can range from mild
flu-like symptoms such as fever, cough, and fatigue to severe
respiratory failure requiring intensive care (1, 2).

Data from previous pandemics caused by coronaviruses
suggested that there may be pulmonary sequelae in one-third of
patients at 12 weeks after discharge (3, 4).

Some recent studies tried to characterize radiological sequelae
after COVID-19 pneumonia (5, 6). This condition, which is
referred to as “post-COVID syndrome,” still lacks a universally
agreed definition (7). On May 2020, a document of the British
Thoracic Society (BTS) proposed an algorithm on post-discharge
management of patients with COVID-19 and distinguished
two groups of interest: patients with severe pneumonia and
patients with mild-to-moderate pneumonia (8). Following up
on this document, George and colleagues suggested a structured
respiratory follow-up for patients with clinico-radiological
confirmation of COVID-19 pneumonia (9). Importantly, they
proposed patients with severe pneumonia undergo a full clinical
assessment at 12 weeks with a chest X-ray whereas patients
with persisting radiological abnormalities should undergo a high-
resolution computed tomography (HRCT) scan. In this regard,
the role of chest X-ray and HRCT in disease management
both during hospitalization and follow-up is well established
(10, 11). Han and coauthors recently reported that fibrotic-like
changes on CT performed at 6 months during follow-up persist
in approximately one-third of patients with COVID-19 (12),
but the data on long-term pulmonary sequelae in this patient
population remain scarce. The aim of this study is to characterize,
among patients hospitalized for COVID-19 pneumonia, those
presenting persisting pulmonary sequelae during follow-up, and
to define which clinical and radiological features are predictive of
persistent radiological abnormalities.

MATERIALS AND METHODS

Study Population and Study Design
We prospectively collected patients evaluated at the post-COVID
clinic of the University Hospital of Padova between June and
December 2020. The patients evaluated at the post-COVID
clinic were initially admitted to the Division of Infectious
and Tropical Diseases of the University Hospital of Padova
between February and September 2020 for SARS-CoV-2 infection
confirmed by the real-time polymerase chain reaction (RT-PCR)
at nasopharyngeal swab.

Abbreviations: IPF, idiopathic pulmonary fibrosis; FVC, forced vital capacity;

HRCT, high-resolution computed tomography; REC, recovered; NOT-REC, not

recovered; AS, alveolar score; CONS, consolidations; IS, interstitial score; COVID-

19, Coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome

coronavirus 2; RT-PCR, real- time polymerase chain reaction; LIMC, low-intensity

medical care; HIMC, high-intensity medical care; BMI, body mass index; CVDs,

cardiovascular diseases; TLC, total lung capacity; DLCO, diffusing capacity of the

lung for carbon monoxide.

Among all patients evaluated, we specifically followed
up every 3 months those presenting a COVID-19-related
severe disease according to the WHO criteria (n = 220)
(13). Demographics and clinical data at hospital admission
[symptoms, gas exchange values (paO2/FiO2)] and during
hospitalization [days of hospital stay, maximal FiO2 (FiO2 max)
needed, level of care, treatment] were collected. Comorbidities
were categorized as cardiovascular diseases (CVDs), respiratory
diseases, metabolic diseases (including diabetes mellitus, obesity,
and dyslipidemia), autoimmune diseases, and oncologic diseases
(including lung, prostate, pancreatic, breast, and colon cancer).
Based on patient’s clinical conditions during hospitalization, we
distinguished those requiring a low- (LIMC) and high-intensity
medical care (HIMC), as previously described (14).

Radiological Evaluation
At follow-up, HRCT was available for the entire study population
(HRCT1) whereas at hospital admission, it was available in only
a subgroup of patients (HRCT0) (n= 79, 36%). The HRCTs were
performed by a 64 slice Siemens Somatom Sensation (Siemens
Healthcare, Erlangen, Germany) applying a slice thickness
≤0.5 mm.

According to the presence or absence of radiological
abnormalities on HCRT1, the study population was categorized
as recovered patients (REC, n = 175) or not recovered patients
(NOT-REC, n= 45).

Two expert thoracic radiologists (CG and AG), who were
blinded to clinical data and timing of HRCTs, scored the images
independently using a composite semiquantitative scale. This
represented a modification of the previously reported scoring
systems standardized by our group (13). Specifically, ground-
glass opacities (GGO) (alveolar score, AS), consolidations
(CONS), and reticulations (interstitial score, IS) were analyzed.
For each lung lobe, the two radiologists assessed the extent of AS,
CONS, and IS using a scale from 0 to 100 and estimated extent
to the nearest 2%. The result was expressed as the mean value of
the five lobes in AS, CONS, and IS. The level of interobserver
agreement was obtained for each patient as a mean of 5 lobes
and for each radiological abnormality (AS, CONS, and IS) and
expressed as Cohen’s k value. Disagreement between radiologists
was resolved by consensus.

Statistical Analysis
Categorical variables were described as absolute (n) and relative
values (%), whereas continuous variables were described as
median and range. To compare demographic and clinical data
between REC andNOT-REC patients, chi-square test and Fisher’s
exact test (n < 5) for categorical variables and Mann–Whitney U
tests for continuous variables were used, as appropriate.

To compare radiological scores at HRCT1 in NOT-REC
patients, Mann–Whitney U test for continuous variables was
used, whereas Wilcoxon signed-rank test was used to compare
radiological scores between HRCT0 and HRCT1. A univariate
logistic regression analysis, followed by a regression model
adjusted for gender, pack-years, paO2/FiO2 at admission, degree
of medical care (high or low), and FiO2 max, was performed to
detect the predictive factors of radiologic sequelae (NOT-REC)
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TABLE 1 | Baseline demographics and clinical features of the overall population evaluated at post-COVID clinic, and of the two subgroups categorized according to the

presence of radiological recovery during the follow-up period.

Overall population (n = 220) REC (n = 175; 80%) NOT—REC (n = 45; 20%) P value

Male—n (%) 115 (52) 86 (49) 29 (64) 0.06

Age at admission—years 59 (19–87) 56 (19–87) 66 (35–85) <0.0001

Smoking history—pack-years 0 (0–67) 0 (0–67) 0 (0–60) 0.07

Current—n (%) 15 (7) 10 (6) 5 (11) 0.20

Former—n (%) 70 (32) 54 (31) 16 (36) 0.54

Nonsmokers—n (%) 135 (61) 111 (63) 24 (53) 0.21

BMI—(kg/m2 ) 26 (18–39) 27 (18–39) 26 (21–35) 0.35

Cardiovascular diseases—n (%) 98 (45) 72 (41) 26 (58) 0.04

Respiratory diseases—n (%) 39 (18) 30 (17) 9 (20) 0.65

Autoimmune diseases—n (%) 36 (16) 25 (14) 11 (24) 0.10

Metabolic diseases—n (%) 102 (4) 78 (45) 24 (53) 0.29

Oncologic diseases—n (%) 25 (11) 17 (8) 8 (18) 0.12

PaO2 / FiO2 at admission 314 (33–543) 318 (33–543) 233 (40–424) 0.04

FiO2max during hospitalization—% 28 (21–100) 27 (21–100) 45 (21–100) <0.0001

Hospitalization—days 9 (0–75) 8 (1–52) 16 (0–75) <0.0001

Low degree of care—n (%) 163 (74) 138 (79) 25 (56) 0.002

High degree of care—n (%) 57 (26) 37 (21) 20 (44)

Values are expressed as numbers and (%) or median and range, as appropriate. To compare demographics between recovery (REC) and not recovery (NOT-REC), chi-square test and

Fisher’s t-test (n < 5) for categorical variables and Mann–Whitney t-test for continuous variables were used.

FIGURE 1 | Chest CT features of two patients with COVID-19 pneumonia at different time points: hospitalization and 6 months after discharge. Chest CT images of a

58-year-old male patient with COVID-19, not recovery patient (a,b). The first CT performed at admission shows bilateral areas of ground-glass opacities in a

peripheral distribution (a), and after 6 months from discharge, CT shows persistent of interlobular septal thickening with peripheral distribution (b). Chest CT images of

a 51-year-old male patient with COVID-19, recovery patient (c,d). The first CT shows, at admission, a small consolidation at the right lower lobe accompanied by

ground-glass opacities in both lower lobes (c), and after 6 months from discharge, no residual abnormalities were observed (d).
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FIGURE 2 | HRCT scores during hospitalization (HRCT0) of the two subgroups categorized according to the presence of radiological recovery [recovery (REC) or

NOT-recovery (NOT-REC)] at follow-up period. Horizontal bars represent median values; bottom and top of each box plot 25th and 75th; brackets show 10th and 90th

percentiles; and circles represent outliers. White boxes indicate values for recovery group and gray boxes not recovery group. (A) ALV [14.0 (0.0–62.0) vs. 4.4

(0.0–44.0); p = 0.0005]; (B) CONS [1.9 (0.0–26.0 vs. 0.4 (0.0–18.0); p = 0.0064]; (C) INT [11.5 (0.0–29.0) vs. 0.0 (0.0–22.0); p < 0.0001].

TABLE 2 | HRCT scores during hospitalization (HRCT0) of the overall population evaluated at post-COVID clinic and of the two subgroups categorized according to the

presence of radiological recovery during the follow-up period.

Overall population (n = 220) REC (n = 175; 80%) NOT—REC (n = 45; 20%) p-value

Alveolar score—% 5.0 (0.0–62) 4.4 (0.0–44.0) 14.0 (0.0–62.0) 0.0005

Consolidations—% 0.8 (0.0–26.0) 0.4 (0.0–18.0) 1.9 (0.0–26.0) 0.006

Interstitial score—% 0.8 (0.0–29.0) 0.0 (0.0–22.0) 11.5 (0.0–29.0) <0.0001

Values are expressed as median and range, as appropriate. To compare HRCT scores at hospitalization (HRCT0) between recovery (REC) and not recovery (NOT-REC), Mann–Whitney

t-test for continuous variables was used.

at follow-up. All data were analyzed using SPSS Software version
25.0 (US: IBM Corp., New York, NY, USA). p-Values< 0.05 were
considered statistically significant. The graphs were obtained
using the statistical package GraphPad Prism 7.0 (GraphPad
Software, Inc., La Jolla, CA, USA).

Ethics Statement
The study protocol complies with the ethical guidelines of the
1975 Declaration of Helsinki, and in agreement with national
regulation on observational studies, it was notified and approved
by the local ethics committee (number: 46430/03.08.2020) and
the need for patient’s informed consent was waived.

RESULTS

Clinical Evaluation at Hospital Admission
and During Hospitalization
Two hundred and 20 patients with COVID-19 pneumonia
evaluated at the post-COVID clinic were included in the study
(Table 1). A total of 115 patients (52%) were men, with a median
age of 59 years (range 19–84) and body mass index (BMI) 26
(18–39). The most prevalent comorbidities were CVDs (n = 98,

45%), followed by the chronic respiratory diseases (18%). Based
on the presence of radiological sequelae on HRCT performed at
follow-up (HRCT1), 175 (80%) patients were categorized as REC
and 45 (20%) as NOT-REC (Figure 1). Baseline demographic and
clinical data of REC and NOT-REC patients are summarized in
Table 1.

No differences in sex, smoking history, or BMI were observed
between the two groups, with a prevalence of men in NOT-
REC compared to REC (64 vs. 49%, respectively). NOT-REC
patients were significantly older compared to REC [66 (35–
85) vs. 56 (19–87) years; p < 0.0001]. CVDs were significantly
more frequent in NOT-REC compared to REC [26 (58%) vs. 72
(41%); p= 0.04] whereas autoimmune, metabolic, and oncologic
diseases did not differ between the two groups. Symptoms
before hospital admission were also similar, except for a higher
proportion of patients presenting with dyspnea in NOT-REC
compared to REC group [33 (73%) vs. 64 (37%); p < 0.0001]
(Supplementary Table 1).

At hospital admission, NOT-REC had a worse gas exchange
with a lower PiO2/FiO2 ratio than REC [233 (40–424) vs.
318 (33543); p = 0.04]. In addition, compared to REC,
during hospitalization, NOT-REC required more frequently
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FIGURE 3 | HRCT scores of the not recovery population (NOT-REC) from

HRCT0 to HRCT1: ALV. [from 14 (0.0–62.0) to 2.6 (0.0–40.0); p < 0.0001],

CONS [from 1.9 (0.0–26.0) to 0.0 (0.0–2.2); p = 0.0001] and INT [1.5

(0.0–29.0) to 1.4 (0.0–24.0)].

high-intensity medical care (HIMC) (20, 44 vs. 37, 21%; p =

0.002), higher FiO2 max [45 (21–100) vs. 27 (21–100); p <

0.0001], and longer in-hospital stay [16 (0–75) vs. 8 (1–52) days;
p < 0.0001].

The majority of patients were admitted during the first
SARS-CoV-2 wave when no standardized protocols existed for
treatment of hospitalized patients. NOT-REC patients were
more frequently treated with hydroxychloroquine (n = 37, 82
vs. 111, 63%; p = 0.01), antibiotics other than ceftriaxone
and azithromycin (n = 25, 56 vs. 44, 25%; p < 0.0001),
remdesevir (n = 7, 16 vs. 10, 6%, p = 0.02), tocilizumab (n
= 8, 18 vs. 12, 7%; p = 0.02), and steroids (n = 27, 60 vs.
74, 42%; p = 0.03) compared to REC. Conversely, the two
groups did not differ with regard to the use of ceftriaxone,
azithromycin, lopinovir/ritonavir, and hyperimmune plasma
(Supplementary Table 2). At discharge, a similar proportion of
patients in both groups were prescribed steroids.

Clinical, Functional, and Radiologic
Evaluation at Follow-Up
Patients were evaluated at post-COVID clinic at regular 3-month
intervals after discharge. At first evaluation, NOT-REC patients
presented more frequently a modified Medical Research Council
(mMRC) scores of 1 and 2 compared to REC [15 (33%) vs.
22 (13%), p = 0.0009 and 7 (16%) vs. 3 (2%), p < 0.0001,
respectively]. In the overall population, pulmonary function
tests (PFTs) revealed a median forced vital capacity (FVC) of
3.40 liters (L) (range 1.40–7.96), 96%pred. and a median total
lung capacity (TLC) of 5.36 L (3.63–8.09), 89% pred. within the
normal range. Likewise, NOT-REC patients showed preserved

lung volumes within normal range (Supplementary Table 3). A
number of 32 patients out of 220 (14.5%) had an abnormal
diffusing capacity of the lung for carbon monoxide (DLco) at
the 6-month follow-up, which occurred in those with persistent
interstitial lung abnormalities (NOT-REC patients). At follow-
up CT (HRCT1), NOT-REC patients presented higher ALV [2.8
(0.0–40.0)] compared to CONS [0.0 (0.0–2.0); p < 0.0001] and IS
[0.6 (0.0–24.0); p < 0.0001] (Supplementary Figure 1). Overall,
the interobserver agreement between the two radiologists with
regard to change in AS, CONS, and IS was good (Cohen’s kappa
= 0.79 for AS, k= 0.88 for CONS, and k= 0.81 for IS).

Longitudinal Evaluation of Radiologic
Manifestation: From Hospitalization to
Follow-Up
At hospital admission, HRCT (HRCT0) was available for 79/220
(36%) patients. ALV [5.0 (0.0–62.0)] was significantly more
prevalent compared to CONS [0.8 (0.0–26.0); p < 0.0001] and
IS [0.8 (0.0–29.0); p < 0.0001]. When this patient subgroup was
stratified in NOT-REC and REC, NOT-REC patients (n = 20)
had at hospital admission higher ALV [14.0 (0.0–62.0) vs. 4.4
(0.0–44.0); p = 0.0005] (Figure 2A), CONS [1.9 (0.0–26.0 vs. 0.4
(0.0–18.0); p= 0.0064] (Figure 2B), and IS [11.5 (0.0–29.0) vs. 0.0
(0.0–22.0); p< 0.0001] (Figure 2C) compared to REC patients (n
= 59) (Table 2). Finally, when comparing HRCT0 with HRCT1,
we observed that in NOT-REC patients, ALV [from 14 (0.0–62.0)
to 2.6 (0.0–40.0); p < 0.0001], CONS [from 1.9 (0.0–26.0) to 0.0
(0.0–2.2); p = 0.0001], and IS [1.5 (0.0–29.0) to 1.4 (0.0–24.0)]
decreased significantly (Figure 3).

Prognostic Factors for Radiological
Sequelae at Follow-Up
Univariate analysis showed that older age, a prolonged in-
hospital stay, a lower PiO2/FiO2 at hospital admission,
cardiovascular comorbidities, a higher degree of medical care,
a higher FiO2 max, and higher ALV, CONS, and INT scores
at HRCT0, not use of hydroxychloroquine, antibiotics other
than azithromycin and ceftriaxone, tocilizumab, remdesevir,
and systemic steroids are associated with persistent radiological
abnormalities at follow-up. Multivariate analysis revealed that
CONS [OR: 20.6 (95%CI: 1.−301.2); p= 0.02] and IS score [23.0
(1.4–377.2); p = 0.02] are independent predictors of radiological
sequelae at follow-up (Table 3).

Finally, on multivariate analysis adjusted for gender, pack-
years, PiO2/FiO2 ratio at admission, degree of care (high or low),
and FiO2 max, both CONS and IS at HRCT0 are independent
predictors of radiological sequelae at follow-up with an OR of
14.87 (95% CI: 1.25–175.8; p = 0.03) and 28.9 (95% CI: 2.17–
386.6; p= 0.01), respectively (Table 4).

DISCUSSION

In our study, we demonstrated that only a significant minority
of patients hospitalized for COVID-19 pneumonia has persistent
radiological abnormalities at follow-up. Patients who did not
recover are mainly elder men, with a more severe gas exchange
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TABLE 3 | Predictive factors of radiological sequelae at follow-up in patients

hospitalized for SARS-COV-2-related pneumonia.

Univariate analysis Multivariate analysis

OR (95% IC) p OR (95% IC) p

Sex

Female

Male

Ref.

1.87 (0.95—3.69)

-

0.07

-

-

-

-

Age—years

<59

≥59

Ref.

2.99 (1.47–6.08)

-

0.002

Ref.

0.81 (0.10–6.39)

-

0.84

BMI—(kg/m2 )

<26

≥26

Ref.

0.80 (0.41–1.58)

-

0.52

-

-

-

-

Smoking

history–pack–

years

= 0

>0

Ref.

1.56 (0.79–3.10)

-

0.19

-

-

-

-

Hospitalization—

days

<9

≥9

Ref.

4.77 (2.15–10.5)

-

<0.0001

Ref.

12.77 (0.65–248.8)

-

0.09

PiO2/FiO2 at

admission

<314

≥314

Ref.

0.33 (0.13–0.80)

-

0.01

Ref.

1.24 (0.13–11.46)

-

0.84

CVD

No

Yes

Ref.

1.95 (1.00–3.80)

-

0.04

Ref.

1.40 (0.15–12.48)

-

0.76

Respiratory

diseases

No

Yes

Ref.

1.20 (0.52–2.77)

-

0.65

-

-

-

-

Autoimmune

diseases

No

Yes

Ref.

1.94 (0.87–4.32)

-

0.11

-

-

-

-

Metabolic

diseases

No

Yes

Ref.

1.42 (0.73–2.74)

-

0.29

-

-

-

-

Oncologic

diseases

No

Yes

Ref.

2.01 (0.80–5.01)

-

0.13

-

-

-

-

Degree of care

Low

High

Ref.

2.98 (1.49–5.95)

-

0.002

Ref.

1.35 (0.13–13.12)

-

0.79

FiO2 max—%

<28

≥28

Ref.

3.25 (1.54–6.80)

-

0.002

Ref.

1.01 (0.07–16.2)

-

0.99

Alveolar score

HRCT0—%

<7

≥7

Ref.

4.0 (1.33–11.98)

-

0.01

Ref.

0.74 (0.09–5.99)

-

0.78

(Continued)

TABLE 3 | Continued

Univariate analysis Multivariate analysis

OR (95% IC) p OR (95% IC) p

Consolidations

HRCT0—%

<0.8

≥0.8

Ref.

6.29 (1.66–23.87)

-

0.007

Ref.

20.6 (1.40–301.2)

-

0.02

Interstitial score

HRCT0—%

<1.4

≥1.4

Ref.

41.2 (5.1–331.8)

-

<0.0001

Ref.

23.0 (1.40–377.2)

-

0.02

Hidroxicloroquina

Yes

No

Ref 2.66 (1.17–6.07) 0.02 Ref 1.26 (0.18–8.82) 0.80

Azithromycin

Yes

No

Ref.

0.76 (0.39–1.47)

-

0.41

-

-

-

-

Ceftriaxone

Yes

No

Ref.

1.74 (0.89–3.40)

-

0.10

-

-

-

-

Other antibiotics

Yes

No

Ref.

3.72 (1.88–7.34)

-

<0.0001

Ref.

4.87 (0.52–45.7)

-

0.16

Lopinovir/Ritonavir

Yes

No

Ref.

1.49 (0.75–2.94)

-

0.24

-

-

-

-

Remdesevir

Yes

No

Ref.

3.03 (1.08–8.49)

-

0.03

Ref.

12.5 (0.41–3.85)

-

0.14

Glutathione

Yes

No

Ref.

0.22 (0.09–1.75)

-

0.15

-

-

-

-

Tocilizumab

Yes

No

Ref.

2.93 (1.12–7.69)

-

0.02

Ref. 0.6 (0.03–11.1) -

0.73

Plasma

Yes

No

Ref.

1.49 (0.37–5.86)

-

0.56

-

-

-

-

Steroids during

hospitalization

Yes

No

Ref.

2.04 (1.05–3.99)

-

0.03

Ref. 1.04 (0.09

– 11.6)

-

0.97

Values are expressed as OR (95%CI). Logistic regression analysis was used to determine

the relationship of clinical data with radiological sequelae at follow-up.

impairment at hospital admission and a more severe clinical
course during hospitalization. Interestingly, the presence of
reticulation and consolidation at admission was predictive of
persistent interstitial changes at follow-up.

To date, few studies have reported on the follow-up of
patients hospitalized for COVID-19 pneumonia (5, 6). Different
approaches based on disease severity have been proposed with
the aim to standardize patients’ follow-up. Specifically, the British
Thoracic Society guidelines for management of post-COVID-
19 syndrome distinguished patients with severe pneumonia
requiring intensive care from patients with mild-to-moderate
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TABLE 4 | Multivariate analysis for factors independently associated with

radiological sequelae at follow-up in patients hospitalized for SARS-COV-2-related

pneumonia.

Multivariate analysis*

OR (95% IC) p

Alveolar score HRCT0—%

<7

≥7

Ref. 1.80 (0.39-−8.20) -

−0.44

Consolidations HRCT0—%

<0.8

≥0.8

Ref. 14.87 (1.25-−175.8) -

−0.03

Interstitial score HRCT0—%

<1.4

≥1.4

Ref. 28.9 (2.17-−386.6) -

-0.01

Values are expressed as OR (95%CI). Univariate and multivariate-adjusted odds ratio

for radiological NOT recovery according to radiological patterns during hospitalization

(HRCT0).
*Adjusted for gender, pack-years, PiO2/FiO2 ratio at admission, degree of care

(high or low), FiO2 max.

pneumonia treated in a medical ward or at home (4). However, it
is becoming increasingly clear that radiological changes following
COVID-19 pneumonia do not resolve completely in a large
minority of patients (5, 15). Some studies have started to use CT
to assess the presence of long-term lung abnormalities. A recent
work from the Chongqing University Three Gorges Hospital
evaluated 41 patients and showed that in most patients, the chest
CT lesions were no longer present at 7 months after discharge,
whereas older patients with severe comorbidities were more
prone to develop fibrosis. (16). From the Wuhan cohort, Han
and colleagues investigated 114 patients with severe pneumonia
according to theWHO criteria (12) and observed fibrotic changes
in one-third of them at the 6-month follow-up. Of note, on
multivariate analysis, they found that a higher baseline/initial CT
lung involvement score (>18 in a score of 25) was independently
associated with fibrotic-like changes in the lung (12). Huang
and colleagues conducted a cohort study that included 353
patients who were enrolled between January and May 2020 who
underwent HRCT at follow-up after discharge. They found that
more than 50% of the patients had residual lung abnormalities.
Moreover, they found that disease severity in the acute phase was
independently associated with the percentage change of CT score
in a multivariable analysis (17).

In our hospital, the first patients with COVID-19 pneumonia
were admitted in February 2020 and were evaluated in the post-
COVID clinic in June 2020. We enrolled prospectively patients
diagnosed with COVID-19 pneumonia according to the WHO
criteria. Two hundred and 20 patients were evaluated at 3 months
after discharge and every 3 months thereafter, according to the
current guidelines (8). We found that as many as 20% of our
entire patient population had radiological pulmonary sequelae
at follow-up. This percentage is lower than that observed in
previous studies (12, 17), but our patients’ population has been
followed up for a longer period of time, thus allowing non-
fibrotic pulmonary abnormalities to clear. Patients who did not
recover (NOT-REC) were older, mostly men and with worse
disease impairment both at admission and during hospitalization

compared to patients without radiological sequelae at follow-
up. Specifically, NOT-REC patients had a lower PiO2/FiO2

ratio at admission and a more severe clinical course. Moreover,
NOT-REC patients who required higher maximal FiO2 during

hospital stay were more often treated in a high-intensive care
setting and required a longer in-hospital stay, consistent with

the findings from the Wuhan cohort (17). Furthermore, we
have shown that, in NOT-REC patients, the HRCT performed

at hospital admission is more likely to display ground-glass

opacities, consolidations, and reticulation. These data suggest
that the risk of pulmonary sequelae may be related to the severity
of the acute illness and to the intensity of care needed. This is in
line with the hypothesis that a cytokine stormmight contribute to

the pathogenesis of COVID-19 whereas its severity is associated
with poor outcomes (18). However, mechanical ventilation and
ventilator-induced lung injury, and high-flow oxygen therapy

might also have contributed to the development of fibrotic-like
changes (19, 20).

The primary aim of our study was to identify predictors of

radiological sequelae following COVID-19 pneumonia. Whereas
on univariate analysis age, prolonged in-hospital stay, lower

PiO2/FiO2 at hospital admission, cardiovascular comorbidities,
higher intensity of medical care, and higher FiO2 max, not

using hydroxychloroquine, antibiotics other than azithromycin
and ceftriaxone, tocilizumab, remdesevir, or systemic steroids
were significantly associated with the presence of interstitial
changes during follow-up, we found that higher CONS [OR:
20.6 (95%CI: 1.4–301.2); p = 0.02] and IS [23.0 (1.4–377.2); p

= 0.02] at hospitalization were the only variables independently
associated with the persistence of fibrotic changes at follow-
up in multivariate analysis. In particular, this latter observation
is consistent with that of Han and colleagues who found that
a more extensive baseline or initial CT lung involvement was

independently associated with permanent fibrotic-like changes in
the lung (12). Additionally, the higher amount of consolidation
and reticulation at admission remained significantly associated
with persistent radiological abnormalities when adjusted for
gender, pack-years of smoking, and PiO2/FiO2 ratio. However, it

remains uncertain whether the fibrotic-like changes we observed
represent irreversible pulmonary fibrosis, and furthermonitoring
is warranted to answer this question.

The findings of our study should be interpreted in light of

some limitations. First, this is a single-center study; however, it
is among the first to analyze HRCT changes over time in a large

population of patients hospitalized for COVID-19 pneumonia. In
addition, we included a large proportion of patients with severe

COVID-19, who are at higher risk of developing persistent lung
disease. Second, the CT scan at hospital admission was available
for only a subset of patients; however, the aim of our study was
to characterize the radiological changes occurring over time as
previously done in idiopathic pulmonary fibrosis (21) and to
identify predictors of persistent radiological abnormalities.

In conclusion, in our study, about 20% of patients with

COVID-19 pneumonia had radiological sequelae at follow-
up. Patients who did not fully recover showed a more severe
impairment at hospital admission and during hospitalization.
Moreover, the presence of reticulation and consolidation on the
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initial chest CT is predictive of persistent radiological interstitial
changes at follow-up.
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Rationale: Chronic obstructive pulmonary disease (COPD) predominantly affects

older adults. However, the co-morbid occurrence of geriatric conditions has

been understudied.

Objective: Characterize the prevalence of geriatric conditions among

community-dwelling U.S. older adults with self-reported COPD.

Methods: We conducted a nationally representative, cross-sectional study of 3,005U.S.

community-dwelling older adults (ages 57–85 years) from the National Social Life,

Health, and Aging Project (NSHAP). We evaluated the prevalence of select geriatric

conditions (multimorbidity, functional disability, impaired physical function, low physical

activity, modified frailty assessment, falls, polypharmacy, and urinary incontinence) and

psychosocial measures (frequency of socializing, sexual activity in the last year, loneliness,

cognitive impairment, and depressive symptoms) among individuals with self-reported

COPD as compared to those without. Using multivariate logistic and linear regressions,

we investigated the relationships between COPD and these geriatric physical and

psychosocial conditions.

Main Results: Self-reported COPD prevalence was 10.7%, similar to previous

epidemiological studies. Individuals with COPD had more multimorbidity [modified

Charlson score 2.6 (SD 1.9) vs. 1.6 (SD 1.6)], more functional disability (58.1 vs. 29.6%;

adjusted OR 3.1, 95% CI 2.3, 4.3), falls in the last year (28.4 vs. 20.8%; adjusted OR

1.4, 95% CI 1.01, 2.0), impaired physical function (75.8 vs. 56.6%; adjusted OR 2.1,

95% CI 1.1, 3.7), more frequently reported extreme low physical activity (18.7 vs. 8.1%;

adjusted OR 2.3, 95% CI 1.5, 3.5) and higher frailty prevalence (16.0 vs. 2.7%; adjusted

OR 6.3, 95% CI 3.0,13.0) than those without COPD. They experienced more severe
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polypharmacy (≥10 medications, 37.5 vs. 16.1%; adjusted OR 2.9, 95% CI 2.0, 4.2).

They more frequently reported extreme social disengagement and were lonelier, but the

association with social measures was eliminated when relationship status was accounted

for, as those with COPD were less frequently partnered. They more frequently endorsed

depressive symptoms (32.0 vs. 18.9%, adjusted OR 1.9, 95% CI 1.4, 2.7). There was

no noted difference in cognitive impairment between the two populations.

Conclusions: Geriatric conditions are common among community-dwelling older adults

with self-reported COPD. A “beyond the lung” approach to COPD care should center

on active management of geriatric conditions, potentially leading to improved COPD

management, and quality of life.

Keywords: geriatrics, functional impairment, COPD–chronic obstructive pulmonary disease, polypharmacy

(source: MeSH, frailty), loneliness, cognitive impairment

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is the third
leading cause of death in the United States and fifth cause of
disability in the world (1–3). COPD predominately affects older
adults (4). In a 2006 study, the median global COPD pooled
prevalence in people 65 years old and greater was 15%, whereas
the prevalence among those 40–64 years old was 8% (5). Further,
12% of Medicare beneficiaries have COPD (6).

As people age, the development of geriatric conditions can
complicate management of chronic diseases like COPD. Geriatric
conditions aremultifactorial disease states that transcend discrete
diagnosis categories, and confer additional risk for quality of
life impairment, hospitalizations, medication non-adherence and
death (7–9). Frailty, a syndrome of multisystem impairment
defined and assessed variably, is perhaps the best studied geriatric
condition in COPD (10). Its presence has been associated with
increased risk of hospitalizations and death. The prevalence
of frailty in those with COPD has been estimated at almost
60%, and has been demonstrated to predict mortality better
than forced expiratory volume in 1 s (11, 12). Eisner et al.
found that in those with COPD, developing “non-respiratory
impairment” (e.g., loss of lower extremity muscle strength) and
functional limitations were associated with increased risk of
disability (13). The prevalence and impact of other geriatric
conditions such as multimorbidity, activities of daily living
disability, physical function impairment, falls, polypharmacy,
urinary incontinence, and social frailty among those with COPD
have been largely understudied.

