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Editorial on the Research Topic

Artificial Intelligence in Environmental Microbiology

Perhaps twenty-first century is so called “Digital Era” since digitalization and artificial intelligence
(AI) is finding its way into every aspect of human life. Nowadays, AI-based approaches are gaining a
lot of traction as components of research and development in different scientific and technological
fields. One of the areas that is experiencing a digital revolution is environmental microbiology,
which is the science of studying the interactions between the microorganisms and the environment
and their mutual impacts (Pepper et al., 2011). Approaches such as machine learning (ML),
deep learning (DL), image processing, pattern recognition and internet of things (IoT) are being
widely implemented in this field in all aspects from theoretical development and identification to
process monitoring and optimization (Asgharnejad and Sarrafzadeh, 2020; Gargalo et al., 2020;
Asgharnejad et al., 2021). Outbreak of the global challenge of COVID-19 pandemic during the last
2 years and the huge impacts of this virus on socioeconomic infrastructures has also highlighted
the necessity of innovative approaches for controlling and monitoring microbial communities in
the environment. This special issue provides a platform for gathering the most recent advances in
the fields of environmental microbiology from the perspective of AI. It includes 10 scientific papers
(six original research articles, two mini-reviews and two reviews) that cover a wide range of AI
approaches including ML, DL, and image processing. Two of these papers are specifically focused
on using AI for diagnosis and tackling the SARS-CoV-2 virus, which is the species causing COVID-
19 and, in this regard, the current Research Topic can be a reference for ongoing research on the
edge of science to overcome the pandemic and prevent future such catastrophic outbursts.

Moreover, AI can be used to diagnose and find effective treatments for microbial-risen diseases.
Previous studies have shown that oral microbiota has a close relation with different types of cancer.
Wen et al. have studied the possible relation between the oral microbiota and gliomas, which are
the most prevalent form of primary malignant brain tumors. They conducted an association rule
mining algorithm to find the relation between the microbiota existed in the saliva of a compound
sample containing 35 patients diagnosed with high-grade and low-grade glioma and 24 control
samples. The results of their study determined the oral microbiota features and gene functions that
were associated with glioma malignancy, which is a great achievement in terms of cancer therapy.

Zhang et al., conducted a literature review on how DL can accelerate the procedure of drug
discovery to tackle Severe Acute Respiratory Syndrome Coronavirus 2, which is globally known
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as COVID-19. Besides improving the efficacy of antimicrobial
screening against a wide range of pathogens, DL has shown
potential to reliably identify drug candidates against newly-
emerged diseases such as COVID-19 and a number of
drugs including Atazanavir, Remdesivir, Kaletra, Enalaprilat,
Venetoclax, and Posaconazole have been proposed to be effective
based on applying DL algorithm on the datasets of genetic
and protein types of SARS-CoV-2. Pi et al., also applied
Heterogeneous Multi-Attention Graph Neural Network with the
objective of drug prediction for COVID-19 and two drugs were
successfully predicted and verified by their model.

DL can also be used to train a model for identifying
the substrate secretion mechanism in Gram-negative bacteria.
Chen et al. followed this approach using the sequence-based
non-RTX-motif features and combined it into a tri-layer
stacking model, T1SEstacker, which predicted the RTX proteins
accurately. This model can accurately estimate the various
substrate proteins being secreted through the two bacterial cell
membranes by one step (classical) or two steps (non-classical)
into extracellular environment.

Image datasets of environmental microorganisms such as
EMDS-6 are powerful tools for diagnosis and classifications
of newly discovered microorganisms. In the research carried
out by Zhao, Li, Rahaman, Xu, Yang, et al., a comparative
study was conducted of DL methods of classification using the
EMDS-6 image dataset. The authors compared 21 DL-based
methods of image classification including direct classification,
imbalanced training, and hyper-parameters tuning. Zhao, Li,
Rahaman, Xu, Ma, et al. also used the classic algorithms of image
processing such as image denoising, image segmentation, and
object detection to analyze the EMDS-6 and its potential for being
used to evaluate the performance of image processing algorithms.

Metagenomics is a revolutionary field that burst fundamental
changes in environmental microbiology, which allows the
characterization of all microorganisms in a sequencing
experiment. To distinguish the microbes in terms of taxonomy
and biological activity, the sequenced reads must essentially
be associated with known genomes/genes. However, current
association methods are inadequate in terms of rapidity and also
accuracy, especially when detecting bacterial species or in specific
cases such as virus, plasmids, and gene detection. Machine and
deep learning methods can use the newly reconstructed genomes
by metagenomics as models and be a platform for association.
Mathieu et al. tried to assess the different machine learning
based methods and their efficiency to enhance the annotation of
metagenomic sequences.

The application of metagenomics data can be expanded to
clean and safe drinking water systems. Mahajna et al. reviewed

the literature on what kind of occupancy-abundance patterns are
exhibited in the drinking water microbiome, how the drinking
water microbiome evolves both spatially and temporally, and
how different microbial communities can co-exist in the drinking
water environment. They also evaluated the potential role of AI in
addressing the predictive and mechanistic questions in this field.

However, applications of AI are not limited to human health
and genetics, but they can be expanded to environmental
protection areas as well, especially in hardly controllable
environments such as aquacultures. Zhai et al. used AI
to study the bacterial biofilms on the metallic alloys at
5,700m depth undersea. They derived the sequencing data
of the microbial communities of the biofilms and applied
big data analytics methods to study the dataset and compare
the microbial composition of the biofilms on different alloy
surfaces. McElhinney et al. also reviewed the capability
of ML algorithms for analyzing the big microbiological
datasets produced as a result to the advent of microbial
omics. The authors provided a briefing for ML, highlighting
the concept of retaining biological sample information for
supervised ML, and reviewed the state-of-the-art of ML-driven
microbial ecology.

In this Research Topic, cutting-edge scientific research
works are gathered focused on applications of AI methods
for identifying, monitoring, and analyzing environmental
microorganisms and alleviating their hazardous impacts on
human life. The gaps and challenges addressed in this Research
Topic can be the hot topic of further studies in the future
regarding the comprehension of what is going to be anticipated
as a crucial concept for tackling the challenges in the area of
environmental microbiology in the forthcoming years.
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Gliomas are the most prevalent form of primary malignant brain tumor, which currently 
have no effective treatments. Evidence from human studies has indicated that oral 
microbiota is closely related to cancers; however, whether oral microbiota plays a role in 
glioma malignancy remains unclear. The present study aimed to investigate the association 
between oral microbiota and grade of glioma and examine the relationship between 
malignancy-related oral microbial features and the isocitrate dehydrogenase 1 (IDH1) 
mutation in glioma. High-grade glioma (HGG; n = 23) patients, low-grade glioma (LGG; 
n = 12) patients, and healthy control (HCs; n = 24) participants were recruited for this case-
control study. Saliva samples were collected and analyzed for 16S ribosomal RNA (rRNA) 
sequencing. We found that the shift in oral microbiota β-diversity was associated with 
high-grade glioma (p = 0.01). The phylum Patescibacteria was inversely associated with 
glioma grade (LGG and HC: p = 0.035; HGG and HC: p < 0.01). The genera Capnocytophaga 
(LGG and HC: p = 0.043; HGG and HC: p < 0.01) and Leptotrichia (LGG and HC: p = 0.044; 
HGG and HC: p < 0.01) were inversely associated with glioma grades. The genera 
Bergeyella and Capnocytophaga were significantly more positively correlated with the 
IDH1 mutation in gliomas when compared with the IDH1-wild-type group. We further 
identified five oral microbial features (Capnocytophaga Porphyromonas, Haemophilus, 
Leptotrichia, and TM7x) that accurately discriminated HGG from LGG (area under the 
curve [AUC]: 0.63, 95% confidence interval [CI]: 0.44–0.83) and HCs (AUC: 0.79, 95% 
CI: 0.68–0.92). The functional prediction analysis of oral bacterial communities showed 
that genes involved in cell adhesion molecules (p < 0.001), extracellular matrix molecule-
receptor interaction (p < 0.001), focal adhesion (p < 0.001), and regulation of actin 
cytoskeleton (p < 0.001) were associated with glioma grades, and some microbial gene 
functions involving lipid metabolism and the adenosine 5'-monophosphate-activated 
protein kinase signaling pathway were significantly more enriched in IDH1 mutant gliomas 
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INTRODUCTION

Gliomas, the most common primary tumor of the central 
nervous system, are stratified into grades 1–4 based on the 
histological features defined by the World Health Organization 
(WHO; Louis et  al., 2016). This classification system has been 
transformed into a molecular feature-based classification system 
and can be  used for the formulation of targeted therapeutic 
methods, which have been shown to have a higher level of 
prognostic accuracy (Louis et al., 2016, 2020; Brat et al., 2020). 
WHO grades 1–2 gliomas (low-grade gliomas; LGG) exhibit 
low aggressive tendencies and have a better prognosis, whereas 
WHO grades 3–4 gliomas (high-grade gliomas; HGG) have a 
high rate of deterioration and a poor prognosis (Louis et  al., 
2016). Evidence from human studies has indicated that oral 
microbiota is closely related to cancers (Michaud et  al., 2013; 
Fan et  al., 2018); however, whether oral microbiota plays a 
role in glioma malignancy remains unclear.

The presence of mutant forms of isocitrate dehydrogenase 1 
(IDH1) is a key factor in determining the prognosis of patients 
with gliomas. Generally speaking, glioma patients with the IDH1 
mutation have a more favorable prognosis, and the mutation is 
frequently expressed in patients with an LGG but rarely detected 
in patients with a WHO grade 4 glioma (Ceccarelli et  al., 2016). 
Oral microbial-produced substances may be  carcinogenic 
(Kurkivuori et al., 2007; Meurman and Uittamo, 2008). Therefore, 
the mechanism underlying the link between the IDH1 mutation 
and better prognosis may involve the variation in the composition 
and function of oral microbiota. Currently, the relationship between 
oral microbiota and the glioma IDH1 mutation is uncertain.

Therefore, we  aimed to investigate the association between 
oral microbiota and glioma grade and examine the relationship 
between the composition and functional features of malignancy-
related oral microbiota and the glioma IDH1 mutation.

MATERIALS AND METHODS

Study Subjects and Study Design
The cohort was a prospective cohort that included 59 participants 
of Han Chinese ethnicity. This study was a cross-sectional analysis 
of the retrospective cohort at baseline. Briefly, 59 participants 
aged 20–74 years who were living in Luzhou City, Southern China, 
were recruited by the Department of Neurosurgery, Affiliated 
Hospital of Southwest Medical University, between April 2019 
and October 2020. We  collected sociodemographic, lifestyle, and 
dietary factor information. Anthropometric parameters, which 
included weight and height, were measured by trained nurses. 
The glioma IDH1 mutation was assessed by postoperative 
pathological diagnosis. Clinical physiological variables (blood 

glucose value) were measured using a blood glucose monitor. 
Oral saliva samples of participants were collected during participants’ 
visits to the study site. We  excluded participants who had been 
physiologically diagnosed with a non-glioma and had not received 
surgery. Finally, 59 participants were included in the present 
analysis (see inclusion and exclusion criteria for further details; 
Supplementary Methods; Supplementary Figure  1).

Glioma grades were assessed according to the 2016 WHO 
Classification of Tumors of the Central Nervous System. Participants 
were divided into three groups: (i) healthy controls (HCs; n = 24), 
(ii) LGG group (n = 12), and (iii) HGG group (n = 23) according 
to the criteria for glioma grades. HCs were recruited from patients’ 
families, such as their spouses and parents. The study protocol 
was approved by the ethics committee of the Affiliated Hospital 
of Southwest Medical University (No. KY2019030), and all 
participants provided written informed consent.

Sample Collection and DNA Extraction
Participants were asked to refrain from drinking, eating, brushing 
teeth, or smoking on the morning of the study visit and to rinse 
out impurities in the mouth with sterile saline. During the visit 
to the study center, participants were provided with a saliva sampler 
and detailed instructions for the saliva sample collection. Briefly, 
each participant collected their saliva sample by natural secretion, 
which was kept in the mouth for 3 min. They then spat 20 ml 
of saliva into a 50-ml sterile centrifugal tube. All saliva samples 
were immediately frozen and stored in a −80°C freezer.

All DNA extraction steps were performed in a biosafety cabinet. 
Oral saliva DNA was isolated using a QIAamp Fast DNA Stool 
Mini Kit (QIAGEN, Hilden, Germany) according to standard 
protocols. NanoDrop was used to quantitatively detect the 
concentration of DNA in each sample, and 1% agarose gel 
electrophoresis was used to evaluate the integrity of DNA. The 
DNA samples that met the quality requirements (i.e., 
A260/280 = 1.8–2.8, total DNA > 500 ng, the main strip of the gel 
was complete without an obvious tail) were frozen at −80°C for 
subsequent analyses, and non-conforming samples were discarded.

Oral Microbiota Profiling Using 16S rRNA 
Sequencing
The 16S ribosomal RNA (rRNA) gene amplification procedure 
was divided into two polymerase chain reaction (PCR) steps. 
For the first PCR reaction, the V3-V4 hypervariable region of 
the 16S rRNA gene was amplified from the genomic DNA using 
primers 338F(ACTCCTACGGGAGGCAGCAG) and 
806R(GGACTACHVGGGTWTCTAAT). The amplification 
products were purified by gel extraction (AxyPrep DNA Gel 
Extraction Kit, Axygen Biosciences, Union City, CA, United States) 
according to manufacturer instructions. The concentration of the 

than compared with the IDH1-wild-type gliomas. In conclusion, our work revealed oral 
microbiota features and gene functions that were associated with glioma malignancy and 
the IDH1 mutation in glioma.

Keywords: glioma, malignant grade, oral microbiota, isocitrate dehydrogenase 1 mutation, human cohort
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pooled libraries was determined using the Qubit quantification 
system. Amplicon sequencing was performed on the MiSeq PE250 
platform (Illumina, San Diego, California, United States). Automated 
cluster generation and 2 × 250 bp paired-end sequencing with 
dual-index reads were performed.

16S rRNA Gene Sequencing Bioinformatics 
Analysis
Sequence analysis was performed using the Quantitative Insights 
into Microbial Ecology Pipeline (QIIME) software version 
2-2020.2 (Bolyen et  al., 2019). The divisive amplicon denoising 
algorithm (DADA2; Callahan et al., 2016) was used for amplicon 
sequence variant (ASV) clustering equaling 100%. A 
representative sequence was selected for each ASV, and the 
SILVA reference database was used to annotate taxonomic 
information. The absolute abundance table was extracted from 
the pipeline and converted into relative abundances by 
normalization for analyzing the composition of gut microbiota 
by QIIME2 for downstream analysis.

Statistical Analyses
For comparisons between the three groups, we used the chi-square 
test for categorical variables and analysis of variance (ANOVA) 
for continuous variables. We  examined the associations between 
glioma grade and oral microbial α-diversity indices (Shannon, 
ACE, and Chao1 indices and Good’s coverage), which were 
estimated based on species richness in the ASV subsample table. 
The association between glioma grade and β-diversity (between-
subject diversity) dissimilarity, based on ASV-level Bray-Curtis 
distance, was analyzed using permutational ANOVA (999 
permutations), adjusted for age, sex, and body mass index (BMI).

We used Wilcoxon rank-sum tests to determine oral microbiota 
and microbial function associations with glioma grade (a value 
of p ≤ 0.05 was considered statistically significant). The Benjamini-
Hochberg method was used to control for false discovery rate 
(FDR). Receiver operator characteristic curves based on the 
identified oral microbial features were used to discriminate different 
glioma grade patients from HCs. The true positive rate (sensitivity) 
was plotted against the false positive rate (100% − specificity), 
and the area under the curve (AUC) values were reported with 
95% confidence intervals (CI) as an estimate of diagnostic utility.

We examined the associations between the composition and 
functional features of malignancy-related oral microbiota and 
the glioma IDH1 mutation using multivariable linear regression, 
adjusted for age, sex, and BMI. The Benjamini-Hochberg method 
was used to control for FDR. We  also conducted stratified 
analyses for smoking and alcohol status. Analyses were carried 
out using R statistical software (version 3.3.1, R Foundation). 
A value of p <0.05 was considered statistically significant.

RESULTS

Characteristics of Study Participants
The demographic characteristics of participants are shown in 
Table  1. The mean (standard deviation) age was 46.12 (12.69) 
years, and 47.46% were women (Table  1).

Association Between Glioma Grade and 
Oral Microbiota Diversity
We first investigated the associations between glioma grade 
and microbiome α-/β-diversity. A significant difference in 
microbial β-diversity (p = 0.01) was found between the HGG 
and HC groups (Figure  1A), whereas no significant difference 
was found between the LGG and HC groups (p = 0.51; Figure 1B), 
and no significant difference was found between the LGG and 
HGG groups (p = 0.89; Figure  1C). There were no significant 
differences in measures of α-diversity between the glioma groups 
and the HCs [HGG and HC: Shannon index: p = 0.34, phylogenetic 
diversity (PD): p = 0.86; LGG and HC: Shannon index: p = 0.91, 
PD: p = 0.21].

Glioma Grades Were Associated With Oral 
Microbiota Composition and Gene 
Function
Our results showed that 99.57% of the oral microbiota was 
aligned to seven phyla, which included Firmicutes, Bacteroidetes, 
Proteobacteria, Actinobacteria, Fusobacteria, Patescibacteria, and 
Spirochaetota (Figures 2A,B). The abundance of Patescibacteria 
decreased significantly with increasing malignancy of glioma 
from LGG (p = 0.035) to HGG (p < 0.01), compared with HCs 

TABLE 1 | Clinical characteristics of the study population in this study.

Characteristics
HCs (N = 24)

Glioma grade

LGG (N = 12) HGG (N = 23)

Age (years)

Range 32–57 20–61 21–74

Mean ± SD 45.29 ± 6.72 37.67 ± 13.49 51.39 ± 14.75

Gender

Male 10 (41.67%) 8 (66.67%) 13 (56.52%)
Female 14 (58.33%) 4 (33.33%) 10 (43.48%)

BMI (kg/m2)

Range 19.59–37.78 18.51–25.77 18.07–28.69
Mean ± SD 25.59 ± 3.42 22.18 ± 1.90 22.99 ± 2.90

Blood glucose

Range — 4.4–14.9 4.77–22.5
Mean ± SD — 7.0 ± 3.06 8.13 ± 3.63

Excrement regularity

Yes 17 (70.83%) 9 (75%) 16 (69.57%)
No 7 (29.17%) 3 (25%) 7 (30.43%)

Brushing habits

Numbers 0 time 0 (0%) 3 (25%) 3 (13.05%)
1 time 20 (83.33%) 7 (58.33%) 13 (56.52%)
2 times 4 (16.67%) 2 (16.67%) 7 (30.43%)

Time < 2 min 21 (87.5%) 6 (50%) 22 (95.65%)
> 2 min 3 (12.5%) 6 (50%) 1 (4.35%)

Tooth missing

Yes 7 (29.17%) 5 (41.67%) 9 (39.13%)
No 17 (70.83%) 7 (58.33%) 14 (60.87%)

In this study, according to the recruitment standard, 59 cases including 24 HCs and 35 
glioma patients were included. Glioma patients were divided into LGG (N = 12), HGG 
(N = 23). HCs, healthy controls; LGG, low-grade glioma; HGG, high-grade glioma.
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(Figure 3A). The proportions of the other six phyla (Firmicutes, 
Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, and 
Spirochaetota) were not associated with glioma grade 
(Supplementary Figure  2).

The ASVs were assigned to 181 individual genera of which 
18 were present in all samples with a relative abundance of more 
than 1% in at least one sample (Supplementary Figures  3A,B). 
The genera Capnocytophaga (LGG and HC: p = 0.043; HGG and 
HC: p < 0.01) and Leptotrichia (LGG and HC: p = 0.044; HGG 
and HC: p < 0.01) were inversely associated with glioma 
grade (Figure 3B). Five oral microbial features [Porphyromonas 
(p < 0.05), Haemophilus, Leptotrichia (p < 0.05), TM7x 

(p < 0.05), and Capnocytophaga (p < 0.05)] were significantly 
lower in the HGG group compared with the HC group 
(Figure 3C). The five oral microbial features (Porphyromonas, 
Haemophilus, Leptotrichia, TM7x, and Capnocytophaga) 
accurately discriminated the HGG group from HCs (AUC: 
0.79, 95% CI: 0.68–0.92; Figure  4 and 
Supplementary Table 1). We also use bacterial marker panels 
to discriminate the HGG group from the LGG group (AUC: 
0.63, 95% CI: 0.44–0.83) and the LGG group from HCs (AUC: 
0.57, 95% CI: 0.36–0.78; Figure  4).

We used the Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States (PICRUSt) to predict 

A B

C

FIGURE 1 | Principal component analysis (PCoA) plots based on the Bray-Curtis distances showed distinct clusters in (A) HCs&HGG, (B) HCs&LGG, and 
(C) HGG&LGG. The individual samples are color-coded to indicate HCs (red), LGG (blue), and HGG (green). HCs, healthy controls; HGG, high-grade glioma; LGG, 
low-grade glioma.
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the oral microbiome functions via the saliva microbiome 
data sets. Signaling molecules and interactions, such as cell 
adhesion molecules (CAMs), extracellular matrix (ECM)-
receptor interactions, cellular community-eukaryotes (focal 
adhesion), and actin cytoskeleton regulation, were positively 
associated with glioma grade, while the polycyclic aromatic 

hydrocarbon degradation and the Bile secretion were inversely 
associated with HCs (Figure  5).

Glioma IDH1 Mutation Was Associated 
With Malignancy-Related Oral Microbiota 
and Gene Function
Results showed that the abundance of Firmicutes was 
significantly lower in the IDH-mutant samples compared with 
that of the IDH-wild-type samples at the phylum level 
(Figure  6A). The genus-level profiling showed that the 
abundance of Bergeyella and Capnocytophaga was significantly 
positively correlated with the IDH-mutant samples (Figure 6B). 
We  also used PICRUSt to predict Kyoto Encyclopedia of 
Genes and Genomes (KEGG)-based functional orthologs 
between the IDH-mutant and IDH-wild-type groups to 
characterize the functional alterations, which were inferred 
from the 16S rRNA gene sequencing data. We  found 82 
pathways that were significantly greater in the IDH-mutant 
group compared with those of the IDH-wild-type group using 
the Mann-Whitney U test. Our result revealed that several 
metabolic-related pathways, such as lipid metabolism (linoleic 
acid, ether lipid metabolism, fatty acid biosynthesis, 
glycerophospholipid, and biosynthesis of unsaturated fatty 
acids), fatty acid metabolism (alpha-linolenic acid), amino 
acid metabolism (tyrosine metabolism, tryptophan metabolism, 
lysine degradation, and glycine, serine, and threonine 
metabolism), carbohydrate metabolism (inositol phosphate 
metabolism), and cofactors and vitamin metabolism (retinol 
metabolism), were significantly higher in the IDH-mutant 
group compared with those of the IDH-wild-type group. 
Moreover, signal transduction, such as the adenosine 
5′-monophosphate-activated protein kinase (AMPK) signaling 
pathway, the phosphatidylinositol signaling system, the 
sphingolipid signaling pathway, and the phospholipase D 
signaling pathway, was more enriched in the IDH-mutant 
group than in the IDH-wild-type group 
(Supplementary Figure  4).

DISCUSSION

To our knowledge, this is the first comprehensive clinical 
16S rRNA sequencing data set to characterize the community 
features of oral microbiota in different glioma grades. 
We  found that the shift in oral microbiota β-diversity was 
associated with HGG. The phylum Patescibacteria was inversely 
associated with glioma grade, and the genera Capnocytophaga 
and Leptotrichia were inversely associated with glioma grade. 
We  identified five oral microbial features (Porphyromonas, 
Haemophilus, Leptotrichia, TM7x, and Capnocytophaga) that 
accurately discriminated patients with HGG from those  
with LGG and HCs. The gene function of oral bacterial 
communities was associated with glioma grade. Moreover, 
the abundance of the phylum Firmicutes was significantly 
negatively correlated with IDH-mutant samples, whereas the 
genera Bergeyella and Capnocytophaga were significantly 

A

B

FIGURE 2 | Comparison of the structures of the oral microbiome at  
the phylum level among HCs, LGG, and HGG. (A) The seven most 
abundant bacteria phylum in the oral microbiome, “Others” represents  
the bacteria with the relative abundance of less than 1%; (B) the 
proportion of Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, 
Actinobacteria, Patescibacteria, and Spirochaetota in each group at the 
phylum level.
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positively correlated with IDH-mutant samples. Several 
microbial (lipid metabolism, amino acid metabolism, and 
energy metabolism) and signal transduction (AMPK signaling 
pathway) pathways were significantly higher in the glioma 
IDH-mutant group than those in the glioma IDH-wild-type 
group. Our findings revealed that oral microbiota features 
and gene functions are associated with glioma malignancy 
and the IDH1 mutation.

Previous studies have shown that oral microbiome 
significantly affected the composition of gut microbiome 
(Hou et  al., 2021; Pandya et  al., 2021; Park et  al., 2021). 
The oral microbiome and gut microbiome can spread to 
the brain through cranial nerves or cellular infections or 
produced certain metabolites to affect the brain by both 
direct and indirect means (Dominy et  al., 2019; Jing et  al., 
2021; Narengaowa et al., 2021; Vyhnalova et al., 2021; Wang 
et  al., 2021). Our results showed significant differences in 
oral microflora between HGG patients and HCs; oral 
Patescibacteria was significantly decreasing during the 
progression of glioma malignancy. Few studies have reported 

FIGURE 3 | (C) relative abundance of genera Porphyromonas, 
Haemophilus, Leptotrichia, TM7x, Capnocytophaga in HCs, and HGG. 
The box plot represented the relative abundance of bacteria genus in 
HCS, LGG, and HGG. The p value was calculated by non-parametric 
Mann-Whitney U test. Each box plot represents the median, interquartile 
range, minimum, and maximum values. p value <0.05 indicated the 
statistical significance. HCs, healthy controls; LGG, low-grade glioma; 
HGG, high-grade glioma.

A

B

C

FIGURE 3 | Bacteria taxonomic profiling of oral microbiome from  
healthy controls and glioma patients. (A) Relative abundance of the  
pylum Patescibacteria in HCs, LGG, and HGG; (B) relative abundance of 
genera Capnocytophaga and Leptotrichia in HCs, LGG, and HGG; 

(Continued)

FIGURE 4 | Disease malignancy based on oral microbiome signature. ROC 
curves evaluating ability to predict tumor malignancy patients based on 5 
significantly altered genera. Each curve represents the sensitivity and 
specificity to distinguish subjects with HGG (red line), LGG (green line) from 
HCs, while the blue line represents sensitivity and specificity between LGG 
and HGG. ROC, receiver operating characteristic; HGG, high-grade glioma; 
LGG, low-grade glioma; HCs, healthy controls.
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a correlation between oral Patescibacteria and human disease. 
This is the first study examining Patescibacteria in oral 
saliva samples of glioma patients and suggests Patescibacteria 
as a negatively associated risk factor for disease progression 
from LGG to HGG. Our results highlight the potential of 
Patescibacteria detection as a diagnostic and prognostic 
determinant for glioma malignancy, but further experimental 
research to establish the mechanistic basis of these 
relationships is needed.

In addition, the phylum Fusobacteriota was significantly 
lower in the HGG group than in the HCs. Furthermore, 
the family Leptotrichiaceae (Supplementary Figure  3C) and 

the genus Leptotrichia, which belongs to Fusobacteriota, were 
inversely associated with glioma malignancy. This is consistent 
with the results of two large, nested, case-control studies 
in which a greater abundance of Leptotrichia was associated 
with a decreased risk of pancreatic cancer (Michaud et  al., 
2013; Fan et  al., 2018). Leptotrichia is considered an 
opportunistic pathogen and can stimulate human immune 
system responses (Eribe and Olsen, 2017). Moreover, 
Leptotrichia may elicit the immune response and thus protect 
against pancreatic carcinogenesis (Inman et  al., 2014).

Genus-level analysis showed that a bacterial marker panel 
with Capnocytophaga, TM7x, Porphyromonas, Haemophilus, 

FIGURE 5 | Microbial functions altered in the HCs and HGG. Heat map showing the medial abundance of all significant modules as determined by PICRUSt 
analysis at HCs and HGG. * p < 0.05, **p < 0.01, ***p < 0.001. PICRUSt, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States; HCs, 
healthy controls; HGG, high-grade glioma.
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A

B

FIGURE 6 | Bacteria taxonomic profiling of oral microbiome from IDH1-mutant group and IDH1-wild group. (A) Relative abundance of phylum Proteobacteria 
in IDH1-mutant group and IDH1-wild group; (B) relative abundance of genera Bergeyella and Capnocytophaga in IDH1-mutant group and IDH1-wild group. 
Cross coordinates represent different group names and longitudinal represent the abundance of a species in different groups. The p value was calculated by 
non-parametric Mann-Whitney U test. Each box plot represents the median, interquartile range, minimum, and maximum values. IDH1, isocitrate 
dehydrogenase 1.
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and Leptotrichia had an AUC of 0.79 for discriminating 
between HGG and HCs. We found that the relative abundance 
of genus Capnocytophaga was inversely associated with glioma 
malignancy. Capnocytophaga is a genus of Gram-negative 
anaerobes that inhabit the oral cavity (Lopez et  al., 2010), 
which has been reported to be  inversely associated with 
human diseases, such as chorioamnionitis, neonatal infection 
(Lopez et  al., 2010), and lung cancer (Thirumala et  al., 
2012). Consistent with our results, Hayes et  al. reported 
that a greater abundance of the genus Capnocytophaga was 
significantly associated with a reduced risk of larynx cancer 
(Hayes et  al., 2018). However, the protective mechanism of 
Capnocytophaga for glioma malignancy remains unclear. 
Previous studies have consistently shown a decrease in 
Haemophilus and Porphyromonas in the saliva of patients 
with cancer compared with that of HCs (Mei et  al., 2018; 
Yang et al., 2018; Lu et al., 2019; Li et al., 2020). In addition, 
the high abundance of Haemophilus and Porphyromonas is 
associated with anticancer-associated immunity (Lu et  al., 
2019). A high level of antibodies to Porphyromonas gingivalis 
in the serum correlates with a lower risk of pancreatic 
cancer (Michaud et  al., 2013). This study is the first to 
report the inverse association between the abundance of 
TM7x and glioma malignancy and that TM7x is a useful 
bacteria marker for glioma malignancy diagnosis.

The functional prediction showed that environmental 
information processing, such as CAMs and ECM-receptor 
interactions, was significantly higher in HGG patients than in 
the HCs. Several CAMs, such as neural cell adhesion molecule 
L1, have been identified to underlie the occurrence of glioma 
malignancies (Senner et  al., 2002; Jiang et  al., 2019; Lyu et  al., 
2021). ECM plays an important role in gliomas, such as in 
the higher expression of laminin a2  in glioblastoma (Lathia 
et  al., 2012). The key role of the focal adhesion pathway and 
the level of actin in the cytoskeleton during the migration 
and invasion of glioblastoma have also been reported (de Semir 
et  al., 2020; Wu et  al., 2020).

Our results demonstrated that the genera Bergeyella and 
Capnocytophaga were significantly positively correlated with 
the glioma IDH-mutant, which is consistent with the results 
of glioma malignancy. The IDH1-mutant plays an important 
role in glioma cell glucose induction, glutamine metabolism, 
lipid synthesis, and cell redox regulation (Hartmann et  al., 
2009; Maus and Peters, 2017; Stuani et  al., 2018). Moreover, 
metabolism deregulation plays an important role in cell growth, 
proliferation, angiogenesis, and invasion; thus, it has been 
considered one of the emerging hallmarks of cancer cells 
(Hanahan and Weinberg, 2011). Recent studies have found 
that lipid metabolism reprogramming plays a crucial role in 
the progression of cancer cells, such as in membrane synthesis, 
energetic production, and signal transduction (Liu et  al., 
2017). The activation of the AMPK signaling pathway 
contributes to the anti-inflammatory microenvironment of 
IDH1-mutated gliomas and thus causes better prognoses in 
patients with an IDH1-mutated glioma (Han et  al., 2019). 
Our results demonstrated that the malignancy inverse-related 
microbial gene functions involving lipid metabolism and 

AMPK signaling pathway were significantly enriched in the 
IDH-mutant group, suggesting that changes in oral microbial 
gene functions may underlie the link between the positive 
association between IDH-mutant gliomas and better prognosis. 
Moreover, several studies reported that mutant IDH1 in gliomas 
regulated a number of physiological processes such as 
inflammatory pathways, metabolic metabolism, hypoxia sensing, 
histone demethylation, and changes in DNA methylation 
causing DNA strand breaks, apoptosis, autophagy, and tumor 
cell death (Gilbert et  al., 2014; Viswanath et  al., 2018; Zhang 
et  al., 2019; Kadiyala et  al., 2021; Pirozzi and Yan, 2021). 
Therefore, the possible mechanism underlying the association 
between oral microbiome and IDH1 mutation is that IDH1 
mutation specifically selects some oral microbiota, which can 
produce specific metabolites involved in lipid metabolism and 
AMPK signaling pathway to regulate intracellular energy 
homeostasis, increase brain glioma cell apoptosis and autophagy, 
prevent brain glioma cell proliferation, and contribute to the 
formation of an anti-inflammatory tumor microenvironment 
in the brain, and further causes better prognoses in patients 
with an IDH1-mutated glioma. Certainly, animal and cell 
experiments are further needed to determine the causality 
of IDH1 mutation on the oral microbiome under glioma status.

The present study has several strengths. First, to the best 
of our knowledge, this is the first study examining the role 
of oral microbiota in glioma malignancy. Second, we developed 
a novel bacterial marker panel to discriminate HGG patients 
from LGG patients and HCs. Third, our study revealed that 
the composition and gene function of oral microbiota were 
significantly associated with the IDH1 mutation in glioma, 
which can be  used to predict the prognosis of glioma patients. 
The present study also has several limitations. First, the sample 
size was relatively small. This study was a small-sample, single-
center study because of the challenges in recruiting this type 
of cohort and the strict inclusion criteria. However, this also 
guaranteed the consistency of the sample. Second, although 
we  demonstrated that oral microbiota was associated with 
glioma malignancy and the IDH mutation, the underlying 
causality remains unclear. Finally, no plaque or tongue-coating 
specimens were included because of the difficulty in collecting 
such samples.

In summary, the present study indicated that oral 
microbiota composition and gene functions are significantly 
associated with glioma malignancy and the IDH1 mutation. 
We also discovered a microbial biomarker panel to distinguish 
HGG patients from HCs. Our results suggest that oral 
microbiota may be an important preventive target to mitigate 
glioma malignancy and achieve better prognoses for 
glioma patients.
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Supplementary Figure 1 | Study flow-chart. A total of 59 participants from the 
cross-sectional study (HCs = 24, LGG = 12, HGG = 24) with 16S oral microbiome 
profiling were included in the study. *1 patient with LGG was pathologically 
diagnosed with non-glioma. **1 patient with HGG was not received surgery. 
Abbreviations: HCs, healthy controls; LG, low glioma group; HGG, high-
grade glioma.

Supplementary Figure 2 | Bacteria taxonomic profiling at the phylum level of 
oral microbiome from healthy controls and glioma patients. Box plots show the 
relative abundance of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 
Fusobacteria, and Spirochaetota in HCs, LGG, and HCG. Each box plot 
represents the median, interquartile range, minimum, and maximum values. The p 
value was calculated by non-parametric Mann-Whitney U test. Value of p < 0.05 
indicated the statistical significance. HCs, healthy controls; HGG: high-grade 
glioma; LGG: low-grade glioma.

Supplementary Figure 3 | Relative abundance of different bacteria genus in 
healthy and glioma patients. Bacteria taxonomic profiling at the genus level of oral 
microbiome from healthy controls and glioma patients. (A) The 18 bacteria at the 
genus level in the oral microbiome, “Others” represents the bacteria with the 
relative abundance of less than 1%. (B) The proportion of Streptococcus, 
Prevotella, Porphyromonas, Veillonella, Haemophilus, Actinomyces, Neisseria, 
Porphyromonas, and Granulicatella among HGG and HC groups at the genus 
level; (C) the box plots show the relative abundance of Leptotrichiaceae in HCs, 
LGG, and HGG. Each box plot represents the median, interquartile range, 
minimum, and maximum values. The p value was calculated by non-parametric 
Mann-Whitney U test. p value <0.05 indicated the statistical significance. HCs, 
healthy controls; LGG: low-grade glioma; HGG: high-grade glioma.

Supplementary Figure 4 | Microbial functions altered in the IDH1-mutant group 
and IDH1-wild-type group. Heat map showing the medial abundance of all 
significant modules as determined by PICRUSt analysis at IDH1-mutant group 
and IDH1-wild-type group. Notes: * p < 0.05, ** p < 0.01, *** p < 0.001. 
Abbreviations: PICRUSt, Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States; HCs, healthy controls; HGG, high-grade 
glioma. PICRUSt, Phylogenetic Investigation of Communities by Reconstruction 
of Unobserved States; IDH1, isocitrate dehydrogenase 1; HCs, healthy controls; 
HGG: high-grade glioma.
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Deep learning significantly accelerates the drug discovery process, and contributes
to global efforts to stop the spread of infectious diseases. Besides enhancing the
efficiency of screening of antimicrobial compounds against a broad spectrum of
pathogens, deep learning has also the potential to efficiently and reliably identify drug
candidates against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2). Consequently, deep learning has been successfully used for the identification of
a number of potential drugs against SARS-CoV-2, including Atazanavir, Remdesivir,
Kaletra, Enalaprilat, Venetoclax, Posaconazole, Daclatasvir, Ombitasvir, Toremifene,
Niclosamide, Dexamethasone, Indomethacin, Pralatrexate, Azithromycin, Palmatine,
and Sauchinone. This mini-review discusses recent advances and future perspectives
of deep learning-based SARS-CoV-2 drug discovery.

