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Editorial on the Research Topic

Specific macroscopic brain changes in psychotic disorders

Psychotic disorders, covering mainly the schizophrenia spectrum and substance-induced

psychosis, affect more than 1% of the population, are often chronic, and comprise debilitating

symptoms like hallucinations, delusions, and cognitive impairments (American Psychiatric

Association, 2013; McCutcheon et al., 2020). In recent years, many studies and meta-analyses

have shown an association between psychotic disorders and macroscopic brain changes,

particularly changes of brain structure, function, perfusion, and metabolism measured by

magnetic resonance imaging (MRI) and positron emission tomography (PET) (McCutcheon

et al., 2018; van Erp et al., 2018; Brandl et al., 2019; Gong et al., 2020; Sukumar et al., 2020).

However, psychotic disorders overlap with other psychiatric disorders on the level of both

symptoms and macroscopic brain changes (Goodkind et al., 2015; Kebets et al., 2019; Sha et al.,

2019).

Therefore, we are yet to fully understand the macroscopic brain changes that are specific

to psychotic disorders. Investigating changes specific to psychotic disorders may not only

improve our pathophysiological and mechanistic understanding, but also—in the mid to

long term—enable imaging-based differential diagnosis at early disease stages, and, thereby,

informing the development of prognostic markers and specific treatment strategies. To achieve

this, transdiagnostic approaches are necessary, for example comparisons of macroscopic brain

changes in psychotic disorders, such as schizophrenia, with those in affective disorders, such as

bipolar disorder or major depression (Brandl et al., 2019).

This Research Topic provides original studies and reviews examining macroscopic brain

changes that are specific to psychotic disorders. The term “psychotic disorders” is understood

as in DSM-5, covering mostly the schizophrenia spectrum and substance-induced psychosis

(American Psychiatric Association, 2013). “Macroscopic brain changes” is understood as

alterations of brain regions or systems in themillimeter/centimeter scale, which are detectable by

in-vivo brain imaging. Finally, “specific” means that changes are more pronounced in psychotic

disorders than in other psychiatric disorders, e.g., bipolar disorder.

Rootes-Murdy et al. compared gray matter alterations and symptom profiles of patients

with schizophrenia and patients with bipolar I disorder, using a large structural MRI

dataset. They showed that in general, patients with schizophrenia tend to have more

severe symptom profiles and gray matter alterations, particularly in the temporal poles,

than patients with bipolar I disorder. However, diagnostic boundaries were not clearly
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related to structural differences or distinct symptom profiles. They

concluded that both disorders may track along an extensive spectrum

of symptoms and brain correlates.

Schaub et al. started from observations that seasonal birth in

winter and spring increases the risk of psychiatric disorders, for

example schizophrenia and depression, possibly through pathological

processes during neurodevelopment. They tested the effects of

season of birth on gray matter volume (based on structural MRI)

in a transdiagnostic sample of patients with schizophrenia and

depression. They observed an effect of season of birth only in

depression, but not in schizophrenia. Interestingly, and contrary to

their expectations, hippocampal volume was lower in summer-born

depressed individuals compared to winter-born individuals.

Takahashi et al. studied whether Heschl’s gyrus duplication,

a gyrification variant with increased prevalence in schizophrenia,

is also present in bipolar disorder and major depression. Using

structural MRI data, they showed a significantly higher prevalence

of Heschl’s gyrus duplication in patients with bipolar disorder, but

not in patients with major depression, compared to healthy subjects.

They concluded that the neurodevelopmental pathology of Heschl’s

gyrus duplication partly overlaps between schizophrenia and bipolar

disorder, while its contribution in major depression appears distinct.

Cao et al. investigated the dyssynchrony of local brain activation

in schizophrenia via a surface-based two-dimensional regional

homogeneity approach, using resting-state fMRI data. They identified

multiple aberrances both at the global and the local level, as well

as links with illness duration and negative symptom severity. Some

of their findings overlapped with abnormalities in bipolar disorder

and depression, as reported in the literature. They concluded that

the surface-based two-dimensional regional homogeneity approach

could help with further exploring pathophysiological mechanisms

of schizophrenia.

Rasmussen et al. examined associations between white matter

microstructure and sleep-wake disturbances in individuals at ultra-

high risk for psychosis. They used data from diffusion MRI, sleep

questionnaire, and actigraphy. They observed an association between

white matter microstructure of the corpus callosum and sleep

disturbances in individuals at ultra-high risk for psychosis. They

concluded that their findings suggest sleep disturbances as a potential

treatment target.

Liang et al. investigated the link between structural MRI-

based cortical thickness, MRS-based glutamate levels in the dorsal

anterior cingulate cortex, and language dysfunction in patients

with first-episode psychosis. Using a clustering approach, they

identified a patient subgroup with widespread cortical thinning,

higher glutamate levels in the dorsal anterior cingulate cortex, and

reduced syntactic complexity and lexical cohesion. They concluded

that their findings support the presence of detectable neurobiological

subtypes of schizophrenia.

Salvador et al. applied a regularization approach (ridge

regression), i.e., an innovative method to assess resting-state

functional connectivity abnormalities, to resting-state fMRI data

from patients with schizophrenia and healthy controls. They also

compared their results to other measures of brain connectivity

and dimensionality reduction. They observed widespread

connectivity reductions in schizophrenia; the regularization

approach outperformed the other methods. They concluded that

regularization is a simple and sensitive alternative for quantifying

functional brain connectivity.

In their Methods paper, Blair et al. propose a novel method

for estimating complexity of brain activity, whose alteration in

psychiatric disorders has already been shown by several studies. This

method relies on dynamic functional connectivity to capture the

distributed nature of brain activity and entropy measures to estimate

global signal complexity. They applied their method to a sample of

patients with obsessive-compulsive disorder, showing the robustness

and consistency of this method compared with the existing literature.

In their Hypothesis and Theory paper, Liddle and Liddle review

electrophysiological and fMRI-based evidence indicating imprecise

predictive coding (i.e., the process of generating models of the world

that are successively updated by sensory information) as a core

pathological process in schizophrenia. They discuss macroscopic and

molecular brain changes and their link with imprecise predictive

coding and symptoms of schizophrenia, particularly disorganized

and impoverished mental activity.

In conclusion, this Research Topic combines original studies

and reviews concerning macroscopic brain changes in psychotic

disorders, particularly compared to other psychiatric disorders such

as bipolar disorder or major depression, and outlines promising areas

for future research.
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Schizophrenia (SZ) is considered as a self-disorder with disordered local synchronous
activation. Previous studies have reported widespread dyssynchrony of local activation
in patients with SZ, which may be one of the crucial physiological mechanisms of
SZ. To further verify this assumption, this work used a surface-based two-dimensional
regional homogeneity (2dReHo) approach to compare the local neural synchronous
spontaneous oscillation between patients with SZ and healthy controls (HC), instead of
the volume-based regional homogeneity approach described in previous study. Ninety-
seven SZ patients and 126 HC were recruited to this study, and we found the SZ showed
abnormal 2dReHo across the cortical surface. Specifically, at the global level, the SZ
patients showed significantly reduced global 2dReHo; at the vertex level, the foci with
increased 2dReHo in SZ were located in the default mode network (DMN), frontoparietal
network (FPN), and limbic network (LN); however, foci with decreased 2dReHo were
located in the somatomotor network (SMN), auditory network (AN), and visual network
(VN). Additionally, this work found positive correlations between the 2dReHo of bilateral
rectus and illness duration, as well as a significant positive correlation between the
2dReHo of right orbital inferior frontal gyrus (OIFG) with the negative scores of the
positive and negative syndrome scale in the SZ patients. Therefore, the 2dReHo could
provide some effective features contributed to explore the pathophysiology mechanism
of SZ.

Keywords: schizophrenia, fMRI, spontaneous neuronal activity, surface-base, resting state

INTRODUCTION

Schizophrenia (SZ) is commonly considered as a heterogeneous psychiatric disorder with a wide
range of clinical and biological manifestations, which also is included among the world’s top
10 causes of long-term disability (Dong et al., 2017; Luo et al., 2020). These manifestations
include positive symptoms (hallucination, delusions, and disturbed emotions), negative symptoms
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(affective flattening, avolition-apathy, alogia, social withdrawal,
and attention impairment), and cognitive dysfunction
(processing speed, attention/vigilance, working memory)
(Schultz and Andreasen, 1999; Tomasik et al., 2016; Jiang et al.,
2019). However, the clear neuronal mechanisms underlying these
symptoms remain unclear.

As a number of researchers continue to study SZ, various
theories have been proposed to explain these different symptoms.
In the study of SZ sensory and perceptual disorders, the
bottom-up and top-down brain system integration theory
proposes that the bottom-up functional impairment will
lead to the abnormality of sensory mechanism (Javitt and
Freedman, 2015), whereas the abnormality of top-down cognitive
mechanism is the cause of cognitive failure (Allen et al.,
2012). Specifically, auditory hallucinations are thought to result
from the failure of top-down inhibitory control over bottom-
up perceptual processes (Hugdahl, 2009). Furthermore, the
pathophysiology underlying SZ has been attributed to functional
abnormalities of the brain, which can be partially explained
by spontaneous brain activity (Xu et al., 2015; Zhang et al.,
2021). Previous studies have demonstrated that the SZ has
exhibited functional changes in both task-evoked activation
and spontaneous brain activity (Light et al., 2006; Jiang et al.,
2020). SZ is regarded as a neurodevelopmental disorder, and
its symptoms occur spontaneously. Therefore, investigating
spontaneous brain activities in SZ can help us understand the
pathophysiology underlying SZ.

The development and application of functional magnetic
resonance imaging (fMRI) provide a new way to explore the
neural activity of SZ (Biswal et al., 1995; Luo et al., 2020). Several
works have revealed abnormal functional connectivity (FC) in
patients with SZ, including the default mode network (DMN)
(Bluhm et al., 2007; Canuet et al., 2011), the frontoparietal
network (FPN) (Chen et al., 2017), thalamus (Wang et al., 2020),
hippocampus (Ho et al., 2016), and temporoparietal area (Jiang
et al., 2018; Huang et al., 2020); these findings suggested that
abnormal neural activity in these region may be the alterations
characteristic of SZ. In addition, a review has demonstrated that
abnormal spontaneous brain activity in SZ were mainly located in
the somatosensory cortex, occipital cortex (OC), medial temporal
cortex (MTC), and medial prefrontal cortex (MPFC) (Xu et al.,
2015); abnormal activation patterns within these regions may
reflect different aspect symptoms in the SZ.

Regional homogeneity (ReHo), which measures the similarity
or synchronism of the time series of a given voxel with its
neighboring voxel within a single region, is the most widely used
to reflect the local neural synchronous spontaneous oscillation
in the brain (Zang et al., 2004). Since the blood oxygenation
level dependent signal of fMRI reflects neural activity, abnormal
ReHo is probably related to the temporal variation of regional
spontaneous neural activity (Logothetis and Wandell, 2004).
According to previous studies on subjects with a first-episode
drug-naïve patients with SZ comorbid with depression (Fang
et al., 2021), unipolar depression, and bipolar disorder (Liu
et al., 2020) and SZ (Kuhn and Gallinat, 2013), abnormal ReHo
may provide new insights into the potential pathophysiological
mechanisms of psychiatric disorders. In addition, abnormal

neural activities are associated with clinical symptoms and
cognitive dysfunction, and ReHo may be used to evaluate
the severity of clinical symptoms and cognitive dysfunction
(Gao et al., 2020).

In recent years, ReHo has been widely used to investigate SZ
pathophysiology (Zalesky et al., 2012; Cui et al., 2016; Zhao et al.,
2018). Increased ReHo may represent neural hyperactivity in the
brain regional area and vice versa (Zang et al., 2004). However, to
our knowledge, all previous studies examined ReHo in patients
with SZ to explore the abnormalities of regional functional
synchronization at the voxel level (Xu et al., 2015; Chen et al.,
2020). This volume-based ReHo (3dReHo) approach ignores the
intersubject variability of cortical folding patterns, and voxels
near the boundary between the gray and white matter show
a significant partial volume effect (Li et al., 2014). A previous
work has demonstrated that volume-based smoothing causes
contamination of the primary motor cortex by somatosensory
cortical responses, leading to false positive motor activation
(Brodoehl et al., 2020). Therefore, in our work, we used a
surface-based two-dimensional ReHo (2dReHo) method (Bo
et al., 2019), which focuses on neural activation in the cerebral
cortex, decreases signal contamination considerably between
neighboring functional brain regions, and improves the validity
of the activity results (Jiang and Zuo, 2016; Brodoehl et al., 2020).

In our work, with this relatively new 2dReHo approach, 97
patients with SZ were recruited to explore the abnormal local
functional homogeneity of spontaneous neuronal activity and
its correlations with symptomatic severity. We hypothesized
that patients with SZ may have extensive abnormal local
synchronization of spontaneous neuronal activity across the
cortical mantle, and the 2dReHo could provide more accurate
and persuasive evidences to expound the pathophysiological
hypothesis of SZ.

MATERIALS AND METHODS

Participants
Ninety-seven patients with SZ (29 women, 41.0 ± 11.5 years
old) were recruited from the inpatient in the Clinical Hospital
of Chengdu Brain Science Institute in University of Electronic
Science and Technology of China. The diagnosis of SZ was
according to the structured clinical interview for Diagnostic
and Statistical Manual of mental disorder (DSM-IV) criteria. All
patients were treated with antipsychotics. Clinical symptomatic
severity was evaluated by the positive and negative syndrome
scale (PANSS) (Kay et al., 1987). In this work, 126 healthy
controls (HC) (42 women, 38.0 ± 14.9 years old) who matched
in age and gender with SZ were also enrolled from the local
community through advertisements. The exclusion criteria for
both groups included history of major medical or neurological
illness, traumatic brain injury, first- and second-degree relatives
with a history of mental illness, current drug or alcohol abuse,
and MRI contraindications. Additionally, four SZ patients and
one HC were excluded because they failed to accomplish all
of T1 and resting-state fMRI data acquisitions, or their head-
motion was beyond 2 mm or 2◦. These patients were part of
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our previous studies and more details can be found in prior
published works (Jiang et al., 2020). Written informed consents
were signed by all participants before the MRI scanning, and
the Ethics Committee of the Clinical Hospital of Chengdu Brain
Science Institute approved the work (No. CDFH2014030501).

Data Acquisition
High-resolution T1-weighted images and Resting-state fMRI
were collected on a 3.0 Tesla scanner (GE Discovery MR 750)
with an 8-channel standard whole head coil at the MRI Center
of University of Electronic Science and Technology of China.
During the scanning, sponges were used to reduce the noise
of head movements, and participants were requested to keep
their minds wandering during the resting-state scan with eyes
closed without falling asleep. Three-dimensional T1-weighted
data were obtained by using a fast-spoiled gradient echo sequence
[repetition time (TR) = 6.008 ms; echo time (TE) = 1.984 ms;
flip angle (FA) = 9◦; field of view (FOV) = 25.6 × 25.6 cm2;
matrix size = 256 × 256; slice thickness = 1 mm, no gap, and slice
number = 156]. Resting-state functional data were obtained with
the use of a gradient-echo echo-planar imaging (EPI) sequence
(TR = 2,000 ms; TE = 30 ms; FA = 90◦; FOV = 24 × 24 cm2;
matrix size = 64 × 64; slice thickness = 4 mm, no gap and slice
number = 35). Scanning time lasting 510 s (255 volumes).

Data Preprocessing
Both the structural and functional image preprocessing were
performed using a surface-based resting-state fMRI data analysis
toolbox (DPABISurf1, Yan et al., 2016). The structural image
processing steps consisted of: (1) spatial adaptive non-local
mean filter was used to remove MRI spatial noise (Xing et al.,
2011), (2) intensity correction, (3) skull-stripped, (4) brain tissue
segmentation, cerebrospinal fluid (CSF), white matter (WM),
and gray matter (GM), (5) brain surface reconstruction via
the recon-all command in FREESURFER (version 6.0.1) (Dale
et al., 1999), and (6) spatial normalization from individual
native space to fsaverage space (Fischl, 2012). The functional
image processing steps consisted of: (1) remove the first 10
volumes, (2) skull-stripped, (3) slice timing correction, (4) head
motion correction, (5) nuisance correction by regressing out
the WM and CSF mean time series according the WM and
CSF masks segmented by FREESURFER as well as the Friston-
24 motion time series (Friston et al., 1996), except for the
global signal, as it may be the basis for alterations in neural
information flow in SZ patients (Yang et al., 2014), (6) band-pass
temporal filtering (0.01–0.1 Hz), (7) boundary-based registration
(BBR) algorithm was used to register individual structural and
functional images (Greve and Fischl, 2009), and (8) projection of
the individual preprocessed volume-based function image onto a
standard cortical surface (fsaverage5). Specifically, we calculated
the midpoints of each pair of vertices on the pia meningeal
and white matter surfaces generated by FREESURFER. Through
BBR algorithm, we could get the registration matrix between
the native fMRI volume and structural volume of each subject.
Then, we choose fsaverage5 surface space as the target surface

1http://rfmri.org/DPABISurf

for projection and interpolation. For each subject’s vertex in
the fsaverage5 space, its corresponding coordinates in the native
structural space were calculated first, and then its corresponding
coordinates in the fMRI space were calculated. Finally, according
to these given coordinates, the fMRI values are interpolated using
the trilinear interpolation method.

Cortical Surface-Based 2dReHo
In our study, 2dReHo was used to explore the abnormal local
functional homogeneity of spontaneous neuronal activity. For
each subject, the 2dReHo is obtained by calculating Kendall’s
concordance coefficient (KCC) of the given vertex and the
nearest neighbors’ time series (Zuo et al., 2013). This calculation
was repeated for all vertices on both hemispheres, resulting
in a 2dReHo map of both hemispheres. Specifically, for each
vertex, we determined its 18 nearest vertices, based on which
we calculated the KCC of fMRI time series of all 19 vertices.
Of note, if we try to keep the same length of neighbors for
certain vertices or voxel, the number of neighbors is different;
for 2dReHo, the length-one and length-two calculation recruits
6 and 18 neighbors, respectively, whereas the 3dReHo recruits 26
neighbors. Moreover, previous studies have shown that the spatial
pattern of length-two neighbors 2dReHo is highly similar to
length-one neighbors 2dReHo’s pattern (Zuo et al., 2013). Based
on the above reasons, we chose 18 vertices as our calculation
criteria. Finally, Gaussian spatial smoothing was performed for
the 2dReHo maps using a 10-mm full-width half maximum
Gaussian kernel (Zuo et al., 2013).

Statistical Analysis
The demographic and psychometric data were analyzed using
SPSS 28.0. Two-sample t-tests were used to compare age and

TABLE 1 | Demographic data for SZ vs. HC participants.

Characteristic Patients Health controls P-value

Mean SD Mean SD

Number 97 126

Gender (male/female) 68/29 84/42 0.67a

Age (years) 41.0 11.5 38.0 14.9 0.10b

Education (years)c 11.8 3.1 10.9 3.4 0.08b

Duration of illness (years) 16.3 10.9

Chlorpromazine equivalents
(mg/day)

324.5 157.1

PANSS score

PANSS-positived 13.32 5.89

PANSS-negatived 20.70 6.06

PANSS-generald 28.19 5.86

PANSS-totald 62.21 13.26

PANSS, positive and negative syndrome scale; SZ, schizophrenia; HC,
healthy controls.
aχ 2 test.
bTwo-sample t-test.
cData of 76 patients and 111 controls available.
dData of 64 patients available.
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FIGURE 1 | Reduced surface-based 2dReHo in SZ patients compared with HC at the global level (p < 0.001) across the cortical surface. Global 2dReHo, global
mean two-dimensional regional homogeneity. SZ, schizophrenia; HC, healthy control.

FIGURE 2 | Group differences in the surface-based 2dReHo. L refers to left side of brain. R refers to right side of brain. All results are shown after FDR corrected
(p < 0.05). The color bar represents T values of the two-sample t-test; the yellow regions represent higher and blue regions represent lower 2dReHo in the patient
group compared with the control group.

years of education. The chi-square test was performed to compare
the difference in the gender between SZ and HC groups.

To compare the 2dReHo differences between the SZ and
HC groups, the two-sample t-test was performed between the

surface maps of SZ and HC groups by DPABISurf. Multiple
comparisons correction was performed using the false discovery
rate (FDR) corrected. The 2dReHo in the regions with significant
differences between the two groups were extracted. Subsequently,
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the Spearman rank correlation analysis was used to evaluate the
relationship between the 2dReHo in these regions and clinical
variables (illness duration, PANSS subscales, and total scores)
after regressing out age and gender.

RESULTS

Demographic and Clinical
Characteristics
The remaining 93 patients with SZ (28 women, 40.0 ± 11.5 years
old) and 125 controls (41 women, 37.6 ± 14.9 years old) were
matched in age (p = 0.09), gender (p = 0.67), and education years
(p = 0.08). More demographic and clinical information of the
patients are summarized, as shown in Table 1.

Surface-Based 2dReHo Differences
Between Schizophrenia and Healthy
Controls
At the global level, the patients with SZ showed a significant
reduction in the global 2dReHo of the cortical surface
(t = −7.336, p < 0.001) compared with HC (Figure 1).

At the vertex level, patients with SZ showed significantly
increased 2dReHo in regions widely distributed across DMN
(bilateral middle temporal gyrus and precuneus), FPN (bilateral
frontal and parietal cortex), and limbic network (LN) (inferior
temporal gyrus and rectus) (Figure 2 and Table 2). Moreover,
reduced 2dReHo was observed in the somatomotor network
(SMN) (bilateral postcentral gyrus), auditory network (AN)
(heschl and superior temporal gyrus), and visual network (VN)
(bilateral occipital cortex) in SZ group (Figure 2 and Table 2).

Relationships Between Surface-Based
2dReHo and Clinical Variables
After multiple comparisons correction by the FDR (p < 0.05,
FDR corrected), the 2dReHo of left rectus (r = 0.536, p < 0.001)
and right rectus (r = 0.427, p < 0.001) showed significantly
positive correlations with illness duration in the SZ group.
Moreover, the 2dReHo in the right orbital inferior frontal
gyrus (OIFG) (r = 0.251, p = 0.039, without corrected)
exhibited significant positive correlation with the PANSS negative
scores (Figure 3).

DISCUSSION

To the best of our knowledge, this is the first work to investigate
the abnormal local functional homogeneity of spontaneous
neural oscillation in patients with SZ. At the global level,
our work indicated that compared with HC, the SZ patients
showed significantly reduced global 2dReHo. As for the vertex
level, we demonstrated significantly enhanced 2dReHo in the
DMN, FPN, and LN, and also significantly reduced 2dReHo
in the primary perception networks (SMN, AN, and VN) in
SZ. These results suggested that the SZ is associated with
abnormal synchronization of spontaneous neural oscillation in

TABLE 2 | Group differences in the surface-based 2dReHo.

Brain regions (peak
index) (AAL)

Peak indexa Peak T value Cluster size
(mm2)b

Left hemisphere

Default mode network

Frontal_Mid_L 8,062 6.95 8154.28

Precuneus_L 9,718 4.49 1607.18

Angular_L 5,108 4.23 1116.1

Temporal_Mid_L 4,344 3.18 138.16

Frontoparietal network

Parietal_Inf_L 2,044 4.16 106.04

Limbic network

Rectus_L 430 5.11 925.2

Temporal_Inf_L 5,539 3.76 846.3

Somatomotor network

Postcentral_L 8,726 −7.02 5664.69

Visual network

Occipital_Mid_L 5,283 −7.59 5904.62

Auditory network

Temporal_Sup_L 1,172 −5.66 730.33

Right hemisphere

Default mode network

Frontal_Mid_R 3,607 6.35 4417.62

Precuneus_R 9,354 5.15 1561.81

Angular _R 784 4.39 1298.13

Temporal_Mid_R 5,640 4.45 736.1

Frontoparietal network

Frontal_Inf_Orb_R 7,613 4.02 1130.25

Limbic network

Rectus_R 514 4.96 813.26

Temporal_Inf_R 5,486 3.97 657.19

Somatomotor network

Postcentral_R 1,071 −7.54 5387.76

Visual network

Occipital_Sup_R 6,872 −6.37 6116.6

Auditory network

Heschl_R 1,309 −3.28 260.62

L, left side of brain; R, right side of brain; AAL, automated anatomical labeling atlas.
aThe index of the vertex with the peak T value.
bThe cluster size represents the number of vertices within the cluster.

the regional brain. Moreover, the relationships between the
2dReHo abnormalities and clinical variables, including illness
duration, PANSS subscales, and total scores were evaluated in
patients with SZ. The results indicated that the 2dReHo of
bilateral rectus were significantly positive related with illness
duration, and also the 2dReHo in the right OIFG exhibited
significant positive correlation with the PANSS positive scores.

Recently, several studies have investigated the ReHo
abnormalities in SZ, but with inconsistent results. The reasons
for these inconsistencies are complex and it is necessary to
reconcile the heterogeneity of different findings. Of note, our
results are highly consistent with those of a previous metaanalysis
on 3dReHo in the SZ (Xu et al., 2015), which demonstrated

Frontiers in Human Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 75087912

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-750879 November 30, 2021 Time: 16:15 # 6

Cao et al. Surface-Based Spontaneous Oscillation in Schizophrenia

FIGURE 3 | The relationships between surface-based 2dReHo and clinical variables in patients with SZ by using Spearman rank correlation analysis. (A) The left and
right rectus 2dReHo were significantly positive correlated with the illness duration (FDR corrected, p < 0.05); (B) the right OIFG 2dReHo exhibited significant positive
correlation with the PANSS negative scores. OIFG, orbital inferior frontal gyrus.

an increased spontaneous brain activity in the striatum, MTC,
and MPFC, and a decreased activity in the sensorimotor and
visual cortex. The results indicated that our 2dReHo results may
provide more accurate and persuasive evidences to expound
the abnormal synchronization of spontaneous neural activity of
SZ. Moreover, at the vertex level, the patients with SZ exhibited
decreased 2dReHo in the SMN, the precentral gyrus, and the
postcentral gyrus, which was consistent with previous studies
(Liu et al., 2006). This finding was understandable as patients
with SZ commonly illustrate a variety of symptoms, including
psychomotor and fine motor, and also abnormalities in touch,
temperature, pain, tension, and vibration (Chen et al., 2015). In
addition, the posterior central gyrus may be associated with the
processing of multimotion-related cognitive functions, which
was abnormal in SZ (Elvevag and Goldberg, 2000). In general,
patients with SZ exhibited reduced global 2dReHo across the
cortical surface, which revealed that SZ showed deactivation in
synchronization of spontaneous neural oscillation across the
global cortices.

Patients with SZ exhibited reduced 2dReHo in the occipital
lobe, which may serve as the underlying functional basis of
visual preliminary processing defects, such as perceptual closure,
object recognition, and face processing (Pastrnak et al., 2017).
The same reduction exists in drug-naive patients with bipolar
disorder (Fang et al., 2021). Notably, OC is the main region of
extrastriate body area (EBA), and the functional abnormalities of
OC may lead to error, which selectively responds to the viewing
of body parts and mental imagery of embodied self-location.
Previous analysis showed that the brain injury of EBA was mainly
related to the autoscopic phenomena (Heydrich and Blanke,
2013). Therefore, the relative reduction of 2dReHo in the OC may
impair the perception of body ownership in patients with SZ.

Interestingly, a significant increase of 2dReHo was found in
widespread brain regions, including the bilateral frontal and
parietal, temporal cortex, and precuneus. Actually, increased
ReHo in the medial frontal cortex (MFC) in SZ seems to
contradict some previous fMRI findings (Hill et al., 2004; Whalley
et al., 2008; Pomarol-Clotet et al., 2010); however, consistent
with a metaanalysis of depressive patients, increased ReHo in

the superior and inferior frontal gyrus were associated with
depressive symptoms (Iwabuchi et al., 2015; Fang et al., 2021).
This might be explained by the hypotheses that 2dReHo can
obtain more neglected information about local activation of the
brain compared with ReHo (Li et al., 2014; Jiang and Zuo, 2016).
In addition, the reliability of hemodynamic-induced prefrontal
dysfunction in SZ seems controversial. A recent study also
showed differences in ReHo among different types of SZ (Gao
et al., 2018). Furthermore, several current studies have reported
increased activation in the prefrontal cortex in SZ responding to
performing working memory tasks (Tan et al., 2006, 2007). In
fact, the MFC in patients with SZ shows task-related inactivation
failure (Whitfield-Gabrieli et al., 2009). Our finding of increased
2dReHo in MFC may explain the hyperfrontality responding
to abnormality of task-performance in the patients of SZ.
Moreover, a previous study of electroconvulsive therapy (ECT)
in depressive patients also showed a decrease in ReHo values in
bilateral SFG after ECT.

Our study demonstrated widespread abnormalities in the
consistent activation of local brain regions in patients with
SZ, including two higher-order intrinsic brain networks (DMN,
FPN), and some low-level networks (SMN, VN). The DMN
and FPN are two higher-order intrinsic brain networks with
functional heterogeneities, which appear to be crucial for both
daily general functioning and physiopathology (Khadka et al.,
2013). DMN, the most prominent network at rest, can be
considered as the baseline of brain processing (Calhoun et al.,
2009; Whitfield-Gabrieli and Ford, 2012). The DMN often shows
deactivation during tasks requiring external attention, while it
increases activity during unconstrained thought (Mason et al.,
2007), introspection (Svoboda et al., 2006), and self-related
processing (Lin et al., 2011). Failure of this function may result in
individuals mistakenly attributing internally generated thoughts
as exogenous (Frith, 1995). For FPN, it is often evoked by
various cognitive tasks (Dosenbach et al., 2007; Cole et al.,
2013), and multiple executive functions subserved by the FPN
including working memory and sustained attention (Das et al.,
2020). The dysfunction of FPN may be one of the abnormal
neural mechanisms of SZ (Dong et al., 2018, 2019). In addition,
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this work found that the 2dReHo of right OIFG in FPN was
also significantly positively correlated with the PANSS negative
scores, and bilateral rectus was associated with illness duration,
which provided evidence that the local brain activity might
predict the severity of SZ. Furthermore, a previous work showed
the disconnection between DMN and FPN in SZ. Specifically,
the connectivity between the FPN and the DMN decreased
with greater working memory load in healthy participants, but
increased in patients with SZ (Godwin et al., 2017). This was
consistent with our results that both FPN and DMN were
hyperactivated in SZ. Moreover, the decrease of 2dReHo in the
low-level primary perceptual networks including SMN, AN, and
VN indicates that the consistency of spontaneous activation
is reduced, which were well-documented for the deficits of
perceptual processing and multisensory integration in SZ.

It would be noted that the resting state fMRI features
such as ReHo, which reflect the regional neural spontaneous
oscillation in temporal and/or spatial domain, the most widely
used to investigate the potential pathophysiological mechanisms
of various psychiatric disorders (Zang et al., 2004). However,
many of the studies in these illnesses reported similar alteration
of neural spontaneous oscillation in DMN and FPN (Zuo et al.,
2013; Jiang and Zuo, 2016), which would reflect that the domain-
general function was interrupted due to common and/or similar
symptoms across psychiatric disorders. Thus, domain-specific
network or its relationship with domain-general function might
be important to the specific psychiatric disorder. In general,
the disrupted interaction between primary perception system
and high-order cognitive function was found in SZ rather than
depression or bipolar disorder (Dong et al., 2018). Consistent
with the hypotheses of uncoupling between high- and low-order
brain functional networks in SZ, the opposite alteration between
high-order networks (increased in DMN and FPN) and low-
order networks (decreased in VN, AN, and SMN) was observed
in this work, which might provide a specific insight to understand
the potential pathophysiological mechanisms of SZ.

There are several limitations in this study. First, all patients
were medicated and the negative symptoms were dominant,
which may lead to a certain bias in our results. Second,
our present 2dReHo approach can only analyze functional
abnormalities in the cortex rather subcortical regions, but the
subcortical regions have been proven to be key regions in the
emotional regulation circuit. Third, the instructions associated
with the resting state approach may have potential impact,
leading to confounding results. Fourth, the physiological origin
and functional significance of ReHo remain unclear, which limits
the exploration of the physiological basis of 2dReHo.

CONCLUSION

Using the 2dReHo method, SZ patients showed enhanced
surface-based spontaneous neural oscillation in two higher-order
functional networks including DMN and FPN, as well as reduced
2dReHo in the low-order perceptual networks: SMN, AN, and
VN. Dysfunction of these functional networks was closely related
to the symptoms of SZ. Therefore, these findings indicated that
the 2dReHo might provide the effective approach to explore the
pathophysiology mechanism of SZ.
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Current diagnostic criteria for schizophrenia place emphasis on delusions and
hallucinations, whereas the classical descriptions of schizophrenia by Kraepelin and
Bleuler emphasized disorganization and impoverishment of mental activity. Despite
the availability of antipsychotic medication for treating delusions and hallucinations,
many patients continue to experience persisting disability. Improving treatment requires
a better understanding of the processes leading to persisting disability. We recently
introduced the term classical schizophrenia to describe cases with disorganized and
impoverished mental activity, cognitive impairment and predisposition to persisting
disability. Recent evidence reveals that a polygenic score indicating risk for schizophrenia
predicts severity of the features of classical schizophrenia: disorganization, and to
a lesser extent, impoverishment of mental activity and cognitive impairment. Current
understanding of brain function attributes a cardinal role to predictive coding: the
process of generating models of the world that are successively updated in light
of confirmation or contradiction by subsequent sensory information. It has been
proposed that abnormalities of these predictive processes account for delusions and
hallucinations. Here we examine the evidence provided by electrophysiology and
fMRI indicating that imprecise predictive coding is the core pathological process
in classical schizophrenia, accounting for disorganization, psychomotor poverty and
cognitive impairment. Functional imaging reveals aberrant brain activity at network
hubs engaged during encoding of predictions. We discuss the possibility that frequent
prediction errors might promote excess release of the neurotransmitter, dopamine,
thereby accounting for the occurrence of episodes of florid psychotic symptoms
including delusions and hallucinations in classical schizophrenia. While the predictive
coding hypotheses partially accounts for the time-course of classical schizophrenia, the
overall body of evidence indicates that environmental factors also contribute. We discuss
the evidence that chronic inflammation is a mechanism that might link diverse genetic
and environmental etiological factors, and contribute to the proposed imprecision of
predictive coding.

Keywords: classical schizophrenia, disorganization, psychomotor poverty, negative symptoms, predictive
coding, prediction error, polygenic risk score, inflammation
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INTRODUCTION

Schizophrenia remains an enigma. We know a large amount
about causal factors. We also know a large amount about
diverse pathological mechanisms, in both psychological
and neuronal terms. We have had effective antipsychotic
medications for more than 60 years. Despite all this,
a substantial proportion of patients with schizophrenia
still experience long term disability and shortened
life expectancy.

A major issue is the heterogeneity of schizophrenia. Modern
diagnostic criteria identify a spectrum of non-affective psychoses
all characterized by a distorted perception of reality (American
Psychiatric Association, 2013; World Health Organisation, 2018).
Schizophrenia itself lies at the severe end, while at the mild end
lies schizotypal personality disorder, in which the distortion of
reality might not achieve psychotic intensity.

However, the heterogeneity is not simply degree of psychotic
intensity. The presentation that we call schizophrenia is typically
characterized by other features, some of which are associated
with long term disability. This raises the question: is there a
cluster of related psychological and/or neuronal processes that
are associated with a tendency toward persisting disability, and
which lie at the core of what we might call classical schizophrenia?
Identifying such a core might open the door to therapies that lead
to better long-term outcomes.

Liddle (2019) introduced the term classical schizophrenia to
denote a disorder exhibiting not only the central features in the
classical descriptions by Bleuler (1911) and Kraepelin (1919),
but also characterized by pathophysiological processes that
predispose to persisting disability. Liddle proposed disorganized
mental activity, impoverished mental activity, and cognitive
impairments as the three characteristic features of classical
schizophrenia. The features of classical schizophrenia are
summarized in Table 1.

Rathnaiah et al. (2020) demonstrated that the severity of
classical schizophrenia can be estimated using symptom scores
assessed using the Positive and Negative Symptom Scale (PANSS)
(Kay et al., 1987); the Comprehensive Assessment of Symptoms

TABLE 1 | Clinical Features of classical schizophrenia (based on Liddle, 2019).

Core features Persistent
disorganization

Disorganized thought

Disorganized affect

Disorganized behavior

Persistent
impoverished
mental activity

Poverty of speech

Flat affect

Diminished spontaneous
movement

Cognitive
impairment

Slow speed of processing

Impaired executive function

Impaired working memory

Secondary features Persistent
impairment of role
function

Impaired occupational function
Impaired social function

Reality distortion
(typically episodic)

Delusions
Hallucinations

and History (CASH) (Andreasen et al., 1992); or Symptoms and
Signs of Psychotic Illness (SSPI) (Liddle et al., 2002).

Several lines of evidence support Liddle’s proposal. In a
large non-clinical sample of young people, Dominguez et al.
(2010) found that disorganization and negative symptoms
predicted both subsequent overt psychosis and severity of
functional impairment. Consistent with this, Ziermans et al.
(2014) found greater disorganization in cases at high risk
of schizophrenia, and that disorganization predicted poorer
long term functional outcome. Perhaps most tellingly, Legge
et al. (2021) found that genetic risk for schizophrenia
was significantly correlated with disorganization (manifest as
formal thought disorder and/or inappropriate affect), expressive
negative symptoms (affective flattening and alogia), and impaired
cognition, but not significantly with reality distortion. The
finding of an association between polygenic risk score and
disorganization is consistent with previous studies that have
identified disorganization symptoms as the symptom cluster in
schizophrenia with greatest heritability. However, the association
between polygenic risk score for schizophrenia with not only
disorganization but also with expressive negative symptoms
and cognitive impairment suggests a heritable component for
Liddle’s proposal for a cluster of traits constituting the core of a
classical presentation of schizophrenia that is associated with long
term disability.

To test the validity of this concept of a core of correlated
features (disorganization, negative symptoms, cognitive
impairments) associated with impaired role function, Rathnaiah
et al. (2020) recruited a sample of patients in stable phase of
illness, and used confirmatory factor analysis to verify a latent
variable reflecting shared variance between these features.
The verification of such a variable supports the proposition
that these clinical features should be regarded as core features
of classical schizophrenia. However it should be noted that
the shared genetic origins do not necessarily account fully
for the mutual relationships between these clinical features.
As we shall discuss subsequently (in the section entitled
Gene-Environment Interactions), it is likely that both genes
and environment contribute to the clinical profile in an
individual case.

In this paper we propose a plausible pathological mechanism
at the core of classical schizophrenia in terms of an abnormality
of predictive coding. Predictive coding refers to a range of
mechanisms by which the brain generates internal models of
the world that are successively updated in light of confirmation
or contradiction by subsequent sensory information. Table 2
summarizes the predictive coding terminology employed in
this manuscript.

Multiple lines of evidence indicate that predictive coding
plays a cardinal role at multiple stages in the processing of
information by the human brain, accounting for its efficiency.
Instead of having to generate a fresh model with each volley
of sensory of input, it needs only to match its predicted
state against the state arising from relevant sensory input,
and adjust for discrepancies. A discrepancy between the
predictions and the sensory input represents a prediction
error. If the prediction error exceeds the level expected from
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TABLE 2 | Terminology relevant to predictive coding.

Predictive coding The mechanisms by which the brain makes predictions
about the world, and successively updates them in light of
further sensory information.

Forward model The predictive model of the sensory consequences of an
action. As the action is executed, the predicted sensory
consequences are compared with actual sensory input. In
the case of a mismatch, the motor command is updated,
and a revised prediction generated.

Prediction error The mismatch between predicted and actual brain-state.
For instance, when the sensory consequences of an action
are accurately predicted, the sensory input is
down-weighted. Unpredicted sensory consequences
constitute a “prediction error” and are likely to be more
salient.

Salience of
prediction errors

A prediction error means that the actual sensory input was
unpredicted and therefore salient, in the sense of being
more noticeable or “surprising.” The sensory input is also
behaviorally salient as it indicates the need to adjust the
internally generated prediction. A “salience network,”
including insula and anterior cingulate cortex, plays a role in
detecting and responding to salient information in general.

Teaching signal The neural signal that indicates a prediction error and the
need to adjust strategy and generate an updated
prediction. The teaching signal is associated with release of
dopamine from midbrain dopaminergic neurons, particularly
when the error is in the value of a reward. It is likely that the
teaching signal also produces enduring changes in
expectations that guide prediction in similar circumstances
in future.

statistical noise, the predictive model of the world is updated.
In Bayesian terms, the predictive prior is updated in light
of the probability of the actual sensory input, given the
prior likelihood, to provide an improved predictive model
(posterior). In an influential account, Friston (2009) describes
this process of minimizing surprise as the minimization of
Free Energy (i.e., minimizing the amount correction likely
to be required).

In the domain of perception, the predictive coding hypothesis
provides an efficient mechanism by which an internally generated
“feedforward” model requires only minor correction from
“feedback” sensory confirmation (Rao and Ballard, 1999). What
we perceive reflects our internally generated prediction after
adjustment to minimize discrepancy with the sensory input, and
explains why the world appears to stay still when we move our
eyes, even though the image on the retina changes position.

More generally in the domain of motor control, we develop
a forward model of the state of our brain and body as we
execute an intended action (Wolpert and Ghahramani, 2000).
Throughout execution, we compare our forward model with the
incoming proprioceptive and external signals. We continuously
adjust our action to minimize the discrepancy between prediction
and sensory input. Thus, in this framework, the control of
action is achieved via minimization of the discrepancy between
endogenous prediction and sensory input. As the sensory
consequences of our own actions are better predicted than the
sensory consequences of an externally generated perturbation,
this mechanism allows us to distinguish “self-caused” from

“other-caused” sensory signals, and to discount the salience of the
former—a mechanism postulated to explain “why you can’t tickle
yourself ” (Blakemore et al., 2000).

Predictive coding deficits have been invoked to account for
delusions and hallucinations in psychotic disorders (Corlett et al.,
2009). In the case of a motor act, if the proprioceptive and tactile
feedback does not match the prediction generated by the motor
command, the action might be perceived as alien. In more general
terms, Adams et al. (2013) discuss the way in which imbalances
between the precision of internally generated predictions and
the weight allocated to precision of sensory evidence might
account for both what they regard as “trait” phenomena of
schizophrenia (which might include both disorganization and
impoverishment of mental activity) and “state” phenomena
(acute psychotic symptoms such as hallucinations). In particular
they propose that trait abnormalities might arise from a
decrease in the precision of internally generated predictions (or
failure to down-weight sensory evidence), while acute psychotic
symptoms might arise from a compensatory increase in the
precision of internally generated predictions (or decrease in
weight allocated to sensory information). They suggest that
abnormality of glutamatergic or GABAergic transmission might
play a cardinal role in trait abnormalities, while over activity of
dopaminergic transmission might play a cardinal role in the acute
psychotic state.

Brown and Kuperberg (2015) have reviewed the evidence that
predictive coding deficits play a role in formal thought disorder,
a key feature of disorganization. Sterzer et al. (2019) argue
that schizophrenia involves a pervasive alteration in predictive
coding at multiple hierarchical levels, including sensory and
motor systems and also cognitive and value-based decision-
making processes. They propose that impairments in various
brain areas implicated in predictive coding account for the variety
of psychotic experiences.

In this paper we examine the evidence that imprecision
of internally generated predictions lies at the core of classical
schizophrenia. Imprecise predictive models result in failure to
down-weight what would otherwise be expected sensory stimuli,
increasing their salience and the rate of error signals. Our
hypothesis is similar to the proposal of Adams et al. (2013)
that trait abnormalities might arise from a decrease in the
precision of internally generated predictions (or failure to down-
weight sensory evidence), but we propose that this “trait” reflects
the “core” process in the pathway to classical schizophrenia:
persistently imprecise predictions generate percepts that are both
salient and tangential, reflected in disorganization symptoms,
while a steady stream of minor error signals elevate net
background dopamine levels and increase the risk of acute
psychosis. Conversely, over-time, chronic errors may reduce
the efficiency of decision-making, slowing cognition and action
and giving rise to the psychomotor poverty and cognitive
impairments of classical schizophrenia.

In accord with the observation that the genetic variants
expressed in glutamatergic and GABAergic neurons contribute
to the polygenic risk score for schizophrenia associated with the
clinical features of classical schizophrenia (Legge et al., 2021),
taken together with the proposal by Adams et al. (2013) that
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reduced synaptic gain arising from abnormality of glutamatergic
or GABAergic transmission might play a cardinal role in trait
abnormalities, we propose that classical schizophrenia arises
from imprecise priors resulting from reduced synaptic gain in
pyramidal neurons.

In this account we place emphasis on the role of imprecise
predictions in disorganization of mental activity, and to a lesser
extent, in impoverished mental activity. Nonetheless, we discuss
the possible mechanism by which such a core process might
account for the diverse aspects of schizophrenia, including the
occurrence of at least transient episodes of reality distortion. We
explore the way in which interaction between genetic prediction
and environmental factors might account for the characteristic
time-course of the illness.

EVIDENCE FOR EXCESSIVELY
IMPRECISE PREDICTIONS

To support our proposal, we will examine evidence derived from
studies of five types of brain processes: Mismatch Negativity
(MMN); oddball target detection; self-initiated action; perceptual
organization, and Post-movement Beta Rebound (PMBR).

Mismatch Negativity
MMN is an electrophysiological feature elicited by deviant
acoustic stimuli delivered within a train of repetitive standard
stimuli: The deviant stimuli elicit a greater negativity in the scalp
potential compared to the standard stimuli, at approximately
200 ms after the presentation of the deviant stimulus. The MMN
occurs even when there is no requirement to make a response
(unlike the requirement in an “oddball” target detection task).
In fact, the stimuli of interest are usually presented while the
participant engages in some other activity such as watching
a silent movie. Typically, the deviant stimuli differ from the
standard stimuli in features such as such as pitch, duration,
or intensity. MMN appears to reflect an automatic “change
detection” process when an acoustic event violates expectation,
even when it has no direct behavioral relevance.

Reduction of MMN amplitude is well established in
schizophrenia. Interestingly, a meta-analysis by Erickson et al.
(2016) of data acquired in over a hundred cases at various phases
of illness indicated that MMN impairment appears to reflect
vulnerability to disease progression in individuals at high risk
of schizophrenia on the grounds of clinical features rather than
a genetically determined risk for the condition. The association
with vulnerability to disease progression suggests that the clinical
features that predict severe illness may share a substrate with
processes underlying reduced MMN, namely impaired detection
of statistical irregularities in the environment.

Predictive Coding and Mismatch Negativity
Kirihara et al. (2020) reviewed the evidence indicating that
reduced MMN amplitude might reflect altered predictive coding
in schizophrenia. Studies using variants of the paradigm such as
variation in the probability of the deviant stimuli and paradigms
in which deviants entailed omission of expected stimuli, indicated

that predictive coding is impaired in schizophrenia. For example,
Baldeweg et al. (2004) measured MMN using a modified version
of the “roving oddball” paradigm in which the last tone of
each of a series of separate trains of auditory stimuli differs in
duration from other stimuli. They found that healthy controls
showed larger MMN amplitudes for oddballs following longer
trains of repeated standards than for short trains, while MMN
was not affected by the length of the train of repeated stimuli
in patients with schizophrenia. These observations suggest less
effective predictive coding in the patients. In light of inconsistent
evidence regarding the role of familial factors underlying the
MMN deficits in schizophrenia, we will return to the question of
whether or not the MMN deficit is relevant to disease progression
when we consider the role of gene-environment interactions
in the cause of classical schizophrenia in the section entitled
Gene-Environment Interactions.

Modeling Mismatch Negativity Deficits in
Schizophrenia
The proposal that the MMN abnormality in schizophrenia
reflects an abnormality of predictive coding is also supported
by various mathematical models of the abnormality of MMN
in schizophrenia. For example, Adams et al. (2021) developed
a model of MMN employing Dynamic Causal Modeling. Their
model comprised a distributed hierarchical network of brain
regions implicated in generation of MMN: the inferior frontal
gyrus, superior temporal gyrus and auditory cortex. They
modeled the local circuits in the network nodes with inhibitory
interneurons and spiny stellate cells interacting with superficial
and deep pyramidal cells. The hierarchical model parameters
were estimated according to Bayesian principles. The model
successfully predicted a reduction in MMN in schizophrenia
on the basis of local circuit parameters representing decreased
synaptic gain in pyramidal cells in the patients. Synaptic gain of
a neuron is the ratio of output signal to input. It can be adjusted
by changes in synaptic strength mediated by glutamatergic and
GABAergic transmission. The modeled decrease in synaptic gain
represented increased self-inhibition of the pyramidal cells.

Using similar local circuit parameters, Adams et al. (2021)
also applied Dynamic Causal Modeling to resting state EEG
data, responses to steady state 40 Hz auditory stimulation, and
resting state fMRI data in the same sample of patients. In all
paradigms, the model was best fitted by local circuit parameters
representing reduced synaptic gain in pyramidal neurons. In an
analysis of relationships with symptoms, disinhibition in auditory
areas predicted severity of positive symptoms.

Perhaps contrary to the evidence from meta-analysis
(Erickson et al., 2016) indicating that MMN deficits in
schizophrenia show no substantial familial influence, Adams
et al. (2021) observed a decrease in MMN in first degree relatives
of patients with schizophrenia.

Oddball Target Detection
Oddball target detection tasks differ from MMN-eliciting tasks
by requiring a motor response to the oddball stimulus. In typical
oddball target detection paradigms, auditory tones at a particular
frequency are presented randomly within a series of identical
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non-target stimuli, such has tones with a frequency different
from the target. The participant is required to make a response,
usually a button press, to target tones while refraining from
responding to non-target tones. The oddball target stimuli elicit a
characteristic series of event related potentials (ERPs), including
a large positive-going deflection of the scalp potential, the P300,
in a time window extending from 300 to 450 ms after the
stimulus. The magnitude of the P300 is modulated by variation in
target characteristics. Magnitude increases with decreasing target
probability, suggesting, that like the MMN, P300 indexes the
degree to which an internally generated expectation is violated.

A reduction in the magnitude of the P300 in schizophrenia
is one of the best documented physiological abnormalities in
schizophrenia. Many of the important clinical correlates of the
P300 were described over two decades ago in Ford’s Presidential
Address to the Society for Psychophysiological Research (Ford,
1999). Reduced P300 is both a state and a trait marker. In severe
illness, the abnormality of the P300 is correlated with positive
symptom score; it is also correlated with severity of persisting
negative symptoms. Detectable abnormality persists even after
symptom resolution. More recent studies confirm that deficits in
P300 amplitude in both auditory and visual modalities emerge
early in the course of illness, and precede onset of overt psychosis
(Hamilton et al., 2019). P300 amplitude is also reduced in siblings
of cases, suggesting a genetic contribution (Winterer et al., 2004;
Groom et al., 2008).