In recent years, an evolving understanding of geriatric
conditions has helped paint a richer picture of the complexity
of health of older people with chronic diseases. For example,
research from The Health and Retirement Study, a nationally
representative study of older adults, has demonstrated high rates
of urinary incontinence and falls in individuals with congestive
heart failure, coronary artery disease, and diabetes (14). In
tandem with physical disease, social context is critical when
considering health in older adults. Social frailty is an emerging
concept identifying risk of losing (or loss) of valuable social
resources (15). Social frailty, including social disengagement

and loneliness, is more common with advancing age, increases
vulnerability to catastrophic health events beyond what can
be predicted by medical comorbidities alone (16), and is
associated with all-cause mortality (17). In several small studies,
loneliness is prevalent in those with COPD, and independently
associated with more emergency room visits and reduced health
perception (18–20).

The primary objective of this study is to report the
prevalence of geriatric physical and psychosocial conditions
among community-dwelling older adults with COPD using
data from the National Social Life, Health, and Aging Project
(NSHAP), a nationally representative sample. NSHAP, as
compared to other longitudinal studies of older adults, is unique
in its robust assessments of social health, along with other
physical geriatric conditions (21). Our secondary objective was
to determine whether the presence of COPD was associated
with having a geriatric condition in the entire sample. We
hypothesized that older adults with COPD experience accelerated
physiologic aging, manifested by a much higher prevalence of
geriatric conditions compared to older adults without COPD
even after adjustment for demographics. Our study provides new
insights into the high national rates of geriatric conditions among
community dwelling people with COPD.

METHODS

Study Population
We conducted a cross-sectional study of respondents enrolled in
the first of three rounds of data collected in NSHAP. NSHAP
is the first longitudinal, nationally-representative study to assess
simultaneously social relationships, physical and mental health,
function, and cognition in older adults (aged 57–85 at first
interview) in the United States (22). This de-identified analysis
was approved by the Institutional Review Board at the University
of Chicago and data usage approved by the NSHAP Data Usage
Agreement. All respondents provided informed consent.

Data Collection
Round 1 was collected in 2005–2006, and enrolled 3,005 adults
(1,551 women and 1,454 men) of 4,017 eligible persons, born
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from 1920 to 1947 (aged 57–85 at time of interview) who resided
in the community (none resided in assisted living or skilled
nursing facilities) (23). The unweighted response rate was 74.8%
and weighted response rate was 75.5%. Data collection was
comprised of three components: (1) an in-home questionnaire;
(2) biomeasure collection; and (3) a self-administered leave-
behind questionnaire. Potential participants were excluded in
round one if they were deemed too cognitively impaired to give
formal consent and/or complete the interview as determined by
the field interviewer (no formal criteria).

Professional interviewers from NORC (previously known as
the National Opinion Research Center) at the University of
Chicago conducted the in-home assessments. Further details are
available elsewhere (22, 24–28).

Chronic Obstructive Pulmonary Disease
Diagnosis
Respondents were asked the question “Has a medical doctor
ever told you that you have any of the following conditions:
Emphysema, chronic bronchitis, or chronic obstructive lung
disease?” Responses to this question (yes/no) were used to divide
the sample into comparator groups.

Demographics
Age was calculated using date of birth and survey date.
Gender (male or female), race/ethnic group (White/Caucasian,
Black/African American, Hispanic/non-black, and other),
smoking history, education, and relationship status were self-
reported. Smoking status was categorized as “never smoker,”
“former smoker,” and “current smoker,” and determined by
asking respondents, “do you smoke cigarettes?” and “have
you ever smoked cigarettes regularly?” Education levels
were categorized as “less than high school,” “high school
equivalent,” “vocational certificate,” and “bachelor’s degree.”
Current relationship status (currently married or in a romantic
relationship) was reported as “yes” or “no”.

Geriatric Conditions
Additional methodologic details for the geriatric conditions
can be found in the Supplementary Material. Select geriatric
conditions were assessed: multimorbidity (modified Charlson
index score, with COPD excluded from the morbidity
calculation, scale ranging from 0 to 25.5 where a 0 score
indicates no co-morbid conditions and 25.5 indicates all co-
morbid conditions included) (29, 30), activities of daily living
(ADL) disability (see Supplementary Material), impaired
physical function (timed up and go, TUG, performance time ≥
10 s), extreme low physical activity (<once a month of moderate
to vigorous activity on average), modified frailty (an adapted
and abbreviated scale including exhaustion, low activity and
slow TUG performance time; frailty was defined as a score
of 3) (21), any fall in the last 12 months, polypharmacy (<4,
4–10, or ≥10 medications), and any urinary incontinence in last
12 months. Psychosocial measures assessed were social frailty
measures: extreme social disengagement (socializing one time
in the last year or less with friends or relatives), moderate social
engagement (socializing several times in the last year or less
with friends or relatives), and loneliness [NSHAP Felt Loneliness

Measure (NFLM)≥ 1] (28). Cognitive impairment was evaluated
[moderate cognitive impairment was defined as a score of <6
on the Short Portable Mental Status Questionnaire (SPMSQ)]
(31, 32). Significant depressive symptoms were assessed using
the NSHAP Depressive Symptoms Measure (NDSM), with a
score ≥9 demonstrating significant depressive symptoms (28).
Additionally, high-risk medication usage was summed for each
respondent [anti-histamines, anticholinergics, benzodiazepines,
anti-psychotics, anxiolytics/sedatives, tricyclic antidepressants,
muscle relaxants, anti-arrhythmic agents, cyclooxygenase
(COX)-2 inhibitors, and narcotics] (33) using a medication
log (34). Moderate polypharmacy was defined as taking ≥4
medications and severe polypharmacy was defined as ≥10
medications (see Supplementary Material).

Statistical Analysis
Sample characteristics were compared among respondents
with and without a self-reported doctor diagnosis of COPD.
Continuous variables are presented as means with standard
deviations (SD). Categorical variables are presented as
percentages. T-tests and chi-square tests, respectively, detected
significant differences between the groups.

Multivariate logistic regression models assessed the
association between self-reported COPD diagnosis and each
geriatric condition, adjusted for age, gender, race/ethnicity, and
education. Multivariate linear regression was used to assess
the association between self-reported COPD diagnosis and
the modified Charlson index score. Social measures included
adjustment for these demographics as well as adjustment for
partner status. Odds ratios or linear regression coefficients with
95% confidence intervals (CI) are reported for all variables. P
≤ 0.05 were considered statistically significant. No adjustment
for multiple comparisons was made. All analyses were survey
weighted, accounting for the survey design, therefore reported
estimates reflect the U.S. community-dwelling older adult
population in 2005. Analyses were conducted in Stata 15.1
(StataCorp LLC, College Station, Texas, USA).

RESULTS

Demographics
Of the 3,005 adults in Round 1, 322 respondents (10.7%)
endorsed having COPD or emphysema (Table 1). Those with
COPD were older (mean 69.6 years, SD 7.4 vs. 67.8 years,
SD 7.7; p = 0.01) and more often self-identified as being
white/Caucasian individuals (87.6%) as compared to the non-
COPD group (79.8%). Individuals with COPD reported lower
education levels (completed bachelor’s degree: 19.1 vs. 25.2%),
had a lower prevalence of being partnered (65.8 vs. 75.6%)
and were more commonly current or former smokers (77.8
vs. 57.0%).

Geriatric Conditions
Older adults with self-reported COPD had more multimorbidity
than those without COPD (Table 2); the average modified
Charlson co-morbidity score was significantly higher (2.6, SD
1.9) as compared to the non-COPD group (1.6, SD 1.6) (p
< 0.0001). The relationship between the modified Charlson
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TABLE 1 | Demographic characteristics of US older adults with and without

COPD by self-report.

COPD

(n = 322)

Non-COPD

(n = 2,683)

Weighted % or

mean (SD)

Weighted % or

mean (SD)

p-value

TOTAL prevalence 10.7 89.3

Age, mean years (SD) 69.6 (7.4) 67.8 (7.7) 0.01

Gender, women 55.7 51.0 0.2

Race/Ethnicity (n = 320) (n = 2,673) 0.02

White/Caucasian 87.6 79.8

Black/African American 6.4 10.5

Hispanic, non-black 4.2 7.2

Other 1.8 2.6%

Education 0.02

Less high school 23.6 17.9

High school equivalent 27.8 26.8

Vocational certificate 29.5 30.1

Bachelor 19.1 25.2

Relationship status

Partnered 65.8 75.6 0.1

Smoking status (n = 322) (n = 2,681) <0.0001

Current smoker 27.1 13.7

Former smoker 50.7 43.3

Never smoker 22.2 43.0

co-morbidity score and COPD persisted after adjustment for
age, race/ethnic group, gender, and education (coefficient
0.89, 95% CI 0.51, 1.27; p < 0.0001). They also had more
asthma (34.6 vs. 7.1%), heart failure (15.4 vs. 7.4%), history
of myocardial infarction (19.5 vs. 10.7%), history of cerebral
vascular events/stroke (14.7 vs. 7.3%), and arthritis (68.4
vs. 49.5%).

Older adults with self-reported COPD had higher rates of
at least one ADL disability (58.1 vs. 29.6%, adjusted model
OR 3.1, 95% CI 2.3, 4.3; p < 0.0001; Table 3). They reported
more difficulty performing every reported ADL (walking a block,
walking across a room, dressing, bathing, eating, bed mobility,
and toileting) (Figure 1). The most profound impairment was
difficulty walking a block compared to those without COPD (OR
3.4, 95% CI 2.5, 4.6; p < 0.0001).

Older adults with self-reported COPD had more frequently
impaired physical function as measured by a slow TUG test
(≥10 s): 75.8 vs. 56.6%, adjusted OR 2.1, 95% CI 1.1, 3.7; p< 0.02;
Table 3). They also reported more extreme physical inactivity
(18.7 vs. 8.1%, adjusted OR 2.3, 95% CI 1.5, 3.5; p < 0.0001).
Modified physical frailty (as identified by presence of 3 criteria
using an adapted andmodified 3-point scale) was more common:
16.0 vs. 2.7% (adjusted OR 6.3, 95% CI 3.0, 13.0; p < 0.0001).
They reported falling in the last year more frequently than those
without COPD (28.4 vs. 20.5%, adjusted OR 1.4, 95% CI 1.01, 2.0;
p = 0.04; Table 3). Urinary incontinence was highly prevalent in
older adults with COPD (53.9 vs. 39.6%, adjusted OR 1.7, 95% CI
1.3, 2.1; p < 0.0001; Table 3).

TABLE 2 | Prevalence of multimorbidity among US older adults with and without

COPD by self-report.

COPD

(n = 322)

Non-COPD

(n = 2,683)

Modified Charlson*, mean (SD) 2.6 (1.9) 1.6 (1.6) <0.0001

Select conditions

Asthma 34.6% 7.1% <0.0001

Arthritis 68.4% 49.5% <0.0001

History of stroke 14.7% 7.3% <0.0001

Heart failure 15.4% 7.4% 0.0009

History of MI 19.5% 10.7% 0.003

Diabetes 22.7% 19.4% 0.3

Cancer (ever had) 12.5% 11.4% 0.6

COPD, chronic obstructive pulmonary disease; MI, myocardial infarction.

*Modified Charlson co-morbidity index: as previously described in the NSHAP data set

based on the original index of 19 weighted conditions; co-morbidities were added with

varying weights as follows: 1 point assigned to history of myocardial infarction, gastric

ulcer disease, congestive heart failure, peripheral vascular disease, arthritis, dementia,

asthma, and stroke; 1.5 points assigned to diabetes, 2 points assigned to liver disease,

leukemia, lymphoma, renal disease, and cancer history; and 6 points assigned to

metastatic cancer. COPD was removed from the score. Possible score ranged from 0 to

25.5 where a 0 score indicates no co-morbid conditions and 25.5 indicates all co-morbid

conditions included.

Older adults with self-reported COPD had significantly more
moderate polypharmacy (≥4 medications) (80.6 vs. 58.4%,
adjusted OR 2.7, 95% CI 2.0, 3.8; p < 0.0001) and severe
polypharmacy (≥10 medications) (37.5 vs. 16.1%, adjusted OR
2.9, 95% CI 2.0, 4.2; p < 0.0001; Table 4). Respondents in
the COPD group were found to be taking many more high-
risk medications, such as anti-histamines, benzodiazepines, and
narcotics (Table 4).

Community-dwelling older U.S. adults with self-reported
COPD had more extreme social disengagement, as assessed
by higher frequency of socializing less than once a year with
family and friends (4.5 vs. 2.1%, unadjusted OR 2.2, 95% CI
1.2, 4.0; p = 0.01, adjusted OR 0.7, 95% CI 0.1, 4.8, p = 0.7).
Moderate social disengagement was not significantly different
between the COPD and non-COPD groups (23.1 vs. 22.7%,
unadjusted OR 1.0, 95% CI 0.8, 1.4, p = 0.18, adjusted OR
0.8, 95% CI 0.5, 1.5; p = 0.5). They also had higher rates of
sexual inactivity in the last year (60.9 vs. 42.8%, unadjusted
OR 2.1, 95% CI 1.5, 2.8; p < 0.0001, adjusted OR 1.5, 95%
CI 0.7, 2.9, p = 0.3). They were also lonelier (57.7 vs. 42.1%,
unadjusted OR 1.9, 95% CI 1.4, 2.5; p < 0.0001, adjusted
OR 1.2, 95% CI 0.7, 2.2; p = 0.5; Table 3). These differences
were largely due to partnership status, as the significance of
these associations diminished in the models which adjusted for
relationship status.

The SPMSQ cognitive assessment did not uncover significant
differences in cognitive impairment in those with self-reported
COPD compared to those without (12.9 vs. 17.6%, adjusted
OR 0.6, 95% CI 0.2, 1.9, p = 0.4). Those with COPD
more frequently reported depressive symptoms by the NSHAP
Depressive Symptoms Measure (32.0 vs. 18.9%, adjusted OR 1.9,
95% CI 1.4, 2.7; p < 0.0001).
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TABLE 3 | Unadjusted and adjusted multivariate logistic regression models comparing the prevalence of geriatric conditions among US older adults with and without

COPD by self-report.

COPD % Non-COPD % Unadjusted model Adjusted model

OR (95% CI) OR (95% CI)

Physical measures

At least 1 ADL limitation 58.1 29.6 3.3 (2.4, 4.5) 3.1 (2.3, 4.3)

Slow gait (TUG) speed (≥10 s) 75.8 56.6 2.4 (1.4, 4.1) 2.1 (1.1, 3.7)

Extreme low physical activity (<once a month) 18.7 8.1 2.6 (1.8, 3.7) 2.3 (1.5, 3.5)

Frail (abbreviated scale) 16.0 2.7 6.8 (3.5, 13.2) 6.3 (3.0, 13.0)

Fall (in last 12 months) 28.4 20.8 1.5 (1.1, 2.1) 1.4 (1.0, 2.0)

Urinary incontinence (in last 12 months) 53.9 39.6 1.8 (1.4, 2.3) 1.7 (1.3, 2.1)

Psychosocial measures

Extreme social disengagement* (once a year or less) 4.5 2.1 2.2 (1.2, 4.0) 0.7 (0.1, 4.8)

Moderate social disengagement* (several times a year or less) 23.1 22.7 1.0 (0.8, 1.4) 0.8 (0.5, 1.5)

No sex (in last year)* 60.9 42.8 2.1 (1.5, 2.8) 1.5 (0.7, 2.9)

Loneliness* (NFLM ≥ 1) 57.7 42.1 1.9 (1.4, 2.5) 1.2 (0.7, 2.2)

Moderate cognitive impairment (SPMSQ < 6) 12.9 17.6 0.7 (0.3, 2.1) 0.6 (0.2, 1.9)

Frequent depressive symptoms (NDSM ≥ 9) 32.0 18.9 2.0 (1.5, 2.8) 1.9 (1.4, 2.7)

OR, odds ratio; CI, confidence interval; ADL, activity of daily living; TUG, timed up-and-go; NFLM, NSHAP felt loneliness measure; NDSM, NSHAP depressive symptoms measure.

Adjusted model: adjusted for age, gender, race/ethnic group, and education.

*Adjusted model also included relationship status.

FIGURE 1 | Forest plots (odds ratios with 95% confidence intervals) based on Multivariate Logistic regression models comparing activities of daily living (ADL)

impairment among US older adults with vs. without COPD by self-report. OR, odds ratio; ADL, activities of daily living; Adjusted model: adjusted for age, gender,

race/ethnic group, and education.

DISCUSSION

Our study establishes that COPD is frequently co-prevalent with

multiple, non-respiratory domains of age-related vulnerability

requiring complex and coordinated interdisciplinary care and
specialized geriatrics training and knowledge (35). Our findings

also demonstrate compelling evidence of social frailty among
older U.S. adults with COPD living at home, likely related

to the significant difference in partnership status between
the groups.

In the United States, community-dwelling older adults with
COPD are disproportionately afflicted with geriatric conditions
that reflect worse global physical and social health. Previous
work has demonstrated a high rate of disability and social
disengagement among community dwelling older adults with
COPD (36). Our findings confirm this and expand upon other
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TABLE 4 | Polypharmacy and high-risk medications among US older adults with

and without COPD by self-report.

COPD % Non-

COPD %

Unadjusted Adjusted

OR (95% CI) OR (95% CI)

Polypharmacy

Moderate (≥4 medications) 80.6 58.4 3.0 (2.1, 4.1) 2.7 (2.0, 3.8)

Severe (≥10 medications) 37.5 16.1 3.1 (2.2, 4.5) 2.9 (2.0, 4.2)

High-Risk meds

Anti-histamines 16.8 6.0 3.2 (2.2, 4.6) 3.4 (2.2, 5.1)

Anticholinergic/ 4.0 1.3 3.2 (1.4, 7.5) 2.7 (1.2, 6.4)

anti-spasmodic

Benzodiazepines 11.1 5.4 2.2 (1.4, 3.5) 1.9 (1.2, 3.0)

Anti-psychotics 2.9 1.3 2.2 (1.1, 4.5) 1.9 (0.99, 3.7)

Anxiolytic/Sedatives 15.3 8.0 2.1 (1.4, 3.1) 1.9 (1.3, 2.8)

Tricyclic anti-depressant 4.8 2.0 2.6 (1.2, 5.7) 2.4 (1.1, 5.2)

Muscle relaxants 4.9 1.6 3.1 (1.3, 7.1) 3.4 (1.4, 8.0)

Anti-arrhythmics 3.3 1.2 2.9 (1.4, 6.0) 2.6 (1.2, 5.7)

COX-2 inhibitors 4.1 2.0 2.0 (1.1, 4.0) 1.9 (0.98, 3.9)

Narcotics 9.3 4.5 2.2 (1.1, 4.1) 2.0 (1.1, 3.8)

COPD, chronic obstructive pulmonary disease; OR, odds ratio; CI, confidence interval;

COX-2, cyclooxygenase-2.

Adjusted model: adjusted for age, gender, race/ethnic group, and education.

physical and social burdens of COPD, with new information
about the high burden of multimorbidity, functional disability,
impaired physical function (by slow TUG performance time),
low physical activity, falls, polypharmacy, urinary incontinence,
depressive symptoms, and both physical and social frailty in a
nationally representative community dwelling population with
COPD. These findings make clear the larger ecological burden
of COPD on older Americans.

The U.S. health system siloes disease management by organ
system and subspecialty. This has led to traditional clinical
assessments of COPD severity that miss the mark and focus
narrowly on COPD-specific issues such as exacerbations, lung
function and dyspnea. Our data show that clinicians caring for
people with COPD need to consider larger issues of social health
and ecology in the care of these patients.

Social health is one critical pillar of wellbeing that often is
not captured by traditional organ-centric medical models of
health (16). Our findings of social disengagement are of clear
importance in the broader care of patients with COPD. As one
example, we found that these patients are lonelier, have more
extreme social disengagement, and pursue less frequent sexual
activity. Interestingly, these effects appears to be primarily related
to not having a partner as the significant effect was eliminated
once the analyses were adjusted for relationship status. This
finding highlights that the social history may be useful to
understand the wider burden of COPD in this population and
the common lack of a strong social infrastructure to assist
with disease management. This finding has clinical relevance
because loneliness has been demonstrated to be associated with
more emergency room visits and reduced health perception
in people with COPD (20). Compared to previous studies on
the prevalence of loneliness in which estimates ranged from

25 to 29%, both the COPD and non-COPD populations were
lonelier (37). Further, sexual relationships and dysfunction have
been demonstrated previously to be common among those
with COPD and have an underappreciated impact on quality
of life (38–40). Identifying loneliness and social disengagement
in patients with COPD may allow clinicians and other
caregivers to develop strategies to improve engagement, aided by
recommendations from interprofessional team members such as
social workers and physical therapists.

A high prevalence of depressive symptoms was demonstrated
in the self-reported COPD population, which has been reported
previously (41). Depressive symptoms in COPD has been linked
to increased acute exacerbations and mortality (42, 43). Frequent
assessments for depression with in-office tools such as the PHQ-2
and PHQ-9 are critical, and mental health support and referrals
should be pursued by primary care providers and specialty teams
caring for patients with COPD and depressive symptoms.

Among older U.S. adults with COPD, there were high rates
of ADL disability and physical function impairment along with
physical frailty by a modified index. These individuals also were
less physically active and suffered more falls. Disability and
impaired physical function lead to a decline in independent
living, sometimes in catastrophic situations (e.g., following hip
fracture), and people who maintain mobility have higher late-
life function and quality of life (44–46). Those with COPD are
particularly vulnerable due to breathlessness and loss of muscle
mass (sarcopenia) (47–49). We propose incorporating simple
geriatric assessments into the routine care of people with COPD.
Such assessments are likely to uncover unmet need for assistive
devices (e.g., walkers and canes, durable medical equipment (e.g.,
shower chairs), strength training or consideration for additional
care (e.g., disability parking placards, in-home caregiving) (50).

Polypharmacy increases mortality in the general older
adult population (51). We found significant polypharmacy in
patients with COPD as well as increased use of potentially
inappropriate and high-risk medications. Measures to
identify and limit polypharmacy are especially important in
older adults with COPD to limit potentially harmful side
effects. Several medications in the high-risk categories for
these patients include narcotics and benzodiazepines that
may depress respiration. Polypharmacy may be related to
their higher rates of multimorbidity which often leads to
increased clinical encounters, including subspecialty visits and
hospitalizations, and subsequent medication prescribing, as
has been demonstrated in other contexts (52, 53). Previous
work has demonstrated limited understanding of such geriatric
issues in subspecialty and general medical trainees (54) which
we hypothesize carries forward to long-term practice patterns
that result (in part) in polypharmacy. Pulmonary specialty
training should include of geriatrics education, in which geriatric
conditions, polypharmacy and high-risk medications are learned,
as such knowledge may equip specialists with tools to manage
COPD more optimally. The impact of this training will require
further study.

Urinary incontinence is a highly prevalent geriatric
comorbidity that impairs quality of life and leads to falls
(55, 56). We found that urinary incontinence was common in
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both groups, but older adults with COPD had significantly more
urinary incontinence in the prior year as compared to those
without COPD. The urinary incontinence definition used in
NSHAP was very inclusive as it captured any related symptoms
regardless of frequency in the last year. This definition may
have included those with rare symptoms. We hypothesize that
contributors to urinary incontinence in COPD include frequent
coughing, medication side effects, generalized sarcopenia
that includes pelvic floor muscles, and decreased ability to
ambulate to the bathroom and thus functional incontinence.
Screening of and treatment for urine incontinence, including
non-pharmacologic options (e.g., pessaries, pelvic floor physical
therapy), should be offered to patients with COPD when
identified and can greatly improve quality of life.

Surprisingly, higher rates of cognitive impairment were not
seen in the NSHAP COPD population, which differs from
many previous studies (57, 58). A possible cause for this
finding is the low-sensitivity of the SPMSQ cognitive assessment
tool used in Round 1 of NSHAP data collection, which is
unable to detect early, more subtle cognitive changes. This
assessment tool was replaced by a survey-adapted Montreal
Cognitive Assessment (MoCA-SA) in subsequent rounds. Future
studies will need to assess the burden of cognitive impairment
among NSHAP’s self-reported COPD population using this more
sensitive screening tool. Another possible cause of this finding
is that potential participants were excluded in Round 1 if they
were too cognitively impaired to give formal consent, which likely
excluded participants with more severe cognitive impairment.

A strength of our study is the generalizability of our findings
which are based on a nationally representative study of older
U.S. adults, with robust assessments of social function and
context and simultaneous measures of physical health. Our
study is limited by the lack of spirometric data in NSHAP to
verify obstructive lung disease diagnosis or stratify outcomes
by COPD severity. Additionally, we suspect there may be
overlap with other airway disease in some individuals who
self-reported asthma but not COPD; this is a diagnostic
challenge in the field more generally. Because COPD is a
clinical diagnosis that must include assessment of symptoms
and exposures along with spirometry, we caution that using
spirometry alone to determine case definition of COPD
would also have challenges. For example, age-related lung
function changes may cause an obstructive pattern and could
lead to inclusion of participants without COPD. We note
that the prevalence of COPD by self-report in the NSHAP
population is consistent with previously epidemiologic reports
based on rigorous criteria (1). Self-reported disease data may
also have affected the accuracy of the modified Charlson
comorbidity index (for example the high reported co-prevalence
of asthma and COPD suggest that participants may have
mischaracterized their lung disease in reporting). However,
this method of reporting is common, as the US Centers
for Disease Control assesses COPD prevalence via self-report
via the Behavioral Risk Factor Surveillance System telephone
survey (59).

Another potential limitation of our study is the significant
age difference between the COPD and non-COPD participant
groups; those with COPD were almost 2 years older than the
non-COPD group. While our analyses were adjusted for age,
there may be unaccounted for age effects that influenced the
findings of increased geriatric conditions in this group. Our
frailty assessment was adapted and not validated, given absence
of weight loss and hand grip data in Round 1, so this should be
interpreted with caution. Our frailty prevalence was lower than
expected compared to national rates in the National Health and
Aging Trends Study, which used validated scales and found a
prevalence of 15% (95% CI: 14, 16%) in the older non-nursing
home population (60). Finally, NSHAP lacks COPD-specific
quality of life questions to assess for cough and breathlessness
which is another limitation. This information is now used to
classify severity of COPD and may be linked to deteriorating
physical function and social disengagement (61).

Our findings suggest that a geriatric-focused approach
to COPD care could reap significant benefits for affected
individuals. Unfortunately, geriatricians are in short-supply and
cannot practically care for all patients that could benefit. In
2018, there were about two pulmonologists to every geriatrician
in the U.S. (14,899 vs. 7,290), so it is imperative that health
systems innovate in order to extend age-friendly care to
those that need it (62, 63). The field of geriatric oncology
has been a pioneer in geriatric-subspecialty care and have
endorsed comprehensive geriatric assessments (CGAs) in
older patients with cancer (64). In practice, execution of
these geriatric evaluations range from sponsoring embedded
consulting geriatricians to perform CGAs for high-risk
patients, training interprofessional team members to deliver
simple screening assessments, or empowering subspecialists
to become dually trained in geriatrics and their intended
subspecialty (65). All of these models are possible in ambulatory
pulmonary care.

When social or physical frailty are identified, management
recommendations should include referrals to interprofessional
and multidisciplinary team members, which is a core tenet of
age-friendly care. For example, social workers can offer support,
counsel, and referrals to social engagement and caregiving
resources, physical therapists can help address sarcopenia and
frailty, behavioral health specialists can provide counseling and
treatment for depressive symptoms, and medical assistants,
nursing staff, respiratory therapists and pharmacists can ensure
medication lists are up to date and patients are trained in correct
inhaler device use. Well-informed providers and clinics can and
should assess for unmet medical equipment needs to reduce
the mismatch between an individual’s environment and their
physical capabilities (e.g., shower chairs, raised toilet seats, grab
bars, canes, walkers, and disability parking placards) (50). Finally,
pulmonary specialty training should include geriatrics education,
and providers should enter independent practice armed with
specialization in age-friendly COPD care (65, 66). This multi-
pronged, “beyond the lung” approach is likely to lead to improved
COPD management and quality of life for this population.
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CONCLUSION

Geriatric conditions disproportionately afflict community-
dwelling older adults with COPD. The presence of multiple
domains of vulnerability directly impact COPD management,
therefore COPD care requires a geriatric lens. A “beyond the
lung” approach to COPD care should be prioritized by the siloed
U.S health system, health care organizations and individual
providers, which will potentially lead to improved quality of life
and COPD management for affected individuals.
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Background: The morbidity and mortality of community-acquired pneumonia are

relatively high, but many pneumonia pathogens cannot be identified accurately. As

a new pathogen detection technology, metagenomic next-generation sequencing

(mNGS) has been applied more and more clinically. We aimed to evaluate the

diagnostic significance of mNGS for community-acquired pneumonia (CAP) in the south

of China.

Methods: Our study selected CAP patients who visited the 3rd Xiangya Hospital from

May 2019 to April 2021. Pathogens in bronchoalveolar lavage fluid (BALF) specimens

were detected using mNGS and traditional microbiological culture. mNGS group:

detected by both mNGS and BALF culture; control group: detected only by BALF or

sputum culture. The diagnostic performance of pathogens and the antibiotic adjustments

were compared within mNGS group.

Results: The incidence of acute respiratory distress syndrome (ARDS) was 28.3%

in the mNGS group and 17.3% in the control group. Within the mNGS group, the

positive rate of pathogens detected by mNGS was 64%, thus by BALF culture was

only 28%. Pathogens detected by mNGS were consisted of bacteria (55%), fungi

(18%), special pathogens (18%), and viruses (9%). The most detected pathogen

by mNGS was Chlamydia psittaci. Among the pathogen-positive cases, 26% was

not pathogen-covered by empirical antibiotics, so most of which were made an

antibiotic adjustment.

Conclusions: mNGS can detect pathogens in a more timely and accurate manner and

assist clinicians to adjust antibiotics in time. Therefore, we recommend mNGS as the

complementary diagnosis of severe pneumonia or complicated infections.

Keywords: mNGS, pneumonia, diagnostic significance, pathogen, BALF
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INTRODUCTION

Community-acquired pneumonia (CAP) is a common disease
with high mortality (1). According to the clinical phenotype,
the pathogens for up to 60% of infectious diseases were
still unknown (2, 3), and the mortality of CAP in need of
emergency treatment exceeds 40% (4). Pathogens that cause
pneumonia include common bacteria (such as Streptococcus
pneumoniae), fungi, viruses, and some atypical pathogens such
as Mycoplasma pneumoniae, Chlamydia, and Legionella (1). In
a study of 329 clinical samples, it was found that the main
pathogens of patients with different immune status were diverse.
Among patients with normal immunity, the pathogens are
mainly S. pneumoniae, rhinovirus, and influenza. The main
pathogens in immunocompromised patients are Pneumocystis,
Klebsiella pneumonia, S. pneumoniae, Haemophilus influenza,
and Pseudomonas aeruginosa (5). In recent years, rare and
atypical pathogens have been continuously detected, such as
Mycobacterium abscessus, Mycobacterium kansas, etc. These
pathogens may cause pneumonia, multiple-organ disorders and
even acute respiratory distress syndrome (ARDS). Due to the
limitations of current traditional pathogen detection methods
in terms of sensitivity, detection speed and detection spectrum,
rapid and accurate diagnosis of pneumonia pathogens are a
big challenge (6, 7). Therefore, early and effective identification
of the pathogens are essential for the precise treatment of
pneumonia patients.

mNGS is the second-generation sequencing technology of
metagenomics, which can identify bacteria, fungi, parasites,
and viruses without much guidance from clinical experience.
mNGS can identify the pathogens deeply and rapidly without
culturing, and even have higher sensitivity than traditional
cultivation methods (8). Another advantage of mNGS is the
diversity of samples which could detect almost all pathogens
in clinical samples (9) such as bronchoalveolar lavage fluid
(BALF), tissue, sputum, pleural effusion, cerebrospinal fluid,
pus, bone marrow, and nasal swabs (10–12), etc. Since the
sensitivity and specificity of mNGS are less perturbative by the
antibiotic treatment presently (13). mNGSmay become a routine
diagnostic test, partially replacing the traditional sputum culture
method (14). However, the interpretation of the mNGS reports,
especially the identification of pathogenic bacteria, colonizing
bacteria, and themixture of normal oral microbiota in respiratory
tract samples in pneumonia patients need further study (15).
The pathogenicity of microorganisms in different regions is
generally different. There are few large-scale analysis research
with respiratory samples studying the correlation between the
detection efficiency of mNGS and the antibiotic therapy. Thus,
our study aimed to explore the advantages of mNGS in the
detection of pneumonia pathogens and its guiding significance
for diagnosis and antibiotic treatment of CAP.