Keywords: deep learning, database, drug discovery, antibiotics, antimalarial drug, drug repurposing, SARS-CoV-2

INTRODUCTION

Deep learning is a branch of machine learning. It is an algorithm that abstracts data by using
multiple processing layers composed of complex structures or multiple non-linear transformations.
Compared with the shallow machine learning methods, deep learning algorithm is a process of
automatic feature engineering. Deep learning frameworks, such as convolutional neural network
and recursive neural network, have been applied in the fields of bioinformatics and biomedicine
and achieved excellent results (Lipinski et al., 2019). Deep learning methods have good applications
in microbiology including metagenomic data analysis, microbial-related drug discovery, disease
microbial association and so on (Duch et al., 2007). When analyzing microbial related data, it shows
high prediction accuracy in practice. Because deep learning algorithms are good at obtaining very
complex underlying patterns in data, they are especially suitable for large and high-dimensional
data sets. Moreover, it is easy to update the model with the new data. The hidden layer of the
network obviously reduces the demand for Feature Engineering and is conducive to the completion
of prediction tasks. The schematic diagram of the deep learning in drug discovery is shown in
Figure 1.

Deep learning has revolutionized most areas of science and technology, including drug
discovery. Traditional drug discovery methods are not time and cost efficient and therefore often
unable to keep pace with the rapidly emerging and re-emerging pathogenic microorganisms.
More recent drug discovery methods include Naive Bayesian, Support Vector Machines and
Neural Networks (Bender et al., 2007; Stephenson et al., 2019). These alternative drug discovery
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FIGURE 1 | The schematic diagram of deep learning in drug discovery. Biochemical data from drug candidates and protein targets can be used for drug discovery.
Chemical sequences (simplified molecular-input line-entry system (SMILES) strings) and amino acid (AA) sequences, structure of chemical compounds and protein
targets can be used as the features to fed into the deep learning models. Different deep learning models can be employed to analyze the data by integrating Drug
Target Interaction (DTI) prediction, knowledge graph or structure based computational methods. Figure is made in part with BioRender.

methods usually use bigger data sets generated from high
throughput screenings and allow more accurate prediction of
bioactivities and molecular properties of the targets (Stephenson
et al., 2019). Compared to these alternative machine learning
methods used for drug discovery, deep learning is characterized
by the flexibility of the architecture of Neural Networks (Chen
et al., 2018). Given the cost and time required for traditional
drug discovery, deep learning has the potential to significantly
accelerate the drug discovery process. By using information
on the biological, chemical, and topological properties of
compounds and their putative targets from the large-scale
libraries, deep learning can be employed to identify the most
promising drugs against specific diseases (Neves et al., 2020;
Stokes et al., 2020). Various deep learning methods have been
developed over the last few years, but their application in drug
discovery has still not reached its full potential. One of the
main hurdles for researchers planning to build their own deep
learning model for drug identification is the amount of resources
and time required to collect large amounts of data. A number
of computational screen open databases have been made to
prioritize drug candidates, recently. A representative set of open
access datasets which can be used to train deep learning models
for specific research projects is shown in Table 1.

The outbreak of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) causing coronavirus disease
(COVID-19) has been declared a global pandemic. By September
2021, more than 220 million people have been infected with

SARS-CoV-2 and more than 4.5 million of those infected have
died. In addition, several SARS-CoV-2 variants with mutations
that increase their potential to contribute to the severity of the
pandemic have emerged and are spreading around the globe
(Zhang Y. et al., 2020).

Besides non-structural proteins, SARS-CoV-2 genome
encodes four structural proteins: envelope (E), membrane (M),
nucleocapsid (N), and spike (S) (Zhang Y. et al., 2020). S protein
mediates entry of SARS-CoV-2 into the host cells by binding
and fusing with the host’s cellular receptor, the angiotensin-
converting enzyme 2 (ACE2). Mutations in S protein, particularly
in its receptor binding domain (RBD) were shown to play a role
in the increased transmissibility and infectivity of the emerging
SARS-CoV-2 variants (Zahradnik et al., 2021).

Although several SARS-CoV-2 vaccines have been developed
over the last few months, there are not many efficient
and reliable drugs available for the treatment of SARS-CoV-
2 infections. This is caused partially by the fact that the
traditional drug discovery process may be time-consuming
and costly to keep pace with the rapid spread of SARS-CoV-
2 and its variants with increased transmissibility and other
enhanced features.

Deep learning has been previously applied for the
identification of a number of antiviral compounds, including
antiviral peptides (Timmons and Hewage, 2021) and small
drug-like compounds with the potential to inhibit HIV-1
(Andrianov et al., 2021).
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The computational approaches employing deep
learning will aid also faster discovery of novel and active
potential inhibition agents against SARS-CoV-2 and its
emerging variants.

High-throughput technologies have generated an increasing
amount of data in chemoinformatics. As a result, it is believed
that the application of the recent deep learning advances into
the drug discovery process will lead to novel, more reliable and
efficient therapeutics against SARS-CoV-2.

ANTIMICROBIAL DRUGS IDENTIFIED BY
DEEP LEARNING

Deep learning can reduce time and costs of the drug discovery
process, particularly in its early stages. Consequently, deep
learning-based approaches have been successfully used to
identify novel antimicrobial compounds against a wide variety
of pathogenic microorganisms, including bacteria, protozoan
parasites and viruses.

Training of the deep learning model to identify molecules
active against antibiotic-resistant bacteria led to the discovery
of Halicin and eight additional potential antibiotics from the
ZINC database (Table 1; Stokes et al., 2020). Interestingly,
these compounds identified by deep learning are all structurally
divergent from conventional antibiotics (Stokes et al., 2020).
Subsequent tests revealed strong antibacterial activity of Halicin
against a number of antibiotic-resistant bacteria, including
Carbapenemase-producing Enterobacterales, Mycobacterium
tuberculosis, Acinetobacter baumannii, and Clostridioides difficile
(Stokes et al., 2020).

In parasite research, deep learning has been applied
to predict new antimalarial drug candidates. Neves et al.
(2020) employed deep learning to obtain binary, continuous
Quantitative Structure-Activity Relationships (QSAR) models
using datasets extracted from ChEMBL database (Table 1).
QSAR mathematical models can predict the relationship
between the structure of a molecule and biological activity or
physicochemical property. This study led to the discovery of
two new families of the potential next generation antimalarial
drugs with activity against Plasmodium causing malaria at
nanomolar concentrations and low cytotoxicity in mammalian
cells (Neves et al., 2020).

Deep learning has been also applied for the identification
of a number of antiviral compounds. Timmons and Hewage
developed a novel method called ENNAVIA, which employs deep
learning and chemoinformatics, to identify peptides with low
toxicity and excellent biological activity. The peptides identified
in this study represent promising candidates for antiviral drugs
(Timmons and Hewage, 2021). Furthermore, deep learning in
combination with molecular modeling has been applied for
the identification of three small drug-like compounds from
millions of molecules in the ZINC15 database (Andrianov et al.,
2021). Based on machine learning, molecular docking, molecular
dynamics and quantum chemical calculations, the compounds
identified in this study are promising HIV-1 drugs with the
potential to block CD4-binding site of the viral envelope protein,

TABLE 1 | Representative biochemical datasets used in deep learning studies.

Dataset Description URL References

ZINC ZINC database
contains over 230

million compounds.

http://zinc.docking.org/ Bai et al.,
2020; Choi
et al., 2020;
Stokes et al.,

2020; Ton
et al., 2020

ChEMBL ChEMBL (version 27)
chemical database
contains over 1.9

million specific
compounds.

https://www.ebi.ac.uk/
chembl/

Stokes et al.,
2020

Drug target
commons
(DTC)

DTC crowdsourcing
database contains
204,901 annotated

bioactivity data points
among 4,276

compounds and 1,007
specific protein targets.

https:
//drugtargetcommons.

fimm.fi/

Beck et al.,
2020

BindingDB BindingDB database of
measured binding
affinities contains

2,061,017 binding data
for 8,160 protein

targets and 907,259
small molecules.

http://www.bindingdb.
org/bind/index.jsp

Beck et al.,
2020

DrugBank DrugBank
pharmaceutical

database contains
detailed molecular
information about

drugs, their
mechanisms,

interactions and
targets.

https://go.drugbank.
com/releases/latest

Choi et al.,
2020; Zeng
et al., 2020

PDBbind PDBbind database
provides binding data

of 21,382 biomolecular
complexes, including

protein-ligand (17,679),
nucleic acid-ligand

(136), protein-nucleic
acid (973), and
protein-protein

complexes (2,594).

http:
//www.pdbbind.org.cn

Bai et al.,
2020

thus inhibiting HIV-1 entry (Andrianov et al., 2021). Li et al. have
developed a dual-channel deep neural network for identifying
variable-length antiviral peptides (DeepAVP) which could block
entry of the virus into the host cell (Li et al., 2020). Deep learning
has been also used for the prediction of plant-exclusive virus-
derived small interfering RNAs (PVsiRNAPred) (He et al., 2019).

DEEP LEARNING IN TACKLING SEVERE
ACUTE RESPIRATORY SYNDROME
CORONAVIRUS 2

Reliable and efficient computing methods employing deep
learning are urgently needed for the discovery of drugs against
SARS-CoV-2 and its emerging variants.
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Drug repurposing is considered to be among the fastest and
most promising methods for identification of effective SARS-
CoV-2 treatments. A good example of the drug repurposing
involving deep learning is a recent work by Zhang Y. et al.
(2020). This study employed a deep learning-based drug-target
interaction model called Molecule Transformer-Drug Target
Interaction (MT-DTI) utilizing chemical sequences [simplified
molecular-input line-entry system (SMILES) strings] and amino
acid (AA) sequences as the input (Figure 1). MT-DTI model
was trained with a combined and curated chemical-protein pairs
from BindingDB and Drug Target Commons (DTC) databases
(Table 1). This study led to identification of several commercially
available antiviral drugs with the potential to interact also
with the SARS-CoV-2 proteins (Beck et al., 2020). Subsequent
experiments showed that several of the antiviral agents identified
by MT-DTI model could be potentially used to treat SARS-CoV-
2 (Beck et al., 2020). These include Atazanavir (Kd 94.94 nM),
Remdesivir (Kd 113.13 nM), and Kaletra (Lopinavir/Ritonavir)
(Table 2). Atazanavir, showing an inhibitory potency against
SARS-CoV-2 3-C like proteinase is an antiviral drug used for
the treatment of the human immunodeficiency virus (HIV)
infections. Remdesivir has been previously predicted to act
against SARS-CoV-2. Furthermore, Lopinavir and Ritonavir
were shown to target viral proteinases (Beck et al., 2020). The
BindingDB is a public database containing measured binding
affinities for three types of coronaviruses, SARS-CoV-2, SARS-
CoV and MERS-CoV.1

MT-DTI model was also used to select compounds from 1,400
approved drugs in DrugBank and ZINC databases (Table 1) with
strong affinity to the host cell targets crucial for viral infection
(Zahradnik et al., 2021). This approach led to identification of
drugs candidates with a strong binding affinity (Kd < 100 nM)
against ACE2 receptor and transmembrane protease serine 2
(TMPRSS2) (Zahradnik et al., 2021). Drug candidates identified
in this study include an ACE2 inhibitor Enalaprilat (Kd 1.46 nM)
and several drugs with predicted strong affinity for TMPRSS2,
namely Venetoclax (Kd 6.12 nM), Posaconazole (Kd 17.11
nM), Daclatasvir (Kd 6.65 nM), and Ombitasvir (Kd 5.91 nM)
(Table 2). Strong affinity of Enalaprilat for ACE2 suggests that it
might prevent the entry of SARS-CoV-2 to human cells. Notably,
two of the drug candidates identified, namely Daclatasvir and
Ombitasvir, are known Hepatitis C virus (HCV) inhibitors, thus
suggesting that they may act against both HCV and SARS-CoV-
2 (Zahradnik et al., 2021). The DrugBank has collected data for
65 drugs against 385 drug targets, which is web accessible at
https://go.drugbank.com/covid-19.

Zeng et al. used deep learning-based knowledge graph to select
promising SARS−CoV−2 drug candidates (Zeng et al., 2020).
Knowledge graph in this study encompasses 15 million edges
across 39 types of relationships connecting expression patterns,
genes, pathways, drugs and diseases and incorporates data from
over 20 million PubMed articles and the DrugBank database
(Table 1). Deep learning employed to learn the representation
of nodes and relationships in this knowledge graph led
to identification of 41 promising drug candidates, including

1https://www.bindingdb.org/bind/Covid19.jsp

Toremifene, Niclosamide, Dexamethasone and Indomethacin
(Table 2; Beck et al., 2020). Toremifene is a selective estrogen
receptor modulator, which has shown antiviral activity against
a number of viruses, including SARS-CoV-2. Dexamethasone is
an anti-inflammatory agent with the potential to treat SARS-
CoV-2 infections (Beck et al., 2020). Niclosamide, a drug used
to treat tapeworm and an anti-inflammatory drug Indomethacin
were also shown to have antiviral activity in vitro. The 41
promising drug candidates identified in this study (including
Toremifene, Niclosamide, Dexamethasone and Indomethacin)
were also validated by gene expression and proteomics of cells
infected with SARS-CoV-2 (Beck et al., 2020).

A hybrid deep learning and molecular simulation-based
screening procedure was used to select drug candidates targeting
RNA-dependent RNA polymerase (RdRp) from 1906 approved
drugs, recently (Choi et al., 2020). Commercially available drug
candidates, Pralatrexate and Azithromycin, (Table 2) identified
in this study were confirmed to inhibit SARS-CoV-2 replication
in vitro (Choi et al., 2020). While Pralatrexate was shown to act
after entry of the virus into the cells, Azithromycin was active at
both the entry and post-entry of SARS-CoV-2 into the host cells
(Choi et al., 2020).

Bai et al. developed MolAICal software tool combining deep
learning model and classical algorithm for identification of drugs
interacting with 3D pocket of protein targets (Bai et al., 2020).
Deep learning model of MolAICal software was trained using
approved drug fragments in PDBbind database and drug-like
molecules in the ZINC database (Table 1). Drug design functions
of MolAICal software were demonstrated using the membrane
protein glucagon receptor (GCGR) and SARS−CoV−2 main
protease (Mpro) (Zeng et al., 2020).

Ton et al. (2020) developed a Deep Docking (DD) deep
learning platform which uses QSAR models for screening of
potential drug candidates in the ZINC database (Table 1). This
approach led to the identification of 1,000 potential ligands for
SARS−CoV−2 Mpro (Ton et al., 2020).

Deep learning and molecular docking methods were
developed for screening of natural compounds against SARS-
CoV-2 Mpro in the ChEMBL database (Table 1; Bai et al., 2020).
ChEMBL database is an open large-scale chemical database
of bioactive molecules, containing 8,200 potential anti-SARS-
CoV-2 drug candidates. This study led to the identification of
two natural compounds with potential as therapeutics against
SARS-CoV-2, namely Palmatine (Kd 1096.4 nM) and Sauchinone
(Table 2) (Kd 389.05 nM). Palmatine and Sauchinone are an
alkaloid and a lignan, respectively, with previously shown
pharmacological properties. Furthermore, both Palmatine and
Sauchinone form a stable complex with SARS-CoV-2 Mpro and
have been predicted to inhibit SARS-CoV-2 (Bai et al., 2020).

Deep learning combined with multiple sequence alignment
drug-likeness screening, molecular docking, chemical space
mapping and molecular dynamics simulation was also used
to identify drug candidates by screening 1528 anti-HIV-
1 compounds against 3-chymotrypsin-like cysteine protease
(3CLpro) of SARS-CoV-2 (Nand et al., 2020).

Given the lack of therapeutics against SARS-CoV-2, deep
learning approaches combined with other computational
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TABLE 2 | Drug candidates against SARS-CoV-2.

Drug Molecular
formula

Structural
formula

SMILES Target References

Atazanavir C38H52N6O7 COC(N[C@@H](C(C)(C)C)C(NN
(C[C@H](O)[C@H](CC1 = CC =

CC = C1)NC([C@H](C(C)(C)C)NC
(OC) = O) = O)CC(C = C2) = CC =
C2C3 = NC = CC = C3) = O) = O

3C-like
proteinase

Beck et al.,
2020

Remdesivir C27H35N6O8P CP = O.COC1 = CC = CC = C1.O
= C(OCC(CC)CC)[C@H](C)NC.NC2
= NC = NN3C2 = CC = C3[C@@]4

(C#N)[C@H](C)[C@H](C)[C@@H]
(C[O])O4.[OH].[OH]

3C-like
proteinase

Beck et al.,
2020

Kaletra
(Lopinavir/Ritonavir)

C74H96N10O10S2

(C37H48N4O5/C37

H48N6O5S2)

CC1 = CC = CC(C) = C1OCC(N
[C@@H](CC2 = CC = CC = C2)
[C@@H](O)C[C@H](CC3 = CC
= CC = C3)NC([C@H](C(C)C)
N4C(NCCC4) = O) = O) = O

Helicase Beck et al.,
2020

CC(C)C1 = NC(CN(C)C(N[C@@H]
(C(C)C)C(N[C@@H](CC2 = CC

= CC = C2)C[C@H](O)[C@H](CC3
= CC = CC = C3)NC(OCC4 = CN

= CS4) = O) = O) = O) = CS1

Enalaprilat C18H24N2O5 OC([C@H]1N(C([C@H](C)N
[C@H](C(O) = O)CCC2 = CC
= CC = C2) = O)CCC1) = O

ACE2 Choi et al.,
2020

Venetoclax C45H50ClN7O7S ClC1 = CC = C(C2 = C(CN3CC
N(C4 = CC = C(C(NS(C5 = CC =
C(NCC6CCOCC6)C([N + ]([O-

]) = O) = C5)(= O) = O) = O)C(OC
7 = CC(C = CN8) = C8N = C7) =

C4)CC3)CCC(C)(C)C2)C = C1

TMPRSS2
ACE2

Choi et al.,
2020

Posaconazole C37H42F2N8O4 FC1 = CC(F) = CC = C1[C@@]2
(CN3N = CN = C3)C[C@H](COC

4 = CC = C(N5CCN(C6 = CC = C(N
7C = NN([C@@H](CC)[C@@H](O)

C)C7 = O)C = C6)CC5)C = C4)CO2

TMPRSS2
ACE2

Choi et al.,
2020

Daclatasvir C40H50N8O6 COC(N[C@@H](C(C)C)C(N1[C@H]
(C2 = NC = C(C3 = CC = C(C4 = C
C = C(C5 = CN = C([C@H]6N(C([C@
@H](NC(OC) = O)C(C)C) = O)CCC6)N
5)C = C4)C = C3)N2)CCC1) = O) = O

TMPRSS2
ACE2

Choi et al.,
2020

Ombitasvir C50H67N7O8 CC(C)(C)C(C = C1) = CC = C1N([C@
H](C2 = CC = C(NC([C@@H]3CCCN
3C([C@H](C(C)C)NC(OC) = O) = O)
= O)C = C2)CC4)[C@@H]4C5 = CC
= C(NC([C@H]6N(C([C@@H](NC(O

C) = O)C(C)C) = O)CCC6) = O)C = C5

TMPRSS2
ACE2

Choi et al.,
2020

Toremifene C26H28ClNO CN(C)CCOC1 = CC = C(/C(C2
= CC = CC = C2) = C(C3 = C
C = CC = C3)/CCCl)C = C1

– Zeng et al.,
2020

(Continued)
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TABLE 2 | (Continued)

Drug Molecular formula Structural
formula

SMILES Target References

Niclosamide C13H8Cl2N2O4 ClC1 = CC = C(O)C(C(NC2
= CC = C([N + ]([O-]) = O)C

= C2Cl) = O) = C1

– Zeng et al.,
2020

Dexamethasone C22H29FO5 O = C1C = C[C@@]2(C)C(CC[C@]
([C@@](C[C@@H](C)[C@]3(O)C(C
O) = O)([H])[C@]3(C)C[C@@H]4O)

([H])[C@@]24F) = C1

– Zeng et al.,
2020

Indomethacin C19H16ClNO4 COC1 = CC = C(N(C(C2 = CC
= C(Cl)C = C2) = O)C(C) = C3

CC(O) = O)C3 = C1

– Zeng et al.,
2020

Pralatrexate C23H23N7O5 NC1 = C2C(N = CC(CC(C3 =
CC = C(C(N[C@H](C(O) = O)

CCC(O) = O) = O)C = C3)
CC#C) = N2) = NC(N) = N1

RdRp Zhang H. et al.,
2020

Azithromycin C38H72N2O12 CN([C@H](C)[C@@H](O)C(C)(O)[C
@@H](CC)O1)C[C@H](C)C[C@@]

(O[C@H]2[C@H](O)[C@@H](N(C)C)
C[C@@H](C)O2)(O)C[C@@H](C)[C

@H](O[C@H]3O[C@@H](C)[C@H](O
)[C@](C)(OC)C3)[C@@H](C)C1 = O

RdRp Zhang H. et al.,
2020

Palmatine C21H22NO4
+ COC1 = C(OC)C(C = [N + ]

(CCC2 = C3C = C(OC)C(OC)
= C2)C3 = C4) = C4C = C1

Mpro enzyme
of SARS-CoV-2

Joshi et al.,
2020

Sauchinone C20H20O6 O = C1C = C2[C@]3(OCO2)[C@
@]4([H])[C@@]1([H])C[C@@H](C)
[C@H](C)[C@@]4([H])C5 = CC

(OCO6) = C6C = C5O3

Mpro enzyme
of SARS-CoV-2

Joshi et al.,
2020

Table shows molecular and structural formulas, simplified molecular-input line-entry system (SMILES) strings and corresponding targets of the potential drugs against
SARS−CoV−2.

methods will play an important role in the identification
of potential drugs targeting SARS-CoV-2. Compounds
selected by deep learning will subsequently undergo standard
clinical evaluation.

DISCUSSION

Deep learning has a number of advantages compared to more
conventional methods, including its ability to learn complex
features independently. Although deep learning has played an
important role in the identification of novel drugs against

a wide range of pathogens, including SARS-CoV-2, many
challenges still remain.

The connection between the data fed into the deep learning
model and the delivered output is inscrutable, which hidden
inside is a so-called black box. Deep neural network due to its
black-box nature therefore often lacks interpretability. Therefore,
the interpretability of the future neural networks on the output
results will be a key factor in understanding the logic of machine.
This will aid analysis of the chemical compounds identified by
deep learning and better design of the drug discovery studies.

Furthermore, the input data affects the prediction
performance of the deep learning model. Consequently, a large,
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standardized and reliable biochemical dataset is necessary to
achieve better learning of the deep learning model. Development
of a large open dataset in the future will enable potential
standardization of the deep learning-based drug discovery.

Antibody-based therapy represents an interesting SARS-CoV-
2 treatment option. Deep learning models have been developed
for the discovery and design of therapeutic antibodies (Mason
et al., 2021; Saka et al., 2021). Thus, drug repositioning and
screening from computational libraries containing a massively
diverse antibody sequences could be used to engineer anti-viral
SARS-CoV-2 treatment.

Furthermore, most recent studies describe methodologies
separately and test them individually. Application of deep
learning to combine chemoinformatics with other types of
data, such as imaging, cellular and molecular biology data for
integrative analysis would be an important direction for future
research. To this end, it might be necessary to identify the best
neural network architecture for handling those vast troves of data.

We believe that integrative and systematic analysis will be
important for future deep learning-based drug discovery that

involves complicated large biological, chemical and clinical
datasets. Using such large datasets to streamline and accelerate
drug discovery, deep learning will be crucial not only for
the identification of drug candidates against SARS-CoV-2
but also against a broad spectrum of other emerging and
reemerging pathogens.
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Type 1 secretion systems play important roles in pathogenicity of Gram-negative
bacteria. However, the substrate secretion mechanism remains largely unknown. In
this research, we observed the sequence features of repeats-in-toxin (RTX) proteins,
a major class of type 1 secreted effectors (T1SEs). We found striking non-RTX-motif
amino acid composition patterns at the C termini, most typically exemplified by the
enriched “[FLI][VAI]” at the most C-terminal two positions. Machine-learning models,
including deep-learning ones, were trained using these sequence-based non-RTX-
motif features and further combined into a tri-layer stacking model, T1SEstacker, which
predicted the RTX proteins accurately, with a fivefold cross-validated sensitivity of ∼0.89
at the specificity of ∼0.94. Besides substrates with RTX motifs, T1SEstacker can
also well distinguish non-RTX-motif T1SEs, further suggesting their potential existence
of common secretion signals. T1SEstacker was applied to predict T1SEs from the
genomes of representative Salmonella strains, and we found that both the number
and composition of T1SEs varied among strains. The number of T1SEs is estimated to
reach 100 or more in each strain, much larger than what we expected. In summary, we
made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified
common sequence-based features at the C termini, and developed a stacking model
that can predict type 1 secreted proteins accurately.

Keywords: T1SS, T1SE, RTX proteins, T1SEstacker, prediction, deep learning

INTRODUCTION

Type 1 secretion systems (T1SSs) are uniquely distributed in Gram-negative bacteria, which can
secrete various substrate proteins through the two bacterial cell membranes by one step (classical)
or two steps (non-classical) into extracellular milieu (Smith et al., 2018b; Spitz et al., 2019). A T1SS
is composed by three elementary components—an ATP-binding cassette (ABC) transporter located
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in the inner membrane, an outer membrane factor (OMF), and a
membrane fusion protein (MFP) connecting the ABC transporter
(Kanonenberg et al., 2018). A wide variety of proteins are secreted
through this oligomeric secretion channel to play their biological
roles. Due to the simple structure of the system, T1SSs have been
widely applied in biomedical engineering applications (Schwarz
et al., 2012; Ryu et al., 2015; Park et al., 2020).

The T1SS substrates, also called type 1 secreted effectors
(T1SEs), have various biological functions, such as host
invasion (virulence factors, e.g., HlyA) (Felmlee et al., 1985),
enzymolysis (digestion enzymes, e.g., TliA and PrtA) (Son et al.,
2012), nutrient acquisition (iron-scavenger proteins, e.g., HasA)
(Kanonenberg et al., 2013), and biofilm formation (adhesins,
e.g., LapA) (Guo et al., 2019). Since the first T1SS substrate,
hemolysin A (HlyA), was discovered in 1979 and its nucleotide
sequence was determined in 1985 (Noegel et al., 1979; Felmlee
et al., 1985), the structural characteristics and function of T1SEs
have been studied extensively. Typical T1SEs can be classified
into three classes simply according to their T1SS ABC transporter
types: C39-containing ABC transporters with hydrolase activity,
C39-like domain (CLD)–containing ABC transporters without
hydrolase activity, and a third type of ABC transporters without
any additional N-terminal domain (Hui et al., 2021). Class
1 T1SEs, known as the smallest T1SS substrates, normally
contain N-terminal leader peptides. The C termini of the leader
peptides contain a canonical double glycine (“GG”) motif,
which can be recognized and cleaved by the C39 domains of
corresponding ABC transporters before the mature proteins are
secreted through T1SSs (Kanonenberg et al., 2013). Class 2 T1SEs
have remarkable repeats-in-toxin (RTX) domains and are also
known as RTX proteins. The glycine-rich nanopeptide repeats
in RTX domains show a “GGxGxDxUx” consensus sequence
motif where “x” is any amino acid and “U” represents a large or
hydrophobic amino acid. Class 3 T1SEs may also contain RTX
repeat sequences but not necessarily. The last two categories do
not contain N-terminal leader peptides, but instead potentially
have secretion signal sequences in the C termini. However, the
C-terminal signal patterns and function mechanisms remain to
be clarified (Kanonenberg et al., 2013). Recently, a group of
non-classical T1SEs named RTX adhesins (class 4) have been
reported, which are closely related to biofilm formation (Smith
et al., 2018b). Different from class 1–3 T1SEs, the RTX adhesins
are transported from cytoplasm to extracellular environment
by a two-step secretion mechanism, which involves periplasmic
intermediates. This subgroup of T1SS machinery is linked with
a bacterial transglutaminase-like cysteine proteinase (BTLCP)
(Smith et al., 2018b). The RTX adhesion proteins have dialanine
BTLCP cleavage sites in the N-terminal retention module that
can be recognized and cleaved by the machinery-coupled BTLCP
in periplasm before the cross-outer-membrane transport (Boyd
et al., 2014; Smith et al., 2018b). The currently known RTX
adhesins also have RTX repeats and signal sequences in the C
termini (Boyd et al., 2014; Smith et al., 2018b).

Both the function and sequences of T1SEs show large diversity,
and until now only ∼100 T1SEs have been validated, which are
homology-not-filtered, i.e., being redundant with high sequence
homology, and therefore could represent fewer independent

validated effectors1. Bioinformatic strategies have also been tried
to predict novel T1SEs, but mainly focused on the RTX proteins
with the consensus RTX motifs (Linhartova et al., 2010; Luo et al.,
2015). For instance, Linhartova et al. (2010) combined pattern
searching, Hidden Markov Model profiles, and the RPS-BLAST
tool finding conversed domains to predict 1,024 candidate
RTX proteins from 840 bacterial genomes, as comprised the
most comprehensive list of RTX T1SE candidates. Luo et al.
(2015) made the first attempt to develop a machine-learning
model to predict RTX proteins. The random forest–based model
learned amino acid sequence–derived features extracted from
the full-length and C-terminal sequences of T1SE candidates
predicted by Luo et al. (2015). Regretfully, neither a software
tool nor a web server was provided for users to implement
the method. Besides, both the homology-based and machine-
learning methods completely focused on the RTX proteins and
the conserved RTX motif was placed with a large weight. The
methods are hardly generalized to find more novel T1SEs without
RTX motif features.

By careful sequence pattern analysis, previously, we identified
the position-specific amino acid composition (Aac), secondary
structure element (Sse), and solvent accessibility (Acc) features
of type 3 secreted effectors within their N termini and the various
Aac, Sse, and Acc profiles of type 4 secreted effectors within their
C termini (Wang et al., 2011, 2014). Given the evidence about
the potential C-terminal secretion signals of T1SEs (Koronakis
et al., 1989; Masure et al., 1990; Zhang et al., 1995; Delepelaire,
2004; Holland et al., 2005; Thomas et al., 2014), in this research,
we comprehensively observed the amino acid sequence patterns,
especially non-RTX-motif features within the C termini of RTX
proteins, and also the Sse and Acc property. Furthermore, we
developed machine-learning models to learn the newly observed
sequence-derived features and predicted T1SEs with or without
typical RTX motifs. Deep learning models and ensemblers
have recently been widely used to predict bacterial secretion
signals and achieved good performance (Wang et al., 2018,
2019; Almagro Armenteros et al., 2019; Xue et al., 2019; Hui
et al., 2020). We also tested Deep Neural Network models and
integrated them and others within a stacked model to improve
the prediction performance.

MATERIALS AND METHODS

Datasets
Bacterial RTX proteins were collected from Linhartova et al.
(2010). In total, there were 1,024 RTX proteins predicted from
840 bacterial genomes (Linhartova et al., 2010). CD-HIT was used
to detect homology among the RTX proteins, while 30% was
considered as the similarity cutoff and only one representative
was retained if there were multiple proteins showing sequence
similarity above the cutoff (Li and Godzik, 2006). Proteins were
also sampled randomly from the whole proteomes derived from
various bacterial genome sequences. The known T1SEs, RTX
proteins, and their homologs with >30% blastp similarity were

1http://61.160.194.165/TxSEdb
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removed, and a homology filtering strategy similar to that applied
for RTX proteins were used to identify the non-redundant non-
RTX proteins. In total, 512 non-redundant RTX proteins were
retained, which were considered as the positive dataset (p).
A total of 2,000 proteins were also randomly selected from the
processed non-RTX proteins, and three groups, each with 512
proteins, were further picked out to match the number and
general length distribution of the RTX proteins, forming the
negative datasets (n1 ∼ n3). The p and n1 were used as the
main observation datasets. A fivefold cross-validation strategy
was used for training the machine-learning prediction models,
for which both the positive and negative datasets were split
into five subsets of equal size of protein sequences, with four of
them being served as training datasets and the remaining one as
testing datasets in each round of model analysis. Experimentally
validated T1SEs were also annotated manually from literature.
These proteins could be RTX or other type of proteins with
experimental evidence to be transported through T1SSs. All the
datasets were publically available together with the standalone
T1SEstacker package (see Section “Software Availability”; see
Text Footnote 1).

Once the datasets were collected and annotated, the sequence-
based features were analyzed with in-house scripts. The
secondary structure and solvent accessibility were predicted with
SSpro/ACCpro5, with three elements encoded for secondary
structure (“H” for helix, “E” for strand, and “C” for coil) and two
elements for accessibility (“B” for buried and “E” for exposed)
(Magnan and Baldi, 2014).

Sequential and Position-Specific Amino
Acid Composition Feature–Based
Non-deep-Learning Models
The number and position distribution of RTX motifs featured
as “GGxGxD” was observed within the RTX and non-RTX
proteins. Sequential Aac, continuous and 1 or 2 amino acid
interrupted bi-residue amino acid composition (bAac) features
were extracted from the C-terminal 20- or 60-residue fragments
of both the positive and negative datasets, respectively, observed,
and compared. The features were used for training Random
Forest (RF), Support Vector Machine (SVM), and Naive Bayesian
(NB) models, with R packages of “randomForest,” “e1071,” and
the “e1071” method “naiveBayes,” respectively2. The neighbor-
position Aac conditional constraint features in the C termini were
learned in Markov models (Wang et al., 2013). Bi-profile Bayesian
position-specific Aac features were extracted and trained with
SVM models (Wang et al., 2011). For the SVM models, four
kernels (“linear,” “polynomial,” “sigmoid,” and “radial”) were
tested and the corresponding parameters, e.g., gamma and/or
cost, were optimized using a 10-fold cross-validation grid search
strategy within each training dataset. For the other models, the
features were also extracted based on each training dataset. The
details about the models and the optimized parameters refer to
the website of T1SEstacker (see Section “Software Availability”).

2https://www.r-project.org/

Deep Learning Models
Deep learning models were trained with the Aac features of
RTX proteins within the C-terminal 20 (C20) and 60 amino
acid positions (C60). Each position was represented by a 20-
element feature vector describing the composition of amino
acids. An m × 20 L matrix was built to represent the original
Aac features of training datasets, where m is the number of
training proteins and L is 20 or 60 for C20 or C60 models,
respectively. Fully connected Deep Neural Network (DNN), Self
Attention (SelfAttention), and models with Long-Short Term
Memory (LSTM) cells (RNN) were trained and tested with a
fivefold cross-validation strategy. The details about the models
and the optimized parameters refer to the website of T1SEstacker
(see Section “Software Availability”).

A Stacked Model Featured by the
Prediction Results of Individual Models
To achieve better prediction performance, we proposed a new
stacking scheme to integrate prediction results of individual
models (Figure 1). A primary stacked model was built for
each original fivefold training dataset and its based individual
models. For each original fivefold testing dataset, an embedded
fivefold cross-validation was adopted to evaluate the performance
of stacked models. The prediction result of each-fold best-
trained model of individual algorithms on each protein of the
corresponding testing dataset was based, and encoded as 1 (RTX)
or 0 (non-RTX) according to the model-specific optimized cutoff
score. Each protein within an embedded fivefold training dataset
was represented as a feature vector of “0” and “1,” and an m′ × n
matrix was generated for the whole training dataset, where m′ is
the protein number of the embedded training dataset and n is
the number of individual machine-learning models. SVM models
with “linear” kernels were trained and the parameters (costs) were
optimized with a 10-fold cross-validation grid-searching strategy.

A voting strategy was used to integrate the five primary stacked
models, with the same weight assigned for each model.

Performance Evaluation of the Individual
and Stacked Models
Sensitivity (Sn), specificity (Sp), accuracy (ACC), the area under
the curve of receiver operating characteristic (rocAUC), and
Matthews correlation coefficient (MCC) were defined and used as
measures to assess the performance of models based on a fivefold
cross-validation strategy.

Sn = TP/(TP+ FN)
Sp = TN/(TN+ FP)
ACC = (TP+ TN)/(TP+ FN+ TN+ FP)
MCC = [(TP × TN) − (FN × FP)]/sqrt[(TP + FN) ×

(TN+ FP)× (TP+ FP)× (FN+ FN)].
TP, TN, FP, and FN denote the number of true positives, true

negatives, false positives, and false negatives, respectively.

Statistics
Individual amino acids were counted within C-terminal 20, 60, or
110-aa fragments, and Mann–Whitney tests were performed to
compare their distribution between RTX and non-RTX proteins,
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FIGURE 1 | Research design and scheme of the tri-layer staking model T1SEstacker. (A) Research design. Pos, positive; Neg, negative; NR, non-redundant.
(B) Tri-layer stacking model. The original positive and negative datasets were fivefold divided and four of them were used as training datasets for training different
machine-learning models, e.g., MM, NB, etc. The remaining sub-divided dataset was used as the corresponding testing dataset. For each round of cross-validation,
the prediction results of the individual models for the testing dataset were used for training and testing the primary stacker models using SVM with an embedded
fivefold cross-validation strategy. Prediction results of the primary stackers were further stacked in T1SEstacker with a voting strategy.

followed by Bonferroni corrections. For two continuous or
non-continuous amino acids (bi-AAs), the composition was
also compared between the C termini of RTX and non-RTX
proteins using the same statistical methods. Another balanced
rate comparison method, EBT, was also adopted to compare
the C-terminal occurrence of bi-AAs between the two classes
of proteins (Hui et al., 2017). The alpha levels for all tests
were preset as 0.05.

Software Availability
T1SEstackers and its modules were developed with Python,
Perl, and R. The packages and user manual can be downloaded
freely via the link, http://www.szu-bioinf.org/tools/T1SEstacker.
A web server was also initiated to make internet-based prediction
service: http://www.szu-bioinf.org/T1SEstacker.

