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Editorial on the Research Topic

Insights in life-course epidemiology and social inequalities: 2021

The aim of this Research Topic was to focus on important research challenges in the

field of life course epidemiology and social inequalities in health. This volume gathers

thirteen papers dealing with aspects that represent current and future challenges in

this field of research. More specifically (1) determinants beyond social position and

in new contexts, (2) access to high quality data and biospecimens and how to share

harmonized datasets, (3) methodological approaches to analyse complex datasets from

different sources.

Which social and living conditions that may act as a mechanism to explain the

construction of social inequalities over the life course is an important challenge. The

paper by Dong et al. highlights the importance of focus on childhood conditions, in

particular child malnutrition, which is common in developing countries, as well as

developed countries. This is particularly in challenging in context of the global warming.

Based on more than 13,000 elderly Chinese people aged 65–99 years, the authors show

that childhood starvation is associated with socioeconomic determinants (age, gender,

residency, education level, income level) and find a persistent negative cumulative effect

of childhood starvation on the quantity and quality of life. Haugland et al. reminds us

of the importance of Adverse Childhood Experiences (ACEs) as exposures that should

be more targeted by public health strategies. This study including 28,047 adults, shows

that the prevalence of ACEs (family conflict, lack of adult support, struggle with bad

memories, and difficult childhood) varies with socio-demographic factors (age, gender,

marital status, and history of divorced parents) and that exposure to ACEs is associated

with low socio-economic status in adulthood (low educational attainment, perceived

financial difficulties, receipt of social benefits).

The influence of ethnicity on health is a well-known but the drivers behind this

remain less understood. The systematic review by Rubin et al. examines the potential role

of genetics by analyzing the research that has been published in the US about the genetic
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factors of Alzheimer’s Disease and Related Dementias (ADRDs)

among racial/ethnic minorities, which are disproportionality

affected. This review of 66 articles highlights that well-

established ADRD genetic risk factors for Caucasian populations

have not been studied to the same degree in minority U.S.

populations which are underrepresented. The study of Athavale

et al. analyse the social conditions associated with ethnicity

and show that infection and mortality due to COVID-19

infection among Non-Hispanic Black (NHB) and Hispanics was

considerably higher than Non-Hispanic White (NHW) mainly

because of social unfavorable conditions more likely to concern

racial minorities poverty.

Social inequalities in health are not just an issue in high-

income countries. The study of Akokuwebe et al. highlights the

need to analyze social inequalities in low-income countries as

well. The increased burden of non-communicable disease and

the double burden of malnutrition (undernutrition and over-

nutrition) in low-income countries due to the epidemiological

transition have become a public health concern, which has not

received the attention that this problem deserves. This study

established the synchrony of a double burden of underweight

and overweight/obesity among 3,263 women of reproductive

age in South Africa, although the prevalence of underweight

was declining, while overweight/obesity increased significantly

over the study period. It also highlights the influence of

social determinants (age, marital status, education, employment

status, wealth, ethnicity, and residence), with more advantaged

people more likely to be overweight/obese and people from

rural areas or of non-African/Black ethnicity more likely to

be underweight. Farias et al. describes the temporal trend

of stomach cancer mortality in Brazil which is a middle-

income country characterized by great internal socioeconomic

heterogeneity. The study shows a decline in stomach cancer over

time with periods of variation similar to the behavior observed in

both high and low-income countries. The findings point to the

need of understanding the behavior of stomach cancer mortality

in different geographical regions, since they present different

socioeconomic characteristics.

Investigating the complex interplay between life-course

exposures and disease requires access to high quality data

and biospecimens. In the last decades there has been large

initiatives in establishing cohort studies across the world,

however the efforts to make the collected data available to

the scientific community has been sparse. In a data report by

Rodriguesz-Laso et al. they provided a map of initiatives that

harmonize patient cohorts across the world. Most initiatives are

partnered with universities, hospitals and research institutions.

The paper focus on the strengths of integration of cohort

studies to take the advantage of already collected information to

increase the sample size in studies of uncommon exposures, rare

diseases, less strong associations, or very restricted populations

like in personalized medicine. O’Leary et al. write about

development of a multi-study repository to support research

on veteran health. The study aimed to describe the selection

of studies included in the repository, the design of metadata-

driven architecture for secure storing and tracking of data

and biospecimens and development of a process to review

the scientific and ethical merit of data and specimen request.

This is a good example of the importance of using data and

biospecimens from several cohorts to get sufficient statistical

power to study rare exposures. This multi-study repository

provides a structure that can be used to support the sharing of

data and specimens across multiple content areas for different

types of research studies.

Research in life course epidemiology also raises important

methodological issues. In particular, the question of causality

is a major challenge in observational studies. Three studies

use Mendelian randomization (MR) to analyze causal effects of

their exposure on health outcomes. The study of Probst-Hensch

et al. examines the effect of BMI on lung function (LF). A

negative causal BMI LF effect is observed with a stronger

effect for childhood BMI highlighting the importance of a

life course perspective in studies using MR method. The two

other studies use MR to analyze the causal effect of education

on health. The study of Yoshikawa et al. which is one of

the first investigating the association between education and

COVID-19 severity, shows that education is associated with a

lower risk of COVID-19 severity. The study of Wang et al.

investigates the causal effect of education on 14 urological and

reproductive health outcomes. Education is associated with a

higher or lower risk according to health outcomes. However, in

both studies, the mechanisms underlying the associations found

are unknown and unexplored. Furthermore, the SNPs used as

instrumental variables for education are different between the

two studies, raising questions that deserve further investigation

about how best to use (if relevant) MR for analyzing social

traits. Other approaches may be relevant especially when we

are interested in mechanisms and multiple mediators may exist,

a situation that is not uncommon in life course epidemiology.

Tai et al. proposes a method using G-computation algorithm to

conduct causal mediation analysis in the presence of multiple

ordered mediators. Their approach is powerful and versatile

for settings with multiple mediators. An application of the

method is proposed to investigate the mediating role of early

and late hepatitis B virus (HBV) viral load in the effect of

hepatitis C virus (HCV) infection on hepatocellular carcinoma

(HCC). Another methodological issue is no longer causality but

prediction, in particular how best to predict a disease using the

large amount of data available in the most relevant way. Lufkin

et al. proposes a Bayesian regression model to characterize the

risk of Rheumatoid Arthritis (RA) from common comorbidities,

demographic, socioeconomic, and behavioral factors that are

known to associate with RA. The model demonstrates a high

predictive accuracy in comparison with other models reported

in the literature and model is able to identify important

second- and third-order interactions between the risk factors,
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which may have important clinical relevance and stimulate

further research to understand the mechanisms underlying

such interactions.

In summary we hope that the papers put together in this

Research Topic will be helpful and raise awareness on important

scientific challenges and opportunities in future life course

epidemiology research.
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Development of a Multi-Study
Repository to Support Research on
Veteran Health: The VA Cooperative
Studies Program Epidemiology
Center-Durham (CSPEC-Durham)
Data and Specimen Repository
Meghan C. O’Leary 1*, R. Lawrence Whitley 2, Ashlyn Press 1, Dawn Provenzale 1,3,

Christina D. Williams 1,3, Blair Chesnut 1,4, Rodney Jones 1,4, Thomas S. Redding IV 1 and

Kellie J. Sims 1*

1Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC,

United States, 2 RTI International, Research Triangle Park, NC, United States, 3Duke University Medical Center, Durham, NC,

United States, 4Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States

Federal agencies, including the Department of Veterans Affairs (VA), have prioritized

improved access to scientific data and results collected through federally funded

research. Our VA Cooperative Studies Program Epidemiology Center in Durham, North

Carolina (CSPEC-Durham) assembled a repository of data and specimens collected

through multiple studies on Veteran health issues to facilitate future research in these

areas. We developed a single protocol, request process that includes scientific and

ethical review of all applications, and a database architecture using metadata (common

variable descriptors) to securely store and share data across diverse studies. In addition,

we created a mechanism to allow data and specimens collected through older studies in

which re-use was not addressed in the study protocol or consent forms to be shared if

the future research is within the scope of the original consent. Our CSPEC-Durham Data

and Specimen Repository currently includes research data, genomic data, and study

specimens (e.g., DNA, blood) for three content areas: colorectal cancer, amyotrophic

lateral sclerosis, and Gulf War research. The linking of the study specimens and

research data can support additional genetic analyses and related research to improve

Veterans’ health.

Keywords: repository, data sharing, veteran, biospecimen, genomics

INTRODUCTION

Biobanking encompasses all procedures needed to collect, process, store, and share specimens
collected from human subjects as well as the policies that govern these activities (1).
Stored biospecimens along with linked clinical and research data can and have been used
to advance translational and population health research and support personalized medicine
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within clinical care (1, 2). The development and maintenance of
data and specimen repositories commonly involves substantial
resources, including dedicated staff, laboratory space and
equipment, creation of standard operating procedures or related
protocols, information technology systems, and funding (3). In
addition, many ethical considerations are involved in obtaining
participants’ informed consent to use and share their data and
specimens through biobanks and other repositories; examples
include determining the appropriate type of consent to use and
ensuring participants understand all procedures and potential
risks and benefits (1–4). Despite these challenges, prior research
has shown that participants are generally willing to have their
information shared for future research purposes (5, 6). Potential
benefits of data and specimen sharing include increasing
efficiency of limited research resources, minimizing the burden of
research participants and potential risks of research participation,
and contributing to more generalizable knowledge intended to
improve patient health and care (7).

Among federal agencies, increased transparency of and access
to federally funded research results and scientific data have
been prioritized over the past decade. In February 2013, the
White House’s Office of Science and Technology Policy issued a
memorandum requiring federal agencies to make the results of
their research collected with federal funds publicly available to
support future research and innovations (8). This directive also
required agencies to make their scientific data available to the
public to the extent possible (8). In response, the U.S. Department
of Veterans Affairs (VA) issued guidance on increasing public
access to research data while continuing to protect the privacy
of its Veteran patients. Beginning in December 2015, VA
researchers were required to submit written data management
plans with their protocols outlining how the data would be made
available and describing the mechanisms for ensuring privacy,
confidentiality, and long-term preservation and storage of the
data (9).

As of July 2020, the VA’s Office of Research and Development
(ORD) included data and specimen sharing within two of its
three strategic priorities for VA research (10). These priorities
include ensuring that research findings are translated into clinical
applications that improve the care of Veterans, and facilitating
larger-scale research that can benefit Veterans and the general
public (10). Noted activities to achieve these goals include
the curation of linked and standardized data sources and the
collection of biospecimens for genomic analysis (10).

The VA Cooperative Studies Program Epidemiology Center
located in Durham, North Carolina (CSPEC-Durham) is one
of many research programs under VA ORD oversight (11). We
aimed to develop a repository to enable data and specimen
sharing that was consistent with VA and ORD guidance and
priorities and that would support additional epidemiologic and
genomic research specific to the health needs of Veterans.

In this paper, we describe our center’s process for developing
a repository of research data and biological specimens collected
from Veterans with and without chronic disease for sharing
with investigators with approved research protocols. The CSPEC-
DurhamData and Specimen Repository, subsequently referred to
as the CSPEC-Durham Repository, houses data and specimens

collected from multiple research studies on diverse Veteran
health issues for the purpose of facilitating future research
intended to improve the health of Veterans. The purpose of this
report is to describe: (1) the selection of studies included in this
repository, (2) the design of metadata-driven architecture for
securely storing and tracking data and specimens, and (3) the
development of a process to review the scientific and ethical merit
of data and specimen requests.

MATERIALS AND METHODS

Identifying Feeder Studies and Potential
Sharing Restrictions
We first identified all studies conducted by members of the
CSPEC-Durham research team for possible inclusion in the
repository. These studies were evaluated as potential feeder
studies, defined as individual research studies with a protocol
approved by an Institutional Review Board (IRB) for which
the collected data and, if applicable, specimens would be
stored and available for sharing through the CSPEC-Durham
Repository. We considered active studies with data collection
and analysis still in progress, as well as legacy studies for which
data collection and analysis had already been completed. Each
research study focused on Veteran health issues and enrolled
all or predominantly Veteran participants. We included studies
that addressed different types of chronic disease areas affecting
Veterans, as well as studies that enrolled Veterans with or without
a particular illness to support research on risk factors, early
detection, and progression of these illnesses.

We then developed and implemented a formal process for
determining whether each study’s data and specimens could be
shared for future research, and if there were any restrictions on
data and specimen sharing (Figure 1). Following guidance from
our local IRB, all IRB-approved versions of the study protocol,
informed consent form (ICF), Health Insurance Portability
and Accountability Act (HIPAA) authorization, ICF waiver,
and/or HIPAA waiver were obtained for each feeder study.
Two CSPEC-Durham study coordinators reviewed these study
documents and documented their findings related to sharing
permissions. They recorded whether the study participants had
previously consented to the use of their data and specimens
for future research. If the participants agreed to future sharing,
the reviewers documented any restrictions; e.g., only sharing
the data and specimens with researchers within the VA, or for
particular research questions (e.g., future research on the causes
or treatment of the disease only). The reviewers also noted
whether study participants had consented to be re-contacted for
future research studies.

Since we included older legacy studies in our repository,
some studies did not explicitly address use of the data and
specimens for future research in the study consent forms or other
documents. For example, a study evaluating the prevalence of
colorectal cancer in an average-risk cohort recruited all Veteran
participants from 1994 to 1997; the study’s ICF was developed
prior to the enactment of HIPAA in 1996 (12), and therefore did
not include language about the future use of participants’ data.
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FIGURE 1 | Data and specimen re-use decision points for the CSPEC-Durham Repository. The CSPEC-Durham Repository includes N = 15 total feeder studies;

however, one feeder study uses administrative data only and does not involve re-use of Veteran data and/or specimens.

Studies in which data and specimen sharing was not explicitly
addressed were noted in the review document. The Durham
VA IRB approved the inclusion of these legacy studies in our
repository and the future sharing of data and specimens if the
future research to be conducted was within the scope of the
original consent.

We created a study protocol, as well as standard operating
procedures, to outline the administration of the repository, types
of data and specimens to be shared, data access, methods of
data and specimen storage and transfer, and mechanisms for
protecting the participants’ identities and information. In this
protocol, we identified all feeder studies, and categorized each
feeder study based on the extent to which it permitted re-
use of study data and specimens and/or future re-contact of
study participants. In total, we evaluated 15 feeder studies for
potential inclusion in our repository, and all 15 studies met
our criteria for inclusion, although these studies varied in their

restrictions for how data and specimens can be re-used. Of these
15 studies, six were active studies and nine were legacy studies.
The CSPEC-Durham Repository protocol was approved by the
Durham VA Health Care System IRB in August 2016.

Database Development and Request
Tracking
We designed our repository database to be structured around
metadata (i.e., common set of variable descriptors applicable
for any study). The metadata-driven architecture is used to
manage the data and specimens across all feeder studies and to
support the sharing of these data and specimens for future use
by approved investigators. While the specific variables differ by
study, the metadata across all feeder studies include items such as
the dictionary ID, variable label, value description, and data types.
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TABLE 1 | Common variable descriptors used across feeder studies and examples by feeder study.

Descriptors

Variable Name: Name of the variable

Dictionary ID: Variable ID number

Variable Label: A short description of the variable; the variable label only appears when no survey question is available

Survey Question: Number and text of survey question from which variable is derived; the survey question only appears when it is available

Value Descriptions: Description of possible values for categorical data

Value Min: Minimum value possible

Value Max: Maximum value possible

Data Types: Data types, listed for Generic, SAS, R, SQL, C#, and XML

Is Nullable: If true (i.e., is Nullable = 1), a null value is possible

Form Section: Section on form or survey from which variable is derived

Table Name: Name of database table from which variable is derived

Variable descriptor* Colorectal cancer Amyotrophic lateral sclerosis Gulf War research

Variable name Colonoscopy Speech Act mod days

Dictionary ID 110238 120294 100694

Variable label Speech

Survey question 15. Have you ever had a colonoscopy

(tube with a light inserted into colon after

you are given medicine to make you

sleepy)?

18. On how many days did you engage in

moderate physical activity (like a brisk

walk) in the last 7 days?

Variable description Please indicate the category that most

describes your current state of health:

Speech

Value descriptions 1 = Yes

2 = No

0 = Loss of usual speech

1 = Speech combined with non-vocal

communication

2 = Intelligible with repeating

3 = Detectable speech disturbance

4 = Normal speech processes

Value min 0

Value max 7

Data types Generic [integer], SAS [4.], R [int], SQL

[tinyint], C# [Byte?], XML [xsd:integer]

Generic [integer], SAS [6], R [int], SQL

[smallint], C# [Int16?], XML [xsd:integer]

Generic [integer], SAS [4.], R [int], SQL

[tinyint], C# [Byte?], XML [va:tinyint]

Is nullable True True True

Form section Form 01 Clinic Survey Form—Medical

History

Veterans ALS Registry Questionnaire—B.

ALS Functional Rating Scale

Baseline survey—lifestyle and activities

Table name AllForm01 ALS Questionnaire Survey Parent

*The variable descriptors used are survey item/question dependent and, therefore, some fields are blank for particular variables of each study.

As shown in Table 1, using metadata allows us to share the same
types of data across feeder studies of diverse topics and designs.

The common set of variable descriptors are used to generate
application code for data entry and validation, creation of data
dictionaries, and data extracts used to fulfill specific data sharing
requests. The use ofmetadata was intended to eliminate repetitive
and error-prone manual steps, to ensure data provenance, and
to create a common structure despite differences in the types
of feeder studies. Since requestors typically only need access
to a subset of the data collected for a particular feeder study
for their own analyses, the use of metadata allows us to create
individualized data dictionaries for each requestor and to track
all transfers of data to each requestor. We used a similar

process to facilitate specimen sharing; common descriptors
across feeder study specimens were used to develop specimen-
specific applications, inventories, and shipping manifests.

The metadata tables are stored in a relational database and
data maintenance history logs, data extract snapshots, and
histories of all source code are retained. The repository data
are stored on a Microsoft SQL Server behind VA firewalls and
access is controlled through active directory security groups for
study-specific IRB-approved personnel. Microsoft SQL Server
Management Studio is used to work with the data (e.g., data
updates, data pulls for sharing). While metadata for the feeder
studies are comingled, each feeder study’s data are stored in a
separate database (with access controlled by the IRB staff list),
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TABLE 2 | Sample terms of agreement for data use agreements (DUAs) and material transfer agreements (MTAs).

Topic Terms of agreement

DUA terms of agreement

General The Requestor represents that CSP Data will be used solely for the purpose of the Study as specified.

Data ownership The Requestor is designated as Custodian of the CSP Data provided under this Agreement and does not own the data.

Data management The Requestor affirms that the requested CSP Data is the minimum necessary to achieve Study goals involving CSP Data.

Unauthorized

disclosure

The Requestor shall immediately report any use or disclosure of CSP Data not provided for in this Agreement or any non-compliance with this

Agreement to the CSP Center Contact.

Institution approvals CSP will be provided with written evidence of the IRB determination before release of CSP Data.

Products The Requestor shall present any product resulting from the CSP Data in aggregated form.

MTA terms of agreement

Research materials The Research Materials will only be used for research purposes by the Recipient of the Biological Materials in his/her laboratory, for the

research project described under suitable containment conditions.

Commercialization The Human Biological Materials shall not be used for any commercial purposes, including selling, commercial screening, or transfer of the

Human Biological Materials to a third party for commercial purposes.

Data management The Recipient agrees to retain control over this Material and further agrees not to transfer the Material to other people not under his or her

direct supervision without advance written approval of the Provider.

Intellectual property The Recipient acquires no intellectual property as a result of the transfer of the Materials identified under this Agreement.

CSP, Cooperative Studies Program.

and there is no comingling of the feeder study data. We adhere
to all VA directives about how to securely store and work with
Veteran data.

We also created a Research Electronic Data Capture
(REDCap) database (13) to track the study documentation for
all researchers who submit a formal application to use data
and specimens from the CSPEC-Durham Repository. The study
documentation includes the requestor’s contact information,
application materials, and IRB approval letters; evaluations,
scores, and recommendations for each request; dates of all study
agreements executed; and details and dates of all data and
specimen transfers. In addition, the REDCap system is used to
track communications with the requestor from the initial inquiry
through study completion. The REDCap database is behind VA
firewalls and can only be accessed by IRB-approved study staff.

Data and Specimen Sharing
We developed a comprehensive process for reviewing requests
from VA and non-VA researchers to use the data and specimens
stored in the CSPEC-Durham Repository. The review process
begins when an investigator submits a full application, comprised
of a data and specimen request form, documentation of IRB
approval, documentation of funding support, and biosketches for
all co-investigators and biostatisticians. In the request form, the
investigator identifies the feeder study of interest, which variables
and/or biosamples are requested, and whether Veterans have
been consulted in the study design, among other details.

Following receipt of a full application, we convene the CSPEC-
Durham Repository’s Scientific and Ethical Oversight Committee
(SEOC) to review the request. For each request, the SEOC is
comprised of a minimum of two content reviewers (i.e., subject
matter experts) who evaluate the proposed study’s scientific
and ethical merit; at least one statistical reviewer who focuses
primarily on the study design, statistical analysis plan, and

considerations of the implications of the sample size for the
proposed study; and at least one Veteran representative who
considers the relevance of the research question to Veterans
and the extent to which Veterans have been consulted or
engaged in the study design (which is a dedicated section of
the application). The Veteran representative is invited from
a larger team of Veterans who take turns reviewing each
request based on their availability and interest. Each reviewer
is asked to independently review all materials, evaluate the
request on a series of criteria using a web-based evaluation
tool, and provide an overall score of the request that reflects
the quality of the application and the prioritization of the
specific request. The level of prioritization is particularly critical
for specimen requests because there are finite amounts of
most specimen types. Once the independent evaluations are
completed, the SEOC reviewers and repository administrators
hold a review meeting to discuss the reviewers’ comments
and determine if the request should be approved, approved
conditionally with revisions, recommended for resubmission,
or declined.

If a request is approved, the CSPEC-Durham Repository team
works directly with the requestor and the requestor’s institution
to execute a data use agreement (DUA) and, if specimens
will be used, a material transfer agreement (MTA). Data and
specimens will only be shared with approved investigators once
these agreements are fully executed to ensure the security of the
data and specimens during transfer, storage, and analysis. The
agreements specify all terms of the data and/or specimen sharing,
including who will have access, methods of transfer and storage,
ownership, reporting of results, and destruction or return of the
data and/or specimens following study completion. Examples of
these terms are presented in Table 2. The requested data and
specimens are then securely transferred to the investigator for the
approved research study.
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TABLE 3 | Data and specimens collected for three primary content areas of the CSPEC-Durham Repository.

Study title Subjects

(N)

Eligibility criteria Data collected Timing of data

collection

Samples

collected*

Timing of

specimen

collection

Prospective Evaluation of

Risk Factors for Large

Colonic Adenomas in

Asymptomatic Subjects

(CSP #380)

3,121 Veterans ages 50–75 who

underwent screening

colonoscopies from 1994 to

1997

Results of GI exams,

medical history, family

history, lifestyle factors,

GWAS results

Baseline: 1994–1997

5-year GI exams

10-year GI exams

Blood,

tissue

Baseline:

1994–1997

Longitudinal:

1994-Present

National Registry of

Veterans with Amyotrophic

Lateral Sclerosis (CSP

#500A)

1,225 Veterans with a verified

diagnosis of ALS in

2003–2007, regardless of

VA user status

ALS functional rating score,

family history, lifestyle

factors, use of ventilatory or

feeding support, GWAS

results

Baseline: 2003–2007

Every 6 months for up

to 5 years

Blood Baseline:

2003–2007

Gulf War Era Cohort and

Biorepository (CSP #585)

1,274 Veterans who served

between July 1990 and

August 1991, regardless of

deployment or VA user

status

Prior exposures if deployed

to the Gulf region, family

history, physical and mental

health, lifestyle factors,

GWAS results

Baseline: 2014–2016 Blood Baseline:

2014–2016

GI, gastrointestinal; GWAS, genome-wide association study; ALS, amyotrophic lateral sclerosis.

*DNA samples have been extracted from the blood samples for each of these feeder studies.

Return of Derived Data
Since the objective of the CSPEC-Durham Repository is to
support additional research on Veteran health, we require all
approved investigators to return the data derived from their
analyses to the repository. This includes analytic data derived
from the study data and assay data derived from use of the study
specimens. We further developed this process in August 2020 by
standardizing the requirements related to the return of derived
data. These requirements include returning data in a mutually
agreed upon timelymanner after publication of results, providing
a codebook or related documentation that describes any new
or collapsed variables in the analytic dataset, and, if specimens
were shared, providing an assay protocol that describes how
the specimens were stored and analyzed. The returned data can
then be made available to other researchers for validation and
subsequent analyses.

RESULTS

The CSPEC-Durham Repository includes Veteran data and
specimens from 15 feeder studies with a focus on three primary
disease areas: colorectal cancer, amyotrophic lateral sclerosis
(ALS), and Gulf War research (Table 3). Seven of these 15 feeder
studies relate to these three primary content areas, and each of
these seven feeder studies were funded by the VA Cooperative
Studies Program (CSP). While we do not currently anticipate
requests for the other feeder studies, we included them as a
means for long-term storage and security of the previously
collected data.

For the three primary disease areas, the repository contains
data and biospecimens such as Veterans’ demographic, military
service, healthcare utilization, and clinical data, as well as tissue
and blood samples. The data and specimens were collected
longitudinally at multiple time points for the first two of these
three disease areas, allowing for research on disease progression

and how risk factors differentially affect clinical and survival
outcomes, and cross-sectionally for the third disease area. In each
of these cases, the research data and specimens can be linked
with the participants’ VA medical records to assess longer-term
clinical and survival outcomes. The ability to link the feeder
study specimens with rich clinical and research data provides
opportunities for genetic and molecular association analyses to
inform Veteran care.

Colorectal Cancer
Asymptomatic Veterans aged 50–75 years were enrolled in
the study, “Prospective Evaluation of Risk Factors for Large
Colonic Adenomas in Asymptomatic Subjects,” (CSP #380)
between 1994 and 1997 at 13 geographically diverse VA medical
centers (14). Each of the 3,121 study participants underwent
a baseline screening colonoscopy as part of the study and
were followed for 10 years or until death. The cohort’s clinical
outcomes, including prevalence of advanced colorectal neoplasia
and colorectal cancer, at the time of the study (14), after 5 years
(15), and after 10 years (16) were previously reported.

The study data stored in the repository includes the results
of the baseline colonoscopies as well as other gastrointestinal
(GI) exams completed during the longitudinal follow-up period.
Sixty-one percent (N = 1,915) of this cohort had at least one
surveillance colonoscopy within 10 years of their baseline exam
(16). Survey data, including medical history, family history, and
lifestyle factors, such as tobacco use, alcohol use, physical activity,
and diet, are also stored.

The specimen repository includes colorectal tissues biopsied
during colonoscopies and other GI exams completed as part of
the study and as part of routine clinical care. These formalin-
fixed paraffin-embedded (FFPE) and Bouin’s-fixed tissue samples
are stored in VA pathology labs until they are ready to be
discarded or used for future research according to VA policy.
The study team works with the local sites to retrieve these tissue
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TABLE 4 | Glossary of terms.

Term Definition

Active study Feeder study in which collection and/or analysis of the data/specimens is occurring currently by the study team

Data use

agreement

A legal document describing the terms of agreement for the transfer and use of data between the institution providing the data and the

institution/investigator requesting to use the data for research purposes

Feeder study An individual research study with an IRB-approved protocol for which the collected data and/or specimens are stored and available for sharing

through our CSPEC-Durham Data and Specimen Repository

Gulf War Illness Chronic, multi-symptom health condition affecting Veterans who served in the 1990–1991 Gulf War that is not explained by other medical

diagnoses or standard laboratory tests. Common symptoms include fatigue, cognitive impairment, chronic pain, sleep problems, gastrointestinal

issues, and skin problems. Multiple diagnostic definitions are used to identify cases of Gulf War Illness (21, 22)

Legacy study Feeder study in which the collection and analyses of data/specimens have been completed by the study team

Material transfer

agreement

A legal document describing the terms of agreement for the transfer and use of human biological specimens between the institution providing the

specimens and the institution/investigator requesting to use the specimens for research purposes

Metadata Common set of variable descriptors (e.g., IDs, variable labels, value descriptions, etc.) for data and specimens collected across feeder studies that

is used to structure the repository database

samples and have them transferred to the Southern Arizona VA
Healthcare System (SAVAHCS) in Tucson, Arizona for long-
term storage. Tissue samples from some local sites may be
stored temporarily at the Durham VA Health Care System for
coding purposes. To date, more than 1,800 of these tissues
have been added to the specimen repository governed by the
CSPEC-Durham Repository and physically located at SAVAHCS.
Additional tissues will be retrieved and added to the repository
over time as the tissues become available for research purposes.
DNA will be extracted from these tissue samples and made
available in the repository as well.

The repository also includes frozen blood and tissue samples
collected from 815 study participants during their baseline
colonoscopy exams, and DNA extracted from these samples.
Serum and lymphocytes were collected from those participants
with a large polyp (i.e., at least 1 cm); serum and lymphocytes
were also collected from age- and sex-matched participants with
no polyps detected. Normal-appearing tissue samples and polyp
tissues were biopsied from these participants and stored for
future use. Each of these cross-sectionally collected specimens
have been frozen since baseline and are currently stored at the
Massachusetts Veterans Epidemiology Research and Information
Center (MAVERIC) in Boston, Massachusetts. A genome-wide
association study (GWAS) of these DNA samples has been
conducted (17), and the results will be made available through
the repository.

Amyotrophic Lateral Sclerosis
The “National Registry of Veterans with Amyotrophic Lateral
Sclerosis” (CSP #500A) enrolled 2,068 Veterans with an ALS
diagnosis betweenApril 2003 and September 2007 (18). EachALS
diagnosis was confirmed by a neurologist, providing information
on the type of ALS diagnosis, site of onset, and date of diagnosis.
Participants, who were recruited from all 50 states, self-reported
their symptoms and the severity of their symptoms through
phone interviews at baseline and every 6 months for up to 5
years. The ALS Functional Rating Score was used to monitor
their health and functional status over time. Additional survey
data included in the repository include family history, smoking

status, medications, comorbidities, surgical history, and use of
ventilatory or feeding support.

Each participant in the ALS Registry was asked to provide a
DNA sample to be included in the study’s DNA Bank for future
research. More than half of the participants (N = 1,168) provided
a DNA sample, most commonly by a blood sample (85% vs. 15%
with a saliva sample) (18). These cross-sectional blood and DNA
samples are all governed by our repository, physically stored at
MAVERIC, and can be used for future research on ALS causes
and treatment. The repository also contains the results of a
GWAS of ALS diagnosis and survival using these samples (19).

Gulf War Research
Veterans who served during the 1990–1991 Gulf War era
were enrolled in the “Gulf War Era Cohort and Biorepository”
(GWECB, also referred to as CSP #585) between 2014 and 2016
(20). The goal of the GWECB was to collect data to be used for
future research on diverse health concerns specific to this cohort
of Veterans, including Gulf War Illness (Table 4). A total of 1,344
Veterans were enrolled in the GWECB, including 1,275 for whom
we have survey data, health records, and a blood sample (i.e., fully
enrolled) and 69 for whom we have surveys and health records.
The GWECB sample reflected the geographic distribution of
Veterans across the four U.S. Census regions and included Gulf
War era Veterans regardless of their deployment, health status,
or use of VA healthcare.

The cross-sectional survey data in the repository includes
prior exposures during military service if deployed to the Gulf
region, family history, physical and mental health, including the
severity, frequency, and functional impact of specific conditions,
and lifestyle factors, such as physical activity, tobacco use, and
alcohol use. The participants also consented to be re-contacted
by the GWECB team for possible participation in future studies.

The repository also includes plasma and buffy coat samples,
as well as extracted DNA, for each study participant. These
samples were collected at baseline. Our repository governs these
specimens, which are physically stored at MAVERIC. A GWAS
using these DNA samples has been conducted. The analysis
of the GWAS data is in progress; the GWECB team plans to
publish the results and make them available for sharing through
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the repository in the future. In addition, an algorithm is being
developed by the GWECB team that will help to identify cases
of Gulf War Illness in this cohort using the self-reported survey
data; manuscripts describing the results and the methodology
are forthcoming.

Data and Specimen Requests
As of December 2020, we have received 10 formal applications to
use data and/or specimens from the CSPEC-Durham Repository.
Seven of the 10 applications were approved for data and/or
specimen sharing following the scientific and ethical review
process. Of these 7 approved requests, 3 requests have been
fulfilled, 2 requests have a fully executed DUA/MTA but the
data/specimens have not yet been transferred, and 2 requests
have a DUA/MTA in progress and the data/specimens will
be transferred thereafter. The amount of time required to
review each request, execute the DUA/MTA, and transfer the
data/specimens has varied by request due to the complexity of
each request, review and negotiations of all legal agreements, and
other factors.

DISCUSSION

Through the development of the CSPEC-Durham Repository, we
created a mechanism for facilitating future research on diverse
health topics affecting Veterans. This multi-study repository
provides a single structure that can be used to support the
sharing of data and specimens across multiple content areas,
for different types of research studies (e.g., active vs. legacy
studies, cross-sectional vs. longitudinal data collection, etc.), and
across types of data (e.g., survey data, medical record data,
genomic data) and specimens (e.g., blood, tissue, DNA) collected.
This resource can support additional research, including genetic
and molecular association analyses, aimed to better understand,
diagnose, and treat chronic diseases affecting Veterans and the
general population, which closely aligns with current ORD, VA,
and national research priorities.

The CSPEC-Durham Repository adds to the growing number
of data repositories and biorepositories within the VA, reflecting
the high prioritization of research collaboration to improve
care delivery. The VA’s Million Veteran Program (MVP) has
enrolled more than 825,000 Veterans since 2011 in order to
facilitate research assessing genetic influences on health and
disease to develop precision medicine (23, 24). The Veterans
Precision Oncology Data Commons similarly aims to support
research in precision oncology through the sharing of clinical
and genomic data available for cancer patients in the VA (25).
Other examples of repositories in the VA focused on specific topic
areas include the Mental Illness Research Education and Clinical
Center (MIRECC) (26) and the VA Biorepository Brain Bank for
ALS research (27). The CSPEC-Durham Repository is unique in
that it is a center-wide repository, not specific to a single health
topic, and allows for data and specimen sharing across legacy
studies for which data and specimen sharing would otherwise not
be possible.

One of the strengths of our repository is the metadata-driven
database architecture, which has automated steps across the data

life cycle, including data entry and data extraction for approved
investigators. We also successfully applied this metadata-driven
approach to the specimens stored in our repository. This
approach has increased efficiency from a repository management
perspective and allowed for improved safeguarding of the study
data and specimens. Another asset has been the inclusion of
legacy studies in the repository. Given that Veteran participants
of these studies provided their time and efforts to research on
particular health issues, it is important to be able to use the
information and specimens they shared to advance research and
innovations in these areas (within the scope of their original
consent). Including these studies reflects the trend over time
toward increased transparency and access to research data.

There are also some limitations. The number of participants
across the repository feeder studies is relatively small when
compared to biobanks such as MVP (23, 24). For this reason,
researchers requesting the data are asked to provide their
statistical plan and reflect on the implications of the sample size
for their particular study. The merits of their statistical plan and
plans to address any data limitations are reviewed and evaluated
by one or more statistical reviewers on the SEOC as part of
the review process. In addition, now that we have developed
the repository structure and database architecture, we have a
well-established mechanism to adopt additional feeder studies,
including those that may be actively recruiting participants. This
may help to increase the number of study participants for whom
we have data and specimens available for each content area. A
second limitation is that the data and specimens for the GWECB
were collected at a single point in time, and the specimens
collected from ALS Registry participants were also cross-
sectional. However, the participants from the GWECB consented
to be re-contacted for additional studies related to Gulf War
research, which may allow for collection of data at subsequent
time points. In addition, while the specimens were collected at
a single point in time from the ALS Registry participants, their
surveys were completed at multiple time points.

Our repository team has taken steps to integrate our resources
with other repository initiatives within the VA to increase
efficiencies for our staff and researchers alike and to improve
visibility of our resources. As one key example, our team works
closely with the Integrated Veteran Epidemiologic Study Data
Resource (INVESTD-R) team, which has created a publicly
available web-based tool to describe the resources available for
continued research within the VA CSP (28). The feeder studies
included in the CSPEC-Durham Repository are highlighted on
this resource, allowing us to potentially reach more diverse
researchers and consolidate our resources within the context of
the larger CSP research program. We continue to work with
the INVESTD-R team to streamline review processes and other
documentation for researchers requesting data and specimens
across the VA CSP. In addition, following existing models within
the VA, all study specimens in our repository are physically
stored at approved VA biorepositories. While our team governs
all aspects of data management for these specimens, including
the request process, crosswalk between the specimens and
the corresponding study data, and the sharing of specimens
with approved researchers, the laboratory personnel at the VA
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biorepositories ensure secure storage and maintenance of the
physical specimens. These collaborations help to leverage our
respective areas of expertise and available resources to best
support continued Veteran health research. Within the larger VA
ORD, there are ongoing discussions across the program about
how to further integrate existing repository resources while still
adhering to all VA data sharing requirements and adhering to the
permissions documented in the original consent forms.

There are continued opportunities to advance Veteran health
research and delivery of care through collaboration with other
VA repositories. As one example, we hope to create a streamlined
review process for requests to use ALS specimens with the VA
Biorepository Brain Bank, which stores central nervous system
(CNS) tissues for Veterans with ALS. Creating a joint process
will allow interested investigators to simultaneously request
DNA samples from our repository and tissue samples from
the Brain Bank for the same individuals. Furthermore, there
is opportunity to link our GWECB with additional Gulf War
research resources in the VA. These collaborative activities can
create further efficiencies in the storage and sharing of Veteran
data and specimens, with the overarching goal of sharing VA data
nationally and using this information to improve the health and
care of Veterans.
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Obesity has complex links to respiratory health. Mendelian randomization (MR)

enables assessment of causality of body mass index (BMI) effects on airflow

obstruction and mid-expiratory flow. In the adult SAPALDIA cohort, recruiting 9,651

population-representative samples aged 18–60 years at baseline (female 51%), BMI

and the ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity

(FVC) as well as forced mid-expiratory flow (FEF25–75%) were measured three times

over 20 follow-up years. The causal effects of BMI in childhood and adulthood on

FEV1/FVC and FEF25–75% were assessed in predictive (BMI averaged over 1st and

2nd, lung function (LF) averaged over 2nd and 3rd follow-up; N = 2,850) and long-term

cross-sectional models (BMI and LF averaged over all follow-ups; N = 2,728) by

Mendelian Randomization analyses with the use of weighted BMI allele score as an

instrument variable and two-stage least squares (2SLS) method. Three different BMI

allele scores were applied to specifically capture the part of BMI in adulthood that likely

reflects tracking of genetically determined BMI in childhood. The main causal effects

were derived from models containing BMI (instrumented by BMI genetic score), age,

sex, height, and packyears smoked as covariates. BMI interactions were instrumented

by the product of the instrument (BMI genetic score) and the relevant concomitant

variable. Causal effects of BMI on FEV1/FVC and FEF25–75% were observed in both
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the predictive and long-term cross-sectional models. The causal BMI- LF effects were

negative and attenuated with increasing age, and stronger if instrumented by gene

scores associated with childhood BMI. This non-standard MR approach interrogating

causal effects of multiplicative interaction suggests that the genetically rooted part of

BMI patterns in childhood may be of particular relevance for the level of small airway

function and airflow obstruction later in life. The methodological relevance of the results

is first to point to the importance of a life course perspective in studies on the etiological

role of BMI in respiratory health, and second to point out novel methodological aspects to

be considered in future MR studies on the causal effects of obesity related phenotypes.

Keywords: Mendelian randomization, body mass index, genetic score, lung function, COPD, longitudinal cohort

INTRODUCTION

Obesity, mostly measured as body mass index (BMI) is
an established asthma risk factor. Its etiological role with
regard to other respiratory phenotypes including chronic
obstructive pulmonary disease (COPD) remains unclear (1–
4). Observational evidence on the association of obesity with
spirometry-derived lung function (LF) is inconclusive (5–12). In
adulthood, increasing BMI has been often, but not exclusively,
associated with lower forced expiratory volume in 1 second
(FEV1) and forced vital capacity (FVC). Bariatric surgery
improved FVC and FEV1 in asthmatics over 5 years (13).
FEV1/FVC was sometimes preserved or even increased in the
presence of excess body weight, but overall the association with
airflow obstruction (AO) remains unclear (12). Inconsistencies
between studies reflect differences in the study populations (age,
health state, ethnicity, lifestyles, environments, socio-economic
profile), differences in obesity parameters studied, and statistical
models (confounders and effect modifiers considered).

Mechanisms by which obesity in adults can impair LF
include increased abdominal pressure due to fat mass, a related
decrease in the recoil properties of the chest wall, distal airway
closure and lung volume reduction. In addition, excess fat
mass may exacerbate systemic and airway inflammation (1, 14–
16). In fact, adipose tissue associated immunological and pro-
inflammatory factors may already impact on respiratory health
during childhood. Weight change patterns in early life were
recently associated with dysanapsis in which FVC is higher
relative to FEV1 as a result of a possible imbalance between
alveolar and airway growth (17). Although no study was able
to investigate the association of early life weight change patterns
with respiratory health in older adults, small airways are known
to be frequently involved at a very early stage of COPD and
possibly asthma (18).

Small airways are more difficult to study in the absence of
a gold standard for measuring their dysfunction. Forced mid-
expiratory flow (FEF25–75%, abbreviated as FEF2575 hereafter)
is thought to better capture small airways dysfunction than
FEV1/FVC (19). It may therefore be more sensitive to reflect
chronic effects of obesity on small airways. Few observational
BMI–LF studies in adults have considered FEF2575 (20–22). But
impulse oscillometry (IOS) studies, more reliable in assessing

distal airway function, found increased airway resistance and
decreased airway reactance with elevated BMI (15).

Further insight into the causality of the BMI-LF association
can be gained by Mendelian randomization (MR) studies (23).
Increasingly larger genome-wide association studies (GWAS),
primarily in adults, have identifiedmore andmore loci associated
with BMI at effect sizes and allele frequencies becoming smaller
and smaller (24–26), enabling derivation of an instrumental
variable. The different GWAS, conducted in adults or in children,
allow deriving instrumental variables more specifically targeting
either BMI in adulthood or BMI in childhood and thereby
reflecting age-related differences in pathways to BMI, an aspect
largely ignored in previous studies on BMI and lung function.
While the largest BMI GWAS in adults to date (24) (named
“Yengo score” in this paper) was not tested for association with
childhood BMI, the single nucleotide variants (SNPs) identified
in the earlier adult BMI GWAS (named “Speliotes score” in this
paper) were explicitly confirmed for association with childhood
BMI (26). Yet, the correlation between this latter genetic score
with one derived from a recent GWAS meta-analysis on BMI of
more than 40 000 children (named “Felix score”) was reported
at only 0.73 (25), pointing to differences in genetic pathways
determining childhood vs. adulthood BMI.

Only one, large MR meta-analysis has investigated the causal
effect of BMI on adult LF and it applied the adult BMI-derived
genetic score (“Speliotes score”) (25, 26), but not the childhood
BMI-derived genetic score (“Felix score”) (25). This study relied
on FEV1, FVC and BMI measured at a single time point in
almost 500,000 participants, and supported a causal effect of BMI
(2). The causal effect of BMI on other LF parameters relevant
to asthma and COPD such as FEV1/FVC, the physiological
parameter used to define AO, and FEF2575 (27–30), has not been
investigated using an MR approach.

The SAPALDIA cohort with 20 years of BMI and LF follow-
up offered the opportunity to study the chronicity of BMI-LF
association over an extended period of time in the context of
an MR study. We evaluated causal effects (a) of BMI averaged
over time points 1 and 2 on lung function averaged over time
points 2 and 3 (predictive model) and (b) of BMI and lung
function averaged over 3 time points (long-term cross-sectional
model). Since BMI fluctuates over time, we instrumented long-
term average BMI as a more meaningful exposure measure than
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BMI from a single time point. Similarly, since lung function
fluctuates over time and is measured with error (compliance of
participants, field worker effects, spirometry device effects), we
focused on long-term average LF as a more meaningful outcome
phenotype than level or change in lung function. We applied
MR to BMI, even though BMI is only an imprecise measure
of adiposity for the following reasons: First, better instrument
is available for BMI thanks to large GWAS, compared to other
adiposity metrics. Second, SAPALDIA has not longitudinally
measured other adiposity metrics as complete as BMI. Third,
BMI has been the most common obesity metric associated with
lung function in previous studies. The study a priori focused on
FEV1/FVC and FEF2575 as outcomes and a priori instrumented
BMI in three different ways (Yengo score, Speliotes score, Felix
score) in an attempt to specifically capture the part of BMI in
adulthood that reflects the tracking of genetically determined
BMI in childhood.

METHODS

Study Population
SAPALDIA has been described previously (31). Random
population samples aged 18–60 years were invited in eight Swiss
study areas for the baseline survey in 1991 (SAP1). Of the 9,651
baseline participants, 8,047 (83.4%) participated in follow-up
SAP2 (2001/3) and 6,139 (63.6%) in follow-up SAP3 (2010/11).
This paper was restricted to participants in all three surveys with
complete spirometry, BMI, genotype and covariate data for the
respective causal model (Supplementary Figures 1A,B).

Ethical approval was obtained for each survey and study
area from the central ethics committee of the Swiss Academy
of Medical Sciences and the Cantonal Ethics Committees.
Participants provided informed consent. All methods
were performed in accordance with the relevant guidelines
and regulations.

Lung Function
Spirometry was conducted with heated-wire spirometers
(SensorMedics, Yorba Linda, California) (SAP1 & SAP2),
and by portable, ultrasonic EasyOne spirometer (ndd
medizintechnick AG, Zürich, Switzerland) (SAP3), according
to American Thoracic Society recommendations (32) (see
Supplementary Material). The LF parameters considered
for this study are the ratio FEV1/FVC, forced mid-
expiratory flow FEF2575, and FEF2575/FVC (results in
Supplementary Material), derived from pre-bronchodilation
spirometry. FEV1 and FVC decline as airway narrows. A reduced
FEV1/FVC defines AO, resulting if the decline in FEV1 is
out of proportion to the decline in FVC, while reduced FVC
indicates restriction. FEF2575 is an early indicator of AO and
sensitive to small airway dysfunction. Reduced FEF2575/FVC
is an indicator of dysanapsis where lung volume increases as a
result of air trapping in the presence of AO. SAP3 measurements
were re-calibrated to assure comparability with SAP1 and SAP2
measurements (33).

BMI and Covariates
Height was measured. Weight was asked for at baseline, but
measured at follow-up. BMI was calculated in kg/m2. Exact
age was calculated based on birth and examination dates. Sex
was self-reported. Smoking was self-reported and measured as
pack-years smoked up to baseline and during the two follow-
up periods. Non-asthmatics where defined as those who never
reported a doctor diagnosis of asthma.

Genotyping
DNA was extracted from EDTA blood. 570k SNPs were
genotyped for 1,612 SAPALDIA samples by Human610-Quad
BeadChip (Illumina, San Diego, CA, USA) (34) and ∼1 million
SNPs were genotyped for additional 3,015 SAPALDIA samples by
Infinium Human OmniExpressExome-8 (Illumina, San Diego,
CA, USA) (35). Samples with call rate <0.97 or population
outliers were excluded. Markers with call rate <0.95, minor allele
frequency <0.05, or out of Hardy-Weinberg equilibrium (p <

10−6) were excluded. The genotype datasets were then phased
using ShapeIT (v2.r790) (36) and imputed using MiniMac2
(version 2014) (37) to 1,000 Genome phase 1 reference panel
comprising of 1,092 samples. The imputed datasets were merged
to yield 38 million markers.

BMI Allele Score
The genetic instruments for BMI were single-nucleotide
polymorphisms (SNPs) independently [linkage disequilibrium
(LD) R2 measure < 0.2] associated in Caucasians with the BMI
at a genome-wide level (P < 5 × 10−8). Three scores were
derived, i.e., “Speliotes Score” (adult BMI GWAS also associated
with childhood BMI, used in the only previous BMI-LF MR
study); “Felix Score” (childhood BMI GWAS); and “Yengo Score”
(largest adult BMI GWAS, unknown association with childhood
BMI). They were computed as weighted sum of 32, 12, and
862 BMI-increasing alleles reported by Speliotes et al. (26), Felix
et al. (25), and Yengo et al. (24), respectively, using the reported
coefficients for each SNP as weights, following the same approach
as earlier MR studies of BMI (2, 38). We excluded SNPs with
poor imputation quality (r2 < 0.3) or with known association
with smoking phenotypes in PhenoScanner. rs13387838 for
which visual inspection of MR Egger regression results clearly
indicated pleiotropy was further excluded from Felix Score.
Supplementary Table 1 describes the 32, 12, and 862 SNPs used
to construct Speliotes et al. (26), Felix et al. (25), and Yengo et al.
(24) scores, respectively.

As the weights’ sum is bounded by the number of SNPs
considered, the effect size of each score can be interpreted as
average effect per one BMI-increasing allele. The three scores
were only moderately correlated (0.28–0.55). The correlation
was smallest between the Yengo and the Felix scores (0.28)
(Supplementary Table 2).

Statistical Analysis
Statistical analyses were performed in R, version 3.4.3 for
Windows (http://www.r-project.org/) (see the “Statistical
analysis” section in the Supplementary Material).
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Analysis Scheme
We investigated the causal association in a predictive model
(exposure: BMI averaged over SAP1 and SAP2, referred to as
SAP1-SAP2; outcome: LF averaged over SAP2 and SAP3, referred
to as SAP2-SAP3) and in a long-term cross-sectional model (BMI
and LF both averaged over SAP1, SAP2, and SAP3; referred to
as SAP1-SAP2-SAP3).

Descriptive Analysis
Characteristics of study participants were summarized for the
combinations of surveys involved in the modeling phase: SAP1-
SAP2, SAP2-SAP3, and SAP1-SAP2-SAP3. Partial correlation
coefficients were computed: (i) between the same LF variables
over the 3 occasions in time to assess temporal auto-correlation;
and (ii) between the different LF variables (and their derived
averages) at each occasion in time to assess their degree of
(linear) relationship. Partial correlations were computed using
residuals of each LF variable from models that regress them
on Age, Age2, Height, Height2, Sex, and all their first-order
interactions. Pairwise complete cases analysis was performed, to
accommodate the differential presence of missing values in the
variables involved. BMI distribution at each survey was visualized
as histograms.

Checking MR Assumptions
In preparing for MR analysis, a set of assumptions as highlighted
in VanderWeele et al. (39) were checked:

(1) The genetic score is associated with the exposure. In the
context of our study, this requires testing the presence of an
association of BMI genetic score with BMI;

(2) The genetic score is not associated with confounders of
the exposure–outcome relationship. In the context of our
study, this required various actions: (2.1) testing that the BMI
genetic score is not associated with the observed confounders
Packyears andHeight; (2.2) SNPs identified in PhenoScanner
(40) as associated with smoking phenotypes, were excluded
from computing genetic scores; (2.3) MR-Egger regression
(41) was conducted to check for pleiotropy; (2.4) We
interrogated whether age or sex modify the influence of
BMI genetic score on phenotypic BMI by regressing the
BMI averages on a linear predictor including Age (averaged
over SAP1-SAP2 and SAP1-SAP2-SAP3, respectively, and
centered at 18 years), Sex, BMI genetic score and all
their interactions;

(3) The genetic score is not associated with the outcome,
conditional on the exposure and confounders of the
exposure–outcome relationship. In the context of our study,
this requires testing the absence of a BMI genetic score
association with LF, conditional on BMI and (observed)
confounders of the BMI-LF relationship.

In all these checks, the models used were chosen through a
selection procedure carried out within the class of (extended)
Generalized Linear Models, with the aim of making the choice
more flexible and finding the model most appropriate in terms
of both distribution of response and possible non-linearity

of the relationship of the response with the predictors (see
Supplementary Material for details).

Mendelian Randomization Analysis
As MR assumptions appeared to be satisfied in our data,
instrumental variable (IV) analyses were carried out to test and
estimate the causal effects of BMI on LF in the context of Linear
Gaussian models (42). Estimation was carried out using the two-
Stage Least Squares (2SLS) method. In the first-stage of 2SLS, the
exposure is regressed on the genetic score to give fitted values
of the exposure (“Exposure models”). In the second-stage, the
outcome is regressed on the fitted values for the exposure from
the first stage regression, along with other covariates (“Causal
model”). The causal estimate is this second-stage regression
coefficient for the change in outcome caused by a unit change
in the exposure. Details can be found in Burgess and Thompson
(43) (ch. 4.2). All MR analyses were carried out using the ivreg
command of the R library AER.

The first- and second-stage analyses were based on identical
data. The response variables were LF parameters averaged
over either SAP2-SAP3 (predictive model) or SAP1-SAP2-
SAP3 (long-term cross-sectional model). The causal variable
(instrumented by the respective BMI genetic score) was the
logarithm of the BMI averages over either SAP1-SAP2 (predictive
model) or SAP1-SAP2-SAP3 (long-term cross-sectional model).
The choice of log-transforming the BMI averages was made
through an AIC-based selection procedure. This transformation
appeared to be the best linear predictor for all LF outcomes and
the best choice in checking MR Assumption 1 (see the Results
for details).