The oddball target detection task entails perception, decision
making and generation of motor responses, and thus might
be expected to be a sensitive, though not specific, marker
of abnormality in predictive coding. Oddball target detection
tasks have only occasionally been addressed from the predictive
coding perspective (e.g., Kolossa et al., 2012), at least in part
because of difficulty distinguishing P300 modulations arising
from mismatch in predictions regarding sensory stimuli, from
mismatch related to the selection of response. Nonetheless, the
theories of the role of predictive coding proposed by Friston
(2009); Sterzer et al. (2019) and others imply that predictive
coding plays a central role in the processes that contribute to
perception and evaluation of the stimuli and/or planning the
response in the oddball target detection task. As we shall discuss
in the section entitled Brain Regions Engaged in Predictive
Coding the brain regions engaged during predictive coding in
healthy controls exhibit a marked overlap with the regions
engaged during oddball target detection. In this section we will
examine differences between patients and healthy controls in the
effects of manipulations that modify endogenous (“top–down”)
influence on the processing of information. Within a predictive
coding framework, these manipulations would be expected to
modify internally generated predictions. However, in the case
of the fMRI data, we cannot distinguish effects arising from
abnormality of the generation of predictions from differences
attributable to abnormality of the response to prediction errors.

Reduced Signal to Noise Ratio
Precise predictive coding requires precise representation of both
the content and timing of the neural representation of the coded
information. An important parameter in modeling brain activity
according to a predictive coding framework is the degree of

confidence in the prediction (Adams et al., 2013). The ratio
of signal-to noise in the neural representation of prediction
would be expected to influence the confidence in the prediction.
There is a substantial body of evidence regarding diminished
cortical signal-to-noise ratio in patients with schizophrenia
during the processing of information. Winterer et al. (2004)
assessed background noise in frontal brain regions in discrete
frequency bands across a range of frequencies extending from
0.5 to 45 Hz during auditory oddball processing. They quantified
noise as the activity that did not exhibit a consistent temporal
relationship to the presentation of the stimuli. They reported
pronounced broadband cortical background noise over frontal
cortex in patients with schizophrenia. A similar but less marked
excess of noise was observed in clinically unaffected siblings.
The frontal background noise predicted poor performance
on frontal lobe cognitive tasks. There was a high intraclass
correlation between sib-pairs suggesting high heritability of
cortical background noise.

Inter-Trial Coherence and Phase Resetting
In a predictive coding framework, the brain needs not only to
predict the causes of sensory input and the upstream neural
consequences of that input but also when these events are likely
to occur. Arnal and Giraud (2012) argue that slow endogenous
cortical activity reflected in cortical delta (1–4 Hz) and theta
band (4–8 Hz) oscillations play a role in predictive timing.
In particular, delta band oscillations might play a role in the
temporal organization of speech. In the context of selecting
and responding to a target stimulus, transient bursts of low
frequency oscillations might play a role in timing of neural events.
The major features of the time-course of event-locked electrical
potentials can be described as a superposition of transient delta
and theta oscillations that are time-locked to the presentation
of stimuli. The degree of phase locking is reflected in the
consistency of the oscillatory phase across trial and can be
quantified as inter-trail coherence (ITC) in the frequency band
of interest. Consistency of phase of oscillations evoked by an
event is achieved in part by consistent re-setting of the phase of
ongoing cortical oscillations and partly by the addition of new
oscillations with a phase that is locked to the event of interest
(Martínez-Montes et al., 2008).

In a study of auditory oddball processing in schizophrenia,
Doege et al. (2010) demonstrated that patients with schizophrenia
exhibit significantly less ITC in the delta band and also significant
less re-setting of the phase of ongoing delta oscillations, in
comparison with healthy control participants. The resulting
inconsistency of the phase of delta oscillations across trials
contributed to the decrease in the observed magnitude of the
P300. Furthermore the severity of the abnormality of phase
resetting in the delta band was correlated with the severity of
disorganization.

Processing of Speech Sounds During Oddball Target
Detection
Healthy individuals exhibit increased neural activity in the left
superior temporal gyrus in response to speech sounds compared
to complex non-speech sounds. Ngan et al. (2003) employed
fMRI to identify the pattern of brain activation associated with
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processing speech sounds in comparison with non-speech sounds
in patients with schizophrenia, during an auditory oddball
target-detection task in which the target stimuli were either
speech sounds (such as “lif ”) or non-speech sounds matched for
acoustic complexity.

In comparison with healthy controls, patients with
schizophrenia exhibited greater and more extensive activation
for speech sounds in left superior frontal cortex, left temporo-
parietal junction and right temporal cortex. The magnitude of
the difference in activity in the left temporo-parietal junction
was significantly correlated with severity of disorganization of
speech. The finding of more extensive activation is consistent
with the hypothesis that neural representation of speech sounds
is less precise in patients. The more extensive activation of
right temporal cortex suggests less clearly defined hemispheric
lateralization of the processing of speech sounds, while the
more extensive activation in the left temporo-parietal region
suggests more widespread activation in brain regions normally
engaged in processing speech sounds. The correlation of the
aberrant activity in left temporo-parietal junction with severity
of disorganization of speech suggests that disorganization of
speech in schizophrenia is associated with failure to suppress
inappropriate sounds related to speech.

Activity During Processing of Non-target Stimuli
Studies employing fMRI reveal widespread activation of the
brain during the processing of target stimuli during the auditory
oddball task (Kiehl et al., 2005). Furthermore, at least in
well-established cases of schizophrenia, the activation during
processing of target stimuli is diminished (Kiehl and Liddle,
2001). Performance of patients is usually impaired insofar as
reaction times to targets are significantly longer in patients and
there is a tendency toward more errors of omission in response to
targets and errors of commission by failing to suppress response
to non-targets (Kiehl and Liddle, 2001).

To minimize possible confounds in assessing brain activation
arising from individual differences in task difficulty, Liddle
et al. (2013) employed fMRI to assess brain activation during
the processing of target stimuli and also the processing
of non-target stimuli in an easy variant of the task in
which the probability of targets was equal to that of non-
targets, in early phase cases and also non-affected siblings
of cases. Patients with schizophrenia and siblings showed
significant hyper-activation to non-targets in brain areas
activated by targets in all groups. The regions exhibiting
hyperactivity included left superior frontal gyrus, fronto-insular
cortex and bilateral temporo-parietal junction. In addition
the patients and the siblings exhibited less deactivation to
non-targets in Default Mode Network areas, including the
precuneus, in which activity was suppressed during processing of
targets in all groups.

These findings suggest that inefficient cerebral recruitment
is a vulnerability marker for schizophrenia, made manifest by
less suppression of activity in brain areas normally deactivated
in response to task stimuli, and increased activation of
areas normally activated in response to task stimuli. These
findings are consistent with the hypothesis that vulnerability

for schizophrenia is associated with inappropriate internally
generated allocation of behavioral salience to non-target stimuli.
With a predictive coding framework, this might be described as
lack of precision in specification of prior expectation.

In a further test of the hypothesis that schizophrenia is
associated with inappropriate internally generated allocation of
behavioral salience to non-target stimuli, Liddle et al. (2016)
employed Magnetoencephalography (MEG) to measure beta
oscillations in the insula (a cardinal node of the salience
network) during a relevance modulation task designed to
compare activity during the processing of task-relevant stimuli
with that during processing of task-irrelevant stimuli. The stimuli
were images of either butterflies or ladybirds. The task-relevant
stimulus type alternated between blocks. Beta oscillations were
selected as the relevant measure on account of the evidence
that beta oscillation mediate endogenously generated long
range integrative signals (Fries, 2015). As predicted, healthy
participants exhibited greater beta synchronization in the insula
following processing of behaviorally relevant, as compared to
irrelevant, stimuli. Patients with schizophrenia showed the
reverse pattern: a greater beta synchronization during processing
of irrelevant than relevant stimuli. Within a predictive coding
framework, this might be described as inaccurate endogenous
specification of expectation.

Self-Generated Action
Using EEG, Ford et al. (2008) examined phase synchronization
of brain oscillations in various frequency bands across trials
(quantified as Phase Locking Factor, PLF) during self-paced
button-pressing. Participants were required to press a button at
will at time intervals of approximately 1–2 s. They argued that
if PLF in sensorimotor cortex immediately preceding the motor
action represents the “efference copy” of the action plan, it should
be maximal in the hemisphere contralateral to the finger making
the movement. Furthermore, if the role of the efference copy is
to dampen the subsequent tactile sensory experience associated
with the button press, the magnitude of the efference copy should
related to the subsequent neural activity in sensori-motor cortex
immediately after the button press.

They observed that in healthy controls, gamma band neural
synchrony preceding the button press was maximal over the
contra-lateral sensorimotor cortex, and was correlated with the
amplitude of the somatosensory ERP evoked by the press. These
effects were reduced in patients with schizophrenia. Furthermore,
beta band neural synchrony preceding the button press was also
reduced in patients. This reduction in beta synchrony was most
marked in patients with avolition/apathy assessed using the Scale
for the Assessment of Negative Symptoms (SANS).

It is noteworthy that volition/apathy scale employed in
SANS contains items related to role function that reflect both
disorganization and impoverishment of mental activity. In
particular, in chronic illness, scores for poor grooming and
hygiene, and for impersistence at school or work, are correlated
more strongly with disorganization, whereas physical anergia
is correlated more strongly with impoverished mental activity
(Liddle, 1987).
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Perceptual Organization
Perceptual organization is the process of organizing sensory
information into coherent patterns that represent objects, groups
of objects and whole scenes, and our bodily relationship to
them. Perceptual organization entails interpreting sensory input
in light of internally generated predictions about relationships
between percepts. Imprecise predictions would be expected to
lead to impaired perceptual organization. There is extensive
evidence for abnormalities of visual perceptual organization
in schizophrenia. In a meta-analysis, Silverstein and Keane
(2011) found that abnormalities of the organization of complex
visual information are consistently found in schizophrenia, but
are rare in other psychotic disorders such as bipolar mood
disorder. Furthermore, in schizophrenia, these abnormalities are
associated with severity of disorganization symptoms, and with
poor premorbid functioning and poor prognosis. Thus, they are
associated with features of classical schizophrenia. However, in
light of evidence that disorders of perceptual organization are
not prominent in the early phase of illness, Silverstein and Keane
(2011) concluded that impairment of perceptual organization
reflects illness progression.

In an fMRI study Silverstein et al. (2009) found that
during a contour integration task, patients with schizophrenia
exhibited diminished activation of visual association cortex
during a perceptual organization task in comparison with healthy
controls. Furthermore, patients with schizophrenia exhibited less
activation compared with healthy controls in frontal, parietal
and temporal regions during conditions in which integrated
forms were perceived compared to random stimuli. In contrast
the patients exhibited greater activation than controls in those
brain areas during perception of random stimuli compared
with integrated forms. These observations suggest a deficit in
attentional enhancement of the perception of coherent forms
relative to background information.

In a study of individuals with schizophrenia, first degree
relatives of people with schizophrenia, individuals with bipolar
disorder and healthy controls, Chen et al. (2005) found
impairment of visual motion integration in the patients with
schizophrenia, but not in the first-degree relatives, nor in patients
with bipolar disorder, suggesting specificity to schizophrenia but
indicating that it is not a familial trait.

In a structural and functional imaging study of schizophrenia
and bipolar disorder, Palaniyappan and Liddle (2014) found
that in comparison with bipolar disorder, schizophrenia was
associated with increased functional connectivity between visual
cortex and other regions of the brain during a working memory
task, consistent with inadequate down-weighting of sensory
evidence. Furthermore, Palaniyappan and Liddle (2014) found
that the aberrant functional connectivity of the visual processing
system predicted burden of persistent symptoms, consistent with
the hypothesis that this abnormality in visual processing is
specifically associated with classical schizophrenia.

Post-movement Beta Rebound
Further evidence of imprecise prediction in schizophrenia
is provided by abnormalities of the phenomenon of

Post-movement Beta Rebound (PMBR). Beta synchrony
decreases during the execution of a movement but then rebounds
to a level higher than the baseline level over a period of several
seconds following the movement. The magnitude of this
rebound is influenced by the confidence in the motor plan. For
example, Tan et al. (2014) assessed brain oscillations during
a task in which healthy participants were required to move
a joystick with the aim of moving a cursor toward a visual
target presented on a computer screen. Unbeknownst to the
participant, the relationship between the direction of movement
the joystick and the motion of the cursor was manipulated
during the task, creating uncertainty about the motor plan and
inducing inaccurate responses. Tan et al. (2014) found that in
the healthy participants, the magnitude of PMBR was lower
when the error in direction of movement of the cursor was
larger. In a subsequent study of healthy participants, Tan et al.
(2016) employed Bayesian modeling to estimate the anticipated
uncertainly in the environmental feedback and the uncertainty
in the feedforward estimation. They concluded that magnitude
of PMBR reflects the confidence in the internal feedforward
estimation during sensorimotor integration based on updating of
plans according to Bayesian principles. A high amplitude PMBR
might be regarded as an index of confidence in the current motor
plan, whereas a low amplitude PMBR might indicate the need for
adaptive changes driven by the sensory feedback.

Several studies reveal that the magnitude of PMBR is
decreased in schizophrenia. Robson et al. (2016) found that
the decrease in magnitude of PMBR is correlated with the
severity of persisting symptoms during a stable phase of illness.
In a partially overlapping sample of cases, Rathnaiah et al.
(2020) demonstrated that the reduction in PMBR was correlated
with severity of classical schizophrenia quantified by a latent
variable representing the shared variance between severity of
disorganization, psychomotor poverty, cognitive impairment and
impairment of role function, as discussed in the Introduction.

In a study using MEG to measure oscillatory activity following
a simple finger abduction movement, in separate samples of early
phase cases of schizophrenia (within 6 weeks of commencement
of antipsychotic medication) and cases with well-established
illness (of duration at least 10 years), Gascoyne et al. (2021)
confirmed that PMBR was significantly reduced in both samples
of cases relative to matched healthy controls. The reduction was
greater in the well-established cases. In the well-established cases
the magnitude of the reduction was correlated with severity of
disorganization symptoms.

In a MEG study of oscillations following a finger abduction
movement in a non-clinical sample, Hunt et al. (2018) found
that magnitude of PMBR was inversely correlated with severity
of schizotypal features. The greatest contribution to the relative
diminution of PMBR came from schizotypal features reflecting
disorganization of mental activity. Schizotypal features reflecting
impoverishment of mental activity also made a lesser but
nonetheless significant contribution to the PMBR deficit.

Although PMBR is usually quantified by averaging the beta
power across a time window following movement, observation
of data acquired in single trials reveals that the smooth peak of
beta activity observed in trial averaged data actually represents
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the superposition of transient bursts of beta activity with duration
of order 150 ms occurring with increased probability in the
PMBR time window. In a study employing concurrent EEG and
fMRI to assess brain activity during the n-back working memory
task, Briley et al. (2021) confirmed that beta-burst rate following
button press responses was diminished in schizophrenia, and
also in psychotic bipolar disorder, compared with healthy
controls. The reduction was less marked in the bipolar cases.
Furthermore, the magnitude of the deficit was correlated with
severity of disorganization. Multivariate analysis confirmed that
shared variance between the features of classical schizophrenia:
disorganization, psychomotor poverty and cognitive impairment,
was significantly correlated with the reduction beta-burst rate.
The findings in bipolar disorder suggest that at least some cases
satisfying DSM IV criteria for bipolar disorder exhibit features
characteristic of classical schizophrenia.

Furthermore, the analysis by Briley et al. (2021) of the
BOLD signal assessed using fMRI revealed that beta-bursts are
associated with the reactivation of a pattern of brain activity
representing task-relevant content of working memory. In the
context of the n-back task, in which the target stimuli were letters
of the alphabet, the spatial distribution of BOLD signal associated
with the occurrence of beta-bursts included areas implicated in
the articulation of speech, processing of speech sounds and also
sensorimotor areas engaged in the required motor response. In
patients with schizophrenia or psychotic bipolar disorder, the
BOLD activation was more extensive than in healthy controls,
consistent with less precise representation of the content of
working memory. Furthermore, the occurrence of beta-bursts
was also associated with suppression of activity in brain regions
expected to be engaged in the ongoing executive processing
during the working memory blocks, implying that beta-bursts
are associated not only with reactivation of the response-relevant
brain activity but suppression of competing brain activity.

On the basis of study of beta-bursts in humans, primates and
rodents, Sherman et al. (2016) proposed a neuronal model of
beta-burst generation in which the characteristic time-course of
a beta-burst is generated by coincident arrival of relatively broad
peak of neural activity in middle layers of the cerebral cortex
(via thalamo-cortical fibers) with the arrival of strong spike of
activity in superficial layers of cortex. Such a model is potentially
consistent with the hypothesis that beta-bursts play a role in
the comparison of an intended action with the sensorimotor
feedback from the action. A large amplitude beta-burst might
confirm the timing and content of the planned response, while
diminution of the amplitude of the beta-bursts, as seen in patients
with schizophrenia, might indicate less precise prediction.

MACROSCOPIC BRAIN CHANGES

Gray Matter Abnormalities in
Schizophrenia
Many studies report widespread gray matter deficits in psychotic
disorder. A mega-analysis of structural MRI studies employing
Voxel Based Morphometry revealed deficits in schizophrenia that
are most marked in insula and anterior cingulate cortex and also

occur in association cortex sites implicated in executive function
and attention, including lateral frontal cortex and parietal cortex
(Gupta et al., 2015).

The gray matter reductions reported in mental disorders
can reflect diminution of cortical thickness, surface area or
gyrification. Diminished gyrification, especially in the insula,
might be more specific to schizophrenia (Sheffield et al.,
2021). Patterns of gyrification are largely determined during
prenatal development, consistent with a developmental origin
for classical schizophrenia. However, it should be noted
that some evidence from longitudinal studies indicates that
frontal gyrification can diminish during the early years of
a schizophrenic illness (Palaniyappan et al., 2013). Evidence
suggests that in schizophrenia, local gyrification in a region is
related to density of long range connections with that region
(White and Hilgetag, 2011).

Although reduction of local gyrification index in
schizophrenia compared with healthy control participants
has been reported in diverse brain regions, the most marked
reductions occur in left insula and frontal operculum, left
superior and middle frontal gyrus, temporo-parietal junction
bilaterally and precuneus (Palaniyappan and Liddle, 2012). These
regions contain major hubs in brain networks engaged in the
regulation of attention (Seeley et al., 2007).

In the combined structural and functional imaging study
comparing schizophrenia with bipolar disorder discussed in
the section entitled Perceptual Organization, Palaniyappan and
Liddle (2014) confirmed that in the contrast of patients with
schizophrenia with healthy controls, the patients exhibited
diminished gyrification in left insula, left superior frontal gyrus,
regions in the vicinity of the tempo-parietal junction bilaterally,
and left precuneus and posterior cingulate. They also conducted
a conjunction analysis to identify brain regions exhibiting both
diminished gyrification and increased functional connectivity
in patients with schizophrenia relative to patients with bipolar
disorder. They observed a conjunction of these effects (assessed
at a lenient threshold) in left anterior insula, left middle
temporal gyrus, left precuneus and posterior cingulate, and
in visual processing areas in the lingual gyrus and calcarine
fissure bilaterally.

Brain Regions Engaged in Predictive
Coding
Although it might be expected that brain regions engaged in
perception of diverse sensory stimuli and in the planning of
diverse actions might be engaged during predictive coding, fMRI
studies suggest that predictive processing commonly engages
certain brain regions. Ficco et al. (2021) performed a meta-
analysis of 45 studies of paradigms involving prediction violation,
and 39 studies of task entailing encoding of predictions. They
employed Activation Likelihood Estimation (ALE) to identify
sites of activity common to the different studies, and also
a meta-analytic connectivity method (Seed-Voxel Correlations
Consensus, SVC). The ALE analysis identified sites in left
anterior insula and left inferior frontal gyrus that were active
during prediction violation. The tasks that involved prediction
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encoding engaged a distinguishable set of sites including right
insula, bilateral inferior parietal lobule, the cuneus and the
right middle frontal gyrus. Nonetheless, the connectivity analysis
demonstrated that the sites engaged in prediction violation were
connected to the sites engaged in prediction encoding. The SVC
analysis identified a large, bilateral predictive network, which
containing many network nodes involved in task driven attention
and execution, including insula and dorsal ACC; lateral frontal
cortex and parietal cortex and also sites in the cerebellum.

Given that violations of prediction will have high salience,
the involvement of the insula in detecting prediction violation is
consistent with its role in the processing of salient stimuli (Seeley
et al., 2007; Sridharan et al., 2008). It is noteworthy that left insula
is the site of greatest gray matter reduction in schizophrenia
revealed by mega-analysis of Voxel Based Morphometry data
(Gupta et al., 2015), as well as the site of the most marked
abnormalities of gyrification in schizophrenia (Palaniyappan and
Liddle, 2012). Furthermore, in the stable phase of schizophrenia,
disorganization is associated with diminished resting state
cerebral blood flow in the left fronto-insular cortex, and also in
temporo-parietal junction bilaterally (Liddle et al., 1992).

Figure 1 illustrates the similarity between the regions with
most marked reduction of local gyrification in schizophrenia
(Palaniyappan and Liddle, 2012) and the regions exhibiting
an aberrant increase in activity in patients with schizophrenia
relative to controls during processing of non-target stimuli in a
target detection task (Liddle et al., 2013) and during processing
of word sounds relative to non-word sounds (Ngan et al., 2003).

It should be noted that the aberrant activity in the precuneus
during processing of non-target stimuli is in a region of the
Default Mode Network in which patients fail to exhibit the
normal level of suppression of activity during processing of
target stimuli. All of the regions depicted in Figure 1 in which
patients exhibit aberrant activation lie within the network of sites
engaged during predictive coding identified in the SVC analysis
by Ficco et al. (2021), apart from the site in the precuneus,
which Ficco et al. (2021) found to be anti-correlated with the
predictive coding network.

MOLECULAR BRAIN ABNORMALITIES

Modeling of EEG signals associated with Mismatch Negativity
suggests that reduced synaptic gain arising from abnormality of
glutamatergic or GABAergic transmission might play a cardinal
role in aberrant predictive coding in schizophrenia (Adams et al.,
2013, 2021).

Post mortem studies reveal consistent evidence of
abnormalities of the morphology of dendrites of pyramidal
(glutamatergic) neurons in the cerebral cortex, and of reduced
levels of the protein synaptophysin, a sensitive marker for
synaptic terminals, in frontal cortex and hippocampus, in
schizophrenia (Hu et al., 2015; Osimo et al., 2019). In vivo
measurements using Magnetic Resonance Spectroscopy (MRS)
have been less consistent. Meta-analysis of MRS findings reveals
decreased glutamate levels in frontal regions, especially anterior

FIGURE 1 | Comparison of regions of aberrant increase of brain activity in patients with schizophrenia during tasks likely to involve endogenous coding of
predictions, with the regions in which local gyrification index is diminished in patients relative to healthy controls. Red spheres depict the loci of local maxima in
clusters of voxels exhibiting greater activity in patients with schizophrenia relative to healthy controls during processing of non-target stimuli in a target detection task
(Liddle et al., 2013); yellow spheres depict local maxima of aberrant activity in patients during processing of word sounds relative to non-word sounds (Ngan et al.,
2003). The black spheres depict the local maxima in clusters of reduced local gyrification in schizophrenia compared with healthy controls (Palaniyappan and Liddle,
2012). Note that the clusters were irregular is shape and many extended beyond the sphere depicting the local maximum. In particular, the region of diminished
gyrification with peak difference between patients and controls in the left middle frontal gyrus extended into superior frontal gyrus. The brain loci were visualized using
Brain Net Viewer (Xia et al., 2013).
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cingulate cortex, in both first episode psychosis and established
schizophrenia (Sydnor and Roalf, 2020). However, a recent
mega-analysis suggests that the reduction in glutamate might
be attributable, at least in part, to antipsychotic medication
(Merritt et al., 2021).

Post mortem studies also provide evidence for reduced
transcription of genes implicated in GABA transmission in
frontal cortex in schizophrenia (Hashimoto et al., 2008). In vivo
measurements using MRS have been inconsistent but a recent
meta-analysis indicates a significant reduction of GABA levels in
anterior cingulate cortex, and a trend toward reduction in other
frontal regions (Kumar et al., 2021).

THE RELATIONSHIP BETWEEN
DISORGANIZATION AND
PSYCHOMOTOR POVERTY

As discussed in the Introduction, Legge et al. (2021) found
that the polygenic risk for schizophrenia is associated with
both disorganization and with expressive negative symptoms.
They also found a significant correlation between severity of
disorganization and expressive negative symptoms in their cases.
The expressive negative symptoms identified by Legge et al.
(2021) (flat affect and alogia) are similar to the core negative
symptoms reflecting impoverishment of mental activity, which
Liddle (1987) labeled psychomotor poverty.

The findings of Legge et al. (2021) are consistent with the
identification by McGorry et al. (1998) in a large sample of
cases of First Episode Psychosis of a Bleulerian factor with
contributions from symptoms reflecting disorganization and also
symptoms reflecting psychomotor poverty. A similar factor with
loadings on disorganization and psychomotor poverty symptoms
was identified in another large study of first episode cases by
Tonna et al. (2019). Furthermore these finding are consistent
with the finding by Rathnaiah et al. (2020) of a latent variable
with loadings on both disorganization and psychomotor poverty
in stable cases of established schizophrenia (as referred to in the
Introduction).

On the other hand, numerous other studies of the
relationships between symptoms of schizophrenia report that
disorganization and psychomotor poverty are distinguishable
dimensions of psychopathology (Bilder et al., 1985; Liddle,
1987; Arndt et al., 1991). Thus, within an account of the
pathological mechanism of classical schizophrenia it is necessary
to propose a mechanism that accounts for the observation
that disorganization and psychomotor poverty are related but
nonetheless distinguishable clusters of symptoms.

Our proposal that imprecise predictive coding is a core
feature of classical schizophrenia could account for the observed
relationship between disorganization and psychomotor poverty,
as both are potential consequences of imprecise prediction.
Firstly, imprecise predictions will give rise to imprecise
prediction errors and thus to erratic updating of predictions,
leading, in turn, to poorly organized perception and action,
manifest as disorganization symptoms. Secondly, if predictions
are so imprecise that the prediction error is too diffuse to facilitate

a coherently refined action plan, the process of generating action
might be slowed or even fail to reach execution threshold at all,
and manifest as impoverishment of motor activity. Furthermore,
inconsistent updating of predictions over an extended period
might result in a failure of consistent reinforcement of the
pattern of neural activity coding the predictions, resulting in
weakening of predictions and to diminished initiation of mental
activity and behavior.

This possibility is supported by evidence regarding verbal
fluency in schizophrenia. Allen et al. (1993) administered a verbal
fluency test in which the person was required to generate as
many words as possible within a given category in a 2 min
period, on multiple occasions several days apart. They found that
patients with schizophrenia do not suffer from diminished store
of words. The variation between samples of words generated on
different days suggested that cases with marked disorganization
exhibit an inefficient search strategy, while cases with marked
impoverishment of mental activity appear to terminate the search
prematurely. This is consistent with the possibility that over an
extended period of frequently occurring mismatches between
predictions and experience, synapses in the networks engaged
in generating specific predictions become weaker resulting in
reduced ability to initiate a search for words.

CONTRIBUTIONS TO COGNITIVE
IMPAIRMENT IN SCHIZOPHRENIA

In the study of polygenic risk scores and schizophrenia
referred to in the Introduction, Legge et al. (2021) also
examined the degree to which the polygenic risk for cognitive
impairment contributes to clinical features of schizophrenia.
Not surprisingly, they reported that the polygenic score for
cognitive impairment occurring in diverse conditions contributes
to cognitive impairment in schizophrenia. Thus the genetic
contribution to cognitive impairment in schizophrenia arises
from two distinguishable groups of genetic variants: the variants
contributing to the polygenic risk for schizophrenia and from the
variants contributing to polygenic risk for cognitive impairment
in general. On further analysis Legge et al. (2021) found evidence
that the polygenic risk score for schizophrenia contributes to
cognitive decline rather than premorbid cognitive performance.

The evidence suggesting that the polygenic risk for
schizophrenia predisposes to cognitive decline indicates
that the expression of risk genes unfolds over time. It is plausible
that disorganization is an early manifestation of the genetic
risk for schizophrenia and that both psychomotor poverty and
cognitive impairment develop over time as consequence of
persisting lack of precision of predictions. This interpretation
accounts for the evidence that the association of disorganization
and psychomotor poverty with cognitive impairment is stronger
in the chronic phase of schizophrenia than in the early phase.
For example, Liddle and Morris (1991) found that in the stable
phase of chronic schizophrenia disorganization is associated
with impaired selection of mental activity (e.g., increased
Stroop effect; unusual word choice during a verbal fluency
test); whilst psychomotor poverty associated with impaired
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initiation of mental activity (e.g., decreased verbal fluency).
Furthermore, this evidence for progression over time provides
a pointer toward strategies for ameliorating at least some
of the cognitive impairment of schizophrenia, and in turn,
ameliorating impairment of role function that might arise
from those impairments. Identification of the nature of the
relevant neuronal processes offers the prospect of approaches to
treatments that might prevent or reverse long term disabilities.

REALITY DISTORTION IN CLASSICAL
SCHIZOPHRENIA

Reality distortion occurs in all psychotic illnesses, and is therefore
not unique to schizophrenia. Nonetheless, reality distortion plays
a major part in diagnostic criteria for schizophrenia employed in
current clinical practice (American Psychiatric Association, 2013;
World Health Organisation, 2018). The frequent occurrence
of reality distortion in schizophrenia is unlikely to merely be
an artifact of current diagnostic criteria. Simple schizophrenia,
characterized by classical features without overt reality distortion
and first identified by Diem in 1905, is relatively rare (Lally et al.,
2019). Thus, an adequate description of classical schizophrenia
must account for frequent occurrence of reality distortion in
classical schizophrenia. In this regard it is noteworthy, as
mentioned in the introduction, that in their longitudinal study
of the emergence of psychotic illness in a large non-clinical
sample of young people Dominguez et al. (2010) reported that
prior disorganization and negative symptoms predicted onset of
subsequent overt psychosis.

The hypothesis that the core aspect of classical schizophrenia
is imprecise coding of predictions provides a possible
clue to the mechanism by which the classical features of
disorganization together with psychomotor poverty might
precede the development of reality distortion and florid
psychosis. Prediction errors are associated with the release of
dopamine, which modulates the “teaching signal” responsible for
updating of predictions (Schultz, 1998). Persisting imprecision
of prediction would lead to frequent but unreliable prediction
errors, leading to an increase in net dopamine (Jenkinson
and Brown, 2011), increased dopaminergic transmission
and amplification of unreliable teaching signals. In some
circumstances, the strengthening of erroneous predictions
might, lead either to delusional misinterpretation of exogenous
signals or to misinterpretation of endogenously generated signals
as exogenous signals (i.e., hallucinations). At times of stress,
when levels of stress tend to magnify dopaminergic signals,
classical schizophrenia might develop into florid psychosis.

TIME-COURSE OF CLASSICAL
SCHIZOPHRENIA

The evidence regarding relationships between disorganization,
psychomotor poverty and cognitive impairment, and also
the relationships between these classical clinical features
and reality distortion, indicates that the manifestations

of classical schizophrenia evolve over time. It is therefore
appropriate to summarize the time-course characteristic of
classical schizophrenia.

Prior to Illness Onset
Features of classical schizophrenia are discernible before illness
onset in cases that subsequently develop schizophrenia. As
mentioned in earlier, Dominguez et al. (2010) performed
a 10 year follow-up study of a representative sample of
over three thousand young people, recruited at age 14–
24 years. Symptoms were assessed at three time points: at
time 1, negative/disorganized score was based in scores
for “indifference” and “thought incoherence”; at times 2
and 3; additional items measuring negative symptoms
were also included. Negative/disorganized symptoms
predicted positive symptoms over time. The co-occurrence
of positive and negative/disorganized symptoms predicted
functional impairment.

Classical Features Occurring During the
Prodrome
In many cases of schizophrenia, symptoms emerge gradually
during a prodromal period. In one of the most comprehensive
studies of the prodrome, Hafner et al. (1995) interviewed
232 cases in their first episode of overt schizophrenia, using
an interview schedule designed to delineate the time-course
and nature of the prodromal features. In that sample, the
mean duration of the prodrome was 5 years. Non-specific
symptoms such as restlessness, depression and anxiety were
the most common symptoms. Nonetheless the ten most
common features included features characteristic of classical
schizophrenia: difficulty with thinking and concentration; lack
of energy and slowness; poor work performance; and reduced
interpersonal communication.

Several studies using computerized analysis of speech samples
have demonstrated that subtle disorganization of speech in cases
at risk predicts onset of overt psychosis and subsequent severity
of negative symptoms (Bedi et al., 2015; Mota et al., 2017). As
mentioned in the Introduction, Ziermans et al. (2014) performed
a comprehensive assessment of symptoms and cognition in a
sample of individuals identified as being at high risk of psychosis
on the basis of clinical features. They found that severity of
disorganization predicted poor functional outcome at 6 years
(r = 0.55, p < 0.001).

In contrast, meta-analysis of the predictive power of duration
of untreated psychosis (DUP) reveals that DUP has only very
weak power to predict functional outcome. In a comprehensive
meta-analysis, Penttilä et al. (2014) found a weak though
statistically significant correlation between DUP and social
function, but no significant correlation between DUP and
occupational function.

Long Term Evolution of Symptoms in
Classical Cases
Pfohl and Winokur (1982) delineated the evolution of symptoms
over a period of 35 years in a sample of hebephrenic/catatonic
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schizophrenia identified in a cohort of 500 cases admitted
to mental hospital in a period 1935–1945, prior to the
introduction of antipsychotic medication. At initial assessment,
the hebephrenic/catatonic cases were characterized by
disorganization of mental activity. The investigators examined
case records reporting the presence or absence of 28 different
symptoms assessed systematically on a yearly basis during the
follow-up period. They found that symptoms reflecting reality
distortion, such as hallucinations and delusions, had onset in the
early phase of overt illness and in many cases, resolved within
the first 5 years. In contrast, features characteristic of classical
schizophrenia, such as loosening of associations, weakened
volition, diminished social interaction and lack of engagement
in productive activity were very prevalent in the early phases
and usually persisted beyond 5 years. Furthermore, symptoms
such incoherence of speech and flatness of affect became more
prevalent in the longer term.

GENE-ENVIRONMENT INTERACTIONS

As discussed in sections “The Relationship Between
Disorganization and Psychomotor Poverty” and “Reality
Distortion in Classical Schizophrenia,” life-long imprecision
in predictive coding might in itself lead to an evolving
course of illness. Imprecise predictive coding might initially
produce disorganization and lead to psychomotor poverty,
while predisposing to episodic reality distortion. However,
such processes do not fully account for the characteristic
time-course of classical schizophrenia. There is evidence that
a diverse number of environmental factors might contribute
to schizophrenia: maternal infection, obstetric complications,
childhood abuse, brain injury, substance abuse (Gilmore, 2010).

Furthermore, the concept of Classical Schizophrenia embraces
a specific clinical profile within the diverse clinical conditions
that would be diagnosed as schizophrenia (or as a condition
within the schizophrenia spectrum) according to either DSM-
5 (American Psychiatric Association, 2013) or ICD-11 (World
Health Organisation, 2018). It is likely that diverse environmental
factors, and perhaps other genetic variants, contribute to the
cause of psychotic conditions that do not exhibit the profile of
classical schizophrenia.

Inflammation is a plausible process that might link diverse
environmental factors to genetic factors contributing to
schizophrenia. Watanabe et al. (2010) have reviewed the evidence
suggesting that inflammatory processes mediated by cytokines
such as epidermal growth factor (EGF) and interleukins provide
a common pathway linking genetic and environmental factors.
Genome wide association studies have revealed evidence of
multiple genetic variants implicated in immune mechanisms,
most notably variants of immunity-related genes located on
chromosome 6 in the vicinity of the Major Histocompatibility
Locus, are associated with schizophrenia (Shi et al., 2009).

Many of the environmental factors that predispose to
schizophrenia involve stress on body tissues, including
infection or metabolic processes that are associated with
inflammation. Inflammatory cytokines, are elevated at onset of

illness (Lesh et al., 2018) and through the course of the illness
(Rodrigues-Amorim et al., 2018). It is noteworthy that in contrast
to cytokine elevation observed in bipolar mood disorder, there
is evidence that cytokine elevation observed at the onset of
schizophrenia is associated with deficits in cerebral gray matter
(Lesh et al., 2018). In light of the evidence for gray matter
deficits in classical schizophrenia discussed in the section entitled
Macroscopic Brain Changes, it is pertinent to ask whether or
not inflammation might contribute to the clinical profile of
classical schizophrenia.

Our hypothesis that the imprecision of predictive coding is
a core process in classical schizophrenia raises the question:
might inflammation impair predictive coding and in particular,
be associated with electrophysiological abnormalities such as
reduced MMN and PMBR? Emerging evidence supports this
hypothesis. Jodo et al. (2019) demonstrated that neonatal
exposure to the inflammatory cytokine, EGF, results in deficits of
MMN in rats. In elderly men, persisting prostatitis and urinary
tract infection is associated with cognitive deficits and with
abnormality of MMN (Urios et al., 2019). Successful treatment
with the phosphodiesterase-5 inhibitor, tadalafil, resulted in
reduction of levels of the inflammatory cytokine, IL-6, recovery
of the MMN to the level observed in healthy controls, and
significant improvement in cognitive function (Urios et al.,
2019). Investigation of the relationships between markers of
inflammation and electrophysiological markers indicative of
imprecise predictive coding, such as MMN and PMBR in
schizophrenia is warranted.

DISCUSSION

In accord with our overarching goal of understanding of the
processes that lead to poor functional outcome in schizophrenia,
we have identified a specific clinical profile that we have
designated “classical schizophrenia.” Classical schizophrenia is
characterized by disorganized and impoverished mental activity
that predispose to reality distortion, and is associated with risk
of persisting impairment of role function. We have assembled
evidence supporting the hypothesis that the core pathological
process in classical schizophrenia is imprecise predictive coding.

This concept of classical schizophrenia is consistent with
subtle but widespread abnormalities of brain structure,
predominantly in association cortex. Some evidence indicates
that abnormal gyrification, particularly in insula, lateral frontal
cortex and superior temporal gyrus, is characteristic of classical
schizophrenia. Evidence indicates that these regions play an
important role in generating predictions and/or responding to
prediction error.

While there is evidence that the genetic variants that
contribute to the polygenic risk score for schizophrenia
are especially predictive of the clinical profile of classical
schizophrenia, it is likely that interaction between genes and
environmental factors influence the time-course of classical
schizophrenia. In particular, it is plausible that inflammation
plays a cardinal role in mediating these interactions. Emerging
evidence suggests that inflammation might contribute to the
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predictive coding deficits that we propose are at the core
of classical schizophrenia. However, further evidence that
inflammation might contribute to imprecise predictive coding
is required. In particular, investigation of the relationship
between inflammation and electrophysiological markers, such
as MMN and PMBR, and also the relationships between
inflammation and the proposed characteristic regional
brain abnormalities revealed by structural and functional
fMRI, is warranted.

In light of the association between polygenic risk score
and the classical profile, it is noteworthy that Landi et al.
(2021) demonstrated that polygenic risk score predicts poor
outcome (quantified by measures such as course of disorder,
classified as Continuous chronic illness/Continuous chronic
illness with deterioration). However Landi et al. (2021)
reported that the polygenic risk score does not add to the
accuracy of prediction based on detailed analysis of electronic
case records.

There is need for more sensitive measures of disorganization,
both for the purpose of investigating mechanism and also for
clinical prediction in early phase of illness. There is promising
evidence that automated analysis of speech samples might
help meet this need (see section entitled Classical Features
Occurring During the Prodrome). In light of the observation
that disorganization is also manifest as inappropriate affect,
automated processing of facial expressions of emotion might
also be helpful.

Furthermore, it would be of potential value to develop
procedures for quantifying imprecise predictive coding from
relevant measurements of brain function that might feasibly be
employed in routine clinical practice. The evidence suggesting
that PMBR is associated with predictive coding, together with the
evidence that reduced PMBR is associated with clinical features of
classical schizophrenia, raises the possibility that an assessment
of beta oscillations using the clinically accessible technique of
EEG, recorded during an appropriate attentional task, might have
prognostic value.

One outstanding issue is whether or not classical
schizophrenia is best regarded as a discrete category of psychotic
illness, or alternatively, that the clinical profile of classical
schizophrenia reflects a continuously distributed dimension of
variation within the spectrum of psychotic illnesses. In light of
the likelihood that a multiplicity of genes and environmental
factors contribute to the cause of classical schizophrenia,
there is likely to be a degree of heterogeneity within classical
schizophrenia. A sharp categorical boundary is unlikely to exist.
Nonetheless for the practical purposes of making a diagnosis and
planning treatment, it would be useful to determine the degree to
which classical schizophrenia can be identified as an illness that
is categorically distinct from cases of psychotic illness that do not
exhibit the classical profile.

In this paper we have discussed the evidence from studies
of groups of cases, that the classical features reflecting
disorganized or impoverished mental activity and cognitive
impairment (listed in Table 1) predict long term disability.
So far there is limited evidence that assessment of the
relevant symptoms and cognitive measures are sufficiently

sensitive and reliable to provide clinically useful estimates
of prognosis in an individual case. However, the evidence
that classical features are correlated with electrophysiological
features such as inter-trial coherence during target detection
tasks (Doege et al., 2010) and beta-bursts related to movement
(Rathnaiah et al., 2020; Briley et al., 2021; Gascoyne et al.,
2021) indicates a practical approach to enhancing prediction.
It is practical to measure these electrophysiological features
in routine clinical practice. It is plausible that a combination
of measures of symptoms and cognition, together with such
electrophysiological measurements would provide an estimate
of risk of persisting disability that would facilitate planning
treatment for an individual. The next step toward developing
an effective predictive procedure would be identification of the
optimal combination of these clinical and electrophysiological
measurements at baseline for predicting role function in a
longitudinal study of early phase cases over a period of a year or
preferably longer.

We have also presented evidence from electrophysiological
and brain imaging studies suggesting that the relevant
pathological process entails imprecise predictive coding.
Further investigation of the proposed pathophysiological
mechanism might lead to development of improved treatment
strategies. For example the modeling of the role of abnormal
neural signaling in local circuits and also in long range
connections in the electrophysiological features associated with
classical schizophrenia, similar to the modeling performed by
Adams et al. (2021), has the potential to lead to proposals for
neuromodulation therapies effective in treating the features of
classical schizophrenia.
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Regularization may be used as an alternative to dimensionality reduction when the
number of variables in a model is much larger than the number of available observations.
In a recent study from our group regularized regression was employed to quantify
brain functional connectivity in a sample of healthy controls using a brain parcellation
and resting state fMRI images. Here regularization is applied to evaluate resting state
connectivity abnormalities at the voxel level in a sample of patients with schizophrenia.
Specifically, ridge regression is implemented with different degrees of regularization.
Results are compared to those delivered by the weighted global brain connectivity
method (GBC), which is based on averaged bivariate correlations and from the non-
redundant connectivity method (NRC), a dimensionality reduction approach that applies
supervised principal component regressions. Ridge regression is able to detect a larger
set of abnormally connected regions than both GBC and NRC methods, including
schizophrenia related connectivity reductions in fronto-medial, somatosensory and
occipital structures. Due to its multivariate nature, the proposed method is much more
sensitive to group abnormalities than the GBC, but it also outperforms the NRC, which is
multivariate too. Voxel based regularized regression is a simple and sensitive alternative
for quantifying brain functional connectivity.

Keywords: resting state fMRI, schizophrenia, functional connectivity, ridge regression, global brain connectivity

INTRODUCTION

Usage of regularization methods is obiquitous in estimating problems involving high
dimensionality data (Bühlmann and Van De Geer, 2011). In MRI, where voxels are the primary
unit of information representation, there may be from tens to hundreds of thousands of values
characterizing an imaged brain. However, comprehensive analyses on such large data entities have
been usually preceded by dimensionality reduction steps such as principal component analysis,
independent component analysis, and partial least squares (Calhoun et al., 2009; McIntosh and
Misic, 2013; Salvador et al., 2017) which drastically reduce the number of variables to be considered
in the following analyses.

Specifically, in the field of functional connectivity one may use this newly generated subset of low
dimensionality variables to fit linear models quantifying the connectivity between a single voxel
and the remaining gray matter voxels of the brain (Salvador et al., 2017). These models may be
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considered as truly multivariate models, in contrast to other voxel
level connectivity measures that are simple averages of bivariate
correlations between the target voxel and the rest of voxels in
the brain, as proposed by the weighted Global Brain Connectivity
(GBC) method (Cole et al., 2010).

As an alternative to dimensionality reduction methods,
regularization techniques allow fitting models directly to the
original data by applying constraints on the parameter estimates
of the fitted models (Hastie et al., 2009). This approach
was recently proposed by our group and applied to analyze
age and gender related connectivity patterns in a sample
of healthy controls scanned at rest (Salvador et al., 2020).
In this first study, mean time series from 246 regions of
interest (ROIs) from the Brainnetome atlas (Fan et al., 2016)
were used as input data for the regularized regressions
(ridge and random forest regressions) and results obtained
were compared to those delivered by the GBC, finding
distinct connectivity patterns between both approximations,
which were especially relevant in the age-related analyses
(Salvador et al., 2020).

Such methods may also be useful in improving understanding
of psychiatric disorders, such as schizophrenia. One of the
most accepted ethiological hypotheses for schizophrenia is
the dysconnection hypothesis (Weinberger, 1993; Friston and
Frith, 1995) which states that symptoms in patients with
schizophrenia arise from abnormalities in brain connectivity
at several levels (Friston et al., 2016). While there are many
MRI connectivity studies with significant results summarized
in recent meta-analyses (e.g., Zhou et al., 2015; Giraldo-
Chica and Woodward, 2017). the application and evaluation of
newly developed connectivity methods remains of high interest
in schizophrenia.

Here we apply one of the regularization methods used in
our previous study (ridge regression) to evaluate differences in
resting state connectivity between a sample of N = 74 patients
with schizophrenia and N = 74 healthy controls matched for
gender, age, and premorbid IQ. The association with clinical
severity is also evaluated in a larger sample of N = 148 patients.
Results are compared to those provided by the GBC method
and by the non-redundant connectivity method (NRC) (Salvador
et al., 2017), a dimensionality reduction approach that applies
supervised principal component regressions (Bair et al., 2006;
Hastie et al., 2009). We also extend the previous implementation
of ridge regression by directly considering voxels instead of ROIs
as inputs for the analyses.

MATERIALS AND METHODS

Regularized Brain Connectivity
Ideally, if scanning time was not a constraint and image
acquisition was carried out indefinitely, the number of recorded
time observations (N) would eventually exceed the number of
voxels (p) and a simple linear estimate of the association between
one voxel i and the remaining gray matter voxels in the brain
could be obtained by ordinary least squares (OLS). Under this
theoretical scenario, the multiple regression equation would give

the predicted time series for the target voxel (Ŷi)

Ŷi = β0 + β1Y1 + ...+ βi−1Yi−1 + βi+1Yi+1 + ...+ βpYp (1)

and a simple measure of functional connectivity for this voxel
would be provided by the multiple correlation coefficient

Cor
(
Ŷi, Yi

)
(2)

which quantifies the degree of similarity between the expected
(Ŷi) and observed (Yi) time series of voxel i, and which is given
by the square root of the coefficient of determination (i.e., R2, a
standard ouput from regression analyses).

However, in a real fMRI dataset the number of voxels is much
larger than the number of time points (N�p) and OLS is not
feasible. This limitation may be overcome by drastically reducing
the number of variables through dimensionality reduction or by
considering ROIs from a brain parcellation. Here, though, there
is also the alternative of using a regularization approach.

Specifically, regularization through ridge regression allows
obtaining Ŷi by setting a restriction on the parameter estimates
of Equation 1

p∑
i=1

β2
i < ct (3)

(where ct stands for constant value). Such restriction may be
restated as a constrained least-squares minimization regulated by
a Lagrange multiplier (λ ≥ 0)

N∑
j=1

(yij − (β0 + β1y1,j + ...+ βi−1yi−1,j + βi+1yi+1,j

+...+ βpyp,j))2
+ λ

p∑
i=1

β2
i (4)

where yi,1, . . ., yi,N stand for the individual components (time
points) of Yi.

Here, the selection of an adequate value for λ (the
regularization parameter) will be important in order to achieve
a good balance between bias and variance (i.e., to find a model
that avoids overfitting while not being not too constrained).
Furthermore, some aspects will have to be considered for the
validity of ridge regression in the framework of regularized brain
connectivity (RBC). Apart from the usual rescaling of variables
(time series) to unit variance, λ values will have to remain
fixed through all voxels and individuals, otherwise estimates of
Equation 2 will not be comparable. Unfortunately, due to the lack
of independence between observations in time series, the habitual
cross-validation methods will not be suitable. Since there is no
easy alternative to cross-validation in the current framework, we
have decided to report results using a wide range of λ values
(0.5, 1, 5, 10, 50, 100, and 500). All ridge regressions have been
carried out with functions contained in the glmnet R library
(Friedman et al., 2010).

To highlight the multivariate nature of the RBC, results
obtained have been compared to those provided by simple
averages of bivariate correlations. To do so, the weighted Global
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TABLE 1 | Summary of demographic and clinical data.

All patients (N = 148) Matched patients (N = 74) Matched controls (N = 74) Statistical tests and p-values

Gender 97M/51F 43M/31F 43M/31F χ2 = 0, pval = 1.00

Age 42.37 (10.97) 41.12 (11.83) 38.09 (13.65) t = –1.44, pval = 0.15

Premorbid IQ 21.15 (4.79) 23.14 (4.34) 23.12 (4.49) t = –0.02, pval = 0.98

Positive Syndrome 10.41 (4.61) 10.93 (5.15)

Negative Syndrome 14.02 (6.60) 12.86 (6.41)

Disorganization Syndrome 7.01 (2.43) 6.74 (2.27)

Absolute frequencies for gender, and mean and standard deviations for age, Premorbid IQ (as estimated by the Word Accentuation Test) and the three Liddle Syndromes
extracted from the PANSS scale are reported together with results from statistical tests comparing values for the matched samples of patients and healthy controls.

Brain Connectivity (GBC) method (Cole et al., 2010) has been
also applied to the resting state images. Specifically, averages of
absolute values of all bivariate correlations involving each specific
voxel have been calculated. Results from the RBC have been also
compared to connectivity estimates obtained through supervised
principal component regressions (Bair et al., 2006; Hastie et al.,
2009), a dimensionality reduction approach applied to quantify
brain connectivity from fMRI images (Salvador et al., 2017).

Participants
A sample of N = 148 patients with a diagnosis of schizophrenia
according to DSM-IV criteria (i.e. excluding patients with
schizoaffective and other schizophrenia related disorders) were
recruited from three hospitals from Germanes Hospitalàries
located in the Province of Barcelona, Spain (Hospital Bennito
Meni C.A.S.M., Hospital Sant Rafael and Hospital de la Mercè).
All patients but two were taking antipsychotic medication
(atypical N = 109, typical N = 9, both N = 24, unknown
N = 3, equivalents of Chlorpromazine: 508.82 mg (mean),
517.55 mg (SD). A second sample of N = 74 healthy controls
were recruited from non-medical hospital staff, their relatives and
acquaintances, plus independent sources in the community.

Controls reporting a history of mental illness and/or
treatment with psychotropic medication or with a psychotic
first-degree relative were not included. All individuals in both
samples were right handed, aged 18–65, with no history of
brain trauma or neurological disease, and not having shown
alcohol/substance abuse in the last 12 months. All subjects
gave written informed consent before participation and the
study procedures were approved by the Comité de Ética de la
Investigación de FIDMAG Hermanas Hospitalarias and adhered
to the Declaration of Helsinki.

