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Integrin, beta-like 1 (ITGBL1) protein is located in the extracellular matrix (ECM) and

involved in the development and metastasis of many tumors. However, the regulatory

mechanism of ITGBL1 in colorectal cancer (CRC) remains unclear. This study was to

analyze the expression profile of CRC and to identify the expression change of ITGBL1

gene at different stages of CRC. Survival analysis showed that ITGBL1 was related

to the metastasis of CRC, and CRC patients with a high expression of ITGBL1 had

earlier metastasis. Gene Set Enrichment Analysis (GSEA) indicated the relationship

between ITGBL1 expression and molecular events of CRC. The results indicated

that a high expression of ITGBL1 was linked to Wnt signaling pathway, cell polarity,

and tissue development, while a low expression of ITGBL1 was related to cellular

respiration, electron transfer chain, and oxidative phosphorylation. With the expression

profiles from interstitial and parenchyma CRC tissues, a comparison was made to

determine the difference between high/low expression of ITGBL1 and Wnt signaling

pathway, respectively, and further confirmed the close relation between ITGBL1 and Wnt

signaling pathway. To determine the relation, an interaction network of ITGBL1 and Wnt

signaling proteins was constructed. It was found that β-catenin interacted with multiple

extracellular Wnt signals and could bind to ITGBL1. As a result, the regulatory mechanism

of ITGBL1 in CRC is related to extracellular Wnt signals and may affect extracellular Wnt

signals via β-catenin.

Keywords: colorectal cancer, integrin, beta-like 1 (ITGBL1), Wnt signaling pathway, tumor microenvironment

INTRODUCTION

Integrin, beta-like 1 (ITGBL1) is a β-integrin-related extracellular matrix (ECM) protein. Recently,
studies on ITGBL1 have been increasing, and it was reported that ITGBL1 could promote bone
metastasis of breast cancer through transforming growth factor (TGF)-β signaling pathway (1).
Studies showed that ITGBL1 could promote the invasion of ovarian cancer cell throughWnt/planar
cell polarity (PCP) signaling and focal adhesion kinase (FAK)/Src pathway (2), and high expression
of ITGBL1 was related to the poor prognosis and drug resistance of ovarian cancer (3). In
gastric cancer, ITGBL1 was linked to epithelial–mesenchymal transition (EMT) phenotype and
poor prognosis (4). Studies reported that hypermethylation of ITGBL1 was correlated with poor
prognosis of acute myeloid leukemia (5). Furthermore, studies also revealed that ITGBL1 could
activate nuclear factor (NF)-κB signaling pathway and promote the EMT, invasion, and migration
of prostatic cancer (6). The abovementioned studies revealed that ITGBL1 was associated with the
invasion and metastasis of tumors. It was reported that ITGBL1 was significantly upregulated in
CRC, and its high expression was related to shortened survival of CRC patients. Additionally,
knockdown of ITGBL1 suppressed CRC cell proliferation, migration, and invasion (7). Another
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study showed that ITGBL1 was associated with the overall
survival rate (OSR) and relapse-free survival (RFS) of CRC
patients, and subgroup validation demonstrated that a high
ITGBL1 expression was correlated with shorter RFS in stage II
patients, which suggested that ITGBL1was a promising candidate
biomarker for predicting the relapse of CRC (8). In the earlier
study, a comparison of CRC expression data from normal to
distant organ metastasis (normal, stage I, II, III, IV, liver, and
lung metastasis) was made. There was screening of 39 genes with
continuously increasing expression which contained ITGBL1 (9).
These studies showed that ITGBL1 played a vital role in the
development of CRC. ITGBL1 was involved in the formation
of tumor microenvironment, but the molecular mechanism of
ITGBL1 in CRC remained unclear. Therefore, this study aims
to analyze the molecular mechanism of ITGBL1 in CRC and
determine the regulatorymechanism of ITGBL1 in themetastasis
of CRC.

MATERIALS AND METHODS

ITGBL1 Expression Analysis in Colorectal
Cancer
It was found previously that the expression of ITGBL1 was
continually increasing in CRC. In this study, CRC expression
profiles GSE41258 (54 normal cases, 28 stage I cases, 50 stage
II cases, 49 stage III cases, 58 stage IV cases, 47 liver metastasis
cases, and 20 lung metastasis cases) from the Gene Expression
Omnibus (GEO) database (10) which showed the expression of
ITGBL1 at different stages of CRC were analyzed. Additionally,
we confirmed the expression of ITGBL1 through expression
profile GSE49355 and RNA-sequencing GSE50760. GSE49355
included 18 normal cases and 20 CRC cases with primary focus
and 19 CRC cases with liver metastasis. GSE50760 included 18
normal cases, 18 CRC cases with primary focus, and 18 CRC cases
with liver metastasis. ITGBL1 gene expression in that data was
obtained and divided into different groups according to tumor
progression. The comparison of the difference in each group was
performed by one-way ANOVA test, and P-value was calculated
by Kruskal–Wallis test.

Survival Analysis of ITGBL1 in Colorectal
Cancer
ITGBL1 gene expression was continuously increasing in CRC,
and many studies reported that ITGBL1 was associated with
tumor metastasis. Therefore, a survival analysis of ITGBL1
gene expression and CRC metastasis was conducted by using
expression profile GSE28722 from the GEO database. GSE28722
included 125 CRC cases with data of survival times and
metastasis. ITGBL1 gene expression in those data was obtained
and divided into the high ITGBL1 expression group (n = 62)
and the low ITGBL1 expression group (n = 62) according to
a median value (deleting median). Kaplan–Meier curve (11)
was used to depict the survival curve of the two groups, and
log rank test (12) was performed to analyze the statistical
difference between the two groups with the P-value calculated.
Considering the American Joint Committee on Cancer (AJCC)

staging and the effect of patients’ age (taking 60-year-olds as
the dividing point) on metastasis, and Cox proportional-hazards
regression was performed to further determine the effect of
ITGBL1 on metastasis.

Molecular Mechanism Analysis of ITGBL1
in Colorectal Cancer
To clarify the molecular mechanism of ITGBL1 in CRC, an
analysis of the dataset GSE39582 from the GEO database was
carried out. GSE39582 included 566 CRC cases, which were
divided into the high ITGBL1 expression group (n = 283) and
the low ITGBL1 expression group (n = 283) according to the
median value of ITGBL1 expression (probe ID: 205422_s_at)
based on the Gene Ontology (including biological process,
molecular function, and cellular component) and signaling
pathway (including KEGG pathway and REACTOME pathway).
Enrichment analysis was performed on the high ITGBL1
expression group and the low ITGBL1 expression group by
using Gene Set Enrichment Analysis (GSEA) [false discovery
rate (FDR) < 25%, nominal p < 1%], with the version of gene
set as V7.0 (13). ITGBL1 was mainly located in the ECM and
related to the tumor microenvironment, so GSE35602 was used
to screen the ITGBL1-related differentially expressed gene (DEG)
in the parenchyma and interstitial of CRC. GSE35602 included 12
cases with CRC parenchymal tissue data and 12 cases with CRC
interstitial tissue data. According to the median value of ITGBL1
expression (probe ID: A_23_P408363), ITGBL1 expression data
from CRC parenchymal tissue and interstitial tissue were divided
in the high ITGBL1 expression group (n= 6) and the low ITGBL1
expression group (n = 6), respectively. GEO2R (14) was used to
screen DEG in the high ITGBL1 expression group and the low
ITGBL1 expression group with the P-value limited<0.01 and the
fold change as 4. Based on the DEG, ITGBL1-related molecular
events in parenchymal and interstitial tissues were examined to
elicit the differences between them.

RESULTS

ITGBL1 Expression Change in Colorectal
Cancer
GSE41258, GSE49355, and GSE50760 showed the expression
change of ITGBL1 during the progression of CRC. The results
showed a significant difference of ITGBL1 expression at different
stages of CRC (P < 0.0001, P= 0.0003, and P < 0.0001). ITGBL1
expression was continuously increasing with the development
of CRC (Figures 1A–C), suggesting that ITGBL1 played an
important role in the development and metastasis of CRC.

Survival Analysis of ITGBL1 in Colorectal
Cancer
The analysis on the association between ITGBL1 expression
and the metastasis of CRC patients through dataset GSE28722
showed that ITGBL1 expression was correlated with the
metastasis of CRC (log rank P = 0.0103) [hazard ratio
(HR) = 0.3924 (95% CI: 0.1982–0.7772)] (Figure 1D). ITGBL1
expression was negatively related to the metastasis-free survival,
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FIGURE 1 | (A–C) Expression changes of ITGBL1 in the development and metastasis of colorectal cancer (CRC) (*P < 0.05, **P < 0.01, ***P < 0.001, ****P <

0.0001). (D) Survival curve of ITGBL1 and the metastasis time of CRC patients (Kaplan–Meier survival estimate and univariable survival analysis model). (E) Survival

curve of ITGBL1 and the metastasis time of CRC patients (Cox proportional hazards regression model and multivariate analysis model, excluding the influence of

tumor stages and ages on metastasis time).

FIGURE 2 | Co-expression relationship of ITGBL1 and seven extracellular Wnt signals. Y axis in this figure represented mRNA relative expressions of these seven

extracellular Wnt signals, and X axis represented mRNA relative expressions of ITGBL1. The red line indicated regression line.
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FIGURE 3 | Interaction network of ITGBL1 and extracellular Wnt signal. The red nodes (SFRP2, FZD1, FZD7, FZD8) were extracellular Wnt signals that were

upregulated in the stroma. The purple nodes (SFRP4, DKK2) were extracellular Wnt signals that were upregulated in both the stroma and parenchyma. The blue

nodes (FN1, CTNNB1, COL1A1) were all ITGBL1 binding proteins, and they also bound to extracellular Wnt signal. The green nodes were ITGBL1 binding proteins.

The yellow node was the ITGBL1 protein.

and a high expression of ITGBL1 could promote the metastasis of
CRC. Cox proportional-hazards regression showed that ITGBL1
was an independent factor of CRC metastasis (P = 0.0151).
Patients in the high ITGBL1 expression group had a higher risk
of metastasis than that of the low ITGBL1 expression group [HR
= 2.5345 (95% CI: 1.2012–5.3477)] (Figure 1E).

Molecular Mechanism of ITGBL1 in
Colorectal Cancer
GSEA was performed on the high ITGBL1 expression group
and the low ITGBL1 expression group based on the GSE39582
dataset. It was found that in the high ITGBL1 expression group,
top 20 of biological process in enrichment were mainly related to
Wnt signaling pathway, cell polarity, tissue development, axon,
and morphogenesis. Cellular component was mainly associated
with cell matrix junction, cytoskeleton, and cell membrane.
Molecular function was related to ECM binding, adhesion
molecule binding, integrin binding, and FRIZZLED protein
binding. Signaling pathway related to high ITGBL1 expression
was mainly linked to cytoskeleton, Wnt signaling pathway,
pathway in cancer, and pathway related to tumor development.
In the low ITGBL1 expression group, top 20 of biological
process in enrichment were mainly related to cellular respiration,
electron transfer chain, and oxidative phosphorylation (see
Supplementary Material). Those results demonstrated that
ITGBL1 was involved in various molecular events in the
progression of CRC and was mainly related to cell adhesion.
Enrichment analysis showed that Wnt signaling pathway in
the high ITGBL1 expression group occurred frequently in the
biological process, which suggested that ITGBL1might be closely
related to Wnt signaling pathway.

DEG screening was performed on CRC parenchymal tissue
and interstitial tissue based on the dataset GSE35602. In
parenchymal tissue, resulting in 137 upregulated genes (SERP4
had the highest significant difference) and 17 downregulated

genes in the high ITGBL1 expression group. In interstitial
tissue, there were 343 upregulated genes (SERP2 and SERP4
had the highest significant difference) and 38 downregulated
genes in the high ITGBL1 expression group. GSEA was used to
analyze 12 cases with CRC interstitial tissue data, and the results
were similar to GSE39582 analysis. This further confirmed
the accuracy of the enrichment analysis. In enrichment result
of molecular function, Wnt protein binding ranked first in
the high ITGBL1 expression group, which proved the close
association between ITGBL1 expression and Wnt signaling
pathway in the interstitial tissue of CRC. Based on the GSEA
analysis of GSE39582, 31 genes with enrichment function
in KEGG_WNT_SIGNALING_PATHWAY were obtained.
Intersection was performed between those 31 genes and
upregulated genes in the high ITGBL1 expression group in
CRC parenchymal tissue and interstitial tissue, respectively.
In interstitial tissue, seven intersected genes (SFRP2, WNT2,
FZD1, FZD7, FZD8, SFRP4, and DKK2) were attained. In
parenchymal tissue, two intersected genes (SFRP4 and DKK2)
were obtained. So, SFRP4 and DKK2 were significantly expressed
in both parenchymal tissue and interstitial tissue. The encoded
proteins of those genes were mainly located in the cell membrane
or ECM as the extracellular signal protein of Wnt signaling
pathway. Co-expression analysis was performed between the
above seven genes and ITGBL1 using 222 microarray data
of CRC obtained in The Cancer Genome Atlas (TCGA) (15)
by using cBioPorta (16). It was observed that SFRP4 was
the most relevant gene with ITGBL1 expression, and other
genes were also correlated with ITGBL1 in varying degrees
(Figure 2). PrePPI was performed to analyze the interaction
relationship between ITGBL1 and the seven proteins. Cytoscape
(17) was applied to construct protein–protein interaction
network by selecting proteins with combining probability
more than 0.8. It is found that six out of seven of those
genes (proteins) could be bound to ITGBL1 indirectly, and

Frontiers in Oncology | www.frontiersin.org 4 March 2020 | Volume 10 | Article 2598

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qi et al. ITGBL1 Regulatory Mechanism in CRC Metastasis

CTNNB1 (β-catenin) was the key protein (Figure 3). Hence,
those six Wnt-related genes were upregulated in the high
ITGBL1 expression group and had co-expression relationship
with ITGBL1. The encoded proteins of those six genes could
bind to CTNNB1, and CTNNB1 could bind to ITGBL1,
which suggested that CTNNB1 played an important role
in the regulatory mechanism of ITGBL1 in the metastasis
of CRC. According to the GSEA analysis of GSE39582,
REACTOME_BETA_CATENIN_INDEPENDENT_WNT_
SIGNALING ranked first in the enrichment of REACTOME,
which also suggested the important role of CTNNB1 in the
relationship of ITGBL1 and Wnt signaling pathway.

DISCUSSION

ECM is closely related to the invasion and metastasis of tumors
and involved in the formation of the tumor microenvironment.
ITGBL1 is located in the ECM and related to the tumor
microenvironment. This study analyzed the expression change
of ITGBL1 at different stages of CRC and determined that
ITGBL1 expression was associated with the metastasis of CRC.
By analyzing the expression profile of CRC, it was discovered that
ITGBL1 was closely related to extracellular Wnt signals (SFRP2,
WNT2, FZD1, FZD7, FZD8, SFRP4, and DKK2) via CTNNB1.
CTNNB1 (β-catenin) is a key protein of Wnt signals and linked
to the development of tumor (18). As reported, CTNNB1 could
affect autophagy in glioblastoma, and cell autophagy was related
to the tumor microenvironment (19) and was also involved in
adrenocortical carcinomas (20). Molecular mechanism related
in CRC was correlated with CTNNB1; for instance, genetic
variations of the CTNNB1 were related to the progression
of CRC (21). SNX3 could inhibit the metastasis of CRC via
downregulating β-catenin (22), miR-150 could suppress the
metastatization process of CRC by inhibiting β-catenin (23).
FOXM1 could promote the growth and metastatization process
of CRC by activating β-catenin (24). In the serum of patients
with CRC, the expression of β-catenin was higher than that in
normal people (25). In addition to CTNNB1, this study also
found that extracellular Wnt signals (SFRP2, WNT2, FZD1,
FZD7, FZD8, SFRP4, and DKK2) were correlated with ITGBL1
expression. Those proteins and ITGBL1 were cell membrane
or extracellular proteins and had higher relation with ITGBL1
in the interstitial tissue of CRC. Those proteins were closely
related to the development of CRC. For instance, methylation
could inhibit gene expression and hypermethylation of SERP2
and was negatively associated with the invasion of CRC (26).
Depletion of WNT2 could inhibit CRC (27), while cancer-
associated fibroblasts (CAFs)-derived WNT2 could promote

the progression of CRC. Moreover, FZD8 might be a WNT2
receptor (28, 29), while miR-375 could suppress human CRC
metastasis by inhibiting FZD8 (30). FZD1 is a Wnt responsive
gene in colon-derived tissues which were expressed in CRC, and
paracancerous normal mucosa was involved in Wnt signaling
within the tumor microenvironment (31). RNA interference-
mediated silencing of FZD7 inhibited invasion in CRC, and its
expression was associated with the activation of Wnt signaling
(32). High expression of SFRP4 was correlated with advanced
CRC (33), and CRC patients with overexpressed SFRP4 had
lower overall survival (34). DKK2 expression accelerates aerobic
glycolysis and promotes angiogenesis in CRC (35). Therefore,
those extracellular Wnt signals were related to activation of
Wnt signaling pathway and the metastatization of CRC. The
study established that the regulatory mechanism of ITGBL1
in the development and metastatization of CRC might be
closely related to those proteins. Hence, ITGBL1 is closely
associated with the metastatization of CRC and involved in the
tumor microenvironment.
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Background: The PI3K/Akt/mTOR pathway in part impacts tumorigenesis through

modulation of host immune activity. To assess the effects of Akt inhibition on the

tumor micro-environment (TME), we analyzed tumor tissue from patients with operable

hormone receptor positive, HER2 negative breast cancer (BC) treated on a presurgical

trial with the Akt inhibitor MK-2206.

Methods:Quantitative multiplex immunofluorescence (qmIF) was performed using CD3,

CD8, CD4, FOXP3, CD68, and pancytokeratin on biopsy and surgical specimens

of MK-2206 and untreated, control patients. nanoString was performed on surgical

specimens to assess mRNA expression from MK-2206-treated vs. control patients.

Results: Increased CD3+CD8+ density was observed in post vs. pre-treatment tissue

in the MK-2206-treated vs. control patients (87 vs. 0.2%, p < 0.05). MK-2206 was

associated with greater expression of interferon signaling genes (e.g., IFI6, p < 0.05)

and lower expression of myeloid genes (CD163, p < 0.05) on differential expression and

gene set enrichment analyses. Greater expression of pro-apoptotic genes (e.g., BAD)

were associated with MK-2206 treatment (p < 0.05).

Conclusion: Akt inhibition in operable BC was associated with a favorable immune

profile in the TME, including increased CD3+CD8+ density and greater expression of

interferon genes. Additional studies are warranted, as this may provide rationale for

combining Akt inhibition with immunotherapy.

Keywords: breast cancer, tumor microenvironment, MK-2206, AKT inhibitor, quantitative multiplex

immunofluorescence, tumor immunobiology, pre-surgical
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INTRODUCTION

Targeted therapies have changed the treatment landscape of
breast cancer (BC); however, until recently, BC was generally
considered a minimally “immunogenic” malignancy and less
likely to benefit from novel immunotherapeutic agents. While it
has been established that lymphocyte rich tumors demonstrate
increased chemosensitivity across BC subtypes, tumor infiltrating
lymphocytes (TILs) have recently been identified as a candidate
biomarker for efficacy of checkpoint inhibition (1–4). Of the BC
subtypes, triple negative breast cancer (TNBC) has demonstrated
an impressive response rate to immune checkpoint blockade
combined with chemotherapy (2). By contrast, hormone
receptor positive (HR+)/HER2− BC is frequently referred to
as immunologically “cold” as these tumors have both lower TIL
densities and response rates to immunotherapy as compared
with TNBC (3, 5). There remains a significant need to identify
effective strategies for augmenting the immunologic response in
HR+/HER2− breast tumors, potentially including combination
approaches (6–8).

The phosphatidylinositol 3 kinase (PI3K)/Akt murine
thymoma viral oncogene (AKT)/mammalian target of rapamycin
inhibitor (mTOR) pathway drives anti-apoptotic signaling and
cell division in BC through activating point mutations, somatic
copy number abnormalities, and increased gene expression (9).
In addition to direct anti-neoplastic activity, there is growing
evidence that agents targeting the PI3K/Akt/mTOR pathway
have indirect anti-tumor activity mediated through the host
immune response (10). While the PI3K/Akt/mTOR pathway is
essential to immune cell maturation, the pathway also regulates
expression of cytokines associated with recruitment of myeloid
derived suppressor cells (MDSC) and regulatory T-cells as
well as expression of PD-L1 on tumor cells (11). Specifically,
treatment with the allosteric AKT inhibitor MK-2206 has
previously demonstrated the capacity to downregulate PD-L1 at
the transcriptional level in TNBC cell lines as well as augment
the effect of a tumor specific vaccine in murine models (12, 13).

In this study, we define the impact of Akt inhibition on the
tumor microenvironment (TME) in a series of patients with
HR+/HER2− BC treated on a pre-surgical trial with MK-2206
(9). We performed in situ analysis with quantitative multiplex
immunofluorescence (qmIF), on the pre-treatment core biopsies
and post-treatment surgical specimens from patients treated
with MK-2206 and evaluated differences in the TME compared
to prospectively enrolled untreated controls. In addition, we
performed transcriptomic expression analysis on the surgical
specimens with nanoString to assess the effects of MK-2206 on
the transcription of PI3K/Akt/mTOR pathway target genes as
well as a broad panel of immune related genes.

METHODS

Patient Samples
Archival tissue was collected from an open-label, single arm,
presurgical trial with MK-2206 (NCT013195390). Patients were
enrolled between October 2011 and March 2013 and received
two weekly oral doses of MK-2206 prior to surgery: first dose

at day−9 (+/− 1 day) and second dose at day−2 (+/− 1 day)
from the date of surgery (9). Untreated control patients were
prospectively accrued, and their tumor tissue was collected with
the same methodology.

qmIF
Four micrometer slides were stained using OpalTM (Perkin
Elmer, Hopkinton, MA) multiplex 6-plex kits for DAPI, CD3 (T-
cells, LN10, Leica, 1:200), CD8 [Cytotoxic T-cells, 4B11, Leica,
Ready to use (RTU)], CD68 (macrophages, KP1, 155 Biogenex,
RTU), pancytokeratin (Tumor, PCK-26, Biocare, 1:200), CD4
(T helper cells, EPR6855, Abcam, 1:2000), and FOXP3 (T
regulatory cells, 236A/E7, Abcam, 1:300). QmIF was performed
on diagnostic core biopsies and surgical specimens by the
recommended staining protocol including single stain controls
and unstained controls. Five representative areas were selected
to include three areas with tumor and up to 50% stroma and
two areas with at least 90% tumor (Supplementary Figure 1).
These images were factored equally into the analysis for each
patient. For samples of small size, a minimum of two areas
meeting the above criteria were required for inclusion. All
images were confirmed as representative tumor areas by breast
pathology (HH).

Images were captured using the MantraTM pathology
workstation (PerkinElmer). Images were analyzed using
inForm TM software (PerkinElmer) for tissue segmentation,
cell segmentation, phenotyping, and scoring per previously
published methods (Supplementary Figure 1B) (14). Cells
were phenotyped for tumor, T-cells, macrophages, and other
(negative for pancytokeratin, CD3, and CD68), then scored for
concatenating variables CD4, CD8, and FOXP3. Subsequently,
data obtained from all representative images were compiled
to yield density values for each patient. Nearest neighbor
analysis to assess for differences in spatial distribution of
immune cell subsets following MK-2206 was performed by
previously described methods (14). Image data was exported
from inFormTM version 2.2.1 (PerkinElmer). The inForm data
from all images for each patient were processed in separate
proprietary software designed in R Studio (version 0.99.896,
Boston, MA). In this software, images were combined and
analyzed to concatenate variables (i.e., CD3+CD4+FOXP3+)
and determine density and distances of distinct phenotypes.

NanoString
mRNA was manually extracted from FFPE slides of
representative surgical specimens of patients who received
MK-2206 (n = 5) or control (n = 5). Bioanalyzer calculations
were performed to determine the quantity of mRNA (ng)
to satisfy the quality requirements of nanoString platform.
Subsequently, the PI3K (180 genes) and IO360 (770 genes) were
run on these surgical specimens (15).

Statistical Methods
For qmIF analysis, statistical analysis was performed using
Mann-Whitney U-test. For nanoString analysis, data
quality assessment, differential expression, and statistical
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comparison was performed by the systems biology data-
driven network-based Bayesian inference of drivers
(NetBID, https://github.com/jyyulab/NetBID) (16). Gene
Set Enrichment Analysis (GSEA) was performed using
MSigDB (v6.1) and “fgsea” package in R, with default
parameters. Multiple comparison analysis was performed
using Benjamini-Hochberg method.

Ethics
Patient provided written consent to participate in the presurgical
study which was approved by the Columbia University Irving
Medical Center and Albert Einstein Cancer Center institutional
review boards.

RESULTS

Patient Population
Between September 2011 and July 2014, 12 patients with
newly diagnosed invasive BC were prospectively enrolled to
receive MK-2206 (9). In addition, tissue from diagnostic core
biopsies and surgical specimens were prospectively collected
on 6 untreated controls (9). For this analysis, seven patients
treated with MK-2206 and one control patient were excluded for
insufficient tissue. One MK-2206-treated patient was excluded
from qmIF analysis due to poor tissue quality. In total, 9
patients with paired biopsy and surgical specimens (5 MK-
2206 and 4 control) had evaluable tissue for qmIF analysis. 10
surgical specimens (5 MK-2206 and 5 control) were evaluable
for nanoString.

All patients included in our analyses had HR+/HER2−
tumors with invasive ductal histology. Of the MK-
2206-treated patients included in this study, one patient
received the 200mg dose, one patient 135mg, and the
remaining three with 90mg (Supplementary Table 1 for
clinicopathologic features).

Treatment With MK-2206 Increases
CD3+CD8+ Cytotoxic T-Cell (CTL) Density
The density of each immune subset was measured by qMIF
analysis at the time of biopsy and in the surgical specimen
(Figures 1A,B). As frequently seen in HR+/HER2− BC, the
baseline immune infiltrate was observed to be modest in the
biopsy specimens from the MK-2206 and control groups, with
lymphocytes representing the majority of the immune infiltrate
in this cohort (17). Patients treated with MK-2206 exhibited a
significant increase in median cytotoxic T-cells (CD3+CD8+)
density, as compared to untreated control patients for whom
no change was observed (87 vs. 0.2%, p = 0.03, Figure 1C,
Supplementary Figures 2–3). No change was detected in the
macrophage (CD68), T helper (CD4) T reg (CD4+FOXP3+)
density following MK-2206 treatment as compared to paired
pathology specimens from controls. A numerical increase in the
CD8/FOXP3 ratio was observed in MK-2206-treated patients,
which demonstrated a higher mean CD8/FOXP3 ratio in
post treatment specimens as compared to control patients
(19.4 vs. 4.6), although this finding did not reach statistical
significance (p = 0.32).

Using nearest neighbor analysis, we observed a numerical
reduction in median pixel distance (−12.5%) between CTL
cells and tumor cells following treatment, suggesting that
the increased density of effector T-cells is not relegated
to the periphery. This observation was not seen in the
control group when comparing the baseline biopsy to surgical
excision specimen.

MK-2206 Associated With Gene
Expression Change in Downstream Targets
of PI3K/Akt/mTOR Pathway
mRNA expression analysis confirms the in-vivo inhibitory
activity of MK-2206 on PI3K/AKT/mTOR pathway. MK-2206
was associated with lower mean expression levels of genes
associated with cell cycle progression including CTNNB1 (raw

FIGURE 1 | qMIF Analysis of biopsy and surgical specimens from a pre-surgical trial with MK-2206. (A) Mean density by immune cell subtype in biopsy specimens of

MK-2206 (red) vs. control (blue). (B) Mean density by immune cell subtype in surgical specimens of MK-2206 (red) vs. control (blue). (C) Change in CD8 density

between baseline biopsy and surgical specimen of MK-2206-treated (red) and control (blue) patients.
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p = 0.01) and CCND2 (raw p = 0.02) in comparing post-
surgical specimens from MK-2206-treated patients to control.
Additionally, greater expression of pro-apoptotic gene products
BAD (raw p < 0.01) DDIT (raw p = 0.03) was observed in
surgical specimens after MK-2206 vs control. Consistent, with
these findings, a trend toward greater CASP9 expression was also
found (raw p = 0.067). No significant difference in expression of
BAX was observed between the two groups.

Following MK-2206, mean IGF-1R expression was greater
in MK-2206-treated patients as compared to untreated controls
(472.4 vs. 226.0 copies, raw p = 0.01) (Figure 2). We also
observed greater expression of HER3 with double the mean
mRNA copy number for HER3; although, the difference did
not reach statistical significance (1060.6 vs. 577.4 copies,
raw p = 0.14).

Transcriptomic Analysis Highlights Greater
Expression of Interferon Related Gene
Expression and Lower Expression of
Myeloid Related Genes in
MK-2206-Treated Patients
Using the nanoString 770 gene IO-360 panel, differential
expression (DE) between surgical specimens from patients
treated with MK-2206 vs. untreated controls identified 31 genes
with 1.5-fold higher/lower expression (Figure 3) (15). Mean
expression levels of myeloid related genes, including CD163 (raw
p = 0.03), CSF1R (raw p < 0.01), HLA-DR (raw p = 0.05),
P2RY13 (raw p = 0.02), ITGAM (raw p = 0.03), MS4A6A (raw
p = 0.04), were lower in the surgical specimens from patients
treated with MK-2206 compared to control.

FIGURE 2 | MK-2206 inhibition associated with greater expression of IGF-1R.

IGF-1R expression was found to be significantly higher in the surgical

specimens from the MK-2206-treated (red) vs. control (blue)

patients (p = 0.02).

By contrast, of the immune genes with greater expression in
the MK-2206 patients, the majority were related to interferon
related signaling and included IFI6 (p = 0.02), IFIT1 (p = 0.01),
ISG15 (p = 0.02), OAS1 (p = 0.02), IRF9 (p = 0.01), and OAS2
(p = 0.01) (Figure 3).

GSEA was performed in surgical samples with the untreated
group considered the reference baseline, and 23 pathways were
found to be enriched, with 10 pathways increased and 13
pathways decreased. Three distinct canonical gene sets ascribed
to interferon signaling, GO, HALLMARK and REACTOME were
observed to be statistically increased in the MK-2206-treated

FIGURE 3 | Differential expression (DE) analysis of immune related genes.

Differential analysis identified selection genes as either 1.5 fold increased

(black) or 1.5 fold decreased (red) in the surgical specimens after MK-2206,

using untreated surgical samples (control) as reference baseline.
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FIGURE 4 | Gene set enrichment analysis (GSEA) for Immune Related Genes. GSEA was performed using pathways derived from gene sets from Molecular

Signatures Database (GO, HALLMARK, REACTOME gene sets). Plot above depicts top 10 pathways observed to be at least 1.5 fold increased (black) or 1.5

decreased (red) from surgical samples from MK-2206-treated patients, using untreated patients as a reference baseline which were found to be statistically significant

by multiple comparison analysis.

surgical samples by multiple comparisons (all raw p < 0.001,
adj p < 0.02), whereas genes ascribed to monocyte chemotaxis
were decreased (raw p < 0.01, adj p = 0.04) (Figure 4) (18).
As expected, gene sets highlighting carbohydrate metabolic
processing (raw p < 0.001, adj p = 0.04) were increased in the
post-MK-2206 samples.

DISCUSSION

To our knowledge, this is the first study to perform a
comprehensive evaluation of the TME in patient breast tumor
samples following treatment with an AKT inhibitor. After only
two doses, in the window-of-opportunity study, our findings
support direct and indirect activity of AKT inhibition on
the TME.

Consistent with previous preclinical observations in BC cell
lines, and reflecting known direct anti-neoplastic activity of AKT
inhibition, we observed greater expression of pro-apoptotic genes
and upstream receptor tyrosine kinases including IGF-1R and
HER3 following treatment with MK-2206 (19). Additionally,
we identified higher levels of GSK3A (raw p = 0.02), a critical
negative regulator of glycogen synthase, in the surgical samples
from MK-2206-treated patients as compared to untreated
controls, which is consistent with the important role of the PI3K
pathway in metabolic regulation (10). These findings provide
a transcriptomic basis for the increased serum glucose level (p
= 0.02), insulin (p < 0.01) and C-peptide (p < 0.01) levels
previously reported in the MK-2206 pre-surgical trial (9).

Notably, our data provides support from a clinical trial that
is consistent with pre-clinical findings that that inhibition of the
PI3K/AKT pathway are capable of increasing CD8 density in
mouse models (13, 20). Therapeutics capable of augmenting CTL
density within the TME would be expected to promote a more
effective anti-tumor immune response, as high baseline CTL
(CD8+) density are associated with chemosensitivity across BC
subtypes and improved survival in TNBC and HER2 amplified
BC (3, 21). In accordance with the increase in CD8 density by
qMIF, we identified a higher expression of single interferon genes,
as well as, gene sets related the interferon using the nanoString

platform in MK-2206 post-treatment surgical samples. These
signatures positively regulate T lymphocyte cytotoxicity and
have been found to be upregulated in the context of other
locoregional techniques which have demonstrated synergy with
immunotherapy (6).

In parallel to our findings regarding CTL activity, we observed
decreased expression of myeloid genes, which may contribute
to the biologic mechanism underlying the increase in CD8
density and greater expression of cytotoxicity immune signatures
seen following MK-2206. In our analysis, Akt inhibition was
associated with lower expression levels of both individual
myeloid related genes as well as several canonical myeloid gene
sets on GSEA. Our observation is consistent with preclinical co-
culture experiments with THP-1 cells and MCF7 breast cancer
cells which support the PI3K pathway having a critical role in
the modulation of macrophage activity in the TME which has in
turn been implicated in impaired CTL response and increased
metastatic potential (22). The clinical relevance of these findings
are supported by clinicopathologic studies in human BC which
have demonstrated that increased baseline myeloid cell density
as well as expression of myeloid genes, including CD163, are
associated with worse BC outcomes (22, 23).

STUDY LIMITATIONS AND FUTURE
DIRECTIONS

These studies were performed on specimens from a trial that was
terminated early due to grade III rash, mucositis, and pruritus,
limiting the sample size available for evaluation. Additionally,
while we intended to perform transcriptomic analysis on both
the pre-treatment and post-treatment tissues specimens, as was
done with qMIF, we were only able to perform this analysis on
the tissue obtained from surgical resection due to inadequate
RNA quantity from biopsy specimens. Despite performing
multiplex approaches, B-lymphocyte, natural killer cell, and
MDSC activity were underrepresented in our analysis. Preclinical
data indicate that these immune subsets likely play an important
role in the TME in BC and warrant investigation in further
studies (24).
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Lastly, equivalent effect on the TME cannot be assumed for
agents that target alternative AKT isoforms or other components
of the PI3K pathway and may not be generalizable for hormone
receptor negative or HER2 amplified BC, as differences in
immunobiology exist between BC subtypes (3).

SUMMARY

As preclinical data exist to supports activity of PI3K targeted
agents on the immune microenvironment, the goal of this study
was to assess the impact of Akt inhibition on the TME of
HR+/HER2− BC in samples collected in a pre-surgical clinical
trial. By qmIF and targeted genomic expression analysis, we
confirmed in human breast cancer specimens the biologic activity
of MK-2206, with well-described changes in gene expression
of known targets of the PI3K/Akt/mTOR pathway as well as
marked indirect immune related effects of Akt inhibition on the
TME including an increase in CTL density as well as greater
expression of interferon related genes and lower expression of
myeloid genes.

In BC, particularly in tumors expressing the estrogen receptor,
benefit from immunotherapeutic approaches has been modest
and alternative strategies to augment host immune response
are needed. Increased expression of interferon signatures is
associated with improved relapse-free survival in BC patients,
prompting development of agents aimed at specifically increasing
CTL infiltration and interferon signaling with efficacy signals
observed in other tumor types (25). Our findings support that
agents targeting the PI3K pathway lead to a favorable change
in the immune microenvironment and provide rationale for
combining these agents with immunotherapeutics.
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Supplementary Figure 3 | qmIF images demonstrating multiplex staining. (A)
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Purpose: Despite high initial response rates with cytoreductive surgery, conventional

chemotherapy and the incorporation of biologic agents, ovarian cancer patients often

relapse and die from their disease. New approaches are needed to improve patient

outcomes. This study was designed to evaluate the antitumor activity of NEO-201

monoclonal antibody (mAb) in preclinical models of ovarian cancer where the NEO-201

target is highly expressed.

Experimental Design: Functional analysis of NEO-201 against tumor cell lines

was performed by antibody-dependent cellular cytotoxicity (ADCC) assays. Binding of

NEO-201 to tumor tissues and cell lines were determined by immunohistochemistry (IHC)

and flow cytometry, respectively. Further characterization of the antigen recognized by

NEO-201 was performed by mass spectrometry. Ovarian cancer models were used to

evaluate the anti-tumor activity of NEO-201 in vivo. NEO-201 at a concentration of 250

g/mouse was injected intraperitoneally (IP) on days 1, 4, and 8. Human PBMCs were

injected IP simultaneously as effector cells.

Results: Both IHC and flow cytometry revealed that NEO-201 binds prominently

to the colon, pancreatic, and mucinous ovarian cancer tissues and cell lines.

Immunoprecipitation of the antigen recognized by NEO-201 was performed in

human ovarian, colon, and pancreatic cancer cell lines. From these screening,

carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and CEACAM6

were identified as the most likely targets of NEO-201. Our results confirmed that

NEO-201 binds different types of cancers; the binding is highly selective for the

tumor cells without cross reactivity with the surrounding healthy tissue. Functional

analysis revealed that NEO-201 mediates ADCC killing against human ovarian

and colorectal carcinoma cell lines in vitro. In addition, NEO-201 inhibited tumor

growth in the presence of activated human PBMCs in orthotopic mouse models
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of both primary and metastatic ovarian cancer. Importantly, NEO-201 prolonged survival

of tumor-bearing mice.

Conclusions: These data suggested that NEO-201 has an antitumor activity against

tumor cells expressing its antigen. Targeting an antigen expressed in tumors, but not

in normal tissues, allows patient selection for optimal treatment. These findings strongly

indicate that NEO-201 warrants clinical testing as both a novel therapeutic and diagnostic

agent for treatment of ovarian carcinomas. A first in human clinical trial evaluating

NEO-201 in adults with chemo-resistant solid tumors is ongoing at the NIH clinical Center.

Keywords:monoclonal antibody, tumor-associated antigen, antibody-dependent cellular cytotoxicity, natural killer

cell, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), carcinoembryonic antigen-related

cell adhesion molecule (CEACAM6)

INTRODUCTION

Ovarian cancer is the most lethal gynecologic malignancy in the
United States. Although it accounts for only 3% of cancers among
women, it is the fifth most common cause of cancer-related
death (1). Most patients are diagnosed when distant metastatic
spread is already present. To date, the treatment of primary
and recurrent ovarian cancer groups most epithelial ovarian
subtypes together, in a common therapeutic approach. Primary
mucinous carcinoma of the ovary represents a small subset of
epithelial ovarian carcinoma and is histologically, molecularly,
and clinically distinct from the other subtypes.

Over the last 10 years, incorporation of precision therapy
and immunotherapy has led to important paradigm changes
for the treatment of cancer patients. Cancer immunotherapy
is aimed to enhance the power of the host immune system
for the treatment of malignancy. Recent efforts in cancer
therapeutics have focused on the development of immune
checkpoint inhibitors, which are FDA approved for the treatment
of certain tumor types. To date, this class of drugs in ovarian
cancer has shown limited activity when used as monotherapy
(2). Ongoing trials are evaluating the activity of PD-1/PD-L1
inhibition in combinations with other therapeutic agents that
have shown activity in ovarian cancers such as VEGF and PARP
inhibitors (3).

The majority of recent developments in immunotherapy
strategies, including immune checkpoint inhibitors (4), vaccines
(5), and engineered chimeric T-cell receptors (6), have focused
on boosting the adaptive immune system. Additionally, the
innate immune response can play an important antitumor
role with direct tumoricidal activity, and/or indirect activity
through the processing and presenting of tumor antigens
to T cells (7). It is well known that monoclonal antibodies
(mAbs), such as rituximab and trastuzumab, can mediate
antibody-dependent cellular cytotoxicity (ADCC) (8). Natural
killer (NK), neutrophils, and other myeloid cells can also kill
through ADCC, a process by which engagement of FcγRs
results in the release of cytotoxic granules (8). In addition
to ADCC, opsonization of tumor cells with antitumor mAbs
can lead to macrophages’ antibody-dependent phagocytosis
(ADPC) and to complement-dependent cytotoxicity
(CDC) (9).

NEO-201 is a humanized IgG1 monoclonal antibody (mAb)
derived from an immunogenic cancer vaccine. NEO-201 was
selected for its tumor specificity and its association with clinical
response. It was generated using the Hollinshead allogenic
colorectal cancer vaccine platform (10), where tumor-associated
antigens (TAA), derived from tumor membrane fractions pooled
from colorectal cancer surgical specimens, were screened for
delayed-type hypersensitivity and evaluated in clinical trials (11).
Those patients who developed a sustained IgG response and a
cell-mediated response against the vaccine achieved significant
anti-tumor response and increased overall survival (12). NEO-
201 binds specifically to a wide range of human cancer cells and
tumor tissues, but not with healthy normal tissues. NEO-201
showed to have both ADCC and CDC activity against cancer cell
lines in vitro (10, 13) and to counteract the growth of human
pancreatic xenograft tumors in vivo (10). In the present work,
we sought to further characterize the antigen recognized by
NEO-201, and to demonstrate its efficacy in preclinical ovarian
models. We performed mass spectrometry analysis to identify
its target antigen. Exome sequencing was conducted to identify
mutations shared by cell lines expressing the antigen recognized
by NEO-201 and to identify possible effector pathways.

MATERIALS AND METHODS

Drug
NEO-201 humanized monoclonal antibody was generated and
provided by Precision Biologics, Bethesda, MD, USA (10).

Cell Lines and Culture
The following human colorectal (CRC), ovarian (OV) and
pancreatic (PDAC) cancer cell lines were obtained from the
American Type Culture Collection (ATCC) or National Cancer
Institute (NCI)-60: LS174T (CRC), SW480 (CRC), Ovcar8 (OV),
Ovacar5 (OV), PEO1 (OV), PEO4 (OV), PEO5 (OV), OV90
(OV), ASPC-1 (PDAC), BxPC3 (PDAC), CFPAC-1 (PDAC). Cells
were grown in RPMI medium (Corning Life Science, Manassas,
VA, USA) supplemented with 10% USA-sourced and heat-
inactivated HyClone Fetal Bovine Serum (FBS; GE Healthcare
Life Sciences, Issaquah, WA, USA), 1% penicillin/streptomycin
(Corning Life Science, Manassas, VA, USA) and maintained at
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37◦C in incubator under 5% CO2. Cell lines were authenticated
via short tandem repeat at the Frederick National Laboratory.

The highly active natural killer (haNK) cell line was obtained
from Nantkwest and cultured with X-VIVO media (Lonza,
Basilea, Switzerland) enriched with L-glutamine and 5% heat-
inactivated human AB serum (Gemini Bio-Products, West
Sacramento, CA, USA) as previously described (14). Cells
used for tumor induction were tested by Molecular Testing of
Biological Materials (MTBM) as required by the NCI ACUC
Committee and confirmed to contain no mouse viruses. Human
peripheral blood mononuclear cells (PBMCs) were collected
from anonymous healthy donors under protocol 99-CC-0168,
approved by the Institutional Review Board of the National
Cancer Institute.

Immunoblotting
Cells were seeded in 6-well plates and allowed to grow for
24 h. Protein lysates were prepared in radioimmunoprecipitation
assay (RIPA) buffer (Santa Cruz Biotechnology Inc, Dallas,
TX, USA) according to manufacturer’s protocol. The total
protein was determined using the BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA). Twenty-five
micrograms of total protein were loaded onto a 4–12% gradient
gel, electrophoresed, and transferred to nitrocellulose using the
NuPage system (Invitrogen, Thermo Fisher Scientific, Waltham,
MA, USA). Membranes were blocked for 1 h in 5% Milk in
TBS-Tween blocking buffer and incubated overnight with NEO-
201 (1µg/ml) at 4◦C. Following incubation with NEO-201,
membranes were washed three times for 10min in TBS-Tween
and then incubated with the appropriate secondary goat anti-
human IgG1 Fc-HPR (1:10,000). Membranes were stripped and
probed with GAPDH (1:10,000) loading control. Blots were
developed using Supersignal Chemiluminescent Substrate system
(Thermo Fisher Scientific, Waltham, MA, USA). Immunoblot
experiments were done in triplicate.

Immunohistochemistry (IHC)
Formalin-fixed, paraffin-embedded (FFPE) sections of
human tumor samples and non-malignant controls were
analyzed for NEO-201 target protein expression using
immunohistochemistry. Staining was performed manually.
Antibody specifications and staining conditions were optimized
on control whole colon cancer tissue samples, and negative
controls consisted of sections that underwent similar staining
procedures with an IgG control antibody of the corresponding
isotype. Tissue microarray analysis was performed on 21 colon
cancer, 24 lung cancer, 19 breast cancer, 11 lymphoma, 11
melanoma, and 7 glioblastoma multiforme. Tissue microarray
of 627 ovarian tumor samples was obtained from Roswell
Park Cancer Institute and contained tumor tissues from
different subtypes of ovarian cancer, including 446 serous
adenocarcinomas, 37 germinal cell tumor, 26 clear cell,
23 endometroid, 22 adenocarcinomas NOS, 22 mucinous
adenocarcinoma, 18 sarcomas, 9 transitional cell, 9 carcinoma,
2 signet cell carcinoma, and 13 “other” subtype. Tissues were
scored for the expression of the antigen recognized by NEO-201
and percentage of positive tumor tissue. A score of 2+ was given

to those tumor tissues with a complete staining of the membrane
in more than 10% of the sample analyzed and a score of 1+ to
those tumor tissues with a complete staining of the membrane in
<10% of the tissue analyzed.

Flow Cytometry
Expression of tumor antigens on tumor cells was analyzed
by flow cytometry. Tumor cells (1.0 × 106) were harvested
and first incubated with 1 µl per test of LIVE/DEAD Fixable
Aqua (Thermo Fisher Scientific, Waltham, MA, USA) in 1×
phosphate-buffered saline (PBS) for 30min at 4◦C to accomplish
live vs. dead cell discrimination. Cells were then centrifuged,
washed twice with cold PBS, and then stained in 1× PBS
+ 1% BSA (Teknova, Hollister, CA, USA) for 30min at 4◦C
with the following anti-human mAbs: Pacific Blue-conjugated
or PE-conjugated NEO-201 antibody (BioLegend, San Diego,
CA, USA), CEACAM5-FITC (clone C365D3), CEACAM6-PE
(clone KOR-SA3544; ThermoFisher Scientific, Waltham, MA,
USA). After staining, cells were washed twice with cold PBS and
examined using a FACSVerse flow cytometer (BD Biosciences,
San Jose, CA, USA). Analysis of cellular fluorescence was
performed using BD FACSuite software (BD Biosciences, San
Jose, CA, USA). Positivity was determined using fluorescence-
minus-one controls.

Proliferation Assay
Antiproliferative effects of NEO-201 were determined using
sodium 3,3

′

-[1(phenylamino)carbonyl]-3,4-tetrazolium]-3is(4-
methoxy-6-nitro) benzene sulfonic acid hydrate (XTT) assay as
previously described (15). Briefly, cells in logarithmic growth
phase were transferred to 96-well flat-bottomed plates with
lids. Cell suspensions containing 5 × 103 cells/well were
plated and incubated overnight and then treated with different
concentrations of NEO-201 for 72 h. After treatment, cell
viability was assessed by incubating cultures with 25 µl of XTT
freshly mixed with PMS (Sigma), and absorbances were read
at a measured timepoint using a Tecan plate reader (Research
Triangle Park, NC, USA) as previously described. IC50 was
calculated using CompuSyn software. The median dose was
obtained from the anti-log of the x-intercept of the median effect
plot: log (Fa/Fu) = m∗log (D) – m∗log (Dm) where Fa is the
Fraction affected, Fu is the Fraction unaffected, andm is the slope.

Antibody-Dependent Cellular Cytotoxicity
(ADCC) Assay
To evaluate the ADCC activity of NEO-201 against human
carcinoma cell lines, both radioactive and non-radioactive
ADCC assays were performed. Non-radioactive ADCC assay was
performed using a previously described procedure (10) using
human cancer cell lines as target cells. Natural killer (NK) cells
from normal donor and irradiated haNKs (10Gy) were used
as effector cells. For non-radioactive ADCC assay, target cells
were labeled with 10µM calcein AM cell-permanent dye, for
30min and then seeded in triplicate at 3.0 × 103 cells/well into
black-walled flat-bottomed 96-well plates. Then, human IgG1
isotype control antibody (Thermo Fisher Scientific, Waltham,
MA, USA) or NEO-201 antibody was added to target cells at
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different concentrations. haNK cells were simultaneously added
at specific effector-to-target (E:T) ratios. After 4 h of incubation
at 37◦C, 1.67µg/ml of propidium iodide (PI; Thermo Fisher
Scientific, Waltham, MA, USA) was added to each well, the
plate was imaged using the Celigo Imaging Cytometer (Nexcelom
Bioscence LLC, Lawrence, MA, USA), and the numbers of live
target cells (calcein AM+/PI–) vs. dead cells (calcein AM+/PI+
or calcein AM–/PI+) were analyzed and recorded by the Celigo
Imaging Cytometer analysis software.

For radioactive ADCC assay, chromium release assays were
performed using NK cells from human healthy donors. Briefly,
NK cells were obtained by negative selection from human
healthy donor PBMCs using the EasySep Human NK Cell
Isolation Kit (StemCell Technologies, Vancouver, BC, Canada)
according to the manufacturer’s protocol. Purified NK cells were
incubated overnight in RPMI-1640 medium supplemented with
L-glutamine, 10% FBS, and antibiotics prior to be used as effector
cells in the assay. On the day of the assay, cancer cells were labeled
with 51Chromium and then used as target cells in presence
of 1µg/ml of human IgG1 isotype control antibody or NEO-
201 antibody at different concentrations. NK cells were added
simultaneously at specific effector-to-target (E:T) ratios. Specific
lysis was calculated as % specific lysis= 100 – [(average live target
cell count for antibody treated samples/average live target count
for control samples) Å∼100].

ELISA
Ninety-six-well plates were first coated overnight at 4◦C with
100 µl/well of 400 ng/ml recombinant human CEACAM1, 5,
6, and 8 protein (Acro Biosciences) diluted in 0.2M sodium
carbonate–bicarbonate buffer pH 9.4. Plates were washed with
1× Tris-buffered saline (TBS) + 0.05% Tween-20 and then
blocked with 200 µl/well of 5% milk in 1× TBS for 1 h at
37◦C. Plates were washed, and then 100 µl/well of NEO-201
antibody was added in two-fold serial dilution from 20 ng/ml
to 0.156 ng/ml and incubated for 1 h at 37◦C. Plates were
washed, and 100 µl/well of donkey anti-human IgG antibody
peroxidase conjugate (VWR) at a 1:10,000 dilution was added to
the plate and incubated for 1 h at 37◦C. Plates were washed, and
100 µl/well of tetramethylbenzidine (TMB) substrate solution
(VWR) was added and incubated for 10min at RT in the dark.
The reaction was stopped by adding 50µl/well of 2NH2SO4, and
absorption at 450 nm was read using a FLUOstar Omega plate
reader (BMG Labtech).

Mass Spectrometry
NEO-201 target antigen identification was performed by mass
spectrometry. Briefly, 100 µg of total protein extracted from
OV90, CFPAC1, OVCAR8 human cell lines, and protein A beads
were incubated with 1 µg of NEO-201 and immunoprecipitated.
A dose titration was performed to identify an optimal dose
of NEO-201 to immunoprecipitate the proteins for the mass
spectrometry analysis. One microgram and 10 ng of NEO-201
were used in the analysis. To identify the proteins bound by
NEO-201, those proteins that were common in both OV90 and
CFPAC1 were considered as potential targets, and those proteins
identified also by the beads and the OVCAR8 were considered

as non-specific binding and subtracted from the analysis. PSMs
indicate the number of peptides identified of each of those
proteins, and the more the number of peptides identified, the
more the confidence is in the data.

Plasmid Overexpression and Immunoblot
Overexpression experiments were performed in epithelial human
embryonic kidney cell line HEK293T. Expression vectors with
the incorporated CEACAM5 or CEACAM6 complementary
DNAs were generated using a DHFR mammalian expression
vector as the DNA of each plasmid (or empty original vector)
was transiently transfected using Lipofectamine 2000 reagent
(Invitrogen) into 1 × 106 HEK293T cells (80 to 90% confluent)
and were seeded on a 6-well plate and cultured for an additional
48–72 h. Then, the cells were harvested and lysed. Whole cell
lysates and molecular weight marker standards were applied (50
µg/lane) to polyacrylamide gel and run through electrophoresis,
transferred on a nitrocellulose membrane, and subjected to
Western blot analysis. Primary antibodies were mouse anti-
human CEACAM5 clone CB30 (Cell Signaling Technology,
Danvers, MA, USA), mouse anti-human CEACAM6 clone 9A6
(Abcam, Cambridge, UK), and NEO-201.