Explanatory variables for each LF variable were chosen
through a model selection procedure. The initial (maximal),
and a priori sparse, model contained the following covariates:
(instrumented) BMI, Age (centered at 18 years, the minimal
admission age at SAP1), Sex, Height, and Packyears smoked,
along with all their pairwise interactions. Physical activity was
a priori not included in the model due to its potential role as
mediator of the BMI-LF association. We decided not to include
study center and educational level after we observed adding them
to the final causal and observational models did not materially
alter the effect estimates.

It is to be stressed that the inclusion of interactions implies
that all the interaction parameters between BMI and all other
variables must also be considered as causal, and must be
themselves instrumented; this represents an innovative aspect
of this paper, since models used in MR studies are usually
assumed to be additive, and no attempt is made to check
the appropriateness of this assumption. In a non-standard MR
approach and following a suggestion by Bun and Harrison (44),
the interrogation of causal interactions was instrumented by
the product of the instrument (BMI genetic score) and the
relevant concomitant variable. Given that age can be neither
genetically determined nor confounded, BMI:Age interaction is
a special case and our approach cannot be generalized into other
interaction MR analyses.

Starting from the maximal model, a model selection
procedure, based on AIC comparisons, provided the final model
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which retained (instrumented) BMI and its interaction with Age,
as well as Age, Sex, Height, Packyears smoked, Age× Sex and Age
× Height interactions. Standard errors for the causal parameter
IV estimates were obtained by second order delta method.
Wald confidence intervals were derived based on asymptotic
Normality. In all models, the error distribution was assumed
to be Normal, so that in all exposure models the response on
the original scale (BMIs1,s2 and BMIs1,s2,s3) was assumed to be
logNormal (see Supplementary Material for details).

The same final models were selected for the Mendelian
Randomization analyses on the two lung function variables of
main interest in this paper (FEV1/FVC and FEF2575). Their IV
representation is as follows.

Predictive Model

Causal model :E[LFs2,s3] = β0 + βc1log(BMIs1,s2)

+β1Age_cs1,s2 + β2Sexs2

+β3Heights1,s2 + β4PackYrss2

+βc2log(BMIs1,s2)×Age_cs1s2

+β5Age_cs1,s2×Sexs2 + β6Age_cs1,s2

×Heights1,s2 (1)

Exposure models : E[log(BMIs1,s2)] = α0 + α1BMIgs (2)

E[log(BMIs1,s2) :Age_cs1,s2]

= γ0 + γ1BMIgs×Age_cs1,s2 (3)

Long-Term Cross-Sectional Model

Causal model :E[LFs1,s2,s3] = β0 + βc1log(BMIs1,s2,s3)

+β1Age_cs1,s2,s3 + β2Sexs2

+β3Heights1,s2,s3 + β4PackYrss3

+β2log(BMIs1,s2,s3)×Age_cs1,s2,s3

+β5Age_cs1,s2,s3×Sexs2

+β6Age_cs1,s2,s3×Heights1,s2,s3(4)

Exposure models : E[log(BMIs1,s2,s3)] = α0 (5)

+α1BMIgs

E[log(BMIs1,s2,s3) :Age_cs1,s2,s3]

= γ0 + γ1BMIgs×Age_cs1,s2,s3(6)

where: LF (Lung Function) is either FEV1/FVC or FEF2575;

βc1 and βc2 are the causal effect parameters;
all variables with multiple subscripts are averages over the
relevant SAPALDIA surveys (e.g., BMIs1,s2 is the average of
BMIs1 and BMIs2);
Age_c is Age averaged over either SAP1-SAP2 or SAP1-SAP2-
SAP3 and centered at 18 years;
PackYrssi = Pack-years smoked up to SAPi (i= 2 or 3)
BMIgs is the BMI genetic score (either Speliotes, Felix, or
Yengo score).

Observational Association Analysis
The BMI-LF associations were analyzed using linear regression
analyses adjusted for Sex, Age, Height, and Packyears smoked.

TABLE 1 | Characteristics of study participants included in the sample: (A) used

to fit the predictive model; (B) used to fit the long-term cross-sectional model.

(A) Sample of the predictive model

SAP1, SAP2 SAP2, SAP3

N = 2,850

Sex at s2, % female 49.35

Mean (s1, s2) Age, years

(mean; SD)

44.71 (10.81)

Mean (s1, s2) Height, cm

(mean; SD)

170.11 (8.85)

Mean (s1, s2) Weight, kga

(mean; SD)

71.64 (13.25)

Mean (s1, s2) BMI, kg/m2

(mean; SD)

24.44 (3.54)

Packyears of cigarettes at

s2 (mean; SD)

10.47 (17.13)

Mean (s2, s3) FEF2575, mlb

(mean; SD)

2.58 (1.08)

(N = 2,936)

Mean (s2, s3) FEV1/FVC2

(mean; SD)

0.74 (0.07)

(N = 2,939)

Asthma up to s2 (% doctor

diagnosed asthma)

10.30

(B) Sample of the long-term model

SAP1, SAP2, SAP3

N = 2,728

Sex at s2, % female 50.53

Mean (s1, s2, s3) Age, years

(mean; SD)

49.43 (10.78)

Mean (s1, s2, s3) Height,

cm

(mean; SD)

169.63 (8.87)

Mean (s1, s2, s3) Weight,

kga

(mean; SD)

72.02 (13.21)

Mean (s1, s2, s3) BMI,

kg/m2 (mean; SD)

24.95 (3.68)

Packyears of cigarettes at

s3 (mean; SD)

11.48 (18.74)

Mean (s1, s2, s3) FEF2575,

mlb

(mean; SD)

2.89 (1.07)

Mean (s1, s2, s3)

FEV1/FVC2 (mean; SD)

0.76 (0.06)

Asthma (% doctor

diagnosed asthma ever)

13.35

aWeight was self-reported at baseline, and measured at follow-up.
bLung function at SAP3 was corrected for change in spirometry device (33).

For comparability with the MR results, the same final models [(1)
and (4)] were re-fitted, using observed BMI (and observed Age×
BMI interaction) instead of instrumenting them, and estimated
by Ordinary Least Squares.

Sensitivity Analysis
The reliability of self-reported, instead of measured, weight
at SAP1 was assessed by comparing the estimated regression
coefficient and the estimated determination coefficient R2 of
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the BMIs1 vs. BMIs2 and BMIs3 relationships with BMI genetic
scores. In order to check the possible effects due to the non-
Normality of the LF variables we re-fitted the final models (1–
6) employed in MR analysis using log-transformed (FEF2575)
and logit-transformed (FEV1/FVC) parameters as outcomes.
MR analysis was repeated using the ratio FEF2575/FVC as
outcome (20) and for non-asthmatics, again re-fitting the final
models (1–6).

In a preliminary analysis, we also investigated the association
between changes in BMI and changes in LF, to check if this
was a better way of exploiting the longitudinal nature of our
data, compared to the use of medium- and long-term averages.
Notice that we could perform this analysis only in observational
association terms, since no genetic variants for BMI change
are available.

The attrition bias due to potentially disproportionate lost
to follow up over 20 years was interrogated by replicating
the observational association analysis using Inverse Probability
Weighted analysis, where the weights were either (1) the
probability of participation in SAP2 and SAP3 given the variables
used in the models (BMI, LF (either FEF2575 or FEV1/FVC),
Age, Sex, Height, Packyears) measured at SAP1; or (2) the
probability of participation in SAP3 given the variables used in
the models (BMI, LF (either FEF2575 or FEV1/FVC), Age, Sex,
Height, Packyears) averaged over SAP1-SAP2.

As a post-hoc analysis, we conducted stratified analysis
by fitting the same final models, except for the Age×BMI
interaction, in the strata defined based on tertiles of age at SAP1,
using Speliotes score as instrument.

RESULTS

Descriptive Analysis
Characteristics of the study samples used for fitting the
predictive and the long-term cross-section model are presented
in Table 1. Variability of the LF variables, both within and
between SAPALDIA surveys, and stratified by obesity is
graphically depicted in Figures 1A,B. LF was lower among
obese persons, but the difference became weaker (FEF2575)
or disappeared (FEV1/FVC), as participants aged. Inverse
associations not dependent on age were observed for FEV1 and
FVC (Supplementary Figure 2). Partial correlations between
the LF parameters, and the derived means, are presented in
Supplementary Table 3. Histograms of BMI at each survey are
presented in Supplementary Figure 3.

Checking the MR Assumptions
MR assumptions appeared to be satisfied (for details see
Supplementary Material and Supplementary Tables 4A,B). The
three BMI genetic scores derived from different life-course
specific BMI variants were predictors of adult BMI, with the
Yengo score being the strongest instrument (F-statistics 182
and 233 for long-term cross-sectional and predictive models,
respectively). They were not associated with Packyears or Height.
None of the SNPs included in the BMI genetic scores overlap
with 154 smoking-related SNPs (45–47). One of the BMI SNPs
(rs10767664) was in high LD with several smoking initiation

associated SNPs in BDNF (brain derived neurotrophic factor) (R2

= 0.681∼ 0.911), but was not associated with smoking initiation
in SAPALDIA, irrespective of adjustment for Age, Sex, and BMI.
None, two, and sixteen SNPs were excluded from Speliotes, Felix,
and Yengo Score, respectively, due to known association with
smoking phenotypes in PhenoScanner. MR Egger regression did
not indicate potential pleiotropy for main BMI effects. Slight
indication of pleiotropy for the Age × BMI interaction was
observed in FEV1/FVC and FEF2575 prediction models for
Speliotes Score and in FEF2575 cross-sectional model for Felix
Scores (see Supplementary Table 5, Supplementary Figures 4–
6). We did not observe Age, Sex, or their combination to modify
the association of BMI genetic score with phenotypic BMI (data
not shown).

Mendelian Randomization Analysis
Causal effects of BMI on FEV1/FVC and FEF2575 were observed
in the predictive and long-term cross-sectionalmodels (Tables 2–
4 for Speliotes, Felix and Yengo Scores, respectively). For the
Speliotes Score the causal effect of BMI on these two LF
parameters was negative, but attenuated with increasing Age.
Figure 2 illustrates the age-BMI interaction with a 175 cm tall
male never smoker as a reference individual. If he is 18 years old
at SAP1, and hence his average age is 28 over the 20 years period
between SAP1 and SAP3, and during this period his BMI changes
from 25 to 30, employing the estimates in Table 2 we can predict
he will experience on average a decrease in his FEV1/FVC ratio
approximately equal to 0.10. On the other hand, if he is 48 years
old at SAP1, and hence his average age is 58 over the 20 years
period between SAP1 and SAP3, the same change of BMI from
25 to 30 will cause an increase in his FEV1/FVC ratio ≈0.016.
Causal effects were in the same direction, but with confidence
intervals covering no effect, for the Yengo and the Felix Scores.
Effect estimates of the Felix Score were about as large as for
the Speliotes Score, whereas effect estimates for the Yengo score
were considerably smaller. Irrespective of the genetic score, no
BMI interactions with covariates other than Age were present.
No causal effect of BMI on FEV1 or FVC was observed (results
not presented).

Observational Association Analysis
The Ordinary Least Squares estimates of the observational
associations of BMI with FEF2575 and FEV1/FVC, in terms
of both main effects and interactions with Age, are presented
in Table 5. Associations of BMI with FEV1/FVC and FEF2575
were in opposite directions: negative main effects and positive
interactions with Age for FEV1/FVC, positive main effects and
negative interactions with Age for FEF2575.

The comparison of MR causal effects and observational
associations is visually helped by the forest plots in
Figures 3A–D. While directions of MR causal effects and
observational associations were consistent for FEV1/FVC,
they were opposite for FEF2575. Confidence intervals
were considerably wider for causal effects compared to
observational associations.

To further investigate possible sources of the considerable
discrepancy between causal and observational BMI effects, we
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FIGURE 1 | Distributions of lung function variables at each SAPALDIA survey, by obesity state (BMI < 30 kg/m2 vs. ≥30 kg/m2: (A) FEV1/FVC, (B) FEF2575.

tried to check whether this could be due to the “composite”
nature of BMI as a measure of obesity [for a related discussion
of the difficulty of conducting causal inference with composite
exposures, see (48)]. To this goal (see more detailed explanation
in the Supplementary Material), we refitted the second stage IV
models that contained both BMIinstrumented and BMIresidual =
BMI-BMIinstrumented, derived from the IV first stage. BMIresidual,
which reflects the non-genetically determined BMI variability,
explained over 90% of observed BMI variability. We confirmed
the positive association of BMIresidual on FEF2575 and the lack of
its association with FEV1/FVC, consistent with our observational
analysis (see results in Supplementary Table 6).

Sensitivity Analysis
The comparison of regression estimates for BMIs1, BMIs2,
and BMIs3 on the three BMI genetic scores confirmed
the reliability of BMIs1 derived from self-reported weight
(Supplementary Table 7). Irrespective of genetic score,
the regression results for log-transformed (for FEF2575)
and logit-transformed (for FEV1/FVC) outcomes were
not materially different from those obtained using non-
transformed parameters (Supplementary Table 8). No material
changes in causal BMI effects were observed in models using
FEF2575/FVC as outcome (Supplementary Table 9), in models
restricted to non-asthmatics (Supplementary Table 10),
or in models adjusting for study area and education
(Supplementary Table 11). No association between change
in BMI and change in lung function was observed. The
Inverse Probability Weighted analyses did not show material
changes in the associations of BMI with FEV1/FVC and

FEF2575, although slightly attenuated associations were
observed (Supplementary Table 12). Stratified analysis showed
negative causal effects in younger age tertiles [(18.2, 35.2)
and (35.2, 46.6)] but not in the oldest tertile [(46.6, 61.7)],
confirming the MR results found for the Age × BMI interaction
(Supplementary Table 13).

DISCUSSION

The results of this long-term study are consistent with a
causal effect of BMI on AO and possibly small airway
dysfunction. Higher levels of BMI cause lower levels of
FEV1/FVC and FEF2575 up to middle-age, but the effect
lessens with aging. The observed Age × BMI interaction,
together with the stronger effects observed when instrumenting
BMI with SNPs associated with childhood BMI, reflect the
complexity of the BMI phenotype in adults. Adult BMI is
the result of tracking of BMI over the life course and of
genetic influences as well as non-genetic influences on weight
change in both childhood and adulthood. Our results suggest
that the genetically rooted part of BMI patterns in childhood
may be of particular relevance for the level of small airway
function and AO later in life, but that this effect diminishes
with aging, when exogenous influences on BMI become
more relevant.

The observational association between BMI and AO or
COPD has not been well-studied. Results from the two
largest, post-bronchodilation spirometry based studies are
contradictory. In the world-wide BOLD study obesity was
less common in persons with AO (12). The opposite was
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TABLE 2 | Causal effectsa of BMI on FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N βc1, βc2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.561 0.256 0.029

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.019 0.010 0.065

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.752 0.314 0.017

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.021 0.010 0.040

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

2,850 −7.152 3.457 0.038

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

0.222 0.141 0.116

Long-term cross-sectional model

BMI main effect

log(BMIs1,s2,s3)→ FEF2575s1,s2,s3

2,728 −9.251 4.433 0.037

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

0.242 0.146 0.096

BMI genetic score: (Speliotes; 32 SNPs).
aβc1, causal BMI main effect per one BMI-increasing allele; βc2, causal BMI*Age interaction effect per one BMI-increasing allele.

The negative sign of the causal main effect means that, keeping all other predictors fixed, at age 18 (which has been chosen as the origin in our analysis) BMI has a causal negative

effect on LF. The positive sign of the Age × BMI causal interactive effect implies that, as age increases, the detrimental effect of BMI on LF decreases. As a consequence, the total effect

of BMI becomes null at middle ages and protective at older ages; for a graphical representation of such BMI total effects by selected ages see Figure 2.

observed in PLATINO study, conducted in Latin American
cities (49). The two studies differ in terms of environment,
lifestyle and adiposity patterns, but their modifying effect
on the BMI-AO association was not reported. SAPALDIA
and comparable cohorts previously pointed to important
interactions between BMI, physical activity and air pollution
with regard to FEV1/FVC and FEF2575 (50–53). In contrast
to the BOLD and PLATINO studies, this MR study was based
on pre-bronchodilation spirometry. But the observed causal
effects of BMI are possibly valid for post-bronchodilation LF,
because results did not change after excluding asthmatics (54,
55).

Composite Nature of BMI Explains the
Discrepancy Between Causal and
Observational Effects
The current novel results are consistent with confounding
in observational obesity- airflow obstruction links. MR and
observational regression coefficients were consistent in direction
for FEV1/FVC, but not for FEF2575. These parameter-specific
differences between observational and causal effects could reflect
differences in unmeasured positive confounders. FEV1/FVC and
FEF2575, with potentially different etiology, may have different

confounders with regard to the association with BMI. The
sparsity of model, which included a minimal set of covariates,
may be responsible in part for the large difference between
observed and causal BMI effects. We cannot exclude entirely
that the observed causal interaction with Age may be the result
of confounding.

But residual confounding unlikely explains most of
the observed difference between causal and observational
associations. Another possible explanation of this discrepancy in
our data is the composite nature of BMI, which is well-known
to be an imprecise measure of different adiposity phenotypes
(56), each with distinct genetic and non-genetic components,
the contribution of which may vary over the life course. This is
a form of measurement error with regard to the true adiposity
measure and susceptible time window of interest. In MR studies
it is usually assumed an exposure has the same impact on health
outcomes, regardless of whether it is due to genetics, or to other
sources. This may only hold true for well-defined biological
traits, but not for composite exposures like BMI. By refitting the
second stage IV model including terms for both, BMIinstrumented

(genetically determined BMI) and BMIresidual (non-genetically
determined BMI), we assumed a measurement error model
that considers misclassification of the true adiposity measure
of interest (see Supplementary Material for a more formalized
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TABLE 3 | Causal effectsa of BMI on FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N βc1, βc2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.468 0.455 0.300

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.011 0.015 0.490

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.479 0.565 0.400

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.006 0.016 0.730

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

2,850 −9.932 6.622 0.134

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

0.269 0.225 0.231

Long-term cross-sectional model

BMI main effect

log(BMIs,1s2,s3)→ FEF2575s1,s2,s3

2,728 −9.111 8.117 0.262

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

0.163 0.234 0.486

Childhood BMI genetic score: (Felix; 12 SNPs).
aβc1, causal BMI main effect per one BMI-increasing allele; βc2, causal BMI*Age interaction effect per one BMI-increasing allele.

The negative sign of the causal main effect means that, keeping all other predictors fixed, at age 18 (which has been chosen as the origin in our analysis) BMI has a causal negative

effect on LF. The positive sign of the Age×BMI causal interactive effect implies that, as age increases, the detrimental effect of BMI on LF decreases. As a consequence, the total effect

of BMI becomes null at middle ages and protective at older ages.

illustration). The fact that BMIresidual showed association
with FEF2575 but not with FEV1/FVC, consistent with our
observational analysis, supports our measurement error model
and points to different effects of non-genetically determined BMI
on FEV1/FVC and FEF2575. It is conceivable that genetically
determined BMI has negative causal effect, while non-genetically
determined BMI has positive effect, and the measurement error
due to the metric “BMI” as a mixture of the two components
can result in such a discrepancy. A recent metabolomics study
reported that genetic score of BMI predicted actual BMI but not
the metabolic signature of obesity, indicating that the genetic
score captures anthropometric phenotype rather than obesity as
a disease trait (57).

Given: (a) the observed negative effect of the genetic, but
not of the non-genetic, component of BMI on lung function,
(b) that the causal BMI effects were strongest for long-term
cross-sectional models, (c) that genetic scores derived from SNPs
associated with BMI in childhood led to stronger causal BMI
effects, and (d) the observed BMI gene score-age interaction with
inverse associations in the younger age groups, our results are
consistent with the hypothesis that:

1. BMI in childhood impacts on lung function growth and affects
the level of lung function in the first half of life (17), thereby
leading to lower levels of attained lung function later in life
and increasing the risk of chronic respiratory diseases.

2. BMI in adulthood is increasingly (with age) likely to reflect
lifestyle rather than genetic background, which may lead to a
different phenotype not well-captured by genetic instruments.
This phenotype may have no, or even a positive, effect on lung
function, following current discussions about what should be
considered a healthy BMI cutoff for older persons.

Age-Dependent Causal Effects of BMI: Life
Course Perspective of Lung Function
As some SNPs were reported to have specific effects on BMI in
childhood or divergent BMI effects across the life course (25),
the current results may point to specific BMI-related pathways
affecting lung function early in life. Besides age-specific genetic
effects on BMI (25), age-related differences in the distribution of
fat and muscle mass and also in their association with the course
of lung function have been reported (56, 58). These age-related
differences may reflect changes in gene-environment interactions
and the relative contribution of heritability and lifestyle to
BMI over the life course (59, 60). The relative contribution of
genetically determined BMI to lung function may decrease with
aging and the accumulation of molecular damage due to BMI,
determined by lifestyle and environmental risks may become
more relevant.

Besides the above argued potential effect of BMI in early
childhood on lung function growth and its trajectories into
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TABLE 4 | Causal effectsa of BMI on FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N βc1, βc2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.140 0.117 0.233

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.005 0.004 0.255

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.226 0.132 0.088

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.005 0.003 0.173

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

2,850 −2.715 1.594 0.089

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

0.087 0.056 0.118

Long-term cross-sectional model

BMI main effect

log(BMIs1,s2,s3)→ FEF2575s1,s2,s3

2,728 −3.073 1.885 0.103

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

0.076 0.056 0.175

BMI genetic score: (Yengo; 862 SNPs).
aβc1, causal BMI main effect per one BMI-increasing allele; βc2, causal BMI*Age interaction effect per one BMI-increasing allele.

The negative sign of the causal main effect means that, keeping all other predictors fixed, at age 18 (which has been chosen as the origin in our analysis) BMI has a causal negative

effect on LF. The positive sign of the Age × BMI causal interactive effect implies that, as age increases, the detrimental effect of BMI on LF decreases. As a consequence, the total effect

of BMI becomes null at middle ages and protective at older ages.

adulthood, additional, not mutually exclusive explanations for
the observed evidence of causal Age × BMI interactive effects
on LF outcomes apply. First, it may be a chance finding. Second,
the results may reflect age-related differences in prevalence and
severity of AO. According to the obesity paradox in COPD,
excess weight has an adverse effect on the disease course in
the early stages. But at more advanced stages for the same
degree of AO, obese COPD patients fare better on average
than non-obese patients with regard to mortality and hospital
admission (4). BMI was positively associated with FEF2575/FVC
in heavy smokers with AO (20). Third, age-related changes
in inflammation, immunologic responses and mechanical lung
properties could alter the susceptibility of the airways to obesity
(61). Challenges in interpreting low FEV1/FVC in the elderly
have been discussed (62). Fourth, the observed age-interaction
could in part be explained by survivor bias, if survivors with
high BMI are those most resistant to the adverse LF effects of
obesity. Finally, this study does not allow differentiating between
causal biological BMI effects on LF and causal BMI effects on
phenotypes that are comorbid with LF. The increasing number,
but with decreasing effect size, of BMI associated SNPs arising
from ever larger GWAS is likely to increase the number of
comorbidity signals (24). Although the genetic scores we used in
this study did not show association with height, we cannot rule
out that the causal BMI effects are in part due to height.

BMI Effects on FEF2575, a Potential Early
Indicator of Small Airway Dysfunction
A causal effect on FEF2575 is of interest, as small airways are
frequently involved at an early stage in COPD and asthma
(18) and they have been shown to be adversely affected by
weight and growth patterns in early childhood (17). Adverse
peripheral airway effects of excess weight were demonstrated by
impulse oscillometry (15, 63). The insensitivity of spirometry
to peripheral airway abnormalities may in part explain the
contradictory findings on the BMI- LF association (63). The value
of FEF2575 for early detection of small airway dysfunction has
been questioned (64, 65), and attributed to the parameter’s wide
variability in healthy subjects (66). But several aspects of this
study justify the consideration of FEF2575 as an independent
phenotype. The partial correlations with FEV1, FVC, and
FEV1/FVC were between 0.182 (FEF2575: FVC at SAP1) and
0.868 (FEF2575s1,s2,s3: FEV1/FVC s1,s2,s3) across phenotypes
and time points. The intra-individual variability of FEF2575
was smaller than that of FEV1/FVC. FEF2575 was previously
correlated with functional imaging assessment of small airway
function (67). In obliterative bronchiolitis, the paradigm of small
airway disease, FEF2575 is considered a sensitive diagnostic
marker (68). FEF2575 was correlated with smoothmuscle α-actin
in the small airways, a marker of airway remodeling (69), and
predicted mortality from COPD after 20 years of follow-up (70).
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FIGURE 2 | Predictive and long-term cross-sectional total causal (26) effect of BMI on FEV1/FVC (A,B) and FEF2575 (C,D) for a reference individual (Male, Height =

175 cm., Never Smoker) at specific ages (Blue: at age 28, Orange: at age 38, Red: at age 48; Purple: at age 58; Black: at age 68). (A) Total predictive effect of BMI

(log mean over SAP1-SAP2) on FEV1/FVC ratio (mean over SAP2-SAP3); (B) Total long-term cross-sectional effect of BMI (log mean over SAP1-SAP2-SAP3) on

FEV1/FVC ratio (mean over SAP1-SAP2-SAP3); (C) Total predictive effect of BMI (log mean over SAP1-SAP2) on FEF2575 (mean over SAP1-SAP2); (D) Total

long-term cross-sectional effect of BMI (log mean over SAP1-SAP2-SAP3) on FEF2575 (mean over SAP1-SAP2-SAP3).

Strengths and Limitations
As in any study, results have to be evaluated in the light of
strengths and limitations. The assumptions of MR appeared
to be satisfied, strengthening the choice of carrying out an
MR study. The MR assumptions could still be violated by
unobserved confounders, though. Statistical power of this study

was limited, but the choice of considering medium- and long-
term averages, for both exposure and outcome, alleviated this
problem and allowed studying the stability and age dependency
of causal effects. This study did not confirm previously reported
causal effects of BMI on FEV1 and FVC (2) that were strictly
cross-sectional and based on data from a single time point.
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TABLE 5 | Observational associations of BMI with FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N β1, βa2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.006 0.025 0.803

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.001 0.001 0.378

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.047 0.026 0.076

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.001 0.001 0.179

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

0.746 0.330 0.024

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

2,850 −0.019 0.011 0.085

Long-term cross-sectional model

BMI main effect

log(BMIs1,s2,s3)→ FEF2575s1,s2,s3

0.525 0.375 0.162

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

2,728 −0.017 0.011 0.114

aβc1, associational BMI main effect; β2, associational BMI*Age interaction effect.

FIGURE 3 | Comparison of associational and MR causal (26) effects for FEV1/FVC [(A): main effect of BMI; (B) AGE × BMI interaction] and FEF2575 [(C) main effect

of BMI; (D) AGE × BMI interaction].
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The sample size did not allow studying the causality of BMI
effects in respiratory health subgroups, e.g., COPD patients.
But the detailed participant characterization in SAPALDIA,
an internationally renowned respiratory cohort (33, 71–73)
allowed excluding persons with a self-report of doctor-diagnosed
asthma at any point during 20 years. Additional limitations
include the restriction of LF to pre-bronchodilation, whereas
post-bronchodilation FEV1/FVC forms the basis for diagnosing
COPD (74), and of obesity assessment to BMI in the absence
of visceral adiposity indicators (68). No measurements of BMI
in childhood of SAPALDIA participants were available, which
would have allowed to instrument childhood BMI. We were
limited in assessing longitudinal effects of BMI or its change on
LF decline in adults. Genetic variants to instrument BMI change
do not exist. Many more than three time points would be needed
to truly assess causal BMI effects on LF change over time. But
biological pathways underlying level of LF and LF decline may
differ. BMI and lung function averaged over a certain time period
as in this studymay be bettermeasures for assessing chronic long-
term associations between the two, given the intra-individual
volatility of these parameters over time. This is supported by the
fact that we found stronger associations by using medium- and
long-term averages, compared to single time point associations,
and a higher predictive ability when compared with that of BMI
change with lung function change. We acknowledge that by
taking averages of BMI and averages of lung function we are
faced with the problem that persons with higher BMI at baseline
and lower BMI at follow-up may have the same long-term BMI
average as persons with lower BMI at baseline and higher BMI
at follow-up. The same caveat may apply for two people with
the same average of lung function. Because this adds to the
problem of reverse causation (and would most likely bias the
associations toward the null), we were also taking a predictive
approach of investigating the associations of BMI averaged over
SAP1 and SAP2 with lung function averaged over SAP2 and
SAP3. As another limitation, we acknowledge that our study
did not investigate non-linearity of the causal effects. Finally, we
cannot exclude that the complete case analysis led to some bias
due to other sources of missingness, although attrition seems to
be by far the most important mechanism generating missingness
in our data. Although the Inverse Probability Weighted analysis
considered bias due to the most important attrition factor, and
for that matter a major mortality determinant, namely smoking,
not all factors influencing non-participation could be considered.
However, the attrition bias would likely bias the associations
toward the null, given that the dropouts would more likely have
experienced increase in BMI and decline in LF.

CONCLUSION

The results of this study suggest that AO and possibly small
airways disease may, in part, be the result of excess weight
in young and middle-aged adults, or even in children. The
results need to be confirmed in the context of a larger MR
study involving tests reflecting small airway dysfunction and

more specific parameters for adiposity at different stages in
life. In addition, the study points to important methodological
needs in future studies on the causal effects of obesity and
lung health, namely to consider adiposity- and lung phenotype-
specific associations from a life course perspective and to
derive and apply genetic instruments reflecting more specific
obesity phenotypes.
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Observational studies have reported that the severity of COVID-19 depends not only

on physical conditions but also on socioeconomic status, including educational level.

Because educational attainment (EA), which measures the number of years of schooling,

is moderately heritable, we investigated the causal association of EA on the risk of

COVID-19 severity using the Mendelian randomization (MR) approach. A two-sample MR

analysis was performed using publicly available summary-level data sets of genome-wide

association studies (GWASs). A total of 235 single-nucleotide polymorphisms (SNPs)

were extracted as instrumental variables for the exposure of EA from the Social Science

Genetic Association Consortium GWAS summary data of 766,345 participants of

European ancestry. The effect of each SNP on the outcome of COVID-19 severity risk

was obtained from the GWAS summary data of 1,059,456 participants of European

ancestry gathered from the COVID-19 Host Genetics Initiative. Using inverse variance

weighted method, our MR study shows that EA was significantly associated with a

lower risk of COVID-19 severity (odds ratio per one standard deviation increase in years

of schooling, 0.540; 95% confidence interval, 0.376–0.777, P = 0.0009). A series of

sensitivity analyses showed little evidence of bias. In conclusion, we show for the first

time using a two-sample MR approach the associations between higher EA and the

lower risk of COVID-19 severity in the European population. However, the genetic or

epidemiological mechanisms underlying the association between EA and the risk of

COVID-19 severity remain unknown, and further studies are warranted to validate the

MR findings and investigate underlying mechanisms.

Keywords: Mendelian randomization, COVID-19, SARS-CoV-2, educational attainment, years of schooling

INTRODUCTION

The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2), was originally reported as an outbreak of atypical
pneumonia cases in Wuhan in the Hubei Province of China in December 2019. As of March
2021, the COVID-19 death toll has topped 2.8 million worldwide according to the World Health
Organization (1). Serious COVID-19 patients have pneumonia with hypoxia and may be critical
with acute respiratory distress syndrome, pulmonary fibrosis, and other organ failures (2).
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Observational studies report that the severity of COVID-
19 depends not only on physical conditions such as age,
cardiovascular disease, and obesity (3–8) but also on
socioeconomic status (SES) indicators such as lower incomes
and lower educational level among various populations
(9–12). In the European population, lower education level was
associated with a higher risk of severe COVID-19 cases that were
confirmed either at emergency departments or as inpatients and,
therefore, likely reflect severe illness as well as a higher risk of
asymptomatic COVID-19 cases in a prospective cohort study
using UK Biobank data (9). However, traditional observational
studies lacking randomization designs are generally prone to
bias by various factors, including confounders and reverse
causations (13).

Mendelian randomization (MR) is an epidemiological method
that mimics the design of randomized controlled studies
using single-nucleotide polymorphisms (SNPs) as instrumental
variables (IVs) and examines the causal effects of a risk factor
on an outcome of interest. Because genetic variants, such
as SNPs, are randomly assigned at conception according to
Mendel’s law, MR studies are not influenced by confounders or
reverse causations and can overcome limitations of observational
studies (13). Educational attainment (EA) is highly affected by
environmental and social factors but is also moderately heritable
as shown by genome-wide association studies (GWASs) (14, 15).
Therefore, we were motivated to investigate in this study whether
EA had a causal effect on the risk of COVID-19 severity using the
MR approach.

METHODS AND MATERIALS

Study Design and Data Sources
We conducted a two-sample MR study using publicly available
summary statistics from two GWASs to investigate whether EA
was associated with risk of COVID-19 severity. In MR analysis,
SNPs from the exposure data set are used as IVs. IVs must
satisfy the following three assumptions: The IVs are associated
with the exposure (IV assumption 1), the IVs affect the outcome
only via the exposure (IV assumption 2), and the IVs are
not associated with measured or unmeasured confounders (IV
assumption 3) (16). For the exposure data set of EA, which
measured the number of years of schooling that individuals
had completed, the SNPs were obtained from the Social Science
Genetic Association Consortium’s GWAS summary data of
766,345 participants of European ancestry (13), which was a
meta-analysis of 70 discovery cohorts (excluding 23andMe) as
shown in Supplementary Table 1. This data set was publicly
available from theMRC IEUOpenGWAS database (17) andMR-
Base (18) given as GWAS-ID of “ieu-a-1239.” For the outcome
data set of the risk of COVID-19 severity, the SNPs were obtained
from summary-level GWAS data of COVID-19-hg GWAS meta-
analyses (round 5) including 14 studies, but excluding the UK
Biobank, with a total of 1,059,456 participants (4,792 very severe
respiratory confirmed COVID-19 cases and 1,054,664 controls)
of European ancestry by the COVID-19 Host Genetics Initiative
(19) (Supplementary Table 1), which was released on January 18,
2021, and was also publicly available (20). Very severe respiratory

confirmed COVID-19 cases were defined as hospitalization
for laboratory confirmed SARS-CoV-2 infection with death or
respiratory support (20).

Selection of Instrumental Variables
The SNPs were selected from the exposure GWAS summary
data as IVs by clumping together all SNPs that were associated
with EA at a genome-wide significance threshold (P < 5.0 ×

10−8) and were not in linkage disequilibrium (r2 < 0.01 and
distance > 10,000 kb) with the other SNPs. Palindromic SNPs
with minor allele frequency > 0.42 were excluded from the
analyses (16, 21). As a sensitivity analysis, we also excluded all
palindromic SNPs regardless of minor allele frequencies (22). We
studied only SNPs that were present in both the exposure and
outcome GWAS data sets and did not include proxy SNPs in
the analysis (22, 23). To evaluate the strength of the IVs, we
calculated the F-statistic of each SNP using the following formula:
F-statistic= R²× (N−2)/(1−R²), where R2 is the variance of the
phenotype explained by each genetic variant in exposure, and N
is the sample size. R2 was calculated using the following formula:
R² = 2 × (Beta)2 × EAF × (1−EAF)/[2 × (Beta)2 × EAF ×

(1−EAF) + 2 × (SE)2 × N × EAF × (1−EAF)], where Beta
is the per allele effect size of the association between each SNP
and phenotype, EAF is the effect allele frequency, and SE is the
standard error of Beta (24). IVs with an F-statistic <10 were
regarded as weak instruments (25).

Two-Sample Mendelian Randomization
The Wald ratio, which estimates causal effect for each IV, was
calculated as the ratio of Beta for the corresponding SNP in
the outcome data set divided by Beta for the same SNP in the
exposure data set (26). Our main approach was to conduct a
meta-analysis of each Wald ratio by inverse variance weighted
(IVW) method using multiplicative random-effects model to
estimate overall causal effect of the exposure on the outcome.
The causal effects were calculated as the odds ratio (OR) for
the risk of COVID-19 severity per one standard deviation
(SD) increase in years of schooling (one SD is equivalent
to 4.2 years) (15, 27). In addition, we conducted sensitivity
analyses by MR-Egger regression, weighted median method,
MR-PRESSO (Mendelian Randomization Pleiotropy RESidual
Sum and Outlier) global test, and leave-one-out sensitivity
analysis. The MR-Egger regression method is used to assess
horizontal pleiotropy of IVs. When IV assumption 2 is violated,
horizontal pleiotropy occurs, and MR-Egger regression intercept
significantly differs from zero (28, 29). The weighted median
method provides a valid causal estimate when more than half of
the instrumental SNPs satisfy the IV assumptions (24). The MR-
PRESSO global test investigates whether there are outlier SNPs
whose variant-specific causal estimates differ substantially from
those of other SNPs (30, 31). Leave-one-out sensitivity analysis
was conducted to assess the reliability of the IVW method
by removing each SNP from the analysis and reestimating the
causal effect (31). Moreover, among SNPs associated with EA,
we searched for SNPs associated with P < 5.0 × 10−8 with
pleiotropic effects on bodymass index (BMI), smoking, and other
SES using the web tool PhenoScanner (version 2) (32, 33). The
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heterogeneity was also measured between the causal estimates
across all SNPs in the IVW method calculating Cochran’s
Q statistic and I2 statistic (34). Low heterogeneity provides
more reliability for a causal effect (35). We conducted
all the two-sample MR analyses using “TwoSampleMR”
package (version 0.5.5) in R (version 4.0.3) (36). A P-value

TABLE 1 | MR results of the causal effect of EA on the risk of COVID-19 severity.

IVW method Weighted

median

method

MR-Egger

regression method

Heterogeneity

(IVW)

MR-

PRESSO

global test

OR (95% CI) OR (95% CI) OR (95% CI) Intercept Cochran’s Q

P-value P-value P-value P-value P-value P-value

0.540

(0.376–0.777)

0.484

(0.283–0.826)

0.353

(0.084–1.483)

0.006 261.9

P = 0.0009 P = 0.008 P = 0.156 P = 0.548 P = 0.102 P = 0.115

MR, Mendelian randomization; COVID-19, coronavirus disease 2019; EA, educational

attainment; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval.

below 0.05 was considered statistically significant in all
statistical analyses.

RESULTS

In total, 235 instrumental SNPs were identified for both EA
and the risk of COVID-19 severity GWAS data sets. The
characteristics of all the SNPs included in our analysis are shown
in Supplementary Table 2. The F-statistic of every instrument
was>29, thus suggesting that weak instrument bias was unlikely.

The IVWmethod showed that EA was significantly associated
with a lower risk of COVID-19 severity [OR per 1-SD increase
in years of schooling, 0.540; 95% confidence interval (CI),
0.376–0.777; P = 0.0009] in the European population (Table 1,
Figure 1, and Supplementary Figure 1). Cochran’s Q statistic
and I2 statistic for the IVW method were 261.9 (P = 0.102)
and 0.110, indicating low heterogeneity and more reliability
for the causal effect. Other MR methods also showed overall
consistent protective effects for EA on the risk of COVID-19
severity although the MR-Egger regression estimate did not have
statistical significance (Table 1 and Figure 1). However, when

FIGURE 1 | Scatter plots. Each black point representing an SNP is plotted in relation to the effect size of the SNP on years of schooling (x-axis) and on the risk of

COVID-19 severity (y-axis) with corresponding standard error bars. The slope of each line corresponds to the causal estimate using inverse variance weighted (light

blue), weighted median (green), and MR-Egger regression (blue) method.
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I2 statistics are much <1, no measurement error assumption
is violated and MR-Egger regression tends to underestimate
the causal effect (34). In fact, Cochran’s Q statistic and I2

statistic for our MR-Egger regression were 261.5 (P = 0.097)
and 0.113 (much <1), respectively. The MR-Egger intercept
was 0.006 (P = 0.548), indicating little evidence of horizontal
pleiotropy. The weighted median method indicated that more
than half of the instrumental SNPs in our analysis satisfied the
IV assumptions. The funnel plot showed general symmetry,
suggesting little evidence of heterogeneity or horizontal
pleiotropy (Supplementary Figure 2). MR-PRESSO global test
(P = 0.115) and leave-one-out sensitivity analysis suggested the
lack of an outlier SNP whose variant-specific causal estimate
differed substantially from those of other SNPs (Table 1 and
Supplementary Figure 3). We excluded all palindromic SNPs
regardless of minor allele frequencies from the IVW method,
and then we obtained a comparable result to that of the
original IVW method (OR, 0.540; 95% CI, 0.366–0.796, P =

0.0019; number of instrumental SNPs; 209). Our search using
PhenoScanner identified 17 SNPs that were associated with BMI
(rs10073890, rs11123818, rs13090388, rs1334297, rs1566085,
rs1618725, rs1689510, rs1964927, rs2725370, rs2820314,
rs4787457, rs56391344, rs62444881, rs66568921, rs67890737,
rs9372625, rs9384679), three SNPs that were associated with
smoking traits (rs10240905 with pack years adult smoking as
proportion of life span exposed to smoking, rs2179152 with
pack years of smoking, and rs66568921 with ever smoked), and
six SNPs that were associated with other SES traits (rs1008078
with Townsend deprivation index at recruitment, rs13090388,
rs34316, and rs9372625 with job involving heavy manual or
physical work, rs1391438 and rs2971970 with job involving
mainly walking or standing), respectively. We excluded the 17
SNPs that were associated with BMI from the IVW method,
and then we obtained a comparable result to that of the original
IVW method (OR, 0.550; 95% CI, 0.373–0.810, P = 0.0025;
number of instrumental SNPs; 218) (see section Discussion).
When we excluded the three SNPs that were associated with
smoking traits from the IVWmethod, we obtained a comparable
result to that of the original IVW method (OR, 0.557; 95%
CI, 0.386–0.803, P = 0.0018; number of instrumental SNPs;
232). Similarly, we excluded the six SNPs that were associated
with other SES traits from the IVW method, and then we
obtained a comparable result to that of the original IVW
method (OR, 0.536; 95% CI, 0.372–0.773, P = 0.0009; number
of instrumental SNPs; 229). Moreover, when we excluded
all 23 SNPs that were associated with BMI, smoking traits,
and other SES traits (three SNPs overlapped), we obtained a
comparable result to that of the original IVW method (OR,
0.565; 95% CI, 0.382–0.835, P = 0.0042; number of instrumental
SNPs; 212).

We noticed some possible overlap between the exposure
GWAS participants and the outcome GWAS participants
as shown in Supplementary Table 1. This might have
led to bias in the causal estimate of EA on the risk
of COVID-19 severity, but the bias was unlikely to be
substantial because the possible overlap was small as
discussed below.

DISCUSSION

To our knowledge, this is the first MR study to investigate the
association between EA and the risk of COVID-19 severity.
Observational studies report that a lower level of education
influences the severity of COVID-19 among various populations
(9–12). In the European population, those who had no
qualification (equivalent to seven years of education) (37) had a
higher risk of severe COVID-19 (i.e., a positive test for SARS-
CoV-2 in a hospital setting either at emergency departments or
as inpatients) than those who had college or university degree
(equivalent to 20 years of education) (37) in fully adjusted
model [risk ratio (RR), 1.58; 95% CI, 1.25–1.99; p < 0.001] in
a prospective cohort study using UK Biobank data (9). Our two-
sample MR approach supported, with little evidence of bias, the
causal effect of higher EA on the risk of COVID-19 severity
(OR, 0.540; 95% CI, 0.376–0.777; P = 0.0009) in the European
population, which was consistent with the cohort study. In other
populations, a risk-adjusted model of a large cohort, including
62,298 COVID-19 deaths, showed that lower education levels
were strongly associated with the level of COVID-19 fatalities per
100,000 persons (rate ratio, 1.08; 95% CI, 1.05–1.11; P < 0.0001)
in severely distressed counties in the United States (10). Another
study in the United States showed that education level with a
bachelor’s degree was associated with a lower rate ofmortality due
to COVID-19 (estimate,−0.246; 95% CI, −0.388 to−0.103; P =

0.0008) across various ethnicities in the sevenmost affected states
(11). In São Paulo, Brazil, among patients under 60 years of age
and living in areas with the lowest percentage (below 8.61%) of
the population with a university degree, COVID-19mortality was
four times higher than that among those living in areas with the
highest percentage (over 34.80%) of population with a university
degree (rate ratio, 4.02; 95% CI, 3.42–4.72) (12). However, our
MR analysis was based on populations of European ancestry, and
the findings are unlikely to be generalized to other populations
and ethnicities.

In our MR analysis, underlying genetic or epidemiological
mechanisms of how EA lowered the risk of COVID-19 severity
remain unknown. Therefore, although a range of sensitivity
analyses indicated the robustness of our MR findings, we
must pay careful attention to the possibility of unmeasured
horizontal pleiotropy of genetic IVs for EA. Observational
studies showed that higher EA was associated with decreased
prevalence of smoking, physical inactivity, obesity, hypertension,
and hypercholesterolemia (38). We infer that other risk factors,
including BMI and lifetime smoking, were related to the causal
effect of EA on the risk of COVID-19 severity in our analysis
for the following reasons. First, MR studies have shown that
EA has causal effects on decrease of BMI (39, 40). Second, MR
studies have shown that BMI has a causal effect on the risk
of COVID-19 severity (29, 41, 42). Consistent with the MR
results showing the effect of BMI on the risk of COVID-19
severity, the risk-adjusted model showed that, in addition to
the two socioeconomic factors of low level of education and
a proportionally larger Black population, obesity was the only
physical risk factor in the U.S. cohort (10). Other observational
studies also have reported that BMI is a risk factor for hospital
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admission, disease severity, and in-hospital mortality due to
COVID-19 (5–8). Consistently, our search using PhenoScanner
identified 17 SNPs that were associated with both EA and BMI
with P < 5.0 × 10−8. Similarly, MR studies have shown that EA
has causal effects on increased lifetime smoking (39) and that
lifetime smoking has a causal effect on the risk of COVID-19
severity (41) although the associations between smoking and the
risk of COVID-19 remain controversial in observational studies
(41). Therefore, the causal effect of EA on the risk of COVID-19
severity may be at least partly mediated through increases of BMI
and lifetime smoking. Even if that is the case, EA would remain
an intervention target for COVID-19 severity (43). In fact, when
we excluded the 17 SNPs that were associated with BMI and the
three SNPs that were associated with smoking traits, we obtained
comparable results to the result of the original IVW method
as described above. This supports the idea that EA remains an
intervention target for COVID-19 severity because EA lowered
the risk of COVID-19 severity to some extent independently of
the effects of BMI and smoking.

Epidemiologically, the protective effect of EA on the risk
of COVID-19 severity may be related to the social benefit of
education. Observational studies showed that lower EA as well
as other SES was associated with disparities in medical care
(44). For example, counties in the United States with a higher
percentage of people below the poverty level had a significantly
lower percentage of the population with higher education as well
as a lower percentage of people insured (11), and counties in
the United States with higher income and education, a lower
rate of disability, and a higher rate of the insured population
were at a lower risk of COVID-19 mortality (11). However, we
must pay attention to interpret the causal association between
lower EA and the risk of COVID-19 severity because it remains
unclear epidemiologically whether less educated people are more
likely to develop severe COVID-19 symptoms. In other words,
there is possibility that less educated people are more likely to be
socioeconomically disadvantaged and to have an increased risk of
SARS-CoV-2 transmission due to poor housing, overcrowding,
and low-paid essential jobs that make social distancing more
challenging (45). As a result of higher COVID-19 incidence, they
may have a higher risk of COVID-19 severity. Ascertainment
bias could also arise due to differential healthcare seeking,
differential testing, and differential prognosis (9). We could
not conduct an MR analysis investigating a causal effect of
EA on the risk of COVID-19 incidence as described below.
However, the prospective cohort study using UK Biobank data
showed that both lower education and area-level socioeconomic
deprivation by the Townsend index were associated with having
a positive test including asymptomatic COVID-19 [RR 1.46
for no qualifications vs. degree (95% CI 1.19–1.79), and RR
1.39 for most deprived quartile vs. least (95% CI 1.12–1.71)]
as well as a higher risk of testing positive in hospital (i.e.,
severe COVID-19 cases) [RR 1.58 for no qualifications vs. degree
(95% CI 1.25–1.99), and RR 1.54 for most deprived quartile
vs. least (95% CI 1.21–1.97)] in the fully adjusted model (9).
The authors discussed that there remained the possibility that
some socioeconomic groups had a poorer prognosis and were,
therefore, more likely to be admitted to hospital and, therefore,
to be tested (9).

The present study includes the following strengths. First,
the samples used were gathered across populations with the
same European ancestries, reducing substantial bias in our
study. Among different genetic ancestries, effect sizes and allele
frequencies can differ and lead to substantial bias (24). Second,
we used the publicly available GWAS data sets with the largest
sample sizes hitherto for both the exposure and outcome data
sets. F-statistics were also large enough for weak instrument bias
to be unlikely. Third, a range of sensitivity analyses relaxed the IV
assumptions and supported the robustness of our MR findings.

However, we must pay attention to several major limitations.
First, in the Geisinger Health System study, the participants in
the exposure GWAS may have overlapped with the participants
in the outcome GWAS as shown in Supplementary Table 1. This
might have led to bias in the causal estimate of EA on the risk
of COVID-19 severity (46). It was difficult for us to exclude
the Geisinger Health System study because we used summary-
level data for the exposure and outcome data sets. However, the
participants in the Geisinger Health System study represented
only 1.9% (14,562 out of 766,344) of those in the exposure GWAS
data set. Moreover, the participants in the Geisinger Health
System_EUR study represented only 1.2% (53 out of 4,392) of
the severe COVID-19 cases, and most of them (10.7%, 112,862
out of 1,054,664) were controls in the outcome GWAS data set. If
the data sets are of different sizes, the percentage overlap should
be taken with respect to the larger data set (46). Therefore, vast
majority of the participant overlap in the outcome GWAS data
set occurred, if at all, among the controls. In that situation, the
bias is unlikely to be substantial, and unbiased causal estimates
are expectedly obtained in two-sample MR studies (41, 46).
On the other hand, we could not conduct an MR analysis
investigating a causal effect of EA on the risk of COVID-19
incidence because the summary-level GWAS data of COVID-
19 incidence (i.e., 32,494 SARS-CoV-2 infection cases and
1,316,207 controls in the European population) by the COVID-
19 Host Genetics Initiative (19, 20) had possible participant
overlap [at most, 16.2% (5,270 out of 32,494) of the SARS-CoV-
2 infection cases in the deCODE_EUR, the Geisinger Health
System_EUR, and the Netherlands Twin Register_EUR studies]
with the EA GWAS data set that could cause substantial bias (46)
(Supplementary Table 1). Second, our MR findings might be
affected by unmeasured horizontal pleiotropy as described above.
As is the often the case with many MR studies, strictly satisfying
all the IV assumptions can be challenging (47). Third, our MR
analysis was based on populations of European ancestry, and
the findings are unlikely to be generalized to other populations
and ethnicities. Fourth, we could not conclude that the risk of
COVID-19 severity could decrease simply by increasing years
of schooling because the underlying genetic or epidemiological
mechanisms remain unknown.

In conclusion, we have shown for the first time using a two-
sample MR approach the associations between higher EA and
the lower risk of COVID-19 severity in the European population
that observational studies have reported. However, genetic or
epidemiological mechanisms underlying the association between
EA and the risk of COVID-19 severity remain unknown, and
further studies are warranted to validate our MR findings and
investigate underlying mechanisms.
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Supplementary Figure 1 | Forrest plots. Each black point represents the causal

estimate of each SNP on the risk of COVID-19 severity per increase in years of

schooling, and red points show the combined causal estimates using IVW and

MR-Egger regression methods with horizontal lines denoting 95%

confidence intervals.

Supplementary Figure 2 | Funnel plots. Each black point representing an SNP is

plotted in relation to the estimate of years of schooling on the risk of COVID-19

severity (x-axis) and the inverse of standard error (y-axis). Vertical lines show the

combined causal estimates using IVW (light blue) and MR-Egger regression

(blue) methods.

Supplementary Figure 3 | Leave-one-out sensitivity analysis. Each black point

represents the combined causal estimates on the risk of COVID-19 severity per

increase in years of schooling using IVW methods with horizontal lines denoting

95% confidence intervals after removing the corresponding SNP from the analysis.

Supplementary Table 1 | Contributing studies of the exposure GWAS data and

the outcome GWAS data.

Supplementary Table 2 | The characteristics of all the SNPs included in

our analysis.
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INTRODUCTION

Stomach cancer is the fourth most common malignant tumor in the world, and although numbers
have fallen in recent years, mortality from this cause is still high (1–3). In Brazil, some studies have
shown a reduction in mortality from stomach cancer since the 1980s (4, 5), which can be attributed
to improved eating habits, food preservation, and treatment of Helicobacter pylori infection (6, 7).

In addition, there were significant advances related to socioeconomic development and the
reduction of inequalities and socioeconomic inequities, which improved the population’s access
to health care and reduced the morbidity and mortality of diseases such as breast cancer (8–10).