Salmonella Genomes
In total, 26 representative strains were included, which
covered the known Salmonella phylogenetic groups. N268_08,
NCTC12419, and RKS3044 belong to Salmonella bongori;
RKS2983 and RSK2980 belong to Salmonella enterica subsp.
arizonae; ATCC_BAA_1581 and RKS3027 belong to Salmonella
enterica subsp. houtenae; 2439-64 and RKS3013 belong to
Salmonella enterica subsp. vii; 11_01853, 11_01854, 11_01855,

and RKS2978 belong to S. enterica subsp. diarizonae; RKS2986
and ST114 belong to Salmonella enterica subsp. salamae; 1121
and RKS3057 belong to Salmonella enterica subsp. indica; while
P12519, 287/91, ATCC9150, SPB7, RKS4594, ATCC9120, CT18,
14028S, and LT2 represent various serovars of Salmonella enterica
subsp. enterica. The genome and genome-encoding proteome
were downloaded from NCBI genome database3. T1SEstacker
was applied to predict the T1SE candidates with default settings.

RESULTS

Research Design
The major obstacles for training machine-learning models in
prediction of bacterial T1SEs include (1) the limited number
of experimentally validated positive proteins and (2) the large
sequence diversity of T1SE groups. Comprehensive literature
searching and manual annotation only curated 99 validated
T1SEs, and only 49 were retained after a strict homology-filtering
process, which were distributed in all the four major T1SE groups
(see Text Footnote 1). To better analyze the likely novel sequential
features that could facilitate understanding the mechanisms of

3https://www.ncbi.nlm.nih.gov/genome
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type 1 secretion and prediction of new T1SEs, and as performed
by others previously (Luo et al., 2015), we took the larger-scale
RTX T1SE candidates identified by Linhartova et al. (2010) as
training data for analysis of features other than RTX motifs and
building models to predict novel T1SEs.

After removing the homologs, the remaining non-redundant
T1SEs and paired non-T1SEs were compared for their sequential
and position-specific Aac, Sse, and Acc features, especially non-
RTX motif features (Figure 1A). With the sequence-based
features, a stacking model was developed to predict T1SEs
(Figure 1B). Representative strains of Salmonella phylogenetic
branches were predicted with the newly developed model, and
the possible number and distribution of candidate T1SEs were
evaluated (Figure 1A).

Distance Distribution of
Repeats-in-Toxin Motifs to the C Termini
in Repeats-in-Toxin Proteins
The 512 non-redundant RTX proteins show a length distribution
from 70 to 36,805 amino acids, with a median of 1,112 residues
and 7 super-long proteins with larger than 10,000 amino acids
(Figure 2A). In addition, 494 from the 512 positive proteins
could be found with at least one RTX motif within each protein
sequence (Figure 2B). As a control, only 13 from the total 2,341
non-redundant negative proteins contained RTX motifs, which
were filtered for further comparative or model-training analysis.
The most C-terminal residue of each most C-terminal RTX motif
shows a distance of 1–21,948 amino acids to the C terminus
of the corresponding full-length protein, with a median of 110
amino acids (Figure 2C). Fewer than 9% of the C-terminal RTX
motifs have a distance of smaller than 60 amino acids from the
protein C termini, and only ∼5% are shorter than 20 amino
acids (Figure 2D).

Sequential Amino Acid Composition
Features Buried in the C Termini of
Repeats-in-Toxin Proteins
We compared the composition of individual amino acids (Aac)
and two continuous or non-continuous amino acids (bAac)
among the C termini of RTX proteins since there were possibly
atypical secretion signals (Boyd et al., 2014; Smith et al.,
2018a). To avoid the possible misinterpretation caused by RTX
motifs, we mainly observed the Aac and bAac profiles within
the C-terminal 20 (C20) and C-terminal 60 (C60) residues
(Supplementary Dataset 1). Within C20, most individual amino
acids show different compositions between the positive and
negative proteins, with aspartic acid (D), leucine (L), threonine
(T), valine (V), isoleucine (I), and phenylalanine (F) being most
typically enriched and arginine (R), lysine (K), glutamic acid (E),
and proline (P) being most strikingly depleted in RTX proteins
(Figure 3A; Mann–Whitney U-tests with Bonferroni correction,
p < 0.001). Glycine (G) was not different between the two types of
proteins (Figure 3A; p = 1). When the observed length increases
to C-terminal 60-aa, most of the featured residues identified
from shorter fragments remain different between groups for the
composition, whereas some others start to show difference or no

difference, e.g., “G” being enriched in RTX proteins and “L,” “V,”
and “I” becoming no difference (Figure 3A). The enrichment of
“G” in RTX C60 fragments is not likely due to the increasing
occurrence of RTX motifs, which is enriched with “G,” since the
RTX motifs are lowly represented and the RTX motif featured
“GG” is either not strikingly higher in the C60 fragments of RTX
proteins (Figures 2D, 3B). For the C-terminal 110-aa fragments,
the amino acid species with significantly different composition
and the amplitude of difference further increase (Figure 3A). It
cannot be excluded that the increased number of RTX motifs
leads to the most striking composition amplitude change of “D”
and “G,” especially in C110, for which half of the sequences
contained the RTX motifs. However, the “L” composition change
is interesting, which shows higher composition in C20, no
difference in C60, and lower composition in C110 of RTX
proteins (Figure 3A).

The continuous and interrupted bAac profile also shows
difference in C termini between RTX and non-RTX proteins.
For example, “D[FL],” “TL/LT,” “AxD,” “Tx[LT],” “TxxD,” and
“Dxx[FI]” most frequently occur, whereas “R[RK],” “K[KA],”
“AxR,” “Rx[RL],” “AxxR,” “Kxx[KE],” and “Rxx[QR]” are most
strikingly depleted in the C-terminal 20-aa fragments of RTX
proteins in contrast to non-RTX proteins (Figures 3B–D;
Mann–Whitney U-tests with Bonferroni correction, p < 0.001;
EBT_p < 0.001). As the observed C-terminal length increases
(to 60 aa), the general bAac profile difference between RTX
and non-RTX proteins remains or becomes more typical, with
only a few changes. The main changes involve the reduced “L”
and increased “G” combinations in the RTX C60 enriched list
(Figures 3B–D). It is noted that either “GG” or “GxG,” which
is supposed to be highly represented by RTX motifs, does not
show the most significant different composition or occurrence
in C60 between RTX and non-RTX proteins, suggesting that the
observed different “G”-combination compositions are not due to
the increased percent of RTX motifs in C60 of RTX proteins.
In C110, however, the composition shows striking difference
for both “GG” and “GxG” between RTX and non-RTX proteins
(Supplementary Dataset 1).

Other independent non-RTX proteins datasets are also paired
and the profile difference for Aac and bAac in C termini between
RTX and non-RTX proteins shows large consistence.

Position-Specific Amino Acid
Composition Features Buried in the C
Termini of Repeats-in-Toxin Proteins
The C-terminal position-specific amino acid composition
(psAac) profiles were also compared between RTX and non-
RTX proteins. Generally, RTX proteins show much larger amino
acid composition preference (Figure 4A). C20 and C21-60 in
RTX proteins also show different preference profiles. C20 shows
apparent preference for non-polar “L” and “A” while C21-60 more
prefers polar “G” (Figure 4A). “D,” “S,” and “T” are preferred in
both C20 and C21-60 of RTX proteins. The results are consistent
with and explain the observations on sequential Aac and bAac
in C termini of RTX and non-RTX proteins. Remarkably, the
C-terminal endmost two positions in RTX proteins show the
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FIGURE 2 | Distribution of RTX motifs in RTX proteins. (A) Length distribution of the RTX proteins. (B) Count distribution of RTX motifs in the RTX proteins. (C,D)
Distance distribution of RTX motifs to the C-terminal ends of the RTX proteins. The accumulated probabilities of the proteins with the RTX motif distance of
≤10 ∼ 60-aa and 100-aa from the C termini are shown in (D).

most typical psAac bias, with a pattern of non-polar hydrophobic
“[FLI][VAI]” motif (Figure 4A).

The psAac profile of C termini of RTX proteins and
the difference between them and non-RTX proteins were
confirmed with other, paired, independent negative datasets
(Supplementary Figure 1). We also compared the psAac
profile of N termini of RTX and non-RTX proteins
(Supplementary Figure 2). There was a difference, but not
as typical as that observed within the C termini. Moreover,
until now there is no evidence suggesting the existence of type
1 secretion signals within N termini of the substrate proteins.
Therefore, the N termini were not further studied in this study.

Enrichment of β-Strands and Depletion
of α-Helices Within the C Termini of
Repeats-in-Toxin Proteins
An apparent difference between the C termini of RTX T1SEs
and non-T1SEs was the depletion of α-helices or enrichment of
β-strands and coiled coils, no matter in C20 or C60 (Figure 4B).

The solvent accessibility was not different between the RTX and
non-RTX proteins within the C termini (data not shown). The
different forms of secondary structure are likely related with
the composition preference of residues. For instance, both polar
“G” and non-polar “A” are enriched in β-strands, while “F” and
“I” are not for beneficial for maintenance of the stability of
α-helices (Figure 4A). It remains to be clarified whether the
residue composition and structure features are associated with
specific recognition of the proteins for specific type 1 secretion.

C-Terminal Non-repeats-in-Toxin Motif
Features Accurately Classify
Repeats-in-Toxin From
Non-repeats-in-Toxin Proteins
A list of machine-learning models were trained to learn the
sequence-based non-RTX motif features buried within the C
termini of RTX proteins, including NB, RF, and SVM models
learning sequential Aac and bAac features, MM models using
adjacent amino acid dependent Aac features, and SVM models
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FIGURE 3 | The composition profile difference between the C termini of RTX and non-RTX proteins for single AAs, continuous and interrupted bi-AAs. (A) Single
AAs. Bonferroni-corrected Mann–Whitney tests were performed. (B) Continuous bi-AAs. (C) One amino acid interrupted bi-AAs. (D) Two amino acids interrupted
bi-AAs. EBT tests were performed for the bi-AAs. Most significantly enriched or depleted single AAs or bi-AAs in RTX C termini are shown in red and blue,
respectively. The single AAs with biased composition changing among the C termini of different lengths are shown with red background. **p < 0.0001, *p < 0.05.

analyzing position-specific Aac features (Table 1). Moreover, five
types of DL models were trained, with three among them of best
performance retained (DNN, Attention, and RNN), which also
learned the C-terminal Aac features of RTX proteins (Table 1).
Secondary structure features were not learned in the models since
they are not stable, which were predicted with varied accuracy
using different software tools.

All the models showed certain ability to classify RTX proteins
from the non-RTX ones correctly only based on the Aac features
within C-terminal 20-aa peptide fragments of known RTX
proteins (Table 2 and Figure 5A). RNN, MM, RF, and seqSVM
showed best prediction performance with the same average
rocAUC of 0.88, while BPBAac and DNN appeared poorest
with a rocAUC of 0.85 (Table 2 and Figure 4A). C60 models
outperformed C20 ones obviously, and MM, RF, and seqSVM
remained the best-performed models, reaching a rocAUC of 0.94
(Table 2 and Figure 5B).

Taken together, the results demonstrate that the C termini
of RTX proteins contain non-RTX Aac signals, which can be
used to recognize RTX proteins accurately. The signals are likely
distributed along the C-terminal 60-aa positions.

A Stacked Model Shows Striking
Performance Improvement in Prediction
of Repeats-in-Toxin Types of Type 1
Secreted Effectors
To achieve better performance, we designed a tri-layer stacking
model, which integrates the prediction results of individual
models learning sequence-based features, to classify RTX and
non-RTX proteins (Figure 1). The primary SVM-based stacked
models (pT1SEstacker) trained with the prediction results of
original fivefold cross-validated testing datasets showed better
performance than individual models for both C20 and especially
C60, with average rocAUC of 0.85 and 0.95, respectively (Table 2
and Figure 5C). The prediction results of the primary stacked
models based on cross-validated testing datasets were assembled
in the final model (T1SEstacker) with a voting strategy. It is noted
that, with an independent dataset, which will be explained in
the next section, the voting-based tri-layer stacker T1SEstacker
generally balanced the effect of individual pT1SEstacker models
and always achieved slightly better performance when voting
cutoff was set as 0.6 (Figure 6A and Supplementary Figure 3).
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FIGURE 4 | Position-specific Aac and Sse profile difference between the C termini of RTX and non-RTX proteins. (A) Position-specific Aac profile of RTX and
non-RTX proteins at C-terminal 60 positions. The strikingly specific bias Aac preference profile of RTX proteins with C termini and the C-terminal 20 positions of both
RTX and non-RTX proteins are shown with pink background. The endmost C-terminal two positions with most typical sequence patterns are shown in red.
(B) Position-specific Sse profile of RTX and non-RTX proteins at C-terminal 60 positions.

T1SEstacker Can Recognize the
Common Secretion Signals Among
Different Types of Type 1 Secreted
Effectors
We curated experimentally validated T1SEs and applied the RTX
protein prediction models to identify them. It should be noted
that none of the C60 or C20 of the verified T1SEs contained any
RTX motif. Both T1SEstacker_C20 and T1SEstacker_C60 could
well predict the T1SEs (Figure 6A and Supplementary Figure 3).
The recalling rate of T1SEstacker_C20 and T1SEstacker_C60
reached 77 and 81%, respectively (Figure 6B). As a control,
we used an independent negative dataset, and the specificity

of T1SEstacker_C20 and T1SEstacker_C60 was 89 and 96%,
respectively (Figure 6B).

Among the validated T1SEs, 25% (25/99) do not contain
any putative RTX motif along the full-length protein sequences
(Figure 6C and Supplementary Dataset 2). Interestingly,
T1SEstacker_C60 correctly recalled 52% (13/25) of the non-RTX-
motif T1SEs (Figure 6C). Another non-RTX-motif T1SE was
predicted to be non-effector by the final T1SEstacker_C60 model,
yet it was correctly recalled by two primary models. The recalling
rates of non-RTX-motif T1SEs are much higher than the false-
positive rates of the negative dataset for both C60 and C20
models (Figures 6B,C). Therefore, the results further suggested
that C termini of T1SEs, with-RTX-motif or non-RTX-motif
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TABLE 1 | Models and the optimized parameters.

Model Algorithm| Features

MM Markov model| Aac conditional on that of the preceding position.

RF Random forest| AAs, continuous and interrupted bi-AAs with
striking sequential composition difference between positive and
negative sequences.

NB Naïve Bayes| same with RF.

seqSVM Support vector machine| same with RF.

BPBAac Support vector machine| bi-profile position-specific Aac profiles.

DNN Simple full-connected deep neural network| Aac profiles.

SelfAttention Softmax deep neural network| Aac profiles.

RNN Deep neural network with LSTM cells| Aac profiles.

type, potentially contained common signals, which can guide the
accurate prediction of these proteins.

Most of the validated T1SEs were not well classified into one of
the four T1SE classes, except for seven being clear class 4 effectors,
including enterotoxigenic Escherichia coli CexE (accession:
ABM92275.1), Gallibacterium anatis GtxA (OBW99045.1),
Pseudomonas fluorescens LapA (ABA71877.1), Legionella
pneumophila RtxA (CAH11847.1), Bordetella bronchiseptica
BrtA (CAE31684.1), Shewanella oneidensis BpfA (Q8EIX3.1),
and Vibrio cholera FrhA (AWB74152.1). Five could be predicted
by T1SEstacker_C60 correctly and only two (BpfA and CexE)
were not recalled (Supplementary Dataset 2). The well-known
class 2 effector, E. coli HlyA (P08715.1), other two class 2 effectors,
Aggregatibacter actinomycetemcomitans LtxA (WP_148335754.1)
and Neisseria meningitides FrpC (AAA99902.1), and one typical
class 3 effector, Serratia marcescens LipA (Q59933), were all
correctly predicted (Supplementary Dataset 2). Because the
other effectors were not well classified, we did not further

compare the prediction performance of T1SEstacker on
different T1SE classes. Interestingly, five validated T1SEs
were annotated to be bacteriocins, including Rhizobium
leguminosarum RzcA (AAF36415.1), Bradyrhizobium elkanii
BAB55900.1, Xylella fastidiosa XF2407 (AAF85206.1) and
XF2759 (AAF85544.1), Xanthomonas oryzae AAW74644.1,
and Agrobacterium tumefaciens RzcA (AAK89027.2). Four
of the bacteriocins were correctly predicted, except for RzcA
(Supplementary Dataset 2).

Large Variation of Type 1 Secreted
Effectors Composition in Salmonella
Strains
The chromosomes of 26 representative strains from all
Salmonella major phylogenetic branches were scanned with
T1SEstacker C60 model (Supplementary Dataset 3). In each
strain, 269 ± 22 T1SE candidates were predicted (Figure 7A).
With the recalling rate of 0.81 and false-positive rate of 0.04
evaluated previously on the validated T1SE dataset, the real
number of T1SEs was estimated to reach 88 to 154, with an
average of 123, in Salmonella strains (Figure 7A). The precision
of predicted T1SE candidates was only ∼0.37 (123 × 0.81/269).
However, it is difficult to improve the precision by shifting the
decision cutoff values or to distinguish the true positives from
the false ones. Moreover, most of the real T1SEs were included
in the predictions. Therefore, we used the original T1SEstacker
predictions to analyze the distribution of T1SE candidates among
the Salmonella strains.

Despite a relatively stable number of T1SE candidates in
different strains, the protein composition varied a lot. The
candidates were clustered into 1,004 orthologous families, among
which 240 (24%) were strain-specific proteins, 670 (67%) were

TABLE 2 | Performance of models.

Model SN SP ACC rocAUC MCC

MM_C20 0.81 ± 0.06 0.81 ± 0.05 0.81 ± 0.02 0.88 ± 0.02 0.62 ± 0.04

RF_C20 0.79 ± 0.06 0.82 ± 0.09 0.80 ± 0.06 0.88 ± 0.04 0.61 ± 0.12

NB_C20 0.89 ± 0.05 0.69 ± 0.06 0.79 ± 0.04 0.87 ± 0.03 0.59 ± 0.09

seqSVM_C20 0.79 ± 0.05 0.82 ± 0.06 0.81 ± 0.04 0.88 ± 0.04 0.61 ± 0.09

BPBAac_C20 0.72 ± 0.06 0.82 ± 0.02 0.77 ± 0.03 0.85 ± 0.03 0.55 ± 0.06

DNN_C20 0.77 ± 0.05 0.75 ± 0.05 0.76 ± 0.04 0.85 ± 0.03 0.53 ± 0.07

SelfAttention_C20 0.80 ± 0.03 0.80 ± 0.05 0.80 ± 0.04 0.87 ± 0.02 0.60 ± 0.07

RNN_C20 0.82 ± 0.05 0.80 ± 0.05 0.81 ± 0.04 0.88 ± 0.04 0.63 ± 0.07

pT1SEstacker_C20 0.83 ± 0.06 0.85 ± 0.04 0.84 ± 0.04 0.88 ± 0.06 0.69 ± 0.09

MM_C60 0.86 ± 0.06 0.93 ± 0.04 0.89 ± 0.02 0.94 ± 0.02 0.79 ± 0.02

RF_C60 0.85 ± 0.06 0.90 ± 0.02 0.88 ± 0.03 0.94 ± 0.03 0.76 ± 0.05

NB_C60 0.86 ± 0.03 0.83 ± 0.05 0.84 ± 0.04 0.92 ± 0.02 0.69 ± 0.07

seqSVM_C60 0.84 ± 0.08 0.92 ± 0.02 0.88 ± 0.04 0.94 ± 0.02 0.77 ± 0.07

BPBAac_C60 0.84 ± 0.04 0.89 ± 0.02 0.87 ± 0.02 0.93 ± 0.01 0.73 ± 0.03

DNN_C60 0.87 ± 0.06 0.85 ± 0.04 0.86 ± 0.02 0.92 ± 0.02 0.72 ± 0.04

SelfAttention_C60 0.89 ± 0.02 0.89 ± 0.03 0.89 ± 0.02 0.93 ± 0.01 0.78 ± 0.03

RNN_C60 0.85 ± 0.07 0.90 ± 0.07 0.87 ± 0.03 0.93 ± 0.03 0.75 ± 0.06

pT1SEstacker_C60 0.89 ± 0.04 0.94 ± 0.02 0.91 ± 0.02 0.95 ± 0.02 0.83 ± 0.03

Sn, Sensitivity; Sp, specificity; ACC, accuracy; rocAUC, the area under the curve of receiver operating characteristic; MCC, Matthews correlation coefficient.
The best performance was highlighted in bold font.
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FIGURE 5 | Performance of individual and stacking models on prediction of RTX proteins. (A) Fivefold cross-validation ROC curves of individual machine-learning
models predicting RTX and non-RTX proteins based on the C-terminal 20-aa features. (B) Fivefold cross-validation ROC curves of individual machine-learning
models predicting RTX and non-RTX proteins based on the C-terminal 60-aa features. (C) Performance comparison of the primary stacking models
(pT1SEstacker_C20 and pT1SEstacker_C60) and the representative individual machine-learning models (MM_C20 and MM_C60), based on the average fivefold
cross-validation results.

FIGURE 6 | Prediction performance of T1SEstacker on experimentally verified T1SEs and the paired non-T1SEs. (A) ROC curves of the final T1SEstacker_C60 and
the primary pT1SEstacker_C60 models on prediction of experimentally verified T1SEs and the paired non-T1SEs. The number for both T1SEs and non-T1SEs was
99. The best-optimized cutoff for the decision of T1SEstacker is indicated with a red arrow. (B) The recalling T1SEs and false-positive T1SE predictions of
T1SEstacker_C60 and T1SEstacker_C20. (C) The T1SE proteins without putative RTX motifs (non-RTX T1SEs) and the correctly predicted percent of T1SEstacker
on them.

present in fewer than half of the strains, and only 179 (18%)
were distributed in the core genome of the Salmonella strains
(Figure 7B and Supplementary Dataset 3). For the core-genome
hits, only 49% (88/179) were recognized as T1SEs in all the
strains, and 31% (55/179) of the families were predicted as
T1SEs only in fewer than half of the strains (Figure 7C and
Supplementary Dataset 3). The results suggested that there is a
large variety for the composition of T1SEs in different bacterial
strains, and that a T1SE homolog does not necessarily remain a
T1SE since mutations in the C terminus could frequently avoid
the recognition of T1SS.

DISCUSSION

Like other secreted proteins, bacterial type 1 secreted proteins
(T1SEs) also play important roles in various infection diseases.
Some T1SEs, e.g., bacteriocins, show non-self bacteria-killing

activities and therefore have been used for anti-bacteria drug
or probiotic development. How many T1SEs are there in each
bacterial strain? How diverse is their function? The questions
remain unanswered since we are still at the very beginning on
understanding the mechanisms of type 1 secretion. Only around
100 T1SEs have been verified by experiments, and many of them
contain RTX motifs nearby the C termini of protein sequences.
However, not all T1SEs contain RTX motifs, while the proteins
with RTX motifs, although more likely to be, are not necessarily
T1SEs. Therefore, T1SEs could have other common targeted
signals that mediate their specific type 1 secretion. More novel
T1SEs could be identified based on these common signals.

Previous studies suggested possible signals within C termini
of RTX and non-RTX T1SEs (Delepelaire, 2004; Huang et al.,
2010; Wakeel et al., 2011). In this research, we focused on
RTX T1SEs, observed the Aac features within their C termini
comprehensively, and compared them with the C termini of
non-RTX proteins or N termini of the RTX and non-RTX
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FIGURE 7 | Distribution of T1SE candidates predicted from Salmonella strains with T1SEstacker. (A) Number of predicted T1SEs, estimated real T1SEs, and
correctly predicted T1SEs in Salmonella strains. (B) The orthologous family distribution of T1SEs in Salmonella strains. (C) Distribution of core-genome T1SE hits in
Salmonella strains. CG, core genome.

proteins. It was interesting to identify specific Aac preference in
C termini of RTX proteins (Figure 4A). As control, no apparent
difference was found between the N termini of RTX and non-
RTX proteins (Supplementary Figures 1, 2). The Aac preference
profile was not biased by possibly included RTX motifs. On one
hand, very few RTX motifs were retained in the observed length
of C-terminal sequences (both C20 and C60) (Figures 2C,D).
On the other hand, the motif-enriched bi-AAs were not as
strikingly different as other bi-AAs (Figure 2B). Moreover, the
real occurrence of some individual AAs or bi-AAs within C
termini of RTX proteins, especially C60, e.g., “G” and “D,” was
much higher than the percentage of proteins with putative RTX
motifs within the region. Therefore, such Aac preference could
be independent of RTX motif. Alternatively, RTX motifs could
also represent the preference, but a more specific and conserved
pattern. Besides the enriched Aac, significantly depleted Aac
should also be noted, e.g., “E,” “K,” “R,” and “P.” In the research,
by observing the position-specific Aac profiles, we also identified
a typical amino acid composition pattern at the C termini of RTX
proteins, with a motif feature of “[FLI][VAI].” Previous studies on
known T1SEs found the enrichment of “[LDAVTSIF]” residues
in C-terminal signal regions (Delepelaire, 2004; Huang et al.,
2010; Wakeel et al., 2011). The features were also evident in our
C-terminal sequence–based or position-specific Aac analysis on
the T1SEs. HlyA and its homologs in E. coli, Proteus vulgaris,
and Morganella morganii were all shown with a preference of
“[LS][AV]” at the C termini (Koronakis et al., 1989), consistent
with our position-specific Aac observation. We also found that
the C termini of RTX proteins preferred β-strands rather than
α-helices as in non-RTX proteins (Figure 4B). It is intriguing to

further investigate whether the unique amino acid composition
and secondary structure contribute to the specificity of signal
recognition of type 1 secretion.

Machine-learning models based on the C-terminal non-RTX-
motif Aac features well predicted RTX proteins from non-
RTX proteins (Figure 5 and Table 2). The features within C20
showed certain power, while those buried in C60 showed better
distinguishing capability (Figure 5 and Table 2). The C60 models
could also accurately recall verified T1SEs at high prediction
specificity (larger than 95%) (Figure 6B). It should be pointed out
again that none of the verified T1SEs contained any RTX motif
within C20 or C60 regions. More interestingly, 25 of the verified
T1SEs do not contain RTX motif throughout their full-length
sequences, and yet 12 and 13 were still predicted by C20 and
C60 models, respectively, as positive results (Figure 6C). Among
the correctly predicted T1SEs, some are bacteriocins and others
are not putative RTX proteins. Therefore, the features identified
in this study can be used for development of general T1SE
prediction models. In future studies and as more non-RTX T1SEs
have been identified, the common features can be reanalyzed,
with a more balanced training dataset of different types of T1SEs.

We developed a tri-layer stacking model, T1SEstacker, and
showed that the stackers generally outperformed the individual
machine-learning models (Table 2 and Figure 5C). However,
some individual models also showed good performance, e.g.,
MM, RNN, SelfAttention, and RF, but generally not as
good or stable as the stackers, pT1SEstacker (Table 2 and
Figure 5C). We made a second round of stacking for the
pT1SEstackers trained with sub-divided cross-validated datasets
because for pT1SEstackers, we adopted a SVM model to
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integrate the prediction results of individual machine-learning
models (Figure 1). Similar with T1SEstacker that integrates
pT1SEstacker results, other ensemblers often use voting strategy
(Wang et al., 2019) or linearly weight each individual model
(Hui et al., 2020). The parameters, i.e., linear weights for
individual models and decision cutoffs for those models, were
generally stable and not very sensitive to the sub-divided or
full training datasets. However, for pT1SEstacker models, we
trained the prediction results of individual models using SVM,
and the parameters were pretty sensitive to the training datasets.
Therefore, the five pT1SEstackers were each with different
optimized parameters. To integrate their respective prediction
results, another round of stacking had to be performed. The
final model T1SEstacker appeared not apparently better than
the pT1SEstacker models. However, once the optimized voting
cutoff was selected (≥0.6, 3/5, consensus prediction), the
prediction of T1SEstacker always showed best performance, with
a compromise of sensitivity and specificity (Figure 6A and
Supplementary Figure 3).

The false-positive rate (FPR) of T1SEstacker_C60 was low and
close to 0.04. It is important since many tools predicting bacterial
secreted proteins showed a high FPR and the experimental
research seldom benefited from the tool (Hui et al., 2020).
As an example, we showed the influence of FPR on the final
prediction performance, by prediction and estimation of T1SE
candidates in Salmonella with T1SEstacker (Figure 7A). Despite
the high specificity (0.96), among the predicted T1SE candidates,
majority were false positives, and the precision was only ∼0.37
(Figure 7A). It is largely because for each genome, most genes
are non-T1SEs, and even 1% FPR could generate 50–100 false-
positive predictions, for which the number is close to that of
true T1SEs. Therefore, it appears essential and urgent to further
reduce FPR in predictor development, not merely for T1SE, but
also for all types of secreted proteins.

Currently, there is still a lack of computational methods
predicting T1SEs (Hui et al., 2021). Although Luo et al. (2015)
developed a random forest predictor, the tool or codes were not
publically available and therefore a direct comparison could not
be performed. An important factor that impedes development
of prediction tools for T1SEs is the very limited number of
experimentally validated T1SE proteins. Linhartova et al. (2010)
and Luo et al. (2015) we in this research used Linhartova’s
RTX proteins as the positive dataset. In fact, we also used the
validated T1SEs to build a similar model, and the performance
was only slightly inferior to T1SEstacker but the variance was
much larger among the cross-validated replicates. Moreover,
the T1SEstacker could accurately predict the novel ones in the
validated effector dataset at a high specificity. Therefore, we
presented the T1SEstacker based on Linhartova’s RTX proteins
finally. With T1SEstacker and Salmonella strains, we also made
estimation on the distribution of T1SEs. Roughly, there could
be ∼100 T1SEs in each bacterial strain. Therefore, the current
T1SEs and function of T1SSs could be largely underestimated
and underinvestigated. We also found that the T1SE composition
varied a lot among different bacterial strains, suggesting they
could exert specific function for better fitting and bacterial
survival. Therefore, it is of great significance to identify and

investigate the function of T1SEs for both microbiologists and
computational biologists.

Very few T1SEs have been validated from Salmonella spp., and
SiiE represents the most well-known one, a large non-fimbrial
adhesin of 600 kDa consisting of 53 repeats of Ig domains, which
is encoded in an T1SS operon within Salmonella Pathogenicity
Island 4 (SPI-4) of S. enterica strains (Gerlach et al., 2007;
Barlag and Hensel, 2015; Klingl et al., 2020). We found that it
was conserved in 19 out of the total 26 Salmonella strains (ID:
19CG0093; Supplementary Dataset 3). Interestingly, the gene
was also detected from S. bongori besides all the seven subspecies
of S. enterica. However, for S. bongori, S. enterica subsp.
diarizonae, indica, and enterica, there were always representative
strains missing the gene (Supplementary Dataset 3). More
efforts should be placed to check whether there is the gene
but mis-annotated or the gene has been actually lost. If the
gene is lost, it is also interesting to know how its function is
complemented in the corresponding strains. In this research,
we also provided a list of possible T1SE candidates and their
distribution among Salmonella spp., which comprise a valuable
resource for the research community to further investigate
Salmonella T1SEs and their function in bacterial pathogenicity.

T1SEstacker is one of the earliest machine-learning models
predicting T1SEs. The performance requires further assessment
and improvement. In this study, only sequence-derived features
of T1SEs were analyzed and learned. Integration of other features
such as the genomic context, i.e., proximity of the candidate
genes to those encoding secretion components (Glaser et al.,
1988; Welch and Pellett, 1988; Welch, 1991), common motifs
located in promoters for transcription co-regulation (Mukherjee
et al., 2015), physiochemical properties of proteins (Welch et al.,
1983), and so on, may be helpful in improving the prediction
performance. In addition, T1SS type-specific or species-specific
substrate feature analysis and model development could further
improve the precision of prediction. Despite the functional
relevance, what we have known on T1SSs and T1SEs remains
much fewer than unknowns (Alav et al., 2021). It remains a big
challenge for computational biologists to make thorough and
systematic analysis of T1SE features and develop more effective
prediction models.
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In recent years, deep learning has made brilliant achievements in Environmental

Microorganism (EM) image classification. However, image classification of small EM

datasets has still not obtained good research results. Therefore, researchers need

to spend a lot of time searching for models with good classification performance

and suitable for the current equipment working environment. To provide reliable

references for researchers, we conduct a series of comparison experiments on

21 deep learning models. The experiment includes direct classification, imbalanced

training, and hyper-parameters tuning experiments. During the experiments, we find

complementarities among the 21 models, which is the basis for feature fusion

related experiments. We also find that the data augmentation method of geometric

deformation is difficult to improve the performance of VTs (ViT, DeiT, BotNet, and T2T-ViT)

series models. In terms of model performance, Xception has the best classification

performance, the vision transformer (ViT) model consumes the least time for training,

and the ShuffleNet-V2 model has the least number of parameters.

Keywords: deep learning, convolutional neural network, visual transformer, image classification, small dataset,

environmental microorganism

1. INTRODUCTION

With the advancement of industrialization, industrial pollution becomes increasingly serious.
Therefore, finding effective methods to control, reduce, or eliminate pollution is a top priority.
Biological approaches have outstanding performance in solving environmental pollution problems.
The Biological approaches have four main advantages in environmental treatment: no new
pollution, no additional energy consumption, gentle process, decomposition products can feedback
to nature, and make a virtuous cycle of material changes (McKinney, 2004). Microorganisms are
all tiny creatures that are invisible to the naked eyes. They are tiny and simple in structure, and
usually can only be seen with a microscope. Environmental Microorganisms (EMs) specifically
refer to those species of microorganisms that live in natural environments (such as mountains,
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streams, and oceans) and artificial environments (such orchards
and fish ponds). EMs play a vital role in whole nature
for better or worse. For example, lactic acid bacteria can
decompose some organic matter in the natural environment to
provide nutrients for plants; actinomycetes can digest organic
waste in sludge and improve water quality; microalgae can
fix carbon dioxide in the air and be used as a raw material
for biodiesel (Zhao et al., 2021); activated sludge composed
of microorganisms has a strong ability to adsorb and oxidize
organic matter and purify water (Asgharnejad and Sarrafzadeh,
2020). Harmful rhizosphere bacteria can inhibit plant growth
by producing phytotoxins (Fried et al., 2000). Sludge bulking is
caused by bacterial proliferation and the accumulation of sticky
material, which poses a fundamental challenge for wastewater
treatment (Fan et al., 2017). Therefore, EMs research helps solve
environmental pollution problems, and the classification of EMs
is the cornerstone of related research (Kosov et al., 2018).

Generally, the size of EMs is between 0.1 and 100 µm,
which is challenging to be identified and found. The traditional
microbial classificationmethod typically uses the “morphological
method,” which requires a skilled operator to observe the EMs
under a microscope. Then the results are given according to
the shape characteristics. This is very time-consuming and
financial (Pepper et al., 2011). In addition, if researchers do not
refer to the literature, even very experienced researchers cannot
guarantee the accuracy and objectivity of the analysis results.
Therefore, using the computer-aided classification of EM images
can enable researchers to use the slightest professional knowledge
and the least time to make the most accurate judgments.

Currently, the analysis of EMs by computer vision is
already achieved. For example, RGB (Red, Green, Blue) color
analysis measures the number of microorganisms (Filzmoser
and Todorov, 2011; Sarrafzadeh et al., 2015), and deep learning
methods are used to achieve the classification and segmentation
of EM images. Among them, the research of EM classification
using deep learning methods obtains more and more attention.
Deep learning is a new research direction in the field of
machine learning, and it provides good performance for image
classification (Zhang et al., 2020). Traditional machine learning-
based EM classification methods rely on feature extraction,
which requires many human resources (Çayir et al., 2018).
In contrast, deep learning-based algorithms perform feature
extraction in an automated manner, allowing researchers to
use minimal domain knowledge and workforce to extract
prominent features. Furthermore, the classification results of
deep learning are better than that of traditional machine learning
in the case of super-large training samples (Wang et al., 2021).
However, for small datasets, the performance of deep learning
is limited. Because the collection of EMs is usually carried
out outdoors, for some sensitive EMs, transportation, storage,
and observation during the period may affect the quality of
the final images. Therefore, it is difficult to obtain enough
high-quality images, and this case results in the problem of
small datasets. Therefore, this paper compares the performance
of various deep learning models on small data sets of EMs
and aims to find models with better performance on small
data sets.

This article compares a series of Convolutional Neural
Networks (CNNs), such as ResNet-18, 34, 50, 101 (He et al.,
2016), VGG11, 13, 16, 19 (Simonyan and Zisserman, 2014),
DenseNet-121, 169 (Huang et al., 2017), Inception-V3 (Szegedy
et al., 2016), Xception (Chollet, 2017), AlexNet (Krizhevsky
et al., 2012), GoogleNet (Szegedy et al., 2015), MobileNet-
V2 (Sandler et al., 2018), ShuffeleNet-V2x0.5 (Ma et al.,
2018), Inception-ResNet-V1 (Szegedy et al., 2017), and a
series of visual transformers (VTs), such as vision transformer
(ViT) (Dosovitskiy et al., 2020), BotNet (Srinivas et al., 2021),
DeiT (Touvron et al., 2020), T2T-ViT (Yuan et al., 2021). The
purpose is to find deep learning models that are suitable for EM
small datasets. The workflow diagram of this study is shown in
Figure 1. Step (b) is to rotate the training set and validation set
images by 90◦, 180◦, 270◦, and mirror images up and down, left
and right, augment the dataset by six times. Step (c) is uniform
image size to 224 × 224 to facilitate training and classification.
Step (d) is to input the processed data into different network
models for training. Step (e) is to input the test set into the trained
network for classification, and step (f) is to calculate the Average
Precision (AP), accuracy, precision, recall, and F1-score based
on the classification results to evaluate the performance of the
network model.

The structure of this paper is as follows. Section 2 introduces
the related methods of deep learning in image classification,
the impact of small datasets on image classification, and the
related work of deep learning models. Section 3 introduces the
dataset and experimental design in detail. Section 4 compares and
summarizes the experimental results. Section 5 summarizes the
whole paper and looks forward.

2. RELATED WORK

This section summarizes the impact of small datasets
on classification, including basic deep learning image
classification methods.