RNA Interference
Cells were seeded into 6-well plates and transfected with
100 nM of Dharmacon ON-TARGETplus SMARTpool siRNAs
specific for CEACAM5, CEACAM6, or a non-targeting control
(Horizon Discovery Group, Cambridge, UK) using 4 µl of
DharmaFECT 2 transfection reagent (Horizon Discovery Group,
Cambridge, UK) per transfection according to themanufacturer’s
instructions. Cells were incubated for at least 72 h prior to use.

Mutational Analysis
DNA was extracted using the DNAasy Plus mini kit (Qiagen,
Valencia, CA, USA) according to the manufacturer’s protocol.
For whole exome sequencing (WES), DNA libraries were
prepared using Agilent SureSelectXT Human All Exon V5
plus UTR target enrichment kit, and samples were pooled and
sequenced on an Illumina HiSeq2500 with TruSeq V4 chemistry.
Alignment and variant calling was performed using the CCBR
Pipeliner (https://github.com/CCBR/Pipeliner) tool on NIH’s
Biowulf cluster. Reads were trimmed using Trimmomatic v0.33
(16) and mapped to the hs37d5 version of the human reference
genome (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/
reference/phase2_reference_assembly_sequence/hs37d5.fa.
gz) using BWA-mem v07.15. BAM files were processed using
Samtools v1.3 (http://www.htslib.org/) (17), and duplicates
were marked using Picard v2.1.1 (http://broadinstitute.github.
io/picard/). GATK v3.5.0 (18) was used to perform indel
realignment and base recalibration. Read- and alignment-level
quality control visualization was performed using MultiQC v1.1
(http://multiqc.info/) to aggregate QC metrics from FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
FastQ Screen (https://www.bioinformatics.babraham.ac.uk/
projects/fastq_screen/), Picard, bamtools (19), stats (http://
github.org/pezmaster31/bamtools), and trimmomatic. Variant
calling was performed with MuTect2 (20). A panel of normals,

Frontiers in Oncology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 80521

https://github.com/CCBR/Pipeliner
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
http://www.htslib.org/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://multiqc.info/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
http://github.org/pezmaster31/bamtools
http://github.org/pezmaster31/bamtools
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zeligs et al. NEO-201 Efficacy in Ovarian Cancer

developed from ExAC r0.3.1 (21) and the 1,000 Genomes
Project (22), including only variants >0.001 in frequency in
the general population was used in cases without a matched
germline. Somatic variants with an allele frequency of <0.05
were excluded. Variants were annotated using Oncotator v1.9.1.0
(23) (http://portals.broadinstitute.org/oncotator/).

Assessment of NEO-201 Activity on Tumor
Growth and Survival in vivo
Primary Ovarian Cancer Model
Female athymic nude mice, 6–8 weeks old, were maintained
on a 12-h light/dark cycle, with food and water provided ad
libitum. Briefly, 2.5× 105 OV90 cells were injected into the right
ovarian bursa, and 5 µl of PBS was injected into the contralateral
ovarian bursa. When tumors reached an average of 100–300
mm3 of volume, mice were randomized into four treatment
groups. Animals received treatment with either PBS/IgG as
vehicle control, activated PBMCs with IgG, NEO-201 250
µg/mouse, or activated PBMCs with NEO-201. NEO-201 was
administered at a dose of 250 µg/mouse IP on days 1, 4, and
8 of treatment, PBS/IgG-control was administered on the same
days at a dose of 250 µg/mouse. Before injection, PBMCs were
cultured overnight in RPMI media supplemented with IL-2 at
200 U/ml. A total of 500 µl with 8 × 106 PBMCs was inoculated
by intraperitoneal (IP) injection into each mouse on days 2, 5,
and 9 of treatment. Mice were followed for signs of toxicity, and
body weight was measured three times a week. Orthotopic tumor
growth was assessed by ultrasound once weekly, and tumor
volumes were calculated according to the formula of volume
= (length × width2)/0.52. Mice were euthanized 2 weeks after
treatment completion.

Metastatic Ovarian Cancer Model
To assess the effect of NEO-201 on survival, 1 × 106 OV90 cells
were injected into the peritoneal cavity of each mouse. Tumors
were allowed to grow for 2 weeks before mice were randomized
into one of the four treatment groups described above. Mice
were evaluated biweekly for signs of drug-related toxicity and
disease progression based on distress, physical exam changes,
and cachexia. Animal care was provided in accordance with the
procedures in the Guide for the Care and Use of Laboratory
Animals. Experiments were carried out according to a protocol
approved by the NCI Animal Care and Use Committee.

Ultrasound Imaging
Mice were anesthetized with isoflurane via nose cone and placed
dorsum up on moveable platform with arms and legs taped to
the platform. The Vevo-2100 system with a 3D motor and 40-
MHz probe was utilized. The platform was angled away from
the investigated side. Ultrasound gel was placed over the lateral
lumbar area and the motor-operated probe oriented transversely
over area. The kidney was located with the ipsilateral ovary often
localized at the inferior pole of the kidney, when no xenograft
was present. Presence of ovarian artery and vein were confirmed
by color Doppler ultrasound. A three-dimensional (3D) image
was acquired by computerized 2D images obtained every 50µm
along the axis. Ovaries and ovarian tumor xenografts were

analyzed for 3D volumemeasurement in openmode onVevo Lab
2.1.0 software.

Statistical Analysis
NEO-201 induced ADCC activity in “in vitro” model was
evaluated by ordinary one-way ANOVA. Significant differences
between the different mice treatment groups were evaluated
by Kruskal–Wallis test, using GraphPad Prism 7.0 software
(GraphPad Software, La Jolla, CA, USA). Significant differences
in survival between the treatment groups were evaluated by
Mantel–Cox, using GraphPad Prism 7.0 software. Differences
were considered significant when the value of p < 0.05.

RESULTS

Expression Profile of NEO-201 Binding in
Patient Tumor Tissues and Human Cancer
Cell Lines
NEO-201 binding was evaluated by immunohistochemistry
(IHC) in patient tissues from 21 colon, 24 lung, 19 breast, and
11 ovarian cancers. Also, we tested the NEO-201 binding in 11
tissues from lymphoma and melanoma, and seven glioblastomas.
Respective normal tissues were tested as well (Figures 1A,B).
All of the tissues from colon cancer patients resulted positive
for NEO-201 staining, 84% (20/24) of the lung, 31.6% (6/19) of
the breast, and 9% (1/11) of the ovarian cancer patient tissues
were positive, while the respective healthy tissues surrounding
the tumor were negative for NEO-201 binding. Additionally,
no stain was detected in tissues from patients with lymphoma,
glioblastoma, and melanoma. We further assessed the degree
of NEO-201 binding in the tissues from patients with different
ovarian cancer subtypes, using a tissue microarray (TMA)
containing 627 ovarian cancer samples including 11 ovarian
cancer histological subtype (Figure 1A, bottom). Interestingly,
mucinous adenocarcinoma showed the highest percentage of
positive samples among all the histological subtypes analyzed,
with 68.2% positive for NEO-201 staining, and 59% (13/22)
had a 2+ score. Serous adenocarcinoma and germinal cell
tumors showed 20% (87/446) and 38% (14/37) positive staining,
respectively. In order to identify cell line models representative
of the human samples, we created a cell pellet array of ovarian
and colon cancer cell lines and probed them in the same manner
as the patient tissue microarrays (Figure 1C). IHC results were
verified by flow cytometry except in PEO1 in which staining
was discrepant (Figure 1D). Ovarian cancer cell line OV90
and colon cancer cell line LS174T showed strong staining with
both techniques.

NEO-201 Binds to Carcinoembryonic
Antigen-Related Cell Adhesion Molecule
(CEACAM) 5 and 6
To identify the specific antigen recognized by NEO-201, protein
lysates from OV90 and CFPAC1 were immunoprecipitated with
1µg/ml or 10 ng/ml of NEO-201 in the presence of protein A
beads and run on an acrylamide gel. Beads alone were used
as negative control. The blot was probed with NEO-201 to
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FIGURE 1 | Expression profile of the antigen recognized by NEO-201 in patient tumor tissues and human cancer cell lines. (A,B) NEO-201 binding in colon (n = 21),

lung (n = 24), breast (n = 19), and ovarian (n = 11) cancers, lymphoma (n = 11), glioblastoma multiforme (n = 7), and melanoma (n = 11) was measured by

immunohistochemistry (IHC). Additionally, the degree of expression of the antigen recognized by NEO-201 in 627 tissues from more than 10 different ovarian cancer

subtypes including serous, germ cell, clear cell, endometroid, mucinous, sarcoma, transitional, and adenocarcinoma NOS, was evaluated by tissue microarray

analysis (TMA). Tissues were scored for positive vs. negative expression of the antigen recognized by NEO-201 and for percentage of positive tumor tissue. Those

tissues with a complete staining of the membrane in more than 10% of the samples analyzed were given a 2+ score, while those with a complete staining of the

membrane in <10% of the tissue analyzed were given a 1+. (C) Cell pellet from the ovarian cancer cell lines OV90, PEO1, PEO4, and colorectal cancer cell lines

SW480 and LS174T were screened for NEO-201 binding by IHC. (D) NEO-201 binding on cancer cell line model was confirmed by FACS analysis. Cells were

incubated with NEO-201 PE-conjugated antibody and then analyzed.

confirm the selective isolation of the protein bound by the
NEO-201. NEO-201 1 µg showed the best results in terms of
protein immunoprecipitation for the proteomic analysis, while
10 ng/ml was not considered sufficient to achieve an adequate
result (Figure 2A). OVCAR8 cells were used as negative control
since they do not express the antigen recognized by NEO-
201 (Figure 2A). Immunoprecipitated proteins were analyzed by
mass spectrometry analysis to identify the antigen recognized by
NEO-201. A list of possible antigens was detected comparing the
proteins identified in the OV90, CFPAC1, OVCAR8, and protein
A beads. Non-specific peptides were eliminated by subtracting
those found in the negative control cell line OVCAR8 or in
IgG control precipitates, and only the proteins detected in both
OV90 and CFPAC1 were considered as relevant. From these
screening, the carcinoembryonic antigen-related cell adhesion
molecule (CEACAM)5, also known as CEA, and CEACAM
6 were identified as the most likely targets of NEO-201
(Figure 2A, bottom).

Dual staining of ASPC-1, BxPC3, CFPAC-1, and LS174T
cell lines was performed with NEO-201 and with either anti-
CEACAM5 or anti-CEACAM6 antibodies and analyzed by flow
cytometry, showing that there is overlap between CEACAM5
or 6 expression with the antigen recognized by NEO-201

(Figure 2B). In most cell lines, however, the overlap was
incomplete, suggesting that the cells express a normal variant
of each CEACAM as well as the cancer-associated variant. By
ELISA, NEO-201 antibody bound to both recombinant human
CEACAM5 and CEACAM6 but not CEACAM1 or CEACAM8
(Figure 2C).

We proceeded to overexpress CEACAM5 and CEACAM6
in HEK293T cells to determine which reacted to NEO-201.
HEK293T cell lines are known to have a negative phenotype
for NEO-201 binding and do not express CEACAM 5 or 6 at
baseline. HEK293T transfected with an empty vector confirmed
no expression of either CEACAM5, or CEACAM6, or reaction
to NEO-201 immunoblot, and the transfected clones showed
a positive expression for either CEACAM 5 or CEACAM6,
as intended. By Western blot, NEO-201 reacted with both
CEACAM proteins (Figure 2D).

Evaluation of the expression of the antigen recognized by
NEO-201 in ovarian and colon cancer cell lines by Western
blot showed that LS174T colorectal cancer cell line expresses
two distinct molecular weights of the antigen recognized by
NEO-201, likely representing both CEACAM5 and CEACAM6,
consistent with the flow cytometric analysis (Figure 2E). Among
the ovarian cancer cells, PEO-1 and OV90 expressed only the

Frontiers in Oncology | www.frontiersin.org 6 June 2020 | Volume 10 | Article 80523

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zeligs et al. NEO-201 Efficacy in Ovarian Cancer

FIGURE 2 | NEO-201 binds to CEACAM 5 and 6. (A) To identify the antigen recognized by NEO-201, 100 µg of proteins extracted from OV90, CFPAC1, and

OVCAR8 was initially immunoprecipitated with 1 µg, 10 ng of NEO-201 and protein A beads. One microgram of NEO-201 showed the best results in terms of protein

isolation and was used to perform intraperitoneal (IP) injection for the protein sample that was then analyzed by mass spectrometry. Peptide suggesting the

glycosylated form of CEACAM-5 and−6 was identified as the most likely antigen recognized by NEO-201. (B) Flow cytometry analysis of the tumor cell lines ASPC-1,

BxPC-3, CFPAC-1, and LS174T was performed to discriminate the native form of CEACAM5 and CEACAM6 from the NEO-201-reactive variant forms of CEACAM5

and CEACAM6. NEO-201 binding on cancer cell line model was assessed using NEO-201 Pacific Blue conjugated antibody. (C) NEO-201 binding to different forms

of CEACAMs, other than 5 and 6, was measured by ELISA. (D,F) To confirm the binding of NEO-201 to CEACAM-5 and−6, CEACAM-negative cells HEK293T were

transfected with CEACAM-5 and 6 siRNA. The two proteins, which express a different molecular weight, were equally bound by NEO-201. As proof of concept,

CEACAMs and NEO-201-positive cells LS174T were knock-down for CEACAM 5/6 genes, which resulted in an about 25% partial loss of NEO-201 binding when a

single gene was knock-down, and a further decreased to about the 50% loss of NEO-201 binding by the combined knockdown of both CEACAMs. (E) Western blot

confirmed that NEO-201 binds an antigen with two different molecular weights in cell line models.

lower CEACAM6 molecular weight form. SW480, OVCAR5,
OVCAR8, and PEO4 were negative. Knockdown of either
CEACAM5 or CEACAM6 in LS174T cells showed about
25% partial loss of NEO-201 binding, which was doubled to
approximately 50% loss of NEO-201 binding by the combined
knockdown of both CEACAMs (Figure 2F).

Altogether, these results confirmed that NEO-201 binds
different types of cancers. The binding is highly selective for
the tumor cells without cross reactivity with the surrounding
healthy tissue. Moreover, within cancer tissue origins, the antigen
recognized byNEO-201 is differentially expressed between tumor
histological and/or molecular subtype. These data suggested
that NEO-201-positive tumors express a specific phenotype of a
tumor-associated variant of CEACAM 5 (CEA) and 6, which is
not expressed in normal tissues.

Mutational Analysis
To investigate the nature of CEACAM 5 (CEA) and 6 variants
expressed on tumor cells, we performed whole exome sequencing
of OV90 (NEO-201pos), LS174T (NEO-201pos), SW480 (NEO-
201neg), and OVCAR8 (NEO-201neg) cell lines. We searched

for mutations that were commonly present in both LS174T
and OV90 (NEO-201-positive cell lines) but not in SW480 and
OVCAR8 (NEO-201 negative). Interestingly, gene analysis failed
to show any mutations in the CEACAM family genes. Instead,
missense mutations of the zinc-finger protein ZNF141 and major
histocompatibility complex HLA-DRB5 genes were detected in
both OV90 and LS174T and not in the OVCAR8 or SW480 cell
line. Although the role of ZNF141 in cancer is not clear, other
zinc finger proteins are known to bind either DNA or RNA and to
play a role in gene expression, post-transcriptional modification,
and protein trafficking, andmay correlate withmetastatic process
and EMT transformation. HLA-DRB5 is a key component in
the antigen presentation process. Mutations in this gene could
mediate cancer cell immune escape, but it is currently unclear
how it may relate to the expression of the antigen recognized
by NEO-201.

NEO-201 Alone Does Not Affect Tumor Cell
Viability
To determine the biological significance of NEO-201 reactivity
with cell lines, we investigated its effect on viability of OV90 and
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LS174T in vitro. OV90 cells exposed to increasing concentrations
of NEO-201 for 72 h showed no change in viability (data
not shown).

NEO-201 Mediates ADCC Killing Against
Human Ovarian and Colorectal Carcinoma
Cell Lines in vitro
To evaluate the ability of NEO-201 to kill tumor cells through
NK-mediated ADCC, OV90 or LS174T cells were incubated
with either IgG isotype control or NEO-201 at 1µg/ml,
with/without the highly active NK cell line (haNK) for 4 h.
Neither NEO-201 nor haNK +IgG isotope control showed any
significant effect on cell viability (Figure 3A). We evaluated
the effect of NEO-201 on NK-mediated ADCC on OV90
and LST174T using effector-to-target (E:T) ratio of 1:1, 10:1,
and 20:1. The combination of NEO-201 with haNK showed
a statistically significant increase in ADCC in both cell lines
at the ratio of 10:1 and 20:1. No significant effect on ADCC
was observed at the ratio of 1:1. These data indicate that
NEO-201 does not have a direct cytotoxic effect on the
tumor cells, suggesting that the NEO-201 targets, CEACAM 5
and 6, have no role in cell proliferation. Instead, these data
strongly suggest that the anti-tumor activity of NEO-201 is
mediated by the activation of ADCC in both ovarian and
colon cancer cells. This is consistent with our previous results
confirming the role of NEO-201 in triggering NK-mediated
ADCC using anti-CD16 antibody to block NEO-201-induced
ADCC (13).

We next screened NK from different donors in order
to further optimize the pre-clinical model. A 51Chromium
release ADCC assay guided the selection of the NK donor
to be used for the animal study (Figure 3B). Based on
these results, D3 NK was selected to be used in the
animal study.

NEO-201 Efficacy in Ovarian Cancer
Orthotopic Tumor Model in vivo
We designed our mouse model to incorporate the ADCC
mechanism of tumor cell killing. Because the NEO-201 antibody
is specific to human protein, we are unable to use an immune-
competent mouse model of ovarian cancer. We therefore used
human xenografts in nude mice and inoculated IL-2-activated
human PBMCs at the time of NEO-201 injection. For the first
model, mimicking primary ovarian cancer, we inoculated OV90
cells into the bursal sac surrounding the mouse ovary in order to
initiate a local orthotopic primary tumor that could be measured
over time using ultrasound imaging. In the ovarian bursa model
(Figures 4A,B), the treatment with NEO-201 or NEO-201 in
combination with PBMCs, showed a trend toward tumor control.
In a second model, we inoculated the OV90 cells into the
peritoneal cavity in order to mimic disseminated ovarian cancer
and peritoneal carcinomatosis. We used this model to measure
the effect of NEO-201 on overall survival. Mice that received
NEO-201 with activated PBMCs experienced the longest survival
(Figure 4C) (p < 0.0001). In this model, NEO-201 alone is
also able to improve survival compared to the isotype control
treatment. This could be due to direct anti-tumor effects of the
antibody in this setting or to the activation of the mouse innate
immune system. PBMCs alone had a similar partial effect, likely
due to allo-reactivity of the immune cells against a tumor with
a different MHC haplotype. The combination of NEO-201 and
PBMCs dramatically improved survival over vehicle or either
treatment alone. Overall, these mouse models demonstrate in
vivo activity of NEO-201 against ovarian cancer that specifically
expresses the antibody target.

DISCUSSION

Recent efforts in cancer therapeutics have focused on the
development of drugs that activate the immune system

FIGURE 3 | NEO-201 decreases cell viability by activating natural killer (NK)-mediated antibody-dependent cellular cytotoxicity (ADCC) in vitro. (A) NEO-201-positive

OV90 and LS174T cells lines were selected to assess the effect of NEO-201 on NK-mediated ADCC. Cells were incubated with either highly active natural killer

(haNK), NEO-201 at a dose of 1µg/ml, or a combination of NEO-201 with haNK at different effector-to-target (E:T) ratios. ADCC activity was assessed by

non-radioactive ADCC assay. Experiment and results from (A) were analyzed according to the Celigo program manufacture as described in the Material and Methods

section. (B) In order to select the best NK human donor to use for in vivo experiments, the OV90 cell line was incubated with the NK isolated from the PBMCs from six

different donors in the presence of 1µg/ml of NEO-201. To evaluate specific lysis, NK derived from a selected human donor were activated with IL-2 and used for the

experiment in two different effector cells (E):target cells (T) ratios: 50:1 or 100:1. Chromium released assay was used to evaluated specific lysis. Experiments depicted

in this figure reflect the mean ± SD of three independent experiments. Ordinary one-way ANOVA was used for statistical analysis. *P < 0.05.
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FIGURE 4 | Antiproliferative response to NEO-201 and survival in model of ovarian cancer in vivo. (A) OV90 cells were injected in the mice ovary bursa and observed

for their ability to develop tumors. Tumors were allowed to grow until they reached at least 100 mm3, about 8 weeks post cell injection. Tumor size was followed by

weekly ultrasound. After randomization, each mouse received one cycle of treatment, which consists of two doses of drug on day 1 and day 7 of week 10. Curves

represent tumor volume when treated ×3 with either control {phosphate-buffered saline (PBS)/IgG}, PBMCs (8 million cultured in 200 U/ml IL2 overnight), NEO-201

(250 µg), or their combinations. Kruskal–Wallis test was used to evaluate significance (p = 0.6001). (B) Representative ultrasound images of tumor-bearing mouse

ovaries. Purple lines indicate cross sectional measurements from which volume was calculated. (C) OV90 cells were injected in the mice peritoneum to reproduce an

orthotopic model of peritoneal carcinomatosis from ovarian cancer spreading. Tumors were allowed to grow for 2 weeks before being randomized in the four groups

of treatment as described above. Curves represent survival. Significance was evaluated by Mantel–Cox. *P < 0.05, **P < 0.01, ***P < 0.001.

against cancer cells to achieve durable disease control with a
physiological strategy and avoiding chemotherapy side effects.
The efficacy of immunotherapy has been limited to specific
tumor types and correlated with tumor genetic instability due
to deficiency of mismatch repair (MMR) and/or the expression
of PD-L1 (24). Therefore, there is urgent need for alternative
therapeutic approaches to improve immunotherapy efficacy
against other cancers. The innate immune system, including
monocytes and NK cells, likely works in conjunction with
adaptive immunity, to support and sustain anti-tumor activity.
Here, we assessed a novel monoclonal antibody for its ability
to direct ADCC activity of NK cells against cancer cells
expressing an apparent tumor-associated variant of CEACAM-5
and CEACAM-6.

The CEACAMs are a group of cell surface glycoproteins,
which are normally expressed on the surface of the epithelial cells,
where they regulate tissue architecture and signal transduction
(25). They are overexpressed in several tumors where they have
been linked to cell migration and metastatic process, and drug
resistance (25, 26). Moreover, post-translational modifications
occurring during tumorigenesis, such as glycosylation, could
result in a different composition of the glycan groups
expressed by the CEACAMs (27–29). Colorectal cancers may

demonstrate increased expression of mannose, Thomsen–
Friendenreich antigen, and sialylation compared to healthy colon
tissue (30). Similarly, fucose and mannose can be increased,
while N-acetylgalactosamine, N-acetylglucosamine, galactose,
branched and bisecting N-glycansin may be lower than normal
(31). These modifications could alter cell-to-cell and cell-to-
extracellular matrix (ECM) intercellular interaction (32). It
is possible that a difference in glycosylation pattern explains
the specific binding of NEO-201 to specific tumor-associated
CEACAM-5 and CEACAM-6 variants but not to those expressed
on healthy tissues as shown by the immunohistochemistry
analysis. Interestingly, we also observed that carcinoma cell lines,
expressing native forms of CEACAM-5 and CEACAM-6, showed
a different profile for expression of the antigen recognized by
NEO-201. This data supports the hypothesis that the antigen
recognized by NEO-201 is a specific tumor-associated variant of
CEACAM-5 and -6.

Mutational analysis was conducted, but no CEACAM gene
alteration was found in the cell lines, which had a positive
reactivity with NEO-201. Instead, a gene mutation of zinc-finger
protein ZNF141 was found (33). The zinc-fingers are a group
of protein, which was initially identified as transcription factors,
and recent studies showed that this group of protein could be
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involved inmultiple cellular processes other than gene expression
(34). Although ZNF141 expression/role in cancer has not yet
been clarified (35), overall zinger-finger proteins have been
associated with tissue development abnormalities and epithelial–
mesenchymal transformation (36). ZNF141 mutations could be
involved into a regulation of the different glycosylation status
of CEACAM 5 and 6 that are targeted by NEO-201; however,
further studies are needed to better understand the presence and
relevance of this mutation in human cancers.

Although NEO-201 showed no direct cytotoxic effect as other
mAbs like Trastuzumab (37), Cetuximab (38), or Rituximab
(8), it can exert a significant anti-tumor activity not only
inducing NK-mediated ADCC but also enhancing direct NK
killing against tumor cells. Recently, we showed that NEO-201
mediated enhancement of NK killing against CEACAM5+/NEO-
201+ human carcinoma cell lines, demonstrating that the
binding between NEO-201 and the tumor variant of CEACAM5
can block the interaction between CEACAM5 on tumor cells
and CEACAM1 on NK cells to reverse CEACAM1-dependent
inhibition of NK cytotoxicity (39). Similarly, another study
demonstrated the ability of an anti-CEACAM5 monoclonal
antibody (CC4) to restore NK cytotoxicity in colorectal cancer
preclinical models by blocking the CEACAM 5 (CEA)–
CEACAM 1 axis (40).

In addition, as previously reported by our group, NEO-201
has antitumor activity in vitro and vivo. Our previous work
demonstrated that NEO-201 induced cancer cell killing through
activation of CDC and ADCC in pancreatic cancer models. In
vivo NEO-201 reduced the growth of human pancreatic tumor
xenografts in mice and demonstrated safety/tolerability in non-
human primates with a transient neutropenia lasting ∼8 days as
the only adverse effect observed (10). Furthermore, in another
study, we have also proved that the stimulation of NK cells with
IL-15 superagonist further enhanced the NEO-201-mediated
ADCC against cell lines expressing the antibody target in vitro
(13). Here, we demonstrate the in vivo antitumor activity of
NEO-201 in a preclinical model of ovarian cancer. The treatment
with NEO-201 plus PBMCs dramatically improved survival of
mice compared to vehicle or either treatment alone (Figure 4),
suggesting an in vivo activity of NEO-201 against ovarian cancer
that specifically expresses the antibody target.

All together, these data suggested that NEO-201 has an
antitumor activity and safety profile that we moved forward
to clinical validation in a first in human clinical trial that
is now ongoing at the NCI (NCT03476681). Targeting an
antigen expressed in tumors, but not in normal tissues, allows
patient selection for optimal treatment. The antigen recognized

by NEO-201, a variant of CEACAM-5 and CEACAM-6, is

specific to cancer tissue but expressed across cancer subtypes.
Interestingly, it was developed originally using colon cancer
tissue, and appears to be expressed predominantly in tumors
of gastrointestinal origin or mucinous phenotype. NEO-201,
therefore, has both therapeutic and diagnostic potential. Future
studies will incorporate companion diagnostics during the
course of clinical development in order to identify patient
populations who express the antigen recognized by NEO-201
and are most likely to benefit from this potential therapeutic
agent targeting tumor-specific variants of CEACAM-5
and CEACAM-6.
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Somatostatin analogs mantain their major role in the treatment of patients with advanced

neuroendocrine tumors (NETs) and have multiple modulatory effects on the immune

system. Here, we evaluated the effects of lanreotide treatment on expression of Th1,

Th2 cytokine patterns in serum of patients with NETs and in bronchial and pancreatic

NET cell lines. Our results showed that lanreotide treatment promoted a Th1 cytotoxic

immune-phenotype in patients with NETs originated by intestinal sites. Similar results

were obtained also in vitro where lanreotide induced expression of Th1 cytokines only

in pancreatic and not in bronchial-derived NET cell lines. It seems, therefore, that

cytokinomics can represent a useful tool for the identification of tumor biomarkers for

the early diagnosis and evaluation of the response to therapy in NET patients. To avoid

the drug-resistance induced by everolimus (mTOR inhibitor), we made the pancreatic

NET cell line resistant to this drug. After treatment with lanreotide we found that the

drug reduced its viability compared to that of sensitive cells. These data may have direct

implications in design of future translation combination trial on NET patients.

Keywords: neuroendocrine tumors, cytokines, somatostatin analogs, mTOR–mammalian target of rapamycin,

drug-resistance
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INTRODUCTION

Neuroendocrine Neoplasms (NENs) are heterogeneous, with
increasing incidence in the last decades arising from altered
stem cells programmed to evolve in ultimate lineages scattered
with secretory granules and the ability to produce hormones
(neuropeptidic, neurotransmitter and neuromodulator with
endocrine, autocrine and paracrine action) that lead to carcinoid
syndrome. Our study was performed on neuroendocrine
tumors (NETs) that are differentiated NENs. Although the
incidence of NETs is largely underestimated and comprises
<2% of gastrointestinal malignancies, their prevalence appears
to be greater than that of stomach as well as pancreatic
adenocarcinomas (1, 2). Most commonNETs occur in the gastro-
entero-pancreatic (70%) and respiratory (25%) systems even
though they may rise from any tissue and body district, including
genitourinary tract, skin (merkelioma), thyroid, adrenal, nervous
ganglia etc. (1). Most patients with NETs are diagnosed with
advanced diseases and the mortality rate is 50% within five
years (3, 4). Their treatment is based upon surgical resection
for localized tumors or for NETs with a regional diffusion
and, to alleviate the symptoms, in metastatic or high-grade
tumors (5, 6). Unfortunately, the symptoms associated with
this tumor may be nonspecific or absent. In fact, the diagnosis
of NETs is often delayed and becomes necessary to use
medical therapy. Being slowly growing tumors, patients are
often subjected to long-lasting treatments (6). In the last twenty
years, the best therapeutic approaches to these tumors have been
based on the use of somatostatin analogs (SSAs) (octreotide,
lanreotide) and, later on, mammalian target of rapamycin
(mTOR) inhibitors such as everolimus (7, 8) have also shown
their efficacy in the treatment of patients with these malignacies.
Somatostatin receptor (SSR) subtypes are 5 (SSR 1–5) (9, 10) and
somatostatin, binding to its receptors, activate both antisecretory
and antiproliferative effects. The antisecretory effects are mainly
due to inhibition of exocytosis mainly induced by the decrease of
intracellular cAMP and calcium levels. Antiproliferative effects
are induced by cell cycle arrest or apoptosis activated by protein
tyrosine phosphatases or through the inhibition of the secretion
of growth factors (11, 12). The receptors can also form dimers
thus having complex effects on the cells through the activation of
alternative signal transduction pathways (13).Most of these NETs
express SSR, predominantly subtypes 1, 2, and 3 with an inverse
correlation with the grade of differentiation of the tumor (14).

Octreotide and lanreotide are the first-generation SSAs
and show a high binding affinity to SSR2 and 5, while
pasireotide, which is a second-generation SSA, has high affinity
for multiple SSRs (SSR5 > SSR2 > SSR3 > SSR1) (15).
Lanreotide, in details, is currently approved for treatment of
NETs and has a relevant cytostatic and antisecretive effect.
Two important phase III trials, PROMID (placebo-controlled,
prospective, randomized study in patients with metastatic
neuroendocrine midgut tumors) and the CLARINET (controlled
study of lanreotide antiproliferative response in neuroendocrine
tumors), have been performed on patients with midgut and
gastroenteropancreatic NETs, respectively. In the PROMID
trial, 85 patients with NET were randomized to receive either

octreotide or placebo. Octreotide was associated to a significant
longer time to tumor progression compared to the placebo
(14.3 months within the octreotide group and 6.0 months
in the placebo group) and lower tumor progression rates
(16). CLARINET assessed the SSA lanreotide in patients with
advanced, G1/G2 differentiated, nonfunctioning, somatostatin
receptor-positive NETs and documented disease progression
status. In that study, lanreotide was linked to significantly
prolonged progression-free survival (PFS) compared to the
placebo (estimated rates of PFS at 24 months 65.1% in
the lanreotide group and 33.0% in the placebo group) (17).
Long-term results from both trials demonstrated the long-
lasting control of the disease for octreotide and poor side
effects in prolonged treatment for lanreotide (18). On the
other hand, mTOR is an intracellular effector involved in
cell survival, proliferation and metabolism regulation (19)
acting through Thr389phosphorylation of translational regulator,
ribosomal protein S6 kinase β-1 (S6K1) and phosphorylation
of eukaryotic translation initiation factor 4E-binding protein
1/2 (4eBP1/2), which, respectively, induce mRNA biogenesis
and cap-dependent translation, increasing protein synthesis,
cell growth and proliferation (19, 20). mTOR expression was
observed significantly higher both in primary lesions and in
metastases from NETs. This finding is coherent with a driver role
of mTOR pathway activation in NET tumorigenesis (21). It is
evident that the inhibition of this signaling pathway represents an
excellent pharmacological target. Currently, based on the results
of several clinical trials, everolimus (a pharmacologically active
inhibitors of mTOR) is approved for the treatment of advanced
pancreatic, gastrointestinal and lung NETs (22, 23). Moreover,
everolimus should be considered a valid therapeutic option for
extrapancreatic NETs (24). However, one-third of NET patients
show primary insensitivity (primary resistance) to treatment
with everolimus, while in others the disease is initially stabilized
and then develops resistance (acquired resistance) and disease
progression; this could depend on the genetic instability and
the heterogeneity of tumor cells (25). Lastly, some indications
suggest that combination of mTOR inhibitors with other target-
based drugs, including dopamine agonists and SSAs could be a
promising strategy in NET treatment (26, 27). Recent studies
have highlighted the cell interactions between the tumor and
the immune system in the tumor microenvironment; these
interactions allow themalignant cells to use the local mechanisms
present in the latter, preventing the activation of the functions of
the immunological effectors and, thus, protecting the tumor from
the attack of the immunological effectors (28). Two mechanisms
of immunosuppression have been highlighted: (i) alteration of
the genes (oncogenes) of the tumor cells and (ii) adaptive
immuno-resistance supported by tumor-specific T cells (28).
Several studies performed on somatostatin and its analogs have
also shown that tumor cells synthesize cytokines that favor escape
from immunosurveillance and may also act as tumor growth
factors (29–33).

Somatostatin is a very pleiotropic molecule able to exert
different effects on a number of immune cells where different
SSRs are expressed. Firstly, somatostatin by itself is able to
stimulate the production of Interleukin-1β (IL-1β) and Tumor
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Necrosis Factor α (TNFα) (34), two dominant pro-inflammatory
cytokines which are critically involved in the activation of
both inflammation as well as immune reactions consequent
to specific tissue damages. In this light, one of its analogs,
octreotide, whose binding activity is limited to SSR2 and 5,
seems to be able to inhibit the production of TNFα (31) and
to increase the production of Interleukin-10 (IL-10) in patients
with autoimmune diseases (32). In another study, octreotide and
pasireotide also showed the ability to decrease the production
of both Interferon γ (INF-γ) and Interleukin-2 (IL-2) by in
vitro stimulated T cells (33). All together, these results suggest
that the two SSR2 stimulating agents seem to promote the
induction of a type 2 helper immunophenotype (Th2) that
drives the immune reaction from cell mediated (Th1) toward a
humoral response. In this way, it can be hypothesized that SSR
agonists may interfere with both tumor microenvironment and
immune reaction. On these bases, we believe that cytokinomics
can represent a useful tool to study either inflammatory and/or
immunological issues in patients with advanced NET under
treatment with lanreotide aimed to detect potential biomarkers
of response and new therapeutic targets for these patients.
Moreover, we have evaluated the effects of lanreotide on Th1
and Th2 functional profile on NET cell lines (typical bronchial
NET NCI-H727 and pancreatic NET BON-1) and in patients
with advanced NETs by evaluating specific cytokine patterns
(IL-2, IL-4, IL-6, IL-10, IFN-γ, and TNFα). By taking in
consideration that PI3K/AKT/mTOR inhibitors, like everolimus,
are known immunesuppressive drugs used in the prevention
of bone marrow transplantation and are currently used in
the treatment of not resectable pancreatic NET and bronchial
carcinoids, we have also evaluated whether treatment with
lanreotide may also be used to revert resistance to everolimus in
NET cell lines.

MATERIALS AND METHODS

Cell Cultures
BON-1 cells were a kind gift from University of Turin,
San Luigi Hospital, Orbassano. BON-1 cell line is the
most widely used in vitro GEP-NET cell line model. In
fact, this is an easy-to-handle immortalized cell line that
allows a high rate of experimental reproducibility. NCI-H727
cells were provided by American Type Culture Collection
(ATCC). BON-1 R (everolimus-Resistant) cells were obtained
after chronic treatment with everolimus for eight weeks.
During treatment, increasing drug concentrations (from 1.25
to 10µM) were added to the culture medium every 48 h,
doubling its concentration every two weeks. All cell lines
were confirmed as mycoplasm-free. BON-1 and BON-1 R
cell lines were cultured in DMEM-F12 supplemented with
FCS (10% v/v), L-glutamine (2 mmol/L), fungizone (0.5
mg/L) and penicillin (1 × 105 u/L). The NCI-H727 cell line
was cultured in RPMI-1640 supplemented with FBS (10%
v/v), L-glutamine (2mmol/L), penicillin (1 × 105 u/L) and
streptomycin (1× 105 u/L). Cells were incubated in a humidified
incubator containing 95% air and 5% CO2 with temperature
at 37◦C.

Compounds
Everolimus was provided from Novartis Pharma Basel,
Switzerland. Lanreotide was provided from Sigma-Aldrich
(Darmstadt, Germany). Everolimus and lanreotide powders were
dissolved in dimethylsulfoxide (DMSO) at a concentration of
1 × 10−3 M and 4.56 × 10−6 M, respectively; stock solutions
were stored at −20◦C and then diluted in DMSO immediately
before use. mTOR, p-mTORSer2448, S6K1, p-S6K1Thr389, 4eBP1
and p-4eBP1Thr70 antibodies were purchased by Cell Signaling
Technology (Beverly, MA, USA); IL-10, IL-6, and TNFα
antibodies were supplied from Abcam (Cambridge, UK),
while the anti-α-Tubulin antibody from Calbiochem (Jaffrey,
NH, USA).

Patient Inclusion Criteria
According to WHO 2010 classification, 30 patients with
intestinal (17 cases), bronchial (10 typical carcinoid), and
mammary (3 cases) NETs, under treatment with lanreotide were
enrolled. However, cytokine analysis was performed on only
10 patients due to the inadequacy of the sample: 6 patients
with intestinal, 2 with bronchial (typical carcinoid) and 2 with
breast NETs. The following criteria were required for study
selection: histologically confirmed, unresectable, measurable,
locally advanced, or metastatic NET either with carcinoid
syndrome or functionally inactive; disease progression within 6
months of study entry, based on radiographic images according
to the Response Evaluation Criteria in Solid Tumors (RECIST
1.1) (35); expression of somatostatin receptors in the tumor,
demonstrated by a positive Octreoscan result; adequate cardiac,
hematopoietic, hepatic, and renal function; a wash-out time of at
least 4 weeks from any previous treatment with antitumor agents
(chemotherapy and/or biological therapy) and 3 months from
radiotherapy; no previous treatments with SSAs.

Treatment Schedule
Slow-release lanreotide (Ipsen S.p.A, Milan, Italy) was
administered in a 90-mg deep sc injection every 28 days.
No other anticancer medications were allowed during the course
of the study.

Sample Collection
Samples have been collected before treatment with lanreotide
started, ten days after the beginning of treatment and then about
once a month, for six months, accordingly to clinical practice.
The peripheral blood serum of NET patients was centrifuged
at 1500 g for 10min; then, it was aliquoted in cryovials and
stored at −80◦C for the following analyses. All the procedures
have been performed with respect to the standard biosecurity
and institutional safetymeasures. Informed consent was obtained
from patients to use their samples for research and ethical
committee approval was acquired from the Hospital of our
University (protocol number 94 of 31st January 2015).

Cytokine Expression by Cytofluorimetric
Analysis
Cytofluorimetric analysis was performed using the BDTM

Cytometric Bead Array (CBA) Human Th1/Th2 Cytokine kit
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TABLE 1 | Clinical characteristics of patients with NETs.

Patient Age Gender Tumor

localization

Metastatic

sites

Previous medical

treatments

OS

(months)

PFS

(months)

Response to

treatment

1 60 M Intestinal

NET

Liver,

nodes

None 30 6 SD

2 62 M Intestinal

NET

Liver None 47+ 5 CR

3 71 M Intestinal

NET

Liver,

Mesenteric

None 53+ 12 PR

4 67 M Intestinal

NET

Liver,

nodes

None 50+ 13 PR

5 68 M Intestinal

NET

Nodes,

liver, heart

None 38 2 PD

6 67 M Intestinal

NET

Nodes,

liver

None 40 5 SD

7 71 M Bronchial

NET

Liver,

bone,

nodes

None 96 7 PD

8 70 M Bronchial

NET

Liver, bone None 90 6 PD

9 70 F Mammary

NET

Liver, bone 3 Chemotherapy lines 9 3 PD

10 68 F Mammary

NET

Liver, bone 2 Chemotherapy lines 8 2 PD

OS, overall survival; PFS, progression-free survival; SD, stable disease, CR, complete response; PR, partial response; PD, progression disease.

II (BD Biosciences, Franklin Lakes, NJ, USA), according to
the protocol by supplier. The kit was used to quantitatively
measure INF-γ, TNFα, IL-10, IL-6, IL-4, IL-2 in NET serum
samples. The analytical properties of BDTM CBA assay was
used to evaluate the relevant protein concentrations (pg/mL)
in serum: this assay provides a method to capture by flow
cytometry a set of analytes with known size beads. Each captured
bead is conjugated with a specific antibody. When the capture
beads and detector reagent are incubated with an unknown
sample containing recognized analytes, sandwich complexes
(capture bead + analyte + detection reagent) are formed. These
complexes can be measured using flow cytometry detectable in
FL3 channel. Six bead populations with distinct fluorescence
intensities have been coated with capture antibodies specific for
INF-γ, TNFα, IL-10, IL-6, IL-4, IL-2 proteins. The six bead
populations were mixed together and resolved in a red channel.
The mix of bead was incubated with phycoerythrin (PE)-
conjugated antibodies for different cytokines mixture (resolved
in FL2 channel). After that, standard curve (0–5000 pg/mL)
and the samples were added to bead mix and 1 × 104 events
for each sample were acquired. The analysis was performed
by BD AccuriTM C6 flow cytometer (BD, Biosciences, Franklin
Lakes, NJ, USA), using FCAP ArrayTM 3.0.1 software. Each
sample was processed in triplicate and the data were expressed
as mean± SD.

MTT Cell Viability Assay
BON-1 and NCI-H727 cells were plated into 96-well plates
at a density of 15 × 103 cells/well in 4 replicates. After
24 h, lanreotide was added at increasing concentrations (0.195

to 100µM). Cells were incubated for 6, 16, and 24 h at
37◦C in a humidified atmosphere containing 5% CO2. After
6, 16, and 24 h of treatment, cells were used for MTT cell
viability assay (Sigma-Aldrich). To evaluate the resistance
to everolimus, BON-1 R cells were treated with increasing
everolimus concentrations (from 0.62 to 10µM) and at 24,
48, and 72 h was performed MTT cell viability assay. MTT
solution (MTT 5 mg/mL in PBS) was added to the cells
and then incubated at 37◦C for 1 h. The absorbance of the
converted dye was measured at a wavelength of 570 nm, using
VictorTM X4 Multilabel Plate Reade (PerkinElmer, MA, USA).
Percentage of growth was normalized respect to control cells,
represented by untreated cells (100% growth). Each experiment
was conducted at least three times and the data were expressed as
mean± SD.

Western Blot Analysis
Total proteins were homogenized in lysis buffer (Triton 1%,
sodium deoxycholate 0.5%, NaCl 0.1M, EDTA 1mM, pH 7.5,
Na2HPO4 10mM, pH 7.4, PMSF 10mM, benzamidine 25mM,
leupeptin 1mM, aprotinin 0.025 U/mL). Total proteins (50 µg)
were separated using Sodium Dodecyl Sulfate—PolyAcrylamide
Gel Electrophoresis (SDS-PAGE) at 10% (TGX Stain-Free,
BIORAD, Hercules, CA, USA). Proteins were transferred to
Nitrocellulose Blotting Membranes 0.2µm (Trans-Blot Turbo,
Mini, BIORAD, Hercules, CA, USA) using the Trans-Blot
Turbo R© Transfer System (BIORAD, Hercules, CA, USA).
Membranes were blocked with 5% milk in T-TBS (0.05% Tween-
20, 200mM Tris-HCl pH 7.5, 1.5M NaCl) for 1 h at room
temperature and then incubated overnight in primary antibodies
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FIGURE 1 | INF-γ, TNFα, IL-10, IL-6, IL-4, and IL-2 expression in serum of patients with: (A), intestinal NET (patient 1-6); (B), bronchial (patients 7 and 8) and (C),

mammary NETs (patients 9 and 10) after treatment with lanreotide by cytofluorimetric analysis. Each experiment was repeated three times and the data are

representative samples of the total number of patients analyzed and shown as mean ± SD. ** P ≤ 0.01; *** P ≤ 0.001.
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FIGURE 2 | Cell viability evaluated by MTT, after 6, 16 and 24 h of treatment with lanreotide (from 0.195 to 100µM) in NCI-H727 and BON-1 cell lines. Each

experiment was repeated three times and shown as mean ± SD. * P ≤ 0.05; *** P ≤ 0.001.

at 4◦C. Rabbit monoclonal antibodies for IL-6, TNFα, and mouse
monoclonal antibody for IL-10 were used in BON-1 and NCI-
H727 cells treated with lanreotide (100 and 200µM). Rabbit
monoclonal antibodies for mTOR, p-mTORSer2448, S6K1, 4eBP1,
p-4eBP1Thr70, TNFα, and mouse monoclonal antibody for p-
S6K1Thr389 and IL-10 were used in BON-1 and BON-1 R cells.
The nitrocellulose membranes were washed twice with T-TBS
and incubated with secondary antibody in the T-TBS/Milk for
1 h at room temperature. Secondary antibodies include IgG
directed against the mouse or rabbit determinants of the first
antibody and are conjugated to peroxidase. Membranes were
revealed through chemiluminescence reaction reagents (relevant
ClarityTM Western ECL Blotting Substrate, BIORAD, Hercules,
CA, USA). The quantative analysis was performed with the
Image Lab 5.2.1 software (ChemiDoc XRS+, BIORAD, Hercules,
CA, USA) and the values were normalized on the α-Tubulin
expression. Each experiment was conducted three times and the
data were expressed as mean± SD.

Statistical Analyses
Statistical analysis was performed using Graphpad 5 software
(Graphpad Software, La Jolla, CA, USA) and the results
were considered statistically significant at a level of P ≤

0.05. IC50 concentrations were calculated by Spline method.
Differences between treatment and control cells were analyzed
using a one-way ANOVA followed by a multiple comparative
test (Newman-Keuls).

RESULTS

Patient Characteristics and Serum
Cytokine Determination
We performed a cytofluorimetric analysis aimed to evaluate the
parallel expression of IFN-γ, TNFα, IL-10, IL-6, IL-4, IL-2 in the
serum of 10 patients (8 males and 2 females, mean age: 67.4 ±

3.7, median age: 68) with intestinal (6 patients), bronchial (typical
carcinoid, 2 patients), and breast NETs (2 patients) receiving
treatment with lanreotide. The patients enrolled in the study
were at least for 1 month without any other specific cancer
treatments and all the values were compared to the baseline
in absence of lanreotide administration. During the study, 1
complete response (CR) lasting 5 months was recorded in a
patient with intestinal NET, 2 partial responses (PRs) lasting
12 and 13 months, respectively, in 2 patients with intestinal
NETs and 2 stable diseases (SDs) lasting 6 and 5 months in
other 2 patients with intestinal NETs, respectively (Table 1).
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FIGURE 3 | IL-10, IL-6, TNFα expression in BON-1 cell line after treatment with 100 and 200µM lanreotide. (A), Western blotting analysis of IL-10, IL-6, TNFα. (B),

Quantitative analysis reported as arbitrary units showing the variation of IL-10, IL-6, TNFα expression levels compared to a-Tubulin, as housekeeping protein, using

Image Lab 5.2.1 ChemiDoc XRS+ (BIORAD). The results are shown as mean ± SD of three independent experiments. ** P ≤ 0.01; *** P ≤ 0.001.

A progression disease (PD) was recorded in a patient with
intestinal NET, in the 2 patients with bronchial NETs and in
the 2 patients with mammary NETs (Table 1). All the patients
had liver metastases at the beginning of the treatment and only
3 patients are still presently alive: all with intestinal NETs with
an overall survival (OS) of 47, 53, and 50 months, respectively
(Table 1). Only the 2 patients with mammary NETs received
previous chemotherapy lines while all the remaining patients did
not receive any previous medical and/or radiation treatments.

The data of the analyzed patients show a different trend of
serum cytokine concentrations in relation to the primary tumor
site. In details, in all the analyzed patients and independently
from the tumor site of origin, the levels of IL-6 increased
after 10 days of treatment with lanreotide and decreased in
the following six months; whereas the levels of IL-2 and IL-
10 raised only in some patients. On the contrary, the levels

of IL-4 decreased already at 10 days, as compared to baseline
untreated control in sera from the patients affected by bronchial
NETs. Only in intestinal NETs, IFN-γ and TNFα increased after
10 days of treatment with lanreotide (Figure 1A). Therefore,
our data suggest that intestinal NETs are characterized by a
higher early and more significant Th1 than Th2 response that
could be associated to a greater sensitivity to the immune-
mediated effects of lanreotide. Interestingly, all the clinical
responses were recorded in intestinal NETs with 3 patients
still alive after about 50 months from the beginning of
the treatment.

On the other hand, IFN-γ and TNFα were not
detectable in sera from patients with bronchial and
mammary NETs (Figures 1B,C). The latter data
suggest that bronchial and mammary NETs have an
inflammatory and immunological micro-environment poorly
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FIGURE 4 | IL-10, IL-6, TNFα expression in NCI-H727 cell line after treatment with 100 and 200µM lanreotide. (A), Western blotting analysis of IL-10, IL-6, TNFα. (B),

Quantitative analysis reported as arbitrary units showing the variation of IL-10, IL-6, TNFα expression levels compared to α-Tubulin, as housekeeping protein, using

Image Lab 5.2.1 ChemiDoc XRS+ (BIORAD). The results are shown as mean ± SD of three independent experiments. * P ≤ 0.05; *** P ≤ 0.001.

responsive to lanreotide. Interestingly, all these patients
experienced a PD with a limited OS in heavily pre-treated
mammary NETs.

Lanreotide Effect on Cell Viability in
Bronchial and Pancreatic NET Cell Lines
Thereafter, we evaluated the in vitro effects of lanreotide on
NCI-H727 bronchial and BON-1 pancreatic NET cell lines
expressing SSRs. The viability of these cells exposed to escalating
lanreotide concentrations [range 0.195–100µM] was evaluated
after 6, 16, and 24 h from the beginning of the exposure to
lanreotide with MTT cell viability assay. In both cell lines,
lanreotide caused minimal cytostatic effects at 16 h. In particular,
NCI-H727 cell line showed a reduction in viability of 17% (P
≤ 0.05) and 23% (P ≤ 0.001) when exposed to a lanreotide
concentration of 25 and 100µM, respectively; while BON-1

cell line showed no effect up to 25µM and 21% (P ≤ 0.001)
reduction in viability at 100µM (Figure 2). The exposure of the
two cell lines to lanreotide for more prolonged times (up to 6
days) determined a lost of the growth inhibitory effects (data
not shown).

Lanreotide Effects on Inflammatory
Cytokine Expression by Bronchial and
Pancreatic NET Cell Lines in vitro
Considering the difficulty to evaluate the effects of treatment
with lanreotide on the cytokine levels in rare tumors, such as
NETs, we analyzed the protein expression by Western Blotting
on stable and reproducible NET models, NCI-H727 and BON-1
cell lines, exposed for 24 h to lanreotide at the final concentration
of 100 and 200µM, respectively. The cytostatic effect induced
by treatment with lanreotide on the cells was very minimal thus,
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FIGURE 5 | (A), Morphological analysis of BON-1 cell line, sensitive (S) and resistant (R) to everolimus. (B), Cell viability by MTT assay on sensitive and resistant

BON-1 cell line after 24, 48, and 72 h of treatment with everolimus (from 0.625 to 10µM). Each experiment was repeated three times and shown as a mean ± SD.

to evaluate the protein expression of cytokines, we increased the
concentration to 200 µM.