Brazil is a middle-income country characterized by great internal heterogeneity (11, 12). It is
notorious that poverty in Brazil has a location (13) and, in terms of disparities, the country has a
very striking feature that is the regional inequalities, where the north and northeast regions have
the worst indicators. The central region has intermediate rates, and the south and southeast are
the best conditions, regardless of the socioeconomic indicator being evaluated (14). These social
inequalities in the country still today directly reflect on health inequality, explaining the unfavorable
scenarios for the north and northeast, and a very evident polarization in relation to the south and
southeast (15).

The country presents regions with different socioeconomic characteristics, which impacts health
services, lifestyle, and socio-cultural aspects. In other words, there are developed regions with high
technology for cancer-oriented health services and underdeveloped regions that cannot properly
treat and diagnose its citizens (16).

Thus, considering that Brazil is a country with territorial extension of continental characteristics
and high socioeconomic plurality, and that the mortality due to stomach cancer is related to the
socioeconomic status of the site, what level of development does the behavior of stomach cancer
mortality in Brazil follow?

Thus, the aim of this study was to describe the temporal trend of stomach cancer mortality
in Brazil from 1990 to 2016, analyzing its behavior in relation to low, middle, and high
income countries.

METHODS

Study Design
Secondary data analysis performed based on data from 1990 to 2016 obtained from the Global
Burden of Disease (GBD).

40

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.677012
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.677012&domain=pdf&date_stamp=2021-06-29
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:samanthahf@gmail.com
https://doi.org/10.3389/fpubh.2021.677012
https://www.frontiersin.org/articles/10.3389/fpubh.2021.677012/full


Farias et al. Trends of Stomach Cancer Mortality in Brazil

Data Source
The Global Burden of Disease database is coordinated by the
Institute of Health Metrics and Evaluation (IHME) of the
University of Washington and maintained through a partnership
with researchers from 124 countries, with the objective of
estimating the global burden of more than 300 diseases and
injuries (17).

This database provides information from various sources
based on official documents such as censuses, administrative
databases, scientific publications, hospital and police records,
among others. Through this information, there is a joint effort by
scientific commissions from various countries to systematically
quantify the magnitude of health loss due to diseases, injuries and
risk factors by age, sex, and geographic location.

To facilitate the production of estimates and comparability of
data, GBD researchers created a measure to classify the socio-
demographic development of a locality, the Socio-demographic
Index (SDI) (18), based on the average income per person,
schooling, and total fertility rate to classify countries as low,
medium low, medium, medium high, and high income.

Study Variables
The studied variables were deaths, age-standardized mortality,
and proportional mortality from all cancer causes and
proportional to all deaths. Data for Brazil and low, middle,
and high income countries were adjusted for age and were
expressed as rates (per 100,000 inhabitants). In the present
study, only the low, middle, and high income classifications were
evaluated, in order to better capture the differences between the
analysis groups.

Statistical Analysis
Descriptive statistics were performed using the statistical
program Stata R© (StataCorp, L,C) version 11.0 and presented
through absolute and relative frequency.

The time trend analysis was performed through the program
Joinpoint Regression version 4.6.0 (Statistical Research and
Applications Branch, National Cancer Institute, Rockville, EUA)
(19). The joinpoint regression is a technique that explores the
relationship between two variables by means of segmented linear
regression. It determines the magnitude of change in the trend
in percentage terms and verifies whether or not this change is
statistically significant (20).

The final model chosen was the one with the highest number
of points and maintained the statistical significance (p < 0.05).
From the estimated slope for each straight line (regression
coefficient), the Annual Percentage Change (APC) and Average
Annual Percentage Change (AAPC) were calculated and its
statistical significance was estimated by the Least SquaresMethod
by a generalized linear model and for each straight line segment,
with an estimated slope, and their 95% confidence intervals.

Ethical Aspects
According to Resolution No. 510 of April 7, 2016 of the National
Health Council of Brazil, since these are public data and of free
access. There is no need for ethical appreciation.

TABLE 1 | Mean mortality rates and age-adjusted mortality rates due to stomach

cancer, proportional mortality for all deaths and proportional mortality for all

cancers, 1990–2016.

Place Mortality

ratea

Age-standardized

Mortality ratea

Proportional mortality (%)

All deaths All cancers

Brazil 13,10 15,54 1,60 9,74

Socioeconomic status

Low income 11,06 11,12 0,38 8,01

Middle

income

17,16 24,70 2,31 12,37

High income 10,78 12,04 1,94 7,44

aPer 100,000 inhabitants.

RESULTS

There were 14,139,731 deaths from stomach cancer in the
high, middle, and low income countries between 1990 and
2016, of which 612,818 were in low-income countries, 9,137,851
in middle-income countries and 4,389,062 in high-income
countries. In Brazil, there were 449,682 deaths in the same period.

With regard to socioeconomic status, stomach cancer mainly
affects middle-income countries. In these countries, ∼25 people
die from stomach cancer per 100,000 inhabitants, representing
2.3% of all deaths from known causes and 12.3% of deaths
from some form of cancer. In Brazil, the burden of stomach
cancer appears to be lower than that observed in middle-
income countries (15.5 deaths per 100,000 inhabitants, mortality
proportional to all deaths of 1.6%, and all cancers of 9.7%)
(Table 1).

It was observed that, regardless of the socioeconomic status,
there is a decrease in the mortality rates due to stomach cancer
in the studied sites. Throughout the study time, the rates
decreased more in high income countries, while the middle
income countries had greater variability (Figure 1).

In the first period of change corresponding to the years
between 1990 and 2003, Brazil presented the annual percentage
change (APC) of −1.8 (95% CI −1.9; −1.7), behavior of low and
middle-income countries, which presented the same changes in
their respective first periods of change. The second period of
change observed in Brazil corresponded to the years of 2003–
2015 and had APC of −2.8 (95% CI −3.0; −2.7), behavior close
to high-income countries, which presented APC of−2.5 (95% CI
−2.6;−2.4) (Table 2).

When analyzing the average of the annual percentage change,
we observed that the low-income countries had the lowest fall
with the AAPC of−1.4(95% CI−1.5;−1.3), followed by middle-
income −2.1(95% CI −2.1; −2.0) and high income countries
−2.7(95% CI −2.8; −2.6). Brazil presented AAPC of −2.3(95%
CI−2.4;−2.2).

DISCUSSION

Between 1990 and 2016, there was a downward trend in age-
adjusted mortality from stomach cancer in all socioeconomic
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FIGURE 1 | Trends of age adjusted mortality rates related to stomach cancer (per 100,000 inhabitants) in Brazil and low, middle, high income countries, 1990 to 2016.

TABLE 2 | Estimates of temporal trend of specific mortality rates for stomach

cancer according to cut-off points obtained through the joinpoint. 1990–2016.

Period AAPC (95%CI) APC(95%CI) p-value

Brazil 1990–2003 −2.3 (−2.4; −2.2) −1.8 (−1.9; −1.7) <0.001

2003–2016 −2.8 (−3.0; −2.7) <0.001

Low income 1990–2004 −1.4 (−1.5; −1.3) −1.8 (−1.8; −1.7) <0.001

2004–2013 −1.2 (−1.3; −1.0) <0.001

2013–2016 −0.4 (−1.1; _0.4)a 0.3

Middle income 1990–1997 −2.1 (−2.1; −2.0) −1.8 (−2.0; −1.7) <0.001

1997–2004 −0.9 (−1.1; −0.8) <0.001

2004–2007 −5.4 (−6.3; −4.6) <0.001

2007–2010 −1.8 (−2.7; −1.0) <0.001

2010–2013 −3.3 (−4.2; −2.5) <0.001

2013–2016 −0.7 (−1.2; −0.3) <0.001

High income 1990–1995 −2.7 (−2.8; −2.6) −2.6 (−3.0; −2.2) <0.001

1995–2006 −3.0 (−3.1; −2.9) <0.001

2006–2016 −2.5 (−2.6; −2.4) <0.001

CI, confidence interval; APC, Annual Percent Change; AAPC, Average Annual Percent

Change. aThe APC is not statistically significant (p > 0.05).

statuses studied (low, middle, and high income) and in Brazil,
which showed a similar trend to that observed in middle-
income countries.

The decrease in mortality in all socioeconomic statuses
studied can be explained by the improvement in the population
living conditions. Even in poorer countries, there has been
improvement in social and economic aspects in recent
decades (21).

Despite the improvements, epidemiological studies have
found relationships between low socioeconomic status in
childhood and the development of stomach cancer in adult

life. One of the possibilities would be an early infection
by H. pylori bacteria (22, 23). In view of this, it is to be
understood that changes in mortality rates in low- and middle-
income countries still tend to bear the consequences of this
socioeconomic condition over a given time, even if they have
already been overcome.

Over time, Brazil presented similar variations to all high-
income countries, and in some periods of the series studied,
variations were found in both low-income and middle- and
high-income countries.

However, the mortality rates presented in Brazil are similar
to the rates of middle-income countries and higher than those
of some high-income countries (5, 24). This is because despite
the high incidence in countries such as Japan, China, and South
Korea, the diagnosis of stomach cancer occurs early, which
reduces mortality (25).

On the other hand, some factors may explain the higher
mortality in Brazil. Cancers of infectious origin, such as the
stomach, are common in Latin countries due to economic
development, and the Brazilian health system has no guidelines
for screening. One of the main aspects that is directly involved
with cases of stomach cancer deaths in Brazil is the inequality
related to economic, geographic, and socio-cultural issues
(5, 26, 27).

Despite the drop in stomach cancer mortality in Brazil,
the cases are still high and projections show an increase in
the less developed regions of the country (4, 5). This fact
underscores the importance of studies that take into account
the geographical distribution, especially in countries such
as Brazil, characterized by large socioeconomic discrepancies
between regions.

It is important to emphasize that the territorial extension
of Brazil also has an impact on the difficulty of professional
qualification, access to health services and treatment funds,
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important factors for early detection, clinical management, and
patient survival (26, 28).

Another important issue to consider in the current scenario
of stomach cancer in the country and that is directly related
to territorial extension was the lack of standardization in the
diagnosis, staging, and treatment in the study period (26), key
factors in achieving good treatment results (29). Only in 2018 did
Brazil approve diagnostic and therapeutic guidelines for stomach
adenocarcinoma, which is the most common type of gastric
cancer, accounting for about 90% of diagnosed cases (30).

Brazil presents a process of demographic and epidemiological
transition that occurs differently depending on its Federative
Units due to its socioeconomic disparities (31).

The North and Northeast regions present characteristics of
low and middle income countries, such as high mortality rates
due to infectious diseases (32), worse sanitation conditions
(33) and a larger proportion of population residing in rural
areas (34).

In contrast, the Midwest, South, and Southeast regions have
characteristics of high income countries, such as the increase
of chronic diseases such as obesity (35), the increase in life
expectancy and, therefore, a more aged population (36).

This scenario shows that Brazil encompasses several factors
that may influence the burden of stomach cancer. It is important
to identify what local socioeconomic characteristics are related
to the disease, which is a crucial starting point for the change of
scenery in the country.

The limitations of this study are related to the use of secondary
data, in which the researcher does not have control of data
quality. However, despite being a constraint, we believe that
because it is a database produced by important institutions
and the database is used in scientific articles published in high
impact journals, the findings support the reliability and validity
of this data.

CONCLUSION

Over time, Brazil shows a constant decline, with periods of
variation similar to the behavior observed in both high and low
income countries. Additionally, the findings of this study point to
the need to understand the behavior of stomach cancer mortality
in the regions and federal states of Brazil, since they present
different socioeconomic characteristics.
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Background: Child malnutrition is not only common in developing countries but also an

important issue faced by developed countries. This study aimed to explore the influence

and degree of childhood starvation on the health of the elderly, which provides a reference

for formulating health-related policies under the concept of full lifecycle health.

Methods: Based on the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in

2008, 2011, and 2014, this study took a total of 13,185 elderly people aged 65–99 years

as the target population. By IMaCH software, with gender and income level as the control

variables, the average life expectancy and healthy life expectancy of the elderly were

measured. The x2test was used to explore the differences in the socioeconomic status

of elderly people with or without starvation in childhood. Statistical differences between

average life expectancy and healthy life expectancy were analyzed by rank tests.

Results: (1) The results showed that there was a statistically significant difference in age,

gender, residency, education level, and income level between the groups with or without

starvation (P < 0.05). (2) Transition probabilities in health–disability, health–death, and

disability–death all showed an upward trend with age (P < 0.05), where the elderly who

experienced starvation in childhood were higher than those without such an experience

(P < 0.05). However, the probability of disability–health recovery showed a downward

trend with age (P < 0.05), in which the elderly who experienced starvation in childhood

were lower than those without starvation (P < 0.05). (3) For the elderly who experienced

starvation in childhood, the health indicators of the average life expectancy, healthy life

expectancy, and healthy life expectancy proportion accounted for the remaining life were

lower than those of the elderly without childhood starvation (P < 0.05).

Conclusions: The average life expectancy and healthy life expectancy of the elderly with

childhood starvation are lower than those without childhood starvation. It shows that the

negative impact of childhood starvation on health through the life course till old age has

a persistent negative cumulative effect on the quantity and quality of life. Therefore, it is

important to pay attention to the nutritional status of children in poor families from the

perspective of social policymaking.
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BACKGROUND

Since the 1900’s, China has entered a violently turbulent modern
society. During this period, the lives of people were generally
difficult, and hunger caused a large number of deaths. After the
establishment of the People’s Republic of China in 1949, the
country experienced a “three-year difficult period” from 1959
to 1961, which caused a nationwide “famine.” The number of
deaths caused by starvation had risen, and the lack of nutrition
greatly affected the health of the population. In recent years, some
studies analyzed the impact of the “Great Famine” in childhood
on the health and economic status of their adulthood and found
that infants and children who had grown up in that period had
shorter life longevity and poorer health in old age (1). The factors
show that the health status of the elderly is not only affected
by elements of the old stage, but also earlier life experiences,
especially childhood.

Life course theory has gradually become an important
paradigm for the study of elderly health, emphasizing the long-
term impact of life events in critical periods on the health
outcomes of the elderly. Existing research shows that childhood
is a critical period of growth and development (2). At this
time, negative nutrition, and health shocks experienced may
change the original development track of the individual and
thus affect the health trajectory of their entire life course.
The elderly who experienced starvation during childhood as
a health disadvantaged group have current disadvantages that
may depend on the previous unfavorable socioeconomic status.
From a policy perspective, it is necessary to understand the
long-term effects of malnutrition in earlier life, because child
malnutrition is not only common in developing countries, but
also an important issue faced by developed countries. Data
show that there are approximately 1 billion people in the world
who are malnourished, including 140 million preschool children
under the age of 5, which will lead to permanent damage to
their physical and cognitive development and even death due to
nutritional diseases (3).

In recent years, economics has begun to pay attention to
the long-term effects of life experiences in the fetus or early
childhood on health, education, and labor market conditions,
especially the health and nutritional status before the age of 5
(4). These studies generally used negative external shocks as an
identification event, such as war, famine, rainfall, flu, etc., (5–
7). Schellenberg J A, Victora C G, and other studies of low-
income or middle-income countries such as Brazil, India, and
South Africa have found that malnourished children had shorter
height in adulthood, fewer years of education, and diminished
labor productivity (8). Epidemiology and health economics in
China are increasingly concerned about the impact of childhood
health and developmental status on their health in the adult
period. Scholars such as Chen and Zhou (9) analyzed the long-
term effects of China’s “Great Famine” on the health of those who
experienced famine. Studies found that babies and children born

Abbreviations: LE, average life expectancy; HLE, healthy life expectancy; HLE/LE,

healthy life expectancy accounted for the remaining life.

or raised during this period had a lower height, poorer health,
and economic status in adulthood.

Although, there are many literatures on widely acknowledged
links between childhood hunger and a range of adverse
health outcomes late in life, the reliability of research results
and research conclusions is different because of different
measurement indicators. A comprehensive evaluation of the
long-term impacts of hunger on an individual’s health capital
is empirically difficult to conduct. Earlier investigation of
this issue was hindered by several challenges including data
restrictions. To determine the long-term consequences, we need
both information about whether a person experienced hunger
several decades ago and information about health status. Data
tracking individual experiences for such a long period are not
often available even in developed countries (10, 11). The most
frequent method in the previous literature is to use exposure to
shocks defined at a more aggregated level (12), taking famine
as an indicator of having childhood starvation (13–15). But the
problem is that exposure to famine and exposure to hunger are
not equivalent. Famine and hunger belong to different levels
of variables. Therefore, identification strategies that only exploit
macro-level variations may obtain inconsistent estimates of the
long-term effects of hunger.

We deal with this problem by exploiting retrospective
data on the individual-level occurrence of hunger episodes
during childhood, collected by the Chinese Longitudinal Healthy
Longevity Survey (CLHLS). This kind of measurement method
is more effective, which can conduct a micro-analysis of how the
dilemma in the early life is transformed into the negative results
in later life. There is a growing literature taking advantage of this
self-reported measure to examine the long-term consequences
of childhood hunger associated with World War II and several
famines that happened in European countries (16–18).

In summary, some researchers have done a lot of exploration
in this field, but there are still many limitations. First, the
above-mentioned studies have paid more attention to the
lasting impact of severe nutrition and health shocks on the
health of economically active people (people who have not yet
reached old age). Second, in most of the previous research
studies, self-assessed health status of the elderly was used as
the dependent variable, by which body function of the elderly
cannot be reflected effectively due to stronger subjectivity.
As for the measurement of healthy life expectancy, most
international literature adopts the multi-state life table method
based on cohort data, which can reflect the true health level
of the study population, and the research conclusions are
more reliable (19, 20). Third, due to the lack of high-quality
cohort data in China, most previous studies were based on
cross-sectional data to measure the relationship between child
hunger and health and cannot make statistical inferences.
Therefore, this study takes life course theory as the analysis
framework based on strict cohort data, whether to have the
childhood starvation as independent variables, to measure
healthy life expectancy of the elderly in China, trying to give
an answer to the question: to what extent does the accumulated
disadvantage formed by childhood starvation affect the health of
the elderly?
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METHODS

Data
The data were derived from the CLHLS. This research project
has conducted surveys eight times in 23 provinces in China. The
project used the 2008 baseline data and the 2011 and 2014 follow-
up data with a total of 13,185 people aged 65–99 years as samples.
Since the survey did not select samples with equal probability,
it was necessary to weigh the samples according to the actual
composition of age, gender, and residence in the 23 provinces to
represent the general population of the elderly in the country.
Therefore, before calculating the relevant indicators, the study
weighed the data according to the weight coefficients provided
by the project team, after which the sample size was 16,200 people
(based on the sixth census data of China) in order to better reflect
the overall Chinese elderly population.

Variables
The explained variable in this article is the health status of the
elderly. The CLHLS database uses the ADL to determine the
health status of the elderly. The scale includes six measurement
items for eating, dressing, indoor activities, going to the toilet,
bathing, and controlling toilet. For the above six measurement
items, if the research subjects select “can be completed,” they
are judged as “healthy”; if any one of the items is selected as
“unable to complete,” the sample is judged as “disabled” (21).
The question about income in the original questionnaire was,
“Compared with the local people, what is your life?” There
are five options. The options are set to “very rich,” “relatively
rich,” “average,” “more difficult,” and “very difficult.” This study
combined “very wealthy” and “relatively wealthy” into “rich” as a
high-income group, and combined “average,” “relatively difficult,”
and “very difficult” into “difficult” as a low-income group.

The core explanatory variable of this article is “Did you
experience starvation in childhood,” to which the answer is “yes
or no.” Childhood starvation in this study generally refers to
physical hunger. Specifically, in childhood, due to food shortages,
insufficient intake of energy and essential nutrients leads to
changes in body structure and function. In the questionnaire
of CLHLS, the exact age at which starvation occurred is
not asked. Therefore, this article draws on the definition of
children’s physiological age in the Medicine, Education, and
Labor Legislation field and defines childhood age from 0 to 18
years (22, 23).

Preparation and Calculation of Multi-State
Life Table
IMaCh software is used for the estimation of healthy life
expectancy in this study, which is an abbreviation of Interpolated
Markov Chain and one of the first batches of software to
provide multi-state life table estimation. Its main advantage is
the direct use of the original survey data, and the use of multi-
period (≥2 times) different longitudinal data at intervals, in
which processing different health statuses are considered such
as improvement, reduction, no change, and death. In this study,

State 1 and State 2 are healthy and disabled, respectively, and
State 3 is dead.

In themulti-state life table, the initial state of the cohort (2008)
is “healthy” and “unhealthy”; the end state (2014) is “healthy,”
“unhealthy,” and “death.” Each state at the beginning of the
period can be transited to any state at the end of the period. In
this study, “whether childhood is starving” is defined as a binary
variable, and “gender” and “income level” are included as control
variables to calculate the multi-state healthy life expectancy
of the elderly with or without starvation in childhood. The
calculation formula of the main variables is as follows [Lievre
et al. (24)]:

• Let X(x) denote the state of an individual aged x. After time h,
this individual is in state X(x+h). Assume that X(x) is a non-
homogeneous discrete parameter Markov chain on these three
states with transition probabilities:

hp
jk
x
= Pr(X(x+ h) = k/X(x) = j) (1)

• If this individual is observed only once more at timet3, and
noted to be in state l, then a further contribution to the
likelihood is (

d2
pkl
x2
). In this case, the component of the total

likelihood due to individual i is:

L(i) = (d1p
jk
x1)× (d2p

kl
x2
). (2)

One observes that the formation of the likelihood is no trivial
matter since there is no simple analytical expression for the
higher-order transition probabilities.

• If θ denotes the vector of parameters and θ̂ its maximum-
likelihood estimator, then standard theory tells that for a
large sample of size N, the MLEθ̂ is approximatively normally
distributed with mean θ and covariance matrix V (θ̂):

limN→∞E(θ̂) = θ (3)

V(θ̂) =
1

N
I−1(θ) (4)

Where, I(θ) is the information matrix computed at the
true value θ . This implies the asymptotic normality
of the estimates of the transition probabilities and
health expectancies.

• The initial state was i. The proportion of outcome status was
1 (health) and 2 (disability). The prevalence tW

i1(x) among
survivors at age x and in state 1 from a cohort of individuals in
state i at age x - t (t years earlier) reads:

tw
i1 (x) =

tp
i1
x−t

tp
i1
x−t + tp

i2
x−t

(5)

and the prevalence tW
i2(x):

tw
i2 (x) =

tp
i2
x−t

tp
i1
x−t + tp

i2
x−t

(6)

Frontiers in Public Health | www.frontiersin.org 3 July 2021 | Volume 9 | Article 69064547

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Dong et al. Multi-State Healthy Life Expectancy

FIGURE 1 | Comparison between the sixth census data of China and weighted survey data by sex–age structure.

• Calculate the incidence rate of individual ending status j (the
stable disability rate in the state j):

yp
.j
x
(θ) = yp

1j
x
(θ)+ w2(x, θ)

(

yp
2j
x
(θ)− yp

1j
x
(θ)

)

(7)

• Over the interval (x, x + y), given the initial state i at age x,
with y as the upper limit in the sums:

ye
ij
x
=

y
∑

u=1

up
ij
x (8)

• Total life expectancies respective of the initial state are:

ei.x = ei1x + ei2x (9)

Statistical Analysis
First, the survey data were weighted using the weight coefficients
provided by the CLHLS project team, and the weighted data
were compared to the sixth census data of China from the age
and sex, making the study sample more representative. Second,
SPSS17.0 software was used to describe the frequency of different
health statuses of the elderly. It analyzed the distribution of health
status by age, gender, residency, education level, income level,

and whether hungry or not. Third, x2 test was used to explore the
differences in the socioeconomic status of elderly people with or
without starvation in childhood, taking α = 0.05 as the inspection
standard. Finally, by IMaCh software, the multi-state life table
method was used to measure the average life expectancy and
healthy life expectancy of the elderly people who have childhood
starvation or not. Fourth, statistical differences between average
life expectancy and healthy life expectancy were analyzed by
rank tests.

RESULTS

Data Quality Assessment
Taking the sex–age structure of the elderly over 65 years
in the sixth census in China as a reference, the data after
weight adjustment of the cohort in the CLHLS database from
2008 to 2014 were compared. The results showed that the
weighted adjusted data fitted well with the sixth census data of
China (Figure 1).

Descriptive Analysis
With the weighted adjustment of the raw data, the baseline
number in 2008 was 16,200. The remaining number in 2011
was 14,405, and the number of survivors in 2014 was 12,876.
In 2008, the proportion of elderly people under 80 years
accounted for 83.51%. In 2011 and 2014, the proportion under
80 years old increased to 86.01 and 88.05%, respectively. The
proportion of elderly females was higher than 50%, which
was slightly higher than the elderly males. More than 60%
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TABLE 1 | Basic situation and health transition of the elderly.

2008 Year 2011 Year 2014 Year

Explanatory variable N Proportion (%) N Proportion (%) N Proportion (%)

Age group

65–69 5,590 34.51 5,351 37.16 5,097 39.59

70–74 4,696 28.99 4,266 29.62 3,870 30.06

75–79 3,242 20.01 2,770 19.23 2,369 18.40

80–84 1,755 10.83 1,401 9.73 1,109 8.61

85–89 696 4.30 495 3.44 352 2.73

90–94 184 1.14 106 0.74 66 0.51

95–99 37 0.23 16 0.11 13 0.10

Gender

Male 7,754 47.86 6,780 47.08 5,976 46.41

Female 8,447 52.14 7,622 52.93 6899 53.58

Residency

Urban 10,033 61.9 8,764 65.1 7,758 60.3

Rural 5,135 38.1 4,695 34.9 4,251 39.7

Education level

Primary schools and below 13,234 81.69 11,657 80.95 10,349 80.37

Above primary school 2,943 18.17 2,721 18.89 2,507 19.47

Economic level

Low income 14,115 87.1 12,507 86.85 11,136 86.49

High income 2,086 18.3 1,876 13.03 1,721 13.37

Starvation

Yes 10,709 66.1 9,489 65.9 8,442 65.6

No 5,492 33.9 4,912 34.1 4,434 34.4

Health condition

Health 15,405 95.09 10,331 63.77 8,024 49.53

Disability 796 4.91 1,393 8.60 4,627 28.56

Death 0 0 1,800 11.11 3325 20.52

Missing visits 0 0 2,677 16.52 225 1.39

of the elderly were farmers or unemployed; over 80% were
primary and lower in education and lower income, which
presented a declining trend over time. The proportion of elderly
people with hunger in 2008 was 66.1%, rising to 65.9% in
2011 and 65.6% in 2014, respectively. From the perspective
of health status, the proportion of healthy elderly decreased
year by year during the follow-up period. Meanwhile, the
proportion of disabled and dead elderly showed an upward
trend (Table 1).

Single-Factor Analysis
The differences in the socioeconomic status of the two groups
of elderly were explored. The results showed that there was
a statistically significant difference in age, gender, residency,
education level, and income level between the groups with or
without starvation (P < 0.05). Specifically, the main features of
the elderly with starvation experience were as follows: mainly
over 80 years old, female (52.9%), rural (88.4%), lower education
level with primary schools and below (91.9%), and mainly
low income (87.8%). The detailed results are shown in the
Supplementary Table 2.

Risk Transition Probability
Health–Disability and Disability–Health Transition

Probability
In general, the health–disability transition probability showed a
linear upward trend with age [male: 95% CI (0.1244, 0.2715),
female: 95% CI (0.1245, 0.2893), P < 0.05], whether male
or female, whereas, the difference between the two groups
gradually increased with age. On the contrary, the disability–
health transition probability was linearly decreasing with age for
all the elderly [male: 95% CI (0.094, 0.1716), female: 95% CI
(0.0921, 0.1746), P < 0.05].

For the elderly males, the disability–health transition
probability of the elderly who experienced starvation in
childhood was lower than that of those without childhood
starvation (t = 0.440, P < 0.05), especially for those over 80
years old. The difference between the two groups gradually
widened with age. However, as for health–disability transition
probability, the elderly who experienced starvation in childhood
were higher than those without starvation (t = 0.526, P >

0.05). Elderly females (t = 3.279, P < 0.05) are similar to men.
Meanwhile, for the probability of health–disability transition,
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FIGURE 2 | Comparison of the probability curves of disability and health transition among elderly males.

the situation of the two groups was just the opposite (t = 0.999,
P > 0.05) (Figures 2, 3).

Health–Death and Disability–Death Transition

Probability
Overall, not only health–death [male: 95% CI (0.0988, 0.2480),
female: 95% CI (0.0973, 0.2534), P < 0.05] but also disability–
death transition probability [male: 95% CI (0.2516, 0.4789),
female: 95% CI (0.2526, 0.4717), P < 0.05] of the elderly with or
without starvation in childhood have both shown a linear upward
trend, whereas, the difference between the two groups gradually
expanded with age.

Specifically, for elderly male people who experienced
starvation in childhood, the probability of disability–death
transition (t = 8.140, P < 0.05) and health–death transition
probability (t = 2.079, P > 0.05) were both higher than for
the elderly without experience of starvation. Similarly, as for
the probability of both disability–death (t = 8.135, P < 0.05)
and health–death (t = 1.873, P > 0.05), the elderly female who
experienced starvation in childhood were higher than those
without experience of starvation (Figures 4, 5).

Analysis of Healthy Life Expectancy and Its
Differences
Overall, regardless of male or female, the elderly who experienced
starvation in childhood were lower than the elderly without
starvation experience on such indicators as the average life

expectancy, healthy life expectancy, and healthy life expectancy
accounted for the remaining life, in which the difference between
the two groups gradually decreasing with age on the average
life expectancy [male: 95% CI (4.7241, 9.6559), female: 95% CI
(5.8672, 11.6542), P < 0.05] and the healthy life expectancy
[male: 95% CI (3.1915, 7.8079), female: 95% CI (3.7217,9.0226),
P < 0.05], respectively.

For the elderly males, the HLE of the elderly between 65
and 69 years was 12.26 ± 0.26 years, while the LE was 14.36
± 0.27 years, which meant that elderly males between 65 and
69 years were in a healthy state accounting for 85.30% of the
time. In the same age group, the HLE of the elderly without
hunger in childhood was 12.70 ± 0.21 years. Meanwhile, the LE
was 14.78 ± 0.23 years, indicating that 65- to 69-year-old males
without hunger had 85.92% in a healthy state for the rest of
their lives. The paired t-test found that the HLE of the elderly
without starvation in all age groups was higher than that of the
elderly with starvation, with statistically significant difference
(P < 0.05), while the HLE/LE of the elderly without starvation
was also higher than that of elderly people with starvation, with
statistically significant difference (P < 0.05).

For the elderly females, the HLE of those between 65 and 69
years with hunger experience was 14.06 ± 0.30 years, while the

LE was 17.06 ± 0.33 years, which meant that the males between

65 and 59 years with hunger had 82.30% healthy state for the
rest of their life. In the same age group, the HLE of the elderly
without hunger in childhood was 14.48± 0.22 years. Meanwhile,
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FIGURE 3 | Comparison of the probability curves of disability and health transition among elderly females.

the LE was 17.42 ± 0.25 years, indicating that the elderly males
between 65 and 59 years without hunger had 83.1% in a healthy
state of living (Table 2). The paired t-test found that the HLE of
the elderly without starvation in all age groups was higher than
that of the elderly with starvation, at which the difference was
statistically significant (P < 0.05). The proportion (HLE/LE) of
the elderly without starvation was also higher than that of elderly
people who experienced starvation, at which the difference was
statistically significant (P < 0.05).

DISCUSSION

The life course provides an important theoretical perspective for
a comprehensive analysis of the health status of the elderly. The
results of this study showed that the experience of starvation in
childhood had a negative cumulative effect on the health in old
age, which was related to the social and historical environment
of the research group. The target group was born in 1908–1942,
which was a special historical period of social transformation,
political turmoil, and material deprivation. During the time,
many elderly people had experienced starvation before the age
of 12. Some scholars have studied the long-term negative effects
of “great famine of China” on the health of famine-experienced
people (25–27). However, as a rare historical event, the “Great

Famine” has serious, extreme, and transient characteristics, which
conclusions drawn have certain limitations in terms of external
validity. In contrast, the adverse effects of childhood starvation
on health in this study are more typical and more universal.

The experience of starving in childhood affects the
socioeconomic status of adulthood, which in turn affects
the health outcomes of the elderly. The results of this study
showed that the elderly who have experienced starvation in
childhood were in rural (88.4%), mostly primary school and
below in education (91.9%), and lower income level (87.8%).
The literature that examined the long-term effects of fetal or
childhood health as independent variables found that chronically
poor health or malnutrition in childhood had a significant
negative impact on the years of education during adulthood
(28). Qing He and Yuan Yan analyzed the data of CHNS to show
that the overall health status during childhood had a significant
positive effect on adult income (29). Specifically, people with
low socioeconomic status usually have cumulative disadvantages
in terms of work environment, access to medical services, and
health risks, which can affect their availability of health resources
and health protection capacity (30).

The multi-state transition probability is the basis for
measuring healthy life expectancy. When calculating the healthy
life expectancy, the transitions between different multiple health
states and the death risk could be taken to consideration, in which
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FIGURE 4 | Comparison of health and death transition probability curves of elderly males.

the result is closer to the health level of the crowd. This study
found that regardless of the elderly with or without starvation
in childhood, the transition probabilities showed an upward
trend such as health–disability, health–death, and disability–
death with age, while the probability of disability–health showed
a downward trend. The elderly people with starvation in all age
groups were lower than those who did not experience starvation
in childhood. This result reflects that the impact of childhood
nutrition on the health of people depends on the degree of hunger
in childhood. Disability is a reversible state that can return to
health, or it can lead to death. It means that we should pay more
attention to the problem of malnutrition in childhood, earlier
detection, earlier intervention, and earlier treatment, to not cause
lasting adverse health effects.

The elderly who experienced starvation in childhood are
lower than those without hunger in the three indicators, such
as average life expectancy and healthy life expectancy, which
result is closely related to the transition probability. Older
people who experienced starvation in childhood had a higher
probability of health–disability, but the probability of disability–
health recovery was relatively low. Therefore, the probability
of disability–health recovery is the key indicator to explain the
difference between the two groups above. The lower health
recovery rate may reflect lower utilization of medical services, on

which the social status of education and economic status affect
the conditions and quality of medical service utilization (31, 32).
Therefore, good education and economic conditions can not only
increase their utilization of health resources but also increase
awareness of preventive healthcare, which can effectively reduce
the possibility of disability and increase the rate of disability–
health recovery (33). The elderly without childhood hunger has
obvious advantages in this respect.

The policy enlightenment brought by the research is that the
improvement of the material living standard in recent years,
and the support of the social security system, cannot completely
offset negative effects on the health status of the elderly with
childhood starvation experience. Therefore, the government
should strengthen nutrition and health interventions for poor
children and effectively improve the nutrition and health status
of children in poverty-stricken areas and families through
the implementation of nutrition improvement programs for
preschool children. At the same time, health investment on
children is an important prerequisite for the elderly people bonus.
At present, the delayed retirement age has taken shape in China,
but the smooth implementation of this policy depends largely on
the health of the elderly. The research in this article shows that the
health problems of the elderly population should be considered
from the perspective of the life course, and policymakers should
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FIGURE 5 | Comparison of health and death transition probability curves of elderly females.

TABLE 2 | Comparison of healthy life expectancy among the elderly population (x ± s).

Age group With starvation Without starvation

LE HLE HLE/LE (%) LE HLE HLE/LE (%)

Man

65–69 14.36 ± 0.27 12.26 ± 0.26 85.3 14.78 ± 0.23 12.70 ± 0.21 85.92

70–74 11.02 ± 0.24 9.03 ± 0.23 82.55 11.34 ± 0.19 9.39 ± 0.18 82.72

75–79 8.23 ± 0.21 6.36 ± 0.19 77.19 8.46 ± 0.17 6.65 ± 0.16 78.54

80–84 6.02 ± 0.18 4.30 ± 0.17 71.22 6.18 ± 0.24 4.53 ± 0.16 73.18

85–89 4.38 ± 0.16 2.80 ± 0.15 63.68 4.48 ± 0.14 2.99 ± 0.13 66.48

90–94 3.22 ± 0.13 1.77 ± 0.15 54.51 3.28 ± 0.12 1.92 ± 0.13 58.39

95–99 2.44 ± 0.11 1.08 ± 0.15 44.03 2.47 ± 0.09 1.22 ± 0.12 49.08

Woman

65–69 17.06 ± 0.33 14.06 ± 0.30 82.3 17.42 ± 0.25 14.48 ± 0.22 83.1

70–74 13.38 ± 0.30 10.51 ± 0.27 78.43 13.65 ± 0.22 10.87 ± 0.20 79.56

75–79 10.19 ± 0.38 7.50 ± 0.27 73.42 10.37 ± 0.20 7.79 ± 0.18 74.99

80–84 7.58 ± 0.24 5.09 ± 0.21 67.02 7.67 ± 0.19 5.32 ± 0.16 69.21

85–89 5.55 ± 0.22 3.29 ± 0.18 59.16 5.59 ± 0.17 3.48 ± 0.15 62.14

90–94 4.07 ± 0.19 2.04 ± 0.16 49.96 4.07 ± 0.15 2.20 ± 0.14 53.87

95–99 3.04 ± 0.16 1.22 ± 0.15 39.97 3.01 ± 0.13 1.36 ± 0.13 44.77

①LE: average life expectancy; ②HLE: healthy life expectancy; ③HLE/LE: healthy life expectancy accounted for the remaining life.
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have a forward-looking awareness to strengthen the nutritional
improvement and health promotion of vulnerable groups in the
early life.

First, due to the limitations of IMaCH model, if all the
individual and family socioeconomic status and environmental
variables were included as control variables, it was very difficult
to calculate. Therefore, this study only took gender and age as
the basic variable and the current income level as the control
variable in the model. The second is that if the nutritional status
in childhood is too bad and leads to death, then these people will
not appear in the sample of 2008–2014. Therefore, the estimates
obtained from the sample used in this article may have survivor
bias, which will underestimate the impact of childhood starvation
experience on the health of the elderly. Third, to explore the
impact of childhood hunger on the health of the elderly, there
will be a problem of recall bias. But the way to correct recall bias
is to expand the sample size. The cohort data used in this study
have a larger sample size of 13,185, which can greatly reduce the
bias of recall on the research results.

CONCLUSIONS

The negative impact of childhood starvation on health through
life course till old age has a persistent negative cumulative
effect on the elderly health. The average life expectancy and
healthy life expectancy of the elderly with childhood starvation
both are lower than those of the elderly without childhood
starvation. This study meant that for the social groups with
poor early nutritional status, the upward mobility of adult
social class and the improvement of material living conditions
can not completely offset the negative effects of the early
hunger experience. Therefore, in order to achieve healthy aging,
government decision-makers should have a sense of foresight and
take systematic intervention of all factors affecting health from
the early stage of life. The conclusions of this study are important
to the comprehensive understanding of the elderly health impact
mechanism and the evaluation of current child nutrition projects,
such as child nutrition improvement projects in poor areas,
nutrition improvement projects in preschool children, etc.,
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INTRODUCTION

Integration of cohort studies allows taking advantage of already collected information to increase
the sample size to study uncommon exposures, rare diseases, less strong associations, or very
restricted populations (personalized medicine). It also allows to carry out standardized analyses
and avoid publication bias compared to the analysis of published data (1–5). Nevertheless, the
growing energy spent in conducting cohort studies across the world in the last decades has not
been paralleled by an effort to make them accessible to the scientific community and harmonize
their data. This last limitation moved the European Commission to fund the SYNergies for Cohorts
in Health: integrating the ROle of all Stakeholders (SYNCHROS) coordination and support action,
endowed with almost e2 million1 from 2019 to 2021. It aims “to establish a sustainable European
strategy for the development of the next generation of integrated cohorts, thereby contributing to
an international strategic agenda for enhanced coordination of cohorts globally, in order to address
the practical, ethical, legal, and methodological challenge of optimizing the exploitation of current
and future cohort data, toward the development of stratified and personalized medicine as well as
facilitating health policy.”

In order to achieve its objectives, the first activity proposed in SYNCHROS was to map the
population, patient, and clinical trial cohort integration landscape. That would allow the project
to have a first look at the challenges and tried solutions adopted by different groups, and, more
importantly, it would provide a list of principal investigators of these initiatives who could be
contacted for the process of developing the common strategy. This study reports the result of the
mapping of the initiatives that integrate patient cohorts. The mapping of population cohorts will
be reported elsewhere. The aim of the study was to obtain a non-exhaustive, but representative,
list of these initiatives carried out in recent times in the world. To our knowledge, there is no other
repository of integration initiatives of patient cohorts. Although excellent single cohort repositories
exist, like the Maelstrom catalog, repositories of initiatives that integrate several patient cohorts
could not be found.

This mapping will provide researchers with a useful tool to find initiatives on their areas of
interest with whom they can share or analyze harmonized data.

1https://cordis.europa.eu/project/id/825884/es.

56

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.666844
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.666844&domain=pdf&date_stamp=2021-07-15
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:joseluis.ayuso@uam.es
https://doi.org/10.3389/fpubh.2021.666844
https://www.frontiersin.org/articles/10.3389/fpubh.2021.666844/full
https://cordis.europa.eu/project/id/825884/es


Rodríguez-Laso et al. A Map of the Initiatives That Harmonize Patient Cohorts Across the World

METHODS

The initiatives included in the mapping were obtained from three
different sources:

1. Systematic searches, carried out in MEDLINE and the
Maelstrom catalog.2

2. Suggestions of potential initiatives to be included in the
mapping provided by partners of the SYNCHROS consortium.

3. References and links provided by the initiatives detected in the
two previous sources.

The inclusion criteria were as follows:

a) initiatives that integrated patient, clinical, or disease cohorts;
b) individual patient meta-analysis and mega-analyses; and
c) at least one cohort included in the initiative having

information about the sample at two or more points of time
(at least two waves).

The exclusion criteria were as follows:

a) initiatives that only integrate population cohorts or clinical
trials, without including patient cohorts;

b) initiatives published before the year 2000; and
c) initiatives that did not provide information in English.

Database Searches
MEDLINE Search
The process started with searches restricted to papers published
in English from 2000 to 2019 using the terms selected by
consensus among the SYNCHROS partners. Those terms which
obtained fewer than 500 hits were retained, and the abstracts
of the hits were reviewed to find new terms that were used in
subsequent searches. In some cases, the term “cohort” was added
to these searches to limit the number of hits.

The final search strategy used is given as follows:
(cohort OR “prospective study” OR “longitudinal study” OR

“individual meta-analysis”[All Fields] OR “individual participant
data meta-analysis”[All Fields] OR “individual patient data meta-
analysis”[All Fields] OR “individual meta analysis”[All Fields]
OR “individual participant data meta analysis”[All Fields] OR
“individual patient data meta analysis”[All Fields] OR “meta
analysis using individual”[All Fields] OR “meta-analysis using
individual”[All Fields] OR “meta analysis of individual”[All
Fields] OR “meta-analysis of individual”[All Fields] OR “mega-
analysis”[All Fields] OR “mega analysis”[All Fields])

AND
(“harmonization study” OR “integration study” OR

“integration initiative” OR “integrated study” OR “merged
cohort” OR “data pooling” OR “pooled sample” OR
“combined data” OR “combining data” OR “harmonized
data” OR “harmonised data” OR “harmonizing data” OR “data
harmonization” OR “data harmonisation” OR “data sharing”
OR “common database” OR “multiple cohorts” OR “multiple
longitudinal studies” OR “international consortium” OR
“collaborative effort”).

2https://www.maelstrom-research.org/maelstrom-catalogue.

AND
(“2000/01/01”[Date - Publication]: “2019/07/31”[Date

- Publication])
AND
English[Language]
AND
Humans[MeSH]

Maelstrom Catalog
The Maelstrom research catalog, supported by the Research
Institute of the McGill University Health Centre, “contains
comprehensive information about epidemiological research
networks and studies, and the data they have collected. It also
provides information about harmonized data generated by these
research networks.”

We looked for initiatives included in the “Networks” section
of the catalog.

Selection of Initiatives
Initiatives that were obtained from the systematic searches and
provided by the partners were evaluated against the inclusion
and exclusion criteria by two different investigators. In case of
a disagreement, a third reviewer was consulted.

Extraction of Information
The following information was extracted from each initiative:
name of the initiative, principal investigator, partners, name of
the institution responsible for the initiative, funding resources,
contact person, information source, whether the research
team is currently active, main objectives, criteria for the
cohorts to be included in the initiative, type of harmonization
(prospective/retrospective), number of cohorts included in the
initiative (the total number and the number of harmonized
cohorts), whether more cohorts are foreseen to be harmonized,
number of participants (the total number and the number of
participants with harmonized data), age range of the sample,
threats to representativeness of the sample, maximum number
of variables that have been harmonized, including those where
harmonization was not possible for all the cohorts, setting of
the harmonized cohorts (local-regional/national/international,
including country of origin of the cohorts), and a brief
description of the population considered by the initiative.

All this information was retrieved from the webpage and/or
the scientific article that presented the initiative. Missing
information was requested from the principal investigators of the
projects, who were contacted initially by email and, if there was
no answer, by phone call or by post.

ANALYSIS

Results of the identification process of the initiatives are
presented in Figure 1.

Partners of the SYNCHROS project provided 39 initiatives.
Of those, 28 were excluded, mainly because there was no data
harmonization or because eligibility could not be ascertained
due to unresponsiveness from the principal investigators. The
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FIGURE 1 | Results of the search for harmonization initiatives of patient cohorts.

remaining 11 initiatives were selected. The descendent search
from these initiatives provided two additional ones.

In the MEDLINE search, out of 843 hits obtained, 677 were
excluded after reading their title and abstract. Of the remaining
articles, 166 were read and, from those, 140 excluded. The
main reasons for exclusion were that initiatives dealt only with
population cohorts, that they had already been submitted by
partners or already presented in another reference, or that the
integration was only cross-sectional. In the end, 26 initiatives
were selected. The reference list of these initiatives included five
additional ones.

The search in the Maelstrom catalog only provided initiatives
that harmonized population cohorts.

Overall, 44 initiatives were retrieved. They are presented in
Table 1.

Table 1 shows a selection of the most relevant information
obtained from each of the initiatives. Complete information can
be found in the repository of the SYNCHROS project.3 They are
ordered by types of diseases covered (starting with those which
consider several diseases) and by alphabetical order. Of the 44
initiatives found, no further information could be obtained from
principal investigators in almost half (20) of them.

Eight initiatives (BIOMAP, CINECA, EHDEN, ESCAP-
NET, HarmonicSS, HARMONY, Lifebrain, and ReCoDID) have
recently started adding cohorts; 21 are led by active research
teams; and 12 are adding, or considering adding, cohorts now.
Nevertheless, there is plenty of missing information on the
activity status of the initiatives.

3https://www.synchros.es.

In the selected initiatives, the most represented group
of diseases is cancer (10 initiatives), followed by infectious

diseases (8 initiatives, of which 5 focus on HIV) and

cardiovascular disease (4 initiatives). There are five initiatives

that have harmonized data from more than one type of

disease. Other diseases and conditions producing a high
burden in the high-income countries (6) are represented
(dementia, osteoarthritis), but others included in this
list (unipolar depressive disorders, alcohol use disorders,
hearing loss, chronic obstructive pulmonary disease, diabetes
mellitus, road traffic accidents) or poor-defined conditions
with a well-defined impact on life-expectancy and quality
of life (like back pain or functional deterioration) are
missing. There is one initiative about a specific rare disease
(Sjögren syndrome).

There is a sizable number of initiatives that have harmonized
other types of cohorts in addition to patient cohorts. After Breast
Cancer Pooling Project, BIOMAP, CLL-IPI, HARMONY, and
the initiatives on obsessive-compulsive disorder and pulmonary
embolism have harmonized at least one clinical trial cohort.
CINECA, ESCAPE-NET, Lifebrain, and the project “Seasonal
plasticity of cognition” have also harmonized population
cohorts. BiomarCaRE and the National Cancer Institute Cohort
Consortium have harmonized the three types of cohorts: patient,
population and clinical trials cohorts.

Most of them (33) have an international scope, compared
to seven national initiatives and one regional/local initiative.
Two initiatives report that they include cohorts from across the
world and eight initiatives incorporate cohorts from high- and
low- and middle-income countries (LMIC); 30 (75%) initiatives
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TABLE 1 | Initiatives that harmonize patient cohorts ordered by different categories of diseases (selected information).

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

CINECA:

Common

Infrastructure for

National Cohorts

in Europe, Canada

and Africa

Disease cohorts.

Population

cohorts

Africa, Canada

and Europe

To develop a federated cloud enabled

infrastructure to make population scale

genomic and biomolecular data

accessible across international borders,

to accelerate research, and improve the

health of individuals across continents

In progress Possibly In progress Birth to old

age

In progress The dataset provides a

diverse representation

of studies in rare

disease, common

disease and national

cohorts over time

(longitudinal)

CNODES: the

Canadian Network

for Observational

Drug Effect

Studies

Disease cohorts Canada, US and

UK

Use collaborative, population-based

approaches to obtain rapid answers to

questions about drug safety and

effectiveness

Depends on the

research question

No Depends on

the research

question

All ages Depends on

the research

question

Population of Canada,

UK and US which is

prescribed or

dispensed drugs

EHDEN: European

Health Data and

Evidence Network

Disease cohorts All Horizon 2020

member states

and associated

countries

Harmonize in excess of 100 million

anonymized health records to the

OMOP common data model, supported

by an ecosystem of certified SMEs, and

technical architecture for a federated

network

In progress 18 Considerable European patients

aged 18+

MIRACUM:

Medical

Informatics in

Research and

Care in University

Medicine

Disease cohorts Seven states of

Germany

The spotlight is here on the data

integration centers that will be

embedded in the hospital

IT-infrastructure and will facilitate the

collection and exchange of data within

the consortia university hospitals.

Furthermore, we will elaborate a

programme for strengthening medical

informatics by extending the academic

offer, including new professorships in the

field of medical informatics, a novel,

innovative master programme and

personnel training. The MIRACUM

partners have agreed to share data,

based on interoperable data integration

centers, develop common and

interoperable tools and services, realize

the power of such data and tools in

innovative IT solutions, which shall

enhance patient-centered collaborative

research as well as clinical care

processes, and finally to strengthen

biomedical informatics in research,

teaching and continued education

11 No information

obtained

No information

obtained

0 to the

highest age

of patients

No

information

obtained

Patients attended in

hospitals of seven

German states

(Continued)
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TABLE 1 | Continued

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

Sentinel initiative Disease cohorts US Serve as a system to analyze and

assess safety risks in FDA-approved

drugs and medical products using

electronic health data

17 No information

obtained

310 million All ages No

information

obtained

Population of US which

is prescribed or

dispensed drugs

BiomarCaRE:

Biomarker for

Cardiovascular

Risk Assessment

across Europe

Disease cohorts.

Population

cohorts. Clinical

trials

Australia, Europe,

Israel, Latin

America, New

Zealand, South

Africa,

United States

Assess the value of established and

emerging biomarkers for cardiovascular

risk prediction

4 No information

obtained

8.746 No

information

obtained

No

information

obtained

Patients with coronary

heart disease or at risk

of developing it

CADISP: Cervical

Artery Dissection

and Ischemic

Patients

Disease cohorts Western Europe

and Turkey

International Consortium performing

research on ischemic stroke in young

and middle-aged adults and in particular

on cervical artery dissection

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

No

information

obtained

Cervical artery

dissection and

ischemic stroke

patients from some

Western European

countries and Turkey

Development and

validation of the

AMPREDICT

model

Disease cohorts US The objective of this study was the

development of AMPREDICT-Mobility, a

tool to predict the probability of

independence in either basic or

advanced mobility 1 year after

dysvascular major lower extremity

amputation

2 No information

obtained

200 No

information

obtained

38 Individuals undergoing

their first major lower

extremity amputation

because of

complications of

peripheral artery

disease or diabetes

ESCAPE-NET:

European Sudden

Cardiac Arrest

network: toward

Prevention,

Education and

NEw Treatment

Disease cohorts.

Population

cohorts

Czech Republic,

Denmark, France,

Italy, Sweden, The

Netherlands

Aims to study: (1) risk factors and

mechanisms for the occurrence of

sudden cardiac arrest (SCA) in the

population, and (2) risk factors and

treatment strategies for survival after

SCA on a European scale

No information

obtained

Yes No information

obtained

No

information

obtained

No

information

obtained

Patients with sudden

cardiac arrest

After Breast

Cancer Pooling

Project

Disease cohorts

(one is based on

the follow-up of a

randomized

clinical controlled

trial)

China (Shanghai),

US

Examine the role of physical activity,

adiposity, dietary factors, supplement

use, and quality of life in breast cancer

prognosis

4 Yes 18.314 20–83 No

information

obtained

Breast cancer survivors

(women). Cancers were

diagnosed between

1976 and 2006

(Continued)
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TABLE 1 | Continued

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

B-CAST: Breast

CAncer

STratification

Disease cohorts No information

obtained

In B-CAST tools will be developed to

allow precise identification of the

individual risk of breast cancer, the

subtype of cancer that is most likely to

develop and the prognosis of that

particular subtype

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

No

information

obtained

Patients with breast

cancer

Collaborative

Group on

Epidemiological

Studies of Ovarian

Cancer

Disease cohorts Worldwide Study risk factors of oavarian cancer 58 No information

obtained

31,000 No

information

obtained

No

information

obtained

Women with ovarian

cancer

GENIE: Genomics

Evidence

Neoplasia

Information

Exchange

Disease cohorts Canada, France,

Netherlands,

Spain, UK, USA

It is a multi-phase, multi-year,

international data-sharing project that

aims to catalyze precision cancer

medicine

19 Yes 70,000 All ages No

information

obtained

Cancer patients treated

at multiple international

institutions

HARMONY:

European

Public-Private

Partnership for Big

Data in

Hematology

Disease cohorts.