2.1. The Impact of Small Datasets on
Image Classification
In rectal histopathology deep learning classification research,
a large number of labeled pathological images are needed.
However, the preparation of large datasets requires expensive
labor costs and time costs, leading to the fact that existing studies
are primarily based on small datasets. In addition, the lack of
sufficient data leads to overfitting problems during the training
process. A conditional sliding windows arithmetic is proposed
in Haryanto et al. (2021) to solve this problem, which generates
histopathological images. This arithmetic successfully solves the
limitation of rectal histopathological data.

In climate research, the use of deep learning in cloud layer
analysis often requires a lot of data. Therefore, classification in
the case of a small dataset cannot achieve higher accuracy. In
order to solve this problem, a classification model with high
accuracy on small datasets is proposed. The method improves
from three aspects:
1. A network model for a small dataset is designed.
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FIGURE 1 | EM image classification process. ViT, Vision Transformer; BoTNet, Bottleneck Transformers; DeiT, Data-efficient image Transformers; T2T-ViT,

Tokens-to-Token Training Vision Transformer; ResNet, Residual Network; VGG, Visual Geometry Group.

2. A regularization technique to increase the generalization ability
of the model is applied.
3. The average ensemble of models is used to improve the
classification accuracy.
Therefore, the model not only has higher accuracy but also has
better robustness (Phung and Rhee, 2019).

In deep learning research, small datasets often lead to
classification over-fitting and low classification accuracy.
According to this problem, a kind of deep CNN based transfer
learning is designed to solve the problem of the small dataset.
This method mainly improves data and models. In terms of
data, the model transfers the feature layer of the CNN model
pre-trained on big sample dataset to a small sample dataset. In
terms of model, the whole series average pooling is used instead
of the fully connected layer, and Softmax is used for classification.
This method has a good classification performance on small
sample datasets (Zhao, 2017).

Because of the limited training data, a two-phase classification
method using migration learning and web data augmentation
technology is proposed. This method increases the number of
samples in the training set through network data augmentation.
In addition, it reduces the requirements on the number of
samples through transfer learning. This classifier reduces the
over-fitting problem while improving the generalization ability
of the network (Han et al., 2018).

In radar image recognition, due to the complex environment
and particular imaging principles, Synthetic Aperture Radar

(SAR) images have the problem of sample scarcity. A target
recognition method of SAR image based on Constrained Naive
Generative Adversarial Networks and CNN is proposed to solve
this problem. This method combines Least Squares Generative
Adversarial Networks and designs a shallow network structure
based on the traditional CNNs model. The problem of high
model complexity and over-fitting caused by the deep network
structure is avoided, to improve the recognition performance.
This method can better solve the problems of few image samples
and intense speckle noise (Mao et al., 2021).

Lack of sufficient training data can seriously deteriorate
the performance of neural networks and other classifiers. Due
to this problem, a self-aware multi-classifier system suitable
for “small data” cases is proposed. The system uses Neural
Network, Support Vector Machines (SVMs) and Naive Bayes
models as component classifiers. In addition, this system uses the
confidence level as a criterion for classifier selection. The system
performs well in various test cases and is incredibly accurate on
small datasets (Kholerdi et al., 2018).

Convolutional Neural Networks are very effective for face
recognition problems, but training such a network requires
a large number of labeled images. Such large datasets are
usually not public and challenging to collect. According to this
situation, a method based on authentic face images to synthesize
a vast training set is proposed. This method swaps the facial
components of different face images to generate a new face.
This technology achieves the most advanced face recognition
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performance on the Labeled Faces in the Wild (LFW) face
database (Hu et al., 2017).

The effectiveness of tuning the number of convolutional layers
to classify small datasets is proven in Chandrarathne et al. (2020).
In addition, related experiments suggest that by employing a very
low learning rate (LR), the accuracy of classification of small
datasets can be greatly increased.

In medical signal processing, very small datasets often lead to
the problems of model overfitting and low classification accuracy.
According to this situation, a method combining deep learning
and traditional machine learning is proposed. This method
uses the first few layers of CNN for feature extraction. Then,
the extracted features are fed back to traditional supervised
learning algorithms for classification. This method can avoid
the overfitting problem caused by small datasets. In addition,
it has better performance than traditional machine learning
methods (Alabandi, 2017).

2.2. Deep Learning Techniques
Due to the excellent performance of AlexNet in the
image classification competition (Krizhevsky et al., 2012),
improvements in the CNN architecture are very active. A series
of CNN-based networks continue to appear, making CNN an
irreplaceable mainstreammethod in the field of computer vision.
In recent years, Transformer frequently appears in computer
vision tasks and provides good performance, which is sufficient
to attract the attention of researchers.

2.2.1. Convolutional Neural Networks
AlexNet is the first large-scale CNN architecture to perform well
in ImageNet classification. The innovation of the network lies
in the successful application of the Rectified Linear Unit (Relu)
activation function and the use of the Dropout mechanism and
data enhancement strategy to prevent overfitting. To improve the
model generalization ability, the network uses a Local Response
Normalization layer. In addition, the maximum pooling of
overlap is used to avoid the blurring effect caused by average
pooling (Krizhevsky et al., 2012).

The Visual Geometry Group of Oxford proposes the
VGG network. The network uses a deeper network structure
with depths of 11, 13, 16, and 19 layers. Meanwhile, VGG
networks use a smaller convolution kernel (3 × 3 pixels)
instead of the larger convolution kernel, which reduces the
parameters and increases the expressive power of the networks
(Simonyan and Zisserman, 2014).

GoogLeNet is a deep neural network model based on the
Inception module launched by Google. The network introduces
an initial structure to increase the width and depth of the
network while removing the fully connected layer and using
average pooling instead of the fully connected layer to avoid the
disappearance of the gradient. The network adds two additional
softmax to conduct the gradient forward (Szegedy et al., 2015).

ResNet solves the “degradation” problem of deep neural
networks by introducing residual structure. ResNet networks use
multiple parameter layers to learn the representation of residuals
between input and output, rather than using parameter layers to
directly try to learn the mapping between input and output as

VGGs networks do. Residual networks are characterized by ease
of optimization and the ability to improve accuracy by adding
considerable depth (He et al., 2016).

The DenseNet network is inspired by the ResNet network.
DenseNet uses a dense connection mechanism to connect all
layers. This connection method allows the feature map learned
by each layer to be directly transmitted to all subsequent layers as
input, so that the features and the transmission of the gradient is
more effective, and the network is easier to train. The network
has the following advantages: it reduces the disappearance of
gradients, strengthens the transfer of features, makes more
effective use of features, and reduces the number of parameters
to a certain extent (Huang et al., 2017).

The inception-V3 network is mainly improved in two aspects.
Firstly, branch structure is used to optimize the Inception
Module; secondly, the larger two-dimensional convolution
kernel is unpacked into two one-dimensional convolution
kernels. This asymmetric structure can deal with more
and richer spatial information and reduce the computation
(Szegedy et al., 2016).

Xception is an improvement of Inception-V3. The network
proposes a novel Depthwise Separable Convolution allign them
in column, the core idea of which lies in space transformation and
channel transformation. Compared with Inception, Xception has
fewer parameters and is faster (Chollet, 2017).

MobileNets and Xception have the same ideas but different
pursuits. Xception pursues high precision, but MobileNets
is a lightweight model, pursuing a balance between model
compression and accuracy. A new unit Inverted residual with
linear bottleneck is applied in MobileNet-V2. The inverse
residual first increases the number of channels, then performs
convolution and then increases the number of channels. This can
reduce memory consumption (Sandler et al., 2018).

ShuffleNet makes some improvements based on MobileNet.
The 1 × 1 convolution used by MobileNet is a traditional
convolution method with a lot of redundancy. However,
ShuffleNet performs shuffle and group operations on 1 ×

1 convolution. This operation implements channel shuffle
and pointwise group convolution. In addition, this operation
dramatically reduces the number of model calculations while
maintaining accuracy (Ma et al., 2018).

The Inception-ResNet network is inspired by ResNet, which
introduces the residual structure of ResNet in the Inception
module. Adding the residual structure does not significantly
improve the model effect. But the residual structure helps to
speed up the convergence and improve the calculation efficiency.
The calculation amount of Inception-ResNet-v1 is the same
as that of Inception-V3, but the convergence speed is faster
(Szegedy et al., 2017).

2.2.2. Visual Transformers
The ViT model applies transformers in the field of natural
language processing to the field of computer vision. The main
contribution of this model is to prove that CNN is not the
only choice for image classification tasks. Vision transformer
divides the input image into fixed-size patches and then obtains
patch embedding through a linear transformation. Finally, the

Frontiers in Microbiology | www.frontiersin.org 4 March 2022 | Volume 13 | Article 79216643

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhao et al. Deep Learning Comparison on EMDS-6

patch embeddings of the image are sent to the transformer to
perform feature extraction to classification. The model is more
effective than CNN on super-large-scale datasets and has high
computational efficiency (Dosovitskiy et al., 2020).

The BoTNet is proposed by Srinivas. This network introduces
self-attention into ResNet. Therefore, BoTNet has both the local
perception ability of CNN and the global information acquisition
ability of Transformer. The top-1 accuracy on ImageNet is as
high as 84.7%, and the performance is better than models such
as SENet and Efficient-Net (Srinivas et al., 2021).

T2T-ViT is an upgraded version of ViT. It proposes a novel
Tokens-to-Token mechanism based on the characteristics and
structure of ViT. This mechanism allows the deep learning model
to model local and global information. The performance of this
model is better than ResNet in the ImageNet data test, and the
number of parameters and calculations are significantly reduced.
In addition, the performance of its lightweight model is better
than that of MobileNet (Yuan et al., 2021).

DeiT is proposed by Touvron et al. The innovation of DeiT is
proposes a new distillation process based on a distillation token,
which has the same function as a class token. It is a token added
after the image block sequence. The output after the transformer
encoder and the output of the teacher model calculates the loss
together. The training of DeiT requires fewer data and fewer
computing resources (Touvron et al., 2020).

2.3. EM Image Classification
With the development of technology, good results are achieved
using computer-aided EM classification. In Kruk et al. (2015),
a system for automatic identification of different species of
microorganisms in soil is proposed. The system first separates
microorganisms from the background using the Otsu. Then
shape features, edge features, and color histogram features are
extracted. Then the features are filtered using a fast correlation-
based filter. Finally, the random forest (RF) classifier is used for
classification. This system frees researchers from the tedious task
of microbial observation.

In Amaral et al. (1999), a semi-automatic microbial
identification system is proposed. The system can accurately
identify seven species of protozoa commonly found in
wastewater. The system first enhances the image to be processed
and then undergoes data collection and complex morphological
operations to generate a 3D model of EMs. The 3D model is used
to determine the species of protozoa. In Amaral et al. (2008),
a semi-automatic image analysis procedure is proposed. It is
found that geometric features have good recognition ability.
It is possible to detect the presence of two microorganisms,
Opercularia and Vorticella, in wastewater plants. In Chen
and Li (2008), an improved neural network classification
method based on microscopic images of sewage bacteria is
proposed. The method uses principal component analysis to
reduce the extracted EM features. Also, the method applies the
daptivate accelerated back propagation (BP) algorithm to learn
image classification.

An automatic classification method with high robustness of
EMs is suggested in Li et al. (2013), which describes the shape
of EMs in microscopic images by Edge Histograms, Extended

Geometrical Features, etc. The support vector machine classifier
is used to achieve the best classification result of 89.7%. A shape-
based method for EM classification is suggested in Yang et al.
(2014), which introduces very robust two-dimensional feature
descriptors for EM shapes. The main process of this method is
to separate EMs from the background. Then a new EM feature
descriptor is used and finally a SVM is used for classification.

A new method for automatic classification of bacterial colony
images is proposed in Nie et al. (2015), which enables the
classification of colonies in different growth stages and contexts.
In addition, the method mainly uses a multilayer middle layer
CNN model for classification and uses the patches segmented
from the CDBN model as input. Finally, a voting scheme is used
for prediction. The results show that the method achieves results
that exceed the classical model.

3. MATERIALS AND METHODS

This section explains the EMDS-6 dataset, data augmentation
methods, the distribution of the dataset, and the evaluation
metrics for classification.

3.1. Dataset
3.1.1. Data Description
This experiment uses Environmental Microorganism Dataset
6th Version (EMDS-6) to compare model performance. The
dataset contains a total of 840 EM images of different sizes.
These images contain a total of 21 types of EMs, each with
40 images, namely: Actinophrys, Arcella, Aspidisca, Codosiga,
Colpoda, Epistylis, Euglypha, Paramecium, Rotifera, Vorticella,
Noctiluca,Ceratium, Stentor, Siprostomum,K. Quadrala, Euglena,
Gymnodinium, Gymlyano, Phacus, Stylongchia, Synchaeta. Some
examples are shown in Figure 2 (Zhao et al., 2021).

3.1.2. Data Preprocessing
In order to improve the accuracy of the model and reduce
the degree of model overfitting, the images in EMDS-6 are
augmented. Due to the security problem of data augmentation,
the only geometric transformation of the data is performed here.
The geometric transformation includes rotation 90◦, 180◦, and
270◦, up and down mirroring, and left and right mirroring.
These transformations do not break the EM label and ensure data
security. In addition, the image sizes in EMDS-6 is inconsistent,
but the input required by the deep learning models is the same.
Therefore, all images in EMDS-6 are standardized to 224 ×

224 pixels.

3.1.3. Data Settings
Experiment A: Randomly select 37.5% of the dataset as the
training set, 25% as the validation set, and 37.5% as the test set.
Experiment A is to directly perform classification tasks on 21
types of microorganisms through the deep learning model. The
details of the training set, validation set, and test set are shown in
Table 1.

Experiment B: Randomly select 37.5% of the dataset
as the training set, 25% as the validation set, and 37.5%
as the test set. Specifically, 21 types of microorganisms
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FIGURE 2 | Example images of EMDS-6. (a) Actinophrys, (b) Arcella, (c) Aspidisca, (d) Codosiga, (e) Colpoda, (f) Epistylis, (g) Euglypha, (h) Paramecium, (i)

Rotifera, (j) Vorticella, (k) Noctiluca, (l) Ceratium, (m) Stentor, (n) Siprostomum, (o) K. Quadrala, (p) Euglena, (q) Gymnodinium, (r) Gymlyano, (s) Phacus, (t)

Stylongchia, and (u) Synchaeta.

are sequentially regarded as positive samples and the
remaining 20 types of samples are regarded as negative
samples. In this way, 21 new datasets are generated.
For example, if Actinophrys images are used as positive
samples, the remaining 20 types of EMs such as Arcella and
Aspidisca are used as negative samples. Experiment B is
imbalanced training to assist in verifying the performance of
the model.

Because EMDS-6 is a very small dataset, the experimental
results are quite contingent. Therefore, 37.5% of the data is used
to test the performance of the model to increase the reliability
of the experiment. This also expresses our sincerity to the
experimental results.

3.2. Evaluation Methods
To scientifically evaluate the classification performance of
deep learning models, choosing appropriate indicators is a
crucial factor. Recall, Precision, Accuracy, F1-score, AP, and
mean Average Precision (mAP) are commonly used evaluation
indicators (Xie et al., 2015). The effectiveness of these indicators
is proven. The Recall is the probability of being predicted
to be positive in actual positive samples. Precision is the
probability of being actual positive in all predicted positive
samples. Average Precision refers to the average value of
recall rate from 0 to 1. The mAP is the arithmetic average
of all AP. F1-score is the harmonic value of precision rate
and recall rate. Accuracy refers to the percentage of correct
results predicted in the total sample (Powers, 2020). The
specific calculation methods of these indicators are shown in
Table 2.

In Table 2, TN is the number of negative classes predicted
as negative classes, FP represents the number of negative
classes predicted as positive classes, FN refers to the

TABLE 1 | Dataset details of EMDS-6.

Class\Dataset Train Val Text Total

Actinophrys 15 10 15 40

Arcella 15 10 15 40

Aspidisca 15 10 15 40

Codosiga 15 10 15 40

Colpoda 15 10 15 40

Epistylis 15 10 15 40

Euglypha 15 10 15 40

Paramecium 15 10 15 40

Rotifera 15 10 15 40

Vorticella 15 10 15 40

Noctiluca 15 10 15 40

Ceratium 15 10 15 40

Stentor 15 10 15 40

Siprostomum 15 10 15 40

K.Quadrala 15 10 15 40

Euglena 15 10 15 40

Gymnodinium 15 10 15 40

Gonyaulax 15 10 15 40

Phacus 15 10 15 40

Stylongchia 15 10 15 40

Synchaeta 15 10 15 40

Total 315 210 315 840

number of positive classes predicted as negative classes,
and TP is the number of positive classes predicted as
positive classes.
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TABLE 2 | Evaluation metrics for image classification. Sample classification (K),

number of positive samples (M).

Assessments Formula

Precision (P) TP
TP+FP

Recall (R) TP
TP+FN

F1-score 2×
P×R
P+R

Accuracy TP+TN
TP+TN+FP+FN

AP 1
M

∑M
i=1 Precisionmax (i)

mAP 1
K

∑K
j=1 AP (j)

TABLE 3 | Computer hardware configuration.

Hardware Product number

CPU Intel Core i7-10700

GPU NVIDIA Quadro RTX 4000

Motherboard HP 8750 (LPC Controller-0697)

RAM SAMSUNG DDR4 3200MHz

SSD HP SSD S750 256GB

TABLE 4 | Deep learning hyper-parameters.

Parameter Value

Batch Size 32

Epoch 100

Learning 0.002

Optimizer Adam

4. COMPARISON OF CLASSIFICATION
EXPERIMENTS

4.1. Experimental Environment
This comparative experiment is performed on the local
computer. The computer hardware configuration is shown in
Table 3. The computer software configuration is as follows:
Win10 Professional operating system, Python 3.6, and Pytorch
1.7.1. In addition, the code runs in the integrated development
environment Pycharm 2020 Community Edition.

This experiment mainly uses some classic deep learning
models and some relatively novel deep learning models. The
hyper-parameters uniformly set by these models are shown in
Table 4.

4.2. Experimental Results and Analysis
4.2.1. The Classification Performance of Each Model

on the Training and Validation Sets
Figure 3 shows the accuracy and loss curves of the CNNs and
VT series models. Table 5 shows the performance indicators of
different deep learningmodels on the validation set. According to
Figure 3 and Table 5, the performance of different deep learning
models using small EM dataset cases is briefly evaluated.

As shown in Figure 3, the accuracy rate of the training
set is much higher than that of the validation set of each

model. Densenet169, Googlenet, Mobilenet-V2, ResNet50, ViT,
and Xception network models are particularly over-fitted.
In addition, AlexNet, InceptionResnetV1, ShuffleNet-V2, and
VGG11 network models do not show serious overfitting. Among
21models inTable 5, the accuracy rates of the Deit, ViT, and T2T-
ViT models are at the 10th, 12th, and 14th. The VT models are in
the middle and downstream position among the 21 models.

The Xception network model has the highest accuracy,
precision, and recall rates in the test set results, which are 40.32,
49.71, and 40.33%. The AlexNet, ViT, and ShuffleNet-V2 network
models require the shortest training time, which are 711.64,
714.56, and 712.95 s. In addition, the ShuffleNet-V2 network
model has the smallest parameter amount, which is 1.52 MB.

VGG16 and VGG19 networks cannot converge in EMDS-6
classification task. The VGG13 network model has the lowest
accuracy, precision, and recall rates in the validation set results,
which are 20.95, 19.23, and 20.95%. The VGG19 network model
requires the longest training time, which is 1036.68 s. In addition,
the VGG19 network model has the largest amount of parameters,
which is 521 MB.

Xception is a network with excellent performance in
EMDS-6 classification. In the Xception network accuracy curve,
the accuracy of the Xception network training set is rising
rapidly, approaching the highest point of 90% after 80 epochs.
Meanwhile, the accuracy of the validation set is close to the
highest point 45%, after 30 epochs. In addition, the Xception
network training set loss curve declines steadily and approaches
its lowest point after 80 epochs. But the validation set loss
begins to approach the lowest point after 20 epochs and stops
falling. VGG13 is a network that performs poorly on EMDS-
6 classification. In the VGG13 network, the accuracy curve
of the training set and the accuracy curve of the validation
set have similar trends, and there are obvious differences
after 80 epochs. Meanwhile, the loss of the training set and
the loss of the validation set are also relatively close, and
there are obvious differences after 60 epochs. Networks such
as Xception, ResNet34, and Googlenet are relatively high-
performance networks. The training accuracy of these networks
is much higher than the validation accuracy. Furthermore,
the validation accuracy is close to the highest point in a few
epochs. In addition, the training set loss of these networks is
usually lower than 0.3 at 100 epochs. VGG11 and AlexNet are
poorly performing networks. These network training accuracy
curves are relatively close to the validation accuracy curves.
Disagreements usually occur after many epochs. In addition, the
training set loss of these networks is usually higher than 0.3 at
100 epochs.

4.2.2. The Classification Performance of Each Model

on Test Set
Table 6, shows the performance indicators of each model on
the test set, including precision, recall, F1-score, and accuracy.
Moreover, the confusion matrix of the CNNs and VTs models are
shown in Figure 4.

It is observed from the test set results that the accuracy
ranking of each model remains unchanged. The accuracy rate
of the Xception network on the test set is still ranked first, at
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FIGURE 3 | The loss and accuracy curves of different deep learning networks on the training and validation sets. For example, AlexNet, Botnet, Densenet169,

Googlenet, InceptionResnet-V1, Mobilenet-V2, ResNet50, ShuffleNet-V2, VGG11, VGG16, ViT, and Xception. train-accurate is the accuracy curve of the training set,

train-accurate is the accuracy curve of the validation set, train-loss is the loss curve of the training set, and val-loss is the loss curve of the validation set.
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TABLE 5 | Comparison of classification results of different deep learning models on the validation set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 45.71 52.48 44.95 45.71 79.8 996

ResNet34 42.86 45.33 42.31 42.86 81.3 780

Googlenet 41.90 42.83 40.49 41.91 21.6 772

Densenet121 40.95 43.61 40.09 40.95 27.1 922

Densenet169 40.95 43.62 39.89 40.95 48.7 988

ResNet18 40.95 45.55 41.05 40.95 42.7 739

Inception-V3 40.00 45.01 39.70 40.00 83.5 892

Mobilenet-V2 39.52 39.57 37.01 39.52 8.82 767

InceptionResnetV1 39.05 41.54 37.96 39.05 30.9 800

Deit 39.05 39.37 37.70 39.05 21.1 817.27

ResNet50 38.57 43.84 38.02 38.57 90.1 885

ViT 37.14 41.02 35.95 37.14 31.2 715

ResNet101 34.76 36.52 32.99 34.76 162 1021

T2T-ViT 34.29 38.17 34.54 34.28 15.5 825.3

ShuffleNet-V2 33.81 33.90 31.68 33.81 1.52 713

AlexNet 31.90 32.53 29.32 31.91 217 712

VGG11 31.43 41.20 29.97 31.43 491 864

BotNet 30.48 32.61 30.06 30.48 72.2 894

VGG13 20.95 19.23 18.37 20.95 492 957

VGG16 9.05 1.31 2.10 9.05 512 990

VGG19 4.76 0.23 0.44 4.76 532 1036

P denotes Precision, and R represents Recall. (Sort in descending order of classification accuracy).

40.32%, and is 3.81% higher than the second. Meanwhile, the
average accuracy, average recall rate, and average F1-score of the
Xception network also remain in the first place, at 40.32, 40.33,
and 41.41%. Excluding the non-convergent VGG16 and VGG19
networks, the accuracy of the VGG13 validation set is still ranked
at the bottom, at 15.55%. However, the ranking of the T2T-ViT
network on the validation set accuracy rate changes dramatically.
The accuracy rate of the T2T-ViT network is 34.28%, and the
ranking rose from 12th to 5th. In addition, the AP, average recall
and average F1-score of the T2T-ViT network are 38.17, 34.29,
and 34.54%. Judging from the time consumed for the models, the
ViT model consumes the least time at 3.77 s. On the other hand,
the Densenet169 model consumes the most time at 11.13 s.

Figure 4 depicts the confusion matrix generated by part
of the test dataset to more intuitively show the classification
performance of the CNNs and VTs models on small EM
datasets. In Table 6, Xception is the network with the best overall
performance, and VGG13 is the network with the worst overall
performance. In the confusion matrix of the Xception network,
127 EM images out of 315 EM images are classified into the
correct category. In addition, the 11th type of EM classification
performs the best, with 12 EM images are correctly classified
and three EM images are misclassified into other categories.
Meanwhile, the Xception network performs the worst in the
13th category of EM classification results. Three EM images
are correctly classified and 14 EM images are misclassified into
other categories. For the VGG13 network, 49 of the 315 EM
images are classified into the correct category. Among them,
the 16th EM classification performs best. Six EM images are

correctly classified, and 9 EM images are mistakenly classified
into other categories. Comparing the CNNs and VTs models, all
of the models perform well on the 11th EM classification and
perform poorly on the 13th EM classification. For example, the
ViT model correctly classifies 9 EM images and 0 EM images in
the classification of the 11th and 13th class EMs, respectively.

Figure 4 shows that Xception better classifies the 11th and
16th types of EM images. ResNet is better at classifying tasks
of the 11th and 16th types of images. Googlenet is better at
classifying the 9th, 17th, and 21st EMs. The overall classification
performance of T2T-ViT is poor. However, there are still
outstanding performances in the 16th EM classification. The
BotNet hybridmodel is good at the 11th type of EM classification.
However, the classification performance on the 12th and 13th
images is abysmal. ResNet is good at image classification in the
9th, 11th, and 17th categories. The ViT model is good at the 11th,
12th, and 17th EM image classification. It is found from Figure 4

that the images that each model is good at classifying are not
the same. Therefore, there is a certain degree of complementarity
among different deep learning models.

From Figure 4, Xception and Googlenet are highly
complementary. For example, Googlenet has a good performance
in the classification of EMs in classes 17 and 21, but Xception
has a poor performance in the classification of EMs in classes
17 and 21. In addition, Xception is better at classifying the 11th
class of EM images than Googlenet. This result shows that the
features extracted by the two models are quite different. Two
networks can extract features that each other network cannot
extract. Therefore, there is a strong complementarity between
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TABLE 6 | Comparison of classification results of different deep learning models on the test set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 40.33 49.71 41.41 40.32 79.8 5.63

ResNet34 36.51 42.92 36.22 36.51 81.3 6.14

Googlenet 35.23 37.70 34.21 35.24 21.6 5.97

Mobilenet-V2 34.29 38.21 33.07 34.29 8.82 5.13

T2T-ViT 34.29 38.17 34.54 34.28 15.5 4.44

Densenet169 33.65 36.55 33.79 33.65 48.7 11.13

InceptionResnetV1 33.64 35.71 32.90 33.65 30.9 5.11

ResNet18 33.33 38.10 32.36 33.33 42.7 4.92

ResNet50 33.33 40.98 33.44 33.33 90.1 6.23

Densenet121 33.01 39.20 33.79 33.02 27.1 9.27

Deit 32.39 34.40 32.74 32.38 21.1 5.43

ViT 31.75 33.84 31.47 31.74 31.2 3.77

Inception-V3 31.11 34.84 31.32 31.11 83.5 7.49

ResNet101 27.94 34.59 28.31 27.94 162 8.83

VGG11 27.61 29.64 26.00 27.62 491 4.98

ShuffleNet-V2 27.30 25.02 24.98 27.30 1.52 5.42

BotNet 25.40 29.65 26.04 25.39 72.2 6.5

AlexNet 24.44 23.98 22.65 24.44 217 3.9

VGG13 15.55 15.18 14.38 15.55 492 5.28

VGG16 8.26 1.28 1.93 8.25 512 5.79

VGG19 4.76 0.23 0.44 4.76 532 6.42

P denotes Precision, and R represents Recall. (Sort in descending order of classification accuracy).

the two features. In addition, although VGG11 performs poorly
in the classification of EMs. However, VGG11 is better at class 1
and class 19 classification tasks than Resnet34. Therefore, there
is still a certain complementarity between the features extracted
by the two models. This complementarity makes it possible to
improve model performance through feature fusion.

In the study, we combine 18 models in pairs. Regardless of the
specific feature fusion method or the possibility of a particular
implementation, we calculate the ideal performance of the two
models after fusion based on the current results. Part of the
results is shown in Table 7. All results of the table are in the
appendix. In Table 7, the ideal accuracy rate of each combination
is calculated by the following steps. For each combination, the
best results of every model are firstly accumulated. Then, the
accumulated results are divided by the total number of images
in the test set, and the result is the ideal accuracy rate. For
example, the combination of Xception and Googlenet. In class
1 EM classification, Xception correctly classifies four images,
and Googlenet correctly classifies five images. Here, 5 are the
best results. The other categories can be deduced by analogy.
The calculation method of model performance improvement
is as follows: Use the ideal accuracy to subtract the highest
accuracy of the two models to obtain the performance that can
be improved in the ideal state after the fusion. In Table 7, the
fusion of Xception and Googlenet performs best on the EMDS-
6, with a classification accuracy of 46.03%. However, ResNet101
and VGG11 are improved the most after the fusion, and the
two models have the strongest complementarity. On the left
side of Table 7, we can clearly see the ideal effect of improving

the accuracy after the fusion of the two features. The improved
accuracy after fusion reflects the complementarity of the two
models to some extent. This complementarity can provide some
help to researchers who are engaged in feature fusion.

4.3. Extended Experiments
4.3.1. After Data Augmentation, the Classification

Performance of Each Model on the Validation Set
In this section, we augment the dataset, and the performance
indicators of the models are calculated and exhibited in
Table 8, including precision, recall, F1-score, and accuracy. In
addition, we compare the accuracy changes before and after data
augmentation, as shown in Figure 5.

After data augmentation, the time required for model training
also increases significantly. The training time of the ViT models
is the least, which is 902.27 s. Although the training set is
augmented to six times, the training time of the ViT models is
increased by 187.27 s compared with the 715 s. The classification
accuracy of the Xception network ranks first at 52.62%. The
T2T-ViT network has the lowest classification rate of 35.56%.

After data augmentation, the classification performance of
each model is improved. Figure 5 shows the changes in the
accuracy of each model after data augmentation. The validation
set accuracy of the VGG16 network is increased the most, at
28.41%. This is because the VGG16 network can converge on
the augmentation dataset. In addition, the validation set accuracy
of VGG13 and VGG11 are improved significantly, increasing
by 21.59 and 16.67%, respectively. The accuracy of the VGG11
validation set rose from 17th to 3th. The accuracy of the VGG13
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FIGURE 4 | Confusion matrix comparison of different networks on test set, Xception, Resnet34, Googlenet, T2T-ViT, BotNet, VGG13,ResNet18,ViT, and VGG11. (In

the confusion matrix, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 represent Actinophrys, Arcella, Aspidisca, Codosiga, Colpoda,

Epistylis, Euglypha, Paramecium, Rotifera, Vorticella, Noctiluca, Ceratium, Stentor, Siprostomum, K. Quadrala, Euglena, Gymnodinium, Gymlyano, Phacus,

Stylongchia, and Synchaeta, respectively).

Frontiers in Microbiology | www.frontiersin.org 11 March 2022 | Volume 13 | Article 79216650

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhao et al. Deep Learning Comparison on EMDS-6

TABLE 7 | After fusing the two features, it has ideal precision and ideal performance improvement.

Model Change (up) (%) Model Accuracy

ResNet101 VGG11 9.52 Googlenet Xception 46.03%

InceptionResnetV1 ResNet18 7.94 Inception-V3 Xception 44.76%

Inception-V3 Shufflenet-V2 7.62 ResNet50 Xception 44.76%

Shufflenet-V2 VGG11 7.62 Deit Xception 44.44%

Deit VGG11 7.30 Densenet161 Xception 44.13%

Inception-V3 VGG11 7.30 VGG11 Xception 44.13%

ResNet18 ResNet50 7.30 Densenet121 Xception 43.81%

ResNet34 ResNet50 7.30 Mobilenet-V2 Xception 43.81%

ResNet34 VGG11 7.30 ResNet34 ResNet50 43.81%

ResNet101 Shufflenet-V2 7.30 ResNet34 VGG11 43.81%

Googlenet Mobilenet-V2 7.30 Densenet121 ResNet34 43.49%

Alexnet T2T-ViT 6.98 Googlenet ResNet34 43.49%

Deit Mobilenet-V2 6.98 InceptionResnetV1 Xception 43.49%

Deit ViT-5 6.98 Mobilenet-V2 ResNet34 43.49%

Densenet121 Googlenet 6.98 ResNet18 Xception 43.49%

The left side of the table shows the improved accuracy of feature fusion under ideal conditions, and the right side of the table shows the accuracy of feature fusion under ideal conditions.

validation set rose from 19th to 11th. After data augmentation,
the validation set accuracy of T2T-ViT, Densenet169, and
ViT are not improved significantly, increasing by 1.28, 1.19,
and 1.91%.

From a specific series of models, the performance of VGG
series models is improved significantly after data augmentation.
The performance improvement of the Densenet series models
is not apparent. The accuracy of the Densenet121 and the
Densenet169 validation sets are increased by 1.43 and 1.19%,
respectively. Meanwhile, the performance improvement of the
VT series models is not apparent. The classification accuracy of
the T2T-ViT validation set is increased by 1.28%, ViT is increased
by 1.91%, and Diet is increased by 4.28%. In the ResNet series
models, ResNet18, ResNet34, and ResNet50 are increased by 3.49,
3.25, and 3.65%, and the improvement is not obvious. However,
the classification accuracy of the ResNet101 validation set is
increased by 8.65%, which is obvious.

4.3.2. After Data Augmentation, the Classification

Performance of Each Model on the Test Set
After data augmentation, the performance of each model on the
test set is shown in Table 9. In Table 9, the Xception network
has the highest accuracy of 45.71%. Meanwhile, the Xception
network has an excellent recall index of 50.43%. Excluding
the non-convergent VGG19, the VGG16 model has the worst
performance, with an accuracy of 24.76%. The ViT model
consumes the least time, which is 3.72 s. The Densenet169 model
consumes the most time, which is 11.04 s.

Figure 6 shows the change of accuracy on the test set before
and after the augmentation. In Figure 6, we can see that the
accuracy of each deep learning model on the test set is generally
increased. Among them, the accuracy of the VGG series models
is improved the most. VGG11 is increased by 9.25%, VGG13
is increased by 21.28%, and VGG16 is increased by 16.51%.
However, the accuracy of the VT series models test set is not

significantly improved. The accuracy of some model test sets
even drops. After data augmentation, the accuracy of the Diet
network validation set is not changed. The accuracy of the T2T-
ViT network is dropped by 3.80%. The accuracy of the ViT
model is dropped by 3.17%. However, the accuracy of BotNet,
a mixed model of CNN and VT, is improved significantly,
reaching 11.12%.

4.3.3. In Imbalanced Training, After Data

Augmentation, the Classification Performance of

Each Model on the Validation Set
In this section, we re-split and combine the data. Take each of the
21 types of EMs as positive samples in turn and the remaining
20 types of microorganisms as negative samples. In this way, we
repeat this process 21 times in our paper. The specific splitting
method is shown in Section 3.1.3. The deep learning model
can calculate an AP after training each piece of data. Table 10
shows the AP and mAP of each model validation set. We select
the classical VGG16, ResNet50, and Inception-V3 networks for
experiments. Furthermore, a relatively novel ViT model is also
selected. In addition, the Xception network, which has always
performed well above, is selected for experiments. Since the
VGG16 network cannot converge at a LR of 0.0001, this part of
the experiment adjusts the LR of the VGG16 network to 0.00001.

It can be seen in Table 10 that the mAP of the Xception
network is the highest, which is 56.61%. The Xception network
has the highest AP on the 10th data, and the AP is 82.97%. The
Xception network has the worst AP on the 3rd data, with an AP of
29.72%. As shown in Figure 7, the confusion matrix (d) is drawn
by the 10th data. In (d), 46 of the 60 positive samples are classified
correctly, and 14 are mistakenly classified as negative samples. In
the confusion matrix drawn by the third data, 8 of the 60 positive
samples are classified correctly, and 52 are incorrectly classified
as negative samples.
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TABLE 8 | Comparison of classification results of different deep learning models on the validation set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 52.62 52.05 50.63 52.62 79.80 2636.08

Mobilenet-V2 49.67 51.91 48.82 49.68 8.82 1237.49

VGG11 48.10 52.40 48.44 48.10 491.00 1745.73

ResNet34 46.10 47.85 44.68 46.11 81.30 1335.87

ResNet18 44.44 51.87 43.03 44.44 42.70 1090.39

Googlenet 44.29 47.16 43.50 44.29 21.60 1257.33

Inception-V3 43.97 50.78 43.41 43.97 83.50 2004.08

AlexNet 43.58 45.02 43.05 43.57 217.00 951.27

ResNet101 43.41 46.08 43.33 43.41 162.00 2786.95

Deit 43.34 46.62 43.29 43.33 21.10 1306.99

VGG13 42.54 41.38 41.21 42.54 492.00 2307.04

Densenet121 42.38 46.91 42.39 42.38 27.10 2169.11

ResNet50 42.22 47.76 42.10 42.22 90.10 1968.28

Densenet169 42.14 48.04 42.79 42.14 48.70 2526.61

InceptionResnetV1 41.66 47.83 41.68 41.67 30.90 1451.76

ViT 39.05 43.50 38.52 39.05 31.20 902.27

ShuffleNet-V2 37.62 39.37 36.84 37.62 1.52 965.81

VGG16 37.47 38.21 36.80 37.46 512.00 2589.15

BotNet 36.59 36.38 35.59 36.59 72.20 2000.17

T2T-ViT 35.56 38.43 36.19 35.56 15.50 1385.62

VGG19 4.76 0.23 0.44 4.76 532.00 1022.57

P denotes Precision, and R represents Recall. The training set is augmented. (Sort in descending order of classification accuracy).