Our experiments in BON-1 cells derived from a pancreatic
NET revealed significant treatment-related increase in TNFα
synthesis paralleled by a significant reduction in IL-6 and IL-10
expression; this cytokine profile reflects the ability of lanreotide
to induce a Th1 cytotoxic immune-response (Figures 3A,B). On
the other hand, exposure of NCI-H727 bronchial NET cell line
to lanreotide induced a treatment-related increase of IL-6 and
of TNFα expression paralleled by a decrease in the expression
of IL-10 (Figures 4A,B). The above-mentioned findings were not
recorded in tumor cell lines, untreated or exposed to DMSO (100
and 200µM) used as drug vehicle negative control. Therefore,
the effects obtained in vitro on the two cell lines were on line with
those recorded ex vivo on patient sera.

Lanreotide Effects on a Pancreatic NET
Cell Line Resistant to Everolimus
In order to evaluate the ability of lanreotide to overcome tumor
cell resistance to mTOR inhibitors, we generated an everolimus-
resistant BON-1 pancreatic NET cell line. At this purpose,
we performed a long lasting (8 weeks) culture of these cells
with escalating everolimus concentrations (range 1.25–10µM).
The resistance to everolimus was demonstrated by performing
MTT cell viability assay after 24, 48, and 72 h of exposure
to everolimus (concentration range: 0.62–10µM) (Figure 5B).
Additional experiments were also performed to demonstrate

mTOR pathway inactivation in the resistant BON-1 cell line
(R) compared to sensitive cells (S) with no other detectable
morphological and phenotypic changes (Figures 5A, 6A,B).

Indeed, a significant reduction (from 5 to 2-fold) of mTOR
phosphorylation was detected as well as of the activity of
its downstream effectors (S6K1 and 4eBP1). Noteworthy, the
reduction of molecular target activity is one of the best-known
mechanisms of resistance to target-based agents.

Thereafter, we evaluated the antitumor effects of lanreotide
on cells resistant to everolimus compared with the sensitive
BON-1 parental cells in 24, 48, and 72 h MTT cell viability
assays. In these experiments, we found a significant dose-time
dependent anti-tumor effect of lanreotide only on the tumor
cells resistant to everolimus (Figure 7). This antitumor effect
of lanreotide was maximal after 72 h of exposure with a 50%
proliferative inhibition (IC50) of 25µM. These data suggest that
lanreotide blocks transduction pathways alternative to mTOR in
everolimus-resistant tumor cells and sensitizes these cells to the
antiproliferative effects induced by chronic exposure to mTOR
inhibitors. We have also evaluated the effects of everolimus-
induced resistance on the expression of membrane-associated
isoform of TNFα and of IL-10 in these cells. We have found
an increase of both cytokines in everolimus-resistant cells as
compared with sensitive ones (Figures 6A,B). The previous data
suggest that the resistant phenotype confers an increase of TNFα,
a Th1 cytokine making the cells likely more sensitive to the
inhibitory activity of lanreotide.

Frontiers in Oncology | www.frontiersin.org 9 July 2020 | Volume 10 | Article 104737

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sciammarella et al. Lanreotide on Everolimus-Resistant NETs

FIGURE 6 | mTOR pathway (mTOR, p-mTORSer2448, S6K1, p-S6K1Thr389, 4eBP1, and p-4eBP1Thr70) and Th1 cytokines (IL-10 and TNFα) proteins expression in

sensitive and resistant BON-1 cell line. (A), Western blotting analysis of mTOR, p-mTORSer2448, S6K1, p-S6K1Thr389, 4eBP1, p-4eBP1Thr70, IL-10, and TNFα. (B),

Densitometric analysis of bands showing the variation of the expression levels of the mTOR pathway and Th1/Th2 cytokines compared to α-Tubulin, as housekeeping

protein, using Image Lab 5.2.1 ChemiDoc XRS+ (BIORAD). The results are obtained from three independent experiments and plotted as mean ± SD. *** P ≤ 0.001.

FIGURE 7 | Analysis of cell viability by MTT assay on sensitive (S) and resistant (R) BON-1 cell line after 24, 48, and 72 h of treatment with lanreotide (from 0.195 to

100µM). Each experiment was repeated three times and shown as mean ± SD. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.

DISCUSSION

Neuroendocrine tumors (NETs) are neoplasms that arise from
cells of the so-called “Neuroendocrine Diffuse System” with

morphological and functional features similar to neurons,
although they are without axons or synapses.

The most relevant therapeutic strategies for this disease
consist in the use of molecules able to interfere with the main
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pathways involved in the pathogenesis and function of NET cells.
These approaches regard the use of SSAs, including octreotide
and lanreotide as well as mTOR inhibitors like everolimus.

Several studies have shown that neuroendocrine tumor
cells may synthesize cytokines (CKs) (29) that in turn, act
as tumor growth factors (i.e., IL-8) and also affect the
immunosurveillance efficacy (30). Th1 immunity is gaining an
important role in cancer therapy and weak Th1 responses
are suggestive of poor treatment response and prognosis (36).
This role for Th1 immunity is likely due to the CD4+ T
helper cell function in stimulating both innate and adaptive
components of immune system in response to tumors through
direct cytotoxic tumoricidal activity, modification of antitumor
cytokine responses and potentiation of long term immunologic
memory (37). In line with other scientific findings, we have
recorded that lanreotide treatment is able to restore a Th1
phenotype in patients with intestinal NETs as showed by a
significant increase in TNFα and IFN-γ. Additionally, we also
showed that all patients continue to produce high levels of Th2
cytokines probably as consequence of a higher representation
of lanreotide-resistant cells and previous different treatments.
In this light, both IFN-γ and TNFα were not detectable in
patients with mammary and bronchial NETs suggesting that
other cytokines such as IL-17A as well as IL-8 might be involved
in the activation pathways of these tumors or that simply
their expression may not be modulated by lanreotide for a
different expression of sensitive SSRs. The modulation of IFN-
γ production observed in patients with NETs was not tested in
vitro experiment due to the inability of tumor cells to produce
this cytokine. In line with these results, we also found that the
exposure to lanreotide is able to upregulate the production of
TNFα and downregulate the expression of IL-6 and IL-10 only in
the pancreatic-derived cells, while lung NETs showed an opposite
profile. On this light, we have previously demonstrated that
lanreotide can increase the activity of IL-2-activated peripheral
blood mononuclear cells against a cellular model of NET of the
thyroid, the medullary thyroid carcinoma (MTC) TT cell line.
Moreover, we have showed that a combination schedule based
upon the concomitant administration of recombinant IL-2 and
lanreotide in a series of 6 patients affected bymetastaticMTCwas
an active and safe treatment (38). Another previous therapeutic
approach in this cancer subset was the combination between
lanreotide and interferon α (IFNα) that gave some clinical results
even if less promising (39). The previous and present data
encourage the exploration of new strategies in NET based upon
the combined use of immunological checkpoint inhibitors and
lanreotide. In this context, everolimus has gained an important
role in the treatment guidelines of NET, but one-third of NET
patients invariably show primary resistance to everolimus, while
the majority of the patients develop acquired resistance and
disease progression within 24 months (25). In our study, we
have investigated the effects of lanreotide in pancreatic cell lines
made resistant to everolimus in vitro. We have characterized
this cell line for the activity and expression of the mTOR-
dependent pathway and we have found, as expected, an increased
activity of the targets as an explanation of the resistance. In
this experimental model, our data suggest that the parental

pancreatic NET cells were highly resistant to the antiproliferative
effects induced by lanreotide compared to everolimus resistant
derivative cells. The use of lanreotide in this setting could have
a new indirect mechanism of action which could overcome
the resistance to everolimus. We have also demonstrated
an increased expression in everolimus-resistant cell line, as
compared to the parental counterpart of TNFα suggesting that
a Th1 response could be useful in immunological integrated
treatment strategies. IL-10 showed the same expression profile
in NET cell line resistant to everolimus compared to sensitive
one. In fact, as reported by Stassi et al. the cancer resistance to
chemotherapeutic drugs is related to the autocrine production of
IL-4 and IL-10 (40).

Experiments are currently in progress to evaluate the cytokine
expression modulation in the resistant cells by lanreotide as well
as its effects on the expression of the different SSTR subtypes.

Overall our results suggest that lanreotide treatment of
intestinal NET tumors promotes the occurrence of a Th1
cytotoxic phenotype, a fact that may represent a solid rationale
to combine lanreotide with immune-oncological strategies
which include immunodulating cytokines (IL-2, IFNα) or PD-
1/PD-L1 inhibitors. Additionally, our in vitro results suggest
that lanreotide may be considered as an efficient rescue
treatment when everolimus resistance occurs in patients with
intestinal NETs.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

Written informed consent was obtained from the individuals
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

CS and AL have contributed equally to this work, prepared the
manuscript, and assembled figures. FR, CM, MB, GM, ACo, GV,
and PC conceived and designed the experiments. AG performed
experiments and analyzed data. RM clinically evaluated patients
enrolled for the study. AMC conducted the experiments. AF,
AN, JF, MG, MC, and ACa revised the manuscript. All authors
contributed to the article and approved the submitted version.

FUNDING

This work has been supported by IPSEN, by the NSP project
nos. LO1508 and LO1309, MZ-VES project nos. 16-28637A, 16-
2960A, and 17-32285A, by funds institutional research (TA29)
of UVPS Brno and by AIRC (IG 2017, code 20711). The funder
(IPSEN) was not involved in the study design, collection, analysis,
interpretation of data, the writing of this article or the decision to
submit it for publication.

Frontiers in Oncology | www.frontiersin.org 11 July 2020 | Volume 10 | Article 104739

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sciammarella et al. Lanreotide on Everolimus-Resistant NETs

REFERENCES

1. Kloppel G. Neuroendocrine neoplasms: dichotomy, origin and
classifications. Visc Med. (2017) 33:324–30. doi: 10.1159/0004
81390

2. Fraenkel M, Kim M, Faggiano A, de Herder WW, Valk GD, Knowledge
N. Incidence of gastroenteropancreatic neuroendocrine tumours:
a systematic review of the literature. Endocr Relat Cancer. (2014)
21:R153–63. doi: 10.1530/ERC-13-0125

3. Bhate K, Mok WY, Tran K, Khan S, Al-Nahhas A. Functional assessment in
the multimodality imaging of pancreatic neuro-endocrine tumours. Minerva

Endocrinol. (2010) 35:17–25.
4. Scherubl H, Streller B, Stabenow R, Herbst H, Hopfner M, Schwertner C, et

al. Clinically detected gastroenteropancreatic neuroendocrine tumors are on
the rise: epidemiological changes in Germany. World J Gastroenterol. (2013)
19:9012–9. doi: 10.3748/wjg.v19.i47.9012

5. Plockinger U, Wiedenmann B. Treatment of gastroenteropancreatic
neuroendocrine tumors. Virchows Arch. (2007) 451 Suppl
1:S71–80. doi: 10.1007/s00428-007-0446-z

6. Faggiano A, Lo Calzo F, Pizza G, Modica R, Colao A. The safety of available
treatments options for neuroendocrine tumors. Expert Opin Drug Saf. (2017)
16:1149–61. doi: 10.1080/14740338.2017.1354984

7. Arnold R, Trautmann ME, Creutzfeldt W, Benning R, Benning M, Neuhaus
C, et al. Somatostatin analogue octreotide and inhibition of tumour growth
in metastatic endocrine gastroenteropancreatic tumours. Gut. (1996) 38:430–
8. doi: 10.1136/gut.38.3.430

8. Zaytseva YY, Valentino JD, Gulhati P, Evers BM. mTOR inhibitors in
cancer therapy. Cancer Lett. (2012) 319:1–7. doi: 10.1016/j.canlet.2012.
01.005

9. Lamberts SW, van der Lely AJ, de HerderWW,Hofland LJ. Octreotide.N Engl

J Med. (1996) 334:246–54. doi: 10.1056/NEJM199601253340408
10. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. (1999)

20:157–98. doi: 10.1006/frne.1999.0183
11. Modlin IM, Pavel M, Kidd M, Gustafsson BI. Review article:

somatostatin analogues in the treatment of gastroenteropancreatic
neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther. (2010)
31:169–88. doi: 10.1111/j.1365-2036.2009.04174.x

12. Rai U, Thrimawithana TR, Valery C, Young SA. Therapeutic uses of
somatostatin and its analogues: Current view and potential applications.
Pharmacol Ther. (2015) 152:98–110. doi: 10.1016/j.pharmthera.2015.05.007

13. Msaouel P, Galanis E, Koutsilieris M. Somatostatin and somatostatin
receptors: implications for neoplastic growth and cancer biology. Expert
Opin Investig Drugs. (2009) 18:1297–316. doi: 10.1517/135437809
03176399

14. Hankus J, Tomaszewska R. Neuroendocrine neoplasms and somatostatin
receptor subtypes expression. Nucl Med Rev Cent East Eur. (2016) 19:111–
7. doi: 10.5603/NMR.2016.0022

15. Gatto F, Barbieri F, Arvigo M, Thellung S, Amaru J, Albertelli M,
et al. Biological and biochemical basis of the differential efficacy
of first and second generation somatostatin receptor ligands in
neuroendocrine neoplasms. Int J Mol Sci. (2019) 20:16. doi: 10.3390/ijms
20163940

16. Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M,
et al. Placebo-controlled, double-blind, prospective, randomized study on
the effect of octreotide LAR in the control of tumor growth in patients
with metastatic neuroendocrine midgut tumors: a report from the PROMID
Study Group. J Clin Oncol. (2009) 27:4656–63. doi: 10.1200/JCO.2009.
22.8510

17. Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova
E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine
tumors. N Engl J Med. (2014) 371:224–33. doi: 10.1056/NEJMoa
1316158

18. Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, et
al. Somatostatin analogues in the treatment of neuroendocrine tumors:
past, present and future. Int J Mol Sci. (2019) 20:12. doi: 10.3390/
ijms20123049

19. LaplanteM, Sabatini DM.mTOR signaling in growth control and disease.Cell.
(2012) 149:274–93. doi: 10.1016/j.cell.2012.03.017

20. Huang J, Manning BD. A complex interplay between Akt, TSC2 and
the two mTOR complexes. Biochem Soc Trans. (2009) 37(Pt 1):217–
22. doi: 10.1042/BST0370217

21. Lamberti G, Brighi N, Maggio I, Manuzzi L, Peterle C, Ambrosini V,
et al. The role of mtor in neuroendocrine tumors: future cornerstone
of a winning strategy? Int J Mol Sci. (2018) 19:3. doi: 10.3390/ijms
19030747

22. Yao JC, Pavel M, Lombard-Bohas C, Van Cutsem E, Voi M, Brandt
U, et al. Everolimus for the treatment of advanced pancreatic
neuroendocrine tumors: overall survival and circulating biomarkers
from the randomized, phase III RADIANT-3 study. J Clin Oncol. (2016)
34:3906–13. doi: 10.1200/JCO.2016.68.0702

23. Gallo M, Malandrino P, Fanciulli G, Rota F, Faggiano A, Colao A, et al.
Everolimus as first line therapy for pancreatic neuroendocrine tumours:
current knowledge and future perspectives. J Cancer Res Clin Oncol. (2017)
143:1209–24. doi: 10.1007/s00432-017-2407-5

24. Faggiano A, Malandrino P, Modica R, Agrimi D, Aversano M, Bassi V,
et al. Efficacy and safety of everolimus in extrapancreatic neuroendocrine
tumor: a comprehensive review of literature. Oncologist. (2016) 21:875–
86. doi: 10.1634/theoncologist.2015-0420

25. Gagliano T, Bellio M, Gentilin E, Mole D, Tagliati F, Schiavon
M, et al. mTOR, p70S6K, AKT, and ERK1/2 levels predict
sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial
carcinoids. Endocr Relat Cancer. (2013) 20:463–75. doi: 10.1530/ERC-
13-0042

26. Pivonello C, Rousaki P, Negri M, Sarnataro M, Napolitano M,
Marino FZ, et al. Effects of the single and combined treatment with
dopamine agonist, somatostatin analog and mTOR inhibitors in a
human lung carcinoid cell line: an in vitro study. Endocrine. (2017)
56:603–20. doi: 10.1007/s12020-016-1079-2

27. Ferolla P, Brizzi MP, Meyer T, Mansoor W, Mazieres J, Do Cao C,
et al. Efficacy and safety of long-acting pasireotide or everolimus alone
or in combination in patients with advanced carcinoids of the lung
and thymus (LUNA): an open-label, multicentre, randomised, phase
2 trial. Lancet Oncol. (2017) 18:1652–64. doi: 10.1016/S1470-2045(17)
30681-2

28. Yaguchi T, Kawakami Y. Cancer-induced heterogeneous immunosuppressive
tumor microenvironments and their personalized modulation. Int Immunol.

(2016) 28:393–9. doi: 10.1093/intimm/dxw030
29. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: a new

approach to cancer therapy. J Immunother. (1997) 20:165–77. doi: 10.1097/
00002371-199705000-00001

30. Hofsli E, Thommesen L, Yadetie F, Langaas M, Kusnierczyk W, Falkmer
U, et al. Identification of novel growth factor-responsive genes in
neuroendocrine gastrointestinal tumour cells. Br J Cancer. (2005) 92:1506–
16. doi: 10.1038/sj.bjc.6602535

31. Lamrani A, Tulliez M, Chauvelot-Moachon L, Chaussade S, Mauprivez
C, Hagnere AM, et al. Effects of octreotide treatment on early TNF-
alpha production and localization in experimental chronic colitis.
Aliment Pharmacol Ther. (1999) 13:583–94. doi: 10.1046/j.1365-2036.
1999.00515.x

32. Casnici C, Lattuada D, Franco P, Cattaneo L, Marelli O. Regulation of human
peripheral blood lymphocytes IL-10 BY SMS 201-995. J Neuroimmunol.

(2004) 149:210–6. doi: 10.1016/j.jneuroim.2003.12.020
33. Lattuada D, Casnici C, Crotta K, Mastrotto C, Franco P, Schmid HA, et al.

Inhibitory effect of pasireotide and octreotide on lymphocyte activation. J
Neuroimmunol. (2007) 182:153–9. doi: 10.1016/j.jneuroim.2006.10.007

34. Hayry P, Raisanen A, Ustinov J, Mennander A, Paavonen T.
Somatostatin analog lanreotide inhibits myocyte replication and
several growth factors in allograft arteriosclerosis. FASEB J. (1993)
7:1055–60. doi: 10.1096/fasebj.7.11.8370476

35. Schwartz LH, Litiere S, de Vries E, Ford R, Gwyther S, Mandrekar S, et al.
RECIST 1.1-Update and clarification: From the RECIST committee. Eur J

Cancer. (2016) 62:132–7. doi: 10.1016/j.ejca.2016.03.081
36. Datta J, Fracol M, McMillan MT, Berk E, Xu S, Goodman N, et al. Association

of depressed anti-HER2 T-helper type 1 response with recurrence in
patients with completely treated her2-positive breast cancer: role for immune
monitoring. JAMA Oncol. (2016) 2:242–6. doi: 10.1001/jamaoncol.2015.5482

Frontiers in Oncology | www.frontiersin.org 12 July 2020 | Volume 10 | Article 104740

https://doi.org/10.1159/000481390
https://doi.org/10.1530/ERC-13-0125
https://doi.org/10.3748/wjg.v19.i47.9012
https://doi.org/10.1007/s00428-007-0446-z
https://doi.org/10.1080/14740338.2017.1354984
https://doi.org/10.1136/gut.38.3.430
https://doi.org/10.1016/j.canlet.2012.01.005
https://doi.org/10.1056/NEJM199601253340408
https://doi.org/10.1006/frne.1999.0183
https://doi.org/10.1111/j.1365-2036.2009.04174.x
https://doi.org/10.1016/j.pharmthera.2015.05.007
https://doi.org/10.1517/13543780903176399
https://doi.org/10.5603/NMR.2016.0022
https://doi.org/10.3390/ijms20163940
https://doi.org/10.1200/JCO.2009.22.8510
https://doi.org/10.1056/NEJMoa1316158
https://doi.org/10.3390/ijms20123049
https://doi.org/10.1016/j.cell.2012.03.017
https://doi.org/10.1042/BST0370217
https://doi.org/10.3390/ijms19030747
https://doi.org/10.1200/JCO.2016.68.0702
https://doi.org/10.1007/s00432-017-2407-5
https://doi.org/10.1634/theoncologist.2015-0420
https://doi.org/10.1530/ERC-13-0042
https://doi.org/10.1007/s12020-016-1079-2
https://doi.org/10.1016/S1470-2045(17)30681-2
https://doi.org/10.1093/intimm/dxw030
https://doi.org/10.1097/00002371-199705000-00001
https://doi.org/10.1038/sj.bjc.6602535
https://doi.org/10.1046/j.1365-2036.1999.00515.x
https://doi.org/10.1016/j.jneuroim.2003.12.020
https://doi.org/10.1016/j.jneuroim.2006.10.007
https://doi.org/10.1096/fasebj.7.11.8370476
https://doi.org/10.1016/j.ejca.2016.03.081
https://doi.org/10.1001/jamaoncol.2015.5482
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sciammarella et al. Lanreotide on Everolimus-Resistant NETs

37. Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-
based vaccines: barriers and opportunities. Future Oncol. (2012)
8:1273–99. doi: 10.2217/fon.12.125

38. Vitale G, Lupoli G, Guarrasi R, Colao A, Dicitore A, Gaudenzi G, et al.
Interleukin-2 and lanreotide in the treatment of medullary thyroid cancer:
in vitro and in vivo studies. J Clin Endocrinol Metab. (2013) 98:E1567–
74. doi: 10.1210/jc.2013-1443

39. Vitale G, Tagliaferri P, Caraglia M, Rampone E, Ciccarelli A, Bianco AR,
et al. Slow release lanreotide in combination with interferon-alpha2b in the
treatment of symptomatic advanced medullary thyroid carcinoma. J Clin

Endocrinol Metab. (2000) 85:983–8. doi: 10.1210/jcem.85.3.6435
40. Stassi G, Todaro M, Zerilli M, Ricci-Vitiani L, Di Liberto D, Patti

M, et al. Thyroid cancer resistance to chemotherapeutic drugs via
autocrine production of interleukin-4 and interleukin-10. Cancer Res.

(2003) 63:6784–90.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer PG declared a past co-authorship with several of the authors
AL, AMC, and MC to the handling editor.

Copyright © 2020 Sciammarella, Luce, Riccardi, Mocerino, Modica, Berretta,

Misso, Cossu, Colao, Vitale, Necas, Fedacko, Galdiero, Correale, Faggiano, Caraglia,

Capasso and Grimaldi. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 13 July 2020 | Volume 10 | Article 104741

https://doi.org/10.2217/fon.12.125
https://doi.org/10.1210/jc.2013-1443
https://doi.org/10.1210/jcem.85.3.6435
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 29 September 2020
doi: 10.3389/fonc.2020.565950

Frontiers in Oncology | www.frontiersin.org 1 September 2020 | Volume 10 | Article 565950

Edited by:

Niccolò Bolli,

University of Milan, Italy

Reviewed by:

Anetta Härtlova,

University of Gothenburg, Sweden

Edward N. Harris,

University of Nebraska System,

United States

*Correspondence:

Daniel A. Patten

d.a.patten@bham.ac.uk

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 26 May 2020

Accepted: 26 August 2020

Published: 29 September 2020

Citation:

Patten DA, Wilkinson AL,

O’Rourke JM and Shetty S (2020)

Prognostic Value and Potential

Immunoregulatory Role of SCARF1 in

Hepatocellular Carcinoma.

Front. Oncol. 10:565950.

doi: 10.3389/fonc.2020.565950

Prognostic Value and Potential
Immunoregulatory Role of SCARF1 in
Hepatocellular Carcinoma
Daniel A. Patten*, Alex L. Wilkinson, Joanne M. O’Rourke and Shishir Shetty

National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal

Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom

Scavenger receptor class F member 1 (SCARF1) is thought to play an important role

in the selective recruitment of CD4+ T cells to liver sinusoidal endothelial cells during

chronic liver disease. However, the contribution of SCARF1 to hepatocellular carcinoma

(HCC) is currently unknown. We utilized publically-available RNA-sequencing data from

The Cancer Genome Atlas (TGCA) to explore SCARF1 expression in HCC and correlated

it with a number of clinicopathological features. Flow adhesion assays were used to

determine the role of SCARF1 in CD4+ T cell subset recruitment. SCARF1 expression

was downregulated in HCC tumor tissues, compared to non-tumoral tissues, and loss

of SCARF1 expression was associated with poorly differentiated/aggressive tumors.

Additionally, higher SCARF1 expression in HCC tumor tissues was highly prognostic

of better overall, disease-free and progression-free survival. SCARF1 within HCC was

largely associated with tumor endothelial cells and adhesion studies suggested that it

played a role in the specific recruitment of proinflammatory CD4+ T cells (CD4+CD25−)

to HCC tumor tissues. Endothelial SCARF1 expression in tumor biopsies may provide

critical prognostic information. Additionally, SCARF1 may also be a novel endothelial

target that could help re-programme the microenvironment of HCC by promoting effector

T cell tumor infiltration.

Keywords: scavenger receptor, leukocyte recruitment, tumor endothelial cells, liver cancer, tumor

microenviroment

INTRODUCTION

Globally, hepatocellular carcinoma (HCC) is the second most common cause of cancer-related
deaths and its incidence is predicted to further increase (1). Due to a combination of poor
surveillance and lack of conclusive biomarkers (2), a large majority of HCC patients present
with advanced disease and, consequently, current interventional therapies can only act to prolong
survival by a few months. In more than 90% of cases, HCC occurs on the background of
chronic liver disease/cirrhosis and thus provides a paradigm for inflammation-induced cancer
(3). It is well-known that tumor-infiltrating lymphocytes (TILs) significantly influence the tumor
microenvironment and their phenotype strongly influences prognosis in HCC (4–6); consequently,
immunotherapies for the treatment of HCC are receiving increasing attention in the literature
(7, 8). Present research is predominantly focussed on the efficacy of checkpoint blockade inhibitors
(CIs) to “remove the brake” on the immune system in order to provide an anti-tumoral
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immune response; however, recent success of CIs with anti–
vascular endothelial growth factor (VEGF) treatment has
highlighted the importance of the endothelium in the context of
immunotherapy (9). Only a subset of patients with HCC appear
to respond to immunotherapy, but selecting which patients
will benefit continues to be a challenge and the presence or
absence of TILs in HCC is likely to play a significant role in
the response to immunotherapy. Despite this, the endothelial
pathways and molecules involved in the entry of TILs to HCC
tumors are considerably understudied. Lymphocyte recruitment
to the liver occurs within the specialized low flow channels of
the sinusoids and via a sequential step-wise process known as
the “leukocyte adhesion cascade” (10). The leukocyte adhesion
cascade is mediated by a number of receptor-ligand interactions
between the lymphocytes and liver sinusoidal endothelial cells
(LSEC) and previous studies from our lab and others have
implicated members of the scavenger receptor super-family in
the recruitment of leukocytes to LSEC in vitro (11–16). We
have also shown that these endothelial-expressed scavenger
receptors are present within the sinusoids of HCC tumor
tissues (13, 14); however, their role in shaping the tumor
microenvironment via the recruitment of TILs has not been
studied to date.

Scavenger receptors are a large super-family of proteins
which are defined by their ability to bind and endocytose
a vast range of endogenous and exogenous ligands, eliciting
the “scavenging” of unwanted macromolecules from the
bloodstream (17). Functionally, scavenger receptors generally
play beneficial roles in tissue homeostasis and protective
roles during infection, but have also been implicated in the
persistence of inflammatory disorders, including chronic liver
diseases (17, 18) and cancers (19). Liver sinusoidal endothelial
cells (LSEC) express an array of scavenger receptors at high
density, a phenotype which is consistent with their primary
biological function of removing gut-derived antigens from the
portal blood (10). However, we have also reported that LSEC-
expressed scavenger receptors perform an important secondary
role in which they mediate the recruitment of leukocytes
to the liver (11).

Scavenger receptor class F, member 1 (SCARF1 or SR-F1),
also known as scavenger receptor expressed by endothelial cells
(SREC)-I, was first identified in cDNA libraries from human
umbilical vein endothelial cells (HUVEC) (20). SCARF1 has
been shown to bind and internalize modified low density
lipoproteins (LDLs), specifically acLDLs (21), and a wide range
of other endogenous damage-associated products (22), such
as heat-shock proteins (HSPs) (23–25) and apoptotic host
cells (26, 27). In addition to a diverse range of endogenous
ligands, SCARF1 also binds a wide array of viral (28–30),
fungal (31), and bacterial (32–35) antigens. Furthermore, our
lab was the first to comprehensively characterize SCARF1
expression in human liver tissues and primary LSEC and
we were able to demonstrate that SCARF1 plays a role in
the selective recruitment of CD4+ T cells to the sinusoidal
endothelium under physiological shear stress (14). In this
regard, we hypothesized that SCARF1 actively contributed to
the hepatic microenvironment and played an important role in

the pathophysiology of chronic inflammatory liver diseases and
malignancies (14).

Here, through the utilization of the publically-available
TGCA (The Cancer Genome Atlas) RNA-sequencing datasets
(http://cancergenome.nih.gov), we describe the differential
regulation of scavenger receptors in HCC tumor tissues,
compared to non-tumorous control tissues, and specifically
focussed on the downregulation of SCARF1 expression. We
corroborated these findings with immunohistochemical staining,
which also showed reduced protein expression in HCC tumor
tissues, and next explored the relationship of SCARF1 expression
with tumor progression. Consequently, we found an association
with loss of SCARF1 expression with aggressive tumor biology.
Following this, we evaluated the prognostic value of SCARF1
expression in HCC tumors by generating survival curve data,
via KM Plotter (http://kmplot.com/analysis/). In support of the
pathological findings, high SCARF1 expression in HCC tumor
tissues was found to correlate with a better overall survival,
disease-free survival and progression-free survival. Next, via a
combination of TGCA data analysis and immunofluorescent
staining, we determined that SCARF1 within HCC was largely
associated with tumor endothelial cells. Finally, we extended
our previous findings with primary human liver endothelial
cells by studying subsets of CD4+ T cells. Using flow-based
adhesion assays under physiological levels of shear stress
our findings suggested that SCARF1 could play a role in the
recruitment of proinflammatory CD4+ T cells (CD4+CD25−),
rather than immunosuppressive T cell subsets, to the HCC
tissue microenvironment. Our results demonstrate that SCARF1
could be a prognostic biomarker in HCC. Furthermore, SCARF1
expression could potentially be targeted to alter the inflammatory
status of the tumor microenvironment, shifting it toward an
anti-tumoral immune response and supporting immunotherapy
regimes for HCC.

MATERIALS AND METHODS

In silico Data Analysis
Publically-available data from the The Cancer Genome Atlas
(TGCA) was utilized throughout this study. To explore
scavenger receptor family expression in tumor and relevant
non-tumorous tissue controls from the TGCA dataset, the
University of California Santa Cruz (UCSC) Xena tool (https://
xenabrowser.net/) was used. Correlation of SCARF1 expression
with tumor progression/aggression and cell-specific markers was
performed via the cBioPortal website (https://www.cbioportal.
org/) (accessed 25th Feb 2020). With the use of the publically-
accessible tool KM Plotter (http://kmplot.com/analysis/),
survival data was generated from the TGCA dataset over a
60-month time period, with the data being split into two groups
(“High” and “Low”) by the median of SCARF1 expression.
Resultant data was exported to Prism R© 6 software (GraphPad
Software Inc.) and survival curves were produced. The Gene
Expression Profiling Interactive Analysis (GEPIA) website
(http://gepia.cancer-pku.cn/) was used to generate a list of the
top 25 genes regulated in conjunction with SCARF1 in HCC
tumor tissues. Level of CD4+ T cell infiltration of HCC tumors
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was correlated with SCARF1 expression via the Tumor IMmune
Estimation Resource (TIMER; https://cistrome.shinyapps.io/
timer/; accessed 12th May 2020).

Human Tissue Samples
All liver tissue samples were collected from patients
undergoing transplantation for chronic liver disease or
primary hepatocellular carcinoma (HCC) at the University
Hospitals Birmingham NHS Foundation Trust, with written
informed consent and local ethics committee approval.
All experiments were performed in accordance with
the regulations and guidelines sanctioned by the West
Midlands—South Birmingham Research Ethics Committee,
Birmingham, UK (LREC reference 06/Q2702/61 and
04/Q2708/41).

Immunohistochemistry
Immunohistochemical staining was performed on 7µm thick
acetone-fixed cryosections, stored at −20◦C. Prior to staining,
sections were thawed to room temperature (RT) and hydrated
with PBS/0.1% Tween R© 20 (PBST) for 5min. Endogenous
peroxidase activity was then blocked with 0.3% hydrogen
peroxide in methanol and blocking of non-specific binding
was performed by incubation with 2X Casein Solution (Vector
Laboratories, Inc.). Sections were incubated with anti-SCARF-
1 primary antibody (8µg/ml; Abcam; ab92308) diluted in PBS
for 1 h at RT and then washed twice in PBST for 5min.
Isotype matched controls at appropriate concentrations were
performed in all experiments. Subsequently, sections were
incubated with the anti-rabbit ImmPRESSTM HRP for 30min
at RT. Excess secondary antibody was washed off with PBST
for 5min (twice) and sections were then incubated with DAB
chromogen (Vector Laboratories Inc.) for 2min; the reaction was
stopped with the addition of distilled H2O. Nuclei were then
counterstained with Mayer’s Hematoxylin (Pioneer Research
Chemicals Ltd.) for 30 s and slides were washed in warm H2O
for 2min. Sections were subsequently dehydrated in sequential
washes of alcohol (3×) and xylene (3×) and mounted using
DPX (Phthalate-free) mounting medium (CellPath). Images
were taken using an Axio ScanZ1 microscope (ZEISS). Surface
area coverage of SCARF1 staining was performed by via
threshold analysis using ImageJ software. Five random high-
power fields of view were analyzed per section, with the
average value taken for each matched pair of tumor and non-
tumorous tissues.

Immunofluorescence
For immunofluorescent staining, 7µm acetone-fixed
cryosections were thawed and then blocked for non-
specific binding by incubation in PBS with 10% goat
serum and casein solution, for 30min at RT. This was
followed by 1 h incubation with primary antibodies for
SCARF-1 (8µg/ml, Abcam ab92308) and CD31 (5µg/ml,
DAKO JC70A). Samples were washed three times in PBS
followed by 30min incubation with Alexa Fluor R© conjugated
secondary antibodies (1:500 dilution; Thermo Fisher Scientific).
Nuclei were stained with 300 nM DAPI (Invitrogen) and

slides were subsequently mounted with ProLongTM Gold
Antifade Mountant (Invitrogen). Fluorescence images
were acquired using a Zeiss 780 Zen confocal fluorescence
microscope (ZEISS).

LSEC Isolation and Culture
Liver sinusoidal endothelial cells (LSEC) were isolated from
∼30 g human liver tissue as described previously (36). Briefly,
tissues were subjected to enzymatic digestion via collagenase
(10 mg/ml collagenase IA; Sigma-Aldrich) and non-parenchymal
cells were separated out via density gradient centrifugation
on a 33%/77% Percoll (GE Healthcare) gradient at 800 × g
for 25min. The relevant cell layer was then removed, and
LSEC were isolated by positive immunomagnetic selection
using CD31 antibody-conjugated DynabeadsTM (Invitrogen).
LSEC were then seeded in rat tail collagen (1 in 100; Sigma-
Aldrich)-coated culture vessels in medium composed of human
endothelial serum-free media (SFM; Invitrogen) supplemented
with 10% human serum (HD Supplies), 10 ng/ml vascular
endothelial growth factor (VEGF; PeproTech), and 10 ng/ml
hepatocyte growth factor (HGF; PeproTech). All cells were
grown and maintained at 37◦C in a humidified incubator with
5% CO2.

Primary Lymphocyte Isolation
Peripheral blood mononuclear cells (PBMCs) were isolated
from whole blood via density gradient centrifugation;
briefly, whole blood was layered on Lympholyte R©-H
(Cedarlane) and centrifuged at 800 × g for 25min.
The PBMC layer was removed and washed in PBS with
2% FCS and 1mM EDTA (GibcoTM by Thermo Fisher
Scientific) and centrifuged at 800 × g for 5min. A platelet
depletion step was then performed by a second wash in
PBS with 2% FCS and 1mM EDTA and centrifugation
at 350 × g for 10min. CD4+CD25+ T lymphocytes
were subsequently isolated from PBMCs by DynabeadsTM

Regulatory CD4+/CD25+ T Cell Kit, and in accordance
with manufacturer’s instructions. The CD4+/CD25− fraction
obtained via this isolation protocol was kept and used as
an “effector” population in flow-based adhesion assays, as
previously described (13).

Flow-Based Adhesion Assays
Flow-based adhesion assays over monolayers of LSEC (13, 37)
were used to study lymphocyte recruitment in vitro, under
conditions of physiological flow. Briefly, approx. 7.5 × 105

LSEC were seeded in rat tail collagen-coated µ-slide VI 0.4
and grown to confluence overnight. Cells were then stimulated
with 10 ng/ml TNFα for 24 h to induce endothelial activation.
CD4+CD25+ or CD4+CD25− T lymphocytes were isolated
(see ‘Primary Lymphocyte Isolation’ above) and resuspended
at a cell density of 1 × 106 cells/ml in a flow medium
of Endothelial SFM with 0.1% BSA. Lymphocytes were then
perfused over the LSEC at a physiological shear of 0.05 Pa, with
each channel of the µ-slide perfused for 5min. Subsequently,
channels were washed though for 3min with flow media
alone, after which video recordings were taken. All flow
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FIGURE 1 | SCARF1 gene and protein expression is downregulated in HCC tumors. (A) Regulation of scavenger receptor gene expression in HCC tumors (blue; n =

371), compared to non-tumoral tissues (red; n = 162). *, **, *** and **** are representative of statistical significance as measured by the Kruskal–Wallis test, where p ≤

0.05, p ≤ 0.01, p ≤ 0.005, and p ≤ 0.001, respectively. RSEM = RNA-Seq by Expectation Maximization. (B) Comparison of SCARF1 gene expression in non-tumoral

(NT) tissues with HCC tumor tissues (T). ****Indicates statistical significance as measured by Mann–Whitney U-test, where p ≤ 0.001 (C). Representative images of

SCARF1 immunohistochemical staining (brown) in HCC tumor (Right panels) and matched distal, non-tumorous (Left panels) tissues from the same patient. Scale bar

= 400µm; zoomed image scale bar = 100µm. (D) Surface area quantification of immunohistochemical staining in matched HCC tumor (T) and non-tumorous (NT)

tissues was performed by via threshold analysis using ImageJ software. **Indicates statistical significance as measured by a paired T-test, where p ≤ 0.01. n = 5, with

the average of 5 random high-power fields of view taken per section. Data in (A,B) was generated from the TGCA dataset using the University of California Santa Cruz

(UCSC) Xena tool (https://xenabrowser.net/).

assays were imaged via phase-contrast microscopy on an
Olympus IX50 Inverted Microscope (Olympus) and 12 frames
from each channel were analyzed. The number of adherent
lymphocytes was firstly counted and then normalized to
cells/mm2/106 cells perfused using the following equation:
adherent cells/flow rate (0.28 ml/min) × bolus (5min) ×

field of view area (0.154 mm2) × (1/ concentration of
lymphocytes 1 × 106 cells/ml). The addition of SCARF-
1 blocking antibody (10µg/ml; Abcam; ab92308) or rabbit
polyclonal negative control (10µg/ml; DAKO) was performed
immediately preceding each assay and incubated for 30
min (14).

Statistical Analyses
All data were tested for normal distribution by the D’Agostino-
Pearson omnibus test. All data were found to be non-parametric
and so were expressed as median ± interquartile range
(IQR), with the number of experimental repeats (n)
specified in each case. For single comparisons, statistical
significance was determined by Mann–Whitney U-test,
whereas evaluation of multiple treatments was performed
by Kruskall–Wallis one-way analysis of variance with post
hoc Dunn’s test. Statistical significance of paired data was
calculated via a paired T-test. A p-value of ≤ 0.05 was
considered as statistically significant. All statistical analyses
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FIGURE 2 | More advanced and aggressive tumors exhibit lower SCARF1 expression. (A) SCARF1 expression in HCC tumor tissues of different histological grade.

* and ** are representative of statistical significance as measured by the Kruskal–Wallis test, where p ≤ 0.05 and p ≤ 0.01, respectively. (B) SCARF1 expression in

HCC tumor tissues from the four cancer stages. **indicates statistical significance as measured by the Kruskal–Wallis test, where p ≤ 0.01. SCARF1 expression

correlated to tumor aggression parameters (C). Aneuploidy score (n =355) and (D) Buffa Hypoxia score (n = 361). Data in this Figure was generated from the TGCA

dataset using the cBioPortal website (https://www.cbioportal.org/) (accessed 25th Feb 2020).

were undertaken using Prism R© 6 software (GraphPad
Software Inc.).

RESULTS

SCARF1 Expression Is Downregulated in
HCC Tumors
A number of scavenger receptors have previously been shown
to be significantly dysregulated within tumor tissues and have
consequently been implicated in the pathophysiology of a wide
variety of cancers (19). Here, we explored the mRNA expression
of the scavenger receptor super-family in HCC and highlight that
a number of members exhibited differential regulation in tumor
tissues, compared to non-tumorous control tissues. Interestingly,
themajority of scavenger receptors (MARCO, SCARA5,CLEC7A,
MRC1, SCARF1, SCARF2, STAB1, STAB2, CD163, AGER)
demonstrated significantly decreased expression in HCC tumor,
compared to non-tumorous liver tissues (Figure 1A). However,
in contrast, SCARA3, COLEC12, and CD68 were all up-regulated

(Figure 1A) and several others (MSR1, CD36,OLR1, ASGR1, and
CXCL16) did not exhibit any regulation (Figure 1A). Of those
significantly regulated, we were particularly interested in those
previously implicated in leukocyte recruitment to the liver and
specifically focussed on SCARF1 in the current study.

Utilizing qPCR analysis, we have previously shown a
strong trend for decreased SCARF1 mRNA expression
in HCC tumor tissue compared to normal liver tissue
(14); here, we corroborated this finding with publically-
available RNA-sequencing data from The Cancer Genome
Atlas (TGCA). Analysis of the TGCA data showed that
SCARF1 expression is significantly (p ≤ 0.001) lower in
HCC tumor tissues in comparison to non-tumorous tissues
(Figure 1B). In addition, SCARF1 expression is also reduced
in tumor tissues of other gastrointestinal cancers, namely
esophageal carcinoma, stomach adenocarcinoma and colon
adenocarcinoma, compared to their respective non-tumorous
tissue controls (Figure S1). Interestingly, and in contrast to the
other cancer types explored here, pancreatic adenocarcinoma
tumors showed no dysregulation of SCARF1 expression
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FIGURE 3 | SCARF1 expression is predictive of survival in HCC. (A) Overall survival, (B) Disease-free survival, and (C) Progression-free survival of HCC patients

separated into two groups (“High” and “Low” expression) via the median expression of SCARF1. *, ** and *** indicate statistical significance where p ≤ 0.05, p ≤ 0.01,

or p ≤ 0.005, respectively. HR = hazard ratio. Forest plots of (D) Overall survival, (E) Disease-free survival, and (F) Progression-free survival in relation to various

clinicopathological features of HCC patients. Data is displayed as hazard ratio with 95% confidence intervals. (D–F) Red plots highlight clinicopathological parameters

in which statistical significance was achieved. *, ** and *** indicate statistical significance where p ≤ 0.05, p ≤ 0.01 or p ≤ 0.005, respectively. Data in this Figure was

generated with use of KM Plotter (http://kmplot.com/analysis/).

when compared to non-tumorous tissues (Figure S1). Next,
we confirmed the downregulation of SCARF1 expression
in tumors at the protein level by immunohistochemical
staining of HCC tumors and matched distal, non-tumorous
tissues (Figure 1C). Surface area quantification of SCARF1
staining in matched samples from several patients showed
a significant (p ≤ 0.01) reduction in SCARF1 expression
in tumor tissues, when compared to distal, non-tumorous
tissues (Figure 1D).

Loss of SCARF1 Expression Is Associated
With More Advanced and Aggressive
Tumors
Previously, we have shown that the level of
immunohistochemical staining of SCARF1 in poorly
differentiated HCC tumor tissues was greatly reduced when
compared with well- and moderately-differentiated tumors
(14); here, we aimed to utilize the TGCA dataset to further

corroborate those findings. Differentiation status of solid tumors
informs their histological grading and, consequently, gives
an indication of tumor aggressiveness; therefore, we initially
explored the expression of SCARF1 in HCC tumors of different
histological grades. In doing this, we showed significantly
reduced levels in Grade 3 (p ≤ 0.05) and Grade 4 (p ≤ 0.01)
tumors, when compared to Grade 1 tumors (Figure 2A).
Next, we explored the SCARF1 expression levels in cases
of HCC at different stages of the disease, from early stage
disease (Stage I) through to highly developed and metastatic
disease (Stage IV). When compared to patients with Stage I
disease, cohorts of patients with Stages II, III and IV disease
all demonstrated a trend for decreased SCARF1 expression;
however, only the data for the Stage II cohort was calculated
to be statistically significant (p ≤ 0.01) (Figure 2B). We
further aimed to confirm these findings by correlating SCARF1

expression with other parameters commonly associated with
increased tumor aggressiveness and grade, in particular, we
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FIGURE 4 | SCARF1 is expressed in HCC tumor endothelial cells. (A) Correlation of scavenger receptor gene expression with tumor-associated cell-specific markers.

This analysis was performed via the cBioPortal website (https://www.cbioportal.org/) (accessed 10th August 2020). n = 358. The heatmap was generated with use of

the Heatmapper website (http://www.heatmapper.ca/). The black box highlights the expression profile of SCARF1. (B) Representative image of dual color

immunofluorescent staining of SCARF1 (green) and CD31 (red) within HCC tumor sinusoids. Scale bar = 40µm. White dashed line delineates site of intensity

measurements. (C) Intensity measurements of immunofluorescent staining shown in (B).
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focussed on Aneuploidy Score (38) and Buffa Hypoxia Score
(39). In both instances, SCARF1 expression demonstrated
a moderate negative correlation in HCC tumor tissues
(Figures 2C,D), thus providing further evidence that a loss
of SCARF1 expression is associated with adverse biology and
aggressive HCC tumors.

Prognostic Value of SCARF1 Expression in
HCC
Having found that a loss of SCARF1 expression correlates
with more advanced and aggressive tumors, we next sought to
investigate its prognostic value in HCC. With regards to overall
survival, high expression of SCARF1 was highly indicative of a
better prognosis (HR = 0.60, 95% CI = 0.42–0.86, p ≤ 0.01;
Figure 3A and Figure S2. Interestingly, with the exception of
ASGR1, which is expressed in HCC tumor cells and known to
prevent metastasis (40), SCARF1 was the only other scavenger
receptor gene which was associated with increased survival
in HCC (Figure S2). A high expression of SCARF1 was also
associated with a better prognosis when disease-free survival
(HR = 0.60, 95% CI = 0.48–0.93, p ≤ 0.05; Figure 3B) and
progression-free survival (HR = 0.59, 95% CI = 0.44–0.80,
p ≤ 0.01; Figure 3C) were considered. We also assessed the
prognostic value of SCARF1 expression in correlation with a
range of clinicopathological features. In male patients, higher
SCARF1 expression was suggestive of better overall survival
(HR = 0.53, 95% CI = 0.34–0.84, p ≤ 0.005; Figure 3D),
disease-free survival (HR = 0.64, 95% CI = 0.43–0.95, p ≤

0.05; Figure 3E) and progression-free survival (HR = 0.54,
95% CI = 37–0.78, p ≤ 0.005; Figure 3F), but, surprisingly,
showed no prognostic value in female patients (Figures 3D–F).
In Asian patient cohorts, higher SCARF1 expression was strongly
associated with better overall (HR = 0.46, 95% CI = 0.24–
0.85, p ≤ 0.05; Figure 3D), disease-free (HR = 0.56, 95% CI
= 0.34–0.94, p ≤ 0.05; Figure 3E) and progression-free (HR
= 0.55, 95% CI = 0.34–0.89, p ≤ 0.05; Figure 3F) survival;
however, in white patients it was indicative of better overall
(HR = 0.59, 95% CI = 0.36–0.95, p ≤ 0.05; Figure 3D) and
progression-free survival (HR = 0.63, 95% CI = 0.42–0.93, p ≤

0.05; Figure 3F), but not disease-free survival (Figure 3E). With
regards to histological grade of HCC tumors, a higher SCARF1
expression was strongly associated with better overall survival
(HR = 0.21, 95% CI = 0.07–0.68, p ≤ 0.005; Figure 3D) and
progression-free survival (HR = 0.38, 95% CI = 0.17–0.86, p ≤

0.05; Figure 3F) in Grade 1 tumors, but held no prognostic value
for disease-free survival (Figure 3E). High expression of SCARF1
in Grade 2 HCC tumors was again indicative of improved overall
survival (HR = 0.47, 95% CI = 0.27–0.81, p ≤ 0.05; Figure 3D)
and progression-free survival (HR = 0.55, 95% CI = 0.34–
0.89, p ≤ 0.05; Figure 3F), but showed no effect on disease-
free survival (Figure 3E). Higher SCARF1 expression in Grade
3 HCC tumors was only associated with better progression-free
survival (HR = 0.60, 95% CI = 0.36–0.98, p ≤ 0.05; Figure 3F),
but had no prognostic value for overall (Figure 3D) or disease-
free survival (Figure 3E). SCARF1 expression was, however,
highly prognostic of better overall survival (HR = 0.46, 95% CI

= 0.28–0.74, p ≤ 0.005), disease-free survival (HR = 0.49, 95%
CI = 0.29–0.81, p ≤ 0.01) and progression-free survival (HR =

0.51, 95% CI = 0.32–0.79, p ≤ 0.01) in patients with non-viral
HCC, but exhibited no prognostic value in viral HCC patients.
Furthermore, expression of SCARF1 showed no prognostic value
with regards to cancer staging or in the presence/absence of
vascular invasion (Figures 3D–F).

HCC Tumor-Expressed SCARF1 Exhibits a
Strong Endothelial Signature
To explore the cell-specific expression of SCARF1 within HCC
tumors, we correlated the gene expression of the scavenger
receptor superfamily with a number of gene sets known to
be expressed in tumor-associated cell populations (41–44).
Interestingly, of the entire scavenger receptor superfamily,
SCARF1 demonstrated the most endothelial-specific signature
within HCC tumor tissues, exhibiting low to moderate
correlations with the majority of the other cell type gene sets
(Figure 4A). We next utilized the publically-available tool
Gene Expression Profiling Interactive Analysis (GEPIA;
http://gepia.cancer-pku.cn/) to generate a list of genes
commonly regulated in conjunction with SCARF1 within
HCC tumor tissues (Table S1). Out of the top 25 hits, a
number of genes were endothelial-specific and we selected
some of these to further explore their relationship with
SCARF1 expression. Consequently, all of the endothelial
markers selected (ADGRF5, CD93, FLT4, MMRN2, ESAM,
PEAR1, PECAM1, TIE1, and CLEC14A) exhibited a highly
significant positive correlation with SCARF1 expression
(Figure S3). Next, to corroborate the expression of SCARF1
in tumor sinusoidal endothelial cells we undertook dual
immunofluorescence staining of SCARF1 and CD31, a
commonly used tumor endothelial marker known to be
expressed in HCC (42, 45). Within HCC tumor tissue, we
demonstrated a strong co-localization of SCARF1 and CD31
(Figures 4B,C).