PATIENTS AND METHODS

Patient Selection and Study Design
We retrospectively reviewed 346 cases diagnosed as CAP at the
3rd Xiangya Hospital of Central South University fromMay 2019

to April 2021. With our inclusion/exclusion criteria (Figure 1),
346 samples were included for analysis and categorized into
two groups defined as mNGS group and control group. mNGS
group was subjected to regular BALF culture as well as mNGS
testing (ID: PRJNA756706, https://www.ncbi.nlm.nih.gov/sra/
PRJNA756706) in a pairwise manner, and control group only
did the BALF or sputum culture. This study was approved by
Institutional Review Board of the 3rd XiangyaHospital of Central
South University (No. 21030).

Sample Processing and Nucleic Acid
Extraction
BALF were collected from patients according to standard
procedures. DNA was extracted using a QIAamp R© UCP
Pathogen DNA Kit (Qiagen) following the manufacturer’s
instructions and 600 µL of the processed specimens was mixed
with glass beads of 0.1–0.2mmdiameter. A vortexmixer (Crystal,
TX, United States) was used to disrupt the bacterial cell wall
at 1,600 g for 10min. The tubes were then heated at 99◦C for
10min before DNA extraction. Human DNA was removed using
Benzonase (Qiagen) and Tween20 (Sigma) (16). The differential
lysis method was used to remove host DNA. we first use
physical hypotonic lysis and chemical lysis to break human
cells, and then obtain microbial cells by enzymatic hydrolysis,
followed by wall breaking and nucleic acid extraction. Total RNA
was extracted with a QIAamp R© Viral RNA Kit (Qiagen) and
ribosomal RNA was removed by a Ribo-Zero rRNA Removal
Kit (Illumina). The concentration of extracted DNA/RNA was
measured using a Qubit Fluorometer before library preparation.
cDNA was generated using reverse transcriptase and dNTPs
(Thermo Fisher).

Library Preparation and Sequencing
Libraries were constructed for the DNA and cDNA samples
using a Nextera XT DNA Library Prep Kit (Illumina, San Diego,
CA) (17). The initial input of DNA is 5–100 ng. Firstly, DNA
needs to be fragmented to obtain 150–250 bp inserts, followed
by terminal repair and adapter connection, and finally, library
amplification to construct a library that meets the requirements
of sequencing. Library was quality assessed by Qubit dsDNA
HS Assay kit followed by High Sensitivity DNA kit (Agilent)
on an Agilent 2100 Bioanalyzer. Library pools were then loaded
onto an Illumina Nextseq 550Dx sequencer for 75 cycles of
single-end sequencing to generate ∼20 million reads for each
library. For negative controls, we also prepared PBMC samples
with 105 cells/mL from healthy donors in parallel with each
batch, using the same protocol, and sterile deionized water
was extracted alongside the specimens to serve as non-template
controls (NTC).

Bioinformatics Analyses
Trimmomatic was used to remove low quality reads, adapter
contamination, and duplicate reads, as well as those shorter than
50 bp (18). Low complexity reads were removed by Kcomplexity
with default parameters (19). Human sequence data were
identified and excluded by mapping to a human reference
genome (hg38) using Burrows-Wheeler Aligner software.
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FIGURE 1 | Flowchart of case selection. From 6230 cases, a total of 370 community-acquired pneumonia cases were selected for further analysis. Patients in mNGS

group did the mNGS and BALF culture at the same time. Patients in control group only did the BALF or sputum culture. mNGS, metagenomic next-generation

sequencing.

We designed a set of criteria similar to the National Center
for Biotechnology Information (NCBI) criteria for selecting
representative assembly for microorganisms (bacteria, viruses,
fungi, protozoa, and other multicellular eukaryotic pathogens)
from the NCBI Nucleotide and Genome databases. Pathogen
lists was selected according to three references: (1) Johns
Hopkins ABX Guide (https://www.hopkinsguides.com/hopkins/
index/Johns_Hopkins_ABX_Guide/Pathogens), (2) Manual
of Clinical Microbiology (https://www.clinmicronow.org/doi/
book/10.1128/9781683670438.MCM), and (3) clinical case
reports or research articles published in current peer-reviewed
journals. The final database consisted of about 18,562 genomes.
Microbial reads were aligned to database with SNAP v1.0beta.18.
Virus-positive detection results (DNA or RNA viruses) were
defined as the coverage of three or more non-overlapping
regions on the genome. A positive detection was reported
for a given species or genus if the reads per million (RPM)
ratio, or RPM-r was ≥5, where the RPM-r was defined as the
RPMsample / RPMNC (i.e., the RPM corresponding to a given
species or genus in the clinical sample divided by the RPM in
the NC/negative control). In addition, to minimize cross-species
misalignments among closely related microorganisms, we
penalized (reduced) the RPM of microorganisms sharing a
genus or family designation, if the species or genus appeared

in non-template controls. A penalty of 5% was used for species
(12) (Figure 2).

Statistical Analysis
Continuous variables were compared using the Mann–Whitney
U-test; categorical variables were compared using the chi-square
test. P < 0.05 was considered significant. Statistical analyses
were performed using SPSS version 23.0 (SPSS, Inc., Chicago,
IL, USA).

RESULTS

Clinical Characteristics of Patients With
CAP
Finally, a total of 346 patients with CAP was enrolled. One
hundred and seventy-three patients were in the mNGS group,
and the rest 173 patients were in the control group. The
clinical characteristics of patients between these two groups were
different as follows (Tables 1, 2). The rates of patients with
comorbidities including hypertension, neoplastic, diabetic, renal,
and cerebrovascular diseases were relatively lower in the mNGS
group, but they did not reach statistical significance. However,
the incidence of ARDS was significantly higher in the mNGS
group (P = 0.021). Not unexpectedly, the average hospital stay
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FIGURE 2 | The generalized workflow of mNGS for clinical pathogen diagnosis. The workflow has two components: (A) a wet lab protocol in which samples are

collected, processed, extracted for nucleic acids, prepared into a sequencing library, and sequenced, and (B) a dry lab computational pipeline that includes microbial

identification, statistical analysis, and interpretation. The sequencing library may be targeted, undergo DNA amplification, or both.

was longer in the mNGS group (P = 0.001). But the empirical
use of antibiotics in two groups were roughly the same. The acute
physiology and chronic health evaluation (Apache) II score in
two groups were not very different, either. The laboratory test
results were 5–7 days after the mNGS and BALF or sputum
culture did. Except for the platelet-to-lymphocyte (PTL) ratio
and erythrocyte sedimentation rate (ESR), there were several
significant differences between the two groups, indicating that the
patients in mNGS group were relatively severer. Defined daily
dose (DDD) represented the strength of antibiotic application
and the antibiotics use density, which was higher in the mNGS
group (P = 0.013) indicating the use of advanced antibiotics was
more frequent.

Comparison of Diagnostic Performance
Between BALF mNGS and Culture
Within the mNGS group (both tested by mNGS and BALF
culture), through BALF mNGS, 110 (64%) were detected
positively with pathogens, and 20 (11%) were completely
negative; 43 (25%) were detected with colonizing pathogens or
contaminating pathogens, which we also considered as negative
detection according to our experience. Furthermore, 92 (55%)
were detected with bacteria, 30 (18%) with fungi, 15 (9%) with
viruses, and 31 (18%) were detected with other special pathogens
(Figure 3A). Conversely, BALF culture done at the same time
with mNGS only showed 28% positive rate. Within this positive
detection by BALF culture, only bacteria (91%) and fungi (9%)
could be cultured, so the virus and other special pathogens
could not be recognized by traditional cultures (Figure 3B).

Thus, the sensitivity of mNGS was much higher than traditional
microbiological culture. Within the mNGS group, we detected
24 cases of Chlamydia psittaci by mNGS, including eight female
patients and 16male patients, with the average age of 65 years old.
In addition toC. psittaci, some of these patients were also infected
with other pathogens, among which Candida albicans was the
most (10/24). The reads of C. psittaci matched in these patients
ranged from 16 to 270670. The relative abundance refers to the
proportion of pathogen in the same type of microorganism, and
the relative abundance of Chlamydia was: 0.1–97.9%. A higher
relative abundance indicated a higher proportion of the species
in the sample. Relative abundance was only a parameter that
indicates the amount of pathogens, and it could not be directly
judged whether it was pathogenic or not based on the value of
relative abundance. Therefore, we did not compare the relative
abundance of detected pathogens. In the process of clinical
diagnosis, the value of relative abundance was only for reference.
Sixteen out of 24 patients adjusted the use of antibiotics based
on the reports of mNGS. The white blood cells and neutrophils
of most patients did not increase significantly, but the increase of
PCT and D-dimer and the decrease of blood calciumwere related
to the severity of the condition (Supplementary Table 1).

Comparison of Pathogens Detected by
BALF mNGS and Culture
Among the 168 kinds of morbigenous microorganism, C.
psittaci (24/168) was the most detected pathogen by mNGS,
followed by Hemophilus parainfluenzae (19/168). We also
detected virus (15/168), and other special pathogens (31/168).
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TABLE 1 | Demographic and baseline characteristics of patients.

Characteristics mNGS group

(n = 173)

Control group

(n = 173)

P

Age, mean (range), years 60 (15–87) 64 (18–90) 0.045

Sex, female, n (%) 47 (27.2) 67 (38.7) 0.030

Hospital, mean (range), days 16 (1–66) 11 (0–70) 0.001

Comorbidity, n (%)

Cardiovascular disease 34 (20.0) 35 (20.2) 1.000

Hypertension 43 (24.9) 51 (29.5) 0.398

Chronic obstructive

pulmonary disease

19 (11.0) 17 (9.8) 0.860

Neoplastic disease 17 (9.8) 25 (14.5) 0.249

Diabetes 27 (15.6) 30 (17.3) 0.772

Kidney disease 8 (4.6) 12 (6.9) 0.490

Bronchiectasis 16 (9.2) 16 (9.2) 1.000

Cerebrovascular disease 22 (12.7) 26 (15.0) 0.641

ARDS, n (%) 49 (28.3) 30 (17.3) 0.021

On empiric antibiotics at

time of sample collection, n

(%)

173 (100) 171 (98.8) 0.499

Apache II score, mean ±

standard deviation

14.0 ± 5.4 12.2 ± 6.4 0.051

30-day mortality, n (%) 14 (8.1) 12 (6.9) 0.839

mNGS, metagenomic next generation sequencing; ARDS, acute respiratory

distress syndrome.

TABLE 2 | Laboratory findings of patients.

mNGS group

(n = 173)

Control group

(n = 185)

P

White blood cell count, x

109/L

9.41 (0.56–57.27) 8.44 (1.68-29.47) 0.035

Percentage of neutrophils,

%

77.9 (9.8–97) 72.5 (38.5–98.4) 0.001

Lymphocyte count, x

109/L

1.07 (0.11–4.14) 1.28 (0.12–9.51) 0.005

NLR 11.18 (0.21–86.47) 9.05 (0.82–121.20) 0.001

PLR 282.82

(9.42–1925.00)

270.68

(6.00–1103.80)

0.803

Cre, umol/L 89 (30–855) 79 (26–527) 0.027

PCT, ng/mL 2.40 (0.01–75.57) 1.51 (0.01–70.62) 0.004

CRP, mg/L 82.65 (0.43–320.04) 50.14 (0.01–314.69) 0.001

ESR, mm/h 63.49 (2–120) 54.73 (2–120) 0.081

Ca2+, mmol/L 2.04 (0.99–2.49) 2.15 (1.15–3.34) 0.001

Albumin, g/L 30.0 (16.5–44.7) 32.5 (17.1–47.2) 0.001

DDD 116 (36–255) 109 (0–300) 0.013

mNGS, metagenomic next generation sequencing; NLR, neutrophil-to-lymphocyte ratio;

Cre, creatinine; PLR, platelet-to-lymphocyte ratio; DDD, defined daily dose; PCT,

procalcitonin; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate.

Data are presented as means (range).

The positive rate of mNGS for pathogenic bacteria was almost
twice than that of BALF culture (Figure 4). Except for K.
pneumoniae and Acinetobacter baumannii, the positive rate for

mNGS of other pathogens were relatively higher. Not only
that, Haemophilus parainfluenzae, Mycobacterium tuberculosis,
Nocardia, Legionella, Streptococcus parasanguis, and Tropheryma
whipplei were only detected by mNGS, and the BALF cultures
of these microorganism were all negative. The positive rate of
mNGS for fungi was seven times than that of BALF culture,
and C. albicans was one of the most detected fungi in BALF
culture. For Pneumocystis jirovecii, Aspergillus, and Cryptococcus,
the positive rate of mNGS was much higher than that of
BALF culture. Viruses and some special pathogens can only
be detected by mNGS. Human herpesvirus 1, 4, and 5 were
only considered pathogenic when the reads and abundance was
relatively high. mNGS can detect rare pathogens such as Orientia
tsutsugamushi and Leptospira interrogans, which was of great
guiding significance for antibiotic adjustment. In addition, we
also counted other pathogens in the mNGS report of 173 patients
that we thought were not pathogenic (Figure 5). Among the
non-pathogenic pathogens, C. albicans was the most common.
But the A. baumannii, K. pneumoniae, etc. were also included
which were “usually” considered to cause pneumonia. As there
was no detailed uniform criteria or authoritative guide for the
interpretation of mNGS reports, we always determined whether
the pathogens were pathogenic, colonized, or contaminated
based on clinical experience, patient’s imaging findings and
inflammation indicators.

The Influence of mNGS on Treatment and
Prognosis
The correct use of antibiotics was extremely important for the
treatment of CAP. Among the 116 patients with pathogen-
positive pneumonia, 46 (40%) cases were completely covered
by antibiotics before the pathogens were detected. These 46
cases were not adjusted for antibiotics after the pathogens were
detected. Forty (34%) cases were partially covered by antibiotics
before the pathogens were detected. After the pathogens were
detected, 37 cases adjusted their antibiotics, and three cases
did not adjust, of which one case were transferred to specialist
hospitals for further treatment, and two cases died. Thirty
(26%) cases were not covered by antibiotics at all, of which
25 cases were adjusted after the pathogens were detected, and
the remaining five cases were transferred to other hospitals or
death (Figure 6). All the pathogens detected by mNGS and
culture, and the details of antibiotics therapy had been listed in
Supplementary Table 2. As for pathogens were not detected or
pathogens that were colonized and contaminated, we could only
rely on laboratory test results, imaging findings, and empirical
treatment to adjust antibiotics.

DISCUSSION

We retrospectively reviewed 346 CAP cases. Based on the
patients’ clinical characteristics and inflammatory indices, the
patients in the mNGS group were relatively severer in our study,
including a higher incidence of ARDS, WBC, PCT, neutrophils,
ESR elevation, and peripheral blood calcium concentration
decrease. We suggested that mNGS would be recommended to
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FIGURE 3 | Comparison of positive rate of pathogens by BALF mNGS and culture. (A) The positive rate of mNGS and the types of pathogens detected. (B) The

positive rate of BALF culture and the types of pathogens detected. BALF, bronchoalveolar lavage fluid; mNGS, metagenomic next-generation sequencing.

patients with more complex and severer conditions to accurately
identify the pathogens and timely adjust antibiotics. The DDD
reflects the density of antibiotic application. The patients in the
mNGS group treated more antibiotics because their conditions
were more serious and complicated. However, we have also
controlled it at a relatively low level which was benefited from the
timely detection of pathogens by mNGS. The patients received
timely targeted anti-infection treatment, and most of them had
better prognosis. In addition, although patients in the mNGS
group were with severer conditions, the 30-day mortality rate
was basically the same as that in the control group, which
indicated that the early diagnosis and promptly treatment of
patients through mNGS could reduce the mortality. Moreover,
mNGS can detect many pathogens that cannot be detected by
traditional microbiological culture. During the incipient stage of

the COVID-19 pandemic, mNGS supplied a quick and accurate

identification for pathogenic virus (20).
In the past, we thought that C. psittaci was relatively rare.

However, we detected 24 patients infected with C. psittaci
through mNGS. Most of the cases were also accompanied by

the infection of other pathogens (C. albicans was the top one),
but many of the pathogens were the microbiota in oropharynx
and colonized bacteria in respiratory tracts. Meanwhile, we found
that after mNGS had been fully applied in our clinical practice
from the year 2018, the incidence of C. psittaci pneumonia
had been greatly increased, which meant that C. psittaci was
widespread in the past, but it was difficult to be detected.
Although miost patients infected with C. psittaci have severe
pneumonia, clinicians can adjust the dosage and classes of
antibiotics in time according to mNGS reports, and the overall
outcome of the patients is better. Previous studies also confirmed
that mNGS could improve the outcome of patients with severe
pneumonia of C. psittaci and played a positive role in diagnosis
and treatment of CAP, as well as adjustment of antibiotics (21).

Traditionally, the detection of tuberculosis could only be
based on methods such as acid-fast staining of sputum smears,
culture of M. tuberculosis, and interferon gamma release assay
(IGRA), etc. These methods have disadvantages such as low
sensitivity, low positive rate, time-consuming, and not direct
enough. However, mNGS can detect as low as 1–2 reads of M.
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FIGURE 4 | The overlap of positivity between BALF mNGS and BALF culture. Bacteria were the most detected, followed by fungi, special pathogens, and viruses.

The positive rate of BALF culture in detecting Klebsiella pneumoniae and Acinetobacter baumannii was higher than that of mNGS. Chlamydia psittaci was the most

detected by mNGS, followed by Haemophilus parainfluenzae and Candida albicans. All viruses, special pathogens, MTB and NTM were only detected by mNGS, and

the BALF culture of these pathogens were negative. BALF, bronchoalveolar lavage fluid; mNGS, metagenomic next generation sequencing; MTB, Mycobacterium

tuberculosis; NTM, nontuberculous mycobacteria.

tuberculosis which provides an opportunity for patients to be
transferred to specialist hospitals for tuberculosis therapy in time.
In the past few decades, the detection of O. tsutsugamushi and
L. interrogans could only rely on microscopic examination, but
mNGS can currently detect these special pathogens sensitively,
which provides a good guidance for clinicians to adjust treatment
protocols. Among the 116 pathogen-positive cases, the positive
rate of mNGS for bacteria and fungi were significantly higher
than that of BALF culture, additionally mNGS can detect viruses
and special pathogens sensitively.

Due to regional differences, the pathogens of our CAP cases
were quite different from those in northern China. Chen et
al. (22) reported that the bacteria such as Citrobacter freundii,
Salmonella enterica, and Aeromonas hydrophila detected by

mNGS are common pathogens in CAP. But those bacteria were
not detected in any of our cases, which was possibly because
the patients in Peking University People’s Hospital was more
complicated since the difficult and complicated patients around
the country would like to go there for further treatment, so the
pathogenic pathogens could have a multiple source.

Among the non-pathogenic pathogens detected by mNGS,
Human herpesvirus 4, 1, and 5 were the most common viruses.
These viruses can be latent in the host when the patient is
immunocompetent (23). Most studies believed that they had no
pathogenic significance when detected in BALF. But when the
patient’s immune function was low or suppressed, these viruses
will be pathogenic (24). C. albicans was also detected relatively
frequently, but pneumonia with C. albicans was relatively
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FIGURE 5 | Non-pathogenic pathogens detected by mNGS. A total of 64 different non-pathogenic pathogens were detected in the mNGS group. Human herpesvirus

5, Candida albicans, Human herpesvirus 4 are the most common non-pathogenic pathogens detected by mNGS. Acinetobacter baumannii, Candida albicans,

Candida glabrata are the most common non-pathogenic pathogens detected by sputum culture. mNGS, metagenomic next-generation sequencing.

rare (25), and most of it were hematogenous dissemination.
Additionally, Enterococcus faecium and Enterococcus faecalis
pneumonia were also very rare (26). When interpreting the
mNGS reports, some clinicians thought that C. albicans was
pathogenic. We believed that anti-C. albicans treatment must
be determined based on the patient’s imaging findings and
inflammatory indicators. Torque teno virus is widely present
in the human body, animals, air, and solid surfaces (27),
which caused pneumonia only when patients were under
immunosuppression condition (28). Therefore, the positive
report of Torque teno virus may be sample contamination
or in immunosuppression condition. When the reads of H.
parainfluenzae are not high, it is necessary to comprehensively

determine whether it is pathogenic based on clinical features,
infection sites, inflammation indicators, and lung imaging
findings. Some cases of A. baumannii and K. pneumoniae are
in-hospital infection (29, 30). Patients with long-term use of
antibiotics and longer hospital stays are prone to in-hospital
infection. The impaired intestinal barrier, long-term use of acid
inhibitors, long-term bed rest, and nasogastric reflux will cause
bacterial translocation (31). The primary lesions of these patients
are not in the lungs. Therefore, A. baumannii and K. pneumoniae
detected in the BALF of these patients cannot be regarded as
the pathogenic bacteria for pneumonia. The use of mNGS in
patients with immunosuppression not only identifies pathogens,
but also reflects the patient’s immune status and microbiota
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FIGURE 6 | The coverage and adjustment of antibiotics in the mNGS group. (A) Among patients in the mNGS group, complete antibiotic coverage was 54 (43%);

partial coverage was 41 (32%); and no coverage was 32 (25%). (B) Antibiotics were adjusted for 38 partially covered patients, and for 27 uncovered patients. mNGS,

metagenomic next-generation sequencing.

distribution. A small number of cases in which the detection
was negative with mNGS, but the BALF culture was positive,
which was possibly because: (1) the specimen may have been
contaminated. For example, the positiveAspergillus BALF culture
may be caused by contamination. (2) The low pathogens load
in the specimen. Under suitable culture conditions, active micro
bacteria or fungi could also be cultured, but micro pathogens
could not reach the minimum threshold of mNGS detection. (3)
Detection of some fungi requires breaking the cell wall to obtain
DNA, but conventional sputum culture does not. Therefore, if
this process was badly handled, negative results of mNGS may
occur. Nevertheless, mNGS showed significant advantages for
detecting fastidious bacteria.

Normal sputum culture takes 5–7 days.M. tuberculosis culture
even takes about 6 weeks. But mNGS can detect pathogens
within 48 h and even shorter, which greatly improves the
timeliness of treatment. In the use of antibiotics, mNGS can
be used to determine whether the current antibiotic therapy
covered the pathogens and the reads of pathogens detected by
mNGS will guide clinicians to adjust the dosage of antibiotics.
Moxifloxacin was the common choice for the severe CAP
regularly. However, after the C. psittaci was detected by mNGS,
we adjusted the moxifloxacin to the doxycycline. Additionally,
after the rare pathogens such as L. interrogans detected, adjusted
to penicillin G was essential for the initial treatment stage. After
the fungi detected by mNGS, we should take a comprehensive
consideration between the specific reads and abundance of the
pathogens to determine whether use the antifungal agents such
as fluconazole or voriconazole.

However, there are still some disadvantages of mNGS. Due to
the high sensitivity of mNGS, some colonized and contaminated
pathogens will also be detected. Because of the differences

in the ability of clinicians to interpret the mNGS reports, it
may lead to the abuse of antibiotics. The mNGS performed
during the early stage of hospitalization could clarify what the
main pathogen is. After a period of hospitalization, patients
with underlying diseases or immunocompromised patients may
have in-hospital infections or colonization of some special
bacteria, which will affect the interpretation of mNGS results.
Besides, some clinicians are not strict enough on the indications
for mNGS, which leads to a waste of medical resources.
Otherwise, some laboratories will delete background bacteria,
but occasionally the main pathogenic bacteria may be deleted.
mNGS has some shortcomings, and it is not a routine pathogen
detection method in the guideline. However, due to the large
population and a vast extent of land, medical resources are
not evenly distributed to a certain extent. The technology of
pathogen detection in some remote areas is poor, and even the
PCR technology for single pathogens is lacking. Therefore, it is
necessary to usemNGS to detect pathogens in an appropriate and
timely manner.

Therefore, we suggest that mNGS would be mainly used: (1)
the infection is complicated and severe; (2) pathogens which are
hard to detected by traditional microorganism test or culture,
such as M. tuberculosis and Cryptococcus. We need to improve
clinicians’ ability of interpretation of mNGS reports to prevent
the abuse of antibiotics caused by mNGS.

The limitation in our study is that this is a single-center
retrospective study with a relatively small sample size, thus
there was selection bias. Since we tended to compare the
positive rate of mNGS and BALF culture, as well as the
characteristics of the detected pathogens, the 173 control
patients who only underwent BALF or sputum culture were
not used for subsequent analysis of pathogen characteristics.
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As the antibiotic coverage of pneumonia patients was close
to 100%, the positive rate of BALF or sputum culture
would be affected by antibiotics, possibly resulting in a
relative higher positive rate of mNGS. All mNGS reports
were interpreted by a senior clinician, so the consistency
was ensured.

CONCLUSION

The positive rate of mNGS for pathogens in patients with CAP
was higher than that of traditional BALF culture. mNGS can
detect pathogens in amore timely and accurate manner and assist
clinicians to adjust antibiotics in time. With available indications,
we recommend mNGS for the complementary diagnosis of
severe or complicated pneumonia.

DATA AVAILABILITY STATEMENT

The data presented in the study are deposited in the SRA
repository, accession number PRJNA756706.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Institutional Review Board of the 3rd
Xiangya Hospital of Central South University (No. 21030). The
patients/participants provided their written informed consent to
participate in this study. Written informed consent was obtained

from the individual(s) for the publication of any potentially
identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

The study was conceived, designed, and supervised by CL and
QZ. Statistical analyses were performed by YZ. Clinical data
collection was done by HL. Sample collection was done by
SS. Manuscript was written by HL and YZ. Figures and tables
were drawn by GC. mNGS testing data was uploaded by FC.
Manuscript editing was done by JW, HL, and YZ contributed
equally to this study. All authors contributed to the article and
approved the submitted version.

FUNDING

This study was supported by grants from the National Natural
Science Foundation of China (81700658), the Hunan Provincial
Natural Science Foundation-Outstanding Youth Foundation
(2020JJ3058), the Key Research and Development Program of
Hunan Province (2020DK2001), and the Science and Technology
Innovation Project of Hunan Province (2020SK53608).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.807174/full#supplementary-material

REFERENCES

1. Wunderink RG, Waterer G. Advances in the causes and management

of community acquired pneumonia in adults. BMJ. (2017)

358:j2471. doi: 10.1136/bmj.j2471

2. Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B, Cossen

CK, et al. Beyond viruses: clinical profiles and etiologies associated with

encephalitis. Clin Infect Dis. (2006) 43:1565–77. doi: 10.1086/509330

3. Schlaberg R, Chiu CY, Miller S, Procop GW, Weinstock G, Professional

Practice C, et al. Validation of metagenomic next-generation sequencing tests

for universal pathogen detection. Arch Pathol Lab Med. (2017) 141:776–

86. doi: 10.5858/arpa.2016-0539-RA

4. Kolditz M, Ewig S. Community-acquired pneumonia in adults. Dtsch Arztebl

Int. (2017) 114:838–48. doi: 10.3238/arztebl.2017.0838

5. Wu X, Li Y, Zhang M, Li M, Zhang R, Lu X, et al. Etiology of severe

community-acquired pneumonia in adults based on metagenomic next-

generation sequencing: a prospective multicenter study. Infect Dis Ther.

(2020) 9:1003–15. doi: 10.1007/s40121-020-00353-y

6. Musher DM, Roig IL, Cazares G, Stager CE, Logan N, Safar H. Can an

etiologic agent be identified in adults who are hospitalized for community-

acquired pneumonia: results of a one-year study. J Infect. (2013) 67:11–

8. doi: 10.1016/j.jinf.2013.03.003

7. Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM,

et al. Community-Acquired Pneumonia Requiring Hospitalization among

U.S. Adults. N Engl J Med. (2015) 373:415–27. doi: 10.1056/NEJMoa15

00245

8. Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of

metagenomic next-generation sequencing as a diagnostic tool for infectious

diseases. Clin Infect Dis. (2018) 66:778–88. doi: 10.1093/cid/cix881

9. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. (2019) 20:341–

55. doi: 10.1038/s41576-019-0113-7

10. Wang J, Han Y, Feng J. Metagenomic next-generation sequencing

for mixed pulmonary infection diagnosis. BMC Pulm Med. (2019)

19:252. doi: 10.1186/s12890-019-1022-4

11. Duan H, Li X, Mei A, Li P, Liu Y, Li X, et al. The diagnostic value of

metagenomic next rectanglegeneration sequencing in infectious diseases.

BMC Infect Dis. (2021) 21:62. doi: 10.1186/s12879-020-05746-5

12. Gu W, Deng X, Lee M, Sucu YD, Arevalo S, Stryke D, et al. Rapid pathogen

detection bymetagenomic next-generation sequencing of infected body fluids.

Nat Med. (2021) 27:115–24. doi: 10.1038/s41591-020-1105-z

13. Li H, Gao H, Meng H, Wang Q, Li S, Chen H, et al. Detection

of pulmonary infectious pathogens from lung biopsy tissues by

metagenomic next-generation sequencing. Front Cell Infect Microbiol.

(2018) 8:205. doi: 10.3389/fcimb.2018.00205

14. Goldberg B, Sichtig H, Geyer C, Ledeboer N, Weinstock GM. Making the

leap from research laboratory to clinic: challenges and opportunities for

next-generation sequencing in infectious disease diagnostics. MBio. (2015)

6:e01888–e01815. doi: 10.1128/mBio.01888-15

15. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The

microbiome and the respiratory tract. Annu Rev Physiol. (2016)

78:481–504. doi: 10.1146/annurev-physiol-021115-105238

16. Amar Y, Lagkouvardos I, Silva RL, Ishola OA, Foesel BU, Kublik S, et al.

Pre-digest of unprotected DNA by Benzonase improves the representation

of living skin bacteria and efficiently depletes host DNA. Microbiome. (2021)

9:123. doi: 10.1186/s40168-021-01067-0

17. Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S, Federman S,

et al. Laboratory validation of a clinical metagenomic sequencing assay

for pathogen detection in cerebrospinal fluid. Genome Res. (2019) 29:831–

42. doi: 10.1101/gr.238170.118

18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics. (2014)

30:2114–20. doi: 10.1093/bioinformatics/btu170

Frontiers in Medicine | www.frontiersin.org 10 February 2022 | Volume 9 | Article 80717454

https://www.frontiersin.org/articles/10.3389/fmed.2022.807174/full#supplementary-material
https://doi.org/10.1136/bmj.j2471
https://doi.org/10.1086/509330
https://doi.org/10.5858/arpa.2016-0539-RA
https://doi.org/10.3238/arztebl.2017.0838
https://doi.org/10.1007/s40121-020-00353-y
https://doi.org/10.1016/j.jinf.2013.03.003
https://doi.org/10.1056/NEJMoa1500245
https://doi.org/10.1093/cid/cix881
https://doi.org/10.1038/s41576-019-0113-7
https://doi.org/10.1186/s12890-019-1022-4
https://doi.org/10.1186/s12879-020-05746-5
https://doi.org/10.1038/s41591-020-1105-z
https://doi.org/10.3389/fcimb.2018.00205
https://doi.org/10.1128/mBio.01888-15
https://doi.org/10.1146/annurev-physiol-021115-105238
https://doi.org/10.1186/s40168-021-01067-0
https://doi.org/10.1101/gr.238170.118
https://doi.org/10.1093/bioinformatics/btu170
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Liu et al. mNGS for CAP in Southern China

19. Li H, Durbin R. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics. (2009) 25:1754–

60. doi: 10.1093/bioinformatics/btp324

20. Chen L, Liu W, Zhang Q, Xu K, Ye G, Wu W, et al. RNA based

mNGS approach identifies a novel human coronavirus from two individual

pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect. (2020)

9:313–9. doi: 10.1080/22221751.2020.1725399

21. Chen X, Cao K, Wei Y, Qian Y, Liang J, Dong D, et al.

Metagenomic next-generation sequencing in the diagnosis of

severe pneumonias caused by Chlamydia psittaci. Infection. (2020)

48:535–42. doi: 10.1007/s15010-020-01429-0

22. Chen H, Yin Y, Gao H, Guo Y, Dong Z, Wang X, et al. Clinical utility of in-

house metagenomic next-generation sequencing for the diagnosis of lower

respiratory tract infections and analysis of the host immune response. Clin

Infect Dis. (2020) 71:S416–26. doi: 10.1093/cid/ciaa1516

23. Ho DY, Enriquez K, Multani A. Herpesvirus infections

potentiated by biologics. Infect Dis Clin North Am. (2020)

34:311–39. doi: 10.1016/j.idc.2020.02.006

24. Clementi N, Cappelletti F, Criscuolo E, Castelli M, Mancini N, Burioni R, et

al. Role and potential therapeutic use of antibodies against herpetic infections.