Clinical trials

All Europe The HARMONY Alliance uses big data

technologies to improve the treatment of

seven hematologic malignancies

Acute Myeloid

Leukemia: 5 patient

cohorts. Multiple

myeloma: 15

patient cohorts

In progress 11,664 (aims

to harmonize

between

75,000 and

100,000

anonymized

hematologic

patients by the

end of the

funding

period)

All ages are

considered

It depends on

the specific

research

question

Patients with blood

malignancies

International

Collaboration of

Epidemiological

Studies of Cervical

Cancer

Disease cohorts Costa Rica,

Denmark, Norway,

Sweden, UK, US

Study the effects of hormonal

contraceptive use and other factors on

the risk of cervical cancer

9 No information

obtained

2,109 No

information

obtained

No

information

obtained

Women with cervical

cancer

MaGIC: Malignant

Germ Cell

International

Consortium

Disease cohorts No information

obtained

Developing more effective treatments for

germ cell tumors (GCT) through

scientific inquiry

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

No

information

obtained

GCT patients all over

the world

NCI: National

Cancer Institute

Cohort

Consortium

Disease cohorts.

Population

cohorts. Clinical

trials

Australia, Canada,

New Zealand,

USA

Foster communication among

investigators leading cohort studies of

cancer, promote collaborative research

projects for topics not easily addressed

in a single study and identify common

challenges in cohort research and

search for solutions

No information

obtained

Yes No information

obtained

18+ No

information

obtained

Breast and colon family

cancer patients and

their families

(Continued)
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TABLE 1 | Continued

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

Second primary

malignancies in

thyroid cancer

patients

Disease cohorts France, Italy,

Sweden

Evaluate the risk of second cancer and

leukemia in patients with papillary or

follicular thyroid cancer treated with

radioiodine or external beam radiation

therapy

3 No 6,841 7–80 (at time

of diagnosis

of thyroid

cancer)

Around 10 Patients with papillary

or follicular thyroid

cancer

The International

CLL-IPI working

group

Disease cohorts.

Clinical trials

France, Germany,

Poland, UK, US

We established an international

consortium with the aim to create an

international prognostic index for chronic

lymphocytic leukemia (CLL-IPI) that

integrates the major prognostic

parameters

2 1,254 No

information

obtained

18 Chronic lymphocytic

leukemia patients

COASt: Clinical

Outcomes in

Arthroplasty Study

Disease cohorts Europe Describe whether body mass index is a

clinically meaningful predictor of patient

reported outcomes following primary

total hip replacement (THR) surgery

4 No information

obtained

4,413 No

information

obtained

24 Patients receiving

primary THR for

osteoarthritis

MARC-35: 35th

Multicenter Airway

Research

Collaboration

Disease cohorts US Examine the association between the

infectious etiology of a child’s severe

bronchiolitis and the level of serum

25-hydroxyvitamin D (25[OH]D) during

severe bronchiolitis, with the severity of

this illness, and the subsequent

development of recurrent wheezing by

age 3 years and combine these clinical

and laboratory data to derive the

wheezing index that will identify children

at higher risk of developing recurrent

wheezing by age 3 years

17 No 920 0–1 Thousands Children age < 1 year

hospitalized with severe

bronchiolitis

COSMIC: Cohort

Studies of Memory

in an International

Consortium

Disease cohorts The world Harmonizing shared, non-identifiable

data from cohort studies that

longitudinally examine change in

cognitive function and the development

of dementia in older individuals (60+

years).

Data are

harmonized on a

project-by-project

basis, and only

subgroups of the

member studies

contribute to

particular projects

Yes Data are

harmonized

on a project-

by-project

basis, and

only

subgroups of

the member

studies

contribute to

particular

projects

40–105 Harmonization

is done on a

project-by-

project basis

and the

number of

studies per

project

varies. For

the largest

project with

20 studies

there are 16

harmonized

variables

60+ years old

individuals from 29

countries all over the

world

(Continued)
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TABLE 1 | Continued

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

Lifebrain: Healthy

minds 0–100

years: Optimizing

the use of

European brain

imaging cohorts

Disease cohorts.

Population

cohorts

Western Europe Maximize the exploitation of brain

imaging cohorts by bringing together

studies on how differences and changes

in brain age relate to cognitive function

and mental health

1 of anxiety and

depression patients

No information

obtained

2,981 No

information

obtained

No

information

obtained

Patients with anxiety or

depression

Seasonal plasticity

of cognition

Disease cohorts.

Population

cohorts

Canada, France,

US

Test the hypotheses that season has a

significant association with cognition,

the odds of being diagnosed with mild

cognitive impairment or dementia,

cerebrospinal fluid Alzheimer disease

biomarkers, and the expression of

cognition-associated modules of

coexpressed genes in the human brain

2 No information

obtained

592 No

information

obtained

No

information

obtained

Alzheimer disease

patients or patients

with cognitive disorders

visited in tertiary care

clinics

HarmonicSS:

HARMONIzation

and integrative

analysis of

regional, national

and international

Cohorts on

primary Sjögren’s

Syndrome (pSS)

toward improved

stratification,

treatment and

health policy

making disease

Disease cohorts.

Clinical trials

Europe, US To bring together the largest

well-characterized regional, national and

international longitudinal cohorts of

patients with Primary Sjögren’s

Syndrome (pSS) including those

participating in clinical trials, and by

taking into consideration the ethical,

legal, privacy and intelectual propiety

rights issues for sharing data from

different countries, to semantically

interlink and harmonize them into an

integrative pSS cohort structure on the

cloud

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

No

information

obtained

Cohorts and clinical

trials of patients with

Primary Sjögren’s

Syndrome

SABER: SAfety

Assessment of

Biologic ThERapy

Disease cohorts US Understanding the absolute and

comparative risks of adverse events of

biologic treatments for patients with

autoimmune diseases

4 No information

obtained

239,806 All ages No

information

obtained

Patients with

autoimmune diseases

who had at least one

dispensing of a biologic

agent or comparison

non-biologic regimen

relevant to their

autoimmune disease

Thousand Faces

of Lupus

Disease cohorts Canada Evaluate factors affecting therapeutic

approaches used in clinical practice for

the management of systemic lupus

erythematosus (SLE), in a multicenter

cohort

10 No information

obtained

1,497 No

information

obtained

No

information

obtained

Patients who meet

American College of

Rheumatology (ACR)

criteria for Systemic

Lupus Erythematosus

(Continued)
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TABLE 1 | Continued

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

Tumor Necrosis

Factor alpha

antagonist use

and cancer in

patients with

rheumatoid

arthritis

Disease cohorts Canada and US Estimate the association between

treatment with biologic

disease-modifying antirheumatic drugs

(DMARDs) and development of cancer

in patients with rheumatoid arthritis

3 No information

obtained

8,458 65+ No

information

obtained

Rheumathoid arthritis

patients who had been

prescribed DMARDs or

methotrexate

GEMRIC: Global

ECT-MRI

Research

Collaboration

Disease cohorts Japan, Western

Europe and US.

Currently

approaching

China

Creating a large database of multi-site

imaging data and

clinical/behavioral/physiological and

metadata for analysis of the neural

mechanisms and predictors of

electroconvulsive therapy-related clinical

response

15 Yes 345 19–86 More than a

thousand

because the

initiative

includes

diagnostic

imaging

variables

Patients receiving

electroconvulsive

therapy

Predictors and

moderators of

cognitive and

behavioral therapy

outcomes for

obsessive-

compulsive

dissorder

Disease cohorts.

Clinical trials

Australia, Canada,

Europe, and US

Identify potential factors that affect the

outcome of cognitive and behavioral

treatments of obsessive-compulsive

disorders

8 No 359 18+ (very few

over 65)

Around 20 Patients with

obsessive-compulsive

disorders

Antibiotic

treatment and

survival of nursing

home patients

with lower

respiratory tract

infection

Disease cohorts The Netherlands

and US

Assess the effects of different antibiotic

treatment strategies on survival of elderly

nursing home residents with lower

respiratory tract infections in the

United States and the Netherlands,

where treatment approaches are quite

different

2 No 1,221 70+ Around 40 Elderly nursing home

residents with lower

respiratory tract

infections

ART-CC:

Antiretroviral

Therapy Cohort

Collaboration

Disease cohorts Western Europe

and North America

Estimate prognosis of HIV-1 positive,

treatment naïve patients initiating highly

active antiretroviral therapy (ART)

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

No

information

obtained

HIV-1 positive,

treatment naïve

patients cohorts from

Europe and North

America

(Continued)

F
ro
n
tie
rs

in
P
u
b
lic

H
e
a
lth

|w
w
w
.fro

n
tie
rsin

.o
rg

Ju
ly
2
0
2
1
|
V
o
lu
m
e
9
|A

rtic
le
6
6
6
8
4
4

64

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


R
o
d
ríg

u
e
z-L

a
so

e
t
a
l.

A
M
a
p
o
f
th
e
In
itia

tive
s
T
h
a
t
H
a
rm

o
n
ize

P
a
tie
n
t
C
o
h
o
rts

A
c
ro
ss

th
e
W
o
rld

TABLE 1 | Continued

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

COHERE:

Collaboration of

Observational HIV

Epidemiological

Research Europe

Disease cohorts Western Europe

and North America

Pool and harmonize existing longitudinal

data on HIV-positive persons collected

across Europe to answer key research

questions that, in the era of potent

combination antiretroviral therapy

(cART), could not be addressed

adequately by individual cohorts

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

Not reported HIV-infected people

residing in Europe

Early Antibiotic

Treatment for

Pediatric Febrile

Urinary Tract

Infection and

Renal Scarring

Disease cohorts US Determine, in a well-characterized

sample of children with febrile urinary

track infections, whether delay in the

initiation of antimicrobial therapy was

associated with the occurrence and

severity of renal scarring and to

determine whether these associations

persisted after adjusting for potential

confounding factors

2 No 802 2–72 months No

information

obtained

Children aged 2–72

months with a urinary

tract infection

producing fever

HAART and early

mortality

Disease cohorts Brazil and US Compare the early mortality pattern and

the causes of death among patients

starting HAART in Brazil and the

United States

2 No information

obtained

1,774 No

information

obtained

10 HIV-infected patients

IeDEA:

International

epidemiology

Databases to

Evaluate AIDS

Disease cohorts Africa, Asia-Pacific

region, the

Central/South

America/Caribbean

region, and North

America

Collect and define key variables,

harmonize data, and implement

methodology to effectively pool data as

a cost-effective means of generating

large data sets to address the high

priority research questions and

streamline HIV/AIDS research

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

No

information

obtained

HIV/AIDS patients from

Africa, the Asia-Pacific

region, the

Central/South

America/Caribbean

region, and North

America

ReCoDID:

Reconciliation of

Cohort data in

Infectious

Diseases

Disease cohorts No information

obtained

Develop an equitable, accessible, and

sustainable model for the storage,

curation, and analyses of

clinical-epidemiological and

high-dimensional sample data collected

by infectious disease cohorts in

low-and-midle-income countries

No information

obtained

In progress No information

obtained

No

information

obtained

No

information

obtained

Patients with infectious

diseases

RESPOND:

International

Cohort

Consortium of

Infectious Disease

Disease cohorts Australia, Georgia

and Western

Europe

Build an innovative, flexible and dynamic

cohort consortium for the study of

infectious diseases, including HIV and

people at risk for HIV, as a generic

structure for facilitating multi stakeholder

involvement

No information

obtained

No information

obtained

No information

obtained

No

information

obtained

No

information

obtained

People 18+ at high risk

of acquiring HIV and

people living with HIV

and/or with other

infectious diseases or

across Europe, South

America and Australia

(Continued)
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TABLE 1 | Continued

Initiative Types of cohorts Region, Country

were the cohorts

were collected

Main objective Number of

cohorts with

harmonized data

More

cohorts

foreseen to

be

harmonized?

Number of

participants

with

harmonized

data

Age range

of the

sample

No. of

harmonized

variables

(Maximum)

Population

Adults Born

Preterm

International

Collaboration

Disease cohorts Australia, Canada,

Finland,

Netherlands,

Northern Ireland,

Norway, US

Our main aim was to identify factors that

either increase or decrease risk of high

blood pressure among adults born with

very low birth weight

9 No information

obtained

1,571 patients

and 777

controls

No

information

obtained

No

information

obtained

Very low birth weight

and very preterm

babies who reach

adulthood

Necrotizing

enterocolitis (NEC)

study

Disease cohorts Austria and The

Netherlands

The first aim of the study was to

correlate the occurrence of a blood

stream infection (BSI) during the early

phase of necrotizing enterocolitis (NEC)

with intestinal fatty acid-binding protein

(I-FABP) levels, as a marker for loss of

gut wall integrity owing to mucosal

damage, and Interleukin (IL)-8 levels, as

a biomarker for the pro-inflammatory

cascade in NEC. The second aim of the

study was to investigate the relation

between the occurrence of a BSI and

disease outcome

2 No information

obtained

57 24–40 weeks 13 Patients with

necrotizing enterocolitis

Recurrent leg

venous ulcers

study

Disease cohorts Eastern Australia Identify risk and protective factors for

recurrence of venous leg ulcers

3 Yes 250 26–96 24 Patients with a healed

leg ulcer of primarily

venous etiology

MARS: Multicenter

AVM Research

Study

Disease cohorts Scotland and US Identify risk factors for intracranial

hemorrhage in the natural history course

of brain arteriovenous malformations

4 Yes 2,525 No

information

obtained

13 Patients with

arteriovenous

malformations

Pulmonary

embolism

presentation

Disease cohorts

(one clinical trial)

Belgium, France

and Switzerland

Compare clinical characteristics

between women and men with

suspected and confirmed pulmonary

embolism (PE) and their impact on

clinical probability prediction scores and

on diagnostic work-up of PE, and to

assess whether differences at

presentation could account for the

increased recurrence rate in men

3 No 3,414 18–98 Around 30 Patients with a clinical

suspicion of pulmonary

embolism

BIOMAP:

Biomarkers in

Atopic Dermatitis

and Psoriasis

Disease cohorts.

Clinical trials

No information

obtained

Examine the causes and mechanisms of

atopic dermatitis and psoriasis to enable

optimal treatments and an individualized

therapy scheme for each patient

No information

obtained

In progress No information

obtained

No

information

obtained

No

information

obtained

Patients with atopic

dermatitis and psoriasis
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only include cohorts from high-income countries, and none
harmonize data from LMIC countries alone.

Most initiatives are partnered with universities, hospitals,
and research institutes. Governmental institutions take part in
a few of them (9). The presence of patient associations and
pharmaceutical companies as partners is anecdotal. The number
of partners ranges between 2 and more than 100, with a median
of 12. Three quarters comprise 20 partners or fewer.

Most initiatives have been or are funded by American (12)
or European (10) institutions. Canadian funding comes third
(4). The vast majority have received public funding alone (22).
Five have received combined funding from public institutions
and non-profit organizations. Private funding was provided in
isolation to one initiative (RESPOND), combined with public
funding to another one (EHDEN), and combined with non-profit
funding to a third one (Tumor necrosis factor α antagonist use).

Their objectives may be classified into four general categories
(some initiatives share more than one): determining the
prognosis of subgroups of patients (14), providing a repository
of patients (11), establishing the efficacy (6) or safety (4)
of treatments, and exploring risk factors and biomarkers of
diseases (10).

The median number of cohorts included in each initiative is
5, ranging from 1 (which also harmonizes population cohorts)
to 58; three quarters include 17 cohorts or fewer. The number
of individuals included varies wildly, from 57 to 310 million
(Sentinel initiative). The median is 6,841. Eight out of 37
(21.6%) initiatives have harmonized fewer than 1,000 patients
and the same proportion have harmonized 100,000 patients or
more. Twenty-six have harmonized all or almost all the cohorts
incorporated to the initiative, two (EHDEN and CINECA) are
still in the process of harmonizing their cohorts and another
two (CNODES and COSMIC) harmonize data on a project-by-
project basis.

Eight initiatives included patients from all ages, eight included
only adult patients, three included only children, and two
included exclusively older people.

Of those which have declared the number of variables in their
harmonized database, there are between 10 and more than 1,000
(median 24), with two out of 15 (13.3%) including more than
1,000 variables.

Four initiatives harmonized administrative databases. Thirty-
three were retrospective vs. four prospective. The great
majority do not report major threats to the representativity of
their samples.
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Aim: The purpose of this study was to estimate the prevalence of adverse childhood

experiences (ACEs) among Norwegian adults from a general population and to identify

potential associations with demographic and socioeconomic characteristics.

Methods: A randomly drawn sample (N= 61,611) from the public registry of inhabitants

was invited to participate in the Norwegian Counties Public Health Survey. The present

study was based on online responses from 28,047 adults ≥18 years (mean age: 46.9

years, SD = 16.03). Log-link binomial regression analyses were performed to examine

associations between four measures of ACEs (family conflict, lack of adult support, bad

memories, and difficult childhood) and demographic (age, gender, civil status, parental

divorce) and socioeconomic characteristics (education level, perceived financial situation,

and welfare benefits).

Results: Single individuals and those with parents that divorced during childhood were

at elevated risk of all four ACEs. The risk varied to some degree between the sexes. The

prevalence of ACEs declined with increasing age. We found a consistent social gradient

that corresponded to the frequency of ACEs for all three socioeconomic characteristics

investigated. The risks were highest for those in the lowest socioeconomic levels (RR:

1.53, 95% CI: 1.32–1.78 to RR: 4.95, CI: 4.27–5.74).

Conclusions: Public health strategies should direct more attention to the interplay

between ACEs and socioeconomic factors. Welfare services should be sensitive to ACEs

among their service recipients.

Keywords: adverse childhood experiences, family conflict, adult survivors of child adverse events, child abuse,

socioeconomic factors

INTRODUCTION

Adverse childhood experiences (ACEs) are stressful and potentially traumatic events experienced
by children before the age of 18 years. ACEs are relatively common (1, 2): a recent systematic review
and meta-analysis found pooled prevalence of 23.5% Europeans that reported at least one ACE and
18.7% that reported two or more ACEs (3). The term “ACE” originated in the Adverse Childhood
Experiences study, conducted in 1998. They grouped ACEs into three domains: abuse, neglect,
and household dysfunction (4). Numerous studies have explored the consequences of ACEs,
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although, the concept has been defined differently among
different studies (5). Typically, studies map the occurrence,
number, and frequency of various types of adverse experiences
(3). Other studies focused on the relevance of how participants
rated the impact of their experiences (6). However, irrespective
of how ACEs have been defined, the association between ACEs
and reduced adult health and well-being has been confirmed
repeatedly (4–8). Although, a large body of research has
documented the connection between early adversities and adult
health problems, fewer studies have explored factors that could
influence and interact with this connection. One example is
the complex relationship between ACEs and socioeconomic
factors. ACEs appear to be highly socially patterned and
individuals with low socioeconomic statuses report more ACEs
(9). However, due to their occurrence early in life, it is likely
that ACEs also impact socioeconomic outcomes in adulthood,
such as educational attainment, employment, and income (10,
11). Although, Norway is considered an affluent country, we
nevertheless display a social gradient in health and life expectancy
(12, 13). The number of children living in low income families
(below the poverty threshold) in Norway has tripled over the
last two decades, and more people receive disability benefits
here compared to other countries that are members of the
Organization for Economic Co-operation and Development
(14). In addition, Norway has regional differences in education,
disability, and health-related measures. The current study was
situated in a region characterized by low employment rates, a
high distribution of work assessment allowance (unemployment
benefit), and a large proportion of people that receive disability
benefits. Moreover, among young adults (15–29 years) in this
area, the frequency of seeking help for mental health problems
was higher than the national average (14). Few studies have
investigated the prevalence of ACEs and their association with
socioeconomic and demographic factors in a Nordic context and
in a general population of adults. However, this information
is important to improve our understanding of the inequalities
and determinants of health inWestern societies. Epidemiological
studies that identify high-risk groups are essential in developing
policy and service-delivery systems directed toward reducing the
negative consequences of ACEs (15).

The purpose of this study was to estimate the prevalence of
adverse childhood experiences (ACEs) among Norwegian adults
from a general population and to identify potential associations
with demographic and socioeconomic characteristics.

METHODS

Study Design and Setting
A total of 61,611 inhabitants that resided in Agder county
(Southern Norway), aged 18 or older, were invited to participate
in an online questionnaire (Norwegian Counties Public Health
Survey). The questions were related to health, well-being,
childhood, living conditions, local environments, accidents,
and injuries. All data were collected electronically through a
web-based platform. Participants were selected randomly from
the Norwegian Population Registry of inhabitants in Southern
Norway; e-mails or telephone numbers were obtained from

the contact registry from the Norwegian Agency for Public
Management and eGovernment.

Instruments
Adverse Childhood Experiences
ACEs were assessed with these four questionnaire items:

1. Did you experience a lot of arguing, turmoil, conflicts, or
difficult communication in your childhood home?

2. Growing up, did you have a trusted adult from whom you could
get support?

3. Do you struggle with bad memories from your childhood, due to
loss, betrayal, neglect, violence, ill-treatment, or abuse?

4. When you think about your childhood/upbringing, how would
you describe it?

Response options for items 1–3 were: “not at all,” “to a very small
degree,” “to a small degree,” “to a large degree,” and “to a very
large degree.” The last three categories in item 1 were coded as
a “dysfunctional family environment”; the first two categories in
item 2 were coded as a “lack of trusted adult during childhood”;
and the last three categories in item 3 were coded as a “struggle
with bad memories.” Item 4 included the following response
categories “very good,” “good,” “moderate,” “difficult,” and “very
difficult.” The last two categories were coded as “perceived
childhood as difficult.” Finally, one item assessed the participant’s
experience with parental divorce, with the response options “no,”
“yes, before I was 7 years old,” and “yes, when I was between 7
and 18 years old.”

These four ACE items were originally developed for a large
Norwegian public health study (the HUNT study). Items 1–3
first appeared in the fourth wave of the study (HUNT4), and
item 4 was included in both the third and fourth waves (HUNT3
and HUNT4). Before that, the ACE items were included in a
pilot-testing of the HUNT4 questionnaire in the municipality
of Selbu, where, 31 participants provided written comments to
the questions. In addition, six participants were interviewed in
detail by telephone. Of particular interest, the pilot study tested
the comprehensibility of the questions and whether participants
found them uncomfortable or invasive. No negative comments
regarding the ACE items were received.

In a previous study, items 1, 3, and 4 were validated
together in a short, Difficult Childhood questionnaire (DCQ).
The discriminant and convergent validities of the tool were
confirmed (16) in the same population that we analyzed in the
current study.

Demographic Factors
Participant age and sex were obtained from the National
Population Registry. Age was divided into 6 age groups (18–29,
30–39, 40–49, 50–59, 60–69, and 70+ years). All participants
were also asked about their relationship status (coded as “single”
vs. “married/partner” (including “girlfriend/boyfriend”).

Socioeconomic Variables
Three variables measured different aspects of socioeconomic
status (SES). The educational level was collected by asking
participants about the highest level of education completed.
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The response categories were: “Low secondary/secondary
modern/folk high school up to 10 years,” “Vocational
training/middle school/upper secondary/junior college-
minimum 3 years,” “University college/university <4 years,” and
“University college/university 4 years or more.” In the current
study, these categories were renamed “low,” “medium,” “high,”
and “highest” educational level, respectively. Economic capability
was assessed with the following question: “How easy or difficult
is it for you to make ends meet with your current income?”
Response options ranged from 1 (very difficult) to 6 (very easy).
For the purposes of the current study, these responses were
revised to include three categories: “poor,” “medium,” “good.”
Participants were also asked whether their employment status
included receiving disability pension/work assessment allowance
or social assistance benefits. These categories were collapsed
into two: “receiving welfare benefits” or “not receiving welfare
benefits.” As this last variable allowed the participants to tick
off several answers, missing is not possible to estimate for this
particular variable.

Ethics
This study was approved by the Norwegian Data Inspectorate
and the Regional Committee for Medical and Health Research
Ethics of South-East Norway (file number 162353/REK South-
East-C), whose directives are based on the Helsinki Declaration.
Written electronic consent was provided by all subjects included
in the study. All data were stored and processed in compliance
with The General Data Protection Regulation.

Statistical Analysis
All analyses were performed with IBM SPSS version 26 (SPSS
Inc., Chicago, IL USA) for Windows. The overall distribution
of ACEs, relative to demographic and socioeconomic factors
were performed in cross-tables. Log-link binomial regression
analyses were performed to examine associations between ACEs
and demographic and socioeconomic factors. Rather than the
more commonly used logistic regression model to obtain an odds
ratio (OR), we used log-link binomial regressions, to obtain risk
ratios (RR), and 95% confidence intervals (95% CIs). All analyses

FIGURE 1 | The prevalence of ACEs among Norwegian adults from a general population, grouped by participant sex. Data retrieved from the Norwegian Counties

Public Health Survey conducted in Agder, 2019.

Frontiers in Public Health | www.frontiersin.org 3 July 2021 | Volume 9 | Article 71134470

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Haugland et al. Adverse Childhood Experiences Among Adults

TABLE 1 | Demographic and socioeconomic characteristics of adults with adverse childhood experiences; data from a Norwegian Counties Public Health Survey

conducted in Agder, 2019 (N = 28,047).

Characteristic Dysfunctional family

environment

n (%)

Lack of trusted adult

during childhood

n (%)

Struggle with bad

memories

n (%)

Perceives childhood as

difficult

n (%)

Sex

Male 1,725 (13.2) 2,802 (21.5) 873 (6.7) 841 (6.4)

Female 3,008 (20.2) 3,290 (22.1) 1,696 (11.4) 1,505 (10.1)

Age group

18–29 years 1,077 (20.7) 997 (19.1) 641 (12.3) 526 (10.1)

30–39 years 970 (21.6) 1,040 (23.2) 548 (12.2) 514 (11.4)

40–49 years 1,062 (19.2) 1,261 (22.8) 534 (9.6) 526 (9.5)

50–59 years 944 (16.9) 1,308 (23.5) 494 (8.8) 474 (8.5)

60–69 years 505 (10.7 1,000 (21.2) 256 (5.4) 225 (4.8)

70 years + 175 (7.3) 486 (20.2) 96 (4.0) 81 (3.3)

Parents divorced during childhood

Yes, age <7 years 1,038 (44.0) 889 (37.7) 623 (26.4) 599 (25.3)

Yes, age 7–18 years 1,201 (43.4) 990 (35.8) 559 (20.2) 562 (20.3)

No 2,476 (10.9) 4,191 (18.4) 1,381 (6.1) 1,175 (5.2)

Marital status

Single 1,291 (21.3) 1,626 (26.8) 807 (13.3) 760 (12.5)

Married/partner 3,432 (15.7) 4,451 (20.4) 1,757 (8.0) 1,582 (7.2)

Educational level

Low 696 (20.9) 1,001 (30.3) 468 (14.1) 454 (13.6)

Medium 1,847 (16.7) 2,528 (22.9) 1,088 (9.8) 985 (8.9)

High 1,067 (16.4) 1,317 (20.3) 524 (8.1) 464 (7.1)

Highest 1,105 (15.8) 1,221 (17.5) 476 (6.8) 433 (6.2)

Financial difficulties

Poor 768 (32.6) 923 (39.1) 610 (25.8) 548 (23.2)

Medium 812 (25.6) 962 (30.3) 493 (15.5) 432 (13.6)

No difficulty 2,978 (14.1) 3,923 (18.6) 1,360 (6.4) 1,267 (6.0)

Welfare Benefits

Yes 1,006 (31.4) 1,180 (37.0) 819 (25.6) 702 (21.9)

were conducted separately for males and females. We also tested
for interactions between sex and the other demographic and
socioeconomic factors by entering the product of these variables
in separate blocks. Missing data were handled with a listwise
deletion method.

RESULTS

Of the 61,611 individuals invited, 28,047 completed the
questionnaire, which yielded a response rate of 45.5%. The
sample had a mean age of 46.9 years (SD = 16.03) and consisted
of 13,122 (46.8%) males and 14,925 females (53.2%).

Figure 1 shows the prevalence of the different ACEs. More
females (20.2%) than males (13.2%) reported frequent family
conflicts. In contrast, the sexes were less different in the
support perceived; approximately 10% reported a lack of support
(small to very small degrees of support). Struggling with bad
memories from childhood was reported by 11.4% of females and
6.7% of males. Similarly, 10.1% of females and 6.4% of males
characterized their childhood as difficult or very difficult.

A comparison between the different age groups showed a
declining trend, where older age groups reported less ACEs than

younger age groups (data not shown). For all the ACE-related
variables, females reported higher frequencies than males.

Table 1 shows the percentages of individuals that reported
the four ACEs among different demographic and socioeconomic

groups. Within the socioeconomic groups, the highest
proportions of participants that reported ACEs were in the
lower socioeconomic groups (low education levels, poor

economic capability, and recipients of welfare benefits) and came

from a background with parental divorce. Figure 2 visualize the
social gradient in the prevalence of ACE by education.

As detailed in Table 2, participants that reported that their
parents had divorced during childhood had an elevated overall

risk for all four ACEs, with RRs ranging from 1.85 to 5.62.

We found that this association significantly interacted with
sex; indeed, males generally showed stronger associations than

females between having divorced parents and experiencing three

of the four ACE outcomes: a dysfunctional family environment,
struggling with bad memories, and perceiving childhood as
difficult. The risk of ACEs declined with age; it was lowest among
the oldest participants. We also found that single individuals
(without partner) showed elevated risks for all four ACEs,
compared to individuals with a partner (RRs ranged from 1.26
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FIGURE 2 | The prevalence of ACEs among Norwegian adults from a general population, grouped by education. Data retrieved from the Norwegian Counties Public

Health Survey conducted in Agder, 2019.

to 1.92). We also found that males generally had stronger
associations than females between a single marital status and a
dysfunctional family environment and perceiving childhood as
difficult (Table 2).

The risk of ACEs was highest in disadvantaged subgroups (i.e.,
those with a low education level, poor economic capability, or
recipients of welfare benefits), with RRs ranging from 1.28 (95%
CI: 1.16–1.43) to 4.95 (95% CI: 4.27–5.74). Among participants
with poor economic capability and participants that received
welfare benefits, males were at significantly higher risk than
females of struggling with bad memories. Similarly, among
participants with low education and those that received welfare
benefits, males were at significantly higher risk than females of
perceiving childhood as difficult (Table 2).

DISCUSSION

Overall, our results showed that that the prevalence of ACEs
(family conflict, lack of adult support, struggling with bad
memories, and difficult childhood) in a large Norwegian adult
sample drawn from the general population varied across
demographic variables (i.e., age, gender, marital status, and a
background of divorced parents). We also showed that exposure
to childhood adversities was associated with low socioeconomic
status in adulthood, including variables like low education levels,
perceived financial difficulties, and receiving welfare benefits.

In our sample, the proportions of males and females that
reported ACEs varied with age, where few of the oldest
participants reported ACEs. Although, this result was consistent
with results from previous studies (17), it may be somewhat
surprising, because one might have expected that childhood
conditions would have been worse among the oldest individuals.
There are several possible explanations for this age-related
decline in ACEs. First, the questions were retrospective, and
therefore, they were susceptible to recall bias (18); this bias might
have been more pronounced among the oldest participants.
Second, studies have shown that ACEs were strongly related
to multimorbidity (18) and premature mortality (17). This
association may have introduced a selection bias, where the
oldest individuals with high levels of ACEs might have
been underrepresented. Furthermore, there may be differences
between age cohorts in their understanding of what qualifies as
a difficult childhood and their expectations of how childhood
should be. Although, these are plausible explanations for our
findings, another Norwegian study (18) evaluated one of our
ACE items (a difficult childhood) and did not find any significant
differences between age groups in the levels of self-reported
childhood difficulties.

Single participants had a modestly increased risk of ACEs
compared to those with a partner. Childhood adversities, such
as family conflicts, might influence relationship aspects. For
example, a study by Roth et al. (19) found that general
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TABLE 2 | Risk of adverse childhood experiences and demographic and socioeconomic characteristics, among Norwegian adults from a general population; data from Norwegian Counties Public Health Survey

conducted in Agder 2019 (N = 28,047).

Characteristic Dysfunctional family environment Lack of trusted adult during childhood Struggle with bad memories Perceives childhood as difficult

Males Females Males Females Males Females Males Females

RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI

Age group Sex int. Wald (df) = 0.982(5), p = 0.964 Sex int. Wald (df) = 8.331(5), p = 0.139 Sex int. Wald (df) = 6.676(5), p = 0.246 Sex int. Wald (df) = 7.014(5), p = 0.220

18–29 years 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 –

30–39 years 1.04 0.907–1.19 1.06 0.967–1.16 1.18 1.05–1.34 1.23 1.11–1.36 1.14 0.944–1.38 0.942 0.828–1.07 1.24 1.01–1.51 1.09 0.950–1.26

40–49 years 0.918 0.804–0.1.08 0.963 0.879–1.05 1.15 1.02–1.29 1.23 1.18–1.36 0.791 0.648–0.964 0.814 0.716–0.926 0.877 0.716–1.07 1.01 0.879–1.16

50–59 years 0.824 0.72–0.943 0.849 0.77–93 1.23 1.10–1.38 1.22 1.11–1.34 0.783 0.643–0.953 0.725 0.633–0.829 0.848 0.693–1.03 0.873 0.754–1.01

60–69 years 0.527 0.449–0.618 0.547 0.483–0.620 1.17 1.04–1.32 1.04 0.939–1.16 0.473 0.374–0.598 0.462 0.388–0.550 0.468 0.365–0.599 0.509 0.421–0.617

70 years + 0.346 0.274–0.437 0.399 0.326–0.488 1.11 0.973–1.27 0.999 0.865–1.15 0.302 0.214–0.427 0.395 0.304–0.513 0.295 0.204–0.426 0.410 0.306–0.550

Parents divorced

during childhood

Sex int. Wald (df) = 39.833(2), p = 0.000 Sex int. Wald (df) = 1.042(2), p = 0.594 Sex int. Wald (df) = 6.255(2), p = 0.044 Sex int. Wald (df) = 6.390(2), p = 0.041

Yes, age <7 years 4.77 4.14–5.05 3.58 3.34–3.83 1.85 1.63–2.09 2.01 1.81–2.23 3.49 2.97–4.11 3.11 2.80–3.47 4.10 3.49–4.82 3.71 3.24–4.24

Yes, age 7–18 years 5.05 4.58–5.76 3.45 3.21–3.72 2.04 1.79–2.31 2.04 1.83–2.29 4.94 4.26–5.72 3.94 3.55–4.36 5.62 4.84–6.51 4.42 3.96–4.94

No 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 –

Marital status Sex int. Wald (df) = 4.77(1), p = 0.029 Sex int. Wald (df) = 0.04(1), p = 0.307 Sex int. Wald (df) = 0.007(1), p = 0.931 Sex int. Wald (df) = 4.01(1), p = 0.045

Single 1.47 1.31–1.65 1.25 1.14–1.37 1.26 1.14–1.39 1.35 1.24–1.47 1.83 1.58–2.13 1.51 1.35–1.69 1.92 1.65–2.23 1.58 1.41–1.77

Married/partner 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 –

Educational level Sex int. Wald (df) = 5.741(3), p = 0.125 Sex int. Wald (df) = 0.689(3), p = 0.876 Sex int. Wald (df) = 39.833(3), p = 0.225 Sex int. Wald (df) = 7.406(3), p = 0.006

Low 1.53 0.1.32–1.78 1.28 1.16–1.43 1.68 1.51–1.88 1.71 1.60–1.95 2.39 1.93–2.96 2.02 1.75–2.35 2.42 1.96–3.00 2.18 1.86–2.54

Medium 1.21 1.07–1.37 1.03 0.956–1.127 1.29 1.18–1.42 1.32 1.21–1.43 1.46 1.21–1.77 1.54 1.36–1.74 1.40 1.16–1.70 1.54 1.35–1.76

High 1.11 966–1.28 1.02 0.939–1.128 1.12 1.01–1.25 1.18 1.08–1.30 1.18 0.949–1.47 1.21 1.05–1.39 0.995 0.79–1.25 1.26 1.08–1.46

Highest 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 –

Economic

capabilities

Sex int. Wald (df) = 2.146(2), p = 0.342 Sex int. Wald (df) = 0.590(2), p = 0.745 Sex int. Wald (df) = 4.36(2), p = 0.000 Sex int. Wald (df) = 4.179(2), p = 0.124

Poor 2.40 2.13–2.70 2.18 2.01–2.37 2.07 1.89–2.25 2.12 1.96–2.29 4.95 4.27–5.74 3.46 3.11–3.84 4.29 3.68–5.01 3.53 3.15–3.94

Medium 1.87 1.66–2.10 1.74 1.60–1.89 1.58 1.44–1.73 1.66 1.53–1.79 2.70 2.28–3.20 2.21 1.97–2.48 2.29 1.92–2.74 2.19 1.93–2.

Good 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 –

Welfare benefits Sex int. Wald (df) = 5.144(1), p = 0.023 Sex int. Wald (df) = 0.234(1), p = 0.622 Sex int. Wald (df) = 6.297(1), p = 0.012 Sex int. Wald (df) = 4.244(1), p = 0.039

Yes 2.45 1.90–2.54 1.90 1.72–2.09 1.91 1.69–2.15 1.84 1.67–2.01 4.08 3.47–4.78 3.18 2.84–3.55 3.65 3.09–4.31 2.95 2.62–3.32

No 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 – 1.00 –

F
ro
n
tie
rs

in
P
u
b
lic

H
e
a
lth

|w
w
w
.fro

n
tie
rsin

.o
rg

Ju
ly
2
0
2
1
|
V
o
lu
m
e
9
|A

rtic
le
7
1
1
3
4
4

73

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Haugland et al. Adverse Childhood Experiences Among Adults

confidence in sustainable romantic relationships was lower
among individuals that were exposed to overt parental conflict
during childhood.

Not surprisingly, individuals that experienced a parental
divorce during childhood had a higher risk of ACEs than those
with parents that did not divorce. Furthermore, adults that
experienced a parental divorce during childhood were more
prone to struggling with bad memories from their childhood
due to loss, betrayal, neglect, violence, ill treatment, or abuse.
This finding was consistent with other studies that revealed long-
term associations between parental divorce and a wide range of
different mental health problems (20).

Overall, our findings with socioeconomic measures revealed
a strong, consistent social gradient that corresponded to the
risks of all four ACEs. Among participants that reported
financial difficulties, the risk of also struggling with bad
memories from childhood was particularly increased among
males, but the overall association was strong for both sexes.
Similarly, participants with financial difficulties were at high
risk of characterizing their childhood as difficult, although, this
association was strongest among males. Among participants
that received welfare benefits, the pattern was similar, with
a pronounced increase in the risk of ACEs. The relationship
between education level and ACEs also revealed a gradient;
indeed, compared to participants with a high education level,
participants with medium and low education levels were at
increased risks of all ACEs. These associations were strongest
among males with a low education level that characterized
their childhood as difficult. The social gradient may have a
multifactorial origin, although, it was not possible to investigate
this hypothesis in the current study. Other studies have revealed
that the prevalence of ACEs was highly socially patterned in
childhood, which suggested that a low SES in childhood could be
a determinant for ACEs (21). Therefore, a low SES in adulthood
might represent a continuance of a low family SES during
childhood. However, a previous prospective study (22) found that
ACEs were associated with low educational attainment, even after
adjusting for family socioeconomic factors.

Strengths and Limitations
A major strength of this study was the large sample drawn
randomly from a general population, including participants that
spanned a large age range. Many previous ACE-related studies
focused on mapping the types and frequencies of ACEs. In
contrast, the present study invited participants to report self-
perceptions of the consequences and severity of ACEs, whichmay
be more relevant in assessing experiences that cause detrimental
effects on adult perceptions of quality of life (6, 16).

Although, the study is performed within a Norwegian context,
we expect findings to be generalizable to other countries as
well. Studies performed in other countries have also revealed a
social gradient related to ACEs (9, 11). Moreover, as Norway
has a well-functioning welfare system compared to many other
countries, the social gradient may even be stronger in contexts
outside Norway. The Norwegian health services system is mostly
government operated and is freely available to all citizens for
a minor self-share fee (maximum 240 e per year including
medical supplies). Our social services include graded benefits

for adults without employment; 1 year sickness benefit [100%
of former wage (FW)], 1 year unemployment benefit (62,4% of
FW), 3 year work clearance allowance (66% of FW), disability
benefit (66% of FW or a minimum amount), and social benefits
(cover necessities).

The limitations of this study include its retrospective design.
Thus, recall bias might have increased the risk of measurement
error (23). However, a comparison between prospective vs.
retrospective reports of ACEs did not reveal any bias in
our retrospective assessment (24). Another limitation was the
cross-sectional study design; caution should be taken regarding
potential causalities when interpreting our findings.

Policy and Practice Implications
Our study indicates that adults who think of their childhood as
difficult often experience financial and employment problems.
Adding this to our knowledge that adults with ACEs have
increased risk for various health problems (5, 25) ACEs impose
large human and economic costs on society. The relation
between childhood adversity and lifelong well-being warrants
fresh thinking on how to promote health and prevent structural
inequities. As of now, the majority of societies’ resources are
allocated to adult health care and adult social services.We suggest
that a redirection of resources toward prevention of ACEs, as
well as protection and care for children experiencing adversity,
will reduce overall human and economic costs. Moreover,
interventions focused toward restoring inequities in SES to break
intergenerational transmission of low SES and ACEs need to
be explored.

CONCLUSION

This study showed a varied distribution of ACEs across
demographic variables. In addition, a strong, consistent social
gradient was revealed, which point to the necessity of increasing
our awareness of the potential role that ACEs play in
disturbing the life opportunities of children. This awareness
should encourage political discourse to increase efforts to
disrupt intergenerational patterns, where low SES and ACEs
are transferred and upheld within families. The apparent
interconnectivity between ACEs and SES calls for a more diverse
set of preventive interventions directed toward both SES-related
struggles and toward the prevention and treatment of ACEs, for
both adults and children.
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Rheumatoid arthritis (RA) is a chronic autoimmune disorder that commonly manifests

as destructive joint inflammation but also affects multiple other organ systems. The

pathogenesis of RA is complex where a variety of factors including comorbidities,

demographic, and socioeconomic variables are known to associate with RA and

influence the progress of the disease. In this work, we used a Bayesian logistic regression

model to quantitatively assess how these factors influence the risk of RA, individually

and through their interactions. Using cross-sectional data from the National Health and

Nutrition Examination Survey (NHANES), a set of 11 well-known RA risk factors such

as age, gender, ethnicity, body mass index (BMI), and depression were selected to

predict RA. We considered up to third-order interactions between the risk factors and

implemented factor analysis of mixed data (FAMD) to account for both the continuous

and categorical natures of these variables. The model was further optimized over the

area under the receiver operating characteristic curve (AUC) using a genetic algorithm

(GA) with the optimal predictive model having a smoothed AUC of 0.826 (95% CI:

0.801–0.850) on a validation dataset and 0.805 (95% CI: 0.781–0.829) on a holdout test

dataset. Apart from corroborating the influence of individual risk factors on RA, our model

identified a strong association of RA with multiple second- and third-order interactions,

many of which involve age or BMI as one of the factors. This observation suggests

a potential role of risk-factor interactions in RA disease mechanism. Furthermore, our

findings on the contribution of RA risk factors and their interactions to disease prediction

could be useful in developing strategies for early diagnosis of RA.

Keywords: rheumatoid arthritis, comorbidities, interactions, prediction, Bayesian, NHANES, genetic algorithm,

factor analysis of mixed data

1. INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disorder of the joints and internal organs
that affects 0.5–1.0% of the adult population worldwide (1, 2). It is a major cause of disability and
is associated with an increased risk of premature death (3). The chronic and progressive nature of
RA poses a significant financial burden, with the annual societal cost of RA estimated to be $19.3
billion in the United States alone (4). Despite its profound impact on society and the healthcare
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system, many aspects of this complex, multifactorial disease
remain unknown. A variety of genetic, environmental, and
behavioral risk factors have been identified for RA and its
associationwith a number of comorbidities has been reported (5).
Since current medicine does not offer a cure for RA, the major
therapeutic goal is preventing flare-ups, inducing fast remission,
and slowing down progressive changes such as irreversible joint
deformity (6). Despite RA’s demand for close and specialized
medical supervision, the number of rheumatologists across the
United States has been steadily decreasing. There were roughly
5,000 practicing rheumatologists in 2015, but this number is
projected to decrease to 3,500 by the year 2025 (7). One
promising approach to address this increasing disparity in the
patient-to-rheumatologist ratio is the development of analytical
tools to facilitate early diagnosis and predict disease progression,
thus enabling better access to care and improving the plan for
managing the disease.

RA has a strong connection to age and sex. Disease onset is
most likely between 50 and 75 years of age (5, 8) and females
are affected 2–3 times more than males (5). Race and ethnicity
are also known to influence RA; for example, a lower rate of
remission and increased disease activity are reported in African-
Americans relative to whites (9). While the reason for such
differences is not completely understood, the presence of a
“shared epitope”(SE) that is highly correlated with RA severity
and outcome is suggested to underlie the higher incidence of
the disease in certain sub-populations (10, 11). Apart from
demographic factors, several genetic, environmental, behavioral,
and socioeconomic risk factors are identified for RA (5, 12).
Increased RA incidence in the presence of a family history with
66% heritability observed among twins suggests a genetic link of
RA (13). SE alleles within the major histocompatibility complex
are shown to have the strongest association with RA, accounting
for up to 40% of total genetic risk (12, 13). Environmental factors
that can increase the risk of RA include certain infections such as
Porphyromonas gingivalis bacteria and Epstein-Barr virus (EBV),
where an inappropriate immune response to these microbial
agents could trigger autoimmunity (14, 15). Additionally, air
pollution and occupational exposure to silica have been reported
to increase the risk of RA (16, 17). Multiple studies show a
strong association of RA with history of tobacco smoking, and
the risk of RA increases with the intensity of smoking (18–20).
Lower socioeconomic status and less education pose a higher risk
of developing the disease (21) as well as experiencing a poorer
prognosis (22).

Comorbidities are widespread with RA and often contribute
to worse health outcomes (23, 24). Consistent with the complex,
systemic nature of RA, these comorbidities often also affect
many systems in the body. Among them are widely prevalent
chronic conditions such as cardiovascular disease (CVD) and
diabetes, which increase the risk of mortality in RA patients (25,
26). Likewise, hypertension and depression increase the risk

Abbreviations: FAMD, factor analysis of mixed data; HDI, highest density

interval; GA, genetic algorithm; SEC, socieconomic condition; IPR, income to

poverty ratio; MA, mexican-american; OH, other hispanic; ONH, other non-

hispanic; BP, systolic blood pressure; PHQ, patient health questionnaire.

of disability (26). Gout, another disease of joints, has been
found to have a higher association with RA (27). Additionally,
RA interferes with the antinociceptive pathway, resulting in
enhanced pain perception and leading to a greater risk of sleep
problems (28, 29). Several of RA’s comorbidities, such as obesity
and depression, demonstrate a bidirectional association with RA,
implying their presence elevates the risk of developing RA (30,
31). It is of great clinical interest for physicians and researchers
to study the concurrent presence of high Body Mass Index
(BMI), depression, and CVD in RA patients as it poses a unique
clinical repertoire and has significant consequences on affected
individuals. Therefore, careful consideration of comorbidities is
important for clinicians working in rheumatology care.

Studies have aimed to predict the occurrence of common
diseases like CVD to provide early diagnosis or risk assessment
using data mining, machine learning algorithms, and
mathematical modeling (32). While some studies have attempted
to predict RA using a similar approach (33, 34), these studies
were neither very selective in defining relevant factors for disease
prediction nor did consider their interactions. Karlson et. al. (35)
developed prediction models for RA from a combination of
clinical and genetic predictors. The models considered age, sex,
and smoking as clinical risk factors and studied eight human
leukocyte antigen (HLA) and 14 single nucleotide polymorphism
(SNP) alleles associated with seropositive RA as genetic risk
factors. Models considering either clinical risk factors alone
or both clinical and genetic risk factors were compared for
discrimination ability using the receiver operating characteristic
(ROC) curve. The models with clinical risk factors alone had
areas under the ROC curve (AUC) of 0.566-0.626, while models
considering both clinical and genetic risk factors had AUC of
0.660-0.752, indicating an improvement of discrimination ability
following the inclusion of genetic risk factors. Chibnik et. al. (36)
developed a weighted Genetic Risk Score (GRS) from 39 alleles
associated with an increased risk of RA. After controlling for
age and smoking, the authors used the Genetic Risk Score in
a logistic regression to discriminate between non-RA and four
phenotypes of RA in the NHS dataset. Their model predicted
seronegative, seropositive, erosive and seropositive, and erosive
RA with AUCs of 0.563, 0.654, 0.644, and 0.712, respectively.
Several other studies (37–40) have performed similar predictive
analyses using a combination of environmental and genetic risk
factors to create models with good discrimination abilities. The
best predictive model we are aware of (as measured by AUC)
was developed by Scott, et. al. (41). In this study, the authors
considered age, sex, and 25 human leukocyte antigens and 31
single nucleotide polymorphism alleles to develop a model
with an AUC of 0.857 (95% CI: 0.804–0.910), indicating high
discrimination ability.

While previous studies have demonstrated the feasibility of
predicting RA from environmental and genetic information,
patient genetic data are not readily available in a regular
healthcare set-up, thus limiting their practical applicability. In
this work, we aimed to develop a predictive model of RA using
information commonly available in peripheral health centers
or rural infrastructures, such as comorbidities, demographic,
socioeconomic, and behavioral factors that are known to
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FIGURE 1 | Study methods diagram.

associate with RA. We used Bayesian logistic regression to
build our model and considered up to third-order interaction
between the variables (Figure 1). Furthermore, to reduce the
computational need without compromising predictive accuracy,
we implemented FAMD and wrapper methods, which allowed
the selection of the most important variables for the model.

2. MATERIALS AND METHODS

2.1. Description of Data and Preprocessing
Subjects in this study were participants in the National Health
and Nutrition Examination Survey (NHANES)1, a biannual
survey designed to assess the health of the US population
administered by the Centers for Disease Control and Prevention.
NHANES offers freely accessible detailed health datasets on
a sample drawn from the US that is representative of
the national population. These datasets provide information
on demographic variables, socioeconomic condition, survey
questionnaires, and bio-specimen examinations. Participants are
deidentified and represented by a unique sequence number in
each dataset.

NHANES data cohorts from 2007 to 2016 were used in
this study, providing an initial dataset with 48,484 participants
(Figure 2). The survey protocol and data collection methods
for the data were approved by the National Center for Health
Statistics Research Ethics Review Board (protocol #2005-06 and
protocol #2011-17). The Institutional Review Board (IRB) at the
researchers’ institution does not require an IRB approval or an
exemption for the analysis of de-identified and publicly available
NHANES data. NHANES uses a multistage, probabilistic

1https://www.cdc.gov/nchs/nhanes/

sampling design to select participants and provides sample
weights for variables to obtain a more accurate estimate of the
nationally representative population. While the implementation
of sample weights for complex survey data is straightforward for
classical analysis, this is a challenging problem for a Bayesian
model and is still an active area of research (42, 43). In our
preliminary analysis with NHANES RA sample data, we did not
find any substantial changes in the distribution of variables after
sample weight adjustment and therefore we used the data in our
model without further accounting for the sample weights.

Information on demographics, medical conditions,
depression, body measures, blood pressure, diabetes, smoking
habits, and sleep were obtained from each release cycle, giving
a total of 11 variables. Data for gender, age, ethnicity, and
socioeconomic condition were obtained from the demographics
datasets. Socioeconomic condition was measured using the ratio
of a participant’s family’s income to their poverty threshold
(IPR). Participants 17 years old or younger were excluded
from the analysis to prevent confounding effects from juvenile
RA. Participants were divided into five categories according
to their reported ethnicity: Mexican-American (MA), other
Hispanic (OH), white, black, and other non-Hispanic (ONH).
The ethnicity variable was coded into four new dummy variables
using the white ethnicity as the reference category because it
contained the largest number of participants. Self-reported
diagnoses of RA and gout were obtained from the medical
questionnaire dataset. Depression was measured using the
nine-question Patient Health Questionnaire (PHQ) (44). Scores
on each of the nine questions were manually summed to create
a quasi-continuous variable for measuring depression. BMI for
each participant was obtained from the body measures dataset
as a continuous measurement of obesity. Systolic blood pressure
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FIGURE 2 | Selection of study population.

(BP) was calculated from the average of four readings in the
blood pressure dataset. Self-reported diagnosis of diabetes were
used in this analysis. Borderline diabetes was not considered as
diabetes. Participants were included in the smoking category if
they indicated smoking of at least 100 cigarettes in their life on
the smoking questionnaire. Nightly hours of sleep were recorded
in 1-h increments with a maximum of 12 to accommodate for
variations in NHANES data collection between 2007–2014 and
2015–2016.