Image Acquisition and Processing
Participants underwent a single MRI session in a 3.0 Tesla
Philips Ingenia machine located in the Hospital Sant Joan de Déu
(Barcelona, Spain) in which a resting state functional MRI (fMRI)
sequence and a T1 structural image for anatomical reference
were acquired. Parameters for the resting fMRI bold sequence
were: TR = 2,000 ms, TE = 30 ms, flip angle = 70◦, in-plane
resolution = 3.5 mm × 3.5 mm, FOV = 238 mm × 245 mm,
slice thickness = 3.5 mm, inter-slice gap = 0.75 mm, number
of volumes = 256. Slices (32 per volume) were acquired with
an interleaved order parallel to the AC-PC plane. The T1 image

was acquired using a Fast Field Echo (FFE) with TR = 9.90 ms;
TE = 4.60 ms; Flip angle = 8◦; voxel size = 1 mm × 1 mm;
slice thickness = 1 mm; slice number = 180; FOV = 240 mm).
fMRI preprocessing steps included movement correction, spike
scrubbing, regression of noise-independent components, non-
linear normalization to the Montreal Neurological Institute
space, regression of noise from ventricles and white matter, and
low-frequency filtering in the 0.1–0.02 Hz interval (Salvador
et al., 2017). Specifically, for the regression of noise-independent
components, individual independent component analyses were
previously run with Melodic, a module included in FSL (Smith
et al., 2004) and those components showing clear noise patterns
(most frequently edge effects due to movement) were selected.
Time series of the selected components were regressed out from
the time series of each voxel, and residuals were kept as the
denoised time series.

Prior to the calculation of the RBC, GBC, and NRC maps
a common gray matter mask was applied to the normalized
fMRI images. Then, fMRI volumes were resampled to a
4 mm × 4 mm × 4 mm voxel in order to reduce computational
costs. Finally, values from the individual RBC, GBC, and
NRC maps where Fisher transformed before carrying out
the group analyses.

Group Comparisons and Group Level
Regressions
A subsample of N = 74 patients matched for gender, age
and premorbid IQ to the sample of N = 74 controls was
selected from the original sample of patients before carrying
out group comparisons in RBC, GBC, and NRC. Premorbid
IQ was estimated with the Word Accentuation Test (Del
Ser et al., 1997). Positive and Negative Syndrome Scale
(PANSS) scores (Kay et al., 1987) were used to calculate
values of the three Liddle Syndromes (Positive, Negative,
and Disorganization) (Liddle, 1987) for all N = 148 patients,
and regressions between RBC, GBC, and NRC and clinical
severity as measured by the three Syndromes were performed
in this larger sample. In the regression analyses, age, gender,
type of antipsychotic medication (atypical and/or typical)
and dose of medication (equivalents of Chlorpromazine)
were considered as nuisance covariates. In all analyses
statistical significance was derived from permutation tests
carried out using the randomize function included in FSL
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FIGURE 1 | Brain areas with significant differences in RBC, GBC and NRC between patients and healthy controls. RBC results are given for the different
regularization values (λ values) applied in the ridge regressions. While for the RBC (red) and GBC (green), comparisons only included reductions in connectivity,
significant disorder related reductions (blue) and increases (red) were observed with the NRC (although the later were of much smaller extent).
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FIGURE 2 | Number of voxels with significant reductions in RBC connectivity in patients as a function of λ (red bars). Most extensive abnormalities were observed
with λ = 50. In all cases these were much larger than reductions observed with the GBC (green) and the NRC (blue).

(Smith et al., 2004) and applying the Threshold-Free Cluster
Enhancement (TFCE) method.

RESULTS

A summary of clinical and demographical data for the initial
sample of patients with schizophrenia and for the matched
samples of patients and healthy controls is provided in Table 1.

Group Analyses
When RBC maps from patients were compared to those
of healthy controls only areas of significant reductions in
connectivity were found. As shown in Figure 1, this pattern
was consistent through all regularization values. Tests performed
with λ = 50 produced the most extensive differences (Figure 2)
including bilateral connectivity reductions in the supplementary
motor area, paracentral lobule, precentral and postcentral gyri,
precuneus, dorsal and anterior cingulate, ventromedial and right
dorsolateral prefrontal cortex, cuneus, calcarine, lingual, lateral
occipital areas and parts of the cerebellum.

All λ values applied led to much more widespread patterns
of differences than those provided by both the GBC and NRC
methods, which were mainly restricted to connectivity reductions
in clusters of moderate size in the supplementary motor area /
paracentral lobule and postcentral gyrus (Figure 1). As shown
in Figure 2, though, reductions in the NRC were clearly larger
than those observed with the GBC. A cluster of increased
connectivity in patients was also observed in the right Rolandic
operculum (Figure 1).

Clinical Covariates
When RBC maps were correlated with scores of the three Liddle
Syndromes, a decreasing pattern of connectivity was observed for
the Negative Syndrome (Figure 3A). This negative association
involved a cluster located in the left occipital cortex (clusters
shown in Figure 3 are based on analyses using λ = 50, which led

to most extensive differences in the group comparison). Another
cluster of negative association with the Negative Syndrome was
observed for the GBC, which was also in the occipital cortex,
although with a more medial position. The GBC also showed
two clusters of negative association with the Disorganization
Syndrome, one of them located in the right fusiform area, and the
other in the right posterior insula (Figure 3B). The later was also
the site for the only significant cluster observed with the NRC,
which was of small size and was also negatively correlated with
the Disorganization Syndrome. No significant associations were
found between any of the three connectivity measures and the
Positive Syndrome.

DISCUSSION

As shown by the results, the RBC is much more sensitive
to group differences between patients with schizophrenia and
healthy controls than the GBC. The RBC and the GBC are
looking at different aspects of brain connectivity. While the GBC
only accounts for net differences in bivariate correlations, the
RBC is a truly multivariate measure and, consequently, it may
be much more sensitive to local changes in brain connectivity
(changes that may go unnoticed after the averaging operation
carried out by the GBC). Still, as shown by the associations
found with the Liddle syndromes, the GBC may convey relevant
information. Unexpectedly, the NRC, a method that is also
multivariate, did not perform as sensitively as the RBC in
the group comparisons, suggesting that regularization may be
a better option for quantifying functional connectivity than
dimensionality reduction. However, this statement may require
testing through exhaustive analyses.

Results found here are, to some extent, similar to those
reported in previous studies using similar methods. In a prior
study on patients with schizophrenia using the GBC (Cole et al.,
2011) the authors only found reduced frontal connectivity in the
primary (non seed based) analyses. A similar pattern of frontal
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FIGURE 3 | Significant associations between scores from the Liddle syndromes and connectivity levels. While (A) a negative relation was observed between the
Negative syndrome and both the RBC and GBC in occipital areas, (B) the Disorganization syndrome was negatively correlated with the GBC and the NRC, but the
latter only involved a very small cluster located in the right posterior insula. No association was found with positive syndrome scores.
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connectivity reduction was observed in another study using GBC
in schizophrenia (Yang et al., 2014) although this pattern was
reversed when the global brain signal was ignored in the pre-
processing phase [regrettably, pre-processing steps may have a
significant effect on resting state results (Caballero-Gaudes and
Reynolds, 2017)]. Using global Functional Connectivity Density
mapping (gFCD), an approach similar to GBC, based on the
number of correlations above a certain threshold connecting
each voxel (Tomasi and Volkow, 2010), Zhuo et al. (2017)
also reported a similar pattern of disconnections in patients
with schizophrenia, which included reductions in connectivity in
postcentral gyri, occipital cortex, temporo-occipital conjunction,
and inferior parietal lobule, although these authors also found
increases in subcortical structures. On the other hand, the only
study using NRC in patients with schizophrenia, which was
conducted at our institution in another sample of patients and
healthy controls, revealed a similar pattern of disconnection
in somatosensory and occipital regions (Salvador et al., 2017),
although a small cluster of increased connectivity was also
found in the Caudate and no significant differences were
reported for the GBC.

The dominance of reduced connectivity in these results agrees
with recent meta-analyses on schizophrenia (Dong et al., 2018;
Doucet et al., 2020). However, the reported abnormalities may
not be restricted to schizophrenia since, although with different
intensities, they have been also described in other psychotic
disorders such as the bipolar disorder or major depression
disorder (Xia et al., 2019). Still, they seem to be more prominent
in schizophrenia (Li et al., 2021).

As previously explained in the methods, some aspects should
be kept in mind in order to avoid biases and inconsistencies
when applying the RBC. Most importantly λ should be kept fixed
through all analyses. The selection of its value is also of relevance,
as a good trade-off between variance and bias should be achieved.
Unfortunately, there is no a priori rule for the selection of λ as
its optimal value will depend on many sample specific aspects
such as the number of voxels or the degree of autocorrelation
and length of time series. Even so, as shown by the stability of
results reported in our study using a wide range of λ values, it
may be concluded that λ selection, although relevant, it does not
require high accuracy.

In summary, in this study we prove that regularization, and
specifically ridge regression, may be a feasible alternative to
dimensionality reduction for multivariate functional connectivity
estimation, even if applied at the voxel level. The regularized
brain connectivity approach is able to detect a much extended
set of abnormally connected regions than those detected by
the global brain connectivity and the non-redundant brain
connectivity methods when it is applied to a sample of patients
with schizophrenia.
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Gin S. Malhi9,10 and Nicholas B. Allen11

1 Department of Neuropsychiatry, School of Medicine, University of Toyama, Toyama, Japan, 2 Research Center for Idling
Brain Science, University of Toyama, Toyama, Japan, 3 Brain Park, Turner Institute for Brain and Mental Health, School
of Psychological Sciences, Monash University, Clayton, VIC, Australia, 4 Melbourne Neuropsychiatry Centre, Department
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An increased prevalence of duplicated Heschl’s gyrus (HG) has been repeatedly
demonstrated in various stages of schizophrenia as a potential neurodevelopmental
marker, but it remains unknown whether other neuropsychiatric disorders also exhibit
this macroscopic brain feature. The present magnetic resonance imaging study aimed
to examine the disease specificity of the established finding of altered HG patterns in
schizophrenia by examining independent cohorts of bipolar disorder (BD) and major
depressive disorder (MDD). Twenty-six BD patients had a significantly higher prevalence
of HG duplication bilaterally compared to 24 age- and sex-matched controls, while their
clinical characteristics (e.g., onset age, number of episodes, and medication) did not
relate to HG patterns. No significant difference was found for the HG patterns between
56 MDD patients and 33 age- and sex-matched controls, but the patients with a
single HG were characterized by more severe depressive/anxiety symptoms compared
to those with a duplicated HG. Thus, in keeping with previous findings, the present
study suggests that neurodevelopmental pathology associated with gyral formation
of the HG during the late gestation period partly overlaps between schizophrenia
and BD, but that HG patterns may make a somewhat distinct contribution to the
phenomenology of MDD.
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INTRODUCTION

Gyrification pattern of Heschl’s gyrus (HG), which includes
primary auditory cortex, displays a large inter-individual
variability, potentially reflecting cytoarchitectonic development
during gestation (Chi et al., 1977; Armstrong et al., 1995) and/or
experience-dependent structural plasticity (Zatorre et al., 2012).
While functional significance of the HG gyrification patterns
has not been fully elucidated, it has been demonstrated that
duplicated HG is involved in the neural basis of cognitive
skills, such as musicality especially for professional musicians
(Schneider et al., 2005; Benner et al., 2017; Turker et al., 2017)
and good (Turker et al., 2017) or poor (Leonard et al., 1993, 2001)
language learning ability in non-clinical population (reviewed
by Marie et al., 2016). HG duplication, which is observed in
approximately 30 to 50% of healthy subjects (Leonard et al.,
1998; Abdul-Kareem and Sluming, 2008; Marie et al., 2015),
is thus thought to be a normal anatomical variant potentially
associated with individual differences in cognitive function, but
recent magnetic resonance imaging (MRI) studies have suggested
that an altered HG gyrification pattern may also be associated
with the pathophysiology of neuropsychiatric disorders.

Neuroimaging evidence has demonstrated an association
between schizophrenia and macroscopic brain changes (Bakhshi
and Chance, 2015; Takahashi and Suzuki, 2018), potentially
reflecting early neurodevelopmental pathology (Weinberger,
1987; Insel, 2010). In particular, an increased prevalence of
duplicated HG likely exists from the earliest stages of psychosis
[e.g., high-risk status (Takahashi et al., 2021c) and at illness
onset (Takahashi et al., 2021a)] and is not influenced by
medication and illness chronicity (Takahashi et al., 2021b),
and may underpin cognitive impairment (Takahashi et al.,
2021c) and primary negative symptomatology (Takahashi et al.,
in submission). These HG findings implicate that altered
cytoarchitectonic development of the primary auditory cortex in
utero may contribute to early neurodevelopmental pathology of
schizophrenia. However, the disease specificity of these findings
in schizophrenia remains largely unknown. To our knowledge,
no studies to date have specifically examined the HG duplication
patterns in other neuropsychiatric disorders, such as affective
disorders, that partly overlap with schizophrenia on the level
of phenomenology and genetic/neurobiological findings (Prata
et al., 2019; Grunze and Cetkovich-Bakmas, 2021).

While the neural underpinnings of affective disorders remain
elusive, it is hypothesized that affective disorders, particularly
bipolar disorder (BD), may be caused by developmentally
mediated neurobiological alterations that are associated with
emotion-regulation neural circuitry (Sanches et al., 2008; Phillips
and Swartz, 2014). Major depressive disorder (MDD) is a
phenotypically heterogeneous disorder with both biological and
environmental risk factors (Slavich and Irwin, 2014; Uchida
et al., 2018), in addition to which prenatal neurodevelopmental
insults may also contribute to its pathophysiology (Gałecki and
Talarowska, 2018; Lima-Ojeda et al., 2018). Indeed, previous
MRI studies in schizophrenia (Takahashi et al., 2014b, Nishikawa
et al., 2016), BD (Takahashi et al., 2014a), and MDD (Takahashi
et al., 2016) have demonstrated commonly altered brain surface

morphology, suggesting partly overlapping neurodevelopmental
pathologies in these disorders. Further, it is notable that
schizophrenia and BD patients likely exhibit similar gyrification
pattern trajectories (reviewed by Sasabayashi et al., 2021) as
a potential common basis of emotional dysregulation and
cognitive impairments. Given that inter-individual variation in
the HG gyrification pattern could affect regional neural functions
and cognitive abilities (Tzourio-Mazoyer et al., 2015; Tzourio-
Mazoyer and Mazoyer, 2017) and that the HG is also involved
in emotional processing (Grosso et al., 2015; Concina et al.,
2019), it would seem worthwhile to evaluate the potential
role of HG duplication patterns on the pathophysiology of
affective disorders.

The present MRI study aimed to examine the HG duplication
patterns in both BD and MDD in comparison with our
previous findings in schizophrenia (Takahashi et al., 2021a,b,c) to
establish the common and distinct alterations in HG gyrification
pattern across major psychiatric disorders. On the basis of the
potential role of HG patterns in emotional processing (e.g.,
Tzourio-Mazoyer and Mazoyer, 2017) and previous findings
of partly overlapping brain gyrification patterns in various
psychiatric disorders (Sasabayashi et al., 2021), we predicted
that affective disorders (especially BD) would have an increased
HG duplication compared to matched healthy controls. We
also explored the relationship between HG patterns and clinical
characteristics in the BD and MDD groups.

MATERIALS AND METHODS

Participants
The study participants comprised 26 patients with BD, 56 with
MDD, and 57 age- and sex-matched healthy controls (24 subjects
matched for BD and 33 for MDD) (Table 1); inclusion/exclusion
criteria and sample characteristics of these cohorts have been fully
described elsewhere (Takahashi et al., 2014a, 2016, 2020).

Briefly, the patients fulfilling DSM-IV criteria for bipolar I
disorder were recruited from the Mood Disorders Unit at the
Prince of Wales Hospital, Sydney, Australia. Their diagnoses
and clinical characteristics (e.g., lifetime affective episodes,
medication status) were confirmed by research psychiatrists
using the Structured Clinical Interview for DSM-IV patient
version (SCID-IV-P) (First et al., 1998) and a detailed case
note review. At the time of participation, all patients did not
fulfill current manic/hypomanic or depressive episode of SCID
and were considered to be under euthymic condition only
with subsyndromal symptoms. Twenty-one patients were taking
mood stabilizers [e.g., lithium (Li) (N = 12), valproate (VPA)
(N = 12)], while the remaining 5 were not on medication at the
time of scanning. Ten BD patients had a family history of affective
disorders and 16 had a history of psychosis (i.e., hallucinations
and/or delusions) during past affective episodes.

The MDD patients were recruited via local advertisement or
outpatient psychiatric clinics in Melbourne, Australia. They were
diagnosed by SCID-IV-P (First et al., 1998) and assessed using
the Beck Depression Inventory (BDI) (Beck and Steer, 1987),
Positive Affect and Negative Affect Scale (PANAS) (Watson et al.,
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TABLE 1 | Sample characteristics of the study participants.

BD cohort MDD cohort

Controls (N = 24) Patients (N = 26) Controls (N = 33) Patients (N = 56)

Age (years) 38.7 ± 11.1 38.4 ± 10.9 34.0 ± 9.9 33.8 ± 9.1

Male/female 7/17 8/18 12/21 16/40

Current IQ 115.1 ± 9.6 113.8 ± 7.1 111.1 ± 10.9 108.0 ± 9.8

Age of onset (years) - 24.9 ± 8.4 - 23.5 ± 9.0

Illness duration (years) - 13.5 ± 10.1 - 10.3 ± 8.1

Number of manic episodes - 8.8 ± 10.2 - -

Number of depressive episodes - 11.1 ± 10.8 - 3.4 ± 3.0

Medication at scanning (yes/no) - 21/5 - 33/19

Beck Depression Inventory - - 3.6 ± 4.1 23.4 ± 15.8

MASQ general distress - - 27.9 ± 8.3 45.8 ± 10.3

MASQ general depression - - 19.5 ± 7.2 41.5 ± 12.0

MASQ general anxiety - - 16.4 ± 6.4 28.7 ± 9.0

MASQ anxious arousal - - 22.0 ± 4.4 36.1 ± 12.2

MASQ high positive affect - - 81.1 ± 14.3 53.5 ± 16.8

MASQ loss of interest - - 14.7 ± 5.0 27.8 ± 7.7

PANAS positive affect - - 32.9 ± 7.3 25.0 ± 8.0

PANAS negative affect - - 11.2 ± 1.6 17.8 ± 7.7

Values represent means ± SD unless otherwise stated. BD, bipolar disorder; MASQ, Mood and Anxiety Symptom Questionnaire; MDD, major depressive disorder;
PANAS, Positive and Negative Affect Schedule.

1988), and Mood and Anxiety Symptom Questionnaire (MASQ)
(Watson et al., 1995) by experienced research psychologists at
ORYGEN Youth Health, Melbourne. At that time, medication
status in the preceding 6 months of the study was also assessed
through direct interview and medical record review. At the
time of scanning, 29 patients fulfilled DSM criteria of MDD
(i.e., currently depressed), while 27 had a history of MDD but
currently in remission. Twenty-two MDD patients (18 currently
depressed and 4 remitted patients) had a comorbid diagnosis of
anxiety disorders.

Participants were right-handed and were screened for head
trauma, neurological illness, substance misuse, or other serious
physical diseases. Age- and sex-matched healthy comparison
subjects for BD (Sydney) and MDD (Melbourne) groups,
screened for a personal or family history of psychiatric
diseases using the SCID-IV non-patient version (First et al.,
1998), were recruited through local advertisement. The study
protocol was approved by the local Internal Review Boards (the
Prince of Wales Hospital and University of New South Wales
research ethics committees and Mental Health Research and
Ethics Committee, Melbourne Health, Melbourne, Australia).
The participants provided written informed consent after a
complete description of the study in accordance with the
Declaration of Helsinki.

Magnetic Resonance Imaging
Procedures
Bipolar disorder patients and their comparison subjects were
scanned using a 1.5-T GE Signa scanner at Royal Prince Alfred
Hospital, Sydney, Australia, where a fast-spoiled gradient echo
sequence was applied to obtain T1-weighted consecutive coronal
images with a voxel size of 0.98 mm × 0.98 mm × 1.6 mm.

MDD patients and their controls were scanned by a1.5T
Siemens scanner (Magnetom Avanto) at Saint Vincent’s
Hospital Melbourne, Victoria and T1-weighted iso-voxel
(1.0 mm × 1.0 mm × 1.0 mm) images were obtained in the axial
orientation. Detailed imaging parameters for the BD and MDD
cohorts are available elsewhere (Takahashi et al., 2014a, 2016,
2020).

For the assessment of HG gyrification patterns, brain images
were realigned in three dimensions, followed by reconstruction
into entire 0.98-mm (BD cohort)- or 1-mm (MDD cohort)-
thick contiguous coronal images that were perpendicular to
the anterior commissure-posterior commissure line using Dr.
View software (Infocom, Tokyo, Japan). As fully described
previously (Takahashi et al., 2021a,b,c), one experienced rater
with no knowledge of the subjects’ identity (TT) classified the
HG gyrification into single, partly duplicated (i.e., common
stem duplication; CSD), or completely duplicated (i.e., complete
posterior duplication; CPD) pattern. While brain images were not
corrected for inhomogeneity/artifact, anatomical landmarks for
the classification were readily identified by referring to images
from three directions all together (Figure 1). Another rater
(DS), who was also experienced for HG pattern classification
(Takahashi et al., 2021a,b,c), independently classified the HG
patterns in a subset of randomly selected 15 brains (30
hemispheres). Intra- (TT) and inter-rater (TT and second-rater
DS) reliabilities were 30/30 agreement (Cronbach’s α = 1.00) and
29/30 agreement (Cronbach’s α = 0.87), respectively.

Statistical Analysis
Group differences in the HG pattern distribution were tested by
the χ2 test or Fisher’s exact test when more than 20% of cells had
expected counts <5.
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FIGURE 1 | Sample images of various Heschl’s gyrus (HG) patterns and anatomical landmarks on MR images and on pattern diagrams in axial direction. The HGs
on the left hemisphere are colored in blue. Subjects with a single HG pattern sometimes had a small branching at the front tip [Single (b)] (Marie et al., 2015) or a
shallow cortical dimple at the crown of the HG [Single (c)]. Two hemispheres in the present study that had a separate HG posterior to the HG with partial duplication
were considered to have the CSD pattern [CSD (c)]. One subject had a pattern of three separate HGs in the left hemisphere, which was classified as a variation of
CPD [CPD (c)]. A, anterior; CPD, complete posterior duplication; CSD, common stem duplication; FTS, first transverse sulcus; HS, Heschl’s sulcus; L, lateral; P,
posterior; M, medial; PP, planum polare; PT, planum temporale; sHG, second Heschl’s gyrus; sHS, second Heschl’s sulcus; SI, sulcus intermedius.

Non-parametric Mann-Whitney U tests were used for
assessing the relationship between the HG patterns and clinical
variables, because of the non-normal distribution of most of
these variables and small sample size for each HG pattern.
The CSD and CPD patterns were categorized together as the
’duplicated pattern’ here also due to small sample size for each
pattern. Potential role of HG patterns on symptom ratings
in MDD was assessed separately on the currently depressed
and remitted subgroups because these subgroups were highly

different in symptom severity. Statistical significance was set at
p-value < 0.05.

RESULTS

Sample Characteristics
The BD and MDD groups did not differ to their controls in terms
of age, sex, and intelligence (Table 1). Currently depressed and
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remitted MDD subgroups did not differ for these demographic
variables, while the currently depressed group had more severe
depressive/anxiety symptoms and higher medication rates than
the remitted group (Takahashi et al., 2016, 2020).

Heschl’s Gyrus Pattern Distribution
The BD patients had a higher prevalence of HG duplication for
both left (χ2 = 6.44, p = 0.011) and right (χ2 = 5.51, p = 0.019)
hemispheres compared to controls, but there was no group
difference when only the participants with duplicated HG were
examined (i.e., CSD vs. CPD) (Table 2 and Figure 2).

No significant group difference was observed between the
MDD patients and matched controls irrespective of HG
classification (i.e., whether CSD and CPD patterns were grouped
or not) (all p > 0.117; Table 3 and Figure 2).

The two independent control groups (24 subjects for BD and
33 for MDD) did not differ in HG pattern distribution. While sex
may affect cortical folding developments (Mutlu et al., 2013), we
found no significant sex difference in the HG patterns.

Relationship Between the Heschl’s Gyrus
Pattern and Clinical Characteristics
For both the BD and MDD patients, the HG patterns
did not relate to age of onset, illness duration, number of
affective episodes, or medication status (yes/no for MDD, Li-
treated vs. non-Li-treated and VPA-treated vs. non-VPA-treated
for BD). Also, psychotic symptoms and family history of
affective disorders in the BD patients were not associated with
the HG patterns.

For the currently depressed MDD patients, the patients
with single HG had more severe depressive/anxiety symptoms
than those with HG duplication especially for the right
hemisphere (Table 4). However, remitted MDD patients showed
no relationship between the HG patterns and these symptom
ratings. For the MDD group as a whole, the patients with right
single HG had a higher rate of comorbid anxiety disorder than
those with right duplicated HG (χ2 = 5.24, p = 0.022).

For the Melbourne healthy controls, who were assessed
for depressive and anxiety ratings, the subjects with right
HG duplication had a higher MASQ anxious arousal score
(mean = 24.1, SD = 5.5) than those with right single HG
(mean = 20.0, SD = 1.5) (U=185.5, p = 0.008).

DISCUSSION

This MRI study in affective disorders (BD and MDD) examined
the disease specificity of the HG gyrification patterns in
comparison with previous findings in schizophrenia, because
these major neuropsychiatric disorders exhibit partly common
phenomenology (e.g., depressive symptoms in BD and MDD,
executive dysfunction in BD and schizophrenia) and brain
characteristics associated with gyrification pattern (reviewed
by Sasabayashi et al., 2021). One of the strengths of this
study is that it includes both MDD and BD cohorts, as
differences/similarities of brain morphology between these
affective disorders have not been well explored. Our results

demonstrated that the BD patients had an increased prevalence
of HG duplication bilaterally, which was similar to our previous
findings in schizophrenia (Takahashi et al., 2021a,b,c). While
the main objective of this study was to show the prevalence
of HG duplication in affective disorders, we also explored
potential contribution of HG patterns on clinical characteristics.
The MDD patients did not differ in the prevalence of HG
duplication compared to healthy controls, but their HG patterns
were significantly associated with symptom severity during a
depressive episode. These findings suggest partly overlapping
neurodevelopmental origins between BD and schizophrenia,
while the neurodevelopmental process associated with embryonic
gyral formation may also contribute to certain clinical aspects
of MDD. While we have previously reported a reduced normal
leftward volumetric asymmetry of the planum temporale, which
locates directly posterior to HG, in both BD (Takahashi et al.,
2010a) and MDD (Takahashi et al., 2010b) groups as a common
gross morphologic feature, the present results suggest the
specific role of HG patterns as a distinct marker between these
affective disorders.

The present finding of increased prevalence of duplicated
HG in the BD patients is in line with the notion of common
neurobiological substrates for BD and schizophrenia (Goodkind
et al., 2015), a hypothesis that has been supported by a
wide range of similarities in genetic (Lichtenstein et al., 2009;
Bipolar Disorder and Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2018; Brainstorm et al.,
2018), neuroimaging (Hanford et al., 2016; Koshiyama et al.,
2020), and neuropsychological (Bora, 2015) findings. The inter-
individual variations in the HG gyrification are formed during
late gestation along with neural development (Chi et al., 1977;
Van Essen, 1997) and its duplication may lead to learning
disability after birth (Leonard et al., 1993, 2001), and regional
dysfunction in adulthood (Tzourio-Mazoyer et al., 2015). The
HG is a part of the primary auditory cortex (Rademacher
et al., 1993; Da Costa et al., 2011) but it also plays a crucial
role in emotional processing (Grosso et al., 2015; Concina
et al., 2019). Interestingly, recent neuroimaging studies have
demonstrated shared glutamatergic abnormalities (Atagün et al.,
2015), reduced cortical thickness (Mørch-Johnsen et al., 2018),
and reduced functional connectivity (Wei et al., 2018) in BD
and schizophrenia patients in the HG region. Taken together
with these findings, our results likely support the hypothesis that
BD and schizophrenia patients exhibit shared hyper-gyrification
and compromised neural connectivity in the cortical regions
as a consequence of pre/perinatal neurodevelopmental insult,
which later underpin common clinical manifestations such as
emotional dysregulation and executive dysfunction (Sasabayashi
et al., 2021). Our results further revealed no relationship between
the HG patterns and illness stages and medication status in the
BD patients, supporting its role as a stable trait marker.

In contrast to the findings in BD and schizophrenia (Takahashi
et al., 2021a,b,c), the HG patterns in the MDD patients did not
differ significantly from those of healthy controls, suggesting
a less prominent neurodevelopmental pathology. Previous
transdiagnostic studies in brain gyrification of temporal region
(Sasabayashi et al., 2021) and white matter microstructure in the
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TABLE 2 | Gyrification pattern of Heschl’s gyrus (HG) for both hemispheres in the bipolar disorder (BD) cohort.

Right HG pattern [N (%)]

Single CSD CPD Total

Healthy controls

Left HG pattern [N (%)] Single 8 (33.3) 4 (16.7) 4 (16.7) 16 (66.7)

CSD 0 (0) 3 (12.5) 1 (4.2) 4 (16.7)

CPD 3 (12.5) 1 (4.2) 0 (0.0) 4 (16.7)

Total 11 (45.8) 8 (33.3) 5 (20.8) 24 (100.0)

BD

Left HG pattern [N (%)] Single 2 (7.7) 2 (7.7) 4 (15.4) 8 (30.8)

CSD 2 (7.7) 9 (34.6) 3 (11.5) 14 (53.8)

CPD 0 (0) 2 (7.7) 2 (7.7) 4 (15.4)

Total 4 (15.4) 13 (50.0) 9 (34.6) 26 (100.0)

CSD, common stem duplication; CPD, complete posterior duplication.

FIGURE 2 | Heschl’s gyrus (HG) gyrification patterns in healthy controls (HC), schizophrenia (Sz), major depressive disorder (MDD), and bipolar disorder (BD). The
present study examined the HG patterns in MDD and BD cohorts, but the data of 174 patients with Sz (Takahashi et al., 2021a,b,c) are also presented here for the
purpose of comparison. The results of the HC group (N = 206) reflect all data from the present and our previous (Takahashi et al., 2021a,b,c) studies. Direct
comparisons between the disorders showed that the MDD patients had a lower prevalence of right HG duplication compared to Sz (χ2 = 6.17, p = 0.013) and BD
(χ2 = 3.55, p = 0.060) patients. However, there was no group difference between the BD and Sz. Error bars show 95% confidence intervals. CPD, complete
posterior duplication; CSD, common stem duplication.

limbic system (Koshiyama et al., 2020) also demonstrated near-
normal findings only in the MDD among these disorders. On
the other hand, we found a significant relationship between the
single HG pattern and severe depressive/anxiety symptoms in the
MDD patients under an active depressive state. This relationship
was somewhat unexpected because the HG duplication, which
may relate to regional dysfunction (Tzourio-Mazoyer et al., 2015),
contributed to anxiety tendencies in healthy subjects in this study.
However, a recent MRI study in MDD also suggested potential
contribution of hypo-gyrification to depressive symptomatology
in various regions of the brain (Schmitgen et al., 2019). Since this
structural MRI study cannot address the functional significance
of the HG patterns on depression symptomatology, potential
mechanisms of different contribution of HG patterns on anxiety
between non-clinical population and pathological status remains
unknown and should be examined in future studies exploring

this relationship. Normal or even higher prevalence of single
HG in the tinnitus patients compared to controls (Schneider
et al., 2009) may also support a complex relationship between
the HG patterns and regional functioning. Nevertheless, the
present study suggested that embryonic neurodevelopmental
processes associated with gyral formation of HG may play a
role in the phenomenology of MDD in later life potentially
by interacting with environmental factors in the epigenetic
mechanisms (Gałecki and Talarowska, 2018).

It should be noted that HG duplication itself is observed in
healthy subjects and is associated with their cognitive abilities
(Marie et al., 2016). In particular, musical ability in subjects
without neuropsychiatric disorders seems to be associated with
larger HG (Schneider et al., 2002; Seither-Preisler et al., 2014;
Wengenroth et al., 2014; Dalboni da Rocha et al., 2020) and
higher percentage of HG duplications (Schneider et al., 2005;
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TABLE 3 | Gyrification pattern of Heschl’s gyrus (HG) for both hemispheres in the major depressive disorder (MDD) cohort.

Right HG pattern [N (%)]

Single CSD CPD Total

Healthy controls

Left HG pattern [N (%)] Single 9 (27.3) 6 (18.2) 3 (9.1) 18 (54.5)

CSD 4 (12.1) 1 (3.0) 2 (6.1) 7 (21.2)

CPD 4 (12.1) 1 (3.0) 3 (9.1) 8 (24.2)

Total 17 (51.5) 8 (24.2) 8 (24.2) 33 (100.0)

cMDD

Left HG pattern [N (%)] Single 5 (17.2) 1 (3.4) 4 (13.8) 10 (34.5)

CSD 5 (17.2) 4 (13.8) 1 (3.4) 10 (34.5)

CPD 1 (3.4) 4 (13.8) 4 (13.8) 9 (31.0)

Total 11 (37.9) 9 (31.0) 9 (31.0) 29 (100.0)

rMDD

Left HG pattern [N (%)] Single 3 (11.1) 4 (14.8) 4 (14.8) 11 (40.7)

CSD 3 (11.1) 6 (22.2) 3 (11.1) 12 (44.4)

CPD 3 (11.1) 0 (0.0) 1 (3.7) 4 (14.8)

Total 9 (33.3) 10 (37.0) 8 (29.6) 27 (100.0)

cMDD, currently depressed patients; CSD, common stem duplication; CPD, complete posterior duplication; rMDD, remitted depressed patients.

TABLE 4 | Symptom ratings of the currently depressed patients with different Heschl’s gyrus (HG) patterns.

Left hemisphere Right hemisphere

Single HG
(N = 10)

Duplicated HG
(N = 19)

Mann-Whitney tests Single HG
(N = 11)

Duplicated HG
(N = 18)

Mann-Whitney tests

Beck Depression Inventory 41.5 ± 8.2 34.4 ± 8.5 U = 53.0, p = 0.056 41.6 ± 6.2 33.9 ± 9.2 U = 44.0, p = 0.012

MASQ general distress 50.9 ± 6.2 50.3 ± 8.7 U = 87.5, p = 0.906 55.7 ± 5.4 47.1 ± 7.3 U = 31.5, p = 0.002a

MASQ general depression 53.3 ± 5.7 44.0 ± 9.2 U = 37.5, p = 0.010 51.6 ± 6.8 44.5 ± 9.6 U = 46.0, p = 0.025

MASQ general anxiety 31.8 ± 6.9 32.4 ± 9.8 U = 95.0, p = 0.832 40.0 ± 5.2 27.1 ± 6.5 U = 10.5, p < 0.001a

MASQ anxious arousal 41.9 ± 7.8 42.1 ± 14.2 U = 92.0, p = 0.944 49.7 ± 11.5 37.0 ± 10.0 U = 38.0, p = 0.008

MASQ high positive affect 34.5 ± 5.8 48.6 ± 14.0 U = 146.0, p = 0.006 41.6 ± 10.1 44.9 ± 15.4 U = 101.5, p = 0.711

MASQ loss of interest 34.7 ± 7.3 29.9 ± 5.2 U = 39.5, p = 0.014 35.0 ± 5.2 29.4 ± 6.2 U = 46.0, p = 0.025

PANAS positive affect 19.8 ± 5.6 22.5 ± 6.8 U = 107.0, p = 0.308 20.3 ± 6.6 22.5 ± 6.4 U = 117.5, p = 0.264

PANAS negative affect 23.1 ± 9.6 20.3 ± 8.0 U = 71.0, p = 0.498 28.4 ± 7.8 16.6 ± 5.1 U = 22.0, p < 0.001a

Values represent means ± SD. MASQ, Mood and Anxiety Symptom Questionnaire; PANAS, Positive and Negative Affect Schedule.
aSignificant even after Bonferroni’s correction for multiple comparisons [18 comparisons; p < 0.00278 (0.05/18)].

Benner et al., 2017) especially on the right hemisphere. Because
individuals with William Beuron syndrome, a rare genetic
disorder with characteristic musicality, likely exhibit larger
HG and increased HG duplication predominantly on the left
hemisphere (Wengenroth et al., 2010), it may be hypothesized
that changes in the right and left HGs associated with musicality
may be mainly attributable to the amount of training and
genetic factors, respectively. It is currently unknown whether
increased HG duplication in the neuropsychiatric disorders has
different mechanisms from inter-individual HG variation in
healthy subjects, but the former probably reflects their early
neurodevelopmental pathology. Given that right HG generally
develops 1 to 2 weeks earlier than left HG during mid-to-late
gestation (Chi et al., 1977), our results of bilateral changes in HG
pattern in schizophrenia (Takahashi et al., 2021a,b,c) and BD may
support severe and prolonged neurodevelopmental abnormalities
in these disorders. Further, schizophrenia (Takahashi et al.,
2021a) and BD (Takahashi et al., 2010a) groups have an increased

HG duplication with marked HG ‘atrophy,’ suggesting different
mechanisms between normal variation in the HG morphology
and HG changes in these neuropsychiatric disorders.

Several potential confounding factors in this study should be
noted. First, different MR settings (e.g., scanners, parameters)
used for the BD and MDD patients limited the comparability
of our data (Pøibil et al., 2019). We therefore used the control
groups matched for demographic background and MR setting
for each patient group. Further, it is unlikely that different
scanning condition significantly affected our conclusion, because
the anatomical landmarks for HG classification (Figure 1) could
be readily identified in all of the study participants. In this
study, we referred to our previous results in schizophrenia
(Takahashi et al., 2021a,b,c) to interpretate the current findings
in affective disorders. However, these previous data were
assessed in different racial/ethnic population (Toyama, Japan)
from the current Australian cohorts, which might affect the
results (Brickman et al., 2008; Rao et al., 2017). Although we
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found no significant differences in HG pattern distribution at
least between three control groups with different MR settings
and populations (Sydney, Melbourne, and Toyama), future
transdiagnostic studies with more homogeneous conditions (i.e.,
on a single MRI scanner) are required. Second, the sample
size of both disease groups and healthy controls was relatively
small, which may have contributed to the lower statistical power.
While the MDD patients showed no significant difference in
HG patterns compared to controls, they were characterized
by a somewhat higher duplication rate especially on the left
hemisphere (Figure 2). Because the HG may also participate
in learning and memory processing (Weinberger, 2015), it may
be possible that future study in a larger MDD cohort will
detect an altered HG pattern as a common neural underpinning
of memory deficits observed in MDD, BD, and schizophrenia
(Marazziti et al., 2010; Esan et al., 2020). Finally, it was not
possible to examine the relationship between the HG patterns
and symptom severity in our BD cohort because they were under
remission state at the time of scanning. Further, despite potential
contribution of HG gyrification patterns to cognitive function
for both non-clinical population (Tzourio-Mazoyer et al., 2015)
and schizophrenia (Takahashi et al., 2021c), the current BD
and MDD patients were not systematically assessed for their
cognitive impairment. Thus, the potential role of HG patterns
on the phenomenology of affective disorders (especially symptom
severity and cognitive function in BD) and its disease specificity
requires further exploration.

In conclusion, the present study demonstrated that patients
with BD have a common macroscopic brain characteristic of
increased HG duplication with those who have schizophrenia,
which may partly underlie common clinical manifestations
between these disorders. Conversely, the distribution of HG
patterns in the MDD patients was similar to healthy controls
and distinctively different from these disorders. While replication
studies in a larger transdiagnostic cohort will be clearly required,
our results of distinct HG patterns between the BD and MDD
patients may contribute to imaging-based differential diagnosis
and prediction of clinical course (e.g., later manic episode) at
early stages in patients with depressive symptoms.
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Psychiatric disorders share an excess of seasonal birth in winter and spring, suggesting
an increase of neurodevelopmental risks. Evidence suggests season of birth can
serve as a proxy of harmful environmental factors. Given that prenatal exposure of
these factors may trigger pathologic processes in the neurodevelopment, they may
consequently lead to brain volume alterations. Here we tested the effects of season of
birth on gray matter volume in a transdiagnostic sample of patients with schizophrenia
and depression compared to healthy controls (n = 192). We found a significant effect
of season of birth on gray matter volume with reduced right hippocampal volume
in summer-born compared to winter-born patients with depression. In addition, the
volume of the right hippocampus was reduced independent from season of birth
in schizophrenia. Our results support the potential impact of season of birth on
hippocampal volume in depression.

Keywords: depression, schizophrenia, season of birth, structural neuroimaging, hippocampus, gray matter

INTRODUCTION

Severe mental illness is associated with shared antenatal and early neurodevelopmental risk,
while later on, distinct trajectories convey heterotypic risk for disorders such as schizophrenia or
depression (Damme et al., 2022). Epidemiological studies indicate that individuals who are winter-
and spring-born have an increased risk of up to 8% to develop schizophrenia (Torrey et al., 1997).
In fact, except for known infectious diseases, for no other diseases seasonal birth excesses was
described as clearly as those for schizophrenia and bipolar disorder (Torrey et al., 1997). Likewise,
an excess of up to 5.5% of depression cases was shown in spring- born subjects (Torrey et al., 1996;
Disanto et al., 2012). In addition, one study demonstrated that spring-born individuals had a higher
risk of suicidality (Joiner et al., 2002) pointing to an effect of season of birth on this severe and
disabling symptom. Although a seasonal birth-excess in psychiatric disorders has been repeatedly
reported, the reason for this excess is unclear.

Season of birth acts as a valuable proxy, to study the impact of harmful environmental factors
during fetal maturation. Because most infectious agents have seasonal shifts in their incidence, they
form a possible explanation for the winter- and spring birth excess in psychiatric disorders. In fact,
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incidences of prenatal bacterial and viral infections change
throughout the year, with a rise during the fall and winter months
and decline during spring and summer. Moreover, prenatal
infections and inflammation are associated with an elevated
risk for psychiatric disorders (Al-Haddad et al., 2019a,b). Early
research focused primarily on the identification of pathogens
such as toxoplasma gondii, rubella virus, cytomegalovirus, and
herpes simplex as possible explanations for the winter–spring
birth excess in psychiatric disorders. However, accumulating
evidence now suggests that a wide variety of viral and
bacterial infections—possibly including COVID-19 (Zaigham
and Andersson, 2020; Pantelis et al., 2021) can lead to an increase
of psychiatric disorders (see 7 for review). These findings are also
in line with the neurodevelopmental hypothesis of schizophrenia
(Fatemi and Folsom, 2009) and the fetal-origin hypothesis of
mood disorder (Barker, 1998) respectively, suggesting prenatal
inflammation to act as a first hit leading to neurodevelopmental
abnormalities, which will hamper adaptive brain development
and thus increase the risk for major psychiatric disorders.

Depression as well as schizophrenia go along with significant
(Shah et al., 2017; Brandl et al., 2019; Hellewell et al., 2019; Huang
et al., 2021; Liloia et al., 2021; Serra-Blasco et al., 2021; Gutman
et al., 2022), progressive (Vita et al., 2012) transdiagnostic
(Goodkind et al., 2015) as well as diagnosis and symptom specific
(Horn et al., 2010; Stegmayer et al., 2014, 2016; Walther et al.,
2017; Viher et al., 2018; Kindler et al., 2019; Schoretsanitis et al.,
2019; Dean et al., 2020; Mertse et al., 2022) patterns of gray
matter loss which may represent a hallmark of both disorders.
Given the evidence for winter– and spring-birth excesses for
schizophrenia, and major depression, and, as already mentioned,
the suggested link with neurodevelopmental abnormalities, the
question arises as to whether this seasonal birth pattern is
associated with alterations in the brain. In fact, animal studies
using mouse models of schizophrenia or depression point
to alterations in particular within the hippocampus, frontal
cortex and the cerebellum following prenatal infections and
inflammation (Cotter et al., 1995; Fatemi et al., 1998a,b, 1999,
2002a,b, 2008; Meyer et al., 2008; Ratnayake et al., 2012).
This is consistent with the fact that reduced hippocampus
volume was confirmed, and alterations within the hippocampus
have been largely suggested as relevant for the development
of schizophrenia (Nelson et al., 1998; Wright et al., 2000;
Heckers, 2001; Honea et al., 2005; Steen et al., 2006; Vita et al.,
2006; Heckers and Konradi, 2010; Tamminga et al., 2010) and
depression (Sheline et al., 2002; Campbell and MacQueen, 2004;
Videbech, 2004; Koolschijn et al., 2009; McKinnon et al., 2009;
Cole et al., 2011; Kempton et al., 2011; Bora et al., 2012a,b; Du
et al., 2012, 2014; Sacher et al., 2012; Lai, 2013; Sexton et al.,
2013; Zhao et al., 2014; Schmaal et al., 2016; Zhang et al., 2016).
Effects of season of birth on brain structure were shown in both,
depression and schizophrenia. Patients with schizophrenia and
depression who are winter-born show a decrease in brain volume,
and altered white matter connectivity compared to summer-born
patients. In detail, studies confirm ventricular enlargements for
winter- and spring-births in schizophrenia (Sacchetti et al., 1987,
1992; Zipursky and Schulz, 1987; Degreef et al., 1988; d’Amato
et al., 1994), with some conflicting results (Wilms et al., 1992;

Roy et al., 1995). Contrary, summer-born schizophrenia patients
had significantly lower fractional anisotropy in widespread
white matter regions (i.e., the corpus callosum, internal and
external capsule, corona radiata, posterior thalamic radiation,
sagittal stratum, and superior longitudinal fasciculus) compared
to patients born in the remainder of the year (Giezendanner
et al., 2013). Likewise, winter-born patients with bipolar affective
depression had more subcortical and periventricular white matter
lesions compared to summer-born patients (Moore et al., 2001).
Thus, there is evidence of structural alterations in the brain
associated with season of birth and schizophrenia as well as
depression. However, the distribution of brain alterations as effect
of season of birth and whether summer-born or winter-born
patients show alterations in brain structure is still unclear. So
far, no study assessed transdiagnostic differences in gray matter
volume associated with season of birth.

Here we therefore aim to detect effects of season of birth on
gray matter volume in a transdiagnostic sample of patients with
schizophrenia and depression, compared to healthy controls.
Specifically, we hypothesized a relationship between gray matter
volume and season of birth in patients with depression as
well as patients with schizophrenia and that this association
would not be observed in healthy controls. In particular, we
suggest decreased volume within the hippocampus in winter-
born patients.

MATERIALS AND METHODS

Participants
In total, we included 192 participants, 87 patients with
schizophrenia (SZ; 53 winter-born: WB, 34 summer-born: SB),
39 patients with depression (DP; 19 WB; 20 SB), and 66 healthy
controls (HC; 42 WB, 24 SB). To stratify participants into
seasonal groups, we applied the same cut-off criterion used
in previous studies (i.e., winter-born: November through May;
summer-born: June through October; Giezendanner et al., 2013).
We recruited in- and outpatients at the University Hospital of
Psychiatry and Psychotherapy in Bern and healthy controls via
advertisement and among staff. Patients and controls were the
same as in our previous reports (Horn et al., 2010; Walther
et al., 2011, Walther et al., 2012a,b; Orosz et al., 2012; Stegmayer
et al., 2013, 2014, 2016; Cantisani et al., 2016). Patients were
diagnosed according to DSM-IV criteria, while current symptom
severity was assessed with the Beck Depression Inventory (Beck,
1961), the Hamilton Depression Inventory (Hamilton, 1986) and
the Positive and Negative Syndrome Scale (Kay et al., 1987).
Additionally, all participants completed the Mini International
Neuropsychiatric Interview (MINI; Sheehan et al., 1998).

Exclusion criteria were substance abuse or dependence
(except nicotine), history of head trauma with concurrent
loss of consciousness, history of electroconvulsive treatment, a
severe medical condition or left-handedness (according to the
Edinburgh handedness inventory; Oldfield, 1971). Additional
exclusion criteria for controls were history of any psychiatric
disorder or a first-degree relative with a schizophrenia spectrum
disorder or depression. The local ethics committee (Kantonale
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Ethikkommission Bern: KEK Bern) approved the study protocol
and all participants provided written informed consent.

Neuroimaging
For structural imaging, a 3D-T1-weighted Modified Driven
Equilibrium Fourier Transform Pulse (MDEFT) Sequence
(Deichmann et al., 2004) was acquired on a 3-T Siemens
Magnetom TrioTim Scanner System, equipped with a standard
12-channel radio frequency head coil (Siemens Vision, Erlangen,
Germany). This sequence provided 176 sagittal slices with
256 × 256 matrix points, a 256 × 256 field of view (FOV), and
a nominal isotopic resolution of 1 mm × 1 mm × 1 mm. Further
scan parameters were 7.92 ms repetition time (TR), 2.48 ms echo
time (TE) and a flip angle (FA) of 16◦. We preprocessed all
resulting high-resolution images with the SPM 12 (Ashburner
and Friston, 2000; Wellcome Trust Center for Neuroimaging,
London1). All preprocessing steps were conducted using standard
procedures as implemented in SPM 12, in particular the voxel-
based morphometry (VBM) toolbox. Default settings were used.
The images have been normalized and modulated. Structural
images were bias-corrected, tissue-classified and normalized to
Montreal Neurological Institute space using linear (12-parameter
affine) and non-linear transformations. Gray matter volume
per voxel was calculated by applying an absolute threshold
masking of 0.1 and modulating the normalized segmented
images with a non-linear only warping. For quality check of the
procedures, the normalized, bias-corrected images were visually
inspected. MRI images with artifacts, anatomical abnormalities
as well as neurodegenerative changes were excluded. Finally the
normalized, segmented and modulated volumes were smoothed
with an 8 mm full width at half maximum (FWHM) Gaussian
kernel (Honea et al., 2005).

Statistical Analyses
We analyzed structural images with SPM 12 (Wellcome
Trust Centre for NeuroImaging, University College London,
United Kingdom) and demographic and clinical data with SPSS
for windows (IBM, version 26.0). Univariate analyses, two-
sample t-tests and chi-square tests (χ2) were used, respectively.

Our main investigative interest was the effect of patient
status (SZ, DP, HC) and season of birth (WB, SB) on whole
brain gray matter volume. We therefore performed a one-way
analysis of covariation (ANCOVA) over six groups (SZWB, SZSB,
DPWB, DPSB, HCWB, and HCSB). To control for trend-level
gender differences between summer- and winter-born subjects
as well as variability in head sizes, we added total gray matter
volume and gender as covariates into the main model. We then
performed an outlier-analyses of the ANCOVA over the six
groups extracting gray matter values of the significant clusters.
We considered a value to be an outlier, if it lied either below or
above the following ranges: The 1st quartile—1.5 × interquartile
range, or the 3rd quartile + 1.5 × interquartile range. Three
potential outlier were identified and subsequently removed from
all further analyses—two within the schizophrenia- summer-
born group and one within the healthy control summer-born

1http://www.fil.ion.ucl.ac.uk/spm

group. No outlier were identified within either of the depression
groups. Furthermore, as patient groups differed in education and
age, we provide the results of the whole-brain ANCOVA with
education and age as additional covariates of no interest in the
Supplementary Material.