FIGURE 5 | In the validation set of different deep learning models, the accuracy difference between data augmentation and before data augmentation.
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TABLE 9 | Comparison of classification results of different deep learning models on the test set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 45.71 50.43 46.15 45.71 79.8 5.49

Mobilenet-V2 42.54 47.56 43.07 42.54 8.22 5.04

ResNet18 39.05 44.82 39.22 39.05 42.7 4.90

Densenet121 38.73 40.28 38.20 38.73 27.1 8.98

ResNet34 38.73 42.25 37.84 38.73 81.3 6.07

ResNet50 38.10 41.56 36.97 38.10 90.1 6.20

Inception-V3 37.78 44.32 38.00 37.78 83.5 7.47

Googlenet 37.46 43.55 37.92 37.46 21.6 6.03

Densenet169 37.14 41.51 37.37 37.14 48.7 11.04

VGG11 37.14 38.81 36.70 37.14 491 4.96

InceptionResnetV1 36.82 41.47 36.75 36.83 30.9 5.11

VGG13 36.82 38.46 36.25 36.83 492 5.28

BotNet 36.50 39.12 36.35 36.51 72.2 6.44

ResNet101 35.23 38.01 35.44 35.24 162 8.85

AlexNet 34.92 39.10 34.97 34.92 217 5.25

Deit 32.39 34.40 32.74 32.38 21.1 4.41

T2T-ViT 30.48 35.88 30.85 30.48 15.50 5.41

ShuffleNet-V2 28.57 35.64 29.41 28.57 1.52 5.42

ViT 28.58 29.63 27.86 28.57 31.2 3.72

VGG16 24.77 25.53 24.11 24.76 512 5.79

VGG19 4.76 0.23 0.44 4.76 532 6.36

P denotes Precision, and R represents Recall. The training set is augmented. (Sort in descending order of classification accuracy).

FIGURE 6 | In the test set of different deep learning models, the accuracy difference between data augmentation and before data augmentation.

The mAp of the VGG16 network is the lowest at 34.69%. The
VGG16 network performs best on the 10th data AP, with an AP
of 76.12%. The VGG16 network performs the worst on the 21st

data AP, with an AP of 5.47%. Despite tuning the LR, the VGG16
network still fails to converge on the 3rd, 8th, 13th, 15th, and
21st data.
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TABLE 10 | AP and MAP of different deep learning models in imbalanced training.

Model/Sample 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%) 11 (%)

ViT 30.77 44.99 18.43 48.51 74.47 76.17 50.98 15.32 31.12 60.74 54.02

Xception 37.66 51.16 29.72 68.32 73.66 67.96 79.19 65.41 55.84 82.97 55.91

VGG16 48.38 41.43 9.63 51.05 52.61 42.23 76.92 5.97 27.57 76.12 34.77

ResNet50 30.58 45.96 14.24 68.19 66.15 43.10 71.24 46.51 31.87 62.19 36.79

Inception-V3 37.75 36.79 33.41 56.37 55.77 43.51 59.52 41.18 38.40 75.03 69.26

Model/Sample 12 (%) 13 (%) 14 (%) 15 (%) 16 (%) 17 (%) 18 (%) 19 (%) 20 (%) 21 (%) mAPA

ViT 15.24 17.84 25.46 6.74 13.95 48.61 7.26 60.33 23.07 9.53 34.93

Xception 54.16 52.28 65.06 46.36 30.61 60.41 31.21 61.14 45.50 74.36 56.61

VGG16 24.06 16.22 63.90 5.80 10.49 33.87 24.77 44.00 33.14 5.47 34.69

ResNet50 15.59 42.12 68.57 24.94 17.49 47.52 6.64 49.04 16.73 56.10 41.03

Inception-V3 15.09 49.09 64.11 37.91 15.00 43.98 15.84 54.40 10.78 60.38 43.50

(In [%]).

The mAp of the ViT network and the VGG16 network
are relatively close. The ViT network performs best on the
6th data AP, with an AP of 76.17%. Among the 60 positive
samples, 35 are classified correctly, and 25 are classified as
negative samples. The ViT network performs the worst on the
15th data AP, with an AP of 6.74%. Among the 60 positive
samples, 0 are classified correctly and 60 are classified as
negative samples.

In addition, Resnet50 performs the best on seven data AP
and the worst on the 18th data AP. The Inception-V3 network
performs best on 10 data AP and the worst on the 16th data AP.

4.3.4. Mis-classification Analysis
In the extended experiments, we randomly divide EMDS-6 three
times and train the data for each division. The results and
accuracy errors of the three experiments are shown in Table 11

and Figure 8.
In Table 11, under the original dataset, Xception has the best

classification performance on 21 deep learning models. After
data augmentation, Xception still has the highest classification
performance. In Table 11, the performance of the VGG series
network has major changes compared to Table 9. In Figure 9,
we can clearly understand that VGG11, VGG13, VGG16, and
VGG19 failed to converge at least once in the three experiments.
This phenomenon causes the VGG series models to fall behind
in average performance. Except for the VGG series models, the
performance of other models tends to be stable on the whole,
and the errors are kept within ± 5% of the average of the
three experiments. Xception and Densenet169 networks show
good robustness in the classification results before and after data
augmentation. However, the classification performance of the
AlexNet network fluctuates greatly in the three experiments, and
the robustness is poor.

In Figure 9, after data augmentation, the performance of
VGG13 improves the most, but this is mainly caused by
the failure of some experiments on the original dataset to
converge. In addition to the VGG13 network, the Mobilenet-V2,
ShuffleNet-V2, and Densenet121 models improve the most, with

accuracy rates increase by 10.25, 9.52, and 8.89%. In addition,
the performance improvement of ResNet34, ResNet18, and
InceptionResnetV1 models is relatively small, and the accuracy
are increase by 2.54, 2.96, and 3.5%. Generally speaking, after
data augmentation, the CNN series models have a very obvious
improvement in the precision, recall, F1-Score, and accuracy of
the test set. However, the opposite situation appeared in the
VTs after data augmentation. Taking the Accuracy index as an
example, the accuracy of the ViTmodel in the test set has dropped
by -2.5%, the Accuracy of the T2T-ViT model is equal to that
before the augmentation, and the Accuracy of the Deit model has
only increased by 1.16%.

In general, augmenting the dataset through geometric
transformation can effectively improve the classification
performance of the CNN series models. Nevertheless,
for the VTs, the method of geometric transformation to
augment the dataset is difficult to improve the classification
performance of the VTs and even leads to a decrease in
model performance.

4.3.5. Comparison of Experimental Results After

Tuning Model Parameters
In this section, our extended experiments select representative
models, namely the CNN-based Xception, the Transformer-
based ViT, and the BotNet hybrid model based on CNN and
VT. This section of the experiment trains 100 epochs. The
purpose of the study is to observe the effect of changing two
hyper-parameters, LR, and batch size (BS), on the experimental
results. The experimental results are shown in Table 12.

Under the same BS and different LRs conditions, the
maximum fluctuation of ViT training time is only 4.6 s, the
maximum fluctuation of BotNet training time is 74.6 s, and
the maximum fluctuation of Xceotion training time is 80.6 s.
Experiments indicate that tuning LRs has little effect on the
time required for training. However, the change of LRs greatly
influences the accuracy of experimental results. Taking the ViT
as an example, the accuracy of the model is 16.83% under the
conditions of BS = 16 and LR = 2 × 10−5. Under the condition
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FIGURE 7 | The confusion matrices (A–H) are drawn based on the Xception validation set results. Likewise, the confusion matrices (I–P) are drawn based on the ViT

validation set results. (A–H) are generated from datasets 1, 3, 5, 7, 10, 11, 13, 15. (I–P) are generated from datasets 1, 3, 6, 7, 9, 11, 13, and 15, respectively.

(Dataset segmentation is shown in 3.1.3 Experiment B).

of LR = 2 × 10−4, the highest accuracy of the ViT can reach
31.11%. In addition, the accuracy of the model is only 3.17%
under the condition of LR = 2 × 10−2. Experiments indicate
that the performance of the model decreases when using an
oversized LR (LR = 2 × 10−2) and an extremely small LR (LR
= 2 × 10−5). An oversized LR may cause the network to fail

to converge, which means the model lingered near the optimal
value and could not reach the optimal solution. This leads to
performance degradation. The following two reasons explain the
performance degradation when applying extremely small LRs.
On the one hand, an extremely small LR makes the network hard
to converge fastly. The related experiments show that the model
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TABLE 11 | Comparison of different deep learning models on test set.

Mode1 Original data Augmented data

Recall (%) Precision (%) F1-score (%) Accuracy (%) Recall (%) Precision (%) F1-score (%) Accuracy (%)

Xception 39.37 44.25 39.07 39.37 44.76 47.97 44.53 44.76

ResNet34 37.14 41.96 36.93 37.14 39.68 43.15 39.54 39.68

ResNet18 35.24 40.53 34.33 35.24 38.20 42.64 38.38 38.20

Mobilenet-V2 34.50 37.24 33.86 34.50 44.75 48.31 44.82 44.75

InceptionResnetV1 34.39 36.46 33.92 34.39 37.88 41.09 37.53 37.89

Googlenet 34.07 36.89 33.48 34.07 40.32 44.59 40.37 40.32

Deit 32.27 34.08 31.92 33.44 34.60 37.01 34.76 34.60

Inception-V3 33.33 33.78 32.26 33.33 39.79 43.17 39.69 39.79

ViT 33.24 34.92 32.63 33.23 30.69 32.49 30.08 30.69

Densenet169 32.80 35.38 32.49 32.80 38.73 43.52 38.79 38.73

ResNet50 32.28 36.41 31.79 32.27 38.84 41.69 38.37 38.84

Densenet121 31.11 35.66 31.25 31.11 40.00 43.02 39.75 40.00

ResNet101 30.90 35.29 30.97 30.90 36.61 38.34 36.01 36.61

AlexNet 30.26 31.08 28.70 30.26 36.51 39.62 36.41 36.51

T2T-ViT 29.10 32.84 29.17 29.10 29.10 32.19 29.13 29.10

BotNet 29.00 31.11 28.46 28.99 33.02 34.29 32.45 33.02

ShuffleNet-V2 24.66 23.71 22.86 24.66 34.18 37.09 34.19 34.18

VGG11 20.74 19.99 18.31 20.74 26.77 26.98 25.39 26.77

VGG13 8.68 5.66 5.47 8.68 28.78 29.52 27.12 28.78

VGG16 5.93 0.58 0.94 5.92 11.43 8.66 8.33 11.43

VGG19 4.76 0.23 0.44 4.76 4.76 0.23 0.44 4.76

[In (%)].

FIGURE 8 | Error bar of accuracy on test set. The left figure shows the test set error bar before data augmentation. The figure on the right shows the error bar of the

test set after data augmentation.

is difficult to reach the optimal value within 100 epochs with an
extremely small LR (2× 10−5). On the other hand, an extremely
small LR may cause the network to fall into an optimal local
solution, which leads to performance degradation.

In addition to the LR, the change of BS also dramatically
affects the performance of the model. Different models show
different patterns at different BS values. For example, the
accuracy of the ViT model decreases rapidly with increasing
BS at LR = 2 × 10−5. The accuracy of the BotNet increases

sharply with increasing BS at LR = 2 × 10−5. However, the
relevant experiments show that BS does not seriously affect the
performance of the model under large datasets (Radiuk, 2017).
Nevertheless, with small datasets, only a slight change in the BS
value can dramatically change the performance of the model.

Compared to a large dataset, tuning the BS and LR on
a small dataset can significantly change model performance.
Therefore, finding the optimal parameters to improve the model
performance on small datasets is necessary.
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FIGURE 9 | Error bar of accuracy on test set. The left figure shows the test set error bar before data augmentation. The figure on the right shows the error bar of the

test set after data augmentation.

TABLE 12 | Comparison of training time consumption and test set accuracy of different networks.

LR
ViT (Times) ViT (Accuracy)

BS 4 BS 8 BS 16 BS 32 BS 4 (%) BS 8 (%) BS 16 (%) BS 32 (%)

2× 10−5 530.70 793.56 760.76 760.99 28.25 21.59 16.83 14.92

2× 10−4 530.32 793.12 761.17 762.88 30.16 27.94 31.11 30.16

2× 10−3 530.30 792.43 760.87 761.88 11.43 15.87 20.63 17.14

2× 10−2 535.30 794.01 760.67 760.99 4.76 4.76 3.17 7.62

LR
Xception (Times) Xception (Accuracy)

BS 4 BS 8 BS 16 BS 32 BS 4 (%) BS 8 (%) BS 16 (%) BS 32 (%)

2× 10−5 840.31 1106.94 1119.99 1074.65 38.10 37.46 37.14 37.78

2× 10−4 834.88 1107.95 1081.05 1088.86 51.43 50.48 41.90 38.73

2× 10−3 837.11 1113.56 1042.63 1042.75 23.49 34.29 28.25 30.48

2× 10−2 808.83 1086.24 1037.36 1073.62 14.29 16.83 20.00 17.46

LR
BotNet (Times) BotNet (Accuracy)

BS 4 BS 8 BS 16 BS 32 BS 4 (%) BS 8 (%) BS 16 (%) BS 32 (%)

2× 10−5 806.80 1006.82 977.10 950.71 16.51 17.14 20.32 21.27

2× 10−4 778.31 990.82 1022.45 1011.02 12.70 24.76 26.67 27.94

2× 10−3 772.63 984.33 967.09 937.65 9.21 7.94 14.29 10.79

2× 10−2 774.33 985.43 968.46 936.39 7.94 10.79 7.62 16.83

The left side of the table shows the training time consumption, while the right side of the table shows the accuracy of the test set. learning rate (LR), Batch Size (BS).
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5. DISCUSSION

This experiment studies the classification performance of 21 deep
learningmodels on small EM dataset (EMDS-6). The comparison
results are obtained according to the evaluation indicators, as
shown in Tables 5, 6, 8, 9. Meanwhile, some models are selected
for imbalanced experiments to investigate the performance of
the models further. The results are shown in Table 10. In order
to increase the reliability of the conclusions, this paper repeats
the main experiment three times. The average value is shown
in Table 11, and the errors of the three experiments are shown
in Figure 8. In addition, this paper explores the impact of
hyper-parameters on small dataset classification, and the results
are shown in Table 12.

The performance of the VGG network gradually
decreases as the number of network layers increases.
Especially the VGG16 and VGG19 networks cannot
converge on EMDS-6. This may be because the dataset is
too small, and the gradient disappears in the process of a
continuous deepening of the network layer, which affects
the convergence.

The training time of the ViT network on EMDS-6 is very short,
but it does not make a significant difference with other models.
After the data augmentation of EMDS-6, the ViT network has
apparent advantages in the time of training the model, and
the time consumption is much less than other models. We can
speculate that the ViT model may further expand its advantage
when trained on more training data.

In the experiments where the model parameters are tuned,
slight changes in both the LR and BS parameters lead to
drastic changes in model performance. This does not happen
if the experiment is based on a large-scale dataset. However, in
small datasets, each class of EMs only accounts for a portion
of the image, and most of the others are noise. Moreover,
some models that include batch normalization normalize the
environmental noise at different BS leading to fluctuations in
classification accuracy.

After data augmentation, the accuracy of CNN series models
improves significantly. However, the increase of VT series
model accuracy is slight, and some of them even decrease.
The results are shown in Figure 6. To further prove the
above experimental results, this paper re-divides the dataset
and conducts three experiments, and the results are shown
in Figure 9. Experiments once again prove that the geometric
deformation augmented data method is difficult to improve the
performance of the VT series models. This may be because
our data augmentation method only makes geometric changes
to the data. The geometric transformation is only changed the
spatial position of the feature. However, the VT series models
use attention to capture the global context information, and it
pays more attention to global information. Operations such as
rotation and mirroring have little effect on global information,
and it is impossible to learn more global features. This makes
the performance of the VT series models unable to improve after
data augmentation significantly. However, the performance of
BotNet, a hybridmodel of CNN andVT, is significantly improved
after data augmentation. This is because the BotNet network

only replaced three Bottlenecks withMHSA. The BotNet network
is essentially more inclined to the feature extraction method
of CNN.

6. CONCLUSION AND FUTURE WORK

The classification of small EM datasets are very challenging
in computer vision tasks, which has attracted the attention of
many researchers. Due to the development of deep learning,
image classification of small datasets is developing rapidly.
This article uses 17 CNN models, three VT models, and
a hybrid CNN and VT model to test model performance.
We have performed several experiments, including direct
classification of each model, classification tasks after data
augmentation, and imbalanced training tasks on some
representative models. The experimental results prove that
the Xception network is suitable for this kind of task. The
ViT models take the least time for training. Therefore, the
ViT model is suitable for large-scale data training. The
ShuffleNet-V2 network has the least number of parameters,
although its classification performance is average. Therefore,
ShuffleNet-V2 is more suitable for occasions where high
classification performance is not necessary and limited
storage space.

This study provides an analysis table of the differences
between the 18 models. This result can help related research on
feature fusion quickly find models with significant differences
and improve model performance. In addition, this study finds
for the first time that the data augmentation method of geometric
deformation is extremely limited or even ineffective in improving
the performance of VT series models. This study and conclusion
can provide relevant researchers with a conclusion with sufficient
experimental support. Our research and conclusions reduce their
workload in selecting experimental augmentation methods to a
certain extent. This has a significant reference value.

Although the augmentation method of geometric
deformation is effective for the performance improvement of
CNNs, it does not help much for the performance improvement
of VTs. We can improve the VT networks performance by
studying new data augmentation methods in future work.
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Shotgun sequencing of environmental DNA (i.e., metagenomics) has revolutionized the
field of environmental microbiology, allowing the characterization of all microorganisms
in a sequencing experiment. To identify the microbes in terms of taxonomy and
biological activity, the sequenced reads must necessarily be aligned on known microbial
genomes/genes. However, current alignment methods are limited in terms of speed and
can produce a significant number of false positives when detecting bacterial species or
false negatives in specific cases (virus, plasmids, and gene detection). Moreover, recent
advances in metagenomics have enabled the reconstruction of new genomes using de
novo binning strategies, but these genomes, not yet fully characterized, are not used
in classic approaches, whereas machine and deep learning methods can use them as
models. In this article, we attempted to review the different methods and their efficiency
to improve the annotation of metagenomic sequences. Deep learning models have
reached the performance of the widely used k-mer alignment-based tools, with better
accuracy in certain cases; however, they still must demonstrate their robustness across
the variety of environmental samples and across the rapid expansion of accessible
genomes in databases.

Keywords: machine learning, deep learning, metagenomic, whole genome shotgun, classification, taxonomic
annotation, functional annotation

INTRODUCTION

The study of the microbial environments has benefited from the sequencing revolution, where
technology improvement decreased the DNA sequencing cost and increased the number of
sequenced nucleic bases. For approximately 20 years (depending on how we define the term
metagenomics), it has allowed the decryption of the microbial composition of a huge variety of
environments (Bahram et al., 2021). In the present publication, we use the term metagenome
to refer to the directly sequenced DNA of one environment, without any prior amplification.
This implies that a metagenome is a sample extracted from the total DNA of genomes, cut into
fragments of hundreds to thousands base pair (bp) lengths. The fragments can be paired-end
or not, depending on the technology used (Escobar-Zepeda et al., 2015). The DNA sample is
then analyzed to answer the ambitious questions: “who is here?” and “what are they doing?” A
variety of bioinformatic tools and software have been developed to annotate the sequences into
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taxonomic and functional categories. They can be grouped
into two categories: (i) alignment-based methods that infer
taxonomy/functions based on similarity of sequences along
reference databases such as BLAST (Altschul et al., 1990) and
DIAMOND (Buchfink et al., 2014), (ii) k-mer–based approaches
such as kraken2 (Wood et al., 2019) and CENTRIFUGE (Kim
et al., 2016). However, these technologies suffer from dependence
on prior knowledge and are not able to annotate sequences
absent from the databases (at least with no resemblance).
A good criterion to compare results between software will be
to evaluate the capacity to annotate the sequenced reads to a
taxonomy/functional entity, but because the annotation depends
on the technology used, the choice of the associated parameters,
or the intrinsic factors of the studied environment (Figure 1),
the comparison is not feasible without a unique benchmark.
Moreover, another aspect that affects the rate of annotation (e.g.,
the capacity to annotate the sequenced reads) is the level of
analysis, which might be in terms of taxonomy, rank (species to
domain), functions, and gene/pathway. The more the annotation
is specific (threshold of similarity and level of analysis), the
more the rate of annotation will be low. Nevertheless, to obtain
interpretable information, having a detailed annotation in terms
of taxonomy and functions will help to interpret the generated
data. The trade-off has to be set according to the studies and their
scientific questions (Inkpen et al., 2017).

In the last few years, new methods have emerged to
analyze metagenomics data based on machine and deep learning
approaches. These methods attempt to acquire the capacity
to distinguish complex patterns among large datasets to make
accurate predictions on future datasets that will be analyzed
using the trained models (Greener et al., 2021). In metagenomic
experiments, unsupervised or supervised models are widely
used to make classification or clustering of samples based on
annotation matrices. Current common approaches in the field
are General Linearized Models to differentiate the microbial
composition of samples, Principal Components Analysis to
reduce data dimension and visualize data in an unsupervised way
(Calle, 2019), and feature selection methods to define microbial
signatures (Erickson et al., 2012; Loomba et al., 2017; Zhong
et al., 2019). Learning and prediction of disease status of patient-
related metagenomic samples have been rarely explored, but a
successful application has been proposed using more than 2,400
metagenomic samples from clinical metagenomic studies (Pasolli
et al., 2016). In this review, we do not attempt to expose all the
machine learning methods and use cases existing in the literature,
but we will try to unravel the issue of annotation that to meets the
machine and deep learning model requirements, exploring how
it was applied in metagenomics annotation. Table 1 summarizes
models and tools reviewed in the following article.

CHALLENGES IN METAGENOMIC
ANNOTATION

Taxonomic annotation of bacteria is complex and, because
the microorganisms do not possess sexual reproduction, the
definition of bacterial species is based on a laboratory experiment

result to define a species, e.g., DNA–DNA hybridization of two
bacterial genomes must be greater than or equal to 70% to be
grouped in the same species (Wayne et al., 1987). However, this
leads to high DNA heterogeneity functions in the species group.
Breitwieser et al. (2019) collected information that demonstrated
the difference in average nucleotide identity between different
species, revealing the difficulty to classify them using DNA
genomic sequences. Moreover, the microbial diversity is very
large and not yet recovered. It has been estimated that we
only accessed, using culture-based approaches, 0.001–1% of
the total bacterial diversity present on earth (O’Leary et al.,
2016). This emphasizes that genomes in reference databases
do not cover the total diversity in the metagenomic samples.
Finally, the emergence of assembly and de novo metagenomic
reconstruction of genomes from metagenomic data, also called
metagenomic assembled genomes (MAGs), has unveiled the
numerous uncultured microorganisms in multiple environments
(Qin et al., 2010; Lee et al., 2017; Delmont et al., 2018; Kroeger
et al., 2018; Pedron et al., 2019). Because the genomes are not
yet cultured, they can represent multiple genomes, and their
taxonomy affiliation cannot be connected to known species.
They are generally named with an identifier, e.g., (Genus) sp.
(identifier) (for instance, Bacillus sp. M35), or are proposed
with the species name preceded by the term “Candidatus.”
MAG permitted the acquisition of yet uncultured genomes,
but integrating MAG into metagenomic classifiers is complex
because they may not be regular genomes and they are not fully
integrated into the taxonomy.

Metagenomic data are also a source of functional information
and, using reference databases, can be annotated to understand
what the potential functions are that could reflect their ecological
role in the studied environment. As there is a link between
DNA sequences and functions, we can be more confident of
the annotation process based on alignment, but the sequence
similarity threshold to be confident is always a questionable point
that will impact the annotation process (Treiber et al., 2020).
Depending on the function, a different similarity percentage
will be required to identify reads as a function. Moreover, the
choice of the database can change the level of analysis and
the interpretation. In addition, there are no official functional
categories and a variety of databases has emerged, each with
its own specificities (Table 2) (Caspi et al., 2014; Lombard
et al., 2014; Kanehisa et al., 2016; Huerta-Cepas et al., 2019;
Gene Ontology Consortium [GOC], 2021; Mistry et al., 2021;
The UniProt Consortium et al., 2021). These non-standardized
annotations alter our capacity to compare tool accuracies.

APPLICATION OF MACHINE LEARNING
TO METAGENOMIC CLASSIFICATION

Characterization of the Metagenomic
Annotation Process in Terms of Machine
and Deep Learning
We represent here the machine learning process by characterizing
the input, output, and the type of classification and model used
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FIGURE 1 | Factors that influence the capacity of sequence annotation. Parameters, defined in the sequencing and bioinformatic processes, are tunable by the
users. Intrinsic factors are some characteristics of the environment studied that influence the rate of annotation, by definition they are not tunable. The cursors
indicate where the annotation rate will be the highest. A low sequence identity cutoff for assignment increases the annotation rate, but the trade-off will be a higher
detection rate of false positives. Precision of the annotation refers to the degree of annotation examined (for taxonomic assignment, it corresponds to the taxonomic
range used for the analysis, for the functional annotation to the metabolic/anabolic level: genes, short biosynthetic pathways, and global pathways).

in the framework. The theoretical process of annotation can be
analyzed as a multiclass classification problem, where a huge
number of reads (input) must be uniquely classified into a wide
variety of taxonomic ranks (output), meaning that it cannot be
labeled in two different classes for one read. This is a supervised
problem where the models are trained using a ground truth
reference, i.e., true values are used to compare with the output of a
machine learning model (Greener et al., 2021). In metagenomics
in general, this ground truth is difficult to obtain because the
metagenomic data are the fruit of complex and unresolved
microbial phylogeny, as explained previously.

The machine learning model input sensu stricto will be
millions of metagenomic reads and the output will be the category
(or categories) to which the read belongs. To evaluate the
classification performance, all the publications presented in this
review used the same or equivalent metrics. These metrics are
precision, which is the capacity of good assignation when there
is an assignation, and recall (sensitivity), which is the number of
reads correctly classified compared to the total number of reads
to classify. All other possible metrics used in the literature are
variants of these two metrics or their concatenation (F1-score,
accuracy, use of taxonomic rank instead of reads count as unit
of measure, etc.).
Precision

# correct reads classified
# reads classified

Recall
# correct read classified

# reads in datasets

Machine learning and deep learning models finally produce
the output, which is the final classification of reads into
categories and the associated probabilistic/confidence value.
Applied to metagenomics, the confidence value is used to define
a threshold of assignation of reads. These thresholds are defined
by the authors and impact the model accuracy. A parallel with
alignment-based method is the percentage of similarity required
to annotate a read to its hit in the database.

Naive Bayes Classification Model
One of the first approaches of machine learning classifiers on
nucleotide signatures was the application of naive Bayes (NB)
models on 28 genomic data present in the genomic databases
in 2001 (Sandberg et al., 2001). This work was the foundation
for the development of the application of NB classification on
shotgun metagenomic data by Rosen et al. (2008), who trained
their classifier using 635 microbial genomes to construct k-mer
frequency profiles of the genomes, then tested the classification of
simulated fragments and metagenomic reads into different classes
(strain, species, and genus).

The term “naive” in NB refers to the fact that the Bayes
theorem assumes that the values of a particular feature are
independent of the value of any other feature, which simplifies
the problem and gives a starting point to estimate the degree of
complexity of the problem, here, the metagenomic classification.
The genomes were divided into 25-, 100-, and 500-bp length, and
3-, 6-, and 9- to 15-mer fragments were used to train the model.
A total of 63,500 fragments were isolated to test the accuracy
of the models. The log-likelihood score for each sequence was
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TABLE 1 | Summary of the articles and models reviewed.

Publication Machine/deep
learning category

Models tested Training
input

Tested input Real
applications
input

Output Encoding scheme Parameters Hyper-
parameters

Best model
selected

NBC: the naive
Bayes
classification
tool web server
for taxonomic
classification of
metagenomic
reads (Rosen
et al., 2011)

Machine learning
Supervised
classification

Naive Bayes Genome
sequence
from DB
(25, 100,
and
500 bp)

Genome sequence
from DB (25, 100,
and 500 bp)
Metagenomic data

Metagenomic
reads

Strain–species–
genus
classification

Compositional
vectors (“Target
encoding” like)

NA k-mer size (3,
6, and 9–15)

Naive Bayes

Accurate
phylogenetic
classification of
variable-length
DNA fragments
(McHardy et al.,
2007)

Support vector
machine

Linear or Gaussian
SVM

Genome
sequence
from DB (1,
5, 10, and
15 kb)

Genome sequence
from DB (25, 100,
and 500 bp)
Metagenomic
assembled data

Contigs
(assembled
metagenomic
data)

Genus to domain
classification

Compositional
vectors (“Target
encoding” like)

Misclassification cost
Gaussian/linear kernel

k-mer size (2–6)
Input length (5,
10, 15, and 50
kb)

5–6-mer-size
Gaussian SVM

Large-scale
machine
learning for
metagenomics
sequence
classification.
(Vervier et al.,
2016)

Support vector
machine

Linear SVM Genome
sequence

Genome sequence
affiliated to the
same species as
trained. Simulated
reads with
sequencing error
model introduction

Metagenomic
reads

Rank flexible
classification of
metagenomic reads

Compositional
vectors (“Target
encoding” like)

Squared loss function
Stochastic gradient
descent

k-mer size (4,
5, and 6)
Quantity of
input data

Linear SVM
classifier with
rank-flexible
classification

Deep learning
models for
bacteria
taxonomic
classification of
metagenomic
data (Fiannaca
et al., 2018)

Deep neural
network (DNN)

Convolutional
neural network
(CNN)
Deep belief network
(DBN)

Simulated
reads of
16S RNA
sequences

Simulated reads of
16S RNA
sequences

16S amplicon
reads or
metagenomic
reads

Domain to genus
classification

One hot encoding # hidden unit
# hidden layers
# kernel
# kernel size
# Pooling size

k-mer size (3–7) CNN

DeepMicrobes:
taxonomic
classification for
metagenomics
with deep
learning (Liang
et al., 2020)

Deep neural
network (DNN)

ResNet-like CNN,
CNN + LSTM,
Pool, CNN, LSTM,
LSTM +

ATTENTION

Simulated
reads from
MAGs
sequence

Simulated reads
from MAGs
sequence (training
excluded)
Simulated mock
communities of
isolates
Simulated reads
from absent
species

Metagenomic
reads

Genus/species
reads classification

One hot encoding
K-mer embedding

# size of CNN filters
# residual block
# LSTM dimension
# FC layers
# FC units
Type of pooling
# window size of
pooling
Pooling stride
# attention rows
Penalization coefficient
Batch size Learning
rate and decay
L2 regularization
Activation function
Optimizer

k-mer length
and
redundancy

k-mer
embedding +

LSTM +

ATTENTION
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N
) obtained, and the class with the highest score was attributed

to the sequence. They compared their results at the strain level
using BLAST as a gold standard procedure and, as a result, found
similar results to BLAST in terms of accuracy (i.e., capacity of
correct assignation). Their optimal k-mer length was between 9-
and 15-bp lengths, depending on the length of the genomes to be
detected. On the basis of these promising results, the researchers
implemented a web service of their tool (Rosen et al., 2011) and
added viral and fungal models (Rosen and Lim, 2012). However,
in a 2017 benchmark study of 11 classifiers, the NB classifier was
evaluated using simulated metagenomic data and experimental
metagenomic mock communities, obtaining one of the lowest
precision and recall in the benchmark (using three precision
levels: strain, species, and genus) (McIntyre et al., 2017), hence
showing the limitations of NB models. The low accuracy can
be explained by the simplicity of the model itself or by the fact
that the model did not integrate new genomes present in the
tested datasets.

Support Vector Machine Models
Support Vector Machine (SVM) models are another
supervised learning methodology applied to metagenomic
read classification. SVMs compute the distance between the
points of the datasets and try to find the hyperplane that
represents the largest separation between two classes, generally
using maximum margin as loss function (Han et al., 2017). Such
hyperplane is determined by a kernel function (e.g., linear and
Gaussian) (Steinwart and Christmann, 2008). In comparison to
NB models, SVM models can handle the non-linearities of the
data and take into account the interactions between data inputs.
To our knowledge, the first use in metagenomics was in 2007,
when McHardy et al. (2007) developed a multiclass SVM model
to analyze the sequence composition of assembled metagenomic
contigs to classify them into taxonomic ranges. As input training,
they used the complete genome sequences of 340 organisms. In
case of incomplete genomes, they arbitrary joined the contigs
to obtain one sequence per genome. Different parameters were
tuned to optimize the model. First, the DNA sequences were
transformed into compositional vectors, as a target-encoding–
like method, and then they counted the occurrence of k-mer
patterns and chose the most appropriate k-mer size for a specific
output class (e.g., 5 mers for genus to class levels and 6 mers for
phylum and domains levels). The Gaussian and linear kernels
were compared with benchmark approaches. The Gaussian
kernel gave better results using cross validation. Then, the
binary function for class determination of SVM was turned into
multiclass using an “all vs. all” technique (i.e., performing each
pair of comparison one vs. all), and the contigs are assigned
to a class using a voting mechanism. To train and test the
model, the genome sequences were divided into training and test
data of a defined length (1, 5, 10, and 15 kb, according to the
mean length of contigs retrieved in metagenomic assembling).
Training data and test data came from the same genomes, but
sequences sampled in training datasets were excluded from
the testing datasets. Using these data, they defined the capacity
of prediction using the class outputs from genus to domain
taxonomic ranges, according to the length of the contig. In terms
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TABLE 2 | Functional databases and their characteristics.

Functional
databases

CAZy Pfam KEGG eggNOG GO Terms MetaCyc UniProt

Base unit Carbohydrate-
Active

Enzymes

Protein domain Ortholog gene Ortholog gene Vocabulary Small-molecule
metabolism

Protein

Grouping family Protein family
and sub-families

Family Module
pathway
disease

Pathway Ontology
GO:

Biological
process

Molecular
function

Metabolic
pathway

NA

of gene level, the sensitivity of the classifier was close to 90% for
the long fragments, whereas the 1-kb fragments had a very low
sensitivity percentage, close to 0. The authors tested their tools
on real assembled data from different metagenomes and used as
ground truth the taxonomic annotation made by state-of-the-art
alignment-based tools from 2007 in the corresponding studies,
making it difficult to consider as exact reality. The model was
then implemented into a dedicated web server to annotate
metagenomes (Patil et al., 2012).

Another SVM-based approach was recently developed in 2016
by Vervier et al. (2016), where an SVM model supports the
expansion of genome sequences data availability. The authors
highlighted the limit of compositional vectors approach (k-mer
profile of 4, 5, and 6) for SVM model training, because the size
of genome sequences is in millions of bases and the genomes
available in databases increase exponentially. To overcome the
problem, they optimized their model using a stochastic gradient
descent, which allowed the optimization of the gradient using
only one term at each step. To construct the training and test
datasets, they selected three different quantities of genomes to
evaluate the impact of genome numbers on the model prediction
accuracy. Considering that certain alignment classifiers develop
a lower common ancestor approach that allows classification of
reads at different taxonomic levels, the authors built a rank-
flexible approach that chooses the most adapted level to classify
the reads based on the maximum score obtained with each of
different rank-specific models. If a read is rejected at a specific
taxonomic level, then it can be classified in upper levels if the
score achieved the required threshold for the upper level. These
thresholds are tunable parameters that can be optimized by taxon
or set globally. The models were then tested on the remaining
genomes available affiliated to the same species as the genome
sequences in the training set. Moreover, they developed simulated
reads that contained errors in sequencing bases, which was the
first publication for machine learning classification to take into
account this bias. In summary, it appeared that despite promising
results on the tested genomes, especially in comparison to the
NBC classifier methods, the evaluation on simulated data turned
in favor of a better alignment method like kraken (Wood and
Salzberg, 2014), which was less sensitive to sequencing errors and
produced less false positive results.

Deep Neural Network Models
Deep learning approaches are more sophisticated than classic
machine learning. They may facilitate the use of large amount

of microbial genomic data available in 2022 and can take into
consideration the interdependencies of input data. Deep learning
refers to a category of machine learning based on artificial
neural networks that generally adds more layers (hidden layers)
and more units in a layer to extract more complex features
from the raw input (Goodfellow et al., 2016). However, deep
learning encompasses a large variety of networks, and, due to
the complexity of deep leaning algorithms, each model has a
high number of tunable parameters. A schematization of deep
neural networks (DNNs) and functions are presented in Figure 2,
showing the main steps and associated vocabulary. An important
concept in the deep learning process is the backpropagation,
which allows the model to correct parameters based on the
error of the network’s output. Using a gradient descent algorithm
with a defined learning rate and decay, the process finds the
optimal weight for each neuron in each layer that minimizes
the error of classification (Figure 2). Learning rate and decay
are empiric hyper-parameters that must be defined during the
model optimization.

One of the first applications of deep learning models
on metagenomic classification was the use of convolutional
neural networks (CNNs) and deep belief networks (DBNs) to
annotate 16S fragments (Fiannaca et al., 2018). Amplicon-based
metagenomics was out of scope of our review but, because they
applied their model to whole genome metagenomic shotgun,
we review here their model and performance. The two types of
networks were compared to the 16S ribosome database project
(RDP) classifier, a NB classifier for 16S data (Wang et al.,
2007), which demonstrated that the CNN model had the best
accuracy. The benchmark has its limitations because it has not
been compared to alignment classifiers specialized in shotgun
metagenomic data.