Participants who responded “don’t know,” refused to respond,
or had missing data for any variable were excluded from
this study, retaining 17,366 participants who fulfilled the
selection criteria (Figure 2). We created second- and third-order
interactions between the independent variables by multiplying
the initial variables together (except for sequence number and
RA). Interactions created by squaring binary variables and
multiplying mutually exclusive binary variables were removed
from the dataset. New variables that represent an interaction
between two or three initial variables are termed “interacted”
variables. Quantitative variables were centered and scaled to have
means of zero and standard deviations of one. This dataset was
further divided into training, validation, and test datasets by
randomly distributing to a 50–25–25% split for use in model
building and validation.

2.2. Factor Analysis of Mixed Data
The added interacted variables are highly-correlated, posing
a problem for regression analysis. Using factor analysis of
mixed data (FAMD) (45) new uncorrelated synthetic variables
were created, and data projected onto them. FAMD effectively
performs principal component analysis (PCA) on quantitative
variables and multiple correspondence analysis on qualitative
variables. PCA takes in observations of correlated variables and
constructs a change of coordinates such that the synthetic output
variables are decorrelated. Similarly, multiple correspondence
analysis takes in observations of nominal categorical variables
and returns a set of decorrelated synthetic variables that represent
the underlying structures in the original data. In both cases,
the physical interpretability of the created variables is sacrificed

to obtain favorable statistical properties, allowing efficient
representation of data by a small set of uncorrelated variables.

In FAMD, a new synthetic variable v is created by maximizing
the criterion

∑

k∈K1

r2(k, v)+
∑

q∈K2

η2(q, v), (1)

where K1 are qualitative variables, K2 are continuous variables, r
2

is Pearson’s correlation statistic, and η2 is the effect size measure
from analysis of variance model (46). A complete disjunctive
coding was performed on all qualitative variables. This created a
pair of indicator variables corresponding to each state of every
categorical variable in the dataset, all of which were already
boolean variables. This process creates K2 indicator variables that
are only used in FAMD. The original categorical variables were
kept as supplementary variables in the dataset (variables that are
not used for calculating the synthetic variables but are projected
onto them for interpretation), while all remaining quantitative
and indicator variables are active variables (used for calculating
the synthetic variables).

A decorrelated set of synthetic variables maximizing
(Equation 1) can be computed using the singular value
decomposition (SVD) of the data matrix M, whose columns
correspond variables and rows to observations, that is to the
values of those variables for participants. SVD was performed
on all active variables, amounting to calculating matrices
M = U6V

⊤, used to project the data onto orthogonal axes
(synthetic variables). U is an orthogonal matrix used to calculate
the projections of the participants onto the synthetic variables.
V was used to find the projections of the active variables on
the new synthetic variables. The projections of categorical
variables onto the synthetic variables are determined from
their indicator variables. 6 is a diagonal matrix containing the
singular values, which are in turn square-roots of variance they
explain in the dataset so that 62 is the (diagonal) covariance
matrix of the synthetic (decorrelated) variables. Synthetic
variables corresponding to variances less than one were omitted
to maintain low intercorrelation after the validation and test
datasets were projected onto them. Due to the properties of SVD,
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discarding low-variance synthetic variables is known to be the
optimal approach, in the sense of Equation (1), to construction of
reduced-order representation of the data. FAMD was performed
using the package FactoMineR (47) in R 3.6.0.

2.3. Statistical Analysis
Bayesian logistic regression was used to predict RA in this
study (48). A Bayesian approach was preferred over standard
logistic regression because the former provides full posterior
information as opposed to point-estimates by the later, and
also allows one to incorporate prior information. The model
being linear has also an advantage over the common supervised
learning algorithms such as random forest by allowing an easier
interpretation of predictor effects, important for this study.

Bayesian regression summarizes model coefficients and
predictions with probability distributions. The results are
frequently reported using the highest density interval (HDI),
which is the smallest interval corresponding to a certain
probability of the posterior distribution. Here 50% and 99%HDIs
were included in the interval plots of the posterior distributions.
Variables are ranked in the interval plots based on the posterior
probabilities that their coefficients are greater or less than one
(when transformed from log-odds to odds scale). If a coefficient’s
median is greater than one, the probability that it is greater
than one is calculated, Pr(β > 1 | y). However, if a coefficient’s
median is less than one, the probability that it is less than one
is used, Pr(β < 1 | y). Ties between coefficients with equal
probabilities of being greater or less than one are broken using
the absolute values of themedians of their posterior distributions.
A Bayesian approach also allows us to specify prior information
about model coefficients using a probability distribution (the
prior distribution).

The posterior distribution for Bayesian logistic regression up
to a normalizing factor is given by

p( Eβ|y1, . . . , yN ,X) ∝ p( Eβ)

N
∏

i=1

p(yi| Eβ ,X), (2)

where p( Eβ) is the prior and p(yi| Eβ ,X) the likelihood for each data
point. The model uses a total of K predictors, combined using
coefficients Eβ = (βk)

K
k=1

, and the added intercept term β0. The
data set X contains data points Xi,k, where i indexes up to a total
ofN participants and k the predictors. Binary variables yi indicate
whether the i-th participant has RA (if so, yi = 1, otherwise
yi = 0). Because we are performing Bayesian logistic regression,
the distribution p(yi| Eβ ,X) is the Bernoulli distribution

p(yi| Eβ ,X) =

{

p yi = 1

1− p yi = 0
, (3)

where

p = F

(

β0 +

K
∑

k=1

βkXi,k

)

(4)

is calculated using the standard logistic function F(x) := [1 +

exp(−x)]−1. Each of the coefficients β0,β1, . . . is assigned a

uniform prior, weighing all possible values equally. Although
uniform densities supported on the entire real line are improper,
i.e., they cannot have densities that integrate to one, such a choice
of the prior still leads to a valid posterior and is standard in
Bayesian analysis.

We implemented Bayesian logistic regression using Stan
in R 3.6.0 through the package RStan (49), which uses
Hamiltonian Monte Carlo to sample the posterior distribution
described by Equation (2). Markov chains were required to
have potential scale reduction factors below 1.1 to indicate
approximate convergence, imposing a stringent convergence
requirement (50).

2.4. Predictive Performance and Feature
Selection
A wrapper approach to feature selection was implemented in
this study to identify the optimal subset of synthetic variables
to predict RA. Feature selection is necessary to identify the
most relevant predictors from a larger set, and such operation
also improves the precision of estimated effects of the selected
predictors. A wrapper approach (as opposed to a filter or
embedded approach) uses the predictive performance of subsets
of synthetic variables to identify the optimal subset. The
predictive performance of the regression models in the genetic
algorithm (GA, described below) was determined using the
area under the receiver operating characteristic curve. Binormal
smoothing of the ROC curve is implemented for its robustness in
obtaining an unbiased estimate of themodel’s true discrimination
ability (51). This assumes that the distributions of the predicted
probabilities of response for the positive and negative cases
can be described by a pair of normal distributions, y1 and y0,
respectively:

y1 ∼ N(µ1, σ 2
1 ), y0 ∼ N(µ0, σ 2

0 ).

In this study, the binormally smoothed AUC is calculated using
two parameters:

a =
µ1 − µ0

σ1
and b =

σ0

σ1
.

The AUC is calculated as

AUC = 8

(

a
√
1+ b2

)

, (5)

where8 is the standard normal cumulative distribution function.
Estimates for a and b are obtained by linear regression to
the equation

8−1(TPR) = a+ b8−1(FPR), (6)

where TPR and FPR represent the true positive and false positive
rates across all thresholds of classification.

A radial sweep is used to generate confidence bands for the
ROC curve to provide optimal coverage (52). Equation (6) is
transformed to polar coordinates with center (FPR = 1, TPR =

0) in ROC space. r is calculated for values of θ in increments of
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0.01 from zero to π /2. Confidence intervals (CIs) for the AUC
and for values of r are found from 10,000 bootstrapped samples
of the predicted probabilities used to generate the ROC curve.

We used a GA in this study to implement a wrapper approach
to feature selection. The GA performs an optimization to find
the best subset of synthetic variables for predictive performance
according to the AUC Equation (5). The GA was parameterized
to have a population size of 500 and run for 200 generations. The
GA was seeded with variable subsets always containing the first
seven synthetic variables and randomly containing the remaining
45 synthetic variables. All computation for the GAwas performed
using a server from the Clarkson Open Source Institute at
ClarksonUniversity with two Intel Xeon E5-2650 processors with
192 gigabytes of usable physical memory. Running the GA on this
server took approximately 2 weeks.

Rank selection was used to determine which variable subsets
would be selected for genetic transformation to create the next
population. The probability that a subset x will be selected is
given by

p(x) =
1

n

(

min+(max−min)
rank(x)

n− 1

)

, (7)

where n is the size of the population. min represents the expected
number of times the subset with the poorest predictive ability is
selected, while max represents the same for the subset with the
best predictive ability, with the constraint that min+max = 2
is imposed (53). rank(x) gives the rank of the variable subset
within the population such that the best subset has rank n.
In this study, we set min = 0.7 and max = 1.3 to allow
for substantial generational improvement while maintaining
sufficient exploration of the search space.

Each variable subset had a probability of 0.8 to be selected
for single-point crossover, which was used for its simplicity and
performance in GAs (54). Each subset was also subject to a 0.1
probability of being randomlymutated. Elitismwas implemented
using 5% of the population to maintain high-quality solutions
throughout the GA’s search. The optimal subset was tested on a
holdout set of data to assess for overfitting.

2.5. Coefficient Reconstruction
HDIs for the coefficients of the original variables are obtained
from the posterior distributions of the optimal subset of synthetic
variables. The optimal feature subset of size n was fit to the
data using eight Markov chains each with 400 samples of
the posterior distribution, creating a 3200-row by n-column
matrix A of the probability distributions of the coefficients for
synthetic variables in the logistic regression model. Columns
corresponding to synthetic variables that were omitted were set
to zero in A. Probability distributions for the coefficients of the
interacted variables B are calculated from V according to the
equation below.

B = AV
T (8)

Estimates for the binary variables in the interacted dataset were
obtained from the difference between the estimates for their
indicator variables.

3. RESULTS

3.1. Variable Selection
Selection of risk factor variables to incorporate in our model
for RA prediction was guided by their reported association
with RA and data availability in the NHANES database.
Although a large number of risk factors are reported to be
associated with RA, in the present study we selected only a
few well-known factors to better understand the contribution
of their individual and interaction effects. These variables
include disease comorbidities (diabetes, depression, high BMI,
hypertension, and gout), demographic factors (gender and
ethnicity), socioeconomic factors (IPR), and behavioral factors
(smoking and sleep hours) (Figure 3). Other RA risk factors such
as asthma or EBV infection were not included in the present
analysis even though data for these variables are available in
the NHANES database (15, 55). Consistent with the literature,
the NHANES dataset demonstrated an association of these
risk factors with RA (see Figure 3 and Table 1), although the
extent of the difference varied. For example, RA was found
to be less common among males (41.4% of RA subjects) but
the gender disparity was substantially smaller than reported
by previous studies (Figure 3A) (5). This difference could
be attributed to the survey-based diagnosis of RA, the data
preprocessing procedure, and the inherent design of NHANES
(see Supplementary Table 1). Subjects with RA were also more
likely to suffer from diabetes, gout, high BMI, depression
(measured by PHQ score), and high BP (Figures 3A,C). Risk of
RA was found to increase with age, and it was more common
among black ethnicity (56) but substantially less prevalent among
the ONH population (Figures 3B,C). Behavioral factors such as
smoking were observed more among RA subjects, while sleep
has a less conspicuous impact even though it was reported
previously (29). Interestingly, subjects with RA were found
have a lower IPR, suggesting an association of RA with lower
economic status.

A total of 11 risk factors were considered in our study,
which generated 14 first-order variables including 4 binary
variables obtained from dummy coding ethnicity, using the
white population as the reference category. For model building
and validation, the dataset was further divided into training,
validation, and test categories (Table 2). The distribution of
the variables were found to be nearly equivalent across each
category, indicating an even split after data preprocessing. A
slightly greater variation among the three datasets was observed
for the RA group, which could be attributed to a substantially
smaller number of individuals in this group than the control
no arthritis group. In order to analyze second- and third-order
interactions, we created 475 interaction variables from the 14
first-order variables, leading to a total of 489 variables.

3.2. Predictive Performance
To build our model, we first excluded the highly correlated
variables from the total set of variables containing higher-
order interactions. Since our data contained both categorical
and continuous variables, we implemented FAMD to identify
the correlated variables. A total of 52 synthetic variables with
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FIGURE 3 | Distribution of various RA risk factors in the study population. (A) Comparison between RA and no arthritis population for risk factors coded as binary

variables. (B) Prevalence of RA among various ethnicity. (C) Comparison between RA and no arthritis population for risk factors coded as continuous variables. Units:

Age, years; BMI, kg/m2; PHQ, PHQ score; Sleep, hours; IPR, nondimensional; Systolic, mmHg. MA, Mexican-American; OH, Other Hispanic.

variances greater than one were obtained by FAMD that
represented 92.3% of the variation in the training data. Table 3
summarizes these synthetic variables according to the percentage
of variance explained by each of them. A feature selection
from these synthetic variables was further performed by a
wrapper approach using GA. An optimal subset containing 33

of these synthetic variables was identified that provides the
greatest discrimination ability. Figure 4A shows the progression
of the GA’s search to find the subset of synthetic variables that
best predicts RA. 33 of the 52 total synthetic variables were
selected through this process, which was able to predict RA
with a smoothed AUC of 0.826 with 95% CI of 0.801–0.850
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TABLE 1 | Summary characteristics of demographics and risk factors for RA and

no arthritis (None) group in the study population.

Total participants (n = 17, 366)

Prop. RA None

Male 473 (41.4%) 8,523 (52.5%)

Female 670 (58.6%) 7,700 (47.5%)

Gout 122 (10.7%) 406 (2.50%)

Diabetic 308 (26.9%) 1,480 (9.12%)

Smoked 643 (56.3%) 6,769 (41.7%)

MA 157 (13.7%) 2,652 (16.3%)

OH 120 (10.5%) 1,720 (10.6%)

Black 339 (29.7%) 3,313 (20.4%)

White 476 (41.6%) 6,608 (40.7%)

ONH 51 (4.465%) 1,930 (11.9%)

x̄ (s)

Age 59.8 (13.3) 44.8 (16.8)

BMI 31.3 (7.76) 28.6 (6.62)

PHQ 5.04 (5.44) 2.81 (3.91)

Sleep 6.72 (1.75) 7.02 (1.42)

IPR 2.09 (1.49) 2.53 (1.64)

BP 129 (19.8) 122 (17.5)

Counts and percentages are shown for discrete variables; sample means and standard

deviations are shown for continuous variables. Units: Age, years; BMI, kg/m2; PHQ, PHQ

score; Sleep, hours; IPR, unitless; Systolic, mmHg. MA, Mexican-American; OH, Other

Hispanic; ONH, Other Non-Hispanic.

(Figure 4B). The potential scale reduction factors (̂R) and
estimated coefficients from the final regression model for these
selected synthetic variables are shown in Table 3. For variables
omitted through the feature selection process, the medians for
posterior distributions of coefficients (β) were set to one and do
not havêR values (Table 3). This subset of variables was also used
on the test dataset to obtain a smoothed AUC of 0.805 (95%
CI: 0.781–0.829), indicating high accuracy on external data and
that the model was not overfitting to the training dataset during
regression or the validation dataset during feature selection.

Interestingly, we find that even the first-order variables
alone are highly predictive, with an AUC of 0.823, and that
higher-order interactions yield only a small improvement of
AUC to 0.826. Furthermore, our approach can generate a
predictive accuracy higher than most previous works reported
even when using a small set of first-order variables (see
Supplementary Table 2) (35–37). For example, considering age
and smoking alone can generate a model with an AUC of 0.748,
and including sex further increased the AUC to 0.772. While
these findings suggest the potential of model building from first-
order variables alone, future studies are required to identify
the set of variables that maximizes the predictive accuracy of
the model.

3.3. Risk Factor Interactions
The subset of synthetic variables returned by the GA is not easily
interpretable on its own. Each synthetic variable represents a
latent variable that is a linear combination of the total pool of
489 variables. The posterior distribution of the synthetic variables

TABLE 2 | Breakdown of participants into training, validation, and test datasets with comparison of summary characteristics between RA and no arthritis (None) groups in

each dataset.

Prop. Training (n = 8,683) Validation (n = 4,342) Test (n = 4,341)

All RA None All RA None All RA None

Male 0.523 0.436 0.529 0.513 0.353 0.524 0.523 0.434 0.529

Gout 0.030 0.103 0.024 0.033 0.112 0.028 0.027 0.100 0.022

Diabetic 0.106 0.270 0.095 0.099 0.283 0.087 0.098 0.244 0.088

Smoked 0.428 0.555 0.419 0.419 0.543 0.410 0.435 0.595 0.424

MA 0.163 0.128 0.166 0.157 0.152 0.157 0.163 0.129 0.166

OH 0.105 0.097 0.106 0.114 0.123 0.114 0.102 0.111 0.101

Black 0.208 0.305 0.201 0.216 0.309 0.210 0.205 0.269 0.200

White 0.410 0.427 0.408 0.402 0.368 0.404 0.412 0.448 0.409

ONH 0.114 0.043 0.119 0.111 0.048 0.115 0.118 0.043 0.124

x̄ (s)

Age 45.6 (16.9) 59.9 (13.3) 44.6 (16.6) 45.9 (17.1) 59.5 (13.4) 45.0 (16.9) 45.8 (17.1) 59.6 (13.2) 44.8 (16.9)

BMI 28.7 (6.65) 31.4 (7.49) 28.5 (6.54) 28.9 (6.81) 31.6 (7.75) 28.7 (6.70) 28.6 (6.59) 30.6 (7.91) 28.4 (6.47)

PHQ 2.89 (4.03) 4.80 (5.45) 2.76 (3.88) 3.01 (4.16) 5.37 (5.69) 2.84 (3.98) 3.03 (4.02) 5.11 (5.18) 2.88 (3.88)

Sleep 7.01 (1.44) 6.83 (1.68) 7.02 (1.42) 7.02 (1.47) 6.79 (1.76) 7.03 (1.45) 7.01 (1.44) 6.46 (1.81) 7.05 (1.40)

IPR 2.50 (1.64) 2.13 (1.50) 2.53 (1.64) 2.50 (1.63) 2.05 (1.50) 2.54 (1.63) 2.51 (1.65) 2.11 (1.48) 2.54 (1.65)

BP 123 (17.9) 130 (19.9) 122 (17.6) 123 (18.0) 130 (20.6) 122 (17.7) 123 (18.3) 129 (19.7) 122 (18.1)

Proportions are shown for binary variables. Sample means and standard deviations are reported for continuous variables. Units: Age, years; BMI, kg/m2; PHQ, PHQ score; Sleep, hours;

IPR, unitless; Systolic, mmHg. MA, Mexican-American; OH, other Hispanic; ONH, other non-Hispanic.
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TABLE 3 | Percentage of variance explained, ̂R, and medians for posterior distributions of coefficients for synthetic variables (β) returned by FAMD.

Var % Exp ̂R β Var % Exp ̂R β Var % Exp ̂R β Var % Exp ̂R β

1 10.3 1.00 1.0963 14 1.60 1.00 0.9788 27 0.849 — 1 40 0.442 1.00 0.9086

2 7.30 1.00 1.0545 15 1.59 1.00 0.9239 28 0.821 — 1 41 0.433 — 1

3 6.65 1.00 0.9542 16 1.49 1.00 0.8932 29 0.802 1.00 1.1096 42 0.419 — 1

4 6.49 1.00 0.9640 17 1.24 — 1 30 0.740 1.00 1.0633 43 0.387 — 1

5 6.17 1.00 0.9967 18 1.21 1.00 0.9688 31 0.658 1.00 1.0092 44 0.367 — 1

6 5.96 1.00 0.9963 19 1.18 1.00 0.9598 32 0.630 1.00 0.9839 45 0.343 — 1

7 5.19 1.00 0.9836 20 1.15 1.00 1.0240 33 0.590 1.00 0.9812 46 0.336 — 1

8 4.26 1.00 1.0169 21 1.07 — 1 34 0.552 — 1 47 0.304 1.00 0.9828

9 3.31 1.00 0.8923 22 1.04 — 1 35 0.537 1.00 0.9777 48 0.281 — 1

10 2.91 1.00 1.0987 23 1.02 — 1 36 0.493 1.00 1.0614 49 0.277 1.00 0.9798

11 2.61 1.00 0.9484 24 0.931 — 1 37 0.491 — 1 50 0.262 1.00 1.0314

12 1.83 1.00 1.0846 25 0.903 1.00 1.0062 38 0.470 1.00 0.9688 51 0.248 1.00 0.8923

13 1.61 1.00 1.0362 26 0.872 — 1 39 0.466 — 1 52 0.230 — 1

Synthetic variables omitted through feature selection have β set to one and do not have ̂R values.

FIGURE 4 | Performance of genetic algorithm (GA) for feature selection. (A) Convergence of GA on an optimal subset of synthetic variables with maximum, mean,

and median fitness values in each generation of the search. (B) ROC curves and confidence bands of optimal model predicting on validation datasets (confidence

region shaded blue) and test datasets (confidence region shaded green). Dashed line represents the ROC curve of a model with no predictive ability, corresponding to

an AUC of 0.5.

obtained through this process was used to construct HDIs for
each of the 489 variables using Equation (8). Furthermore, to
allow intuitive comparison across variable types and effect orders,
the coefficient estimates were computed for the standardized
versions of the variables (Figure 5). Thus, the variables withHDIs
further away from 1.0 are more significant predictors of RA,
while a narrower interval indicates a greater certainty about how
a specific variable affects RA. The analysis aims to identify the
effects of first-order variables and the influence of any second-
and third-order interactions as illustrated in Figure 5A.

The prediction of RA in the test dataset by the first-order
variables overall aligns well with the association of these variables
to RA observed in Figure 3. Age, BMI, depression (PHQ score),

diabetes, gout, and smoking are found to be positive predictors,
while male gender and financial wellness (IPR) reduce the risk
of having RA (Figure 5B). A clear influence of ethnicity is also
observed: Risk of RA is higher among black population and lower
among Mexican-American population when compared against
white. Interestingly, sleep emerged as a strong negative predictor
(the most influential first-order variable after age), even though
an association of RA and sleep was not clearly observed in the
data. In contrast, systolic BP played no effect on RA prediction
as a first-order variable (HDI roughly symmetric about one),
although RA subjects had a higher mean systolic BP than the
control population. The key first order effects are summarized in
Table 4 and RA probabilities against the amplitude of variables
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FIGURE 5 | (A) A schematic illustrating the interaction analysis between four risk factors. Size of vertices, thickness of edges, and color of faces denote the size of

first-, second-, and third-order effects, respectively. (B–D) Posterior distributions of standardized coefficients for selected variables. HDIs for (B) all first-order variables,

(C) most influential second-order, and (D) third-order variables (inner bounds, 50% HDIs; outer bounds, 99% HDIs). Horizontal scale represents the odds multipliers

for risk of RA for one standard deviation increase in value of the variables. MA, Mexican-American; OH, Other Hispanic; ONH, Other Non-Hispanic.
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TABLE 4 | Summary of key findings for (A) first-order, (B) second-order, and (C)

third-order variables.

(A) Risk factor ˆβ Comments

Age 1.0533–1.0765 • Aging increases risk for RA

• Most influential first-order effect

Sleep 0.9526–0.9768 • More sleep decreases risk of RA

BMI 1.0088–1.0308 • Higher BMI increases risk of RA

• Weaker first-order effect

BP 0.9856–1.0153 • No direct effect on risk of RA

ONH 0.9785–1.0032 • No direct effect on risk of RA

(B) Risk factor ˆβ Comments

Age2 1.0527–1.0752 • Effect of increased age on RA risk is

greater at older ages

Age·BMI 1.0535–1.0770 • Age and BMI have the strongest

second-order interaction

Male·ONH 0.9171–0.9793 • Being male and ONH ethnicity

markedly reduces risk for RA

Age·BP 1.0421–1.0592 • Interaction of age and BP increases

risk of RA

BP·Sleep 0.9585–0.9824 • Higher BP further lowers RA risk

afforded by sleep

(C) Risk factor ˆβ Comments

Age2·BMI 1.0562–1.0787 • Strong third-order interaction

between age and BMI

Age3 1.0511–1.0735 • Effect of increased age on RA risk is

greater at older ages

Age2·BP 1.0459–1.0645 • Third-order interaction between age

and high BP increases RA risk

Age·BMI·BP 1.0454–1.0621 • High BP further increases RA risk

from aging and high BMI

Male·ONH·Sleep 0.9319–0.9816 • Sleep adds to lowering RA risk

afforded by being male and ONH

Ninety-nine percent HDIs are shown for estimated regression coefficients on the odds

scale.

are shown by marginal effects plots for a few representative
variables in Supplementary Figure 2.

Apart from the effects of individual first-order variables,
we were interested to identify any influence of higher-order
interactions in RA prediction. Figure 5C enumerates the 14
most influential second-order variables observed in our study.
Age turns out to not only be the strongest first-order predictor
variable but also to have prominent second-order interactions
with several other variables, including BMI, BP, depression, sleep,
and smoking. The strongest second-order interaction effect was
found between age and BMI (median: 1.0648, 99% HDI: 1.0535–
1.0770), which is comparable to the influence of age (1.0642,
1.0533–1.0757) or three times the influence of BMI (1.0196,
1.0088–1.0306), considered individually (Table 4). Interestingly,
the second-order effect of age (1.0636, 1.0527–1.0752) is similar
in magnitude to its first-order effect, suggesting that the effect
of age on RA risk increases with age. We also observed several

second-order interactions to reduce the risk of RA. For example,
the combination of ONH ethnicity with male gender strongly
reduces the risk of having RA (0.9485, 0.9156–0.9797), even
though ONH does not have a significant influence in lowering
RA risk and male gender has a less prominent effect. This finding
suggest the second-order interaction with male gender could
underlie low RA prevalence observed among ONH ethnicity
(Figure 3B). Sleep demonstrates an interesting interaction effect
on RA. While increased sleep hours was found to lower the
risk of RA, its second-order effect with age increased the risk
significantly, suggesting an altered role of sleep on the body’s
immune system with aging.

Ourmodel was also able to reveal the existence of strong third-
order interactions. Figure 5D lists 14 most prominent third-
order interactions where we find the frequent appearance of a few
variables, with age and BMI being most common. Other factors
involved in strong third-order interactions are gender, ONH
ethnicity, sleep, depression, and BP. Similar to the second-order
interactions, these third-order interactions are seen to either
increase or decrease the risk of RA (Figure 5D and Table 4). In
particular, for interactions posing high risk, we often observe
age and BMI, either as a third-order variant of the interaction
between these variables, or in combination with a third variable
such as BP, sleep, or depression. By contrast, the coexistence of
ONH ethnicity with male gender in a third-order interaction
prominently reduces the risk of RA when associated with sleep,
BMI, BP, or IPR as the third variable. Thus, variables such
as sleep or BP, when involved in third-order interactions, can
both increase or decrease the risk of RA, suggesting a complex
interplay of underlying physiological mechanisms.

3.3.1. Range of Interactions: Age vs. BMI
The finding of several prominent second- and third-order
interactions in our model further motivated us to investigate
the range of interactions for an individual risk factor. In this
direction, we focused on comparing age and BMI, two variables
that demonstrated the strongest higher-order interaction
(Figure 6). Our analysis shows that these two variables have
very different interaction profiles. Age demonstrates strong
second-order interactions with multiple comorbidities (BMI, BP,
and depression), sleep, and smoking, all of which increase the
risk of RA (Figure 6A). In contrast, second-order interaction
effects to BMI are moderate to weak (except with age) and,
depending on the interacting variable, increases or decreases the
RA risk (Figure 6B). The third-order interactions for age and
BMI follow a similar pattern as observed in the second-order
interactions, except the combination of male and ONH ethnicity
reduces RA risk (Figures 6C,D). We hypothesize that general
changes in body physiology accompanied with aging cause
other risk factors to have a greater impact on RA, resulting in
these interaction effects. In contrast, high BMI potentially elicits
specific influence in the pathophysiology of interacting risk
factors, increasing or decreasing the magnitude of the effects.
Together, these results confirm that the interactions of a risk
factor with other risk factors are highly specific in nature and are
dependent on the variables considered.
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FIGURE 6 | Higher-order interactions of age and BMI. (A,B) Posterior distribution of standardized coefficients for all second-order interactions of age (A) and BMI (B).

(C,D) Posterior distribution of standardized coefficients for a selection of 40 third-order interactions involving age (C) and BMI (D). Inner bounds and outer bounds

represent 50% HDIs and 99% HDIs, respectively. MA, Mexican-American; OH, Other Hispanic; ONH, Other Non-Hispanic. Horizontal scale shows odds multipliers for

risk of RA for a one standard deviation increase in value of variable.

3.3.2. Influence Through Interactions: BP and ONH

Ethnicity
Finally, we wanted to explore the higher-order interactions for
risk factors that did not show a significant first-order effect.

Among all first-order effects, only BP and ONH category had
99% HDIs that contained one (Figure 5B). Identifying the most
influential second-order interactions for BP or ONH category
reveals that 12 out of the top 13 involve BP (Figure 7A). The
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FIGURE 7 | Posterior distributions of most relevant interactions that include either BP or ONH ethnicity as one risk factor. (A) 13 most influential second-order

interactions and (B) 30 most influential third-order interactions are shown. Inner bounds represent 50% HDIs and outer bounds represent 99% HDIs. Standardized

coefficient estimates are shown. MA, Mexican-American; OH, Other Hispanic; ONH, Other Non-Hispanic. Horizontal scale shows odds multipliers for risk of RA for a

one standard deviation increase in value of variable.

only interaction involving ONH category included in this list (it
was also the strongest interaction) is with male gender, strongly
lowering the risk for RA. In contrast, the posterior distribution of
the interactions of BP indicate that the risk could both increase
or decrease depending on the specific interaction. For example,

the risk can increase from interaction with age, depression, and
BMI, while sleep and male gender reduce the risk. Interestingly,
we found the interaction effects of BP with individual risk
factors to be similar to their first-order effects. Thus, high BP
is expected to enhance the effect of an interaction between risk
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factors on RA risk. The third-order interactions corroborate well
to the second-order interactions with BP occupying 29 of the
top 30 interactions (Figure 7B). The effect follows the pattern
demonstrated by the interaction between the other two factors.
While hypertension is generally considered as a comorbidity of
RA, there is a lack of consensus on the true association between
RA and hypertension (57). Our finding that BP does not have a
significant first-order effect but has prominent interaction effects
with coexisting conditions, offers a potential explanation for the
varying results reported in the literature.

4. DISCUSSION

In this work, we have developed a Bayesian regression model
to characterize the risk of RA from common comorbidities,
demographic, socioeconomic, and behavioral factors that are
known to associate with RA. Apart from providing high
predictive accuracy, our model is able to capture the effects
of individual variables as well as the important higher-order
interactions between them. Consistent with previous literature,
known RA risk factors such as depression, high BMI, and
smoking are also found to be predictors of RA in our model.
Additionally, our model shows that age is not only a key
predictor for RA, but also has strong interaction effects with
several other variables; prominent among them are BMI, BP,
depression, and smoking. Interestingly, some variables such as
ONH ethnicity have weak influence as a single-order variable,
but their combination with certain other variables (male gender
in case of ONH ethnicity) could elicit a prominent higher-order
interaction. The knowledge of these strong interactions will help
to determine if a person is at a higher or lower risk of RA when
both conditions coexist.

One of our primary objectives in this study was to
identify and elucidate the effects of important higher-order
interactions between risk factors in the prediction of RA. The
main challenge in performing such a study comes from the
exponential increase in the number of synthetic variables as
more higher-order interactions are considered, correspondingly
increasing the computational cost. This limitation led us to
restrict our study to a maximum of third-order interactions.
Our implementation of FAMD further reduced the number
of predictor variables analyzed during regression, substantially
lowering the requirement for computation. FAMD also allowed
the consideration of both categorical and continuous risk factor
variables in the model.

In our model, we used feature selection to select an optimal
subset of synthetic variables. This step was introduced to not
only improve the model’s predictive ability but also to obtain
a greater precision in determining the effect of risk factors
on RA. When studying the manifold interactions between
these risk factors, increased precision from feature selection
helps to address increases in posterior variances resulting from
dramatic increases in the number of variables being analyzed (see
Supplementary Figure 1). We implemented a wrapper method
for feature selection. However, there are alternative approaches,
the most common being filter methods (58). Filter methods

employ a ranking system to determine the most relevant
variables before any prediction is performed (59), some examples
of which include the Pearson correlation coefficient, Fisher
score, and mutual information (58). Filter-based approaches
generally perform faster than wrapper methods since they do
not require the predictive model to be run simultaneously.
However, because of this, they do not necessarily return the
optimal subset of features for prediction (59). Additionally, some
filter methods are prone to selecting redundant features (59),
while wrapper methods find the optimal subset based on their
performance in the predictive model and do not encounter
this issue. Thus, employing a wrapper approach for feature
selection allowed us to determine the most important subset
of synthetic variables for prediction, and subsequently enabled
more precise estimates of the effects of interactions between risk
factors on RA. One downside of wrapper methods is that they
are generallymore computationally expensive than filtermethods
and implementation of techniques based on exhaustive searches
can become computationally infeasible for large datasets (59).
To overcome this limitation, we implement a wrapper approach
using a GA, a type of evolutionary algorithm, and is capable of
providing high-quality solutions with reasonable computational
effort (60).

Although GA is a robust method for problems involving
subset-selection over a large search space, there are alternatives,
most notably the Least Absolute Shrinkage And Selection
Operator (LASSO) method (61). The presented approach can be
interpreted as a heuristic direct search for the best-fit solution
using the minimum number of non-zero regression coefficients
(“best subset selection”), or an ℓ0-regularized optimization
problem. The LASSO amounts to the relaxation to the best-fit
solution with aminimum absolute-sum of regression coefficients,
or an ℓ1-regularized optimization problem.While the discussions
about the trade-offs between true best-subset and relaxed best-
subset (LASSO) methods are available in the literature [see (62)
for an exhaustive list of references], a comparison on this specific
problem should be performed in future studies.

Our rationale for using a Bayesian logistic regression model
along with feature selection through GA is to achieve a balance
between computational efficiency and information obtained. The
use of Bayesian inference provides the advantage of getting
full posterior information. When compared with decision-tree-
based prediction models such as classification and regression
trees (CART), logistic regression model allows for a better
interpretation of the effects of the individual predictor variables.
It also offers a substantial computational advantage when there
are a large number of predictors as in the present work.

Existing RA models primarily use genetic, environmental,
and behavioral risk factors as predictors (35–37, 41). Karlson
et al. reported a logistic regression model that uses a weighted
GRS representing the aggregated effects of HLAs and SNPs
associated with RA, age, sex, and smoking to predict RA that
achieved an AUC of 0.660–0.752, depending on the dataset
used (35). Subsequent works using the same model framework
but including updated or additional predictor variables such
as GRS incorporating newly validated RA risk alleles, exposure
to silica, alcohol intake, education, parity, and some of the
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major interactions between predictors exhibited a similar
classification performance (36, 37). A different model using
genetic risk factors and smoking data, and determining risk
through computer simulation and confidence interval based
risk categorization achieved a higher discrimination ability of
seropositive RA from control with AUC of 0.837–0.857, although
the model is evaluated for male gender alone (41). Although
genetic risk factors are demonstrated to be important in RA
prediction in these models, our model does not include them
considering the potential applicability in peripheral and rural
health infrastructures where such advanced genotyping will
unlikely be available for patients. Instead, common comorbidities
and demographic variables, such as ethnicity, were incorporated
in our model as predictors. The promise of our model in
predicting RA is demonstrated by a high predictive accuracy
in comparison to previous studies, especially when only a
smaller subset of first-order variables are considered (see
Supplementary Table 2). We speculate that a conflation of RA
with other forms of arthritis in NHANES datasets could prevent
our model achieving substantially higher predictive abilities after
incorporation of higher-order effects. This conflation potentially
results from self-reported diagnosis of RA and other arthritis
in NHANES, and is reflected by a higher proportion of RA in
the population than expected from the existing literature (5)
(Supplementary Table 1).

Our results suggest that our model could achieve high
predictive accuracy from the first-order variables alone when
an appropriate set of risk factors are selected. While model
predictive performance might not improve significantly by
incorporating higher-order interactions in such a scenario,
identifying the strong interactions could provide important
clinical insight. Furthermore, in situations where health
resources are highly constrained with severely limited data
availability, higher-order interactions could play a significant
role in achieving a sufficient degree of predictive accuracy. Our
model could also be applicable to predict other chronic diseases
that multiple, potentially interacting, factors are known to be
associated with.

Even though NHANES provides a rich dataset of risk
factors associated with RA, one limitation of the study comes
from the self-reported nature of RA diagnosis, which tend to
inflate the numbers through false positive diagnosis of other
form of arthritis (63). Although a meta-analyses inferred that
self-reported diagnosis is sufficiently accurate for large-scale
epidemiological studies (64), the model could be made more
robust by future validation and optimization with patient data
where more rigorous criteria for RA diagnosis, such as the one
provided by the American College of Rheumatology, is used (65).
The ability to implement sample weights in the model could
also marginally improve the model performance. The second
limitation comes from the cross-sectional nature of the NHANES
data, where the old and new RA cases cannot be discriminated.
Furthermore, the comorbidities, socioeconomic and behavioral
risk factors coexisted with RA in this data, and thus it could
not be temporally resolved whether RA appeared before or

after the manifestation of these risk factors. This restricts
our model’s prediction results on the NHANES dataset to be
better interpreted as correlation rather than causation, essentially
identifying risk factors and risk interactions associated with
RA. We expect the model accuracy to improve along with the
ability to infer a causal relationship by training with longitudinal
data where the diagnosis of RA can be studied against a
population with existing risk factors. Furthermore, Bayesian
logistic regression model assumes a simple linear relationship
between the predictors and the log-odds of having RA, however,
the relationship could be more complex in reality. Although
consideration of higher order interactions partially addresses this
limitation, a better understanding of the relationship between
risk factors and RA could help to construct a more accurate
model in the future.

In summary, we have developed a model to predict
RA from comorbidities, demographic, socioeconomic, and
behavioral risk factors. The model demonstrated a high
predictive accuracy in comparison with other models reported
in the literature. Moreover, our model was able to identify
important second- and third-order interactions between the
risk factors, which may have important clinical relevance
and stimulate further research to understand the mechanisms
underlying such interactions. Since the model prediction utilizes
patient information commonly available in a regular healthcare
set-up, it has the future potential for translation to the
clinical setting.
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Background:The shift in disease patterns has been connected with increased body

weight burden, becoming a major public health concern in South Africa, as previous

studies have assessed overweight or obesity among certain populations. However, little is

known about bodyweight burden (underweight, overweight, and obesity) among women

aged 15–49 years. Therefore, this study was conducted to identify the prevalence and

its associated socio-demographic correlates of bodyweight categories among women

of reproductive age in South Africa.

Methods: The present study used the South Africa Demographic Health Survey (2016

SADHS) data for 2016. A total of 3,263 women of reproductive age were included in

the analysis. Both bivariable and multivariable logistics regressions were performed to

determine the prevalence and socio-demographic correlates of bodyweight categories

among women in South Africa. Thus, this study used the criteria of the WHO standard

body mass index (BMI) cut-offs to classify bodyweight categories. The odds ratios (ORs)

with 95% CIs were estimated for potential determinants included in the final model.

Results: The overall prevalence of body weight burden was 66.5%, with 4.9%

underweight, 27.1% overweight, and 34.5% obese (p < 0.05). The identified factors

associated with underweight among women of reproductive age were those from “other”

population group [adjusted odds ratio (AOR) 2.65: 95% CI 1.40–5.00], rural residence

(AOR 1.23: 95% CI 0.75–2.02), and Northern Cape Province (AOR 1.58: 95% CI

0.65–3.87). For overweight/obese, the main factors were those aged 45–49 years (AOR

10.73: 95% CI 7.41–15.52), tertiary education (AOR 1.41: 95% CI 0.97–2.03), and

residing in Eastern Cape (AOR 1.27: 95% CI 0.82–1.99) and KwaZulu-Natal Provinces

(AOR 1.20: 95% CI 0.78–1.84).

Conclusion: The findings presented in this study indicate the concurrence of

underweight and overweight/obese among women aged 15–49 years in South Africa.

Despite underweight prevalence being on the decline, yet overweight/obese is increasing

over time. The health implication of body weight burden needs rapid and effective
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interventions, focusing on factors such as rural, education, population group, older age

45–49 years, and Provinces (Northern Cape, Eastern Cape, and KwaZulu-Natal) – the

high-risk groups identified herein are of most importance to curb the growing burden

among South African women of reproductive age.

Keywords: body weight categories, nutrition transition, prevalence, South Africa, socio-demographic, women of

reproductive age

BACKGROUND

The population dynamics of the rapid and major demographic
transitions associated with socio-economic development and
accompanied by an epidemiological transition have emerged in
industrialised countries and across sub-Saharan African (SSA)
countries. The emergence of demographic and epidemiological
transitions has led to a decrease in widely known acute
infectious diseases and a rising prevalence of non-communicable
diseases (NCDs) and chronic degenerative diseases (1, 2).
This increased burden of disease and the double burden of
malnutrition (undernutrition and over-nutrition) in low-income
countries have become a public health concern, which has
received attention from both health and non-health experts.With
increased knowledge of demographic changes and their impact
on the nutrition of the general population, the shift in disease
patterns towards diet- or nutrition-related NCDs has been linked
with behavioural/lifestyles changes, diets, and environmental
exposure. In effect, it has continued to cause a gradual shift in
the age pattern of NCD mortality among younger persons (<60
years old) more than those in older age cohorts (>60 years old)
(3, 4). However, the reasons for these increasing trends of the age
pattern of NCDs are not completely understood.

Several studies have indicated a high prevalence of over-
nutrition, which has increased by more than 33.0% (5, 6),
contributing to a rapid rise in the NCD burdens in Africa
(2, 7). The yearly contributions of each of the major NCD-
related deaths include cardiovascular diseases account for 17
million deaths, cancers account for 7.6 million deaths, respiratory
diseases account for 4.2 million deaths, and diabetes accounts
for 1.3 million deaths (8). Other largely known risk factors
shared by these four diseases include tobacco use, physical
inactivity, harmful use of alcohol, and an unhealthy diet (9, 10).
The occurrence of overweight and obesity has steadily been
stated to have intensified, albeit with variation, in developed and
developing countries across homogeneous and heterogeneous
populations due to a prevalent “obesogenic” environment (11,
12). The contributing factors of obesity need to be better
understood as the aetiology of obesity is complex (13, 14),
despite the fact that globalisation and urbanisation are two
of the key drivers of the malnutrition endemic in South

Abbreviations: AIDS, Acquired Immunodeficiency Syndrome; AOR, Adjusted

odds ratio; BMI, Body Mass Index; CI, confidence interval; DHS, Demographic

Health Survey; DUs, Dwelling units; HIV, Human Immunodeficiency Virus; NHIS,

National Health Insurance Scheme; NCDs, Non-communicable Diseases; OR,

Odds ratio; PSUs, Primary sampling units; SDG, Sustainable Development Goal;

SES, Socio-economic status; SSA, sub-Saharan Africa; UOR, Unadjusted odds

ratio; WHO, World Health Organisation.

Africa. In addition, to the physiological anatomy of individuals
(15), there are behavioural/lifestyle determinants (16) along
with economic (17) and environmental/socio-cultural factors
(18). Thus, these factors either directly or indirectly have an
influence on overweight and obesity progression among women
in South Africa.

Since 1940, South Africa has been undergoing a nutrition
transition, with an increase in the contribution of fats and
a decrease in carbohydrates and fibre intake towards energy
consumption (13, 14). Thus, nutrition transition was found to
be faster among the black racial groups than the white and
Indian/Asian racial groups (19, 20) and in urban rather than
rural populations (21), driving an upsurge in obesity in the black
population. Pertaining to provinces, for instance, Eastern Cape is
the third largest province and the second poorest in South Africa,
where 50% of households in the rural districts are food insecure
(22). However, studies on the incidence of overweight and obesity
in these rural areas are scarcely documented.

Replicating consistent research outcomes of socio-
demographic and behavioural/lifestyles risk factors by body
weight in developed nations, these and other studies have created
indication of a connexion of body mass index (BMI) with gender
and with behavioural risk factors: higher BMI among women
than men, alcohol ingestion (positive relationship), tobacco use
(negative relationship), physical exercise (higher level of physical
body exercise associated with lower BMI), and place of residence
(urban vs. rural living, with the former associated with higher
values of BMI). Considering the observed trends in the BMI,
distributions of risk factors (such as increasing urbanisation and
average socioeconomic status, stable but high alcohol intake,
reduction in tobacco smoking, and decrease physical body
exercise) in the population have not been given full attention
in non-medical studies (16, 23); yet there is an indication that
BMI is connected with factors such socioeconomic status, which
is also comparatively proven in demographic and population
studies. However, unlike what has been observed in developed
countries, there exists an assumption that observed variations
in BMI and the prevalence of obesity in South Africa are
at least partly driven by changes in the distribution of the
above-mentioned risk factors.

Notably, these determinants appear to be remarkably different
across culture, age, gender, and social class (24). In addition, there
are gaps in knowledge regarding socio-cultural determinants of
underweight and overweight/obesity, in particular, at the national
level (13, 14). Thus, this study set out to explore the prevalence
and socio-demographic correlates of the bodyweight of women
in South Africa. Moreover, being underweight or overweight
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is likely to lead to adverse health outcomes throughout life
(25), such as the increased risk of maternal disease and adverse
pregnancy outcomes (26). The upsurge in the prevalence of
obesity at its 2010 level and the worldwide NCD target of halting
obesity by the year 2025 have been driven mostly by health
concerns and the economic burden of an increasing BMI (27, 28).
In addition, there is a realisation from the previous studies that
there are scarce analyses on the trends of underweight (23),
particularly for the male populations. Disparities in the levels
of underweight and obesity across African regions, for example,
in Southern African countries comprising Botswana, Namibia,
South Africa, and Swaziland (now Eswatini), the obesity index
is highest (13, 21, 29–32). In the year 2008, South Africa was
rated with the highest BMI, with amedian score at the population
level approximated at 26.9 kg/m2 among males (in contrast to a
world average of 23.8 kg/m2), and 29.5 kg/m2 among females (in
contrast to a world average of 24.1 kg/m2), respectively.

It is important for respective nations to identify their
predictable prevalence and changes in body weight (underweight,
overweight, and obese) so that this can be used as a basis
by governmental stakeholders to improve and enforce suitable
intervention policies. At the moment, South Africa does not
have ample evidence on the prevalence and its associated socio-
demographic correlates of bodyweight categories (underweight,
normal, overweight, and obese) among women of reproductive
age. Consequently, the research questions under investigation
in the current study are: what is the prevalence of each
bodyweight category and what are the associated socio-
demographic correlates of body weight of women of reproductive
age? To avert a further health burden of unhealthy bodyweight
categories in the general population of South Africa, it is
important that the prevalence, change over time, and communal
factors that are quantifiable and responsive to intervention
should be identified. We utilised nationally representative data
collected using similar methods and techniques to determine the
prevalence and correlates of bodyweight categories associated
with socio-demographic factors among women of reproductive
age in South Africa. This study will, therefore, add valuable
information in describing the prevalence of body weight
associated with socio-demographic factors to identify immediate
and effective interventions for South African women with
problems of body weight.

METHODS

Data Source
This study utilised the data from the third round of the South
Africa Demographic and Health Survey, conducted in 2016
(2016 SADHS). The 2016 SADHS is a nationally representative
sample survey of 15,292 households; 8,514 eligible women in
the age range 15–49 years were interviewed with a response
rate of 86% (32). The primary objective of this survey was
to provide updated and reliable information on marriage and
sexual activity, fertility, fertility preferences, contraception, infant
and child mortality, maternal healthcare, child health, nutrition
of children, HIV/AIDS-related knowledge and behaviour, HIV
prevalence, adult and pregnancy-related mortality, use of health

services and prescribed medications, adult morbidity, adult
nutrition, tobacco, alcohol, and codeine use among adults,
women’s empowerment, and domestic violence. A stratified two-
stage design was utilised in sample selection comprising 750
primary sampling units (PSUs); 468 in urban, 224 in rural, and
58 from farm areas, from a list provided by Statistics South Africa
(Stats SA). In stage one, PSUs were selected using probability
proportional to PSU size. In stage two, 220 residential dwelling
units (DUs) from each PSU were selected with an equal chance
of systematic selection from the household listing. The sampling
frame used for the 2016 SADHS was the 2011 South African
Population and Housing Census. The 2016 SADHS covered age
groups of 15–49 years, i.e., those of reproductive age, which
made it possible to identify the prevalence of the outcome and
explanatory variables associated with weight status. Since the
data used in the survey represent only the participants sampled,
the data were weighted to make it nationally representative of
the participants aged 15–49 years. A comprehensive report of
the sampling techniques is provided in the national report of
2016 SADHS (32). This study is based on 5,251 women of
reproductive age (15–49 years) who had at least one live birth
in the past 5 years preceding the survey. However, 1,988 women
who did not respond to BMI questions and who were pregnant
at the time of the survey were excluded from the analysis, and a
total of 3,263 women were included in the final analysis.

Description of the Measurement of BMI
and Its Classification
During the 2016 SADHS, field workers used the portable
height/length board in measuring height in centimetres, which
was later converted to metres, with restrictions to 1.0–2.7m (32).
Weights weremeasured using Seca 213 portable stadiometers and
formed the boundary of 20–350 kg as advocated by the WHO
(33, 34). Using these boundaries, 1.1% of the respondents were
in exception in 2016. BMI is calculated with the metric system
as follows:

BMI =
Person′s weight (kg),

Person′sheight (m)2

(where kg is kilogrammes and m is metres).
Note that height is commonly measured in centimetres (cm),

and height (cm) is divided by 100 to obtain height in metres (m).
With the WHO recommendations, the standard weight status
categories associated with BMI ranges for adult men and women
are the same for all body types and ages. Thus, epidemiological
studies have shown substantial risk in people with very high
BMI, for instance, severe (≥35 kg/m2) or morbid (≥40 kg/m2)
obesity (10).

Outcome Variables
The outcome variable for this study was BMI, which
was dichotomized as underweight and overweight/obese,
respectively. In view of this, binary outcomes with two possible
values were constructed as the dependent variable for this study
based on underweight vs. normal weight and overweight/obese
vs. normal weight, respectively, based on the WHO standard
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BMI cut-offs (33, 34). Thus, women who were underweight
or overweight/obese were coded “1,” and those with normal
weight were coded “0.” This categorisation was done to ensure
large sample sizes for analyses and to obtain more robust binary
logistic regression estimates (35–37). Women with BMI < 18.5
kg/m2 were described as underweight, while those with BMI of
18.5–24.9 kg/m2 were described as having normal body weight,
those with BMI of ≥25 kg/m2 were overweight, and those with
BMI ≥ 30 kg/m2 were obese.

Explanatory Variables
The selected socio-demographic predictor factors incorporated
in the analysis are age (15–19, 20–24, 25–29, 30–34, 35–
39, 40–44, and 45–49), marital status (never married and
ever married), population group (African/Black and other),
educational level (not educated and educated), place of residence
(urban and rural), work status (not employed and employed),
provinces (Western Cape, Eastern Cape, Northern Cape, Free
State, KwaZulu-Natal, North West, Gauteng, Mpumalanga, and
Limpopo), and wealth quintile (lowest, middle, and highest).
However, the household wealth quintile is a substitute for
household economic status and was assessed from possession
of household assets, such as consumer items and dwelling
characteristics. A score was created for each individual using
principal component analysis and classified into five quintiles
as Lowest (Poorest), Second (Poorer), Third (Middle), Fourth
(Rich), and Highest (Richest) (32).

Statistical Analysis
The data were weighted using sample weights, and the weighted
data were used to study the characteristics of the respondents,
adjusted for the degree of differences of odds of selection, as
the sample design involves more than one stage of selection.
This further ensured that data were representative of the
target population; in this case, women aged 15–49 years old.
To identify the prevalence and socio-demographic correlates
of body weight, statistical analyses were carried out at the
univariate, bivariate, and multivariate levels. At the univariate
level, frequencies and percentages were used to describe the
study population and bar graphs was used to describe the
prevalence of body weight categories among women (aged 15–
49 years). The bivariate analyses were carried out to examine
the nature of the association between body weights by selected
socio-demographic characteristics. Also at the multivariate level,
binary logistic regressions were employed to assess the socio-
demographic determinants of body weight of women. The binary
regression was calculated as the exponential function of the
regression coefficient (eb1) as the measure of the odds ratios
(ORs) associated with the outcome and explanatory variables.
The findings from the regression analysis were presented as
an unadjusted odds ratio (UOR) and adjusted odds ratio
(AOR), using 95%CIs and sample covariates (socio-demographic
factors) were used to estimate the outcomes. All analyses
performed were carried out using STATA version 12.1 (StataCorp
LP, College Station, TX, USA).

Ethical Statement
The current analysis is based on the use of secondary datasets
from the 2016 SADHS. The 2016 SADHS was conducted under
the scientific and administrative supervision of Stats SA, in
partnership with the South African Medical Research Council
(SAMRC), which conducted the 2016 SADHS, at the request of
the National Department of Health (NDoH). Stat SA performed
an independent Ethics review of the 2016 SADHS protocol. The
data collection procedures were also monitored and approved by
the ICF Macro DHS programme team, Calverton, MA, USA. All
individuals selected in the SADHS were provided with informed
voluntary and written consent. Approval of the individual was
sought, and only then was the interview conducted. The survey
data collection took place from June 27, 2016 to November 4,
2016. The SADHS dataset is in the public domain and accessible
upon a request granted from the Demography Health Survey
(DHS) programme (http://www.measuredhs.com).