SCARF1 Preferentially Supports Adhesion
of CD4+CD25− “Effector” T Cells to Human
Liver Endothelial Cells
Having previously shown that SCARF1 mediates the specific
recruitment of CD4+ T cells to LSEC in vitro, under conditions
of physiological flow (14), we aimed to determine whether
it could play a role in the recruitment of TILs to the HCC
tumor microenvironment. Firstly, and again utilizing the
data available on the cBioPortal website, we correlated the
expression of SCARF1 with CD4 expression and showed a
moderate positive correlation between the two (Figure 5A).
We next used a publically-available tool, Tumor IMmune
Estimation Resource (TIMER; https://cistrome.shinyapps.
io/timer/) to correlate SCARF1 expression with the level of
CD4+ T cell infiltration of HCC tumors. Using TIMER, we
confirmed that SCARF1 expression is absent from tumor
cells, as indicated by a negative “purity” correlation (−0.295;
Figure 5B, left panel), and demonstrated a moderate positive
correlation with CD4+ T cell infiltration (purity-corrected
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FIGURE 5 | SCARF1 potentially mediates the recruitment of proinflammatory CD4+ T cells to HCC tumors. (A) Correlation of SCARF1 expression with CD4

expression in HCC tumor tissues. n = 358. (B) Correlation of SCARF1 expression with the extent of CD4+ T cell infiltration in HCC tumor tissues. n = 358. (C)

Schematic representation of a flow-based adhesion assay with primary human lymphocytes flowed across primary human LSEC. (D) Quantification of percentage of

adherent CD4+ T cell subsets [regulatory (CD4+CD25+) and effector (CD4+CD25−)] in the presence of SCARF1 blocking antibody or isotype-matched control

(Control) antibody. **** indicates statistical significance as measured by a paired T-test, where p ≤ 0.001. n = 3 independent experiments with different LSEC and

lymphocyte donors, with 12 fields of view taken from each. Data in (B) was generated with use of Tumor IMmune Estimation Resource (TIMER; https://cistrome.

shinyapps.io/timer/; accessed 12th May 2020). Image in (C) created with BioRender.com.

partial Spearman’s rho value = 0.420, p = 3.79e−16; Figure 5B,
right panel). The balance of immune subsets within the tumor
microenvironment plays a critical role in tumor development
and progression, with an immunosuppressive microenvironment
promoting immune escape and a poor prognosis (46).
To assess if SCARF1 could functionally contribute to the
balance of immune effector vs. immunosuppressive subsets
within the tumor microenvironment, we studied its role
in CD4+ T cell subset recruitment. Using flow-based
adhesion assays under conditions of physiological shear
stress with primary human LSEC and purified populations
of primary human CD4+ T cells (Figure 5C), we showed
that antibody blockade of SCARF1 on LSEC had a significant
(∼40%; p ≤ 0.001) inhibitory effect on the adhesion of
proinflammatory (CD4+CD25−) T cells (effectors), but a

negligible (∼10%) effect on regulatory (CD4+CD25+) T cells
(Tregs) (Figure 5D).

DISCUSSION

Hepatocellular carcinoma (HCC) predominantly manifests on a
background of cirrhosis and, consequently, in conjunction with
the global rise in chronic liver diseases, incidence of HCC is
also set to rise. Novel medical therapies are urgently required
as patients often present to clinic with advanced tumors without
curative options (47). Recently, immunotherapies have provided
a number of very promising prospects in the treatment of
a wide range of cancers; in particular, checkpoint inhibitors
and chimeric antigen receptor (CAR)-T cell therapy have
received significant attention. Checkpoint inhibitors aim to

Frontiers in Oncology | www.frontiersin.org 9 September 2020 | Volume 10 | Article 56595050

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://www.BioRender.com
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Patten et al. SCARF1 in Hepatocellular Carcinoma

FIGURE 6 | Schematic representation of potential mechanism of action of SCARF1 in HCC tumors. (A) In the presence of high expression of SCARF1 in tumor

endothelial cells, proinflammatory CD4+CD25− T cells are recruited to HCC tumors, resulting in decreased tumor development and, ultimately, decreased mortality.

(B) In low expression of SCARF1 in tumor endothelial cells, recruitment of CD4+CD25− T cells lower, resulting in increased tumor development and mortality. Image

created with BioRender.com.

release the “brake” from the immune system, thus allowing a
robust anti-tumoral host immune response (48, 49) and CAR-
T cells are genetically-engineered T cells specifically designed
to recognize tumor antigen-expressing cells and subsequently
kill them (50). However, in solid organ tumors, both these
approaches are reliant on leukocyte trafficking to the tumor
and this remains a significantly under-studied aspect of cancer
immunotherapy (51). In the liver, leukocyte trafficking occurs
within the microvasculature, known as the hepatic sinusoids.
The low shear environment leads to a unique adhesion
cascade with the lack of selectin-mediated recruitment and a
number of atypical adhesion receptors involved in immune
cell recruitment to liver sinusoidal endothelial cells (LSEC).
Our previous studies have explored immune cell recruitment
in the context of chronic inflammatory liver diseases, with
a particular focus on LSEC-expressed scavenger receptors;
however, we have also identified members of the scavenger
receptor family which are expressed in vivo on the endothelium
of human HCC, thus suggesting that they may also contribute
to immune cell recruitment to the tumor microenvironment
(13, 14).

Scavenger receptors represent a major subset of innate
pattern recognition receptors able to bind a number of cancer-
relevant ligands, such as heat shock proteins (HSPs) (52,
53) and bacterial lipopolysaccharide (LPS) (54–56), and are
known to be involved in the pathophysiology of a range
of cancers, including HCC (19). Interestingly, the expression
of a number of scavenger receptors is often associated with
poor prognosis and less favorable clinicopathological features
in HCC. For example, increased expression of CD68 and

CD163, which is indicative of increased numbers of anti-
inflammatory macrophages, is associated with poor overall and
disease-free survival (57, 58). In addition, upregulation of the
CXCL16-CXCR6 axis was associated with increased invasiveness
and recurrence and, as a consequence, was also associated
with poorer survival in HCC (59). In contrast to this, we
show that higher intratumoral expression of SCARF1 in HCC
was associated with less advanced and less aggressive cancers
(Figure 2). In addition, from a prognostic perspective, higher
SCARF1 expression in HCC tumors was highly indicative
of better overall, disease-free and progression-free survival
(Figure 3).

Consistent with our previous findings in normal and
chronically diseased liver tissues (14), SCARF1 in HCC
tumor tissues exhibited a highly sinusoidal expression pattern
(Figure 1C) and correlation data from the TGCA dataset further
corroborated its largely endothelial expression (Figure 4A). A
number of the top 25 genes commonly regulated in conjunction
with SCARF1 within HCC tumor tissues were endothelial-
specific (Table S1) and all demonstrated a strong positive
correlation with levels of SCARF1 expression (Figure S2). We
were able to confirm protein expression of SCARF1 in tumoral
sinusoidal endothelial cells through dual immunofluorescence
staining with the common endothelial marker CD31 (Figure 4B)
and subsequent co-localization of the two proteins (Figure 4C).
Having previously shown that SCARF1 mediates the specific
recruitment of CD4+ T cells to LSEC in inflammatory conditions
(14), we next explored whether it could play a role in the
recruitment of TILs to the HCC tumor microenvironment. We
found that SCARF1 expression showed a positive correlation with
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both CD4 expression (Figure 5A) and the level of CD4+ T cell
infiltration of HCC tumors (Figure 5B, right panel). Given that a
loss of SCARF1 expression was associated with more advanced
and aggressive HCC tumors and that increased expression
was highly prognostic of better survival, we hypothesized that
SCARF1 could potentially be playing a beneficial role in the
pathophysiology of HCC by shaping the immune infiltration
of the tumor microenvironment (60). We used primary human
LSEC in flow-based adhesion assays with CD4+ T cells
subsets and showed that antibody blockade of SCARF1 could
indeed significantly inhibit the adhesion of proinflammatory
(CD4+CD25−) T cells (effectors), but had little effect the
adhesion of regulatory (CD4+CD25+) T cells (Tregs). This is in
direct contrast to our previous work on another endothelial-
expressed scavenger receptor, Stabilin-1, which is also present
in HCC tumors, but plays a role in the specific recruitment of
anti-inflammatory regulatory (CD4+CD25+) T cells (13).

These findings highlight the potential role of SCARF1
expression as a prognostic biomarker in HCC. Down regulation
of SCARF1 was associated with a poorer outcome and
interestingly this may be a relevant to other tumors as we
showed that tumors of other gastrointestinal cancers, such
as esophageal, gastric and colonic cancers, also significantly
down-regulated SCARF1 expression (Figure S1). In addition to
high SCARF1 expression correlating with a good outcome, our
functional assays also suggest that SCARF1 may have an active
anti-tumoral role for by promoting the recruitment of effector
CD4+ T cells rather than tumor promoting regulatory T cells
(Tregs). This is particularly pertinent as previous studies have
specifically shown that an increased prevalence of Tregs is an
independent prognostic factor in HCC; therefore, shifting this
balance could have a significant impact on patient outcome
(61). In contrast to other GI malignancies, we found that
pancreatic adenocarcinoma tumor tissues exhibited comparable
SCARF1 expression to non-tumorous tissues (Figure S1). This
could be due to the fact that pancreatic tumors are inherently
and notoriously immunogenically “cold” tumors, due to a
combination of low neoantigenic burden, heterogeneous dense
stroma and an immunosuppressive tumor microenvironment
(62). Therefore, an active downregulation of SCARF1 expression,
in order to provide more favorable tumorigenic conditions, may
not play a role in the pathogenesis of this tumor.

Whilst immunotherapy has shown exciting results in
subgroups of HCC patients, there is limited stratification to
support the selection of these subgroups. The correlation of
SCARF1 with CD4+ T cell tumor infiltration and its role in
recruitment may help in the identification of patients who
will respond to immunotherapies. However, further in vivo
work is now required with SCARF1 knockout models to
confirm the extent of its contribution to the HCC immune
microenvironment. In addition, the identity of the receptor
for SCARF1 present on CD4+CD25− lymphocytes remains
unknown, thus further studies are also required to identify its
ligand. Furthermore, SCARF1 is primarily a scavenger receptor,
and so the impact of its presence with regards to its scavenging
function also needs to be considered in future studies. SCARF1
has been shown to bind a range of endogenous ligands, such

as oxidized lipoproteins (21), heat shock proteins (23–25)
and apoptotic cells (26, 27), and regulate LPS responses (35);
therefore, all these functions could also potentially influence
the tumor microenvironment. For example, the uptake of these
factors by SCARF1 could prevent neutrophil and macrophage
accumulation in the tumor microenvironment, thus providing
an alternative mode-of-action for the anti-tumoral action of
SCARF1, as myeloid cell accumulation is often associated with
poor prognosis in HCC (63, 64). Nevertheless, our data here
show that SCARF1 could potentially support the recruitment
of proinflammatory (CD4+CD25−) T cells to HCC tumors,
leading to decreased tumoral progression and, ultimately, a
better overall outcome (Figure 6). Our findings also suggest
that future agonistic agents acting to increase the expression
of SCARF1 within tumors could boost the numbers of tumor-
infiltrating proinflammatory lymphocytes. Further experimental
studies of SCARF1 could therefore lead to novel combination
immunotherapeutic strategies in HCC as well as in other
gastrointestinal tumors.
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ZDHHC-protein acyltransferases (ZDHHCs) are a family of 23 signature Asp-His-His-Cys
(DHHC) domain-containing enzymes that mediate palmitoylation by covalent attachment
of the 16-carbon fatty acid palmitate to thiol groups of specific cysteine residues in
substrate proteins. Emerging evidence has shown abnormal expression of ZDHHCs in a
variety of disease states, including cancer. Kidney renal clear cell carcinoma (KIRC) is the
eighth most common type of cancer, which accounts for the majority of malignant kidney
tumors. However, there are currently no effective therapeutic targets or biomarkers for
clinical treatment and prognosis in KIRC. In this study, we first analyzed the expression
pattern of the 23 ZDHHCs in KIRC using TCGA and GEPIA database, and found that the
expression of ZDHHC2, 3, 6, 14, 15, 21, and 23 was significantly down-regulated
whereas the expression of ZDHHC9, 17, 18, 19 and 20 was significantly up-regulated
in KIRC patient tissues vs. normal tissues. And the expression of ZDHHC2, 3, 6, 9, 14, 15,
and 21 in tumors decreased with the increase of the pathological stage of KIRC patients.
Notably, KIRC patients with decreased expression of ZDHHC3, 6, 9, 14, 15, 17, 20, 21,
23 and increased expression of ZDHHC19 were significantly associated with poor
prognosis. Further, we found that there was a significant correlation between ZDHHC3,
6, 9, 14, 15, 17, 19, 20, 21, 23 expressions and immune cell infiltration. Besides,
high mRNA expression was the most common type of gene alteration and there was
a high correlation among the expression of ZDHHC6, 17, 20 and 21. Finally, function
prediction indicated that the immune or metabolic disorders or the activation of
oncogenic signaling pathways caused by abnormal expression of these ZDHHCs may
be important mechanisms of tumor progression and poor prognosis in patients with KIRC.
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Our results may provide novel insight for identifying tumor markers or molecular targets for
the treatment of KIRC.
Keywords: kidney renal clear cell carcinoma, ZDHHC-protein acyltransferases, prognosis, immune cell infiltration,
pathway analysis
INTRODUCTION

Kidney renal clear cell carcinoma (KIRC) is one of the eight most
common cancer types, accounting for 70%–80% of renal cell
carcinoma (1). Approximately 210,000 new cases are diagnosed
worldwide each year (2). Although breakthroughs have been
made in the molecular mechanisms and treatment strategies for
KIRC in recent years, the prognosis of KIRC patients is still poor,
especially for patients with the late clinical stage (3). Studies show
that patients with stage I KIRC have a five-year disease-specific
survival of about 80%–95%, whereas the five-year disease-
specific survival rate of patients with IV KIRC drops sharply to
less than 10% (4). Therefore, there is an urgent need to identify
promising novel prognostic biomarkers and therapeutic targets,
which will help clinicians choose appropriate therapeutic targets
and drugs and more accurately predict the long-term prognosis
of KIRC patients.

ZDHHC-protein acyltransferases (ZDHHCs) are a family of
signature Asp-His-His-Cys (DHHC) domain-containing enzymes
that mediate palmitoylation by covalent attachment of the 16-
carbon fatty acid palmitate to thiol groups of specific cysteine
residues in substrate proteins (5). In humans, the ZDHHC family
has been identified to contain 23 members (ZDHHC1-24 skipping
ZDHHC10) that play important roles in protein localization,
accumulation, secretion, stability, and function (6). Emerging
evidence has shown that abnormal expression of ZDHHCs is
involved in tumorigenesis and metastasis of various cancers,
which seriously affects the treatment and prognosis of cancer
patients (7). For example, the low expression of ZDHHC2 in
hepatocellular carcinoma was closely related to poor over survival
and disease-free survival of patients (8). Elevated expression of
ZDHHC3 correlated with enhanced carcinoma growth and
diminished patient survival in breast cancer (9). ZDHHC9
inactivation favored NRAS-driven leukemia treatment (10) and
enhanced immunotherapy effects for breast cancer (11). Decreasing
ZDHHC20 expression increases tumor cell sensitivity to EGFR
tyrosine kinase inhibitors (12).

However, the expression pattern, prognostic value, and
biological function of ZDHHCs have not been elucidated in
KIRC. In this study, we conducted a comprehensive
bioinformatics analysis of the expression of ZDHHCs in KIRC.
Then, the potential of differentially expressed ZDHHCs to be
used as therapeutic targets and prognostic biomarkers was
evaluated. Further, function prediction was performed to
investigate the potential functions and associated pathways of
10 differentially expressed ZDHHCs. Our study may provide
more data to help clinicians choose appropriate therapeutic
targets and drugs and more accurately predict the long-term
prognosis of KIRC patients.
256
MATERIALS AND METHODS

Databases and Web Platforms (TCGA,
GEPIA, Timer, cBioPortal, STRING,
GeneMANIA, GSCALite)
In our study, RNA-Seq data of ZDHHCs in 538 kidney renal
clear cell carcinoma (KIRC) tissue samples and 72 normal kidney
tissue samples were extracted from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) for gene
expression analysis and gene set enrichment analysis (GSEA).

GEPIA (Gene Expression Profiling Interactive Analysis,
http://gepia.cancer-pku.cn/) was developed at Peking
University and is used to analyze differential gene expression,
correlation, and patient prognosis based on TCGA and the
Genotype-Tissue Expression (GTEx) projects, using a standard
processing pipeline (13). In this study, we performed gene
expression analysis, pathological stage analysis, prognostic
analysis and correlation analysis of ZDHHCs using the
“KIRC” dataset in GEPIA. The parameter “Match TCGA
normal and GTEx data” was set and Student’s t test was used
to generate a p value for gene expression analysis. The method
for gene expression analysis among different pathological stage is
one-way ANOVA, using pathological stage as variable for
calculating differential expression. Prognostic analysis was
performed using a Kaplan–Meier curve and the group cutoff
choice was the median. Pearson correlation coefficient was
chosen for gene correlation analysis. The p value cutoff was 0.05.

Timer (https://cistrome.shinyapps.io/timer/) provides a user-
friendly web interface for dynamic analysis and visualization
associations between immune infiltrates and a wide spectrum of
factors including gene expression and clinical outcomes across
23 cancer types from TCGA (14). In this study, we evaluated
the correlation between differentially expressed ZDHHCs and
the infiltration of immune cells using “Gene module” and the
“KIRC” dataset. Spearman correlation coefficient was chosen for
this correlation analysis and a value of P < 0.05 was considered
statistically significant.

STRING (Search Tool for the Retrieval of Interacting Genes/
proteins, https://string-db.org/) is designed to collect, score, and
integrate all public sources of protein-protein interaction (PPI)
information, and further calculations are used to construct PPI
networks and predict potential interactions (15). In our research,
we constructed a PPI network to explore the interaction among
differentially expressed ZDHHCs.

The cBioPortal (http://cbioportal.org) provides a web resource
for exploring, visualizing, and analyzing multidimensional cancer
genomics data based on TCGA database (16). In this study, the data
of ZDHHC genetic alterations were obtained from cBioPortal. 538
KIRC samples were selected (TCGA, firehose legacy) for analysis.
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mRNA expression z scores (RNA Seq V2 RSEM) were obtained
using a z score threshold of ±2.0 and protein expression z scores
(RPPA) were obtained using a z score threshold of ±2.0.

GeneMANIA (http://genemania.org) is a user-friendly web
site that can be used to accurately predict the function of the
genes submitted and find functionally similar genes using a
wealth of genomics and proteomics data (17). In this study,
co-expression and interaction analyses of differentially expressed
ZDHHCs was performed using GeneMANIA.

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) is
an available and web-based analysis platform for the gene sets in
32 cancer types from TCGA (18). In this study, GSCALite was
used to provide miRNA network analysis of KIRC samples using
“TCGA KIRC” dataset.

GSEA Method
GSEA (gene set enrichment analysis) reveals many common
biological pathways, and this method derives its power by
focusing on groups of genes that share common biological
function, chromosomal location, or regulation (19, 20). In this
study, GSEA v4.0.3 software was used to identify the potential
underlying mechanisms of differentially expressed ZDHHCs on
the pathogenesis and prognosis of KIRC (TCGA). The
V7.0.Gene set in the gene sets database and 1000 for the
number of permutations were selected for each analysis.

Statistical Analysis
SPSS 20.0 (IBM, SPSS Inc., Chicago, IL) software was used to
perform the statistical analyses in this study. In Figure 1A, if two
groups were with normal distribution, then we used the standard
Student’s test for equal variance or Welch t-test for unequal
variance. Otherwise, we used the Mann-Whitney U-test (non-
normal distribution). In Figure 1B, the paired t-test was used to
determine statistical differences between the paired two groups.
One-way ANOVA was used to determine gene expression
difference among the pathological stage of KIRC patients in
GEPIA. Survival curves were generated from Kaplan-Meier
Plotter and GEPIA with HR and P-value or Cox P-value using
log-rank test. The correlation between gene expression and
immune cell infiltration (Timer) was assessed based on
statistical significance and Spearman’s correlation. A value of P
< 0.05 was considered statistically significant. For the GSEA
method, the nominal p-value (NOM p < 0.05) and false discovery
rate (FDR q < 0.25) were used to determine significantly enriched
gene sets.
RESULTS

Expression Pattern of ZDHHCs in KIRC
We first explored the expression pattern of ZDHHCs in KIRC using
the TCGA database. As shown in Figures 1A, B, by evaluating the
expression of ZDHHCs in 538 KIRC patient tissues and 72 normal
tissues as well as 72 paired KIRC tissues and corresponding adjacent
normal tissues, we found that ZDHHC2, 3, 6, 9, 14, 15, 16, 17, 18,
19, 20, 21, 22, and 23 had consistent and significant expression
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differences. Next, we used the GEPIA database to verify these
ZDHHCs (Figure 1C). After further excluding ZDHHC16 and
22 that had no significant difference in expression, we finally
determined the expression of ZDHHC2, 3, 6, 14, 15, 21, and 23
was significantly down-regulated whereas the expression of
ZDHHC9, 17, 18, 19, and 20 was significantly up-regulated in
KIRC patient tissues vs. normal tissues.

Then we further evaluated the expression patterns of these
differentially expressed ZDHHCs in the main pathological stages
of KIRC patients by generating expression violin plots using
GEPIA (Figures 2A–L), and found a significant correlation
between the expression of ZDHHC2, 3, 6, 9, 14, 15, 21 and the
pathological stage of KIRC patients. With the progression of
tumors, the expression of ZDHHC2, 3, 6, 9, 14, 15, 21 decreased
significantly, indicating that these ZDHHCs played an important
role in the progression and tumorigenesis of KIRC.

Prognostic Value of Differentially
Expressed ZDHHCs in KIRC
To explore the prognostic value of the ZDHHCs in patients with
KIRC, we assessed the impact of differentially expressed ZDHHCs
on clinical outcomes including overall survival and disease-free
survival using GEPIA. The survival significance map (Figures 3A
and 4A) was drawn based on the cox proportional hazard ratio
(HR). We found that high expression of ZDHHC3, 6, 9, 14, 15, 20,
21, 23 was significantly favorable whereas high expression of
ZDHHC19 was significantly unfavorable for the overall survival
of KIRC patients (Figure 3A). And high expression of ZDHHC3,
6, 9, 14, 17, 21, 23 was significantly favorable for the disease-free
survival of KIRC patients (Figure 4A). The Kaplan-Meier plots of
these ZDHHCs having significant impacts on the overall survival
or disease-free survival of KIRC patients were further presented in
Figures 3 and 4. We found that KIRC patients with decreased
ZDHHC3, 6, 9, 14, 15, 20, 21, 23 expressions and increased
ZDHHC19 expression were strongly associated with poor
overall survival (Figures 3B–J). And KIRC patients with
decreased ZDHHC3, 6, 9, 14, 17, 21, 23 expressions were
significantly associated with poor disease-free survival (Figures
4B–H). In view of the prognostic value of ZDHHC3, 6, 9, 14, 15,
17, 19, 20, 21, and 23, we conducted the following analysis on these
10 differently expressed ZDHHCs.

The Correlation of Immune Cell Infiltration
With 10 Differentially Expressed ZDHHCs
in KIRC Patient Tissues
Immune cell infiltration is an important determinant of immune
response and prognosis in cancer patients, including those with
KIRC (21). Thus, we analyzed the correlation between the
expression of these 10 differentially expressed ZDHHCs and
infiltration of six immune cell types, including B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells
using the Time database (Figures 5A–J). Interestingly, the
expression of ZDHHC6, 17, 20, 21 was significantly and
positively correlated with the infiltration of all the six immune
cell types and the expression of ZDHHC3 and 14 was significantly
and positively correlated with the infiltration of five immune cell
December 2020 | Volume 10 | Article 565414
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types excluding B cells. Further, ZDHHC9 expression was
significantly and positively correlated with the infiltration of B
cells, macrophages, neutrophils, and dendritic cells. ZDHHC23
expression was significantly and positively correlated with the
infiltration of B cells, macrophages, and neutrophils and negatively
correlated with the infiltration of CD8+ T cells. Besides, the
expression of ZDHHC15 and 19 was significantly and positively
correlated with the infiltration of CD4+ T cells.
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Gene Alterations, Expression Correlation,
Micro(mi)RNA Networks, Co-Expression,
and Interaction Analyses of 10
Differentially Expressed ZDHHCs in KIRC
We then performed a comprehensive analysis of the molecular
characteristics of these 10 differentially expressed ZDHHCs in
KIRC. The gene alterations for these ZDHHCs in KIRC was
analyzed using cBioPortal. A total of 538 KIRC patients (TCGA,
A

B

C

FIGURE 1 | Expression pattern of ZDHHCs in kidney renal clear cell carcinoma (KIRC). (A) Expression pattern of ZDHHCs in 538 KIRC patient tissues and 72 normal
tissues (TCGA) and statistical differences between two groups were determined by Student’s test for equal variance or Welch t-test for unequal variance (normal
distribution) and the Mann-Whitney U-test (non-normal distribution). (B) Expression pattern of ZDHHCs in 72 paired KIRC tissues and corresponding adjacent normal
tissues (TCGA) and statistical differences between two groups were determined using the paired t-test. (C) Expression pattern of ZDHHCs in KIRC patients and normal
tissues from GEPIA. statistical differences between the two groups were determined by Student’s t-test and the p value cutoff was 0.05. The green font represents down-
regulation, the red font represents up-regulation, and the black font represents no expression difference. * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001.
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firehose legacy) were selected. The frequency of ZDHHC gene
alterations in KIRC, mainly including multiple alterations,
mRNA low, mRNA high, deep deletion, amplification, and
mutation, varied from 0.2% to 11%, respectively (Figure 6A).
High mRNA expression was the most common type of gene
alteration in these samples and deep deletion was the major type
of gene alteration of ZDHHC3 (Figure 6B). The missense
mutation was identified in ZDHHC6, 9, and 21 (Figure 6C).
The truncating mutation was found in ZDHHC9 (Figure 6C).
We next explored the expression correlation among these
ZDHHCs and found that there was a high correlation among
the expression of ZDHHC6, 17, 20, and 21 and a low to moderate
Frontiers in Oncology | www.frontiersin.org 559
correlation among ZDHHC3, 9, 14, 15, 19, and 23 (Figure 6D,
Table S1). We also analyzed the miRNA network involved with
these ZDHHCs using GSCALite. As shown in Figure 6E, there
were more miRNAs to potentially regulate ZDHHC3, 6, 9, 14, 15,
17, 21, and 23 than ZDHHC19 and 20 (Figure 6E, Table S2). A
protein-protein interaction (PPI) network constructed using the
String database indicated that there was little interaction among
these ZDHHCs (Figure S1A). As expected, co-expression and
interaction analyses (Figure 6F) from GeneMANIA revealed
that the functions of these ZDHHCs were primarily related to
protein palmitoylation, protein acylation, lipoprotein
biosynthetic and metabolic process.
A B
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C

FIGURE 2 | The expression patterns of these differentially expressed ZDHHCs in the main pathological stages of kidney renal clear cell carcinoma (KIRC) patients
(GEPIA). The expression patterns of (A) ZDHHC2, (B) ZDHHC3, (C) ZDHHC6, (D) ZDHHC9, (E) ZDHHC14, (F) ZDHHC15, (G) ZDHHC17, (H) ZDHHC18,
(I) ZDHHC19, (J) ZDHHC20, (K) ZDHHC21, (L) ZDHHC23 in the main pathological stage of KIRC patients. One-way ANOVA was used to determine gene
expression difference among the pathological stage of KIRC patients and a value of P < 0.05 was considered statistically significant.
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Predicted Functions of 10 Differently
Expressed ZDHHCs in KIRC
We further investigated potential mechanisms of these 10
differently expressed ZDHHCs in KIRC by the GSEA method.
Pathways with higher frequency enriched in phenotype high of
ZDHHC19 and in phenotype low of ZDHHC3, 6, 14, 15, 17, 19,
20, 21, and 23 were shown in the WeiQi diagram (Figure 7),
indicating that most of these ZDHHCs were closely related to
Frontiers in Oncology | www.frontiersin.org 660
immune-correlated signal pathways. ZDHHC19, 15, 3, 21, 23, 6,
14, and 20 were related to systemic lupus erythematosus.
ZDHHC19, 15, 3, 21, 23, and 9 were involved in primary
immunodeficiency and natural killer cell-mediated cytotoxicity.
ZDHHC19, 15, 3, 21, 9, and 6 were connected with the intestinal
immune network for IgA production. ZDHHC19, 15, 3, and 23
were associated with T cell receptor signaling pathway.
Moreover, many of these ZDHHCs were closely linked to
A

B D

E F G
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C

FIGURE 3 | The effect of differentially expressed ZDHHCs on the overall survival of kidney renal clear cell carcinoma (KIRC) patients (GEPIA). (A) Survival significance
map of differentially expressed ZDHHCs showed the over survival analysis results based on the cox proportional hazard ratio (HR) through GEPIA (the red and blue
blocks denoted higher and lower risks, respectively; the rectangles with frames indicated significant unfavorable and favorable results). The overall survival curve of
(B) ZDHHC3, (C) ZDHHC6, (D) ZDHHC9, (E) ZDHHC14, (F) ZDHHC15, (G) ZDHHC19, (H) ZDHHC20, (I) ZDHHC21, (J) ZDHHC23 in KIRC. The group cutoff choice for
overall survival was the median. A log-rank test was used to estimate the difference in overall survival and a value of P < 0.05 was considered statistically significant.
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metabolism-related signaling pathways. ZDHHC19, 3, 21, 23, 6,
14, 20, and 17 were associated with ribosome pathway.
ZDHHC3, 21, 14, 20, and 17 were connected with glycine,
serine and threonine metabolism. ZDHHC15, 3, 14, and 17
were associated with porphyrin and chlorophyll metabolism.
ZDHHC3, 14, 20, and 17 were related to metabolism of
xenobiotics by cytochrome P450. The results of enrichment
analysis for these 10 ZDHHCs were shown in Table S3, which
Frontiers in Oncology | www.frontiersin.org 761
also showed that oncogenic signaling activation was associated
with certain ZDHHCs. For example, the JAK/STAT signaling
pathway was enriched in phenotype high of ZDHHC19 and in
phenotype low of ZDHHC15 and 23. The Wnt signaling
pathway was activated by down-expressed ZDHHC6, 9, and
23. Taken together, these results suggested that the immune or
metabolic disorders or the activation of oncogenic signaling
pathways caused by abnormal expression of these ZDHHCs
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FIGURE 4 | The effect of differentially expressed ZDHHCs on disease-free survival of kidney renal clear cell carcinoma (KIRC) patients (GEPIA). (A) Survival
significance map of differentially expressed ZDHHCs showed the disease-free survival analysis results based on the cox proportional hazard ratio (HR) through GEPIA
(blue blocks denoted higher and lower risks, respectively; the rectangles with frames indicated significant favorable results). The disease-free survival curve of (B)
ZDHHC3, (C) ZDHHC6, (D) ZDHHC9, (E) ZDHHC14, (F) ZDHHC17, (G) ZDHHC21, (H) ZDHHC23 in KIRC. The group cutoff choice for disease-free survival was
the median. A log-rank test was used to estimate the difference in disease-free survival and a value of P < 0.05 was considered statistically significant.
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FIGURE 5 | The correlation of immune cell infiltration with 10 differentially expressed ZDHHCs in kidney renal clear cell carcinoma (KIRC) patient tissues (Timer). The
correlation between the abundance of immune cells and the expression of (A) ZDHHC3, (B) ZDHHC6, (C) ZDHHC9, (D) ZDHHC14, (E) ZDHHC15, (F) ZDHHC17,
(G) ZDHHC19, (H) ZDHHC20, (I) ZDHHC21, (J) ZDHHC23 in KIRC. Spearman correlation coefficient was chosen for the correlation analysis and a value of P < 0.05
was considered statistically significant.
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may be important mechanisms of tumor progression and poor
prognosis in patients with KIRC.
DISCUSSION

The 23 human ZDHHC family members were firstly identified in
2004 (22). These ZDHHCs have homologous and highly
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conserved Asp-His-His-Cys (D-H-H-C) tetrapeptide motifs
that are directly involved in the palmitoyl transfer reaction
(23). However, because of the variable extent of palmitoyl
acyltransferase activity and specificity of substrate proteins, all
ZDHHCs play an indispensable role in multiple cellular
biological processes and signaling pathways (24). Emerging
evidence has indicated that ZDHHCs not only regulate normal
physiological processes but are also involved in a variety of
A
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C

FIGURE 6 | Gene alterations, expression correlation, micro(mi)RNA networks, co-expression and interaction analyses of 10 differentially expressed ZDHHCs in
kidney renal clear cell carcinoma (KIRC). (A, B) Summary of gene alterations of differentially expressed ZDHHCs in KIRC (cBioPortal). (C) The mutations of ZDHHC6,
9, and 21 were plotted (cBioPortal) and (1), (2) and (3) represent the number of mutation sites. (D) Correlation heat map of different expressed ZDHHCs in KIRC
(GEPIA). (E) miRNA network of different expressed ZDHHCs in KIRC (GSCALite). (F) Co-expression and interaction analyses of differentially expressed ZDHHCs in
KIRC (GeneMANIA). The purple lines represent co-expression, and the green lines represent interaction.
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disease states including cancer (25). Over the past decade,
numerous studies showed that these ZDHHCs modulated the
function of important oncogenes and tumor suppressors and
often displayed altered expression patterns in cancer (6, 26).
Their abnormal expression and loss of function affect tumor
progression, metastasis, the efficacy of cancer treatment, and
patient prognosis (5). Thus, a better understanding of ZDHHCs
in KIRC will be necessary for future development of ZDHHCs-
based therapy.

In this study, we first evaluated the expression pattern of the
23 ZDHHCs in KIRC based on TCGA and GEPIA database. We
found that 12 genes were differentially expressed in KIRC vs.
normal tissues (ZDHHC2, 3, 6, 14, 15, 21, and 23 were down-
regulated; ZDHHC9, 17, 18, 19, and 20 were up-regulated). We
further evaluated the expression patterns of these differentially
expressed ZDHHCs in the main pathological stages of KIRC
patients and demonstrated that the expression of ZDHHC2, 3, 6,
9, 14, 15, 21 in tumors decreased with the increase of the
pathological stage of KIRC patients. These data suggested that
these differentially expressed ZDHHCs may play a significant
role in the tumorigenesis and progression of KIRC.

To evaluate whether these differentially expressed ZDHHCs
can be used as molecular markers to predict the survival of KIRC
patients or to guide clinical treatment, we analyzed the impact of
differentially expressed ZDHHCs on the prognosis of KIRC
patients. Interestingly, we found that 10 of 12 differently
expressed ZDHHCs were significantly associated with the
Frontiers in Oncology | www.frontiersin.org 1064
prognosis of KIRC patients. In detail, KIRC patients with
down-regulation of ZDHHC3, 6, 9, 14, 15, 20, 21, 23, and up-
regulation of ZDHHC19 were strongly associated with poor
overall survival and KIRC patients with down-regulation of
ZDHHC3, 6, 9, 14, 17, 21, and 23 were significantly associated
with poor disease-free survival. These results indicated the
potential of ZDHHC3, 6, 9, 14, 15, 17, 19, 20, 21, 23 as
prognostic markers or molecular targets.

Immune cells that infiltrate tumors form an ecosystem in the
tumor microenvironment to regulate cancer progression and are
closely associated with clinical outcome in KIRC (27). Tumor
immune infiltrating cells mainly include innate immune cells
(such as macrophages, neutrophils, and dendritic cells) and
adaptive immune cells (T and B lymphocytes). These diverse
immune cells communicate directly or indirectly with each other
and together control the growth of tumor cells (28). Therefore,
tumor-infiltrating immune cells are expected to be effective
targets for improving clinical outcomes. In this study, we
evaluated the correlation between 10 differentially expressed
ZDHHCs and tumor infiltration of six immune cell types,
including B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells, and found a significant
correlation between differentially expressed ZDHHCs and the
infiltrating immune cells. These results revealed that these 10
ZDHHCs may regulate the immune status of KIRC patients,
which may be an important factor affecting tumor progression
and patient prognosis.
FIGURE 7 | Predicted Functions of 10 differently expressed ZDHHCs in kidney renal clear cell carcinoma (KIRC) by GSEA. Pathway enrichment for differently
expressed ZDHHCs in KIRC was shown in the WeiQi diagram. Black stones represent pathways enriched in phenotype high, and white stones represent pathways
enriched in phenotype low. The number (right) represents the number of ZDHHCs associated with the enrichment of the pathway and the number (top) represents
the number of pathways enriched by the gene. The V7.0.Gene set in the gene sets database and 1000 for the number of permutations were selected for each
analysis and all gene sets were significantly enriched at nominal p < 5% and FDR < 25%.
December 2020 | Volume 10 | Article 565414

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. ZDHHC-Protein Acyltransferases in KIRC
Tumorigenesis and progression of KIRC are complex and
multifaceted, and genetic alterations also play an important role
in this process (29). Thus, we evaluated the genetic alterations of
these 10 differentially expressed ZDHHCs in KIRC and found
that there were frequent genetic alterations in these ZDHHCs
and high mRNA expression was the most common type of gene
alteration. We also explored the potential expression correlation
of these 10 ZDHHCs and found that there was a high correlation
among the expression of ZDHHC6, 17, 20, and 21. As expected,
co-expression and interaction network analysis showed that the
functions of these ZDHHCs were mainly protein palmitoylation
and acetylation, etc. In addition, in the past few decades,
miRNAs have been shown to affect tumor progression and
patient prognosis by inhibiting transcription or degrading
mRNAs of target protein (30, 31). The miRNA network
indicated that these differentially expressed ZDHHCs were
potentially regulated by miRNA.

We then focused on the potential mechanisms of action of
these 10 differentially expressed ZDHHCs by GSEA. Consistent
with the results of immune cell infiltration (Figures 5A–L), most
of these ZDHHCs were closely related to immune-correlated
signal pathways such as systemic lupus erythematosus,
immunodeficiency and natural killer cell mediated cytotoxicity,
suggesting that these ZDHHCs may play important regulatory
roles in the immune microenvironment of KIRC. Historically,
KIRC is one of the few tumors for which immunotherapy is
effective (32). And the development and application of immune-
related targeted therapy agents have been proven to be feasible
and effective for the treatment of KIRC patients (33). However,
the genes for the development of targeted approaches to KIRC
immunotherapy have not been well identified. In view of the
important roles of differentially expressed ZDHHCs on the KIRC
immune environment, the development of immunomodulatory
therapy targeting ZDHHCs may bring survival benefits to KIRC
patients. Previous research has also shown that KIRC is closely
related to reprogramming in cellular metabolism and is therefore
also described as a “metabolic disease” (34, 35). Changes in
metabolic gene expression patterns and abnormalities in
metabolic-related pathways such as protein or amino acid
metabolism are considered important causes of KIRC metabolic
reprogramming, seriously affecting the prognosis of KIRC
patients. Thus, targeting metabolic reprogramming in KIRC will
also be important in future therapeutic planning. In this study,
GSEA analyses also showed that many of these 10 differentially
expressed ZDHHCs were closely related to abnormalities in
metabolic pathways such as ribosome, amino acid metabolism,
porphyrin and chlorophyll metabolism and metabolism of
xenobiotics by cytochrome P450, suggesting the important
functions of ZDHHCs in cellular metabolism. Besides, we also
Frontiers in Oncology | www.frontiersin.org 1165
found that many well-known oncogenic signaling activations
including JAK/STAT signaling and Wnt signaling were
associated with abnormal expression of certain ZDHHCs. Taken
together, the analysis above suggested that these ZDHHCs had
potential as therapeutic targets in the clinical treatment of KIRC.

In conclusion, we performed a systematic analysis of ZDHHC
expression patterns, prognostic value, immune infiltration,
molecular characteristics and signaling pathways involved in
KIRC. We hope our results will provide novel insight for
identifying tumor markers or molecular targets for the
treatment of KIRC. However, further research including in
vivo and in vitro experiments is needed to validate our findings
and promote further understanding of the ZDHHCs in KIRC.
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Ovarian cancer is the leading cause of death among gynecological neoplasms, with an
estimated 14,000 deaths in 2019. First-line treatment options center around a taxane and
platinum-based chemotherapy regimen. However, many patients often have recurrence
due to late stage diagnoses and acquired chemo-resistance. Recent approvals for
bevacizumab and poly (ADP-ribose) polymerase inhibitors have improved treatment
options but effective treatments are still limited in the recurrent setting. Immunotherapy
has seen significant success in hematological and solid malignancies. However,
effectiveness has been limited in ovarian cancer. This may be due to a highly
immunosuppressive tumor microenvironment and a lack of tumor-specific antigens.
Certain immune cell subsets, such as regulatory T cells and tumor-associated
macrophages, have been implicated in ovarian cancer. Consequently, therapies
augmenting the immune response, such as immune checkpoint inhibitors and dendritic
cell vaccines, may be unable to properly enact their effector functions. A better
understanding of the various interactions among immune cell subsets in the peritoneal
microenvironment is necessary to develop efficacious therapies. This review will discuss
various cell subsets in the ovarian tumor microenvironment, current immunotherapy
modalities to target or augment these immune subsets, and treatment challenges.

Keywords: ovarian cancer, tumor microenvironment, innate immunity, adaptive immunity, cancer therapeutics
INTRODUCTION

Ovarian cancer presents a unique tumor microenvironment (TME) with its predilection to
metastasize in the peritoneal cavity and generate malignant ascites. The cancer spreads by direct
shedding into the ascites and movement throughout the peritoneal cavity. Common sites of tumor
deposits are on the mesenteric and serosal surfaces of the abdominal organs. The immune
microenvironment in this location is characterized by interactions among the tumor cells,
myeloid and lymphoid immune cells, as well as fibroblasts and adipocytes in the peritoneum that
promote tumor growth. Growth factors, such as fibroblast growth factor and vascular endothelial
growth factor (VEGF), promote angiogenesis and direct fibroblast differentiation towards cancer-
associated fibroblasts that promote metastases (1). Adipocytes in the omentum can also provide
energy for tumor growth and metastases (2). Little is known about how these cells interact with
immune cells and if they promote immunosuppression. Additional information is therefore needed
about cellular interactions and trafficking in the peritoneal TME in order to better develop
immunotherapies for ovarian cancer.
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Advances in immunotherapy, such as immune checkpoint
inhibitors and chimeric antigen-receptor T cells (CAR-T), have
demonstrated efficacy in various cancers. However, performance
in ovarian cancer patients has remained poor. Multiple studies
have demonstrated that the highly immunosuppressive TME and
low mutational burden of ovarian cancer is a barrier to effective
treatment (3). Inhibitiory cells in the TME, such as regulatory T
and B cells, myeloid-derived suppressor cells (MDSCs), and
tumor-associated macrophages (TAMs) inevitably contribute
to tumor growth through a milieu of inhibitory effects (4–7).
In this review, we discuss key subsets of adaptive and innate
immunity that play a role in the ovarian TME and current efforts
to target or augment these populations (Figure 1).
ADAPTIVE IMMUNITY

Tumor-Infiltrating T Lymphocytes
T cells play a significant role in anti-tumor processes by
recognizing tumor neoantigens and facilitating and directly
inducing apoptosis of tumor cells. CD3+ tumor-infiltrating T
lymphocytes (TILs) were shown to be correlated with improved
clinical outcome in ovarian cancer (8). Of 186 tumor samples,
102 samples were identified to have CD3+ cells within the tumor
and 72 did not have any. Between these two groups, the 5-year
overall survival (OS) for patients with TILs was 38% while those
without TILs was 4.5%, suggesting a beneficial effect of TILs in
women treated with standard chemotherapy. Interestingly, the
absence of TILs correlated with increased levels of VEGF.

TILs, CD3+, can be further divided into CD4+ and CD8+ cells.
In brief, CD4+ T cells, also known as helper T cells, recognize
MHC class II and shape the adaptive immune response while
Frontiers in Oncology | www.frontiersin.org 268
CD8+ T, also known as cytotoxic T cells, recognize MHC class I
and mediate direct killing Studies looking at patient survival have
shown increased CD8+ T cells within the tumor predict better
prognoses (9). An increase in intra-tumoral CD4+ T cells have
also shown to be correlated with increased survival (10).

ACT/CAR-T
To boost the tumor-specific T cell response, adoptive cell therapy
(ACT) has been used to increase the number of T cells that can
recognize a tumor-associated antigen (TAA). ACT requires
apheresis of a patient’s T cells and expanding them ex vivo to
suitable levels after stimulation with lysed tumor cells. Recent
advances in autologous therapy now include genetically
modifying the T-cell receptor (TCR) or generating chimeric
antigen receptor T-cells (CAR-T) to engineer a stronger, more
precise, immune response to pre-determined tumor neoantigens (11).

Briefly, CAR-T cells are T cells that have been transfected to
express a transmembrane protein with 1) a single chain fraction
variable, also known as the antigen-recognizing domain, and 2) a
TCR zeta chain, allowing for intracellular signaling. Since then,
new generations have modified the CAR for improved immune
responses. Second generation CAR-Ts added in either CD28 or
4-1BB as a costimulatory gene, third generation CAR-Ts allowed
for two downstream signaling domains and the possibility of
using OX40, and fourth generation CAR-Ts further improved
effector functions by giving the receptor the ability to induce
cytokines, such as IL-12 (12).

ACT and CAR-T have shown great promise in hematological
tumors. However, they have demonstrated poor efficacy in
solid tumors (13, 14). Part of this has been attributed to a lack
of tumor specific antigens, a highly immunosuppressive TME,
and a lack of persistence in the tumor. Some CAR-Ts that have
FIGURE 1 | Driving Immune Responses in the Ovarian Tumor Microenvironment. Immune cells are present intratumorally and in the ovarian tumor
microenvironment. Strategies discussed throughout the paper have been summarized above the corresponding cell type. Attempts to improve T cell functionality in
the ovarian TME include Immune checkpoint inhibitors, such as anti-PD-1, anti-PD-L1, and anti-CTLA4, which have been used in clinical trials to reduce inhibitory
signaling. Similarly, T cells with chimeric antigen receptors (CAR-Ts) against folate receptor-alpha (FRa), MUC-16, and mesothelin have been tested in clinical trials in
order to recognize tumor-associated antigens. CAR-Ts have been tested in vitro against novel antigens. CAR-T: Chimeric antigen receptor T-cell. ICI, Immune
checkpoint inhibitor; CAR-NK, Chimeric antigen receptor-Natural Killer cell; Mj, Macrophage; I.p., Intraperitoneal; GM-CSF, Granulocyte-monocyte colony stimulating
factor; ApoE, ApolipoproteinE; MDSC, Myeloid-derived suppressor cell. Created with Biorender.com.
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made it to Phase 1 clinical trials for ovarian cancer include those
targeting folate receptor, MUC-16, and mesothelin (Figure 1).
Other examples in pre-clinical testing are also discussed.

Folate Receptor
Folate receptor-a (FRa) is one of a number of high affinity
receptors that facilitates the uptake of folate into the cell (15).
While it is rarely found in normal tissues, its overexpression has
been identified in multiple malignancies, including ovarian
cancer (16). When overexpressed in ovarian cancer, FRa has
been correlated with a poor response to chemotherapy (17–20).
Interestingly, correlation with survival has been inconclusive.
Studies on FR overexpression have ranged from negatively
prognostic to having no impact on survival to even an
improvement in survival (19–22). Additional studies will be
needed to determine the prognostic value of FRa.

In the first CAR-T treatment against FR, 14 patients with
recurrent epithelial FR+ ovarian cancer were enrolled. Cohort 1
was given interleukin-2 (IL-2) and generic T cells transfected
with a first generation anti-FR CAR while Cohort 2 was given
T cells that were endogenously specific to FR (23). Cohort 1 was
given 3 × 109 T cells, with possible dose escalation to 1 × 1010 and
3 to 5 × 1010 cells, with a dose of 720,000 IU/kg IL-2 each cycle.
Cohort 2 was given 2 × 109 to 4 × 109 T cells. Most common
Grade 1-2 drug-related side effects in Cohort 1 were fatigue and
nausea compared to erythema at the site of injection for Cohort
2. Cohort 1 also experienced some Grade 3–4 side-effects, such as
hypotension and dyspnea, that were attributed to the addition of
IL-2. Unfortunately, no reduction in tumor burden or
improvement in survival was seen in either cohort. A noted
issue was the lack of persistence of these improved autologous T
cells in circulation.

As a means of increasing persistence, investigators have
added the co-stimulatory molecule CD137, or 4-1BB, to the
CAR in order to improve cytokine secretion and the antitumor
response in vivo (24). Intravenous (i.v.) injection of these CAR-
Ts into NSG mice, inoculated subcutaneously with FR+ SKOV3,
showed improved antitumor effects and reduced tumor volume.
These T cells also showed improved persistence in circulating
blood. Upon waiting 30 days for metastases in their model,
only mice treated with the CAR-T cells were devoid of
malignant ascites.

Although a thorough discussion is outside the scope of this
review, a number of monoclonal antibodies (mAbs) have also
been designed to target FR expression in ovarian cancer. In brief,
farletuzumab was evaluated in a Phase 3 clinical trial, but did not
reach the primary endpoint of PFS. Mirvetuximab soravtansine,
an anti-FR coupled to tubulin-targeting agent DM4, was shown
to be well-tolerated when given as a monotherapy or with
bevacizumab (25–27).

MUC-16
Cancer antigen 125 (CA-125) is cleaved from the cell surface and
is commonly used as a circulating serum marker for ovarian
cancer relapse. MUC-16 is the remnant of the protein that is
retained on the cancer cell membrane after cleavage. It is known
that there is some overlap in MUC-16 expression with derivates
Frontiers in Oncology | www.frontiersin.org 369
of the fetal coelomic epithelia, such as the uterus, fallopian tubes,
and the trachea (28).

Chekmosova et al. demonstrated that second generation
CAR-Ts against MUC-16 were able to lyse MUC-16+ cells in
vitro (29). These CAR-T cells were subsequently injected into
SCID mice, inoculated i.p. or i.v. with MUC-16+ OVCAR3, and
showed significant survival improvement when compared to
untreated mice or those given anti-CD19 CAR-Ts. Later
improvement to MUC-16 specific CAR-T cells included the
ability to secrete IL-12 and an “elimination” gene to improve
immune signaling and minimalize off-target effects (30). This
“elimination” gene is a truncated portion of epidermal growth
factor receptor (EGFR) that does not signal, but retains the
ability to be bound by cetuximab and induce antibody-
dependent cellular cytotoxicity or complement-mediated
cytotoxicity against cells expressing this chimeric receptor.
Mice inoculated i.p. with SKOV3 and treated with this novel
CAR-T showed enhanced survival compared to CAR-Ts without
the IL-12 domain. Interestingly, i.p. administration was found to
be more effective than an i.v. route. A phase 1 clinical trial was
proposed to test its efficacy in recurrent platinum-resistant
ovarian cancer (31).

Similar to FR, mAbs have also been developed against CA-
125. One of the leading antibodies, oregovomab, enhanced anti-
cancer activity when given with carboplatin and paclitaxel,
although oregovomab did not show clinical efficacy when
treating patients with ovarian cancer as a monotherapy (32,
33). The combination significantly improved PFS to 41.8
months, when given front-line, compared to 12.2 months for
patients given standard carboplatin-paclitaxel (34). Interestingly,
patients who had better survival outcomes had lower levels of
HLA-DR-CD14+ MDSCs and a lower neutrophil-and-monocyte
to lymphocyte ratio (35).

Mesothelin
Mesothelin is a surface antigen found overexpressed on
malignant mesothelioma as well as pancreatic, ovarian, and
lung cancers (36). However, it is also found expressed at low
levels on other mesothelial surfaces, such as the pleura,
pericardium, and peritoneum.

In ovarian cancer, a mesothelin-specific CAR-T was
developed using mRNA transfection in order to minimalize
off-target toxicity due to CAR-T persistence (37, 38). Five
patients with ovarian cancer were inoculated i.v. with second-
generation CARs against mesothelin in a phase 1 clinical trial
(39). Up to 1 to 3*108/m2 CAR-T cells were given with or
without lymphodepletion by 1.5 g/m2 cyclophosphamide. Only
one patient demonstrated a sizable reduction in tumor burden,
but did not qualify as a partial reduction per formal criteria
for objective response. This may have been due to a lack of
persistence of CAR-Ts by day 28 in most patients and the single-
chain variable fraction being murine-based. There were also no
significant changes in cytokine levels during the first month
post-infusion. The most common low-grade adverse events
(AEs) included fatigue, nausea, and emesis, while development
of Grade 3 ascites was the most common high-grade AE.
A similar Phase 1 trial is evaluating MCY-M11, a mRNA-based
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anti-mesothelin therapy, when given intraperitoneally (i.p.) for
platinum-resistant OC patients, with or without cyclophosphamide
(NCT03608618). Another clinical trial evaluating anti-mesothelin
CAR-T cells, but generated using a lentiviral delivery system, is
ongoing (NCT03054298).

Recently, Hassan et al. published the first in-human clinical
trial evaluating anetumab, an anti-mesothelin mAb in a Phase 1
clinical trial (40). Sixty-four patients were enrolled with
ovarian cancer, and of those, they noted 1 CR, 4 PRs, and 29
patients with SD. Interestingly, all patients who responded
had high mesothelin expression, defined as ≥60% by
immunohistochemistry staining. A Phase 1b clinical trial is
currently ongoing (NCT02751918).

Other Tumor-Associated Antigens
Other surface antigens have been identified in pre-clinical
studies as possible neoantigens with anti-tumor activity and
high specificity for ovarian cancer. Hong et al. showed that L1-
CAM was overexpressed in a wide panel of ovarian samples
(41). Administration of second-generation anti-L1-CAM CAR-
Ts, to NSG mice, inoculated i.p. with SK-OV3, improved
median survival time to 104.5 days when compared to mock
(50 days) or anti-CD19 CAR-T cells (56.5 days). Similar tissue
expression, in vitro, and in vivo studies can be seen with 5T4,
B7-H3, TAG-72, and MISIIR (42–45). Interestingly, Du et al.
demonstrated the addition of 4-1BB to the anti-B7-H3 CAR
mediated lower expression of PD-1 in transfected CD8+ T cells,
possibly enabling them to better enact effector functions. In this
pre-clinical study, i.p. administration of CAR-T cells was
shown to have improved survival benefit when compared to
an i.v. route.