In addition, we plotted extracted mean gray matter values
for the six groups and performed post hoc comparisons of
extracted GM values between patient groups and summer- and
winter-born subjects applying univariate analyses and t-tests,
respectively. To examine a group × season interaction effect
on hippocampal volume, we calculated a two-way ANOVA on
hippocampal volume [with factors season of birth (SB vs WB)
and patient status (SZ vs HC vs DP)] (Supplementary Table 4
and Supplementary Figure 3). We corrected post hoc group
comparisons with Sidak-correction for multiple testing.

Finally, we assessed the season-of-birth effect on whole
brain GM volume for the patient status groups separately
(DP, SZ and HC). We therefore performed t-tests within the
ANCOVA, comparing mean gray matter values of WB and SB
individuals within SZ, DP and HC participants, respectively. We
report imaging results yielding significance at p < 0.05 (FWE-
corrected). For illustration purposes, all images are displayed
at a threshold of p < 0.001, cluster sizes k > 50 voxels,
uncorrected. To provide additional information, we show the
results of the whole brain contrasts at a lower threshold (p < 0.001
uncorrected, cluster sizes k > 50 voxels) in the Supplementary
Material. We calculated effect sizes for F-tests: ηp

2 (eta2), based
on F-value, df-1 and df-2, for t-tests: d (Cohen’s D), based on
t-value and df and for χ2-test: ϕ (phi) calculated based on
χ2-value, and sample size.

RESULTS

WB patients with schizophrenia and depression, as well as WB
healthy controls, did not differ in age, gender and education from
their SB counterparts. Likewise, WB subjects over all groups did
not differ significantly in age and education from SB individuals.
As expected, patients with schizophrenia included more male
and patients with depression more female participants. In
addition, patients with depression were older than patients with
schizophrenia. Demographic and clinical variables are provided
in Table 1.

Lower Hippocampal Volume in
Summer-Born Patients With Depression
The whole-brain analysis revealed a group effect within the right
hippocampus, pFWE-corr = 0.015; F (Joiner et al., 2002) = 8.47;
ηp

2 = 0.190; k = 11 voxels; x = 26, y = −24, z = −12
(Figure 1). Lowering the threshold (p < 0.001, cluster sizes:
k > 50 voxels; uncorrected) revealed additional frontal and
orbital clusters (see Supplementary Material Supplementary
Figure 1 and Supplementary Table 1). Including education and
age as additional covariates yielded substantially the same results
(see Supplementary Table 2).

Post hoc comparisons of extracted gray-matter values showed
a decrease of right hippocampal volume in summer-born
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TABLE 1 | Demographic and clinical variables.

Schizophrenia WB (n = 53) SB (n = 34) df t/X2 p d/ϕ

Age (M/SD) 37.6 (11.1) 34.9 (11.4) 85 1.086 0.281 0.235

Gender (male%) 30 (56.6%) 23 (67.6%) 1 1.061 0.303 0.112

Education (M/SD) 13.2 (3.8) 13.0 (3.0) 85 0.244 0.808 0.053

Nr. of episodes (M/SD) 4.8 (5.2) 6.5 (7.9) 85 −1.230 0.222 −0.267

PANSS total (M/SD) 64.4 (18.3) 68.2 (18.4) 85 −0.950 0.345 −0.206

PANSS pos (M/SD) 15.9 (6.5) 17.7 (6.6) 85 −1.281 0.204 −0.277

PANSS neg (M/SD) 16.5 (6.3) 16.8 (5.8) 85 −0.198 0.843 −0.043

CPZ (M/SD) 429.5 (342.5) 416.4 (347.0) 85 0.173 0.863 0.038

Depression WB (n = 19) SB (n = 20) df t/X2 p d/ϕ

Age (M/SD) 44.4 (11.4) 43.5 (14.5) 37 0.207 0.837 0.068

Gender (male%) 6 (31.6%) 10 (50.0%) 1 1.367 0.242 0.189

Education (M/SD) 15.5 (5.5) 13.6 (2.5) 37 1.373 0.178 0.451

Nr. of episodes (M/SD) 8.3 (9.1) 12.2 (22.3) 37 −0.716 0.479 −0.235

HAMD total (M/SD) 22.6 (7.4) 24.3 (5.6) 37 −0.765 0.450 −0.251

BDI total (M/SD) 22.0 (11.1) 27.2 (10.9) 37 −1.425 0.163 −0.469

Healthy Controls WB (n = 42) SB (n = 24) df t/X2 p d/ϕ

Age (M/SD) 40.3 (15.2) 37.3 (12.9) 64 0.802 0.426 0.201

Gender (male%) 21 (50.0%) 16 (66.7%) 1 1.722 0.189 0.160

Education (M/SD) 14.8 (3.3) 14.0 (2.8) 64 0.960 0.341 0.240

All subjects WB (n = 114) SB (n = 78) df t/X2 p d/ϕ

Age 39.7 (12.9) 37.9 (13.0) 190 0.975 0.331 0.143

Gender (male%) 57 (50.0%) 49 (62.8%) 1 3.078 0.079 0.127

Education 14.2 (4.0) 13.5 (2.8) 190 1.308 0.192 0.190

Patient Status Groups SZ (n = 87) DP (n = 39) HC (n = 66) df F/X2 p d/ϕ

Age 36.57 (11.25) 43.92 (12.91) 39.21 (14.35) 2 4.508 0.012 0.046

Gender (male%) 53 (60.9%) 16 (41.0%) 37 (56.1%) 2 4.339 0.114 0.150

Education 13.14 (3.5) 14.51 (4.3) 14.48 (3.1) 2 3.467 0.033 0.035

WB = winter-born; SB = summer-born; SZ = schizophrenia; DP = depression; HC = healthy controls; PANSS = Positive and Negative Syndrome Scale; pos = positive
symptoms; neg = negative symptoms; HAMD = Hamilton rating scale for depression; BDI = Beck Depression Inventory; CPZ = Chlorpromazine equivalent dosage;
df = degrees of freedom; M = Mean; SD = Standard deviation; IQR = interquartile range; X2 = Chi-squared test.

FIGURE 1 | Regions with differences in GM volume in summer- and winter-born patients with depression, schizophrenia and healthy controls; for illustration purpose
threshold was set at p < 0.001, cluster sizes: k > 50 voxels; uncorrected.

DP, when compared to winter-born DP. Furthermore, SZ
patients had a decreased hippocampal volume compared to
HC participants and DP patients, independent of season of

birth (Figure 2). Finally, summer-born subjects, independent of
group showed lower hippocampal volume compared to winter-
born subjects.
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FIGURE 2 | Post hoc comparisons of extracted GM values show decreased volume of the hippocampus in DPSB vs. DPWB patients, in SZ patients vs. HC
participants, in SZ patients vs DP patients and in WB vs SB individuals. WB = Winter-born; SB = Summer-born; SZ = Schizophrenia; DP = Depression;
HC = Healthy Control; ∗∗p < 0.01, ∗p < 0.05.

Likewise whole brain t-tests within the ANCOVA revealed
a decreased volume within the hippocampus in DPSB
(pFWE−corr = 0.003; t = 5.48; x = 26, y = −22, z = −12)
(Supplementary Figure 2 and Supplementary Table 3).
We detected no significant differences comparing SZSB and
SZWB patients.

DISCUSSION

Here we test the effect of season of birth on gray matter
volume in a large transdiagnostic sample of 192 subjects with
depression, schizophrenia and healthy controls. As hypothesized,
we demonstrate a significant effect of season of birth on
gray matter volume. In particular, we found an association of
season of birth and right hippocampal volume in depression.
However, contrary to our hypothesis summer-born patients
showed decreased hippocampal volume compared to winter-
born patients with depression. No effect of season of birth was
present in schizophrenia. In contrast, schizophrenia patients
had a right hippocampal volume reduction independent of
season of birth.

Volumetric changes shown with VBM cannot offer direct
information about the underlying cellular mechanism relevant
for the effects. Therefore, deductive reasoning from volumetric
changes to functional changes remains speculative. However, it
has been suggested that volumetric changes seen with VBM are
the result of a multifactorial process including multiple cellular
modifications, for example cell density, cell size, myelination and
vascularization affecting relaxation times and voxel intensities on

a T1-weighted image (Zatorre et al., 2012). Given that season
of birth can serve as a proxy of harmful environmental factors,
our results argue for such environmental factors leading to
hippocampal volume reduction in summer-born depression.

As stated in the introduction, a birth excess in winter-
born patients with depression has repeatedly been found.
In fact, harmful environmental factors are thought to affect
neurodevelopment in perinatal stages and thus increase the risk
to develop the disorder. Importantly previous reports suggest
harmful effects of season of birth in depression. According to
these observations we expected a decreased gray matter volume,
in particular within the hippocampus in winter-born patients.
Previous reports show alterations in hippocampal development
leading to reduction in gray matter within the hippocampus
following prenatal infection. For instance, reduced cell density
in pyramidal and non-pyramidal cells as well as signs of atrophy
(e.g., Fatemi et al., 1999, 2002a, 2008) were demonstrated.
These alterations were associated with inflammation-induced
depressive-like behavior in mice such as decrease of exploratory
behavior (Shi et al., 2003; Meyer, 2006; Samuelsson et al., 2006;
Fortier et al., 2007; Meyer et al., 2008; Li et al., 2009; Spini et al.,
2021). On the contrary, here we show gray matter reduction
in the hippocampus in summer-born compared to winter-born
patients. Therefore, we have to conclude that the described
seasonal birth excess in winter is not related to hippocampal
volume reduction in depression.

The hippocampus is one of the most studied brain regions
in the context of depression. In fact, bilateral hippocampal
volume reductions form the most reliable regional gray matter
abnormalities identified in depression (Koolschijn et al., 2009;
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McKinnon et al., 2009; Cole et al., 2011; Kempton et al.,
2011; Bora et al., 2012a,b; Du et al., 2012, 2014; Sacher
et al., 2012; Arnone et al., 2013; Lai, 2013; Sexton et al.,
2013; Stratmann et al., 2014; Zhao et al., 2014; Schmaal
et al., 2016; Zhang et al., 2016; Yüksel et al., 2018) and
subjects with subclinical symptoms (Besteher et al., 2020).
The hippocampus is a brain region specifically sensitive to
infectious agents (Green and Nolan, 2014), is important for
stress regulation for instance via its inhibitory control over
HPA-axis activity, and is more broadly involved in cognitive
and affective processing via its widespread connections with
prefrontal and limbic brain regions (Duman and Monteggia,
2006). Furthermore, antidepressant action may be accomplished
through the prevention of cell apoptosis in the hippocampus
(McKernan et al., 2009; Chen et al., 2017). Likewise, modern
models of depression suggest hippocampal atrophy in humans
as key in the development of the disease. In fact, lower
hippocampal volume has been suggested as a risk marker of
depression (Chen et al., 2010; Rao et al., 2010; Cole et al., 2011).
Reduced hippocampal volume has been consistently shown
to be about 5% smaller in depression (for meta-analyses see
Koolschijn et al., 2009; McKinnon et al., 2009; Cole et al.,
2011; Kempton et al., 2011; Bora et al., 2012a,b; Du et al.,
2012, 2014; Sacher et al., 2012; Arnone et al., 2013; Lai, 2013;
Sexton et al., 2013; Zhao et al., 2014; Schmaal et al., 2016;
Zhang et al., 2016). Importantly, reductions in hippocampal
volume are not only explained as consequence of medication
(Zhao et al., 2014) or psychiatric comorbidities (Du et al.,
2012) and have been shown throughout the lifespan (Sexton
et al., 2013). Thus, reductions in hippocampal volume are a
robust structural marker observed in depression. Our finding
of reduced hippocampal volume in summer-born patients with
depression add to this evidence and suggesting a key role of
environmental factors as perinatal events in the disturbance
of hippocampal development as risk factor for depression
leastwise in a subgroup of patients. Importantly although
previously alterations associated with season of birth in summer-
born patients were not shown in depression, this effect was
seen in schizophrenia and healthy subjects with psychotic
experiences. In detail, summer-born schizophrenia patients had
significantly lower fractional anisotropy in widespread white
matter regions (i.e., the corpus callosum, internal and external
capsule, corona radiata, posterior thalamic radiation, sagittal
stratum, and superior longitudinal fasciculus) compared to
patients born in the remainder of the year (Kempton et al.,
2011), and cortical cortical thinning was detected in summer-
born healthy individuals with subthreshold psychosis symptoms
(Koolschijn et al., 2009).

To the best of our knowledge, this is the first study to
investigate the effect of season of birth on gray matter volume
in a transdiagnostic sample of patients, in particular including
depression. The mechanisms that account for the detected
reduced hippocampal volume in depressed summer-born
patients are beyond the scope of this study and understanding
the pathophysiological mechanisms by which infection,
inflammation, and depression are linked is complex. It was
hypothesized that several factors (for instance increased oxidative
stress, hypothalamic–pituitary–adrenal axis dysfunction,

neurotransmitter insufficiency or reductions in growth factors)
or a combination of these factors may lead to a possible final
pathway of decreases in neuropil, immunoreactivity, and
dendritic spine density or neuronal apoptosis that may underlay
gray matter loss in the hippocampus. However, several other
factors such as unhealthy lifestyle in patients may also contribute
to our finding. Still, the present finding of a relationship between
season of birth and right hippocampal volume support the
hypothesis of perinatal events involving a seasonal factor and
subsequent pathologic brain development in depression.

Turning to schizophrenia, we show a general reduction of
hippocampal volume irrespective of season of birth. This fact
may hamper to detect specific effects of season of birth within
the hippocampus. However, our finding is in line with previous
reports showing hippocampal volume reduction in schizophrenia
(Nelson et al., 1998; Heckers and Konradi, 2010; Adriano et al.,
2012), even at the onset of the disorder in the first episode
(Adriano et al., 2012; McHugo et al., 2020), as well as in ad
risk subjects who later develop the disorder (Harrisberger et al.,
2016). Contrary, and as mentioned in the introduction, previous
reports have observed alterations in the brain structure associated
with season of birth, which was not the case in our report. In
particular, ventricular enlargement in winter-born compared to
summer-born patients with schizophrenia was shown (Sacchetti
et al., 1987, 1992; Zipursky and Schulz, 1987; Degreef et al.,
1988; d’Amato et al., 1994). In addition, one DTI study displayed
structural white matter impairments in patients born in summer
relative to patients born in winter (Giezendanner et al., 2013).

We have to point out limitations of our report. First, all but
seven patients were on psychotropic medication. We cannot rule
out that medication had an effect on hippocampal volume. In
particular, medication may hamper to detect an effect of volume
reduction in schizophrenia. However, SB and WB schizophrenia
patients did not differ in CPZ equivalents as a proxy of
antipsychotic dosage. In addition, previous reports detected
alterations in brain structure in medicated schizophrenia patients
(Sacchetti et al., 1987, 1992; Zipursky and Schulz, 1987; Degreef
et al., 1988; d’Amato et al., 1994; Giezendanner et al., 2013).
Furthermore meta-analytic evidence suggests that hippocampal
volume reduction in depression is not solely explained as a
medication effect (Zhao et al., 2014). Second, we do not have
information of possible infections or other complications during
the prenatal period or birth as well as birth weight or whether it
was preterm birth in our subjects. Thus, the seasonal birth pattern
is associated with alterations in the brain but we cannot conclude
on the causes. Third, sample size was not balanced over the
groups leading to smaller sample size of patients with depression
(n = 39). Finally, several factors have been suggested that may
moderate the association between depression and hippocampal
volume including depression severity and state (Arnone et al.,
2013) or age-of-onset of the first depressive episode (Schmaal
et al., 2016). However, in our study winter- and summer-born
patients with depression did not differ in depression severity
and age of onset.

In conclusion, our results demonstrate that seasonal birth
pattern may contribute to hippocampal volume reduction in
depression. Additionally, we demonstrate that schizophrenia
patients show a hippocampal volume reduction independent
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of season of birth. The finding of a relationship between
season of birth and hippocampal volume in depression support
the hypothesis of a harmful perinatal event and subsequent
pathologic brain development in depression, at least in a
subgroup of patients.
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Besteher, B., Gaser, C., and Nenadić, I. (2020). Brain structure and subclinical
symptoms: a dimensional perspective of psychopathology in the depression and
anxiety spectrum. Neuropsychobiology 79, 270–283. doi: 10.1159/000501024

Bora, E., Fornito, A., Pantelis, C., and Yücel, M. (2012a). Gray matter abnormalities
in major depressive disorder: a meta-analysis of voxel based morphometry
studies. J. Affect. Disord. 138, 9–18. doi: 10.1016/j.jad.2011.03.049

Bora, E., Harrison, B. J., Davey, C. G., Yücel, M., and Pantelis, C. (2012b).
Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic
circuits in major depressive disorder. Psychol. Med. 42, 671–681. doi: 10.1017/
s0033291711001668

Brandl, F., Avram, M., Weise, B., Shang, J., Simões, B., Bertram, T., et al.
(2019). Specific substantial dysconnectivity in schizophrenia: a transdiagnostic
multimodal meta-analysis of resting-state functional and structural magnetic
resonance imaging studies. Biol. Psychiatry 85, 573–583. doi: 10.1016/j.
biopsych.2018.12.003

Campbell, S., and MacQueen, G. (2004). The role of the hippocampus in the
pathophysiology of major depression. J. Psychiatry Neurosci. 29, 417–426.

Cantisani, A., Stegmayer, K., Bracht, T., Federspiel, A., Wiest, R., Horn, H.,
et al. (2016). Distinct resting−state perfusion patterns underlie psychomotor

retardation in unipolar vs. bipolar depression. Acta Psychiatr Scand. 134,
329–338. doi: 10.1111/acps.12625

Chen, M. C., Hamilton, J. P., and Gotlib, I. H. (2010). Decreased hippocampal
volume in healthy girls at risk of depression. Arch. Gen. Psychiatry 67, 270–276.
doi: 10.1001/archgenpsychiatry.2009.202

Chen, W. J., Du, J. K., Hu, X., Yu, Q., Li, D. X., Wang, C. N., et al. (2017).
Protective effects of resveratrol on mitochondrial function in the hippocampus
improves inflammation-induced depressive-like behavior. Physiol. Behav. 182,
54–61. doi: 10.1016/j.physbeh.2017.09.024

Cole, J., Costafreda, S. G., McGuffin, P., and Fu, C. H. Y. (2011). Hippocampal
atrophy in first episode depression: a meta-analysis of magnetic resonance
imaging studies. J. Affect. Disord. 134, 483–487. doi: 10.1016/j.jad.2011.05.057

Cotter, D., Takei, N., Farrell, M., Sham, P., Quinn, P., Larkin, C., et al. (1995). Does
prenatal exposure to influenza in mice induce pyramidal cell disarray in the
dorsal hippocampus? Schizophr Res. 16, 233–241. doi: 10.1016/0920-9964(94)
E0082-I

d’Amato, T., Rochet, T., Daléry, J., Chauchat, J. H., Martin, J. P., and Marie-
Cardine, M. (1994). Seasonality of birth and ventricular enlargement in chronic
schizophrenia. Psychiatry Res. Neuroimaging. 55, 65–73. doi: 10.1016/0925-
4927(94)90001-9

Damme, K. S. F., Park, J. S., Walther, S., Vargas, T., Shankman, S. A., and Mittal,
V. A. (2022). Depression and psychosis risk shared vulnerability for motor signs
across development, symptom dimensions, and familial risk. Schizophr. Bull.
sbab133. doi: 10.1093/schbul/sbab133

Dean, D. J., Woodward, N., Walther, S., McHugo, M., Armstrong, K., and Heckers,
S. (2020). Cognitive motor impairments and brain structure in schizophrenia
spectrum disorder patients with a history of catatonia. Schizophr Res. 222,
335–341. doi: 10.1016/j.schres.2020.05.012

Degreef, G., Mukherjee, S., Bilder, R., and Schnur, D. (1988). Season of birth
and CT scan findings in schizophrenic patients. Biol. Psychiatry 24, 461–464.
doi: 10.1016/0006-3223(88)90186-2

Deichmann, R., Schwarzbauer, C., and Turner, R. (2004). Optimisation of the 3D
MDEFT sequence for anatomical brain imaging: technical implications at 1.5
and 3 T. Neuroimage 21, 757–767. doi: 10.1016/j.neuroimage.2003.09.062

Disanto, G., Morahan, J. M., Lacey, M. V., Deluca, G. C., Giovannoni, G., Ebers,
G. C., et al. (2012). Seasonal distribution of psychiatric births in England. PLoS
One 7:e34866. doi: 10.1371/journal.pone.0034866

Du, M. Y., Liu, J., Chen, Z., Huang, X., Li, J., Kuang, W., et al. (2014). Brain
grey matter volume alterations in late-life depression. J. Psychiatry Neurosci. 39,
397–406. doi: 10.1503/jpn.130275

Frontiers in Human Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 87746157

https://www.frontiersin.org/articles/10.3389/fnhum.2022.877461/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2022.877461/full#supplementary-material
https://doi.org/10.1177/1073858410395147
https://doi.org/10.1001/jamapsychiatry.2019.0029
https://doi.org/10.1001/jamapsychiatry.2019.0029
https://doi.org/10.1016/j.ajog.2019.06.013
https://doi.org/10.1038/mp.2012.150
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1001/archpsyc.1961.01710120031004
https://doi.org/10.1159/000501024
https://doi.org/10.1016/j.jad.2011.03.049
https://doi.org/10.1017/s0033291711001668
https://doi.org/10.1017/s0033291711001668
https://doi.org/10.1016/j.biopsych.2018.12.003
https://doi.org/10.1016/j.biopsych.2018.12.003
https://doi.org/10.1111/acps.12625
https://doi.org/10.1001/archgenpsychiatry.2009.202
https://doi.org/10.1016/j.physbeh.2017.09.024
https://doi.org/10.1016/j.jad.2011.05.057
https://doi.org/10.1016/0920-9964(94)E0082-I
https://doi.org/10.1016/0920-9964(94)E0082-I
https://doi.org/10.1016/0925-4927(94)90001-9
https://doi.org/10.1016/0925-4927(94)90001-9
https://doi.org/10.1093/schbul/sbab133
https://doi.org/10.1016/j.schres.2020.05.012
https://doi.org/10.1016/0006-3223(88)90186-2
https://doi.org/10.1016/j.neuroimage.2003.09.062
https://doi.org/10.1371/journal.pone.0034866
https://doi.org/10.1503/jpn.130275
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-877461 June 6, 2022 Time: 15:54 # 8

Schaub et al. Season-of-Birth Effect on Hippocampus Volume

Du, M. Y., Wu, Q. Z., Yue, Q., Li, J., Liao, Y., Kuang, W. H., et al. (2012). Voxelwise
meta-analysis of gray matter reduction in major depressive disorder. Prog.
Neuropsychopharmacol. Biol. Psychiatry 36, 11–16. doi: 10.1016/j.pnpbp.2011.
09.014

Duman, R. S., and Monteggia, L. M. (2006). A neurotrophic model for stress-
related mood disorders. Biol. Psychiatry. 59, 1116–1127. doi: 10.1016/j.biopsych.
2006.02.013

Fatemi, S. H., Earle, J., Kanodia, R., Kist, D., Emamian, E. S., Patterson,
P. H., et al. (2002a). Prenatal viral infection leads to pyramidal cell atrophy
and macrocephaly in adulthood: implications for genesis of autism and
schizophrenia. Cell. Mol. Neurobiol. 22, 25–33. doi: 10.1023/a:1015337611258

Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., et al.
(1999). Defective corticogenesis and reduction in Reelin immunoreactivity in
cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry
4, 145–154. doi: 10.1038/sj.mp.4000520

Fatemi, S. H., Emamian, E. S., Sidwell, R. W., Kist, D. A., Stary, J. M., Earle, J. A.,
et al. (2002b). Human influenza viral infection in utero alters glial fibrillary
acidic protein immunoreactivity in the developing brains of neonatal mice. Mol.
Psychiatry 7, 633–640. doi: 10.1038/sj.mp.4001046

Fatemi, S. H., and Folsom, T. D. (2009). The neurodevelopmental hypothesis
of schizophrenia. Revisited Schizophr. Bull. 35, 528–548. doi: 10.1093/schbul/
sbn187

Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Huang, H., Oishi, K., Mori, S., et al.
(2008). Maternal infection leads to abnormal gene regulation and brain atrophy
in mouse offspring: implications for genesis of neurodevelopmental disorders.
Schizophr. Res. 99, 56–70. doi: 10.1016/j.schres.2007.11.018

Fatemi, S. H., Sidwell, R., Akhter, P., Sedgewick, J., Thuras, P., Bailey, K., et al.
(1998a). Human influenza viral infection in utero increases nNOS expression
in hippocampi of neonatal mice. Synapse 29, 84–88. doi: 10.1002/(SICI)1098-
2396(199805)29:1<84::AID-SYN8<3.0.CO

Fatemi, S. H., Sidwell, R., Kist, D., Akhter, P., Meltzer, H. Y., Bailey, K., et al.
(1998b). Differential expression of synaptosome-associated protein 25 kDa
[SNAP-25] in hippocampi of neonatal mice following exposure to human
influenza virus in utero. Brain Res. 800, 1–9. doi: 10.1016/s0006-8993(98)
00450-8

Fortier, M. E., Luheshi, G. N., and Boksa, P. (2007). Effects of prenatal infection on
prepulse inhibition in the rat depend on the nature of the infectious agent and
the stage of pregnancy. Behav. Brain Res. 181, 270–277. doi: 10.1016/j.bbr.2007.
04.016

Giezendanner, S., Walther, S., Razavi, N., Van Swam, C., Fisler, M. S., Soravia, L. M.,
et al. (2013). Alterations of white matter integrity related to the season of birth
in schizophrenia: a DTI study. PLoS One 8:e75508. doi: 10.1371/journal.pone.
0075508

Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata,
L. B., et al. (2015). Identification of a common neurobiological substrate for
mental illness. JAMA Psychiatry 72, 305–315. doi: 10.1001/jamapsychiatry.2014.
2206

Green, H. F., and Nolan, Y. M. (2014). Inflammation and the developing brain:
consequences for hippocampal neurogenesis and behavior. Neurosci. Biobehav.
Rev. 40, 20–34. doi: 10.1016/j.neubiorev.2014.01.004

Gutman, B. A., van Erp, T. G., Alpert, K., Ching, C. R., Isaev, D., Ragothaman, A.,
et al. (2022). A meta−analysis of deep brain structural shape and asymmetry
abnormalities in 2,833 individuals with schizophrenia compared with 3,929
healthy volunteers via the ENIGMA consortium. Hum. Brain Mapp. 43, 352–
372. doi: 10.1002/hbm.25625

Hamilton, M. (1986). The Hamilton Rating Scale for Depression. Assessment of
Depression. Berlin: Springer, 143–152.

Harrisberger, F., Buechler, R., Smieskova, R., Lenz, C., Walter, A., Egloff, L.,
et al. (2016). Alterations in the hippocampus and thalamus in individuals
at high risk for psychosis. NPJ Schizophr. 2:16033. doi: 10.1038/npjschz.
2016.33

Heckers, S. (2001). Neuroimaging studies of the hippocampus in schizophrenia.
Hippocampus 11, 520–528. doi: 10.1002/hipo.1068

Heckers, S., and Konradi, C. (2010). Hippocampal Pathology in Schizophrenia.
Behavioral Neurobiology of Schizophrenia and Its Treatment. Berlin: Springer,
529–553.

Hellewell, S. C., Welton, T., Maller, J. J., Lyon, M., Korgaonkar, M. S., Koslow,
S. H., et al. (2019). Profound and reproducible patterns of reduced regional

gray matter characterize major depressive disorder. Transl. Psychiatry 9, 1–8.
doi: 10.1038/s41398-019-0512-8

Honea, R., Crow, T. J., Passingham, D., and Mackay, C. E. (2005). Regional deficits
in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry
studies. Am. J. Psychiatry 162, 2233–2245. doi: 10.1176/appi.ajp.162.12.2233

Horn, H., Federspiel, A., Wirth, M., Müller, T. J., Wiest, R., Walther, S., et al.
(2010). Gray matter volume differences specific to formal thought disorder
in schizophrenia. Psychiatry Res. Neuroimaging 182, 183–186. doi: 10.1016/j.
pscychresns.2010.01.016

Huang, K., Kang, Y., Wu, Z., Wang, Y., Cai, S., and Huang, L. (2021). Asymmetrical
alterations of grey matter among psychiatric disorders: a systematic analysis
by voxel-based activation likelihood estimation. Prog. Neuropsychopharmacol.
Biol. Psychiatry 110:110322. doi: 10.1016/j.pnpbp.2021.110322

Joiner, T. E., Pfaff, J. J., Acres, J. G., and Johnson, F. (2002). Birth month and suicidal
and depressive symptoms in Australians born in the Southern vs. the Northern
hemisphere. Psychiatry Res. 112, 89–92. doi: 10.1016/S0165-1781(02)00183-X

Kay, S. R., Fiszbein, A., and Opler, L. A. (1987). The positive and negative syndrome
scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276. doi: 10.1093/
schbul/13.2.261

Kempton, M. J., Salvador, Z., Munafò, M. R., Geddes, J. R., Simmons, A., Frangou,
S., et al. (2011). Structural neuroimaging studies in major depressive disorder:
meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry
68:675. doi: 10.1001/archgenpsychiatry.2011.60

Kindler, J., Michel, C., Schultze-Lutter, F., Felber, G., Hauf, M., Schimmelmann,
B. G., et al. (2019). Functional and structural correlates of abnormal involuntary
movements in psychosis risk and first episode psychosis. Schizophr. Res. 212,
196–203. doi: 10.1016/j.schres.2019.07.032

Koolschijn, P. C. M. P., Van Haren, N. E. M., Lensvelt-Mulders, G. J. L. M.,
Hulshoff Pol, H. E., and Kahn, R. S. (2009). Brain volume abnormalities in major
depressive disorder: a meta-analysis of magnetic resonance imaging studies.
Hum. Brain Mapp. 30, 3719–3735. doi: 10.1002/hbm.20801

Lai, C. H. (2013). Gray matter volume in major depressive disorder: a meta-analysis
of voxel-based morphometry studies. Psychiatry Res. Neuroimaging 211, 37–46.
doi: 10.1016/j.pscychresns.2012.06.006

Li, Q., Cheung, C., Wei, R., Hui, E. S., Feldon, J., Meyer, U., et al. (2009). Prenatal
immune challenge is an environmental risk factor for brain and behavior change
relevant to schizophrenia: evidence from mri in a mouse model. PLoS One
4:e6354. doi: 10.1371/journal.pone.0006354

Liloia, D., Brasso, C., Cauda, F., Mancuso, L., Nani, A., Manuello, J., et al.
(2021). Updating and characterizing neuroanatomical markers in high-risk
subjects, recently diagnosed and chronic patients with schizophrenia: a revised
coordinate-based meta-analysis. Neurosci. Biobehav. Rev. 123, 83–103. doi: 10.
1016/j.neubiorev.2021.01.010

McHugo, M., Armstrong, K., Roeske, M. J., Woodward, N. D., Blackford, J. U.,
and Heckers, S. (2020). Hippocampal volume in early psychosis: a 2-year
longitudinal study. Transl. Psychiatry. 10, 1–10. doi: 10.1038/s41398-020-
00985-1

McKernan, D. P., Dinan, T. G., and Cryan, J. F. (2009). "Killing the blues": a role
for cellular suicide (apoptosis) in depression and the antidepressant response?
Prog. Neurobiol. 88, 246–263. doi: 10.1016/j.pneurobio.2009.04.006

McKinnon, M. C., Yucel, K., Nazarov, A., and MacQueen, G. M. (2009). A meta-
analysis examining clinical predictors of hippocampal volume in patients with
major depressive disorder. J. Psychiatry Neurosci. 34:41.

Mertse, N., Denier, N., Walther, S., Breit, S., Grosskurth, E., Federspiel, A., et al.
(2022). Associations between anterior cingulate thickness, cingulum bundle
microstructure, melancholia and depression severity in unipolar depression.
J. Affect. Disord. 301, 437–444. doi: 10.1016/j.jad.2022.01.035

Meyer, U. (2006). The time of prenatal immune challenge determines the specificity
of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26,
4752–4762. doi: 10.1523/jneurosci.0099-06.2006

Meyer, U., Nyffeler, M., Yee, B. K., Knuesel, I., and Feldon, J. (2008). Adult brain
and behavioral pathological markers of prenatal immune challenge during
early/middle and late fetal development in mice. Brain Behav. Immun. 22,
469–486. doi: 10.1016/j.bbi.2007.09.012

Moore, P. B., El-Badri, S. M., Cousins, D., Shepherd, D. J., Young, A. H., McAllister,
V. L., et al. (2001). White matter lesions and season of birth of patients with
bipolar affective disorder. Am. J. Psychiatry 158, 1521–1524. doi: 10.1176/appi.
ajp.158.9.1521

Frontiers in Human Neuroscience | www.frontiersin.org 8 June 2022 | Volume 16 | Article 87746158

https://doi.org/10.1016/j.pnpbp.2011.09.014
https://doi.org/10.1016/j.pnpbp.2011.09.014
https://doi.org/10.1016/j.biopsych.2006.02.013
https://doi.org/10.1016/j.biopsych.2006.02.013
https://doi.org/10.1023/a:1015337611258
https://doi.org/10.1038/sj.mp.4000520
https://doi.org/10.1038/sj.mp.4001046
https://doi.org/10.1093/schbul/sbn187
https://doi.org/10.1093/schbul/sbn187
https://doi.org/10.1016/j.schres.2007.11.018
https://doi.org/10.1002/(SICI)1098-2396(199805)29:1<84::AID-SYN8<3.0.CO
https://doi.org/10.1002/(SICI)1098-2396(199805)29:1<84::AID-SYN8<3.0.CO
https://doi.org/10.1016/s0006-8993(98)00450-8
https://doi.org/10.1016/s0006-8993(98)00450-8
https://doi.org/10.1016/j.bbr.2007.04.016
https://doi.org/10.1016/j.bbr.2007.04.016
https://doi.org/10.1371/journal.pone.0075508
https://doi.org/10.1371/journal.pone.0075508
https://doi.org/10.1001/jamapsychiatry.2014.2206
https://doi.org/10.1001/jamapsychiatry.2014.2206
https://doi.org/10.1016/j.neubiorev.2014.01.004
https://doi.org/10.1002/hbm.25625
https://doi.org/10.1038/npjschz.2016.33
https://doi.org/10.1038/npjschz.2016.33
https://doi.org/10.1002/hipo.1068
https://doi.org/10.1038/s41398-019-0512-8
https://doi.org/10.1176/appi.ajp.162.12.2233
https://doi.org/10.1016/j.pscychresns.2010.01.016
https://doi.org/10.1016/j.pscychresns.2010.01.016
https://doi.org/10.1016/j.pnpbp.2021.110322
https://doi.org/10.1016/S0165-1781(02)00183-X
https://doi.org/10.1093/schbul/13.2.261
https://doi.org/10.1093/schbul/13.2.261
https://doi.org/10.1001/archgenpsychiatry.2011.60
https://doi.org/10.1016/j.schres.2019.07.032
https://doi.org/10.1002/hbm.20801
https://doi.org/10.1016/j.pscychresns.2012.06.006
https://doi.org/10.1371/journal.pone.0006354
https://doi.org/10.1016/j.neubiorev.2021.01.010
https://doi.org/10.1016/j.neubiorev.2021.01.010
https://doi.org/10.1038/s41398-020-00985-1
https://doi.org/10.1038/s41398-020-00985-1
https://doi.org/10.1016/j.pneurobio.2009.04.006
https://doi.org/10.1016/j.jad.2022.01.035
https://doi.org/10.1523/jneurosci.0099-06.2006
https://doi.org/10.1016/j.bbi.2007.09.012
https://doi.org/10.1176/appi.ajp.158.9.1521
https://doi.org/10.1176/appi.ajp.158.9.1521
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-877461 June 6, 2022 Time: 15:54 # 9

Schaub et al. Season-of-Birth Effect on Hippocampus Volume

Nelson, M. D., Saykin, A. J., Flashman, L. A., and Riordan, H. J. (1998).
Hippocampal volume reduction in schizophrenia as assessed by magnetic
resonance imaging. Arch. Gen. Psychiatry 55:433. doi: 10.1001/archpsyc.55.5.
433

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Orosz, A., Jann, K., Federspiel, A., Horn, H., Höfle, O., Dierks, T., et al. (2012).
Reduced cerebral blood flow within the default-mode network and within total
gray matter in major depression. Brain Connect 2, 303–310. doi: 10.1089/brain.
2012.0101

Pantelis, C., Jayaram, M., Hannan, A. J., Wesselingh, R., Nithianantharajah,
J., Wannan, C. M., et al. (2021). Neurological, neuropsychiatric and
neurodevelopmental complications of COVID-19. Aust. N Z J. Psychiatry 55,
750–762. doi: 10.1177/0004867420961472

Rao, U., Chen, L. A., Bidesi, A. S., Shad, M. U., Thomas, M. A., and Hammen,
C. L. (2010). Hippocampal changes associated with early-life adversity and
vulnerability to depression. Biol. Psychiatry 67, 357–364. doi: 10.1016/j.
biopsych.2009.10.017

Ratnayake, U., Quinn, T. A., Castillo-Melendez, M., Dickinson, H., and Walker,
D. W. (2012). Behaviour and hippocampus-specific changes in spiny mouse
neonates after treatment of the mother with the viral-mimetic Poly I:C at mid-
pregnancy. Brain Behav. Immun. 26, 1288–1299. doi: 10.1016/j.bbi.2012.08.
011

Roy, M., Flaum, M., and Andreasen, N. (1995). No difference found between
winter- and non-winter-born schizophrenic cases. Schizophr. Res. 17, 241–248.
doi: 10.1016/0920-9964(95)00010-0

Sacchetti, E., Calzeroni, A., Vita, A., Terzi, A., Pollastro, F., and Cazzullo,
C. L. (1992). The brain damage hypothesis of the seasonality of births in
schizophrenia and major affective disorders: evidence from computerised
tomography. Br. J. Psychiatry 160, 390–397. doi: 10.1192/bjp.160.3.390

Sacchetti, E., Vita, A., Battaglia, M., Calzeroni, A., Conte, G., Invernizzi, G., et al.
(1987). “Season of birth and cerebral ventricular enlargement in schizophrenia,”
in Etiopathogenetic Hypotheses of Schizophrenia: The Impact of Epidemiological,
Biochemical and Neuromorphological Studies, eds C. L. Cazzullo, G. Invernizzi,
E. Sacchetti, and A. Vita (Dordrecht: Springer Netherlands), 93–98.

Sacher, J., Neumann, J., Fünfstück, T., Soliman, A., Villringer, A., and Schroeter,
M. L. (2012). Mapping the depressed brain: a meta-analysis of structural
and functional alterations in major depressive disorder. J. Affect. Disord. 140,
142–148. doi: 10.1016/j.jad.2011.08.001

Samuelsson, A. M., Jennische, E., Hansson, H. A., and Holmäng, A. (2006).
Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration
in hippocampus with NMDA/GABAA dysregulation and impaired spatial
learning. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1345–R1356. doi:
10.1152/ajpregu.00268.2005

Schmaal, L., Veltman, D. J., Van Erp, T. G. M., Sämann, P. G., Frodl, T., Jahanshad,
N., et al. (2016). Subcortical brain alterations in major depressive disorder:
findings from the ENIGMA major depressive disorder working group. Mol.
Psychiatry 21, 806–812. doi: 10.1038/mp.2015.69

Schoretsanitis, G., Stegmayer, K., Razavi, N., Federspiel, A., Müller, T. J., Horn,
H., et al. (2019). Inferior frontal gyrus gray matter volume is associated
with aggressive behavior in schizophrenia spectrum disorders. Psychiatry Res.
Neuroimaging 290, 14–21. doi: 10.1016/j.pscychresns.2019.06.003

Serra-Blasco, M., Radua, J., Soriano-Mas, C., Gómez-Benlloch, A., Porta-Casteràs,
D., Carulla-Roig, M., et al. (2021). Structural brain correlates in major
depression, anxiety disorders and post-traumatic stress disorder: a voxel-based
morphometry meta-analysis. Neurosci. Biobehav. Rev. 129, 269–281. doi: 10.
1016/j.neubiorev.2021.07.002

Sexton, C. E., Mackay, C. E., and Ebmeier, K. P. (2013). A systematic review and
meta-analysis of magnetic resonance imaging studies in late-life depression.
Am. J. Geriatr. Psychiatry 21, 184–195. doi: 10.1016/j.jagp.2012.10.019

Shah, C., Zhang, W., Xiao, Y., Yao, L., Zhao, Y., Gao, X., et al. (2017). Common
pattern of gray-matter abnormalities in drug-naive and medicated first-episode
schizophrenia: a multimodal meta-analysis. Psychol. Med. 47, 401–413. doi:
10.1017/S0033291716002683

Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E.,
et al. (1998). The mini-international neuropsychiatric interview (MINI): the
development and validation of a structured diagnostic psychiatric interview for
DSM-IV and ICD-10. J. Clin. Psychiatry 59, 22–33.

Sheline, Y. I., Mittler, B. L., and Mintun, M. A. (2002). The hippocampus and
depression. Eur. Psychiatry 17, 300s–305s. doi: 10.1016/S0924-9338(02)00655-7

Shi, L., Fatemi, S. H., Sidwell, R. W., and Patterson, P. H. (2003). Maternal
influenza infection causes marked behavioral and pharmacological changes
in the offspring. J. Neurosci. 23, 297–302. doi: 10.1523/jneurosci.23-01-00297.
2003

Spini, V. B. M. G., Ferreira, F. R., Gomes, A. O., Duarte, R. M. F., Oliveira,
V. H. S., Costa, N. B., et al. (2021). Maternal immune activation with H1N1
or toxoplasma gondii antigens induces behavioral impairments associated with
mood disorders in rodents. Neuropsychobiology 80, 234–241. doi: 10.1159/
000510791

Steen, R. G., Mull, C., McClure, R., Hamer, R. M., and Lieberman, J. A. (2006).
Brain volume in first-episode schizophrenia. Br. J. Psychiatry 188, 510–518.
doi: 10.1192/bjp.188.6.510

Stegmayer, K., Bohlhalter, S., Vanbellingen, T., Federspiel, A., Moor, J., Wiest, R.,
et al. (2016). Structural brain correlates of defective gesture performance in
schizophrenia. Cortex 78, 125–137. doi: 10.1016/j.cortex.2016.02.014

Stegmayer, K., Horn, H., Federspiel, A., Razavi, N., Bracht, T., Laimböck, K.,
et al. (2014). Ventral striatum gray matter density reduction in patients with
schizophrenia and psychotic emotional dysregulation. NeuroImage Clin. 4,
232–239. doi: 10.1016/j.nicl.2013.12.007

Stegmayer, K., Horn, H. J., Federspiel, A., Razavi, N., Laimböck, K., Bracht, T., et al.
(2013). Supplementary motor area (SMA) volume correlates with psychotic
symptoms associated with dysregulation of the motor system: a voxel-based
morphometry (VBM) study. Eur. Arch. Psychiatry Clin. Neurosci. 263, S66–S67.

Stratmann, M., Konrad, C., Kugel, H., Krug, A., Schöning, S., Ohrmann, P., et al.
(2014). Insular and hippocampal gray matter volume reductions in patients
with major depressive disorder. PLoS One 9:e102692. doi: 10.1371/journal.pone.
0102692

Tamminga, C. A., Stan, A. D., and Wagner, A. D. (2010). The hippocampal
formation in schizophrenia. Am. J. Psychiatry 167, 1178–1193. doi: 10.1176/
appi.ajp.2010.09081187

Torrey, E. F., Miller, J., Rawlings, R., and Yolken, R. H. (1997). Seasonality of births
in schizophrenia and bipolar disorder: a review of the literature. Schizophr. Res.
28, 1–38. doi: 10.1016/s0920-9964(97)00092-3

Torrey, E. F., Rawlings, R. R., Ennis, J. M., Merrill, D. D., and Flores, D. S. (1996).
Birth seasonality in bipolar disorder, schizophrenia, schizoaffective disorder
and stillbirths. Schizophr. Res. 21, 141–149. doi: 10.1016/0920-9964(96)00022-9

Videbech, P. (2004). Hippocampal volume and depression: a meta-analysis of MRI
studies. Am. J. Psychiatry 161, 1957–1966. doi: 10.1176/appi.ajp.161.11.1957

Viher, P. V., Stegmayer, K., Kubicki, M., Karmacharya, S., Lyall, A. E., Federspiel,
A., et al. (2018). The cortical signature of impaired gesturing: findings from
schizophrenia. NeuroImage Clin. 17, 213–221. doi: 10.1016/j.nicl.2017.10.017

Vita, A., De Peri, L., Deste, G., and Sacchetti, E. (2012). Progressive loss of
cortical gray matter in schizophrenia: a meta-analysis and meta-regression of
longitudinal MRI studies. Transl. Psychiatry 2, e190–e. doi: 10.1038/tp.2012.116

Vita, A., De Peri, L., Silenzi, C., and Dieci, M. (2006). Brain morphology in
first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance
imaging studies. Schizophr. Res. 82, 75–88. doi: 10.1016/j.schres.2005.11.004

Walther, S., Federspiel, A., Horn, H., Razavi, N., Wiest, R., Dierks, T., et al. (2011).
Alterations of white matter integrity related to motor activity in schizophrenia.
Neurobiol. Dis. 42, 276–283. doi: 10.1016/j.nbd.2011.01.017

Walther, S., Höfle, O., Federspiel, A., Horn, H., Hügli, S., Wiest, R., et al. (2012a).
Neural correlates of disbalanced motor control in major depression. J. Affect.
Disord. 136, 124–133. doi: 10.1016/j.jad.2011.08.020

Walther, S., Hügli, S., Höfle, O., Federspiel, A., Horn, H., Bracht, T., et al.
(2012b). Frontal white matter integrity is related to psychomotor retardation
in major depression. Neurobiol. Dis. 47, 13–19. doi: 10.1016/j.nbd.2012.03.
019

Walther, S., Schäppi, L., Federspiel, A., Bohlhalter, S., Wiest, R., Strik, W., et al.
(2017). Resting-state hyperperfusion of the supplementary motor area in
catatonia. Schizophr. Bull. 43, 972–981. doi: 10.1093/schbul/sbw140

Wilms, G., Van Ongeval, C., Baert, A. L., Claus, A., Bollen, J., De Cuyper, H., et al.
(1992). Ventricular enlargement, clinical correlates and treatment outcome
in chronic schizophrenic inpatients. Acta Psychiatr. Scand. 85, 306–312. doi:
10.1111/j.1600-0447.1992.tb01474.x

Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W. R., David, A. S., Murray,
R. M., and Bullmore, E. T. (2000). Meta-analysis of regional brain

Frontiers in Human Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 87746159

https://doi.org/10.1001/archpsyc.55.5.433
https://doi.org/10.1001/archpsyc.55.5.433
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1089/brain.2012.0101
https://doi.org/10.1089/brain.2012.0101
https://doi.org/10.1177/0004867420961472
https://doi.org/10.1016/j.biopsych.2009.10.017
https://doi.org/10.1016/j.biopsych.2009.10.017
https://doi.org/10.1016/j.bbi.2012.08.011
https://doi.org/10.1016/j.bbi.2012.08.011
https://doi.org/10.1016/0920-9964(95)00010-0
https://doi.org/10.1192/bjp.160.3.390
https://doi.org/10.1016/j.jad.2011.08.001
https://doi.org/10.1152/ajpregu.00268.2005
https://doi.org/10.1152/ajpregu.00268.2005
https://doi.org/10.1038/mp.2015.69
https://doi.org/10.1016/j.pscychresns.2019.06.003
https://doi.org/10.1016/j.neubiorev.2021.07.002
https://doi.org/10.1016/j.neubiorev.2021.07.002
https://doi.org/10.1016/j.jagp.2012.10.019
https://doi.org/10.1017/S0033291716002683
https://doi.org/10.1017/S0033291716002683
https://doi.org/10.1016/S0924-9338(02)00655-7
https://doi.org/10.1523/jneurosci.23-01-00297.2003
https://doi.org/10.1523/jneurosci.23-01-00297.2003
https://doi.org/10.1159/000510791
https://doi.org/10.1159/000510791
https://doi.org/10.1192/bjp.188.6.510
https://doi.org/10.1016/j.cortex.2016.02.014
https://doi.org/10.1016/j.nicl.2013.12.007
https://doi.org/10.1371/journal.pone.0102692
https://doi.org/10.1371/journal.pone.0102692
https://doi.org/10.1176/appi.ajp.2010.09081187
https://doi.org/10.1176/appi.ajp.2010.09081187
https://doi.org/10.1016/s0920-9964(97)00092-3
https://doi.org/10.1016/0920-9964(96)00022-9
https://doi.org/10.1176/appi.ajp.161.11.1957
https://doi.org/10.1016/j.nicl.2017.10.017
https://doi.org/10.1038/tp.2012.116
https://doi.org/10.1016/j.schres.2005.11.004
https://doi.org/10.1016/j.nbd.2011.01.017
https://doi.org/10.1016/j.jad.2011.08.020
https://doi.org/10.1016/j.nbd.2012.03.019
https://doi.org/10.1016/j.nbd.2012.03.019
https://doi.org/10.1093/schbul/sbw140
https://doi.org/10.1111/j.1600-0447.1992.tb01474.x
https://doi.org/10.1111/j.1600-0447.1992.tb01474.x
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-877461 June 6, 2022 Time: 15:54 # 10

Schaub et al. Season-of-Birth Effect on Hippocampus Volume

volumes in schizophrenia. Am. J. Psychiatry 157, 16–25. doi: 10.1176/ajp.157.
1.16

Yüksel, D., Engelen, J., Schuster, V., Dietsche, B., Konrad, C., Jansen, A., et al.
(2018). Longitudinal brain volume changes in major depressive disorder.
J. Neural. Transm. 125, 1433–1447. doi: 10.1007/s00702-018-1919-8

Zaigham, M., and Andersson, O. (2020). Maternal and perinatal outcomes with
COVID−19: a systematic review of 108 pregnancies. Acta Obstet. Gynecol.
Scand. 99, 823–829. doi: 10.1111/aogs.13867

Zatorre, R. J., Fields, R. D., and Johansen-Berg, H. (2012). Plasticity in gray and
white: neuroimaging changes in brain structure during learning. Nat. Neurosci.
15, 528–536. doi: 10.1038/nn.3045

Zhang, H., Li, L., Wu, M., Chen, Z., Hu, X., Chen, Y., et al. (2016). Brain gray
matter alterations in first episodes of depression: a meta-analysis of whole-brain
studies. Neurosci. Biobehav. Rev. 60, 43–50. doi: 10.1016/j.neubiorev.2015.10.
011

Zhao, Y. J., Du, M. Y., Huang, X. Q., Lui, S., Chen, Z. Q., Liu, J., et al.
(2014). Brain grey matter abnormalities in medication-free patients with major
depressive disorder: a meta-analysis. Psychol. Med. 44, 2927–2937. doi: 10.1017/
s0033291714000518

Zipursky, R. B., and Schulz, S. C. (1987). Seasonality of birth and CT findings
in schizophrenia. Biol. Psychiatry. 22, 1288–1292. doi: 10.1016/0006-3223(87)
90040-0

Conflict of Interest: SW received honoraria from Janssen, Lundbeck, Mepha,
Neurolite, Otsuka and Sunovion, and served on advisory boards for Lundbeck and

Sunovion in 2019. KS received honoraria from Janssen, Lundbeck, Mepha, and
Sunovion. RH received speaker/advisor honorary from Merck, Novartis, Roche,
Biogen, Alexion, Sanofi, Janssen, Bristol-Myers Squibb, and Almirall, and received
research support within the last 5 years from Roche, Merck, Sanofi, Biogen, Chiesi,
and Bristol-Myers Squibb, and also received research grants from the Swiss MS
Society, and also serves as associated editor for Journal of Central Nervous System
disease.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Schaub, Ammann, Conring, Müller, Federspiel, Wiest, Hoepner,
Stegmayer and Walther. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 10 June 2022 | Volume 16 | Article 87746160

https://doi.org/10.1176/ajp.157.1.16
https://doi.org/10.1176/ajp.157.1.16
https://doi.org/10.1007/s00702-018-1919-8
https://doi.org/10.1111/aogs.13867
https://doi.org/10.1038/nn.3045
https://doi.org/10.1016/j.neubiorev.2015.10.011
https://doi.org/10.1016/j.neubiorev.2015.10.011
https://doi.org/10.1017/s0033291714000518
https://doi.org/10.1017/s0033291714000518
https://doi.org/10.1016/0006-3223(87)90040-0
https://doi.org/10.1016/0006-3223(87)90040-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-954898 August 5, 2022 Time: 7:35 # 1

TYPE Original Research
PUBLISHED 05 August 2022
DOI 10.3389/fnhum.2022.954898

OPEN ACCESS

EDITED BY

Franziska Knolle,
Technical University of Munich,
Germany

REVIEWED BY

Jakob André Kaminski,
Charité University Medicine Berlin,
Germany
Wei Deng,
Affiliated Mental Health Center
and Hangzhou Seventh People’s
Hospital, China
Uzma Zahid,
University of Oxford, United Kingdom

*CORRESPONDENCE

Lena Palaniyappan
lena.palaniyappan@mcgill.ca

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to
Brain Imaging and Stimulation,
a section of the journal
Frontiers in Human Neuroscience

RECEIVED 27 May 2022
ACCEPTED 19 July 2022
PUBLISHED 05 August 2022

CITATION

Liang L, Silva AM, Jeon P, Ford SD,
MacKinley M, Théberge J and
Palaniyappan L (2022) Widespread
cortical thinning, excessive glutamate
and impaired linguistic functioning
in schizophrenia: A cluster analytic
approach.
Front. Hum. Neurosci. 16:954898.
doi: 10.3389/fnhum.2022.954898

COPYRIGHT

© 2022 Liang, Silva, Jeon, Ford,
MacKinley, Théberge and
Palaniyappan. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Widespread cortical thinning,
excessive glutamate and
impaired linguistic functioning
in schizophrenia: A cluster
analytic approach
Liangbing Liang1,2†, Angélica M. Silva2†, Peter Jeon3,
Sabrina D. Ford2,4, Michael MacKinley2,5, Jean Théberge3,5,6

and Lena Palaniyappan2,3,5,6,7*
1Graduate Program in Neuroscience, Western University, London, ON, Canada, 2Robarts Research
Institute, Western University, London, ON, Canada, 3Department of Medical Biophysics, Western
University, London, ON, Canada, 4London Health Sciences Centre, Victoria Hospital, London, ON,
Canada, 5Lawson Health Research Institute, London, ON, Canada, 6Department of Psychiatry,
Western University, London, ON, Canada, 7Department of Psychiatry, Douglas Mental Health
University Institute, McGill University, Montreal, QC, Canada

Introduction: Symptoms of schizophrenia are closely related to aberrant

language comprehension and production. Macroscopic brain changes seen

in some patients with schizophrenia are suspected to relate to impaired

language production, but this is yet to be reliably characterized. Since

heterogeneity in language dysfunctions, as well as brain structure, is

suspected in schizophrenia, we aimed to first seek patient subgroups with

different neurobiological signatures and then quantify linguistic indices that

capture the symptoms of “negative formal thought disorder” (i.e., fluency,

cohesion, and complexity of language production).