RESULTS

Socio-Demographic Characteristics of
Study Respondents
Table 1 depicts the socio-demographic characteristics of the
respondents. The majority of women were in the age cohorts
of 15–29 years (50.6%), and 62.2% were never married. More
than two-thirds of the women were African/Black, and most of
the respondents had secondary education (78%). The majority
of women were residing in urban areas, belonged to the
unemployed category (70%), the lowest wealth quintile (43.2%),
and were from the KwaZulu-Natal province of the country.

Percentage Prevalence of Bodyweight
Categories Among Women Aged 15–49
Years
Figure 1 illustrates the four body weight categories of nutrition
among women of reproductive age in South Africa. The bar chart
reveals that a majority of the women aged 15–49 years were obese
(34.5%) followed by those in the normal body weight category
(34.3%) in South Africa (Figure 1).

Table 2 presents the Chi-square results of the body weight by
socio-demographic of women aged 15–49 years in South Africa.
Socio-demographic factors such as age, marital status, population
group, education, work status, and province have significant
relationships with underweight. The prevalence of underweight is
4.1%, and overall, underweight is more prevalent among women
who are never married (5.7%). The proportion of underweight
women among Black/African is lower than the other population
groups (7.4%), and 4.3% of women with secondary education are
underweight compared with women with no education/primary,
and higher educational level (Table 2). Rural women (4.4%) are
more likely to be underweight than their urban counterparts
(3.9%). There is a significant association among women who are
not employed. About 4.6% of women who are underweight are
in the middle wealth quintile, and among women residing in
Northern Cape Province, 8.8% are underweight (Table 2).
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TABLE 1 | Socio-demographic characteristics of the weighted samples of women

aged 15–49 years old in South Africa, 2016.

Variables % n

Age

15–19 17.3 563

20–24 16.3 532

25–29 17.0 554

30–34 14.3 467

35–39 12.7 415

40–44 11.5 375

45–49 10.9 357

Marital status

Never married 62.2 2,030

Ever married 37.8 1,233

Population group

African/Black 89.2 2,911

Other 10.8 352

Educational level

No education and primary 13.1 427

Secondary 77.9 2,542

Higher 9.0 294

Residence

Urban 53.5 1,747

Rural 46.5 1,516

Work status

Not employed 69.9 2,281

Employed 30.1 982

Wealth quintile

Lowest 43.2 1,411

Middle 24.5 800

Highest 32.2 1,052

Provinces

Western Cape 5.1 166

Eastern Cape 13.0 425

Northern Cape 9.1 297

Free State 10.4 338

KwaZulu-Natal 15.9 520

North West 10.6 346

Gauteng 9.2 299

Mpumalanga 13.3 434

Limpopo 13.4 438

Total, n 100.0 3,263

South Africa Demographic Health Survey (SADHS) (32).

In addition, Table 2 presents the Chi-square results of
overweight/obese by socio-demographics of women in South
Africa. The bivariate analysis shows that age, marital status,
education, place of residence, work status, and wealth quintile
have a significant association with overweight/obese. From the
table, the findings revealed that women aged 45–49 years were
found to be more overweight/obese (83.5%) than other age
cohorts; while 75% of those ever married were found to be
overweight/obese, while 61.8% were overweight/obese among

Black/African population group. Furthermore, 69.7% of women
with higher education were overweight/obese. For women living
in urban areas, 63.3% of them were overweight/obese, and
75.1% of the employed women were overweight/obese. Women
in the highest wealth quintile were more overweight/obese,
and women residing in Western Cape were found to be more
overweight/obese (66.9%; Table 2).

Table 3 presents multivariate logistic regressions of the UOR
and AOR on underweight and overweight/obese and their socio-
demographic factors in reference to normal weight among
women aged 15–49 years. Thus, compared with women aged 15–
19 years, women within the age cohort of 20–24 years were 0.46
times less likely to be underweight. Women in the age cohort of
20–24 years were 2.76 times more likely to be overweight/obese
compared to women who were 15–19 years old. Adjusting for
other variables used in this study, the findings indicated that
women who were 40–44 years old were 0.1 times less likely
to be underweight compared to their counterparts who are
in the age cohort of 15–19 years. The 40–44-year-old women
were found to be 6.79 times more likely to be overweight/obese
compared with those aged 15–19 years. In addition, the odds
of being overweight/obese were significantly 12.83 and 10.73
times higher among women aged 45–49 years in the unadjusted
and adjusted analyses (Table 3). Marital status has a definite
positive influence on body weight, as marital status is associated
with underweight and overweight/obesity in both unadjusted
and adjusted analyses. These findings revealed that ever-married
women were 0.27 times less likely to be underweight compared to
never-married women.When controlling for other variables used
in the study, the findings revealed that ever-married women were
0.39 times less likely to be underweight, compared with never-
married women. Similarly, ever-married women were found to
be 2.62 times more likely to be overweight/obese compared to
never-married women.

The adjusted analysis showed that ever-married women were
1.55 times more likely to be overweight/obese compared with
never-married women (Table 3). Similarly, women who belong
to the “other” population group were 2.05 times more likely to
be underweight compared with Black/African women. Adjusting
for other variables used in the study, women in the “other”
population group were 2.56 times more likely to be underweight
compared with the Black/African population group. With
regards to overweight/obese, women in the “other” population
group were 0.94 times less likely to be overweight/obese
compared with women in the Black/African population group
(Table 3). The unadjusted logistic regression analysis showed
that women from the “other” population group were 0.59 times
less likely to be overweight/obese compared with women in the
Black/African population group. Further, there is a significant
relationship between education and overweight/obesity, as
women with higher education were 1.54 times more likely to be
overweight/obese compared with women with no education or
primary education. Women with secondary education were 1.61
times more likely to be overweight/obese compared to women
with no education or primary education.

Conversely, rural women were found to be 0.86 times
less likely to be overweight/obese compared to their urban
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FIGURE 1 | Percentage prevalence of bodyweight categories among women aged 15–49 years who had at least one live birth in the past 5 years preceding the

survey in South Africa, 2016.

counterparts, Employed women were 0.41 times less likely to be
underweight compared to unemployed women in the unadjusted
analysis (Table 3). This further indicated that employed women
were 2.38 times more likely to be overweight/obese in the
unadjusted analysis, and after adjusting for covariates, women
who were employed were 1.33 times more likely to be
overweight/obese compared to unemployed women (Table 3). As
regards the wealth quintile, women in the middle and highest
wealth quintiles were 1.38 and 1.60 times more likely to be
overweight/obese, respectively. The adjusted regression analysis
shows that women in the middle and rich wealth quintile
were 1.48 and 1.80 times more likely to be overweight/obese,
respectively. Furthermore, the province shows a statistical
relationship with overweight/obesity in the unadjusted analysis.
The findings show that women who reside in Northern Cape
were more likely to be underweight compared to other provinces
(UOR 2.18; 95% CI 0.92–5.14; AOR 1.58: 95% CI 0.65–3.87).
Women residing in the Eastern Cape (AOR 1.27: 95% CI 0.82–
1.99) and KwaZulu-Natal Provinces (AOR 1.20: 95% CI 0.78–
1.84) were likely to be associated with overweight/obese body
weight (Table 3).

DISCUSSION

In spite of several national and international efforts to
improve the nutritional status of women of reproductive
age, a substantial proportion of women are still plagued
with underweight and overweight/obesity in South Africa.
However, notable progress has been witnessed in the health
delivery system along with the provision of the National
Health Insurance Scheme (NHIS). South Africa needs to
improve health awareness and public sensitisation about the
health concerns of underweight and overweight/obesity to
achieve the core targets of Sustainable Development Goal
(SDG) 3.4 for the reduction of premature deaths from NCDs.
The 2016 South Africa key indicator report revealed that
the prevalence of overweight (27%) and obesity (41%) were
highest among women in South Africa (32). This study
established synchronicity of a 2-fold burden of underweight
and overweight/obesity among women of reproductive age in
South Africa, even though the prevalence of underweight was
declining, yet overweight/obesity increased significantly in the
period under study.
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TABLE 2 | Chi-square associations of body weight by socio-demographic factors among weighted samples of women aged 15–49 years in South Africa, 2016.

Socio-demographic factors 2016

Underweight Overweight and obese

No Yes p-value No Yes p-value

Age 0.000 0.000

15–19 506 (89.9) 57 (10.1) 404 (71.8) 159 (28.2)

20–24 506 (95.1) 26 (4.9) 255 (47.9) 277 (52.1)

25–29 536 (96.7) 18 (3.3) 210 (37.9) 344 (62.1)

30–34 455 (97.4) 12 (2.6) 134 (28.7) 333 (71.3)

35–39 401 (96.6) 24 (3.7) 104 (25.1) 311 (74.9)

40–44 371 (98.9) 4 (1.1) 87 (23.2) 288 (76.8)

45–49 353 (98.9) 4 (1.1) 59 (16.5) 298 (83.5)

Marital status 0.000 0.000

Never married 1,915 (94.3) 115 (5.7) 945 (46.6) 1,085 (53.4)

Ever married 1,213 (98.4) 20 (1.6) 308 (25.0) 925 (75.0)

Population group 0.000 0.575

Black/African 2,802 (96.3) 109 (3.7) 1,113 (38.2) 1,798 (61.8)

Other 326 (92.6) 26 (7.4) 140 (39.8) 212 (60.2)

Educational level 0.000 0.010

No education and primary 411 (96.3) 16 (3.7) 171 (40.1) 256 (59.9)

Secondary 2,433 (95.7) 109 (4.3) 993 (39.1) 1,549 (60.9)

Higher 284 (96.6) 10 (3.4) 89 (30.3) 205 (69.7)

Residence 0.451 0.031

Urban 1,679 (96.1) 68 (3.9) 641 (36.7) 1,106 (63.3)

Rural 1,449 (95.6) 67 (4.4) 612 (40.4) 904 (59.6)

Work status 0.000 0.000

Not employed 2,167 (95.0) 114 (5.0) 1,008 (44.2) 1,273 (55.8)

Employed 961 (97.9) 21 (2.1) 245 (24.9) 737 (75.1)

Wealth quintile 0.444 0.000

Lowest 1.350 (95.7) 61 (4.3) 619 (43.9) 792 (56.1)

Middle 763 (95.4) 37 (4.6) 289 (36.1) 511 (63.9)

Highest 1,015 (96.5) 37 (3.5) 345 (32.8) 707 (67.2)

Provinces 0.000 0.116

Western Cape 159 (95.8) 7 (4.2) 55 (33.1) 111 (66.9)

Eastern Cape 416 (97.9) 9 (2.2) 145 (34.1) 280 (65.9)

Northern Cape 271 (91.2) 26 (8.8) 130 (43.8) 167 (56.2)

Free State 321 (95.0) 17 (5.0) 125 (37.0) 213 (63.0)

KwaZulu-Natal 510 (98.1) 10 (1.9) 193 (37.1) 327 (62.9)

North West 330 (95.4) 16 (4.6) 130 (37.6) 216 (62.4)

Gauteng 292 (97.7) 7 (2.3) 115 (38.5) 184 (61.5)

Mpumalanga 414 (95.4) 20 (4.6) 176 (40.6) 258 (59.4)

Limpopo 415 (94.7) 23 (5.3) 184 (42.0) 254 (58.0)

p < 0.001, p < 0.01, p< 0.05 is considered statistically significant (Chi-Square test).

The study also observed that the key socio-demographic
correlates of underweight were being aged 20–24 years, never
married, in the “other” population group, having secondary
education, rural, not employed, in the middle wealth quintile,
and residing in Northern Cape Province. Since the data represent
women of reproductive age (15–49 years) in South Africa, the
findings of the study can be generalised to the general population
in that age group. The study finding showed that there was a

low prevalence of underweight among rural women in South
Africa. This result correlates with other findings in sub-Saharan
Africa, where underweight prevalence has decreased significantly
(38–40). However, a few studies have reported the increased
prevalence of underweight in both rural and urban areas in
countries, such as Madagascar, Mali, and Senegal (41–43).
With regard to overweight/obesity, the main socio-demographic
correlates were increased, such as age (44–48), married, tertiary
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TABLE 3 | Odd Ratios for socio-demographic factors associated with underweight and overweight/obese among weighted samples of women aged 15–49 years who

had at least one live birth in the 5 years preceding the survey in South Africa, 2016.

Socio-demographic factors Underweight Overweight/obese

UOR (95% CI) AOR (95% CI) UOR (95% CI) AOR (95% CI)

Age

15–19 RC RC RC RC

20–24 0.46 (0.28–0.74)* 0.49 (0.30–0.82)* 2.76 (2.15–3.54)* 2.60 (2.01–3.36)*

25–29 0.30 (0.17–0.51)* 0.38 (0.211–068)* 4.16 (3.24–5.35)* 3.62 (2.77–4.73)*

30–34 0.23 (0.12–0.44)* 0.34 (0.17–0.69)* 6.31 (4.81–8.29)* 5.00 (3.71–6.73)*

35–39 0.31 (0.17–0.56)* 0.46 (0.24–0.89)* 7.60 (5.70–10.13)* 6.30 (4.60–8.62)*

40–44 0.10 (0.03–0.27)* 0.15 (0.05–0.43)* 8.41 (6.22–11.38)* 6.79 (4.86–9.49)*

45–49 0.10 (0.04–0.28)* 0.16 (0.05–0.47)* 12.83 (9.19–17.93)* 10.73 (7.41–15.52)*

Marital status

Never married RC RC RC RC

Ever married 0.27 (0.17–0.44)* 0.39 (0.23–0.68)* 2.62 (2.24–3.06)* 1.55 (1.28–1.86)*

Population group

Black/African RC RC RC RC

Other 2.05 (1.32–3.19)* 2.65 (1.40–5.00)* 0.94 (0.75–1.18)* 0.59 (0.43–0.80)*

Educational level

No education and primary RC RC RC RC

Secondary 1.15 (0.67–1.97) 0.76 (0.43–1.36) 1.04 (0.84–1.28) 1.61 (1.26–2.06)*

Higher 0.90 (0.40–2.02) 1.06 (0.43–2.59) 1.54 (1.12–2.11)* 1.41 (0.97–2.03)

Residence

Urban RC RC RC RC

Rural 1.14 (0.81–1.61) 1.23 (0.75–2.02) 0.86 (0.74–0.99)* 1.11 (0.90–1.36)

Work status

Not employed RC RC RC RC

Employed 0.41 (0.26–0.67)* 0.72 (0.43–1.22) 2.38 (2.02–2.81)* 1.33 (1.11–1.61)*

Wealth quintile

Lowest RC RC RC RC

Middle 1.07 (0.71–1.63) 0.94 (0.59–1.49) 1.38 (1.15–1.65)* 1.48 (1.20–1.82)*

Highest 0.81 (0.53–1.22) 0.66 (0.38–1.13) 1.60 (1.36–1.89)* 1.80 (1.43–2.26)*

Provinces

Western Cape RC RC RC RC

Eastern Cape 0.49 (0.18–1.34) 0.43 (0.14–1.28) 0.96 (0.65–1.40) 1.27 (0.82–1.99)

Northern Cape 2.18 (0.92–5.14) 1.58 (0.65–3.87) 0.64 (0.43–0.95)* 0.80 (0.52–1.23)

Free State 1.20 (0.49–2.96) 1.46 (0.54–3.93) 0.84 (0.57–1.25) 0.82 (0.52–1.29)

KwaZulu-Natal 0.45 (0.17–1.19) 0.35 (0.12–1.03) 0.84 (0.58–1.21) 1.20 (0.78–1.84)

North West 1.10 (0.44–2.73) 1.20 (0.44–3.32) 0.82 (0.56–1.22) 0.85 (0.54–1.34)

Gauteng 0.54 (0.19–1.58) 0.70 (0.22–2.18) 0.79 (0.53–1.18) 0.76 (0.48–1.20)

Mpumalanga 1.10 (0.46–2.64) 1.00 (0.37–2.71) 0.73 (0.50–1.06) 0.85 (0.55–1.33)

Limpopo 1.26 (0.53–2.99) 1.04 (0.38–2.86) 0.68 (0.47–0.99)* 0.85 (0.54–1.34)

*Significant p-values: p < 0.005; p < 0.001; p < 0.0001 95% Confidence intervals (CI); AOR, adjusted odds ratio; UOR, unadjusted odds ratio; RC, Reference Category; Adjustment

variables of the multivariable models are age, marital status, educational level, residence, work status, wealth quintile, and provinces.

education, rural, employed, high wealth quintile, and residence in
the Eastern Cape and KwaZulu-Natal provinces. These findings
are consistent with previous studies conducted (41–43).

The high prevalence of overweight/obesity among women
aged 15–49 years in South Africa showed differences when
compared to the prevalence trends found in studies conducted
in Asian countries, where the contrasting trend is observed.
Several Asian studies have demonstrated that adult females were

more likely to be underweight than overweight/obese (44, 49).
The trends of body weight categories in South Africa in 2016
indicated that the prevalence of underweight is decreasing over
the years while that of overweight/obesity is increasing. It has
been observed that nutrition transition, changes in lifestyles,
rapid urbanisation, increasing incomes, and consumption of
high-fat food coupled with lack of physical activity are the key
causes of the overweight/obesity epidemic in sub-Saharan Africa
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(31, 38), including South Africa (17, 43). For instance, a study
conducted in Botswana reported that about 82% of people eat
insufficient fruits and vegetables, 13% consume alcohol, 12% used
tobacco, and about 52% of the respondents reported engaging in
no or a low level of physical exercise (41, 42). In South Africa,
about 59% of adults have reported consumption of fruits and
vegetables while 49% reported that they consumed fruits only,
and about 39% consume an unhealthy diet, and 8% and 5%
engage in using tobacco products and risky drinking, respectively
(14, 45). These findings are similar to evidence from countries,
such as Nigeria (46), Ghana (47), Namibia (48), which are
countries with an increasing prevalence of overweight/ obesity
associated with poor lifestyles. These high prevalence rates of
modifiable unhealthy lifestyles can aid in understanding the
causes for increased rates of overweight/obesity in South Africa.

As in other parts of the world, it has been ascertained
that high blood pressure and diabetes were more predominant
among those who were overweight and obese in South Africa
(12, 43). Risk factors, such as alcohol, tobacco use, physical
inactivity, dietary intake, and sugary drinks, have been identified
as high risks for overweight/obesity among the South African
population; however, preventable behaviours could lead to its
reduction (43). The study findings also demonstrated that women
who are employed and are in the Black/African population
group demonstrated a higher prevalence of overweight/obesity
than women in the “other” population group, while women in
the “other” population group were more likely to be associated
with underweight than Black/Africans. These findings are similar
to several extant studies conducted in South Africa (14, 43).
Several scholars have shown a strong impact of socio-economic
status on overweight/obesity, predominantly in women, causing
disparities in their behaviours towards changes in their energy
intake and expenditure, which, as a result, affect their body
fat storage (50, 51). The racial disparity in overweight/obesity
prevalence remained largely proportional for each respective
educational level among Black/African women. The findings of
this study reported that Black/African women in South Africa
were more likely to be overweight/obese than women in the
“other” population group. These outcomes are comparable to
the study findings conducted in the United States of America,
which illustrated racial trends associated with a higher prevalence
of overweight/obesity among black women, such as African-
American women (19, 20, 52).

Similarly, existing evidence from previous studies shows that
South Africa has the highest proportion of people who were
overweight and obese among Coloured (26%) and Black/African
population groups (20%), with the majority being women (14,
35, 43). Hence, the advancement of social change, urbanisation,
and ageing could be the possible reasons for the key drivers
of the prevalence of overweight/obesity among Black/African
women in South Africa. Thus, one of the preventive measures in
reducing the health burden of overweight/obesity is by ensuring
a greater focus on political will and regulation of the way
in which products, such as sugar-sweetened drinks and other
items, tobacco, and alcohol, have to be scrutinised in South
Africa (14, 43). This study did not investigate the effects of
these products and items on body weight, although they are

generally believed to be linked with poor health outcomes.
This study has identified several socio-demographic correlates
of body weights of South African women of reproductive
age. The findings from the multivariate analysis of this
study have established that women were more likely to be
overweight/obese with increased age (45–49 years), married,
urban, with tertiary education, employed, in the highest wealth
quintile, Black/African, and resident in the Eastern Cape
and KwaZulu-Natal Provinces than underweight women. This
finding is consistent with other studies conducted in India (44)
and Nigeria (46).

A possible explanation for higher odds of women with higher
education and high wealth quintile being overweight/obese
might be due to lifestyles and dietary choices. Women with
higher education may not associate their lifestyles with affluence,
neglecting the health implication of overweight/obesity. In
addition, women in the highest wealth quintile may be less
physically active with better dietary choices, such as poor
consumption of fruits and vegetables, a higher intake of highly
caloric foods, and a poor routine of body exercise (40, 47). The
2016 SADHS report indicated that severe obesity increases with
increasing wealth quintile for women. The multivariate analyses
found out that rural women were more likely to be underweight
compared to urban women. Urban women have quite a lot
of advantages over their rural counterparts, such as higher
levels of educational knowledge, greater awareness, employment,
affluence, and easy access to health services, whereas rural women
are often deprived of social and economic prospects (13, 46,
53). However, rural-urban has no significant relationship with
body weight in the multivariate analysis. A study conducted in
Tanzania reported a similar finding (54).

Our findings highlight the potential impacts of nutrition
transition in rural areas as it requires urgent attention to
fight against poverty, inequality, unemployment, and lack
of basic social amenities. Our study has found that the
two provinces having the highest levels of overweight/obesity
were Eastern Cape, followed closely by KwaZulu-Natal, but
this was not significantly associated in the adjusted model
of overweight/obesity multivariate analyses. Contrary to the
findings from the 2016 SADHS (32) and the General Household
Survey (2016) (55), KwaZulu-Natal and Western Cape were the
two provinces that had the highest overweight/obesity status
(meanwhile, Western Cape was used in our study, as a reference
category in the multivariate analysis). Although the explanations
for these increasing trends are not completely understood, a
few studies have reported that trends in overweight/obesity are
not homogeneous across population strata, but they are defined
by biological, socio-economic, and behavioural factors (9, 56–
61). The identification of socio-economic and behavioural factors
has an immediate prospect from a public health perspective,
as these factors are potentially modifiable. In addition, the
identification of biological factors is also of public health
interest since this knowledge can help in targeting high-risk
population groups more effectively, especially in grassroots
communities, avoiding waste of resources associated with broad
interventions. The presence of socio-economic inequalities
in overweight/obesity prevalence is a well-established finding
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and has been previously confirmed among the South African
population (10, 62).

Limitations of the Study
Since this study is based on cross-sectional data, no causal
relationships can be deduced from this type of data. However,
the ORs were used to determine how different socio-
demographic factors are risk factors for either underweight
or overweight/obesity. One of the major limitations is that
some of the key modifiable factors associated with nutritional
transition were excluded from the analysis because the datasets
used did not cover behavioural subject themes, such as lifestyle
variables. This study is constrained to socio-demographic
factors and as such one cannot explain the behavioural
aspects of underweight and overweight/obesity. Women who
did not respond to BMI questions or who were pregnant
at the time of the survey were excluded. In addition, only
weighted datasets for women 15–49 years who had at least
one live birth in the 5 years preceding the survey were
included in this study analysis. Despite the above limitations,
the present study uses nationally representative data on
underweight and overweight/obesity in South Africa to present
generalizable findings.

CONCLUSION

The present study shows that the prevalences of underweight
and overweight/obesity were 4.1 and 61.6%, respectively, among
women in South Africa. However, the 2016 SADHS key
indicators revealed a prevalence of 3.0% for underweight
and 68.0% for overweight/obesity among women in South
Africa (32). Key socio-demographic factors connected with
underweight included women who reside in rural areas and
belong to “other” population groups, while the factors linked with
overweight/obesity were increasing age, Black/African, higher
educational attainment, and higher wealth quintile. Women who
were formally employed were less likely to be underweight.
Locally relevant policy and interventions should not only target
improvement in the socio-economic status of South African
women but should also focus on the education of women around
the benefits of regular physical activity and healthly dietary
choices. It is, therefore, important to take cognizance of those
direct interventions, which are designed to tackle the health
burden of underweight and overweight/obesity to alleviate health
problems associated with nutrition transition. Further research
is needed to unravel other factors accompanying underweight
and overweight/obesity, which were not enclosed in the existing
SADHS datasets. It is also crucial to explore the underlying
behavioural factors for underweight and overweight/obesity,

such as reasons for low dietary intake, excessive alcohol intake,
and tobacco use.
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Background: The impact of educational attainment (EA) on multiple urological and

reproductive health outcomes has been explored in observational studies. Here we

used Mendelian randomization (MR) to investigate whether EA has causal effects on

14 urological and reproductive health outcomes.

Methods: We obtained summary statistics for EA and 14 urological and reproductive

health outcomes from genome-wide association studies (GWAS). MR analyses were

applied to explore the potential causal association between EA and them. Inverse

variance weighted was the primary analytical method.

Results: Genetically predicted one standard deviation (SD) increase in EA was causally

associated with a higher risk of prostate cancer [odds ratio (OR) 1.14, 95% confidence

interval (CI) 1.05–1.25, P = 0.003] and a reduced risk of kidney stone (OR 0.73,

95% CI 0.62–0.87, P < 0.001) and cystitis (OR 0.76, 95% CI 0.67–0.86, P < 0.001)

after Bonferroni correction. EA was also suggestively correlated with a lower risk of

prostatitis (OR 0.76, 95% CI 0.59–0.98, P = 0.037) and incontinence (OR 0.64, 95% CI

0.47–0.87, P = 0.004). For the bioavailable testosterone levels and infertility, sex-specific

associations were observed, with genetically determined increased EA being related to

higher levels of testosterone in men (β 0.07, 95% CI 0.04–0.10, P < 0.001), lower levels

of testosterone in women (β −0.13, 95% CI−0.16 to−0.11, P < 0.001), and a lower

risk of infertility in women (OR 0.74, 95% CI 0.64–0.86, P <0.001) but was not related

to male infertility (OR 0.79, 95% CI 0.52–1.20, P = 0.269) after Bonferroni correction.

For bladder cancer, kidney cancer, testicular cancer, benign prostatic hyperplasia, and

erectile dysfunction, no causal effects were observed.

Conclusions: EA plays a vital role in urological diseases, especially in non-oncological

outcomes and reproductive health. These findings should be verified in further studies

when GWAS data are sufficient.

Keywords: educational attainment, Mendelian randomization, urology, reproductive health, oncology
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INTRODUCTION

It is well-established that educational attainment (EA) is an
essential social determinant of health (1). A prior study reported
that EA was correlated with many health outcomes, including
adiposity, diabetes, and coronary artery diseases (2), suggesting
the non-negligible role of EA in health.

In the field of urology and reproductive medicine, there
have also been some observational studies that investigated the
correlation between EA and health outcomes, namely, prostate
cancer (3, 4), bladder cancer (5), kidney cancer (6), testicular
cancer (7), kidney stone (8, 9), benign prostatic hyperplasia
(BPH) (10, 11), prostatitis, cystitis, incontinence (12, 13), erectile
dysfunction (ED) (14), male infertility (15), female infertility
(15–17), and testosterone levels among males and females (18),
showing that EA might play a vital role in urological and
reproductive health. However, there are few relevant studies,
and the results from prior studies were partially inconsistent.
Additionally, existing observational studies are vulnerable to
confounding factors and reverse causality.

Mendelian randomization (MR) is a genetic epidemiological
method that applies genetic variants, such as single nucleotide
polymorphisms (SNPs), to estimate the causal effect of an
exposure (e.g., EA) on an outcome (e.g., kidney stone).
Compared with conventional observational studies, this method
is less vulnerable to confounding factors and reverse causation
and has been widely used in current epidemiological studies (19).

Recently, a large-scale genome-wide association study
(GWAS) identified genetic variants associated with EA (20),
which provides high-quality genetic instruments for us to
estimate the causal effects of EA on health outcomes. The genetic
variants derived from this GWAS have already been used to
evaluate the causal effects of EA on osteoarthritis (21) and
diabetes (22).

As a result, in the current research, we used MR analysis
to determine the causal effect of EA on the 14 urological and
reproductive health outcomes mentioned above, to provide new
insights into the role of EA in these health outcomes.

MATERIALS AND METHODS

We performed the current MR study based on the Strengthening
the Reporting of Observational Studies in Epidemiology
(STROBE) guideline (Supplementary Table 1). The overall
study design of the current MR analysis is presented in
Supplementary Figure 1.

Instrumental Variables Selection
We used SNPs that were identified to be correlated with EA from
a GWAS performed by the Social Science Genetic Association
Consortium (20). This GWAS was a meta-analysis of 71 cohort-
level studies that enrolled 1,131,881 individuals of European
ancestry. Education attainment was measured as the number of
years of schooling that participants completed. Although there
are differences in education systems for EA between cohorts,
the International Standard Classification of Education system
was applied to match education qualifications across the cohorts.

Under the threshold of P < 5 × 10−8 and pairwise r2 < 0.1,
the GWAS identified 1,271 SNPs that are correlated with EA,
which explained 11–13% of the variance. Among the 1,271 SNPs,
the SNPs with potential linkage disequilibrium (pairwise r2 >

0.01), those not found in the GWAS outcome datasets, and those
that were palindromic with intermediate allele frequencies were
excluded. Since the quality of the instrumental variables was
essential for the MR study, we used the F statistics to evaluate
the strength of the instrumental variables. Although we did
not calculate the F statistics specifically in the current study,
a prior study that investigated the association between EA and
osteoarthritis using similar SNPs as our study reported a median
F statistics of 45 (21), suggesting that the instrument strength
was generally reliable. The SNP coefficients were per standard
deviation (SD) units of years of schooling (SD= 4.2 years).

GWAS Data Sources for 14 Urological and
Reproductive Outcomes
We extracted summary statistics for prostate cancer (79,148
cases and 61,106 controls) from the Prostate Cancer Association
Group to Investigate Cancer-Associated Alterations in the
Genome (PRACTICAL) Consortium (23). The genetic variants
for bioavailable testosterone levels were extracted from a gender-
specific GWAS performed in the UK Biobank (178,782 men
and 188,507 women) (24). The UK Biobank is a large-scale
biomedical database and has been widely used in the field of
health. Summary statistics for ED were obtained from another
GWAS with 6,175 cases and 217,630 controls in total (25). We
obtained the genetic variants for the remaining 10 outcomes,
including bladder cancer (1,115 cases and 174,006 controls),
kidney cancer (971 cases and 174,006 controls), testicular cancer
(199 cases and 74,685 controls), kidney stone (4,969 cases and
213,445 controls), BPH (13,118 cases and 72,799 controls),
prostatitis (1,859 cases and 72,799 controls), cystitis (8,081 cases
and 195,140 controls), incontinence (1,357 cases and 202,910
controls), male (680 cases and 72,799 controls), and female
(6,481 cases and 68,969 controls) infertility from the latest R5
release of the FinnGen project. The FinnGen project is an
ongoing project combining the genotype data and digital health
record data of Finnish individuals, which provides a high-quality
database for researchers to explore genetic variation in diseases.
Detailed information about the FinnGen project can be found
at their official site (26). A description of the 14 urological and
reproductive health outcomes, including data sources, sample
size, and definitions, is presented in Supplementary Table 2.

Statistical Analysis
Inverse variance weighted (IVW) was the primary analytical
method in our study, which could provide themost precise causal
estimates (27). Additionally, we performed several sensitivity
analyses to validate our findings, including MR-Egger, weighted
median, and weighted mode. MR-Egger is a method that can
provide estimates after the correction of pleiotropy (28). The
weighted median method could generate reliable estimates even
if up to 50% of weights come from invalid instruments (29).
The weighted mode has natural robustness to outlying variants
(30). We used the MR-Egger intercept to examine directional
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pleiotropy and Cochrane’sQ-test to estimate heterogeneity. Since
we included 14 urological and reproductive health outcomes,
the significance threshold was P < 0.0036 (0.05/14) after
Bonferroni correction. A P < 0.05, but above the threshold of
Bonferroni correction significance, was considered a suggestive
causal association. All the statistical analyses were conducted
using R software.

RESULTS

A flow diagram for eligible SNPs selection for each of 14
outcomes was presented in Figure 1.

For the four oncological diseases, the primary analysis using
IVW suggested that genetically predicted one SD increase in EA
was causally correlated with a higher risk of prostate cancer [odds
ratio (OR) 1.14, 95% confidence interval (CI) 1.05–1.25, P =

0.003], while no causal effect was observed for bladder cancer
(OR 0.85, 95% CI 0.62–1.18, P = 0.347), kidney cancer (OR
0.73, 95% CI 0.52–1.04, P = 0.080), and testicular cancer (OR
1.55, 95% CI 0.71–3.38, P = 0.270) (Figure 2). However, not all
the sensitivity analyses supported the causation between EA and
prostate cancer (Supplementary Table 3).

In terms of the five non-oncological diseases, the results from
IVW showed that genetically predicted one SD increase in EA
was correlated with a decreased risk of kidney stone (OR 0.73,
95% CI 0.62–0.87, P < 0.001) and cystitis (OR 0.76, 95% CI 0.67–
0.86, P < 0.001) after Bonferroni correction and suggestively
correlated with a lower risk of prostatitis (OR 0.76, 95% CI 0.59–
0.98, P = 0.037) and incontinence (OR 0.64, 95% CI 0.47–0.87,

P = 0.004) (Figure 2). Most of the sensitivity analyses supported
the causation between EA and them (Supplementary Table 3).
For BPH (OR 0.92, 95% CI 0.81–1.05, P = 0.233), no causal
relationship was found (Figure 2).

For the remaining five sexual and reproductive health
outcomes, we found that genetically predicted one SD increase
in EA was causally associated with a higher testosterone level
in men (β 0.07, 95% CI 0.04–0.10, P < 0.001) and a lower level
(β −0.13, 95% CI−0.16 to−0.11, P < 0.001) in women after
Bonferroni correction (Figure 3). For infertility, the results from
IVW estimates showed that genetically predicted one SD increase
in EA was correlated with a lower risk of infertility in females
(OR 0.74, 95% CI 0.64–0.86, P < 0.001), while no causal effect
was observed in males (OR 0.79, 95% CI 0.52–1.20, P = 0.269).
For ED (OR 1.00, 95% CI 0.86–1.15, P = 0.961), no causal
relationship was observed (Figure 2). The detailed results of our
MR study were presented in Supplementary Table 3.

DISCUSSION

In the current research, we investigated the causal effects of
EA on 14 urological and reproductive health outcomes. Our
findings suggested that genetically determined increased EA
was correlated with a higher prostate cancer risk and a lower
risk of kidney stone, prostatitis, cystitis, and incontinence.
For the bioavailable testosterone levels and infertility, sex-
specific associations were observed, with genetically determined
increased EA being related to higher levels of testosterone in men
and lower levels of testosterone in women, and correlated with a

FIGURE 1 | Flow diagram for eligible SNPs selection for each of the 14 outcomes. SNP, single nucleotide polymorphism; EA, educational attainment; GWAS, genome

wide association study; BPH, benign prostatic hyperplasia; ED, erectile dysfunction.
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FIGURE 2 | Forest plot of the MR results between EA and 12 binary outcomes including prostate cancer, bladder cancer, kidney cancer, testicular cancer, kidney

stone, BPH, prostatitis, cystitis, incontinence, ED, male infertility, and female infertility. MR, Mendelian randomization; EA, educational attainment; BPH, benign

prostatic hyperplasia; ED, erectile dysfunction; OR, odds ratio; CI, confidence interval.

FIGURE 3 | Forest plot of the MR results between EA and two continuous outcomes including bioavailable testosterone levels in male and female. MR, Mendelian

randomization; EA, educational attainment; CI, confidence interval.

decreased risk of infertility in women but was not related to male
infertility. In terms of kidney cancer, bladder cancer, testicular
cancer, BPH, and ED, no causal effects were observed.

Prostate cancer is a common malignancy worldwide. Prior
observational studies have reported that populations with higher
EA were at a higher risk of prostate cancer (3, 4), which
was in accordance with our finding. Apart from the higher
diagnostic activity among the well-educated population (4),
another possible explanation for this correlation might be that
people with higher EA commonly report higher fat consumption
and less physical activity (31), thus increasing the risk of
prostate cancer. However, there are few relevant studies, and the
underlying mechanism still needs further research.

Kidney stone is another common urological disease. In a
prior study, by analyzing the education levels and 24-h urine
composition of 435 kidney stone patients, they found that a
decreasing level of education was correlated with increased urine
calcium, supersaturation of calcium oxalate, and supersaturation
of calcium phosphate (9), thus appearing to increase kidney
stone formation. However, a significant limitation of this study
was that they only enrolled patients with stone formation. Thus,
their results might not be generalizable to those without a
history of nephrolithiasis. While in our MR analyses, using
the GWAS data from 4,969 cases and 213,445 controls, our
results were more reliable and generalizable to the general
population. In addition to kidney stone incidence risk, EA has
also been correlated with the degree of stone burden. In a

retrospective study conducted by Bayne (8), after analyzing the
socioeconomic and clinical data of 650 patients, they found
that a lower education level was correlated with an increased
stone burden>2 cm. One possible explanation for the association
between EA and kidney stone might be Oxalobacter formigenes.
Increasing evidence has revealed that Oxalobacter formigenes
are essential in regulating oxalate homeostasis, with effects
that inhibit calcium oxalate stone formation. Researchers found
that education level, especially for education levels lower than
high school, was associated with an abundance of Oxalobacter
formigenes after analyzing over 8,000 American Gut Project fecal
samples (32).

We also observed that increased EA was correlated with
a lower risk of prostatitis and cystitis, which has rarely been
reported before. Although the exact underlying mechanism was
unknown, one possible explanation was that the population
with higher EA are less likely to smoke and more likely to
participate in physical activity and have better health habits (33),
thus decreasing the risk of prostatitis and cystitis. Regarding
incontinence, similar to previous observational studies (12, 13),
we found that the population with higher EA were at a lower risk
of incontinence. A possible reason could be that individuals with
higher EA are inclined to pay more attention to their health and
are more willing to take preventive measures to maintain their
good health and decrease the risk of incontinence. In contrast,
those with lower EA usually perform labor intensive work, which
has been regarded as a risk factor for incontinence (34).
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In terms of the sexual and reproductive health outcomes,
sex-specific associations were observed. We observed that
increased EA was causally related to higher levels of testosterone
in men and lower levels of testosterone in women, which was
partially consistent with prior findings (18). The presence of
this association suggested that EA might affect the homeostatic
setpoints by which typical hormone concentrations are
maintained (18), but the reason for this sex-specific association
needs further research. We also observed that increased EA was
related to a lower risk of female infertility but was not related
to male infertility. Previous studies on the correlation between
EA and female infertility have yielded inconsistent results. Two
studies (16, 17) reported that EA was inversely associated with
female infertility, while one study reported a positive relationship
(15). In the current research, we added new evidence to the
inverse association between EA and female infertility. This
might be because women with higher EA usually have healthier
lifestyles and better curative care (16). For male infertility, no
causal effect was observed, which was consistent with a prior
observational study (15).

For bladder cancer, kidney cancer, and testicular cancer,
similar to prior observational studies (5–7), we observed no
causality in our study. The role of EA in determining BPH is
inconsistent (10, 11), with one study that reported the population
with higher EA were at a higher risk (11) and another reporting
a lower risk (10). However, all these observational studies are
prone to confounding factors, and the results from our MR study
indicated that EA might not have a causal effect on BPH. In
terms of ED, although a prior observational study reported that
increased EA was correlated with a lower risk of ED (14), no
causal relationship was observed in the current MR study.

Our study has several strengths. First, as far as we know,
this is the first MR study to explore the causal association
between EA and urological or reproductive health outcomes.
Compared with other observational studies, our research is
less vulnerable to confounding factors. Second, all the included
individuals within the GWAS were of European-descent, making
the potential bias from population stratification minimal. In
addition, a total of 14 outcomes were analyzed in our study,
which is comprehensive and informative. Nevertheless, our study
could not avoid limitations. First, since the large percentage of
individuals in the EA exposure GWAS is from the UK Biobank,
we extracted GWAS data for 10 outcomes from the FinnGen
project to avoid overlap as much as possible, but this also leads
to a disadvantage since the FinnGen project is prepublication
and the data quality might weaken slightly. However, quality
control has already been applied to the FinnGen project, and
detailed information can be found on their official site (26).
Second, although directional pleiotropy was not detected in our
study, heterogeneity was found for part of our results, leading to
some potential biases. Third, EA might also correlate with some
other factors, such as intelligence, income, testosterone levels
(35), which might mediate the effects of EA on the 14 included
urological and reproductive health outcomes. However, whether
these factors play a mediating role between EA and these 14
outcomes was not included in the primary aim of our study and
should be explored in future research.

CONCLUSIONS

Our findings indicated that genetically determined increased
EA was correlated with a higher risk of prostate cancer and a
lower risk of kidney stone, prostatitis, cystitis, and incontinence.
For the bioavailable testosterone levels and infertility, sex-
specific associations were observed, with genetically determined
increased EA being related to higher levels of testosterone inmen,
decreased levels of testosterone in women and a lower risk of
infertility in women but was not related to male infertility. In
terms of kidney cancer, bladder cancer, testicular cancer, BPH,
and ED, no causal effects were observed. All of these results
indicate that EA plays a vital role in urological diseases, especially
in non-oncological outcomes and reproductive health. Further
research is needed to examine these findings.
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The coronavirus disease (COVID-19) has revealed existing health inequalities in racial and

ethnic minority groups in the US. This work investigates and quantifies the non-uniform

effects of geographical location and other known risk factors on various ethnic groups

during the COVID-19 pandemic at a national level. To quantify the geographical impact

on various ethnic groups, we grouped all the states of the US. into four different regions

(Northeast, Midwest, South, andWest) and considered Non-HispanicWhite (NHW), Non-

Hispanic Black (NHB), Hispanic, Non-Hispanic Asian (NHA) as ethnic groups of our

interest. Our analysis showed that infection and mortality among NHB and Hispanics

are considerably higher than NHW. In particular, the COVID-19 infection rate in the

Hispanic community was significantly higher than their population share, a phenomenon

we observed across all regions in the US but is most prominent in the West. To gauge the

differential impact of comorbidities on different ethnicities, we performed cross-sectional

regression analyses of statewide data for COVID-19 infection and mortality for each

ethnic group using advanced age, poverty, obesity, hypertension, cardiovascular disease,

and diabetes as risk factors. After removing the risk factors causing multicollinearity,

poverty emerged as one of the independent risk factors in explaining mortality rates in

NHW, NHB, and Hispanic communities. Moreover, for NHW and NHB groups, we found

that obesity encapsulated the effect of several other comorbidities such as advanced

age, hypertension, and cardiovascular disease. At the same time, advanced age was the

most robust predictor of mortality in the Hispanic group. Our study quantifies the unique

impact of various risk factors on different ethnic groups, explaining the ethnicity-specific

differences observed in the COVID-19 pandemic. The findings could provide insight into

focused public health strategies and interventions.

Keywords: COVID-19, infection, mortality, ethnicity, Hispanic, risk factors, diabetes

1. INTRODUCTION

Numerous researchers have found various comorbidities and other risk factors affecting the spread
and prognosis of coronavirus disease (COVID-19). Recent work by many researchers has also
demonstrated that the COVID-19 pandemic has affected marginalized ethnicities more severely.
We thus hypothesize that the risk factors for COVID-19 must have affected different ethnic groups
in a distinctive manner. In this paper, we aim to quantify the differential effect of risk factors on
different ethnicities.
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1.1. COVID-19 and Ethnicity
The public health crisis created by the COVID-19 has uncovered
the historical inequalities (1–4) between ethnic groups in certain
countries, in particular in the UK and US, which are countries
with ethnically diverse populations. These observations and
consistent fatal outcomes in the minority ethnic groups (5, 6)
have led to speculations about why patients from these groups
are susceptible to infections, followed by severe complications.
These trends could be due to different rates of COVID-
19 infections, underlying health conditions, living conditions
including housing density, having jobs as essential workers,
access to health care, quality of care, and a mixture of multiple
factors among these groups. The United States national data
(7) from states and municipalities reports disproportionate
COVID-19 infections, hospitalizations, and deaths among
minority ethnic groups. Dobin and Dobin (8) showed that the
infection rate is 4-fold for the Black and Hispanic population
in selected counties in New York state. Moore et al. (9)
observe a disproportionate number of COVID-19 cases among
underrepresented racial/ethnic groups in the United States.
Adhikari et al. (10) show that the racial and ethnic disparities in
COVID-19 infections and deaths existed beyond those explained
by income inequality.

1.2. Effects of Geographical Location on
COVID-19
The impact of COVID-19 varies widely across countries and even
within a country or a region. For example, Sun et al. (11) showed
a negative correlation between the number provincial COVID-
19 cases and latitude, as well as altitude. Breen and Ermisch (12)
use spatial autoregressive regression to show that the relation
of COVID-19 mortality to social composition of geographical
areas in England is distinct than that of non-COVID mortality.
A number of factors including societal awareness and culture,
public health measures, healthcare infrastructure, and more
recently vaccination coverage are known underlie the variation
for COVID-19 infection rates and adverse health outcome (13).

Although multiple studies have confirmed that black and
Hispanic populations in the US are more vulnerable to COVID-
19, to our knowledge, no data is available if they are equally
susceptible across geographical locations. Stephens-Davidowitz
(14) uses the search data from Google to show that there exists a
wide variation in racism in the US within the 50 states. Thus, we
surmise that the impact of the COVID-19 on various ethnicities
may not be uniform in all regions of the US. Hence, we are
interested in understanding if a geographical location plays a part
in the variation of COVID-19 impact on minorities.

1.3. Comorbidities for COVID-19
Emerging evidence highlights that comorbid conditions such as
obesity, cardiovascular disease (CVD), and type 2 diabetes are
directly linked to the severity of the COVID-19 disease (15–
17). A meta-analysis including 76,993 patients with COVID-19
showed diabetes, CVD, smoking, malignancy, chronic kidney
disease, hypertension, chronic obstructive pulmonary disease
(COPD) are associated with poor prognosis (18). This conclusion
was further supported by Richardson et al. (19), and Sun

et al. (20). Using logistic regression (21) show that obesity
was a risk factor for the severity of the COVID-19 disease.
Furthermore, in a retrospective cohort study, Busetto et al.
(22) conclude that despite their young age, overweight patients
were more likely to need assisted ventilation and access to
intensive care units than patients with normal weight. The
connection between obesity and pulmonary function is well-
established, e.g., Sharp et al. (23) observe that obese patients have
significantly decreased total respiratory compliance. Moreover,
Li et al. (24) find that reduction in functional residual capacity
and diffusion impairment are the most common abnormalities
in obese patients. Yan et al. (18) show that diabetic patients
experienced more mortality than non-diabetic patients. Finally,
just as in the case of the SARS epidemic (25), COVID-19 has
disproportionately affected the older population (26). In fact, in
the US, 92% of the COVID-19 recorded deaths till June, 2020 are
in the age group 55 years and above (27). In summary, the main
comorbidities for COVID-19 include obesity, diabetes, advanced
age, hypertension, and cardiovascular disease.

However, these risk factors affect different ethnicities
differently. For example, Paeratakul et al. (28) find that among
obese individuals, the prevalence of hypertension was higher in
NHB subjects than other groups. Sturm and Hattori (29) observe
that the prevalence of obesity is about double among NHB than
among Hispanics or NHW. Kuzawa and Sweet (30) note that
NHB suffer from a disproportionate burden of CVD relative to
NHW. Thus, we are motivated to understand whether or not
these comorbidities affect different ethnicities differently.

1.4. Impact of Poverty on COVID-19
Prognosis
Patel et al. (31) note that economically disadvantaged people
are vulnerable to COVID-19 due to a combination of factors.
A time-series analysis conducted by Elgar et al. (32) reveals that
income inequality is associated with a higher number of deaths
due to COVID-19 in 84 countries. In particular, in the US, the
states with higher income inequality experienced a higher rate of
infection as well as the number of COVID-19 related deaths (33).
This pattern could be because the comorbidities associated with
COVID-19 are linked to poverty.

A longitudinal study involving 600,662 adults from Taiwan’s
National Healthcare Insurance database indicates that diabetes
incidence is associated with poverty (34). This finding is
particularly notable since the subjects from this study had access
to universal healthcare. However, the subjects were from a
ethnically homogeneous population. Thus, we are motivated to
investigate the differential role of poverty among various races.

1.5. Objectives
For this study, we choose Non-Hispanic white (NHW), Non-
Hispanic Black (NHB), Hispanic, and Non-Hispanic Asian
(NHA) as four ethnic groups. The risk factors we choose to focus
on in this work are advanced age, obesity, cardiovascular disease,
diabetes, hypertension, and poverty. We aim to investigate the
following in this study:
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1. Does a geographical location have different impact on
COVID-19 infection and mortality rates for different
ethnicities?

2. Do various COVID-19 risk factors have a different effect on
different ethnicities?

To this end, we collected COVID-19 related infections and
mortality data from various publicly available sources, as
described in section 2.1. To investigate the geographical variation
in the impact of COVID-19, we seek to quantify the difference
between the distributions of infection rates, mortality rates, and
populations of various ethnic groups in four geographical regions
of the US (35). We describe our approach for this analysis in
section 2.4.1. Finally, in section 2.4.3 we construct robust linear
models with infection andmortality rates of various ethnicities as
response variables.

2. MATERIALS AND METHODS

2.1. Selection of Variables and Data
Sources
Given the discussion in the sections 1.3, 1.1, and 1.4, we
focus on the following factors in this work: obesity, diabetes,
poverty, advanced age, hypertension, and cardiovascular
diseases. We included the following ethnic groups in our work:
NHW, NHB, Hispanic, and NHA. We excluded the groups
American Indian/Alaska Native, and Native Hawaiian/Other
Pacific Islander from this work due to lack of reliable and
consistent data sets in the US, cf. (36–38). We used the American
Community Survey (39) census database to collect the following
information for each state: NHW, NHB, Hispanic, and NHA
population and their respective percentage contribution to the
population of each state. To investigate the geographical effect on
COVID-19 prognosis, we used the classification of the US into
the following categories: Northeast, South, Midwest, and West
(35). COVID-19 infection and death counts between January
21, 2020, to September 30, 2020 from KFFCovid-19 data (40)
were obtained. The time window roughly corresponds to the first
pandemic wave experienced in the US. For each ethnicity E, and
for a specific state S the variable Relative Infection % is
defined as follow:

Relative Infection %

: =
COVID-19 positive subjects of ethnicity E in state S

Total number of COVID-19 positive subjects in state S
× 100.

We note that the choice of “relative” infection percentage as a
response variable is deliberate. This choice allows us to directly
compare this number with the population share of that ethnicity
in the region. Similarly, for each ethnicity E, and for a specific
state S we define the variable Relative Mortality %
as follow:

Relative Mortality %

: =
COVID-19 related deaths for ethnicity E in state S

Total number of COVID-19 deaths in state S
× 100.

In our work, Relative Infections % and Relative
Mortality % were considered as the response variables.
For brevity, we write infection rate instead of Relative
Infections %, and so on. The use of relative percentages
allows a direct comparison with the population percentages
of that ethnicity. For example, in a state with a 5% NHB
population, relative mortality of 15% in the NHB community
indicates disproportionately large mortality compared to the
NHB population. The use of “relative” percentage is independent
of the population of the state itself. The use of this measure also
allows us to compare the impact on a certain ethnic group in
two states with similar proportion of the minority population.
As a concrete example, when we consider the states of California
and Texas, both have a similar percentage of the Hispanic
population, 39.5 and 40%, respectively. However, the relative
mortality percentages for the Hispanic group in California and
Texas are 48.3 and 56.1%, respectively. We collected the data
on the percentage of people with age 60 or more in each state
and ethnicity is obtained from the CDCdataset (41). Race and
state-wise data were obtained from adults who reported being
told by a health professional that they have diabetes (excluding
prediabetes and gestational diabetes) using the America’s Health
Rankings (42). We used the body mass index (BMI) as a measure
of obesity following (43) and define obesity as a condition of
having a BMI of 30.0 or higher. The dataset (44) were used
to obtain the obesity data from each state and for the races
NHW, NHB, Hispanic, NHA. We acquired the percentage of
adults whom a health care professional informed that they had
a coronary heart disease, or myocardial infarction, or a stroke
from AHRCVDdata (45). This was gathered for each state and
ethnicity of interest. We obtained the race and state-wise data
on adults who reported being informed by a health professional
that they have high blood pressure from AHRHBPdata (46). The
US Census Bureau defines the “poverty threshold” for a family
with two adults and one child as $20,578 in 2019. We extracted
the data from KFFPoverty data (47) on poverty defined by the
“poverty threshold.” We obtained this data for each state and
ethnicity of interest.

For each state, and each of the four ethnicity of interest
(NHW, NHB, Hispanic, and NHA) we defined the variables:
Age60+, BMI30+ (a measure of obesity), CVD, Diabetes,
HBP, Poverty. For a state S, and an ethnicity E we defined
the relative percentage of people with age 60 or over Age60+
as follows:

Relative Age60+ %

: =
Number of people of ethnicity E with age over 60 in state S

Total number of people with age over 60 in state S
× 100.