Clin Microbiol Infect. (2017) 23:381–6. doi: 10.1016/j.cmi.2016.12.023

25. Ricard JD, Roux D. Candida pneumonia in the ICU: myth or reality? Intensive

Care Med. (2009) 35:1500–2. doi: 10.1007/s00134-009-1563-8

26. Bonten MJ, Van Tiel FH, Van Der Geest S, Stobberingh EE,

Gaillard CA. Enterococcus faecalis pneumonia complicating

topical antimicrobial prophylaxis. N Engl J Med. (1993) 328:209–

10. doi: 10.1056/NEJM199301213280311

27. Hino S, Miyata H. Torque teno virus (TTV): current status. Rev Med Virol.

(2007) 17:45–57. doi: 10.1002/rmv.524

28. Fernandez-Ruiz M. Torque Teno virus load as a surrogate marker for the

net state of immunosuppression: the beneficial side of the virome. Am J

Transplant. (2020) 20:1963–4. doi: 10.1111/ajt.15872

29. Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of

Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms,

and prospective treatment options. Front Cell Infect Microbiol. (2017)

7:55. doi: 10.3389/fcimb.2017.00055

30. Basso M, Zago D, Pozzetto I, De Canale E, Scaggiante R, Biasolo MA,

et al. Intra-hospital acquisition of colonization and infection by Klebsiella

pneumoniae strains producing carbapenemases and carriage evolution: a

longitudinal analysis in an Italian teaching hospital from January 2017

to August 2019. Int J Infect Dis. (2020) 92:81–8. doi: 10.1016/j.ijid.2019.

12.035

31. Balzan S, De Almeida Quadros C, De Cleva R, Zilberstein B,

Cecconello I. Bacterial translocation: overview of mechanisms

and clinical impact. J Gastroenterol Hepatol. (2007) 22:464–

71. doi: 10.1111/j.1440-1746.2007.04933.x

Conflict of Interest: FC was employed by Vision Medicals Co. Ltd (Guangzhou,

China).

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Liu, Zhang, Chen, Sun, Wang, Chen, Liu and Zhuang. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 11 February 2022 | Volume 9 | Article 80717455

https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1080/22221751.2020.1725399
https://doi.org/10.1007/s15010-020-01429-0
https://doi.org/10.1093/cid/ciaa1516
https://doi.org/10.1016/j.idc.2020.02.006
https://doi.org/10.1016/j.cmi.2016.12.023
https://doi.org/10.1007/s00134-009-1563-8
https://doi.org/10.1056/NEJM199301213280311
https://doi.org/10.1002/rmv.524
https://doi.org/10.1111/ajt.15872
https://doi.org/10.3389/fcimb.2017.00055
https://doi.org/10.1016/j.ijid.2019.12.035
https://doi.org/10.1111/j.1440-1746.2007.04933.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


fmed-09-832510 March 15, 2022 Time: 19:12 # 1

REVIEW
published: 21 March 2022

doi: 10.3389/fmed.2022.832510

Edited by:
Mehdi Razzaghi-Abyaneh,

Pasteur Institute of Iran (PII), Iran

Reviewed by:
Koshika Yadava,

Vector Biopharma AG, Switzerland
Sarah Sze Wah Wong,
Institut Pasteur, France

*Correspondence:
Fabio Palmieri

fabio.palmieri@unine.ch
Niki Ubags

niki.ubags@chuv.ch

Specialty section:
This article was submitted to

Pulmonary Medicine,
a section of the journal

Frontiers in Medicine

Received: 09 December 2021
Accepted: 22 February 2022

Published: 21 March 2022

Citation:
Palmieri F, Koutsokera A,

Bernasconi E, Junier P, von Garnier C
and Ubags N (2022) Recent

Advances in Fungal Infections: From
Lung Ecology to Therapeutic

Strategies With a Focus on
Aspergillus spp..

Front. Med. 9:832510.
doi: 10.3389/fmed.2022.832510

Recent Advances in Fungal
Infections: From Lung Ecology to
Therapeutic Strategies With a Focus
on Aspergillus spp.
Fabio Palmieri1* , Angela Koutsokera2, Eric Bernasconi2, Pilar Junier1,
Christophe von Garnier2 and Niki Ubags2*

1 Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland, 2 Faculty of Biology
and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne,
Switzerland

Fungal infections are estimated to be the main cause of death for more than 1.5 million
people worldwide annually. However, fungal pathogenicity has been largely neglected.
This is notably the case for pulmonary fungal infections, which are difficult to diagnose
and to treat. We are currently facing a global emergence of antifungal resistance, which
decreases the chances of survival for affected patients. New therapeutic approaches
are therefore needed to face these life-threatening fungal infections. In this review, we
will provide a general overview on respiratory fungal infections, with a focus on fungi
of the genus Aspergillus. Next, the immunological and microbiological mechanisms of
fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its
interactions with the bacterial microbiota on lung fungal infections will be presented
from an ecological perspective. Finally, we will focus on existing and future innovative
approaches for the treatment of respiratory fungal infections.

Keywords: chronic respiratory disease, microbiome, mycobiome, aspergillosis, live biotherapeutic products,
disease management, environmental interference

RESPIRATORY FUNGAL INFECTIONS

Fungal pathogens are estimated to lead to more than 1.5 million deaths every year worldwide, with
a global burden exceeding one billion (1). Despite this, the issue of fungal pathogenicity has been
largely neglected (2, 3). Over the past two decades, the prevalence of invasive fungal diseases has
increased considerably (1). This has also been acknowledged in the case of healthcare-associated
invasive fungal infection (4, 5), for which a call to action was recently issued by the scientific
community (6). Moreover, the increased prevalence of invasive fungal diseases correlates with an
increasing number of vulnerable at-risk patients, which include among others, immunosuppressed
individuals due to transplants, AIDS, cancer, corticosteroid therapies or autoimmune diseases, or
patients undergoing major surgery (1, 7).

The most prevalent human fungal pathogens are the airborne opportunists Aspergillus spp.,
Cryptococcus spp., and Pneumocystis spp., as well as the human-associated commensal and
polymorphic fungal species Candida albicans (7, 8). These fungi are responsible for more than 90%
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of all reported fungal disease-related deaths (9). The latest
estimates of the annual burden of fungal diseases amount to
more than 14 million cases for all diseases within the pulmonary
aspergillosis spectrum, over 200,000 cases of cryptococcal
meningitis, 500,000 cases of Pneumocystis jirovecii pneumonia,
700,000 cases of invasive candidiasis, and over 10 million cases
of asthma with fungal sensitisation (1, 9, 10).

In the current review, we will first look at the full spectrum
of diseases caused by fungi of the genus Aspergillus, with
a particular focus on the pathogenesis and the underlying
immunological mechanisms. Then, lung ecology, and more
specifically the interaction of the respiratory mycobiota (fungal
composition) with the bacterial microbiota and the virome
will be discussed in the context of fungal infection. Finally,
we will discuss the current therapeutic approaches, as well as
future perspectives in therapeutic strategies for the fight against
pulmonary aspergillosis.

Pulmonary Aspergillosis: A Wide
Spectrum of Diseases
Aspergillus spp. are the most frequently isolated filamentous fungi
in humans and animals (11–13). These primarily saprotrophic
fungi are widespread in the environment and can be found in
soil and decaying biomass, especially in compost piles, where
they participate in the degradation of organic matter (14–16).
Their wide environmental distribution can be explained by the
competitiveness and adaptability of the Aspergillus genus (17).
Indeed, Aspergillus spp. are able to use multiple organic substrates
and adapt to a broad range of environmental conditions (12).
These fungi show a remarkable phenotypic plasticity in their
ecology and stress-responses, which are believed to be at the basis
of the success of Aspergillus spp. as opportunistic pathogens.

Fungi of the genus Aspergillus are associated with a large
variety of clinical manifestations ranging from allergic reactions
to life-threatening invasive infections. Such infections are
generally caused by Aspergillus fumigatus, Aspergillus flavus,
Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus,
with Aspergillus fumigatus being responsible for 90% of the
reported cases (12). Respiratory infections due to Aspergillus
spp. are caused by inhalation of airborne conidia, i.e., asexual
spores (14). These fungi produce large quantities of small
airborne conidia with a size of 2–5 µm in diameter (15, 18),
whose concentration can range from 1 to 100 per m3 in
air, but can reach up to 108 per m3 in some environments
(13). A human inhales approximately 100–1,000 conidia per
day, which can reach the lung alveoli due to their small size
(15). In immunocompetent individuals, inhaled conidia are
usually efficiently cleared either by mucociliary movement or
through phagocytosis by macrophages (Figure 1) (18). However,
depending on the immunological status of the host, Aspergillus
spp. can lead to a variety of pathologies (12).

Pulmonary aspergillosis is classified into three different groups
with distinct clinical manifestations (11, 13, 19). The disease
spectrum of pulmonary aspergillosis spans from hypersensitivity
responses (asthma or allergic bronchopulmonary aspergillosis—
ABPA), to colonization (i.e., presence of the fungus without any

clinical, radiological or laboratory indications of active fungal
disease), to infection (chronic or invasive aspergillosis). Figure 2
presents a diagram showing the disease spectrum of pulmonary
aspergillosis depending on the host status.

Hypersensitivity Responses
Although other fungi can cause allergic bronchopulmonary
mycoses (ABPM), the vast majority of hypersensitivity responses
are associated to Aspergillus spp. These can range from fungal
asthma to allergic bronchopulmonary aspergillosis (ABPA), the
latter being a complex type I, III, and IV hypersensitivity response
observed notably in patients with cystic fibrosis (CF) or chronic
asthma (13). Hypersensitivity to Aspergillus is characterized by
high levels of Aspergillus-specific IgE (19). ABPA affects close to
5 million patients worldwide (1, 10).

Colonization
In immunocompetent hosts, Aspergillus spp. may colonize the
lungs without any clinical manifestations (10). In a study from
Soubani and colleagues where Aspergillus spp. were isolated from
sputum samples of 66 elderly hospitalized patients, 92% cases
were determined to be Aspergillus colonization and only 4.5%
fulfilled the criteria of invasive aspergillosis (20). Appropriate
diagnostics and close monitoring should be considered in order
to discriminate simple colonization from invasive infection
(10, 11, 19). In immunocompromised patients, prior fungal
colonization in the lower respiratory airways is considered
an important risk factor for the development of invasive
aspergillosis (10).

Chronic Pulmonary Aspergillosis
Aspergillus spp. can also cause a chronic, non-invasive form
of infection called chronic pulmonary aspergillosis (CPA).
One form of CPA is aspergilloma, which is characterized by
the proliferation of the fungus inside a pre-existing cavity,
leading to the development of a fungus ball (21). Aspergilloma
typically occurs in immunocompromised patients previously
suffering from lung pathologies such as tuberculosis, lung
abscess, cysts, or tumors (21). Another form is chronic
cavitary pulmonary aspergillosis, also called chronic necrotizing
aspergillosis or complex aspergilloma. This is an inflammatory
form of the infection characterized by the production of serum
IgG antibodies directed to Aspergillus, elevated acute-phase
inflammation markers, and the absence of pulmonary or vascular
invasion. CPA usually occurs in immunocompetent or mildly
immunosuppressed patients. CPA, including aspergilloma, is
estimated to affect more than 3 million people worldwide (1).

Invasive Pulmonary Aspergillosis
On the other side of the disease spectrum, invasive pulmonary
aspergillosis (IPA) is the most severe and life-threatening form
of Aspergillus infection occurring in immunosuppressed patients.
IPA affects more than 300,000 patients annually and its mortality
rate ranges from 30 to 80% (1, 10). IPA is characterized by
the invasion of the lung tissue by Aspergillus hyphae, which
can be followed by angioinvasion and dissemination to other
organs in patients with prolonged neutropenia (22). Other at-
risk patients include individuals who underwent hematopoietic
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FIGURE 1 | Clearance of Aspergillus conidia in the immunocompetent host. (A) Aspergillus spp. conidia are transmitted through air and every individual inhales
thousands of conidia every day. (B) In the immunocompetent host, most of the inhaled conidia are trapped by the mucus layer secreted by the tracheal and
bronchial epithelium, and are efficiently eliminated through mucociliary clearance. (C) Due to their small size, conidia can eventually reach the alveoli, where they are
phagocytosed by alveolar macrophages. Modified from Palmieri (170).

stem cell transplantation, solid-organ transplantation, prolonged
corticosteroid therapy, or those who have AIDS (11, 13, 19).
Aspergillus spp. are the most common opportunistic fungal
pathogens causing invasive pulmonary aspergillosis in lung
transplant recipients, with an incidence of 40.5 cases per 1,000
patients annually, despite the use of prophylactic antifungal
treatments (23). Invasive aspergillosis most commonly occurs
within 1 year after transplantation, with the majority of the cases
reported within the first 6 months (23, 24).

Fungal Infections in Chronic Respiratory
Diseases
In healthy individuals, innate immune responses and specifically
macrophages and ciliated bronchial epithelial cells contribute to
the efficient clearance of fungal conidia. In patients with chronic
respiratory diseases, such as chronic obstructive pulmonary
disease (COPD), asthma, and CF, these clearance mechanisms
are impaired predisposing to fungal colonization and infection.
In the following paragraphs, we will summarize the role of fungal

pathogens in specific pulmonary diseases, focusing especially on
Aspergillus spp.

Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease patients are often affected
by exacerbations due to bacterial infections. The use of long-
term inhaled corticosteroids and courses of oral steroids
to treat exacerbations can predispose to fungal colonization
and infection, as these treatments lead to impaired host
immunity (25–27). In addition, in COPD, environmental fungal
sensitization has been associated with frequent exacerbations
(28). Bafadhel and colleagues reported that positive cultures
for filamentous fungi are common in COPD, however, this
finding was not related to exacerbations (26). Moreover, A.
fumigatus sensitization was associated with poor lung function
and, interestingly, patients with a positive A. fumigatus culture
were on higher inhaled corticosteroid doses and had higher
total and percentage sputum neutrophil counts (26). Recently,
Tiew and colleagues evaluated the airway mycobiome in COPD
patients in a multicenter study and observed that COPD patients
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FIGURE 2 | Disease spectrum of pulmonary aspergillosis. This diagram summarizes the diverse pathologies caused by Aspergillus spp., due to improper elimination
of conidia by mucociliary clearance or macrophage phagocytosis following inhalation. Depending on the immune status of the host, pulmonary aspergillosis can
range from allergic reaction (hypersensitivity) to life-threatening invasive infection (severe immunosuppression). Moreover, current burden and treatment information
are indicated. ABPA, allergic bronchopulmonary aspergillosis; CPA, chronic pulmonary aspergillosis; IA, invasive aspergillosis. Modified from Palmieri (170).

with very frequent exacerbations (≥3 per year) had an increased
number of fungal interactions (29), which is suggestive of a more
complex mycobiome. Using unsupervised hierarchical clustering
of the COPD mycobiome, the authors reported two distinct
patient clusters with variable clinical outcomes: the first cluster
was characterized by Saccharomyces and increased symptoms,
whereas the second cluster was characterized by Aspergillus,
Curvularia, and Penicillium and demonstrated poorer clinical
outcomes with increased exacerbations and higher mortality (29).

Innate immune cells and macrophages in particular play
an important role in the first line of pulmonary host defense.
In COPD patients, it has been demonstrated that alveolar
macrophages exhibit reduced phagocytic capacity (30, 31).
Monocyte-derived macrophages from both smokers and COPD
patients were shown to be defective in their phagocytic and
pro-inflammatory cytokine responses following A. fumigatus
exposure (32). This impairment in macrophage function may
consequently contribute to fungal germination, dissemination
and infection, and lung damage in COPD patients. There is
an increasing interest in understanding the direct influence
of fungal colonization and infection on COPD pathogenesis
and exacerbations. However, future research should continue to
consider the indirect effects of bacterial composition alterations
on fungal community composition in the lung through
inter-kingdom interactions, and the potential consequences
for COPD patients.

All diseases within the aspergillosis spectrum can be found
in COPD patients although their prevalence differ. Tiew and
colleagues have recently reviewed this topic in depth (33).

Asthma
Genetic and environmental factors drive asthma development,
progression and risk for exacerbation. Changes in fungal
community composition in the gut are associated with
susceptibility to develop asthma in humans (34, 35), however,
causality has not been established yet. Analysis of the airway
mycobiome in asthma patients (fungal-sensitized and non-fungal
sensitized) and healthy controls indicated that both the sputum
and bronchoalveolar lavage (BAL) mycobiome was dominated
by three species: A. fumigatus, C. albicans, and Mycosphaerella
tassiana, irrespective of health status (36). Interestingly, other
fungi such as Aspergillus tubingensis, a member of the A. niger
species complex, was also prominent in the BAL fluid. Alterations
in the balance of fungi detected in the lung were found to be
associated with several disease markers, including asthma status
and duration, and inflammatory biomarkers.

Fungi can play an important role in asthma development
as fungal colonization and sensitization often take place
in early life. Moreover, fungi are predominant triggers of
asthma exacerbations. Environmental presence of fungi, such as
A. alternata, in house dust has been associated with active asthma
symptoms (37). In addition, a meta-analysis of seven studies
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revealed that indoor presence of Cladosporium, Alternaria,
Aspergillus, and Penicillium was associated with enhanced asthma
exacerbations in both children and adults (38). Descriptive
and mechanistic studies have started to reveal the influence of
alterations in the gut bacterial and fungal composition on asthma
development (discussed in section “Gut-Lung Axis”). However,
the influence of a change in the composition of the pulmonary
bacterial community due to asthma, on the susceptibility to
develop a respiratory fungal infection, and subsequent asthma
exacerbation, is currently unexplored.

Cystic Fibrosis
Cystic fibrosis is a rare autosomal recessive disorder that causes
severe damage to the lungs, digestive system and other organs.
The microenvironment in the lungs of CF patients, which is
characterized by depletion of the airway surface liquid layer
leading to impaired mucociliary clearance, is ideal for microbial
colonization (39). Bacterial pathogens, and most commonly
Pseudomonas aeruginosa, are known contributors to disease
progression and exacerbations (40). Although fungi are often
isolated from the lower airways of CF patients, the clinical
impact of their presence and especially for the development of
non-allergic fungal disease is poorly understood (41, 42). The
most frequently detected fungi in the airways of CF patients
are Aspergillus spp., notably A. fumigatus, and Candida spp.
(43). The prevalence of Aspergillus colonization was highest in
adolescents and young adults (44). Risk factors for Aspergillus
colonization in people with CF include age and the use of inhaled
corticosteroids and antibiotics (44). Moreover, aggressive use of
antibiotics have been suggested to contribute to the increase
in fungal colonization (45). This suggests that inter-kingdom
interactions may be important in containing fungal colonization
in the respiratory tract.

Interestingly, A. fumigatus colonization in people with CF
is often preceded by P. aeruginosa infection (46). In patients
infected with both A. fumigatus and P. aeruginosa, more severe
clinical outcomes have been observed when compared to those
infected with P aeruginosa alone (47). P. aeruginosa can have
both antifungal and growth stimulating effects on A. fumigatus
resulting in: (1) inhibition, (2) reciprocal antagonism, and (3)
cooperation (48), which we will briefly describe here.

The main mechanisms by which P. aeruginosa can inhibit
A. fumigatus’ growth is via the release of phenazines, including
pyocyanin, phenazine-1-carboxamide, 1-hydroxyphenazine, and
phenazine-1-carboxylic acid. Phenazines are small diffusible
quorum-sensing molecules, which easily penetrate A. fumigatus
conidia, and are considered a strong virulence factor of
P. aeruginosa (49–51). The quorum-sensing system allows
bacteria to assess cell density and to regulate physiological
activities accordingly, which consequently modulate the
pathogenicity of the microorganisms (48, 52). Moreover,
nutrient availability and competition is also involved in
this inhibitory process. As an example, P. aeruginosa and
A. fumigatus can both compete for the utilization of iron as a
central nutrient for their survival (53). Although P. aeruginosa
has a variety of fungicidal mechanism, alterations in these
fungicidal capacities have been observed in clinical isolates from

CF patients (52, 54), indicating that there can be shifts between
inhibition and cooperation. Several cooperative interactions
have been described which stimulate growth and potentially
contribute to disease progression. Phenazines can stimulate
fungal growth via increasing iron bioavailability (50). Moreover,
pyochelin, a siderophore, can be used by A. fumigatus as a
ferrochelator. Interestingly, dimethyl sulfide, a volatile organic
compound released by P. aeruginosa, can communicate with
A. fumigatus and create a positive growth environment resulting
in stimulation of fungal growth (48, 55).

The Climax-Attack model (CAM) is a theory which has
been proposed for CF a few years ago grounded on basic
ecological principles (56). In this theory it is postulated that
there are two major functional communities in CF pulmonary
disease. The attack community consists of transient viral
and microbial populations that induce strong innate immune
responses. Consequent alterations in the immune response create
a microenvironment that facilitates a climax chronic community
having a reduced growth rate and being inherently resistant
to antibiotic therapy (56, 57). Soret and colleagues provided
important information on the involvement of the mycobiome
in the CAM model in CF pulmonary exacerbations. They
inferred an inter-kingdom network by plotting bacterial genera
significantly correlated with at least one fungal genus and vice
versa. Network analysis revealed three main clusters organized
around Aspergillus, Candida and Scedosporium genera (57).
The positively correlated OTUs predicted interactions of these
three fungal genera with bacteria belonging to Capnocytophaga,
Parvimonas, Streptococcus, or Veillonella. In addition, these
interactions were assessed using in vitro co-cultures between
A. fumigatus and Streptococcus mitis or Streptococcus oralis and
confirmed that both S. mitis and S. oralis enhanced A. fumigatus
growth. Such translational studies in which principles from
ecology are used to understand disease can potentially form
the basis for the future development of therapeutic strategies to
combat exacerbations.

SARS-CoV-2 Co-infection
The current SARS-CoV-2 coronavirus pandemic created the
perfect arena for the establishment of opportunistic fungal
co-infections. The use of high dose systemic glucocorticoids,
which are widely used as an anti-inflammatory medication for
COVID-19 (58–60), together with epithelial cell damage in
the lung following SARS-CoV-2 infection, expose patients to
opportunistic fungal infections, such as COVID-19 associated
invasive pulmonary aspergillosis (CAPA) (61). To date, over
100 cases of CAPA have been reported (61). Moreover, invasive
mucormycosis, also known as “black fungus,” has been largely
reported in convalescent COVID-19, particularly in India and
other Asian countries, in patients with uncontrolled diabetes
mellitus or immunosuppression (62). The main reason for the
increase in invasive mucormycosis cases has been pointed out
to be the elevated iron levels in the serum of convalescent
COVID-19 patients (62). Complementary to dexamethasone,
Tocilizumab, an IL-6 receptor antagonist, has been widely used
to treat COVID-19 in critically ill patients (63–65). IL-6 plays a
critical role not only in the cytokine storm in severe COVID-19
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(63, 65), but also in the innate immunity against fungal pathogens
such as A. fumigatus (66). Accordingly, IL-6 inhibition has been
associated with an increase in secondary infections in COVID-
19 patients (67). A recent case report described an invasive
Aspergillus infection in a COVID-19 patient following treatment
with tocilizumab (65). Moreover, IL-6 inhibiting drugs may
predispose COVID-19 patients to invasive mucormycosis (62).

MECHANISMS OF FUNGAL
INFECTIONS: FROM INNATE IMMUNE
RESPONSE TO pH MODULATION

Innate Immunity Against Aspergillus spp.
Despite constant exposure to A. fumigatus conidia, most people
do not develop fungal disease. This suggests an efficient
clearance of the conidia by the innate immune system in
immunocompetent individuals before the adaptive immune
system is activated (18). Upon inhalation, most resting conidia
arriving in the respiratory tract are deposited against the airway
fluid, due to turbulent airflow caused by the branching pattern of
the respiratory tract (18). The trapped conidia are then removed
by the ciliary action of the respiratory epithelium, which is the
first line of defense in the lung (18, 68).

Host Recognition of Fungal Pathogen-Associated
Molecular Patterns
Due to their small size, some of the inhaled conidia can reach
the respiratory alveoli. After 4–5 h, resting conidia become
swollen, and if not cleared, germinate and form hyphae within
12–15 h after arrival into the lungs (18). The maturation of
conidia triggers a morphological change leading to the loss
of the thin hydrophobic RodA protein layer, thus exposing
the immunogenic components of the inner cell wall (69–71).
These cell wall pathogen-associated molecular patterns (PAMPs)
include polysaccharides such as β-D-glucan, mannan, chitin, and
galactomannan, all of which are recognized by different pattern
recognition receptors (PRRs) (15, 72). A. fumigatus conidia
and hyphae can be recognized by the host via both soluble
(pentraxins, complement proteins, and pulmonary collectins)
and cell-associated microbial PRRs [Toll-like receptors (TLRs)
and C-type Lectin receptors (CLRs)] (73, 74).

Pentraxins, such as pentraxin-3 (PTX3), are secreted by
various cells, including neutrophils, dendritic cells, mononuclear
phagocytes, and pulmonary epithelial cells (75). They bind
to galactomannan on A. fumigatus conidia and facilitate
recognition by phagocytes such as alveolar macrophages (76,
77). In addition, pulmonary collectins include lung surfactant
proteins A and D and serve as opsonins. They bind to
A. fumigatus conidial carbohydrate structures in a calcium-
dependent manner. Surfactant proteins A and D have also
been shown to promote the agglutination of conidia and their
binding to neutrophils and alveolar macrophages, and improve
the phagocytosis and killing of conidia by neutrophils (78).

Toll-like receptors recognition of pathogens triggers a
signaling cascade leading to the activation of transcriptional
factors such as NF-κB, which controls the expression of pro-

and anti-inflammatory cytokines and chemokines (79). The
universal adaptor molecule MyD88 has been shown to play
a significant role in the signaling of TLRs, which induce the
production of various inflammatory cytokines and reactive
oxygen species (79). TLR2 and TLR4 have been implicated
in the recognition of A. fumigatus conidia and hyphae (80).
However, available data concerning their roles in A. fumigatus-
associated immunity are conflicting. Indeed, the A. fumigatus-
associated PAMPs for TLR2 and TLR4 remain undetermined.
TLR9 has also been shown to play a role in innate immunity
against A. fumigatus by recognizing fungal unmethylated CpG
DNA (81). Dectin-1 is a CLR primary receptor that recognizes
fungal β-glucan and that is essential for the mediation of the
proinflammatory response (80), and is widely expressed on
innate immune cells including macrophages, dendritic cells, and
neutrophils (82–84). Dectin-1 can also induce the expression
of the anti-inflammatory cytokine IL-10, indicating its dual
role in modulating the inflammatory response (85). Dectin-
2, another type of CLR, has recently been shown to be
implicated in the innate immune response against A. fumigatus.
Macrophages and dendritic cells express Dectin-2 and recognizes
α-mannan in the fungal cell wall’s outer layer. Accordingly,
in response to A. fumigatus infection, alveolar macrophages
upregulate Dectin-2. Moreover, Dectin-2 was shown to mediate
an NF-κB-dependent proinflammatory response against swollen
conidia (80). Finally, DC-SIGN is expressed at the surface of
dendritic cells and some macrophages, and binds to Aspergillus
conidia via the recognition of fungal galactomannan (18).
Genetic polymorphism in the above-mentioned PRRs, as well
as in cytokines, chemokines, and immune receptors genes, has
been associated with an increased susceptibility to pulmonary
aspergillosis (86–88). For instance, the Dectin-1 variant Y238X
has been shown to impair the production of several cytokines
such as IFN-γ and IL-10 by human peripheral mononuclear cells,
leading to an increased susceptibility to invasive aspergillosis
in patients receiving hematopoietic stem cell transplantation
(HSCT) (89). Furthermore, the Asp299Gly polymorphism in
TLR-4 is highly associated with chronic cavitary pulmonary
aspergillosis (86).

Cellular Immune Responses
Clearance of Aspergillus Conidia by Innate Immune Cells
and Epithelial Cells
Alveolar macrophages (AMs), neutrophils and epithelial cells
constitute the first line of defense against inhaled A. fumigatus
conidia (18). Alveolar macrophages phagocytose and kill conidia
either via oxidative mechanisms through the generation of
reactive oxygen species (ROS), or by non-oxidative mechanisms
through phagosomal acidification (80). Corticosteroids have been
shown to impair the capacity of AMs to kill conidia (18).
Neutrophils were initially thought to kill hyphae exclusively,
however, they have also been essential in killing germinating
conidia. Neutrophils bind and phagocytose swollen conidia to
trigger respiratory burst and degranulation. While the size of the
hyphae prevents phagocytosis, direct contact with neutrophils
can induce oxidative and non-oxidative mechanisms to damage
the hyphae (18). Moreover, respiratory epithelial cells, i.e.,
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bronchial and alveolar epithelial cells, as well as endothelial
cells, have been shown to participate actively in the innate
immune response against Aspergillus fumigatus strains Af293 and
CEA10 by phagocytosing and killing conidia in vitro (18, 90–
94). Furthermore, human peripheral blood monocytes have also
been shown to internalize Aspergillus conidia and inhibit their
germination and hyphal growth (95). Interestingly, both classical
(CD14+CD16−) and non-classical monocytes (CD14+CD16+)
were found to successfully internalize conidia (96). However,
only classical monocytes were able to inhibit Aspergillus hyphal
development (96). Lastly, dendritic cells (DCs) also have well-
documented roles in the defense against A. fumigatus. Immature
DCs (iDCs) have been shown to phagocytose opsonized and non-
opsonized conidia and hyphae, both of which are recognized
through PRRs such as Dectin-1, among others. TNF-α, IL-6, IL-
12, IL-1α, and IL-1β are the central proinflammatory cytokines
produced by iDCs upon recognition of A. fumigatus conidia and
hyphae (84, 97, 98).