Immune Checkpoint Inhibitors
Other mechanisms of promoting immune cell activity are
immune checkpoint inhibitors that target surface proteins such
as cytotoxic T-lymphocyte-associated protein 4 (CTLA4),
programmed cell death protein 1 (PD-1), and its ligand (PD-
L1; Figure 1). These proteins normally function to prevent
autoimmunity, but their upregulation on a tumor prevents an
appropriate immune response. CTLA-4 competes with B7
(CD80) in binding to CD28 on T cells, inducing a suppressive
phenotype rather than activating. PD-1 and PD-L1 belong to the
CD28 and B7 family of receptors on T cells, respectively, and
have been shown to induce a suppressive phenotype in
peripheral tissues.

Drugs targeting CTLA-4, such as ipilimumab, have shown
great success in other cancers. In unresectable Grade 3 and 4
melanoma, ipilimumab improved 1-year survival from 25% to
46% when used in combination with a gp-100 peptide vaccine,
granting it FDA approval in March 2011. In a phase 1 clinical
trial with nine Stage IV ovarian cancer patients, three instances
of stable disease (SD) were observed (46). Multiple toxicities
occurred, including two cases of Grade 3 inflammation
in the GI tract, one case of Sweet ’s syndrome, and
multiple dermatological reactions. A phase 2 clinical trial was
later done in patients with recurrent platinum-sensitive ovarian
Frontiers in Oncology | www.frontiersin.org 470
cancer (NCT01611558). Patients received 10 mg/kg of
ipilimumab once every 3 weeks for four doses then once
every 12 weeks. The overall response rate (ORR) was low at
10.3%. 18 patients experienced drug-related severe AEs, the
most common being small intestinal obstruction, diarrhea,
pneumonitis, and adrenal insufficiency.

Trials combining ipilimumab with other treatment regiments
have also been conducted. Recently, Zamarin et al. published a
Phase 2 trial comparing nivolumab to nivolumab and
ipilimumab for recurrent ovarian cancer. One hundred patients
were either given 3 mg/kg nivolumab every 2 weeks or 3 mg/kg
nivolumab plus 1 mg/kg ipilimumab every 3 weeks (47). In the
nivolumab monotherapy group, 3 complete responses (CRs), 3
partial responses (PRs), and 14 patients with SD were noted
compared to the 3 CRs, 16 PRs, and 20 patients with SD in the
combination group. Median progression-free survival (PFS) was
2 and 3.9 months while median OS was 21.8 and 28.1 months
for the monotherapy and combination therapy, respectively.
There were no treatment-related deaths with the most
common grade 3 or higher AEs being asymptomatic elevation
of pancreatic and liver enzymes, anemia, colitis, and diarrhea. A
number of other ongoing trials are evaluating anti-CTLA-4
antibodies in combination with chemotherapy, poly (ADP-ribose)
polymerase inhibitors (PARPi), and other immunotherapies
(Table 1).

Anti-PD-1 therapy has also had some success in treating
ovarian cancer. In a phase two trial, 20 patients with platinum-
resistant recurrent ovarian cancer were treated with either 1 or 3
mg/kg single-dose nivolumab every 2 weeks for one year (48). In
the 1 mg/kg cohort, two patients had a CR and four had SD while
in the 3 mg/kg cohort, one patient had a PR while two had SD.
Median OS was 20 months and PFS was 3.5 months. Low-grade
AEs included mild fever, rash, arthralgia, elevated liver function
tests (LFTs), and lymphocytopenia. Two patients experienced
Grade 3 disorientation and gait disorder or Grade 3 fever and a
deep vein thrombosis, respectively. Notably, two patients
developed a PR to maintenance chemotherapy post-treatment
with nivolumab (49). An open-label, randomized clinical trial is
ongoing in Japan.

One Phase 2 study has been published evaluating the
combination of nivolumab and bevacizumab in relapsed
ovarian cancer (50). Thirty-eight women with relapsed OC
were enrolled and treated with 10 mg/kg bevacizumab and 240
mg nivolumab once every 2 weeks. In platinum-sensitive
patients, there were eight PRs and nine patients with SD
compared to 3 PRs and 10 patients with SD in the platinum-
resistant group. Median PFS was 12.1 months and 7.7 months for
platinum-sensitive and -resistant patients, respectively. Grade 3
AEs reported were hypertension, myalgia, arthralgia, and
elevations in LFTs and serum amylase. Two patients
experienced Grade 4 increases in serum lipase levels as a result
of treatment. Like anti-CTLA-4 compounds, several ongoing
trials are evaluating combinations of nivolumab with
chemotherapy, PARPi, or vaccines (Table 1).

Pembrolizumab, another anti-PD-1 agent, has also been
evaluated as a single agent. In a phase 1b trial, 26 patients
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with advanced metastatic ovarian cancer received 10 mg/kg
every 2 weeks for up to two years (51). ORR was documented at
11.5%, with one CR and two PRs, and seven patients
experienced SD. Median PFS was 1.9 months while OS was
13.8 months. Drug-related AEs occurred in 19 patients with
one patient experiencing Grade 3 increases in transaminase
levels. Eight immune-related AEs occurred where the only
Grade 3 AE was pancreatitis. Later, Keynote-100 looked at
pembrolizumab in 396 patients with advanced recurrent
ovarian cancer. Two cohorts were formed based on prior
lines of treatment (52). Cohort A (285 patients) had one to
three lines of prior treatment while cohort B (91 patients) had
four to six. Patients received 200 mg IV every 3 weeks. ORR in
cohorts A and B was 7.4% and 9.9%, respectively. Median PFS
was 2.1 months for both cohorts while median OS was not
reached in cohort A and 17.6 months in cohort B. The most
common low-grade treatment-related AE was fatigue while the
most common immune-related AE was hypothyroidism. The
most common Grade 3 immune-related AEs were skin
reactions and colitis. More severely, two patient deaths were
attributed to treatment, one due to hyperaldosteronism and the
other to Stevens-Johnson syndrome. These recurring AEs led to
the need for early recognition and treatment to prevent
devastating complications from immune checkpoint inhibitor
therapy (53).

Recently, a single-arm phase I/II trial evaluated niraparib in
combination with pembrolizumab in patients with recurrent
platinum-resistant OC (54). 62 patients with OC were enrolled
between Phase I and II. ORR was 18% with 3 CRs and 8
confirmed PRs. Another 28 patients were noted to have SD.
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Median PFS was 3.4 months. Most common low-grade AEs
were fatigue, nausea, anemia, and constipation while high-
grade AEs were noted to be anemia and thrombocytopenia.
Extensive ongoing work is exploring combination therapies
with pembrolizumab.

Durvalumab, another anti-PD-1 compound, has been tested
in combination with PARPi in both Phase I and II trials. In a
Phase 1 trial, seven patients with ovarian cancer, along with one
endometrial and triple negative breast cancer, were treated
with olaparib and cediranib, a VEGFR1-3 inhibitor (55).
ORR was 44% with four partial responses and three patients
with SD. Most common low-grade AEs were fatigue, nausea,
and increased LFTs. Five patients experienced grade 3
hematological AEs, three with lymphopenia and two with
anemia). In a subsequent Phase 2, 35 OC patients were
enrolled in a single-center study (56). ORR was noted to be
14% with five patients achieving a partial response while 20
patients had SD. Overall, median PFS was noted to be 3.9
months. Like the Phase 1, hematologic toxicity, mainly anemia,
was the most common high-grade AE, affecting eleven patients.
The study also found significant increases in VEGFR3 were
correlated with worse PFS. Of note, when evaluating
durvalumab and olaparib in PARPi-naïve patients with
platinum-sensitive and mutated BRCA in a Phase II trial, a
63% RR was noted, with six patients achieving a CR and
fourteen achieving PRs (57). The most common grade three
or higher AEs were anemia, increased lipase and amylase,
and neutropenia.

Avelumab, an anti-PD-L1 therapy, though not directly
inhibiting the suppression of T cells, plays a role in preventing
TABLE 1 | Ongoing clinical trials of immune checkpoint inhibitors in women with ovarian cancer.

Intervention NCT/Author Phase Enrollment Primary
Endpoint

Anti-CTLA4
Tremelimumab + Olaparib NCT02571725 1/2 ~50 patients with BRCA1/2-mutant ROC RP2D, ORR
Tremelimumab + Olaparib NCT04034927 2 ~170 RPS OC

Anti-PD-1
Nivolumab ± Ipilimumab NCT03355976 2 ~62 patients with ovarian or renal cell carcinoma ORR
Intraperitoneal Nivolumab ± Ipiliumumab NCT03508570 1b ~48 patients with recurrent/high-grade gynecologic cancer with peritoneal

metastases
RP2D

Nivolumab ± Ipiliumumab + CarboTaxol NCT03245892 1 ~40 patients with High Grade Serous Ovarian, Fallopian Tube, or Primary
Peritoneal Cancer

DLT

Nivolumab + Bevacizumab ± Rucaparib NCT02873962 2 ~76 patients with ROC ORR
Nivolumab + Poly-ICIC (a viral mimic) NCT04024878 1 ~30 patients with OC Safety and

Activity
Nivolumab + WT1 vaccine NCT02737787 1 ~11 patients with ROC DLT
Durvalumab ± Tremelimumab +
CarboTaxol

NCT03249142 1/2 ~40 patients with Ovarian, Fallopian Tube or Primary Peritoneal
Adenocarcinoma

DLT

Durvalumab + Tremelimumab +
CarboTaxol

NCT03899610 2 ~24 patients with treatment-naïve clinical stage IIIC/IV ovarian cancer PFS

Sequential vs. combination Durvalumab +
Tremelimumab

NCT03026062 2 ~100 patients with RPR OC irPFS

Olaparib + Tremelimumab + Durvalumab NCT02953457 1/2 ~36 patients BRCA1/2-mutant ROC DLT and PFS
Anti-PD-L1
Avelumab ± PLD NCT02580058 3 566 patients with RPR OC OS and PFS
January 2021 | Volume 10
RP2D, Recommended phase 2 dose; ORR, Overall response rate; RPS, recurrent platinum-sensitive; OC, ovarian cancer; PFS, Progression free survival; DLT, dose-limiting toxicity; irPFS,
immune-related progression free survival; CarboTaxol, carboplatin and paclitaxel; ROC, recurrent ovarian cancer; PLD, pegylated liposomal doxorubicin; OS, overall survival.
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the inactivation of T cells. In a phase 1b trial, 125 ovarian cancer
patients with Stage III or IV disease received 10 mg/kg avelumab
every 2 weeks (58). Confirmed objective response was seen in only
twelve patients with one CR and eleven PRs. Median OS was 11.2
months. The most common treatment-related AEs were fatigue,
diarrhea, and nausea while the most common high-grade was an
increase in lipase-levels. Low grade immune-related AEs mainly
were hypothyroidism while three patients separately experienced
high-grade colitis, type 2 diabetes, or myositis. Ongoing
clinical trials are evaluating avelumab with chemotherapy and
PARPi (Table 1).

Regulatory T Cells
Discovered in 1995, Tregs were originally shown to be
involved in immune homeostasis, preventing an over-
activation of the immune system towards self (59). They
have been characterized to express CD4, CD25, and, most
notably, FoxP3 (4). Tregs enact their function by suppressing
activation of immune cells, inducing cell death of effector
cells, and secreting anti-inflammatory cytokines, such as TGF-
beta and IL-10 (60). Since their discovery, Tregs have been
shown to be involved in a number of disease processes,
including cancer.

In ovarian cancer, Tregs have been shown to be an indicator
of poor prognosis. Curiel et al. showed that in 104 patients,
increased numbers of intratumoral Tregs predicted poor survival
(61). Absolute Treg counts may overlook certain cellular
interactions, because in a study of 117 patients, intraepithelial
Treg counts did not correlate with a significant difference in
survival (9). Instead, increased ratios of CD8+ T cells to
CD4+CD25+FoxP3+ T cells were shown to significantly
associate with improved survival. Later studies also showed
that a high CD8+/Treg ratio as well as CD4+/Treg ratio were
associated with better survival outcomes (62).

Treg function can also be influenced by the ovarian TME.
TAMs and tumor cells have been shown to increase levels of
CCL22, which aid in Treg recruitment to the ovarian TME
(61). In a set of 75 ovarian cancer patients, CCL22 levels were
shown to be elevated in the peritoneal fluid, possibly
contributing to Treg recruitment and cancer progression
(63). Tregs have also been shown to be highly activated
when found intratumorally in ovarian cancer. CD45RA-

FoxP3hi effector Tregs expressed significantly higher levels
of 4-1BB, ICOS, OX40, and CTLA4 compared to CD45RA-

FoxP3lo effector T cells (64). Tregs expressing high PD-1 and
4-1BB were subsequently both more responsive to stimulation
by anti-CD3/anti-CD28 and were able to better suppress
T cells in vitro.

One method of reducing Treg effector functions is to directly
deplete Tregs. Low-dose cyclophosphamide has been tested for
use in conjunction with cancer vaccines due to its ability to
deplete FoxP3 Tregs (65). However, Tregs treated with low-dose
cyclophosphamide were unable to suppress the proliferation of
CD4+ and CD8+ T cells in vitro. When tested in ovarian cancer,
a combination therapy of low-dose cyclophosphamide with a
p53-SLP vaccine did not directly suppress either Treg counts or
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functionality (66). However, overall T cell counts were higher
and persisted longer in the combination group when compared
to vaccination alone. Similarly, a phase 1/2 clinical trial found a
single i.v. dose of cyclophosphamide had no effect on circulating
Tregs (67).

Regulatory B Cells
In ovarian cancer, there is evidence infiltrating B cells can be
either good or bad prognostic indicators. Milne et al. found that
intraepithelial CD20+ B cells, when present in patients optimally
debulked from high-grade serous OC, positively correlated with
disease-specific survival (68). Patients who had residual disease
or another histological subtype, however, did not demonstrate
any significant survival benefit with infiltrating CD20+ B cells. In
a follow-up study, tumor-infiltrating CD20+ cells were found to
have responded to antigen, having undergone class switching,
somatic hypermutation, and clonal expansion (69). These CD20
+ B cells, when found co-localized with CD8+ T cells in tumor,
also correlated with improved patient survival compared to
tumor-infiltrating T cells alone. In an independent study,
Santoiemma et al. also found tumor-infiltrating CD20+ B cells
to positively correlate with OS (70). Later, these CD20+ B cells, in
addition to CD138+ plasma cells and CD4+ TILs, were found to
co-localize with CD8+ T cells in tertiary lymphoid structures and
indicate better prognosis (71). Interestingly, Kroeger et al. also
found tumor-infi ltrating plasma cells, in high-grade
serous ovarian cancer, to express IgG and CXCR3, the latter
being normally expressed under immuno-stimulatory
environments (72).

Contrary to this finding, Lundgren et al. found CD138+ plasma
cells to positively correlate with tumor grade and negatively with
OS (73). Furthermore, they found CD20+ B cells only correlated
with tumor grade and had no significant correlation with survival.
Other studies have also shown infiltrating B cells to be detrimental.
Yang et al. showed that high levels of CD19+ B cells in the
omentum correlated with poor survival (74). Ultimately,
additional phenotype characterization of tumor-infiltrating B
cells needs to be completed to determine their impact in the
TME and patient outcomes.

Recently, a subset of B cells known as B regulatory cells has
been found in ovarian cancer patients (75). More specifically,
IL-10+ B cells were increased in ascites compared to peripheral
blood. These B cells were inversely correlated with the number
of CD8+ T cells in ascites and positively correlated with
FoxP3+CD4+ T cells. Ex vivo studies showed these B cells
were capable of suppressing IFN gamma secretion by T cells
even under stimulation by anti-CD28. Finally, accumulation of
these cells in the ascites correlated with more late-stage and
aggressive disease. In models of spontaneous ovarian cancer,
increased CD25+ pre-B-like cells were found intratumorally
(76). These pre-B-like cells were shown in breast cancer models
to develop into tBregs (CD19+ CD25HiCD69Hi) and promote
metastases. There are no modalities currently available that
specifically target Bregs. Additional research is necessary to
determine which markers best define this subset and how they
function in ovarian cancer.
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INNATE IMMUNITY

Despite recent advances in the use of checkpoint inhibitors
and augmenting the T cell response, attempts at augmenting
adaptive immunity have been unsuccessful in treating
ovarian cancer patients. Recent efforts have shifted to
include exploiting the innate immune response (77).
Myeloid cells of the innate immune system, such as
monocytes, classical macrophages, natural killer cells, and
dendritic cells, all play key roles in promoting an effective
adaptive response; the lack of accounting for these
interactions may be where current immunotherapies fall
short. Alternatively, cell types such as TAMs and MDSCs
induce a highly immuno-suppressive TME and may be
targets of future therapeutic strategies (6, 7).

Dendritic Cells
As the main mediator of responses between the innate and
adaptive immune response, conventional human DCs (cDCs,
CD141+, or CD1c+), are critical for the adaptive response by
up-taking antigen and skewing helper T cell differentiation
(78). However, cancer cells subvert proper antigen
presentation by down-regulating MHC, reducing TAAs on
their surface, and can be suppressed by numerous cytokines
(79). DCs can also induce T cell suppression themselves
through PD-1 and CD277 in the ovarian cancer TME (80,
81). Human plasmacytoid dendritic cells (pDCs, CD303+)
increase immunosuppression in the ovarian cancer TME
through upregulation of Tregs (82, 83). Furthermore,
tumor-associated pDCs have been correlated with poor
prognosis and early relapse for ovarian cancer patients,
possibly due to their influence on CD4+ T cells to produce
increased IL-10 (84).

Multiple clinical trials have looked at the benefit of utilizing
DCs, obtained through leukapheresis or derived from
monocytes, that are pulsed with specific antigens as
immunotherapy. In one trial, autologous DCs were pulsed with
Her2/neu, human telomerase reverse transcriptase, and pan-DR
epitope with or without a single-dose of cyclophosphamide. Five
of eleven patients had no evidence of disease at the time of
publication with only one patient dying of disease within 36
months after the initial vaccination (67). No grade 3 or 4
treatment-related AEs were reported. Two studies introduced
IL-2 in conjunction with DC treatment. Rahma et al. evaluated
the optimal mechanism of peptide delivery to DCs, with 6 OC
patients receiving DCs pulsed ex vivo with wild-type p53 peptide
264-272 (85). PFS and median OS was found to be 8.7 and 29.6
months, respectively, comparable to those patients receiving
subcutaneous injections of solely peptide. Notably, all Grade 3
or 4 AEs occurred during cycles of IL-2 administration—the
most common being fatigue, lymphopenia, and elevated liver
enzymes. IL-2 administration also led to increases in Tregs. In
another study by Baek et al., 10 patients with minimal residual
disease were treated with DCs pulsed with keyhole limpet
haemocyanin (KLH) and IL-2 (86). KLH has previously been
used as a surrogate marker for DC vaccination. Three patients
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underwent complete remission with the most common AEs
being flu-like symptoms, attributed to IL-2 administration.
Contrastingly, this study found treatment decreased CD4
+CD25+ T cells, albeit they did not characterize FoxP3
expression. A recent Phase I/II study enrolled three ovarian
cancer patients and treated them with DCs pulsed with Wilms’
tumor protein 1 (87). One patient reached SD by RECIST criteria
while the other two had progressive disease. No Grade 3 or
greater AEs were reported.

Alternatively, DCs could be pulsed with whole tumor lysate
as a means of eliciting a response to a variety of neoantigens as
opposed to a single one. In a phase I study with six ovarian
cancer patients, autologous DCs were pulsed with autologous
tumor lysate and (KLH) (84). No grade 2 or higher AEs
reported. Most common Grade 1 AEs included pain, fatigue,
nausea, and abdominal pain. In another clinical study, 25
immunotherapy-naïve OC patients were treated with either a)
intranodal injections of DCs pulsed with oxidized whole tumor
lysate, b) whole-tumor lysate pulsed DCs with bevacizumab or
c) the prior combination with cyclophosphamide (88). No
toxicities greater than Grade 2 were reported due to the
treatment. The most common Grade 1 AEs overall were pain,
fatigue, nausea and abdominal pain. There were two PRs and
thirteen patients had SD. Of note, patients without
intratumoral T cells reactive for autologous tumor had poorer
outcomes, again suggesting the success of DC vaccinations
relies on the ability to generate a specific T cell response.
Interestingly, the addition of cyclophosphamide improved
both immune response, as measured by IFN-gamma release,
and ultimately patient survival.

But despite some success of these DC vaccines, limitations
include the ability to generate a consistent immuno-stimulatory
effect and the difficulty of vaccine production (89). In an
attempt to generate a more efficient T-cell response in a
preclinical setting, Mirandola et al. treated DCs infected with
a recombinant adeno-associated virus (rAAV) containing
cancer/testis antigen mSP17 with a p38 MAPK inhibitor (90).
A p38 inhibitor was used due to previous studies showing its use
improving monocyte-derived DC survival and decreasing Treg
production (91, 92). Murine DCs were infected with rAAV-
mSP17 and treated with a p38 MAPK inhibitor. Survival analyses
showed that when C57BL/6 mice, injected i.p. with 1 × 106 ID8
cells, were treated with DCs plus p38 inhibitor, 95% of mice
survived up to 300 days, as compared to those receiving solely
DCs surviving up to 98 days. Furthermore, the addition of p38
inhibitor increased lymphocyte trafficking to the tumor. When
using human DCs, the addition of p38 inhibitor significantly
decreased PD-L1 expression, reversing one contributor to the
highly immunosuppressive TME. In a separate attempt to
alternatively produce DCs for use in OC patients, Cheng et al.
developed “mini DCs” through the use of cell membrane coating
nanotechnology, i.e., fusing cell membranes onto synthetic
polymer cores (93). To traffic tumor antigens to the membrane
prior to fusion, ID8 murine cells were lysed and pulsed onto bone
marrow-derived DCs. Additionally, IL-2 was loaded into the
nanoparticle prior to emulsion. Mice inoculated with ID8 cells
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subcutaneously showed significant growth reduction when
treated with the mini DCs compared to normal DCs and
empty nanoparticles. Increased CD8+ T cell infiltration and
decreased Tregs were also observed intratumorally in the mini
DC treated mice. When evaluating the effect of mini DCs on
metastases, mice injected i.p. with ID8 cells and treated with mini
DCs had significantly fewer nodules on the peritoneal wall
when compared to vehicle or those treated with normal
DCs. No changes in body weight or liver and kidney functions
were observed in mice treated with mini DCs, indicating
good biocompatibility.

Natural Killer Cells
Natural killer cells, CD56+, have become increasingly popular as
an immunotherapy due to their ability to kill without prior
sensitization to antigen. Instead, they integrate activating and
inhibitory receptors in order to mediate their cytotoxic effect.
Receptors, such as killer cell immunoglobulin-like receptors
(KIRs) and NKG2A-C that recognize MHC and NKG2D that
recognize stress molecules, cooperate to sense “missing self,”
“induced self,” or “altered self (94).” Similar to T cells, these cells
are able to kill by perforin-granzyme and also by FAS and
TRAIL-mediated mechanisms (95). In OC, NK cells have been
reported to both be positively and negatively prognostic. One
study evaluated the prognostic value of intra-tumoral NK cells in
82 patients with mixed histologies (96). Researchers found
patients with only intra-epithelial infiltration of NK cells had
an increased OS (106 months) compared to those with only
intra-stromal infiltration (58 months); no difference was seen in
PFS between these two groups. However, tumor infiltration of
CD56+ NK cells did not correlate with prognosis. Additionally,
this study evaluated the presence of ULBP2 and MICA/B on
patient outcomes—both activating ligands of NKG2D thought of
commonly to mark cells for elimination. Interestingly, high levels
of ULBP2 on tumor samples was found to indicate a poor
prognosis for cancer patients, while MICA/B did not correlate
with prognosis. This may be due to high levels of ULBP2
inhibiting proper T cell functioning. Samples from 283 patients
with high-grade serous carcinoma were evaluated by
immunohistochemistry for NK cell infiltration (97). Median
OS in patients with high levels of CD57+ NK cells (≥10 cells/
mm2) was improved, compared to patients with low levels (<10
cells/mm2), 45 vs. 29 months, respectively. Interestingly, higher
CD56+ NK cells:lymphocyte fraction in ascites was associated
with both a better PFS and OS in 20 OC patients (98). It was
noted though that by selecting for patients that had enough
ascites, patients with poor prognosis were inadvertently selected.
Further studies will be needed to evaluate the importance of
intra-tumoral NK cells.

There are multiple clinical trials in progress evaluating the
benefits of augmenting NK cell number and function. One Phase I
trial is evaluating IP FATE-NK100, a donor-derived NK product
compromised from terminally differentiated cells, with IL-2, as a
means of promoting NK survival, and lymphodepletion by
cyclophosphamide and fludarabine (CyFlu) in women with
recurrent OC (NCT03213964). Another Phase I trial is
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evaluating i.p. NK cells, instead generated from CD34
hematopoietic stem cells in umbilical cord blood, in twelve
recurrent OC patients with lymphodepletion by CyFlu
(NCT03539406). In an attempt to boost the body’s own NK
cells, one Phase II trial is evaluating the use of i.p. as well as
subcutaneous (s.q.) IL-15Ra super-agonist, ALT-803, after first-
line chemotherapy (NCT03054909). It was previously shown that
in OC, ascites-derived NK cells and healthy donor NK cells
improved their reactivity when stimulated with IL-15 or ALT-
803 (98). One published Phase II study evaluated i.v. NK cells,
treated ex vivo with IL-2, given post-lymphodepletion by CyFlu in
14 ovarian cancer patients (99). Five patients also received total
body irradiation to deplete lymphocytes and allow for NK
expansion. Despite four patients reaching PRs and eight having
SD, one patient developed a grade 5 toxicity due to tumor lysis
syndrome. Other severe AEs, such as passenger lymphocyte
syndrome and neutropenia, were attributed to the irradiation.

CARs have been also added to NK cells, as well as NKT cells
(CD3+CD56+), in an attempt to utilize these cells. Briefly, NKT
cells carry characteristics of both NK and T cells, enabling them to
enact cytotoxic killing without prior activation. Utilizing a CAR
against FR, Zuo and colleagues showed NKTs with improved
cytotoxicity towards FR+ PEO1 cells in vitro when compared to
CAR-Ts by transfecting NKT cells with CARs carrying both the
CD28 and 4-1BB co-stimulatory signaling domain, (100).
However, the NKT cells performed worse than CAR-T cells in
nude mice inoculated subcutaneously with PEO1 cells. NK cells,
specifically NK-92, were also used as a surrogate for a third-
generation anti-FR CAR (101). Similarly, these NK cells
demonstrated cytotoxic effects against SKOV3 in vitro and in B-
NDG mice inoculated i.p. with SKOV3. One clinical trial utilizing
anti-mesothelin NK cells, obtained from peripheral blood
mononuclear cells, has been proposed (NCT03692637).

Changes in synthesis methods and receptor signaling may
also be beneficial to the success of CAR-NKs. Li et al. created
anti-mesothelin CAR-NKs, with additional NKG2D and 2B4
domains, from induced pluripotent stem cells (iPSCs) (102).
Advantages to using iPSC include better clonal manipulation of
the end product and increased speed of production. In a
xenograft model injected i.p. with A1847 cells, treatment with
their CAR-NK, along with IL-2 and IL-15, significantly reduced
tumor burden and, ultimately, improved survival. When
directly compared to a CAR-T with the same receptor, but
with 4-1BB and CD28 signaling motifs instead, mice treated
with the CAR-NK had less weight loss and pathogenic damage
in organs such as the liver and kidney. Furthermore, those
treated with CAR-NK also had improved survival when directly
compared to those given CAR-T cells. Another group has
created a CAR-NKs against glypican-3 (GPC3), with CD28
and 4-1BB signaling motifs, also from iPSCs derived immune
cells (103). In NSG mice inoculated i.p. with KOC7c, a GPC3-
expressing ovarian cancer cell line, a statistically significant
difference in survival was seen when compared to PBS. Klapdor
et al. has also developed dual-CAR-NKs, using NK-92, against
CD24 and mesothelin with CD28 and 4-1BB signaling motifs
(104). CD24 was chosen as a target due to its presence on
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cancer stem cells and lack thereof on normal tissues; mesothelin
has been previously discussed. In A2780 and HEK293T cells
previously transfected with CD24, mesothelin, or both, the
dual-CAR was able to target both mesothelin-positive cells
and CD24-positive cells.

Monocytes and Macrophages
Monocytes can be classified into three subsets based on CD14
and CD16 expression: classical monocytes (CD14+CD16−),
intermediate monocytes (CD14+CD16+), and non-classical
monocytes (CD14-CD16+). Upon inflammation, monocytes
traffic to the tissue and differentiate on a spectrum ranging
from classically activated macrophages, or M1-like, to
alternatively activated macrophages, or M2-like. A holistic
review on M1 vs. M2 macrophage differentiation is more
thoroughly reviewed in (105). In brief, M1-like macrophages,
induced by IFN-g and TNF-a, secrete inflammatory cytokines,
such as IL-6 and IL-12, while M2-like macrophages are induced
by TGF-b and IL-4/13 and secrete anti-inflammatory cytokines
and recruiting Tregs (106). Cancer cells themselves are able to
induce a shift towards an M2 phenotype through the secretion of
signaling molecules. In OC specifically, CSCs were shown to
increase levels of CCL2, COX-2 and PGE-2 as well as activate the
PPARg pathway, all of which correlated with increased polarization
towards M2 macrophages (107, 108). Unsurprisingly, a high M1/
M2 ratio has been correlated with improved survival in OC patients
(109). A meta-analysis also indicated the presence of CD163+
TAMs was correlated with poor prognosis (110). A decreased
lymphocyte-to-monocyte ratio (LMR) also indicated both poor
overall and PFS in retrospective reviews (111–114).

In order to bolster immunity against cancer, the goal would be
to decrease M2-like macrophages and/or increase their M1-like
counterparts. Pre-clinical studies have attempted to decrease the
prominence of M2 macrophages in the OC TME by interfering
with the number of TAMs. Trabectedin, an inhibitor of DNA
repair and transcription, was found to activate caspase-8 in
monocytes through TRAIL-R1/2, leading to decreases in TAMs
(115). Paclitaxel, a microtubule inhibitor currently in use to treat
ovarian cancer, was recently found to shift M2 macrophages
towards M1 in a TLR4-dependent fashion (116).

In OC, the addition of IFN-a/g to monocytes was
hypothesized to maintain the M1-like phenotype when used as
an anti-cancer therapy. Importantly, this combination was
shown to significantly reduce tumor burden and improve
survival in BALB/c mice inoculated subcutaneously with
OVCAR-3 (117). Mice treated with the combination of IFNs
and monocytes survived to 170 days when compared to 87 and
81 days for IFNs or monocytes alone, respectively. Intra-tumoral
macrophages were identified by CD31 and CD68 staining.
Further immunofluorescence (IF) characterization showed that
the cells expressed M1 markers IL12, CXCL10 and NOS2, but
decreased M2 markers IL-10 and arginase, indicating that the
IFN-treated monocytes retained differentiation towards an M1-
like phenotype. Extrapolating these findings to other ovarian
cancer cell lines, Johnson et al. reinforced the ability of
monocytes and IFNs to kill tumor cells synergistically,
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although sensitivity varied between lines (118). A Phase 1
clinical trial was created to evaluate the intraperitoneal
administration of autologous monocytes treated ex vivo with
pegylated inteferon a-2b and interferon g-1b (119). Preliminary
results showed a well-tolerated treatment with two PRs and four
patients with SD (120).

Myeloid-Derived Suppressor Cell
Compared to the veteran immunosuppressive Tregs (discovered
in 1969), myeloid derived suppressor cells (MDSCs) are a
relatively “young” subset (121). Poorly-differentiated myeloid
cells with the capacity to suppress T cell activation were reported
in the 1970s (122), but the term “MDSC” was not coined until
2007 (123), and many questions relating to the origin,
classification, and behavior of MDSCs remain unresolved (124).

A comprehensive review of the current understanding of
MDSCs have been presented previously (7, 125). Briefly,
MDSCs are myeloid derived cells which develop in bone
marrow, traffic through peripheral blood to the tumor, and
increase during tumor development in response to chemotactic
and growth factor signals released by the tumor itself such as G-
CSF, GM-CSF, VEGF, and IFN-g (126, 127). MDSCs are
functionally characterized by the ability to suppress T cell
activation ex vivo (122), and to suppress the ability of immune
cells in the TME to mount an antitumor response in vivo by
mechanisms which are incompletely characterized, but include
direct suppression of cytotoxic T cells and NK cells via PDL1/2,
promotion of Treg expansion by TGF-beta, CD40L, and Il-10,
and promotion of M2-like/TAM development (128). MDSCs
can be identified by their expression of specific markers,
allowing division into monocytic and granulocytic subtypes
according to consensus guidelines, although these classification
schemes remain in flux (125). In mice, monocytic MDSCs are
defined as CD11b+ Ly6Chigh Ly6G– while granulocytic MDSCs
are CD11b+ Ly6Clow Ly6G+. In humans, monocytic MDSCs are
HLA-DR-CD11b+CD33+CD14+ while granulocytic MDSCs are
HLA-DR-CD11b+CD33+CD15+.

The clinical relevance of MDSCs as drivers of ovarian cancer
pathogenesis has been demonstrated by correlative studies in
humans associating MDSC frequency and phenotype with worse
prognosis as well as by experimental manipulations in mice, in
which direct ablation of MDSCs can impede tumor development.
In patient series, higher MDSC frequency in tumor biopsy (129),
in peripheral blood (130), or in ascites (131) correlated with
decreased OS or relapse free survival, as did high MDSC-to-
dendritic cell ratio in peripheral blood (132). Syngeneic mouse
model studies have demonstrated that MDSCs accumulate
during the course of tumor development (133) and that
ablation of MDSC by clodronate liposomes led to increased
survival. Depletion of MDSC by anti-Gr1 antibodies also
inhibited tumor growth in mouse and depletion of MDSC led
to increased mouse survival whereas adoptive transfer of MDSC
from one tumor-bearing mouse to another improved tumor
growth (134, 135). Similarly, depletion of MDSCs by anti-GM-
CSF therapy reversed anti-VEGF therapy resistance, reducing
intra-tumoral MDSCs and increasing CD8+ TILs (136).
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MDSCs have the capacity to develop into immunosuppressive
M2-like macrophages, but they can also differentiate into non-
immunosuppressive cell types such as conventional M1
macrophages and dendritic cells. Agents such as all-trans-
retinoic acid (ATRA) and epigenetic modifiers such
as histone-deacetylase inhibitors (HDACi) have been
demonstrated to induce differentiation of MDSC (resulting
in functional depletion) in preclinical studies. In ovarian
cancer, the phase II trial of histone deacetylase inhibitor
entinostat in combination with checkpoint inhibitor
avelumab failed to demonstrate an advantage over avelumab
alone (137). Differentiation vs depletion of MDSC by the
hypomethylating agent azacytidine has been reported in
mouse (138). Of note, azacytidine has also been reported to
sensitize platinum resistant ovarian cancer cells to platinum
by mechanisms that are not entirely understood (139), which
has been the inspiration for other trials. Decitabine has been
pursued as a platinum sensitizer and reported as having
disease activity by CA-125 reduction but not by reduction in
tumor size, i.e., RECIST criteria (140). A phase 1 trial of
azacyt idine and valproic acid , another HDACi, in
combination with carboplatin in patients with platinum-
refractory solid tumors was reported in abstract form as
displaying disease activity but with a very high (78%) rate of
grade 3–4 toxicity (141).

Blocking of MDSC migration to tumor might be achieved by
a variety of manipulations, including blocking of cytokines such
as VEGF, G-CSF, GM-CSF, and M-CSF, as discussed above.
VEGF inhibition by bevacizumab already has an established role
in treatment of ovarian cancer, with approvals in both the first-
line and later-line settings. Interestingly, mouse data in
bevacizumab-resistant tumors demonstrated that MDSCs
recruited by GM-CSF, produced by the tumor drove
immunosuppression which was reversible by blockade of GM-
CSF production (136). In the clinic, early phase I/II experimental
approaches are focusing on blocking the receptors on MDSCs
which mediate response to the above cytokines, namely CXCR2
(NCT02370238 and NCT02499328), CCR5 (NCT01736813),
and CSF1R (NCT01349036). In addition, a phase 1
combination trial of the anti-CSF1R antibody cabiralizumab
plus nivolumab (NCT02526017) including ovarian cancer
patients is underway.

Finally, inhibition of MDSC function has been hampered to
some extent by an incomplete understanding of the complex
mechanisms by which MDSCs downregulate antitumor
immunity. Depletion of L-arginine in the TME via expression
of arginase-1 and inducible nitric oxide synthase (NOS-1) is
thought to directly inhibit T cell function and result in cell cycle
arrest (142). Disruption of this process may be achieved in vitro
by inhibiting upstream inflammatory cyclooxygenase-2 (COX-
2), prostaglandin E2 (PGE2) or phosphodiesterase-5 (PDE-5)
signaling (143). Similarly, use of PDE-5 inhibitors such as
sildenafil and tadalafil, which are already FDA approved for
non-cancer indications, is being tested in combination trials in a
variety of solid tumors. A phase I study of the anti-VEGFR2
molecule regorafenib and sildenafil in multiple solid tumors was
Frontiers in Oncology | www.frontiersin.org 1076
reported, with evidence of disease activity including two ovarian
cancer patients who achieved SD for >24 weeks (144).
CHALLENGES AND FUTURE DIRECTIONS

Ovarian cancer remains a lethal disease due to late-stage diagnoses
and a lack of suitable treatment options in the recurrent setting.
Despite recent advances in PARPi and anti-VEGF treatment
modalities, a better understanding of the immune cell subsets
and their interactions in the peritoneal TME may bring forth
novel targeted therapies and additional combination therapies.
Herein, we discussed key subsets of the many immune cells that
play a role in the immuno-suppressive and tumor-promoting
microenvironment of ovarian cancer, and recent attempts to
therapeutically employ both adaptive (Table 2) and innate
(Table 3) immunity. Tumor-specific lymphocytes have been
found in ovarian cancer, and have been associated with better
prognoses, but anti-inflammatory cytokines produced by Tregs
and other cells may overwhelm their effector functions. Depleting
Tregs by cyclophosphamide has not been shown to directly affect
Treg counts, but may promote overall T cell count. Reducing
counts of other immunosuppressive cells, mainly those of innate
immunity, may be significant in future treatments. MDSCs orM2-
like macrophages may be important target populations.

A lack of tumor associated antigens and proper stimulation may
also hinder a targeted immune response. A main problem seen in
CAR-T therapies included a lack of persistence within circulation
and poor penetrance into the peritoneal TME. Therapies such as
checkpoint inhibitors and CAR-T cells may have demonstrated
poor efficacy due to cellular interactions between adaptive and
innate immunity that are yet to be fully characterized. Bregs are one
class of cells that have yet to be fully understood. MDSCs have also
been shown to play a significant role in decreasing immune function
in the TME by secreting cytokines and directly inhibiting
adaptive immune cells, but need further characterization.

Augmenting the innate immune response may be a mechanism
by which to improve the anti-tumor response. Multiple groups have
evaluated DCs as ways to augment a tumor-specific T cell response.
Trials evaluating various peptides andwhole tumor lysate have shown
varied results though, but with minimal AEs. Future studies
evaluating additional mechanisms of sustaining DC activation as
well as possible bio-nanotechnology to replace synthesis of DCs will
be critical in developing this option. Another possible mechanism is
to use NK or NKT cells as an effector cell because they do not require
additional activation. These cells have demonstrated the capacity to be
transfected with CARs and clinical trials are currently underway.
Similarly, efforts to utilize monocytes as effector cells are underway.
Targeting of MDSCs is an exciting avenue for ovarian cancer therapy,
with the multiple agents and combinations discussed above being
tested, and many others with promising preclinical data. However,
there are outstanding questions which need to be addressed in order
for these approaches to be maximally beneficial. One invaluable is
given the rapidly increasing number of available therapeutic
combinations, how do we rationally choose which combinations to
test in our patients? Ultimately, further understanding of the
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TABLE 3 | Published clinical trials of immunotherapies modulating innate immunity in ovarian cancer patients.

Intervention NCT/Author Phase Enrollment Primary
Endpoint

PFS OS ORR

Dendritic Cell Vaccines (peptide
target)
(Her2/neu + hTRT + PADRE)
+/- cyclophosphamide

Chu et al. 1/2 14 OC in first or second remission Safety and
Activity

– – –

(WT p53 peptide) + IL-12 Rahma et al. 2 21 recurrent OC Activity 8.7
months

29.6
months

–

(KLH) + IL-2 Baek et al. 1/2 10 with MRD Safety and
Activity

– 65.0
months

3/10 (30%)

(WT1) Zhang et al. 1/2 3 OC DrAE – – 0/3 (0%)
(Autologous tumor lysate) +
KLH

Hernando
et al.

1 6 progressive or recurrent OC Safety and
Activity

– – 0/6 (0%)

(Autologous tumor lysate)
+/- bevacizumab
+/-cyclophosphamide

Tanyi et al. 1? 25 immunotherapy-naïve recurrent
OC

Safety and
Activity

– – 2/25 (8%)

Natural Killer Cells
NK Cells + IL-2
+ CyFlu

Geller et al. 2 14 OC Activity – – 4/14
(28.5%)

Monocytes
Monocytes + IFNa/g Cole et al. 1 11 recurrent OC Safety and

Activity
– – 2/11

(18.1%)
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-Not reported; RPR, recurrent platinum-sensitive; RPR, recurrent platinum-resistant; RP2D, Recommended phase 2 dose; ORR, Overall response rate; KLH, Keyhole limpet haemocyanin;
hTRT, human telomerase reverse transcriptase; PADRE, pan-DR epitope; WT-1, Wilms’ tumor protein 1; CyFlu, Cyclophosphamide + Fludarabine; SQ, subcutaneous; MRD, minimal
residual disease.
TABLE 2 | Published clinical trials of immunotherapies modulating adaptive immunity of ovarian cancer patients.

Intervention NCT/Author Phase Enrollment Primary Endpoint PFS OS ORR

CAR-T
Anti-Folate Receptor Kershaw et al. 1 14 recurrent FR+ OC Safety and Activity – – *
Anti-Mesothelin Beatty et al. 1 5 OC Safety and Activity – – 0/5

Anti-CTLA4
Ipilimumab Hodi et al. 1 9 Stage 4 OC Safety and Activity – – 0/9

NCT01611558 2 40 RPS OC DrAEs – – 4/39 (10.3%)
Nivolumab+Ipilimumab Zamarin et al.

NCT02498600
2 100 recurrent OC ORR 3.9 months 28.1 months 16/51 (31.4%)

Anti-PD-1
Nivolumab Hamanishi et al. 2 20 RPR OC Safety and Activity 3.5 months 20.0 months 3/20 (15%)
Nivolumab + Bevacizumab Liu et al. 2 38 recurrent OC ORR 12.1 months in

RPS
7.7 months in
RPR

– 8/20 (40%) in
RPS

3/18 (16.7%) in
RPR

Pembrolizumab Varga et al. 1b 26 PD-L1+ OC ORR 1.9 months 13.8 months 3/26 (11.5%)
Pembrolizumab Matulonis et al. 2 Cohort A: 285

recurrent OC
Cohort B: 91 recurrent
OC

ORR Cohort A: 2.1
months
Cohort B: 2.1
months

Cohort A: -
Cohort B: 17.6
months

Cohort A: 7.4%
Cohort B: 9.9%

Pembrolizumab + Niraparib Konstantinopoulos
et al.

1/2 Phase 1: 9 RPR OC
Phase 2: 53 RPR OC

Phase 1: Safety and
RP2D
Phase 2: ORR

3.4 months – Integrated: 18%

Durvalumab + Olaparib +
Cediranib

Zimmer et al. 1 7 recurrent OC
1 peritoneal cancer
1 endomterial
1 TNBC

RP2D – – 4/9 (44%)

Durvalumab + Olaparib Lampert et al. 2 35 recurrent OC ORR 3.9 months – 5/35 (14%)
Durvalumab + Olaparib Drew et al. 2 32 BRCAmut, RPS OC ORR – – 20/32 (63%)

Anti-PD-L1
Avelumab Disis et al.

NCT01772004
1b 125 recurrent OC ORR 2.6 months 11.2 months 12/125 (9.6%)
-Not reported; *No patients responded to treatment; RPR, recurrent platinum-sensitive; RPR, recurrent platinum-resistant; RP2D, Recommended phase 2 dose; TNBC, Triple-negative
breast cancer; ORR, Overall response rate.
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interactions amongst tumor and immune cells in the unique
peritoneal microenvironment will allow us to better develop
optimal targeted therapies for the treatment of ovarian cancer.
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About 80–90% of castration-resistant prostate cancer (CRPC) patients would develop
bone metastasis. However, the molecular mechanisms of bone metastasis are still not
clear. This study aimed to detect the differences between the tumor and normal samples
in bone after metastatic colonization. Four transcriptional datasets (GSE32269,
GSE101607, GSE29650, and GSE74685) were obtained from the GEO database.
1983 differentially expressed genes (DEGs) were first identified between tumor and
normal marrow samples in GSE32269. Most of the top 10 up-regulated DEGs are
related with prostate cancer, and the top 10 down-regulated DEGs are mainly related with
bone development. Seven co-expression modules were then detected based on the
1469 DEGs shared by the four datasets. Three of them were found highly preserved
among the four datasets. Enrichment analysis showed that the three modules were
respectively enriched in Cell adhesion molecules (CAMs), Leukocyte transendothelial
migration and cell cycle, which might play significantly important roles in the tumor
development in bone marrow. Ten, 17, and 99 hub genes for each module were then
identified. And four genes (C3AR1, IL10RA, LY86, and MS4A6A) were detect to be tightly
related to progression of bone metastatic CRPC. ROC curve was plotted and AUC was
calculated to distinguish tumor and normal bone marrow samples as well as bone and
non-bone metastatic CRPCs. The present study identified key genes and modules
involved in bone metastatic CRPCs, which may provide new insights and biomarkers
for understanding of the molecular mechanisms of bone metastatic CRPC.

Keywords: bone metastatic CRPC, differentially expressed genes, weighted gene co-expression network analysis,
module, hub genes
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INTRODUCTION

Prostate cancer (PCa) is one of the most common cancers and
the tenth most common cause of cancers related mortality in
men in China (1). The rankings rise first in men in the developed
countries (2). Castration-resistant prostate cancer (CRPC) is an
advanced form of prostate cancer by disease progression
following surgical or pharmaceutical castration. This process is
not inevitable, which is usually companied by poor prognosis
and reduced survival time. To be known, CRPC patients are also
at high risk of developing metastases. The common sites are
bone, lymph nodes, liver, lungs and brain. Bone is the most
prominent site for metastases. About 80–90% of CRPC patients
develop bone metastases (3). Bone metastases could lead to the
disorder of bone metabolism and induce skeletal related events
(SREs), such as pathological fracture, spinal cord compression
and hypercalcemia, which not only reduce survival time and life
quality, but also increase burden of treatment (4).

However, the molecular mechanisms of bone metastases are
still not clear. A widely accepted mechanism is the ‘seed and soil
hypothesis’, which describes an interaction between circulating
tumor cell and microenvironment of bone tissue (5). The
communication between bone and cancer cells is believed to be
critical for the development and progression of bone metastases
(6, 7). Most of researches focus on dissecting the process of
initiation to development of distant metastasis, such as cancer
cells migrating through the endothelial cells to gain access to
systemic circulation via the tortuous and leaky tumor vasculature
and cell signaling aberrations (8, 9). A set of marked differences
were identified between metastases and primary tumors and the
subgroups of bone metastasis were also detected by
transcriptome or proteome analysis (10–12). In addition,
David A. Quigley et al. explore the genomic hallmarks and
structural variation in metastatic PC, including bone metastatic
CRPCs (13). However, these researches do not pay more
attention on the state of tumor cells after metastatic
colonization and also do not explore the differences between
the tumor cells and normal cells in bone. This study aimed to
identify the differences between tumor and normal bone marrow
samples through differential expression analysis and weighted
gene co-expression analysis. The identified key genes and
modules will provide new insights for understanding of the
molecular mechanisms and clinical treatment for bone
metastatic CRPC.
METHODS

Data Collection and Preprocessing
Four expression profile datasets containing CRPC bone
metastasis were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo). Dataset GSE32269 was chosen for
further analysis with 29 CRPC bone metastatic marrow samples
Abbreviations: CRPC, Castration-Resistant Prostate Cancer; DEG, Differentially
Expressed Gene, WGCNA, Weighted Gene Correlation Network Analysis; ME,
module eigengene.
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and four normal bone marrow samples, which was used for bone
cancer significantly expressed genes selection and correlated
modules detection. The other three datasets GSE101607,
GSE29650, and GSE74685 were kept with only CRPC bone
metastatic samples, which was used to validate and screen the
truly significant and preserved bone cancer related modules.
Detailed information of datasets was shown in Table 1.

Before the analysis, all the raw data were reprocessed. Probes
were mapped to the gene symbols. Empty probes and probes
mapping to multiple genes were both discarded according to
each annotation platform. If there were multiple probes that
mapped to the same gene symbol, their mean values were
considered as the gene expression value. The reprocessed data
was normalized by the limma (linear models for microarray
data) package in R (14).

Identification of Differentially
Expressed Genes
The eBayes analysis was used to detect the differentially
expressed genes (DEGs) between metastatic bone marrow
samples and normal marrow samples in GSE32269 using
limma package (14). The adjusted P-value <0.05 and |log-fold
change|>1 were set as the threshold for DEGs screening.

Enrichment Analysis
R package clusterProfiler (15) was used for the Enrichment
analysis. False discovery rate (FDR) < 0.05 was set as the
threshold for the identification of significant GO-Enrichment
terms and Pathway-Enrichment terms.

WGCNA Analysis
The co-expression network analysis was performed using
weighted gene co-expression network analysis (WGCNA) (16).
First, the soft threshold for network construction was selected,
which is the lowest power for which the scale-free topology fit
index curve flattens out upon reaching a high value. Second, the
function blockwiseModules was used for one-step network
construction and module detection. The module eigengene
(ME) of each module and the correlation between MEs was
then calculated. Thirdly, module preservation was calculated
between GSE32269 and the other three datasets using the
function modulePreservation (17). The comparability of two
datasets is assessed by correlating measures of average gene
expression and overall connectivity of two datasets. The higher
the correlations of these properties, the better chance you will have
of finding similarities between the two datasets at subsequent
stages of analysis. Fourthly, the key node (hub gene) was
determined by high intramodule connectivity of genes. The cut-
off criteria was set |cor.geneModuleMembership| > 0.8. According
to the intramodule connectivity, the detected hub genes were
visualized using VisANT software (18). Finally, the study (19)
containing mRNA and clinical data of 444 metastatic CRPC
samples was used to validate the hub genes and subjected to
survival analysis. The database GEPIA2 containing TCGA datasets
(20) and the database Oncomine containing cancer microarray
datasets (21) were used to validate the expression levels of
hub genes.
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RESULTS

DEG Identification for CRPC Bone
Metastatic Patients
In order to detect the transcriptomic differences between CRPC
bone metastatic marrow samples and normal marrow samples,
the dataset GSE32269 with 29 CRPC bone metastatic marrow
Frontiers in Oncology | www.frontiersin.org 385
samples and four normal bone marrow samples was selected and
downloaded from GEO databases. DEGs were identified using
the limma package. 1983 DEGs were screened with the threshold
of |logFC|>1 and p.adjust<0.05, as shown in >>Figure 1A, which
contains 825 up-regulated genes and 1158 down-regulated genes
for bone metastatic marrow samples (see Supplementary Table
1). The top 10 significantly expressed genes are KLK3, KRT18,
A B

C D

FIGURE 1 | The volcano, heatmap, GO and KEGG enrichment results of differentially expressed genes (DEGs) between tumor and normal cells in bone. (A) The
volcano plot for DEGs. Grey dots represent genes which are not differentially expressed, red dots represent the upregulated genes, and the blue dots represent the
downregulated genes. (B) The heatmap for DEGs. (C) The annotation of gene ontology function of DEGs using GO enrichment analysis. (D) The annotation of
pathway function of DEGs using KEGG enrichment analysis.
TABLE 1 | Datasets of gene expression profiles.

GEO accession Platform Probe number Total sample number CRPC bone metastasis sample number Normal bone sample number

GSE32269 GPL96 22283 55 29 4
GSE101607 GPL10558 48107 60 40 0
GSE29650 GPL6947 49576 30 30 0
GSE74685 GPL15659 38695 149 20 0
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EFNA1, SLC396A, NKX3-1, PGLYRP1, MGAM, RHD, GFI1,
FAR2, of which the first five are up-regulated and the following
five are down-regulated. The expression profiles of these DEGs
were showed as a heatmap in Figure 1B. Enrichment analysis
was further conducted. The result was shown in Figures 1C, D.
The most enriched GO terms are neutrophil and leukocyte-
associated terms. The top5 pathway terms are Malaria, Leukocyte
transendothelial migration, B cell receptor signaling pathway,
phagosome and chemokine signaling pathway.