Methods: Atlas-based cortical thickness values (obtained with a 7T MRI

scanner) of 66 patients with first-episode psychosis and 36 healthy

controls were analyzed with hierarchical clustering algorithms to produce

neuroanatomical subtypes. We then examined the generated subtypes and

investigated the quantitative differences in MRS-based glutamate levels [in the

dorsal anterior cingulate cortex (dACC)] as well as in three aspects of language

production features: fluency, syntactic complexity, and lexical cohesion.

Results: Two neuroanatomical subtypes among patients were observed,

one with near-normal cortical thickness patterns while the other with

widespread cortical thinning. Compared to the subgroup of patients with

relatively normal cortical thickness patterns, the subgroup with widespread

cortical thinning was older, with higher glutamate concentration in dACC

and produced speech with reduced mean length of T-units (complexity) and

lower repeats of content words (lexical cohesion), despite being equally fluent

(number of words).
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Conclusion: We characterized a patient subgroup with thinner cortex in first-

episode psychosis. This subgroup, identifiable through macroscopic changes,

is also distinguishable in terms of neurochemistry (frontal glutamate) and

language behavior (complexity and cohesion of speech). This study supports

the hypothesis that glutamate-mediated cortical thinning may contribute to

a phenotype that is detectable using the tools of computational linguistics

in schizophrenia.

KEYWORDS

thickness, spectroscopy, computational linguistics, first-episode psychosis, natural
language processing, formal thought disorder

Introduction

Schizophrenia is a disorder that affects how language is
employed in everyday use during social interactions (Covington
et al., 2005; Kuperberg, 2010; Wible, 2012). Based on the
Diagnostic and Statistical Manual of Mental Disorders 5th
edition (DSM-5) (American Psychiatric Association, 2013),
all of the 5 symptom criteria for diagnosing schizophrenia
involve speech and language in one form or another (American
Psychiatric Association, 2013). For example, hallucinations
are often voices that speak (Alderson-Day et al., 2021);
negative symptoms are characterized by “alogia” or reduced
speech fluency; thought disorder is expressed as deviations
in speech; catatonic features often include mutism (lack of
speech production) (Oyebode, 2021); delusions often include
an element of misinterpretation of social conversations or
deficits in the use of propositional language (Zimmerer
et al., 2017). Despite this strong linguistic dependency of
the construct of schizophrenia, not every patient diagnosed
with this illness displays a detectable speech disturbance
(Roche et al., 2015; Kircher et al., 2018; Oomen et al., 2022).
It is important to identify patients who are most likely to
be afflicted in the language domain, as speech disturbances
directly affect the educational and occupational success
(Palaniyappan et al., 2019), interpersonal (Tan et al., 2014)
and social functioning (Marggraf et al., 2020) as well as
endured stigma (Penn et al., 2000). Identification of this
subgroup may assist in prognostication in schizophrenia,
as well as making early and targeted interventions for a
group that may have higher educational and vocational
needs possible, before they manifest significant deficits
in these domains.

The heterogeneity of linguistic deficits may stem from
the presence of a subgroup of patients who do not display
the expected language anomalies (Oomen et al., 2022).
Alternatively, conventional measures of “formal thought
disorder (FTD)” that seek to examine overt communication
difficulties may miss the subtle aspects of this deficit, thus

introducing an apparent heterogeneity (Mikesell and Bromley,
2016). We need sensitive and objective measures of language
indices to study this issue in detail (see Elvevåg et al., 2010;
Foltz et al., 2016; Holmlund et al., 2020 for more explanations).
One of these tools is natural language processing (NLP) in
computational linguistics (Ratana et al., 2019; Corcoran and
Cecchi, 2020; Corcoran et al., 2020; Hitczenko et al., 2021).
NLP tools use computer algorithms to understand and analyze
written text or speech. NLP is a branch of artificial intelligence
that uses real-world language as input, and processes it using
linguistic rules or patterns identified through statistics, to
allow machines to make sense of our language. Such NLP
tools do not rely on a clinician’s inferential skill to assess the
cognitive-linguistic health status (Voleti et al., 2020) of patients
from early stages of psychosis (Delvecchio et al., 2019) and
are able to predict psychosis onset in individuals at clinical
high-risk (CHR) (Bedi et al., 2015). These approaches have
broadly focused on syntactic (Thomas et al., 1990; Thomas,
1996; Covington et al., 2005; Delvecchio et al., 2019) and
semantic indices (Corcoran et al., 2018; Bar et al., 2019;
Alonso-Sánchez et al., 2022; Parola et al., 2022) as the affected
domains in psychosis.

Prior studies that focused on quantitative analysis of
language have established the following dysfunctions in
patients with schizophrenia. First, patients display syntactic
simplification [(Morice and Ingram, 1982, 1983; Fraser et al.,
1986; Morice and McNicol, 1986; King et al., 1990; DeLisi, 2001;
Bilgrami et al., 2022) i.e., they use simple constructions with
minimal clause dependencies and also with a limited richness of
content]. Secondly, patients show patterns of reduced cohesion
(Crider, 1997), for example, lacking prior reference when
invoking a description (Chaika and Lambe, 1989) or insufficient
lexical repetitions (Gupta et al., 2018) needed to generate
cohesion during a discursive discourse (Crossley et al., 2016).
Reduced syntactic complexity and cohesion can lead to aberrant
word graphs (Mota et al., 2012) and a reduction in number of
words spoken (reduced fluency) (Allen et al., 1993; DeLisi, 2001;
Morgan et al., 2021).
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While some of these features have been linked to the
presence of clinically detected FTD, the rating-scale measures
of FTD have been poor predictors of linguistic dysfunction
per se (Mackinley et al., 2021; Tang et al., 2021). Furthermore,
as symptom measures fluctuate over time (state-like), they
have limited utility in identifying stable subgroups (Jablensky,
2006). Even among speech characteristics, those that relate to
“positive symptoms” appear to be more state-related, while
those relating to negative symptoms [or Impoverishment of
Thinking (Liddle et al., 2002)] appear to be more pervasive.
More trait-like measures, e.g., those derived from brain anatomy
or genetic composition, that map on to emerging biological
insights [e.g., implicating the glutamatergic synapses (Iyegbe
and O’Reilly, 2022; Trubetskoy et al., 2022)], may be required
to see if specific subgroups of patients have linguistic deficits.
Furthermore, as antipsychotics themselves can induce language

impairment (de Boer et al., 2020), recruitment of patients with
first-episode psychosis with minimal exposure to antipsychotic
medications is necessary to identify subgroups with language
dysfunction from illness onset.

In the current study, we first identify subgroups of patients
with first-episode schizophrenia using the neuroanatomical
measure of MRI-derived cortical thickness. Structural
neuroanatomical features are considered to be more stable
than symptom rating and physiological recordings, which can
vary on a day-to-day basis. In addition, MRI-derived thickness
is quantified objectively in an automatized manner with
minimal manual intervention in the quantification process.
Thus, brain structure can provide more stable and reliable
clustering solutions. Further, aberrant cortical thickness has
been reported in various illness stages of schizophrenia (Zhao
et al., 2022), and has been found to track the inter-individual

TABLE 1 Demographic, clinical, neurobiological, and linguistic data of patients with first-episode psychosis and healthy controls.

FEP HC Pearson’s chi-squared test or Welch t-tests

N 66 36 −

Demographics

Age (years) 22.82 (4.77) 21.53 (3.32) t(94.043) = 1.6005, p = 0.1128

Female/male 12/54 12/24 X-squared (1) = 2.1896, p = 0.1389

Education scale (1/2/3/4) 15/18/20/13 5/3/14/13 X-squared (3) = 8.0131, p = 0.04574 *

Clinical

PANSS-8 (total) 25.18 (6.72) − −

PANSS-8 positive 11.62 (3.48) − −

PANSS-8 negative 6.97 (4.41) − −

PANSS-8 general 5.18 (2.46)

DUP (weeks) [median (IQR)] 11.0 (4, 24) − −

DDD lifetime exposure [median (IQR)] 0.5 (0, 2.99) − −

Antipsychotic naïve (%) 42%

Functional

SOFAS 40.96 (12.40) −

NEET status: yes/no 24/29 0/31 X-squared (1) = 17.497, p < 0.0001 ***

Neurobiological

Glutamate (mM) 6.79 (1.16) 6.51 (1.35) t(53.766) = 0.99493, p = 0.3242

Mean cortical thickness (mm) 2.45 (0.12) 2.48 (0.096) t(94) = 1.90350, p = 0.0600

Language variables

TLI (Total) 1.48 (1.41) 0.29 (0.39) t(81.668) = 6.4188, p < 0.00001 ***

TLI impoverishment 0.57 (0.72) 0.14 (0.25) t(87.397) = 4.3669, p < 0.0001 ***

TLI disorganization 0.91 (1.21) 0.15 (0.26) t(75.114) = 4.9033, p < 0.00001 ***

Average total number of words 119.18 (38.85) 141.34 (29.83) t(88.706) = −3.1775, p = 0.002045 **

MLS 14.37 (4.58) 14.21 (2.74) t(96.753) = 0.20899, p = 0.8349

MLT 12.21 (3.00) 12.49 (2.08) t(93.295) = −0.56025, p = 0.5767

MLC 7.73 (1.20) 8.19 (1.18) t(73.659) = −1.8858, p = 0.06327

Repeated contents lemmas 0.229 (0.047) 0.247 (0.033) t(89.792) = −2.1269, p = 0.03617 *

Values are reported as “Mean (SD)” unless specified otherwise.
IQR, Interquartile range; FEP, first episode psychosis; HC, healthy controls; PANSS, Positive and Negative Symptoms Scale; DUP, duration of untreated psychosis; DDD, Defined Daily
Dose; SOFAS, Social and Occupational Functioning Assessment Scale; NEET, not in employment, education and training; TLI, Thought and Language Index; MLS, mean length of
sentences; MLT, mean length of T-units; MLC, mean length of clauses.
*p < 0.05, **p < 0.01, ***p < 0.001.
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differences in psychotic symptoms (Oertel-Knöchel et al., 2013)
and Thought and Language Disorder scores in schizophrenia
(Palaniyappan et al., 2020). Prior cluster analytic studies have
uncovered a consistent cluster of patients with generalized
reduction in cortical thickness (Dwyer et al., 2018; Chand et al.,
2020; Liang et al., 2022). We use similar methods and then we
examine if these subgroups have a meaningful neurochemical
basis for their differences, by examining the MRS-derived
glutamate levels measured from their frontal cortex, extending
our recent work (Liang et al., 2022) to a larger sample.

Abnormal cortical thickness in schizophrenia has been
previously linked to dysregulated glutamate levels (Plitman
et al., 2014, 2016; Shah et al., 2020) and glutamatergic
dysfunction had been considered to contribute to the “FTD”
burden in schizophrenia (Kircher et al., 2018). We select
dACC as our region of interest for glutamate measurement
as it constitutes the core hub of the large-scale brain
network called the Salience Network that appears to play a
key role in the neurocognitive dysfunction in schizophrenia
(Palaniyappan, 2021). Finally, we used a picture description
task to study computational linguistic measures that are
reflective of a “negative” FTD, first described by Fish (Casey
and Kelly, 2019) and later reported by Andreasen (1979)
and others (Kircher et al., 2018) as being more characteristic
of established schizophrenia. Negative FTD is characterized
by reduced quantity and quality of speech output; in a
linguistically impoverished subgroup, this will be reflected in
(i) reduced fluency (number of words spoken), (ii) reduced
cohesion (measured by counting instances of content with prior
reference, i.e., repeat content lemmas, e.g., run, running, and
ran), and (iii) reduced syntactic complexity [mean length of
sentences (MLS), clauses and minimal terminable units T-units,
the smallest word group that could be considered a grammatical
sentence, often composed of a main clause and subordinate
clauses attached to it (Hunt, 1970)].

While there are numerous quantitative linguistic measures
reported to be different in case-control comparisons, we chose
items that predominantly map onto the negative symptom
domain of schizophrenia (Tan et al., 2021; Bilgrami et al.,
2022), independent of corpus-based distributional probabilities
[which has limitations in understanding compositionality
(Lenci, 2018)—a crucial locus of dysfunction in schizophrenia
(Chaika, 1974)] and are readily interpretable [e.g., we did not
use referential cohesion measure which is conflated in the
presence of perseveration (Lundin et al., 2020)]. The features we
selected are also intuitive in their link to known clinical features
[reduced word count relates to alogia; lack of cohesion and
simplified syntax relates to the poverty of content (Bedi et al.,
2015; Corcoran et al., 2018; Minor et al., 2019)]. Furthermore,
compared to other aspects of communication disturbances, the
features of reduced fluency and richness of content (negative
factor) selectively relate to poor response to treatment (Peralta
et al., 1992). A neuroanatomically defined subgroup high in

these “negative FTD type” linguistic features can be expected to
be of prognostic relevance in schizophrenia.

Considering previous structural imaging-based cluster
analytic studies, our primary hypothesis is that patient
subgroups with distinct cortical thickness patterns can be
identified in first-episode schizophrenia. In particular, a
subgroup with widespread cortical thinning would emerge.
Considering the association between cortical thinning,
dysregulated glutamate levels and FTD burden, our secondary
hypotheses are as follows: (i) The subgroup with deviant cortical
thickness patterns also has abnormal glutamate levels measured
in dACC; (ii) This subgroup displays impairments (negative
FTD-type) in language production features, such as syntactic
simplicity, reduced speech output and lower speech cohesion.

Materials and methods

Participants

We recruited 76 patients with first-episode psychosis from
the Prevention and Early Intervention for Psychosis Program at
the London Health Sciences Centre in London, Ontario, Canada
from 2017 to 2021. Since 10 patients were unable to go through
magnetic resonance imaging (MRI) scanning, we included data
collected for 66 patients in this study. Inclusion criteria for
patients include (1) having less than 14 days of lifetime exposure
to antipsychotic medications, and (2) being at their first clinical
presentation of psychotic symptoms. We followed up with
patients for over 6 months to determine the validity of a
diagnosis of first-episode schizophrenia prospectively. We also
recruited 36 healthy volunteers, group-matched for age, sex, and
parental socioeconomic status, who had no personal history of
mental illnesses and no family history of psychotic disorders.
All participants had no significant head injury, drug/alcohol
dependence, or major medical illnesses, were fluent in English,
and provided written informed consent to participate in the
study. The work reported here is part of a longitudinal study
registered on clinicaltrials.gov (Identifier: NCT02882204) and
approved by the Western University Health Sciences Research
Ethics Board, London, Ontario, Canada.

Measures and instruments

Psychiatric symptoms
Symptom severity was measured by the 8-item Positive

and Negative Syndrome Scale (PANSS) (Lin et al., 2018)
through interviews conducted by two research psychiatrists.
Functional outcome was indexed by the Social and Occupational
Functional Assessment Scale (SOFAS) (Morosini et al., 2000).
The duration of untreated psychosis was calculated using the
first report of positive symptoms as the starting point. We
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also obtained patients’ NEET (Not in Education, Employment,
and Training) status. We converted participants’ level of
education into an ordinal scale (1: incomplete high school
diploma; 2: completed high school diploma; 3: some post-
secondary study; 4: completed post-secondary study or higher).
Lifetime antipsychotic medication exposure was calculated by
multiplying the number of days taking antipsychotics and
prescribed Defined Daily Dose (DDD) values according to
the World Health Organization (World Health Organization
[WHO], 2022).

Thought and Language Index
Data was collected using Thought and Language Index

(TLI) (Liddle et al., 2002) to reflect the two dimensions
of language disorders in schizophrenia, impoverishment and
disorganization. We used a picture-speech task that induced
participants to elaborate 1-min spontaneous speech (oral
soliloquies) in response to three images from the Thematic
Apperception Test (Murray, 1943) after hearing specific
instructions: “I am going to show you some pictures, one at a
time. When I put each picture in front of you, I want you to
describe the picture to me, as fully as you can. Tell me what
you see in the picture, describe what you see in this image, and
what you think might be happening.” Responses were recorded,
transcribed, and scored. Impoverishment score was the sum of
scores for these 3 dimensions: poverty of speech, weakening
of goal and preservation of ideas, while disorganization score
was indexed by 5 dimensions: looseness, peculiar use of words,
peculiar sentences, peculiar logic, and distractibility.

Language assessment
The same transcribed speech samples also underwent

automatic analysis to measure both syntactic complexity and
cohesion at the semantic level.

Tool for the automatic analysis of syntactic complexity
and sophistication

The automatic analysis of syntactic complexity and
sophistication (TAASSC) is an open-source1 used in wide-
ranging languages and grammatical frameworks with recent
improvements in machine-learning approaches and NLP. This
tool is complemented by a syntactic complexity analyzer
(SCA)—a package with an accuracy of around 90% in part of
speech (POS) tagging. The package includes a traditional and
large measure of syntactic complexity following the taxonomy
in Lu (2010): mean length of sentences (MLS), mean length of
T-units (MLT), and mean length of clauses (MLC), word counts,
and Terminal Units (T-unit) defined as the main clause with
its attached subordinate clause(s) indicating speech cohesion as
well as logical flow in the given information (see Supplementary
material for more detailed descriptions).

1 https://www.linguisticanalysistools.org/taassc.html

Tool for the automatic analysis of cohesion

Tool for the automatic analysis of cohesion (TAACO
2.0)2 (Crossley et al., 2016) is a freely available text analysis
tool which incorporates a wide-ranging of global indices—
over 150 classic and recently developed indices related to
text cohesion—local, global, and overall text cohesion can
significantly predict both text cohesion and speaking quality
whether the speaking samples show greater semantic overlap
incorporating automated semantic analysis (Crossley et al.,
2019). TAACO includes 194 indices of cohesion in seven main
categories: Type token ratio (TTR) and density, lexical overlap
(sentences), lexical overlap (paragraphs), semantic overlap,
connectives, givenness, and source text similarity. Of this, we
focus on the givenness index as we analyze speech rather
than written text. Givenness, as opposed to newness in a
discourse transcript, indicates whether information occurring in
a segment has already occurred in an earlier segment. Repeat
content words or lemmas (e.g., nouns, verbs, adjectives, etc.) are
calculated as a proportion of the total number of words spoken
within each 1-min picture description.

Magnetic resonance imaging and
magnetic resonance spectroscopy
acquisition and processing

A total of 66 participants underwent neuroanatomy and
spectroscopy scanning with an ultra-high-resolution 7-Tesla
MRI scanner (8-channel transmit and 32-channel receive head-
only coil) at Centre for Functional and Metabolic Mapping
(CFMM), Western University, London, Canada. Structural
images were obtained by a T1-weighted 0.75 mm isotropic
MP2RAGE sequence with the following parameters: Repetition
Time (TR) = 6,000 ms, Time to Echo (TE) = 2.83 ms,
Inversion Time (TI)1 = 800 ms, TI2 = 2,700 ms, flip-
angle 1 (α1) = 4◦, flip-angle 2 (α2) = 5◦, Field of View
(FOV) = 350 mm × 263 mm × 350 mm, Tacq = 9 min 38 s,
iPATPE = 3 and 6/8 partial k-space, slice thickness = 0.75
mm. Freesurfer (version 6.0.0) (FreeSurfer Software Suite, 2021)
was used to preprocess the obtained T1-weighted images.
FreeSurfer provides automated brain image processing steps
including intensity normalization, tissue segmentation and
cortical parcellation (recon-all Free Surfer Wiki, 2022). Visual
inspections of errors such as surface location misplacement were
carried out according to the troubleshooting guide provided by
FreeSurfer team (FsTutorial/TroubleshootingData, 2022). We
acquired the cortical thickness values based on the Destrieux
parcellation atlas (Destrieux et al., 2010). Magnetic resonance
spectroscopy (MRS) signal was measured on a voxel placed in
the dorsal anterior cingulate cortex (dACC; MNI coordinates:

2 https://www.linguisticanalysistools.org/taaco.html
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TABLE 2 Demographic, clinical, neurobiological, and linguistic data of subgroups.

Subgroup 1
patients

Subgroup 2
patients

Patient subgroup comparison Subgroup 1 healthy controls

N 46 20 33

Demographics Pearson’s Chi-squared test or Welch t-tests

Age (years) 21.37 (3.72) 26.15 (5.31) t(27.433) = −3.6527, p = 0.001081 * 21.15 (3.08)

Female/male 10/36 2/18 X-squared (1) = 0.62274, p = 0.43 12/21

Education scale (1/2/3/4) 9/14/16/7 6/4/4/6 X-squared (3) = 3.7761, p = 0.2867 5/3/14/10

Clinical Welch t-tests

PANSS-8 (total) 25.76 (7.02) 23.85 (5.91) t(42.677) = 1.1376, p = 0.2616 −

PANSS-8 positive 11.67 (3.46) 11.50 (3.64) t(34.519) = 0.18146, p = 0.8571 −

PANSS-8 negative 7.48 (4.46) 5.80 (4.15) t(38.757) = 1.4755, p = 0.1481 −

PANSS-8 general 5.22 (2.41) 5.10 (2.63) t(33.503) = 0.17063, p = 0.8655

DUP (weeks) [median (IQR)] 13 (4, 26) 8.5 (5.75, 16.5) t(23.362) = −0.53167, p = 0.6027 −

DDD lifetime exposure [median (IQR)] 0 (0, 2.54) 1.25 (0, 3.9) t(20.156) = −1.6477, p = 0.1149 −

Functional Pearson’s Chi-squared test or Welch t-tests

SOFAS 40.98 (13.19) 40.90 (10.67) t(44.354) = 0.025424, p = 0.9798 −

NEET status: yes/no 19/19 5/10 X-squared (1) = 0.62686, p = 0.4285 −

Neurobiological ANOVA with age as a covariate

Glutamate (mM) 6.57 (1.03) 7.28 (1.30) F(1) = 5.10, p = 0.028, *Age effect: p = 0.13 6.50 (1.40)

Mean cortical thickness (mm) 2.50 (0.068) 2.32 (0.057) F(1) = 126.225, p < 0.000, ***Age effect: p = 0.12 2.49 (0.061)

Language variables Welch t-tests

TLI (total) 1.28 (1.28) 1.93 (1.64) t(29.517) = −1.5629, p = 0.1287 0.28 (0.40)

TLI impoverishment 0.48 (0.61) 0.79 (0.92) t(26.725) = −1.3843, p = 0.1777 0.13 (0.23)

TLI disorganization 0.82 (1.14) 1.14 (1.37) t(30.974) = −0.92366, p = 0.3628 0.16 (0.26)

Average total number of words 119.47 (35.45) 118.43 (47.46) t(24.954) = 0.084721, p = 0.9332 141.53 (31.15)

MLS 14.58 (4.01) 13.91 (5.89) t(23.59) = 0.4227, p = 0.6763 14.03 (2.67)

MLT 12.79 (3.09) 10.75 (2.20) t(43.928) = 2.9509, p = 0.005066 ** 12.45 (2.13)

MLC 7.90 (1.25) 7.30 (0.96) t(40.658) = 2.0284, p = 0.04911 * 8.24 (1.21)

Repeated contents lemmas 0.240 (0.044) 0.204 (0.047) t(28.741) = 2.6991, p = 0.01152 * 0.249 (0.034)

Values are reported as “Mean (SD)” unless specified otherwise.
IQR, Interquartile range; FEP, first episode psychosis; HC, healthy controls; PANSS, Positive and Negative Symptoms Scale; DUP, duration of untreated psychosis; DDD, Defined Daily
Dose; SOFAS, Social and Occupational Functioning Assessment Scale; NEET, not in employment, education and training; TLI, Thought and Language Index; MLS, mean length of
sentences; MLT, mean length of T-units; MLC, mean length of clauses.
*p < 0.05, **p < 0.01, ***p < 0.001.

1, 16, 38). The details of MRS acquisition and analysis have been
previously described (see Supplementarymaterial) and a subset
of this sample has been reported in prior works (Jeon et al., 2021;
Liang et al., 2022).

Statistical analyses

We applied agglomerative hierarchical clustering with
Ward’s method and Euclidean distance to 148 cortical thickness
values [based on Destrieux parcellation atlas (Destrieux
et al., 2010) output using FreeSurfer] of all 102 participants
including 66 patients and 36 healthy controls. Agglomerative
hierarchical clustering starts with calculating the distance
(e.g., Euclidean distance) between all pairs of data objects
and putting the most similar data objects into the same
cluster. The newly formed clusters are then again grouped

with one another based on a linkage function (e.g., Ward’s
method), until all data objects merge into one single cluster.
The optimal number of clusters was determined by the
consensus votes from 16 clustering validity indices using
NbClust (Charrad et al., 2014) in R (version 4.0.3). Pearson’s
chi-squared tests (with Yate’s continuity correction) were
used to compare categorical variables, while Welch t-tests
were used to compare continuous variables. If the obtained
subgroups showed difference(s) in confounding variables (e.g.,
age or gender), ANCOVA was used to show effects between
subgroups while accounting for effects of the covariates. We
used FreeSurfer to find (1) between-cluster differences in
vertex-by-vertex cortical thickness while regressing out the
effect of age using a general linear model, and to locate (2)
cortical regionals that correlated with glutamatergic metabolic
levels. The thickness values at each vertex were mapped to
the surface of an average brain template, and the cortical

Frontiers in Human Neuroscience 06 frontiersin.org

66

https://doi.org/10.3389/fnhum.2022.954898
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-954898 August 5, 2022 Time: 7:35 # 7

Liang et al. 10.3389/fnhum.2022.954898

map was smoothed with a Gaussian kernel of 10 mm full
width at half-maximum. We used Monte Carlo simulations
with 1,000 permutations and a cluster-forming threshold of
P = 0.05 (two-tailed) to correct for multiple comparisons as
implemented in FreeSurfer.

Results

Demographic, clinical, linguistic, and neurobiological
measurements are provided in Table 1 and
Supplementary material.

The cluster validity procedure of hierarchical clustering of
148 cortical thickness values of 66 patients with first-episode
psychosis and 36 healthy controls suggested that a two-cluster
solution is optimal (9/16 cluster validity indices). Results of
clustering only patients are shown in Supplementary material.
Proceeding with a two-cluster solution, around 70% of patients
(n = 46) with first-episode psychosis were clustered with the
majority of the healthy controls (n = 33) in Cluster 1, while
the remaining 30% of patients (n = 20) were in Cluster
2 which only included 3 healthy individuals. Demographic,
clinical, neurometabolite, and language functioning information
of the three subgroups (Cluster 1 patients, Cluster 2 patients,
and Cluster 1 healthy controls) is summarized in Table 2
and Supplementary Table 1. Overall, compared to Cluster
1 patients, Cluster 2 patients have significantly older age,
lower mean cortical thickens (non-significant age effect), higher
glutamate concentration in dACC (non-significant age effect) as
well as lower MLT (complexity) and repeated contents lemmas
(cohesion) despite a preserved number of words within the
given time frame (fluency). There is no significant difference
between the two clusters in duration of untreated psychosis,
lifetime exposure to antipsychotics, PANSS, and SOFAS scores.

Comparisons of cortical thickness between patients from
the two subgroups (adjusted for age) are shown in Figure 1.
After multiple testing corrections, patients in Cluster 1
had significantly lower thickness in 8 clusters (average area
size = 410.44 mm2) in the left hemisphere and right hemisphere,
respectively (see Supplementary Table 2 and Figure 1 for
details). Comparisons of cortical thickness between the patients
and controls from Cluster 1 (adjusted for age and corrected
for multiple comparisons) revealed no regional differences in
thickness values, indicating that this subgroup of patients had
a “healthy” cortical morphological pattern.

Multiple cortical regions were correlated with dACC
glutamate levels in patients (Figure 2), but these correlations
were not significant after multiple testing corrections.
Correlation matrices of other variables of interest are presented
in Supplementary material.

In summary, patients from Cluster 1 had similar
neuroanatomical patterns to healthy controls, while patients
from Cluster 2 were a distinct subgroup with widespread

cortical thinning, higher glutamate concentration, and
exhibited and reduced syntactic complexity and cohesion. This
subgroup was thus impoverished in cortical structure as well as
linguistic features.

Discussion

In the current study, we identified a subgroup of
30% of patients with first-episode schizophrenia who are
distinguishable on the basis of their MRI-derived cortical
thickness profiles—displaying a generalized reduction in
thickness (referred to as “Subgroup 2”) compared to the other
group (70%) who have an unimpaired thickness profile similar
to most healthy control subjects (referred to as “Subgroup 1”).
Subgroup 2 is older in age at the time of the first presentation,
has higher MRS-derived glutamate levels in the dorsal ACC and
showed a pattern of linguistic impoverishment characterized
by reduced fluency, syntactic simplicity, and repetitiveness.
Taken together, these observations indicate a distinct subtype of
schizophrenia that shows a pattern of cortical impoverishment
along with linguistic impoverishment in the presence of higher
prefrontal (dACC) glutamate levels at first presentation.

The emergence of a cortical impoverishment group showing
a distributed reduction in cortical thickness compared to the
other subgroup of patients and healthy controls is now a well-
established feature of cluster analytical studies in schizophrenia.
In a prior work where we studied two independent groups
of patients with established schizophrenia as well as a part of
the sample reported here, we observed a reliably identifiable
subgroup of patients with cortical impoverishment (Liang et al.,
2022), who did not differ from other patients in the cognitive
or clinical severity. Similar findings also reported a “cortical
impoverishment subgroup” at various illness stages (Sugihara
et al., 2017; Dwyer et al., 2018; Chand et al., 2020; Pan
et al., 2020), supporting the stability of this subtype. While the
mechanistic processes underlying this structural deviation are
still circumspect, based on the higher glutamate levels noted in
this subgroup using 7T MRS from a dorsal ACC voxel, a putative
link to excitotoxicity (Plitman et al., 2014) (or E/I dysfunction
Limongi et al., 2020) can be drawn.

According to the NMDA hypofunction or glutamatergic
dysregulation models of schizophrenia, higher glutamate
transmission may relate to excitation-inhibition imbalance
(Limongi et al., 2020) and if unchecked, may result in
synaptic and neuronal loss (Wang and Qin, 2010). These
cellular mechanisms have been hypothesized to underlie
structural deficits in schizophrenia (Plitman et al., 2014).
Multilevel genetic and physiological studies are needed to
further pursue this observation. We now provide an important
lead in this pursuit by identifying language dysfunction
in this subgroup of schizophrenia. Additionally, we want
to highlight the implications of dissecting neurobiological

Frontiers in Human Neuroscience 07 frontiersin.org

67

https://doi.org/10.3389/fnhum.2022.954898
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-954898 August 5, 2022 Time: 7:35 # 8

Liang et al. 10.3389/fnhum.2022.954898

FIGURE 1

Cortical thickness map of differences between patients from Subgroup 1 and Subgroup 2 generated by FreeSurfer (regressing out age effect
with a general linear model, uncorrected). Left hemisphere and right hemisphere in lateral and medial view, respectively.

heterogeneity in schizophrenia. In our study, despite displaying
similar symptom severity and social functioning, the two
patient subgroups have distinct neurobiological underpinnings,
and may represent different pathophysiological pathways of
developing schizophrenia.

Through a parts-of-speech (POS) tagging approach in
NLP, we studied “poverty of content” at 3 components of
grammatical structures: mean length of sentences, clauses and
T-units. All are large syntactic complexity indices used as a
proxy of cognitive parameters because producing a T-unit is
a more complex process than producing coordinated clauses
(Szmrecsanyi, 2004). T-units serve as an informative index to
distinguish the amount of independent clausal coordination
in the expressed idea. Moreover, T-units provided the rule-
based identification process considering the selecting word for
subordination (e.g., using “because”) or coordination (e.g., using
“and”) (Beaman, 1984). Therefore, a reduction in coordinated
T-units demonstrates notable syntactic simplicity in our
Subgroup 2. These results are congruent with Bilgrami and
colleagues’ works (Bilgrami et al., 2022) who also reported lower
POS syntactic complexity in those patients who had negative
symptoms. The authors found that reduced sentence length and
decreased use of words that introduce dependent clauses (e.g.,
using complementizer or determiner pronouns such as “that”
and “which”) are associated with negative thought disorder
(Bilgrami et al., 2022). Additionally, our observations raise
the question of whether patients with higher developmental
disruption form the subgroup with cortical and linguistic
impoverishment since syntactic complexity is a phenomenon
that develops during childhood (Givon, 2009; Frizelle et al.,
2018) and reaches a plateau around the age of 20 (Nippold
et al., 2014). If developmental disturbances during childhood
and adolescence lie in the pathogenesis of schizophrenia and
can be detected using NLP tools (via progressive aberrations in
syntactic complexity; see Silva et al., 2022), this may provide a
promising avenue for early identification.

In clinical settings, linguistic dysfunction in schizophrenia
relies on a standardized rating scale (PANSS and TLI) to define
speech impairment as one sign of FTD (Elvevåg et al., 2007;
Iter et al., 2018). The two patient subgroups did not differ
in TLI or PANSS scores even though the diagnostic group
of FES differed from healthy subjects in TLI rating score as
expected. This observation speaks to the ability of automated
quantitative processes to parse the subtler aspects of language
dysfunction, an issue that has been discussed at length in
several recent works based on the NLP approach (Corcoran and
Cecchi, 2020; Hitczenko et al., 2021). We observed a reduction
of repeated content lemma (e.g., nouns, verbs, adjectives) in
our Subgroup 2. This index traditionally characterizes the
systematic relationship—explicit or implicit—between lexical
items, i.e., cohesive cues, placed at the text surface (Sanders
and Maat, 1976). For example, if two adjacent ideas (sentence-
to-sentence, clause-to-clause) comprise the same noun (e.g.,
woman), the lexical repetition will explicitly help connect both
ideas. However, if the first clause contains the word “bridge” and
the second contains the word “iron,” the connection weakens
even though it is logical. Therefore, in this work, we quantify
cohesion (Halliday and Hasan, 1976; Graesser et al., 2004)
through a lexical approach applied to how speech has been
produced, without any assumption about how it is understood
by listeners or readers (i.e., lexical cohesion as distinct from
semantic coherence) (Just et al., 2020).

The linguistic phenomenon of reduced content word-
lemmas relating to cortical thinning can be understood
in several ways (Crossley et al., 2016). Firstly, reduced
repetition of content-lemmas directly negatively influences
the givenness of the generated speech. Givenness refers to
the distribution of the given/known information or ideas
as opposed to the new/unknown information. A “cortically
impoverished” patient may build ideas as small clauses with
little relationship between them. Secondly, a decline in the use
of repeated content lemma makes it difficult to recover the
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FIGURE 2

Cortical regions that are correlated with dACC glutamate levels
(uncorrected) generated by FreeSurfer. Left and right
hemispheres in lateral and medial view, respectively. Blue/cyan
colors indicate negative correlations while red/yellow colors
indicate positive correlations.

meaningful information from the preceding passage, generating
a sense of empty speech (i.e., poverty of content) with reduced
informative value to the listener.

Our study has several strengths: We were able to overcome
the difficulty of collecting speech data in an acute, untreated
state of psychosis, and determine their diagnosis of first-episode
schizophrenia. Furthermore, we ensured transcribers, as well as
speech analysts, were blind to diagnosis. We employed ultra-
high field strength MRS whereby the glutamate quantification
from MS-spectra had a high specificity. Finally, we used multiple
clustering procedures and derived a two-cluster solution based
on a majority-based consensus, adding to the stability of
the observed subtype. Nevertheless, several limitations need
consideration. We had a limited number of female participants
which limits generalizability; we did not see a statistical effect
of sex between the groups, but our small numbers preclude a
stratified analysis. Second, thickness-based clustering resulted in
age differences between the subgroups; however, we included
age as a covariate in downstream analyses for glutamate and
regional thickness to ensure this confound did not affect the
inferences we make. Nevertheless, the non-linear influence of
age on these variables cannot be ruled out. Third, we did not
assess IQ formally. In our recent study where we examined
the influence of cognition on thickness-based clustering in
greater detail, the effect of individual differences in cognitive
performance in the thickness profile was minimal among
patients (Liang et al., 2022). Thus, while we can be confident
that the reported thickness reduction and language dysfunction
in a subgroup is not due to low extreme distributions of
IQ as a result, we cannot exclude that an undetermined
proportion of variance in these variables could be explained
by cognitive differences. Finally, our speech samples were
restricted to one language (English) and were based on a single
discursive discourse (picture description) and single modality
(oral soliloquies-monolog) elicited in the context of a research
interview. The effect of contextual differences, language as

well as types and duration of elicitation task on our linguistic
observations needs further examination.

In sum, we can link the putative excitotoxicity
(glutamate excess) to reduced gray matter thickness (cortical
impoverishment) and the objectively computed negative
phenomenology of language (or linguistic impoverishment) in
first-episode schizophrenia. This finding supports the presence
of detectable neurobiological subtypes of schizophrenia.
Connecting the cellular/synaptic processes (glutamate) with
objectively quantified language behaviors through macroscopic
brain changes (thickness) may facilitate more consistent
brain-behaviors mapping in schizophrenia.
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The past two decades have seen an explosion in the methods and directions

of neuroscience research. Along with many others, complexity research has

rapidly gained traction as both an independent research field and a valuable

subdiscipline in computational neuroscience. In the past decade alone, several

studies have suggested that psychiatric disorders affect the spatiotemporal

complexity of both global and region-specific brain activity ( Liu et al., 2013;

Adhikari et al., 2017; Li et al., 2018). However, many of these studies have

not accounted for the distributed nature of cognition in either the global or

regional complexity estimates, which may lead to erroneous interpretations of

both global and region-specific entropy estimates. To alleviate this concern,

we propose a novel method for estimating complexity. This method relies

upon projecting dynamic functional connectivity into a low-dimensional

space which captures the distributed nature of brain activity. Dimension-

specific entropy may be estimated within this space, which in turn allows

for a rapid estimate of global signal complexity. Testing this method on a

recently acquired obsessive-compulsive disorder dataset reveals substantial

increases in the complexity of both global and dimension-specific activity

versus healthy controls, suggesting that obsessive-compulsive patients may

experience increased disorder in cognition. To probe the potential causes

of this alteration, we estimate subject-level effective connectivity via a Hopf

oscillator-based model dynamic model, the results of which suggest that
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obsessive-compulsive patients may experience abnormally high connectivity

across a broad network in the cortex. These findings are broadly in line with

results from previous studies, suggesting that this method is both robust and

sensitive to group-level complexity alterations.

KEYWORDS

LEiDA, Hopf bifurcation, whole-brain model, obsessive-compulsive disorder,
independent component analysis, eigendecomposition, Shannon entropy, network-
based statistic

Introduction

Revolution has rocked the field of neuroimaging for the past
two decades. Technological development has led to previously
unattainable combinations of spatial and temporal resolution,
even as the discovery of organized resting state activity (Biswal
et al., 1996, 1997a,b, 1998; Biswal, 2012) has opened an entire
new area of study. These developments have complemented one
another in many lines of study, but perhaps the most notable
is in the study of psychiatric disorders, where ethical concerns
can make task-based or symptom provocation studies difficult
(DuVal, 2004). The ability to study functional connectivity
dynamics without the practical or ethical complications of
symptom provocation has allowed psychiatric data collection in
enormous quantity and quality. Indeed, so much data is now
available that analysis has surpassed collection as the biggest
challenge in neuroscience (Burns et al., 2013; Furcila et al., 2019).

Increasingly, neuroscientists have turned to mathematics
and computational tools to interpret this data. The nature of
neural data and the mixed backgrounds of many neuroscientists
have led to the use of tools from a wide variety of mathematical
fields, including statistics (Friston et al., 2006), econometrics
(Friston, 2011), network analysis (Bullmore and Sporns, 2009),
statistical physics (Deco et al., 2008), information theory
(Pincus, 1991; Richman and Moorman, 2000), and dynamical
systems (Rolls et al., 2008). The use of such tools has led to
dramatic conceptual advances in the study of brain function,
such as the use of network analysis to quantify structure in
brain activity (Meunier et al., 2009; Shen et al., 2010) and the
discovery that cognition is a distributed, rather than localized,
phenomenon (Hillebrand et al., 2016; Atasoy et al., 2018).
However, to paraphrase Dr. John Archibald Wheeler, as our
island of knowledge grows, so too does the shoreline which
surrounds it. The advances of the past two decades have revealed
as many questions as answers.

One longstanding question in neuroscience and
neuropsychiatry is how to quantify the complexity of the
brain’s functional dynamics. While microarray studies of
functional complexity are not new (Paninski, 2003; Pereda et al.,
2005; Quian Quiroga and Panzeri, 2009), the whole-brain level

presents two serious problems. First, even coarse neuroimaging
parcellations have more than N = 60 regions of interest (ROIs)
(Hagmann et al., 2008), and connectivity matrices have at
least N(N−1)

2 elements (assuming symmetry and neglecting the
main diagonal). The curse of dimensionality makes meaningful
results difficult to find in such a high-dimensional space.
Second, these regions are not generally statistically independent
in time. Indeed, functional connectivity analysis relies on such
interregional dependence. While these dependencies have
revealed much about brain function, they also invalidate the
most natural measure of functional complexity—namely the
Shannon joint entropy (Shannon, 1949)—as its calculation
requires statistical independence of the constituent signals.
Several authors have attempted to compare the functional
complexity of groups and subjects by other means (Ostwald and
Bagshaw, 2011; Liu et al., 2013; McIntosh et al., 2014; Grieder
et al., 2018; Zheng et al., 2020; Xin et al., 2021), but they may
overlook interregional statistical dependencies and thus risk
erroneous estimates of region-specific complexity. A rigorous
means of quantifying the functional complexity alterations
which characterize psychiatric disorders remains elusive.

In this paper, we propose a novel analysis pipeline aimed
at solving these problems. We begin by adapting the Leading
Eigenvector Dynamics Analysis (LEiDA) framework (Cabral
et al., 2017; Figueroa et al., 2019; Lord et al., 2019) to
identify a low-dimensional space which captures the temporal
dynamics and complexity of functional connectivity. This
requires two important innovations to the LEiDA framework.
First, we develop a data-based method to estimate the state
space dimensionality a priori. Previous studies have treated
the number of dimensions as a free parameter and relied on
post facto comparisons to determine an appropriate threshold
(Cabral et al., 2017; Gu et al., 2018; Shappell et al., 2019; Vergara
et al., 2020). While these methods have proven effective, they
require leaving the number of groups as a free parameter. This
requires multiple runs of a clustering algorithm to determine
which setting is most effective. Such runs are computationally
expensive, adding both time and cost to the analysis. Further,
such trial-and-error approaches offer no guarantee of selecting
the true number of meaningful groups. Thus, this development
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may improve both the precision and the efficiency of future
analyses.

The use of independent component analysis represents
the second major innovation to the LEiDA pipeline. Previous
LEiDA analyses have used a k-means clustering algorithm
to isolate connectivity state centroids and assign state labels
to each time point. While this allows a characterization
of state transition mechanics (Cabral et al., 2017; Lord
et al., 2019; Vohryzek et al., 2020), k-means clustering
suffers from two serious shortcomings which render it
unsuitable for our purposes. First, k-means clusters generally
display temporal dependencies, which make the calculation
of statistical complexity extremely complex. Independent
component analysis’ minimization of such dependencies
(Calhoun et al., 2013) drastically simplifies these calculations.
Second, most (although not all) k-means clustering algorithms
assign only a single state to each time point. This enforces a
binary, on-off image of state activity which discards much of the
signal’s complexity—entirely incompatible with an algorithm
designed to measure that complexity.

To alleviate these concerns, we replace the k-means
clustering algorithm of LEiDA with independent component
analysis (ICA) (Hyvärinen and Oja, 2000). ICA has been shown
to maximize the temporal independence of its components
(Calhoun et al., 2013) and so avoids dependencies between
components. In addition, ICA does not assign a single active
state to each time point, but instead estimates the activity of
each state across the entire dataset. This provides a far more
detailed view of how functional activity evolves in the space
which these independent components define. A similar method
has been proven highly effective in the context of neural spike
trains (Lopes-dos-Santos et al., 2013).

These two innovations produce a space with the minimum
number of independent dimensions necessary to capture
meaningful patterns. Such a space makes calculating and
comparing temporal complexity (as measured by the Shannon
entropy) of each subject simple. Given the critical nature of
ICA, we have named our analysis pipeline LEICA (Leading
Eigenvector Independent Component Analysis) to differentiate
it from the LEiDA framework on which it is based.

We elected to test this pipeline on a dataset (Moreira
et al., 2017) consisting of obsessive-compulsive disorder (OCD)
patients and number of age-, gender-, and education-matched
controls (NOCD = 40, Ncontrol = 39). The wide prevalence
and severe effects of OCD factored into this choice of
dataset; with some 2.1% of the population affected each
year (DuPont et al., 1995), it is a widespread, yet poorly
understood disorder that causes its victims great distress.
Obsessive thoughts and compulsive behaviors often hinder
victims’ ability to concentrate, with predictable effects on
learning and productivity (Piacentini et al., 2003; Weidle et al.,
2014). These factors contribute to a high societal cost of illness
(DuPont et al., 1995; Lenhard et al., 2021) and reduced quality of
life for patients. Despite its prevalence, the disorder’s functional

dynamics remain poorly understood; in particular, we have
been unable to find any attempts to examine the functional
complexity of OCD patients. In this study, we demonstrate that
the obsessive-compulsive group displays elevated joint entropies
compared to healthy controls. Indeed, not only can we identify
which group has higher joint entropy, but also along which
dimension the entropy changes.

Finally, in order to inform hypotheses on possible causes
of this altered complexity, we implemented a coupled Hopf
oscillator network model (Kuznetsov, 1998; Freyer et al.,
2011, 2012; Deco et al., 2017b). The model estimates subject-
level connectivity by fitting observed entropies. Notably, this
requires the model to be trained in component space rather
than the parcellation space, as the joint entropy can only be
reliably calculated in this low-dimensional space. The trained
model suggests that patients express enhanced connectivity
in a brain-wide network, while having reduced connectivity
in several small networks. It must be emphasized that link-
level model results should be considered a hypothesis rather
than a conclusion, as the high dimensionality of the model
space makes drawing such small-scale conclusions premature.
Nonetheless, the finding of general cortical hyperconnectivity
coupled with targeted hypoconnectivity is consistent, and link-
level results provide targets for future research. Overall, model
results suggest that the LEICA method can extract alterations
invisible in other spaces.

Materials and methods

Participants

This paper uses a dataset from a previous study at
the Universidad do Minho, Portugal (Moreira et al., 2017).
A detailed description may be found in that paper, but a
summary is included here for completeness.

Eighty right-handed subjects (40 patients with OCD, 40
controls) participated in this study. Recruitment ensured that
controls matched patients in age, sex, education, and ethnic
origin. Both patients and controls were screened to remove
subjects with comorbid mental health, neurological or major
medical disorders (except nicotine use or dependence). Patients
were all confirmed to have been using stable doses of medication
for three months prior to the study. Specifically, 72.2%
used selective serotonin reuptake inhibitors (SSRIs), 11.1%
tricyclic antidepressants (TCA), and 16.7% a combination of
these medications.