In 2020, Liang et al. (2020) analyzed different deep learning
architectures for metagenomic taxonomic classification and
developed a model to classify metagenomic reads based on
bidirectional long short-term memory (LSTM) plus a self-
attention mechanism, called DeepMicrobes. The input data
used for training were taxonomically characterized MAGs from
human gut metagenomes that were transformed into simulated
metagenomic reads with the HiSeq 2500 Illumina sequencing
error model. To evaluate the optimal parameters, the evaluation
test inputs were other simulated reads from same MAGs, using
another random seed of the ART simulator. Different parameters
were tested such as the encoding of the input data, different DNN
models, and the addition of a self-attention mechanism (a full
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FIGURE 2 | Schematization of deep learning models. The encoded input represents a metagenomic DNA sequence or k-mer that will be transformed using the
activation function in the hidden layers. Each gray circle in the hidden layers represents a cell that will communicate its output with the other cells. As mentioned in
the text, LSTM models possess a “forget” gate that selects relevant information. The final output of the hidden layers is the classification with a predicted probability
for an input to be in one of the categories. During the training, the probability is encoded by the SoftMax function, whereas, for the final testing, the argMAX function
is used, a most understandable function that gives probabilities between 0 and 1.

list of parameters is listed in Table 1). In total, approximately
30 parameters and hyperparameters were tested for each model,
depending on if it can be tunable for the model or not
(Table 1). As mentioned, the selected model was embedding-
based recurrent self-attention model, with a batch size of 2,048,
a training learning rate of 0.001 with a decay rate of 0.05,
and Adam as stochastic gradient descent optimizer. During the
comparison of DNN models with benchmark approaches, the
authors emphasized that the one-hot encoding may be the reason
why some of the models tested, ResNet like CNN, hybrid DNN,
and seq2species (a deep learning model for 16S metagenomic
annotation in preprint since 2019), have a low accuracy and
low confidence in prediction. In contrast, k-mer embedding
encoding gave better results, and an explanation made by the
authors was that it considered that reverse-complementary DNA
strands were the same. The results showed that the bidirectional
LSTM model performed better. LSTM are recurrent neural
networks, developed to process sequential data. In recurrent
neural networks, the information generated by the treatment of
the input goes sequentially into different cells, but this design
suffers from short term memory. Therefore, LSTM models have

been developed to overcome this limitation. They possess internal
states that learn to keep the relevant information and forget
non-relevant data from one step to the next. This facilitates
the use of long sequences as input. Finally, a self-attention
mechanism was added to enable the model, to keep information
at the sequence level. It enables the model to analyze the
dependency of k-mers, by calculating a coefficient of relation
between k-mers of a same sequence. It allows the model to focus
on specific regions of the DNA sequence and the comparison
of sequences with different read lengths. In fine, it increased
the precision/recall score of the tested input. The best model
was then compared to 2020 state-of-the-art classifiers: kraken2
(Wood et al., 2019), Centrifuge (Kim et al., 2016), Kaiju (Menzel
et al., 2016), and CLARK-S (Ounit and Lonardi, 2016). As they
mentioned, because there is no real metagenomic dataset that can
serve as ground truth, one possibility is to simulate metagenomic
samples by taking isolated sequencing reads. They thus created
mock community and compared their results at the genus level
because some classifiers did not contain related genomes in their
native database. Globally, the DeepMicrobes model performed
better than the different tools in terms of precision, recall, and
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estimation of abundance of the genus level. One limitation of
this article is the lack of comparison on the species level, as
this information provides key insight into biological interactions.
However, with the two best competitors, kraken2 and Kaiju,
they obtained good results for abundance estimation at the
species level even if less reads were classified. Kraken2 accuracy
might have been improved by the fact that it can support larger
databases than the native small database, allowing the detection
of more species. To justify this key point of database dependency,
they analyzed the detection of 121 genomes where species are
absent from all databases of all tools and demonstrated that
their model proposed less false positive results. Going through
the literature highlighted that k-mer embedding encoding was
already proposed for metagenomic classification (Menegaux and
Vert, 2019), in a study that compared their model to the already
described SVM model (Vervier et al., 2016) and burrows wheeler
alignment (BWA) alignment tool (Li and Durbin, 2009). The
model was not explicitly detailed, and it was based on a one-layer
neural network and implemented in FastText software.1 Because
the benchmark was not compared to most efficient tools, the
obtained results were difficult to evaluate.

APPLICATION OF MACHINE LEARNING
TO FUNCTIONAL ANNOTATION AND
OTHER SPECIFIC CASES

Machine learning models have not been yet fully applied
on metagenomic functions. The only article that mentioned
the utilization of machine learning models was the WOODS
program, which developed a two-step pipeline, a first step of
machine learning classification, and a second step of alignment
annotation (Sharma et al., 2015). The machine learning step
acts as pre-filter to align the reads against a specific functional
category of genes. The alignment tool selected was RAPsearch2
(Zhao et al., 2012), and the functional database was eggNOG3
(Huerta-Cepas et al., 2019). The genes were regrouped into 22
functional categories, and different machine learning models
were evaluated. Random forest was the best model to classify the
test data, and the global pipeline achieved good results compared
to the BLAST reference. However, the model was developed on
complete ORF or amino acid sequences with a length larger
than 500, and this makes the software useful only for assembled
metagenomic data. For non-assembled metagenomic reads, this
leads to the direct use of RAPsearch2.

Machine learning has also been applied to a specific
functional case, the detection of antibiotic resistance gene (ARG).
The screening of antibiotic resistance (AR) determinants in
microbiome is a hot topic of research, as the increase of microbial
resistance is a worldwide concern (Zaman et al., 2017; Nathan,
2020). To retrieve ARGs in microbiome, the analysis of shotgun
metagenomic data is one of the most exhaustive ways, bypassing
the culturing step. However, to retrieve these genes researchers
are dependent on alignment tools and related databases. As
alignment-based methods are not perfect and can produce false
positive results (AR can be derived from non-ARG such as

1https://fasttext.cc/

efflux pump) and false negative results (no detection of genes
variants from databases), applying learning models can be an
efficient way to detect these genes. This was tested by Arango-
Argoty et al. (2018) they proposed a new tool named DeepARG
that contains two deep learning models to retrieve 30 classes
of antibiotic determinants in metagenomic reads or full gene
sequences, respectively. The model took as input a dissimilarity
matrix based on the alignment bitscore of reads/genes mapped to
an ARG database. Although the tool was also based on alignment
score, the accuracy of ARG classes prediction compared to the
alignment-based method was improved. This was explained by
the fact that the deep learning model application did not require
a set general threshold of similarity (i.e., percentage of similarity),
instead allowing adaptation of the threshold function to the AR
classes (done in the training part). The proposed model may have
been tuned with different combinations of parameters, but the
article did not mention the different tests performed.

To analyze the pertinence of machine learning applications
in functional metagenomic screening, the development of a
methodology that analyzes the sequences by itself (with k-mer
embedding for instance) and not a global score of dissimilarity
matrix remains to be evaluated. Sequence identity threshold in
functional screening is not extensively documented, although it
is a critical key point of the functional annotation. A common
threshold to assess the function is 30% of sequence similarity,
even if a common value for different functions is highly critical
(Pearson, 2013). HUMAnN3 (Beghini et al., 2021), a recent
functional annotation pipeline, sets the identity threshold to 50%
yet advises the user to configure the settings. LSTM models
developed for taxonomic annotation, which allow the models
to focus on specific parts of the sequences, may be a promising
candidate to identify and annotate functional data.

CONCLUSION

Machine learning has been applied because the beginning of
metagenomic annotation, but the increase of available microbial
genomic data in databases leads to the obsolescence of the first
models, too simple to accommodate the size and complexity of
the data. Their accuracy was reduced in comparison to k-mer–
based tools in the reviewed benchmark. Because the integration
of genomic data is feasible in deep learning models, two models
have been published for taxonomic annotation. The first one was
not compared with enough benchmarks to conclude on their
progress, and the second named DeepMicrobes demonstrated
good performance, even compared to state-of-the-art alignment-
based classifiers. The tool highlighted the benefit of k-mer
embedding for the input treatment and the use of networks
such as LSTM that learns important long-range interactions and
“forgets” information not discriminant to build the model. The
comparisons to the other tools were mostly achieved at the genus
level, but a benchmark to the species level would have been of
interest in terms of interpretation. In functional annotation, deep
learning technologies have been applied to specific questions, or
to build a model for pre-classification, but remain to be studied
for a full functional annotation. Because no real microbiomes are
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known without the prism of metagenomic tools, the benchmarks
in metagenomic annotation are based on simulated data or mock
communities that present a reduced diversity. This leads the
benchmarks to be case specific, and the tools developed to be
overfitted to the generated data. Moreover, the data available in
databases represent a low percentage of the overall microbial
diversity, leading to the construction of models specific to what
is known in databases. Specific machine learning algorithms have
been proposed to answer these specific cases, as active learning
that allows the selection of relevant data from the training set to
improve the models and not overfit to the data. Active learning
may be a framework that facilitates the building of models with
high accuracy, by selecting certain data of the input to train the
models (Settles, 2009). Despite the possibility of biases due to the
targeted sampling, it may overcome the pitfalls of metagenomics
(i.e., database orientation to certain bacterial species, the use
of reconstructed genomes with no taxonomic annotation, and
the deletion of non-informative sequences). Finally, as bacterial
genome sequences in databases are still in expansion, current
developed models have to be regularly tested/updated to remain
up to date. All programs developed and commented in this
article provide useful information to build the most adapted
annotation framework. Because in the field of metagenomics

data availability and computational resource accessibility increase
at a relatively high rate, current models may become obsolete
and new models will be constructed. This must be done based
on already developed algorithms and the use of successful
tested parameters.
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Biofilms formed on metal surfaces strongly affect metallic instruments serving in marine
environments. However, due to sampling difficulty, less has been known about the
bacterial communities of the biofilm on metallic surfaces in hadal environments, so
the failure process of these deep-sea metallic instruments influenced by microbial
communities could be hardly predicted. In this research, seven alloys, including
titanium, aluminum, and copper alloys, were exposed in Yap Trench hadal environment
for 1 year. Thus, the communities of the biofilms formed on metallic surfaces
at 5,772 m undersea in Yap Trench were initially reported in previous studies.
Then, 16S rRNA gene sequencing was performed to visualize the in situ bacterial
communities of the biofilms formed on titanium, aluminum, and copper alloys at
5,772 m undersea in Yap Trench. It was found that Proteobacteria was the dominant
phylum in all samples, but distinct genera were discovered on various alloys. The
titanium alloy provided a suitable substrate for a mutualistic symbiotic biofilm with
abundant bacterial richness. Aluminum alloys without copper components showed
the least bacterial richness and formed a cold-adapted and oligotrophic-adapted
biofilm containing the genera Sulfurimonas and PS1 Clade, while copper-present
alloys showed relatively high bacterial richness with copper-resistant or even copper-
utilizing biofilms constituting the genera Stenotrophomonas, Burkholderia-Caballeronia-
Paraburkholderia, and Achromobacter on the surfaces. Furthermore, among all the
element components contained in alloys investigated in this research, copper element
showed the strongest influences on the composition and function of microbial
communities in the biofilms formed on various metallic surfaces.
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INTRODUCTION

The hadal biosphere at the deep-sea environment in Yap
Trench has been less studied and poorly explored. Until the
recent years, microorganisms started to come to light owing
to technical development (Li L. et al., 2020; Zhang et al.,
2021). Microbial diversity in seawater and sediments was
initially reported by the researchers. The microbial community
composition in seawater was found to be dominated by
Gammaproteobacteria with heterotrophic processes as the
most common metabolisms (Zhang et al., 2018), whereas
in the sediments, the microbial populations had fluctuating
distributions and chemolithoautotrophic metabolic processes
dominated by Proteobacteria and Thaumarchaeota (Fu et al.,
2020). The studies showed that, in this dark realm, unique and
highly adapted microbial communities have formed. Especially
the detection/enrichment of genes involved in stress response
and metal resistance in the seawater and sediment of the
Yap Trench suggested special adaptation strategies of the
hadal microorganisms toward high pressure and/or nutrient
availability, while the enrichment of metal resistance genes might
be a hypothesized characteristic of the hadal seawater microbial
communities (Zhang et al., 2018). Besides that, a typical “V-
shape” topography, and frequent sediment collapses on trench
walls, high total organic carbon (TOC%) and total nitrogen
(TN%) were found in this environment, especially in the core
sediments with distinct microbial populations of Proteobacteria
and Thaumarchaeota (Fu et al., 2020). However, the details of the
species and functions are still unknown.

At present, further studies on hadal environments are
highly dependent on the advanced and expensive metallic
instruments that are capable of serving in these extremely
low-temperature and high-pressure environments. However,
according to reports on metallic instruments serving in the
offshore area, microorganisms play an important role on metal
failure, which is called microbiologically influenced corrosion
(Remazeilles et al., 2010; Zhao et al., 2018; Zhou et al.,
2018; Ma et al., 2020). It was found that various bacteria
showed different effects on metal failure process, i.e., corrosion
acceleration, corrosion inhibition, or irrelevance—for example,
sulfate-reducing bacteria are recognized as the corrosion-
accelerating bacteria (Enning and Garrelfs, 2014; Guan et al.,
2020), while some metal-reducing bacteria have been proven to
successfully inhibit metal corrosion (Zuo, 2007). However, in
a real marine environment, especially in the little-known Yap
Trench environment, the biofilms formed on metallic surfaces are
complex, heterogeneous, and far more than the reported sulfate-
reducing bacteria and metal-reducing bacteria (Li et al., 2017;
Zhang et al., 2019a).

Previous studies revealed that dramatic differences showed
up between the communities in surrounding seawater and
the biofilms on various metallic surfaces. Thus, the microbial
diversity in seawater and sediments provide us limited knowledge
on analyzing the feasibility and predicting the failure of metallic
instruments. Until now, nothing about the influence of hadal
communities on these metallic materials is known. Hence,
clarifying the microbial compositions on metallic surfaces makes

a significant sense to predict the safety and service life of metallic
instruments applied in Yap Trench.

What is more, the biofilms formed on metallic surfaces
are not only highly dependent on the environment but also
closely related to metal-inherent qualities, such as element
components, alloy phases, and so on (Dang and Lovell,
2016). These inherent qualities make metal alloys display
various surface status, including surface free energy, roughness,
hydrophilic/lipophilic property, and electrostatic charge, which
attract certain microorganisms to adhere—for example, no
electronically charged surface was more attractive to marine
Pseudomonas sp. rather than the hydrophilic and negatively
charged surface (Fletcher and Loeb, 1979). It was also proved
that diverse microbial communities develop on the surfaces of
metallic plates, which differed from the surrounding oligotrophic
bacteria in seawater (Li et al., 2017; Zhang et al., 2019a).
Furthermore, marine surface-associated biofilms formed on the
copper alloys possess distinct microbial compositions compared
with those formed on aluminum alloys (Zhang et al., 2019b).
As a result, figuring out the bacterial communities of the
biofilm on metallic surfaces in hadal environments would
greatly help researchers to evaluate the microbial influence on
metallic instruments, which might be favorable to predict the
failure process of these metallic instruments employed in deep-
sea environments.

In this work, several typical metal alloys, including titanium
alloy, aluminum alloy, and copper alloy, which are commonly
used for deep-sea instruments were employed as testing
substrates. These alloys were exposed in Yap Trench for 1 year
to observe the bacterial communities of the formed biofilm.
According to this research, an initial attempt is made to know
more about hadal environments and concerned more on metallic
instruments serving in Yap Trench.

EXPERIMENTAL

Sample Collection
Titanium alloy TA2, aluminum alloy ZAL, aluminum alloy
5A06, aluminum alloy 1060, copper alloy T2, copper alloy
B10, and copper alloy B30 were employed in this study. The
composition of the alloys is shown in Tables 1–3. Coupons
of 40 mm × 120 mm × 5 mm, made of alloy TA2, alloy
ZAL, alloy 5A06, alloy 1060, alloy T2, alloy B10, and alloy
B30, were prepared separately for seawater immersion tests. The
coupons were fixed in an insulated frame cage which was fastened
on a subsurface buoy. This buoy was exposed in Yap Trench
(138◦43′434′′ E, 9◦51′0215′′ N) at 5,772 m undersea. The salinity
of the seawater was detected as 3.47%, and the temperature was
1.58◦C. The pressure at the exposure location was determined
to be 5,881 MPa.

The immersion started from 23 May 2016 to 2 June 2017,
which lasted for 375 days. After exposure, coupons were stored
at−20◦C until they were taken back to the laboratory.

A sterilized soft brush was used to scrape the biofilm from each
coupon surface. Then, the biofilm was transferred into a sterilized
beaker with phosphate-buffered saline. The biomass in solution
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TABLE 1 | Chemical composition of the alloys.

Alloy TA2 Alloy ZAL Alloy 5A06 Alloy 1060 Alloy T2 Alloy B10 Alloy B30

Ti (%) Residual 0.15–0.35 0.02–0.10 ≤0.03 / / /

Al (%) / Residual Residual Residual / / /

Cu (%) / 4.50–5.30 ≤0.10 ≤0.05 Residual Residual Residual

Fe (%) ≤0.30 ≤1.00 0.00–0.40 / ≤0.005 ≤0.02 ≤0.90

C (%) ≤0.15 / / / ≤0.03 ≤0.03 ≤0.05

N (%) ≤0.05 / / / / / /

O (%) ≤0.20 / / / / / /

Mn (%) / 0.60–1.00 0.50–0.8 ≤0.03 / / ≤1.20

Mg (%) / ≤0.05 5.8–6.8 ≤0.03 / / /

Si (%) / ≤0.30 ≤0.40 ≤0.25 / / ≤0.15

Zn (%) / ≤0.20 ≤0.20 ≤0.05 / / /

V (%) / / / ≤0.05 / / /

Ni (%) / ≤0.10 / / / / /

Zr (%) / ≤0.20 / / / / /

Ni–Co (%) / / / / / 9.50–10.50 29.00–33.00

Pb (%) / / / / ≤0.005 ≤0.01 ≤0.05

S (%) / / / / ≤0.01 ≤0.01 ≤0.01

Bi (%) / / / / ≤0.02 ≤0.02 /

Sb (%) / / / / ≤0.005 ≤0.005 /

P (%) / / / / ≤0.01 ≤0.01 ≤0.006

As (%) / / / / ≤0.01 ≤0.01 /

The chemical element compositions (mass fraction%) of alloy TA2, alloy ZAL, alloy 5A06, alloy 1060, alloy T2, alloy B10, and alloy B30 employed in this research were
according to national standards GB/T 3620.1-2016, GB/T 3190-2008, and GB/T 5231-2001.

TABLE 2 | Diversity estimators for bacteria from seven metallic surface samples exposed in Yap Trench using 16S rRNA gene sequencing.

Sample Observed species Good coverage Chao1 Faith’s phylogenetic diversity ACE Shannon Simpson

TA2 556 0.9987 569 57.10 573 4.33 0.78

ZAL 383 0.9987 407 34.65 407 5.25 0.92

Al5A06 241 0.9994 248 28.42 258 4.34 0.88

Al1060 197 0.9997 205 19.15 205 4.82 0.92

T2 555 0.9988 573 45.52 565 5.67 0.91

B10 366 0.9989 380 38.15 379 5.01 0.92

B30 374 0.9990 389 34.56 375 4.26 0.84

TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. The observed species, Chao1 and ACE,
represented the species richness of each sample. The Shannon and Simpson indices of these samples revealed community diversities, and Faith’s phylogenetic diversity
evaluated the evolution differences.

TABLE 3 | Relative abundance of 16S rRNA gene sequences of the seven samples exposed in Yap Trench for 1 year at the bacterial class level.

Sample TA2 ZAL Al5A06 Al1060 T2 B10 B30

Alphaproteobacteria 58% 22% 19% 21% 29% 9% 40%

Gammaproteobacteria 28% 65% 41% 41% 47% 65% 48%

Actinobacteria 3% 3% 0% 0% 4% 1% 5%

Bacteroidia 2% 1% 6% 10% 3% 1% 1%

Bacilli 2% 5% 0% 1% 6% 20% 1%

Campylobacteria 1% 0% 29% 26% 1% – 0%

Deltaproteobacteria 1% 0% 5% 1% 1% 0% 0%

Clostridia 1% 1% 0% – 55% 2% 1%

TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. The top five abundant classes of each sample are
shown in this table.

Frontiers in Microbiology | www.frontiersin.org 3 March 2022 | Volume 13 | Article 83198473

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-831984 March 18, 2022 Time: 8:25 # 4

Zhai et al. Microbial Communities in Yap Trench

was further filtrated through 0.22-µm filter membranes to obtain
a concentrate of the microorganisms (Mittelman et al., 1997).
These biofilm samples collected from alloy TA2, alloy ZAL, alloy
5A06, alloy 1060, alloy T2, alloy B10, and alloy B30 were named as
TA2, ZAL, Al5A06, Al1060, T2, B10, and B30, respectively. Based
on the differences of the major component in each metallic alloy,
TA2, as a representative titanium alloy, was named as group A1;
ZAL, Al5A06, and Al1060, as representatives of aluminum alloy,
were named as group A2; and T2, B10, and B30, as representatives
of copper alloy, were named as group A3.

DNA Extraction and Sequencing
The DNA of these microorganisms was extracted using a
previously reported method. DNA concentration and purity
were determined with a spectrophotometer (Lambda 1A; Perkin-
Elmer). A A260/A280 ratio of 1.8–2.1 was considered acceptable
for PCR-based procedures (Zhang et al., 2019a). The extracted
DNA of the biofilms was used as a template to amplify the
16S rRNA genes by PCR with the universal forward primer
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and reverse primer
806R (5′-GGACTACHVGGGTWTCTAAT-3′). PCR purification
kit (QIAGEN, Hilden, NRW, Germany) was used to purify the
PCR products. The PCR libraries were conducted using TruSeq
DNA PCRFree Sample Preparation Kit (Illumina, San Diego, CA,
United States). After quantification with Qubit, the PCR libraries
were sequenced on the Illumina HiSeq PE250 platform.

Sequence Data Analysis
Based on the unique barcodes of each sample, raw paired-end
reads were assigned. Subsequently, FLASH (V1.2.7) was used to
merge these reads according to their overlap after the barcodes
and primer cuts (Magoc and Salzberg, 2011). Then, based
on the process for quality control in QIIME, these sequences
were filtered, followed by detecting and removing the chimera
sequences by UCHIME algorithm (Caporaso et al., 2010; Edgar
et al., 2011). Operational taxonomic units (OTUs) were clustered
with 97% similarity using UPARSE software, version 7.11 (Edgar,
2013). The taxonomy of each 16S rRNA gene sequence was
analyzed by RDP Classifier 2.2 against the GreenGene database
(DeSantis et al., 2006; Wang et al., 2007).

Then, the sequence data were normalized after unique tags
dislodge to analyze OTU abundance and diversity index. Good
coverage was calculated by QIIME to represent sequencing
depth. Alpha diversity indices were employed to indicate the
bacterial diversity of each sample, including Chao and ACE
for species richness, Simpson and Shannon for community
diversity evaluating both the species richness and evenness,
and Faith’s phylogenetic diversity (Faith pd) for phylogenetic
diversity. Besides these, beta diversity using clustering analysis
and principal coordinate analysis based on unweighted unifrac
distances were employed for the comparison of the community
differences between groups. Furthermore, Venn diagrams were
used to show the unique and shared OTUs of the three groups,
and PICRUSt2 (Langille et al., 2013) was employed to predict the
functional genes based on the 16S rRNA sequencing data, which
were annotated against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database V2018-01 (Kanehisa et al., 2017).

Statistical tests based on analysis of variance were used to
determine the difference in functional gene abundance, and
factors with p-values less than 0.05 were considered to have a
significant difference.

Data Availability
The raw sequences obtained were deposited in the
NCBI Short Read Archive database under Bioproject
accession number PRJNA438021, with Biosample numbers
SAMN23711893-23711899.

RESULTS

Microbial Richness and Diversity of
Biofilm on the Alloys
A total of 331,905 high-quality bacterial sequences, ranging from
38,102 to 58,460, were obtained for further analysis.

As shown in Table 2, the bacterial coverage ranged from 99.87
to 99.97%, indicating that the sequences obtained by V3–V4
Illumina sequencing captured their core microbial communities.
In addition, all rarefaction curves of bacteria reached saturation,
revealing that the amount of sequencing data was enough to
capture the great majority of bacterial communities (Figure 1).
The observed species and Chao1, which represented species
richness of each sample, were quite different in these samples.
In total, 556 species (Chao1 index 569 and ACE index 573) were
found on titanium alloy TA2. On average, 274 observed species
(Chao1 index 287 and ACE index 290) were found on aluminum
alloys, and 432 observed species (Chao1 index 447 and ACE
index 440) were on copper alloys. The biofilm on ZAL alloy
showed the highest species richness among the three aluminum
alloys, and the biofilm on T2 alloy showed the highest value
among copper alloys, although the average values of the observed
species, Chao1 index, and ACE index showed the following trend:
titanium alloy > copper alloy > aluminum alloy. The Shannon
and Simpson indices of these samples, revealing community
diversities, showed similar results. The Shannon and Simpson
indices of TA2 were 4.33 and 0.78, respectively. The average
Shannon and Simpson indices of aluminum alloys were 4.80 and
0.91, while those of copper alloys were calculated as 4.98 and 0.89.
Faith pd (shown in Table 2) was used to evaluate the evolution
differences. The Faith pd indices of TA2 (57.10) and T2 (45.52)
were obviously higher than the other samples, showing relatively
high phylogenetic diversities.

Comparison of the Microbial
Composition of Biofilms on the Alloys
Differences in the composition of the bacterial community were
detected for the seven alloys, i.e., A1 group (TA2), A2 group
(ZAL, Al5A06, and Al1060), and A3 group (T2, B10, and B30).

As shown in Figure 2A, in the Venn diagram, there were 556
OTUs shown in group A1 (titanium alloy), 610 OTUs in group A2
(aluminum alloys), and 1,043 OTUs in group A3 (copper alloys).
They shared only 94 OTUs at group level. The A2 and A3 groups
shared more OTUs (116 OTUs) than those they shared with the
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A1 group (i.e., 40 OTUs for A1 and A2 groups and 50 OTUs for
A1 and A3 groups). As to the sample level (Figure 2B), all seven
samples only shared 17 OTUs, revealing dramatic differences in
species composition. TA2 showed the highest unique OTUs of
up to 67%, while Al1060 showed the lowest at 28%. Even in each
group, the shared OTUs were found to be as low as 55 OTUs for
the aluminum alloy samples (Figure 2C) and 63 OTUs for the
copper alloy samples (Figure 2D).

The average pair–group method with an arithmetic mean
based on unweighted unifrac distances was performed to
determine the differences between these samples, as shown in
Figure 3. The clustering analysis showed that these samples
could be divided into three groups: titanium alloy (TA2); copper
alloys and aluminum alloy with copper element (T2, B10, B30,
and ZAL); and aluminum alloys without copper (Al1060 and
Al5A06). Furthermore, principal coordinate analysis (PCoA)
plots of unweighted unifrac distances based on OTUs are shown
in Figure 4. The results showed that different brands of each
alloys were similar, such as the aluminum alloys without the
copper group and the copper alloy group. An exception was
found on ZAL, a kind of aluminum alloy containing copper,
which was similar to copper alloys instead of aluminum alloys.

Bacterial Community Compositions of
Biofilms on the Alloys
In total, more than 21 bacterial phyla were found in these
samples. In terms of the average abundance of seven samples,
Proteobacteria was found to be the dominant phylum, accounting
for 77% of the total sequences (Figure 5). Then, it was
followed by Epsilonbacteraeota accounting for 8%, Firmicutes
accounting for 7%, Bacteroidetes accounting for 3%, and
Actinobacteria accounting for 3%. Cyanobacteria, Acidobacteria,
Planctomycetes, and Patescibacteria were also found in the
samples with a relatively low proportion.

Corresponding to the hierarchical cluster tree and PCoA
plot results, Al5A06 and Al1060 showed similar community
compositions, while T2, B10, B30, and ZAL clustered more
closely with each other in general. At the phylum level
(Figure 5), Proteobacteria was the dominant phylum in all
samples, ranging from 62 to 89%. Firmicutes were found
as the second represented phylum on titanium alloy TA2
and copper-present alloys B10, B30, T2, and ZAL. However,
Epsilonbacteraeota was the secondary represented phylum on
non-copper aluminum alloys Al1060 and Al5A06. On the
class level, Alphaproteobacteria (58%) was the dominant class
on titanium alloy TA2, while Gammaproteobacteria (40–65%)
was the dominant class on the copper alloys and aluminum
alloys. Gammaproteobacteria (28%) took the second place,
followed by Actinobacteria (3%), Bacteroidia (2%), Bacilli (2%),
Campylobacteria (1%), and Deltaproteobacteria (1%) on TA2.
Furthermore, Alphaproteobacteria (19–40%) took the second
place on copper alloys and aluminum alloys except for B10, on
which Bacilli was found to be the secondary (Table 3).

However, distinct dominant bacteria were found on different
metals at the genus level (Figure 6). PS1 Clade (45%),
Stenotrophomonas (13%), and Acinetobacter (3%) made up the
dominant genus on TA2. Sulfurimonas (27% on average) and

PS1 Clade (15% on average) were dominant on non-copper
aluminum alloys Al1060 and Al5A06, while Stenotrophomonas
(15%), Cobetia (14%), and Vibrio (14%) were dominant on
the copper-present aluminum alloy ZAL. Stenotrophomonas
(18% on average), Burkholderia–Caballeronia–Paraburkholderia
(6% on average) and Achromobacter (3% on average) formed
the communities on copper alloys B10, B30, and T2. These
results illustrated that the composition of microbial communities
attached on the metal surfaces highly depended on the
metal composition.

Key Functional Gene Prediction
The functional gene profile of the microbial communities on
the seven samples was analyzed by PICRUSt2 based on KEGG
database. Figure 7 shows the relative abundance of the top 15
identified genes in each sample. Distinctive functional genes
were found in the biofilms on different metal alloys. The most
abundant functional gene sets were RNA polymerase sigma-70
factor-encoding gene (rpoE) on TA2 (0.44%), Al5A06 (0.31%),
Al1060 (0.33%), ZAL (0.31%), T2 (0.34%), B10 (0.18%), and B30
(0.35%). Besides this, glutathione S-transferase-encoding gene
(GST), which played an important role in biodefense system,
was shown to be relatively high in these samples. Another 3-
oxoacyl-[acyl-carrier protein] reductase-encoding gene (fabG)
showed a high abundance, which might be related to fatty acid
synthesis and environmental tolerance. What is more, methyl-
accepting chemotaxis protein-encoding gene (mcp) was found
to be dramatically abundant on non-copper aluminum alloys
Al1060 and Al5A06. The ABC-2-type transport system permease
protein-encoding gene (ABC-2.P), LacI family transcriptional
regulator-encoding gene (lacI and galR), and ATP-binding
cassette-encoding gene (ABCB-BAC) were found to be relatively
rich on copper-containing alloys ZAL, T2, B30 and B10.

Copper Resistance Genes
Since copper is considered toxic to microorganisms, various
genes related to copper resistance, such as copper tolerance two-
component regulatory system cusSR, Cu+ transporting ATPase-
encoding genes copAB (Silver and Phung, 2005), and copper
resistance protein-encoding genes pcoBCD, were identified in
these samples and shown in Table 4. According to the copper
contents in the alloys, these samples could be divided into two
groups, i.e., copper-free alloys (TA2, Al1060, and Al5A06) and
copper-present alloys (ZAL, T2, B10, and B30). It was found
that the abundance of cusRS genes of copper-free alloys was
significantly lower than that of copper-present alloys (P < 0.01,
Student’s t-test), while the abundance of copAB genes of copper-
free alloys was higher than that of copper-present alloys, which
showed a significant difference (P < 0.01, Student’s t-test).
Besides these, most of the pcoBCD genes were shown to be more
abundant in copper-present alloys than in copper-free alloys with
P < 0.01 (for pcoBC genes).

DISCUSSION

Yap Trench has attracted much attention due to its specific
physical and geochemical characteristics as well as its hadal
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FIGURE 1 | Rarefaction curves of the sequencing reads of the 16S rRNA genes from seven samples in Yap Trench for bacteria at 97% sequence similarity cutoff
value (TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. The abscissa represented the
extraction depth, and the ordinate represented the index and boxplot of the median alpha diversity after 10 calculations. The gentleness of the curve reflected the
influence of sequencing depth on the diversity of these samples).

biosphere. Several studies have reported the microbial diversity
and metabolic potentials of seawater and surface sediment
(Zhang et al., 2018; Fu et al., 2020), but seldom focused on the
microbial composition on the serving metals in Yap Trench. This
research provided a brief glimpse of the biofilm on several metal
alloys at 5,772 m undersea in Yap Trench. The biofilms formed
on these metals with distinct composition not only reflected the
deep-sea environment to some degree but also provoked new
thoughts of the interaction of microorganisms with metals in
deep-sea conditions.

Microbial Richness and Diversity
Analysis
Metal alloy surfaces are ideal sites for biofilm formation and
allowing biofilm-associated microorganisms to improve their
growth (Beveridge et al., 1997; Loto, 2017). However, microbial
richness and diversity showed obvious differences between the
various alloy surfaces studied in this research. The highest
richness was found on titanium alloy TA2 due to its best
biocompatibility (Long and Rack, 1998; Niinomi, 2008; Geetha
et al., 2009), followed by copper-present alloys (ZAL, T2, B10,
and B30), and the least was aluminum alloys Al5A06 and
Al1060. However, these results differed from previous shallow-
sea results. Samples immersed at a depth of 1–1.5 m below
sea level for 30 months in the coastal zone of Hongtang
Bay showed that higher richness was found on aluminum
alloy, while lower richness was found on copper alloy (Zhang
et al., 2019a), which could be attributed to the oligotrophic
environment, leading to the different planktonic microorganisms
in Yap Trench. Gammaproteobacteria constituted up to 92.2%

of the total microbial community in the hadal seawater of Yap
Trench (Zhang et al., 2018), while Alphaproteobacteria (35.3%)
made up the major bacterial groups in the shallow surface
seawater (1–1.5 m below sea level) of Hongtang Bay (Zhang
et al., 2019a). As a result, on the surface of copper alloys in
the hadal environment, biofilms tended to be formed, which
provided suitable living environments for microbial organisms
(Zhang et al., 2019b). Besides this, an oxidation passivation
film composed of Al2O3 usually formed on aluminum alloys
(Wolowik et al., 1998). The super-hydrophobic property and
oligotrophy might also influence the bacterial attachment (Yu
et al., 2014; Xiao et al., 2015). Furthermore, the detection
of various metal resistance genes, including Cu resistance, in
the Yap Trench metagenomes was reported (Zhang et al.,
2018), illustrating that hadal microorganisms would be more
adapted to Cu-rich environments than to shallow seawater. The
environmental copper-resistant microbiological composition as
well as the surface conditions of the alloys both contributed to
the high bacterial richness on copper-present alloys.

Among these seven alloys, even on the same type of alloys,
such as copper alloys T2, B10, and B30, the composition
of the bacterial communities showed great distinctions.
The proportions of the unique OTUs of each copper alloy
sample ranged from 78 to 86%, revealing that even alloying
elements with low concentrations would greatly influence the
bacterial communities.

Microbial Community Analysis
Metallic surfaces might promote bacterial attachment and biofilm
formation by enriching nutrients or acting as electron donors
for microorganisms (Beveridge et al., 1997; Yu et al., 2013;
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FIGURE 2 | Venn diagrams of seven samples in Yap Trench based on 16S rRNA gene sequencing at a distance of 0.03. (A) Diagram of all samples at group level,
(B) diagram of all samples at sample level, (C) diagram of aluminum alloys, (D) diagram of copper alloys (TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented
the biofilms collected from the corresponding alloy surfaces. A1 group referred to the titanium sample TA2; A2 group referred to the aluminum alloy samples ZAL,
Al5A06, and Al1060; and A3 group referred to the copper alloy samples T2, B10, and B30).

Guan et al., 2016, 2021). Diverse and distinct bacterial
communities developed on the surfaces of different alloys,
which highly depended on the composition of the substrate.

On titanium alloy TA2, PS1 Clade played the leading role
in the biofilm. PS1 Clade of Alphaproteobacteria was firstly
isolated from a coastal station in the East Sea, Western Pacific
Ocean, and reported by SJ Yang (Yang et al., 2012). PS1 Clade
was a member of a putatively novel order closely related to
Rhizobiales. The PS1 lineage stem would adapt to various marine
habitats, including the oligotrophic Sargasso Sea as well as
tropical and temperate environments (Jimenez-Infante et al.,
2014). The core genome of the PS1 Clade suggested an aerobic,
heterotrophic lifestyle with genes encoding for gluconeogenesis,
citric acid cycle, and the Entner–Doudoroff pathway, implying
that the PS1 Clade might not be primary cellulose degraders
but opportunists utilizing cellobiose and small oligosaccharides
(Jimenez-Infante et al., 2014; Daniel and Ana, 2020). What
is more important is that the genome of PS1 Clade strains
represented numerous high-affinity transporter-encoding genes,

which were genomic hallmarks for cells proliferating in low-
nutrient environments (Lauro et al., 2009). Stenotrophomonas
took the second place in TA2 biofilm. Although it was well-
known as a nosocomial and human infection pathogen (Coenye
et al., 2004), Stenotrophomonas strains dwelling in marine
environments remained unclear. Many Stenotrophomonas strains
showed high resistance to high-level intrinsic resistance to
heavy metals. It was also proved that they could degrade a
wide range of organic compounds, including pollutants, which
would potentially be used in bioremediation (Ryan et al., 2009).
The metabolites of Stenotrophomonas strains always showed
antifungal or antibacterial activities (Romanenko et al., 2008),
which led to a biofilm with a relatively simple constitution on
the TA2 surface. Another dominating genus, Acinetobacter on
TA2, is one of the commonly found Gram-negative bacteria in
marine environments. Some Acinetobacter species isolated from
deep-sea sediments were found to be cold-adapted (Xue et al.,
2019). Acinetobacter played an important role in hydrocarbon
degradation and has a key role in bioremediation processes
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FIGURE 3 | Hierarchical cluster tree of seven samples in Yap Trench using the average pair-group method based on the unweighted unifrac distance for bacteria
(TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. A1 group referred to the titanium sample
TA2; A2 group referred to the aluminum alloy samples ZAL, Al5A06, and Al1060; and A3 group referred to the copper alloy samples T2, B10, and B30. The panel on
the left was a hierarchical clustering tree with the abscissa representing the unweighted unifrac distance. Samples were clustered according to their similarity. The
panel on the right was a stacked histogram of the top 10 genera in abundance).

FIGURE 4 | Principal coordinate analysis plots of unweighted unifrac between seven samples in Yap Trench based on operational taxonomic units using 16S rRNA
gene sequencing (TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. The percentages in
brackets on the axes represented the proportion of sample variance data that can be explained by the corresponding axes).