We use the variable name Age60+ instead of Relative
Age60+ % for conciseness, and so on. We define the relative
percentage variables Obesity, CVD, Diabetes, HBP, and
Poverty in a similar manner.
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FIGURE 1 | The relative infection % and relative mortality % amongst the NHW, NHB, and Hispanic groups across the US. The states with no color indicate that the

ethnicity-wise data on relative infection % and relative mortality % were not available in those states.

2.2. A Note on Unavailability of Data From
Some States
We encountered a few irregularities during our data collection
process in the format the data was made available by various
states (36–38). For example, New York state does not provide
ethnicity-wise COVID-19 infection andmortality data. Similarly,
infection data for NHW communities only are available for
North Dakota. Data availability of specific variables for different
ethnicities also varied across states. Data for all variables for
the NHW group could be obtained from 48 states whereas for
the NHB and Hispanic communities such data were available
from only 38 and 33 states, respectively. In our analysis,
we included the states for which data for all the variables
are available. Hatcher et al. (37) find that only 23 state in
the US have complete data for American Indian and Alaska
Native Persons.

2.3. Description of Data
The data for this study are state-level demographics based on
four ethnic groups. We depict the relative infection % and
relative mortality % for NHW, NHB, and Hispanic group
in the map in Figure 1. As described in section 2.2 some
states do not make the ethnicity-wise data public. The states
with no color in the Figure 1 indicate that the ethnicity-wise
infection and mortality data was not available in those states.
We calculated state-wise descriptive statistics for the relative
infection and mortality percentages and population comparing
each ethnic group. We performed a descriptive analysis to
explore the region-specific, state-wise characteristics of for
the relative infection % and mortality % and population by
calculating their medians, first and third quartiles, and presented
in Figure 2.

2.4. Analytical Approach
2.4.1. Quantifying the Regional Variability of

COVID-19 on Various Races
The infection and mortality rates for various ethnic groups are
disproportionate to their share of the population in the US
(7, 8). We aim to understand this phenomenon and its severity
across various regions in the US. To this effect, we employed
the Kruskal-Wallis (KW) test (48), a non-parametric equivalent
of the one-way analysis of variance. Since the test does not
identify the groups that differ in their distributions, we followed
it with Dunn’s multiple comparisons test (49) for cases for which
the KW test yielded statistically significant results. We used the
combination of KW test, and Dunn’s comparison test for the
groups NHW, NHB, Hispanic, and NHA separately for all four
regions of the US, as well as the whole country.

2.4.2. Correlation Analyses
In order to quantify the association between the impact of
COVID-19 on the ethnic groups and the risk factors across the
country, we consider each state, for which the data are available,
as a data point. We computed the pairwise Pearson’s correlation
coefficients between various risk factors for the racial groups
NHW, NHB, and Hispanic, along with their 2-tailed statistical
significance values. We summarized the comparisons between
the variables in correlation matrices.

2.4.3. Constructing Robust Linear Models With

Infection and Mortality Rates as Response Variables
In order to elucidate the role of the explanatory variables on
a specific aspect of the COVID-19 burden linear models are
employed. For these linear models, we considered each state
as a data point. From the Figure 2, we observe that the rate
of infection and mortality in the NHA are consistently lower
when compared to their population. Thus, we consider building

Frontiers in Public Health | www.frontiersin.org 4 December 2021 | Volume 9 | Article 743003115

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Athavale et al. Differential Impact of COVID-19 Risk-Factors

FIGURE 2 | Box plots of population, relative infection %, and relative mortality % in each of four US regions, and combining all regions for NHW, NHB, Hispanic and

NHA groups. Horizontal bars represent medians. “*” significance at p < 0.1, “**” significance at p < 0.05, “***” significance at p < 0.01, NS, not significant

(Kruskal-Wallis tests followed by Dunn’s tests).
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linear models for NHW, NHB, and Hispanic groups only to
elucidate the contributions of risk factors considered in this
study. However, infection and mortality rates, the response
variables for our model, showed skewness in their distributions.
Since logarithmic (log) transformation of data is one of the
most commonly used techniques to conform to normality (50),
we implemented it on infection and mortality rates. The log
transformation was effective in correcting the skewness and
introduce normality (Supplementary Figures S1, S2). As log
transformation of infection and mortality rates improved their
normality behavior, we used log transformed form of these
variables exclusively for model construction. Thus, when we refer
to infection rate andmortality rate in the context of linear models
they denote log transformed infection rate and mortality rate,
respectively. For NHW, NHB, and Hispanic groups, we built our
preliminary linear models with infection rate, and mortality rate
as our response variables and the risk factors defined in section
1.3, i.e., advanced age Age60+, BMI30+ (a measure of obesity),
CVD, Diabetes, HBP, Poverty as the explanatory variables.

However, conditions of advanced age, cardiovascular disease,
diabetes, obesity, and hypertension are interrelated. This
interrelation can also be observed from the correlation Tables 3–
5. Multicollinearity among the explanatory variables can lead
to unstable and unreliable estimates of regression coefficients
(51). We used the variance inflation factor (VIF) to assess
the multicollinearity between the explanatory variables (52).
Following Kutner et al. (53, p. 409) an upper cut-off value
of VIF for explanatory variables is set as 10 to minimize the
contribution of multicollinearity in our model. Starting from
the preliminary model for ethnicity of interest, we propose the
procedure outlined below to construct our final model:

1. Compute the VIF for each explanatory variable in the model.
If all the VIFs are less than 10, we declare this to be the final
linear model.

2. If an explanatory variable has a VIF of more than 10, we
remove the explanatory variable with the largest VIF. If there
are more than one explanatory variables with VIF within 5%
of the maximum VIF, we remove the variable that leads to a
model with the highest adjusted R2.

3. We construct the linear model with the remaining explanatory
variables. After the removal of a variable, it is possible to
include more data points in our model. For example, after
removing the variable Diabetes, we could include states for
which data on diabetes was not available.

4. Go to Step 2.4.3.

After constructing the linear models, we checked the normality
of the residuals of the regression models with Lilliefors normality
test (54).

2.5. Geographically Weighted Regression
Linear regression yields stationary and global regression
coefficients. However, it is conceivable that these coefficients
might have local variability. To find the geographical variability
in the coefficients, we employed the geographically weighted
regression (GWR) (55). Rather than producing global regression
results, GWR yields “local” regression coefficients in terms

of geographically varying functions. For our analysis, we
used the infection rate and mortality rates as response
variables and the variables obtained from section 2.4.3 as the
explanatory variables.

2.6. Coding Language and Libraries Used
For our coding, we used R language (version 4.0.0), along with
the following libraries in our coding: readxl, dplyr, tidyr, FSA,
ggplot2, car, qqplotr, nortest, pwr, spgwr, sp, sf, rgdal, rgeos,
tmap, tmaptools.

3. RESULTS

3.1. Regional Variation of COVID-19 Impact
on Various Ethnicities
The boxplots in Figure 2 summarize the relative impact of
COVID-19 on various ethnicities across the four regions of the
US and all regions as an aggregate. In Figure 2we present various
descriptive statistics of the population, infection, and mortality
rates for the NHW, NHB, Hispanic, and the NHA groups across
various regions. As noted in the section 2.2, not all the states are
included in the analyses. Thus, the statistics shown in this plot do
not correspond closely to those of the whole country.We describe
the Kruskal-Wallis test results in Table 1. We see in Table 1 that
the KW test for NHW is statistically significant in the Northeast
and the West with p < 0.1. For the NHB group, the KW test is
significant in the Northeast and the Midwest with p < 0.1. The
KW test was statistically significant for the Hispanic group in “all
four regions,” with p < 0.1 in the Northeast; with p < 0.05 in
Midwest and theWest; and p < 0.01 in the South. The NHA data
yielded significant results with the KW test only in the South with
p < 0.05.

When we considered all four regions in the US together,
the KW test was statistically significant for all ethnicities with
p < 0.01 for NHW and Hispanic communities. The KW test
was significant for the NHB and NHA when all regions were
combined with p < 0.1.

We followed the significant KW tests with Dunn’s
multiple comparison test to identify factors differing in
their distributions. We depict the results from the Dunn’s
test in Table 2. In particular, we obtained statistically
significant results (with p < 0.05) in the South, Midwest,
and West for the Hispanic population between the pairs
‘infection & mortality rates’ and “infection rate and
population share.”

3.2. Results of the Correlation Analyses
The KW test provides evidence of geographical impact on
various ethnicities. In this section we provide the results of
correlation analysis between other risk factors. In Table 3 we
see the Pearson correlations between the variables along with
the 2-tailed significance values for the NHW group. The same
statistics are provided in Tables 4, 5 for the NHB and Hispanic
communities respectively. All the variables are strongly (p <

0.01) and positively correlated with every other variable for
all ethnicities, with poverty being the sole exception. To be
precise, for the NHW group, poverty is positively correlated
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TABLE 1 | Non-parametric Kruskal-Wallis test for each ethnic group’s relative infection %, relative mortality %, and population percentages per region as groups and their

significance levels.

NHW NHB Hispanic NHA

Statistic p−value Statistic p−value Statistic p−value Statistic p−value

Northeast 5.38* 0.068 5.43* 0.066 5.21* 0.074 3.81 0.148

South 4.37 0.112 2.95 0.228 10.96*** 0.004 7.77** 0.020

Midwest 3.88 0.137 5.83* 0.054 8.66** 0.013 2.40 0.302

West 4.88* 0.087 2.02 0.364 8.83** 0.012 0.60 0.741

All regions 13.03*** 0.002 4.83* 0.089 26.18*** <0.01 5.38* 0.067

“*” significance at p < 0.1, “**” significance at p < 0.05, “***” significance at p < 0.01.

TABLE 2 | Post-hoc analysis using Dunn Test and their significance levels.

Infection%-Mortality% Infection%-Population Mortality%-Population

Ethnic group-region Statistic p−value Statistic p−value Statistic p−value

NHW-Northeast −2.30* 0.064 −1.41 0.314 0.88 0.377

NHW-South – – – – – –

NHW-Midwest – – – – – –

NHW-West −1.09 0.275 −2.21* 0.081 −1.12 0.527

NHW-All −2.29** 0.043 −3.55*** 0.001 −1.26 0.207

NHB-Northeast 1.29 0.392 2.32* 0.060 1.03 0.301

NHB-South – – – – – –

NHB-Midwest −0.19 0.842 1.09* 0.094 2.18* 0.087

NHB-West – – – – – –

NHB-All 0.37 0.711 2.06 0.117 1.69 0.181

Hispanic-Northeast 2.27* 0.068 1.31 0.375 −1.02 0.305

Hispanic-South 2.88** 0.011 2.87*** 0.008 −0.10 0.917

Hispanic-Midwest 2.67** 0.022 2.42** 0.031 −0.31 0.753

Hispanic-West 2.33** 0.039 2.78** 0.015 0.36 0.718

Hispanic-All 4.60*** <0.01 4.28*** <0.01 −0.47 0.638

NHA-Northeast – – – – – –

NHA-South 1.22 0.221 −1.55 0.239 −2.78** 0.016

NHA-Midwest – – – – – –

NHA-West – – – – – –

NHA-All 1.39 0.325 −1.30 0.190 −2.7** 0.020

“*” significance at p < 0.1, “**” significance at p < 0.05, “***” significance at p < 0.01.

with the infection rate (r = 0.35, p < 0.05), and diabetes
(r = 0.29, p < 0.05). Poverty is either uncorrelated
or weakly correlated with other variables in this study for
all ethnicities.

3.3. Results of the Linear Models With
Infection and Mortality Rates as Response
Variables for Each Ethnic Group
In Table 6 we depict the linear models with infection rate
and mortality rate as response variables for NHW. The first
column shows preliminary models along with the VIFs for each
explanatory variable. The second column depicts the final model
obtained via the maximum VIF elimination algorithm described
in section 2.4.3. The preliminary model with infection rates

in the NHW community as the response variable accounts for
83% [R2 = 0.83,R2

adj
= 0.80, F(6, 41) = 32.87, p < 0.01] of

the variability in the infection rates for NHW population. The
final model for the NHW infection rates consists of obesity,
diabetes, and poverty as the only explanatory variables. This
model accounts for 82% [R2

= 0.82,R2
adj

= 0.80, F(3, 44) =

65.06, p < 0.01] of the variability in the NHW infection rates.
The final NHW infection model and preliminary model both use
48 states.

The preliminary model with NHW mortality rates as the
response variable accounts for 88% [R2 = 0.88,R2

adj
=

0.87, F(6, 411) = 51.95, p < 0.01] of the variability in the NHW
mortality rates. The final model for the NHW mortality also
consists of obesity, diabetes, and poverty as the only explanatory
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TABLE 3 | Pearson correlations for NHW ethnic group between variables used in the study and their significance levels.

Infections% Mortality% Poverty Age60+ Diabetes BMI30+ HBP CVD

Infection% Pearson correlations 1

Sig. (2-tailed)

Mortality% Pearson correlations 0.82*** 1

Sig. (2-tailed) <0.01

Poverty Pearson correlations 0.35** 0.17 1

Sig. (2-tailed) 0.014 0.230

Age60+ Pearson correlations 0.82*** 0.91*** 0.16 1

Sig. (2-tailed) <0.01 <0.01 0.267

Diabetes Pearson correlations 0.78*** 0.83*** 0.29** 0.94*** 1

Sig. (2-tailed) <0.01 <0.01 0.042 <0.01

BMI30+ Pearson correlations 0.88*** 0.91*** 0.21 0.96*** 0.90*** 1

Sig. (2-tailed) <0.01 <0.01 0.141 <0.01 <0.01

HBP Pearson correlations 0.86*** 0.91*** 0.20 0.98*** 0.93*** 0.99*** 1

Sig. (2-tailed) <0.01 <0.01 0.178 <0.01 <0.01 <0.01

CVD Pearson correlations 0.84*** 0.91*** 0.21 0.98*** 0.93*** 0.97*** 0.98*** 1

Sig. (2-tailed) <0.01 <0.01 0.148 <0.01 <0.01 <0.01 <0.01

“*” significance at p < 0.1, “**” significance at p < 0.05, “***” significance at p < 0.01.

TABLE 4 | Pearson correlations for NHB ethnic group between variables used in the study and their significance levels.

Infection% Mortality% Poverty Age60+ Diabetes BMI30+ HBP CVD

Infection% Pearson correlations 1

Sig. (2-tailed)

Mortality% Pearson correlations 0.93*** 1

Sig. (2-tailed) <0.01

Poverty Pearson correlations −0.03 −0.07 1

Sig. (2-tailed) 0.833 0.677

Age60+ Pearson correlations 0.90*** 0.95*** −0.10 1

Sig. (2-tailed) <0.01 <0.01 0.550

Diabetes Pearson correlations 0.92*** 0.95*** −0.084 0.99*** 1

Sig. (2-tailed) <0.01 <0.01 0.610 <0.01

BMI30+ Pearson correlations 0.94*** 0.96*** −0.09 0.99*** 0.99*** 1

Sig. (2-tailed) <0.01 <0.01 0.592 <0.01 <0.01

HBP Pearson correlations 0.94*** 0.96*** −0.09 0.99*** 0.99*** 0.99*** 1

Sig. (2-tailed) <0.01 <0.01 0.592 <0.01 <0.01 <0.01

CVD Pearson correlations 0.86*** 0.92*** 0.07 0.99*** 0.98*** 0.96*** 0.97*** 1

Sig. (2-tailed) <0.01 <0.01 0.691 <0.01 <0.01 <0.01 <0.01

“*” significance at p < 0.1, “**” significance at p < 0.05, “***” significance at p < 0.01.

variables. This NHW mortality final model accounts for 7%
[R2 = 0.78,R2

adj
= 0.77, F(3, 44) = 53.48, p < 0.01] of the

variability in the NHWmortality.
In Table 7 we depict the linear models with infection rate and

mortality rate as response variables for NHB. The preliminary
model with infection rates in the NHB group as the response
variable accounts for 81% [R2 = 0.81,R2

adj
= 0.77, F(6, 31) =

17.51, p < 0.01] of the variability in the infection rates for NHB
population. The final model for the NHW infection rates consists
of obesity and poverty as the only explanatory variables. This

model accounts for 66% [R2
= 0.66,R2

adj
= 0.64, F(2, 37) =

37.89, p < 0.01] of the variability in the NHB infection rates.
Note that the final NHB infection model uses 40 states instead of
38 states in the preliminary model. This discrepancy is because
of the unavailability of data for the NHB community for all
the explanatory variables, as discussed in section 2.4.3. The
preliminary model with NHB mortality rates as the response
variable accounts for 77% [R2 = 0.77,R2

adj
= 0.73, F(6, 31) =

17.51, p < 0.01] of the variability in the NHBmortality rates. The
final model for the NHB mortality also consists of only obesity
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TABLE 5 | Pearson correlations for Hispanic ethnic group between variables used in the study and their significance levels.

Infection% Mortality% Poverty Age60+ Diabetes BMI30+ HBP CVD

Infection% Pearson correlations 1

Sig. (2-tailed)

Mortality% Pearson correlations 0.84*** 1

Sig. (2-tailed) <0.01

Poverty Pearson correlations −0.16 −0.14 1

Sig. (2-tailed) 0.306 0.349

Age60+ Pearson correlations 0.74*** 0.82*** −0.07 1

Sig. (2-tailed) <0.01 <0.01 0.632

Diabetes Pearson correlations 0.83*** 0.85*** −0.04 0.96*** 1

Sig. (2-tailed) <0.01 <0.01 0.793 <0.01

BMI30+ Pearson correlations 0.85*** 0.87*** −0.16 0.97*** 0.99*** 1

Sig. (2-tailed) <0.01 <0.01 0.319 <0.01 <0.01

HBP Pearson correlations 0.80*** 0.81*** −0.11 0.98*** 0.98*** 0.98*** 1

Sig. (2-tailed) <0.01 <0.01 0.482 <0.01 <0.01 <0.01

CVD Pearson correlations 0.75*** 0.82*** −0.01 0.98*** 0.97*** 0.98*** 0.98*** 1

Sig. (2-tailed) <0.01 <0.01 0.950 <0.01 <0.01 <0.01 <0.01

“*” significance at p < 0.1, “**” significance at p < 0.05, “***” significance at p < 0.01.

TABLE 6 | Linear models with infection and mortality rates as response variables for NHW.

Linear regression models withs infection rate in NHW population as a response variable

Preliminary model Final model

β (95%CI) Pr (> t) VIF β (95%CI) Pr (> |t|) VIF

(Intercept) 2.21 (1.53, 2.89) <0.01*** 2.46 (2.16, 2.74) <0.01***

BMI30+ 0.04 (0.01, 0.06) <0.01*** 59.51 0.02 (0.02, 0.03) <0.01*** 5.35

Diabetes −0.002 (−0.01, 0.01) 0.956 9.67 −0.004 (−0.01, 0.03) 0.318 5.47

Poverty 0.02 (−0.00, 0.05) 0.067* 1.20 0.02 (−0.00, 0.05) 0.082* 1.09

Age60+ 0.20 (−0.01, 0.05) 0.787 58.57

HBP −0.03 (−0.06, 0.01) 0.725 104.88

CVD −0.01 (−0.03, 0.01) 0.309 39.07

R2
= 0.83,R2

adj = 0.80, n = 48 R2
= 0.82,R2

adj = 0.80, n = 48

F(6, 41) = 32.87,p < 0.01*** F(3, 44) = 65.06,p < 0.01***

Linear regression models with mortality rate in NHW population as a response variable

Preliminary model Final model

β (95%CI) Pr (> t) VIF β (95%CI) Pr (> |t|) VIF

(Intercept) 1.58 (1.03, 2.12) <0.01*** 2.59 (2.27, 2.91) <0.01**

BMI30+ 0.003 (−1.65, 0.02) 0.785 59.51 0.86 (0.01, 0.02) 0.001*** 5.35

Diabetes −0.002 (−1.08, 0.01) 0.643 9.67 0.01 (0.00, 0.02) 0.039** 5.47

Poverty 0.01 (−1.38, 0.03) 0.512 1.20 −0.00 (−1.44, 0.98) 0.955 1.09

Age60+ 0.04 (1.18, 0.06) 0.005*** 58.57

HBP −0.03 (−5.40, 0.00) 0.070* 104.88

CVD 0.02 (1.57, 0.04) <0.050** 39.07

R2
= 0.88,R2

adj = 0.87, n = 48 R2
= 0.78,R2

adj = 0.77, n = 48

F(6, 41) = 51.95,p < 0.01*** F(3, 44) = 53.48,p < 0.01***

The first column shows preliminary model along with the VIFs for each explanatory variable. The second column indicates the model obtained using maximum VIF elimination algorithm.

“*” significance at p < 0.1, “**” significance at p < 0.05, and “***” significance at p < 0.01.
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TABLE 7 | Linear models with infection and mortality rates as response variables for NHB.

Linear regression models with infection rate in NHB population as a response variable

Preliminary model Final model

β(95%CI) Pr(> t) VIF β(95%CI) Pr(> |t|) VIF

(Intercept) 1.10 (0.42, 1.79) 0.002** 2.12 (1.42, 2.84) <0.01***

BMI30+ 0.04 (−0.04, 0.13) 0.309 97.03 0.05 (0.04, 0.06) <0.01*** 1.00

Poverty 0.02 (−0.01, 0.05) 0.169 1.10 −0.01 (−0.04, 0.02) 0.39 1.00

Diabetes 0.02 (−0.06, 0.10) 0.695 101.10

Age60+ −0.20 (−0.34,−0.05) 0.009*** 164.01

HBP 0.16 (0.06, 0.26) 0.003*** 127.51

CVD −0.02 (−0.09, 0.05) 0.514 58.27

R2
= 0.81,R2

adj = 0.77, n = 38 R2
= 0.66,R2

adj = 0.64, n = 40

F(6, 31) = 17.51,p < 0.01*** F(2, 37) = 37.89,p < 0.01***

Linear regression models with mortality rate in NHB population as a response variable

Preliminary model Final model

β (95%CI) Pr (> t) VIF β (95%CI) Pr (> |t|) VIF

(Intercept) 1.26 (0.36, 2.17) 0.008*** 2.16 (1.32, 3.01) <0.01***

BMI30+ 0.10 (−0.01, 0.22) 0.073* 97.03 0.06 (0.04, 0.07) <0.01*** 1.00

Poverty 0.00 (−0.04, 0.04) 0.921 1.10 −0.02 (−0.05, 0.12) 0.191 1.00

Diabetes −0.04 (−0.15, 0.06) 439 101.10

Age60+ −0.25 (−0.45,−0.06) 0.011** 164.01

HBP 0.17 (−0.03, 0.30) 0.017** 127.51

CVD 0.03 (−0.06, 0.12) 0.521 58.27

R2
= 0.77,R2

adj = 0.73, n = 38 R2
= 0.67,R2

adj = 0.65, n = 40

F(6, 31) = 17.51,p < 0.01*** F(2, 37) = 199.9,p < 0.01***

The first column shows preliminary model along with the VIFs for each explanatory variable. The second column indicates the model obtained using maximum VIF elimination algorithm.

“*” significance at p < 0.1, “**” significance at p < 0.05, and “***” significance at p < 0.01.

and poverty as the explanatory variables. This NHB mortality
final model accounts for 67% [R2 = 0.67,R2

adj
= 0.65, F(2, 37) =

199.9, p < 0.01] of the variability in the NHB mortality rates.
The Table 8 depicts the linear models with infection rate and

mortality rate as response variables for the Hispanic group. The
preliminary model for infection rates in the Hispanic community
accounts for 67% [R2 = 0.67,R2

adj
= 0.60, F(6, 26) = 8.97, p <

0.01] of the variability in the infection rates for the Hispanic
population. The final model for the Hispanic infection rates
consists of diabetes and poverty as the explanatory variables. This
model accounts for 51% [R2

= 0.51,R2
adj

= 0.48, F(6, 25) =

9.98, p < 0.01] of the variability in the Hispanic infection
rates. The preliminary model with mortality rates among the
Hispanic community as the response variable accounts for 71%
[R2 = 0.71,R2

adj
= 0.63, F(6, 25) = 9.98, p < 0.01] of the

variability in the Hispanic mortality rates. The final model for
Hispanic mortality consists of advanced age and poverty as
the explanatory variables. Note that advanced age is the most
significant explanatory variable in the final mortality model in the
Hispanic group, whereas having diabetes was the most significant
variable predicting infection in the Hispanic community. This

final model accounts for 55% [R2 = 0.55,R2
adj

= 0.53, F(2, 39) =

23.93, p < 0.01] of the variability in the Hispanic mortality rates.
We note that the final model for the Hispanic mortality includes
42 states, whereas the preliminary model has only 32 states due
to lack of data availability.

Adjusted R2 value for the regression model for NHW
mortality was much higher (0.77) in comparison to NHB (0.65)
and Hispanic (0.53). However, all six models showed statistical
significance and satisfied normality tests for the residual values.
Indeed, the Lilliefors normality test applied to the residuals
obtained from each of these models revealed that the residuals
were normally distributed with p > 0.001. The histograms, and
the QQ plots for the residuals are provided in Figure 3.

3.4. Results From the Geographically
Weighted Regression
The geographically weighted regression yields coefficients for
each risk factor for every state. We show the state-wise
coefficients for the most significant explanatory variable for each
ethnicity in Figure 4. Empty spaces for states in Figure 4 indicate
that ethnicity-wise data was not available for those states for the
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TABLE 8 | Linear models with infection and mortality rates as response variables for Hispanic.

Linear regression models with infection rate in Hispanic population as a response variable

Preliminary model Final model

β(95%CI) Pr(> t) VIF β(95%CI) Pr(> |t|) VIF

(Intercept) 2.32 (1.56, 3.083) <0.01*** 2.34 (1.63, 3.04) <0.01***

Diabetes −0.03 (−0.11, 0.05) 0.439 44.72 0.04 (0.03, 0.052) < 0.01*** 1.00

Poverty 0.00 (−0.04, 0.04) 0.931 1.04 0.01 (−0.02, 0.05) 0.489 1.00

BMI30+ 0.15 (0.05, 0.24) 0.003*** 74.89

Age60+ −0.83 (−0.20, 0.04) 0.162 37.24

HBP 0.02 (−0.10, 0.13) 0.783 61.21

CVD −0.08 (−0.18, 0.02) 0.113 40.27

R2
= 0.67,R2

adj = 0.60, n = 33 R2
= 0.51,R2

adj = 0.48, n = 41

F(6, 26) = 8.97,p < 0.01*** F(2, 38) = 19.52,p < 0.01***

Linear regression models with mortality rate in Hispanic population as a response variable

Preliminary model Final model

β (95%CI) Pr (> t) VIF β (95%CI) Pr (> |t|) VIF

(Intercept) 2.07 (−0.96, 3.18) 0.001*** 2.51 (1.60, 3.42) < 0.01***

Age60+ −0.05 (−0.20, 0.10) 0.504 37.24 0.09 (0.06, 0.12) < 0.01*** 1.00

Poverty −0.04 (−0.10, 0.01) 0.138 1.04 −0.047 (−0.09,−0.00) 0.043** 1.00

Diabetes −0.04 (−0.14, 0.06) 0.398 44.72

BMI30+ 151 (0.03, 0.27) 0.002** 74.89

HBP −0.02 (−0.16, 0.13) 0.828 61.21

CVD −0.04 (−0.17, 0.08) 0.487 40.27

R2
= 0.71,R2

adj = 0.63, n = 32 R2
= 0.55,R2

adj = 0.53, n = 42

F(6, 25 ) = 9.98,p < 0.01*** F(2, 39) = 23.93,p < 0.01***

The first column shows preliminary model along with the VIFs for each explanatory variable. The second column indicates the model obtained using maximum VIF elimination algorithm.

“*” significance at p < 0.1, “**” significance at p < 0.05, and “***” significance at p < 0.01.

corresponding risk factors. The p-values for the most significant
explanatory variable and state-wise R2 values obtained from the
GWRmodel are included in Supplementary Figures S4, S5.

4. DISCUSSION

Our analysis of the nationwide data revealed that geographical
location, and other COVID-19 risk factors affect different
ethnicities in a dissimilar way. We observed that the disparate
burden of the pandemic was most prominent on the NHB
and Hispanic communities. This observation is supported by
Anyane-Yeboa et al. (56) and Escoba et al. (57) other studies.
In particular, the rate of infection was exceptionally high for
the Hispanic community compared to their population share.
Discordant impact on NHB and Hispanic populations has been
reported by Centers for Disease Control (58) and studied using
data from metropolitan cities and combining selected states,
but the nationwide study is limited. In our work, this effect
was observed in the four US regions separately and also when
all the states’ data was aggregated. When considered the four

regions individually, we found that the excessive infection rate
in the Hispanic community was most prominent in the South
region. However, compared to the Hispanic group’s infection
rates, their mortality rates were statistically lower in all regions of
the US. This apparent discrepancy could be because the Hispanic
community is the youngest of the four ethnic groups considered
in our study (59). The infection rate of NHB population was
higher compared to their population share in the Midwest, and
the Northeast than other regions.

The correlation analysis confirmed that the COVID-19
related risk factors such as advanced age, cardiovascular disease,
diabetes, hypertension, and obesity are highly interrelated. This
finding is consistent with numerous studies. For example,
Mokdad et al. (60) show that obesity (BMI≥ 30) was significantly
associated with diabetes, hypertension, high cholesterol, asthma,
and arthritis. Wilson and Kannel (61) conclude that obesity and
diabetes are associated with atherogenic risk factors. Abdullah
et al. (62) also conclude that obesity is associated with type
2 diabetes. We also found that “within” an ethnic group,
poverty was uncorrelated or weakly correlated with infections
and mortality for all three ethnic groups, implying that poverty
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FIGURE 3 | Histograms and fitted normal curves along with QQ plots of the residuals for linear regression for NHW, NHB, and Hispanics groups. The linear models

are based on infections and mortality rates as response variables.
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FIGURE 4 | Map showing the coefficient values for the most significant variables for the GWR models constructed on predictors used in linear regression for NHW,

NHB, and Hispanics data. The states with no color indicate that the ethnicity-wise data on the corresponding risk factors was not available in those states.

is an “independent” risk factor for COVID-19. This finding is
supported by Elgar et al. (32) and Oronce et al. (33) which we
discussed in section 1.4.

After eliminating variables with high multicollinearity, we
formulated robust and parsimonious linear models for NHW,
NHB, and Hispanic populations. The linear models described
in section 3.3 reveal that “obesity” encapsulates many other co-
dependent risk factors for the infection and mortality in NHW
and NHB groups. This finding is expected in light of numerous
studies (61, 63). Obesity and diabetes are well-established risk
factors for COVID-19. In these two conditions, adipose tissue
is compromised, which can directly or indirectly get involved
in interaction with SARS-CoV-2, the pathogen responsible for
COVID-19 disease (64). Thus, it is not surprising that obesity
highly influences the regression models for NHW and NHB with
death rate as a response variable. However, the degree of influence
of obesity on infection rates and mortality is noteworthy, with
obesity emerging as the most significant factor contributing to
the infection rates and mortality for the NHW and NHB groups.

The Hispanic community markedly differs from NHW, and
NHB with respect to the results of the linear models. Diabetes
was the most significant factor for infection rate in Hispanics,
while advanced age emerged as most significant for mortality.
The effect of advanced age on Hispanic mortality could be also
due to the relatively younger, and thus working-age, population
of Hispanics (59) in the US.

The regression models indicate a strong association of poverty
with a high infection rate, followed by death for all ethnic
groups studied. This finding is in agreement with several studies
focusing on the association of low socioeconomic status, which
increases the exposure to COVID-19 (31, 65). People with low
socioeconomic status avail healthcare services at an advanced

stage of illness, thus experience a worse prognosis. The disease
burden associated with obesity is linked to socioeconomic status
and race (28). Ethnic minorities and populations with low
socioeconomic status have been disproportionately affected in
previous pandemics (5, 6, 8). Evidence from the COVID-19
pandemic is not an exception to the above fact. To this end, public
health strategies to control the current and future pandemics
need to take these ethnicity-specific effects into account to
mitigate the spread and severity of the disease.

The linear regression furnishes global and static coefficients
for the explanatory variables. However, the geographically
weighted regression gives coefficients that are geographically
varying. We see in Figure 4 the variability in the coefficients
of the GWR. We note that the neighboring states seem to
have similar coefficients, indicating similarity in the risk factors
in nearby states. Obesity is the most prominent risk factor
amongst the NHW and NHB populations, and diabetes and
advanced age seem to be more influential in the Hispanic
community. The GWR results for the Hispanic group showmore
variability than the NHW group, which could be due to the
higher percentage of people of Hispanic origin in southern and
western states. The local R2 map in Supplementary Figure S5

also indicates that the GWR model fits the NHW and NHB
groups better than the Hispanic group. We plan to explore
the geographical variation of the risk factors in more detail in
future work.

4.1. Limitations
As discussed in section 2.2 and noted by other researchers (36, 38)
there is a lack of consistency and availability of COVID-19 related
data. Our study does not include data from the state of New
York, since the state does not make the ethnicity wise data
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available. Moreover, the data we use is state wise statistics of
the various risk factors. However, we note that the observations
made using such data is consistent with those made by
other researchers.

4.2. Practical Implications of the Study
Although racial and ethnic disparities in COVID-19 infections
and mortality are becoming increasingly clear from several
studies based on available data, drivers of these disparate
outcomes remain less understood at a national level. Our models,
based on the nationwide data, indicate that “obesity” effectively
encapsulates the effect of other co-dependent factors for NHW,
and NHB populations (section 3.3). The link between COVID-
19 infection severity and obesity is noted by Watanabe et al.
(66) even in the early stages of the pandemic. Similarly, during
the H1N1 pandemic of 2009 (67, 68) observed that obesity was
associated with higher mortality.

Another implication from our work is that the Hispanic
community is more susceptible to the COVID-19 infection.
This observation is valid throughout the US. This situation
could be remedied via public policy changes and awareness
of the issue. The disproportionate impact of COVID-19
on the minority population is largely attributed to existing
socioeconomic inequities. The low-income minority population
are often compelled to work in an environment with higher risk
of disease exposure, live in a crowded accommodation, and lack
adequate access to healthcare. The government support to low-
income families in the form of the CARES Act, Consolidated
Appropriations Act, 2021, Department of Treasury US (69) and
the American Rescue Plan Act of 2021 (70) are critical but
might not be sufficient to fully mitigate observed disparity
in infection and mortality rates. Our analysis indicates that
certain subpopulations of the minority population are at higher
risk of COVID-19 infection and mortality. Identifying these
vulnerable subpopulations, such as Hispanics with diabetes
or age over 60 years, and prioritizing additional attention to
these populations could enable a more efficient allocation and
utilization of resources. Increased effort toward educating and
raising awareness on COVID-19 and associated risk factors
could also be an effective method to develop community
resilience. One potential avenue to improve awareness on
COVID-19 will be through recruiting volunteers to educate
the vulnerable population. For example, “Philly counts” (71), a
program supported by the Philadelphia Department of Public
Health, initially created for Census 2020, currently helps direct
community engagement efforts for the COVID-19 vaccine.
Extending similar initiatives to populations with major risk
factors such as obesity could result in a major beneficial impact
on overall COVID-19 burden.

5. CONCLUSION

Several researchers have concluded that several health conditions,
poverty, and geographical location affect the COVID-19
prognosis. Studies have shown that the COVID-19 pandemic has

impacted some minorities in the US more severely than other
groups. Our work focused on quantifying this distinct effect of
various COVID-19 risk factors on different ethnicities in the US
during the first pandemic wave.

To this effect, we included Non-Hispanic White, Non-
Hispanic Black, Hispanic, Non-Hispanic Asians. Our work has
revealed differences in the way the COVID-19 pandemic affected
various ethnic groups. We observed that the infection rates in
the Hispanic population were disproportionately larger than the
share of their population across all regions of the US. This
effect was most prominent in the South region. The NHA
populations consistently had lower infection rates and mortality
rates compared to their population. Furthermore, we studied
the following risk factors in this work: advanced age, obesity,
cardiovascular diseases, diabetes, hypertension, and poverty for
NHW, NHB, and Hispanic populations. We aimed to quantify
the different effects of these risk factors on various ethnicities.
To this end, we constructed linear models with infection and
mortality rates as the response variables. We eliminated variables
causing multicollinearity from our models, leading to robust
linearmodels. Ourmodels indicate that “obesity” parsimoniously
describes the impact of other co-dependent comorbidities for
NHW and NHB populations (section 3.3). However, for the
infection rates in the Hispanic group, the factor leading to the
robust linear model was the prevalence of diabetes. On the
other hand, advanced age was more significant for COVID-
19 related mortality for the Hispanic community. We also
established “poverty” as an independent risk factor for infection
and mortality amongst the three ethnicities: NHW, NHB, and
Hispanics. The findings in this study quantified ethnicity-
specific effects of COVID-19 risk factors, which we hope could
be mollified with public policy interventions and community
engagement.
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Objectives: As the United States (U.S.) population rapidly ages, the incidence

of Alzheimer’s Disease and Related Dementias (ADRDs) is rising, with racial/ethnic

minorities affected at disproportionate rates. Much research has been undertaken to

test, sequence, and analyze genetic risk factors for ADRDs in Caucasian populations, but

comparatively little has been done with racial/ethnic minority populations. We conducted

a scoping review to examine the nature and extent of the research that has been

published about the genetic factors of ADRDs among racial/ethnic minorities in the U.S.

Design: Using an established scoping review methodological framework, we

searched electronic databases for articles describing peer-reviewed empirical studies or

Genome-Wide Association Studies that had been published 2005–2018 and focused on

ADRD-related genes or genetic factors among underrepresented racial/ethnic minority

population in the U.S.

Results: Sixty-six articles met the inclusion criteria for full text review. Well-established

ADRD genetic risk factors for Caucasian populations including APOE, APP, PSEN1,

and PSEN2 have not been studied to the same degree in minority U.S. populations.

Compared to the amount of research that has been conducted with Caucasian

populations in the U.S., racial/ethnic minority communities are underrepresented.

Conclusion: Given the projected growth of the aging population and incidence of

ADRDs, particularly among racial/ethnic minorities, increased focus on this important

segment of the population is warranted. Our review can aid researchers in developing

fundamental research questions to determine the role that ADRD risk genes play in the

heavier burden of ADRDs in racial/ethnic minority populations.

Keywords: genetic risk factors, Alzheimer’s disease, race, ethnicity, minority, review

INTRODUCTION

As the United States (U.S.) population rapidly ages, the incidence of Alzheimer’s Disease and related
dementias (ADRD) is on the rise (1, 2). Alzheimer’s Disease (AD) is the sixth leading cause of death
in the U.S. and the fifth leading cause of death for those age 65 years and older (1, 2). In the U.S.,
5.7 million people are living with AD, which is projected to grow to 13.9 million adults (3.3% of the
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population) by 2060 (2). Although the primary risk factor
for ADRD is age, race, and ethnicity are also associated with
ADRD (2–4).

The U.S. population is becoming more racially and ethnically
diverse, with Census projections showing that the country will
be a “majority–minority” nation by 2050. That is, racial/ethnic
minorities will comprise more than 50% of the population by
this date (5). African Americans are twice as likely as Non-
Hispanic Whites to have AD, while Hispanics are 1.5 times
as likely to have AD compared to their Non-Hispanic White
counterparts (1). Also by 2050 in the U.S., it is estimated that
the proportion of racial/ethnic minorities who suffer from AD
will double in size compared to current figures (6). Regarding
rates of diagnoses, in particular, African Americans are diagnosed
later in the course of ADRD than White patients. Quinones
et al. (7) suggest that this is likely due to cultural factors
and normalization of ADRD symptoms as part of the usual
aging process. There are also noted disparities in cognitive
decline and impairment with racial/ethnic minorities suffering
greater cognitive decline after ADRD diagnosis compared to
other groups (8–10), potentially related to socio-economic
resources, such as education quality, development of cognitive
reserve, financial means, and early midlife stressors (7).
Racial/ethnic health disparities in the U.S. proliferate, are
multilayered, and are rooted in a variety of structural and
historical inequalities that continue to disproportionately burden
racial/ethnic minorities. These disparities underscore the need to
examine the factors underlying ADRD in racial/ethnic minority
U.S. populations.

As our population ages and the size of our minority
populations increase in the U.S., understanding the burden
of ADRD on our aging populations can aid in providing
insight into the most appropriate and effective public
health actions. For example, to provide the best care and
community support for aging minority populations, it is
valuable to understand any patterns of genetic risk factors
to address comorbid disease management, environmental,
and socio-economic factors that may affect ADRD
prevention, diagnosis, and progression. Similarly, more precise
knowledge of differences in prevalence of ADRD in minority
populations is useful for policy planning when allocating
resources, ensuring access to care, and improving quality of
care (11).

Much research has been undertaken to test, sequence, and
analyze genetic risk factors for ADRD in White populations, but
comparatively little has been done with racial/ethnic minority
populations (12). In fact, examining genetic factors in heath
disparities research has sometimes led to intense controversy
(13, 14), oftentimes for concern of the racialization of medicine,
misuse of pharmacogenomics, and racial biology (15–17). In
studies that have explored ADRD genetic risk factors in
minorities, the study sizes have been relatively small, making
the conclusions about genetic associations less powerful. Some
data appears to show differences in the genetic etiologies between
Caucasians and African Americans, especially relating to the
APOE gene, which needs to be explored further (11, 18, 19).

There are multiple types of AD classified by age at onset
and method of inheritance. The two main categories from a
genetic perspective are Early Onset Alzheimer’s Disease (EOAD)
and Late Onset Alzheimer’s Disease (LOAD). According to the
National Institute on Aging website, EOAD is also referred
to as Familial Alzheimer’s Disease and follows an autosomal
dominant inheritance pattern, meaning that only one allele from
either parent is required to cause disease. EOAD is caused
by mutations in three genetic loci, APP, PSEN1, and PSEN2
(20–22). Late Onset Alzheimer’s Disease, which is also referred
to as Sporadic Alzheimer’s Disease, is polygenic, meaning that
multiple genes along with environmental factors contribute to
the risk of AD, age of onset, and severity of disease (20, 21).
APOE is one of the most well-established genetic risk factors
for LOAD and has implications for risk of other types of AD
(20, 21).

The APOE e4 allele is a strong risk factor for Sporadic or
Late-Onset Familial AD, with the degree of risk increased with
two copies of the allele (homozygous e4/e4), but possession
of an e4 allele is not in itself necessary to produce AD or
sufficient alone to cause the disease (23). Homozygosity in
genetics refers to an individual with two copies of the same
allele at a particular genetic loci or gene, while heterozygosity
refers to the presence of two different alleles at a loci or
gene (24). The effects of homozygosity and heterozygosity
for the e4 allele has been studied extensively in European
American populations, with homozygotes having a 12 times
increased risk of LOAD, and heterozygotes having a 2–3
times increased risk of LOAD (18, 19). In African American
populations and Hispanic populations, e4 heterozygosity or
homozygosity does not correlate with increased risk of AD,
indicating that other genetic and environmental factors are
responsible for the increased incidence and prevalence of AD in
these populations (25–27).

Examining genetic risk factors for ADRDs in minority
populations can deepen our understanding of the interaction
between biological or genetic factors and socio-ecological
determinants of health. It also has the potential to aid in
preventive care and early diagnosis for these populations with
greater incidence of ADRDs (28). To better understand the
risk profile of racial/ethnic minorities who are impacted by
ADRD, research should be conducted to comprehend the disease
mechanism in these populations, including influential genetic
risk factors. If advances in genomic medicine continue to be
valid, reliable, and promising, racial/ethnic minorities should be
afforded the opportunities to participate in research at similar
rates as their White counterparts (13). Other systematic reviews
have been conducted in this general subject area. These reviews
have had a more segmented focus, with some examining one
specific gene and others focusing on a specific population (29,
30). Additional scoping or systematic reviews were focused on
a single type of ADRD, such as Lewy Body Dementia or LOAD
(31, 32). To explore this gap in the literature, we conducted a
scoping review to examine the nature and extent of research that
has been published about the genetic factors of ADRDs among
racial/ethnic minorities in the U.S.
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METHODS

Search Strategy and Selection Criteria
Our study protocol was developed using the established and
peer-reviewed scoping review methodological framework and
updated based on prior ADRD-focused scoping reviews (33–
38). Scoping reviews are a useful format used to explore fields
of study not already well-explored or defined. A scoping review
is a “preliminary assessment of the potential size and scope of
available research literature. It aims to identify the nature and
extent of research evidence” [(39), p. 31]. Scoping reviews can be
utilized for a variety of research purposes including discovering
the scope of existing research in a field of study, in order to
identify gaps in the literature for future study. Scoping reviews
can also be used to explore the need for a systematic review and
the potential value of a systematic review (34, 38).

The databases used to conduct the search were PubMed,
CINAHL, and Science Direct. We chose to limit the search to
those articles published from 2005 to 2019, as 2005 is when
next generation DNA sequencing was available, allowing for
more extensive genetic studies with larger sample sizes (40). We
conducted a search within the databases using a combination of
three concepts: (1) ADRD Genes, (2) Populations and Minority
Groups, and (3) ADRDs. The search used a combination of terms
from the three concepts to find articles relevant to our research
questions. Specific ADRD candidate gene terms were chosen by
recent data from Genome Wide Association Studies (GWAS)
(41, 42). Some included terms were:APOE, beta Amyloid Protein
Precursor, CD2AP, Genetic Predisposition to Disease, PSEN1,
PSEN2, STM2, APP, TREM2, African American, Alaska Native,
Arabs, Asian American, Ethnic Groups, Hispanic American,
Native American, Jews, Minority Groups, Alzheimer’s Disease,
Dementia, Lewy Bodies, Lewy Body Disease. Inclusion criteria
for the review were (1) articles published after January 1, 2005,
(3) available in English, (3) peer reviewed empirical studies or
Genome-Wide Association Studies (GWAS) (4) that focus on or
include an underrepresented minority population in the U.S., (5)
that focus on ADRDs, and (6) that focus on ADRD-related genes
or genetic factors.

Data Extraction and Synthesis
The study selection process included three interrelated steps:
Title/abstract reviews, full-article reviews, and reviewers’
examination of reference lists from full articles to identify articles
for possible inclusion (43). First, five out of nine of our team
members were randomly assigned to review the 1,134 article titles
and abstracts in Covidence systematic review online software,
with each abstract randomly assigned to two reviewers. Two team
members were designated as arbitrators for review discrepancies.
When a discrepancy occurred between reviewers (e.g., one
“Yes, include in the review” and one “No, do not include
in the review”), the designated team members arbitrated the
discrepancy.When both randomly assigned reviewers marked an
abstract as “Yes” for inclusion, Covidence automatically moved
it into the full article review list. Once all titles and abstracts were
reviewed twice and all discrepancies arbitrated, the research team
then performed a complete review of the resulting 115 articles.

Seven team members were randomly assigned a set of articles for
full review and the same inclusion and exclusion criteria were
used. A data abstraction tool was developed to facilitate review
of the full articles and to abstract relevant data. The tool included
21 questions to aid in summarizing the key characteristics of
each article. Discrepancies on final article selection and data
extraction were then arbitrated by two team members with
consultation with the rest of the research team. Once all full
articles had been determined, the abstracted data were converted
to a Microsoft Excel file for management.

RESULTS

Studies Identified
From the searches in all three databases there were a total of
1,891 articles and 14 additional articles identified from reference
lists, for a total of 1,905. We removed 771 duplicates, for a
total 1,134 articles for the abstract review stage. During the title
abstract review we excluded 1,019 articles due to the following
reasons: published outside of the date range, article not available
in English, dissertation, metanalysis, systematic review, scoping
review, not focused on ADRD, not focused on minority U.S.
population, not focused on ADRD genetic factors. After title
abstract review, 115 articles remained for full text review. An
additional 49 articles were excluded during the full-text review
stage if the criteria were not met through examination of the full
article. The full text review resulted in 66 included articles (see
Figure 1).

Populations and Genes Examined
Tables 1, 2 present the general characteristics of the studies
included in the full-text review. Table 3 presents a detailed listing
of the characteristics of the articles that were included in the full-
text review. Among the resulting 66 studies, most of the studies (n
= 41, 62%) were focused on African Americans as the population
of interest followed by those focusing on the Hispanic population
(n = 28, 42%). Asian American populations were examined in
seven out of the 66 studies (11%), and Native American/Alaska
Natives populations were included in only one study (1.5%)
(Table 1).

There were many different study designs represented in our
results. The most common study design was a case control
study design, with 18 included articles using this design.
The next most frequently found study design was cross-
sectional with 15 included studies in this category. There
were nine GWAS which is expected because candidate risk
genes for ADRD in minority populations have not been
fully established. There were five longitudinal studies in the
results and two case studies. Lastly, there were five studies
that could not be classified into one of these categories
(Table 1).

Many different types of ADRDs were represented in our
search results. The most frequently examined type of AD in our
results was LOAD (n = 26, 40%), followed by AD (n = 12, 18%)
and EOAD (n= 7, 11%). Vascular Dementia was the focus of four
articles out of the total 66 results (n= 4, 6%). BothMild Cognitive
Impairment (MCI) and Cognitive Decline were examined in two
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FIGURE 1 | PRISMA chart. Source: Moher et al. (43).

articles each (n = 2, 3%). Lewy Body Dementia was the subject
of one article (n = 1, 1.5%). Lastly, there were 20 articles that
did not specify a particular ADRD designation (n = 20, 30%)
(Table 2).

In terms of specific ADRD risk genes, APOE was examined
in most studies, with 44 out of 66 included studies examining
this genetic risk factor. Other potential ADRD risk genes that
were examined by multiple studies included ABCA7, CLU, CR1,
PICALM, APP, PSEN1, SORL1 and AKAP9, APP, and PSEN1 are
well-established genetic risk factors for EOAD, but in total, they
were examined in only eight out of 66 included studies (Table 2).

DISCUSSION

Our findings provide an overview of the published literature
examining the association between genetic factors and ADRD
risk among racial/ethnic minorities in the U.S. These findings
help to illuminate knowledge gaps and suggest whether further
study should be undertaken to assess more comprehensively the
role that ADRD genes play in AD rates and disease outcomes for
minority populations.

Regarding the extent of the genes examined in the studies
that we found, APOE was examined in most studies, with 44
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TABLE 1 | Characteristics of studies included in the full-text review (N = 66).

Characteristic Number Percentage (%)

Publication year

2005–2006 7 10.6

2007–2008 6 9.1

2009–2010 5 7.6

2011–2012 9 13.6

2013–2014 15 22.7

2015–2016 9 13.6

2017–2018 15 22.7

Race/Ethnicitya

African American 41 62.1

Hispanic American 28 42.4

Asian American 7 10.6

Native American/Alaska Native 1 1.5

Sample size

0–100 3 4.5

101–500 11 16.7

501–1,000 10 15.2

1,001–1,500 11 16.7

1,501–2,000 7 10.6

2,001–2,500 4 6.1

2,501–3,000 2 3.0

3,001–3,500 2 3.0

3,501–4,000 0 0.0

4,001–4,500 1 1.5

4,501 or more 15 22.7

Type of study

Case-control 18 27.3

Cross-sectional 15 22.7

Cohort 12 18.2

Genome Wide Association Study (GWAS) 9 13.6

Longitudinal 5 7.6

Other 5 7.6

Case report/case study 2 3.0

aSome articles included multiple races/ethnicities in the study sample.

out of 66 included studies examining this genetic risk factor.
This corresponds with extant ADRD genetic risk factor research
findings in general, as APOE is the most well-established genetic
risk factor for Sporadic or LOAD (23). We found that well-
established ADRD genetic risk factors for Caucasian populations
including APOE, APP, PSEN1, and PSEN2 have not been studied
to the same degree in minority U.S. populations. The APOE
genotype has been shown to be less predictive of ADRD risk
in African American, Asian American, Hispanic American, and
Native American populations (26, 27, 29, 98). Other genetic
risk factors may play a larger role in ADRD genetic risk in
these populations, with potential candidates including genes with
various functions such as ABCA7, CLU, CR1, PICALM, SORL1,
AKAP9, and TREM2 (26, 27, 29, 98, 109). These genes were
noted in our review, however with far less frequency than APOE.
Preliminary findings indicate that there may be a more complex

TABLE 2 | Type of ADRD and risk genes identified in full-text review articles

(N = 66).

Characteristic Number Percentage (%)

Type of ADRDa

Lewy Body Dementia 1 1.5

Mild Cognitive Impairment 2 3.0

Cognitive Decline 2 3.0

Vascular Dementia 4 6.1

Early onset AD (EOAD) 7 10.6

Alzheimer’s Disease 13 19.7

Type of ADRD not specified 20 30.3

Late Onset AD (LOAD) 26 39.4

ADRD risk genes identifiedb

PSEN2 1 1.5

AKAP9 2 3.0

GRIN3B 2 3.0

SORL1 2 3.0

CR1 3 4.5

APP 4 6.1

PSEN1 4 6.1

ABCA7 6 9.1

CLU 6 9.1

PICALM 7 10.6

APOE 43 65.2

Other 42 63.6

aSome articles examined more than one type of ADRD. bSome articles included multiple

risk genes.

polygenic profile of ADRD genetic risk in these populations, and
this has potential implications for the possible polygenic nature
of ADRD risk in all populations (27, 59, 87).