Innate Lymphoid Cells and Innate-Like T Cells
Innate Lymphoid Cells (ILCs), γδ T cells, and mucosal associated
invariant T cells (MAIT cells) have also been reported to
have important roles in the innate immune response against
Aspergillus spp. ILCs, and particularly type 3 ILCs (ILC3s),
are commonly found in barrier epithelial surfaces, where
they contribute to the maintenance of mucosal homeostasis,
elimination of pathogens, regulation of the inflammatory
response, as well as tissue remodeling (99). γδ T cells are innate-
like T cells displaying features of both the innate and adaptive
immune system. They are mainly involved in the immune
surveillance and defense against pathogens in various peripheral
tissues, including the lung (100). γδ T cells have been reported
to produce IL-17A following challenge with A. fumigatus conidia
(101). Moreover, mice lacking γδ T cells were more susceptible
to A. fumigatus infection (102). Together with ILC3s, γδ T cells
were shown to produce IL-22, which is critical for an efficient
clearance of A. fumigatus (101, 103). Furthermore, deficiency in
IL-22 production resulted in an impaired production of cytokines
and chemokines and an impaired clearance of A. fumigatus in
the murine lung (101, 103). MAIT cells are a subset of CD8+
unconventional T cells which are abundant in mucosal surfaces
such as lung (100), and constitute up to 10% of the total T cells
present in the peripheral blood (104). Upon activation, MAIT
cells release proinflammatory cytokines such as IFNγ, TNFα,
IL-17, and IL-22, and are able to kill pathogens through the
production and release of cytotoxic compounds such as perforin
and granzymes (100, 104). MAIT cells have been shown to
be activated by T cell receptor (TCR)-dependent mechanisms
through direct contact with antigen presenting cells such as
dendritic cells in the case of bacteria and yeasts (105, 106),
and TCR-independent mechanisms via cytokines in the case
of viruses (107, 108). However, the activation of MAIT cells
by filamentous fungal pathogens such A. fumigatus is not yet
well-understood (104). Jahreis and colleagues showed that a fast
TCR-dependent response was elicited by MAIT cells against
several Aspergillus species, including A. fumigatus, A. terreus,
and A. flavus (104). This response is characterized by the

upregulation of activation markers, such as the CD69 antigen,
and the release of cytotoxic compounds such as granzyme A
and perforin (104). Finally, Natural Killer (NK) cells have also
been shown to have a role in the innate immune defense against
A. fumigatus (18).

Adaptive Immunity
Following a fungal encounter and the initial activation of the
innate immune system, adaptive immunity is rapidly organized
to clear the pathogen efficiently. Indeed, three different CD4+
T-helper cell lineages have been shown to play crucial roles in
pulmonary aspergillosis: Th1, Th2, and Th17 (109–111). Th1
cells response is associated with protective immunity through
the secretion of the pro-inflammatory cytokines TNFα and
IFNγ, which promote antifungal activity of macrophages and
neutrophils at the site of infection (110, 112, 113). Interestingly,
Th1 cells have been shown to induce a fungus-specific Th1
immunity to an epitope of the A fumigatus cell wall glucanase
Crf1. This antigen can be presented by DCs through three
common major histocompatibility complex (MHC) class II
alleles, which induces memory Th1 cells that are cross-reactive
to C. albicans (114).

Alternatively, Th2 cells response is rather associated with non-
protective immunity through the activation of M2 macrophages
and decrease of Th1 response (110, 113). Th2 responses
are predominant in patients suffering from ABPA, and are
characterized by a decrease in IFNγ and an increase in IL-4 and
IL-10 production, which in turn promotes humoral responses,
through IgE production, and allergy (112, 113). Interestingly,
fungal PAMPs have been shown to act as adjuvants enhancing
T cell responses (115–117). This is notably the case of chitin,
which is present in the fungal cell wall, in allergic disorders such
as asthma (118–122). Dubey and colleagues showed that mice
pre-treated with chitin before being challenged with A. fumigatus
extract had high IgE levels (123).

The role of Th17 cell response is less clear. On the one hand,
Zelante and colleagues showed that production of IL-17 and IL-
23 by Th17 is not protective in a murine A. fumigatus infection
model and inhibits Th1 cells development and antifungal activity
of neutrophils in vitro (124). This was confirmed by blocking
IL-17 and IL-23 production which showed increased clearance
of A. fumigatus. This protective effect of IL-17 and IL-23 has
been confirmed in an acute aspergillosis murine model, where
mice were sensitized with A. fumigatus (125). The IL-17 and IL-
23 -producing cells were identified by the authors as eosinophils
(125). On the other hand, Jolink and collaborators showed that
IL-17 provides a protective immunity by decreasing lung fungal
burden in a murine infection model (126). Moreover, a cross-
reactive Th17 response to C. albicans and A. fumigatus has also
been described during acute ABPA in humans (127). This strong
cross-reactive response is suggested to be rather induced by
C. albicans-specific Th17 cells upon encounter with A. fumigatus,
than by naïve T cells (127).

Lastly, regulatory T (Treg) cells have also been shown to have
a protective effect in the immune response in aspergillosis. Treg
cells have been shown to regulate the inflammatory response
caused by a strong Th1 response in the early phase of A. fumigatus
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infection, as well as in the case of allergic reaction due to Th2
responses (113, 128, 129).

There is evidence of oligoclonal expansion of T cells upon
exposure to A. fumigatus. For instance, stimulation with the
allergen Asp f 1 induced an oligoclonal expansion of antigen-
specific T cells directed to this antigen in ABPA and non-ABPA
patients (130). Furthermore, the p41 epitope of the A. fumigatus
extracellular cell wall glucanase Crf1 has also been shown to
induce an antigen-specific oligoclonal T cell response in HSCT
patients (114).

Virulence Factors and Immune Evasion
in Aspergillus fumigatus
Aspergillus fumigatus has evolved several virulence factors to
escape innate immune responses. These virulence factors include
the rodlet layer, DHN-melanin, ROS detoxifying enzymes,
and toxins. Resting conidia are surrounded by a rodlet layer
composed of hydrophobic RodA proteins (18, 80, 131, 132). This
protein coat masks cell wall β-1,3-glucans, and thus prevents
the detection of conidia by the innate immune response (69–
71). Moreover, the rodlet layer was found to participate in the
adherence of conidia to the pulmonary epithelium (131). DHN-
melanin is the major melanin pigment that gives a gray-green
color to A. fumigatus (133). It protects the integrity of the genome
in conidia from ultraviolet light, as well as ROS (131, 134).
It also masks fungal PAMPs, similar to the rodlet layer, and
permits the fungus to evade phagocytosis by interfering with the
acidification of the phagolysosome notably by interfering with
intracellular Ca2+ signaling (135, 136). Moreover, A. fumigatus
possesses a number of different enzymes for detoxifying ROS
produced by host phagocytic cells such as macrophages. These
enzymes include catalases, superoxide dismutase, glutathione
transferases, fatty acid oxygenases, and efflux pumps, all of
them either detoxifying H2O2 or superoxides, or expulsing ROS
extracellularly (131, 134). Finally, A. fumigatus secretes several
toxins considered as secondary metabolites, that further enable it
to evade the immune response. These toxins are virulence factors
crucial for A. fumigatus pathogenesis. For instance, gliotoxin
has been shown to have several immunosuppressive effects,
including inhibition of phagocytosis and neutrophil-derived
ROS production, as well as proapoptotic activities (137, 138).
Moreover, gliotoxin decreases ciliary movement and angiogenesis
(131, 134, 139). All these immunosuppressive effects are thought
to result from inhibition of the NF-κB signaling pathway (140),
which as mentioned above is a key mediator of inflammatory
responses (141).

pH Modulation as a Strategy to Colonize
the Host Tissues
Environmental pH is an extremely important factor influencing
not only fungal growth and development, but also fungal
physiology (142, 143). Indeed, pH modulation has been shown
to affect fungal enzyme activity (144), and to be a crucial
element controlling fungal pathogenicity. Fungal infections are
often accompanied by a shift in pH in the surrounding host
tissue (142), through the secretion of either acids or alkali (143).

The specific roles of acidification and alkalinization in fungal
pathogenesis discussed in this review are summarized in Figure 3.

Interestingly, fungi, including Aspergillus spp. and Candida
spp. are known to produce low molecular weight organic acids
(LMWOAs) such as oxalate, citrate, malate, formate, acetate,
and succinate, which contribute to pH modulation (145, 146).
Pathogenic fungi acidify their environment in order to enhance
the activity of enzymes, as well as to damage the host tissues
(143, 147). For instance, in the case of C. albicans, acidification
through acetate excretion has been shown to allow the production
of aspartyl proteases (143, 148–150), which are major virulence
factors in this pathogen (151).

Oxalic acid is a known pathogenicity factor for the
phytopathogenic fungi Sclerotinia sclerotiorum and Botrytis
cinerea (152, 153). This acid is secreted in the host tissues and
accumulates in the form of oxalate, leading to a pH decrease.
Additionally, as oxalate is a strong chelator of divalent metallic
cations, it can sequester calcium ions, with multiple possible
structural and physiological consequences for the host (146). In
the case of plant pathogens, the formation of calcium oxalate
(CaOx) crystals in the middle lamella weakens the cell wall
structure and facilitates infection. Moreover, oxalate can inhibit
plant defenses and induce programmed cell death, which is also
beneficial for necrotrophic pathogens (17, 146, 153).

The significance of a similar production of oxalic acid or other
LMWOAs by Aspergillus spp. to infect the human lung is an
active topic of research. Indeed, although many aspects of the
ecology of Aspergillus spp. have been investigated in relation to
their pathogenicity, one aspect that has been largely ignored is its
ability to lower the pH of its environment. This may be necessary
for their capacity to colonize or cause infection, via the secretion
of oxalic acid or other low molecular weight organic acids.
Several studies have reported the presence of CaOx crystals in the
case of pulmonary aspergillosis (154–164), and the detection of
CaOx crystals has been proposed as an easy tool for differential
diagnosis (162). In most of the reported cases, oxalate deposition
was associated with A. niger infection, but some reports also
include infection caused by A. flavus or A. fumigatus (159).
Oxalic acid and oxalate crystals are thought to cause host tissue
damage (including in pulmonary blood vessels), as well as tissue
injury via iron-dependent generation of free radicals (157, 163).
A mechanical role of CaOx crystals was recently reported by Yi
et al. (164) in a case of pulmonary angioinvasive aspergillosis
in a Burkitt’s lymphoma patient with severe neutropenia, with
pathophysiological examinations showing the presence of CaOx
crystals around and within the walls of blood vessel. Aside
from mechanical damage to the host tissues, the formation of
CaOx could also have a dramatic effect on cell physiology.
Indeed, calcium is an extremely important secondary messenger
in many cell types, including those of the immune system
(165). During immune stimulation, Ca2+ mobilization from
extracellular medium or cellular compartments is essential to
increase intracellular Ca2+ concentration (166), and thus Ca2+

chelation has been shown to inhibit the immune response
in vitro (167, 168). All this suggests a potential role of oxalic
acid also in the inhibition of the immune response. Despite
these converging indications, a potential link between oxalic acid
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FIGURE 3 | Roles of acidification and alkalinization mechanisms in fungal pathogenesis. This scheme summarizes the different roles of acidification and alkalinization
mechanisms in fungal pathogenesis for the colonization of the host tissues.

production and pathogenicity for Aspergillus spp. in animals has
only been recently proposed (169, 170). Indeed, we demonstrated
that oxalic acid production by A. niger led to a strong pH
decrease, as well as calcium ion sequestration and precipitation
in the form of CaOx crystals in differentiated 3D bronchial
epithelial tissues. Moreover, we showed that the addition of the
soil oxalotrophic bacterium Cupriavidus oxalaticus inhibited the
growth of A. niger, and reverted pH values and free calcium
concentrations back to physiological levels. Furthermore, CaOx
crystals were no longer observed, suggesting the consumption
of oxalic acid by C. oxalaticus (169, 170). However, the exact
contribution of oxalic acid in the pathogenesis of A. niger still
needs to be determined. Conversely, oxalic acid production
by Candida spp. has never been confirmed experimentally,
although these fungi are listed as oxalate-producers in the Human
Metabolome Database (HMDB0002329).

Fungal pathogens are also known to manipulate the pH
of their environment through alkalinization. This is notably
the case of C. albicans. Alkalinization has been shown to
facilitate the invasion of the host tissues, and the evasion of the
immune system through neutralization of acidic macrophages
phagosomes (150). Alkalinization of the host environment occurs
through the excretion and accumulation of ammonia (NH3),
which is then converted into ammonium ions (NH4+) by the

urease (143, 150). Moreover, a lack of carbon is required for
ammonia-mediated alkalinization to occur (142). Furthermore,
C. albicans has been shown to auto-induce its switch to the hyphal
growth form through the release of ammonia (171). Coccidioides
spp. has been reported to excrete urease and ammonia to destroy
the host tissue (172, 173). St Leger and colleagues have shown that
A. fumigatus produced small amounts of ammonia in minimal
medium, leading to a pH increase and allowing the production
of active proteases (174). However, to the best of our knowledge,
the role of environmental alkalinization in the pathogenesis of
A. fumigatus has never been investigated.

LUNG ECOLOGY

Lung Homeostasis
Contrary to the gut, whose microbiota has been extensively
studied, the lungs were considered sterile for a long time (175).
However, the lung is now known to harbor a diverse microbiota
composed of bacteria, fungi and viruses (176, 177). The bacterial
composition in the lung has been studied in depth over the past
years, although many studies have remained descriptive and in-
depth mechanistic analyses are scarce. In the healthy lung, the
microbiota is dominated by the genera Prevotella, Streptococcus,

Frontiers in Medicine | www.frontiersin.org 9 March 2022 | Volume 9 | Article 83251064

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-832510 March 15, 2022 Time: 19:12 # 10

Palmieri et al. Advances in Respiratory Fungal Infections

and Veillonella (178, 179). In patients with an acute or chronic
respiratory disease the composition differs (180–183). Recent
data provide clear evidence for the role of the airway microbiota
(184), for instance, in the modulation of the host immune
response or mucus production (185).

Whereas, the influence of bacterial community composition
on lung homeostasis and disease has been a very active
area of investigation, our knowledge on the involvement
of fungi in these processes is still limited. Using fungal
ribosomal RNA gene sequencing of BAL and sputum
samples, it has been demonstrated that the mycobiota of
the healthy lung mainly consists of environmental agents
Davidiellaceae, Cladosporium, Aspergillus, Eurotium, Penicillium,
and Candida (181). Epithelial cells of inner and outer
body surfaces (e.g., intestine, skin, and lung) are the first
physical barrier which interacts with commensals and are
also important producers of antimicrobial peptides and
immune mediators that regulate immune homeostasis and
host defense (186, 187). Fungi colonize all barrier surfaces, and
investigations into the influence of fungi on host immunity
during homeostasis and disease are more advanced in the
intestine and the skin. The influence of fungal seeding and
colonization on immune maturation in the lung remains to
be investigated, and we can learn from the findings in the
intestine and skin and translate those to the lung in the future
(188–190).

Gut-Lung Axis
In-depth analysis of the microbiome has revealed profound
differences in composition between various body compartments
(191, 192). The importance of inter-organ communication
and the role of the microbiome herein has been increasingly
recognized (193). Respiratory diseases have not only been
associated with microbial dysbiosis in the lung, but also in the
gut (194). The gut microbiota composition has been shown to
influence the immune responses of distant organs, including
lungs, through the systemic dissemination of metabolites such as
short chain fatty acids (SCFAs), or through the direct seeding of
bacteria from the gut to the lungs by gastro-oesophageal reflux
and microaspiration. This crosstalk between the gut and the lung
compartment is called the gut-lung axis (195). The metabolites or
bacteria can consequently have a stimulatory effect on the local
immune cells (194–196), and ultimately impair or contribute to
the development or progression of respiratory disease.

Recent studies in which fungal composition in the gut
was altered using antifungal drugs, provide evidence for an
immunoprotective role of the gut mycobiota (197, 198). For
example, prolonged oral administration of antifungal drugs
led to an exacerbation of allergic airway inflammation in
an experimental mouse model. Antifungal treatment led
to alterations in several fungal species, with an increase in
Aspergillus, Wallemia and Epicoccum spp., and an observed
decrease in Candida spp. The enhanced allergic airway
inflammatory response was recapitulated when orally
supplementing mice with a mixture of the three enriched
fungi. This indicates that disruption of commensal fungi can
influence both local and distal immune responses. Whether oral

antifungal drugs also affect lung mycobiome composition is
currently unexplored.

Disruption of bacterial communities using antibiotics can
induce fungal dysbiosis and vice versa, suggesting an important
role for inter-kingdom interactions (197). Indeed, the bacterial
microbiome is likely to have an influence on the composition
of the fungal microbiome, either directly through bacterial-
fungal interactions or indirectly through its impact on host
immunity, thus making the lung environment more permissive
or restrictive to fungal growth (196). Interestingly, using a
gnotobiotic approach, van Tilburg and colleagues demonstrated
that the presence of gut bacteria, but not fungi, in early life
could reduce allergic airway inflammation in a respiratory OVA
sensitization and challenge model. These outcomes suggested
that homeostatic control of allergic airway inflammation is
dependent on bacterial presence, and that intestinal colonization
with fungi can skew this inflammatory response (199).

Although a link between the lung bacterial microbiota
composition and the disease outcome in patients with invasive
pulmonary aspergillosis has been recently demonstrated (200),
many knowledge gaps still exist regarding the link between
the pulmonary microbiota and Aspergillus spp. infections. For
instance, alteration of the air-blood barrier, and in particular
enhanced access to the extracellular matrix, is a known risk factor
for fungal infection (201), especially in the case of Aspergillus
(202). Therefore, investigating the role of the lung microbiota and
specific bacterial community compositions on the strengthening
of the air-blood barrier is of clinical importance. The integration
of principles from ecological theory will be key to elucidate
the bacterial—fungal interactions of the gut and pulmonary
microbiota and their human host. This will contribute to
identifying microbial groups from within the airway microbiota,
or their metabolites, for the development of therapeutic tools to
control Aspergillus (179, 196).

CURRENT THERAPEUTIC STRATEGIES

The prompt diagnosis and treatment of invasive fungal
pulmonary infections such as pulmonary aspergillosis is crucial
to prevent associated complications and fatal outcomes. As the
clinical presentations and radiological changes are non-specific,
biopsy and histopathological analysis remains the gold standard
for securing the diagnosis, but is frequently contraindicated in
clinically marginal patients. Moreover, colonization is difficult
to discriminate from a true invasive infection, and fungal blood
cultures are insensitive (10, 203, 204). Therefore, serum and BAL
biomarkers such as galactomannan and β-D-glucan, or PCR to
detect fungi are being increasingly employed to establish the
diagnosis (205).

Current available treatments for pulmonary aspergillosis are
limited. They include the use of antifungal drugs—such as
azoles, echinocandins, polyenes, and flucytosine, as primary
treatment in the case of CPA or IPA, surgical resection
in the case of patients suffering from aspergilloma and
presenting associated complications such as severe hemoptysis,
and corticosteroids in the case of ABPA, with or without
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the administration of antifungal drugs (206). The standard of
care for fungal pulmonary infection is similar across different
underlying lung diseases. Treatment would rather depend on
the clinical manifestations: for example, no treatment in the
case of colonization, corticosteroids and/or antifungal and/or
newer biologics in case of allergic sensitisation/ABPA, and
antifungal agents for invasive infection. The frequency by which
these clinical manifestations are observed would depend on the
underlying lung disease. For example, invasive infection is seen
almost exclusively in immunocompromised patients, ABPA in
patients with asthma or CF, whereas colonization can be observed
in any lung disease associated with structural damage (COPD, CF,
and non-CF bronchiectasis).

Resistance to antifungal drugs has increased dramatically in
the last decades. While antibiotic resistance has been widely
recognized in bacteria, antifungal resistance in opportunistic
fungal pathogens has not yet received sufficient consideration.
The reasons for the rise in antifungal resistance are multiple.
Indeed, there is a limited arsenal of active antifungal compounds
available on the market that are being used in both agriculture
and human health, thus fostering the emergence and rapid spread
of cross-resistance in human opportunistic fungal pathogens (2).

This is particularly well highlighted in the case of A. fumigatus
resistance to azoles. Azoles are frontline antifungal compounds
used in crop protection and in human and animal health
(207, 208). They have a fungistatic effect on yeasts such as
Candida albicans, while acting as fungicides against filamentous
molds such as A. fumigatus. Their fungicidal effect against
A. fumigatus is linked to defects in cell wall remodeling, resulting
in loss of cell wall integrity and death (209). However, despite
the fungicidal effect of triazoles in filamentous fungi, their
application in agriculture at sub-inhibitory concentrations has
led to the emergence and rapid spread of resistance among
natural populations of A. fumigatus in soil (2, 210). This
resistance to azoles may compromise the success of treatment
in human patients suffering from A. fumigatus infections (211).
Azole fungicides such as propiconazole, difenoconazole, or
tebuconazole have a very similar structure when compared to
those used in clinical practice, and their use is correlated with
the increased emergence of clinical azole-resistant A. fumigatus
strains (208). The emergence of this resistance led to the
hypothesis that the extensive use of azole fungicides in agriculture
selected for azole resistant A. fumigatus in the environment
(212). This is supported by several studies reporting the presence
of azole-resistant A. fumigatus strains in patients never treated
with azoles (16, 213). This accounts for two thirds of patients
suffering from azole-resistant aspergillosis. Resistance has been
attributed to specific mutations in the tandem repeat (TR) of
the cyp51A gene promoter region, which is involved in the
biosynthesis of ergosterol in fungi (16, 214). Clinical azole-
resistant A. fumigatus strains have also shown cross-resistance
to azoles commonly used in agriculture (16). Thus, considering
an integrated disease management approach through the One
Health initiative that brings together scientists, medical doctors,
veterinarians, and plant pathologists, is needed to reduce our
reliance on chemical control alone and to stop the spread of
resistance among opportunistic pathogens (2).

In case of pulmonary aspergillosis refractory to azoles,
echinocandins, such as caspofungin or micafungin, or polyenes,
such as amphotericin B, are used as second-line antifungal
treatments (211, 215). Echinocandins inhibit the synthesis of
the fungal cell wall component β-(1,3)-D-glucan by targeting
the β-(1,3)-glucan synthase (216). Little is known on the
resistance mechanism to echinocandins in A. fumigatus, due to its
limited use in the treatment of Aspergillosis (216). Echinocandin
resistance in A. fumigatus has been attributed to mutations
in FKS genes encoding the β-(1,3)-glucan synthase (216). The
same has been reported for C. albicans (217). Amphotericin B
(AmB) has been shown to bind to ergosterol in the fungal cell
membrane and form pores, thus disrupting the cell membrane
integrity (218, 219). AmB has also been reported to induce
endogenous production of ROS leading to oxidative stress and
fungal death (219). Although resistance to AmB is rare, A. terreus
has been shown to be intrinsically resistant (218). Moreover,
AmB resistance has also been reported in A. fumigatus (220) and
A. flavus (221). AmB resistance in A. terreus may be due to high
endogenous production of catalase (218). Finally, flucytosine
(5-FC) is a synthetic antifungal compound which, when it is
taken up in fungal cells, is first converted into 5-fluorouracil
(5-FU). 5-FU is then converted into metabolites which inhibits
DNA and RNA synthesis (222). 5-FC is rarely administered as a
monotherapy to treat fungal infections such as aspergillosis, but
rather in combination with AmB (222, 223).

ADVANCES IN THERAPEUTIC
STRATEGIES AND FUTURE
PERSPECTIVES

Current approaches used for the treatment of pulmonary
aspergillosis focus on attacking the pathogen directly via the
use of antifungal compounds. New antifungal drugs have been
recently developed against Aspergillus spp. infection. Newly
developed drugs, as well as drugs currently in development,
are listed on the Aspergillosis website.1 Several of these have
shown promising results and are being tested in phase 3 clinical
trials (224). Olorofim (F901318, ClinicalTrials.gov Identifier:
NCT05101187), from a new class of antifungal drugs called
orotomides, is highly active against Aspergillus spp. It targets the
dihydroorotate dehydrogenase (DHODH) which is involved in
the pyrimidine biosynthesis pathway. Olorofim has been shown
to inhibit conidia germination, as well as polarized hyphal growth
(225). Biafungin, or Rezafungin (CD101, ClinicalTrials.gov
Identifier: NCT04368559), is a novel echinocandin targeting the
1,3-β-D-glucan synthase. It shows high in vitro and in vivo
activity against Aspergillus spp. (224, 226). Ibrexafungerp (SCY-
078, MK-3118, ClinicalTrials.gov Identifier: NCT03059992) is a
triterpenoid antifungal also inhibiting the biosynthesis of β-(1,3)-
D-glucan (227). Ibrexafungerp has been shown to be effective
against aspergillosis in an in vivo murine model (228). Finally,
another interesting compound is ASP2397 (VL-2397), which is a
novel natural antifungal compound currently in phase 2 clinical

1https://www.aspergillus.org.uk/
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trial (ClinicalTrials.gov Identifier: NCT03327727). ASP2397 is
a cyclic hexapeptide siderophore with a similar structure than
ferrichrome, which has a high affinity for iron (224, 229).
ASP2397 showed high antifungal activity against A. fumigatus,
A. terreus and A. flavus. It was shown to inhibit conidia
germination as well as hyphal growth. Moreover, ASP2397 has
been reported to have a higher efficacy than posaconazole
in vivo in an IPA mouse model (229). However, new therapeutic
approaches are needed in order to slow down the pace of
antifungal resistance emergence in fungal pathogens.

In order to cause disease, a pathogen needs a susceptible host,
as well as suitable environmental conditions for its growth. These
three factors, i.e., pathogen, host and environment, constitute
the so-called disease triangle, which dictates the occurrence of
a disease caused by a particular pathogen in a susceptible host
in a particular environmental setting (152). The disease triangle
concept has already been used in plant disease management for
decades (230). However, one aspect that has been completely
overlooked in this original disease triangle is the presence of the
host microbiota and its role in disease development. A recent
paper from Bernardo-Cravo et al. (231) highlighted the necessity
to include the host microbiome as a fourth factor influencing
the onset of a disease, as it plays a very important role in
host immunity. Therefore, the disease triangle should become
a disease pyramid (Figure 4) and one should consider all four
factors, i.e., the host, the host microbiome, the environment, and
the pathogen, when thinking about disease management.

We recently proposed to focus on the “environment” corner
of the disease pyramid to control the growth of fungal
pathogens such as Aspergillus spp. through a process we named
“environmental interference” (169, 170). We demonstrated that
the soil oxalotrophic bacterium Cupriavidus oxalaticus is able
to control the growth of the fungal pathogen A. niger. This is
achieved by degrading the oxalic acid produced by A. niger,
preventing acidification of the local environment favorable to
infection. Therefore, C. oxalaticus inhibits the growth of the
pathogenic fungus A. niger by manipulating the pH and restoring
it back to a more neutral, physiological value. This environmental
interference principle could be potentially extended to other
important environmental factors for fungal pathogenesis, such as
iron. Indeed, iron is an essential nutrient that is generally limiting,
and thus its acquisition is crucial for pathogen’s virulence (232).
Ghio et al. (157) reported ferric iron (Fe3+) complexation at
the surface of CaOx crystals associated with A. niger infection,
resulting in lung tissue injury via the generation of oxidants.
However, fungal, as well as bacterial pathogens, are well-known
to acquire iron through the secretion of siderophores (233,
234). A. fumigatus is genetically equipped for efficient iron
acquisition, encoding four different siderophores: fusarinine
C (FsC), triacetylfusarinine C (TAFC), ferricrocin (FC), and
hydroxyferricrocin (HFC) (235, 236). Experimental data showed
that the initial phase of lung infection with A. fumigatus is
accompanied by upregulation of iron acquisition genes (237).
Loss in the ability to produce siderophores, and thus to acquire
iron, has been shown to be detrimental for A. fumigatus in vivo
(238). Moreover, interfering with the acquisition of iron by
the use of chelators inhibited the growth of A. fumigatus in

a murine cornea infection model (239). Therefore, developing
a bacterial biocontrol strategy based on the interference of
iron acquisition by Aspergillus would provide a further option
to exploit the principle of interfering with the environment.
This could be achieved either by direct competition between
Aspergillus spp. and the biocontrol bacteria, where these latter
would produce a siderophore with a higher affinity for iron than
the fungal siderophore, allowing them to acquire iron better
than the fungus, or by bacterial “cheating” through stealing
the siderophores produced by Aspergillus spp. Indeed, non-
siderophore producing bacteria are known to steal other species’
siderophores through the use of a matching receptor (240). On
the other hand, host cells internalize iron through a global process
called nutritional immunity, aimed at controlling infection
(241, 242). However, unlike for the gut microbiota (243), the
interplay between the regular members of the airway microbiota
and nutritional immunity is still largely undetermined. Indeed,
while essential metals, such as iron or zinc, have been found
to be altered in several respiratory diseases, the exact causes
and mechanistic consequences of this metal dysregulation on
the immune system and respiratory microbiota still need to
be further explored (242). Interestingly, gallium, a group IIIA
metal, has been proposed as an antifungal agent. Gallium
is used in several medical applications ranging from cancer
to calcium disorders and bone metabolism (244). Moreover,
gallium nitrate III [Ga(NO3)3] has been widely used as an
antibacterial agent against bacterial pathogens such as Klebsiella
pneumoniae, Staphylococcus aureus or Pseudomonas aeruginosa
(244). Furthermore, gallium nitrate IV has been tested in a
phase 2 clinical trial for intravenous administration as an anti-
infective agent against P. aeruginosa infection in CF patients
(ClinicalTrials.gov Identifier: NCT02354859). Gallium is known
to disrupt the iron homeostasis in bacteria and cancer cells (244).
Its antifungal inhibitory effect has recently been demonstrated
by Bastos and colleagues against azole-resistant A. fumigatus
and multidrug-resistant Candida spp. (244). Finally, it is worth
investigating whether gallium could be used to treat bacterial-
fungal polymicrobial infections, which are frequent in CF
patients (245, 246).

The role of the microbiota as a keystone factor influencing the
onset and development of a disease provides a powerful incentive
for the use of microorganisms to prevent and treat illness. These
microorganisms, also referred to as live biotherapeutic products
(LBPs), are defined by the FDA as “a biological product that
contains live organisms, such as bacteria; is applicable to the
prevention, treatment, or cure of a disease or condition of human
beings; and is not a vaccine” (247). They are not intended to reach
the systemic circulation, but rather exert their action through
interaction with resident members of the microbiota and/or by
modulating complex host-microbiota interactions. This implies
a multifactorial mode of action, which is in strong contrast
to the reductionist approach traditionally used in medical
research (247).

The large majority of LBPs correspond to single species
products. There are examples in which single species LBPs
appear to confer protection against an invading pathogen, a
phenomenon known as colonization resistance [i.e., Lactobacillus
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murinus protection against Streptococcus pneumoniae lung
colonization (248); Clostridium scindens providing colonization
resistance against Clostridium difficile (249)]. However, the use
of single-species LBPs likely fails to capture the complexity of
the multifactorial and multi-species role of the microbiota in
health homeostasis. A similar concept to colonization resistance
is widely used in soil ecology, namely that of disease-suppressive
and conducive soils (250). This concept links the composition
of the soil microbiota with the natural protection against
plant fungal infections. Mendes et al. (251) showed that a
specific assemblage of rhizospheric bacteria lead to disease-
suppression and confer protection against the root fungal
pathogen Rhizoctonia solani in sugar beet seedlings. In the same
way, a specific microbiota composition could lead to more
pathogen-suppressive communities, or conversely, dysbiosis of
the microbiota could lead to pathogen-permissive communities.

Translating soil ecological concepts into human medicine could
be of great benefit, as it would provide key insights into the
complex interspecies interaction dynamics within the human
microbiome and between itself and the host (252, 253). Such lung
microbiota-based biocontrol strategy could be applied against
aspergillosis, as lung microbiota has been suggested to prevent
the establishment of Aspergillus spp. in the lungs (196).

Additionally, LBPs have been shown to restore the epithelial
barrier and modulate the immune response. These effects have
been mostly studied in the case of administration of probiotics
in the gastrointestinal tract (254). However, their potential
beneficial effect on the airway epithelial barrier restoration, as
well as in the immune homeostasis have been suggested by
Martens et al. (254). This is notably the case of the bacterial
strains Lactobacillus plantarum MB452, Lactobacillus rhamnosus
GG and Streptococcus thermophiles ATCC 19258, among others

FIGURE 4 | Disease pyramid. The onset of a disease depends on the interplay between the host, the pathogen, the environment, and the host microbiome. Host
susceptibility mainly depends on genetic factors and immune status. The main factor for the successful colonization of the host tissues by the pathogen is its
virulence. The environment corner refers to the host lung microenvironmental parameters and include among others pH, calcium (Ca2+) and iron (Fe2+)
concentrations. Host microbiota community structure can also influence the establishment of the pathogen. Icons have been created using Biorender.com. Modified
from Palmieri (170).