WGCNA Analysis
Since the four datasets come from different platforms, we should
ensure that the four datasets are comparable. First, we need to
limit the analysis to genes that expressed among the datasets. The
intersection was taken among the DEGs of GSE32269 and the
genes of other three datasets. 1469 genes were selected, and the
corresponding expression profiles of these genes in four datasets
were then prepared. Second, the comparability of GSE32269 and
Frontiers in Oncology | www.frontiersin.org 486
other dataset was assessed by measuring the average gene
expression and overall connectivity between two datasets
(Figure 2). It’s clear to see that the correlations are positive
and the p-value are significant in all cases, which suggests that
the datasets are comparable.

Prior to gene co-expression network detection, the analysis of
network topology for various soft-thresholding powers was
performed to obtain relative balanced scale independence and
mean connectivity. As shown in Figure 3A, power seven was the
lowest power for which the scale-free topology fit index reaches
0.85. Based on this power, seven modules were generated as
shown in Figure 3B. The largest module was the turquoise
module, which contained 585 genes, the smallest module was
the black module containing 49 genes. Averagely, each module
contained 183 genes.

Enrichment analysis was further performed to detect
biological significance of each module as l isted in
Supplementary Table 2. In the top 5 terms of each module,
A B

FIGURE 2 | The correlations of average gene expression (A) and overall connectivity (B) between GSE32269 and other three datasets (GSE101607, GSE74685, GSE29650).
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Yellow, Turquoise and Brown module were mainly enriched in
neutrophil-associated GO terms, which were all related with
leukocyte mediated immunity. Red module had no significantly
enriched pathways. Yellow and brown module shared an
enriched pathway term, named Osteoclast differentiation,
which is related with bone development. It’s worth noting that
turquoise enriched pathways contain a set of signaling pathways,
such as B cell receptor signaling pathway, chemokine signaling
pathway, NF-kappa B signaling pathway, Fc epsilon RI signaling
pathway and hematopoietic cell lineage. These are reported to be
related with tumorigenesis. In the yellow module enriched
pathways, Cell adhesion molecules are related with cancer
invasion and metastasis. The green module is enriched with
cell cycle-associated pathways.
Module Validation Among the Other
Three Datasets
In order to detect whether these modules are preserved between
the other three datasets, module preservation statistics were
calculated using the function modulePreservation. The
preservation Z-summaries was showed in Figure 4. We set the
threshold Z>10 to screen the highly preserved modules. 3, 4, and
5 modules are separately found to be preserved in the dataset
GSE29650, GSE74685 and GSE101607. And three modules
(green, yellow, and turquoise) are shared and highly preserved
in the three datasets, which were chosen for subsequent analysis.

Identification and Validation of Hub Genes
10, 17 and 99 hub genes were separately identified in the three
preserved modules (Green, Yellow, Turquoise). The
corresponding networks of hub genes were showed in Figure
5. The study containing mRNA data followed clinical
information of 160 bone metastatic CRPC samples and 284
Frontiers in Oncology | www.frontiersin.org 587
non-bone metastatic CRPC samples were subjected to survival
analysis and regression analysis. Four hub genes (C3AR1,
IL10RA, LY86, and MS4A6A) were identified to significantly
associated with the overall survival (Figure 6). The patients with
lower expression of the genes had a longer survival. However, the
four genes have significantly higher expression level in bone
compared to other non-bone metastatic tissues as showed in
Figure 7. In CRPC patients with metastases, the bone metastases
have the worst median progression to non-bone tissues
metastases (22).

In addition, ROC curve analysis was implemented to evaluate
the capacity of the hub genes to distinguish bone and non-bone
metastatic tissues. AUC values for the four genes were greater
than 0.6 (Figure 8).
A B

FIGURE 3 | Identification of modules in the dataset GSE32269. (A) Network topology of different soft-thresholding powers. The left panel displays the influence
of soft-thresholding power (x-axis) on scale-free fit index (y-axis). The right panel shows the influence of soft-thresholding power (x-axis) on the mean
connectivity (degree, y-axis). (B) Clustering dendrogram showing eight modules that contain a group of highly connected genes. Each designated color
represents a certain gene module.
FIGURE 4 | The preservation Zsummary values of eight GSE32269 modules
in other datasets (GSE29650, GSE74685 and GSE101607). The black
horizontal line is the threshold to define the highly preserved modules among
the four datasets.
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DISCUSSION

Development of bone metastases is a key and usual event in the
progression of CRPC, which could lead to disorders of bone
metabolism and skeletal related events. The median survival
form men with bone metastases CRPC is approximately 1.5–2
years. The purpose of this study was to dissect the expression
profile differences between the established metastatic tumor and
normal bone marrow samples and then identified some key gene
signatures and modules based on co-expression network
analysis. These results will be helpful to deeply understand the
molecular mechanisms of bone metastases and also provide
candidate biomarkers for the prognosis prediction of bone
metastatic CRPC patients.

The screened DEGs are found to be mainly related with
prostate cancer and bone development. For example, among the
top 10 up-regulated genes, KLK3 and KLK2, are highly enriched
Frontiers in Oncology | www.frontiersin.org 688
in prostate cancer, which are taken as effective biomarkers for
diagnose and prognostic monitoring of prostate cancer (23).
GOLM1 (24), FOLH1B (25), STEAP1 (26) and PLPP1 (27) are
also identified as a candidate biomarker for prostate cancer.
AGR2 expresses strongly in prostate tissue and show increased
expression in prostate cancer (28). In a word, the up-regulated
genes are mainly related with the tumorigenesis of prostate
cancer. As for the top10 down-regulated genes, all of them are
identified to be overexpressed in whole blood according to GTEx
(29) and take part in embryonic development of blood and bone
according to LifeMap Discovery (30). Therefore, the down-
regulation of these genes would have effects on the function of
bone or bone marrow, which might be genetic causes of SKE.
These results indicated that the colonization in bone of
metastatic CRPC cells not only keep the expression features of
prostate cancer, but also induce new expression variations
associated with bone. In another way, these results suggest the
A B

C

FIGURE 5 | The visualization of hub genes in green module (A), yellow module (B), and turquoise module (C).
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tissue specificity of DEGs, and the reliability of our results.
Therefore, it is important to further dissect the expression
differences between the established tumor and the normal bone
marrow samples.

After a series of bioinformatic analysis, four hub genes
identified from the three highly preserved co-expression
modules among the four datasets were found to be tightly
associated with overall survival in bone metastases CRPC
patients. At present, there are no direct evidences to verify the
functions of the four genes in prostate cancer or bone metastatic
CRPC, but a set of researches showed that these genes were
involved in the tumorigenesis and tumor proliferation in other
cancers. It was shown that C3AR1 was significantly correlated
with the overall survival In glioblastoma, which showed a longer
Frontiers in Oncology | www.frontiersin.org 789
survival time in the patients with lower expression of C3AR1
(31). In a recent study, over-expression of C3AR1 was proved to
promotes HL-60 cell migration and invasion in vitro experiment
(32). In other words, down-expression might decrease the
migration and invasion capacities of tumor cells. Moreover,
C3a, which binds to an orphan G protein-coupled receptor
encoded by C3AR1, was reported as an immune regulator in
the tumor microenvironment and act as insidious propagators of
tumor growth and progression (33). In this respect, the down-
regulation of C3AR1 might inhibit the process of tumor growth
and progression. Therefore, these may be the reasons why the
patients with lower expression of C3AR1 had good prognosis.
IL10RA encodes a receptor for interleukin 10, which can inhibit
the synthesis of proinflammatory cytokines. In colorectal cancer,
FIGURE 6 | Survival analysis of hub gens with statistical significance (pvalue<0.05) in the dataset derived from Abida W’s study. Orange lines represent high
expression of the hub genes and blue lines represent low expression.
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the expression of IL10RA is found to be higher in healthy tissue
than in the CRC tissue and showed association with the
proliferation index, confirming the importance of IL10RA in
the pathogenesis of CRC (34). However, increased level of
IL10RA in the study population was not linked with overall
survival time. In diffuse large B-cell lymphoma, IL10 receptor is
highly expressed and predicts worse survival (35). Functional
Frontiers in Oncology | www.frontiersin.org 890
experiment showed that IL10 receptor plays an important role in
IL10-JAK-STAT signaling pathway. Blocking IL10R would
interrupt the IL10 autostimulatory loop and lead to cell death
through cell cycle arrest and introduction of apoptosis. LY86
encodes the lymphocyte antigen 86, which may cooperate with
CD180 and TLR4 to mediate the innate immune response to
bacterial lipopolysaccharide (LPS) and cytokine production.
LY86 was identified as a novel biomarker for the prediction of
osteosarcoma prognosis and therapeutic targets (36). Moreover,
healthy hematopoietic stem progenitor cells (HSPCs) can be
transformed genetically by leukemia macrovesicles to over
express LSC specific genes, which contains LY86, LRG1 and
PDE9A and so on (37). These suggests that LY86 might play
an important role in the transformation of localized normal
bone marrow cells to cancer cells. MS4A6A encodes a member of
the membrane-spanning 4A gene family, which display unique
expression patterns among hematopoietic cells and nonlymphoid
tissues. GWAS researches showed that MS4A6A is associated with
heel bone mineral density and Alzheimer’s disease (38). MS4A6A
was reported to be highly expressed in putative Tumor-associated
macrophages (TAMs) populations. Previous reports suggest that
TAMs may show an immunosuppressive M2 signature, which
promotes tumorigenesis by suppressing immune surveillance
and inducing angiogenesis, rather that the activating M1-type
signature (39). In addition, a recent study found that high
expression of MS4A6A was associated with poor progression-
free survival of ovarian cancer (40), which is consistent with the
result of this study. Therefore, this gene might take an important
role in the colonization of metastatic cancer cells in bone marrow
and tumorigenesis of localized bone marrow cells. In above-
mentioned studies, high expression of the four genes are all
significantly associated with poor prognosis, which is consistent
with the performances. These will serve as important references
to explore the molecular mechanisms of the genes on bone
metastatic CRPC.

In our results, the four genes were all down-regulated in
tumor bone marrow samples compared to the normal samples,
which was different from the performances in other tumors
described above, However, the four genes present consistency
trends as this study in the lung squamous cell carcinoma
according to TCGA datasets (20). Some of the four genes were
also lowly expressed in ACC, COAD or DLBC (Figure 9). We
also made a search of the four genes in Oncomine database (21)
with parameters (Analysis Type: Differential analysis, Cancer vs.
Normal analysis, Prostate cancer vs. Normal analysis; Data Type:
mRNA). The results showed that these genes have no differences
in expression between tumor and normal samples in most of
prostate cancer datasets as listed in the Figure 10, which is
consistent with the result in the TCGA prostate cancer dataset.

At present, a growing number of researches focus on the
communication between tumor cells and bone stroma (41).
Existing discoveries show that a vicious cycle of molecular
crosstalk between tumor cells and the bone metastatic niche
often take place in osteolytic bone metastasis (42). Targeting the
bone metastatic niche is also evolving into a promising avenue
for the prevention of bone metastatic relapse, therapeutic
resistance, and other aspects of cancer progression (43–45).
FIGURE 7 | Box-plot of expression values (FPKM) of the four hub genes
between bone and non-bone tissues in the metastatic CRPC patients derived
from Abida W’s study.
FIGURE 8 | ROC analysis of four hub genes in the dataset derived from
Abida W’s study. Receiver operating characteristic (ROC) curves and area
under the curve (AUC) statistics is to evaluate the capacity of distinguishing
bone and non-bone metastatic tissues in the metastatic CRPC patients.
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Therefore, it is meaningful and important to dissect the
differences between tumor cells and bone metastatic niche at
different level, including transcriptome, which will be essential to
explore the molecular mechanisms or interaction underlying the
bone metastases and new clinical practice. Based on this
consideration, this study has creatively used public data to
dissect the expression differences between established tumor
and normal bone marrow samples derived CRPCs. The first
Frontiers in Oncology | www.frontiersin.org 991
screened DEGs were involved in prostate cancer and bone
development. And the followed illustrated four hub genes are
not only associated with overall survival of bone metastatic
CRPC samples, but also be capable of distinguishing bone
metastases and non-bone metastases. These findings would
greatly provide new insights and biomarkers for understanding
of the molecular mechanisms and clinical treatment for bone
metastatic CRPC.
FIGURE 9 | Box-plot of expression values (TMP) of the four hub genes between tumor and normal samples derived from the TCGA datasets. ACC, Adrenocortical carcinoma;
COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; LUSC, Lung squamous cell carcinoma; PRAD, Prostate adenocarcinoma.
Differential analysis between tumor and normal group was conducted using one-way ANOVA method. *pvalue < 0.05.
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Bladder cancer (BLCA) has become one of the most common malignant tumors in the
genitourinary system. BLCA is one of the tumors considered suitable for immunotherapy
because of the large proportion of immune cells in TME. Epithelial to mesenchymal
transition (EMT) is closely related to tumor immunity through its crosstalk with immune
cells. A recent study validated that EMT-related genes were mainly expressed by stromal
cells and could influence immunotherapy responsiveness. Stromal EMT-related gene
signature was also demonstrated to affect the prognosis of multiple tumors, including
BLCA. To further explore the prognostic roles of stromal components, we performed a
comprehensive analysis of LncRNAs closely associated with stromal EMT-related genes
in the TCGA BLCA cohort. We identified a signature including five stromal EMT gene-
related LncRNAs that showed significant prognostic value for BLCA patients. By the
CIBERSORT and MCP-COUNTER algorithm, we found the signature was markedly
correlated with infiltrated immune cells and stromal components of the tumor
microenvironment, which may further influence patient’s responsiveness to immune
checkpoint blockade therapy. Through immunohistochemical analysis, we confirmed
the correlation of the signature with macrophages M2 and CAFs. Meanwhile, key genes
related to these LncRNAs, including VIM, MMP2, were also differentially expressed in the
stromal components concerning the signature. Our research confirmed the prognostic
and immune-associated role of stromal EMT-related LncRNAs. Meantime, we further
confirmed that EMT-related genes were mainly expressed in stromal components.
Targeting these LncRNAs as well as their related stromal EMT genes may provide
potential therapeutic targets for BLCA immunotherapy and precision medicine.

Keywords: bladder cancer, epithelial to mesenchymal transition, long non-coding RNAs, tumor
microenvironment, immunosuppression
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INTRODUCTION

Bladder cancer (BLCA) has become one of the most common
malignant tumors in the genitourinary system (1). Transitional cell
carcinoma is the most common pathological type of BLCA.
According to the invasion depth, BLCA can be divided into non-
muscle invasive(NMIBC) and muscle invasive bladder cancer
(MIBC).NMIBC can be treated by transurethral resection of
bladder tumor (TURBT) and has a favorable prognosis but still
faces recurrence risk. MIBC is poorly treated clinically and often
with radical surgery supplemented by postoperative chemotherapy
and radiotherapy (2). The 5-year survival rate of MIBC patients is
only 50% (3). Due to the rapid development of immunotherapy,
immune checkpoint inhibitors for advanced BLCA have recently
received significant attention. However, the responsiveness to
existing immune checkpoint inhibitors is limited among BLCA
patients, partly due to a complex heterogeneous tumor
microenvironment (TME). Further study of TME is of great
importance for BLCA immunotherapy.

TME is a complex and integrated system mainly composed of
stromal cells and infiltrated immune cells. Emerging evidence
suggests that the stromal components can shape antitumor
immunity and affect immunotherapy responsiveness, thus
promoting tumors’ malignant development (4). The TME is
particularly important in BLCA because of the overwhelming
evidence that BLCA represents a growing number of solid
tumors characterized by a significant number of stromal and
immune cells in the TME (5, 6). The heterogeneity of TME in
BLCA is closely related to patients’ different response rates to
immunotherapy, in which expression of stromal epithelial to
mesenchymal transition (EMT) related genes plays a vital
role (7).

EMT has been defined as a dynamical process with
intermediate states (8). A complicated regulatory network is
engaged in EMT’s dynamic procedure at different levels, which
further remodels the tumor extracellular matrix and promotes
tumor metastasis. Although EMT is a biological process unique
to tumor cells and has been studied extensively in vitro and in
model organisms, evidence for this phenomenon in human
tumors has been limited (9). In contrast, accumulating
evidence showed that the up-regulation of EMT-related genes
in bulk tumors was driven by expression changes in fibroblasts
rather than in epithelial tumor cells (10). For example, Li et al.
demonstrated that EMT-related genes were up-regulated only in
a subpopulation of cancer-associated fibroblasts (CAFs) through
single-cell RNA sequencing (11). A recent study also indicated that
stromal EMT-related gene expression might alter T-cell infiltration
level, which might eventually impact the responsiveness to immune
therapy and patient’s survival (7). These findings illuminated
intertwined and complicated crosstalks between the stromal
components and the EMT process in the development of cancer
immune evasion, making the stromal components promising
therapeutic targets for cancer immunotherapy.

LncRNAs are novel, potential therapeutic targets and
biomarkers for cancer treatments (12). Moreover, researchers
have demonstrated that LncRNAs obtain more specificity on
indicating actual tumor condition than other types of markers
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(13). Previous studies have already discussed the prognostic
value of stromal EMT-related genes in BLCA (7, 14), but the
roles of stromal EMT-associated LncRNAs (sEMTLncs) have
rarely been reported. Therefore, we carried out this present study
to explore the function of sEMTLncs and seek their potential
application for predicting BLCA outcome. We constructed a
stromal EMT-related LncRNA prognostic signature (sEMTLS) in
the present study, which showed good predictive accuracy for BLCA
outcome. By adopting the CIBERSORT and MCP-COUNTER
algorithm, we further found the sEMTLS was significantly
associated with the levels of CAFs and tumor infiltrated immune
cells (TIICs). Through immunohistochemical validation of the
expressions of ACTA2, CD206, and these sEMTLnc-targeted
EMT genes, we found that with the different expression levels of
these sEMTLncs, these genes were also differentially expressed in the
stromal components. These results shed light on the dual regulatory
effect of sEMTLncs on both stromal and immune components in
BLCA and laterally confirmed the EMT-related genes’ expression
was indeed in tumor stromal but not in epithelial tumor cells.
Moreover, the ImmuneCell AI database (15) predicted that the
expression of these sEMTLncs might also affect BLCA patients’
responsiveness to immune checkpoint blockade (ICB) treatment.
Targeting these sEMTLncs as well as their related stromal EMT
genes may provide potential therapeutic targets for BLCA
immunotherapy and precision medicine.
METHODS AND MATERIALS

Raw Data Acquisition
430 samples of transcriptome profiling data, including 19 normal
samples, 411 tumor samples, and the corresponding clinical data
of 405 bladder transitional cell papilloma and carcinoma patients
were downloaded from the TCGA database (https://portal.gdc.
cancer.gov/). Finally, 403 BLCA patients were selected and
randomly arranged into training (n = 203) and testing groups
(n = 200) for further study. Patients’ baseline information was
listed in Table 1.

Stromal Scoring and Differential
Expressed Genes (DEGs) Screening
R language version 4.0.2 loadedwith ESTIMATEpackagewas used
to calculate the scores of the immune and stromal component in
TME for each sample of BLCA patients. After estimation, stromal
score, immune score, and estimate score were obtained,
representing the abundance of stromal, immune components,
and the total. Then, samples were categorized into high and low-
stromal score groups based on all samples’ median stromal score.
Package limma was applied to perform differential analysis of the
gene expression; DEGs were screened by comparing the gene
expressions in samples between high and the low stromal score
groups.DEGswith fold changemore than 1 after transformation of
log2 and FDR <0.01 were considered significant.

sEMTLnc Acquisition
The Molecular Signatures Database v7.2 (hallmark_epithelial_
mesenchymal_transition M5930, http://www.broadinstitute.org/
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gsea/msigdb/index.jsp) was used to provide 200 EMT-related
genes. By Pearson correlation analysis, we defined LncRNAs co-
expressed with EMT-associated genes as EMTLnc, with |R| >0.4
and P <0.001. sEMTLncs were further defined as EMTLnc that
significantly affected the stromal score, obtained by taking the
intersection of stromal DEGs and EMTLnc. Similarly, immune-
related LncRNAs (ImmLncs) were obtained through co-
expression analysis with genes in immune-related genesets
(Immune system process M13664, Immune response M19817,
The Molecular Signatures Database v7.2, http://www.
broadinstitute.org/gsea/msigdb/index.jsp). ImmLncs were used
to check the involvement of sEMTLnc in the immune process.

sEMTLnc Signatures
sEMTLncs affecting the survival of BLCA were selected by
univariate COX analysis using R software survival packages (P
< 0.01). Lasso and multivariate cox regression were further used
to construct the sEMTLS. Hazard ratio (HR) was used to classify
sEMTLnc into the protective (HR < 1) and deleterious (HR > 1)
portion (Table 2). Patients were classified into high- and low-risk
groups based on the medium riskscore of the signature. The
riskscore was calculated by the formula as followed:

riskscore =o
n

i=1
Coef ið Þ* expression of  sEMTLnc ið Þð Þ

*Coef: coefficient of the multi-Cox regression
Frontiers in Oncology | www.frontiersin.org 397
Survival Analysis
R language v4.0.2 with package survival and survminer were used
for survival analysis. Kaplan–Meier survival analysis was used for
analyzing the survival difference between different groups. P-value
of the log-rank test less than 0.05 were considered significant.

Time and Multi-ROC Curves
ROC curves analyzed the predictive accuracy of the signature on
BLCA overall survival at 1, 3 and 5 years. Package timeROC of R
language v4.0.2 was used for plotting timeROC curves.
Independent risk analysis of different clinical characteristics,
including age, gender, stage, T classification, and risk score on
predicting 1-year overall survival, was conducted by Package
survivalROC (Table 3).

Principal Component Analysis (PCA) and
Nomogram Construction
PCA was used to cluster the samples based on the expression of
sEMTLnc. A 3D scatterplot visualized patients’ distribution.
Nomogram was constructed by including the expression level
of the sEMTLnc in the signature. A calibration plot was used to
explore the calibration and discrimination of the nomogram.

GO, KEGG, and GSEA Enrichment Analysis
DEGs between the high- and low-risk groups of sEMTLS were
used for GO and KEGG enrichment analysis . The
TABLE 2 | EMT-related LncRNAs identified from Cox regression analysis.

Symbol Description Multi-Cox regression Uni-Cox regression

coefficient HR HR.95L HR.95H P-value

AL583785.1 0.056 1.079 1.027 1.133 0.002
TMEM51-AS1 TMEM51 antisense RNA 1 −0.353 0.709 0.555 0.906 0.006
AC073534.1 −0.793 0.400 0.211 0.762 0.005
LINC01711 long intergenic non-protein coding RNA 1711 0.062 1.101 1.046 1.159 <0.001
LINC02446 long intergenic non-protein coding RNA 2446 −0.567 0.684 0.515 0.909 0.009
March 2021 | Vo
lume 11 | Article
TABLE 1 | Clinical characteristic of patients in training, testing and entire groups.

characteristic Entire group (N = 403) Training group (N = 203) Testing group (N = 200)

age ≤65 159 (39.5%) 82(40.4%) 77(38.5%)
>65 244 (60.5%) 121(59.6%) 123(61.5%)

gender male 298 (73.9%) 145(71.4%) 153(76.5%)
female 105 (26.1%) 58(28.6%) 47(23.5%)

grade low 20 (5.0%) 10(5.0%) 10(5%)
high 380 (95.0%) 191(95.0%) 189(95%)

stage stages I–II 130 (32.4%) 72(35.8%) 58(29.0%)
stage III 138 (34.4%) 64(31.8%) 74(37.0%)
stage IV 133 (33.2%) 65(32.4%) 68(34.0%)

T T1–T2 122 (32.9%) 68(36.6%) 54(29.2%)
T3–T4 249 (67.1%) 118(63.4%) 131(70.8%)

N N0 234 (64.6%) 118(64.8%) 116(64.4%)
N1 46 (12.7%) 25(13.7%) 21(11.7%)
N2 75 (20.7%) 38(20.9%) 37(20.6%)
N3 7 (2.0%) 1(0.6%) 6(3.3%)

M M0 193(94.6%) 103(94.5%) 90(94.7%)
M1 11(5.4%) 6(5.5%) 5(5.3%)
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Hallmark_Epithelial_Mesenchymal_Transition gene set was
used for GESA between the low-risk and high-risk group,
which was performed using the GSEA software (version 4.1.0)
obtained from the Broad Institute. NOM p <0.05 and False
Discovery Rate (FDR) q <0.05 were considered to be significant.

Calculation of TIIC Levels and CAFs
Abundance
The CIBERSORT algorithm was used for calculating the levels of
22 different types of TIICs in all tumor samples; Samples with a
p-value less than 0.05 were selected for the following analysis.
The MCP-COUNTER algorithm (16, 17), provided by TIMER
2.0 (http://timer.cistrome.org/) (18), was applied for calculating
the abundance of TME components, including endothelial cells
and CAFs.

ICB Treatment Reactiveness Predicting
Immune cell abundance identifier (Immune cell AI, http://
bioinfo.life.hust.edu.cn/ImmuCellAI) was applied to estimate
the difference of immune cell infiltration in low- and high-risk
groups. Patients’ response to ICB therapy was then predicted
based on the estimation of immune cell infiltration levels.

Real-Time Quantitative PCR
According to the manufacturer’s instructions, we used triazole
(Invitrogen) to extract total RNA from all recruited BLCA
samples. cDNA Synthesis Kit (Osaka, Japan of TaKaRa)
combining with RNA (1 mg) was utilized to reverse-transcribed
cDNA. The quantitative polymerase chain reaction (qPCR),
using the SYBR-Green method (TaKaRa), was performed on
an ABI 7500 real-time PCR system (Applied Biosystems). The
relative expression level of each lncRNA was calculated by the
Frontiers in Oncology | www.frontiersin.org 498
2−DDCt method after normalizing to b-actin level. The forward
and reverse primer sequences are shown in Table 4.

Immunohistochemistry Analysis
The gene expression in tumor tissues was detected using the
BenchMark GX automatic multifunctional immunohistochemical
staining system (Roche, Switzerland) with OptiView DAB
Detection Kit (Ventana, USA) according to the manufacturer’s
instructions. The staining’s straightforward procedures were listed
as follows: deparaffinization and epitope retrieval in cell conditioner
for 90min. Short (8min), mild (30min), and standard (60min) cell
conditioning was performed after epitope retrieval. Primary
antibodies were then incubated with the section for 32 min
followed by biotinylated anti-IgG antibody and streptavidin–
TABLE 4 | The primer sequences of sEMTLnc.

AC073534.1 Forward(5′–3′) TCACCTCAGCCAGCAGAAAC
Reverse(5′–3′) GGTGTTGACCATCTGTGGACT

TMEM51-
AS1

Forward(5′–3′) CAACAAGACCGAGCCAGGAG
Reverse(5′–3′) GCCCCGTCAGTGACTCATAG

AL583785.1 Forward(5′–3′) GTGGTGCTTTTGCCTACTTGG
Reverse(5′–3′) TGGGCATACATCTTGAAGGGT

LINC02446 Forward(5′–3′) AGCGGAGTGCAAAATGAAGTG
Reverse(5′–3′) CAATCCCACACAGGGTGTCC

LINC01711 Forward(5′–3′) CTGGTCTGGAGCCGTTTCTC
Reverse(5′–3′) ATCCATCCTTGACCCTCGGA

b-actin Forward(5′–3′) AAACGTGCTGCTGACCGAG
Reverse(5′–3′) TAGCACAGCCTGGATAGCAAC
March 202
TABLE 3 | Independent analysis by univariate and multivariate Cox regression of training, testing, and entire groups.

Uni-Cox regression multi-Cox regression

Training group
Variables HR HR.95L HR.95H P-value Variables HR HR.95L HR.95H P-value
Age 2.344 1.358 4.045 0.002 Age 2.266 1.293 3.972 0.004
Gender 0.863 0.530 1.406 0.555 Gender 0.935 0.564 1.549 0.794
Stage 1.953 1.441 2.645 <0.001 Stage 1.623 1.130 2.332 0.009
T 1.911 1.363 2.678 <0.001 T 1.495 0.973 2.298 0.067
RiskScore 1.141 1.093 1.191 <0.001 RiskScore 1.124 1.075 1.175 <0.001
Testing group
Variables HR HR.95L HR.95H P-value Variables HR HR.95L HR.95H P-value
Age 1.649 0.984 2.763 0.058 Age 1.791 1.042 3.077 0.035
Gender 0.789 0.457 1.361 0.394 Gender 0.624 0.354 1.099 0.103
Stage 1.936 1.371 2.733 <0.001 Stage 1.775 1.192 2.644 0.005
T 1.710 1.183 2.471 0.004 T 1.210 0.783 1.871 0.391
RiskScore 1.397 1.202 1.624 <0.001 RiskScore 1.325 1.127 1.558 0.001
Entire group
Variables HR HR.95L HR.95H P-value Variables HR HR.95L HR.95H P-value
Age 1.960 1.348 2.850 <0.001 Age 1.919 1.315 2.799 0.001
Gender 0.840 0.586 1.204 0.343 Gender 0.780 0.540 1.125 0.183
Stage 1.943 1.546 2.442 <0.001 Stage 1.745 1.338 2.277 <0.001
T 1.774 1.387 2.269 <0.001 T 1.292 0.957 1.744 0.094
RiskScore 1.157 1.115 1.200 <0.001 RiskScore 1.137 1.094 1.182 <0.001
1 | Vo
lume 11 | Article
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biotinylated-complex horseradish peroxidase. Hematoxylin was
used for counterstaining and Bluing Reagent for post
counterstaining. Details of the analyzed genes were listed in
Table 5.

Statistics Analysis
Correlation of sEMTLS with infiltrated immune cells was
analyzed with Pearson correlation test; p <0.01 was considered
significant. Kaplan–Meier curve with log-rank test was used to
evaluate the OS between different groups. The Wilcoxon test
examined the differences for variables of two groups. Kruskal test
estimated statistical significance for variables of more than two
groups. Univariate and multivariate Cox regression analyses
were displayed to verify the independent prognostic factors for
BLCA. Fisher exact test was used to calculate the difference of
ICB response between high- and low-risk groups. Two-sided P-
value <0.05 was considered significant. R language v4.0.2 was
used for all statistical analyses.
RESULTS

72 sEMTLnc Were Identified for Signature
Construction
After we scored the stromal components by the ESTIMATE
algorithm, DEGs between low and high stromal score groups
were screened. 2,693 DEGs were identified. The top 50 of both
up- and down-regulated genes with the most significant fold
changes were represented by the heatmap (Figure 1A). The
distribution of all DEGs on the two dimensions of -log10(FDR)
and logFC was depicted in the volcano plot (Figure 1B). 421
EMTLncs were enrolled by co-expression with EMT-related
genes. 82 sEMTLncs were selected after the intersection of the
EMTLnc with the DEGs (Figure 1C). After the intersection with
ImmLnc, 72 out of 82 sEMTLncs were confirmed to be highly co-
expressed with genes related to the immune process, which
further demonstrated the close relationships between EMT and
the immune process. These 72 sEMTLncs were chosen for the
construction of sEMTLnc signature.

sEMTLS Efficiently Predicted the
Clinical Outcome of BLCA Patients
in the TCGA Cohort
403 TCGA BLCA patients were randomly assigned to the
training (203 patients) and the testing (200 patients) groups
Frontiers in Oncology | www.frontiersin.org 599
(Table 1). Five sEMTLncs were included in the signature, namely
AL583785.1, TMEM51-AS1, AC073534.1, LINC01711, and
LINC02446 (Table 2). A forest plot il lustrated the
corresponding HRs and 95% CIs for each sEMTLnc (Figure
2A). Patients were classified into a high-risk group and a low-risk
group based on the training group’s median risk score. Patients’
overall survival (OS) in the high-risk group was significantly
shorter than that in the low-risk group (p < 0.001). Time ROC
curve showed good predictive accuracy with AUC of 0.777,
0.776, and 0.799 for predicting 1, 3 and 5 years’ OS.
Subsequently, we validated the sEMTLS in testing and the
entire groups. Statistically, significant OS differences were
observed between the high- and low-risk groups in the testing
(p < 0.001) and the entire group (p < 0.001). AUC of time ROC
curves in the testing and the entire group were 0.667, 0.666,
0.663, and 0.709, 0.719, 0.740 for predicting 1, 3, and 5 years’ OS,
respectively (Figure 2B).
The Risk Score of sEMTLS Could
Essentially Predict the Clinical Status of
BLCA Patients
Based on our signature, the mortality risk of patients in each
group climbed with the risk score increased. The expression
levels of AL583785.1 and LINC01711 were elevated, while
TMEM51-AS1, AC073534.1, and LINC02446 expressed
decreasingly as risk score increased (Figure 3A). Combined
with other clinical and demographic characteristics of BLCA
patients, the risk score was identified by multivariate cox
regression analysis to be an independent prognostic factor for
BLCA patients, with a hazard ratio of 1.124(1.075–1.175), 1.325
(1.127–1.558), 1.137(1.094–1.182) in training, testing and entire
group respectively (Figure 3B). The ROC curve validated the
prognostic accuracy of the risk score. The AUC of the risk score
was higher than any other clinical and demographic
characteristics in each group, which further suggested the risk
score could be an independent prognostic factor (Table 3). To
further validate the prognostic value and explore the broad
applicability of sEMTLS, we analyzed the relationships between
sEMTLS with different clinical features, including patient age,
tumor grade, staging, and TNM classification in the entire group.
The risk score was found significantly related to all of these
clinical features confirming the significant association of
sEMTLS with the progression of BLCA (Figures 4A–F). Last,
we constructed a nomogram of sEMTLS to predict patient
survival (Figure 4G). The calibration curve indicated that
TABLE 5 | Genes used in immunohistochemical analysis.

Primary antibody Description Role of gene Manufacturer Catalog Dilution

ACTA2 Actin Alpha 2, smooth muscle a marker of CAFs Abcam ab7817 1:100
CD206 Mannose receptor C-type 1 a marker of Macrophages M2 Abcam ab252921 1:4000
MMP-2 Matrix metallopeptidase 2 Key sEMTLnc-related gene Abcam ab97779 1:200
VIM Vimentin Key sEMTLnc-related gene Abcam ab92547 1:200
CALU Calumenin Key sEMTLnc-related gene Abcam ab137019 1:250
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sEMTLS had a high consistency with the actual 3-year survival
(Figure 4H).

PCA and Functional Analysis Between
High- and Low-Risk Groups of sEMTLS
Based on the expressions of sEMTLnc recruited in the sEMTLS,
we employed the principal component analysis (PCA) to provide
an overview of different distribution patterns between the low-
risk group and the high-risk group. Results indicated a relatively
scattered distribution of patients in testing and the entire groups,
but with a small overlap in the training group (Figures 5A–C).
GO and KEGG analysis of DEGs between high and low-risk
groups of the entire group were enriched in terms related to
extracellular matrix remodeling, including extracellular matrix
organization, extracellular matrix structural constituent, and
ECM-receptor interaction (Figure 5D). GSEA further proved
the functional annotation, with the more EMT-related activity in
the high-risk group (Figure 5E).

Close Relationships Were Found Between
sEMTLS and TIICs
Utilizing the CIBERSORT algorithm, we obtained an estimation
of the abundances of 22 TIICs. The infiltration proportion of the
Frontiers in Oncology | www.frontiersin.org 7101
immune cells in each sample was shown in the barplot (Figure
6A). Among all the TIICs, Macrophages M0 and M2 were
positively correlated to the risk score while T cell CD8+ and T
cell CD4 memory activated exhibited negative correlations
(Figure 6B). Further, elevated levels of Macrophages M0, M2,
and decreased levels of T cell CD8+ and T cell CD4 memory
activated were found in the high-risk group when compared with
the low-risk group (Figure 6C). Combined with the survival time
and survival state, all these four TIICs showed significant
relations with the OS of BLCA patients, with Macrophages
M0, M2 being detrimental factors and T cell CD8+, T cell CD4
memory activated being protective factors (Figure 6D). The
above results highlighted the association between sEMTLS and
TIICs, indicating the immune-modulating role of the sEMTLnc.

Correlation of sEMTLS With CAFs and Its
Predicting Value to the Responsiveness of
ICB Treatment
MCP-COUNTER algorithms calculated CAFs abundance in
patients of the TCGA BLCA cohort. The relative abundance of
CAFs was represented in the heatmap (Figure 7A). After
comparing the TME components calculated by MCP-COUNTER
between high- and low-risk groups, T cells CD8+ were further
A

B

FIGURE 2 | sEMTLS construction and prognostic value validation. (A) sEMTLS were constructed by uni-cox regression, lasso regression, and multi-cox regression,
which included three protective and two hazardous sEMTLnc. (B) Kaplan–Meier survival analysis suggested a lower OS in high-risk groups. ROC curve showed
good accuracy of the sEMTLS in predicting 1, 3 and 5 years patients’ OS.
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confirmed to be reduced in the high-risk group, while CAFs
abundance was significantly higher in the high-risk group than in
the low-risk group (Figure 7B). The risk score was further validated
positively correlated with CAFs abundance and the stromal score
(Figure 7C). Using the immune cell AI database, We found
significantly lower ICB treatment responsiveness in high-risk
groups than the low-risk group (p=0.040). The risk scores
between responders and non-responders also differed with relative
higher risk scores in non-responders (p = 0.014) (Figure 7D).

Validation of the Association Between
sEMTLS and TME Components in a
Clinical Cohort
A clinical BLCA cohort of 16 patients with different stages was
established to validate the correlation between sEMTLS,
sEMTLnc targeted key genes, TIICs and CAFs. In our study, a
Frontiers in Oncology | www.frontiersin.org 8102
total of five molecules were used for further research, of which
CD206 and ACTA2 were used to represent the relative
expression of macrophage M2 and CAFs, while three key
lncRNA-targeted genes, VIM, CALU and MMP2, were used to
detect expression in patients at different risks. The above five
molecules in the TCGA cohort were significantly differentially
expressed between the high- and low-risk groups (Figure 8A).
Relative expressions of the five sEMTLnc were analyzed by real-
time quantitative PCR. The risk score of each patient was
calculated according to the formula. A close relation of
sEMTLnc with the clinical stage was found and shown in the
barplot (Figure 8B). Expression of CD206 was found in areas
where ACTA2 was expressed in high risk patients (Figure 8C).
We further compared the expression of CD206, ACTA2, VIM,
CALU and MMP2 between patients with low and high risk
scores (Figures 8D–H). The results confirmed an elevated
A

B

FIGURE 3 | sEMTLS correlated with mortality risk and could be used as an independent prognostic factor for BLCA. (A) Patients’ mortality status and sEMTlnc
expression in each patient were plotted according to the ordered risk score of sEMTLS. (B) Multivariate and ROC curves confirmed sEMTLS as an independent
prognostic factor for BLCA.
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expression of all the five genes in high risk group patients.
Furthermore, the expressions of ACTA2, VIM, and MMP2,
which are markers of CAFs, were mainly found in the stromal
area. These results demonstrated the relationship between CAFs
and macrophages M2 and highlighted the association of sEMTLS
with CAFs and macrophages M2 in BLCA patients. Our
immunohistochemical results also revealed that in addition to
CAFs, vascular smooth muscle cells also expressed EMT-related
genes, which confirmed and complemented the previous findings
of Li et al.
DISCUSSION

BLCA is one of the tumors considered suitable for immunotherapy
because of the large proportion of immune cells in TME. Recent
advances in treatment indeed demonstrated immune checkpoint
blockers onTcells result in significantly improved survival inBLCA
(19). However, challenges remain since there are still many BLCA
Frontiers in Oncology | www.frontiersin.org 9103
patients who showed low responsiveness to ICB therapy. Over the
past decade, EMT has been considered as a pivotal regulator in
metastatic progression (20) and therapy resistance (21), including
chemo- (22), radio- (23), and targeted therapy resistance.Under the
current understanding, the EMT process is profound for regulating
immunecells inTME, includingCD8+Tcells andmacrophagesM2
(24). Evidence is now accumulating that such crosstalks might be a
critical mechanism in promoting cancer immune escape (25).
Recent studies have identified EMT as a dynamic process with an
intermediate status,making the EMTprocess a promising target for
therapeutic intervention (26), which may further promote
immunotherapy efficacy in low responsive cancer patients (27).

The TME has been characterized as inflammatory and
immunosuppressive (28, 29). It owned a variety types of
immune and stromal cells. Among the immune cells,
macrophages are highly plastic and crucial to the EMT process
(30). Previous studies have confirmed that M2 macrophages
secrete a series of cytokines that promote EMT and cancer
progression via multiple signaling pathways, including ZEB1
A B C

D

G H

E F

FIGURE 4 | Relationships between sEMTLS and clinical features of BLCA patients and nomogram of sEMTLS. (A–F) sEMTLS was significantly related to clinical
features, including gender, grade, staging and TNM classification. (G, H) Nomogram of sEMTLS showed high consistency with the actual 3-year survival.
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(31), SNAL1 (32), VIM (33), and TWIST1 (34). Stromal cells
dominated by CAFs also participate in the EMT process. One
previous study demonstrated that CAFs could increase the
expressions of EMT-related genes and differentiated the
recruited monocytes into M2 macrophages, further exerting
their immunosuppressive roles targeting CD8+ T cells (35).
These results are consistent with our finding in this study that
macrophage M2 and CAFs are co-expressed in the stromal
compartment. Given all the above evidence, we clearly noticed
the association between TME components and the EMT process.

Although EMT is a biological process unique to tumor cells has
been studied extensively in vitro and inmodel organisms, evidence
for this phenomenon in human tumors has been limited (11). A
recent study indicated that stromal components of BLCA comprise
a key source of EMT-related gene expression. Expression of these
stromal genes correlated with T-cell infiltration and impacted
response to immune checkpoint blockade, further influencing
BLCA patients’ survival (7). In the present study, we found that
the expression of sEMTLncmay also affect the infiltration of T-cells
and macrophages M2. Immunohistochemical results of these
lncRNA-targeted EMT genes also validated that EMT genes were
Frontiers in Oncology | www.frontiersin.org 10104
mainly expressed in stromal components. Whereas, questions may
raise that since EMT is a unique process of the tumor cells, why
EMT related genes were mainly expressed in stromal components
but not in tumor cells themselves. Available evidence suggests that
the EMT process may not only act in the epithelial tumor cells but
also involve intertwined and complex crosstalks between stromal
components and tumor cells. Based on the fact that EMT-related
genes are only expressed in a subpopulation of CAFs, CAFs have
been suggested to even arise from tumor cells undergoing EMT (7).
It is difficult to explain thesemechanisms by bulk RNA sequencing.
Further research is still needed to validate the exact mechanisms
between stromal EMT-related gene expression and tumor cells’
EMT process. Perhaps applying single-cell sequencing to explore
these EMT-associated genes’ cellular origin could be useful in
explaining this intricate process.

On the other hand, LncRNAs are novel, potential therapeutic
targets and biomarkers for cancer treatments (12). Moreover,
researchers have demonstrated that LncRNAs obtain more
specificity on indicating actual tumor condition than other types
of markers (13). Previous research indicated that stromal EMT-
related genes could provide a predictive role in tumor patients’
A B

D E

C

FIGURE 5 | PCA of patients’ distribution and functional analysis between low- and high-risk patients in the entire group. (A–C) PCA showed a scattered distribution
of patients in testing and the entire groups, while a small portion of overlap was observed in the testing group. (D) DEGs between high and low-risk groups majorly
enriched in EMT related functions and pathways. (E) GSEA confirmed a high EMT activity in high-risk groups.
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prognosis and affect response to ICB therapy in BLCA patients.
Could sEMTLnc play a similar role? From the present results, we
confirmed the prognostic value of sEMTLnc in BLCApatients. The
sEMTLS could be an independent risk factor to patients’OS. Close
correlationsbetween sEMTLS,macrophageM2andCAFswere also
found, suggesting that the combined expression of sEMTLnc was
associated with the abundance of macrophages and CAFs. Also,
there was a negative correlation between sEMTLS andCD8+T cells
and a significant difference in ICB treatment responsiveness
between high and low-risk groups. These results suggested that
Frontiers in Oncology | www.frontiersin.org 11105
sEMTLnc, like stromal EMT-related genes, had a significant
influence on the immunotherapeutic response and may
ultimately affect the prognosis of BLCA.

Using a clinical validation cohort, we further confirmed the
relationship between CAFs, macrophage M2 and the sEMTLnc.
The key genes related to the sEMTlnc, including VIM, MMP2,
and CALU, also expressed differently concerning the risk score.
VIM and MMP2 are also markers of CAFs, which promote
cancer progression and metastasis (36, 37). Simultaneously,
CALU was demonstrated to express significantly higher levels
A

B C

D

FIGURE 6 | sEMTLS is correlated with TIICs levels, including macrophages and CD8+ T cells. (A) The percentage of 22 TIICs in each patient of the entire group
was shown in the barplot. (B, C) sEMTLS positively related to Macrophages M0 and M2, while negative relationships were observed between sEMTLS and CD8+ T
cells and T cell CD4 memory activated. (D) All of the four sEMTLS related TIICs affected the OS of BLCA patients. Macrophages M0 and M2 served as detrimental
factors, while T cell CD8+ and T cell CD4 memory as protective factors.
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in the metastatic cancer tissues (38). Through our
immunohistochemical results, we could see that markers such
as ACTA2, VIM, and MMP2 were mostly differentially expressed
in the stromal area, including CAFs and vascular smooth muscle
cells, but not in the tumor cells between the different risk score
groups. These results are consistent with the previous literature
(7, 11), while the detection of expression of key genes targeted by
these sEMTlnc in vascular smooth muscle cells also suggested that
these EMTlnc may be involved in the formation of tumor
neovascularization (39). Taken together, we suggest that these
sEMTlnc play a key role in TME remodeling and regulation of
TIICs, including T cells and macrophages. The expression of
sEMTlnc may ultimately influence immune responsiveness and
overall survival of BLCA patients. Further studies on sEMTLnc
may provide potential therapeutic targets for BLCA
immunotherapy and precision medicine.

However, limitations still existed since our results were mainly
based on the bioinformatics analysis. Although highly correlated
with EMT-related genes, critical questions still existed: Do
sEMTLnc expression indeed reflect the biological process of
EMT, How do sEMTLnc expression alter T-cells and
macrophages M2 infiltration, why sEMTLnc can impact
outcomes and affect the responsiveness to ICB treatment in
BLCA patients. Simultaneously, It is not sufficient to study
Frontiers in Oncology | www.frontiersin.org 12106
sEMTLnc-associated TIICs only by bulk RNA sequencing data
based on bioinformatics algorithms, which may lead to different
results between different algorithms. The exact association between
sEMTLnc, CAFs, macrophages, and T cells still needs to be verified
by a series of in vitro and in vivo experiments, including single-cell
RNA sequencing. Besides, due to the limited number of cases in the
clinical cohort we included, we still need a larger external clinical
cohort to validate the relative expressions of the sEMTLnc and the
predictive value of the signature.
CONCLUSION

In the present study, we constructed a prognostic signature
containing five sEMTLnc, which predicted BLCA patients’
prognosis. Further study on the signature confirmed its
significant correlation with the abundance of CAFs,
macrophages M2 and CD8+ T cells. Similar to the literature
reporting that stromal EMT gene expression affects BLCA
prognosis and immunotherapy responsiveness, the combined
expression of stromal EMT-related lncRNAs may also affect BLCA
outcome and immunotherapy responsiveness. Through
immunohistochemical analysis, we laterally verified that EMT-
related genes are mainly expressed in the stromal components,
March 2021 | Volume 11 | Article 620674
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FIGURE 7 | sEMTLS was related to the stromal components and ICB responsiveness. (A) Expression of sEMTLnc and TME cells calculated by MCP-COUNTER in
each patient was shown in the heatmap. (B) Significant lower CD8+ T cells and higher CAFs abundance were observed in the high-risk group. (C) The risk score of
sEMTLS was positively related to CAFs abundance and the stromal score. (D) Patients in the high-risk group earned a lower responsiveness rate to ICB therapy.
Risk scores are lower in patients who respond to ICB therapy than those who do not respond.
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including CAFs and vascular smooth muscle cells. The crosstalk
between tumor stroma and tumor cell’s EMT process is intricate
and requires in-depth study. Further study of stromal EMT-related
lncRNAs and their targeted genes will help provide possible new
targets for BLCA precision therapy and immunotherapy.
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Background: Renal cell carcinoma (RCC) is divided into three major histopathologic

groups—clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We

performed a comprehensive re-analysis of publicly available RCC datasets from the

TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three

subgroups, for an exploratory transcriptome profiling of RCC subgroups.

Materials and Methods: We used FPKM (fragments per kilobase per million)

files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database,

representing transcriptomic data of 891 patients. Using principal component analysis,

we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized

by machine learning, resulting gene signatures were validated by correlation analyses

in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney,

and GSE157256).

Results: Many RCC samples co-clustered according to histopathology. However,

a substantial number of samples clustered independently from histopathologic

origin (mixed subgroup)—demonstrating divergence between histopathology and

transcriptomic data. Further analyses ofmixed subgroup via machine learning revealed a

predominant mitochondrial gene signature—a trait previously known for chRCC—across

all histopathologic subgroups. Additionally, ccRCC samples from mixed subgroup

presented an inverse correlation of mitochondrial and angiogenesis-related genes

in the TCGA and in three external validation cohorts. Moreover, mixed subgroup

affiliation was associated with a highly significant shorter overall survival for patients

with ccRCC—and a highly significant longer overall survival for chRCC patients.
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Conclusions: Pan-RCC clustering according to RNA-sequencing data revealed a

distinct histology-independent subgroup characterized by strengthened mitochondrial

and weakened angiogenesis-related gene signatures. Moreover, affiliation to mixed

subgroup went along with a significantly shorter overall survival for ccRCC and a

longer overall survival for chRCC patients. Further research could offer a therapy

stratification by specifically addressing the mitochondrial metabolism of such tumors and

its microenvironment.

Keywords: kidney cancer, pan-RCC, machine learning, mitochondrial DNA, mtDNA, mTOR

INTRODUCTION

Basic and clinical research in renal cell carcinoma (RCC) mainly
focuses on established histopathologic subgroups, specifically
clear cell (ccRCC), papillary (pRCC) and chromophobe RCC
(chRCC). Accordingly, histopathology is of crucial relevance for
determining treatment strategies including drug sequencing in
RCC patients, especially in a metastasized situation. As reflected
in the WHO classification for renal neoplasms (1), dividing RCC
in three distinct (sub-)entities does not completely mirror tumor
biology and its complexity. Instead, sub-categories such as clear
cell papillary RCC (2) were introduced, indicating substantial
greyscales between classical histopathologic subgroups.

By performing transcriptomic analyses, researchers have
identified characteristic signatures of ccRCC, pRCC, and
chRCC—thereby supporting established histopathologic
classification (3–5). Although comprehensive pan-RCC
analyses have been performed previously, the boundaries
of histopathologic origin usually were not scrutinized (6, 7).

Using principal component analysis (PCA) with subsequent
machine learning (ML) algorithms, we mapped 891 RCC
specimen irrespective of histopathologic boundaries. Following
this comprehensive pan-RCC approach allowed us to identify
novel RCC subgroups with a prognostic impact for cancer
patients and provide first functional insight.

MATERIALS AND METHODS

Data Acquisition
This work mainly based on data provided by The Cancer
Genome Atlas (TCGA) consortium. Utilized entities were
ccRCC (KIRC cohort, n = 538 tumor samples), chRCC (KICH
cohort, n = 65 samples) and pRCC (KIRP cohort, n = 288
samples) downloaded from the GDC portal (https://portal.gdc.
cancer.gov). For evaluation, we used data provided by the
ICGC (international network of cancer genome projects) (8),
specifically the RECA-EU data set, comprising of n = 91 ccRCC
samples (https://dcc.icgc.org/projects/RECA-EU) with available
RNA-sequencing data. Additionally, we used ccRCC samples
from the CPTAC-3-Kidney cohort (n = 101) as further external
validation (https://portal.gdc.cancer.gov/projects/CPTAC-3) (9).
Regarding RCC caused by hereditary leiomyomatosis (hlRCC)—
also known as fumarate hydratase (FH)-deficient RCC—we
further examined the smaller GSE157256 cohort (10) as another
source for evaluation (n = 26) (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE157256). For all mentioned datasets,
we used unprocessed FPKM or RSEM (GSE157256) values
as provided.