(MacCormack and Fraile, 1997). Various Acinetobacter strains
were reported to be oil-, sulfonamide-, and phenol-degrading
(Kobayashi et al., 2012; Zhang et al., 2012; Luo et al., 2013),
indicating that they could make use of multiple organic carbon
sources. Thus, Stenotrophomonas and Acinetobacter might act
as the primary degraders for PS1 Clade, forming mutualistic

symbiosis in the biofilm. It is worth mentioning that although the
hadal environment was considered oligotrophic, organic matters
were discovered in this area, and heterotrophic processes were
found as the most common microbial metabolisms in the Yap
Trench seawater (Zhang et al., 2018). Researchers took the view
that the typical “V-shape” topography of the trenches would
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FIGURE 5 | Relative abundance of 16S rRNA gene sequences of the seven samples exposed in Yap Trench for 1 year at the bacterial phylum level (TA2, ZAL,
Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. The top 10 abundant phyla of each sample are shown
in this figure).

accumulate organic matters by a funneling effect. These organic
matters could come from sinking particulates from the upper
ocean, terrestrial inputs, chemosynthesis from the dark ocean,
or even cell lysates at the trench axis (Jover et al., 2014). Then,
under gravity, these organic materials would slowly migrate
to the deepest trench axis (Ichino et al., 2015). The funneling
effect due to the “V-shape” of the trench flanks also played an
important role in the formation of increasing surface sedimentary
organic carbon content which might come from the upper
seawater layer (Li D. et al., 2020). Besides these, abundant genes
involved in the degradation of various types of carbohydrates,
hydrocarbons, and aromatics were reported by previous studies
(Zhang et al., 2018), showing their potentials to be used organic
carbon sources in the Yap Trench environment indicating organic
matter-enriched environments.

On non-copper aluminum alloys Al1060 and Al5A06,
Sulfurimonas and PS1 Clade dominated the bacterial groups
in the biofilms. The genus Sulfurimonas belonged to the
class Campylobacteria within the phylum of Epsilonbacteraeota
(Inagaki et al., 2003). Sulfurimonas strains were discovered
in various habitats, including marine sediments, deep-sea
hydrothermal vents, and pelagic water column redoxclines (Han
and Perner, 2015). Although the lineage Sulfurimonas was well-
known as small sulfur-oxidizing bacteria utilizing reduced sulfur
compounds such as sulfide, thiosulfate, and elemental sulfur as
an electron donor for growth, organic compounds including
formate, fumarate, amino acid, and alcohol mix could work as

a preferred electron donor and contribute to bacterial growth
(Labrenz et al., 2013). The versatile metabolic strategies of
Sulfurimonas species helped them adapt to a broad type of
environments (Han and Perner, 2015), including the deep-sea
environment in Yap Trench. The versatile metabolic strategies
might also cooperate with PS1 Clade to form mutualistic
symbiosis in the biofilm.

On copper alloys T2, B10, 30, and copper-present aluminum
alloy ZAL, Stenotrophomonas was found as a major constitution
in these biofilms. As mentioned above, Stenotrophomonas, which
phylogenetically belonged to Gammaproteobacteria, showed
high resistance to heavy metals, including Cu (Ye et al.,
2013; Chen et al., 2016; Hou et al., 2020). As a result,
the Stenotrophomonas strains were successfully isolated from
various copper-rich environments, such as copper-polluted
agricultural soils and well-adapted Cu(II)-reduced biocathodes
of microbial fuel cells (Altimira et al., 2012; Tao et al., 2017).
Stenotrophomonas strains could convert Cu(II) into Cu(0) on
the cell surface in the absence of cathodic electrons (Shen
et al., 2017). On copper surface, Stenotrophomonas tended to
release more amounts of extracellular polymeric substances
(EPS) to form biofilms with a strong Cu(II) complexation
effect (Hou et al., 2020). Therefore, Stenotrophomonas showed
high tolerance or might get use of Cu(II) on copper alloy
surfaces by forming a biofilm with high EPS. At the same
time, this Cu(II) reduction process would inhibit the corrosion
of the copper alloys serving in this environment because the
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FIGURE 6 | Relative abundance of 16S rRNA gene sequences of the samples exposed in Yap Trench for 1 year at the bacterial genus level (TA2, ZAL, Al5A06,
Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. The top 10 abundant genera of each sample are shown in this
figure).

essence of corrosion was defined as the oxidation process
of metals. Due to the existence of a biofilm composed of
Stenotrophomonas which would reduce Cu(II) (Shen et al., 2017),
the oxidation process was restrained, leading to an inhibited
corrosion process. Burkholderia–Caballeronia–Paraburkholderia
showed high proportions on these copper-present alloys, too.
They were discovered on copper-rich microbial fuel cells,
revealing a high tolerance to copper (Wu et al., 2019; Ai
et al., 2020). Another dominating genus in the biofilm on B10
was Acinetobacter. Besides the cold-adapting and hydrocarbon-
degrading characteristics mentioned above, biosorption of Cu(II)
was found on Acinetobacter in 2017 (Zhang et al., 2017). In
the biofilm containing Acinetobacter, Cu(II) would promote
protein secretion and bound with EPS, thus leading to more
compact granules with better ability to settle (Jiang et al.,
2020). Above all, the biofilm formed on copper-present alloys
all showed high tolerance to copper. The biofilm would use,
reduce, or biosorpt Cu(II) to form a stable and functional
mutualistic symbiosis.

Besides that, previous reports showed that the abundant genes
of bacterial communities in Yap Trench seawater were involved
in stress response and metal resistance (Zhang et al., 2018).
The attached bacteria on these alloys were considered to be
derived from the planktonic communities and enriched on metal

surfaces. Thus, high bacterial diversity and stable functional
mutualistic symbiosis could form on metallic surfaces, even on
toxic copper alloys.

Key Functional Gene Analysis
The functional gene rpoE was found to be relatively abundant
in all seven samples. RpoE gene was known as an important
stress response gene. RpoE could encode key RNA polymerase
component, which contributed to the protein expression
for periplasmic and outer membrane component integrity
(Helmann, 2002; Woods and McBride, 2017). The relatively high
abundance of rpoE revealed a high resistance of these biofilms
to the extreme deep-sea environment with low temperature,
high pressure, and oligotrophic features. FabG gene encoding
3-oxoacyl-[ACP] reductase and GST gene encoding glutathione
S-transferase were also commonly found in these samples.
FabG gene was a key enzyme in the type II fatty acid
synthase system in bacteria and catalyzes beta-ketoacyl-ACP
reduction, while A played key roles on fatty acid biosynthesis
(Li et al., 2006; Huang et al., 2008). The bacterial GSTs
were reported to be active in catalyzing specific reactions
in the degradation pathways of recalcitrant chemicals for
growth (Vuilleumier, 1997). Thus, the obvious presence of
fabG and GST genes indicated harsh living conditions in Yap

Frontiers in Microbiology | www.frontiersin.org 10 March 2022 | Volume 13 | Article 83198480

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-831984 March 18, 2022 Time: 8:25 # 11

Zhai et al. Microbial Communities in Yap Trench

FIGURE 7 | Heat map of functional genes assigned with Kyoto Encyclopedia of Genes and Genomes database in the seven samples in Yap Trench using 16S rRNA
gene sequencing (TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloy surfaces. The value of the color
scale represents the relative abundance of functional genes).

TABLE 4 | Relative abundance of key functional genes related to copper resistance in the seven samples in Yap Trench using 16S rRNA gene sequencing.

Gene Description TA2 ZAL Al5A06 Al1060 T2 B10 B30

cusR Copper resistance phosphate regulon response regulator 0.009% 0.021% 0.004% 0.005% 0.022% 0.027% 0.029%

cusS Heavy metal sensor histidine kinase 0.010% 0.021% 0.004% 0.006% 0.023% 0.027% 0.030%

copA Cu+-transporting ATPase 0.066% 0.051% 0.091% 0.096% 0.053% 0.051% 0.044%

copB Cu+- transporting ATPase 0.054% 0.033% 0.047% 0.044% 0.031% 0.019% 0.029%

pcoB Copper resistance protein B 0.014% 0.022% 0.004% 0.005% 0.026% 0.021% 0.030%

pcoC Copper resistance protein C 0.012% 0.023% 0.004% 0.006% 0.024% 0.026% 0.029%

pcoD Copper resistance protein D 0.013% 0.023% 0.004% 0.006% 0.022% 0.025% 0.026%

TA2, ZAL, Al5A06, Al1060, T2, B10, and B30 represented the biofilms collected from the corresponding alloys surfaces.

Trench (Vuilleumier and Pagni, 2002). Besides that, several
genes connected to transport systems, such as ABC.CD.P,
ABC.CD.A, ABC-2.A, ABC-2.P, and so on, were detected.
ATP-binding cassette (ABC) transporter-encoding genes might
mainly come from PS 1 Clade. ABC transporters were known
to transport a wide variety of substrates, such as amino
acids, oligopeptides, and sugars (Davidson et al., 2008). These
ABC transporters contributed significantly to the uptake of
extensive substrates for growth in relatively oligotrophic and
pelagic environments.

It is worth mentioning that the existence of Cu element
seemed to make a great influence on the functional genes of
the biofilms than the other alloying elements. The abundance
of several genes related to copper resistance, such as the
copper tolerance two-component regulatory system cusSR,

Cu+-transporting ATPase-encoding gene copAB (Silver
and Phung, 2005), and copper resistance protein-encoding
gene pcoBCD, was found to be distinctly differentiated.
Based on copper contents, the alloys could be divided into
two groups: copper-free alloys (TA2, Al1060, and Al5A06)
and copper-present alloys (ZAL, T2, B10, and B30). The
copper-free alloys showed low cusSR and pcoBCD but high
copAB abundance, while the copper-present alloys revealed
a contrast. The cusS–cusR two-component systems were
significant for bacteria in sensing, responding, and adapting
to the changing environments, such as the elevation of Cu(I)
ions in the periplasm (Affandi and McEvoy, 2019). The
plasmid-encoded gene pcoBCD would detoxify copper in the
periplasm and further strengthen the copper resistance ability
(Rensing and Grass, 2003), while copA and copB genes could
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encode Cu+-transporting ATPase, which would act as ATPase
membrane pump to transport copper ions (Mana-Capelli et al.,
2003; Silver and Phung, 2005). The high abundance of high copAB
on copper-free alloys was an interesting phenomenon because
of the opposite results compared to that obtained in shallow
surface seawater (Zhang et al., 2019a,b). This might be attributed
to the fact that, in the hadal environment, the environment
might be quite oligotrophic with low copper contents (less
than 0.000002% in surface sediments; Huang et al., 2020). No
results were found in hadal seawater in Yap Trench; it might
be even lower. However, copper was considered as one of the
essential elements for living cells (Favre et al., 2019), so they
needed to transport copper into the cell to enrich copper for
growth and metabolism, which could lead to high copAB. That
might also be the reason why the abundance of bacteria that
survived on copper-free alloys was lower than that on copper
alloys. So, based on these above-mentioned results, a hypothesis
could be proposed. On copper-free alloys, the biofilms showed
low copper-resistant gene abundance but high copper-sensitive
gene abundance, which might be used for transporting copper
ions according to the growth and metabolism requirements. On
the contrary, the biofilms on copper-present alloys showed a
relatively high copper resistance. They might not consume ATP
to export copper ions. They might either make use of copper
ions in the cell or export copper ions in other ways. The diverse
response to copper led to totally different bacterial communities
and functions of the biofilm on these alloys.

CONCLUSION

This study caught a brief glimpse of biofilms formed on
metal alloys in Yap Trench. Although it was known that
planktonic bacterial communities showed a great difference
with the biofilm communities, this research found out that
the bacterial communities on the biofilms at various substrates
revealed obvious differences. Among the alloys studied in this
research, copper element showed strong influences on microbial
communities and key functional genes even at a relatively low
content in the alloy, such as ZAL. Titanium alloy provided a
suitable substrate for a mutualistic symbiotic biofilm. Aluminum
alloys without copper components showed the least bacterial

richness and formed cold-adapted and oligotrophic-adapted
biofilms. Copper-present alloys showed a relatively high bacterial
richness with copper-resistant or even copper-utilizing biofilms
on the surfaces. Besides that, the copper-related biofilm would
participate in Cu(II) reduction, which could effectively inhibit
copper corrosion. Furthermore, the bacterial communities of
biofilms on these alloys were found to be highly different from
those in shallow sea, and many bacterial genera remained unclear
based on our existing database. Thus, future research on extreme
environments, such as deep-sea environments, are critically
needed and of great significance.
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Human beings are now facing one of the largest public health crises in history with
the outbreak of COVID-19. Traditional drug discovery could not keep peace with
newly discovered infectious diseases. The prediction of drug-virus associations not only
provides insights into the mechanism of drug–virus interactions, but also guides the
screening of potential antiviral drugs. We develop a deep learning algorithm based on the
graph convolutional networks (MDGNN) to predict potential antiviral drugs. MDGNN is
consisted of new node-level attention and feature-level attention mechanism and shows
its effectiveness compared with other comparative algorithms. MDGNN integrates the
global information of the graph in the process of information aggregation by introducing
the attention at node and feature level to graph convolution. Comparative experiments
show that MDGNN achieves state-of-the-art performance with an area under the curve
(AUC) of 0.9726 and an area under the PR curve (AUPR) of 0.9112. In this case
study, two drugs related to SARS-CoV-2 were successfully predicted and verified by
the relevant literature. The data and code are open source and can be accessed from
https://github.com/Pijiangsheng/MDGNN.

Keywords: antimicrobial drug prediction, graph convolution networks (GCN), heterogeneous network (Het-Net),
representation learning, SARS-CoV-2

INTRODUCTION

Microorganisms are the unicellular or multicellular organisms, which include bacteria, archaea,
viruses, protists, and fungi (Human Microbiome Project Consortium, 2012; Sommer and Bäckhed,
2013). Microbes sometimes can protect the human body from lethal pathogens, improve
metabolism, and strengthen the immune system of the host (Ventura et al., 2009). On the other
hand, the imbalance of the microbial community may cause a wide range of human diseases, such as
obesity (Zhang et al., 2009), diabetes (Wen et al., 2008), rheumatoid arthritis (Lynch and Pedersen,
2016), and even cancer (Schwabe and Jobin, 2013).

As a novel coronavirus, SARS-CoV-2 has caused an unprecedented public health crisis recently.
New variants of SARS-CoV-2 with the enhanced transmissibility are emerging globally. Traditional
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drug development could not keep pace with threats from
the fast-spreading SARS-CoV-2 and its variants, because of
the complexity, high cost, and long experiment period of the
traditional drug discovery process. The world needs to speed up
the drug discovery process for COVID-19.

With the recent development of deep learning, especially the
graph neural networks, more and more researchers have begun to
try to find solutions based on the deep learning for their biological
problems (Shamshirband et al., 2021; Zhang et al., 2021), such
as drug interaction identification (Deng et al., 2020; Lin et al.,
2020), protein function prediction (Gligorijević et al., 2021), virus
classification (Deif et al., 2021), and disease-genes association
prediction (Shu et al., 2021), etc. These studies show the potential
of graph representation learning in biological questions.

In the research on microorganisms, there is a large amount
of known information about the action of microorganisms
and drugs, the genetic information of microorganisms, and the
molecular formula information of small molecule drugs. We
can use calculation-based methods to process these data to
predict the possibility of interaction between microorganisms
and drugs. This prediction allows us to initially screen out
related therapeutic drugs for microorganisms that cause diseases,
thereby speeding up the development of specific drugs for
related diseases.

For microbial-drug association prediction, there are also
several reported methods based on the graph representation
algorithms. For example, Zhu et al. (2019) propose a method to
predict human microbe-drug association, which is named
Human Microbe-Drug Association by KATZ measure
(HMDAKATZ). HMDAKATZ predicts possible drug-microbe
associations using chemical similarity of drugs based on the
Gaussian kernel similarity. Long et al. propose a Heterogeneous
Network Embedding Representation framework for Microbe-
Drugs Association prediction (HNERMDA) (Long and Luo,
2020). HNERMDA predicts drug-microbe association by
heterogeneous graph neural network. Long et al. proposed
a graph convolutional network (GCN)-based framework
for predicting human microbe-drug associations, named
GCNMDA (Long et al., 2020a). GCNMDA predicts drug-
microbe association by introducing microbial protein interaction
and chemical similarity of drugs. Long et al. propose a
framework of heterogeneous graph attention networks to predict
the association between drug and microbe (HGATDVA) (Long
et al., 2020b). HGATDVA predicts drug-microbe associations
by introducing a network of protein interactions between
drug targets and microbial hosts. All of these previously
reported methods first construct a heterogeneous network
with microorganisms and drugs as nodes and then use some
network representation methods to get the feature vectors of
nodes in the heterogeneous network. For the prediction of
the potential association between microorganisms and drugs,
a common approach is to first build an action network with
a variety of biological information, such as the interaction
network between microorganisms and drugs. Then, the graph
representation learning algorithm is used to learn node vector
representation from the biological interaction network. Finally,
the node representation vector obtained by the algorithm is

used to predict the probability of potential association between
microorganisms and drugs.

Human Microbe-Drug Association by KATZ measure is the
first algorithm used to predict potential links between microbes
and drugs. In this method, the graph kernel similarity of
microorganisms was calculated based on the known conditions
to construct the microbial similarity network. Then, the
drug similarity network was constructed according to the
chemical structure similarity of drugs. By integrating the
existing data of microbiota and drug association, a biological
network with microbe and drug can be obtained. The KATZ
algorithm was then used on this biological network to predict
potential associations between microbes and drugs. HNERMDA
is a method based on metapath2vec (Dong et al., 2017)
to learn the node representation vector of microorganisms
and drugs. By constructing an interaction network between
microorganisms and drugs, it utilizes metapath2vec to learn
their node representation vectors. Then, in the downstream
prediction task, the bipartite graph recommendation algorithm
with bias is used to predict the potential association between
microorganisms and drugs. GCNMDA is a method that uses
graph convolutional networks (GCNs) (Kipf and Welling,
2017) to learn node representation in heterogeneous biological
networks composed of microorganisms and drugs, obtaining
node representation vectors of microorganisms and drugs for
the downstream prediction of potential drugs. Host protein
information was introduced into the HGATDVA to construct
two heterogeneous biological networks: One is a biological
network composed of two isomeric nodes of microorganism
and drug, and the other is a biological network composed of
three isomeric nodes of microorganism, host protein, and drug.
During node representation learning, graph attention networks
(GAT) (Velickovic et al., 2018) were used to learn network
representation of two biological networks, respectively, and two
sets of node representation vectors were obtained. The node
representation vectors of the two groups of microorganisms and
drugs were added to predict the potential association between
microorganisms and drugs. In the follow-up prediction of the
association between microorganism and drug, the operation is
carried out on these node feature vectors. Therefore, a good node
feature can make our prediction result more accurate.

In the previously reported studies on the prediction
of microbe-drug association, different graph representation
learning algorithms are mainly used to improve the prediction
performance. With the development of graph neural networks,
there are more and more graph representation algorithms
with better performance, such as GCN, GAT, heterogeneous
graph attention networks (HANs) (Wang et al., 2019), and
heterogeneous graph transformer (HGT) (Hu et al., 2020), etc.

In this article, we propose a model incorporating two attention
mechanisms into a GCN to enhance the performance of graph
characterization algorithms, thereby improving the performance
of microbial-drug association prediction. In terms of relevant
evaluation indicators, our model is better than the relevant
benchmarks. In this case study, we predicted four SARS-CoV-2-
related drugs on the relevant dataset through the trained model
and verified the effectiveness of two of them in the latest database.
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FIGURE 1 | The specific process of MDGNN. (A) Microbiome-drug network. The entire network is composed of three subnetworks, namely, the interaction network
between drugs and drugs, the interaction network between microorganisms, and the associated network between drugs and microorganisms. (B) Graph neural
networks of two attentional mechanisms. Through the graph convolution operation on the node feature and the graph structure and the feature projection of the fully
connected function, the projection of the three-node features can be obtained, which can be used to calculate the attention weight matrix between nodes and the
node feature of attention between feature components, so as to calculate the final node representation features. (C) Prediction of potential associations between
microorganisms and drugs. Through the inner product of the learned node representations, the prediction score between the drug feature and microbe feature can
be obtained, so as to determine whether there is an association between the node pair.

MATERIALS AND METHODS

We divide the information in the network into three levels
of information. The first is the information inside the node.
Generally speaking, entities such as drugs and microbes are
abstracted into nodes in the network. To distinguish different
nodes, unique features are assigned to nodes, namely, feature
vectors of nodes in the network structure. The second is the
information between nodes, the edges in the network. Finally,
there is edge-to-edge information, the meta-path in the network.

The attention mechanism was first proposed in the field of
natural language processing; that is, we can assign different
weights to different word vectors. GAT is the earliest method to
introduce an attention mechanism in the field of graph neural
networks. It assigns different weights to different adjacency
features in the stage of information aggregation. This kind
of attention is not global attention, but only the attention
between first-order neighbor nodes. HAN is an attention-based
model for heterogeneous networks, which proposes two attention
mechanisms: one is node-level attention, the other is attention
between different meta-paths. First, feature vectors from different
adjacent points are aggregated on each meta-path by the attention
mechanism, and then, feature vectors from each source path

are aggregated by assigning different weights to each meta-
path. Node-level attention in HAN is still the attention of
local nodes, whereas attention between meta-paths is indirect
global attention. But this approach relies heavily on setting up
the meta-path. HGT is an improved approach to GCN that
brings attention to message aggregation by introducing query
vectors and key vectors. There are also two attention mechanisms
in HGT, namely, attention between local nodes and attention
between meta-paths.

However, the existing graph neural networks with attention
mechanisms are all based on the local nodes; that is, the
attention weight is only allocated between the source node and
its neighbors. Due to the limitation of the network structure, the
attention information between the source node and its higher-
order neighbors is not calculated.

In view of the problems in the above methods, we propose
two attention mechanisms, namely, the attention mechanism
between all nodes and the attention mechanism between
feature components within nodes. Through this new attention-
based graph neural network, better node feature vectors for
predicting microbial-drug association can be obtained. The
whole prediction process is shown in Figure 1. Through node-
attention, we can get the attention of one node in the graph to the
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nodes of the whole graph. Through feature-attention, we can get
the weight of each dimension between feature vectors of a node.

The prediction process is to first build a heterogeneous
network with drug nodes and microbial nodes. In this network,
there are microbial–microbial, microbial–drug, and drug–drug
interactions. We mainly predict the potential association between
microbial–drug interaction. Then, node-attention and feature-
attention mechanisms are used to learn node representation on
the network. Finally, after the representation vectors of the two
heterogeneous nodes were obtained, they were directly used to
predict the link between drugs and microorganisms.

The network representation algorithm is divided into
three parts: node-attention, feature-attention, multi-layer
feature fusion.

Node-Attention
Considering the sequence data, in which a single word is used as a
data unit and connected together, we can think of sequence data
as a special kind of graph structure, which can be regarded as a
graph structure in which the in and out degrees of all nodes are 1.
Different from GAT’s node-attention mechanism, we also have a
weight for higher-order neighbor nodes. Therefore, the advantage
of using such global node-attention is that we can aggregate the
node information of higher-order neighbors by calculating self-
attention, instead of being limited to the structure of the graph to
capture the information of other nodes.

Suppose there exists graph G, which can be represented by
its adjacency matrix A and node feature matrix X, namely,
G = (A, X). For the nodes in graph G, we can calculate
their weights and then aggregate the information based on
the weights. Different from graph convolution operation, graph
convolution operation aggregates information according to the
graph structure. When aggregating information according to
weight, it can break through the limitation of graph structure and
aggregate corresponding information even when there is no edge
connection between nodes (refer to Figure 1B).

In this paragraph, we will introduce some commonly used
formulas in the following text, such as GCN, Linear. GCN is a
neural network layer that can learn the structure information
of graph structure data. The calculation method is shown in
Formula (1)

Z = GCN (A, X) = ReLU
(
ÃXW

)
, (1)

which X is the original feature, ReLU is activation function, W
is the learnable parameter matrix, and Ã is the adjacency matrix
with self-loop of the graph. Linear is a fully connected function,
and its formula is shown in (2)

X′ = Linear (X) = WX + b, (2)

which X is the original feature, and W and b are learnable
parameter matrix.

Our method is mainly based on the idea that GCN learns
the structural information of the network and triplet attention
learns the disconnect node interaction information. First, we
aggregate node features in GCN, and after learning the structural
information of the network, treat all nodes as sequence data

and temporarily ignore their structural information, as shown in
Formula (3) (σ is non-linear activation function, like ReLU).

GCNLinear = σ (Linear (GCN (G, X))) (3)

By using Formula (1), we can obtain the features of three groups
of nodes needed to calculate triplet attention. QNode, KNode, and
VNode. As shown in Formulas (4–6).

QNode = GCNLinear (G, X) (4)

KNode = GCNLinear (G, X) (5)

VNode = GCNLinear (G, X) (6)

Then, the node weight matrix WNode (N × N) is obtained from
its inner product, and its row direction is normalized, as shown
in Formulas (7, 8).

WNode = QNode ⊗ KT
Node (7)

wi· = Softmax (wi·) , i ∈ (0, 1, 2, . . . , n) (8)

Finally, the inner product of weight matrix WNode (N × N) and
VNode (N × F) is integrated to obtain the node feature matrix
XNode (N × F), as shown in Formula (9).

XNode = X +WNode ⊗ VNode (9)

In this process, we model the information of interaction between
nodes in the whole network by calculating a node weight matrix
WNode (N × N). The node weight matrix WNode (N × N) is
different from the adjacency matrix of the network A (N × N),
which can be regarded as the n power of the adjacency matrix
A (N × N),namely, WNode (N × N) = An (N × N) and the
n varies according to the size of the structure of the network.

Feature-Attention
The graph can be represented by the node set V and the edge
set E, as well as the node eigenmatrix X (N × F) For any
node Ni ∈ V , node Ni can be represented by a node feature
vector

(
f1, f2, f3, · · · , fn

)
. For a certain node Ni, we can express

the importance of different features by feature weight vectors
(w1, w2, w3, · · · , wn), and distribute feature weights by inner
product. In other words, for different nodes, there is always some
feature components fi, where i ∈ 1, 2, 3, · · · , n. In the dimension
of fi, this node is significantly different from other nodes. For
some other feature components fj, the values of all nodes are
almost the same, so we need to give different weight values
to these two different feature components. We use a feature
component attention weight matrix to model the relationship
between feature components within such nodes, as shown in the
Figure 1B.

Just as in the calculation of node-attention, three feature
vector matrices corresponding to node-features, query, key, and
value, are first calculated. The difference lies in that we calculate
the weight between node feature components through query
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FIGURE 2 | Multi-layer concatenates. For each node-attention and
feature-attention, the node information has different structural information. By
fusing the features of each layer of nodes based on the two attention
mechanisms, it can effectively use these node features integrating different
structural information.

and key feature vector matrix, that is, attention weight matrix
belonging to feature components, as shown in Formula (10)

WFeature = QT
Feature ⊗ KFeature (10)

It should be noted that the node weight matrix is WNode (N × N)
and the feature component weight matrix is WFeature (F × F).
After the matrix WFeature (F × F) is obtained, the final
WFeature (F × F) is obtained through the normalization of the
column direction, as shown in Formula (10). Then, the final
feature vector of nodes is obtained by Formula (11, 12)

w·j = Softmax
(
w·j
)
, j ∈ (0, 1, 2, . . . , n) (11)

XFeature = X + VFeature ⊗WFeature (12)

Multi-Layer Feature Concatenates
Generally speaking, GCN can only aggregate information to
first-order neighbors of the source node, whereas aggregation
to higher-order information requires the number of layers
of stacked GCN. For GCN with different layers, the node
information represented by GCN is obtained by aggregating the
node information within the scope of different graph structures,
and these node feature vectors have different structural semantic
information. By integrating the node information obtained from
these different GCN layers, better results can be obtained for
link prediction. For example, in jump-knowledge networks (Xu
et al., 2018), node features from different GCN layers are added
or spliced as the final node features. It is worth noting that
jump-knowledge networks simply add up the node information
learned from GCN of different layers and serve as the final
node information.

Suppose that for graph G (A, X), after n layer message
aggregation, a list of node features (X1, X2, X3, · · · ,Xn) will be
obtained. The feature vector matrix in this list represents the node
features obtained by integrating the substructure information
of different graphs. We use triple-based attention to assign
different weights to these node features and then fuse them for
downstream tasks. We give a schematic diagram of node features

obtained by three-layer GNN, as shown in Figure 2. Specifically,
for each set of node features, we use the following formulas to
calculate,

Qi = σ (Linear (Xi)) , i ∈ (1, 2, · · · , n) (13)

Ki = σ (Linear (Xi)) , i ∈ (1, 2, · · · , n) (14)

Vi = σ (Linear (Xi)) , i ∈ (1, 2, · · · , n) (15)

After calculating the Qi, Ki, and Vi corresponding to each group
of node features, the final feature vector X′i of the group of nodes
can be calculated by Formula (16)

X′i = Softmax
(

Qi ⊗ KT
i

)
⊗ Vi (16)

Finally, by concatenating multiple sets of node features, the final
node feature X′ can be gain by Formula (17), which can be used
to predict the score.

X′ =
(
X′1 ‖ X′2 · · · ‖ X′n

)
(17)

Microbial Drug Association Prediction
After getting the final feature vector X of the microbe node and
the drug node, the prediction score between a certain microbe
and the drug node pair can be calculated, that is, the probability
of the correlation between the microbe and the drug, as shown in
Formula (18)

S(u,v) = Sigmoid(Xu ⊗ Xv) (18)

where Xu ∈ R1 × n, Xu ∈ R1 × n, and Sigmoid is an
activation function.

During the training process, we use binary cross-entropy as
our loss function for training, as shown in Formula (19)

loss =
∑

(u,v)∈pos,neg

BCE(S(u,v), A(u,v)), (19)

while A is the adjacency matrix, and (u, v) ∈ pos means
A(u,v) = 1, and (u, v) ∈ neg means A(u,v) = 0.

RESULTS

Dataset
In the experiment, we used data coming from three datasets:
DrugVirus (Andersen et al., 2020), MDAD (Sun et al., 2018),
and aBiofilm (Rajput et al., 2018). We integrated the data of
these three datasets after removing duplicate microorganisms
and drugs. By calculating the similarity of drug structure, and
taking the drug interaction with similarity greater than 0.5 as
the relationship between drugs, the drug interaction network is
obtained. Similarly, the microbial similarity is calculated through
the microbial gene sequence, and the microbial similarity greater
than 0.5 is taken as the microbial association to obtain the
microbial interaction network. The data used in our experiment
are shown in Tables 1, 2.
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TABLE 1 | Data used in this study were obtained by integrating three datasets:
DrugVirus, MDAD, and aBiofilm.

Name Number

Drugs 3,091

Microbes 328

Drug–drug interaction 270,877

Microbe–microbe interaction 467

Drug–microbe interaction 3,900

TABLE 2 | The statistics for each microbe-drug association dataset.

Datasets Microbes Drugs Associations

MDAD 173 1,373 2,470

aBiofilm 140 1,720 2,884

DrugVirus 95 175 933

TABLE 3 | Comparative experiment of different benchmarks and MDGNN.

Model AUC AUPR

GCN 0.9439 (0.0038) 0.8721 (±0.0102)

GAT 0.9385 (0.0057) 0.8479 (0.0139)

HAN 0.9443 (0.0041) 0.8086 (0.0118)

HGT 0.9251 (0.0073) 0.8275 (0.0126)

GCNMDA 0.9541 (0.0036) 0.8796 (0.0103)

GraphSAINT 0.9653 (0.0081) 0.8938 (0.0135)

MDGNN 0.9721 (0.0053) 0.9102 (0.0118)

MDGNN outperforms all baselines including GCN, GAT, HAN, HGT,
GCNMDA, and GraphSAINT.
The bold value means the best model, and the underlined value means the
second-best model.

Experiment Result
To verify the effectiveness of our method, we divided the dataset
by 5-fold cross-validation of the data related to the known
microorganisms a drug and randomly divided the data related
to the known microorganisms and drugs into five groups.
In each fold experiment, we take turns to select a group of
related data as the test set, and the remaining four groups as
the training set for training. In addition, because in the real
world, it is more common that there is no interaction between
microorganisms and drugs. At the same time, to compare the
performance of each model in the case of unbalanced positive and
negative samples, we set the number of negative samples in the
experiment set to four.

In our model, we set that the learning rate in optimization
algorithm was 0.001 with Adam optimizer, and other related
hyperparameters, such as the number of model layers, feature
dimensions, and training times, are described in the ablation
experiments. The equipment used in the experiment is Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20 GHz, running memory
is 128 GB, hard disk storage space is 10TB, and it is
equipped with two Tesla P40 GPU with a total memory
capacity of 48 GB.

The comparative models we used are GCN, GAT, HAN,
HGT, GCNMDA, and GraphSAINT (Zeng et al., 2020). The

FIGURE 3 | Receiver operating characteristic (ROC) curves of different
models under the first-fold verification.

hyperparameters of the benchmark model are set according to
their papers. The experimental results are shown in Table 3. ROC
curves of the models are shown in Figure 3.

Area under the curve (AUC) is an index to measure the sorting
performance. It is not sensitive to the balance of positive and
negative samples. When the samples are unbalanced, it can also
make a reasonable evaluation, which is suitable for measuring
the sorting task. The closer of the result is to 1, the better
performance it is.

Area under the PR curve (AUPR) is the area value under the
curve composed of recall rate and accuracy rate in the prediction
results. It is generally used to measure the performance of correct
prediction results in the dataset with unbalanced positive and
negative samples.

Under a single index, the bold one is the best model, and
the underlined one is the second-best model. It can be seen
that the performance of our model under AUC evaluation index
is ahead of state-of-the-art baseline GraphSAINT. Our model
achieves an AUC of 0.9721, better than GraphSAINT, which is
0.9653. Under the evaluation index of AUPR, the performance
of our model is significantly ahead of other models. Compared
with state-of-the-art baseline GraphSAINT (0.8938), our model
(0.9102) has increased by about 1.74%, which is better than
GCN (0.8721), GAT (0.8479), HAN (0.8086), HGT (0.8275), and
GCNMDA (0.8796).

Through comparative experiments with baseline, it can be
seen that our model has achieved a great improvement in
performance after calculating the attention between all nodes
based on the entire graph. Compared with the model that
calculates the attention between 1-hop neighbor nodes, our
model is more able to mine the relationship between high-
order neighbor nodes, In the association of microbial and
drugs, an intuitive idea is if drug A interacts with drug B, and
drug A interacts with microorganisms C, then we are likely
to be inclined to speculate that drug B and microorganisms
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TABLE 4 | Compare the 5-fold crossover experimental results of MDGNN and GCNMDA on three small datasets (MDAD, aBiofilm, and DrugVirus).

Methods MDAD aBiofilm DrugVirus

AUC AUPR AUC AUPR AUC AUPR

GCNMDA 0.9423 (0.0105) 0.9376 (0.0115) 0.9517 (0.0035) 0.9488 (0.0031) 0.8986 (0.0305) 0.9038 (0.0372)

MDGNN 0.9457 (0.0083) 0.9431 (0.0102) 0.9608 (0.0054) 0.9566 (0.0084) 0.8737 (0.0167) 0.8904 (0.0212)

FIGURE 4 | AUC, AUPR values of different numbers of epochs.

C have an interaction. When calculating 1-hop-based attention
(such as GAT, HAN, HGT, and GCNMDA), this indirect
correlation between drug B and microorganism C is ignored.
However, in MDGNN, this indirect correlation will be taken
into consideration, and the message will be passed between the
nodes B and C through our proposed method, thus improving
the prediction performance of the model.

By comparing MDGNN and GCNMDA on three
small datasets, we can further confirm our inference. On
large dataset (MDAD, aBiofilm), our method is better
than GCNMDA, and especially on aBiofilm dataset, our
method can be nearly a percentage point higher than
GCNMDA. This dataset is the most data in these three
datasets. On the smallest dataset (DrugVirus), our method
(AUC:0.8737, AUPR:0.8943) is inferior to GCNMDA
(AUC:0.8986, AUPR:0.9038).

According to the results in Table 4, it can be seen that when the
size of dataset grows, the number of indirect associations (like the
relationship between B and C mentioned above) in the dataset
will increase accordingly. This means that on large dataset, our
method can learn more information about potential associations,
and many of our final predictions of the association between
microorganisms and drugs are inferred based on this potential
association information.

It can be seen that the calculation of the two kinds
of attention brings stronger fitting ability to the model.
Moreover, this powerful fitting ability allows our model to
learn more structural information every time it performs

TABLE 5 | Ablation experiments on modules of feature-attention and
multi-layer feature.

Multi-layer Feature-attention Layer AUC AUPR

w/o Multi-layer w/o Feature-attention 3 layers 0.9621 0.8891

4 layers 0.9614 0.8816

5 layers 0.9652 0.8909

Feature-attention 3 layers 0.9637 0.8896

4 layers 0.9640 0.8909

5 layers 0.9694 0.9034

Multi-layer w/o Feature-attention 3 layers 0.8696 0.7362

4 layers 0.8760 0.7264

5 layers 0.8756 0.7410

Feature-attention 3 layers 0.9706 0.8982

4 layers 0.9711 0.9097

5 layers 0.9726 0.9112

The bold value means the best model.

gradient descent, so as to converge more quickly during the
training process.

During the training process, we found that the optimization
of these baseline training is extremely slow, and our model
converges fast, so we train the model under different epochs
settings to compare the effect of model training. When different
numbers of epochs were set, the results obtained by each model
are shown in Figure 4.

As can be seen from the experimental results, our model can
converge to the optimal value within a very short training period.

Frontiers in Microbiology | www.frontiersin.org 7 April 2022 | Volume 13 | Article 81904691

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-819046 April 1, 2022 Time: 15:36 # 8

Pi et al. Microbial Drug Prediction by AI

FIGURE 5 | AUC, AUPR values of different feature dimensions.