BOX 1 | Key unanswered questions.
◦ What comprises a healthy lung mycobiome?
◦ What is the role of the mycobiome component of the respiratory microbiota in the colonization resistance to fungal pathogens?
◦ What is the role of commensal fungi in microbiota community stability?
◦ What is the involvement of commensal fungi in the maintenance of lung barrier homeostasis/function?
◦ How do commensal fungi contribute to pulmonary immune maturation in early life and what are the consequences of early life fungal dysbiosis for respiratory

disease development?
◦ Which mechanisms underlie the bacterial -induced predisposition to invasive pulmonary aspergillosis and other respiratory fungal infections?
◦ How does nutrient availability contribute to lung microbial community composition and consequently influence fungal infection?
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(254). Recently, the use of nasal probiotic strains such as
Lacticaseibacillus casei AMBR2 and Lactococcus lactis W136
has shown promising results. Indeed, Lacticaseibacillus casei
AMBR2 showed a beneficial effect on the epithelial barrier
function and modulation of the immune response in in vitro
Calu-3 differentiated tissue co-cultured with donor-derived nasal
microbiota and macrophage-like cells (255, 256). Cho and
colleagues reported that Lactococcus lactis W136 suppressed
the growth of patient-derived strains of the bacterial pathogen
Pseudomonas aeruginosa in in vitro co-cultures (257).

Although large efforts have been made to enhance our
understanding of respiratory fungal infections, the treatment of
fungal pathogens poses a series of unique challenges. Fungal
infections are difficult to diagnose in a timely manner, antifungal
drugs and treatments are limited, and given the emergence of
resistance to antifungal drugs there is a reduced effectiveness
of these treatments. Moreover, severe infections often occur
in subjects with significant comorbidities, including chronic
respiratory diseases and a state of immunosuppression. It is
thus imperative to develop novel treatment strategies for fungal
infections. In order to do so, we have identified several key
unanswered questions (Box 1). In view of the variability of fungal
infection outcomes, and in particular those with Aspergillus
spp., there is an urgent need to understand the conditions that
make the respiratory tract permissive to conidial germination
in susceptible individuals, and in particular, to determine
whether the composition of the airway microbiota plays a
role in this regard.

Future research in this field should focus on moving toward
the complete characterization of the lung microbial ecosystem by
shotgun metagenomic sequencing and gene expression analysis
(258). Moreover, technical advances are required to enhance our
ability to culture fungi from respiratory tract samples in the
setting of prophylactic anti-fungal treatment, and in particular
move toward building a collection of lung commensal fungal
strains which can be implemented in mechanistic studies.
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Background: Respiratory system infections commonly occur among individuals with

asthma. However, whether asthma patients have a higher risk of pleural empyema

development remains unclear.

Methods: This is a retrospective cohort study based on data from the National Health

Insurance Research Database of Taiwan. The asthma cohort consisted of 48,360 newly

diagnosed adult individuals from 2000 to 2012. The comparison cohort consisted of the

same number of adults who did not have asthma and was matched for age, gender,

comorbidity, and the year of diagnosis. The development of pleural empyema was

followed up to 2013.

Results: Pleural empyema incidence was 2.03-fold higher in the asthma cohort

compared to the comparison cohort (8.65 vs. 4.25 per 10,000 person-years), with an

adjusted hazard ratio (HR) of 2.12 [95% confidence interval (CI) = 1.76–2.56]. Stratified

analyses by age, gender, comorbidity, and corticosteroid use revealed that the crude and

adjusted HRs of pleural empyema associated with asthma were all significant. Among

patients with asthma, the risk of pleural empyema elevated with increased frequency of

annual asthma-related emergency room visits and hospital admissions (≥1 vs. <1, aHR

= 8.07, 95% CI = 4.31–15.1 and aHR = 9.31, 95% CI = 5.56–15.6).

Conclusion: An increased risk of pleural empyema occurrence was observed in

adult patients with asthma than those without asthma. Furthermore, the risk of pleural

empyema may increase with poor control of asthma.

Keywords: empyema, asthma, pneumonia, cohort study, retrospective study

INTRODUCTION

Asthma is a heterogeneous disease manifesting with airway inflammation (1). This disease is
defined by the presence of respiratory symptoms that vary over time and in intensity, together
with variable expiratory airflow limitation (2). Inadequate control of asthma may lead to frequent
exacerbations, worse health status, and poor quality of life (3). Asthma is also found to be
associated with respiratory system infections, but information on the underlying mechanism of this
predisposition is limited (4). Altered epithelial microenvironment and impaired immune function
may contribute to the susceptibility of respiratory system infections (5, 6).
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Pleural empyema indicates the occurrence of frank pus within
the pleural space (7). It is most commonly caused by respiratory
system infections, such as pneumonia (8). Mortality rate among
individuals having pneumonia with pleural empyema is far
higher than in patients who do not have pleural empyema (9, 10).
The crucial nature of pleural empyema and the need for removal
have been identified for several centuries (11). Delayed diagnosis
and poor drainage have been found to be linked with high
mortality (12). Alcohol consumption, substance use, diabetes
mellitus, immunosuppression, malignancy, pulmonary disease,
and prior occurrence of pleural effusion are predictors of the
development of pleural empyema (13, 14).

Several studies have investigated the association between
asthma and respiratory system infections (15–18). However, the
studies did not examine the incidence of pleural empyema in
asthma patients. Pleural empyema is a noticeable infection of
the respiratory system and requires timely treatments, such as
antibiotic therapy, pleural drainage, intrapleural fibrinolysis, and
surgery. Thus, investigating the risk of pleural empyema in
patients with asthma is necessary. This study aimed to examine
whether patients with asthma have a higher risk of pleural
empyema development. In addition, we attempted to assess the
effect of asthma control on the occurrence of pleural empyema.

MATERIALS AND METHODS

Data Source
The Taiwan National Health Insurance (NHI) program was
established in 1995. The National Health Insurance Research
Database (NHIRD) is a nationwide database housing medical
claims data of over 99.5% of people living in Taiwan (https://
nhird.nhri.org.tw/en/). The database is updated and maintained
by the National Health Research Institutes. The Longitudinal
Health Insurance Database 2000 (LHID2000, a subset data of
NHIRD) was used for this study. The database contains medical
claims data of one million persons randomly selected from users
registered in 2000. Data on their demographic characteristics,
diagnostic codes, procedure claims, and medication claims
were available from 1995 to 2013. All data were deidentified
to protect their privacy; therefore, written informed consent
from the participants involved was unnecessary. This study
was approved by the Research Ethics Committee of the China
Medical University and Hospital (CMUH-104-REC2-115).

Study Cohorts
Patients with newly diagnosed asthma [International
Classification of Disease, 9th Revision, Clinical Modification
(ICD-9-CM) code 493 and asthma medication (bronchodilator
or corticosteroid)] from January 1, 2000, to December 31, 2012,
were selected in the asthma cohort. The date of the diagnosis was
defined as the index date. Individuals with a diagnosis of pleural
empyema before the index date and those with incomplete
data were excluded from the analysis. The individuals in the
comparison cohort included people free from asthma. The
exclusion criteria for the comparison cohort were the same as for
the asthma cohort. The comparison cohort was 1:1 frequency-
matched with the asthma cohort by age, gender, comorbidity,

and index year. All subjects were monitored until any of the
following occurred: (1) development of pleural empyema, (2)
withdrawal from NHI system, (3) death, and (4) the date of 31st
of December 2013.

Outcome and Variables
All diseases were recorded in accordance with the ICD-9-CM
in the NHIRD. The primary outcome was pleural empyema
(based on ICD-9-CM code 510 and related antibiotic treatment).
We also determined the related baseline comorbidities between
1995 and index date, including chronic obstructive pulmonary
disease (COPD, ICD-9-CM code 496), diabetes mellitus (ICD-9-
CM code 250), chronic kidney disease (CKD, ICD-9-CM code
585), chronic liver disease and cirrhosis (CLD, ICD-9-CM code
571), rheumatic disease (ICD-9-CM codes 446.5, 710.0–710.4,
714.0–714.2, 714.8, and 725), stroke (ICD-9-CM codes 433–438),
cancer (ICD-9-CM codes 140–209), and malnutrition (ICD-
9-CM codes 260–269). We selected only diagnoses from the
outpatient department that appeared at least twice within 1 year
or had a diagnosis of hospitalization to increase the accuracy for
asthma, pleural empyema, and all comorbidities. In addition, we
evaluated the related medication, corticosteroid use.

Statistical Analysis
We used the Chi-squared test to examine the proportion
distribution of age group, gender, comorbidity, and medication
between asthma and comparison cohorts. The means of age
in the two cohorts were compared using a student’s t-test.
The estimation of cumulative incidence of pleural empyema in
asthma and comparison cohorts was performed by the Kaplan–
Meier method. A log-rank test was utilized to determine the
significance. The incidence rates of pleural empyema were
calculated by asthma, age group, gender, comorbidities, and
medication. Univariable and multivariable Cox proportional
hazard regression models were used to estimate hazard ratios
(HRs) and 95% confidence intervals (CIs). Moreover, we
calculated the incidence rates and relative risk of pleural
empyema by stratification with age, gender, comorbidities, and
medication between asthma and comparison cohorts. Among
patients with asthma, we further evaluated the impact of the
annual number of asthma-related emergency room visits and
hospital admissions and cumulative corticosteroid doses on
pleural empyema development. Data analysis was performed
with the SAS statistical software (Version 9.4 for Windows;
SAS Institute, Inc., Cary, NC, USA). Statistical significance was
considered at a p-value < 0.05.

RESULTS

We recruited an asthma group comprising 48,360 patients
and a comparator group of 48,360 individuals (Table 1). Age
and gender did not significantly differ between asthma and
comparator group. The mean age ± standard division of asthma
and comparator group was 54.9 ± 18.7 and 54.1 ± 18.5 years,
respectively. Approximately 52% of the individuals were women
in both groups. The major comorbidities of the asthma group
were COPD (24.8%), CLD (21.7%), followed by diabetes mellitus
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TABLE 1 | Baseline characteristics between asthma and non-asthma cohorts.

Asthma p-value

No Yes

N = 48,360 N = 48,360

n % n %

Age 0.63

20–49 19,720 40.8 19,680 40.7

50–64 11,918 24.6 11,826 24.5

≥65 16,722 34.6 16,854 34.9

Mean ± SD 54.1 ±18.5 54.9 ±18.7 0.001

Gender 0.46

Women 24,873 51.4 24,988 51.7

Men 23,487 48.6 23,372 48.3

Comorbidity

Diabetes mellitus 5,254 10.9 5,269 10.9 0.88

CKD 1,195 2.47 1,066 2.20 0.01

CLD 10,337 21.4 10,513 21.7 0.17

COPD 11,880 24.6 11,988 24.8 0.42

Rheumatic disease 1,360 2.81 1,346 2.78 0.78

Stroke 3,549 7.34 3,350 6.93 0.01

Cancer 1,598 3.30 1,527 3.16 0.20

Malnutrition 401 0.83 339 0.70 0.02

Medication

Corticosteroid 7,355 15.2 11,392 23.6 <0.001

CKD, chronic kidney disease; CLD, chronic liver disease and cirrhosis; COPD, chronic

obstructive pulmonary disease; SD, standard deviation.

(10.9%), stroke (6.93%), and cancer (3.16%). The mean follow-
up periods were 7.72 ± 4.15 years in the asthma group and
8.03 ± 4.02 years in the comparator group. The proportion
of corticosteroid use were 23.6% in the asthma group and
15.2% in the comparator group. Figure 1 showed that patients
with asthma had a higher cumulative incidence of pleural
empyema than individuals without asthma throughout the 14-
year study period.

The overall incidence density rates of pleural empyema
were 8.65 and 4.25 per 10,000 person-years in asthma and
comparator groups, respectively (Table 2). Compared with the
comparator group, the corresponding adjusted HR (aHR) of
pleural empyema was 2.12 (95% CI = 1.76–2.56) in the asthma
group after adjusting for age, gender, COPD, diabetes mellitus,
CKD, CLD, stroke, cancer, and corticosteroid use. Compared
with persons aged 20–49, the aHRs of pleural empyema were
2.43-fold higher in those aged 50–64 (95% CI = 1.80–3.29) and
4.10-fold higher in those aged ≥65 (95% CI = 3.09–5.44). The
aHR of pleural empyema was 2.55-fold higher for men relative
to women (95% CI = 2.09–3.12). Moreover, the risk of pleural
empyema was higher in persons with stroke (aHR = 2.68, 95%
CI = 2.12–3.38), diabetes mellitus (aHR = 1.86, 95% CI = 1.50–
2.31), and COPD (aHR = 1.48, 95% CI = 1.22–1.79) compared
with subjects without these comorbidities.

Further analyses revealed that the incidences and aHRs of
pleural empyema for the asthma group were all significantly

FIGURE 1 | Cumulative incidence of pleural empyema in the asthma group

(dashed line) and in the comparison group (solid line).

higher compared with the comparator group after stratification
for age, gender, presence of comorbidities, and corticosteroid
use (Table 3). In addition, we assessed the impact of the
frequency of asthma-related emergency room visits and hospital
admissions on the development of pleural empyema among the
asthma group (Table 4). A higher frequency of annual asthma-
related emergency room visits and hospital admissions raised
the risk of pleural empyema development (both p for trend
<0.001). Moreover, we analyzed cumulative corticosteroid doses
on pleural empyema development among the asthma group
(Table 4). The incidence of pleural empyema was higher in those
with corticosteroid use; however, the p value for trend was not
significant (p= 0.25).

DISCUSSION

We believed that this investigation is the first population-
based retrospective cohort study to evaluate the incidence of
pleural empyema in patients with asthma. Our findings revealed
that patients with asthma have a significantly higher risk of
developing pleural empyema than those without asthma. The
risk of pleural empyema was also larger in older people, in
males, those with comorbidities. Furthermore, the hazards of
pleural empyema were significantly larger in the asthma cohort
compared with the comparison cohort under stratification by
age, gender, comorbidity, and corticosteroid use. Moreover,
we found that the risk of pleural empyema was higher in
asthma patients with an increased number of asthma-related
emergency medical demands and hospital admissions, indicating
that the level of asthma control may influence the occurrence of
pleural empyema.
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TABLE 2 | Incidences and hazard ratios of pleural empyema by asthma, age, gender, comorbidity, and corticosteroid use among all participants.

Event PY Rate# Crude HR (95% CI) Adjusted HR† (95% CI)

Asthma

No 165 388,334 4.25 1.00 1.00

Yes 323 373,337 8.65 2.03 (1.68–2.45)*** 2.12 (1.76–2.56)***

Age

20–49 69 347,688 1.98 1.00 1.00

50–64 121 196,168 6.17 3.10 (2.31–4.16)*** 2.43 (1.80–3.29)***

≥65 298 217,815 13.7 6.76 (5.20–8.79)*** 4.10 (3.09–5.44)***

Gender

Women 135 404,727 3.34 1.00 1.00

Men 353 356,945 9.89 2.95 (2.42–3.60)*** 2.55 (2.09–3.12)***

Comorbidity

COPD

No 278 569,143 4.66 1.00 1.00

Yes 210 165,529 12.7 2.68 (2.24–3.21)*** 1.48 (1.22–1.79)***

Diabetes mellitus

No 372 694,873 5.35 1.00 1.00

Yes 116 66,799 17.4 3.17 (2.57–3.91)*** 1.86 (1.50–2.31)***

CKD

No 470 749,761 6.27 1.00 1.00

Yes 18 11,911 15.1 2.30 (1.43–3.68)*** 1.22 (0.75–1.96)

CLD

No 350 599,220 5.84 1.00 1.00

Yes 138 162,451 8.49 1.45 (1.19–1.77)*** 1.16 (0.95–1.41)

Rheumatic disease

No 471 743,383 6.34 1.00

Yes 17 18,288 9.30 1.44 (0.89–2.33)

Stroke

No 390 727,905 5.36 1.00 1.00

Yes 98 33,766 29.0 5.19 (4.15–6.49)*** 2.68 (2.12–3.38)***

Cancer

No 466 746,246 6.24 1.00 1.00

Yes 22 15,425 14.3 2.17 (1.41–3.33)*** 1.39 (0.91–2.14)

Malnutrition

No 484 756,482 6.40 1.00

Yes 4 5,189 7.71 1.19 (0.45–3.18)

Medication

Corticosteroid

No 370 634,551 5.83 1.00 1.00

Yes 118 127,120 9.28 1.56 (1.27–1.92)*** 1.02 (0.82–1.26)

CI, confidence interval; CKD, chronic kidney disease; CLD, chronic liver disease and cirrhosis; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; PY, person-years.
# Incidence rate per 10,000 person-years.
†
Multivariable analysis including age, gender, COPD, diabetes mellitus, CKD, CLD, stroke, cancer, and corticosteroid use. ***p < 0.001.

The mechanism between asthma and pleural empyema
remains largely unknown. Patients with asthma who are
susceptible to pneumonia may still play a major role. This
condition may be driven by the following: (1) a large prevalence
of carriage of the bacteria, (2) a disordered immune response
from exposure to the bacteria, (3) impaired bacterial clearance,
and (4) a suboptimal response to vaccination (5). Parapneumonic
pleural effusions are known to represent a common complication
of pneumonia and can be found in approximately 40% of

bacterial pneumonia cases (11). In addition, inhaled or systemic
corticosteroid use, shared comorbidities, cigarette smoking,
alcohol consumption, unhealthy lifestyle, poor self-care, and
poor physical health are commonly noted among asthma
patients. These factors are also related to the development of
pneumonia and pleural empyema (9).

Inconsistent evidence was found between chronic
inflammatory airway disease and the development of pleural
empyema. Lu et al. (19) conducted a case-control study to

Frontiers in Medicine | www.frontiersin.org 4 April 2022 | Volume 9 | Article 85157379

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Liao et al. Risk of Empyema in Asthma

TABLE 3 | Incidences and hazard ratios of pleural empyema by age, gender, comorbidity, and corticosteroid use between asthma and non-asthma cohorts.

Asthma Crude HR (95% CI) Adjusted HR† (95% CI)

No Yes

Event PY Rate# Event PY Rate#

Age

20–49 23 174,025 1.32 46 173,662 2.65 2.01 (1.22–3.31)** 1.98 (1.20–3.27)**

50–64 31 99,658 3.11 90 96,510 9.33 3.00 (1.99–4.51)*** 3.06 (2.03–4.62)***

≥65 111 114,651 9.68 187 103,164 18.1 1.86 (1.47–2.36)*** 1.91 (1.51–2.43)***

Gender

Women 36 205,289 1.75 99 199,437 4.96 2.83 (1.93–4.14)*** 2.78 (1.89–4.08)***

Men 129 183,045 7.05 224 173,900 12.9 1.82 (1.47–2.26)*** 1.94 (1.56–2.42)***

Comorbidity§

No 34 212,837 1.60 98 210,361 4.66 2.92 (1.98–4.31)*** 2.95 (1.99–4.36)***

Yes 131 175,497 7.46 225 162,975 13.8 1.84 (1.48–2.28)*** 1.91 (1.54–2.37)***

Corticosteroid

No 139 338,472 4.11 231 296,079 7.80 1.90 (1.54–2.34)*** 2.05 (1.66–2.53)***

Yes 26 49,862 5.21 92 77,258 11.9 2.28 (1.48–3.53)*** 2.43 (1.61–3.86)***

CI, confidence interval; HR, hazard ratio; PY, person-years.
# Incidence rate per 10,000 person-years.
†
Multivariable analysis including age, gender, COPD, diabetes mellitus, CKD, CLD, stroke, cancer, and corticosteroid use.

§ Individuals with any comorbidity of COPD, diabetes mellitus, CKD, CLD, rheumatic disease, stroke, cancer, and malnutrition were classified into the comorbidity group.

**p < 0.01, ***p < 0.001.

TABLE 4 | Incidences and hazard ratios of pleural empyema by emergency room visits, hospital admissions, and cumulative corticosteroid doses among asthma cohort.

Event Incidence# Crude HR (95% CI) Adjusted HR† (95% CI)

Annual emergency room visits

<1 311 8.34 1.00 1.00

≥1 12 334.9 19.7 (10.6–36.4)*** 8.07 (4.31–15.1)***

p for trend <0.001

Annual hospital admissions

<1 302 8.10 1.00 1.00

≥1 21 362.7 24.6 (15.0–40.5)*** 9.31 (5.56–15.6)***

p for trend <0.001

Cumulative corticosteroid doses (mg)

None 231 7.80 1.00 1.00

<115 9 10.3 1.31 (0.67–2.55) 0.98 (0.50–1.91)

115–335 35 15.4 1.93 (1.35–2.75)*** 1.53 (1.07–2.19)*

≥335 48 10.6 1.30 (0.95–1.78) 0.93 (0.68–1.28)

p for trend 0.25

CI, confidence interval; HR, hazard ratio.
# Incidence rate per 10,000 person-years.
†
Multivariable analysis including age, gender, COPD, diabetes mellitus, CKD, CLD, stroke, cancer, and corticosteroid use.

*p < 0.05, ***p < 0.001.

evaluate the potential risk factors of pleural empyema. They
enrolled 1,851 pleural empyema cases and 7,404 non-empyema
controls and found significant factors that lead to pleural
empyema include the following: aspiration history [odds ratio
(OR) = 7.28, 95% CI = 5.00–10.6)], human immunodeficiency
virus infection (OR = 5.66, 95% CI = 1.38–23.2), malnutrition
(OR = 2.86, 95% CI = 2.07–3.95), cancer (OR = 2.74, 95%

CI = 2.28–3.30), diabetes mellitus (OR = 2.25, 95% CI =

1.96–2.59), stroke (OR = 1.99, 95% CI = 1.70–2.34), CKD (OR
= 1.78, 95% CI = 1.42–2.25), chronic obstructive pulmonary
disease (COPD, OR = 1.72, 95% CI = 1.47–2.01), asthma (OR
= 1.34, 95% CI = 1.15–1.57), and CLD (OR = 1.20, 95% CI
= 1.06–1.35). In another study, Lu et al. evaluated COPD and
the subsequent development of pleural empyema (20). They
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enrolled 55,136 COPD cases and 98,769 non-COPD controls
and found that the incidence of pleural empyema was 3.64-fold
higher in the COPD cohort than in the comparison cohort
(15.8 vs. 4.34 per 10,000 person-years), with a corresponding
aHR of 3.25 (95% CI = 2.73–3.87). These findings may suggest
that chronic inflammatory airway disease may contribute to the
development of pleural empyema. By contrast, Dusemund et al.
(21) performed a case-control study in Switzerland to investigate
outcomes of community-acquired pneumonia in patients with
chronic lung disease. They found that the incidence of pleural
empyema was insignificant in asthma [0.5% (asthma) vs. 0.9%
(controls), p = 0.141] and COPD [0.5% (COPD) vs. 0.5%
(controls), p = 0.817]. In addition, Elemraid et al. (22) assessed
predictors of pleural empyema development in children. They
found that age, sex, mother’s age, smoking among the child’s
parents, poverty, nursery attendance, asthma, and household
characteristics (bedrooms and number of occupants) were
not significantly related. Therefore, we may need additional
investigations to clarify this issue.

Strength
The strength of this study lies in the establishment of a
population-based asthma cohort to assess the risk of developing
pleural empyema. Conducting a prospective cohort study is
expensive. Therefore, a retrospective cohort study based on
insurance claims data may be a suitable and economical
alternative. Regardless of socioeconomic background and/or
residential location, the universal coverage by the NHI program
lowers access barriers to health care all citizens (23). This
study was able to reflect a “real world” scenario in which
asthma, pleural empyema, and comorbidities were assessed
during medical evaluation.

Limitation
Several limitations exist and need to be considered in interpreting
the study findings. First, the ICD-9-CM algorithm was used
to define asthma, pleural empyema, and comorbidities. All
diagnoses were dependent on the competence of clinical
physicians in diagnosing; however, asthma has been carefully

validated in the NHIRD (24). In addition, an ad hoc committee

established by the insurance authority monitored the evaluation
of claims data to prevent errors and violations. We selected
only diagnoses from the outpatient department that appeared at
least twice within 1 year or had a diagnosis of hospitalization
to increase the accuracy. In addition, we applied the medication
used to improve the diagnosis of asthma and empyema. Second,
the NHIRD does not provide detailed information regarding
smoking habits, drinking habits, and other environmental
factors, which are potentially confounding factors in the
current study. In addition, relevant clinical variables, such as
serum laboratory data, image reports, and culture results, were
unavailable in the database.

CONCLUSION

An increased risk of pleural empyema occurrence was observed
in adult patients with asthma compared to those without asthma.
Furthermore, the risk of pleural empyema may increase with the
degree of asthma control.
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Gastroesophageal reflux disease (GERD) is a common non-respiratory comorbidity in

patients with non-tuberculous mycobacterial pulmonary disease (NTM-PD). However,

little is known about the association between GERD and healthcare utilization and

medical costs of NTM-PD. Thus, we evaluated this association using the Health

Insurance Review and Assessment Service National Patient Sample. NTM-PD patients

with GERD had significantly higher healthcare use and spent a higher total on medical

costs (5,098 vs. 2,675 USD/person/year) than those without GERD (P < 0.001 for

all). Therefore, an appropriate management of GERD in NTM-PD patients can be an

important factor to reduce the disease burden.

Keywords: NTM, non-tuberculous mycobacteria, GERD (gastroesophageal reflux disease), population base study,

medical cost, disease burden

INTRODUCTION

The prevalence and incidence of non-tuberculousmycobacterial pulmonary disease (NTM-PD) has
been increasing worldwide (1). Furthermore, both the attributable mortality and financial burden
associated with this disease are high (2). Thus, clinical studies that identify preventable or treatable
factors to address the high disease burden of NTM-PD are urgently needed to determine strategies
for reducing the burden. Gastroesophageal reflux disease (GERD) is a common non-respiratory
comorbidity in NTM-PD patients, with a prevalence of 26–44% (3, 4). GERD is associated with
an increased number of aspiration symptoms, higher bacterial burden, and more severe radiologic
findings (3, 4). Although these results indicate that the disease burden in NTM-PD patients with
GERD can be more substantial than in those without GERD, there is limited information on
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this issue. Thus, we aimed to evaluate whether GERD is
associated with a higher disease burden, specifically healthcare
use, medical costs, and in-hospital mortality, in patients
with NTM-PD.

METHODS

Data Source
We used the 2009–2017 Health Insurance Review and
Assessment Service, National Patient Sample (HIRA-NPS),
which includes ∼1,400,000 individuals each year drawn by
3% stratified random sampling by age and sex from the entire
population with claims records during the year. The dataset
included patient diagnosis, treatment, procedures, surgical
history, and prescription drugs. Diagnosis was coded according
to the 10th edition of the International Classification of Diseases
(ICD-10). Generic drugs were coded according to the Korean
National Code System (5).

Study Population
NTM-PD was defined by ICD-10 diagnosis codes of A31.0,
A31.8, and A31.9; GERD was defined by ≥2 claims under the
ICD-10 code K21 and proton pump inhibitors prescribed for

TABLE 1 | Characteristics of study population.

Total (N = 6,589) NTM-PD with GERD (n = 1,407) NTM-PD without GERD (n = 5,182) P-value

Age, years <0.001

20–29 499 (7.6) 25 (1.8) 474 (9.2)

30–39 877 (13.3) 96 (6.8) 781 (15.1)

40–49 789 (12.0) 125 (8.9) 664 (12.8)

50–59 1,360 (20.5) 311 (22.1) 1,049 (20.1)

60–69 1,407 (21.4) 403 (28.6) 1,004 (19.4)

≥70 1,657 (25.2) 447 (31.8) 1,210 (23.4)

Sex 0.614

Male 2,458 (37.3) 533 (37.9) 1,925 (37.2)

Female 4,131 (62.7) 874 (62.1) 3,257 (62.8)

Type of insurance <0.001

Health insurance 6,283 (95.3) 1,302 (92.5) 4,981 (96.2)

Medical aid 301 (4.6) 102 (7.3) 199 (3.8)

Veteran status 5 (0.1) 3 (0.2) 2 (0.0)

Comorbidities

COPD 1,720 (26.1) 528 (37.5) 1,192 (23.0) <0.001

Asthma 1,909 (29.0) 575 (40.9) 1,334 (25.7) <0.001

Bronchiectasis 1,653 (25.1) 406 (28.9) 1,247 (24.1) <0.001

Cerebrovascular disease 626 (9.5) 221 (15.7) 405 (7.8) <0.001

Hypertension 2,051 (31.1) 620 (44.1) 1,431 (27.6) <0.001

Diabetes mellitus 1,464 (22.2) 478 (34.0) 986 (19.0) <0.001

Connective tissue disease 405 (6.2) 173 (12.3) 232 (4.5) <0.001

Charlson comorbidity index <0.001

0–1 2,952 (44.8) 307 (21.8) 2,645 (51.0)

≥2 3,637 (55.2) 1,100 (78.2) 2,537 (49.0)

Data are presented as numbers (percentages).

NTM-PD, non-tuberculous mycobacterial pulmonary disease; GERD, gastroesophageal reflux disease; COPD, chronic obstructive pulmonary disease.

≥2 weeks (6). We included 6,589 patients with NTM-PD from
January 2009 to December 2017 using the ICD-10 code, of which
1,407 patients had GERD. The Institutional Review Board of
Chungbuk National University Hospital approved the study and
waived the requirement for informed consent because the HIRA-
NPS data were deidentified (application no. CBNUH 2021-03-
020).

Outcomes
Respiratory-related healthcare use was defined as healthcare use

under the ICD-10 codes of respiratory diseases (J00–J99). We

compared healthcare use (outpatient department [OPD] visits,

emergency room [ER] visits, or hospitalizations), medical costs,

and in-hospital mortality in NTM-PD patients with GERD to
those in patients without GERD. The medical cost consists of
expenses related to diagnostic tests, procedures, and treatments
covered by the National Health Insurance (7).

Covariables
Comorbidities were also defined using ICD-10 codes. Pulmonary
comorbidities were defined as chronic obstructive pulmonary
disease (COPD; J42–J44, except J43.0 [unilateral emphysema]),
asthma (J45–J46), bronchiectasis (J47, excluding E84 [cystic
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FIGURE 1 | Disease burden of GERD in patients with NTM-PD: (A) healthcare use of patients with NTM-PD according to presence or absence of GERD (number of

events/person/year), and (B) medical costs of patients with NTM-PD according to presence or absence of GERD (medical cost/person/year, unit US dollar). NTM-PD,

non-tuberculous mycobacterial pulmonary disease; GERD, gastroesophageal reflux disease; OPD, outpatient department; ER, emergency room.

fibrosis] or Q33.4, Q89.3 [congenital bronchiectasis]), pulmonary
tuberculosis (TB; A15–19), and lung cancer (C33–C34).
Extrapulmonary comorbidities were defined as cerebrovascular

disease (G45–G46, I60–I69, and H34.0), hypertension (I10–I15),
angina or myocardial infarction (MI; I20, I21, I22, and I25.2),
congestive heart failure (I43, I50, I09.9, I11.0, I25.5, I13.0, I13.2,
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FIGURE 2 | Odds ratio and 95% confidence interval for emergency room visits, hospitalization, and in-hospital mortality in NTM-PD patients with GERD relative to

those without GERD. The multivariable model was adjusted for age, sex, type of insurance (health insurance, medical aid, and veteran status), bronchiectasis, and

Charlson comorbidity index (0–1 and 2). NTM-PD, non-tuberculous mycobacterial pulmonary disease; GERD, gastroesophageal reflux disease; ER, emergency room;

OR, odds ratio; CI, confidence interval.