Image acquisition occurred in a 1.5 T Siemens Magnetom
Avanto MRI scanner (Siemens, Erlangen, Germany) with
a standard 12-channel receiver coil. Images were visually
examined for artifacts and the functional data preprocessed
using FSL. Slice-timing correction used the first slice as
a reference, a rigid-body spatial transformation aligned the
volumes of each subject with the mean volume, and motion
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scrubbing identified time points contaminated by significant
motion. Participants with more than 20 such time points
were removed from analysis. Images were then non-linearly
normalized to MNI standard space and linear regression used
to remove motion-related variance and signals from white
matter and cerebrospinal fluid. Acquisitions were filtered with
a Gaussian spatial smoothing kernel (8 mm FWHM) and a
temporal band-pass filter (0.01–0.08 Hz). This frequency band
has demonstrated greater reliability and functional relevance
in fMRI compared to others (Biswal et al., 1995; Achard
et al., 2006; Buckner et al., 2009; Glerean et al., 2012). This
low frequency band has the additional advantage of averaging
out physiological noise and hemodynamic response functions,
as these signals have frequencies above 0.08 Hz and thus
fall outside the passband of this filter. Finally, following the
preprocessing, Moreira et al. (2017) extracted the mean BOLD
time series of the 116 cortical, subcortical, and cerebellar
regions of the Anatomical Automatic Labeling atlas (Tzourio-
Mazoyer et al., 2002). As our study focuses on cortical and
subcortical regions, the 26 cerebellar regions of the Anatomical
Automatic Labeling (AAL) atlas were removed. A complete
and ordered list of regions in this study may be viewed in
Table 1.

Functional connectivity

Dynamic functional connectivity
This study uses Coherence Connectivity Dynamics (Deco

et al., 2017a) to compute the dynamic functional connectivity
(dFC) (Figure 1A). The remaining 90 cortical and subcortical
time series were demeaned, detrended, and underwent a Hilbert
transform to produce a phase time series θ, such that θ(n,t)
represents the phase of region n at time t (Figure 1C). Upon
computing θ, the phase coherence between regions m and n at
time t

(
dFC (m, n, t)

)
is computed using Equation 1:

dFC (m,n, t) = cos (θ (m, t)−θ (n, t))

where cos is the cosine function. Thus, dFC (m, n, t) = 1
if the regions m and n are in phase at time t
(θ (m, t)−θ (n, t) = 0,±2π), and dFC (m, n, t) = 0 if the
regions are perfectly out of phase at time t
(θ (m, t)−θ (n, t) = ±π). This produces a dFC array with
dimensions N×N× T, where N is the number of ROIs and T
represents the number of time points. Since cos (θ) is an even
function, each N×N matrix dFC (t) is symmetric.

Leading eigenvector analysis: Theoretical basis
The fundamental goal of the LEiDA process is to project the

dominant spatial connectivity pattern dynamics into a lower-
dimensional space for ease of analysis. Identifying this dominant
pattern at each time point is greatly simplified by the symmetry
and realness of individual dFC matrices. As symmetric and real

TABLE 1 Table displays the 90 cortical and subcortical regions of the
standard 116-region AAL parcellation (Tzourio-Mazoyer et al., 2002) in
symmetrical, left-first order.

R Precentral Gyrus

R Superior Frontal Gyrus, Dorsolateral

R Superior Frontal Gyrus, Orbital Part

R Middle Frontal Gyrus

R Middle Frontal Gyrus, Orbital Part

R Inferior Frontal Gyrus, Opercular Part

R Inferior Frontal Gyrus, Triangular Part

R Inferior Frontal Gyrus, Orbital Part

R Rolandic Operculum

R Supplementary Motor Area

R Olfactory Cortex

R Superior Frontal Gyrus, Medial

R Superior Frontal Gyrus, Medial Orbital

R Gyrus Rectus

R Insula

R Anterior Cingulate and Paracingulate Gyri

R Median Cingulate and Paracingulate Gyri

R Posterior Cingulate Gyrus

R Hippocampus

R Parahippocampal Gyrus

R Amygdala

R Calcarine Fissure

R Cuneus

R Lingual Gyrus

R Superior Occipital Gyrus

R Middle Occipital Gyrus

R Inferior Occipital Gyrus

R Fusiform Gyrus

R Postcentral Gyrus

R Superior Parietal Gyrus

R Inferior Parietal Gyri

R Supramarginal Gyrus

R Angular Gyrus

R Precuneus

R Paracentral Lobule

R Caudate Nucleus

R Lenticular Nucleus, Putamen

R Lenticular Nucleus, Pallidum

R Thalamus

R Heschl Gyrus

R Superior Temporal Gyrus

R Temporal Pole: Superior Temporal Gyrus

R Middle Temporal Gyrus

R Temporal Pole: Middle Temporal Gyrus

R Inferior Temporal Gyrus

L Inferior Temporal Gyrus

L Temporal Pole: Middle Temporal Gyrus

L Middle Temporal Gyrus

L Temporal Pole: Superior Temporal Gyrus

(Continued)
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TABLE 1 (Continued)

L Superior Temporal Gyrus

L Heschl Gyrus

L Thalamus

L Lenticular Nucleus, Pallidum

L Lenticular Nucleus, Putamen

L Caudate Nucleus

L Paracentral Lobule

L Precuneus

L Angular Gyrus

L Supramarginal Gyrus

L Inferior Parietal Gyri

L Superior Parietal Gyrus

L Postcentral Gyrus

L Fusiform Gyrus

L Inferior Occipital Gyrus

L Middle Occipital Gyrus

L Superior Occipital Gyrus

L Lingual Gyrus

L Cuneus

L Calcarine Fissure

L Amygdala

L Parahippocampal Gyrus

L Hippocampus

L Posterior Cingulate Gyrus

L Median Cingulate and Paracingulate Gyri

L Anterior Cingulate and Paracingulate Gyri

L Insula

L Gyrus Rectus

L Superior Frontal Gyrus, Medial Orbital

L Superior Frontal Gyrus, Medial

L Olfactory Cortex

L Supplementary Motor Area

L Rolandic Operculum

L Inferior Frontal Gyrus, Orbital Part

L Inferior Frontal Gyrus, Triangular Part

L Inferior Frontal Gyrus, Opercular Part

L Middle Frontal Gyrus, Orbital Part

L Middle Frontal Gyrus

L Superior Frontal Gyrus, Orbital Part

L Superior Frontal Gyrus, Dorsolateral

L Precentral Gyrus

Unless otherwise noted, all figures in this study sort brain regions identically to this table.
Due to space constraints, figures do not generally contain all 90 regional labels.

matrices are always diagonalizable, the dFC at any time point t
can be decomposed into

dFC (t) = VDV−1

with V being the eigenvectors of dFC (t) and D the diagonal
matrix of eigenvalues. As the eigenvectors of a symmetric matrix

must be orthogonal, V−1
= VT ; thus,

dFC (t) = VDVT

which may be equivalently written as

dFC (t) = VDVT
=

∑
n

λnvnvT
n

where vn is the nth eigenvector and λn the nth eigenvalue of
dFC (t). At each time point, the instantaneous FC matrix may be
decomposed into a weighted sum of eigenvector outer products
vnvT

n weighted according to the respective eigenvalue λn. Thus,
finding the dominant spatial pattern at any time point simply
involves finding the eigenvector with the largest eigenvalue
at that time point. In addition, one may easily compute the
proportion of variance which this pattern captures simply by
dividing the leading eigenvalue by the sum of all eigenvalues:

ρ =
λl∑
n λn

Previous work demonstrates that the leading eigenvector
consistently represents more than 50% of data variance (Cabral
et al., 2017; Lord et al., 2019), a finding confirmed in the
present study. Further, experiments with the use of additional
eigenvectors demonstrated no improvement in performance or
clinical interpretability. The authors thus believe that a single
eigenvector is sufficient to represent functional connectivity
dynamics.

This compression has three distinct advantages for further
signal analysis. First, by compressing each N×N dFC (t)
matrix to an N× 1 vector pl, this method reduces sample
dimensionality from N(N−1)

2 to N. Second, the primary
connectivity pattern should contain virtually no noise, as noise
components generally appear in trailing eigenvectors. Finally,
previous work in spectral community detection (Newman, 2006;
Leicht and Newman, 2008) has demonstrated that the leading
eigenvector pl (t) can separate brain regions into communities
based on the sign of each region r ∈ pl (t), with the magnitude
of r indicating that assignment’s “strength”. Thus, transforming
the dFC (t) matrix to pl (t) converts interregional phase-locking
values into regional community assignment values. Put another
way, the leading eigenvector of an FC matrix naturally separates
network nodes into two mutually opposing communities.

Leading eigenvector analysis: Application
We adapt the LEiDA (Cabral et al., 2017; Figueroa et al.,

2019; Lord et al., 2019) by examining only the leading
eigenvector vl (t) of each N×N dFC (t) matrix. At each time
point, the leading eigenvector of the N×N dFC (t) is extracted
(Figure 1D); once the leading eigenvectors of all time points
have been extracted, they are concatenated horizontally to form
a space-time matrix E (Figure 1E). Each row r of E represents
one brain region r, and each column t contains the leading
eigenvector vl (t) for time t. The laws of linear algebra render
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FIGURE 1

To compute time-resolved functional connectivity (dynamic
functional connectivity, or dFC), each regional time series (green
trace) is converted into an analytic signal using the Hilbert
transform. Euler’s formula converts this analytic signal into a

(Continued)

FIGURE 1 (Continued)

time-resolved phase signal (A) with both real and imaginary parts
(dashed black traces). For each time point, the phase signals of
all regions are sampled (B) and the cosine distance between
each pair of regions is computed to produce an instantaneous
functional connectivity matrix (C). The leading eigenvector V1 of
this functional connectivity matrix is then isolated (D). Repeating
this process for all time points and subjects across the dataset
results in a 2-D array E of leading eigenvectors (E). Running an
eigendecomposition on E‘s autocorrelation matrix and counting
the number of eigenvalues greater than the upper bound of the
Marčenko–Pastur distribution reveals the number of dimensions
necessary to describe the nonrandom activity in panel (E).

vl (t) and −vl (t) equivalent, so we follow the convention that
most elements in each eigenvector should be negative (Figueroa
et al., 2019).

Component detection
To find the communities that recur above chance, we must

determine a significance threshold for regional co-activation.
Although surrogate methods, e.g., a permutation test, can
establish such a threshold, they are slow and computationally
intensive. We propose a far cheaper and more elegant method
based on autocorrelation matrix eigenvalues (Peyrache et al.,
2009, 2010). It has been established for several decades that if an
m×n matrix M has statistically independent rows (as would be
expected for uncoupled noisy oscillators), the eigenvalues of its
autocorrelation matrix follow the Marčenko–Pastur distribution
(Marčenko and Pastur, 1967). Crucially, this distribution has
analytically tractable limits

λmax
min = σ2

(
1±

√
1
q

)2

where σ is the standard deviation of M and q≡ n
m≥1. Thus,

if communities do not recur over time, the eigenvalues of
E′s correlation matrix should lie within the limits imposed
by λmax

min . Conversely, should any communities of E recur at
a rate significantly above chance, a corresponding number of
eigenvalues of the correlation matrix of E should exceed the
upper limit λmax. This method has been validated in the spike
activity context (Lopes-dos-Santos et al., 2011, 2013) and in
a previously published fMRI study (Deco et al., 2019). In the
present dataset, it detects 12 components (Figure 4A).

Component extraction
Upon finding the total number of recurrent communities

with the Marčenko–Pastur distribution, we utilize the fastICA
algorithm (Laubach et al., 1999; Hyvärinen and Oja, 2000) to
extract these communities and their activity time courses from
the matrix E. Since the fastICA algorithm requires the user to
manually specify the number of independent components, the
Marčenko–Pastur distribution threshold is crucial to providing
an objective, data-driven metric for the number of components.
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After computing E′s covariance matrix, 12 eigenvalues were
found to surpass the Marčenko–Pastur upper bound. ICA was
then run to extract these 12 distinct and temporally independent
components (Figure 4A). As fastICA can only extract the
magnitude of an independent component, not its sign, the
spatial map’s positive and negative signs should be understood
to represent relative orientations rather than absolute weights.

Entropy analysis
Independent component analysis was selected as a clustering

algorithm because, by definition, it minimizes the statistical
dependencies between components. This should completely—or
at least almost completely—prevent the temporal dependencies
between components. If this is the case, then the joint entropy
over all components is simply the sum of the individual
components’ Shannon entropies (Cover and Thomas, 2005):

H (C1, ..., CN) =

N∑
j=1

H
(
Cj
)

It is possible to compute the joint entropy of each subject by
computing the Shannon entropy of each component’s activation
time series and summing them. This allows the construction
of a distribution of subject joint entropies, which can then be
analyzed for group-level differences.

Group comparisons
We search for group-level differences using a difference-of-

means permutation test (Krol, 2021) with 10,000 permutations,
and provide multiple-comparison correction via the false
discovery rate (Benjamini and Hochberg, 1995). The Bonferroni
(1935) and Sidak (1967) thresholds verify these results.

Effective connectivity

Brain network model
The brain network consists of the 90 cortical and subcortical

nodes (regions) of the AAL parcellation, coupled according
to the standard 90-region AAL connectivity template C.
Internal node dynamics are modeled as the normal form of a
supercritical Hopf oscillator (Deco et al., 2017b). This produces

dxj

dt
= xj

(
αj−x2

j−y2
j

)
−ωjyj+G

∑
i

Cij
(
xi−xj

)
βηj (t)

dyj

dt
= yj

(
αj−x2

j−y2
j

)
−ωjxj+G

∑
i

Cij
(
yi−yj

)
βηj (t)

where Cij is the connection strength from j to i and G represents
global coupling efficiency. ωj is estimated directly from the
BOLD time series by extracting the dominant frequency of node
j within the band of 0.01 to 0.08 Hz. α and G are set to the initial
values of α = 0 and G = 0.2, in line with previous work (Deco
and Kringelbach, 2016; Deco et al., 2017b).

Particle swarm optimization
The connection strengths Cij are optimized using the

population swarm algorithm (Kennedy and Eberhart, 1995;
Erik et al., 2010; Mezura-Montes et al., 2011). This algorithm
simulates a population of individual particles moving in random
directions within an N-dimensional space, where N is the
number of free parameters. At each optimization step, each
particle can continue exploring the space, move to its optimal
prior position, or move to the global optimal prior position. The
model is then tested using the new positions of each particle as
parameters, and the individual and global optima are updated as
necessary.

Cost function
The particle swarm algorithm seeks to minimize

the difference between simulated and empirical data
distributions. We quantify this difference as the
Euclidean distance between entropy distributions:

d (S, E)

√√√√ N∑
j=1

(
S
(
j
)
− E

(
j
))2

After simulating a BOLD signal, this simulated signal is
separated into components using the mixing matrix W, and
the Shannon entropy of each component is computed. The
Euclidean distance between the simulated entropy distribution
and its empirical counterpart is used as the optimization cost
function, which guides the particle swarm algorithm’s estimates
for optimal model parameters. Pre-fit and post-fit cost function
distributions are shown in Figure 2.

Network analysis

Our study’s goal is to find network-level connectivity
changes in obsessive compulsive disorder patients. To this end,
we apply two group-level analyses to the connectivity estimates
obtained in the previous section.

Network-based statistic
The network-based statistic (NBS) is a component detection

approach (Zalesky et al., 2010) with substantially greater power
than traditional family-wise error (FWE) correction. Unlike
traditional FWE correction, the NBS tests the significance of an
effect’s size rather than its magnitude. This drastically reduces
the multiple-comparison correction and allows the estimation
of an empirical null distribution via a permutation test.

Upon estimating the effective connectivity of each subject,
we run a group-level comparison with the NBS to search
for significant connectivity changes in obsessive compulsive
disorder. As control parameters, we used a significance
threshold of t = 4.5 and a standard case-comparison contrast.
Additional significance thresholds of t = 4, 5, and 5.5 were
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FIGURE 2

The particle swarm fitting algorithm, like most optimization algorithms, minimizes a cost function to determine how well the model predicts
real data. We chose the Euclidean distance between empirical and simulated entropy vectors as a cost function due to its conceptual simplicity
and confirmed its superiority versus absolute maximum distance. Comparisons of component-level entropy distributions pre-fit (A) and post-fit
(C) demonstrate that this method does improve the model for controls. Comparisons of pre-fit (B) and post-fit (D) joint entropy confirm this.
While optimization brings the mean entropies of patient models closer to those of empirical subjects, its performance is quite inconsistent in
this group. This is reflected in the extremely high variance in post-optimization dimensional and joint entropies (C,D).

also tested, the results of which results may be viewed in the
Supplementary Figures.

Degree strength analysis
In addition to the NBS, we run a group-level comparison

of the node strengths. Specifically, we test for differences
in strength between groups for each node in the effective
connectivity network. The directed nature of effective

connectivity required that both in- and out-strength
be examined.

Comparison analyses

To compare LEICA’s efficacy to more familiar methods,
we repeated the above analyses with two other versions of
the dynamic functional connectivity array. The first such
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comparison simply consists of the vectorized upper triangle
of each dFC (t), concatenated to form a space-time array(

N(N−1)
2 ×T

)
. The second comparison consists of the spatial

average of each dFC (t), likewise concatenated to form a space-
time array (N×T). Pre- and post-eigendecomposition steps are
identical for all inputs.

Results

Functional analysis

Dynamic functional connectivity
Both control and patient time series are parcellated

according to the AAL atlas (Tzourio-Mazoyer et al., 2002). Each
subject’s dynamic functional connectivity is computed using
Coherence Connectivity Dynamics (Deco et al., 2017a). Analysis
is restricted to the cortical and subcortical regions; as such,
the 26 cerebellar regions of the AAL atlas are discarded. The
resultant three-dimensional array must be converted into two
dimensions for further analysis. Three methods are tested. In
the first method, we extract the leading eigenvector (90×1)

of each time point’s connectivity matrix. The eigenvectors of
all time point are then concatenated to form a subject-level
90×175 eigenvector time series E. In the second method, each
time point’s connectivity matrix is averaged horizontally, and
the resulting average coherence vectors (90×1) are concatenated
to form a subject-level 90×175 mean coherence time series
M. Finally, each time point’s connectivity matrix is vectorized
to form a 4005×1 connectivity vector, and these vectors are

again concatenated to form a subject-level 4005×175 dFC
time series (as each connectivity matrix is symmetric and
the main diagonal neglected, only the upper triangle is
vectorized).

Functional dimensions
To determine the number of dimensions necessary, all

subjects’ time series are concatenated and the autocorrelation
matrix of this global time series array calculated. The number
of significant dimensions is then the number of eigenvalues in
the autocorrelation matrix which exceed the upper bound of
the Marčenko–Pastur distribution (Marčenko and Pastur, 1967).
Applying this method to the eigenvector time series E identifies
12 independent dimensions across the resting state of all
subjects (Figure 4A). ICA can then convert the 90-dimensional
eigenvector time series E into its 12-dimensional representation
TE (Lopes-dos-Santos et al., 2011, 2013) (Figure 4B). Repeating
this process for the vectorized dFC produces the 347-
dimensional representation TF , and the spatially averaged M
produces the 11-dimensional representation TM .

Joint entropy
Since each time series in the low-dimensional space is

statistically independent, each dimension’s Shannon entropy
may be calculated (Singh et al., 2003; Delattre and Fournier,
2017) independent of the others’. Computing the subject-
level Shannon entropy of each substate’s time series results
in a D×S array of entropy values for patients and controls,
where S is the number of dimensions and S the number of
subjects per group. This format means that computing the
subject-level joint entropy simply requires summing along

FIGURE 3

Analysis of eigenvector-based component time series (TE) shows that obsessive-compulsive patients display substantially higher joint entropy
than age-, gender-, and education-matched controls. On average, controls display a joint entropy of 14.5695±1.2473, while patients display a
mean joint entropy of 15.2214±1.1535. Neither spatial average-based components nor vectorized dFC-based components display group-level
changes.
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FIGURE 4

Twelve of the eigenvalues of E’s autocorrelation matrix exceed the upper limit of the Marčenko-Pastur distribution, suggesting that 12
dimensions are necessary to capture E’s activity. Independent component analysis reveals how these dimensions map to brain regions (A). Map
weights have been converted into z-scores for this figure and regions with a weight z < 1.3 are depicted in faded color. Plotting these mapping
vectors in the brain and as connectivity (B) reveals that the trailing dimensions (9, 10, 11, and 12) display notable homotopic symmetry, while
leading dimensions are strongly asymmetric. Finally, group-level entropy analysis shows that the first dimension displays significantly higher
entropy in obsessive-compulsive patients than in controls (C). Note that dimensions are ordered according to average activity level across the
dataset.

this array’s first dimension. This produces two 1×S joint
entropy distributions, which can be compared with any standard
statistical test. Applying this process to eigenvector-based
entropy scores again shows elevated entropy in patients relative

to controls (p = 0.0119, Hodges’ G = –0.5833) (Figure 3).
However, the joint entropy distributions of TF and of TM

display no significant group-level differences. Eigenvector-based
analysis thus appears to preserve the information of the full

Frontiers in Human Neuroscience 10 frontiersin.org

82

https://doi.org/10.3389/fnhum.2022.958706
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-958706 September 23, 2022 Time: 8:15 # 11

Blair et al. 10.3389/fnhum.2022.958706

signal while reducing dimensionality almost 30-fold—–a crucial
consideration, as the curse of dimensionality states that patterns
become exponentially harder to detect as dimensionality
increases.

Dimension-specific entropy
To determine whether alterations in entropy concentrate

in specific dimensions, we started with the same D×S patient
and control arrays of entropy values as the previous section.
Each row of these arrays was compared and corrected
with the false discovery rate. As above, this analysis was
run for all three compression methods: TE (eigenvectors),
TF (uuncompressed), and TM (spatial average). Only the
eigenvector-based representation (TE) detects a significant
alteration along any dimension, specifically the first (ordered
according to mean activity). This dimension consists of paired
anticorrelated communities and both display significantly
higher entropy in patients than in age-, gender-, and education-
matched controls (Figure 4C).

In component space, we find that one LEICA component
displays higher entropy in patients than in controls
(1.1818±0.1401 , 1.3075±0.2276, p = 0.0020, Hedges’
g − 0.6634

)
. This substate consists of two opposing

communities, with the sign of each brain region denoting
to which community that region belongs and the magnitude of
that region’s weight denoting the strength of its association with
that community (see Table 2 for a list of implicated regions).
We opted to concentrate on regions with absolute z-scores
above 1.3 (|z|>1.3) (Figure 4A). Under these constraints,
the first community contains the left precentral gyrus, left
and right frontal superior cortex (orbital), left middle frontal
gyrus (orbital), the left inferior frontal gyrus (opercular), left
cuneus, right olfactory bulb, and right inferior parietal gyrus. Its
opposite number includes the right lingual gyrus, right occipital
medial gyrus, right putamen, right pallidum, left amygdala,
right middle temporal gyrus, and right temporal pole of the

TABLE 2 Table displays the regions of the first dimension with
absolute z-scores exceeding 1.3 ( |z| >1.3).

Component 1 (z > 1.3)

Positive Negative

L Precentral Gyrus L Amygdala

L Superior Frontal Gyrus, Orbital Part R Temporal Pole: Middle
Temporal Gyrus

L Middle Frontal Gyrus, Orbital Part R Middle Temporal Gyrus

L Inferior Frontal Gyrus, Opercular Part R Lenticular Nucleus, Pallidum

L Cuneus R Lenticular Nucleus, Putamen

R Inferior Parietal Gyri R Middle Occipital Gyrus

R Olfactory Cortex R Lingual Gyrus

R Superior Frontal Gyrus, Orbital Part

The sign of each regional weight indicates to which of two communities it belongs,
with the magnitude of its weight indicating its centrality to that community. Regions
with absolute z-scores exceeding 1.3 (|z|>1.3) can be considered core nodes in a more
distributed network which covers the entirety of the brain space.

middle temporal gyrus (Figure 4). This result survives both
the false discovery rate and the Sidak multiple comparison
correction.

Connectivity model

Network-based statistic
In order to hypothesize on causes for these shifts in

dynamical richness, we fit a networked Hopf model (Deco
et al., 2017b) to each subject’s entropy profile. After obtaining
subject-level effective connectivity profiles from these models,
we applied the network-based statistic (NBS) (Zalesky et al.,
2010) to determine which, if any, connections display significant
group-level alterations. In addition, we examined the in-
strength and out-strength of each node for significant alterations
between groups. Only the eigenvector-based decomposition
produced a generative model which displays significant group-
level alterations in network connectivity; the spatially averaged
and uncompressed decompositions failed to find meaningful
results.

Results from the network-based statistic depend upon the
t-statistic chosen at the thresholding step. Unfortunately, no
data-driven method for determining an optimal threshold has
yet been developed, nor has such a threshold been established
experimentally. As such, it must be treated as a free parameter.
A threshold of 4.5 reveals a single large hyperconnected
component and 11 small hypoconnected components in
the patient population (Figure 5). These hypoconnected
components consist of

1. Left superior frontal gyrus (orbital), left superior frontal
gyrus (medial orbital), and left lenticular nucleus
(putamen)

2. Left middle frontal gyrus and left caudate nucleus
3. Left Rolandic operculum, left insula, left supramarginal

gyrus, left superior temporal gyrus, left middle temporal
gyrus, and left temporal pole (middle temporal gyrus)

4. Left middle occipital gyrus, left superior frontal gyrus
(medial), left middle occipital gyrus, left inferior occipital
gyrus, left and right precuneus, left superior parietal gyrus,
and right superior occipital gyrus

5. Left calcarine fissure, left fusiform gyrus, left cuneus,
left and right posterior cingulate gyrus, and left superior
occipital gyrus

6. Right temporal pole (superior temporal gyrus), right
inferior temporal gyrus, and right middle frontal gyrus
(orbital)

7. Right middle temporal gyrus and right inferior frontal
gyrus (orbital)

8. Right supplementary motor area and right paracentral
lobule

9. Right amygdala and right fusiform gyrus
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FIGURE 5

Results from the network-based statistic. A t-statistic threshold of 4.5 returns 12 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. Although only one connected component displays increased strength in patients, this component
includes 87 of the 90 cortical nodes in the AAL parcellation, suggesting that obsessive-compulsive disorder may be characterized by
widespread cortical hyperconnectivity. The 11 control-biased components, by contrast, consist of between one to six links, with larger
components tending to concentrate in small topographical areas. Notably, many regions displaying depressed connectivity in patients are
known to be involved in top-down control and impulse inhibition. OCD may thus be characterized by localized disruptions in top-down
inhibitory activity, which may explain the widespread hyperconnectivity observed in patients.

10. Right inferior frontal gyrus (triangular) and right middle
frontal gyrus

11. Right inferior frontal gyrus (opercular) and right
precentral gyrus

However, it should be emphasized that other settings
of the t-statistic threshold will produce slightly different
results. For example, raising the threshold to t = 5 causes
the hyperconnected network to fragment into a single
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large component and two small ones (see Supplementary
material). Similarly, one could expect that hypoconnected
components would consolidate into fewer, larger networks at
lower thresholds.

Discussion

Summary

The replacement of k-means clustering with ICA and
post hoc goodness-of-fit metrics with data-driven estimates
of dimensionality allowed us to directly quantify and
compare whole-brain functional complexity between groups.
Independent component analysis has, of course, been used in
neuroimaging research for several decades. Thus, one must
ask whether LEICA provides an advantage over independent
component analysis on the unmodified dynamic functional
connectivity array. Of the three low-dimensional spaces
evaluated in this study, only the eigenvector-based space
captured any differences between patient and control groups.
In addition to finding group-level joint entropy alterations,
this eigenvector-based space could isolate the dimensions
responsible for this increase. Training a model in this space
allowed us to capture several connectivity alterations which
are well-supported in the neurophysiological literature. This
substantial improvement in sensitivity suggests that LEICA
will prove a useful tool for future research into functional
complexity and dimensionality.

Phenomenological considerations

Perhaps the greatest advantage of ICA compared to
alternative clustering methods, such as k-means, is the ability
to use metrics which depend on statistical independence. It is
probable that this improved resolution will lend itself to other
information-theoretic metrics such as functional complexity
(Zamora-López et al., 2016) or Granger causality. Such direct
comparisons of activity complexity may lead to a deeper
understanding of the pathophysiological bases of psychiatric
disorders and other neurobehavioral phenomena.

At the phenomenological level, analysis of both leading
eigenvectors and unmodified dFC showed higher average
entropy in patients than controls. This is in contrast to
previous reports of decreased entropy in obsessive-compulsive
patients (Aydin et al., 2015), although reports of adolescents
with OCD have found increased entropy in networks of
cortical and subcortical nodes in the cortico-striatal-thalamo-
cortical (CSTC) circuit (Sen et al., 2020). How this apparent
increase in complexity—which, in information-theoretic terms,
is equivalent to randomness—maps to the well-established
tendency of obsessive-compulsive patients to become “stuck”

in stereotyped, repetitive patterns will be an interesting
topic for future research. It may be that these stereotyped
patterns represent a coping mechanism, intended to reduce the
randomness of brain activity by imposing control of inputs and
responses.

Such a hypothesis receives some support in the fact that
the dimension found to increase patient entropy maps to
two anticorrelated networks which roughly separate prefrontal-
parietal regions vs. subcortical-temporal nodes. Prefrontal
and parietal regions exert a top-down inhibitory control on
striatal and limbic regions, which has been related to emotion
regulation and cognitive control capacities (Ochsner et al.,
2012; Etkin et al., 2015). Alterations in such interregional
interactions have been associated with mood and anxiety
disorders, including OCD (Etkin and Wager, 2007; Picó-Pérez
et al., 2017). Decreased order within this network may disrupt
top-down inhibition and thus affect emotion regulation and
cognitive control, both of which are affected in the context
of CSTC dysfunction in OCD (van den Heuvel et al., 2016).
Stereotyped, repetitive behaviors—i.e. compulsions—may thus
act as a compensatory mechanism by which the brain attempts
to impose order on its surroundings.

Interestingly, the affected dimension also contains several
occipital nodes. Although the occipital cortex has not typically
been considered a core part of neurobiological models of
OCD, previous research has shown that such regions and
their projections to limbic cortices may play an important role
in the induction of increased anxiety levels in patients with
contamination obsessions induced by actual or mental images
(i.e., intrusive thoughts) of dirt (Göttlich et al., 2014; Moreira
et al., 2017). In future research, it may be worth examining
whether the patient’s entropic alterations along this dimension
correlates with anxiety or compulsive behavior, which could be
as measured by e.g. the Hamilton Anxiety Rating Scale (HAM-
A) (Hamilton, 1959) or the Yale-Brown Obsessive-Compulsive
Scale (Y-BOCS) (Goodman et al., 1989).

Mechanistic considerations

Regarding the mechanistic analyses, we observe that the
generative model recovers a broad network of hyperconnected
regions in the patient population. This network includes
most nodes in the 90-region AAL atlas and is evident
up to a to t-statistic threshold of 4.5. OCD may then
be characterized by hyperconnectivity across much of the
cortex and subcortical regions. Such a hypothesis would
contrast OCD with disorders such as schizophrenia or
autism, which appear to be characterized by long-range
hypoconnectivity (Friston et al., 2016; Hull et al., 2017);
however, previous studies have shown cortical hyperexcitability
in patient populations (Cano et al., 2018; Rolls et al., 2020). It
is possible that, in keeping with phenomenological results, the
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hypoconnected components represent regulatory regions whose
underperformance encourages hyperactivity. The pallidum, for
instance, as part of the CSTC circuitry, is the major inhibitory
output from the striatum to the thalamus and the subthalamus,
and an increased inhibitory output the from the external globus
pallidum to the subthalamus may result in the thalamic and
cortical hyperexcitability that has been shown to characterize
patients with OCD (Cano et al., 2018). Alterations in the
Rolandic operculum, on the other hand, have been related to
the impulsive nature of the so-called autogenous obsessions and
compulsions in a subgroup of patients with OCD (Subirà et al.,
2013), as well as with the premonitory urges associated with tic
behaviors and sensory phenomena (Wang et al., 2011) that are
observed in a large proportion of patients with OCD (Rosario
et al., 2009).

Limitations and future steps

Three cautionary notes must be added. First, the LEICA
method is, by necessity, agnostic as to the true orientation
of its communities. Since eigendecomposition and ICA can
determine only the orientation of communities relative to each
other, not relative to the data itself, LEICA cannot determine
which community is “positive” or “negative” in any absolute
sense. This may be established by a parallel analysis observing
which community is more or less active at any given time; such
an analysis is unnecessary for the present purposes.

Second, the Hopf network model should not be considered
predictive at the level of individual links. It has been able
to replicate known phenomena and mechanisms in past
studies (Jobst et al., 2017) and brain-level results, e.g., the
widespread cortical hyperconnectivity in obsessive-compulsive
patients, appear robust. However, the Hopf oscillator remains
an idealized simplification of neural dynamics. To predict
neurobiological mechanisms would require both more detailed
data and a more sophisticated model, e.g., a model incorporating
transmission delays and neuromodulation. Link-level model
results in this paper should thus be considered starting points
for future research rather than forming hard conclusions
themselves.

Finally, while the network-based statistic (NBS) is a well-
established method, its results remain dependent on the choice
of t-statistic threshold employed. This does not affect the power
of the results, only the effect size of the results reported.
Unfortunately, no data-driven method has yet been established
for determining an appropriate threshold. However, studying
which connections survive the different thresholds allows us to
partially quantify the group-level effect size.

In addition to these general concerns, the present model fits
the control group considerably better than the patient group.
It is not immediately clear to the authors why this is the
case, as both groups undergo identical procedures. That the
model returns meaningful results despite this poor performance

suggests that improving the fitting procedure’s performance may
yield entirely novel insights. The question of model optimization
will be of major interest in future studies.

The widespread alterations in cortical connectivity likely
affect activity propagation and organization. While such
alterations were outside the scope of this study, they are of great
interest to the understanding of OCD’s functionality. Leveraging
established network analyses frameworks, such as community
detection or node centrality measures, may provide further
insights into the cortical activity adaptations of OCD, and
potentially in related disorders such as anxiety and depression.

Conclusion

The search for a natural low-dimensional space for the
analysis of functional connectivity dynamics remains an
active area of research. We present a novel method based
on established theory to map functional activity to such a
space. The resulting space ensures interdimensional statistical
independence, which allows the quantification and direct
comparison of information content (randomness) between
groups and subjects. Comparisons with classic independent
component analysis shows that LEICA preserves functional
complexity while increasing sensitivity and power. This
increased power allows LEICA to recover evidence supporting
several extant hypotheses on the causes of obsessive-compulsive
disorder, most notably the importance of top-down control as
exerted by prefrontal and parietal regions on the limbic system.
Training a generative model in this space similarly recovers
known functional characteristics of OCD, e.g., broad cortical
hyperconnectivity, and highlights specific connections as targets
for future studies. Given these results and its novel ability to
directly compare information content, we anticipate that the
LEICA framework and its extensions will become a crucial tool
in the ongoing efforts to quantify and explain the connectivity
substates of the brain in both human and nonhuman studies.
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SUPPLEMENTARY FIGURE 1

To compute time-resolved functional connectivity (dynamic functional
connectivity, or dFC), each bandpass-filtered regional time series is
converted into an analytic signal using the Hilbert transform. Euler’s
formula converts this analytic signal into a time-resolved phase signal
(A). For each time point, the phase signals of all regions are sampled (B)
and the cosine distance between each pair of regions is computed to
produce an instantaneous functional connectivity matrix (C). The
leading eigenvector V1 of this functional connectivity matrix is then
isolated (D). Repeating this process for all time points and subjects
across the dataset results in a 2-D array E of leading eigenvectors (E).
Running an eigendecomposition on E’s autocorrelation matrix and
counting the number of eigenvalues greater than the upper bound of
the Marčenko-Pastur distribution reveals the number of dimensions
necessary to describe the nonrandom activity in E. This figure displays
all regions with a z-score higher than z = 1 in full color.

SUPPLEMENTARY FIGURE 2

Results from the network-based statistic. A t-statistic threshold of 4.0
returns six connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. Although only one
connected component displays increased strength in patients, this
component includes all 90 of the cortical nodes in the AAL parcellation,
suggesting that obsessive-compulsive disorder may be characterized by
widespread cortical hyperconnectivity. Control-biased components, by
contrast, consist of between three to nine links, with larger components
tending to concentrate in small topographical areas. Notably, many
regions displaying depressed connectivity in patients are known to be
involved in top-down control and impulse inhibition. OCD may thus be
characterized by localized disruptions in top-down inhibitory activity,
which may explain the widespread hyperconnectivity
observed in patients.

SUPPLEMENTARY FIGURE 3

Results from the network-based statistic. A t-statistic threshold of 5.0
returns 11 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. At this threshold, the
connected component displaying increased strength in patients breaks
into three sections, with the largest containing 78 of the 90 nodes in the
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AAL parcellation. This is considerably larger than the other two
control-biased components, which have one and two links respectively.
The eight surviving control-biased components consist of
up to three links.

SUPPLEMENTARY FIGURE 4

Results from the network-based statistic. A t-statistic threshold of 5.5
returns 16 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. At this threshold, the
connected component displaying increased strength in patients breaks
into 10 sections, with the largest containing 33 of the 90 regions of the
AAL. The six control-biased components consist of up to two links. The
fall in number of control-based components with increasing

t-threshold further indicates that OCD is characterized by excessive
connectivity across the cortex.

SUPPLEMENTARY FIGURE 5

Results from the network-based statistic. A t-statistic threshold of 6.0
returns 17 connected components (C), visualized together as a
connectivity matrix (A) and in cortical space (B). Cyan links indicate that
the connection is stronger in OCD patients than in healthy controls,
while magenta links indicate the converse. At this threshold, the
connected component displaying increased strength in patients breaks
into 14 sections. Most of these consist of only one or two links. The two
largest consist of a 14-region and nine-region chain, respectively. Only
three control-biased components survive, neither of which exceeds a
single link in size. It thus appears that OCD is characterized by excessive
connectivity in patients.
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Marčenko, V. A., and Pastur, L. A. (1967). Distribution of eigenvalues for
some sets of random matrices. Mathemat. USSR Sbornik 1, 457–483. doi: 10.1070/
SM1967v001n04ABEH001994

McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu, A., and
Protzner, A. B. (2014). Spatiotemporal dependency of age-related changes in brain
signal variability. Cerebral Cortex 24, 1806–1817. doi: 10.1093/cercor/bht030

Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. D., and Bullmore, E. T.
(2009). Hierarchical modularity in human brain functional networks. Front. Hum.
Neurosci. 3:1–12. doi: 10.3389/neuro.11.037

Mezura-Montes, E., Coello, C., Mezura, E., and Coello, C. (2011). Constraint-
handling in nature-inspired numerical optimization: Past, present and future.
Swarm Evol. Comput. 1, 173–194. doi: 10.1016/j.swevo.2011.10.001

Moreira, P., Marques, P., Soriano-Mas, C., Magalhães, R., Sousa, N., Soares,
J., et al. (2017). The neural correlates of obsessive-compulsive disorder: A
multimodal perspective. Trans. Psychiatry 7:e1224. doi: 10.1038/tp.2017.189

Newman, M. E. J. (2006). Modularity and community structure in networks.
Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582. doi: 10.1073/pnas.0601602103

Ochsner, K. N., Silvers, J. A., and Buhle, J. T. (2012). Functional imaging studies
of emotion regulation: A synthetic review and evolving model of the cognitive
control of emotion. Ann. N.Y. Acad. Sci. 1251, E1–E24. doi: 10.1111/j.1749-6632.
2012.06751.x

Ostwald, D., and Bagshaw, A. P. (2011). Information theoretic approaches to
functional neuroimaging. Magn. Res. Imag. 29, 1417–1428. doi: 10.1016/j.mri.
2011.07.013

Paninski, L. (2003). Estimation of entropy and mutual information. Neural
Comput. 15, 1191–1253. doi: 10.1162/089976603321780272

Pereda, E., Quiroga, R. Q., and Bhattacharya, J. (2005). Nonlinear multivariate
analysis of neurophysiological signals. Prog. Neurobiol. 77, 1–37.

Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S. I., and Battaglia,
F. P. (2010). Principal component analysis of ensemble recordings reveals cell
assemblies at high temporal resolution. J. Comput. Neurosci. 29, 309–325. doi:
10.1007/s10827-009-0154-6

Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., and Battaglia, F. P.
(2009). Replay of rule-learning related neural patterns in the prefrontal cortex
during sleep. Nat. Neurosci. 12, 919–926. doi: 10.1038/nn.2337

Piacentini, J., Bergman, R. L., Keller, M., and McCracken, J. (2003). Functional
impairment in children and adolescents with obsessive-compulsive disorder.
J. Child Adoles. Psychopharmacol. 13, 61–69. doi: 10.1089/104454603322126359

Picó-Pérez, M., Radua, J., Steward, T., Menchón, J. M., and Soriano-Mas, C.
(2017). Emotion regulation in mood and anxiety disorders: A meta-analysis of
FMRI cognitive reappraisal studies. Prog. Neuro Psychopharmacol. Biol. Psychiatry
79, 96–104. doi: 10.1016/j.pnpbp.2017.06.001

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity.
Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301. doi: 10.1073/pnas.88.6.2297

Quian Quiroga, R., and Panzeri, S. (2009). Extracting information from
neuronal populations: information theory and decoding approaches. Nat. Rev.
Neurosci. 10, 173–185. doi: 10.1038/NRN2578

Frontiers in Human Neuroscience 17 frontiersin.org

89

https://doi.org/10.3389/fnhum.2022.958706
https://doi.org/10.1002/hbm.24559
https://doi.org/10.1523/JNEUROSCI.6693-10.2011
https://doi.org/10.1371/journal.pcbi.1002634
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1016/J.JPHYSPARIS.2006.10.001
https://doi.org/10.3389/fnana.2019.00028
https://doi.org/10.3389/fnana.2019.00028
https://doi.org/10.1089/brain.2011.0068
https://doi.org/10.1089/brain.2011.0068
https://doi.org/10.1001/archpsyc.1989.01810110048007.
https://doi.org/10.1001/archpsyc.1989.01810110048007.
https://doi.org/10.1002/hbm.22574
https://doi.org/10.3389/fnins.2018.00770
https://doi.org/10.1038/s41598-018-20123-8
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1111/j.2044-8341.1959.tb00467.x
https://doi.org/10.1016/j.euroneuro.2015.12.005
https://doi.org/10.1073/pnas.1515657113
https://doi.org/10.1073/pnas.1515657113
https://doi.org/10.3389/fpsyt.2016.00205
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1038/s41598-017-04522-x
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/b98848
https://doi.org/10.1016/S0165-0270(99)00131-4
https://doi.org/10.1103/PhysRevLett.100.118703
https://doi.org/10.1007/s10578-021-01261-z
https://doi.org/10.1364/BOE.9.001916
https://doi.org/10.1002/jmri.23961
https://doi.org/10.1371/journal.pone.0020996
https://doi.org/10.1371/journal.pone.0020996
https://doi.org/10.1016/j.jneumeth.2013.04.010
https://doi.org/10.1016/j.jneumeth.2013.04.010
https://doi.org/10.1016/j.neuroimage.2019.05.060
https://doi.org/10.1016/j.neuroimage.2019.05.060
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1093/cercor/bht030
https://doi.org/10.3389/neuro.11.037
https://doi.org/10.1016/j.swevo.2011.10.001
https://doi.org/10.1038/tp.2017.189
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1111/j.1749-6632.2012.06751.x
https://doi.org/10.1111/j.1749-6632.2012.06751.x
https://doi.org/10.1016/j.mri.2011.07.013
https://doi.org/10.1016/j.mri.2011.07.013
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1007/s10827-009-0154-6
https://doi.org/10.1007/s10827-009-0154-6
https://doi.org/10.1038/nn.2337
https://doi.org/10.1089/104454603322126359
https://doi.org/10.1016/j.pnpbp.2017.06.001
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1038/NRN2578
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-958706 September 23, 2022 Time: 8:15 # 18

Blair et al. 10.3389/fnhum.2022.958706

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis
using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol.
278, H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039

Rolls, E. T., Cheng, W., Gilson, M., Gong, W., Deco, G., Lo, C. Y. Z., et al.
(2020). Beyond the disconnectivity hypothesis of schizophrenia. Cerebral Cortex
30, 1213–1233. doi: 10.1093/cercor/bhz161

Rolls, E. T., Loh, M., and Deco, G. (2008). An attractor hypothesis of obsessive-
compulsive disorder. Eur. J. Neurosci. 28, 782–793. doi: 10.1111/j.1460-9568.2008.
06379.x

Rosario, M. C., Prado, H. S., Borcato, S., Diniz, J. B., Shavitt, R. G., Hounie,
A. G., et al. (2009). Validation of the university of São Paulo sensory phenomena
scale: initial psychometric properties. CNS Spectr. 14, 315–323. doi: 10.1017/
S1092852900020319

Sen, B., Bernstein, G. A., Mueller, B. A., Cullen, K. R., and Parhi, K. K. (2020).
Sub-graph entropy based network approaches for classifying adolescent obsessive-
compulsive disorder from resting-state functional MRI. Neuro. Clin. 26:102208.
doi: 10.1016/j.nicl.2020.102208

Shannon, C. E. (1949). A mathematical theory of communication. Math. Theory
Commun. 1924, 1–54.

Shappell, H. M., Caffo, B. S., Pekar, J. J., and Lindquist, M. A. (2019). Improved
state change estimation in dynamic functional connectivity using hidden semi-
markov models. NeuroImage 191, 243–257. doi: 10.1016/j.neuroimage.2019.02.
013

Shen, X., Papademetris, X., and Constable, R. T. (2010). Graph-theory
based parcellation of functional subunits in the brain from resting-state
FMRI data. NeuroImage 50, 1027–1035. doi: 10.1016/j.neuroimage.2009.
12.119

Sidak, Z. (1967). Rectangular confidence regions for the means of multivariate
normal distributions. J. Am. Stat. Assoc. 62, 626–633.

Singh, H., Misra, N., Hnizdo, V., Fedorowicz, A., and Demchuk, E. (2003).
Nearest neighbor estimates of entropy. Am. J. Math. Manage. Sci. 23, 301–321.
doi: 10.1080/01966324.2003.10737616

Subirà, M., Alonso, P., Segalàs, C., Real, E., ópez-Solà, C. L., Pujol, J., et al.
(2013). Brain structural alterations in obsessive-compulsive disorder patients with

autogenous and reactive obsessions. PLoS One 8:e75273. doi: 10.1371/journal.
pone.0075273

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15, 273–289. doi: 10.1006/nimg.2001.0978

Vergara, V. M., Salman, M., Abrol, A., Espinoza, F. A., and Calhoun, V. D.
(2020). Determining the number of states in dynamic functional connectivity
using cluster validity indexes. J. Neurosci. Methods 337:108651. doi: 10.1016/j.
jneumeth.2020.108651

Vohryzek, J., Deco, G., Cessac, B., Kringelbach, M. L., and Cabral, J. R. B.
(2020). Ghost attractors in spontaneous brain activity: Recurrent excursions into
functionally-relevant BOLD phase-locking states. Front. Syst. Neurosci. 14:1–15.
doi: 10.3389/fnsys.2020.00020

Wang, Z., Maia, T. V., Marsh, R., Colibazzi, T., Gerber, A., and Peterson,
B. S. (2011). The neural circuits that generate tics in tourette’s syndrome. Am. J.
Psychiatry 168, 1326–1337. doi: 10.1176/appi.ajp.2011.09111692

Weidle, B., Jozefiak, T., Ivarsson, T., and Thomsen, P. H. (2014). Quality of life
in children with OCD with and without comorbidity. Health Quality Life Out. 12,
1–12. doi: 10.1186/s12955-014-0152-x

Xin, X., Long, S., Sun, M., and Gao, X. (2021). The application of
complexity analysis in brain blood-oxygen signal. Brain Sci. 11:1415. doi: 10.3390/
brainsci11111415

Zalesky, A., Fornito, A., and Bullmore, E. T. (2010). Network-
based statistic: identifying differences in brain networks.
NeuroImage 53, 1197–1207. doi: 10.1016/j.neuroimage.2010.
06.041

Zamora-López, G., Chen, Y., Deco, G., Kringelbach, M. L., and Zhou, C. (2016).
Functional complexity emerging from anatomical constraints in the brain: The
Significance of network modularity and rich-clubs. Sci. Rep. 6, 1–18. doi: 10.1038/
srep38424

Zheng, H., Onoda, K., Nagai, A., and Yamaguchi, S. (2020). Reduced
dynamic complexity of BOLD signals differentiates mild cognitive impairment
from normal aging. Front. Aging Neurosci. 12:90. doi: 10.3389/fnagi.2020.0
0090

Frontiers in Human Neuroscience 18 frontiersin.org

90

https://doi.org/10.3389/fnhum.2022.958706
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1093/cercor/bhz161
https://doi.org/10.1111/j.1460-9568.2008.06379.x
https://doi.org/10.1111/j.1460-9568.2008.06379.x
https://doi.org/10.1017/S1092852900020319
https://doi.org/10.1017/S1092852900020319
https://doi.org/10.1016/j.nicl.2020.102208
https://doi.org/10.1016/j.neuroimage.2019.02.013
https://doi.org/10.1016/j.neuroimage.2019.02.013
https://doi.org/10.1016/j.neuroimage.2009.12.119
https://doi.org/10.1016/j.neuroimage.2009.12.119
https://doi.org/10.1080/01966324.2003.10737616
https://doi.org/10.1371/journal.pone.0075273
https://doi.org/10.1371/journal.pone.0075273
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.jneumeth.2020.108651
https://doi.org/10.1016/j.jneumeth.2020.108651
https://doi.org/10.3389/fnsys.2020.00020
https://doi.org/10.1176/appi.ajp.2011.09111692
https://doi.org/10.1186/s12955-014-0152-x
https://doi.org/10.3390/brainsci11111415
https://doi.org/10.3390/brainsci11111415
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1038/srep38424
https://doi.org/10.1038/srep38424
https://doi.org/10.3389/fnagi.2020.00090
https://doi.org/10.3389/fnagi.2020.00090
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1029149 October 22, 2022 Time: 11:58 # 1

TYPE Original Research
PUBLISHED 28 October 2022
DOI 10.3389/fnhum.2022.1029149

OPEN ACCESS

EDITED BY

Stefan Borgwardt,
University of Lübeck, Germany

REVIEWED BY

Arcady A. Putilov,
Federal Research Center
of Fundamental and Translational
Medicine, Russia
Alexandra Korda,
University Medical Center
Schleswig-Holstein, Germany

*CORRESPONDENCE

Tina D. Kristensen
tina.dam.kristensen@regionh.dk

†These authors share senior authorship

SPECIALTY SECTION

This article was submitted to
Brain Imaging and Stimulation,
a section of the journal
Frontiers in Human Neuroscience

RECEIVED 26 August 2022
ACCEPTED 07 October 2022
PUBLISHED 28 October 2022

CITATION

Rasmussen JØ, Nordholm D,
Glenthøj LB, Jensen MA, Garde AH,
Ragahava JM, Jennum PJ,
Glenthøj BY, Nordentoft M,
Baandrup L, Ebdrup BH and
Kristensen TD (2022) White matter
microstructure and sleep-wake
disturbances in individuals
at ultra-high risk of psychosis.
Front. Hum. Neurosci. 16:1029149.
doi: 10.3389/fnhum.2022.1029149

COPYRIGHT

© 2022 Rasmussen, Nordholm,
Glenthøj, Jensen, Garde, Ragahava,
Jennum, Glenthøj, Nordentoft,
Baandrup, Ebdrup and Kristensen. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

White matter microstructure
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Aim: White matter changes in individuals at ultra-high risk for psychosis

(UHR) may be involved in the transition to psychosis. Sleep-wake disturbances

commonly precede the first psychotic episode and predict development of

psychosis. We examined associations between white matter microstructure

and sleep-wake disturbances in UHR individuals compared to healthy controls

(HC), as well as explored the confounding effect of medication, substance use,

and level of psychopathology.