In comparison to the amount of research that has been
conducted on Caucasians in the U.S., we found that some
minority communities were vastly underrepresented in the
research, namely Hispanics, Native Americans, and Asian
Americans. Though the number of studies on ADRD genetic
risk factors in minority populations has increased over time,
especially for certain populations such as African Americans,
more comprehensive studies with large sample sizes should
be performed to establish key genetic risk factors for these
populations as well (27, 109–112). Among the studies in our
review, sample size for non-GWAS studies started as low as N
= 19 for a case report design. As the sample size increases and
more diverse persons are included, additional, more statistically
sound conclusions can be made about the associations between
genetic expression and disease outcome.

Additionally, comparative studies with both minority and
majority population group samples would be useful in examining
genetic risk factors, as well as the effects of environment and
other factors. Studies exploring genetic risk factors in these
populations is warranted to determine the role that both genes
and environmental factors play in increased ADRD risks in these
populations. A larger, systematic review of existing literature
on genetic risk factors for minority U.S. populations would be
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TABLE 3 | Detailed listing of studies included in the full-text review.

Author and year Study design URM group Data source Sample size* Type of ADRD Gene(s) included

Akomolafe et al. (44) Case-control African American MIRAGE Study 511 cases,

679 controls*

EOAD, LOAD NOS3, APOE

Arnold et al. (45) Cohort Puerto Rican Original data 283 EOAD, LOAD PSEN1

Beeri et al. (46) Longitudinal, cohort African American ACCORD-MIND Study 466 Cognitive Decline HP

Borenstein et al. (47) Prospective, cohort Japanese American The Kame Project 1,859 Alzheimer’s disease APOE

Borenstein et al. (48) Prospective, cohort Japanese American The Kame Project 1,859 Vascular Dementia and

Alzheimer’s Disease

APOE

Bressler et al. (49) GWAS African Americans The ARIC Study 10,359* LOAD APOE, ABCA7, BIN1,

CD2AP, CDS33,

CELF1, EPHA1,

MS4A4E, NME8,

PICALM, PKT2B,

ZCWPW1,

Campos et al. (50) Case-control Hispanic Americans,

Amerindians

Original data 56 cases, 56 controls* Alzheimer’s Disease APOE

Carrion-Baralt et al. (51) Cohort Puerto Ricans Original data 87 Alzheimer’s Disease APOE

Conway et al. (52) Case-control, targeted

sequencing

African Americans Mayo Clinic 5,924 cases, 5,173

controls*

EOAD, LOAD, Lewy

Body Dementia

ABI3, APOE, PLCG2

Cukier et al. (53) Case-control African Americans,

Caribbean Hispanics

HIHG and ADGC data

sets

149 cases, 137

controls*

LOAD ABC1, ABCA7

Desai et al. (54) Case-control African Americans ADRC data set 1,059 cases, 716

controls*

LOAD BDNF

Edwards-Lee et al. (55) Family study African Americans Original data 7 EOAD (autosomal

dominant)

APP, PS1, MAPT

Erlich et al. (56) Case-control study African Americans MIRAGE Study 520 cases, 677

controls*

Alzheimer’s Disease PON1, PON2, PON3

Fitten et al. (57) Cross-sectional study Hispanic Americans ADRC data set, OVMC

data set

290* Alzheimer’s Disease,

Vascular Dementia

APOE

Ghani et al. (58) Case-control, GWAS Hispanic Americans Washington

Heights-Inwood

Columbia Aging

Project, Estudio

Familiar de Influencia

Genetica de Alzheimer

Study

547 cases, 542

controls*

LOAD APOE, CLU, PICALM,

BIN1

Gonzalez et al. (59) Cohort study Hispanic Americans The Hispanic

Community Health

Study/Study of Latinos

(HCHS/SOL)

10,887* Alzheimer’s Disease APOE

Harwood et al. (60) Cross-sectional study African Americans,

Hispanic Americans

Original data 685 Alzheimer’s Disease APOE

He et al. (61) Cross-sectional study African Americans,

Hispanic Americans

Original data 439 Mild Cognitive

Impairment (MCI)

APOE

Hendrie et al. (62) Case-control study African Americans Original data 221 cases, 218

controls

MCI, Dementia,

Alzheimer’s Disease

APOE

Hohman et al. (63) Case-control, GWAS African Americans ADGC 1,840 cases, 3,804

controls

LOAD APOE, STM2, ABCA7,

CR1, PICALM, BIN1,

EPHA1, CD33,

SLC24A4, GRIN3B,

FERMT2, MS4A6A

Janicki et al. (64) Cohort study African Americans,

Hispanic Americans

Washington Heights

Inwood Columbia

Aging Project

(WHICAP)

1,686* Alzheimer’s Disease APOE, CYP19

(Continued)
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TABLE 3 | Continued

Author and year Study design URM group Data source Sample size* Type of ADRD Gene(s) included

Jin et al. (65) Case-control African Americans Knight-ADRC +

NIA-LOAD, Mayo

Clinic, Indiana

University, WHICAP,

Emory University

906 cases, 2,487

controls*

LOAD TREM2

Janicki et al. (66) Prospective Cohort

study

African Americans,

Hispanic Americans

WHICAP 1,686* Alzheimer’s Disease ESR1

Kim et al. (67) Longitudinal

prospective

community-based

study

African Americans IIDP 1,858* AD, Dementia CD2AP, CBS, DTWD2,

DYNC111, JRKL-AS1,

BIRC8, HCY

Kuller et al. (68) Longitudinal cohort

study

African Americans Pittsburgh

Cardiovascular Health

Study

532 LOAD APOE

Kunkle et al. (69) Case-control study,

GWAS

African Americans HIHG/CWRU, NIMH

Genetic Studies of

Alzheimer’s Disease

Cohort,

NCRAD/NIA-LOAD,

African American

Alzheimer’s Disease

Genomics Coalition

(AAADGC)

2,762 cases, 2,812

controls*

LOAD ABCA7

Kwon et al. (70) Cohort study African Americans,

Hispanic Americans

Original data 1,309* LOAD APOE

Lee et al. (71) Nested Case-control

study, prospective

African Americans,

Hispanic Americans

Original data 296 cases, 428

controls*

AD SORL1

Lee et al. (72) Family-based cohort

study, GWAS

Caribbean Hispanic Original data 1,161 individuals from

209 families

Familial LOAD APOE, PSEN1, 5q15,

7q36.3, 14q32.12,

17q25.1, 17p13

Lee (73) Family-based

case-control and

unrelated case-control

study, GWAS

Caribbean Hispanics ADRC 693 cases, 442

controls*

LOAD APOE, 12p13

Lee (74) Nested case-control

GWAS

Caribbean Hispanics WHICAP and EFIGA

datasets

549 cases, 544

controls

LOAD CLU, PICALM, BIN1,

PSEN1, GHITM,

C10orf99, PCDH21,

LRT2, LRT1, RGR,

DGKB, HPCAL1,

ODC1

Lee (75) Family-based cohort

study

Caribbean Hispanics WHICAP and EFIGA

datasets

2,888 EOAD, LOAD PSEN1, SNX25,

PDLIM3, SORBS2,

SH3RF3, NPHP1

Livney (76) Cross-sectional study African American,

Hispanic Americans

Original data 1,341 AD APOE

Logue (77) Case-control study African Americans MIRAGE,

GenerAAtions, ADNI,

GenADA, NIA-LOAD,

FHS

3,568 cases, 6,205

controls*

APOE, PVRL2, CLU,

PICALM, BIN1, EPHA1,

MS4A, ABCA7, and

CD33, TOMM40

Logue et al. (78) Case-control African Americans MIRAGE Study,

GenerAAtions Study

422 cases, 394

controls

EOAD, LOAD AKAP9, APOE, BIN1,

CLU, CR1, PICALM,

MS4A6E, CD2AP,

CD33, ABCA7, EPHA1,

SORL1, ACE, PSEN1,

PSEN2, APP

(Continued)
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TABLE 3 | Continued

Author and year Study design URM group Data source Sample size* Type of ADRD Gene(s) included

Logue et al. (79) Case-control African Americans MIRAGE Study,

GenerAAtions Study,

National Cell

Repository for

Alzheimer’s Disease

(NCRAD),

Ibadan/Indianapolis

(INDY) Study

489 cases, 472

controls

LOAD ABCA7, AKAP9,

KIAA0196, KANSL1,

CNN2, TRIM2

Marden et al. (80) Cohort African Americans Health and Retirement

Study (HRS)

7,690* AD and Dementia APOE, BIN1, CLU,

ABCA7, CR1, PICALM,

MS4A6A, CD33,

MS4A4E, CD2AP

Marden et al. (81) Cohort African Americans HRS 8,253* AD APOE, CLU, CR1,

PICALM

McAninch et al. (82) Cohort African Americans Original data 12,348* AD DIO2

Melville et al. (83) Case-control African Americans MIRAGE Study, ADNI

Study

1,146 cases, 956

controls*

AD, MCI APOE, PICALM,

F5/SELP, LHFP,

GCFC2, SYNPR,

TTC27

Mez et al. (84) Case-control African Americans ADGC, GenerAAtions,

MIRAGE, CHAP

1,825 cases, 3,784

controls

LOAD APOE, ABCA7, COBL,

SLC10A2

Mount et al. (85) Cross-sectional,

retrospective

African Americans ADCR 65 LOAD APOE

Murrell et al. (86) Cohort African Americans Original data 480 LOAD APOE

N’Songo et al. (87) Cohort African Americans Original data 198 cases, 350

controls

EOAD APP, PSEN1, PSEN2

O’Bryant et al. (88) Cohort Mexican Americans Project

FRONTIER, TARCC

1,628 MCI APOE

O’Bryant et al. (89) Cohort, CBPR Mexican Americans Project

FRONTIER, TARCC

1,069* MCI, AD APOE

Olarte et al. (90) Population-based,

case series

Hispanics HCFA 680 Sporadic and familial

AD

APOE

Pedraza et al. (91) Case-control African Americans Mayo Clinic Alzheimer’s

Disease Research

Center Data, Mayo

Clinic Study of Aging,

Mayo Clinic

LOAD-GWAS

476 cases, 2,443

controls*

LOAD CLU, CR1, PICALM

Peila et al. (92) Nested case-control Japanese-Americans Honolulu-Asia Aging

Study (HAAS), Honolulu

Heart Program (HHP)

283 cases, 573

controls

AD, Vascular Dementia APOE, TGF-β1

Petrovich et al. (93) Longitudinal, cohort Japanese-Americans The Honolulu-Asia

Aging Study

375 AD APOE

Qian et al. (94) Prospective, cohort Latinos NACC, Rotterdam

Study, Framingham

Heart Study, and

Sacramento Area

Latino Study (SALSA)

16,844* AD APOE

Rajabli et al. (95) Case-control African Americans,

Hispanic Americans

HGDP (Human

Genome Diversity

Project)

1,986 cases, 3,899

controls*

LOAD APOE

Reitz et al. (96) Case-control African Americans and

Caribbean Hispanics

Toronto dataset,

NIA-LOAD, MIRAGE

Caucasian dataset,

MIRAGE African

American dataset,

Miami Caucasian,

Caribbean Hispanic

dataset

2,809 cases, 3,482

controls

AD SORCS1, APP, Aβ,

SORL1

(Continued)
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TABLE 3 | Continued

Author and year Study design URM group Data source Sample size* Type of ADRD Gene(s) included

Reitz et al. (97) Case-control Caribbean Hispanics DMS-IV,

NINCDS-ADRDA

160 cases, 294

controls

LOAD IDE, KIF1, HHEX

Reitz et al. (98) Case-control African Americans CHAP, MARS/CORE,

UM/VU

1,968 cases, 3,928

controls

LOAD ABCA7, APOE

Rippon et al. (99) Family-based cohort

study

Latinos NINDCS-ADRDA 1,498 Familial AD APOE

Roses et al. (100) Cohort African Americans,

Japanese Americans

Bryan ADRC

Database/Repository,

Coriell Cell Repositories

447* LOAD TOMM40, APOE

Sacyzynsky et al. (101) Cohort Japanese-Americans The Honolulu Heart

Program, Cooperative

Lipoprotein Study

929 Dementia APOE

Sawyer et al. (102) Prospective cohort African Americans Duke EPESE Study 2,076* Cognitive decline (CD) APOE

Simino et al. (103) Cohort African Americans CHARGE, the NHLBI

Exome Sequencing

Project

1,414* AD Amyloid-β, KLKB1,

F12, PLIN2, ITPRIP

Tosto et al. (104) Cohort Caribbean Hispanics NIA-LOAD, EFIGA 8,116* LOAD APOE ε4

Vardarajan et al. (105) Case-control African Americans ADGC 8,309 cases, 7,366

controls*

AD APP, KIAA1033, SNX1,

SORL1, SNX3, RAB7A

Vardarajan et al. (106) Family and

cohort-based genetic

association study

Caribbean Hispanics Original data 464 familial

subjects—(350

affected, 114

unaffected), 498

unrelated controls

LOAD SORL1

Weiner et al. (107) Case-control Choctaw Indians Original data (Choctaw

Indians) and UT

Southwestern

Alzheimer’s Disease

Center (ADC)

78 cases, 39 controls* AD APOE

Yu et al. (108) Longitudinal, cohort African Americans Religious Orders Study

(ROS), Rush Memory

and Aging Project

(MAP), Minority Aging

Research Study

(MARS)

2,388* AD APOE, TOMM40

*Article included multiple races/ethnicities in the study sample.

an appropriate next step in better understanding the existing
study landscape with intentions toward implementing GWAS
and meta-analyses for diverse U.S. populations.

Knowledge gaps in the disease mechanism among
racial/ethnic minority populations is a critical indicator
of inequities in genetics and genomics research in these
communities, as well as a lack of equity in the health care system
for these groups (112). Advancements in genetic medicine
and genomic research proliferate, unfortunately not at the
same rate for all persons. The impact that disproportionate
expansion, innovation, and progress in the field can have
on health disparities is significant (12, 112). With that in
mind, it is also important to acknowledge that while genetic
inquiry is crucial to understanding the disparities present in
ADRD, it is not the sole risk factor. Other factors such as
environment and socio-environmental context, are implicated
in the distribution of racial health disparities, and in fact, the
complex interplay of all these factors contribute to many disease
outcomes (12, 113, 114).

Of additional consideration as an important implication
of this research, particularly for minority populations, is the
potential of stigma related to ADRD diagnosis. Some groups
have been found to consider dementia as a normal part of
aging (115), while others may find shame in an AD diagnosis
or the need to keep such health information private (116–118).
We highlight these studies as further evidence of the need to
focus research in racially and ethnically diverse communities.
Furthermore, we acknowledge that such research should consider
both quantitative and qualitative approaches.

This study is not without limitations. First, while we
conducted a systematic and structured process for the scoping
review, we did not evaluate the quality of the evidence presented
or the authors’ research methods as part of this review. Second,
some studies more clearly identified the characteristics of interest
for our review than others, and as such, some of the data
presented was left to the interpretation of the authorship team.
Third, we acknowledge that there is limited generalizability of our
findings to research that has been conducted in the U.S. among
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racial/ethnic minorities. That said, we find that an important
strength of this review is in identifying the knowledge gaps in
examining and understanding the genetic factors associated with
ADRD among racial/ethnic minority populations, which is of
growing disease and economic burden in the U.S.

CONCLUSION

Based our findings, we recommend that additional studies be
undertaken to map out and more deeply explore ADRD genetic
risk factors among racial/ethnic minority populations in the
U.S. at levels comparable to non-minority populations. An
increased number of larger scale studies of racially/ethnically
diverse persons can aid researchers in making more powerful
conclusions about genetic associations in ADRD among
populations most affected. Examining genetic risk factors for
ADRDs in minority populations can deepen our understanding
of the interaction between biological or genetic factors and socio-
ecological determinants of health. Furthermore, understanding
the role of genetic predisposing factors has the potential to
increase preventive health measures and screening, which could
lead to reduced time to diagnosis and improved ADRD disease
management. Lastly, ethical concerns about the impact that this

knowledge of genetic risk factors may have on the health and
well-being of individuals must be addressed as we continue to
obtain more data on these genetic factors. As our population ages
and the size of our minority populations increase in the U.S.,
understanding the burden of ADRD on our aging populations
can aid in providing insight into the most appropriate and
effective public health actions.
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Activity for the Mechanism of HCV
Induced Hepatocellular Carcinoma
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Regression-based approaches are widely used in causal mediation analysis. The

presence of multiple mediators, however, increases the complexity and difficulty of

mediation analysis. In such cases, regression-based approaches cannot efficiently

address estimation issues. Hence, a flexible approach to mediation analysis is needed.

Therefore, we developed a method for using g-computation algorithm to conduct

causal mediation analysis in the presence of multiple ordered mediators. Compared

to regression-based approaches, the proposed simulation-based approach increases

flexibility in the choice of models and increases the range of the outcome scale. The

Taiwanese Cohort Study dataset was used to evaluate the efficacy of the proposed

approach for investigating the mediating role of early and late HBV viral load in the effect

of HCV infection on hepatocellular carcinoma (HCC) in HBV seropositive patients (n =

2,878; HCV carrier n= 123). Our results indicated that early HBV viral load had a negative

mediating role in HCV-induced HCC. Additionally, early exposure to a low HBV viral load

affected HCC through a lag effect on HCC incidence [OR = 0.873, 95% CI = (0.853,

0.893)], and the effect of early exposure to a low HBV viral load on HCC incidence was

slightly larger than that of a persistently low viral load on HCC incidence [OR = 0.918,

95% CI = (0.896, 0.941)].

Keywords: causal inference,mechanism investigation,mediation analysis, path-specific effect, multiplemediators

INTRODUCTION

Epidemiology studies and other health-related studies often investigate the overall effect of a certain
risk factor or exposure on health-related outcomes. Confirmation of such effects facilitates further
elucidation of possible biological mechanisms. Path analysis and mediation analysis are often used
to investigate causal mechanisms because they can decompose these effects into several pathways
according to the involvement of various mediators of interest (1). Mediation analysis aims to assess
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how exposure affects the outcome of interest through mediators
and sheds deep insight into the underlying mechanism of
the relationship between the exposure and outcome. Causal
mediation analysis, a branch of mediation analysis, explicitly
defines the causal effects of interest based on a counterfactual
(potential) outcome model (2–4). The counterfactual model
denotes the hypothetical outcome (here, it indicates the
“counterfactual level” of a certain variable of interest) an
individual would have, under a hypothetical condition when
the same individual had received a particular intervention on
previous variables. It is called “counterfactual” because this
individual might not have received this intervention in real
world. Since causal mediation analysis accounts for non-linearity
of outcomes and interactions between exposure and mediator,
it expands the use of mediation analysis to more general
conditions (2, 5–7). Additionally, in scenarios involving a single
fixed exposure and a single mediator, several techniques have
been proposed to account for various outcome scales, including
dichotomous variables (8), time-to-event variables (9–12), and
many others (13, 14).

In multiple mediator settings, i.e., settings involving more
than one mediator, however, mediation analysis is often
challenging. One example is the extreme complexity of
decomposing the effects of hepatitis C virus (HCV) infection on
hepatocellular carcinoma (HCC) in the presence of hepatitis B
virus (HBV) activity, which was the motivation for this study
(15, 16). Figure 1 shows that the mediation analysis assumed
causal relationships among HCV infection status, HBV viral
load at baseline, HBV viral load at follow up, and HCC status.
Baseline HBV viral load activity was used to represent the current
status of HBV activity; baseline HCV infection status was used
to represent relatively long-term HCV infection status. That
is, HCV infection status was assumed to precede HBV viral
load, which was considered a reasonable assumption. The role
of HBV viral activity in this mechanism in HBV sero-positive
patients at baseline and during follow up was investigated by
using mediation analysis to decompose the effects into four paths
(Figure 2). Effects in each of the four paths (i.e., the path-specific
effects, PSEs) can be categorized as (1) paths only through change
in early HBV viral load (PSE1); (2) paths only through change
in late HBV viral load (PSE2); (3) paths through change in early
HBV viral load that further impacts late HBV viral load (PSE12);
and (4) paths not through change in early or late HBV viral
load (PSE0). Decomposition of the overall effect into four PSEs
facilitates understanding of the role of HBV viral activity and
when the role of HBV viral activity is critical. These data can
then be used to reduce the HCC incidence in patients with dual
virus infection.

Before conducting mediation analysis in this case,
the two settings must be differentiated according to the
relationships between mediators. In the first setting, mediators
are independent of each other conditioned on all previous
covariates, including baseline confounders and the exposure.
In this setting, which is also referred to as “parallel” or “non-
ordered” multiple mediators, the motivating example is rational
only if early HBV viral load does not affect late HBV viral
load. The standard causal mediation analysis framework for a

FIGURE 1 | Causal relationship among HCV infection status (HCV), HBV viral

load at baseline (HBV1), HBV viral load at follow-up (HBV2), and HCC

status (HCC).

FIGURE 2 | Four path-specific effects (PSEs), as well as four interventional

PSEs, to be decomposed from the overall effect of HCV infection on the

incidence of HCC. PSE1: the path through the HBV1 only; PSE2: the path

through the HBV2 only, PSE12: the path through HBV1 which further impacts

HBV2; and PSE0: the path not through HBV1 or HBV2. PSE, path-specific

effect; HCV, hepatitis C virus; HBV, hepatitis B virus; HCC,

hepatocellular carcinoma.

single mediator is easily extended to this setting by performing
a sequential mediation analysis of each mediator. Notably,
methods have also been developed for simultaneous analysis
of parallel mediators (17, 18). Apparently, however, the above
parallel setting does not fit our motivating example since early
HBV viral activity would surely affect viral activity at follow up.
In the case of early HBV viral activity, the alternative setting,
“ordered” or “sequential” multiple mediators, is reasonable.
Unfortunately, effect decomposition in this setting is infeasible
since some PSEs cannot be identified by empirical data without
additional strong assumptions (15, 19–21). For example, to
identify full PSEs in the presence of two ordered mediators, the
assumption of independence between two counterfactuals of the
mediator is proposed for identification (21). This independence
assumption is extremely strong and unrealistic. Without further
assumptions, only partial effect decomposition, which evaluates
the cumulative PSEs, can be achieved.

Specifically, only PSE2, PSE0, and the sum of PSE1 and PSE12
are identifiable. However, PSE1 and PSE12 cannot be further
distinguished, even without time-varying and unmeasured
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baseline confounders. Two strategies for resolving this problem
are possible. First, the overall effect can be decomposed into
the three components described above (16, 22, 23). We can
further pool all ordered mediators as a single mediator, and
decompose the total effect into effect either through or not
through this pooled mediator (18, 20). The second approach
is to measure the upper and lower bounds of PSE through
sensitivity analysis under causal framework (24, 25). However,
point estimate of PSE still cannot be obtained through this
method (21). Previously, Lin and VanderWeele proposed an
interventional approach to estimate analogs of PSEs under no-
unmeasured-confounding assumptions with a regression-based
approach (26). The concepts of the interventional approach
and PSE were also adopted by VanderWeele, Vansteelandt,
and Robins (20) for mediation analysis with a single mediator
in the presence of an exposure-induced mediator-outcome
confounder. Note that their work only derives the direct
effect, the sum of two PSEs passed through the mediator,
and the indirect effect, the sum of two PSEs without passing
through the mediator. Meanwhile, Vansteelandt and Daniel
also proposed a new interventional approach, which has no
assumption of structure among mediators, for deriving PSEs
(27), but different from Lin and VanderWeele’s method, they
still cannot distinguish PSE12 from the other PSEs. A limitation
of Lin and VanderWeele’s method is that the link function
of outcome model has to be linear or log-linear, and that
it cannot be adapted for a non-linear or generalized linear
models. Moreover, unlike the analysis of overall effect, the
analytical solutions for all PSEs estimates vary substantially in
different models even when the linear function of outcome
model is linear or log-linear. Therefore, the software of
the regression-based approach can only be applied to few
model choices.

To remedy this research gap, we adopted the simulation-
based approach based on g-computation algorithm to provide
a flexible computational algorithm for the estimation of
causal mediation analysis. g-computation algorithm was first
introduced by Robins in 1986 to estimate the causal effect
of a time-varying exposure in the presence of time-varying
confounders that are affected by exposure (3). Recently, the
simulation-based approach has been widely used for standard
causal mediation analysis (27–34). Thesemethods usually involve
using maximum likelihood estimation (MLE) to fit a set of
parametric models and then using g-computation algorithm
and bootstrapping methods to generate point and interval
estimates, respectively. This simulation-based approach provides
the flexibility to choose models and variables without considering
an analytic form. This approach also obtains more stable
and efficient estimates compared to weighted approach (14,
31, 35). Therefore, simulation-based approach is useful for
investigating mechanisms when the outcome variable does not
fit the requirements of a linear regression model. Therefore, this
study used this approach to develop a method of performing
mediation analysis in scenarios involving two ordered multiple
mediators. The proposed method was then used investigate
the mechanisms through which HCV induces HCC through
HBV activity.

FIGURE 3 | Relation among exposure A, two ordering mediators M1 and M2,

outcome Y, and covariates C. A: exposure, M1: the first mediator, M2: the

second mediator, Y: outcome, C: covariates.

MATERIALS AND METHODS

Data Description of the REVEAL-HBV
Study
This study was motivated by the Risk Evaluation of Viral Load
Elevation andAssociated Liver Disease/Cancer–Hepatitis B Virus
(REVEAL-HBV) study (36). The details of the REVEAL-HBV
study design and participant enrollment have been illustrated
in literatures (36–39). 23,820 Taiwanese residents aged 30–65
years were recruited from 1991 to 1992. Among the participants,
2,878 were HBV-positive, of which 188 developed HCC during
the follow-up period. Written informed consent for interview
questionnaires, health examinations, biospecimen collection, and
data linkage of health status with death certification profiles and
National Cancer Registry were obtained. Blood samples collected
at enrollment were examined for seromarkers and viral load
of HBV and HCV. Newly diagnosed HCC was recorded using
computerized data linkage with National Cancer Registry and
death certification systems.

Notation, Definition, and Effect
Decomposition for Dichotomous Outcome
Let A denote the exposure, Y a dichotomous outcome, M1 the
first mediator, M2 the second mediator, and C a set of baseline
covariates. For example, A is HCV infection status, Y is an HCC
event before the end of follow up, M1 is early HBV viral load,
and M2 is late HBV viral load. Let A =1 and A = 0 denote
two hypothetical levels of exposure: HCV infection and non-
infection, respectively. Figure 3 graphically illustrates the causal
relationships among A, Y, M1, M2, and C based on substantive
prior knowledge. Figure 4 is the case of more than two mediators
as well as time-varying mediator-outcome confounders, which
are affected by exposure. For simplicity, however, we assume
the absence of time-varying confounders, and we assume the
presence of only two ordered mediators of interest.

Counterfactual outcome models are used to define four
PSEs corresponding the four paths in Figure 2 based on causal
theory (2–6, 19, 40). For the individual i, Yi(a) denotes the
counterfactual level of Yi if this individual had received an
intervention on exposure A as level a. Similarly, M2i(a, m1)
denotes the counterfactual level of M2i if this individual had
received an intervention on exposure A as level a and on the first
mediator M1i as level m1. Here, the notation can be simplified by
removing the subscript i.
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FIGURE 4 | Relation among exposure A, three ordering mediators M1, M2,

and M3, outcome Y, baseline covariates C, and time-varying

mediator-outcome confounder C1. A: exposure, M1: the first mediator, M2: the

second mediator, Y: outcome, C: baseline covariates, C1: time-varying

mediator-outcome confounder.

For a dichotomous outcome, the total effect may be expressed
on risk difference (RD), risk ratio (RR), or odds ratio (OR) scale.
Although software used to perform simulation-based approaches
provides the results of all scales, the OR scale is used throughout
this discussion since OR is the most frequently used scale for
dichotomous outcomes. The total effect in OR scale, ORTE(1,0),
is defined as Odds(Y(1))/Odds(Y(0)), where Odds(B) is defined
as Pr(B = 1)/Pr(B = 0) for any dichotomous variable B [e.g. Y,
Y(1), or Y(0)]. The definitions of RD and RR scales are detailed
in Appendix A.

When investigating a mechanism with two mediators M1 and
M2 of interest, the total effect (ORTE) can be decomposed into
four PSEs: path not through M1 or M2; path through M1 only;
path through M2 only; and path through M1 and then through
M2; these four PSEs are expressed in OR scale as ORPSE0, ORPSE1,
ORPSE2, and ORPSE12, respectively, and are defined as follows:

ORPSE0 = Φ(1, 0, 0, 0)/Φ(0, 0, 0, 0)

ORPSE1 = Φ(1, 1, 0, 0)/Φ(1, 0, 0, 0)

ORPSE2 = Φ(1, 1, 1, 0)/Φ(1, 1, 0, 0)

ORPSE12 = Φ(1, 1, 1, 1)/Φ(1, 1, 1, 0) (1)

where Φ(a1,a2,a3,a4) is defined as
Odds(Y(a1,M1(a2),M2(a3,M1(a4)))). Here, Y(a1,
M1(a2),M2(a3,M1(a4))) denotes the counterfactual value of
outcome Y if the exposure is set to a1, the first mediator is set
to M1(a2), and the second mediator is set to M2(a3,M1(a4)) (or
the counterfactual value of M2 if exposure is set to a3 and first
mediator is set to M1(a4)). The ORTE is the product of four PSEs
in OR scale, which can be expressed as

ORTE = ORPSE0×ORPSE1×ORPSE2×ORPSE12 (2)

While Equation (1) gives a definition of four PSEs decomposed
from TE, the decomposition of TE is not unique. For
example, ORPSE0 = Φ(1,1,1,1)/Φ(0,1,1,1), ORPSE1 =

Φ(0,1,1,1)/Φ(0,0,1,1), ORPSE2 = Φ(0,0,1,1)/Φ(0,0,0,1), and

ORPSE12 = Φ(0,0,0,1)/Φ(0,0,0,0) are alternative decomposition
of TE. For two sequential mediators, 24 possible decompositions
have been provided in the previous study (21). This work
primarily focuses on the decomposition type defined in Equation
(1). The following identification and estimation are valid no
matter which decomposition is used.

Interventional Approach to Identification
The Φ(a1,a2,a3,a4) can be non-parametrically identified only
when a2 is equal to a4. Consequently, only ORPSE0, ORPSE2

and the sum of ORPSE1 and ORPSE12 are identified by empirical
data. Here, we introduce an interventional approach: instead
of defining the four paths as four traditional PSEs, the
four paths are defined as four interventional path-specific
effects (iPSEs). In an earlier work, these paths were referred
to as randomly interventional analogs of PSEs (26). The
advantage of the interventional approach is that all iPSEs can
be non-parametrically identified under the assumption of no
unmeasured confounding factors. (26). In OR scale, the paths are
denoted ORiPSE0, ORiPSE1, ORiPSE2, and ORiPSE12 and are defined
as follows:

ORiPSE0 = Ψ (1, 0, 0, 0)/Ψ (0, 0, 0, 0)

ORiPSE1 = Ψ (1, 1, 0, 0)/Ψ (1, 0, 0, 0)

ORiPSE2 = Ψ (1, 1, 1, 0)/Ψ (1, 1, 0, 0)

ORiPSE12 = Ψ (1, 1, 1, 1)/Ψ (1, 1, 1, 0) (3)

where Ψ (a1,a2,a3,a4) is defined as
Odds(Y(a1,G1(a2),G2(a3,G1(a4)))). Here, we set the exposure
as a1, the first mediator as G1(a2), and the second mediator
as G2(a3,G1(a4)). For any value of a and m, G1(a) is the
random draw of M1(a), and G2(a,m1) is the random draw
of M2(a,m1). In this setting, Y(a1,G1(a2),G2(a3,G1(a4)))
denotes the counterfactual value of outcome Y . Consequently,
G2(a3,G1(a4)) is the random draw of M2(a3,G1(a4)) while
G1(a4) is the random draw of M1(a4). As in the conventional
definition, the interventional definition for each path replaces the
counterfactual level of each mediator with its random draw. We
further define the product of four ORiPSE as the interventional
total effect (iTE), which can be expressed in OR scale as the
following equation:

ORiTE = ORiPSE0×ORiPSE1×ORiPSE2×ORiPSE12 (4)

TheORiTE are very similar to the standardORTE but not identical
(14, 35). Therefore, as in the effect decomposition of ORTE, the
interventional decomposition can be viewed as its analog. The
interpretations obtained when using iTE and iPSE, which are
defined according to the stochastic interventions, differ from
those of TE and PSE. These interpretations might be the best
interpretations for a mechanism investigation as only the upper
and lower bounds on PSE can be identified by empirical data
even without time-varying confounders. Since iPSEs are PSEs
analogs, iPSEs can still capture pathways. For example, ORiPSE12

is non-zero only under the following conditions: (1) the change
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in the exposure affects the distribution of the first mediator;
(2) the change in the first mediator affects the distribution
of the second mediator; and (3) the change in the second
mediator affects the distribution of the outcome. In extremely
pathological settings, iPSEs may fail to represent the effects
obtained by traditional PSEs. One example is the case of no
overlap among individuals in whom the exposure affects the
first mediator, individuals in whom the first mediator affects
the second mediator, and individuals in whom the second
mediator affects the outcome. In this case, ORiPSE12 is non-
zero while ORPSE12 is under null. In contrast, in the case
of complete overlap among all of these individuals (i.e., in
the case of complete overlap among individuals in whom the
exposure affects the first mediator, individuals in whom the
first mediator affects the second mediator, and individuals in
whom the second mediator affects the outcome) ORiPSE12 is
biased toward null. Further research on this topic in needed
to elucidate the deviation between PSE and its interventional
version in different scenarios and to extend the applications of
our method.

To identify Ψ (a1,a2,a3,a4) and to identify ORiPSE and ORiTE,
four no-unmeasured-confounding assumptions are required:

Assumption (1) no-unmeasured-confounding between the
relationships of exposure and outcome

Assumption (2) no-unmeasured-confounding between the
relationships of mediators and outcome;

Assumption (3) no-unmeasured-confounding between the
relationships of exposure and mediators;

Assumption (4) no-unmeasured-confounding between the
relationships of two mediators.

Assumptions (1) to (4) are essentially used to avoid
confounding bias in estimating iPSEs. It is worthy to note
that a further cross-world assumption of no exposure-induced
mediator-outcome confounder is commonly made in the
conventional approaches of mediation analysis (9, 15, 21)
but is unnecessary to the interventional approach. Using
random draw permits that iPSEs are identifiable even when an
exposure-inducedmediator-outcome confounder presents. Here,
we consider the case without an exposure-induced mediator-
outcome confounder for identification. The identification result
can be straightforwardly extended to the case where mediator-
outcome confounders are affected by exposure directly. Under
assumptions (1) to (4), ORiPSE and ORiTE are identified
as follows:

ORiTE = V(1, 1, 1, 1)/V(0, 0, 0, 0)

ORiPSE0 = V(1, 0, 0, 0)/V(0, 0, 0, 0)

ORiPSE1 = V(1, 1, 0, 0)/V(1, 0, 0, 0)

ORiPSE2 = V(1, 1, 1, 0)/V(1, 1, 0, 0)

ORiPSE12 = V(1, 1, 1, 1)/V(1, 1, 1, 0) (5)

where V(a1, a2, a3, a4) is defined as Q(a1 ,a2 ,a3 ,a4)
(1−Q(a1,a2 ,a3 ,a4) )

and

Q (a1, a2, a3, a4) =
∑

c

∑

m2 ,m1
Pr [Y = 1|C = c, A = a1,M1 = m1,M2 = m2]

Pr (M1 = m1|C = c, A = a2) ×
∑

m
′

1

Pr
(

M2 = m2

∣

∣C = c,A = a3,M1 = m′

1

)

Pr
(

M1 = m′

1

∣

∣C = c,A = a4
)

Pr (C = c ) (6.1)

If both M1 andM2 are continuous variables, (6.1) are replaced
by integrals (6.2):

Q (a1, a2, a3, a4) =
∫

c

∫

m2 ,m1

{Pr [Y = 1|C = c,A = a1,M1 = m1,M2 = m2]

dFM1|C,A (M1 = m1|C = c, A = a2)} ×
∫

m
′

1

{dFM2|C,A,M1

(

M2 = m2

∣

∣C = c, A = a3,M1 = m′

1

)

dFM1|C,A

(

M1 = m′

1

∣

∣C = c, A = a4
)

}dFC (c ) (6.2)

A previous work provide the proof for a generalized case in the
presence of time-varying confounders (26). Appendix A defines
iPSEs in RD and RR scales.

A logistic regression or other non-linear model can be used
to estimate the conditional probability of outcome. Without
assuming a rare disease (conditional probability of outcome
< 10%), Q(a1,a2,a3,a4) cannot be adequately approximated
by a closed form. Consequently, a regression-based method
is inapplicable, which was our motivation for developing the
proposed simulation-based approach. In the simulation-based
approach, the g-computation algorithm for iPSE is used for point
estimation, and bootstrapping procedures are used for interval
estimation. Since it does not consider the existence of the analytic
form for all estimations, the simulation-based approach provides
flexibility in the selection of statistical models.

Simulation-Based Approach for Estimation
In the proposed simulation-based approach, we use g-
computation algorithm for iPSE point estimation and
bootstrapping procedures for interval estimation. First, we
build parametric models for the outcome and two mediators.
For example, if two mediators are continuous variables and the
outcome is a binary variable, three regression models are built:

logit (Pr (Y = 1|A = a, M1 = m1, M2 = m2, C = c))

= θ0 + θ1a+ θ2m1 + θ3m2 + θcc (7.1)

E (M2|A = a, M1 = m1, C = c)

= β0 + β1a+ β2m1 + βcc (7.2)

E (M1|A = a, C = c) = γ0 + γ1a+ γcc (7.3)
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The simulation-based approach allows for flexible selection
of statistical models. Without considering the existence of the
analytic form for all estimation, we can use any link function
such as complementary log or probit function. Quadratic term
or even log transformation or exposure and an interaction term
between the exposure and the first mediator in model (7.1) can
be included:

clog
(

−log (1− Pr (Y = 1|A = a, M1 = m1, M2 = m2, C = c))
)

= θ0 + θ1a+ θ1sa
2
+ θ1l log (a)

+θ2m1 + θ12am1 + θ3m2 + θcc (8)

After building parametric models for two mediators and
outcome, we fit these models and obtainMLEs for all parameters.
Based on all MLEs, we simulate the point estimations Q(1,1,1,1),
Q(1,1,1,0), Q(1,1,0,0), Q(1,0,0,0), and Q(0,0,0,0) based on
equation (6), as well as four ORiPSE and ORiTE based on
the definition in (5). We generate confidence intervals by
bootstrapping for the PSE inference as follows.

(step 1) Construct a regression model for conditional
distributionM1, M2, and Y .

(1a) Construct a regression model for M1 on A and
all confounders.

(1b) Construct a regression model for M2 on M1, A and
all confounders.

(1c) Construct a regression model for Y on M2, M1, A and
all confounders.

For example, we can construct models using the following
procedure as models (7.1)–(7.3):

M1 = θ1,0 + θ1,aA+ θ̃1,cC̃ + ε1

M2 = θ2,0 + θ2,aA+ θ2,1M1 + θ̃2,cC̃ + ε2

uy =
[

1+ exp
(

−

(

θy,0 + θy,aA+ θy,1M1 + θy,2M2 + θ̃y,cC̃
))]−1

C̃ =
(

C1,C2, . . . ,Cnc

)T

θ̃1,c =
(

θ1,c1 , θ1,c2 , . . . , θ1,cnc

)

θ̃2,c =
(

θ2,c1 , θ2,c2 , . . . , θ2,cnc

)

θ̃y,c =
(

θy,c1 , θy,c2 , . . . , θy,cnc
)

Y ∼ Bernoulli
(

µy

)

, ε1 ∼ normal(0, σ 2
1 ), ε2 ∼ normal(0, σ 2

2 )

(step 2) Fit models with real data to obtain MLE for all
parameters, i.e.

θ̂1,0, θ̂1,a,
ˆ̃
θ1,c, θ̂2,0, θ̂2,a, θ̂2,1,

ˆ̃
θ2,c, θ̂y,0, θ̂y,a, θ̂y,1, θ̂y,2,

ˆ̃
θy,c, σ̂ 2

1 ,

and σ̂ 2
2 .

(step 3) Conduct g-computation algorithm using MLE
and bootstrap.

(3a) Randomly sample the confounders C̃ with replacement
and intervene the exposure A as 1. Use models built in Step
1 and MLEs in Step 2 to generateM1 [denoted as G1 (1 )].

(3b) Randomly sample the confounders C̃ with replacement,
and intervene the exposure A as 0. Use models built in Step
1 and MLEs in Step 2 to generateM1 [denoted as G1 (0 )].

(3c) Randomly sample the confounders C̃, G1 (1) with
replacement, and intervene the exposure A as 1 and M1 as
G1 (1). Use models built in Step 1 and the MLEs in Step 2 to
generateM2 [denoted as G2 (1, G1 (1) )].

(3d) Randomly sample the confounders C̃, G1 (0) with
replacement, and intervene the exposure A as 1 and M1 as
G1 (0). Then use models from Step 1 and MLEs in Step 2 to
generateM2 [denoted as G2 (1, G1 (0) )].

(3e) Randomly sample the confounders C̃, G1 (0) with
replacement, and intervene the exposure A as 0 and M1 as
G1 (0). Use models constructed in Step 1 and MLEs from
Step 2 to generateM2 [denoted as G2 (0, G1 (0) )].

(3f) Randomly sample the confounders C̃, G1 (1),
G2 (1, G1 (1)) with replacement, and intervene the
exposure A as 1,M1 asG1 (1), andM2 asG2 (1, G1 (1)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (1) , G2 (1, G1 (1)) )].

(3g) Randomly sample the confounders C̃, G1 (1),
G2 (1, G1 (0)) with replacement, and intervene the
exposure A as 1,M1 asG1 (1), andM2 asG2 (1, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (1) , G2 (1, G1 (0)) )].

(3h) Randomly sample the confounders C̃, G1 (1),
M2 (0, G1 (0)) with replacement, and intervene the
exposure A as 1,M1 asG1 (1), andM2 asG2 (0, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (1) , G2 (0, G1 (0)) )].

(3i) Randomly sample the confounders C̃, G1 (0),
G2 (0, G1 (0)) with replacement, and intervene the
exposure A as 1,M1 asG1 (0), andM2 asG2 (0, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (1, G1 (0) , G2 (0, G1 (0)) )].

(3j) Randomly sample the confounders C̃, G1 (0),
G2 (0, G1 (0)) with replacement, and intervene the
exposure A as 0,M1 asG1 (0), andM2 asG2 (0, G1 (0)). Use
models built in Step 1 and MLEs from Step 2 to generate Y
[denoted as Y (0, G1 (0) , G2 (0, G1 (0)) )].

(3k) Compute the means Y (a1, G1 (a2) , G2 (a3, G1 (a4))),
for i = 1, 2, 3, 4, and ai ∈ {0, 1}, which is
the g-computation algorithm approximation estimation of
Q (a1, a2, a3, a4, ). Based on formulae (5), we can obtain the
point estimations of iTE and the four iPSEs in the OR scale.
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(3l) Bootstrap to obtain the standard errors and
corresponding 95% confidence intervals. An R package
for this analysis can be downloaded free from webpage
http://shenglin.blog.nctu.edu.tw/methodology/, or see the
Supplementary Material.

A flow chart for the proposed simulation-based approach is
provided in Figure 5. In the approach above, randomly sampling
the confounders can be replaced by just using the observed
confounders if the sample size is large enough. For a small
sample size, the technique of sampling the confounders with
a sufficiently large sampling size could improve the stability
of the g-computation algorithm approximation. The proposed
estimation algorithm in Step 1 demonstrates how to construct
regression models for mediators and the outcome with main
effects. In practice use, the specifications of these regression
models are flexible and are allowed to include any interaction
effect. We evaluated the performance of the proposedmethod via
a simulation study. The detail of simulation settings is provided
in Appendix B, and the result is shown in Section Simulation
Study. In Section Simulation Study, we show the operating
characteristics of the new proposed estimators and compare them
with traditional linear SEM estimators. Additionally, we add
mediator interactions into the outcome model for evaluating the
characteristics of traditional SEM under model misspecification.
We evaluate the two methods by calculating the bias, the
empirical standard errors (ESEs), estimated standard errors
(SSEs), and coverage rates (COVs). ESE is calculated by the
sample standard deviation of estimates over simulations, and
SSE is computed by averaging the standard error estimated
by bootstrap resampling for each replication. ESEs and SSEs
from the bootstrap procedure agree closely for the estimators
of iPSEs, implying that the bootstrap procedure provides valid
inference. Coverage rate is a proportion of the time that the 95%
confidence interval obtained by bootstrap covers the true value
of the parameter. In the simulation study, COVs were calculated
by using 1,000 replications. If all assumptions we used in the
approach are satisfied, COVs should be close to 95%. By contrast,
if any assumptions are not met, COVs would be biased.

RESULTS

Simulation Study
A simulation study is conducted in Appendix B to show
the properties of the proposed estimators and compare them
with traditional linear SEM estimators. The corresponding
simulation code is provided in Appendix C. Results are shown
in Appendix Tables 1 and 2. Without mediator interaction (i.e.
θy,3 = 0), both iPSE and SEM methods have small biases. The
ESE and SSE values are similar in both methods. iPSE produced
slightly larger ESE and SSE values than the SEM method. The
coverage rates of both methods are approximately 0.95. When
there exists interaction between mediators (i.e. θy,3 = 1, 2, 3),
the biases for SEM method increase while the coverage rates
approach zero with the exception of iPSE0 because the SEM
estimate for PSE0 is still unbiased under this scenario. The iPSE
method yielded small bias, and the coverage rate was remained
approximately 95%.

FIGURE 5 | Flow chart for the proposed simulation-based approach. M1, M2,

and Y represent the first mediator, second mediator, and

outcome, respectively.

Application to Taiwanese REVEAL-HBV
Study
The performance of the proposed method was tested in the
Taiwanese REVEAL-HBV dataset. Specifically, the method was
used to investigate the role of HBV viral load in different time
windows as a mediating mechanism in HCV-induced HCC.
Here, the outcome was HCC status at the end of follow up, and
the exposure of interest was HCV status at enrollment. Mediators
M1 and M2 were HBV viral load at baseline and at follow up,
respectively. Baseline confounders included gender, age, smoking
status, and ALT level. All analyses were performed in R 3.4.1.

Path-specific effects were estimated using g-computation
algorithm (number = 100,000) and bootstrap (resampling size
= 1,000). The overall OR of HCV to HCC was 3.122 [95 % CI
= (3.108, 3.226)]. For the four paths, the OR of HCV to HCC
was 3.910 [95 % CI =(3.785, 4.035)] without mediation by (i.e.,
without change in) HBV viral load(iPSE0) ; 0.873 (95 % CI =
(0.853, 0.893) with mediation by baseline but not late HBV viral
load (iPSE1) ; 0.994 [95 % CI =(0.971, 1.018)] with mediation by
late but not baseline HBV viral load (iPSE2); and 0.918 [95 % CI
= (0.896, 0.941)] with mediation by both baseline and late HBV
viral load (iPSE12). Note that a high OR for PSE0 implies that
HBV viral load change conceals the detrimental effect of HCV on
HCC. Table 1 lists the above results along with RD and RR scales.

DISCUSSION

Three common approaches to causal mediation analysis include
regression-based method, weighting method, and simulation-
based method. Since the simulation-based estimation is an
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TABLE 1 | Total interventional effect of HCV infection on HCC incidence: four

interventional path-specific effects with HBV viral load at baseline (M1), HBV viral

load at follow-up (M2) as mediators in scales for risk difference, risk ratio, and

odds ratio.

Estimate SE 95 % CI

(lower bound)

95% CI

(upper bound)

Risk difference

Total effect 0.096 0.001 0.092 0.099

not via M1 or M2 0.127 0.001 0.123 0.130

via M1 only −0.019 0.001 −0.022 −0.015

via M2 only 0.000 0.001 −0.003 0.002

via M1 then via M2 −0.011 0.001 −0.014 −0.007

Risk ratio

Total effect 2.805 0.044 2.718 2.891

not via M1 or M2 3.385 0.050 3.285 3.484

via M1 only 0.893 0.008 0.876 0.911

via M2 only 0.995 0.010 0.975 1.015

via M1 then via M2 0.930 0.009 0.911 0.950

Odds ratio

Total effect 3.122 0.053 3.018 3.226

not via M1 or M2 3.910 0.063 3.785 4.035

via M1 only 0.873 0.010 0.853 0.893

via M2 only 0.994 0.012 0.971 1.018

via M1 then via M2 0.918 0.011 0.896 0.941

HCV, hepatitis C virus; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; SE,

standard error; CI, confidence interval.

approximation of the MLE, it is asymptotically efficient provided
all regression models are correctly specified. Contrarily to
the regression-based method, the weighting estimation cannot
achieve the efficiency bound even if the parametric assumptions
for the weights are correct. Here, our approach is more flexible
as it allows incorporation of non-linear, polynomial or cross-
product interaction terms. Even though OR is the outcome scale
of interest here, our method also allows for other non-linear
outcome scales.

In some applications, portion mediated (PM) is a measure
of interest to assess the proportion of the effect of the exposure
mediated by the mediators. On the risk difference scale for
continuous outcomes, PM for each mediation path is defined
as a ratio of the corresponding iPSE to iTE. For a dichotomous
outcome, a odds ratio scale is adopted to define iPSEs, and
PMs would be defined on the log odds scale (8). Regardless
of on the risk difference scale or the log odds scale, reporting
PMs, however, is generally meaningful only if all of iPSEs are
in the same direction (e.g., all positive or all negative). As the
illustrative example of the Taiwanese REVEAL-HBV dataset, the
effects corresponding to the paths involving HBV were negative
while other effects were positive. In such a case, PM would not be
an appropriate measure to reveal the extent to which mediators
affect the causal effect.

There are several noteworthy limitations. Like all simulation-
based methods, this approach is computationally intensive.
Suppose the time of g-computation algorithm is similar to that
of the regression-based method, the computation time would

be five-hundred-fold if we constructed confidence intervals
by 500 bootstrap repetitions. Note that our approach may
be particularly prone to bias due to model misspecification.
However, this drawback can be resolved by including quadratic
terms for continuous independent variables in regression models
and increasing model flexibility. Moreover, the assumptions
of no unmeasured confounders may be violated and hard to
check. Longitudinal datasets are mostly used to investigate
the causal relationship between the exposure and outcome
variables. Since mediation analysis or path analysis is usually
the secondary analysis of longitudinal datasets, where we mainly
focus on exploration of exposure-outcome relationship instead
of mediator-outcome, mediator-exposure, or mediator-mediator
relationships when collecting confounding variables. We could
include application of sensitivity analysis techniques to address
violations of these assumptions in future research. Furthermore,
estimation of the simulation-based method is unstable when
the sample size is small in relation to the complexity of the
models, though this is not an issue here because the sample
size in Taiwanese HCC cohort is relatively large. It is also
worthy to note that a less complicated model is preferred for
generating more stable estimations despite flexible model choices
in the software.

CONCLUSION

HCC ranks sixth in cancer incidence and third in cancer
mortality and is a major social burden for all nations
(41). Currently, there are about 170 million HCV and 350
million HBV infected cases in the world (42). Our proposed
method partially separates the mechanism of HBV and HCV
infections on the incidence of HCC. Although HBV and HCV
have been confirmed as two etiologic factors for HCC and
classified as human carcinogens by the International Agency for
Research on Cancer (43), their biological mechanisms remains
elusive. Previous studies have shown that HBV and HCV
have subadditive interaction on HCC incidence (44–46), and
that HCV may suppress the expression and duplication of
HBV (47–51). These studies provide evidence that HBV viral
activity change may mask the effect of HCV on the HCC
risk. In addition, a previous study showed that the early HBV
viral activity is an important factor in the development of
HCC (15, 16). However, due to the restriction of traditional
methods, differentiation of the effects of early HBV viral
activity on HCC risk through or not through late HBV
viral activity remained difficult. In this study, we utilized
the interventional approach to show that both pathways are
statistically significant. This result implies that, though the
increased HCC caused by HCV infection is not solely through
the late HBV viral load (iPSE2), both early and late viral
load play important roles in the mechanism. Consequently, the
decreasing HBV viral load in both time-points can partially
prevent the HCC.

Categorical outcomes such as dichotomous or time-to-
event outcomes are common, especially epidemiology and
health-related fields. Although the iPSE can be identified

Frontiers in Public Health | www.frontiersin.org 8 January 2022 | Volume 9 | Article 757942148

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Tai et al. Causal Mediation Analysis With G-Computation

non-parametrically, the existing regression-based method
does not have a closed form (i.e., analytic solution) for non-
linear outcome without the rare disease assumption. With
our approach, we can ensure that the effect decomposition
is applicable for non-linear outcome even without the
rare disease assumption. Finally, in our study only allow
measurement taken at the end of study as the outcome.
It is also important to develop methods for settings with
multiple mediators. This can be done by incorporating
time-to-event outcome with survival models such as
Cox proportional hazard model or accelerated failure
time model.

In conclusion, our approach is powerful and
versatile for settings with multiple mediators where
the traditional PSE is not identified. Furthermore,
we facilitate application for mechanism investigation
in more complicated settings in epidemiology and
health science.
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