I42.0, I42.5–I42.9, and P29.0), inflammatory bowel disease
(K50–K51), diabetes mellitus (E10–E14), chronic kidney disease
(N18), and connective tissue disease (M05, M06, M315, M32,
M33, M34, M351, M353, and M360) (5, 8). The Charlson
comorbidity index (CCI) was calculated using a modified version
consisting of 17 comorbidities (9).

Statistical Analysis
We calculated the age-adjusted prevalence of GERD among
patients with NTM-PD by dividing the number of events by
1,000 person-years. All categorized variables were compared
using Pearson’s chi-squared test. To compare the medical use of
NTM-PD patients with and without GERD, logistic regression
analysis was used to determine the odds ratio (OR) for healthcare
use (ER visits or hospitalizations) and in-hospital mortality
in NTM-PD patients with GERD relative to those without
GERD. A multivariable model was adjusted for age, sex, type
of insurance (health insurance, medical aid, and veteran status),
bronchiectasis, and CCI (0–1 and ≥2). All statistical analyses
were performed with SAS 9.4 (SAS Institute, Cary, NC, USA).
Statistical significance was set at P < 0.05.

RESULTS

Baseline Characteristics
The baseline characteristics of the patients are summarized in
Table 1. The prevalence of NTM-PD in patients with GERD
was significantly higher in older age groups (≥60 years [60.4 vs.
42.8%], P < 0.001). However, there was no difference in the sex
ratio (∼62% of the cases were female). The proportion of patients
who received medical aid was higher in the NTM-PDwith GERD
group than in those without GERD (7.3 vs. 3.8%, P < 0.001).
Analysis of comorbidities indicated that the rates of asthma
(40.9 vs. 25.7%), chronic obstructive pulmonary disease (37.5 vs.
23.0%), bronchiectasis (28.9 vs. 24.1%), hypertension (44.1 vs.

27.6%), diabetesmellitus (34.0 vs. 19.0%), cerebrovascular disease
(15.7 vs. 7.8%), connective tissue disease (12.3 vs. 4.5%), and
CCI ≥ 2 (78.2 vs. 49.0%) were significantly higher in NTM-PD
patients with GERD than in those without GERD (P < 0.001
for all).

Prevalence of GERD in Patients With
NTM-PD
Of the 6,589 patients with NTM-PD, 1,407 had GERD. During
the study period, the prevalence of GERD in patients with NTM-
PD was 21.4%, which was higher than that in patients aged ≥20
years (7.4%) in theHIRA-NPS database. The prevalence of GERD
in patients with NTM-PD increased with age.

Healthcare Use and Medical Costs
According to the Presence or Absence of
GERD
NTM-PD patients with GERD had significantly higher healthcare
use, including all-cause and respiratory disease-specific OPD
visits and ER visits or hospitalizations, than those without
GERD (P < 0.001 for all). Furthermore, NTM-PD patients with
GERD spent a higher total on medical costs (5,098 vs. 2,675
USD/person/year), including respiratory disease-related costs
(1,230 vs. 491 USD/person/year) (P < 0.001 for both) (Figure 1).

Association Between GERD and Increased
Healthcare Use
GERD was independently associated with more ER visits or
hospitalizations in patients with NTM-PD: all-cause (adjusted
OR, 1.45; 95% confidence interval [CI], 1.27–1.64) and
respiratory disease-related (adjusted OR, 1.26; 95% CI, 1.07–
1.48). However, GERD was not significantly associated with
in-hospital mortality (adjusted OR 1.11, 95% CI, 0.76–1.61)
(Figure 2).
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DISCUSSION

To our knowledge, this study is the first to evaluate the impact
of GERD on the estimated disease burden based on healthcare
use, medical costs, and in-hospital mortality in patients with
NTM-PD. NTM-PD patients with GERD had significantly higher
healthcare use and medical costs than those without GERD;
however, there were no significant intergroup differences in in-
hospital mortality.

GERD is prevalent in patients with NTM-PD, affecting
up to 44% of patients (3, 4). In agreement with previous
reports, 21% of patients with NTM-PD had GERD, which was
significantly higher than the prevalence of GERD (7%) in the
overall population aged ≥20 years during the study period.
GERD has been recognized not only as an underlying disease
for the occurrence of NTM-PD (10) but also as an important
comorbidity that can influence the symptoms and severity of
the disease (3, 10). In this regard, this study revealed NTM-PD
patients with GERD are hampered by greater healthcare use and
higher medical costs, which denote a significant disease burden,
compared to those without GERD.

Gastro-esophageal refluxate can aggravate respiratory disease
by either stimulating the sensitized esophageal-bronchial
neuronal pathway or by microaspiration, which involves
aspiration into the airway (11). Conversely, it has been suggested
that progression of chronic lung disease can lead to deterioration
of GERD (12). Consequently, it can be postulated that the
interaction between the two diseases may further deteriorate
the health of patients with NTM-PD and GERD. Considering
the potential bidirectional process between reflux disease and
chronic respiratory disease (13), appropriate treatment of GERD
may lead to decreased disease burden and improvement in
overall treatment outcomes in patients with NTM-PD. However,
since acid reduction cannot reduce refluxate other than acid,
there is a possibility that non-acid refluxate can still cause lung
damage. Thus, it should be acknowledged that it is challenging
to reduce reflux itself.

Our study has several strengths that support our hypothesis
and was based on a large, nationally representative database.

However, there are some limitations to this study. First,
we used a cross-sectional study design; thus, long-term
mortality was not fully evaluated based on the presence
or absence of GERD. Second, there is a possibility of
misclassification because we used the ICD-10 codes to
define NTM-PD and GERD. Therefore, a large prospective
cohort study is needed to clarify the role of GERD
in NTM-PD.

In conclusion, GERD significantly increased healthcare use
and medical costs in patients with NTM-PD. Thus, appropriate
diagnostic and management plans to reduce the GERD-
associated disease burden would bring significant improvements
to patients with NTM-PD.
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Background: Influenza vaccination is strongly recommended for people with chronic

lung diseases, including chronic obstructive pulmonary disease, to reduce risk of

exacerbation. We assess the influenza vaccination rate and its related factors in

participants with airflow limitation (AFL) using nationally representative data in Korea.

Methods: We conducted a cross-sectional study from the Korea National Health and

Nutrition Examination Survey from 2007 to 2018. Individuals ≥ 40 years who underwent

spirometry and had identifiable information on influenza vaccination status were included.

Results: Overall influenza vaccination coverage was 61.2% in participants with AFL

and 41.8% in participants without AFL. Age had a significant impact on the yearly

vaccination rate in participants with AFL. Over the 10 years of study period, while the

yearly vaccination rate steadily increased from 58.3 to 61.9% in elderly participants (≥65

years) with AFL (p for trend= 0.117), the yearly vaccination rate decreased from 41.5% to

30.8% in younger participants (<65 years) (p for trend= 0.038). In multivariable analyses,

younger age [adjusted odds ratio (OR) for unvaccinated = 0.88, 95% confidence interval

(CI)= 0.87–0.90], male (adjusted OR= 1.64; 95%CI= 1.23–2.19), and current smokers

(adjusted OR = 1.42, 95% CI = 1.01–2.00) were associated with increased odds of

being unvaccinated.

Conclusions: The vaccination rate in participants with AFL affected by age. Younger

age, male sex, and current smoking were associated with unvaccinated status. More

attention and targeted interventions are required to improve the influenza vaccination

rate in those with AFL.

Keywords: influenza, vaccination, airflow limitation, risk factor, National Health and Nutrition Examination Survey

(NHANES)
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD), which is a
representative disease with airflow limitation (AFL), is the
leading causes of death worldwide, with a prevalence of 5.6%
in 2015, which is expected to increase to 7.8% by 2030 (1, 2).
COPD is a chronic inflammatory airway disease characterized by
fixed airflow limitation and chronic respiratory symptoms, such
as cough, sputum, and progressive dyspnea. Acute exacerbation
of COPD (AECOPD) can occur during the natural course of
disease (3). AECOPD not only affects an individual’s physical
health status but also decreases lung function and increases future
risk of exacerbation and even mortality (4–6). AECOPD also
increases medical expense and resource use, causing increased
socioeconomic burden (7).

AECOPD is a heterogeneous event thought to be caused
by complex interactions between the host, respiratory viruses
or bacteria, and environmental pollution (8, 9). The most
common causes of AECOPD are respiratory infections, most of
which are viral. Although the most frequent viruses associated
with exacerbation are human rhinoviruses (8), influenza is also
important, accounting for up to 28% of COPD exacerbations
(10). Influenza can lead to hospitalization, frequent exacerbation,
and even death in patients with COPD (11, 12). The disease
course of influenza is worse in patients with COPD compared
with those without COPD.

Influenza vaccination is the main strategy for prevention and
control of seasonal influenza (13). The influenza vaccination
has been shown to reduce AECOPD, influenza-related
hospitalization, and mortality (14, 15). Thus, seasonal influenza
vaccination is recommended to stable COPD patients from
groups A to D classified by combining exacerbation history
and severity of dyspnea suggested by Global Initiative for
Chronic Obstructive Lung Disease (GOLD) (16). Despite
this recommendation, it is not known whether influenza
vaccination coverage has increased among COPD patients
because most studies evaluated vaccination rates for a certain
year (17–20). Such information is even scarcer within the past 10
years (21).

In addition to COPD, influenza vaccination should be
considered in relation to other respiratory diseases including
asthma and bronchiectasis. A previous meta-analysis found that
influenza vaccination reduced febrile illnesses and prevented
asthma attacks requiring emergency visits and hospitalizations
(22). Despite limited studies regarding the efficacy of influenza
vaccination in bronchiectasis, international bronchiectasis
guidelines strongly recommend influenza vaccination in
patients with bronchiectasis (23, 24). Consequently, more
studies are needed to evaluate the factors associated with
influenza vaccination coverage among individuals with AFL
to develop ways to encourage vaccination and improve their
health outcomes.

In this study, we measure the influenza vaccination rate
among participants with AFL in a nationally representative
sample of Korea, and assess factors associated with
influenza vaccination.

METHODS

Study Population
For this study, cross-sectional data were used from the
Korea National Health and Nutrition Examination Survey
(KNHANES), which provides nationwide statistical data on
the Korean population’s health and diet from January 2007
to December 2018. The questionnaire on the influenza
vaccination was investigated for only 3 months in 2013
and was not disclosed to the public; thus, data from 2013
were not included in this study. The KNHANES uses a
complex, stratified, multistage probability cluster sampling
design with sampling units of households based on geographic
region, age, and gender. A health-related interview, nutrition
survey, and physical examination were performed for each
participant selected throughout Korea by trained interviewers.
All participants agreed to participate in this study. Since
publicly available data were used, ethical approval was waived.
The KNHANES surveys were approved by the relevant
institutional review boards, and informed consent was provided
by all participants.

Because spirometry is only performed in individuals older
than 40 years, we only included participants ≥40 years in the
analyses. Participants who did not undergo spirometry and those
who had missing data for influenza vaccination were excluded
from the study.

Of the total 38,247 participants, influenza vaccination data
were available for 34,464, of whom 4,873 (14.1%) had AFL
on spirometry and 29,591 (85.9%) did not. Finally, this study
included 4,873 participants with AFL, comprising those without
influenza vaccination (n = 1,890) and those with influenza
vaccination (n= 2,983) (Figure 1).

Exposure
The main exposure variable was influenza vaccination, which
was determined by the response to a question about influenza
vaccination status during the previous 1 year: “Have you been
vaccinated for influenza during the previous 1 year?”

FIGURE 1 | Selection of study population. AFL, airflow limitation; KNHANES,

Korea National Health and Nutrition Examination Survey.
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Study Outcomes
The study outcomes were (1) influenza vaccination rate
according to presence or absence of AFL during the study
period; (2) influenza vaccination rate in participants with AFL
stratified by age and AFL severity; and (3) factors associated with
vaccination status in participants with AFL.

To reduce the disease burden of influenza, the Korean
government instituted a national immunization program in 2005,
which provides free influenza vaccination for people aged ≥ 65
years. Accordingly, we divided subjects into two age groups (65
years or older vs. under 65 years).

AFL was defined as spirometry revealing forced expiratory
volume in 1 s (FEV1)/forced vital capacity (FVC) <0.7. Severity
of AFL was classified according to the percentage of the predicted
FEV1 (% pred): mild (FEV1 %pred of >70), moderate (FEV1

%pred of 60–69), moderately severe (FEV1 %pred of 50–59),
severe (FEV1 %pred of 35–49), and very severe (FEV1 %pred of
<35) (25).

Covariates
The KNHANES provides various demographic data [age, sex,
body mass index (BMI), education level, marital status, and self-
perceived income status] and spirometry results. The Korean
version of the EuroQol-5 dimensions questionnaire (EQ-5D),
a simple health-related quality of life instrument consisting
of 5 health dimensions (mobility, self-care, usual activities,
pain/discomfort, and anxiety/depression), was used to measure
QoL status (26, 27). Several comorbid conditions were also
included in this study. The presence of hypertension was
determined by high blood pressure (mean systolic blood pressure
≥140 mmHg or mean diastolic blood pressure ≥90 mmHg on
examination or current intake of antihypertensive medications).
Hypercholesterolemia was defined as total cholesterol >200
mg/dL or current intake of lipid-lowering medications (28).
Diabetes was defined as fasting glucose >126 mg/dL or
HbA1c >6.5% or current use of oral hypoglycemic agents
or insulin for glycemic control (29). The presence of other
comorbid conditions was determined by a positive response to
the following two questions: “Have you been diagnosed with
[disease] by a doctor?” or “Do you take medicine or treatment
for [disease]?” (30).

Statistical Analyses
Data are presented as medians and interquartile ranges for
continuous variables and as frequencies (percentages) for
categorical variables. Data were compared using the Mann–
Whitney U test for continuous variables because of non-
normality. Continuous variables were compared using Pearson’s
chi-squared test or Fisher’s exact test, as appropriate. For the
analyses of influenza vaccination rate by AFL severity and
multivariable logistic regression to evaluate factors associated
with not receiving influenza vaccination, we classified the severity
of AFL into four groups [mild (FEV1 %pred of >70), moderate
(FEV1 %pred of 60–69), moderately severe (FEV1 %pred of 50–
59), and severe to very severe (FEV1 %pred of <50)] because
there only 1.3% of participants (n = 64) had severe to very

severe AFL (FEV1 %pred of <50) in the NHANES dataset. In the
multivariable logistic regression model, we adjusted for age, sex,
BMI, marital status, type of medical insurance, economic activity,
education level, EQ-5D, chronic bronchitis, smoking history,
the severity of AFL, comorbidities (hypertension, ischemic heart
disease, diabetes mellitus, and asthma). All tests were two-sided,
and a p-value ≤ 0.05 was considered statistically significant.
Statistical analyses were performed using STATA software (ver.
16; StataCorp, College Station, TX, USA).

RESULTS

Influenza Vaccination Rate According to
Presence of Airflow Limitation
Influenza vaccination trends from 2007 to 2018 are shown
in Figure 2. Compared to 61.2% of participants with AFL
(2,983/4,873) being vaccinated, 41.8% participants without AFL
(12,357/29,591) were vaccinated.

Figure 3 shows the influenza vaccination trends according
to AFL status based on age. While the overall vaccination rate
in participants 65 years or older was ∼80% (Figure 3A), the
vaccination rate in participants younger than 65 years was <40%
(Figure 3B). AFL had a significantly different impact on the
age-stratified vaccination rate. In participants 65 years or older,
the overall vaccination rate (80.2% with AFL vs. 80.3% without
AFL; p= 0.894) was not different by AFL. Regardless of AFL,
the yearly vaccination rate steadily increased during the study
period [58.3% in 2007 to 61.9% in 2018 (p for trend = 0.117)
in participants with AFL; 40.2% in 2007 to 44.7% in 2018 (p for
trend <0.001) in participants without AFL; Figure 3A].

However, among individuals 65 years or less, the vaccination
rate was higher in participants with AFL than in those without
AFL (34.7% with AFL vs. 29.2% without AFL; p < 0.001).
Additionally, while there was a decreasing trend in the yearly
vaccination rate among participants with AFL, the vaccination
rate in subjects without AFL fluctuated [41.5% in 2007 to 30.8%
in 2018 (p for trend = 0.038) for participants with AFL; 28.6%
in 2007 to 29.9% in 2018 (p for trend < 0.001) in participants
without AFL; Figure 3B].

Comparison of Clinical Features in
Participants With AFL According to
Influenza Vaccination
Differences in clinical characteristics according to influenza
vaccination status in participants with AFL are presented
in Table 1. Vaccinated participants tended to be older and
were less likely to be male and current smokers compared
with unvaccinated participants (p < 0.001 for both).
Regarding socioeconomics, vaccinated participants had
lower economic activity and lower QoL compared with
unvaccinated participants (p < 0.001 for both). Comorbid
conditions including hypertension, ischemic heart disease,
hypercholesterolemia, diabetes mellitus, cerebrovascular disease,
asthma, and osteoporosis were more common among vaccinated
participants than unvaccinated participants. Except for FEV1
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FIGURE 2 | Influenza vaccination trends in participants with AFL. AFL, airflow limitation.

FIGURE 3 | Influenza vaccination trends according to age (≥65 vs. <65 years). AFL, airflow limitation. (A) Age ≥ 65 years, (B) Age < 65 years. AFL, airflow limitation.

% predicted, vaccinated participants had lower lung function
parameters [FEV1 (L), FVC (L), FVC % pred, and FEV1/FVC]
compared with unvaccinated participants (p < 0.001 for the
latter four variables).

Influenza Vaccination Rate According to
AFL Severity
Influenza vaccination rate was further analyzed according to AFL
severity. The overall vaccination rates were 59.8% (2,027/3,392),
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TABLE 1 | Comparison of clinical features in participants with airflow limitation according to influenza vaccination.

Participants with airflow limitation (N = 4,873)

Without influenza

vaccination

(n = 1,890)

With influenza

vaccination

(n = 2,983)

P-value

Age (years) 60 (53–66) 70 (65–75) <0.001

Male sex 1,449 (76.7) 2,061 (69.1) <0.001

Current smoker 883 (47.1) 1,009 (34.1) <0.001

Smoking amount (pack-years) (n=3,182) 5 (0–26) 0 (0–24.5) 0.004

Body mass index, kg/m2 23.5 (21.6–25.5) 23.5 (21.7–25.3) 0.782

Education beyond high school 1,107 (59.1) 1,149 (38.8) <0.001

Marriage status (yes) 1,853 (98.2) 2,953 (99.2) 0.001

Economic activity status 1,257 (66.9) 1,352 (45.5) <0.001

Health insurance 1,798 (95.8) 2,791 (94.4) 0.027

Symptoms (n = 3,558)

Cough ≥3 months 45 (3.2) 88 (4.1) 0.207

Sputum ≥3 months 108 (7.8) 206 (9.5) 0.075

Chronic bronchitis 118 (8.5) 223 (10.3) 0.076

Quality of life, EQ-5D 1 (0.907–1) 1 (0.817–1) <0.001

Comorbidities

Hypertension (n = 3,576) 667 (51.5) 1,472 (64.5) <0.001

Ischemic heart disease (n = 2,383) 53 (6.0) 152 (10.2) <0.001

Hypercholesterolemia (n = 4,559) 298 (16.8) 571 (20.5) 0.002

Diabetes mellitus (n = 4,130) 853 (54.3) 1,512 (59.1) 0.003

Cerebrovascular disease (n = 2,354) 32 (3.6) 88 (6.0) 0.012

Asthma (n = 2,612) 63 (6.6) 200 (12.1) <0.001

Osteoporosis (n = 1,958) 25 (3.5) 141 (11.4) <0.001

Tuberculosis (n = 2,663) 49 (4.9) 87 (5.3) 0.633

Depression (n = 2,602) 26 (2.7) 61 (3.7) 0.151

Any cancer history* (n = 1,361) 33 (3.8) 52 (3.5) 0.757

Spirometry

FEV1, L 2.45 (1.96–2.90) 2.07 (1.60–2.49) <0.001

FEV1, % pred 78.2 (68.6–86.6) 77.6 (66.5–87.6) 0.287

FVC, L 3.81 (3.12–4.44) 3.32 (2.66–3.90) <0.001

FVC, % pred 91.9 (82.3–100.6) 87.2 (76.9–96.9) <0.001

FEV1/FVC 66.0 (61.9–68.3) 65.0 (59.8–67.9) <0.001

Data are presented as median (interquartile range) or number (percentage). The numbers in brackets for each comorbidity represent the number of participants who responded to the

questions regarding each comorbidity.
* Includes gastric, liver, colon, breast, cervical, lung, or thyroid cancer.

EQ-5D, EuroQol-5 dimensions questionnaire; FEV1, forced expiratory volume in 1s; % pred, percentage of the predicted value; FVC, forced vital capacity.

61.7% (484/784), 66.6% (273/410), and 69.3% (199/287) in
participants with mild, moderate, moderately severe, and severe
to very severe AFL subjects, respectively (Figure 4; p= 0.001).

Factors Related to Non-vaccination in
Participants With AFL
As shown in Table 2, in multivariable analyses, younger age
[adjusted odds ratio (OR) for being unvaccinated = 0.88, 95%
confidence interval (CI)= 0.87–0.90], male (adjusted OR= 1.70;
95% CI= 1.21–2.42), and current smoking (adjusted OR= 1.42,
95% CI = 1.01–2.00) were associated with increased odds for
being unvaccinated. Although participants with more severe AFL
were more likely to be vaccinated according to the univariable

analysis, the severity of AFL was not related to vaccination status
in multivariable analyses.

DISCUSSION

This study evaluated influenza vaccination trends from 2007
and 2018 among participants with AFL in Korea. During the
study period, the overall influenza vaccination rate was higher
in participants with AFL than in those without AFL. While
the influenza vaccination rate in the elderly with AFL steadily
increased similar to that of those without AFL, the rate in young
participants with AFL decreased, while the rate among young
participants without AFL fluctuated. In multivariable analyses,
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FIGURE 4 | Influenza vaccination rate according to AFL severity. AFL, airflow limitation.

younger age, male, and current smoking were associated with
increased odds of unvaccinated status.

Influenza vaccination has been considered as important
management in individuals with chronic airway diseases with
AFL, such as COPD, asthma, and bronchiectasis. The current
guidelines strongly recommend influenza vaccination in COPD.
Influenza vaccination is known to reduce not only acute
exacerbations but also serious lower respiratory infections in
COPD participants. The benefits of influenza vaccination in
participants with COPD extend beyond the prevention of
respiratory illness. Studies have shown that influenza vaccination
can reduce mortality and risk of ischemic heart disease, especially
in the elderly (31). Furthermore, chronic comorbidities are highly
prevalent in patients with COPD and are associated with frequent
exacerbations and increased risk of exacerbation (32). Hence,
influenza vaccination should be emphasized in patients with AFL
and other comorbidities.

The vaccination rate in patients with COPD varies widely by
country. While the rates of influenza vaccination in patients with
COPD were relatively high in the US (∼64%) (21), Spain (∼60%)
(17, 18), and Korea (∼60% in this study), the vaccination rate
was relatively low in Hungary (24%) (19), Taiwan (32%) (33),
and Turkey (40%) (20). Unfortunately, few studies have evaluated
influenza vaccination coverage within a specific country. In
our study, the influenza vaccination rate was relatively stable,
suggesting more effort is needed to increase coverage in patients
with COPD in Korea. Because the current data suggest that
vaccination rates can vary widely, we suggest that studies
evaluating vaccination rates over time would be informative to
set country-specific vaccination strategies for COPD patients.

Regarding asthma, a previous meta-analysis demonstrated
influenza vaccination reduced febrile illness by 72% and
prevented 59–78% of cases of acute exacerbation of asthma
requiring emergency visits and/or hospitalizations (22),
suggesting influenza vaccination could be a cost-effective
strategy to reduce acute exacerbation of asthma. Although

there is limited evidence directly showing the effectiveness of
vaccination in patients with bronchiectasis, influenza virus may
play a crucial role in triggering exacerbation of bronchiectasis
(34), which supports providing influenza vaccination to this
population (23, 24). However, to provide solid evidence
for influenza vaccination in patients with bronchiectasis,
future studies evaluating the role of influenza vaccination in
bronchiectasis are needed.

Importantly, our study results suggested whom clinicians
should persuade to receive influenza vaccination, which includes
younger patients, males, and current smokers. As shown in
previous studies, the vaccination rate was significantly lower
in the younger population with AFL than in the older
population with AFL (17, 20, 21, 33, 35). Additionally, younger
age was independently associated with unvaccinated status in
participants with AFL. Beyond this, we further performed a
trend analysis for vaccination over 10 years according to age
group, which has not been performed in previous studies. While
the vaccination rate in elderly subjects with AFL had a steadily
increasing trend, the rate showed a decreasing trend. The reasons
for this phenomenon are not clear. For a possible reason, young
participants with AFL are likely to have unhealthy lifestyles, while
their symptoms are mild or absent in the early stage of AFL.
Accordingly, the importance of influenza vaccination is likely to
be neglected in this population. This information suggests the
importance of age in predicting influenza vaccination in those
with AFL. We need to pay more attention to increasing the
vaccination rate in the young population with AFL.

Consistent with previous studies, our study revealed that
males and current smokers are more likely to be unvaccinated
among participants with AFL. Generally, males are more likely
to be current smokers than females, especially in Asian countries,
including Korea (30). Furthermore, being a male and a smoker
increases the risk of severe disease presentation, including
mortality (36–38). Thus, it is plausible that such male patients
who also have AFL have a much higher risk of worse prognosis
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TABLE 2 | Factors associated with non-vaccination against influenza in

participants with airflow limitation.

Variables Univariable Multivariable*

OR (95% CI) OR (95% CI)

Male sex 1.47 (1.29–1.68) 1.70 (1.21–2.42)

Age, year 0.89 (0.88–0.90) 0.88 (0.87–0.90)

Married state 0.43 (0.26–0.73) 2.33 (0.85–6.40)

Medicaid 0.73 (0.56–0.97) 0.85 (0.47–1.52)

Economic activity 2.42 (2.15–2.73) 0.96 (0.75–1.22)

Education beyond high

school

2.28 (2.01–2.57) 1.15 (0.91–1.45)

EQ-5D 8.47 (5.21–13.78) 0.57 (0.21–1.50)

Body mass index,

kg/m2

1.00 (0.98–1.02) 0.97 (0.93–1.01)

Chronic bronchitis 0.81 (0.64–1.02) 0.89 (0.57–1.37)

Current smoker 1.79 (1.55–2.05) 1.42 (1.01–2.00)

Severity of airflow

limitation
†

Mild (FEV1 %pred of

>70)

Reference Reference

Moderate (FEV1 %pred

of 60–69)

0.92 (0.78–1.08) 1.07 (0.78–1.49)

Moderately severe

(FEV1 %pred of 50–59)

0.75 (0.60–0.93) 1.14 (0.77–1.69)

Severe to very severe

(FEV1%pred of <50)

0.66 (0.51–0.85) 1.22 (0.75–1.97)

Comorbidities

Hypertension 0.58 (0.51–0.67) 0.91 (0.72–1.16)

Ischemic heart disease 0.56 (0.41–0.78) 0.80 (0.47–1.34)

Diabetes mellitus 0.82 (0.72–0.93) 0.92 (0.70–1.22)

Asthma 0.51 (0.78–0.68) 0.61 (0.33–1.13)

Data are presented as ratios (95% confidence intervals).
†
Severity of airflow limitation was graded according to ATS/ERS guideline (25), and severe

and very severe were combined into one group due to the small number of participants

with severe to very severe AFL (n = 64).
*Multivariate analysis was adjusted for age, sex, smoking PY, marriage status (married vs.

unmarried or divorced), economic activity (active vs. inactive), education level (college

or above vs. high school or less), EQ-5D, severity of airflow limitation, and comorbid

conditions (hypertension, ischemic heart disease, diabetes mellitus, and asthma).

OR, odds ratio; EQ-5D, EuroQol-5 dimensions questionnaire; FEV1, forced expiratory

volume in 1s; % pred; percentage of the predicted value.

than those without these risk factors. However, our study results
alone cannot explain sex differences in vaccination rates. We
believe that an unhealthy lifestyle in men may have influenced
this observation. Additionally, there is a possibility that women
might be more compliant with clinicians’ recommendations for
influenza vaccination than men, as shown by the sex difference in
medication adherence in Korea (39).

There have been conflicting results on the relationship
between AFL severity and influenza vaccination rate. While a
lower rate of vaccination was observed in subjects with more
severe AFL (17), other studies showed a positive association
between AFL severity and influenza vaccination rate (18–20).
Similarly, our study showed a positive association between
AFL severity and vaccination rate, although it diminished

after adjustment of covariables. Given that severe AFL can be
associated with severe pneumonia in patients with AFL (40),
and the protective effects of influenza vaccination seem to
be correlated with AFL severity (13), strategies focusing on
improving the vaccination rate in patients with severe AFLmight
be more cost-effective.

Our findings yield important insights that can be helpful
to design targeted strategies to increase influenza vaccination
coverage in patients with AFL. The identification of factors
(younger age, male, and current smokers) associated with
unvaccinated status can help design tailored strategies to increase
influenza vaccination in patients with AFL. We also suggest
a change in strategy of influenza vaccination policy for adults
in Korea. Currently, the Korean government-led free influenza
vaccination policy for adults is a one-size-fits-all strategy that
is applied to all subjects aged 65 or older, and it does not
consider risk factors other than age. Thus, a large number of
young patients with AFL who are at a high risk of influenza
have not been considered for the benefit of government-led
free vaccination programs. However, given the broad benefits
of influenza infection on respiratory diseases with AFL, a
more advanced and personalized free vaccination strategy that
estimates individual risk might be helpful, and it could include
young patients with AFL.

There are limitations to our study that should be
acknowledged. First, this study was performed in Korea, limiting
the generalizability of our findings. Second, because KNHANES
does not have data on post-bronchodilator spirometry, we
defined AFL using pre-bronchodilator spirometry. However,
prebronchodilator spirometry has been widely used to define
AFL in many previous studies of COPD epidemiology
(30, 41, 42). Third, this study could not evaluate the presence
of bronchiectasis, which may be an important comorbidity to
consider when interpreting the results of our study. This was
because a questionnaire on bronchiectasis was only available
in the 2007–2009 NHANES dataset. Fourth, we could not
provide a reasonable explanation for our observation of the
relationship between socioeconomic and influenza vaccination
status in participants with AFL. Poor socioeconomic status,
such as low education level, inactive economic status, and
reduced QoL, showed increased odds of non-vaccination in
the univariable analysis but no significant relationship in
multivariable analyses. Although the reasons are not clear,
it is possible that the Korean government-led free influenza
vaccination program attenuated the influence of these factors on
influenza vaccination. The free influenza vaccination program
in Korea targets people receiving Medicaid and the elderly
population whose socioeconomic status and QoL are poor,
which leads to disproportionally higher influenza vaccination
rates in these subjects despite their poor socioeconomic status.
Thus, the simultaneous consideration of these factors (age,
Medicaid, economic activity, educational level, and QoL) might
have yielded the non-significance of socioeconomic variables.
As socioeconomic status and government health policies might
differ between countries, our study results should be interpreted
with caution in other countries.
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In conclusion, over the past 10 years, the influenza
vaccination rate in elderly participants with AFL steadily
increased, while the rate in younger participants with AFL
decreased. Younger participants, males, and current smokers
were most likely to have unvaccinated status among those
with AFL. More attention and targeted interventions are
required to improve the influenza vaccination rate in individuals
with AFL.
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Long term noninvasive ventilation (LTNIV) is a recognized treatment for chronic

hypercapnic respiratory failure (CHRF). COPD, obesity-hypoventilation syndrome,

neuromuscular disorders, various restrictive disorders, and patients with

sleep-disordered breathing are the major groups concerned. The purpose of this

narrative review is to summarize current knowledge in the field of monitoring during

home ventilation. LTNIV improves symptoms related to CHRF, diurnal and nocturnal

blood gases, survival, and health-related quality of life. Initially, patients with LTNIV

were most often followed through elective short in-hospital stays to ensure patient

comfort, correction of daytime blood gases and nocturnal oxygenation, and control

of nocturnal respiratory events. Because of the widespread use of LTNIV, elective

in-hospital monitoring has become logistically problematic, time consuming, and costly.