Methods: Sixty-four UHR individuals and 35 HC underwent clinical interviews

and diffusion weighted imaging. Group differences on global and callosal

mean fractional anisotropy (FA) was tested using general linear modeling.

Sleep-wake disturbances were evaluated using the subjective measures

disturbed sleep index (DSI) and disturbed awakening index (AWI) from the

Karolinska Sleep Questionnaire, supported by objective sleep measures from

one-night actigraphy. The primary analyses comprised partial correlation

analyses between global FA/callosal FA and sleep-wake measures. Secondary

analyses investigated multivariate patterns of covariance between measures of

sleep-wake disturbances and FA in 48 white matter regions of interest using

partial least square correlations.
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Results: Ultra-high risk for psychosis individuals displayed lower global FA

(F = 14.56, p < 0.001) and lower callosal FA (F = 11.34, p = 0.001) compared

to HC. Subjective sleep-wake disturbances were significantly higher among

the UHR individuals (DSI: F = 27.59, p < 0.001, AWI: F = 36.42, p < 0.001).

Lower callosal FA was correlated with increased wake after sleep onset

(r = −0.34, p = 0.011) and increased sleep fragmentation index (r = −0.31,

p = 0.019) in UHR individuals. Multivariate analyses identified a pattern of

covariance in regional FA which were associated with DSI and AWI in UHR

individuals (p = 0.028), but not in HC. Substance use, sleep medication and

antipsychotic medication did not significantly confound these associations.

The association with objective sleep-wake measures was sustained when

controlling for level of depressive and UHR symptoms, but symptom level

confounded the covariation between FA and subjective sleep-wake measures

in the multivariate analyses.

Conclusion: Compromised callosal microstructure in UHR individuals was

related to objectively observed disruptions in sleep-wake functioning. Lower

FA in ventrally located regions was associated with subjectively measured

sleep-wake disturbances and was partly explained by psychopathology. These

findings call for further investigation of sleep disturbances as a potential

treatment target.

KEYWORDS

ultra-high risk of psychosis, white matter, diffusion weighted imaging, sleep,
substance use, psychopathology

Introduction

The ultra-high risk state of psychosis (UHR) designates
a putative prodromal phase of psychosis (Yung et al., 2005)
and is defined by criteria of attenuated psychotic symptoms,
brief limited intermittent psychotic symptoms, and/or a
diagnosis of schizotypal personality disorder or a genetic
risk, along with a functional decline. A recent meta-analysis
found a transition rate to psychosis of 25% within the first
3 years (Salazar De Pablo et al., 2021). Multiple risk factors
for transitioning has been identified, including severity of
attenuated psychotic symptoms, negative symptoms, substance
use, physical inactivity, unemployment and male sex (Fusar-
Poli et al., 2020). Considering the potential detrimental effects
of psychosis, research on modifiable risk factors of disease
progression is critical for early intervention (Pantelis et al., 2005;
Bora et al., 2009).

The influence of sleep-wake disturbances on the
development of psychopathology has increasingly been
acknowledged. Sleep-wake disturbances can be evaluated using
self-report questionnaires regarding a specific period (e.g.,
last night or last month), but they are vulnerable to recall-bias
(Lunsford-Avery et al., 2015; Aili et al., 2017). Objective methods
are polysomnography (the gold standard) and actigraphy, the

latter less invasive and more convenient (Aili et al., 2017).
Due to a well-described discrepancy between subjective and
objective sleep measures, a combination of approaches is
preferred (Trimmel et al., 2021). Sleep-wake disturbances are
common in individuals diagnosed with schizophrenia (Waite
et al., 2020) and commonly precede the first psychotic episode
(Yung and Nelson, 2011; Zaks et al., 2022), and have predicted
psychotic symptoms in a high-risk sample (Lunsford-Avery
et al., 2015). According to a recent systematic review and
meta-analysis (Clarke et al., 2021), sleep-wake disturbances
are more present in UHR individuals compared to HC,
and it applies both to self-reported (e.g., sleep quality and
fragmented sleep) and objective sleep-wake measures (e.g.,
sleep latency, daytime napping, and movement during sleep).
However, few studies with objective sleep measures such as
actigraphy or polysomnography have been reported, and only
four studies were identified and included in the meta-analysis
(Clarke et al., 2021).

Cerebral white matter (WM) changes have been shown to
be implicated in the pathophysiology of psychotic disorders
(Vitolo et al., 2017; Zhao et al., 2022) including UHR individuals,
although the changes appear more subtle than in patients with
an established psychotic disorder (Peters et al., 2010; Pettersson-
Yeo et al., 2011; Karlsgodt et al., 2012; Samartzis et al., 2014;
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Wheeler and Voineskos, 2014; Canu et al., 2015). The most
applied white matter index is fractional anisotropy (FA). Lower
FA is often interpreted as impaired WM microstructure (Jones
et al., 2013) and have been associated with loss of axonal
coherence, demyelination, or neurodegeneration (Song et al.,
2002; Alexander et al., 2007, 2011; Pasternak et al., 2009). Lower
FA has been reported in UHR individuals compared to HC
in widespread WM regions (Carletti et al., 2012; Lagopoulos
et al., 2013), such as the major association tracts interconnecting
frontal regions with temporal and limbic regions (Clemm Von
Hohenberg et al., 2014; Rigucci et al., 2016; Vijayakumar et al.,
2016), as well as the large projection tracts connecting the
cortical and subcortical structures (Katagiri et al., 2015; Saito
et al., 2017). Cross-sectional studies have found regional lower
FA to be associated with more severe attenuated psychotic
symptoms (Nägele et al., 2020). In a previous independent
cross-sectional study in UHR individuals we reported WM
alterations in UHR individuals which were associated with
positive and negative symptoms as well as level of functioning
(Krakauer et al., 2017). In a study population partly overlapping
with the current sample we found that global FA at baseline
predicted transition to psychosis after one year (Kristensen et al.,
2021a), and that changes in negative symptoms were linked
to white matter changes in superior longitudinal fasciculus
(Kristensen et al., 2021b).

Psychosis has been conceptualized as a global brain disorder
of dysconnectivity (Friston, 1998). Global WM studies have
identified associations between WM microstructure and sleep-
wake measures, such as sleep duration in healthy adults
(Khalsa et al., 2017; Grumbach et al., 2020) and in adolescents
(Telzer et al., 2015), as well as sleep quality in an aging
populations (Kocevska et al., 2019), patients with depression
(Sexton et al., 2017), and patients with mild traumatic brain
injury (Raikes et al., 2018). However, the participants of
these studies are heterogeneous including clinical and non-
clinical samples, aging or adolescents, as well as neurologically
afflicted populations. Hence the results and localization of the
associations are mixed (Zitser et al., 2020). To our knowledge,
no studies to date have examined associations between WM and
sleep-wake disturbances in UHR individuals.

Global approaches may conceal information derived
from informed hypotheses on associations between specific
symptoms and predefined WM regions of interest (ROIs).
The main commissural tract in the brain is corpus callosum
(CC), which is critical for the interhemispheric information
transfer and coordination of functional activity (Mancuso et al.,
2019). CC has together with neuronal populations located to
the brainstem been hypothesized to be involved in a complex
synchronization of interhemispheric activity, regulating the
timing and duration of rapid eye movement (REM) (Nielsen
et al., 1992). Indeed, different aspects of sleep quality have
been linked to CC, such as sleep oscillations (Piantoni et al.,
2013), sleep efficiency, total sleep time (Altendahl et al.,

2020), REM as well as non-REM sleep (Avvenuti et al., 2019;
Bernardi et al., 2021). One study found that WM metrics of
CC mediated associations between poor sleep quality and
symptomatology in patients with depression (Li et al., 2020).
Hence, investigating associations between predefined ROIs such
as CC and predefined measures of sleep, as well as exploring
associations to all WM regions may be optimal.

Substance use disorder is significantly more common in
UHR individuals (Carney et al., 2017) and patients suffering
from schizophrenia (Hunt et al., 2018) than in the general
population. Substance use is known to affect both WM
microstructure (Murray et al., 2017; Hampton et al., 2019) and
sleep (Huhn et al., 2022), as well as the risk of developing
psychosis (Murray et al., 2017; Murrie et al., 2020; Hjorthøj et al.,
2021). A meta-analysis found lower FA in CC in individuals
with a substance use disorder, however, it appeared dependent
on the type of substance (Hampton et al., 2019). Studies have
demonstrated that substance use worsens both the subjective
experience of sleep quality and objective sleep-wake measures,
including reduced total sleep time (TST) and increased Wake
After Sleep Onset (WASO) (Huhn et al., 2022). It is well-known
that substance use can induce transient and dose dependent
psychotic symptoms. A recent meta-analysis reported an overall
transition rate of 25% from any substance induced psychosis
to schizophrenia with the most elevated transition rate of
34% found in patients with a cannabis-induced psychosis
(Murrie et al., 2020).

A study from our group showed that antipsychotic
medication affected WM microstructure in frontal fasciculi in
antipsychotic naïve patients with first episode psychosis (Ebdrup
et al., 2015). Additionally, changes in WM microstructure have
been reported in patients with affective disorders (Jenkins et al.,
2016; Cui et al., 2020). Hence, the potential confounding effects
of both antipsychotic medication, sleep medication, as well
as depressive symptoms being markedly prevalent in UHR
individuals may be important to explore.

In this study, we examine the association between global
and regional WM microstructure and sleep-wake disturbances
in UHR individuals compared to HC. We hypothesize, that
lower mean global FA as well as lower FA in CC are
associated with more severe sleep-wake disturbances. Secondly,
we investigate potential covariation between FA in all ROIs and
sleep-wake disturbances. Finally, we exploratively investigate
if these potential associations may be explained by substance
use, medication (antipsychotics and sleep medicine), and
psychopathology (depressive symptoms and UHR symptoms).

Materials and methods

Cross-sectional data were derived from The FOCUS-trial
(Glenthøj et al., 2015). The main trial design and primary
outcomes have been reported elsewhere (Glenthøj et al., 2015,
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2020). After initiation, the main trial was extended with several
add-on studies at a later timepoint. Hence, sample size was
reduced for the current subset of UHR individuals selected
from the main trial (Flow chart in Supplementary Figure 1).
Participants were recruited from psychiatric inpatient and
outpatient facilities in Copenhagen, Denmark, between April
2014 and December 2017. The trial protocol was approved by
the Committee on Health Research Ethics of the Capital Region
in Denmark (H-6-2013-015). All participants provided written
informed consent prior to inclusion.

Participants

Data for the current study was collected at baseline from
help-seeking individuals meeting at least one of the three UHR-
criteria according to the Comprehensive Assessment of At-
Risk Mental States (CAARMS) (Yung et al., 2005): attenuated
psychotic symptoms, and/or brief limited intermittent psychotic
symptoms, and/or trait and vulnerability state along with a
significant drop or sustained low functioning for the past year.
Exclusion criteria were a history of a psychotic episode of
more than one week duration; psychiatric symptoms explained
by a physical illness with psychotropic effect (e.g., delirium)
or acute intoxication from any substance; a diagnosis of a
serious developmental disorder (e.g., Asperger’s syndrome or
IQ < 70); or current treatment with methylphenidate. HC were
recruited by web based advertising or via advertisements at
local educational institutions. HC had no current or previous
psychiatric diagnosis, substance use or dependency, and no
first-degree relatives with a psychotic disorder. In the main
trial HC were concurrently included and matched to the UHR
individuals on age, sex, ethnicity, and parental socioeconomic
status.

Assessments

Clinical assessments
Axis I and selected Axis II diagnoses (schizotypal-,

paranoid-, and borderline personality disorder) were examined
using the Structured Clinical Interview for DSM-IV (SCID)
(First et al., 1997). To examine whether a participant met the
UHR criteria, the semi-structured interview Comprehensive
Assessment of At-Risk Mental States (CAARMS) (Morrison
et al., 2011) was used. CAARMS is rated with an intensity score
and a frequency score in four different domains of positive
UHR symptoms (unusual thought content, non-bizarre ideas,
disorganized speech, or perceptual abnormalities). Based on
these scores it is determined if the patient meets UHR-criteria.
If the intensity exceeds cut-off for psychosis and does not
resolve spontaneously within the duration of one week, the
UHR state is exceeded. Furthermore, UHR criteria of trait and

vulnerability is met with a schizotypal personality disorder or a
psychotic illness in a first degree relative, along with a decline
in functioning (≥30% drop for at least a month) or a sustained
low functioning (≤50 for at least a year) assessed with the
Social and Occupational Functioning Assessment Scale (SOFAS)
(Morosini et al., 2000). Here, we used the CAARMS composite
score, which is calculated from the four different domains of
positive UHR symptoms by multiplication of the intensity score
and the frequency score within each domain, and next adding
the scores from the 4 domains. Depressive symptomatology was
assessed using the Montgomery-Åsberg Depression Rating Scale
(MADRS) (Montgomery and Asberg, 1979), which is a 10 items
interview based questionnaire related to depressive symptoms.
The Alcohol Smoking and Substance Involvement Screening
Test (ASSIST) (Ali et al., 2002) was used to assess the occurrence
and extent of substance use. ASSIST is a short interview based
questionnaire, consisting of eight questions aiming to examine
both present (last three month) and lifetime use of different
substances (alcohol, tobacco, cannabis, cocaine, amphetamines,
inhalants, sedatives, hallucinogens, opiates, and other drugs).
For each substance ever used, frequency was rated on a 5-
point Likert scale, (0 = never, 1 = once or twice, 2 = monthly,
3 = weekly and 4 = daily or almost daily). Use of antipsychotics
and sleep medicine (including benzodiazepines, antihistamines,
and melatonin) was self-reported, both prescribed medicine for
daily use and for use “as needed” were registered, and if the
medicine was ingested during the 24-h of actigraphy.

All clinical assessments were conducted by experienced
psychologists and medical doctors with comprehensive training
in the assessment instruments. Inter-rater reliability was
assessed in the main trial using intra-class correlations for
clinical outcomes, revealing excellent inter-rater reliability
(Glenthøj et al., 2020).

Sleep assessments
The subjectively experienced sleep quality was assessed

with a modified version of the Karolinska Sleep Questionnaire
(Åkerstedt et al., 2002) both during the past night and during
the past four weeks. Seven items about sleep disturbances
were covered: (a) difficulties falling asleep, (b) disturbed/restless
sleep, (c) repeated awakenings, (d) premature awakenings,
(e) difficulties waking up, (f) non-refreshing sleep, and (g)
exhaustion at awakening. All scores ranking from 1 to 5
(1 = never, 2 = seldom, 3 = sometimes/several times per month,
4 = mostly/several days per week, 5 = always), higher scores
indicating less refreshing sleep. The Disturbed Sleep Index (DSI)
was calculated as the sum of the four items, (a), (b), (c), and (d),
ranking from 4 to 20. The Disturbed Awakening Index (AWI)
was calculated as the sum of the three items (e), (f), and (g),
ranking from 3 to 15. Individuals with missing data on single
items were excluded from the analyses.

The objective sleep-wake measures were obtained using
an actigraph. An actiwatch (ActiGraph wGT3X-BT from
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ActiGraph FL, USA) was worn on the non-dominant wrist for
24 h. Data were collected with a sampling rate of 30 Hz and
1-min epochs were used to score wake and sleep pattern. Data
were analyzed with ActiGraph Sleep Analysis (ActiGraph, FL,
USA). The actigraph measures applied in this study were: total
sleep time (TST), wake after sleep onset (WASO) (minutes
spend awake after sleep had occurred), sleep efficiency (SE)
(the ratio between TST and total time in bed), and sleep
fragmentation index (SFI) (index of restlessness during the sleep
period expressed as a percentage, higher score indicating more
disrupted sleep). The actigraph was accompanied by a sleep
diary reporting bedtime, awakening time, and medicine intake.

The subjective sleep measures are regarded as primary in the
analyses as they cover the last four weeks and must be considered
more representative than one-night actigraphy. In our analyses
we include both the subjective and the objective sleep-wake
measures and consider whether the objective measures support
the findings of the subjective measures.

Image acquisition and processing
The details of image acquisition and processing have

been described elsewhere (Kristensen et al., 2019). Briefly, we
acquired the MRI scans on a 3T scanner (Philips Healthcare,
Best, Netherlands). Two diffusion-weighted images using single
shot spin-echo echoplanar imaging sequence with 30 non-
collinear diffusion-weighted (b = 1.000 s/mm2) directions and
one non-diffusion weighted (b = 0 s/mm2) in opposite phase
encoding directions were acquired, enabling correction for
susceptibility distortions (Andersson et al., 2003). Tools from
the FSL software library v5.0.10 (Jenkinson et al., 2012) and
MRtrix31 was used for image processing. DWI data were
denoised (Dhollander et al., 2016; Veraart et al., 2016b,a),
and images were corrected for B1 field inhomogeneity (Zhang
et al., 2001; Smith et al., 2004). Eddy current and susceptibility
artifact correction (Andersson and Sotiropoulos, 2016) was
performed, and absolute and relative head motion parameters
were extracted. Tract-based spatial statistics (TBSS) (Smith et al.,
2004, 2006) was used to align FA data into the FMRIN58
template using the non-linear image registration tool (FNIRT)
(Andersson et al., 2007a,b). The mean FA image (threshold of
0.2) was thinned to create mean study-specific FA skeleton maps
(Smith et al., 2006). Using the John Hopkins University WM
tractography atlas labels (Mori and Van Zijl, 2007; Hua et al.,
2008), we calculated mean FA for the 48 ROIs for each UHR
individual. Mean global FA was calculated as the average of
the weighted FA in the 48 ROIs from skeletonized data. FA for
CC was calculated as the summed mean FA for the 3 callosal
segments (genu + body + splenium)/3 (Supplementary Figure 2
and Supplementary Text 1 for further details).

MRI quality metrics were assessed by visual inspection, and
MRI quality metrics from each subject was calculated using

1 www.mrtrix.org

a quality assessment method described by Roalf et al. (2016)
[Range between “Good” and “Excellent” quality, details are
reported elsewhere (Kristensen et al., 2019)].

Statistical analyses

Univariate analyses
All univariate analyses were performed using Statistical

Package for the Social Sciences (SPSS) version 25.0, (IBM,
Armonk, NY, USA). Descriptive variables were reported as
percent, means, and standard deviations. Chi-square tests and
general linear modelling (GLM) were used to compare UHR
individuals to HC on descriptive variables. Effect of group on
mean global FA and callosal FA were tested using GLM with age,
sex, relative and absolute motion in scanner as covariates.

Partial correlation analyses were performed in SPSS to test
covariation between mean FA in the CC and the subjective
and objective measures of sleep-wake disturbances, including
age, sex, relative and absolute motion in scanner as covariates.
Primary analyses tested the effect of group with ANOVA
(UHR individuals vs. HC). All tests were corrected for multiple
comparisons using the Benjamin–Hochberg procedure with an
FDR of p < 0.05.

Post-hoc, we tested the potential effect of substance use,
medication, and psychopathology by including each substance
as well as a composite score for substance use, medication
(antipsychotics and sleep medicine yes/no), and measure
of psychopathology [depressive (MADRS score) or UHR-
symptoms (CAARMS composite score)] as covariates, along
with age, sex, relative and absolute motion in scanner in
the partial correlation model. Post-hoc tests were uncorrected
for multiplicity.

Multivariate analyses
Group differences on the 48 ROIs were tested with

multivariate GLM using the MATLAB software (version 2021a)
including age, sex, relative and absolute motion as covariates.

The partial least square-correlation (PLS-C) analysis
(McIntosh and Lobaugh, 2004; Kovacevic et al., 2013) was
performed using the MATLAB software (version 2021a).
We included two subjective and four objective sleep-wake
measures and mean FA values of 48 WM-regions, co-varied
for age, sex, and relative and absolute motion in scanner. In
brief, PLS-C is used to identify latent variables (LVs), which
express maximum covariance between patterns of regional FA
associated with sleep-wake disturbances. Both the significance
level of the omnibus test (Reisfeld and Mayeno, 2013) and of
the individual LVs were assessed using permutation testing
(100,000 permutations) to obtain a p-value based on non-
rotated sampling distribution of singular values (Kovacevic
et al., 2013). For the omnibus test, the Inertia index that was
calculated as the sum of all singular values of all the LVs
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identified by PLS-C, was used for permutations testing (Abdi
and Williams, 2013). LVs with a p < 0.05 were considered
significant. Only LVs with a cross-block covariance larger than
5% were reported (Grigg and Grady, 2010). The reliability of
saliences was assessed using bootstrapping (100,000 bootstraps
with procrustean rotation) to obtain 95% confidence intervals.
Confidence intervals of the saliences that did not cross zero
were considered reliable (Krishnan et al., 2011). Details on
PLS-C are provided in Supplementary Text 2.

In planned exploratory analyses, we entered substance
use, medication (antipsychotics and sleep medication), and
psychopathology [level of depressive symptoms (MADRS
score), and level of UHR-symptoms (CAARMS composite
score)] as covariates in the multivariate PLS-C. In addition,
we performed sensitivity analyses on a reduced sample of
antipsychotic free UHR individuals (n = 45). Finally, post-
hoc analyses explored a potential mediation effects of levels of
psychopathology on significant associations between regional
FA and sleep-wake measures using Process for SPSS by Hayes
(2017).

Results

Characteristics of participants are reported in Table 1. No
differences were found between UHR individuals and HC on the
sociodemographic variables of age, sex or estimated premorbid
IQ (See further details in Table 1). As well, no differences
were found when comparing characteristics of UHR individuals
in antipsychotic medication with UHR individuals with no
antipsychotic medication (see further details in Supplementary
Table 1).

White matter

UHR individuals had significantly lower global FA
(F = 14.06, p < 0.001), and lower FA in CC (F = 12.86,
p < 0.001) when compared to HC (Table 1).

Furthermore, the multivariate test including all 48 ROIs
showed significant lower FA in UHR individuals (omnibus
test p < 0.001). The significant pattern indicated that 22/48
ROIs contributed reliably with lower FA in UHR individuals
(p = 0.001) bilaterally: middle cerebellar peduncle; genu, body,
and splenium of CC; posterior limb of internal capsule;
superior corona radiata; posterior thalamic radiation; external
capsule; and superior longitudinal fasciculus. Left hemisphere:
retrolenticular part of internal capsule; posterior corona radiata;
sagittal stratum; cingulum; and tapetum. Right hemisphere:
cerebral peduncle; anterior corona radiata; and cingulum
hippocampus (Figure 1).

Sleep

We found a significant difference between groups on
the subjective sleep-wake measures (Table 2, Figure 2,
and Supplementary Figure 3). The UHR individuals had
significantly higher DSI (i.e., more disturbed sleep), both the
preceding night (F = 18.41, p < 0.001) and across the last four
weeks (F = 27.59, p < 0.001). The AWI was significantly higher
(i.e., less refreshed at awakening) in the UHR-group, both the
preceding night (F = 19.03, p < 0.001) and across the last four
weeks (F = 36.42, p < 0.001).

Overall, we found no significant differences between groups
on the objective sleep-wake measures from the actigraph.
Among female participants we found significantly higher SE
(F = 12.83, p = 0.001) and TST (F = 6.76, p = 0.011) and
significantly lower WASO (F = 8.37, p = 0.005) and SFI (F = 4.45,
p = 0.038) (Supplementary Table 2).

Substance use, psychopathology, and
medication

Among the UHR individuals, two had a history and
one had a current diagnosis of substance use disorder. Six
UHR individuals had an earlier and none had a current
diagnosis of dependence, which was in accordance with the
eligibility criteria.

UHR individuals had a significantly higher use of nicotine
(χ2 18.07, p = 0.001) compared to HC, and a significantly
lower consumption of alcohol (χ2 9.67, p = 0.046). Although
not significant, we noticed that three UHR individuals
had a daily or almost daily use of cannabis, compared
to no HC. Likewise, no HC had ever used simulants
(amphetamine, ecstasy, amphetamine, etc.), where three UHR
individuals had tried it, and one had a monthly use
(Supplementary Table 3).

The UHR individuals comprised a heterogenous sample
with a majority of n = 38 (59.4%) diagnosed with an affective
disorder, n = 37 (57.8%) with an anxiety disorder, and n = 21
(32.4%) diagnosed with a personality disorder (Table 1). The
mean baseline score on MADRS was equivalent to a mild
depression, which is in accordance with the high incidence of
affective disorders.

Thirty-eight (59.4%) of the sample were antipsychotic-naïve
and n = 19 (29.7%) reported current use of antipsychotic
medication in low dosages. Of other medications which may
affect sleep, one UHR individual reported current treatment of
a benzodiazepine, 6 melatonin, and 15 reported current use of
antidepressants (Table 1).
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TABLE 1 Sociodemographic and clinical data at baseline for individuals at ultra-high risk and healthy controls.

Variable
Mean (S.D.)/Percent

UHR
(N = 64)

Healthy controls
(N = 35)

Significance

Age Mean (SD) 23.6 (3.9) 23.7 (2.7) p = 0.87

Sex p = 0.07, χ2 2.87

Male 57.8% 40.0%

Female 42.2% 60.0%

Premorbid IQ (DART) 21.2 (7.2) 22.7 (6.9) p = 0.32

Years of education 13.7 (2.4) 16.4 (2.0) p < 0.01

Parental SES p = 0.03, χ 2 7.39

Low 7.8% 0.0%

Medium 45.3% 23.1%

High 46.9% 76.9%

Function (SOFAS) 54.1 (9.9) 87.7 (6.8) p < 0.01, F = 322.1

Activity-level# 14.9 (17.3) 42.7 (8.0) p < 0.01, F = 71.96

White matter

Global, mean FA (SD) 0.599 (0.016) 0.612 (0.012) p < 0.001, F = 14.56

Corpus Callosum, mean FA (SD) 0.739 (0.021) 0.753 (0.015) p = 0.001, F = 11.34

Absolute motion in scanner 1.262 (0.346) 1.227 (0.373) p = 0.646, F = 0.21

Relative motion in scanner 0.178 (0.083) 0.159 (0.063) p = 0.250, F = 1.34

Diagnoses

Affective disorder 59.4% (38) –

Anxiety disorder 57.8% (37) –

Personality disorder 32.4% (21) –

Other diagnoses 21.9% (14) –

Diagnose of lifetime† abuse 3.1% (2) –

Diagnose of lifetime† dependency 9.4% (6) –

Diagnose of current† abuse 1.6% (1) –

Diagnose of current† dependency 0.0% (0) –

Medication

Antipsychotic-naïve 59.4% (38) –

Current† antipsychotics 29.7% (19) –

Current† antidepressants 23.4% (15) –

Current† benzodiazepines 1.6% (1) –

Current† melatonin 9.4% (6) –

Clinical symptoms

CAARMS composite score 49.91 (15.71) –

MADRS total 15.86 (7.31) –

#Activity-level is hours per week spend on work and education. Significant difference between UHR individuals and healthy controls are marked in bold.
CAARMS, comprehensive assessment of at-risk mental state; DART, Danish adult reading list; FA, fractional anisotropy; IQ, intelligence quotient; MADRS, Montgomery-Åsberg
Depression Rating Scale, No., number; SD, standard deviation; SES, socio-economic status; SOFAS, social and occupational function assessment scale; TS, trait and state; UHR,
ultra-high risk.

Partial correlations between callosal
fractional anisotropy and sleep-wake
measures

We identified significant negative correlations between
callosal FA and WASO (p = 0.011, r = −0.337) as well
as with SFI (p = 0.019, r = −0.313) in UHR individuals
(Table 3). When including all participants, significant
correlations between callosal FA and AWI (p = 0.029,

r = −0.230), SE (p = 0.020, r = 0.243), WASO (p = 0.007,
r = −0.283), and SFI (p = 0.032, r = −0.225) remained
significant after controlling for multiplicity. However, in the
within-group analyses we could not confirm the significant
correlation between callosal FA, AWI and SE among the
UHR individuals, and no significant correlations between
global or callosal mean FA were identified in HC. The
partial correlation analyses were also performed on the
reduced sample of antipsychotic free UHR individuals
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FIGURE 1

Group difference on 48 white matter regions. Figure displays the results from the multivariate GLM testing group difference between UHR
individuals and healthy controls on fractional anisotropy (FA) in 48 regions of interest. (A) The significant group difference shows lower
fractional anisotropy in UHR individuals compared to healthy controls in the 48 regions of interest (ROIs). (B) The ROIs which contributes
reliably are visualized using JHU white matter atlas. Reliably contributing regions are bilaterally: middle cerebellar peduncle; genu, body, and
splenium of corpus callosum; posterior limb of internal capsule; superior corona radiata; posterior thalamic radiation; external capsule; and
superior longitudinal fasciculus. Left hemisphere: retrolenticular part of internal capsule; posterior corona radiata; sagittal stratum; cingulum;
and tapetum. Right hemisphere: cerebral peduncle; anterior corona radiata; and cingulum hippocampus. (C) The pattern of covariance in all 48
ROIs, with the regions contributing reliably marked in turquoise. A list linking the numbers to the regions are displayed in the
Supplementary Text 3. A, anterior; L, left; P, posterior; R, right; UHR, ultra-high risk.

(n = 45), which showed identical results (Supplementary
Table 4).

Multivariate covariance between
fractional anisotropy and sleep-wake
disturbances

The PLS-C interaction analysis on all participants revealed a
trend level significant association between patterns of regional
FA and sleep-wake disturbances comparing UHR individuals
to HCs (omnibus test p = 0.078). Post-hoc sensitivity analyses
including all HC and a subsample of antipsychotic free UHR
individuals showed a strong association (omnibus test p = 0.031)
between a pattern of disturbed sleep-wake measures (lower SE,
higher WASO, SFI, and AWI) and widespread lower FA in
24/48 WM regions explaining 69.89% of the covariance (LV1
p = 0.032) (see Supplementary Figure 4A for details). The
next step within group PLS-C analysis identified an association
between a pattern of regional FA and sleep-wake measures

in UHR individuals (omnibus test p = 0.028) but not in HC
(omnibus test p = 0.290). In UHR individuals, one significant
latent variable (LV) was identified: LV3 explained 15% of the
covariance (p = 0.013). LV3 comprised a pattern where higher
FA in fornix, along with lower FA in left and right corticospinal
tract, left cerebral peduncle, left medial lemniscus, and left
cingulum (hippocampus) contributed reliably. This pattern of
regional FA was associated with a pattern of more severely
disturbed sleep (DSI) and awakening (AWI) contributing
reliably (See Figure 3 for details).

Confounding effects of substance use,
medication, and psychopathology

Non-parametric tests of correlations between single
substances as well as composite substance score and sleep-
wake measures in all participants revealed nicotine use to be
positively correlated to scores on 5/6 measures of sleep-wake
disturbances: DSI (p = 0.003, r = 0.292), AWI (p < 0.001,
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TABLE 2 Sleep at baseline.

Variable
Mean (SD)/percent

UHR individuals
(N = 64)

Healthy controls
(N = 35)

Significance

Karolinska Sleep Questionnaire

The last 4 weeks

Disturbed Sleep Index (DSI)1 12.09 (3.56) 8.46 (2.71) p < 0.001, F = 27.59

Disturbed Awakening Index (AWI)2 11.20 (2.75) 7.86 (2.42) p < 0.001, F = 36.42

The last night

Disturbed Sleep Index (DSI)1 10.66 (3.48) 7.68 (2.83) p < 0.001, F = 18.41

Disturbed Awakening Index (AWI)2 9.44 (2.51) 7.34 (1.81) p < 0.001, F = 19.03

Actigraphy measures (last night)

Total Sleep Time (TST, h/min)3 6/39.51 (1/43.01) 6/33.97 (1/5.01) p = 0.775, F = 0.08

Sleep Efficiency (SE)4 84.90 (9.32) 86.42 (8.42) p = 0.427, F = 0.64

Sleep Fragmentation Index (SFI)5 27.41 (15.41) 25.07 (13.22) p = 0.453, F = 0.57

Wake After Sleep Onset
(WASO, min)6

59.55 (39.71) 55.74 (42.64) p = 0.662, F = 0.19

Table displays the subjective data on disturbed sleep from Karolinska Sleep Questionnaire and objective measures from one-night Actigraphy in ultra-high-risk individuals compared with
healthy controls.
1Disturbed sleep index (DSI) was computed as the sum of four items [(a)–(d), ranging 1–5, higher scores represented a more disturbed sleep]: (a) difficulties falling asleep, (b)
disturbed/restless sleep, (c) repeated awakenings, and (d) premature awakening.
2Disturbed awakening index (AWI) was computed as the sum of three items [(e)–(g), all ranging 1–5, higher scores represented poorer sleep (= less refreshing sleep)]: (e) ease of
awakening, (f) refreshing sleep, and (g) the degree of exhaustion at awakening.
3Total Sleep Time (TST) – The total number of minutes labeled as “asleep” during nighttime using the automatized algorithm from ActiGraph wGT3X-BT.
4Sleep Efficiency (SE) – Number of sleep minutes divided by the total number of minutes the subject was in bed.
5Sleep Fragmentation Index (SFI) restlessness during the sleep period expressed as sum of Movement Index (MI = The total of scored awake minutes divided by Total time in bed in
hours × 100) and Fragmentation Index (FI = The percentage of one minute periods of sleep vs. all periods of sleep in the sleep period.
6Wake after Sleep Onset (WASO): The total number of minutes the subject was awake after sleep onset occurred.
Significant difference between UHR individuals and healthy controls are marked in bold.

r = 0.578), SE (p = 0.025, r = −0.229), WASO (p = 0.013,
r = 0.252), and SFI (p = 0.016, r = 0.245) (uncorrected). No
other substances were correlated to sleep-wake measures
(Supplementary Table 5). We did not observe confounding
effect of use of single substances or the substance use composite
score on the correlation between callosal FA and sleep-wake
measures (Supplementary Table 6).

Sleep-wake disturbances were positively associated with
psychopathology in UHR individuals: DSI to depressive
symptoms (p < 0.001, r = 0.433) and AWI to UHR-symptoms
(p = 0.020, r = 0.290) (Supplementary Table 7). When post-hoc
entering psychopathology as well as use of antipsychotics and
sleep medication as covariates along with age, sex, relative and
absolute motion in scanner in the partial correlation model, we
found that the significant negative association between callosal
FA and WASO, as well as SFI sustained including antipsychotics
(WASO: p = 0.011, r = −0.337; SFI: p = 0.019, r = −0.312),
sleep medication (WASO: p = 0.011, r = −0.338; SFI: p = 0.020,
r = −0.310), UHR-symptoms (WASO: p = 0.016, r = −0.319;
SFI: p = 0.033, r = −0.286), and depressive symptoms (WASO:
p = 0.010, r = −0.339; SFI: p = 0.020, r = −0.310) as covariates
(Supplementary Table 6).

In the multivariate PLS-C, we found no effect of entering
substance use, antipsychotic medication, and sleep medication
as covariates on the overall result (Supplementary Table 8).

However, in the post-hoc sensitivity analyses on a reduced
sample of antipsychotic free UHR individuals we found
a borderline significant association between a pattern of
disturbed sleep-wake measures (lower TST, higher DSI)
and lower FA in 7/48 WM regions explaining 11.38% of
the covariance (omnibus test p = 0.033, LV3 p = 0.082)
(see Supplementary Figure 4B for details). Furthermore,
the omnibus test was only significant at trend level when
psychopathology was included in the model (UHR-symptoms
omnibus test p = 0.052. LV3 p = 0.005, cross-block covariance
15.97%; Depressive symptoms omnibus test p = 0.087, no
significant LVs).

Discussion

To the best of our knowledge, this is the first study
in individuals at UHR investigating associations between
WM microstructure and subjective and objective sleep-wake
measures and how common clinical confounders may affect
this association.

As expected, UHR individuals presented with lower FA
compared to HC at a global as well as at a regional level in
CC. This result was supported in the multivariate test including
all 48 ROIs. The finding is in accordance with the majority of
studies in UHR individuals reporting subtle and widespread
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FIGURE 2

Relations between callosal fractional anisotropy and sleep measures. Scatterplots illustrating the significant relations between mean callosal
fractional anisotropy and sleep parameters. UHR, individuals at ultra-high risk for psychosis.

TABLE 3 Sleep parameters associated with global and callosal fractional anisotropy.

Global mean FA Corpus callosum FA

UHR HC ALL UHR HC ALL

Karolinska Sleep Questionnaire (the last 4 weeks)

DSI r = 0.133
p = 0.328

r = 0.296
p = 0.106

r = −0.031
p = 0.774

r = 0.156
p = 0.250

r = 0.319
p = 0.080

r = −0.015
p = 0.887

AWI r = −0.111
p = 0.415

r = 0.095
p = 0.610

r = −0.216
p = 0.040

r = −0.173
p = 0.203

r = 0.231
p = 0.211

r = −0.230
p = 0.029*

Actigraphy (last night)

SE r = 0.166
p = 0.221

r = 0.212
p = 0.251

r = 0.186
p = 0.078

r = 0.225
p = 0.096

r = 0.303
p = 0.097

r = 0.243
p = 0.020*

TST r = −0.100
p = 0.464

r = 0.275
p = 0.134

r = −0.029
p = 0.788

r = −0.113
p = 0.407

r = 0.253
p = 0.169

r = −0.041
p = 0.702

WASO r = −0.295
p = 0.027

r = 0.016
p = 0.932

r = −0.215
p = 0.041

r = −0.337
p = 0.011*

r = −0.165
p = 0.376

r = −0.283
p = 0.007*

SFI r = −0.274
p = 0.041

r = 0.231
p = 0.212

r = −0.187
p = 0.076

r = −0.313
p = 0.019*

r = 0.173
p = 0.352

r = −0.225
p = 0.032*

Table displays results from the partial correlation-analyses between mean global and callosal fractional anisotropy (FA) and sleep parameters, covaried for age, sex, and relative and absolute
motion in scanner. Pearson’s correlation tests were two-tailed. Bootstrapping (×1,000) was performed to provide confidence intervals.
Significance level under p < 0.05 are marked in bold. *Indicates significant correlation p < 0.05 after FDR correction for multiple comparisons according to the Benjamin-
Hochberg procedure.
AWI, Disturbed awakening index; CI, confidence interval, DSI, Disturbed sleep index; FA, fractional anisotropy, HC, Healthy controls; r, correlation coefficient; SE, sleep efficiency; SFI,
sleep fragmentation index; TST, total sleep time; UHR, individuals at ultra-high risk; WASO, wake after sleep onset.
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FIGURE 3

Multivariate correlations between sleep measures and regional fractional anisotropy. Figure displays the results from the multivariate PLS-C
analyses on UHR individuals linking covariance in a pattern of sleep disturbances with fractional anisotropy (FA) in 48 regions of interest. (A) The
pattern of variance six measures of sleep disturbances show that higher disturbed sleep index (DSI) and disturbed awakening index (AWI) marked
with purple contributes reliably to the pattern, as the confidence interval does not cross zero. (B) The pattern of sleep disturbances is linked to a
pattern of regional covariance in FA. The regions of interest which contributes reliably are visualized with the regions contributing reliably
projected on a standard brain derived from JHU white matter atlas. Regions colored yellow indicates higher FA, and blue color indicates lower
FA. Reliably contributing regions are fornix (higher FA) and left and right corticospinal tract, left cerebral peduncle, left medial lemniscus, and left
cingulum (hippocampus) (lower FA). (C) The pattern of covariance in all 48 regions of interest, with the regions contributing reliably marked in
turquoise. A list linking the numbers to the regions are displayed in the Supplementary Text 3. SE, sleep efficiency; JHU, John Hopkins
University; L, left; R, right; SFI, sleep fragmentation index; TST, total sleep time; WASO, wake after sleep onset.

WM alterations (Wheeler and Voineskos, 2014). We identified
an increased level of subjective sleep-wake disturbances (DSI
and AWI) among UHR individuals compared to HC. These
results indicate that both sleep continuity and awakening are
disturbed in UHR individuals, congruent with a recent meta-
analysis reporting significantly lower subjective sleep quality and
significantly more fragmented sleep among high risk individuals
(Clarke et al., 2021). We found no group difference regarding
the objective measures from the actigraph. Research on objective
sleep measures in UHR samples is scarce, as one trial has found

significantly reduced SE and significantly higher (i.e., more
negatively affected) WASO in UHR individuals compared to HC
(Lunsford-Avery et al., 2015), but a recent meta-analysis could
not confirm these findings (Clarke et al., 2021) and reported no
group differences.

As hypothesized, lower FA in CC was associated with
poorer outcomes in objective sleep-wake measures in UHR
individuals, although no group difference in the actigraphy
outcomes were observed. Lower FA was linked to more time
spend awake after sleep had occurred and restlessness during
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the sleep period, indicating more disrupted sleep in UHR
individuals, but not in HC. Nonetheless, when testing all
participants, the identical associations remained significant after
correction for multiplicity, which may reflect a problem with
power due to the smaller sample of HCs. The indication that
associations between regional FA and disturbed sleep-wake
measures are more pronounced in the patient group than
in HC was corroborated by the multivariate PLS-C within-
group analyses on all ROIs. Interestingly, this perspective
has become increasingly acknowledged, as several studies
have concluded that contrary to HC, behavioral measures
appear more vigorously associated with and dependent on
the structural characteristics of WM in UHR individuals and
patients with first-episode schizophrenia (Jessen et al., 2018;
Kristensen et al., 2019). A similar finding is reported by
Raikes et al. (2018) examining associations between subjectively
reported sleep disturbances and FA when comparing patients
with mild traumatic brain injury to controls (Raikes et al., 2018).
Although they did not identify any group difference on FA, they
found that higher regional FA was correlated with better sleep
quality in patients with mild traumatic brain injury, but not in
the controls.

In the full sample, the subjective sleep-wake measure AWI
was significantly correlated with FA in CC but contrary to our
expectations we did not find any firm associations between DSI
and FA in CC. However, the overall association between sleep-
wake disturbances and lower FA in widespread WM regions was
corroborated in the sensitivity PLS-C analyses including both
HCs and antipsychotic free UHR individuals (Supplementary
Figure 4A). Hence, in both HC and UHR individuals in
particular SE, WASO, SFI, and AWI appear associated with FA,
most pronounced bilaterally and in left hemisphere WM regions
located medial and ventrally. When examining UHR individuals
and HC separately, the significant association with AWI was
lost, likely due to loss of power, as the effect size was similar
and the direction of the correlation for the UHR individuals was
identical with that of the full sample. In support for this notion,
the negative correlation between FA in CC and the objective
sleep-wake measure WASO and SFI in the UHR individuals may
be considered as corresponding to AWI.

Although it is difficult to compare results across diverse
patient populations, Altendahl et al. (2020) have reported
callosal FA to be significantly associated with duration of REM-
sleep in older adults but could not confirm any links between FA
and subjective sleep measures or SE and TST (Altendahl et al.,
2020). In another longitudinal study by Telzer et al. (2015) sleep
variability in adolescents predicted callosal FA after 1.5 years
(Telzer et al., 2015). Both in patients with callosal agenesis
(Nielsen et al., 1992) and callosotomy (Avvenuti et al., 2019)
studies have indicated that CC plays a vital role for the cross-
hemispheric propagation of sleep oscillations and that aberrant
callosal FA may potentially interfere with synchronization both
in interhemispheric activity as well as in neuronal populations

within each hemisphere. Our results confirm the involvement
of callosal FA in sleep-wake disturbances as measured by
actigraphy in UHR individuals, although we cannot infer any
causality due to the cross-sectional design.

The multivariate correlation test revealed a link between
the Karolinska sleep measures of DSI and AWI contributing
reliably as indicative of sleep-wake disturbances, associated
with a pattern of lower FA in 5 ROIs, as well as higher FA
in fornix contributing reliably. The ROIs contributing reliably
appear mainly to be located ventrally, which is in accordance
with previous research locating sleep-wake regulation to sub-
thalamic circuits in the brainstem (Tahmasian et al., 2021). We
speculate if our findings could be extended to WM connecting
deep nuclei structures involved in sleep-wake regulation, such
as the brain stem with thalamus, hypothalamus, and basal
forebrain. Unfortunately, the current MRI technology does not
offer such resolution and our analysis therefore did not include
these structures.

Interestingly, FA in CC did not contribute reliably, which
indicates that the subjective sleep-wake disturbances may
predominantly be linked to other WM networks, compared
to the actigraphy measures. Our result may reflect the notion
that different aspects of sleep-wake regulation potentially is
linked to specialized and differentiated neuronal circuits and
corresponding structural networks (Héricé and Sakata, 2019).
Sleep-wake regulation involves a complex network including
different brain regions and neurotransmitters, and studies have
identified that specific damages on different parts of this
network result in various types of sleep-wake disturbances
(Schwartz and Roth, 2009; Brown et al., 2012; Scammell et al.,
2017). Hence, our results may reflect how the discrepancy
between self-reported and objective measures of sleep have been
interpreted as the measurement of different constructs which
present with different biological underpinnings (Rezaie et al.,
2018).

The directionality of FA may depend on the patient sample
or region of interest (Thomason and Thompson, 2011). FA is
an averaged measure derived from the diffusion signal. Hence,
being susceptible for extracellular fluids and crossing fibers
(Weinberger and Radulescu, 2020), FA lacks microstructural
specificity and great caution in the interpretation must be
exhibited, as there is no direct correspondence between
the MRI-derived measures and the biological underpinnings
(Weinberger and Radulescu, 2020). In particular considering
the contra intuitive directionality of FA in fornix contributing
reliably in the PLS-C, the interpretation must be exhibited
cautiously due to fornix’ proximity to cerebrospinal fluid, which
could induce volume effects (Kaufmann et al., 2017).

Our results indicate, that although use of nicotine may
affect sleep measures, no substance use affected the association
between WM and sleep in CC. Previous studies have reported
mixed results, a metanalysis found that substance use disorder
(alcohol, cocaine and opiates) was associated with FA in CC,
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but for cannabis and nicotine the results were mixed (Hampton
et al., 2019). However, the prevalence of substance use disorder
in our sample is limited, and the study was not specifically
designed to address this topic, and the result must therefore be
interpreted cautiously.

Our exploratory analyses from partial correlations revealed
that medication and psychopathology did not confound
the association between FA and the measures of WASO
and SFI. The result is not surprising, as we did not observe
any group difference on these measures comparing UHR
individuals to HC. However, the post hoc sensitivity PLS-C
analyses on antipsychotic-free UHR individuals indicated a
potential effect of antipsychotic medication on the association
between sleep-wake measures and FA. The pattern of sleep-
wake disturbances in antipsychotic free UHR individuals
indicated that mainly reduced sleep-time (lower TST)
and disturbed sleep (higher DSI) contributed reliably to
the covariation with lower regional FA (Supplementary
Figure 4B). When UHR individuals on antipsychotic
medication were included, sleep time (TST) was no longer
contributing reliably to the pattern of sleep-wake disturbances,
whereas difficulties in awakening, non-refreshing sleep
and exhaustion at awakening (higher AWI) were added as
reliable contributors (Figure 3). Although the results with
the reduced sample size were only at trend level, we notice
that it appeared to reflect the sedative effect antipsychotic
medication can have, which lends some external and clinical
validity to the finding that antipsychotic medication may
confound the association between sleep-wake disturbances
and regional FA by inducing more sleep time yet increased
sleepiness at awakening. It appears to be recommendable to
examine the effect of antipsychotics when investigating sleep
disturbances.

Finally, in the multivariate PLS-C, the level of
depressive symptoms (MADRS) as well as the level of
UHR-symptoms (CAARMS) appeared to confound the
association between regional FA and AWI as well as
DSI suggesting that the subjective sleep-wake measures
may be more susceptible for level of psychopathology.
Moreover, the group difference between UHR individuals
and HCs on AWI and DSI were highly significant. As
a result of this finding, we post-hoc explored if level
of depressive and UHR-symptoms would mediate the
association between regional FA contributing reliably
and AWI/DSI (Supplementary Table 9). As one pathway
between regional FA and psychopathology were only at trend
level (p = 0.063), the model did not fulfill requirements
for establishing a mediation effect, although all other
requirements were met and a significant mediation effect
appeared to be present, showing that level of depressive
symptoms mediated the association between FA in
fornix and DSI. We believe this trend level association
may be due to reduced power, hence reflecting a Type

2 error. A recent study demonstrated how diffusion
metrics within the CC partially mediated the associations
between poor sleep quality/high stress and depressive
symptomatology (Li et al., 2020). To confirm the finding
of a potential mediating effect of level of psychopathology
on the link between WM microstructure and sleep-wake
disturbances (which potentially could explain the different
associations in patients compared to controls), a study with
a larger sample size designed for the purpose needs to be
performed.

Methodological considerations

PLS-C can be difficult to interpret due to the complexity
of linking multivariate data patterns. Furthermore, we did not
identify any clear interaction effect. However, repeating the
within-group analyses from the primary analyses appeared to
confirm aspects of our univariate findings and contribute with
additional and more specific information on the associations
between WM ROIs and sleep-wake disturbances.

A general limitation to the study is the fact that the analyses
were secondary to an RCT and this research question was
formulated post-hoc. Furthermore, the matching between HC
and UHR individuals in the main trial was not complete
in this subsample. Further, we would optimally have cross-
validated our results in an independent sample. As this was
not possible, the results must be interpreted cautiously and
should be evaluated as hypothesis generating with a need
for replication in a larger sample. Nonetheless, we trust the
consistent associations across multiple tests to represent a
valuable contribution indicative of specific associations between
regional WM and sleep in a group of vulnerable patients.

The actigraphy measures were only recorded for a 24-
h period, which makes it susceptible to individual and
spurious variations. Actigraphy tends to overestimate sleep
length and efficiency compared to polysomnography, and
overestimation is more pronounced in individuals with sleep-
wake disturbances than in healthy individuals (Fekedulegn et al.,
2020). To minimize this overestimation, we did supplement
the actigraphy with a sleep diary, estimating time in bed more
precisely, but unfortunately no data on daytime sleep were
obtained. To increase the reliability of actigraphy compared to
polysomnography (which determine sleep stages in contrast to
actigraphy measures), studies have suggested a minimum of 5–
7 consecutive nights of actigraphy, especially when measuring
TST (Aili et al., 2017; Fekedulegn et al., 2020). The short
duration of the actigraphic measurement reduces its power to
detect between-group differences in this study. Furthermore, the
one-night actigraphic measurement renders the data sensitive
for bias due to lack of habituation to the equipment on the night
of examination. This fact might explain why average WASO in
the HC in this study was longer [55.74 min (42.64)] than what
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is usually considered normative in healthy adults (Fekedulegn
et al., 2020). This suggests that the primary finding in these UHR
individuals are subjectively poor sleep quality. Hence, although
the actigraphy data are not optimally valid we nonetheless
regard the contribution valuable, as the results appear clinically
meaningful as well as mutually confirming.

Strengths of this study comprise the consistent use of
relevant covariates along with a meticulous examination of
potential confounders. Furthermore, we believe this is the
first study to investigate links between WM and sleep-wake
disturbances in UHR individuals. Although our findings call
for replication in larger samples, our results may contribute
with preliminary hypotheses regarding neurobiological
underpinnings of a modifiable risk factor for developing
psychosis. Future perspectives of examining the relationship
between brain structure/functioning and sleep parameters
might be suggested to include AI techniques. With this
approach multiple sources of information from advanced MR-
scans, biological measures of sleep continuity/architecture
and subjective measures of sleep quality could be
modeled for purposes of prediction and eventually choice
of treatment.