Bioinformatical Analyses
The presented work was implemented in a Jupyter Notebook
environment (version 7.5.0)—which is available upon request—
using the Python version 3.6.9, SciPy version 1.3.0 (11) and
scikit-learn version 0.22.1 (12).

t-SNE Plotting
Our project was based on the 2D representation of high-
dimensional data with subsequent cluster analysis using
ML. For plotting unprocessed FPKM data in 2D, we
performed a PCA with 50 components—using PCA of the
sklearn.decomposition module—and used the results as
input for t-SNE plotting (sklearn.manifold module) (13). For
calculating and plotting in 2D, we used a random initiation
with a learning rate of 300 and a perplexity of 27 with
10.000 iterations. For reproducibility, we used the random
state 0 (n_components=2, init=’random’, perplexity=27,
n_iter=10,000, learning_rate=300, random_state=0).
Additionally, cluster annotation and t-SNE coordinates for
each TCGA sample from all RCC subgroups are shown in
Supplementary Table 1.

Random Forest Learning
After manual annotation, we used these clusters for subsequent
learning steps. For this, we applied a model utilizing
Random Forest (RF) Classifier (RandomForestClassifier of
the sklearn.ensemble module). For training our model, we used
a 70/30 split, letting the model learn on 70% of the data and
evaluating it on the remaining 30%, with 1,000 trees in the
forest (n_estimators=1,000), leaving out the pRCC samples not
clustering in one of the three annotated clusters or the mixed
subgroup. For further investigation, we trained 20 models and
used the one with the highest test accuracy for subsequent
feature analysis. For this purpose, we assigned the according
“feature values,” implying the importance of each feature, to each
feature, representing the Ensembl gene IDs. We identified the
top 200 genes with the strongest influence on our model, which
distinguished our manually annotated clusters with the highest
accuracy. These top 200 genes of our best performing model
overlapped in 92 genes with the mean of the other 19 trained
models, outperforming them in test accuracy—with 92.06%
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compared to the mean of 83.42% (min. 79.37%, max. 86.11%).
A 10-fold-crossvalidation of the data yielded a mean accuracy of
84.52% (+/- 9.16%).

Plots and Statistical Analysis
Correlation and scatter plots were generated using matplotlib.
Indicated Pearson Rs were calculated using the accordingmodule
from scipy.stats. For subsequent survival analysis of patient
survival, Kaplan Meier (KM) plots were generated using the
lifelines module (version 0.23.1) with the KaplanMeierFitter (14).

If not stated otherwise, statistical tests were performed
using Kruskal-Wallis-Test—using scipy.stats module including
indicated significances, for which we used the statannot module
for python (version 0.2.3; https://github.com/webermarcolivier/
statannot). For the analysis of further interactions and relations
between the identified 200 genes with the highest influence on
the learned model, we used a Network generated by StringDB
(15). The coloring of the nodes was done directly by StringDB
for selected gene-sets stated as significant.

For validation purposes of relevant pathways and genes
previously identified by mRNA expression patterns, we used
the level four protein expression levels provided by The Cancer
ProteomeAtlas (16) (TCPA—https://tcpaportal.org/tcpa/) for the
three investigated cohorts.

RESULTS

Clustering 891 RCC Samples
Independently From Histopathologic Origin
For PCA, we used the RNAseq data of all registered RCC
specimen (n = 891) within the TCGA database, irrespective
of their histopathologic origin. We combined all tumor
specimen in a t-SNE-plot in order to illustrate familiarities
and discordances between samples based upon unprocessed
FPKM values. Figure 1A represents the t-SNE plot, with
ccRCC, pRCC and chRCC samples marked in red, green and
blue, respectively. Of note, most tumor samples clustered to
RCC subgroups, thereby confirming the familiarity and the
validity of histopathologic classification. Figure 1B represents
the schematic distribution of clusters identified within the t-
SNE-plot. Interestingly, pRCC samples did not cluster in a
single subgroup, but instead in three distinct subgroups (cluster
I-III), whereas ccRCC specimen built another cluster (IV).
However, apart from most samples clustering according to
histopathology, we identified a distinct cluster containing a
mixture of ccRCC, pRCC and chRCC samples (Figure 1B;
cluster V). We named this accumulation mixed subgroup.
As depicted in Figure 1C, we manually split and defined
the novel clusters for further ML-based analyses. Aside
from three distinct pRCC clusters, which surely merit future
investigation, we weremainly interested in thismixed subgroup—
containing 19% of ccRCC, 36.8% of pRCC and 81.5% of
chRCC samples (Figure 1D). Of note, our clustering approach
revealed no clear separation between type 1 and type 2 pRCC
(Supplementary Figure 1).

Clinical Characterization of Patient
Samples From Mixed Subgroup
We next examined the clinical characteristics of RCC patient
samples depending on their affiliation to the mixed subgroup
(Table 1). Comparing ccRCC samples inside and outside
the mixed subgroup, we found no significant differences in
age, gender, tumor stage, tumor extension (T classification),
lymphonodal invasion (N classification) or metastasis (M
classification). In contrast, tumor grading was significantly
different (p = 0.014). For pRCC, mixed subgroup patients
were significantly older (65.1 ± 10.9 vs. 59.6 ± 12.1 years;
p = 0.0002) than patients with pRCC not belonging to
this cluster. Moreover, the proportion of male patients was
significantly higher in the mixed subgroup (p = 0.001). In
contrast to the age distribution in patients with pRCC, chRCC
samples from the mixed subgroup were significantly younger
(49.6 ± 13.2 vs. 61.9 ± 12.9 years; p = 0.012). In addition,
the lymphonodal status differed significantly between the two
subgroups (p= 0.005).

ML-Based Functional Characterization of
Patient Samples Affiliated to Mixed

Subgroup
To learn more about functional traits and characteristic
differences of the clusters, we applied further ML based on
the visual separation (Figure 1C). Therefore, we determined
the top 200 genes best classifying the novel clusters. As
shown in Figure 2, we depicted these genes in a StringDB
gene network to uncover relevant signaling pathways. We
found a substantial accumulation of mitochondrial genes—
with String DB identifying “oxidative phosphorylation”
(GO:0006119) and “respiratory electron transport chain”
(GO:0022904) as highly overrepresented pathways in our
analysis. Additionally, “blood vessel development” (GO:0001568)
and “blood vessel morphogenesis” (GO:0048514) were also
highly overrepresented.

Moreover, mtDNA genes represented all of the top 10
classifier genes in our RF calculation—as shown in Table 2.
In conclusion, we found mitochondrial and angiogenesis-
related gene signatures to be most predictive within our
clustering approach.

Mitochondrial and Angiogenesis-Related
Genes Inside and Outside Mixed Subgroup
Alterations and overexpression of mtDNA have been described
as characteristic traits of chRCC (5, 17, 18)—and more
than 80% of the chRCC samples in our analysis were
located in the mixed subgroup (see Figure 1D). Due to
this relative overrepresentation of chRCC in this cluster,
we first checked whether our RF analysis was biased by
a high proportion of chRCC samples. For this reason, we
compared unprocessed FPKM values of mitochondrial genes
for ccRCC, pRCC, and chRCC samples depending on the
affiliation to the mixed subgroup. We found a highly significant
overexpression of mitochondrial genes for chRCC samples
inside compared to samples outside the mixed subgroup.
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FIGURE 1 | (A) t-SNE-plot for RNA-sequencing data from ccRCC (red), pRCC (green) and chRCC (blue) specimen within the TCGA database. (B) Visually identified

clusters—I to III: distinct pRCC subgroups; IV: ccRCC samples; V: mixed subgroup containing ccRCC, pRCC and chRCC tumors. (C) Manually defined clusters

based on visual separation. (D) Pie charts illustrating absolute numbers and proportions of RCC samples inside/outside the mixed subgroup for each RCC subgroup.
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TABLE 1 | Clinical characteristics of RCC patients inside and outside the mixed subgroup.

ccRCC non-mixed ccRCC mixed p pRCC non-mixed pRCC mixed p chRCC non-mixed chRCC mixed p

n = 428 n = 102 n = 182 n = 105 n = 12 n = 53

Age mean 60.2 ± 2.2 62.0 ± 11.8 0.196 59.6 ± 12.1 65.1 ± 10.9 0.00021 61.9 ± 12.9 49.6 ± 13.2 0.012

Gender m 273 (63.79%) 71 (69.61%) 0.269 123 (67.58%) 89 (84.76%) 0.001 10 (83.33%) 29 (54.72%) 0.07

f 155 (36.21%) 31 (30.39%) 59 (32.42%) 16 (15.24%) 2 (16.67%) 24 (45.28%)

Tumor stage I 223 (52.47%) 42 (64.29%) 0.166 108 (64,70%) 64 (38,32%) 0.419 2 (16.67%) 18 (33.96%) 0.1

II 43 (10.12%) 14 (8.33%) 16 (9,60%) 4 (2,40%) 5 (41.67%) 20 (37.74%)

III 90 (21.18%) 33 (19.64%) 34 (20,30%) 16 (9,58%) 1 (8.33%) 13 (24.53%)

IV 69 (16.23%) 13 (7.74%) 9 (5,40%) 6 (3,60%) 4 (33.33%) 2 (3.77%)

T T1 228 (53.27%) 43 (42.57%) 0.092 119 (64.67%) 74 (70.48%) 0.463 2 (16.67%) 18 (33.962%) 0.14

T2 53 (12.38%) 16 (15.84%) 22 (11.96%) 10 (9.52%) 5 (41.67%) 20 (37.74%)

T3 137 (32.00%) 41 (40.59%) 39 (21.20%) 20 (19.05%) 3 (25%) 15 (28.30%)

T4 10 (2.33%) 1 (0.99%) 4 (2.17%) 1 (0.95%) 2 (16.66%) 0 (0%)

N N0 192 (93.66%) 47 (94%) 0.929 29 (59.18%) 20 (71.43%) 0.21 4 (57.14%) 35 (94.60%) 0.005

N1 13 (6.34%) 3 (6%) 16 (32.66%) 8 (28.57%) 2 (28.57%) 1 (2.7%)

N2 0 (0%) 0 (0%) 4 (8.16%) 0 (0%) 1 (14.29%) 1 (2.7%)

M M0 19 (90.48%) 3 (75%) 0.392 60 (63.16%) 35 (89.74%) 0.654 4 (80%) 3 (75%) 0.866

M1 2 (9.52%) 1 (25%) 35 (36.84%) 4 (10.26%) 1 (20%) 1 (25%)

Grading G1 13 (3.06%) 13 (11.93%) 0.014

G2 195 (45.88%) 32 (29.36%)

G3 158 (37.18%) 48 (44.04%)

G4 59 (13.88%) 16 (14.67%)

Except for age (mean ± standard deviation), all characteristics were presented as absolute values. p-values highlighted as bold were significant for p < 0.05.

However, alterations in mtDNA expression were not limited
to chRCC. Instead, mixed subgroup samples from pRCC
as well as ccRCC exhibited a highly significant mtDNA
overexpression. Figures 3A,B illustrate unprocessed FPKM
values for candidate genes MT-CO2 (Figure 3A) and MT-CO3
(Figure 3B).

For angiogenesis-related genes such as FLT1 (Figure 3C)
and KDR (Figure 3D), we discovered significantly lower
expression levels within ccRCC samples from mixed
subgroup. Additionally, we discovered significant expression
differences for genes displayed in Table 2, regardless of the
underlying histopathologic entity, when compared to normal
tissue samples (Supplementary Figures 2–7). Regarding
expression of mitochondrial and angiogenesis-related genes
in ccRCC, we found negative Pearson R correlations in
the TCGA dataset (Figure 4A) as well as all three RCC
validation cohorts (Figures 4B–D). In line with a weaker
angiogenesis signature, ccRCC and pRCC samples from
mixed subgroup displayed significantly lower levels of c-MET
(Supplementary Figure 8).

Summing up the results, mtDNA and angiogenesis
signatures proved to be predictive not only for our pan-
RCC clustering approach—but also specifically for ccRCC
samples. Moreover, expression levels of mitochondrial and
angiogenesis-associated genes were negatively correlated in four
independent RCC cohorts.

Impact of Mixed Subgroup Affiliation on
Patient Survival
After characterizing mixed subgroup samples from a clinical
and a functional perspective, we next investigated whether
an affiliation to this cluster impacted patient prognosis.
Strikingly, survival analysis revealed a significantly worse
prognosis (p = 0.005) for ccRCC patients from the TCGA
database belonging to the mixed subgroup (Figure 5A). For
chRCC patients (Figure 5B), cluster affiliation had the opposite
effect—with significantly higher survival rates (p = 0.003)
for patients inside the mixed subgroup. In contrast, there
was no significant survival difference for patients with pRCC
(Figure 5C).

Given that clinical characteristics such as tumor stage and
TNM classification did not differ significantly for patients with
ccRCC (Table 1), we reasoned that the survival impact could
partially be due to an inadequate therapy stratification. Using The
Cancer Proteome Atlas (TCPA) (16, 19), we therefore analyzed
the protein expression of bona fide gene candidates related
to mTOR and PI3K/Akt signaling, angiogenesis and immune
signaling (Figure 5D). Regarding ccRCC as well as pRCC
samples, we found a significant downregulation of VEGFR2
and HIF1A protein expression in mixed subgroup samples. For
both subgroups, this downregulation of angiogenesis-related
genes was accompanied by a significant upregulation of PD-L1
expression. Moreover, protein expression of TSC1 and PTEN
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FIGURE 2 | StringDB network of the top 200 genes identified as relevant classifiers for RCC sample clusters from Figure 1C. Genes affiliated with oxidative

phosphorylation and respiratory electron transport chain are marked in red and blue, genes related to blood vessel morphogenesis and blood vessel development are

marked in green and yellow.

was downregulated in mixed subgroup samples. While pRCC
samples from our novel cluster exhibited a significant mTOR
downregulation, the slight increase in mTOR protein expression

of ccRCC samples from mixed subgroup was not significant.
Potentially due to lower sample numbers, TCPA analysis revealed
no significant expression differences for chRCC specimen.
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TABLE 2 | Gene families significantly overrepresented in the top 200 cluster classifying genes from Random Forest (RF) analysis.

Mitochondrial Genes Angiogenesis-related Genes

HGNC Symbol Ensembl gene ID RF-Feature Position HGNC Symbol Ensembl gene ID RF-Feature Position

MT-CYB ENSG00000198727 1 ETS1 ENSG00000134954 13

MT-ND4 ENSG00000198886 2 ANGPT2 ENSG00000091879 33

MT-CO1 ENSG00000198804 3 APLN ENSG00000171388 37

MT-CO3 ENSG00000198938 4 FLT1 ENSG00000102755 38

MT-CO2 ENSG00000198712 5 CRKL ENSG00000099942 46

MT-ND4L ENSG00000212907 6 ITGA5 ENSG00000161638 54

MT-ATP6 ENSG00000198899 7 NRP1 ENSG00000099250 56

MT-RNR1 ENSG00000211459 8 PRDM1 ENSG00000057657 93

MTATP6P1 ENSG00000248527 9 PTEN ENSG00000171862 109

MT-ND1 ENSG00000198888 10 VEGFA ENSG00000112715 112

MT-ND2 ENSG00000198763 20 ACKR3 ENSG00000144476 114

MT-ND3 ENSG00000198840 24 CDH13 ENSG00000140945 146

MT-RNR2 ENSG00000210082 25 BMPR2 ENSG00000204217 148

CALCRL ENSG00000064989 177

ESM1 ENSG00000164283 191

For each gene, HGNC symbol, Ensembl gene IDs, and the position in our calculation is shown.

In summary, we found a highly significant and clinically
relevant influence of mixed subgroup affiliation in RCC patients
from the TCGA database—with a better prognosis for chRCC
and a worse overall survival for ccRCC patients.

DISCUSSION

Classifying cancer tissue into three histopathologic subgroups—
clear cell, papillary and chromophobe—critically determines
treatment strategies and prognosis of RCC patients. However,
growing evidence highlights that this classification is not absolute
nor distinct. Instead, the WHO system of renal cell tumors
from 2016 contained several additional subgroups, such as
succinate dehydrogenase-deficient renal carcinoma and clear cell
papillary RCC (1). Previous functional analyses on RCC mainly
focused on isolated gene signatures, which were characteristic
and prognostic for single histopathologic subgroups (4, 5, 20,
21)—e.g., ClearCode34 (22) for determining the individual
risk of recurrence in localized ccRCC. Moreover, researchers
aimed to identify biomarkers and gene networks predictive of
future therapy response—especially for angiogenesis inhibition,
tyrosine kinase inhibition (TKI) and immune checkpoint
blockade (23–27). Interestingly, a recent study was able to
discriminate ccRCC and pRCC samples originating from
proximal tubules of the nephron from chRCC specimen
originating from distal tubules based on the metabolic and
lipidomic profile of the samples (28).

Pan-RCC Clustering Identifies Subgroup
Beyond Established Histopathologic
Classification
While most studies focused on gene signatures within
given histopathologic boundaries, we aimed to challenge

the absoluteness and robustness of RCC subgroup classification.
In our pan-RCC approach, we performed a clustering for
all RCC specimen from the TCGA database. Of note, a
substantial number of RCC samples clustered independently
from histopathologic origin. We called this cluster mixed
subgroup. Conferring samples inside and outside the mixed
subgroup, ccRCC patients exhibited no significant differences
regarding age, gender, tumor stage and TNM classification.
In contrast, grading of tumor samples appeared significantly
different, partially due to a higher proportion of G1 tumors
in the mixed subgroup. pRCC patients from this cluster
were significantly older than the remainder of the group.
Moreover, the proportion of male patients was higher inside
the mixed subgroup. All other clinical characteristics did not
differ significantly. Patients with chRCC within the cluster were
significantly younger and had a higher proportion of N0 patients.

ML Reveals Mitochondrial Genes as Most
Influential for Pan-RCC Clustering
For further functional characterization, we applied RF learning
in order to identify gene signatures most predictive for the novel
clusters. This ML approach revealed mitochondrial genes to be
most influential for the basic clustering, followed by genes related
to angiogenesis. As mtDNA overexpression is a reported feature
of chRCC (5, 17, 18), we had to rule out a systematic bias caused
by the high proportion of chRCC samples within the mixed
subgroup. Therefore, we analyzed mtDNA expression in all RCC
subgroups depending on subgroup affiliation. Of note, ccRCC,
pRCC, and chRCC specimen belonging to the mixed subgroup
all displayed significantly higher levels of mtDNA expression
compared to the counterparts outside this cluster. In ccRCC,
this mtDNA upregulation went along with a downregulation
of angiogenesis-related genes. Taking these results together led
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FIGURE 3 | Unprocessed FPKM values of exemplary candidate genes–(A,B) MT-CO2 and MT-CO3, (C,D) FLT1 and KDR. ns, not significant, ****p < 0.0001.

to significantly negative correlations between mitochondrial
and angiogenesis signatures—not only in ccRCC samples from
TCGA but also in the RECA-EU and CPTAC-3-Kidney cohorts
taken as external validation. Moreover, comparable results from
the GSE157256 cohort representing fumarate hydratase-deficient
RCC could imply a general underlying mechanism beyond
RCC subgroups.

A pan-RCC subgroup characterized by a prominent mtDNA
signature appeared surprising at first sight. Although aberration
in mitochondrial signaling is known across RCC subgroups,
these deviations are not considered being unidirectional toward
an upregulation of mitochondrial transcripts and mitochondrial
mass (29). While mtDNA aberrations and overexpression are
mainly regarded as a characteristic trait of chRCC tissue (5, 17,
18), downregulation of mitochondrial enzymes with increasing

tumor stages and decreased oxidative capacity were previously
reported for ccRCC (30–32). However, growing evidence
indicates that mtDNA can also have oncogenic functions, thereby
appearing as a potential (co-)target in future cancer therapies
(33). Specifically, researchers showed that tumor cells lacking
mtDNA could not metastasize in vivo—after restoration of
mtDNA levels, cancer cells regained this ability (34). In line
with these findings, Schöpf et al. demonstrated the importance
of oxidative phosphorylation in high-grade prostate cancer by
describing a high-risk subgroup characterized by a distinct
mitochondrial signature (35). Given the established role of
angiogenesis and angiogenesis-related genes such as VEGFR2
in high-risk prostate cancer (36, 37), further examining the
interaction of mitochondrial and angiogenesis pathways in
prostate cancer could prove beneficial.
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FIGURE 4 | Color-coded presentation of the Pearson R correlation matrix of mitochondrial genes and angiogenesis-associated genes for ccRCC samples from the

(A) TCGA, (B) the ICGC RECA-EU, and (C) the CPTAC-3-Kidney cohort as well as (D) Fumarate hydratase-deficient RCC samples contained within the

GSE157256 cohort.

Assessing Prognosis and Therapeutic
Windows for Mixed Subgroup Patients
Importantly, ccRCC patients inside the mixed subgroup suffered
from significantly worse overall survival. This result was even
more surprising given the non-significant differences in TNM
stage between both subgroups. For pRCC patients, we did not
find significant survival differences regarding mixed subgroup
affiliation. However, we identified three distinct pRCC clusters.
This result surelymerits further investigation regarding functions

and prognosis of each pRCC cluster. In contrast, patients with
chRCC belonging to themixed subgroup exhibited a significantly
longer overall survival. In summary, survival data from ccRCC
and chRCC patients underline the role of themixed subgroup as a
novel prognostic RCC cluster identified by our comprehensive
clustering approach. Regarding the striking survival impact in
ccRCC combined with non-differing clinical characteristics, it
was tempting to assume that diverging outcomes were at least
partially treatment-related.
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FIGURE 5 | (A,B) KM plots illustrating overall survival of patients with ccRCC (A), chRCC (B) and pRCC (C) from TCGA database depending on mixed subgroup

affiliation. (D) Protein expression levels of bona fide candidate genes from mTOR-associated, angiogenesis-related and immune-related signaling for ccRCC, pRCC

and chRCC samples inside (blue) and outside (red) the mixed subgroup (TCPA database). ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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First, addressing mtDNA overexpression appears as an
attractive therapeutic approach, as compounds such as the
anthelmintic drug atovaquone (38) and the antibiotic tigecycline
(39) were shown to chemo-sensitize RCC. Moreover, our results
could explain the beneficial effect of additional Metformin intake
during treatment of metastatic RCC, as this biguanide works as a
mitochondrial inhibitor (40–42). Above all, mTOR inhibitors—
which already have the approval for treating RCC—appear as
promising candidates for mixed subgroup RCC patients. mTOR
signaling is tightly linked to mitochondrial function (43, 44).
Recently, a mitochondrial complex I inhibitor (IACS-010759)
targeting oxidative phosphorylation in cancer cells showed
efficacy in brain cancer and leukemia models (45).

Given the downregulation of angiogenesis-related gene
signatures in ccRCC patients from themixed subgroup, inhibition
of angiogenesis and TKI do not appear as attractive first-line
approaches for these patients. Indeed, the predominant use of
TKI within the historical RCC cohort from the TCGA database
may partially explain the striking survival differences observed
in this analysis. Supporting our findings from RNA-sequencing,
protein levels of VEGFR2 and HIF2A were lowered in the mixed
subgroup for ccRCC as well as pRCC patients. Regarding the
downregulation of c-MET in ccRCC and pRCC samples from
the mixed subgroup, treatment with MET (co-)inhibitors such as
Cabozantinib (46) does not appear promising, either.

Further research could clarify whether immune checkpoint
inhibition constitutes a viable treatment strategy in our new
cluster. At first sight, highly significant protein overexpression of
PD-L1 in ccRCC and pRCC patients from the mixed subgroup
makes it an attractive therapeutic target. However, unlike in
entities as melanoma and non-small cell lung cancer (47), it
is still unclear whether PD-L1 overexpression in RCC results
in better response to immunotherapy (48). Completely in line
with our findings, several clinical trials already stated that PD-L1
overexpression marked a RCC high-risk cohort (48, 49).

Our study has some limitations regarding its methodology
and its retrospective nature. We are aware that manual
cluster annotation approaches naturally contain immanent
biases. Moreover, our findings derive from the re-analysis of
historic cohorts and require further—ideally prospective—
validation in future studies. Essentially, we identified a
high-risk ccRCC subgroup best described by a mitochondrial
signature and a downregulation of angiogenesis-related
genes, which was not exclusive to one RCC subgroup.
Although preliminary, these results could contribute to an
individual risk classifier based on transcriptomic data from
patients’ samples and help establishing personalized medicine
in RCC.
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clinically established type 1 and type 2 pRCC subtypes. RCC, renal cell

carcinoma; pRCC, papillary renal cell carcinoma.

Supplementary Figure 2 | Expression comparison between clear cell renal cell

carcinomas outside (ccRCC) and inside (mixed) the mixed subgroup and

respective normal tissue samples for mitochondrial genes identified by machine

learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 3 | Expression comparison between clear cell renal cell

carcinomas outside (ccRCC) and inside (mixed) the mixed subgroup and

respective normal tissue samples for angiogenesis genes identified by machine

learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 4 | Expression comparison between the identified

papillary renal cell carcinoma cluster outside (pRCC 1 to 3) and inside (mixed) the

mixed subgroup and respective normal tissue samples for mitochondrial genes

identified by machine learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 5 | Expression comparison between the identified

papillary renal cell carcinoma cluster outside (pRCC 1 to 3) and inside (mixed) the

mixed subgroup and respective normal tissue samples for angiogenesis genes

identified by machine learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 6 | Expression comparison between chromophobe renal

cell carcinomas outside (chRCC) and inside (mixed) the mixed subgroup and
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respective normal tissue samples for mitochondrial genes identified by machine

learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 7 | Expression comparison between chromophobe renal

cell carcinomas outside (chRCC) and inside (mixed) of mixed subgroup and

respective normal tissue samples for angiogenesis genes identified by machine

learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 8 | Unprocessed FPKM values for c-MET within manually

annotated clusters across RCC subgroups. ns, not significant. ∗∗p < 0.01, ∗∗∗∗p <

0.0001.

Supplementary Table 1 | Coordinates within the t-SNE-plot and subsequent

attributed cluster affiliation for all RCC samples from the TCGA database included

in our analysis. RCC, renal cell carcinoma.
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CXCL5 Has Potential to Be
a Marker for Hepatocellular
Carcinoma Prognosis and Was
Correlating With Immune Infiltrates
Yuan Nie , Mei-chun Jiang, Cong Liu, Qi Liu and Xuan Zhu*

Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China

Backgrounds: Tumor microenvironment (TME) plays a crucial role in the initiation and
progression of Hepatocellular Carcinoma (HCC), especially immune infiltrates. However,
there is still a challenge in understanding the modulation of the immune and stromal
components in TME, especially TME related genes.

Methods: The proportion of tumor-infiltrating immune cells (TICs) and the immune and
stromal scores in 374 HCC patients from The Cancer Genome Atlas (TCGA) database
were determined using CIBERSORT and ESTIMATE computational methods. The final
screened genes were confirmed by the PPI network and univariate Cox regression of the
differentially expressed genes based on different immune or stromal scores. The
correlation between the expression levels of the final gene interactions and the clinical
characteristics was based on TCGA database and local hospital data. Gene set
enrichment analysis (GSEA) and the effect of CXCL5 expression on TICs were conducted.

Results: There were correlations between the expression of CXCL5 and survival of HCC
patients and TMN classification both in TCGA database and local hospital data. The
immune-related activities were enriched in the high-expression group; however, the
metabolic pathways were enriched in the low-expression group. The result of
CIBERSORT analyzing had indicated that CXCL5 expression were correlated with the
proportion of NK cells activated, macrophages M0, Mast cells resting, Neutrophils.

Conclusions: CXCL5 was a potential prognostic marker for HCC and provides clues
regarding immune infiltrates, which offers extra insight for therapeutics of HCC, however,
more independent cohorts and functional experiments of CXCL5 are warranted.

Keywords: CXCL5, hepatocellular carcinoma, tumor microenvironment, immune infiltration, prognosis
INTRODUCTION

Liver cancer is a typical inflammation driven tumor and often develops from chronic hepatitis and
cirrhosis (1). Hepatocellular carcinoma (HCC) accounts for 75–85% of primary liver cancers,
ranking sixth among the most common cancers in the world, and fourth among cancer-related
deaths. Eighty-five percent of all HCC patients occurs in poor or developing countries, especially in
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East Asia and Africa (2). The main treatment methods include
surgery, liver transplantation, local ablation, molecular targeted
therapy, and systemic chemotherapy, had limitation on the
improvement of patient’s survival and imposes a heavy burden
on health-care costs. It is urgently needed to explore the
carcinogenesis and therapeutics of HCC (3).

Increasing evidence demonstrated the importance of the
tumor microenvironment (TME) in the tumor development,
especially in HCC (4). As an inflammatory tumor, the
immunosuppressive microenvironment of HCC can promote
immune tolerance through a variety of mechanisms.
Immunotherapy that activates tumor specific immune response
br ings new hope for the t reatment of HCC. The
microenvironment of HCC is mainly composed of tumor
associated macrophages, tumor associated neutrophils and
myeloid-derived suppressor cells (MDSCs), tumor associated
fibroblasts, tumor infiltrating lymphocytes and other cellular
components, as well as extracellular matrix, cytokines, and
other non-cellular components. Previous studies showed that
the tumor-infiltrating immune cells (TICs) in TME plays an
important role in development of HCC and served as a
predicting parameter for prognosis. For example, Kupffer cells
play an important role in inhibitory microenvironment by
producing anti-inflammatory molecules such as TGF -b, IL-10,
and prostaglandin E2 (PGE2) (5). Interferon-g (IFN-g) derived
from Natural killer (NK) cells promotes HCC through the
epithelial cell adhesion Molecule-Epithelial-to-Mesenchymal
Transition (EMT) axis in Hepatitis B virus (HBV) transgenic
mice. A previous study had indicated that neutrophil to
lymphocyte ratio and platelet to lymphocyte ratio as
prognostic predictors for HCC with various treatments (6).
Immune tolerance is one of the main causes of the adverse
consequences of high mortality, poor therapeutic effect, and poor
p rogno s i s o f HCC (7 ) . Immune c e l l s i n t umor
microenvironment together with cancer cells and extracellular
matrix, thus inhibiting the antitumor activity of immune cells
and playing an important role in promoting of HCC. Therefore,
the analysis of TICs of HCC is helpful to study the pathogenesis
of HCC.

Transcriptome-sequencing patterns followed by functional
genomics analysis have shed light on the roles of different
types of cells during TME modulation. In this paper, we
calculated the ratio of tic and immune/stromal components of
HCC patients in The Cancer Genome Atlas (TCGA) database by
using ESTIMATE and CIBERSORT, and determined that C-X-C
Motif Chemokine Ligand 5 (CXCL5) is a predictive biomarker.
CXCL5, also known as human epithelial neutrophil activating
peptide (ENA 78), is a member of angiogenic CXC chemokine.
CXCL5 is secreted by epithelial cells, endothelial cells, immune
cells, etc. and recognized and combined with the G protein
coupled receptor CXCR2 (8). It can recognize and bind to
CXCR2, and perform many cellular functions including
adhesion, invasion, and diffusion through autocrine or non-
autocrine pathways, thus affecting the growth, proliferation,
metastasis, and invasion of tumors. CXCL5 is secreted not only
by neutrophils, monocytes, and megaphone immune cells, but
Frontiers in Oncology | www.frontiersin.org 2124
also by non-immune cells such as epithelial cells, endothelial
cells, and fibroblasts. As an inflammatory mediator, CXCL5 has a
strong chemotactic effect on neutrophils and can activate
neutrophils, suggesting that CXCL5 might play a role in TME
(9). Hence, we examined the differentially expressed genes
(DEGs) generated by comparison between immune
components and stromal components in HCC samples and
revealed that the CXCL5 might be a potential indicator for the
alteration of TME status in HCC.
MATERIALS AND METHODS

Raw Data
Transcriptome RNA-seq data of 424 HCC samples (normal
samples, 50 cases; tumor samples, 374 cases) and the
corresponding clinical data were downloaded from TCGA
database (https://portal.gdc.cancer.gov/). At the same time, the
blood sample of HCC patients in hospital were collected in this
study. Refusal to give consent, cerebrovascular disease,
cardiovascular disease, hematologic disorders, renal failure,
combined other cancer, and correspond treatment were
exclusion criteria. The study protocol was approved by the
institutional ethics committee of First Affiliated Hospital of
Nanchang University (No. 2017-0106). Written informed
consent was obtained from all the study participants.

Bioinformatics Analysis
The ratio of immune-stromal component in TME was calculated
by Using the Feat estimation algorithm in R language version
3.5.1, which expressed in three scoring forms: Immune Score,
Stromal Score, and ESTIMATE Score. According the median of
the Immune score, Stromal Score, and ESTIMATE Score, tumor
samples were labeled as high or low. The differential expression
genes (DEGs) was generated by comparing high score samples
with low score samples in package limma. DEGs with fold
change larger than 1 after transformation of log2(high-score
group/low-score group) and false discovery rate (FDR) < 0.05
were considered significant.

GO and KEGG enrichment analyses were performed by
packages clusterProfiler, enrichplot, and ggplot2 of R language.
Only terms with both P value and q-value < 0.05 were considered
significantly enriched. PPI network was constructed by STRING
database, followed by reconstruction with Cystoscope of version
3.6.1. Nodes with confidence of interactive relationship larger
than 0.95 were used for building network.

Hallmark and C7 gene sets v 6.2 collections were downloaded
fromMolecular Signatures Database as the target sets with which
GSEA performed using the software GESA 3.0. The whole
transcriptome of all tumor samples was used for GSEA, and
only gene sets with NOM p < 0.05 and

FDR q < 0.05 were considered as significant. CIBERSORT
computational method was applied for estimating the TIC
abundance profile in all tumor samples, and only tumor
samples with P < 0.05 were selected for the following analysis.
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Definitions
Patients with chronic HBV infection were confirmed by the
detection of Hepatitis B surface antigen (HBsAg) positivity for
more than 6 months. The liver cirrhosis was diagnosed by the
presence of ascites, hepatic encephalopathy (HE), Hepatorenal
syndrome (HRS), and/or variceal bleeding at the time of the
study. The diagnosis of HCC and TMN classification was mainly
based on pathological and clinical characteristics.

ELISA and Real-Time Quantitative PCR
Peripheral venous blood was collected through the elbow vein,
centrifuged at 3,000 r/min for 10 min, and the supernatant was
stored in −80°C refrigerator. Serum CXCL5 level was determined
by the standard photometric method using the ELISA kit (R&D
company, USA). For real-time PCR analysis, PCR was performed
with a reaction mixture containing cDNA template, primers, and
TB Green™ Fast qPCR Mix (TaKaRa) in a Step One Plus Real-
Time PCR System (Thermo Fisher Scientific).

The primers of CXCL5 were 5’-CCGCTGCTGTGTTG
AGAG-3’ and 5’-TCTGCTGAAGACTGGGAAAC-3’.

Statistical Analysis
Statistical analyses were performed using SPSS software version
16.0 (SPSS Inc., Chicago, IL, USA) and R 3.62. Continuous and
categorical variables were initially described as median
Frontiers in Oncology | www.frontiersin.org 3125
[interquartile range (IQR)] and frequency [percentage (%)].
Univariate Cox regression was used to completed by package
survival of R language and the top 18 genes ordered by p value
from small to large in univariate Cox were shown in the plot.
Survival analysis was completed by the survival and survminer
package of R language. Kaplan–Meier (K-M) method was used to
plot the survival curve, and log rank as the statistical significance
test. Heatmaps of DEGs were produced by package heatmap of R
language. P < 0.05 was considered significant.
RESULTS

Analysis process of this study was shown in Figure 1. The
transcriptome RNA-seq data of 424 cases were downloaded from
TCGA database followed by calculating with CIBERSORT and
ESTIMATE algorithms. Protein-protein interaction (PPI) network
was constructed by using DEGs shared by Immune score and
Stromal score, and Univariate Cox regression analysis was
conducted. Intersection analysis was performed using the core
nodes in PPI network and the top significant factors obtained from
the analysis of univariate Cox regression. We focused on CXCL5
for the subsequent series of analysis, including survival and
clinicopathological characteristics correlation analysis, Cox
regression, GSEA, and correlation with TICs.
A B D
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FIGURE 1 | Correlation of ESTIMATE Score, Immune Score, and Stromal Score with clinical characteristics. (A–D) Distribution of ESTIMATE Score in different
stage and TMN classification; (E–H) Distribution of Immune Score in different stage and TMN classification; (I–L) Distribution of Stromal Score in different stage
and TMN classification.
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Scores Were Associated With the Clinical
Characteristics of HCC Patients
In order to determine the relationship between Immune score,
Stromal score, ESTIMATE Score with clinical characteristics, the
clinical information of HCC patients from TCGAwere collected. The
analyzing result were shown in Figure 1. The ESTIMATE Score of
stage III is significantly lower than that of stage I (P = 0.031); the
ESTIMATE Score of T3 classification of TMN stages is significantly
lower than that of T1 classification (P = 0.015). The Immune Score of
stage III is significantly lower than that of stage I (P = 0.033); the
Immune Score of T3 classification of TMN stages is significantly
lower than that of T1 classification (P = 0.010). There are no
significant different in comparing of Stromal score (P > 0.05).
These results suggested that TME was associated with the progress
of HCC, especially immune related tumor microenvironment.

DEGs Between Lower Immune Score,
Stromal Score and Higher Immune Score,
Stromal Score
In order to determine the different of gene expression, the gene
expression of high and low score samples were compared and
analyzed. As shown in Figure 2, Compared to the median, the
total 1,422 DEGs were obtained from Stromal Score (samples with
high score vs. low score). Similarly, 1,122 DEGs were obtained
from Immune Score. The intersection analysis displayed by Venn
plot showed a total of 802 up-regulated genes sharing by high
score both in Immune Score and Stromal Score and 28 down-
regulated genes sharing by low score as well.

Enrichment Analysis of GO and KEGG
As shown in Figure 3, the results of gene ontology (GO)
enrichment analysis indicated that the DEGs almost mapped
to the immune-related GO terms, such as T cell activation,
regulation of lymphocyte activation (Figures 3A, C). The
Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis also displayed the enrichment of T cell
activation, regulation of lymphocyte activation (Figures 3B, D).
Therefore, the overall function of DEGs seems to map to immune
Frontiers in Oncology | www.frontiersin.org 4126
related activities, which indicates that the involvement of immune
factors is a major feature of TME in HCC.

Intersection Analysis of PPI Network and
Univariate COX Regression
In order to further explore the underlying mechanism, PPI
network based on String database by using the Cytoscape
software was conducted. The interactions are shown in Figure
4A, and the bar plots were represented for the top 30 genes
ranked by the number of nodes (Figure 4B). Univariate Cox
regression analysis was used to determine the significant factors
affecting the survival of HCC patients (Figure 4C). And then, the
intersection analysis between the leading nodes in PPI network
and the top 16 factors ranked by the p-value of univariate Cox
regression was carried out, and only one factor, CXCL5, was
overlapping from the above analyses (Figure 4D).

The Correlation of CXCL5 With Clinical
Characteristics of HCC Patients in TCGA
In comparing of CXCL5 gene expression, the CXCL5 expression
of normal patients was significantly lower than that of HCC
patients (Figure 5A). According the gene expression of CXCL5,
all HCC samples were grouped into high-expression group and
low-expression group. The survival analysis that HCC patients
with lower expression had longer survival than that of higher
expression (Figure 5C). In the paring analysis, the expression of
CXCL5 in the tumor samples was significantly lower than that in
the normal samples (Figure 5B). The above results clearly
indicated that the expression of CXCL5 in TME was positive
correlation with the prognosis of HCC patient, especially in stage
and T classification (Figures 5D–G).

The Correlation of CXCL5 With Clinical
Characteristics of HCC Patients
in This Hospital
There were 65 patients with Chronic HBV infection, 62 patients
with liver cirrhosis, 52 patients with HCC of this hospital in this
study. The relative mRNA expression of CXCL5 of HCC patients
A B

D

C

FIGURE 2 | Heatmaps and Venn plots for DEGs. (A) Heatmap for DEGs generated by comparison of the high score group vs the low score group in Stromal
Score; (B) Heatmap for DEGs generated by comparison of the high score group vs the low score group in Immune Score; (C, D) Venn plots showing common up-
regulated and down-regulated DEGs shared by Immune Score and Stromal Score.
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A B

DC

FIGURE 3 | Enrichment analysis of GO and KEGG for DEGs. (A, C) GO enrichment analysis for 830 DEGs; (B, D) KEGG enrichment analysis for 830 DEGs.
A B

DC

FIGURE 4 | Protein–protein interaction network and univariate cox. (A) Interaction network constructed with the nodes with interaction confidence value > 0.95;
(B) The top 30 genes ordered by the number of nodes; (C) Univariate cox regression analysis with 830 DEGs, listing the top significant factors with P < 0.005;
(D) Venn plot showing the common factors shared by leading 30 nodes in PPI and top significant factors in univariate cox.
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were higher than patients with liver cirrhosis, patients with
Chronic HBV infection (Figure 6A), also the ELISA detected
results of CXCL5 of HCC patients were higher than patients with
liver cirrhosis, patients with Chronic HBV infection (Figure 6B).
In 52 HCC patients, the relative mRNA expression of CXCL5
also is positive correction with the TMN classification (Figures
6C–F). Also, the same result of serum CXCL5 by ELISA was
shown in Figures 6G–J.

CXCL5 May Be a Potential Indicator
of TME Modulation
Comparing with the median level of CXCL5 expression, GESA of
CXCL5 in high- and low-expression groups was completed. As
shown in Figure 7A, the genes in CXCL5 high-expression group
were mainly enriched in immune-related activities, such as cell
cycle, chemokine signaling, NOD like receptor. As shown in
Figure 7B, the genes in CXCL5 high-expression group were
mainly enriched in metabolism pathways, such as drug
metabolism cytochrome, metabolism of xenobiotics. It is
suggested that CXCL5 may be a potential indicator of
TME status.

Correlation of CXCL5 With the
Proportion of TICs
In order to further confirm the correlation between CXCL5
expression and immune microenvironment, the proportion of
tumor-infiltrating immune subsets was analyzed using
CIBERSORT algorithm, and 21 kinds of immune cell profiles in
HCC patients were completed (Figures 8A, B). The results showed
that the NK cells activated, Mast cells resting of high-expression
group of CXCL5 is significantly higher than that of low-expression
group of CXCL5 (P = 0.041; P = 0.003); the macrophages M0 of
high-expression group of CXCL5 is significantly lower than that of
low-expression group of CXCL5 (P = 0.012) (Figure 8C). Also,
Frontiers in Oncology | www.frontiersin.org 6128
there are significant correlation between CXCL5 expression and the
proportion of NK cells activated, macrophages M0, Mast cells
resting, Neutrophils (r = −0.31, P = 0.017; r = 0.37, P = 0.0041; r
= −0.39, P = 0.0025; r = 0.35, P = 0.0077). These results further
support the effect of CXCL5 expression on the immune activity
of TME.
DISCUSSION

In the current study, we attempted to identify TME related genes
that affect survival and TMN classification of HCC patients from
TCGA database. Firstly, based on the DEGs between lower
immune score, stromal score and higher immune score,
stromal score, TME related genes was collected. Then, CXCL5
was identified to be involved by intersection analysis of PPI
network and univariate cox regression. The gene expression of
CXCL5 was significant correction with TMN classification and
survival by TCGA database and local hospital data. Finally,
CXCL5 might be an indicator of TME status in HCC patients.

TME plays a key role in tumorigenesis and development. As a
congenital condition, TME promotes the occurrence and
development of tumors (10). It is of great clinical significance
to explore potential therapeutic targets based on TME
remodeling and promote the transformation of TME from
tumor friendly to tumor suppressor (11). A large number of
studies have clarified the importance of TME in HCC. As
expected, our transcriptome analysis of HCC data from TCGA
database showed that the proportion of immune and stromal in
TME was significantly correlated with HCC progression (such as
invasion and metastasis) (Figure 2). These results highlight the
value of TME in the development of HCC and provide a new
perspective for the development of more effective treatment
strategy. HCC as a typical inflammation-related tumor.
A B
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FIGURE 5 | The differentiated expression of CXCL5 and correlation with survival and clinical characteristics. (A) Differentiated expression of CXCL5 in the normal and
tumor sample; (B) Paired differentiation analysis for expression of CXCL5 in the normal and tumor sample deriving from the same one patient; (C) Survival analysis
for HCC patients with different CXCL5 expression; (D–G) The correlation of CXCL5 expression with clinical characteristics.
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The microenvironment of liver cancer is mainly composed of
tumor associated macrophages, tumor associated neutrophils,
myeloid-derived suppressor cells (MDSCs), tumor associated
fibroblasts, tumor infiltrating lymphocytes and dendritic cells
(DCs), as well as non-cellular components such as extracellular
matrix and cytokines (4). A study had indicated that the increase
of CD4+CD25+ Treg cells in TME was related to tumor size, and
these CD4+CD25+ Treg inhibited the immune response of DCs
in HCC. NK cells are anti-tumor immune cells that play an
indispensable role in tumor immune surveillance and tumor cell
eradication. However, NK cell function is usually inhibited in
tumor. miR-561-5p with high expression in HCC directly target
to reduce the expression of CXCL3, reduce the infiltration of
CXCR3+ NK cell subtypes in TME, promote the survival of
cancer cells, and promote lung metastasis (12). Circ HURF
derived from hepatoma cell exosomes can inhibit NK cell
function, promote immune escape and resist PD-1
immunotherapy resistance through miR-449c-5p/TIM3
pathways. More evidence had indicated that macrophages
promote tumor progression and metastasis (13). Osteopontin
can stimulate macrophages to secrete colony stimulating factor
(CSF1) through PI3K-Akt-p65 pathway, and then promote
macrophage polarization by CSF1/CSF 1R pathway, up-
regulate the expression of PD-L1 in HCC, create an inhibitory
immune microenvironment, and induce immune escape of
HCC. Also, the active mediator secreted by Mast cells in
hepatocellular carcinoma tissue can make hepatic sinusoidal
Frontiers in Oncology | www.frontiersin.org 7129
endothelial cells capillary, resulting in thickening of the
basement membrane, and then forming new capillaries to
increase the blood supply of tumor tissue, thereby promoting
the proliferation and invasion of cancer cells (14).

The type, location, and density of immune cell infiltration in
different tumor areas (i.e., tumor center and invasive margin) are
evaluated respectively, which is called “immune score.”
The immune score can not only reveal the immune
microenvironment where the tumor is located, but also
independently predict the overall survival and relapse-free survival
of the patient. It is considered to be a better predictor of clinical
outcome than the standard TNM staging (15, 16). Immune score
has a good predictive value for the survival of patients with colon
cancer (17), but the immune score about HCC were limited.
According to the immune score, especially based on the
distribution pattern of CD3+T and CD8+T lymphocytes, immune
tumors are divided into three types: Immune-inflamed tumor;
immune-excluded tumor; immune-desert tumor (18). Immuno-
inflammatory tumors are in an activated or semi-activated state.
Checkpoints inhibitors, such as programmed death receptor-1
(PD-1), programmed death receptor ligand-1 (PD-L1), are likely
to exert anti-tumor effects in this immunophenotype; the immune-
excluded tumor shows that there are a large number of immune
cells around the tumor cells, but the immune cells cannot penetrate
into the core of the tumor cells and are restricted to the peripheral
matrix of the tumor cells. Due to the interaction and influence of
many factors in the tumor cell matrix, it is difficult for checkpoints
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FIGURE 6 | The CXCL5 level and correlation with clinical characteristics. (A) The relative mRNA expression of CXCL5 in chronic HBV infection, liver cirrhosis, HCC;
(B) The CXCL5 level by ELISA in chronic HBV infection, liver cirrhosis, HCC; (C–F) The correlation of CXCL5 mRNA expression with clinical characteristics; (G–J) The
correlation of CXCL5 level by ELISA with clinical characteristics.
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inhibitors to exert anti-tumor effects in this phenotype. After PD-1/
PD-L1 inhibitor treatment, peripheral matrix-associated T cells
have proliferation and activation, but there is no infiltration, and
the clinical response is uncertain. Therefore, how to improve T cell
migration is the rate-limiting step for this phenotype; Immune-
desert tumor is characterized by the lack of T cells in the inner and
outer matrix of tumor cells. PD-1/PD-L1 inhibitors have no any
effect on this phenotype. How to induce more tumor-specific T cells
is the Phenotypic restriction steps (19, 20).

Immune checkpoint inhibitor (ICI) is one of the most rapidly
developed immunotherapies strategies of HCC in recent years.
ICI can block tumor-induced immunosuppression, thereby
enhancing the anti-tumor immune response. Immune
checkpoint are inhibitory tumor immune receptors, which are
located on the surface of activated T cells. After the immune
checkpoint is combined with the tumor surface antigen, it can
Frontiers in Oncology | www.frontiersin.org 8130
inhibit tumor immune response and promote tumor immune
escape. And ICI mainly reactivate tumor-specific T cells and
exert anti-tumor effects by inhibiting checkpoint-mediated signal
transduction (21). ICI targets mainly include PD-1, PD-L1, and
cytotoxic T lymphocyte antigen-4 (CTLA-4) (22). However,
thorny issues such as super progress and immune tolerance
also appear in the course of immunotherapy. Indeed, a lot of
combinatory approaches are under investigation, including the
combination of different ICI, the addition of ICI after resection
or during loco-regional therapy, combination of anti-angiogenic
drugs or molecular targeted drugs. Compared with single-agent
therapy, ICI combination therapy also reflects better clinical
efficacy and good safety (23). The emergence of ICI has brought
new research directions to researchers, and we look forward to
better development of immune checkpoint inhibitors in
the future.
A

B

FIGURE 7 | GSEA for samples with high CXCL5 expression and low expression. (A) GSEA for samples with high CXCL5 expression; (B) GSEA for samples with
low CXCL5 expression.
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There are many reports on the mechanism of CXCL5
promoting cancer progression. The combination of CXCL5 and
CXCR2 exerts a strong granulocyte chemotaxis and angiogenesis
effect, and CXCL5/CXCR2 axis plays an important role in
mediating the infiltration and metastasis of malignant tumors
(8). Recently, the CXCL5/CXCR2 axis is sufficient to promote
breast cancer colonization during bone metastasis (24). CXCL5
activated the PI3K-Akt and ERK1/2 signaling pathways in HCC
cells and promoted proliferation, migration, and invasion (25). The
Frontiers in Oncology | www.frontiersin.org 9131
expression level of CXCR2 in HCC was significantly higher than
normal liver tissues, and the expression levels of CXCR2 mRNA
and protein were associated with intrahepatic metastasis, portal
vein tumor thrombus, and poor differentiation (26). A longitudinal
study has indicated that the chronically increasing trend of CXCL5
were associated with the promotion of the progression of NAFLD
to HCC inmales (27). Xu’s study had shown that overexpression of
CXCL5 in HCC cells has higher metastatic potential, which also
demonstrated that CXCL5/CXCR2 and ERK1/2 highway may play
A

B

C

FIGURE 8 | TIC profile in tumor samples and correlation analysis. (A) Barplot showing the proportion of 21 kinds of TICs in HCC tumor samples; (B) Heatmap
showing the correlation between 21 kinds of TICs and numeric; (C) Violin plot showed the ratio differentiation of 21 kinds of immune cells between HCC samples
with high CXCL5 expression and low CXCL5 expression.
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an important role in the migration of HCC (28). Based on
ONCOMINE, GEPIA, and cBioPortal databases, the expression
levels of CXCL5 were correlated with different tumor stages and
high transcriptional levels of CXCL5 may exhibit poorer overall
survival in patients with HCC (29). Previous study had indicated
that EGF/EGFR signaling pathway plays an important role in the
production of CXCL5 in HCC, and then activates downstream
signaling pathways, thus mediating inflammatory microenvironment,
as well as cell proliferation, apoptosis, and metastasis, revealing the
signaling pathway of CXCL5 in HCC. In this study, the expression of
CXCL5was correlated with the TMN stage of HCC andwas verified in
our hospital (30). By analyzing the correlation of CXCL5 with the
proportion of TICs, there are significant correlation between CXCL5
expression and the proportion of NK cells activated, macrophages M0,
mast cells resting, neutrophils. It was well-known that CXCL5 was
crucial for the function activation of different cells, especially neutrophil.
Up to now, there are many reports about the mechanism of CXCL5
promoting tumor progression. CXCL5 can also activate protein kinase
B (PKB) and activator of transcription (STAT) signaling pathways and
promote tumor angiogenesis (31). Also, CXCL5 promotes tumor
angiogenesis, and new blood vessels act as tumor metastasis
channels; CXCL5/CXCR2 can release matrix metalloproteinase-9
(MMP-9), destroys endothelial cells and matrix barrier, and
promotes tumor metastasis (32). Recent reports have shown that
Retinoic acid receptor-related orphan receptor (ROR)-a inhibits the
proliferation, invasion, and migration of HCC MHCC97H via down-
regulation of CXCL5 (33).

This study has several limitations. Firstly, although it has been
verified by patients in our hospital, the main research of this study
is bioinformatics analysis based on TCGA database, and functional
experiments are necessary to reveal the predictive mechanisms of
CXCL5. Secondly, confounding effects of treatment factors are
different to control because of the lack of treatment information.
considering that the main causes of HCC in different countries are
different, proving our signature in more independent cohorts is
necessary to expand our model to other populations, especially in
patients with advanced stage of HCC (34).