LTNIV devices presently have a built-in software which records compliance, leaks, tidal

volume, minute ventilation, cycles triggered and cycled by the patient and provides

detailed pressure and flow curves. Although the engineering behind this information is

remarkable, the quality and reliability of certain signals may vary. Interpretation of the

curves provided requires a certain level of training. Coupling ventilator software with

nocturnal pulse oximetry or transcutaneous capnography performed at the patient’s

home can however provide important information and allow adjustments of ventilator

settings thus potentially avoiding hospital admissions. Strategies have been described to

combine different tools for optimal detection of an inefficient ventilation. Recent devices

also allow adapting certain parameters at a distance (pressure support, expiratory

positive airway pressure, back-up respiratory rate), thus allowing progressive changes in

these settings for increased patient comfort and tolerance, and reducing the requirement

for in-hospital titration. Because we live in a connected world, analyzing large groups

of patients through treatment of “big data” will probably improve our knowledge of

clinical pathways of our patients, and factors associated with treatment success or

failure, adherence and efficacy. This approach provides a useful add-on to randomized

controlled studies and allows generating hypotheses for better management of HMV.

Keywords: non-invasive ventilation, chronic hypercapnic respiratory failure, monitoring, home ventilation, long

term mechanical ventilation
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INTRODUCTION

Long term noninvasive ventilation (LTNIV) is widely accepted
for treatment of chronic hypercapnic respiratory failure (CHRF)
related to obstructive or restrictive disorders. Its development
was triggered in the early 1980’s by the report by Sullivan et
al. of the use of CPAP for obstructive sleep apnea syndrome
(1). Since then devices have undergone major evolutions, with
a progressive shift from volume-cycled to pressure-cycled then
multimodal devices, and appearance of auto-titrating modes
which can adapt to changes in airway resistance, reactance,
or compliance of the respiratory system and aim to ensure a
target tidal volume and minute ventilation (2). One of the major
contributions of medical engineering for these devices has been
the development of built-in software, allowing to monitor in
detail items such as compliance, leaks, tidal volume, residual
respiratory events, or percentage of cycles triggered/cycled by the
device (3–7). Moreover, for some devices, analysis of raw data
for flow, pressure and even thoraco-abdominal movements on
a breath-by-breath basis is possible. Strategies for monitoring
LTNIV have also evolved: historically, elective evaluations of
patients on LTNIV were initially most often hospital-based or
even ICU-based; at present, they rely more and more on tools
such as pulse oximetry, transcutaneous capnography (PtcCO2)
and built-in software that can be assessed at home (4). New
developments in telemedicine and the growing contribution of
health care providers make these data easily available, allowing to
remotely assess quality of ventilation.

In this review, we will discuss the benefits, but also the possible
pitfalls of monitoring patients under LTNIV, and perspectives as
to future options. This review will focus on an adult population
under LTNIV.

Why Monitor LTNIV?
The goals of long-term NIV (LTNIV) are to improve symptoms
related to chronic hypercapnia and—when present—sleep-
related breathing disorders (SRBD), to improve health-related
quality of life (HRQL), decrease hospital admissions, correct
hypoventilation and optimize SpO2 in order to prevent the
development of pulmonary hypertension and cor pulmonale,
and improve survival (8). In several indications (chronic
obstructive pulmonary diseases (COPD), amyotrophic lateral
sclerosis (ALS), restrictive thoracic disorders), improvement of
ABG and control of nocturnal hypoventilation are significantly
associated with a better prognosis (9–13). In order to achieve
these goals, it is mandatory to ensure that: 1/ LTNIV improves
daytime and nocturnal arterial blood gases, 2/ compliance to
LTNIV is sufficient to have a significant physiological effect, 3/
LTNIV does not generate per se undesired respiratory events
or side effects and discomfort, and 4/ HRQL and symptom
scores improve over time. Guidelines usually recommend at least
one annual elective assessment for patients under LTNIV: the
frequency of evaluations depends however on the underlying
pathology, its severity and rate of progression, and may be
required as often as every 3 months (8, 14, 15).

Monitoring LTNIV: A Step by Step Approach
Daytime and Nocturnal Blood Gases: Capillary,

Transcutaneous or Arterial Samples
Normalizing daytime arterial blood gases (ABG) is a major
physiological goal for patients under LTNIV (9, 10). Thus,
performing daytime measurements of ABG—by puncture of
the radial artery—is a standard procedure when monitoring
LTNIV. Measurements are performed without NIV, at least
30min after interrupting NIV (when possible), preferably in
a sitting position. Capillary arterialized samples, taken at the
earlobe after application of a vasodilating gel, are considered
reliable surrogates of arterial ABG for pH and PaCO2 (16–19).
Results for PaO2 are less reliable, with a possible underestimation
by the capillary technique (20).

In stable chronic respiratory failure, pH is usually within a
normal range (2, 21–24). The contribution of bicarbonates to
the detection of residual nocturnal hypoventilation is debated
because of the impact of a large panel of drugs and comorbidities
on HCO3 levels (25, 26). HCO3 levels should not be used as
an isolated criterion for detecting nocturnal hypoventilation, but
can be indicative of nocturnal hypoventilation and should lead to
nocturnal capnography if available.

Daytime ABG measurements under NIV are indicative of
correction of PaCO2 by NIV but have been shown to be
a poor reflection of correction of nocturnal hypoventilation
(27–29). Thus, assessing nocturnal pCO2 is essential for
identifying periods of hypoventilation related to leaks, undesired
respiratory events including patient-ventilator asynchrony or
inappropriate settings.

Nocturnal arterial punctures are a source of discomfort,
awaken the patient, and are not recommended. Surrogates of
nocturnal ABG assessment are end-tidal CO2 (ETCO2) and
transcutaneous capnography (TcPCO2). Reliability of ETCO2

measurements is subject to V/Q mismatch, physiological dead
space and ventilatory mode. Importantly, a normal ETCO2

does not exclude hypercapnia, while an elevated ETCO2 is
strongly suggestive of hypercapnia but may underestimate actual
PaCO2 value (4, 30). Thus, the use of ETCO2 as a surrogate
measurement for nocturnal PaCO2 is not recommended in most
circumstances (4).

Transcutaneous capnography (TcPCO2) is considered reliable
for continuous (nocturnal) monitoring of PaCO2 when patients
are hemodynamically stable, and devices are used by an
experienced team. A probe temperature of 42◦C is tolerated for
8 h without any risk of skin burns in adults (31). Several studies
have reviewed the performances of commercialized capnographs
and show acceptable biases and limits of agreement (27, 29). A
review of the recent literature on transcutaneous capnography
suggested that bias values up to ± 1 kPa (7.5 mmHg), and limits
of agreement up to ± 1.33 kPa (10 mmHg) were acceptable (27).
PtcCO2 however has a few drawbacks: 1/ its lag time which
precludes the detection of very short events (32) and 2/ the
occurrence of occasional errand values, largely dependent on the
expertise of the users.

Consensual—although arbitrary—definitions for
hypoventilation have been published by the American
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Association for Sleep Medicine (33). However, minor changes
in definitions of hypoventilation can have a major impact on
clinical assessment (34–36).

Pulse oximetry has the advantage of simplicity and low cost: its
major drawback is the lack of specificity of desaturations, which
do not allow to distinguish hypoventilation from other causes of
drops in SpO2.

Contribution of Built-In Monitoring Devices
Compliance
Compliance is directly related to efficacy of NIV (on ABG and
symptom control), and prognosis; it may also reflect patient
discomfort, which impairs health related quality of life. Analysis
of use of LTNIV (compliance) has 3 components: total time
spent with the ventilator, pattern of use and evolution of these
parameters (Figure 1). Total time spent under NIV has to be
long enough for NIV to have a beneficial impact on daytime and
nocturnal ABG, and, in some cases, on total energy expenditure
(37, 38). It is usually considered that using NIV <3:30 h per 24 h
is insufficient and does not allow resetting of respiratory centers
and resting of respiratory muscles. Borel et al. described a “U-
shaped curve” relationship between compliance and prognosis
(39). Too low values provide insufficient benefit, while higher
values indicate more severe respiratory impairment (39). In
COPD, a meta-analysis by Struik et al. suggests that a daily use
of NIV for at least 5 h is required to improve PaCO2 (40). In
neuromuscular disorders such as amyotrophic lateral sclerosis or
myotonic dystrophy, there is a clear relation between adherence
to treatment and survival (41–44). Thus, the best compromise
between patient comfort and efficacy must be sought for. Pattern
of use (fragmentation vs. continuous use) can be an indicator
of discomfort and side-effects (leaks, pain or discomfort related
to interface), co-morbidities (nycturia, use of diuretics) or
symptomatic patient-ventilator asynchrony (Figure 1) (7, 45, 46).
Evolution of total time spent under NIV and changes in pattern
of use may be indicative of an exacerbation with a risk of hospital
admission (47).

Leaks
Leaks in LTNIV are either intentional (i.e., related to exhalation
valves to avoid rebreathing) or unintentional (i.e., caused for
instance by a poorly adapted interface, too high insufflation
pressures, or mouth leaks). Intentional leaks depend on the
type of mask and insufflation pressures: interfaces have their
predefined leak vs. pressure curves (48). In barometric modes,
which are presently by far the most frequently used, ventilators
adapt the airflow generated by the turbine to the intentional
leak to ensure that the pressure attained in the airways
reflects settings determined by the clinicians. Unintentional
leaks are by definition unpredictable, most often variable, may
differ between inspiratory and expiratory phases, and can be
influenced by elements such as facial morphology, type of
interface (facial vs. nasal mask), body position, sleep stages or
ventilator settings. More importantly, they may interfere with
the detection of patient’s changes in inspiratory flow (which
triggers pressurization or induces cycling). Leaks are thus the
most frequent etiology of patient-ventilator asynchrony. They

FIGURE 1 | Adherence to NIV. Graphic transcription of ventilator use provided

by ventilator software. Y axis: time of the day/night; X axis: days. Each vertical

bar represents time spent using the ventilator for a given day. (A) Very regular

use suggesting that patient is adherent and comfortable with his/her

treatment. (B) Frequent interruptions and irregular use of ventilator suggesting

discomfort and/or comorbidity.

may induce significant and sometimes severe desaturations due
to hypoventilation or to a “dilution effect” in patients with
supplemental oxygen and can impact on quality of sleep (49).
Also, leaks have a detrimental effect on reliability of data provided
by ventilator software such as tidal volume, minute ventilation,
or percentage of cycles triggered or cycled by the ventilator
(3). This may be particularly problematic in automated modes
with volume targeting or providing a continuous assessment of
airway resistance.

Most built-in monitoring systems coupled to LTNIV
ventilators provide data about leaks. However, leaks are
estimated and reported differently according to manufacturers,
which may misguide the clinician (i.e., average leaks, average
leak only during expiratory phase, average leaks with or without
intentional leaks) (3, 50, 51). Bench test studies have shown that
reliability of reported leaks may vary considerably according to
device used and to absolute value of leaks (3, 5, 52). Arbitrary
threshold values for acceptable leaks are commonly reported by
several manufacturers: the threshold of 24 L/min often referred
to was first mentioned in a study by Teschler et al. (53): the
relevance of this value is questionable today since the efficacy
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FIGURE 2 | Spontaneous vs. controlled cycles. (A) From top to bottom: flow (including leaks), pressure, unintentional leaks (i.e.: difference between total leak flow

and estimated flow through the leak valve (small holes) of the mask), total leaks, and respiratory rate. Seventy six-year-old female subject with kyphoscoliosis,

obstructive sleep apnea and obesity; ventilator settings: ST mode (spontaneous/timed); IPAP (Inspiratory positive airway pressure): 30 cmH2O; EPAP: 10 cmH2O

(Expiratory positive airway pressure); Back-up respiratory rate (BURR): 18 cycles/min. Nasal mask (facial mask not tolerated). Flow tracing shows intermittent flattening

of inspiratory curve suggesting persisting flow limitation (upper airway collapse to be compensated by increasing EPAP). Blue arrow: pressure tracing shows vertical

marks associated with each cycle indicating controlled cycle (i.e., delivered by ventilator). On this segment, patient is continuously on back-up respiratory rate. Low

level of intentional leaks. (B) From top to bottom: flow (including leaks), pressure, total leaks, and respiratory rate. Fifty four-year-old male subject with restrictive

disorder. Ventilator settings: ST mode (spontaneous/timed); IPAP (Inspiratory positive airway pressure): 16 cmH2O; EPAP: 5 cmH2O (Expiratory positive airway

pressure); Back-up respiratory rate (BURR): 16 cyc/min; nasal mask. Blue arrow: as opposed to (A), all cycles are triggered by the patient (i.e., spontaneous). Normal

aspect of flow and pressure tracings. DirectView software, Philips Respironics.

of ventilator turbines and their capacity to compensate for
leaks has improved substantially. A statement by the French
GAV-O2 group suggested that leaks are considered troublesome
essentially 1/ if they impact on patient comfort and compliance
and 2/ if they cause recurrent nocturnal desaturations and
episodes of hypercapnia (46).

For the patient, the variability of leaks and peak levels even
of short duration may be a more important source of discomfort
than the mean or median leak level.

Tidal Volume and Minute Ventilation
Tidal volume (VT) and minute ventilation (MV) are important
goals for the clinician when determining ventilator settings:
a usual target for VT is 8–10 ml/kg of ideal body weight.
The accuracy of VT, and thus MV, depends on the reliability
of ventilator software, on pressure values and on leaks (54,
55). In a bench study of 7 home ventilators, bias between
measured and reported VT ranged from 66 to 236ml (3).

This may be problematic in automated volume-targeted modes.
A high variability of tidal volume may per se be suggestive
of leaks.

Cycles Triggered or Cycled by the Device
Quantifying the percentage of cycles triggered by the patient is
theoretically an important information. It allows to determine
to what extent the patient’s respiratory rate (RR) is captured by
the ventilator, i.e., to what extent ventilatory support approaches
a controlled mode (Figure 2). This may be a goal for clinicians
in neuromuscular disorders for instance, to rest inspiratory
muscles, or to decrease residual apneas in obesity hypoventilation
(56). However, in the presence of leaks, and/or upper airway
obstruction, a low percentage of triggered cycles may reflect the
fact that the ventilator does not detect the patient’s inspiratory
efforts. Conversely, a high percentage of cycles triggered by
the patient, i.e., a spontaneous mode, may be an indicator
of patient-ventilatory synchronization. This parameter must
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FIGURE 3 | Upper airway obstruction under NIV. 65-year-old male subject, obesity-hypoventilation with obstructive sleep apnea syndrome (OSAS). Bi-level pressure

support ventilator, ResScan software, ResMed. Facial mask. Ventilator settings: ST Mode (spontaneous/timed), IPAP (Inspiratory positive airway pressure): 20 cmH2O;

EPAP (Expiratory positive airway pressure): 10 cmH2O; BURR (Back-up respiratory rate): 16 cycles/min. From top to bottom: flow, unintentional leaks (i.e.: difference

between total leak flow and estimated flow through the leak valve of the mask), tidal volume, pressure. 5 min window. Red line on leaks tracing (24L/min) is a threshold

value suggested by manufacturer for upper limit of acceptable leaks (see text for comments). Event A: marked decrease in flow with tracing suggesting increase in

upper airway resistance (leading to intermittent complete obstruction); simultaneous decrease in tidal volume without increase in leaks. Event B: sudden transient

resumption of flow with a simultaneous increase in tidal volume. Increase in upper airway resistance could be related to an insufficient “pneumatic splint” effect in spite

of rather high insufflation pressures, or to glottic closure (further characterization would require respiratory polygraphy). In a patient with a known OSAS, a pragmatic

trial of increasing EPAP is an option. Value of IPAP should be increased accordingly to maintain same level of pressure support (if tolerated). Use of a facial mask may

also contribute to these events, and may be replaced by nasal mask with chin strap if tolerated.

therefore be interpreted with caution, especially in the presence
of leaks.

Ventilators also provide the percentage of respiratory cycles
cycled by the patient i.e., for which the predefined percentage
of peak inspiratory flow is reached. A high percentage of
respiratory cycles cycled by the patient may be considered
as evidence of appropriate patient ventilator synchronization.
Conversely, a high percentage of cycling by the device may
reflect either a “controlled mode” or leaks with or without patient
ventilator asynchrony.

Residual Respiratory Events Under LTNIV
The presence of residual respiratory events is frequent and
has a documented impact on quality of sleep and sleep
structure (23, 57–60) (Figures 3–5). Severe patient-ventilator
asynchrony may compromise the efficacy of NIV. Also, events
such as recurrent upper airway obstruction may affect survival
in ALS (9). It is thus important to evaluate, and correct
these events.

Most devices report residual respiratory events occurring
under NIV: they are labeled as apnea, hypopnea, and sometimes
even classified as “central” or “obstructive” according to
complex algorithms and estimation of upper airway resistance
using the force oscillation technique, the shape of the flow
curves or both. The relevance of these parameters in LTNIV

is not well-established: these parameters are derived mainly
from the use of CPAP in sleep-related disordered breathing
(SRDB), and do not take into account the higher level of
complexity of undesired residual (or de novo) respiratory events
associated with LTNIV. Very few studies have assessed the
reliability of these data. Georges et al. showed that the apnea-
hypopnea index (AHI) reported by one specific device in
patients with obesity-hypoventilation was well-correlated with
a manually read polysomnographic assessment, and that a
threshold value of 10/hour for AHI allowed to discriminate
with a high sensitivity and specificity subjects who were
correctly ventilated vs. those for whom adjustments were
required (61). In a similar study, Alvarez et al. compared
manually scored polygraphy with built-in software data in 26
patients with obesity-hypoventilation: automated analysis of
residual events was well-correlated with polygraphy; however,
manually scored tracings from ventilator software provided
more consistent results than automated software (62). More
recently Aarrestad et al. compared manually scored polygraphy
and data from ventilator software in 67 subjects on LTNIV
for restrictive disorders: a value of AHI above 7.2/hour
reported by ventilator software had a sensitivity of 93%
(95%CI: 68–100) and a specificity of 92% (95%CI: 81–98)
for detecting patients with an AHI > 10/hour scored by
polygraphy (34).
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FIGURE 4 | Patient ventilator asynchrony (PVA): illustrative ventilator tracings. One-minute windows. From top to bottom: pressure, flow, tidal volume, respiratory rate

and unintentional leaks (i.e., without intentional leak through exhalation valve of mask). Rescan software, ResMed. (A) 74-year-old male subject with severe COPD

(FEV1: 20% of predicted). Bi-level pressure support ventilator, Rescan software, Resmed. Ventilator settings: ST (spontaneous/timed) mode; IPAP (Inspiratory positive

airway pressure): 30 cmH2O; EPAP (Expiratory positive airway pressure): 7 cmH2O; BURR (back-up respiratory rate) 20 cycles/min. Red arrows show intermittent

double-triggering. In this case, leaks are not in cause. Possible causes are dysfunction of ventilator, too high inspiratory trigger sensitivity, too short minimal inspiratory

time (TIMIN) with prolonged inspiratory efforts. Adjustments of settings (if required) to be considered are: to increase TIMIN; to adapt cycling sensitivity (at a lower

percentage of peak inspiratory flow, which delays cycling); to increase IPAP and reduce rise time; or to decrease sensitivity of inspiratory trigger. (B) 67-year-old male

subject with obesity hypoventilation and severe OSAS. Bi-level pressure support ventilator, Rescan software, Resmed. Ventilator settings: ST (spontaneous/timed)

mode; IPAP (Inspiratory positive airway pressure): 21 cmH2O; EPAP (Expiratory positive airway pressure): 14 cmH2O; BURR (back-up respiratory rate) 16 cycles/min.

Red arrows show low amplitude repeated increases in flow and pressure which represent unrewarded efforts (i.e., inspiratory efforts by the patient which do not

trigger the ventilator). Among possible causes are: inappropriate setting of inspiratory trigger sensitivity, increase in upper airway resistance, leaks, intrinsic PEEP

(Positive end expiratory pressure), decrease in inspiratory muscle function. For all PVA, control of leaks is mandatory before adjusting other settings.

Detailed Analysis of Flow and Pressure Curves and

Coupling With Pulse Oximetry and Leaks
Ventilator software provides the possibility of a detailed cycle-by-
cycle analysis of pressure and flow curves, while simultaneously
providing curves of estimated leaks and tidal volume. Oximetry
can be added to most devices to complete this analysis. This
allows the detection of residual obstructive events with or
without persistence of respiratory drive (63), may show periodic
breathing, and patient ventilator asynchronies (rate asynchrony
such as multiple triggering, auto-triggering, ineffective efforts, or
intracycle asynchronies such as underassistance, or overshoot)
(49). Coupling the detailed analysis of ventilator curves with
oximetry and leaks allows a better assessment of relevance
and mechanisms involved, and provides a rationale to adapt
ventilator settings. Illustrative cases of contribution of pressure
and flow curves are shown in Figures 2–5.

Contribution of Respiratory Polygraphy or

Polysomnography
Respiratory polygraphy (PG) or polysomnography (PSG),
preferably coupled with TcPCO2, are considered as gold-standard
for documenting undesired respiratory events occurring under

LTNIV. These events have been reported by several studies (34,
45, 57, 58, 64, 65) and defined in detail by the SomnoNIV group
(63). However, PG or PSG under NIV requires expertise. PSG
is not easily available in many countries, and thus use of PSG
for titrating and/or monitoring LTNIV, although recommended
by the AASM (American Association of Sleep Medicine), is not
standard practice (66). Some specialized centers use PSG for
titration and follow-up (67). Proposed algorithms recommend
PSG or PG only after a thorough analysis of symptoms, PtcCO2,
ventilator software and correction of leaks (4, 68) (Figure 6).

Symptom Scores and Assessment of Health-Related

Quality of Life (HRQL)
Specific HRQL questionnaires have been designed for patients
under LTNIV, such as the SRI (Severe Respiratory Insufficiency
Questionnaire) which is the most widely used in this setting, with
16 translations and an “App” version available (69, 70). This type
of questionnaire is however mostly designed for clinical studies,
and not for follow-up of individuals.

A disease-specific symptom score (S3-NIV) has been recently
developed (71) and is undergoing several translations: it is an
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FIGURE 5 | Impact of major leaks. Seventy five-year old male subject with severe COPD (GOLD D; FEV1: 17% of predicted). Bi-level pressure support ventilator, S/T

mode (spontaneous/timed); IPAP (Inspiratory positive airway pressure): 24 cmH2O; EPAP (Expiratory positive airway pressure): 4 cmH2O; Back-up respiratory rate

(BURR): 18 cycles/min. Facial mask. Five-minute window, Rescan software, ResMed. (A) normal tracing albeit for a few cycles with decrease in flow; (B) Vertical arrow

marks appearance of major leaks (could be related to transient displacement of interface). Pressure tracing shows episodes of auto-triggering, and double triggering.

Marked drop in pressure, flow and VT (explained by magnitude of leaks). (C) As leaks progressively decrease, breathing pattern becomes more regular; pressure and

flow increase progressively.

11-item Lickert scale type questionnaire which can be auto-
administered, and provides 2 sub-scores: “respiratory symptoms”
and “sleep and NIV-related side effects.” This score is perfectly
suitable for clinical practice. It can be coupled with simple tools
for assessingmood disturbances such as the Hospital Anxiety and
Depression scale (72). These tools do not replace however the
necessary face-to-face exchange with the patient and/or his/her
caregivers to appreciate the relevance of findings downloaded
from ventilator software and mentioned in symptom scores such
as the S3-NIV.

Strategies to Detect Ineffective Control of Nocturnal

Hypoventilation by NIV
NIV should be systematically monitored (4, 46). As mentioned
previously, residual nocturnal hypoventilation, unintentional
leaks, patient-ventilator asynchrony or abnormal respiratory
events are frequent under NIV and have a negative impact on
patient-related outcomes such as symptoms, HRQL and survival.
It has been estimated that approximately one third of ventilated
patients with normal daytime ABG and nocturnal SpO2 had
residual nocturnal hypoventilation under NIV (28, 35, 73).
Withholding from performing regular testing of NIV efficacy
could therefore be detrimental.

Optimal modalities for monitoring of long-term ventilated
patients remain a matter of debate. As previously mentioned,
complete polysomnography (PSG) under NIV is performed by
some groups, but is not feasible in most centers on a routine
basis (74).

Alternative tools (such as oximetry, TcPCO2, or ventilator
software) can be used alone or in combination. A step-by-step
strategy starting by ABG and nocturnal SpO2 has been proposed
by the SomnoNIV group (4) (Figure 6).

Over the past years, the use of TcPCO2 has been simplified
(less frequent changes of probes, improved software and
estimation of drift). Failure to retrieve data is rare (75) and
instrumental drift of TcPCO2 is a minor problem when used
by an experienced team (27). Several studies have shown that
continuous TcPCO2 recording provides an accurate picture
of the overnight time course of PaCO2 in CHRF under
NIV. Experts propose different thresholds to define significant
nocturnal hypercapnia: maximal TcPCO2 >49 mmHg, TcPCO2

>49 mmHg for >10% of recording time, TcPCO2 >55 mmHg
for ≥10min or an increase in TcPCO2 ≥10 mmHg above
awake supine value to a value exceeding 50 mmHg for ≥10min
(33). The choice of a clinically relevant threshold may be
influenced by 1/the bias between arterial and transcutaneous
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FIGURE 6 | Proposed algorithm for a systematic approach to monitoring of patients under LNIV and analysis of ventilator software. *: the reader is referred to

references 4 and 8 for further details.

PCO2 according to the device used, 2/the etiology of the
underlying chronic respiratory failure and 3/PaCO2 levels when
NIV is started. Beyond this debate, capnography is currently
a well-accepted surrogate procedure for diagnosing nocturnal
residual hypoventilation in ventilated patients. Simultaneous
recording of SpO2 with the same ear probe improves the clinical
contribution of nocturnal transcutaneous capnography. Indeed,
sampling rate and averaging of SpO2 and TcPCO2 recordings are
different. Therefore, SpO2 traces can detect brief desaturations
related to short ventilatory events while TcPCO2 traces allow
evaluating overnight trends because of a longer lag time (4).

Significant leaks and/or abnormal residual respiratory events
(i.e., flow reduction or patient-ventilator asynchronism) are
frequently detected in patients with normal nocturnal TcPCO2

and SpO2 (23, 59, 64).
In a study comparing different tools and their combination,

Georges et al. demonstrated that combining the signals provided
by TcPCO2 and data from ventilator software provides the best
noninvasive assessment of NIV efficacy (73). This approach
allows monitoring of LTNIV at the hospital or at home without
complex logistics. Interpretation of the results is simple and
further analysis of detailed raw data provided by ventilator

software can help clarify the underlying mechanism to optimize
NIV settings, thus limiting the use of PSG to more complex cases.

A suggested strategy for nocturnal NIV monitoring and
parameter optimization is summarized in Figure 6.

Patient-Ventilator Asynchrony and Its’ Relevance
Several studies have reported the—sometimes frequent—
occurrence of patient ventilator asynchrony (PVA) in patients
under LTNIV (23, 57–59, 63, 64, 76) (Figures 4, 5). Their specific
semiology and a suggested framework for their analysis has been
proposed by the SomnoNIV group (49). Briefly, after correction
of leaks and obstructions, which are the major contributors
to PVA, a visual analysis of tracings is necessary to detect the
presence of rate asynchrony and/or intracycle asynchrony.
Rate asynchrony is further subdivided into multiple triggering,
uncoupling and ineffective efforts, while intracycle asynchrony
can reveal either flow asynchrony (under-assistance) or phase
asynchrony (premature or delayed cycling). Clinical relevance of
PVA is still a matter of debate, especially if not associated with
discomfort and hypoventilation and/or nocturnal desaturation.
Scoring of PVA is not yet standardized in the medical literature,
and prevalence can vary considerably according to working
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definitions (23). Seeking for PVA seems however appropriate
after correction of leaks in the presence of symptoms and/or
unexplained desaturations.

Tele-Monitoring
Although the use of tele-monitoring has become in many
countries standard practice for following patients treated by
CPAP and Sleep-related breathing disorders (SRBD), and, in
some countries, is even required for its reimbursement, this
is not the case for LTNIV. Many devices used for LTNIV
have the necessary technology built-in, but each manufacturer
has its software, and way of reporting certain parameters,
representing a challenge for clinicians. Reliability of data remains
an issue for some data, as previously discussed (77). In spite of
these limitations, home titration and follow-up of LTNIV are
emerging strategies. Use of tele-monitoring as an adjunct to home
initiation of LTNIV is also an option, and has been shown to
be cost-effective in selected indications such as CHRF related
to neuromuscular disorders or other restrictive lung diseases
(78, 79). Several studies suggest a benefit on healthcare utilization
(emergency visits, hospital admissions) and cost-effectiveness
of tele-monitoring in ALS (80–82). Preliminary studies have
explored the possibility of early detection of exacerbations of
COPD under LTNIV (47). For instance, changes in number of
hours of NIV use may be a sign of imminent exacerbation, of
worsening of underlying disease, or of discomfort, and can be a
useful signal for early home intervention (7, 47). On-going trials
(reviewed by Borel et al.) (77) will help clarify the modalities of
a cost-effective use of tele-monitoring in NIV, and importantly,
its benefit (or absence of) on relevant outcomes (such as HRQL,
survival, hospital admissions). Points of potential interest for
telemonitoring are: follow-up after initiation of NIV following an
acute episode of respiratory failure (effective daily use, leaks etc.),
progressive titration of NIV after home initiation of LTNIV, and,
once specific algorithms will have been validated, early detection
of exacerbations or deterioration of disorder causing CRF. The
present tools for tele-monitoring already provide a limited “traffic
light system” (red, yellow and green icons) usually based on
leaks, AHI and compliance. A more elaborate signaling system,
using limits for tidal volume, minute ventilation, respiratory
rate etc. has yet to be validated in clinical practice, the risk
being an unwarranted increase of “red lights.” The possibility
of adapting certain parameters at a distance (pressure support,
expiratory positive airway pressure, or back-up respiratory rate)
allows progressive changes in these settings for increased patient
comfort and tolerance, and reduces the requirement for in-
hospital titration (83).

The Contribution of “Big Data”
The concept of “Big data” refers to access to a massive
quantity of data, its speed of acquisition, and the diversity
and heterogeneity of data sources, with potential uncertainties
regarding data quality (84). Thewidespread use of telemonitoring
for CPAP has opened the way to a new approach for
exploring patient pathways, identifying potentially relevant
phenotypes, and elements impacting on adherence and efficacy.
For instance, Liu et al. provided very useful data for a better
understanding of trajectories of patients with central sleep
apnea (emergent, transient, persistent) after initiation of CPAP
(85). Technical information such as the impact of changes
of interface can be easily assessed through daily longitudinal
follow-up data at a large scale. Detailed analysis of day by
day use of devices reveals behavioral patterns which improve
our understanding of how patients adhere and accept their
treatment (86, 87). Recently, it has been possible through
telemonitoring to evaluate the impact of the lockdown during
the COVID pandemic on adherence to CPAP or NIV (88, 89).
Undoubtedly, in a near future, this type of information will
become increasingly available and provide a useful adjunct to
clinical trials.

CONCLUSIONS

The relevance and necessity of a regular monitoring of patients
under LTNIV is clearly established, and has an impact on
prognosis and HRQL. The progressive shift from hospital-based
to home-based assessment over the past years is important
for patient comfort and cost-effectiveness of LTNIV. Strategies
for monitoring LTNIV include clinical assessment, symptom
scores, simple tools such as TcPCO2 or oximetry, ventilator
software, and in specific situations, respiratory polygraphy or
polysomnography. Although telemonitoring of patients treated
by CPAP for SRBD is widely accepted, its use in LTNIV still has
to be explored and shown to be cost-effective. Access to big data
may provide additional information to better clarify phenotypes
of responders and non-responders to LTNIV.
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