Conclusion

UHR individuals presented with lower global and
callosal mean FA compared to HC. In UHR individuals,
compromised callosal microstructure was associated with
disturbed objectively measured sleep-wake functioning which
was not confounded by substance use or medication.
Subjectively measured sleep-wake disturbances were associated
with a pattern of lower FA in ventrally located WM regions
in UHR individuals. This association was not confounded
by substance use or medication, but level of depressive and
UHR symptoms partly explained it, pointing to a complex
interaction between biological factors and psychopathology
as determinants of the sleep-wake pattern. These findings
suggest sleep disturbances as a potential treatment target,
but future longitudinal studies are needed to address the
direction of causality.
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Background: Structural neuroimaging studies have identified similarities in the

brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder

(BP), with overlap in regions of gray matter (GM) deficits between the two

disorders. Recent studies have also shown that the symptom phenotypes

associated with SZ and BP may allow for a more precise categorization

than the current diagnostic criteria. In this study, we sought to identify GM

alterations that were unique to each disorder and whether those alterations

were also related to unique symptom profiles.
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Materials and methods: We analyzed the GM patterns and clinical symptom

presentations using independent component analysis (ICA), hierarchical

clustering, and n-way biclustering in a large (N ∼ 3,000), merged dataset

of neuroimaging data from healthy volunteers (HV), and individuals with

either SZ or BP.

Results: Component A showed a SZ and BP < HV GM pattern in the bilateral

insula and cingulate gyrus. Component B showed a SZ and BP < HV GM

pattern in the cerebellum and vermis. There were no significant differences

between diagnostic groups in these components. Component C showed a

SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical

clustering of the PANSS scores and the ICA components did not yield

new subgroups. N-way biclustering identified three unique subgroups of

individuals within the sample that mapped onto different combinations of ICA

components and symptom profiles categorized by the PANSS but no distinct

diagnostic group differences.

Conclusion: These multivariate results show that diagnostic boundaries are

not clearly related to structural differences or distinct symptom profiles. Our

findings add support that (1) BP tend to have less severe symptom profiles

when compared to SZ on the PANSS without a clear distinction, and (2) all the

gray matter alterations follow the pattern of SZ < BP < HV without a clear

distinction between SZ and BP.
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Introduction

Schizophrenia (SZ) and bipolar disorder (BP) are
characterized by biological and clinical heterogeneity.
Neuroimaging studies have found stable and replicable
brain structural alterations associated with one or the other
disorder [e.g., schizophrenia (Aine et al., 2017; Kochunov
et al., 2019)]. There are also gray matter abnormalities related
to specific symptom profiles such as psychosis (Meda et al.,
2015; Clementz et al., 2016) or catatonia states (Hirjak et al.,
2020), and to duration of illness instead of diagnosis, as
well as confounds of medication(s) (Hartberg et al., 2015;
Vita et al., 2015; Jørgensen et al., 2016; di Sero et al., 2019;
Barth et al., 2020), or even structural patterns that cross
diagnostic lines (Andreassen et al., 2013; Yao et al., 2017;
Ruderfer et al., 2018; Kochunov et al., 2022). Untangling
these unique structural features and related symptoms
profiles from one another may allow us to find clinically
meaningful subgroups within each disorder that may aid in
the development of more precise diagnostic and treatment
options.

Schizophrenia and BP are severe, heritable, and most
importantly, debilitating mental illnesses both categorized by

cognitive impairments, affective symptoms, and behavioral
dysfunction (American Psychiatric Association, 2013).
Structural neuroimaging studies have also identified similarities
in the brain correlates of SZ and BP, with overlap in regions
of gray matter (GM) deficits between the two disorders
(Doan et al., 2017; Schwarz et al., 2019; Sorella et al., 2019;
Lee D.-K. et al., 2020; Cheon et al., 2022). Accumulating
evidence suggests that these two disorders may be better
described along a continuum, not as two distinct disorders,
of varying cognitive deficits and psychosis (Jabben et al.,
2010; Hill et al., 2013). Examining SZ and BP together,
as opposed to separately, may allow for the emergence of
unique subgroups that may have been previously masked by
diagnostic categories. Clementz et al. (2016) identified three
distinct homogeneous subtypes based on a clinical profile of
cognition and sensorimotor responses to functional tasks,
rather than diagnostic boundaries, when SZ and BP with
psychosis samples were combined (Clementz et al., 2016). This
approach, and specifically these biomarkers have shown to
replicate over time (Clementz et al., 2022) and have identified
more precise representations of the symptom profiles associated
with SZ and BP (Hudgens-Haney et al., 2020). We sought to
expand upon these results through a multivariate approach
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and a larger dataset (N ∼ 3,000) of both individuals with
schizophrenia and individuals with bipolar disorder I with
psychosis.

While the heterogeneity between patients is substantial
(Alnæs et al., 2019; Wolfers et al., 2021), schizophrenia has been
associated with regional gray matter reductions throughout
the cortex, analyzed either voxel by voxel or region by region
(Honea et al., 2005; van Erp et al., 2018; Rootes-Murdy
et al., 2021). Source-based morphometry (SBM), a multivariate
approach, has identified covarying patterns of lower gray matter
concentrations in the salience network, default mode network,
insula-medial prefrontal cortex (MPFC), and the cerebellum
(Turner et al., 2012; Ivleva et al., 2013; Gupta et al., 2015).
One of the largest regional gray matter concentration effects
was noted in the superior temporal gyrus (Gupta et al.,
2015) and the cerebellum (Moberget et al., 2018). However,
higher gray matter concentrations have been identified in the
cerebellum (Gupta et al., 2015) and bilaterally in both the pre-
and postcentral gyri (Mennigen et al., 2019). Regardless of
the few discrepancies, there are clear patterns and structures
with GM deficiencies in individuals with SZ. Similarly, gray
matter analyses in BP have shown volumetric reductions
throughout the cortex, with smaller effect sizes compared to
SZ, however, these studies viewed BP in a general manner
and did not specify bipolar subtype, or whether participants
had psychosis (Murray et al., 2004; Bora, 2015; de Zwarte
et al., 2019). Therefore, it remains unclear whether these two
disorders are representations of discrete categories or if they
fall along a spectrum of cognitive, affective, and behavioral
disturbances.

In this study, we took a cross-disorder approach motivated
by the overlapping symptoms and structural patterns observed
in both schizophrenia and bipolar disorder. However, given
the symptom variation within each disorder, we hypothesized
that there may be subclusters within and across each disorder,
that may help distinguish the underlying neural networks
involved in each disorder. For example, delusions in bipolar
disorder, were associated with gray matter reductions largely
in the frontal cortex and amygdala and SZ showed similar
patterns with additional contributions from subcortical regions
(Rootes-Murdy et al., 2022). Within individuals with SZ, a
symptom phenotype consisting of higher delusional symptoms,
suspiciousness, hallucinations, and anxiety [measured from the
Positive and Negative Syndrome Scale (PANSS); (Kay et al.,
1987)] was associated with a covarying pattern of lower GM
concentration in inferior temporal gyri and fusiform gyri
and higher GM concentration in the sensorimotor cortex
(Mennigen et al., 2019). A similar analysis in BP showed a
symptom phenotype of mood symptoms (anxiety, depression,
and guilt) was associated with lower GM concentration
in the right middle/superior temporal gyrus (Jiang et al.,
2020). The use of a large, cross-diagnostic sample may allow
for examination of covarying gray matter patterns that are

associated with these two disorders and with specific symptom
presentations.

Structural studies in schizophrenia and bipolar disorder
report inconsistencies on the patterns that are unique to each
disorder, and how the shared symptoms between disorders relate
to the structural deficits identified within the disorders. For this
study, we sought to examine the differences and similarities in
gray matter and symptom profiles between schizophrenia and
bipolar disorder in a three-pronged approach. To compare the
patterns of gray matter variation in a large, combined sample
of schizophrenia, bipolar disorder, and healthy volunteers
we used a multivariate data-driven approach, independent
component analysis (ICA). Next, we used a hierarchical cluster
analysis of psychosis subscales (PANSS positive, negative, and
general) to identify patterns in the symptom presentation of
schizophrenia and bipolar disorder and examine the groupings
in symptom presentation. We also used hierarchical cluster
analysis to identify pattern groupings in the gray matter
concentration across participants using the ICA gray matter
loading coefficients. Finally, we applied an N-way biclustering
analysis (Rahaman et al., 2020) using both the PANSS subscales
and the ICA loading coefficients to identify possible subgroups
within and across each disorder that combine unique symptom
and gray matter profiles.

Materials and methods

Participants

This study included data from 1,217 individuals diagnosed
with schizophrenia, 301 individuals diagnosed with bipolar
disorder I, and 1,543 unrelated healthy volunteers from
the following datasets, many previously described in the
literature; the Functional Imaging Biomedical Information
Research Network study (FBIRN 3; multiple sites in the
USA) (Potkin et al., 2009), the Center of Biomedical Research
Excellence study (COBRE; Albuquerque, NM, USA) (Gupta
et al., 2015), the Bipolar and Schizophrenia Network for
Intermediate Phenotypes 1 study (B-SNIP 1; multiple sites in
the USA) (Meda et al., 2015), the MIND Clinical Imaging
Consortium study (MCIC; Albuquerque, NM, USA) (Gollub
et al., 2013), the Northwestern University Schizophrenia Data
study (NW; Chicago, IL, USA) (Wang et al., 2013), the
Human Brain Informatics (HUBIN; Stockholm, Sweden) (Hall
et al., 2002), Thematic Organized Psychosis [(TOP) research;
Oslo, Norway] (Ringen et al., 2008; Rimol et al., 2012),
Olin (Olin Center for Neuropsychiatric Research) (Yao et al.,
2017), the Maryland Psychiatric Research Center (MPRC,
Baltimore, MD, USA) (Kochunov et al., 2016, 2017), and
from the Centre for Addiction and Mental Health (CAMH,
Toronto, Canada) (Hawco et al., 2019). A diagnosis of
SZ was confirmed by the Structured Clinical Interview for
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Diagnosis (SCID) for Diagnostic and Statistical Manual of
Mental Health 4th Edition (DSM-IV or DSM-IV TR) as
part of each study site’s protocol. For this study, participants
with a diagnosis of SZ or schizophreniform were included.
All data were collected under approval of local institutional
review boards and all participants provided informed consent.
The original study designs are described in the previous
publications (cited above). Scanning information for each site
can be found in Table 1. Participant demographic information
including age, sex, diagnosis, and PANSS scores are included in
Table 2.

MRI acquisition and preprocessing

T1-weighted structural MRI images were acquired from
various scanners with information further detailed in the
original studies (see Table 1). All T1-weighted images used
the following preprocessing protocol for data harmonization.
Images were co-registered and normalized to the standard
Montreal Neurological Institute (MNI) template using a
12-parameter affine model, resliced to a voxel size of
2 mm × 2 mm × 2 mm and segmented into gray
matter, white matter, and cerebro-spinal fluid using Statistical
Parametric Mapping 12 (SPM12).1 Individual images were

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

correlated with the group-generated gray matter template, and
images with low correlations with the template (r < 0.87)
were removed as outliers in keeping with the standards of
previous studies (Turner et al., 2012; Gupta et al., 2015).
The remaining images were smoothed at 8 mm FWHM
prior to analyses. These preprocessing steps resulted in
a total of 3,018 gray matter concentration images (1,217
individuals diagnosed with schizophrenia, 301 individuals
diagnosed with bipolar disorder I, and 1,543 unrelated healthy
volunteers).

Independent component analysis

We utilized the source-based morphometry (SBM) module
of the GIFT Toolbox2 to perform independent component
analysis (ICA) (Xu et al., 2009; Gupta et al., 2019). SBM
identifies patterns which covary among the participants. This
approach decomposes the gray matter images of the dataset
into linear combinations of gray matter patterns or components.
SBM is a linear model with the sum of component maps
and participant loadings making up the input segmentation
maps. This technique results in components (or patterns) of
gray matter which covary across participants. The contribution
of a component for each participant, or the individual

2 https://trendscenter.org/software/gift/

TABLE 1 Scanning and site information for each dataset.

Study Size Sites Scanner (T) Sequence Voxel size (mm) Orientation

BSNIP 1 773 5 GE Signa (3) MPRAGE 1 × 1 × 1 Sagittal

Philips Achieva (3) IR-SPGR

Siemens Allegra (3)

Siemens Trio (3)

GE Signa HDxt (3)

Siemens Trio (3)

CAMH 356 3 Siemens Trim Trio (3) Grad Echo 1 × 1 × 1

GE Signa (3) Grad Echo 1 × 1 × 1

COBRE 148 1 Siemens Tim Trio (3) MPRAGE 1 × 1 × 1 Sagittal

FBIRN3 343 8 Siemens Tim Trio (3) MPRAGE 1.1 × 0.9 × 1.2 Sagittal

HUBIN 158 1 GE Signa (1.5) SPGR 1 × 1 × 1 Coronal

MCIC 210 4 Siemens (1.5) Grad Echo 0.625 × 0.625 × 1.5 Coronal

GE Signa (1.5) Grad Echo 0.664 × 0.664 × 1.6

Siemens Trio (3) Siemens (1.5) MPRAGE 0.625 × 0.625 × 1.5

Grad Echo 0.625 × 0.625 × 1.5

MPRC 389 Siemens Trio (3) Grad Echo 1.7 × 1.7 × 3 Axial

Allegra (3) 1.7 × 1.7 × 4 Axial

NW 136 1 Siemens (1.5) MPRAGE 1 × 1 × 1

Olin 159 1 Siemens Allegra (3) Grad Echo 3.75 × 3.75 × 4 Ascending

TOP 387 1 Siemens (1.5) MPRAGE 1.33 × 0.94 × 1 Sagittal

All scanning parameter information was obtained from the original study publications.
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TABLE 2 Demographic information across sites.

BSNIP CAMH COBRE FBIRN HUBIN MCIC MPRC NW Olin TOP Total

Total participants 774 356 148 343 158 210 389 136 159 387 3060

Age in years 35.62 (12.41) 32.05 (10.34) 35.51 (11.86) 38.36 (11.32) 41.65 (8.61) 33.08 (10.84) 35.69 (14.20) 32.72 (13.16) 32.74 (11.90) 33.41 (9.63) 35.41 (21.12)

Diagnosis

BD 191 0 0 0 0 0 0 0 0 109 300

SZ 248 208 71 175 92 93 124 70 40 96 1217

HV 335 148 77 168 66 117 265 66 119 182 1543

Males (%) 376 (48.6%) 222 (62.4%) 111 (75%) 251 (73.2%) 107 (67.7%) 141 (67.1%) 205 (52.7%) 87 (64%) 87 (54.7%) 202 (52.2%) 1789 (58.5%)

Duration of illness in years __ __ 16.0 ± 12.0 18.0 ± 11.8 __ 12.32 ± 10.5 __ 13.09 ± 12.4 __ 7.1 ± 6.3 14.27 ± 11.2

CPZ equivalent in mg/d __ __ 516.3 ± 1095.4 542.3 ± 1271.4 __ 511.70 ± 721.9 __ __ __ __ 653 ± 1094.9

Total PANSS scores 418 0 68 172 0 0 0 0 2 200 860

Positive subscale 15.12 (5.44) __ 15.18 (4.96) 15.37 (5.00) __ __ __ __ 11.00 (1.41) 12.11 (5.12) 14.47 (5.39)

Negative subscale 14.44 (5.64) __ 14.71 (4.62) 14.47 (5.59) __ __ __ __ 19.50 (13.44) 12.35 (5.91) 13.99 (5.70)

General subscale 30.71 (8.55) __ 29.93 (8.68) 28.63 (87.35) __ __ __ __ 30.00 (5.66) 28.28 (7.69) 29.66 (8.19)

PANSS total score 60.27 (16.70) __ 59.81 (14.40) 58.50 (14.85) __ __ __ __ 60.50 (17.68) 52.75 (16.08) 58.12 (16.28)

All values are means unless otherwise noted, SD in parenthesis. SD, standard deviation; BD, bipolar disorder; SZ, schizophrenia; HV, healthy volunteers; AP, antipsychotic medication; CPZ, chlorpromazine equivalent; PANSS, positive and negative
symptom scale. Duration of illness was calculated as follows: COBRE, calculated by subtracting age at first psychiatric illness/symptoms from current age; FBIRN, calculated by subtracting age at first psychotic onset from current age; NW, DOI listed;
MCIC, LENGTH_OF_ILLNESS variable which was based on diagnosis/treatment/onset through different algorithm.
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loading coefficient, indicates that that pattern of gray matter
variation is specifically weighted for that individual (Xu et al.,
2009).

The minimum description length (MDL) algorithm
(Rissanen, 2018) estimated the number of components for the
gray matter structural data to be 44. To ensure stability, the
infomax ICA algorithm was applied with 10 runs and ICASSO
(Himberg et al., 2004) determined the most stable run and
number of components. High component stability was achieved
for all but two components (N = 42).

Of the 44 components estimated in the ICA, the components
with the highest variance percentages (>5%) were selected
for the main analyses (4 total). First, we applied a linear
mixed model (LMM) correction to the loading coefficients,
including age and sex as fixed effects, and site (29 in total) as
a random effect. The corrected loading coefficients were used in
an ANOVA model as the dependent variables, with diagnostic
group as a factor (healthy volunteers, bipolar disorder, and
schizophrenia). Statistical results for all group comparisons (HV
v BP; HV v SZ; BP v SZ) were thresholded at α < 0.0125 with
Bonferroni (p = 0.05/4) correction. Secondary ANOVA models
for additional analyses are described below. For the secondary
analyses, statistical results for all group comparisons (HV v
BP; HV v SZ; BP v SZ) were thresholded at α < 0.00125 with
Bonferroni (p = 0.05/40) correction. All models were completed
using R v3.6.2 (R Core Team, 2014).

Assessments

The Positive and Negative Syndrome Scale (PANSS) is the
gold-standard symptom assessment for psychotic disorders
(Kay et al., 1987) and one of the most commonly used
questionnaires for symptom assessment in SZ over the last
2 weeks, and given the symptom overlap the PANSS has also
been adopted to assess BP symptomatology (Kaltenboeck
et al., 2016). Briefly, the PANSS allows for assessment of
dimension specific abnormalities across positive, negative,
and general symptoms. The positive symptom subscale
includes seven items: delusions, conceptual disorganization,
hallucinations, excitement, grandiosity, suspiciousness, and
hostility (range: 7–49). The negative symptom subscale
includes seven items: blunted affect, emotional withdrawal,
poor rapport, passive/apathetic social withdrawal, difficulty
in abstract thinking, lack of spontaneity and flow of
conversation, and stereotyped thinking (range: 7–49).
The general symptom subscale includes 16 items: somatic
concerns, anxiety, guilt feelings, tension, mannerisms and
posturing, motor retardation, uncooperativeness, unusual
thought content, disorientation, poor attention, lack of
judgment and insight, disturbance of volition, poor impulse
control, preoccupation, and active social avoidance (range:
16–112). The PANSS was administered at six study sites,

totaling 860 individuals with a completed PANSS (both SZ
and BP diagnoses were included). For the purposes of this
study, the PANSS subscales (positive, negative, and general
psychopathology) were individually totaled and used for
subsequent hierarchical cluster analyses and bicluster analyses
(see below).

Hierarchical cluster analysis

Using individuals with PANSS scores (N = 860), we
completed spectral clustering on the three subscales of the
PANSS, which informed the number of eigenvalues. In brief,
spectral clustering uses eigenvalues of the similarity matrix of
the data to perform dimensionality reduction before clustering
in the reduced space (von Luxburg, 2007). This analysis was
completed using the normalized symmetric Laplacian matrix
in MATLAB 2020b with the “spectralcluster” function (Ng
et al., 2001). The number of eigenvalues approximating to
or equaling zero was six and therefore, the three subscale
scores were used to create six unique clusters. Using k = 6,
we conducted a hierarchical cluster analysis with the PANSS
subscales. A MANCOVA (FDR p corrected) was used to
examine the differences in the loading coefficients from the ICA
components between each of the resulting clusters of PANSS
subscale scores.

The same clustering process was completed with all the
loading coefficient values from the ICA (N = 44 components) on
the same subset of individuals (N = 860). A hierarchical cluster
analysis was utilized with k = 4 based on the spectral clustering
estimate. Once again, a MANCOVA (FDR p corrected) was used
to examine the differences in the PANSS subscale scores between
each of the resulting clusters of loading coefficients.

N-way biclustering

Biclustering is a data mining technique that allows for
pattern detection in large or high dimensional data. The n-way
biclustering algorithm utilized in this study has been more
completely described previously in the literature (Rahaman
et al., 2020). We utilized the NBIC module of the GIFT Toolbox3

to perform n-way biclustering. The algorithm uses a depth-first
search (DFS) technique to explore the data matrix (subjects by
measurements) with the goal of identifying submatrices with
homogeneity in the pre-selected columns. It is not a requirement
of the algorithm for the submatrices to involve the entire matrix
and therefore, the resulting groupings may only involve a subset
of the sample. In the data matrix for this study, the columns were
composed of both the PANSS subscale scores and the loading

3 https://github.com/trendscenter/gift

Frontiers in Human Neuroscience 06 frontiersin.org

113

https://doi.org/10.3389/fnhum.2022.1001692
https://github.com/trendscenter/gift
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1001692 November 4, 2022 Time: 15:43 # 7

Rootes-Murdy et al. 10.3389/fnhum.2022.1001692

coefficients of 44 ICA components while participants were listed
in the rows, resulting in an 860 × 47 matrix.

Results

Independent component analysis
results

Gray matter clustering approach with ICA yielded
44 components. Of the 44 components, there were four
components identified with high variance (>5%). From
those four components, two (Components A and B) showed
significant group differences; see Figures 1, 2 for more details.
Component A identified a pattern of covarying gray matter
bilaterally in the insula and cingulate gyrus and showed when
comparing HV to both diagnostic groups [F(2, 3056) = 115.42,
p < 0.001]. A Bonferroni’s test for multiple comparisons
(0.05/4) showed significant differences on the Component A
loading coefficients between HV and SZ [t(2443.73) = 14.47,
p = 1.28E-45] and BP [t(1840) = 7.90, p< 4.78E-15]. There were
no significant differences on the loading coefficients between SZ
and BP identified in this component [t(1515) = 1.35, p = 0.173].
Component B also showed more gray matter concentration
in the cerebellar hemispheres and vermis when comparing
HV to both diagnostic groups [F(2, 3056) = 16.14, p < 0.001].
Bonferroni’s test for multiple comparisons found significant
differences on the Component B loading coefficients between
HV and SZ [t(2757) = 5.53, p = 3.59E-8] and BP [t(1840) = 2.97,
p = 0.003]. Again, there were no significant differences between
SZ and BP [t(1515), p = 0.636].

Next, the remaining forty loading coefficients (with low
variances) were compared for group differences [Bonferroni
corrected for multiple comparisons (0.05/40)] using the
same models as above. One component, Component C
(variance = 0.62%; Figure 3), showed a significant group
effect [F(2, 3056) = 48.15, p < 0.001] and Bonferroni’s test
found significant difference on the Component C loading
coefficients between SZ and BP [t(1515) = 3.95, p = 8.20E-
5]. This component identified a pattern of lower gray matter
bilaterally in the temporal poles, with lower loading coefficients
in SZ compared to BP (p < 0.001) and schizophrenia
and healthy volunteers [t(2757) = 9.78, p < 3.06E-22].
Loading coefficients between individuals with bipolar disorder
and healthy volunteers were similar for this component
[t(1840) = 1.97, p = 0.05]. Component C is the only component
that identified a distinction between SZ and BP.

There were 17 additional components that showed
significant group effects. See Table 3 for the component
numbers, their spatial map peaks, and the statistics regarding
the group effect size. See Supplementary Table 1 for a list
of all remaining components that did not show significant
group differences.

Hierarchical clustering results

Schizophrenia had more severe symptoms in the PANSS
positive [t(675.649) = 11.02, p = 4.40E-26], PANSS negative
[t(819.79) = 13.45, p = 2.10E-37], and PANSS general
[t(658.72) = 6.16, p = 1.29E-9] than BP. There was also
a significant site effect (N = 16) for all PANSS subscales;
PANSS positive [F(15,844) = 6.266, p = 1.081E-12], PANSS
negative [F(15,844) = 3.28, p = −2.4E-5], and PANSS general
[F(15,844) = 7.940, p = 5.921E-17]. In the hierarchical clustering
analysis of the PANSS scores, while each cluster had participants
with either SZ or BP diagnosis, there was a significant
difference in diagnostic group membership across the six
clusters [χ2(5) = 86.68, p < 0.001]. Cluster 6, characterized
by lowest PANSS subscale scores had a significantly higher
percentage of BP (53.1% of the cluster) than did any other
cluster. Cluster 1, in contrast, was characterized by the highest
PANSS negative, and slightly above average PANSS positive
and general subscale scores, had only two individuals with
BP (6.06%). See Table 4 and Figure 4 for more information
on cluster membership, average symptoms, and diagnosis by
cluster. See Supplementary Figure 2 for the breakdown of the
three PANSS subscales by each cluster. The clusters’ membership
was used as a grouping factor in a MANCOVA on all 44
components’ loading coefficients (FDR p corrected). Cluster 2
had less gray matter in Component B [F(5,854) = 3.44, p = 0.004]
than Cluster 3 and Cluster 6 but neither association passed FDR
correction (p = 0.008 and p = 0.007, respectively). No other
between groups association of cluster membership and loading
coefficients passed FDR correction (all p values > 0.005).

In the hierarchical cluster analysis of the 44 gray matter
components’ loading coefficients, four clusters were identified.
The four clusters appear to fall along the divisions of cortical
regions, subcortical regions, and two cerebellar regions (see
Figure 5 and Table 5 for cluster membership). There were
no significant associations between membership in any of the
four ICA clusters and the six PANSS clusters [χ2(15) = 16.79,
p = 0.331]; any of the PANSS subscale scores (PANSS positive
[χ2(52) = 37.87, p = 0.929]; PANSS negative [χ2(58) = 57.20,
p = 0.505]; PANSS general [χ2(78) = 93.33, p = 0.114]
or diagnostic group membership [χ2(2) = 1.22, p = 0.543].
Supplementary Figure 1 details all the ICA components in the
cluster groupings.

N-way biclustering

The bi-cluster analyses identified nine bi-clusters within
the data matrix. Of those, three bi-clusters had high reliability
(freq > 3). Spatial maps of the components included in these
clusters, heat maps indicating the loading coefficients of each of
these spatial maps, and heat maps of the related PANSS subscale
scores are shown in Figures 6–8, respectively.
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FIGURE 1

Gray matter group differences in independent component analysis (ICA) results for healthy volunteers, individuals with schizophrenia, and
individuals with bipolar I disorder. (A) Group effects of diagnosis on loading coefficients for Component A. Schizophrenia (SZ) and bipolar
disorder (BP) had significantly less gray matter when compared to healthy volunteers but did not differ significantly from each other.
(B) Component A showed less gray matter concentration in the bilateral insula and cingulate gyrus in individuals with SZ and individuals with BP
compared to healthy volunteers. Images are thresholded at 2.5.

Bicluster 1 included 80 individuals (14 BP; 66 SZ) and
clustered on all three PANSS subscales (positive, negative, and
general) and five ICA components. See Figure 6 for more details.
The average age for bicluster 1 was 36.35 years old (SD = 11.08)
and there were 50 male participants (62.50%). Bicluster 1 had
more severe PANSS scores than the rest on all three subscales:
positive mean = 20.14 (SD = 3.59); negative mean = 18.84
(SD = 5.44); general mean = 39.84 (SD = 6.30). The five ICA
components showed varying degrees of alterations in the gray
matter of the thalamus, cerebellum, occipital lobes, rectus, and
the temporal poles. Of these, only two components (28 and
C) showed group differences between healthy volunteers and
schizophrenia.

Bicluster 2 included 76 individuals (17 BP; 59 SZ) and
clustered on PANSS positive scores, PANSS general scores, and
five ICA components. See Figure 7 for more details. The average
for bicluster 2 was 37.09 years old (SD = 11.00) and there were
47 male participants (61.84%). Bicluster 2 had, on average, more
severe PANSS positive (mean = 19.89; SD = 3.90) and lower
PANSS general (mean = 16.80; SD = 6.64) scores than the rest
of the sample. All five ICA components also showed lower

gray matter concentration (cluster peaks identified in the insula,
cerebellum, and supplemental motor and motor cortices) when
compared to the rest of the sample. Of these five components,
two components (A and B, described above) showed diagnostic
group difference for both SZ and BP (HV > SZ; HV > BP),
and one showed a significant group difference between HV
and SZ.

Bicluster 3 consisted of 112 participants (32 BP; 80 SZ) and
five ICA components but no PANSS subscales. See Figure 8 for
more details. The average age for bicluster 3 was 36.66 years
old (SD = 11.18) and there were 67 male participants (59.82%).
All five ICA components within bicluster 3 showed significant
group differences (A and 24: HV > SZ, HV > BP; 10: HV > SZ;
C: HV > SZ, BP > SZ; 28: HV > SZ). Bicluster 3 had
reduced gray matter concentration in the frontal middle gyrus,
frontal inferior gyrus, insula, cerebellar Crus I, rectus, and
fusiform gyrus.

To gauge consistency between the hierarchical and
biclustering methods, we asked whether the participant groups
identified in each overlapped. Of the four hierarchical clusters
based on gray matter loading coefficients only one cluster
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FIGURE 2

Cerebellum and vermis gray matter group differences in independent component analysis (ICA) results for healthy volunteers, individuals with
schizophrenia, and individuals with bipolar I disorder. (A) Group effects of diagnosis on loading coefficients for Component B. Schizophrenia
(SZ) and bipolar disorder (BP) had significantly less gray matter compared to healthy volunteers but did not significantly differ from each other.
(B) Component B showed less gray matter concentration in the cerebellum and vermis in individuals with SZ and individuals with BP compared
to healthy volunteers. Images thresholded at 2.5.

had the greatest amount of overlap with all the biclusters
(hierarchical cluster shown in light blue, Figure 4). There
were 69 (61.61%) individuals from bicluster 3, 37 (48.68%)
individuals from bicluster 2, and 9 (11.25%) from bicluster 1 in
this cluster. There were eight individuals who were present in
all three biclusters. We would not expect to see exact overlap
between the clustering as the PANSS scores are influencing
the identification of reliable groups in the n-way biclustering
and hierarchical clustering was used to examine either the
ICA components or PANSS symptoms scores (two separate
models).

We completed subsequent post hoc analyses with individuals
for whom we had chlorpromazine equivalents (CPZ; N = 381)
and found that component A was unaffected by CPZ scores,
but that component B was significantly negatively related
to CPZ scores (r = −0.129, p = 0.012). In other words,
individuals with high CPZ scores had less gray matter in
the cerebellum. Similarly, we completed subsequent analyses
with duration of illness (DOI) and although we were limited

in the amount of participant information (N = 640) and
we found no changes to our significant association in
individuals with BP but with individuals with SZ, DOI
was significantly negatively related to both component A
(r = −0.165, p = 5.58E-5) and B (r = −0.101, p = 0.014). In
other words, individuals with longer durations of illness had
less gray matter in both the insula/cingulum component and the
cerebellum component.

Discussion

We examined patterns of gray matter alterations in SZ,
BP, and HV. We also examined the symptom profiles of the
diagnostic groups to parse out unique subgroups. We evaluated
outcomes of ICA and symptom pattern analyses to link gray
matter patterns with unique symptom profiles.

The ICA of gray matter variations demonstrated that
individuals with SZ and BP share similar patterns of structural
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FIGURE 3

Temporal pole gray matter group differences in independent component analysis (ICA) results for healthy volunteers, individuals with
schizophrenia, and individuals with bipolar I disorder. (A) Group effects of diagnosis on loading coefficients. Individuals with schizophrenia (SZ)
had significantly less gray matter compared to individuals with bipolar disorder (BP) and healthy volunteers. Individuals with BP did not differ
significantly from healthy volunteers. (B) Component C showed less gray matter concentration in the bilateral temporal poles in individuals with
SZ compared to individuals with BP and healthy volunteers. Individuals with BP did not significantly differ from healthy volunteers. Images are
thresholded at 2.5.

deficits. We identified two components that showed significant
group differences between HV and BP, and HV and SZ.
Component A showed less gray matter bilaterally in the
insula and cingulate in both diagnostic groups compared to
HV. This pattern has been previously identified robustly in
the schizophrenia literature (Segall et al., 2009; Gupta et al.,
2015; Meda et al., 2015; Jiang et al., 2021). Component
B showed less gray matter bilaterally in the cerebellum in
both diagnostic groups compared to HV. The cerebellar
GM reductions supports previous literature that linked these
losses to cognition (e.g., long-term and working memory) and
symptoms (Moberget et al., 2018, 2019). Our results are in
line with previous literature that shows a relationship between
psychosis and the frontotemporal cortices in BP (Ivleva et al.,
2013) and the cerebellum in adolescents, regardless of SZ or BP
diagnosis (Moberget et al., 2019).

Component C showed significantly lower gray matter
bilaterally in the fusiform gyrus/temporal pole of SZ vs. between
BP where BP were not different from HV. The fusiform gyrus
is a key region for sociality-related high-level vision (e.g., face
perception) (Lee C. U. et al., 2002; Rangarajan et al., 2014).

While our results may have been a function of having a
smaller BP sample, this component is unique across the other
components in showing no difference between BP and HV, while
showing a strong reduction in SZ compared to BP. This result
supports previous literature that found small effect sizes in this
region in individuals with BP (Murray et al., 2004; Bora, 2015;
Hibar et al., 2018; de Zwarte et al., 2019). The fusiform gyrus
was also an area of discrepancy between individuals with SZ and
individuals with schizotypy with the region being only reduced
in SZ (Dickey et al., 2003; Onitsuka et al., 2003; Takahashi et al.,
2006). We hypothesize that these results may indicate that the
fusiform gyrus/temporal pole is a region strongly related to SZ
but largely unaffected in other psychiatric disorders (e.g., BP,
schizophrenia spectrum disorders).

Individuals with SZ and BP presented with similar symptom
profiles, where individuals with SZ had more severe symptoms
in the three PANSS subscale scores. ICA components identified
by the N-way biclustering did not allow for diagnostic
distinction between participants as it relates to structural
alterations. The hierarchical clustering of the PANSS subscales
produced clusters that were unique in their individual subscale
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TABLE 3 Significant diagnostic group differences in the independent component analysis (ICA) components.

Direction # Peak location Cohen’s F P value

HV > both HV > SZ 8 Brainstem 0.17 7.43E-25

HV > BP 0.06 1.58E-05

HV > SZ A Insula/cingulate gyrus 0.27 4.46E-47

HV > BP 0.14 2.44E-13

HV > SZ 24 Medial prefrontal cortex 0.21 8.02E-06

HV > BP 0.12 3.63E-11

HV > SZ 26 Temporal pole 0.11 3.22E-08

HV > BP 0.07 0.00104

HV > SZ 27 Temporal inferior gyrus/occipital gyrus 0.06 1.52E-03

HV > BP 0.04 4.62E-02

HV > SZ B cerebellum 0.1 1.21E-07

HV > BP 0.05 0.014

HV > SZ 5 Cerebellum/vermis 0.12 3.06E-10

7 caudate 0.08 7.02E-05

10 Calcarine/Crus I 0.09 5.14E-06

18 Crus II 0.12 4.29E-09

20 Calcarine/occipital gyrus 0.09 3.06E-05

28 Rectus/cerebellum/fusiform gyrus 0.16 1.06E-17

30 Insula/Rolandic operculum 0.13 1.18E-11

C Fusiform gyrus/temporal pole 0.18 7.76E-22

33 Calcarine/frontal middle gyrus 0.08 1.17E-04

34 Supplemental motor region 0.07 3.70E-04

35 Cerebellum/parahippocampal gyrus 0.08 1.30E-04

36 Parietal superior gyrus 0.09 1.84E-06

BP > SZ C Fusiform gyrus/temporal pole 0.07 7.76E-22

SZ, individuals with schizophrenia; BP, individuals with bipolar disorder; HV, healthy volunteers. Cohen’s F and p values reported from Bonferroni corrected post hoc analyses.
# Component number.

TABLE 4 PANSS subscale spread across clusters.

N PANSS positive PANSS negative PANSS general PANSS total Age BP (%)

CLUSTER 6 309 10.62 ± 3.00 9.54 ± 2.34 22.81 ± 3.73 42.97 ± 6.75 35.66 ± 12.00 164 (53.07%)

CLUSTER 5 151 10.74 ± 2.52 17.03 ± 3.55 26.51 ± 5.59 54.28 ± 7.60 34.44 ± 11.65 43 (28.48%)

CLUSTER 1 33 14.91 ± 3.20 26.48 ± 2.74 35.85 ± 4.67 77.24 ± 5.85 27.27 ± 7.99 2 (6.06%)

CLUSTER 3 159 17.48 ± 3.42 13.11 ± 3.08 30.70 ± 2.38 61.28 ± 5.02 36.30 ± 12.05 37 (23.27%)

CLUSTER 4 146 19.21 ± 3.15 14.19 ± 3.78 38.09 ± 3.32 71.49 ± 6.76 36.36 ± 11.69 40 (27.39%)

CLUSTER 2 62 23.56 ± 4.25 23.90 ± 5.47 45.71 ± 5.22 93.18 ± 8.19 34.05 ± 11.83 8 (12.90%)

TOTAL 860 14.47 ± 5.39 13.76 ± 5.59 29.66 ± 8.19 58.12 ± 16.28 35.25 ± 11.86 300 (38.37%)

PANSS subscale scores for each of the hierarchical cluster membership. All scores and ages are presented as mean ± standard deviation unless otherwise noted. BP, bipolar disorder. There
was no significant associations between the PANSS clusters and the ICA components.

totals, but there were no significant relationships between any
of the clusters and the ICA components, indicating that the
clusters were not identifying symptom profiles that related
to a unique structural correlate. Of the six clusters, one had
significantly more BP participants than the others and one
had significantly fewer BP participants than the others. Similar
to our results, Clementz et al. (2016) found a homogeneous
subgroup with more severe clinical symptoms (e.g., negative
symptoms and social functioning) that was majority SZ (56%)

(Clementz et al., 2016, 2020). Both these previous findings and
those discussed here support the main difference between SZ
and BP being the severity of symptoms with no discerning
differences in brain structure.

A limitation of the hierarchical cluster analysis is that the
entirety of the data matrix is utilized for cluster profiling.
We hypothesized that additional symptom profiles may appear
if the analysis was not required to include all the PANSS
subscales. Therefore, we explored the potential relationship
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TABLE 5 Description of the peak locations of each independent component analysis (ICA) component.

Component Positive loadings Negative loadings

15 Putamen L/R

20 Calcarine R/L

8 Vermis; cerebellum 9 Caudate R/L; putamen L/R; thalamus L/R

42 Cerebellum L/R

35 Superior temporal gyrus

B Cerebellar hemisphere; vermis L/R

44 Thalamus L/R

43 Parietal sup L Thalamus L/R

29 Cingulum Frontal mid L/R

40 Insula L/R Fusiform L/R

19 Angular L/R; temporal sup R Parietal inf L/R; angular L

3 Calcarine L/R Cuneus L/R; occipital Sup R; precuneus R

9 Occipital sup R; occipital mid L Calcarine L/R; precuneus L/R; posterior Cingulum

14 Cerebellum L; Crus I L/R; cerebellum 7b

32 Precentral L/R

34 Supp motor area R; precuneus

41 Frontal mid L Vermis 4 5; cingulum post L/R; lingual L/R

18 Crus II L/R

26 Temporal inferior gyrus L/R; fusiform L/R Temporal inferior gyrus L/R; fusiform L/R

1 Crus II L/R

12 Cerebellum/vermis

5 Cerebellum 9 L/R

7 Ventricles

39 Fusiform L/R; lingual L; Crus I L/R Cerebellum 6 L/R; Crus I L/R; vermis 7

10 Cerebellum Crus I L/R; calcarine L

C Temporal poles L/R

25 Cerebellum 8 L/R Lingual R; calcarine R

28 Rectus L/R Cerebellum 8 L; fusiform L

A Insula L/R; cingulate gyrus L/R; temporal pole sup L/R; temporal sup R

24 Frontal mid L/R; frontal inf Tri L/R

16 Occipital mid L; parietal inf L/R; angular L/R; temporal mid L/R Temporal mid L/R; angular L/R; occipital sup L/R

2 Frontal inf tri L/R; frontal sup L/R Frontal mid L/R; insula L/R

4 Temporal sup L; insula L Temporal mid L; temporal sup R

22 Precentral L/R Frontal inf oper L/R; frontal mid L/R; precentral L/R

13 Cuneus L; insula R; angular R; temporal mid R; temporal sup R;
temporal inf R

Temporal mid R; temporal sup R

30 Temporal mid L/R; parietal inf L; cuneus L/R; frontal inf oper R;
supramarginal R

Rolandic oper L/R; temporal pole sup L/R; Calcarine L/R; Rectus L/R;
insula L/R

38 Parietal inf lobule L/R; angular L/R Cuneus L/R; precuneus L/R

6 Calcarine L; Crus II L; temporal inf R; Crus I R; lingual L Crus II R; lingual R; calcarine R

11 Frontal inf tri L/R; frontal sup L; frontal mid L/R Frontal mid L/R; frontal inf tri L/R; frontal inf oper L/R

33 Calcarine L/R Parietal inf L; frontal Mid L/R; supra marginal R; angular R; frontal sup
L/R

36 Parietal sup L/R; parietal inf R

17 Occipital mid L; temporal mid R; angular R Occipital mid L/R; occipital sup L/R

27 Temporal inf L/R; temporal mid L/R; angular L/R Temporal mid L/R; occipital mid L

Table is in matching order to the hierarchical clustering of the ICA depicted in Figure 5. The color separation shows the four (4) clusters of the hierarchical cluster (tan, purple, green, and
yellow). Description of the locations of the peak(s) identified within each component. L, left; R, right; peak regions identified using the aal.nii template.
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FIGURE 4

Hierarchical clustering of PANSS subscale scores identified six (6) clusters across individuals with schizophrenia (SZ) and individuals with bipolar
disorder (BP). PANSS positive scores are plotted on the X-axis, PANSS negative scores on the Y-axis, and PANSS general psychopathology scores
are on the Z-axis. See legend for cluster membership key.

between the PANSS symptom profiles and the ICA components
by adding both to a n-way biclustering analysis. A strength of
the biclustering approach is that the data matrix is examined
using every possible combination within the data, and therefore,
submatrices or clusters may arise that do not include all
participants, subscales, or components.

Our results found three biclusters; Bicluster 1 included
all three subscales of the PANSS, Bicluster 2 included PANSS
positive and PANSS general, and Bicluster 3 did not include any
PANSS subscales. Bicluster 1 (N = 80) included both individuals
with SZ and individuals with BP who had more severe symptom
scores on all three PANSS subscales. The five ICA components
that were identified in bicluster 1 included peaks in the
occipital lobe, cerebellum, bilateral temporal poles, thalamus,
and bilateral rectus. However, the directionality of these peaks
was not uniform (see Figure 5) across participants. Therefore,
we conclude that, this cluster identifies a subgroup in which
more severe positive, negative, and general psychopathology
symptoms are related to less gray matter in the cerebellum,
thalamus, and bilateral rectus; but we also note that there is
inconsistency in the directionality of the gray matter alteration
in the bilateral temporal poles and occipital lobes. These

inconsistencies may be explained by the range of symptom
presentations included in the bicluster. More severe PANSS
positive scores have been associated with regional cortical
thinning whereas more severe PANSS negative scores were
associated with global cortical thinning (van Erp et al., 2018).
Regardless, this bicluster represents a group of people that,
regardless of diagnosis, share both a pattern of low gray matter
concentration and severe total symptom profiles.

Recently, the rectus has been shown to be associated with
individuals with high genetic risk for either SZ, BP, or psychosis
(Luna et al., 2022). As mentioned in the previous section,
component C (part of this bicluster) has also been studied
extensively in the schizophrenia spectrum literature (Takahashi
et al., 2006). Previous literature has also found that poor facial
recognition is associated with the genetic risk for SZ (Martin
et al., 2020). Therefore, this bicluster may give insight into
the genetic risk of developing psychosis, but further research
is needed.

Bicluster 2 (N = 76) included both individuals with SZ
and individuals with BP who had more severe PANSS positive
and lower PANSS general scores than the rest of the sample.
All five ICA components identified in this bicluster indicated
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FIGURE 5

Hierarchical cluster analysis of independent component analysis (ICA) loading coefficients resulted in four clusters of participants (Y-axis, rows).
The y-axis shows the cluster membership, the X-axis shows the ordering of the ICA components. The organization of the components along the
X-axis is color-coordinated with Table 5. The tan cluster is largely comprised of posterior cortical regions. The purple cluster is largely negatively
weighted on the cerebellar regions. The dark green cluster includes Components A and C as well as cerebellar and subcortical components.
The yellow cluster includes most of the frontal as well as cortical components from every other lobe. See Table 5 for more details on the peak
locations of each component. In the color bar, red represents positive loading coefficients and green represents negative loading coefficients.

less gray matter concentration than the rest of the sample.
In other words, this bicluster showed a negative relationship
with more severe PANSS positive scores, low PANSS general
scores, and less gray matter in all five ICA components.
Component A and Component B which each showed significant
reductions in both diagnostic groups, SZ and BP, were both
included in bicluster 2. In addition, there were three other
components (involving the precentral gyrus, thalamus, left
parietal supplemental gyrus, and right supplemental motor
region) where bicluster 2 had less gray matter concentration
than the rest of the sample. And as mentioned above, three
of these components identified significant diagnostic group
differences. Therefore, bicluster 2 indicates that more severe
positive symptoms and less prominent general psychopathology

symptoms are related to less gray matter in the cerebellum,
insula, and other subcortical regions.

Bicluster 3 (N = 112) identified a subset of the sample
that presents with a unique structural set of patterns but there
are no clinical features (symptom scores, age, gender, and site)
that distinguish this cluster from the rest of the sample. Given
the directionality of gray matter alteration, we hypothesize
that this bicluster may be identifying individuals with similar
cortical measures (e.g., smaller brain volumes overall) and
not necessarily unique clinical presentations. In addition, one
component showed lower gray matter concentration in the
rectus gyrus, which has been associated with genetic risk for
SZ, BP, and psychosis (Luna et al., 2022). It is possible that
this bicluster is mapping onto a genetic profile instead of a
clinical profile. However, we caution that further research is
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FIGURE 6

Bicluster 1: PANSS scores, heat map of loadings of independent component analysis (ICA) components, and ICA components. Bicluster 1
(N = 80) had more severe scores on all three PANSS subscales (A) than the rest of the sample. This bicluster included 5 ICA components (17, 44,
42, C, and 28) representing the occipital lobes, rectus, cerebellum, and the temporal poles that were generally low in the loading coefficients
(B). Images in (C) 6C are thresholded at |2.5|. Warm colors represent positive values and cool colors represent negative values.

needed to confirm the role of this bicluster in genetic risk for

psychiatric disorders.

The addition of n-way biclustering to the analyses allowed

for identification of reliable grouping of the sample based on

both the symptom profiles and the gray matter patterns. These

results included unique, homogeneous subclusters that were

not identified in the ICA results or the hierarchical cluster

analyses. The bicluster approach identified anatomic substrates

that related to different symptoms profiles in both SZ and BP,

supporting a dimensional view of these disorders.

Limitations

There are a few limitations of this study. The number of
BP individuals (N = 301) across all the sites was significantly
less than the number of SZ individuals (N = 1217). We
acknowledge that this imbalance in diagnostic groups may have
masked some of the BP specific results, especially in the ICA
components. However, post hoc analyses of group differences
in HV v. BP and BP v. SZ showed significant differences
and strong effect sizes. Although there is an imbalance in
our diagnostic group sizes, we were still able to identify some
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FIGURE 7

Bicluster 2: PANSS scores, heat map of loadings of independent component analysis (ICA) components, and ICA components. Bicluster 2
(N = 76) consisted of more severe PANSS positive and PANSS general scores (A) and 5 ICA components (A, 43, B, 32, and 34) representing the
insula, cerebellum, and supplemental motor and motor cortices (B). Images in (C) 7C are thresholded at |2.5|. Warm colors represent positive
values and cool colors represent negative values.

valid representations of gray matter alterations in BP. The
imbalance in the number of BP and SZ participants may
also have contributed to the significant site effects that were
observed in the PANSS subscales as not every site had the same
distribution. We also acknowledge that our findings can be
confounded by medication effects. We do not have medication
information for every individual in the sample and we cannot
conclude that our results are not at least somewhat driven
by medication differences. There were also a large number
of sites (N = 29) included in the study. Site effects were
addressed in the preprocessing pipelines and the subsequent

analyses, but site-specific effects may still occur as detailed in
Supplementary Table 2.

Another limitation of this study is the utilization of
the PANSS subscales for symptom profiling. Although the
PANSS is a gold-standard assessment for SZ and widely
utilized in BP, this assessment is not all-encompassing of
the multitude of symptoms presenting in both schizophrenia
and bipolar disorder over time. Especially for individuals
with BP, there may be some symptom presentations that
fluctuate with mood or psychosis and therefore, cross-sectional
assessments may not capture all symptoms. Further research
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FIGURE 8

Bicluster 3: heat map of loadings of independent component analysis (ICA) components and related ICA components. Bicluster C (N = 112) was
comprised of five ICA components (A, 24, 10, 31, and 28) shown above that had mostly negative loading coefficients (A). There were no PANSS
subscales associated with bicluster C. Images in (B) 8B are thresholded at |2.5|. Warm colors represent positive values.

may want to examine additional scales (e.g., Montgomery-
Aberg Depression Rating Scale) that capture other symptoms
that may round out the symptom profile as previous studies
have done with their subtyping of psychosis-related disorders
(Clementz et al., 2020) and scales that examine these symptoms
over the lifetime (as opposed to recent or the previous
2 weeks).

Conclusion

Our study examined multivariate relationships between the
symptom profiles and gray matter patterns of individuals with
SZ and individuals with BP. Our results identified one gray
matter pattern that differed between SZ and BP. However,
this pattern (less gray matter concentration in the temporal
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poles) was not significantly different between individuals with
BP and healthy volunteers. Therefore, we conclude that this
region is much less affected, if at all, in BP. The remainder
of our results indicate that SZ and BP lie along an extensive
spectrum of symptoms and brain correlates but there are no
clear distinctions between the disorders in these areas.

However, we note that there are still meaningful distinctions
between the disorders. The category of symptoms differ,
the prognosis and diagnostic timeline often differ, and most
importantly, the prescribed treatments often differ between
individuals with SZ and individuals with BP. Overall, we
conclude that the cortical alterations seen in individuals with SZ
and individuals with BP trend together and are not significantly
different from one another; similar patterns of gray matter
loss particularly in the cerebellum and thalamus or insula
appear to cluster with more severe symptoms. All components
identified in this study showed the same direction of gray matter
concentration (SZ < BP < HV). Based on these findings, it
appears that BP and SZ may track along the same spectrum,
with individuals with BP having less severe cortical alterations
and less severe symptom profiles when compared to individuals
with SZ, but without a clear distinction in cortical alterations
between these disorders.
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