In conclusion, we determined the TME-related genes in HCC
using ESTIMATE algorithm in TCGA database. CXCL5 was a
potential prognostic factor for HCC patients by intersection
analysis of PPI network and univariate cox regression. Then,
the expression of CXCL5 was significant corrected with TMN
classification both in TCGA database and verification data. More
interestingly, CXCL5 might be an indicator for the conversion of
Frontiers in Oncology | www.frontiersin.org 10132
TME status from immune-dominant to metabolic-dominant.
There was significant correction between CXCL5 expression
and the proportion of NK cells activated, macrophages M0, Mast
cells resting, Neutrophils. Our signature might reflect CXCL5 has
potential to be a marker for HCC prognosis and correlating with
immune infiltrates. However, validation of the signature in more
independent cohorts from different country and functional
experiments of the predictive genes are warranted.
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Background: Beta-elemene has potent anti-tumor effect, but its anti-tumor mechanism
remains unclear. Chromosome 3 open reading frame 21 (C3orf21) acts as a tumor
suppressor. This study tested whether the anti-tumor effect of beta-elemene was
associated with modulating C3orf21 expression in non-small cell lung cancer (NSCLC).

Materials and Methods: The impact of beta-elemene on C3orf21 expression in NSCLC
cells was quantified. The stable C3orf21 silencing A549 and over-expressing PC-9 cells
were established and their effects on the beta-elemene-attenuated proliferation, wound
healing and invasion of NSCLC cells as well as the expression of key regulators and signal
events were determined.

Results: Beta-elemene significantly up-regulated C3orf21 expression in NSCLC cells.
Beta-elemene treatment significantly attenuated the proliferation, wound healing and
invasion of NSCLC cells, which were significantly mitigated by C3orf21 silencing, but
enhanced by C3orf21 over-expression. Similar patterns of beta-elemene-modulated
cyclinD1, c-Myc, COX2, MMP2, MMP9, VEGF, PTEN and Notch1 expression were
detected in NSCLC cells.

Conclusions: Such data indicated that beta-elemene treatment attenuated the
malignancy of NSCLC cells by up-regulating C3orf21 expression. Our findings may
provide new mechanisms underlying the pharmacological action of beta-elemene.

Keywords: elemene injection, C3orf21, non-small cell lung cancer, malignancy, mechanisms
INTRODUCTION

Non-small cell lung cancer (NSCLC) is the most prevalent malignant lung tumors with high cancer-
related mortality worldwide (1, 2). At present, the major treatments for NSCLC are surgical
resection, target therapies and chemotherapy. Although these therapeutic strategies for NSCLC have
greatly prolonged the survival of patients, many NSCLC patients commonly develop resistance to
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target therapies (3). This, together with the fact that many
NSCLC patients are diagnosed at advanced stages, leads to a
low rate of five-year survival (4). Hence, discovery of new
therapeutic reagents and their acting mechanisms will be of
high significance in management of NSCLC patients.

Beta-elemene, a natural lipid-soluble plant drug, can be
extracted from traditional Chinese medicine Rhizoma
zedoariaem (5, 6). Previous studies have shown that beta-
elemene has potent anti-tumor activity in several types of
malignant tumors (7–10). More importantly, beta-elemene is
relatively safe and has been widely used as an effective anticancer
drug in humans (6, 11). Recent studies have shown that beta-
elemene can reduce the malignancy of NSCLC cells by inhibiting
their proliferation, migration and invasion (5, 8). Furthermore,
beta-elemene can sensitize glioblastoma multiforme cells to
gefitinib (12) and synergistically enhances its therapeutic effect
on inhibiting stemness and progression of lung cancer by down-
regulating EZH2 expression (13). However, the exact molecular
mechanisms underlying the therapeutic action of beta-elemene
remain largely indistinct, which may be an important obstacle
for improving and refining the clinical application of
beta-elemene.

Our previous study has indicated that chromosome 3 open
reading frame 21 (C3orf21) can regulate the development of lung
adenocarcinoma (14, 15). In this study, we tested the hypothesis
that beta-elemene could modulate C3orf21 expression to
attenuate the malignancy of NSCLC cells. The results indicated
that beta-elemene treatment reduced the proliferation, wound
healing and invasion of NSCLC cells by increasing C3orf21
expression. Such findings may provide new pharmacological
evidence to explain why beta-elemene inhibits the malignancy
of NSCLC.
MATERIALS AND METHODS

Beta-Elemene
Beta-elemene [1-methyl-1-vinyl-2,4-diisopropenyl-cyclohexane,
C15H24, molecular weight of 204.35, Figure 1 (16)] is a
sesquiterpene compound extracted from the dried rhizome of
Rhizoma curcumae. The beta-elemene injection (xx% of beta-
elemene, National Medical Product Administration approval
Number: Chinese medicine H10960114) was produced by
Dalian Huali Jingang Pharmaceutical (Dalian, China).
Bioinformatic Analysis of Beta-Elemene-
Associated Genes and Proteins
We searched the potential targets of beta-elemene using the
BATMAN-TCM (http://bionet.ncpsb.org/batman-tcm/)
database and STITCH (http://http://stitch.embl.de) database to
predict the beta-elemene-associated genes and proteins. The
BATMAN-TCM is an online bioinformatics analysis tool
specially designed for studying the molecular mechanisms of
traditional Chinese medicine, and is based on traditional Chinese
medicine ingredients’ target prediction (17). The STITCH also is
Frontiers in Oncology | www.frontiersin.org 2135
online Search Tool for Interacting Chemicals, which integrates
these disparate data sources for 430,000 chemicals into a single,
easy-to-use resource. The user can get a quick overview of the
potential effects of the chemical on its interaction partners by
STITCH database (18).
Cells
We obtained human NSCLC A549, PC-9, NCI-H1975, MSTO-
211H and NCI-H226 cells from Shanghai Institutes for
Biological Sciences of Chinese Academy of Sciences. We
identified them by STR. We grew them in RMPI1640 medium
(Invitrogen) containing 10% fetal bovine serum (FBS, Gibco) in
at 37°C 5% CO2. We treated the cells with, or without, the
indicated concentrations of beta-elemene (Dalian Huali Jingang
Pharmaceutical, Dalian, China) for varying time periods.
Lentivirus Transduction
We cloned the DNA fragments for the expression of control and
specific shRNAs (Table 1, Sangon Biotech, Shanghai, China) or
the cDNA for C3orf21 expression into pLKO-ZSG-Puro,
together with pCMV△R8.92 and pVSVG-I, to generate
different types of lentiviruses in 293T cells. Subsequently, we
transduced A549 cells with control or lentivirus for the
expression of C3orf21-specific shRNA (Addgene) at
multiplicity of infection of 4 in the presence of 8 mg/ml
hexadimethrine bromide (Sigma). Similarly, we transduced PC-
9 cells with control or lentivirus for the over-expression of
C3orf21. Three days later, we treated the cells with puromycin
(500 ng/ml) or blasticidin (10 mg/ml) to generate shCon,
sh-C3orf21 stably silencing A549 and control, C3orf21
FIGURE 1 | The structure of beta-elemene.
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over-expressing PC-9 cells, respectively. We tested the efficacy of
C3orf21 silencing or over-expression by fluorescent microscopy
and Western blot assays.
Quantitative Real-Time-PCR (qRT-PCR)
We extracted total RNA from the different groups of cells using
TRIzol (Invitrogen) and after qualification and quantification
using an Agilent Bioanalyzer 2100 (Agilent Technologies), we
reversely transcribed RNA samples into cDNAs using an iScript
cDNA Synthesis Kit (BIO-RAD). Subsequently, we quantified
the relative levels of mRNA transcripts by qRT-PCR using SYBR
Premix ExTaqTM II kit (TaKaRa) and specific primers (Table 1).
We performed RT-PCR in triplicate at 94°C for 10 s, and 40
cycles of 94°C for 5 s, 52°C for 30 s, 72°C for 15 s. We analyzed
the data using the 2−DDCt method.
CCK-8 Cell Assay
We determined the impact of beta-elemene on the proliferation
of NSCLC cells by CCK-8 assay (Beyotime Shanghai China).
Briefly, the cells (2–3.5 × 103/well) from each group were grown
in 96-well plates and treated in triplicate with beta-elemene at
different concentrations for 24 h. Their proliferation was
quantified with 10 ml/well of CCK-8 at 450 nm.

Wound Healing Assay
The different groups of cells (2 × 105 cells/well) were cultured in
6-well plate up to 80–90% confluence. The cell monolayer was
wounded with a sterile micropipet tip and treated with, or
without, the indicated doses of beta-elemene in serum-free
medium. The monolayer of cells was photoimaged before and
24 h after beta-elemene treatment under an Olympus CKX-41
inverted microscope. The migrated areas of cancer cells were
measured by Image J software.
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Transwell Invasion Assay
We examined whether beta-elemene could modulate NSCLC cell
invasion by transwell invasion assay using the BioCoat Matrigel
Invasion Chamber (Corning), according to the manufacturer’s
recommended instructions. In brief, the different groups of cells
(4 × 103 cells/well) were cultured in triplicate in the upper
chamber that had been coated with Matrigel (REF 3422,
Corning). The bottom chambers were filled with 10% FBS
medium. After 48-h culture, the invaded cells on the bottom
surface of the upper chamber membranes were fixed and stained
with crystal violet, followed by photoimaged. The invaded cells in
five fields of each membrane were counted.

Western Blot
We quantified the relative levels of interested proteins to the
control GAPDH by Western blot. Briefly, we harvested each
group of cells and lysed them in cell lysis buffer (Beyotime)
containing a cocktail of protease inhibitors (Rocha). After
qualification and quantification, we analyzed the cell lysates
(30 µg/lane) by SDS-PAGE, and transferred to polyvinyl dene
fluoride membranes (Millipore). After blocked, we incubated the
membranes with anti-C3orf21 (20913-1-AP, Proteintech), anti-
Notch1 (68309T), anti-GAPDH (2118S, Cell Signaling
Technology) and detected the bound antibodies with HRP-
conjugated second antibodies, followed visualizing using the
enhanced chemiluminescence (Pierce, Rockford, USA). We
quantified the data using Image J.
Statistical Analysis
Data are present as mean ± SD. The difference between two
groups was analyzed by Student’s T test, and the difference
among multiple groups was analyzed by Two-way ANOVA
using the GraphPad Prism 5.0 software. Statistical significance
was defined when a P-value of ≤0.05.
RESULTS

Bioinformatic Analysis of Beta-Elemene
Targeting Genes and Proteins
To search the potential genes and proteins associated with beta-
elememe, we performed bioinformatics analysis using beta-
elemene (6918391, PubChem CID) as a key word to search the
BATMAN-TCM database. With a cutoff score ≥5, we obtained
522 genes associated with beta-elemene (Figure 2). To further
search the beta-elemene-associated proteins, we used the
STITCH database and found that fifty proteins were associated
with beta-elemene, including XXYLT1, Notch and others
(Figure 3).

Beta-Elemene Enhances C3orf21
Expression in NSCLC Cells
C3orf21 has shown to act as a tumor suppressor of several types
of malignant tumors. To understand the antitumor effect of beta-
elemene, we tested whether beta-elemene treatment could
TABLE 1 | The sequences of primers and their applications.

Primer Sequences (5’-3’) Application

C3rof21- F ATGTTGCTGTGCTGACGGATA qRT-PCR
C3rof21- R GGAGTCACTGTAGTAGGTTCCC qRT-PCR
C3rof21-F Overexpression
C3rof21-R Overexpression
shC3orf21 Knockdown
cyclinD1-F TCTGTTCCTCGCAGACCTCCAGCA qRT-PCR
cyclinD1-R CCGTCCATGCGGAAGATC qRT-PCR
cMyc-F CAGCTGCTTAGACGCTGGATT qRT-PCR
cMyc-R GTAGAAATACGGCTGCACCGA qRT-PCR
COX2-F AGATCATCTCTGCCTGAGTATCTT qRT-PCR
COX2-R TTCAAATGAGATTGTGGGAAAATTGCT qRT-PCR
MMP-2-F GGCCCTGTCACTCCTGAGAT qRT-PCR
MMP-2-R GGCATCCAGGTTATCGGGGA qRT-PCR
MMP-9-F AGGCCTCTACAGAGTCTTTG qRT-PCR
MMP-9-R CAGTCCAACAAGAAAGGACG qRT-PCR
VEGF-F GAAGTGGTGAAGTTCATGGATGTC qRT-PCR
VEGF-R CGATCGTTCTGTATCAGTCTTTCC qRT-PCR
PTEN-F CCGTTACCTGTGTGTGGTGATATC qRT-PCR
PTEN-R GAATGTATTTACCCAAAAGTGAAACATT qRT-PCR
GAPDH-assay-F CGGATTTGGTCGTATTG qRT-PCR
GAPDH-assay-R GAAGATGGTGATGGGATT qRT-PCR
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modulate C3orf21 expression in several NSCLC cell lines.
Western blot analysis indicated that C3orf21 expression varied
in the different NSCLC cell lines (Figure 4A) and treatment with
beta-elemene (10 mg/ml) for 24 h significantly up-regulated
C3orf21 expression in these NSCLC cells (p < 0.05—p < 0.001,
Figure 4B). Given that A549 cells expressed relatively higher
levels of C3orf21 while PC-9 expressed lower levels of C3orf21,
we generated C3orf21 stably silenced A549 and C3orf21 over-
expressed PC-9 cells (Figures 4C, D) and these cell lines were
valuable for determining the role of altered C3orf21 expression
in regulating the beta-elemene-mediated anti-NSCLC effects.
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Beta-Elemene Inhibits the Proliferation
of NSCLC Cells, Dependent on
C3orf21 Expression
To investigate how altered C3orf21 expression modulated the
anti-NSCLC effect of beta-elemene, we first tested the impact of
beta-elemene on A549 and PC-9 cell viability by CCK-8 assays.
We found that treatment with beta-elemene significantly
decreased A549 and PC-9 cell viability in a dose-dependent
manner (Figures 5A, B). Furthermore, C3orf21 silencing
dramatically mitigated the inhibitory effects of beta-elemene on
the proliferation of A549 cells while C3orf21 over-expression
FIGURE 2 | The network of beta-elemene with the potential targeted genes. green rhombus represents beta-elemene; blue ellipse represent the targeted genes of
beta-elemene; red ellipse represent the XXYLT1.
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remarkably enhanced its inhibitory effects on the proliferation of
PC-9 cells (Figures 5C, D). These data indicated that beta-
elemene attenuated the proliferation of NSCLC cells, which was
regulated by C3orf21 expression.
Beta-Elemene Attenuates the Wound
Healing of NSCLC Cells Dependent on
C3orf21 Expression
To further explore how beta-elemene modulated the malignancy
of NSCLC cells, we tested whether altered C3orf21 expression
could change the effect of beta-elemene on the wound healing of
shNC-A549, sh-C3orf21-A549, control-PC-9 and C3orf21-PC-9
cells. While C3orf21 silencing significantly increased the wound
Frontiers in Oncology | www.frontiersin.org 5138
healing of shNC-A549 cells treatment with beta-elemene
significantly decreased their wound healing and the inhibitory
effects tended to be dose-dependent (Figure 6A). Similarly, beta-
elemene treatment also significantly attenuated the wound
healing of C3orf21-silenced A549 cells, but the wound healing
effects in the C3orf21-silenced A549 cells were significantly
stronger relative to their corresponding shNC-A549 cells.
Furthermore, beta-elemene treatment also significantly
minimized the wound healing of control-PC-9 cells and
further decreased it in the C3orf21-over-expressed PC-9 cells
(Figure 6B). A similar pattern of beta-elemene treatment on the
invasion of shNC-A549, sh-C3orf21-A549, control-PC-9 and
C3orf21-PC-9 cells was observed by transwell invasion assays
(Figures 6C, D). Collectively, C3orf21 silencing mitigated the
FIGURE 3 | A network of beta-elemene with the potential interacted proteins. Gray lines indicate protein-protein interactions; Green lines indicate compound–
protein interactions.
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inhibition of beta-elemene on the wound healing and invasion of
NSCLC while C3orf21 over-expression enhanced its inhibitory
effects in NSCLC cells.

Beta-Elemene Modulates the Expression
of Several Regulators and Signal Events
in NSCLC Cells, Dependent on
C3orf21 Expression
To further understand the pharmacological action of beta-
elemene in attenuating the malignancy of NSCLC cells, we
examined how beta-elemene treatment could modulate the
levels of Cyclin D1, c-Myc, COX2, MMP2, MMP9, VEGF and
PTEN as well as Notch1 mRNA transcripts and protein
expression in different groups of NSCLC cells. As shown in
Figure 7, C3orf21 silencing significantly increased the relative
levels of cyclin D1, c-Myc, Cox2, MMP2, MMP9, VEGF, but
decreased PTEN mRNA transcripts in A549 cells. Conversely,
C3orf21 over-expression had opposite effects on their expression
in PC-9 cells, relative to their controls. Treatment with beta-
elemene significantly decreased Cyclin D1, c-Myc, COX2,
MMP2, MMP9, PTEN, but increased VEGF mRNA transcripts
in both control and C3orf21-silenced A549 cells, relative to that
Frontiers in Oncology | www.frontiersin.org 6139
of untreated cells. In addition, beta-elemene treatment also
deceased Cyclin D1, c-Myc, COX2, MMP2, MMP9 and VEGF,
but increased PTEN mRNA transcripts in both control and
C3orf21-over-expressed PC-9 cells, compared with that in their
untreated cells. Western blot analysis indicated that C3orf21
silencing up-regulated Notch1 expression in A549 cells while
C3orf21 over-expression down-regulated Notch1 expression in
PC-9 cells (Figure 8). Treatment with beta-elemene significantly
reduced Notch1 expression in all groups of cells, particularly in
the C3orf21-over-expressed PC-9 cells. Together, such data
indicated that beta-elemene treatment modulated the
expression of several key regulators and signal events in
NSCLC cells, dependent on C3orf21 expression.
DISCUSSION

NSCLC is the most prevalent malignancy, and current
treatments for NSCLC include surgical resection, target
therapies and chemotherapy, which have side effects. Hence,
discovery of new safe and therapeutic reagents is urgently
needed. Previous studies have shown that beta-elemene has
A B

C D

FIGURE 4 | C3orf21 expression in NSCLC cells. (A) Western blot analysis of the relative levels of C3orf21 expression in the indicated NSCLC cells. (B) Beta-elemene
enhances C3orf21 expression in NSCLC cells. (C, D) Generation of C3orf21 stable silencing A549 cells and C3orf21 stable over-expressing PC-9 cells. Data are
representative images or expressed as the mean ± SD of each group from three biological experiments. *P < 0.05, **P < 0.01 and ***P < 0.001 vs. the control.
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potent antitumor activity and can minimize the drug resistance
of some types of tumor cells (19–21). In this study, we found that
beta-elemene significantly enhanced C3orf21 expression in
NSCLC cells. Beta-elemene treatment dramatically decreased
the proliferation, would healing and invasion of NSCLC cells,
which were mitigated by C3orf21 silencing, but enhanced by
C3orf21 over-expression in vitro. The significantly decreased
proliferation, wound healing and invasion of NSCLC cells
indicated that beta-elemene remarkably attenuated the
malignancy of NSCLC cells by up-regulating C3orf21
expression. Such novel findings extended previous observations
and support the notion that C3orf21 acts as a tumor suppressor in
inhibiting the development and progression of malignant tumors.
Moreover, C3orf21 over-expression further enhanced the
therapeutic effect of beta-elemene, which suggests that C3orf21
may be a new therapeutic target for intervention of NSCLC.

To understand the pharmacological action of beta-elemene,
we tested whether beta-elemene treatment could modulate the
expression of key regulators for cell behaviors and signal events
in NSCLC cells. We found that C3orf21 silencing remarkably
increased the relative levels of Cyclin D1, c-Myc, Cox2, MMP2,
MMP9, VEGF, besides Notch1, but decreased PTEN expression
Frontiers in Oncology | www.frontiersin.org 7140
while C3orf21 over-expression displayed opposite effects in
NSCLC cells. Such results extended previous observations that
C3orf21 inhibits the Notch signaling (22). It is well known that
Cyclin D1, c-Myc and Cox2 can promote the proliferation of
tumor cells (23) while PTEN can suppress the PI3K/AKT/mTOR
signaling (24). Furthermore, VEGF is an important angiogenic
factor and MMP2/9 are crucial for tumor cell motility (25). In
addition, decreased levels of C3orf21 expression is related to a
poor prognosis in patients with lung cancer (26). Functionally,
C3orf21 can prolong the O-linked xylose-glucose (14). The
inhibitory effect of C3orf21 on the Notch signaling is likely
associated with the differential O-linked glycosylation of its
extracellular domain (NECD) (27, 28). More importantly, we
found that beta-elemene treatment significantly decreased cyclin
D1, c-Myc, Cox2, MMP2/9 expression, which were attenuated by
C3orf21 silencing and enhanced by C3orf21 over-expression in
NSCLC cells. Interestingly, beta-elemene treatment significantly
increased VEGF expression, but decreased PTEN expression in
C3orf21-sielnced A549 cells. The same treatment had opposite
effects on the VEGF and PTEN expression in the C3orf21-over-
expressed PC-9 cells. It is possible that C3orf21 may through
the similar mechanisms, regulate the expression of other
A B

DC

FIGURE 5 | Beta-elemene inhibits the proliferation of NSCLC cells. A549, PC-9, A549-shNC and A549-shC3orf21 cells were treated with, or without, the indicated
concentrations of beta-elemene for 24 h and the cell proliferation was determined by CCK-8 assays. Data are expressed as the mean ± SD of each dose group from
three biological experiments. (A, B) The proliferation of A549 cells. (B) The proliferation of PC-9 cells. (C) The proliferation of A549-shNC and A549-shC3orf21 cells.
(D) The proliferation of PC-9-NC and PC-9-C3orf21 over-expression. *P < 0.05, **P < 0.01 and ***P < 0.001 vs. the control.
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molecules tested. We are interested in further investigating
how C3orf21 regulates the expression and functions of these
regulators and signaling during the development and progression
of NSCLC.
Frontiers in Oncology | www.frontiersin.org 8141
Collectively, our results revealed that beta-elemene treatment
dramatically enhanced C3orf21 expression in NSCLC cells. Beta-
elemene treatment significantly reduced the malignancy of
NSCLC cells, which were attenuated by C3orf21 silencing, but
A

B

C

D

FIGURE 6 | Beta-elemene attenuates the wound healing and invasion of NSCLC cells. (A) The wound healing of A549 cells. (B) The wound healing of PC-9 cells.
(C) The invasion of A549 cells. (D) The invasion of PC-9 cells. Data are representative images or expressed as the mean ± SD of each group from three biological
experiments. **P < 0.01 and ***P < 0.001 vs. the control.
May 2021 | Volume 11 | Article 571476

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cai et al. Beta-Elemene Reduces Malignancy of NSCLC
A B

C D

E

G

F

FIGURE 7 | Beta-elemene modulates the expression of several regulators and signal events in NSCLC cells, dependent on C3orf21 expression. The indicated
NSCLC cells were treated with, or without, beta-elemene for 24 h and the relative levels of MMP-2 (A), MMP-9 (B), VEGF (C), PTEN (D) Cyclin (E), C-Myc (F), and
COX2 (G) in the indicated NSCLC cells were quantified by RT-PCR. Data are present as mean ± SD of each group from at least three biological experiments. **P <
0.01 and ***P < 0.001 vs. the control.
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enhanced by C3orf21 over-expression. Similarly, we found that
beta-elemene treatment significantly altered the expression of
key regulators of malignant behaviors and signal events, which
were modulated by altered C3orf21 expression in NSCLC cells.
Thus, our findings may provide new insights into the
pharmacological action of beta-elemene in inhibiting the
development and progression of NSCLC.
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Background: Blood supply, which is crucial for nutrition and drug delivery, was
determined by microvessel density as well as the diffusion distance between vessels
and cancer cells. Therefore, we evaluated the distance from microvessels to cancer cells
(Dmvcc) and its role in the prognosis of non-small cell lung cancer (NSCLC) patients.

Methods: Patients with primary NSCLC were retrospectively analyzed. The tumor
samples were immunochemically stained with CD31 to visualize the microvessels. The
Dmvcc was defined as the mean distance from each microvessel to its nearest cancer cell
in the “hot-spot” of an individual patient. The patients were stratified into short- and long-
distance groups using five strategies, including dichotomy by the median value, optimal
cutoff, trichotomy, quartation and per-10 µm increase. The correlation between the Dmvcc

and survival was evaluated by using univariate and multivariate analyses with various
Dmvcc strategies.

Results: In total, 100 patients were analyzed. The median value of Dmvcc was 13.1 mm
(ranged, 1.6 to 269.7 mm; mean value, 24.4 ± 33.5 mm). The optimal cutoff value of Dmvcc

for predicting survival outcome was 20 mm. Dmvcc was significantly related to overall
survival (OS) with all the five categories (p = 0.001–0.000004) and progression-free
survival (PFS) categorized by optimal cutoff value (p = 0.024), trichotomy (p = 0.041) and
per-10 µm increase (p = 0.040) after adjusting for other factors. Patients with longer Dmvcc

(≥20 mm) were observed to have poor survival outcomes (OS: HR = 13.5, 95CI: 4.42–
41.18, p = 0.000005; PFS: 3.26, 95CI: 1.56–6.81, p = 0.002). A high Dmvcc per-10 µm
was associated with a significantly increased risk of cancer-related death and progression
by 98% (p = 0.0001) and 30% (p = 0.044), respectively.

Conclusion: The NSCLC tissues had varying distances from microvessels to cancer
cells, and long distances were strongly associated with poor survival.

Keywords: non-small cell lung cancer, prognosis marker, distance from microvessel to cancer cell, progression
free survival, overall survival
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INTRODUCTION

Lung cancer is common and has high incidence and mortality
globally (1). Non-small cell lung cancer (NSCLC) accounts for
80–90% of all lung cancers. Angiogenesis contributes to lung
cancer development by supplying oxygen and nutrients and
driving growth and metastasis (2). Accordingly, numerous
factors related to angiogenesis-related molecules and
morphological parameters have been exploited as potential
prognostic factors for NSCLC. The prominent examples of
architectural factors are microvessel area (MVA) and
microvessel density (MVD). These two quantitative markers of
the microvessels in tumor tissues have been the focus of research
(3–5). However, their role in survival prediction remains
controversial (6–9). One explanation for this discrepancy is
that several vessels were separated from cancer cells by
intratumoral stroma. Therefore, cancer cells may not receive
adequate oxygen and nutrients if they lie too far from vessels,
even when vascularization is dense (10–12).

In several solid tumors, the stroma is desmoplastic and filled
with a thick extracellular matrix, including collagen, fibronectin,
and laminins (9, 13). The stroma separates cancer cells from the
vasculature (14–16). Before diffusion into cancer cells, oxygen,
nutrition, and antitumor drugs should cross the stiff stroma and
overcome the hamper by increasing interstitial fluid pressure and
lengthening transport distance (9, 17, 18). The inadequate supply
of oxygen and antineoplastic agents may induce hypoxia and
chemoresistance, ultimately driving tumor progression (19–22).
Therefore, we hypothesized that the distance between nutrition
and drug transport is a promising factor for predicting the
prognosis of NSCLC. However, the diffusion distance in tumor
tissues has not been measured, and its correlation with survival
outcomes also needs to be evaluated. In the present study, we
measured the distance between microvessels and cancer cells
(Dmvcc) and evaluated its role in predicting the prognosis of
patients with NSCLC.
MATERIALS AND METHODS

Patients and Samples
This retrospective study reviewed NSCLC patients treated at the
Zhejiang Cancer Hospital (Hangzhou, China) from July 2011 to
October 2012. The patients included (1) were histologically
diagnosed with primary NSCLC, (2) underwent surgical
resection as primary treatment, (3) had available biopsied tissue
of the primary lesion collected before chemotherapy, and had
their full information, including clinicopathologic characteristics
and survival outcomes, available. The data on the follow-up was
updated on July 20th, 2016. Thoracic and abdominal CT,
abdominal ultrasonography, MRI, and chest radiography were
used to monitor tumor recurrence. Tumor tissues were obtained
from the tissue bank of the Zhejiang Cancer Hospital. This study
was approved by the Ethics Committee of Zhejiang Cancer
Hospital (No. IRB-2017-67), and it adhered to the ethical
principles of the Declaration of Helsinki. Written informed
consent was obtained from all the patients.
Frontiers in Oncology | www.frontiersin.org 2146
Immunohistochemical Staining
One specimen of resected lung cancer tumor tissue from each
individual was collected. Microvessels were detected by
immunohistochemical (IHC) staining of vascular endothelial
cells for the CD31 antigen (Ca# 13063, Wuhan Goodbio
Technology Co., Ltd) of vascular endothelial cells. In brief,
sections of paraffin-embedded tumor tissues (5 mm thick) were
de-paraffinized and rehydrated. The deparaffinized sections were
incubated with the primary antibody (rabbit polyclonal antibody,
Proteintech, Rosemont, USA) at a dilution of 1:300 overnight at
4°C after pretreatment with Dako EnVisionTM FLEX Target
Retrieval Solution (high pH, pH 9.0, Ca# K5007, Dako) at 95°C
for 20 min for antigen retrieval. The sections were stained with
secondary antibodies for 30 min at room temperature. Next, the
color was developed with 3,3’-diaminobenzidine in Tris–HCl
(50 mmol/L, pH 7.5) containing 0.005% hydrogen peroxide,
followed by counterstaining with hematoxylin.

Measurement of Dmvcc
Dmvcc was defined as the distance from each microvessel to its
nearest neighbor cancer cell.

Microvessels and “Hot Spot”
The image analysis procedure is illustrated in Figure S1.
Microvessels were identified based on specific architectures; the
lumen lined by endothelial cells was positively visualized with
anti-CD31 staining. Microvessels in the tumor tissue were
observed with a fluorescence microscope (Nikon Eclipse TI-
SR) equipped with a Nikon DS-U3 digital camera controller.
After an overview of the section, the field with the highest density
of microvessels was selected as the “hot-spot” field of each
section according to a previously reported method (23).

Distance Measure
The distances between each tumor microvessel and its near cancer
cells were dependently measured at 200× magnification by two
experienced investigators using the Image J software (Wayne
Rasband, National Institute of Health, USA), and the shortest
distance was identified as the Dmvcc of individual tumor vessel.
Subsequently, the mean Dmvcc of all vessels in the “hot spot” field
of individual patients was calculated as the patient’s Dmvcc.

Statistical Analyses
Statistical analysis was performed using SPSS Statistics (Version
23.0, IBM Inc., New York, USA), R Studio software (Version
0.99.486, R Studio, Inc.), and Prism 7 (GraphPad Software Inc.,
La Jolla, CA, USA). Where appropriate, linear regression analysis
(Pearson correlation coefficient), analysis of variance (ANOVA),
and Student’s t-tests were used. Overall survival (OS) and
progression-free survival (PFS) were defined as the interval
between the first diagnosis and death or the first evidence of
disease progression, respectively. The Kaplan–Meier method was
used for the univariate analysis of OS and PFS, and they were
compared using the log-rank test. The discriminative
performance of the prognostic survival model was evaluated
using the concordance index (C-index). To determine the
optimal cutoff value of Dmvcc for OS and PFS prediction,
June 2021 | Volume 11 | Article 632352
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values from 2–50 µm (step size = 1 µm) were taken as 49
potential cutoff values. The patients were stratified into the
long or short Dmvcc group according to one of the 49 cutoff
values, and the HRs of OS and PFS were calculated using the log-
rank test. The cutoff value with the most significant correlation
between OS and PFS was defined as the optimal cutoff value. The
correlation between Dmvcc and survival outcome (OS or PFS)
was examined using various categorical strategies of Dmvcc:
(1) dichotomy by median value; (2) dichotomy by optimal
cutoff; (3) trichotomy: bottom tertile, middle tertile, and top
tertile; (4) quartation: 1st, 2nd, 3rd, and 4th quartile; (5) per-
10 µm increase: 0–10 µm, 10–20 µm, 20–30 µm, 30–40 µm,
40–50 µm. A stepwise multivariate Cox proportional hazards
regression was performed to further test for the independence
of Dmvcc measurements from potential prognostic variables
(such as age, sex, smoking history, tumor histology, tumor
differentiation, disease stage, or chemotherapy). A series of
predetermined subgroup analyses was conducted to evaluate
the prognostic value of Dmvcc in sub-populations with various
clinical pathologies, including age, sex, smoking history,
tumor histology, age, disease stage, tumor differentiation,
or chemotherapy. All tests were two-sided, and statistical
differences were considered significant at p <0.05.
RESULTS

Patients
A total of 100 patients (74 men) with 54 adenocarcinomas and 43
squamous cell carcinomas were included. The age of the patients
ranged from 40 to 79 years, with a median age of 59 years. The
TNM stage was I/II and III/IV in 71 and 29 subjects, respectively.
A total of 1, 47, and 49% of the patients had well-, moderately,
and poorly differentiated tumors, respectively. During the
follow-up period (median, 51.1m; range, 45.5 to 60.0m), 29
patients died (29%) and 44 experienced recurrence (recurrence
outcome was unavailable for eight subjects). Of the 81 patients
who received chemotherapy, 83% received single-line platinum-
based regimens: GP regimen (45 patients, gemcitabine plus
cisplatin), DP regimen (nine patients, docetaxel and cisplatin),
GC regimen (four patients, gemcitabine plus cisplatin), NP
regimen (four patients, vinorelbine plus cisplatin), and PC
regimen (five patients, paclitaxel plus carboplatin).

Dmvcc
The microvessels were visualized by IHC staining of the CD31
antigen. As shown in Figure 1A, the microvessel was surrounded
by tumor stroma and away from the cancer cells. A total of 32–
569 vessels (mean: 112 ± 77; median: 91) per patient were
investigated. The individual Dmvcc ranged from 1.61 to 269.70
mm (mean value of 24.37 mm ± 33.45 mm and 1st, 2nd, and 3rd
quartile values of 7.34, 13.15, and 30.76 mm). Most of the patients
(93 of 100) had a mean Dmvcc of less than 50 mm. In all the
participants, we recorded a significant correlation between Dmvcc

and the pathological type (r = 0.202, p = 0.044), and a longer
Dmvcc was observed in the tissues of squamous carcinoma than in
Frontiers in Oncology | www.frontiersin.org 3147
those of adenocarcinoma (33.7 mm ± 44.6 mm vs. 17.2 mm ± 19.6
mm, Figure 1B). However, no significant correlations with the
other traits were detected.

Correlation of Dmvcc and Survival Outcome
Of the 49 candidate cutoff values (from 2 to 50 mm, step = 1 mm),
41 (83.7%, 7 mm, and 9–48 mm), and seven (14.3%, 16–21 mm,
and 24 mm) played significant roles in predicting OS and PFS,
respectively (Figure 2A). A Dmvcc of 20 mm was defined as the
optimal cutoff value for both OS (HR = 7.36, 95CI = 2.92–18.58,
p = 0.00002) and PFS (HR = 1.95, 95CI = 1.09–3.48, p =
0.00006) (Figure 2B).

To determine the prognostic role of Dmvcc, five sets of
categorical continuous Dmvcc, such as median-value dichotomy,
optimal cutoff value dichotomy, tertiles, quartile, and per-
10-µm increase, were tested. Poor survival outcomes (both OS
and PFS) were noted in patients with long Dmvcc than in
those with short Dmvcc based on any of the five stratification
conditions (OS: HR = 1.93–7.36, p = 0.001–0.00004; PFS:
HR = 1.23–1.95, p = 0.041–0.024) (Table 1). In analyses based
on adjustments for age, sex, smoking history, pathology,
differentiation, stage, and chemotherapy, the long Dmvcc

predicted poor survival with median HRs of 1.98–13.50 for OS
and 1.30–3.26 for PFS based on various categorical strategies
(Figure 3). After progressive adjustment for various risk factors,
Dmvcc remained significantly associated with NSCLC-related
death or progression. For a per-10 µm increase in Dmvcc,
the HRs for NSCLC-related death and progression were 1.98
(95CI: −1.40–2.79) and 1.30 (95CI: −1.01–1.69) in the final
multivariable model (Figure 3). The median PFS was
significantly shortened from 35.1 months (95%CI: 22–1-48.1
months) for short Dmvcc (<20 µm) patients to 15.1 months (95%
CI: 8.6–21.6 months) for long Dmvcc (≥20 µm) patients (p =
0.024, Figure 2B). As disclosed in the predetermined subgroup
analysis, Dmvcc was a promising prognostic marker of OS for
older ages (age ≥60 years), younger ages (age <60 years),
male sex, squamous carcinoma, adenocarcinoma, poor tumor
differentiation, advanced stage, early stage, smoking or prior
smoking, and prior chemotherapy, as well as a promising
prognostic marker of PFS in patients who are male, have
squamous carcinoma, are current or former smokers, and have
had chemotherapy (Figure S2).

Long Dmvcc Independently Indicated
Poor Prognosis
Several multivariate analyses (Table 2) of features, including sex,
smoking history, tumor histology, age, disease stage, tumor
differentiation, Dmvcc, and chemotherapy, were performed with
five multivariable models based on different stratified strategies
of Dmvcc. Dmvcc was found to be an independent predictor of
tumor-related death (p = 0.001–0.000005) or progression (p =
0.044–0.002) in all five models. The model based on the 10-mm-
stratified Dmvcc was disclosed as the optimal model for survival
prognosis, with the highest c-index values of 0.830 and 0.771 for
OS (HR = 1.98, 95CI: 1.40–2.79, p = 0.0001) and PFS (HR = 1.30,
95CI: 1.01–1.69, p = 0.044), respectively. In addition, an
advanced stage was suggested as another independent
June 2021 | Volume 11 | Article 632352
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prognostic factor of OS (HR = 2.51–3.33, p = 0.027-0.008), but it
showed no significant correlation with PFS (Table 2).
DISCUSSION

Due to the role of the extracellular matrix in NSLC development,
subjects with rich stroma were investigated for poor survival
(24). Poor survival can be attributed to various profiles of stroma
or alterations of rich stroma, such as the proportion of stroma,
fibrosis extent (25), impaired vascularization (26, 27), and
immune infiltration of the peritumoral stroma (28) and the
evidence related to the aforementioned contributors has been
explored. For instance, squamous cell carcinoma of patients with
fibrous stroma demonstrated a more invasive phenotype and was
associated with a significantly poor prognosis (25). However, the
Frontiers in Oncology | www.frontiersin.org 4148
impact of the elongated distance of diffusion on survival
outcomes has not been focused on. Therefore, the correlation
between perfusion distance and patient survival was evaluated in
the present study. As expected, a long Dmvcc was predictive of
poor survival. This suggests that the long distances from vessels
to cancer cells partly affected patient survival.

A short diffusion distance between cancer cells and
microvessels is crucial for efficient nutrient supply. Enlarged
perfusion paths may induce an insufficient supply of oxygen,
nutrition, and anti-tumor drugs, ultimately improving tumor
growth (29, 30). However, the diffusion distance in the tumor
tissues of patients and their correlation with survival outcomes
have seldom been reported. Therefore, in the present study, we
developed a method to evaluate the distance of nutrient diffusion
and examine its role in prognostic prediction. Because the concept
of the “distance between cancer cells and vessels” is seldom
reported, no definition and measurement methodology can be
A

B

FIGURE 1 | Evaluation of Dmvcc in NSCLC tissue sections. (A) Immunostaining of endothelial cells for CD31 (brown) with long Dmvcc (left panel) and short Dmvcc (right
panel) in NSCLC tissue sections. Bar: 50 mm, (B) Correlates of Dmvcc associated with age, gender, smoking history, tumor histology, tumor differentiation, stage, and
chemotherapy regimens. The mean value (red full-line) and its 95%CI (red dotted line) are shown.
June 2021 | Volume 11 | Article 632352
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used. We defined Dmvcc as the distance between each microvessel
and its nearest cancer cell for the following two reasons. First, the
vessel was the center of the blood perfusion area; thus, the
distance was measured based on each vessel; moreover, the
Frontiers in Oncology | www.frontiersin.org 5149
nearest distance was easy to measure instead of the median or
farthest distance. As we disclosed, the mean Dmvcc value of most
patients ranged from 2 to 50 mm, and the mean Dmvcc in half of
the patients was <13 mm. It was really interested that longer Dmvcc
A

B

FIGURE 2 | Correlation of Dmvcc and survival outcome. (A) Significant test: the hazard ratios (HRs, red full-line, long- vs short-Dmvcc) of OS (right panel) and PFS
(left panel) for various cutoff values of Dmvcc (from 2 to 50 mm at a step of 1 mm, bottom of the figures) were demonstrated with its upper limit (upper dotted-line) and
lower limit (lower dotted-line) of 95% CI. Additionally, the c-index values were displayed as blue full-line. The optimal cutoff-value was demonstrated by a solid arrow.
(B) Prognostic significance of Dmvcc in NSCLC patients. Kaplan–Meier survival curves show OS (left panels) and PFS (right panels) for patients presenting a long
(full line) or short (dotted line) Dmvcc dichotomized by the optimal cutoff-value (20 mm, B).
TABLE 1 | Association of Dmvcc with survival outcome using various categorical strategies.

Categorical Dmvcc OS PFS

HR, 95CI P-value C-index HR, 95CI P-value C-index

Dichotomy by median value (13 µm)* 4.51, 1.83–11.12 0.001 0.67 1.72, 0.95–3.09 0.072 0.59
Dichotomy by optimal cutoff (20 µm)* 7.36, 2.92–18.58 0.00002 0.74 1.95, 1.09–3.48 0.024 0.61
Trichotomy 2.84, 1.64–4.91 0.0002 0.72 1.44, 1.02–2.04 0.041 0.61
Bottom tertile 1 1
Middle tertile 1.59, 0.47–5.44 0.459 1.45, 0.68–3.10 0.334
Top tertile 6.32, 2.13–18.78 0.0009 2.07, 1.03–4.18 0.042

Quartation 2.30, 1.54–3.46 0.00006 0.74 1.27, 0.99–1.63 0.060 0.61
1st quartile 1 1
2nd quartile 0.93, 0.19–4.65 0.932 0.91, 0.36–2.25 0.830
3rd quartile 2.91, 0.77–10.98 0.115 1.85, 0.83–4.15 0.134
4th quartile 7.95, 2.28–27.74 0.001 1.81, 0.83–3.95 0.137

Per-10 µm increase 1.93, 1.46–2.56 0.000004 0.76 1.23, 1.01–1.51 0.040 0.63
0–10 µm 1 1
10–20 µm 0.73, 0.13–3.99 0.715 1.25, 0.52–3.01 0.624
20–30 µm 4.86, 1.46–16.18 0.010 2.24, 0.998–5.02 0.051
30–40 µm 7.12, 1.76–28.82 0.006 2.53, 0.80–8.04 0.114
40–50 µm 10.69, 3.08–37.15 0.0002 2.00, 0.80–5.03 0.140
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was found in the tissues of squamous carcinoma than
adenocarcinoma. It may be attributed to distinct tumor-
accociated fibroblasts (TAFs), the cell built extra-cellular matrix,
between squamous carcinoma and adenocarcinom. It was
reported that TAFs in squamous carcinoma exhibited higher
levels of matrix rigidity related factors, such as FAK, b1
expression, and ERK1/2 than TAFs in adenocarcinom. Matrix
stiffening induced a larger TAF accumulation in squamous
carcinoma compared with adenocarcinom. Therefore, a larger
proportion of matrix caused longer distance were observed in
squamous carcinoma (31).

The optimal cutoff value of Dmvcc was determined by a test
that included 49 candidate values (2–50 mm, step = 1 mm). As a
result, 20 mm was determined to be the optimal cutoff value.
There were 58 patients with short Dmvcc (<20 mm) and 42
patients with long Dmvcc (≥20 mm). Five categorical strategies,
such as per-10mm increase, quartation, trichotomy, dichotomy
by median value (13 µm), and dichotomy by optimal cutoff
(20 µm), were used to evaluate the role of the Dmvcc in survival
prediction. A long Dmvcc significantly predicted shorter OS of
patients based on all five categorical strategies. A significantly
shorter PFS was observed in patients with long Dmvcc than in
those with short Dmvcc (<20 µm, or per-10 µm decreased). As
disclosed, the risks of cancer-related death and progression were
increased by 93% (HR = 1.93, 95CI: 1.46–2.56, p = 0.000004) and
23% (HR = 1.23, 95CI: 1.01–1.51, p = 0.040), respectively, per 10
µm increase in Dmvcc. Moreover, Dmvcc and stage were also
proven to be independent prognostic factors based on five
multivariate analysis models. The models that were based on
Dmvcc dichotomized by the optimal value (c-index: 0.827 of OS
and 0.772 of PFS) and every 10 mm increase (c-index: 0.830 of OS
and 0.771 of PFS), respectively, were recommended as the best
two prognostic prediction models.
Frontiers in Oncology | www.frontiersin.org 6150
These results can be attributed to the impaired distribution of
oxygen, nutrition, and anticancer drugs hampered by prolonged
drug penetration from blood vessels to cancer cells. In tumor
tissue, microvessels are separated from cancer cells by
abnormally dense stroma, which consists of high levels of
collagenous fibers and stabilized polysaccharide networks
(hyaluronate and proteoglycans) (20). Above all, a long Dmvcc

indicates poor blood-supply efficiency. The diffusion of oxygen
was inversely proportional to the square value of the perfusion
distance in silicon (32). In vivo, at a distance of 50 mm from the
vessel, the oxygen partial pressure (pO2) was decreased by
approximately 40 and 50% in xenografts of breast cancer and
NSCLC cancer (33, 34). In addition, pO2 decreased by 100% at a
distance of 70 mm from the vessels in breast cancer xenografts
(35). The diffusion of glucose also decreased by approximately
40% at a diffusion distance of 100 mm (33). The hypoxic
microenvironment is widely accepted as a driver of tumor
growth and the cause of therapy resistance (36–39).

The mobility of drugs in penetrating the extracellular matrix is
also limited by cell–cell adhesion, high interstitial fluid pressure,
lack of convection, drug metabolism, and binding (9, 40). Recent
data suggest that inefficient delivery of antineoplastic drugs in the
tumor environment is a novel and important contributor to
chemoresistance (19, 20, 41–43). A prolonged distance from
blood vessels to cancer cells is a significantly difficult route for
antitumor agent delivery. This led to a steep decrease in the drug
concentration around cancer cells. As reported, the intensity of
doxorubicin decreased to half from the nearest blood vessel at a
distance of 40–50 mm (44). The incomplete intratumoral
distribution of gemcitabine and fluorouracil, which induced the
reverse impact of the antitumor effect, has been addressed in vivo
(21, 45). Our study showed a significant association between a
long Dmvcc and poor survival outcomes of chemotherapy in
FIGURE 3 | Adjusted correlation of Dmvcc and survival outcome. The hazard ratios (HRs) of OS (upper panel) and PFS (lower panel) for various categorical strategies
of Dmvcc: (1) dichotomy by median value; (2) dichotomy by optimal cutoff; (3) trichotomy: bottom tertile, middle tertile, and top tertile; (4) quartation: 1st, 2nd, 3rd, and
4th quartiles; (5) per-10 µm increase: 0–10, 10–20, 20–30, 30–40, and 40–50 µm after successively adjusting by age, sex, smoking history, tumor histology, tumor
differentiation, disease stage, and chemotherapy.
June 2021 | Volume 11 | Article 632352
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patients with NSCLC. It has been suggested that Dmvcc is a
surrogate biomarker for the prediction of survival outcomes in
NSCLC patients.

There are several limitations to the present study that should
be addressed. First, perfusion distance was the only contributor
to poor outcomes; other factors, such as fibrosis extent and
impaired microvessel pattern, should be evaluated. Moreover,
only intratumor vessels in the field of “hot spots” were limited to
capacity. This may have led to sampling bias. As a novel
characteristic of the perfusion system, the definition and
measurement of Dmvcc need to be validated. At last, it was
expected that short distance between cancer and blood vessels,
would facilitate cancer cells accessing to vessels and improve the
chance of metastasis and cause worse patience survival. However,
the correlation between Dmvcc and metastatic tumor was not
estimated in the present study.

In conclusion, the present study proves that a long distance
from an intratumor microvessel to cancer cells is an independent
predictive factor of poor survival outcomes in NSCLC patients. It
provides clinical insights into the chemoresistance caused by the
Frontiers in Oncology | www.frontiersin.org 7151
long penetration distance-induced impaired accumulation of
antineoplastic agents in tumors.
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TABLE 2 | Independent prognostic factors of NSCLC patients based on various multivariate analysis models.

Factors Model 1 (dichotomy by
median value)

Model 2 (dichotomy by
optimal value)

Model 3 (Trichotomy) Model 4 (Quartation) Model 5 (Per 10 mm
increase)

HR (95CI) P
value

C-
index

HR (95CI) P value C-
index

HR (95CI) P
value

C-
index

HR (95CI) P
value

C-
index

HR (95CI) P
value

C-
index

OS
Dmvcc 5.11 (1.91–

13.64)
0.001 0.790 13.5 (4.42–

41.18)
0.000005 0.827 3.46 (1.71–

7.03)
0.0006 0.792 2.53 (1.60–

4.01)
0.0001 0.812 1.98 (1.40–

2.79)
0.0001 0.830

Age 1.34 (0.62–
2.93)

0.459 2.45 (1.00–
6.02)

0.050 1.67 (0.72–
3.90)

0.235 1.67 (0.73–
3.78)

0.222 2.05 (0.77–
5.42)

0.148

Gender 2.64 (0.31–
22.47)

0.375 7.32 (0.76–
70.55)

0.085 4.89 (0.54–
44.08)

0.157 4.08 (0.46–
36.03)

0.206 – 0.935

Smoking
History

2.53 (0.31–
20.61)

0.384 3.68 (0.44–
30.6)

0.229 4.43 (0.54–
36.73)

0.168 3.91 (0.47–
32.31)

0.206 – 0.937

Pathology 0.45 (0.16–
1.23)

0.121 0.33 (0.11–
1.02)

0.055 0.43 (0.15–
1.23)

0.114 0.41 (0.14–
1.18)

0.098 0.51 (0.17–
1.58)

0.243

Differentiation 1.06 (0.47–
2.39)

0.887 1.08 (0.46–
2.56)

0.856 0.96 (0.43–
2.15)

0.912 0.99 (0.43–
2.27)

0.980 1.16 (0.46–
2.92)

0.756

TNM Stage 2.51 (1.11–
5.68)

0.027 3.33 (1.38–
8.04)

0.008 2.92 (1.24–
6.85)

0.014 2.85 (1.23–
6.57)

0.014 3.32 (1.27–
8.67)

0.014

Chemotherapy 3.64 (0.72–
18.54)

0.120 4.93 (0.84–
28.93)

0.077 1.76 (0.35–
8.96)

0.495 2.30 (0.45–
11.75)

0.312 1.90 (0.34–
10.51)

0.462

PFS
Dmvcc 2.52 (1.24–

5.11)
0.011 0.763 3.26 (1.56–

6.81)
0.002 0.772 1.71 (1.11–

2.66)
0.016 0.763 1.45 (1.08–

1.96)
0.015 0.762 1.30 (1.01–

1.69)
0.044 0.771

Age 0.82 (0.43–
1.56)

0.540 1.09 (0.54–
2.19)

0.815 0.86 (0.44–
1.70)

0.672 0.87 (0.45–
1.70)

0.691 0.97 (0.48–
1.97)

0.934

Gender 2.75 (0.75–
10.13)

0.127 3.95 (1.01–
15.47)

0.049 2.83 (0.76–
10.60)

0.121 2.80 (0.75–
10.48)

0.126 3.11 (0.67–
14.45)

0.147

Smoking
History

1.72 (0.48–
6.20)

0.410 1.78 (0.49–
6.44)

0.376 2.16 (0.59–
7.84)

0.243 1.90 (0.52–
6.87)

0.329 1.91 (0.41–
8.84)

0.407

Pathology 0.39 (0.16–
1.00)

0.050 0.44 (0.18–
1.10)

0.078 0.39 (0.15–
1.01)

0.052 0.40 (0.15–
1.02)

0.054 0.45 (0.17–
1.22)

0.118

Differentiation 0.60 (0.30–
1.18)

0.139 0.59 (0.30–
1.16)

0.126 0.57 (0.29–
1.12)

0.102 0.58 (0.29–
1.14)

0.116 0.60 (0.29–
1.23)

0.162

Stage 2.86 (1.48–
5.51)

0.002 3.56 (1.76–
7.20)

0.000 2.82 (1.45–
5.49)

0.002 2.92 (1.50–
5.65)

0.002 2.96 (1.44–
6.06)

0.003

Chemotherapy 2.78 (0.92–
8.43)

0.070 2.48 (0.84–
7.32)

0.100 2.00 (0.68–
5.85)

0.206 2.10 (0.72–
6.13)

0.174 2.06 (0.69–
6.20)

0.197
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