TABLE 6 | Predicted drugs that can treat SARS-CoV-2 (negative means that the
drug is not associated with SARS in our dataset).

Predicted drugs Prediction score

Mefloquine 0.9361

Darunavir (negative) 0.9177

Nelfinavir 0.9096

Azithromycin(negative) 0.8904

Vancomycin 0.8731

Dicinnamyl (negative) 0.8685

Niclosamide 0.8663

Chitosan (negative) 0.8529

Chlorpromazine 0.8467

Ribavirin 0.8406

Under the same epoch value, our model has greatly improved
compared with other models. MDGNN requires less than 500
epochs to make the AUC converge to above 0.96, while other
comparison models fail to exceed 0.95 after 3,000 epochs.

Through ablation experiments, we can analyze the role of
each module. In the experiment, we analyze the function of each
module by setting a model with different number of blocks. The
specific ablation experimental results are shown in Table 5.

As can be seen from Table 4, when both modules are
used, the performance is the best. Specifically, when the node
information integrated with node-attention is directly aggregated
through multi-layer module, the model will produce negative
optimization. The reason may be that after removing the
feature-attention, the calculation in the multi-layer module
is performed directly on the node vector that incorporates
the node-attention, which will cause the decoupling of the
attention calculated in the node-attention, which results in a
decrease in the result.

In addition, we conducted comparative experiments on the
dimensions of different feature vectors and verified that the
best experimental results were obtained when the dimension of
feature vector was set to 100. The result is shown in Figure 5.

Case Study
In case study, we use the deduplicated datasets, which contains
the SARS-CoV-2-related data from the DrugVirus dataset. We
save the trained model parameters and use them to make
predictions on the entire dataset. The parameters of the model
are trained on the randomly divided training set, selected, and
saved according to the results on the test set.

We load the trained model and then input the entire dataset
into the model to obtain the feature vector of microorganisms
and the feature vector of drugs. The corresponding microbial
drug association score is obtained by inner product of the feature
vector of microbe and the feature vector of drug.

Taking SARS-CoV-2 as an example, we predicted the drugs
that may treat the virus and took out the 10 drugs with the
greatest possibility. The results are shown in Table 6.

Among the ten drugs that we predicted to treat SARS-
CoV-2, four drugs were not associated with SARS-CoV-2 in
our dataset, but our model predicted that these four drugs
had a high potential to treat SARS-CoV-2. Through searching
PubChem database, we found that two of the four drugs
can indeed treat SARS-CoV-2. Darunavir is an antiretroviral
protease inhibitor that is used in the therapy and prevention
of human immunodeficiency virus (HIV) infection and the
acquired immunodeficiency syndrome (AIDS) (Deeks, 2018). In
our dataset, there is indeed an association between Darunavir
and HIV, but there is no association between Darunavir and
SARS-CoV-2 (Costanzo et al., 2020). This real association
does not exist in our dataset, and we can predict this
association through the dataset. Similarly, Azithromycin is a
drug that can treat SARS-CoV-2 (Rosenberg et al., 2020).
However, there is no association between Azithromycin and
SARS-CoV-2 in our dataset where Azithromycin is only
associated with Hepatitis C virus and HIV. In addition, our
model successfully predicts the potential association between
Azithromycin and SARS-CoV-2.

CONCLUSION

With the rapid development of deep learning, there are many
deep learning methods reported for drug development. For
example, Beck et al. identified commercially available drugs
to treat viral proteins using a pretrained deep learning-based
drug target interaction model. Their results showed that drugs
used to treat HIV might be effective against SARS-CoV-2 (Beck
et al., 2020). Joshi et al. (2020) used deep learning methods to
predict the structural formula of chemical molecules and predict
potential drugs for SARS-CoV-2. A total of 39 potential drugs for
SARS-CoV-2 were predicted based on the CHEMBL dataset.

The rapid spread of SARS-COV-2 and its variants have
resulted a serious public health crisis. How to develop a specific
drug quickly to tackle SARS-CoV-2 and its variants is an
urgent problem. We propose a novel attentional mechanism-
based graph neural network framework for learning network
node representation and prove that our framework is superior
to other state-of-the-art methods, which includes GCN, GAT,
HAN, and HGT, etc. In addition, through a large number of
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drug and microbial data, we have screened potential drugs for
the treatment of SARS-CoV-2, most of which are known to
treat SARS-CoV-2.
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Environmental microorganisms (EMs) are ubiquitous around us and have an important

impact on the survival and development of human society. However, the high standards

and strict requirements for the preparation of environmental microorganism (EM) data

have led to the insufficient of existing related datasets, not to mention the datasets

with ground truth (GT) images. This problem seriously affects the progress of related

experiments. Therefore, This study develops the Environmental Microorganism Dataset

Sixth Version (EMDS-6), which contains 21 types of EMs. Each type of EM contains

40 original and 40 GT images, in total 1680 EM images. In this study, in order to test

the effectiveness of EMDS-6. We choose the classic algorithms of image processing

methods such as image denoising, image segmentation and object detection. The

experimental result shows that EMDS-6 can be used to evaluate the performance of

image denoising, image segmentation, image feature extraction, image classification,

and object detection methods. EMDS-6 is available at the https://figshare.com/articles/

dataset/EMDS6/17125025/1.

Keywords: environmental microorganism, image denoising, image segmentation, feature extraction, image

classification, object detection

1. INTRODUCTION

1.1. Environmental Microorganisms
Environmental Microorganisms (EMs) usually refer to tiny living that exists in nature and are
invisible to the naked eye and can only be seen with the help of a microscope. Although
EMs are tiny, they significantly impacts human survival (Madigan et al., 1997; Rahaman et al.,
2020). Some beneficial bacteria can be used to produce fermented foods such as cheese and
bread from a beneficial perspective. Meanwhile, Some beneficial EMs can degrade plastics, treat
sulfur-containing waste gas in industrial, and improve the soil. From a harmful point of view,
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EMs cause food spoilage, reduce crop production and are also
one of the chief culprits leading to the epidemic of infectious
diseases. To make better use of the advantages of environmental
microorganisms and prevent their harm, a large number of
scientific researchers have joined the research of EMs. The image
analysis of EM is the foundation of all this.

EMs are tiny in size, usually between 0.1 and 100microns. This
poses certain difficulties for the detection and identification of
EMs. Traditional “morphological methods” require researchers
to look directly under a microscope (Madsen, 2008). Then,
the results are presented according to the shape characteristics.
This traditional method requires more labor costs and time
costs. Therefore, using computer-assisted feature extraction and
analysis of EM images can enable researchers to use their least
professional knowledge with minimum time to make the most
accurate decisions.

1.2. EM Image Processing and Analysis
Image analysis is a combination of mathematical models and
image processing technology to analyze and extract certain
intelligence information. Image processing refers to the use
of computers to analyze images. Common image processing
includes image denoising, image segmentation and feature
extraction. Image noise refers to various factors in the image
that hinder people from accepting its information. Image noise is
generally generated during image acquisition, transmission and
compression (Pitas, 2000). The aim of image denoising is to
recover the original image from the noisy image (Buades et al.,
2005). Image segmentation is a critical step of image processing
to analyze an image. In the segmentation, we divide an image
into several regions with unique properties and extract regions
of interest (Kulwa et al., 2019). Feature extraction refers to
obtaining important information from images such as values or
vectors (Zebari et al., 2020). Moreover, these characteristics can
be distinguished from other types of objects. Using these features,
we can classify images. Meanwhile, the features of an image are
the basis of object detection. Object detection uses algorithms to
generate object candidate frames, that is, object positions. Then,
classify and regress the candidate frames.

1.3. The Contribution of Environmental
Microorganism Image Dataset Sixth
Version (EMDS-6)
Sample collections of the EMs are usually performed outdoors.
When transporting or moving samples to the laboratory
for observation, drastic changes in the environment and
temperature affect the quality of EM samples. At the same
time, if the researcher observes EMs under a traditional
optical microscope, it is very prone to subjective errors due
to continuous and long-term visual processing. Therefore,
the collection of environmental microorganism image datasets
is challenging (Kosov et al., 2018). Most of the existing
environmental microorganism image datasets are not publicly
available. This has a great impact on the progress of related
scientific research. For this reason, we have created the
Environmental Microorganism Image Dataset Sixth Version

TABLE 1 | Basic information of EMDS-6 dataset, including Number of original

images (NoOI), Number of GT images (NoGT).

Class NoOI NoGT Class NoOI NoGT

Actinophrys 40 40 Ceratium 40 40

Arcella 40 40 Stentor 40 40

Aspidisca 40 40 Siprostomum 40 40

Codosiga 40 40 K. Quadrala 40 40

Colpoda 40 40 Euglena 40 40

Epistylis 40 40 Gymnodinium 40 40

Euglypha 40 40 Gonyaulax 40 40

Paramecium 40 40 Phacus 40 40

Rotifera 40 40 Stylonychia 40 40

Vorticlla 40 40 Synchaeta 40 40

Noctiluca 40 40 - - -

Total 840 840 Total 840 840

(EMDS-6) and made it publicly available to assist related
scientific researchers. Compared with other environmental
microorganism image datasets, EMDS-6 has many advantages.
The dataset contains a variety of microorganisms and provides
possibilities for multi-classification of EM images. In addition,
each image of EMDS-6 has a corresponding ground truth (GT)
image. GT images can be used for performance evaluation
of image segmentation and object detection. However, the
GT image production process is extremely complicated and
consumes enormous time and human resources. Therefore,
many environmental microorganism image dataset does not
have GT images. However, our proposed dataset has GT
images. In our experiments, EMDS-6 can provide robust data
support in tasks such as denoising, image segmentation, feature
extraction, image classification and object detection. Therefore,
the main contribution of the EMDS-6 dataset is to provide data
support for image analysis and image processing related research
and promote the development of EMs related experiments
and research.

2. MATERIALS AND METHODS

2.1. EMDS-6 Dataset
There are 1680 images in the EMDS-6 dataset, including 21
classes of original EM images with 40 images per class, resulting
in a total of 840 original images, and each original image is
followed by a GT image for a total of 840. Table 1 shows the
details of the EMDS-6 dataset. Figure 1 shows some examples of
the original images and GT images in EMDS-6. EMDS-6 is freely
published for non-commercial purpose at: https://figshare.com/
articles/dataset/EMDS6/17125025/1.

The collection process of EMDS-6 images starts from 2012 till
2020. The following people have made a significant contribution
in producing the EMDS-6 dataset: Prof. Beihai Zhou and Dr
Fangshu Ma from the University of Science and Technology
Beijing, China; Prof. Dr.-Ing. Chen Li and M.E. HaoXu
from Northeastern University, China; Prof. Yanling Zou from
Heidelberg University, Germany. The GT images of the EMDS-6
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FIGURE 1 | An example of EMDS-6, including original images and GT images.

dataset are produced by Prof. Dr.-Ing Chen Li, M.E. Bolin Lu,
M.E. Xuemin Zhu and B.E. Huaqian Yuan from Northeastern
University, China. The GT image labeling rules are as follows:
the area where the microorganism is located is marked as white
as foreground, and the rest is marked as black as the background.

2.2. Experimental Method and Setup
To better demonstrate the functions of EMDS-6, we carry out
noise addition and denoising experiments, image segmentation
experiments, image feature extraction experiments, image
classification experiments and object detection experiments.
The experimental methods and data settings are shown below.
Moreover, we select different critical indexes to evaluate each
experimental result in this section.

2.2.1. Noise Addition and Denoising Method
In digital image processing, the quality of an image to
be recognized is often affected by external conditions, such
as input equipment and the environment. Noise generated
by external environmental influences largely affects image
processing and analysis (e.g., image edge detection, classification,
and segmentation). Therefore, image denoising is the key step of
image preprocessing (Zhang et al., 2022).

In this study, we have used four types of noise, Poisson

noise, multiplicative noise, Gaussian noise and pretzel noise.

By adjusting the mean, variance and density of different kinds

of noise, a total of 13 specific noises are generated. They are

multiplicative noise with a variance of 0.2 and 0.04 (marked
as MN:0.2 and MN: 0.04 in the table), salt and pepper noise
with a density of 0.01 and 0.03 (SPN:0.01, SPN:0.03), pepper
noise (PpN), salt noise (SN), Brightness Gaussian noise (BGN),
Positional Gaussian noise (PGN), Gaussian noise with a variance
of 0.01 and a mean of 0 (GN 0.01–0), Gaussian noise with a
variance of 0.01 and a mean of 0.5 (GN 0.01–0.5), Gaussian noise
with a variance of 0.03 and a mean of 0 (GN 0.03–0), Gaussian
noise with a variance of 0.03 and a mean of 0.5 (GN 0.03–0.5),
and Poisson noise (PN). There are 9 kinds of filters at the same
time, namely Two-Dimensional Rank Order Filter (TROF), 3 ×

3 Wiener Filter [WF (3 × 3)], 5 × 5 Wiener Filter [WF (5 × 5)],
3 × 3 Window Mean Filter [MF (3 × 3)), Mean Filter with 5 ×

5 Window [MF (5 × 5)]. Minimum Filtering (MinF), Maximum
Filtering (MaxF), Geometric Mean Filtering (GMF), Arithmetic
Mean Filtering (AMF). In the experiment, 13 kinds of noise are
added to the EMDS-6 dataset image, and then 9 kinds of filters
are used for filtering. The result of adding noise into the image
and filtering is shown in Figure 2.
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FIGURE 2 | Examples of using different filters to filter salt and pepper noise.

2.2.2. Image Segmentation Methods
This article designs the following experiment to prove that
EMDS-6 can be used to test different image segmentation
methods (Zhang et al., 2021). Six classic segmentation methods
are used in the experiment: k-means (Burney and Tariq, 2014),
Markov Random Field (MRF) (Kato and Zerubia, 2012), Otsu
Thresholding (Otsu, 1979), Region Growing (REG) (Adams
and Bischof, 1994), Region Split and Merge Algorithm (RSMA)
(Chen et al., 1991) and Watershed Segmentation (Levner and
Zhang, 2007) and one deep learning-based segmentationmethod,
Recurrent Residual CNN-based U-Net (U-Net) (Alom et al.,
2019) are used in this experiment. While using U-Net for
segmentation, the learning rate of the network is 0.001 and the
batch size is 1. In the k-means algorithm, the value of k is set to
3, the initial center is chosen randomly, and the iterations are
stopped when the number of iterations exceeds the maximum
number of iterations. In the MRF algorithm, the number of
classifications is set to 2 and themaximumnumber of iterations is
60. In theOtsu algorithm, the BlockSize is set to 3, and the average
value is obtained by averaging. In the region growth algorithm,
we use a 8-neighborhood growth setting.

Among the seven classical segmentation methods, k-means
is based on clustering, which is a region-based technology.
Watershed algorithm is based on geomorphological analysis
such as mountains and basins to implement different object
segmentation algorithms. MRF is an image segmentation
algorithm based on statistics. Its main features are fewer model
parameters and strong spatial constraints. Otsu Thresholding is
an algorithm based on global binarization, which can realize
adaptive thresholds. The REG segmentation algorithm starts
from a certain pixel and gradually adds neighboring pixels

according to certain criteria. When certain conditions are met,
the regional growth is terminated, and object extraction is
achieved. The RSMA is first to determine a split and merge
criterion. When splitting to the point of no further division,
the areas with similar characteristics are integrated. Figure 3
shows a sample of the results of different segmentation methods
on EMDS-6.

2.2.3. Image Feature Extraction Methods
This article uses 10methods for feature extraction (Li et al., 2015),
including two-color features, One is HSV (Hue, Saturation,
and Value) feature (Junhua and Jing, 2012), and the other is
RGB (Red, Green, and Blue) color histogram feature (Kavitha
and Suruliandi, 2016). The three texture features include the
Local Binary Pattern (LBP) (Ojala et al., 2002), the Histogram
of Oriented Gradient (HOG) (Dalal and Triggs, 2005) and
the Gray-level Co-occurrence Matrix (GLCM) (Qunqun et al.,
2013) formed by the recurrence of pixel gray Matrix. The
four geometric features (Geo) (Mingqiang et al., 2008) include
perimeter, area, long-axis and short-axis and seven invariant
moment features (Hu) (Hu, 1962). The perimeter, area, long-axis
and short-axis features are extracted from the GT image, while
the rest are extracted from the original image. Finally, we user a
support vector machine (SVM) to classify the extracted features.
The classifier parameters are shown in Table 2.

2.2.4. Image Classification Methods
In this article, we design the following two experiments to test
whether the EMDS-6 dataset can compare the performance
of different classifiers (Li et al., 2019; Zhao et al., 2022).
Experiment 1: use traditional machine learning methods to
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FIGURE 3 | Output of results of different segmentation methods.

TABLE 2 | Parameter setting of EMDS-6 feature classification using SVM.

Feature Kernel C DFS Tol Max iter

LBP rbf 50,000 ovr 1e-3 -1

GLCM rbf 10,000 ovr 1e-3 -1

HOG rbf 1,000 ovr 1e-3 -1

HSV rbf 100 ovr 1e-3 -1

Geo rbf 2,000,000 ovr 1e-3 -1

Hu rbf 100,000 ovr 1e-3 -1

RGB rbf 20 ovr 1e-3 -1

C, penalty coefficient; DFS, decision function shape; tol, the error value of stopping

training; Geo, geometric features.

TABLE 3 | Deep learning model parameters.

Parameter Parameter

Batch size, 32 Epoch, 100

Learning, 0.002 Optimizer, Adam

classify images. This chapter uses Geo features to verify the
classifier’s performance. Moreover, traditional classifiers used for
testing includes, three k-Nearest Neighbor (kNN) classifiers (k=
1, 5, 10) (Abeywickrama et al., 2016)], three Random Forests (RF)
(tree= 10, 20, 30) (Ho, 1995) and four SVMs (kernel function=

rbf, polynomial, sigmoid, linear) (Chandra and Bedi, 2021). The
SVMparameters are set as follows: penalty parameter C= 1.0, the
maximum number of iterations is unlimited, the size of the error
value for stopping training is 0.001, and the rest of the parameters
are default values.

In Experiment 2, we use deep learning-based methods to
classify images. Meanwhile, 21 classifiers are used to evaluate

TABLE 4 | Evaluation metrics of segmentation method.

Indicators Formula

Dice
2 × |Vpred ∩ Vgt |

|Vpred | + |Vgt |

Jaccard
|Vpred ∩ Vgt |

|Vpred ∪ Vgt |

Recall TP
TP + FN

TP, True Positive; FN, False Negative; Vpred , the foreground predicted by the model; Vgt,

the foreground in a GT image.

TABLE 5 | Classifier classification performance evaluation index.

Evaluation indicators Formula

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

F1-score 2×
P×R
P+R

Recall TP
TP+FN

the performance, including, ResNet-18, ResNet-34, ResNet-50,
ResNet-101 (He et al., 2016), VGG-11, VGG-13, VGG-16, VGG-
19 (Simonyan and Zisserman, 2014), DenseNet-121, DenseNet-
169 (Huang et al., 2017), Inception-V3 (Szegedy et al., 2016),
Xception (Chollet, 2017), AlexNet (Krizhevsky et al., 2012),
GoogleNet (Szegedy et al., 2015), MobileNet-V2 (Sandler et al.,
2018), ShuffeleNetV2 (Ma et al., 2018), Inception-ResNet -
V1 (Szegedy et al., 2017), and a series of VTs, such as
ViT (Dosovitskiy et al., 2020), BotNet (Srinivas et al., 2021),
DeiT (Touvron et al., 2020), T2T-ViT (Yuan et al., 2021). The
above models are set with uniform hyperparameters, as detailed
in Table 3.
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TABLE 6 | Similarity comparison between denoised image and original image.

ToN / DM TROF MF: (3 × 3) MF: (5 × 5) WF: (3 × 3) WF: (5 × 5) MaxF MinF GMF AMF

PN 98.36 98.24 98.00 98.32 98.15 91.97 99.73 99.21 98.11

MN:0.2 99.02 90.29 89.45 91.98 91.08 71.15 99.02 98.89 90.65

MN:0.04 99.51 99.51 99.51 95.57 95.06 82.35 99.51 98.78 94.92

GN 0.01-0 96.79 96.45 96.13 96.75 96.40 85.01 99.44 98.93 96.28

GN 0.01-0.5 98.60 98.52 98.35 98.97 98.81 96.32 99.67 64.35 98.73

GN 0.03-0 94.64 93.99 93.56 94.71 94.71 76.46 99.05 98.74 93.82

GN 0.03-0.5 97.11 96.95 96.66 98.09 97.79 94.04 99.24 66.15 97.54

SPN:0.01 99.28 99.38 99.14 99.60 99.37 95.66 99.71 99.44 99.16

SPN:0.03 98.71 98.57 98.57 99.29 98.87 92.28 99.24 99.26 98.80

PpN 98.45 98.53 98.30 99.46 99.02 96.30 99.04 99.61 98.61

BGN 97.93 97.74 97.74 97.91 97.69 90.00 99.66 99.16 97.60

PGN 96.97 96.63 96.33 97.16 96.85 85.82 99.47 98.98 96.47

SN 97.90 97.97 97.75 99.27 98.63 99.27 98.63 99.64 98.15

ToN, types of noise; DM, denoising method. (In [%]).

TABLE 7 | Comparison of variance between denoised image and original image.

ToN / DM TROF MF: (3 × 3) MF: (5 × 5) WF: (3 × 3) WF: (5 × 5) MaxF MinF GMF AMF

PN 1.49 0.77 1.05 0.52 0.66 3.68 2.99 0.41 0.88

MN,v: 0.2 32.49 14.94 15.65 9.33 11.36 39.22 32.49 4.32 13.35

MN,v: 0.04 10.89 10.89 10.89 2.99 3.71 14.41 10.89 0.98 4.28

GN,m: 0,v: 0.01 3.81 3.06 3.44 2.06 2.62 11.68 7.36 1.16 3.00

GN,m: 0.5,v: 0.01 0.89 0.36 0.41 0.21 0.28 0.99 1.74 61.93 0.43

GN,m: 0,v: 0.03 8.60 7.78 8.34 5.04 5.04 27.23 16.55 4.24 7.33

GN,m: 0.5,v: 0.03 1.60 1.08 1.18 0.55 0.73 2.39 3.06 56.17 1.05

SPN,d: 0.01 1.92 1.21 1.46 0.10 0.30 6.37 2.90 4.73 1.25

SPN,d: 0.03 3.84 3.39 3.39 0.33 1.09 14.64 5.18 13.02 3.15

PpN 2.88 2.18 2.44 0.17 0.72 3.72 4.48 16.84 2.09

BGN 2.35 1.63 1.94 1.09 1.38 6.67 4.57 0.84 1.66

PGN 3.79 3.04 3.42 1.67 2.13 11.56 7.33 1.23 2.98

SN 3.86 3.17 3.44 0.31 1.35 4.82 6.25 5.58 2.94

(In [%]).

2.2.5. Object Detection Method
In this article, we use Faster RCNN (Ren et al., 2015) and Mask
RCNN (He et al., 2017) to test the feasibility of the EMDS-6
dataset for object detection (Li C. et al., 2021). Faster RCNN
provide excellent performance in many areas of object detection.
The Mask RCNN is optimized on the original framework of
Faster RCNN. By using a better skeleton (ResNet combined with
FPN) and the AlignPooling algorithm, Mask RCNN achieves
better detection results than Faster RCNN.

In this experiment, the learning rate is 0.0001, the model
Backbone is ResNet50, and the batch size is 2. In addition, we
used 25% of the EMDS-6 data as training, 25% is for validation,
and the rest is for testing.

2.3. Evaluation Methods
2.3.1. Evaluation Method for Image Denoising
This article uses mean-variance and similarity indicators to
evaluate filter performance. The similarity evaluation index can

be expressed as 1, where i represents the original image, i1
represents the denoised image,N represents the number of pixels,
and A represents the similarity between the denoised image and
the original image. When the value of A is closer to 1, the
similarity between the original image and the denoised image is
higher, and the denoising effect is significant.

A = 1−

∑n
i=1|i1 − i|

N × 255
(1)

The variance evaluation index can be expressed as Equation (2),
where S denotes the mean-variance, L(i,j) represents the value
corresponding to the coordinates of the original image (i, j), and
B(i,j) the value associated with the coordinates of the denoised
image (i, j). When the value of S is closer to 0, the higher the
similarity between the original and denoised images, the better
the denoising stability.
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TABLE 8 | Evaluation of feature extraction methods using EMDS-6 dataset.

Method/Index Dice Jaccard Recal

k-means 47.78 31.38 32.11

MRF 56.23 44.43 69.94

Otsu 45.23 33.82 40.60

REG 29.72 21.17 26.94

RSMA 37.35 26.38 30.18

Watershed 44.21 32.44 40.75

U-Net 88.35 81.09 89.67

(In [%]).

TABLE 9 | Different results obtained by applying different features in the EMDS-6

classification experiments using SVM.

FT LBP GLCM HOG

Acc 32.38 10.24 22.98

HSV Geo Hu RGB

29.52 50.0 7.86 28.81

FT, Feature type; Acc, Accuracy. (In [%]).

S = 1−

∑n
i=1(L(i,j) − B(i,j))

2

∑n
i=1 L

2
(i,j)

(2)

2.3.2. Evaluation Method for Image Segmentation
We use segmented images and GT images to calculate Dice,
Jaccard and Recall evaluation indexes. Among the three
evaluationmetrics, the Dice coefficient is pixel-level, and the Dice
coefficient takes a range of 0-1. The more close to 1, the better the
structure of the model. The Jaccard coefficient is often used to
compare the similarity between two samples. When the Jaccard
coefficient is larger, the similarity between the samples is higher.
The recall is a measure of coverage, mainly for the accuracy of
positive sample prediction. The computational expressions of
Dice, Jaccard, and Recall are shown in Table 4.

2.3.3. Evaluation Index of Image Feature Extraction
Image features can be used to distinguish image classes. However,
the performance of features is limited by the feature extraction
method. In this article, we select ten classical feature extraction
methods. Meanwhile, the classification accuracy of SVM is used
to evaluate the feature performance. The higher the classification
accuracy of SVM, the better the feature performance.

2.3.4. Evaluation Method for Image Classification
In Experiment 1 of Section 2.2.4, we use only the accuracy
index to judge the performance of traditional machine learning
classifiers.The higher the number of EMs that can be correctly
classified, the better the performance of this classifier. In
Experiment 2, the performance of deep learning models needs to
be considered in several dimensions. In order to more accurately
evaluate the performance of different deep learning models, we
introduce new evaluation indicators. The evaluation indexes and
the calculation method of the indexes are shown in Table 5. In

Table 5, TP means the number of EMs classified as positive and
also labeled as positive. TN means the number of EMs classified
as negative and also labeled as negative. FP means the number of
EMs classified as positive but labeled as negative. FN means the
number of EMs classified as negative but labeled as positive.

2.3.5. Evaluation Method for Object Detection
In this article, Average Precision (AP) and Mean Average
Precision (mAP) are used to evaluate the object detection results.
AP is a model evaluation index widely used in object detection.
The higher the AP, the fewer detection errors. AP calculation
method is shown in Equations 3 and 4.

AP =

N∑

n=1

(rn+1 − rn)Pinterp(rn+1) (3)

Pinterp(rn+1) = maxr̂=rn+1
= P(r̂) (4)

Among them, rn represents the value of the nth recall, and p(r̂)
represents the value of precision when the recall is r̂.

3. EXPERIMENTAL RESULTS AND
ANALYSIS

3.1. Experimental Results Analysis of
Image Denoising
We calculate the filtering effect of different filters for different
noises. Their similarity evaluation indexes are shown in Table 6.
From Table 6, it is easy to see that the GMF has a poor filtering
effect for GN 0.01-0.5. The TROF and theMF have better filtering
effects for MN:0.04.

In addition, the mean-variance is a common index to evaluate
the stability of the denoising method. In this article, the variance
of the EMDS-6 denoised EM images and the original EM images
are calculated as shown in Table 7. As the noise density increases,
the variance significantly increases among the denoised and the
original images. For example, by increasing the SPN density
from 0.01 to 0.03, the variance increases significantly under
different filters. This indicates that the result after denoising is
not very stable.

From the above experiments, EMDS-6 can test and evaluate
the performance of image denoising methods well. Therefore,
EMDS-6 can provide strong data support for EM image
denoising research.

3.2. Experimental Result Analysis of Image
Segmentation
The experimental results of the seven different image
segmentation methods are shown in Table 8. In Table 8,
the REG and RSMA have poor segmentation performance, and
their Dice, Jaccard, and Recall indexes are much lower than
other segmentation methods. However, the deep learning-based,
U-Net, has provided superior performance. By comparing these
image segmentation methods, it can be concluded that EMDS-6
can provide strong data support for testing and assessing image
segmentation methods.
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TABLE 10 | Results of experiments to classify Geo features using traditional classifiers.

Classifier type SVM: linear SVM: polynomial SVM: RBF SVM: sigmoid RF,nT: 30

Accuracy 51.67 27.86 28.81 14.29 98.33

kNN,k: 1 kNN,k: 5 kNN,k: 10 RF,nT: 10 RF,nT: 20 –

23.1 17.86 17.38 96.19 97.86 –

(In [%]).

TABLE 11 | Classification results of different deep learning models.

Model Precision (%) Recall (%) F1-score (%) Acc (%) PS (MB) Time (S)

Xception 44.29 45.36 42.40 44.29 79.8 1,079

ResNet34 40.00 43.29 39.43 40.00 81.3 862

Googlenet 37.62 40.93 35.49 37.62 21.6 845

Densenet121 35.71 46.09 36.22 35.71 27.1 1,002

Densenet169 40.00 40.04 39.16 40.00 48.7 1,060

ResNet18 39.05 44.71 39.94 39.05 42.7 822

Inception-V3 35.24 37.41 34.14 35.24 83.5 973

Mobilenet-V2 33.33 38.43 33.97 33.33 8.82 848

InceptionResnetV1 35.71 38.75 35.32 35.71 30.9 878

Deit 36.19 41.36 36.23 36.19 21.1 847

ResNet50 35.71 38.58 35.80 35.71 90.1 967

ViT 32.86 37.66 32.47 32.86 31.2 788

ResNet101 35.71 38.98 35.52 35.71 162 1,101

T2T-ViT 30.48 32.22 29.57 30.48 15.5 863

ShuffleNet-V2 23.33 24.65 22.80 23.33 1.52 790

AlexNet 32.86 34.72 31.17 32.86 217 789

VGG11 30.00 31.46 29.18 30.00 491 958

BotNet 28.57 31.23 28.08 28.57 72.2 971

VGG13 5.24 1.82 1.63 5.24 492 1,023

VGG16 4.76 0.23 0.44 4.76 512 1,074

VGG19 4.76 0.23 0.44 4.76 532 1,119

Acc, Accuracy; PS, Params size.

TABLE 12 | AP and mAP based on EMDS-6 object detection of different types of EMs.

Model\sample (AP) Actinophrys Arcella Aspidisca Codosiga Colpoda Epistylis Euglypha Paramecium

Faster RCNN 0.95 0.75 0.39 0.13 0.52 0.24 0.68 0.70

Mask RCNN 0.70 0.85 0.40 0.18 0.35 0.53 0.25 0.70

Model\sample Rotifera Vorticella Noctiluca Ceratium Stentor Siprostomum K.Quadrala Euglena

Faster RCNN 0.69 0.30 0.56 0.61 0.47 0.60 0.22 0.37

Mask RCNN 0.40 0.15 0.90 0.70 0.65 0.7 0.45 0.25

Model\sample Gymnodinium Gonyaulax Phacus Stylongchia Synchaeta mAP – –

Faster RCNN 0.53 0.25 0.43 0.42 0.61 0.50 – –

Mask RCNN 0.60 0.28 0.50 0.68 0.48 0.51 – –

3.3. Experimental Result Analysis of
Feature Extraction
In this article, we use the SVM to classify different features.
The classification results are shown in Table 9. The Hu features
performed poorly, while the Geo features performed the best. In
addition, the classification accuracy of FT, LBP, GLCM, HOG,
HSV and RGB features are also very different. By comparing
these classification results, we can conclude that EMDS-6 can be
used to evaluate image features.

3.4. Experimental Result Analysis of Image
Classification
This article shows the traditional machine learning classification
results in Table 10, and the deep learning classification results are
shown in Table 11. In Table 10, the RF classifier performs the
best. However, the performance of the SVM classifier using the
sigmoid kernel function is relatively poor. In addition, there is
a big difference in Accuracy between other classical classifiers.
From the computational results, the EMDS-6 dataset is able
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FIGURE 4 | Faster RCNN and Mask RCNN object detection results.

TABLE 13 | EMDS history versions and latest versions.

Dataset ECN OIN GTIN Dataset link Functions

EMDS-1 (Li et al., 2013) 10 200 200 - - IC, IS

EMDS-2 (Li et al., 2013) 10 200 200 - - IC ,IS

EMDS-3 (Li et al., 2016) 15 300 300 - - IC, IS

EMDS-4 (Zou et al., 2016) 21 420 420 https://research.project-10.

de/em-classiffication/

IC, IS, IR

EMDS-5 (Li Z. et al., 2021) 21 420 840 (S 420, M 420) https://github.com/

NEUZihan/EMDS-5

ID, IED, SoIS, MoIS, SoFE, MoFE, IR

EMDS-6 [In this article] 21 840 840 https://figshare.com/articles/

dataset/EMDS6/17125025/1

ID, IC, IS, IFE, IOD

IC, Image Classification; IS, Image Segmentation; SoIS, Single-object Image Segmentation; MoIS, Multi-object Image Segmentation; SoFE, Single-object Feature Extraction; MoFE,

Multi-object Feature Extraction; IR, Image Retrieval; IFE, Image Feature Extraction; IOD, Image Object Detection; IED, Image Edge Detection; ID, Image denoising; ECN, EM Class

Number; OIN, Original Image Number; GTIN, Ground Truth Image Number; S, Single Object; M, Multiple object.

to provide data support for classifier performance evaluation.
According to Table 11, the classification accuracy of Xception is
44.29%, which is the highest among all models. The training of
deep learning models usually consumes much time, but some
models have a significant advantage in training time. Among
the selected models, ViT consumes the shortest time in training
samples. The training time of the ViT model is the least.
The classification performance of the ShuffleNet-V2 network is
average, but the number of parameters is the least. Therefore,
experiments prove that EMDS-6 can be used for the performance
evaluation of deep learning classifiers.

3.5. Experimental Result Analysis of Image
Object Detection
The AP and mAP indicators for Faster CNN and Mast CNN
are shown in Table 12. We can see from Table 12 that Faster

RCNN and Mask RCNN have very different object detection
effects based on their AP value. Among them, the Faster RCNN
model has the best effect on Actinophrys object detection. The
Mask RCNNmodel has the best effect on Arcella object detection.
Based on themAP value, it is seen that Faster RCNN is better than
Mask RCNN for object detection. The result of object detection
is shown in Figure 4. Most of the EMs in the picture can be
accuratelymarked. Therefore it is demonstrated that the EMDS-6
dataset can be effectively applied to image object detection.

3.6. Discussion
As shown in Table 13, six versions of the EMs dataset
are published. In the iteration of versions, different EMSs
assume different functions. Both EMDS-1 and EMDS-2 have
similar functions and can perform image classification and
segmentation. In addition, both EMDS-1 and EMDS-2 contain
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ten classes of EMs, 20 images of each class, with GT images.
Compared with the previous version, EMDS-3 does not add new
functions. However, we expand five categories of EMs.

We open-source EMDSs from EMDS-4 to the latest version of
EMDS-6. Compared to EMDS-3, EMDS-4 expands six additional
classes of EMs and adds a new image retrieval function. In
EMDS-5, 420 single object GT images and 420multiple object GT
images are prepared, respectively. Therefore EMDS-5 supports
more functions as shown in Table 13. The dataset in this article
is EMDS-6, which is the latest version in this series. EMDS-6
has a larger data volume compared to EMDS-5. EMDS-6 adds
420 original images and 420 multiple object GT images, which
doubles the number of images in the dataset. With the support
of more data volume, EMDS-6 can achieve more functions in
a better and more stable way. For example, image classification,
image segmentation, object and object detection.

4. CONCLUSION AND FUTURE WORK

This article develops an EM image dataset, namely EMDS-6.
EMDS-6 contains 21 types of EMs and a total of 1680 images.
Including 840 original images and 840 GT images of the same
size. Each type of EMs has 40 original images and 40 GT
images. In the test, 13 kinds of noises such as multiplicative
noise and salt and pepper noise are used, and nine kinds of
filters such as Wiener filter and geometric mean filter are used
to test the denoising effect of various noises. The experimental
results prove that EMDS-6 has the function of testing the
filter denoising effect. In addition, this article uses 6 traditional
segmentation algorithms such as k-means and MRF and one
deep learning algorithm to compare the performance of the
segmentation algorithm. The experimental results prove that
EMDS-6 can effectively test the image segmentation effect. At
the same time, in the image feature extraction and evaluation
experiment, this article uses 10 features such as HSV and RGB
extracted from EMDS-6. Meanwhile, the SVM classifier is used
to test the features. It is found that the classification results of
different features are significantly different, and EMDS-6 has the
function of testing the pros and cons of features. In terms of
image classification, this article designs two experiments. The

first experiment uses three classic machine learning methods

to test the classification performance. The second experiment
uses 21 deep learning models. At the same time, indicators
such as accuracy and training time are calculated to verify the
performance of the model frommultiple dimensions. The results
show that EMDS-6 can effectively test the image classification
performance. In terms of object detection, this article tests Faster
RCNN and Mask RCNN, respectively. Most of the EMs in the
experiment can be accurately marked. Therefore, EMDS-6 can
be effectively applied to image object detection.

In the future, we will further expand the number of EM images
of EMDS-6. At the same time, we will try to apply EMDS-6
to more computer vision processing fields to further promote
microbial research development.
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Microbial communities are ubiquitous and carry an exceptionally broad metabolic
capability. Upon environmental perturbation, microbes are also amongst the first natural
responsive elements with perturbation-specific cues and markers. These communities
are thereby uniquely positioned to inform on the status of environmental conditions.
The advent of microbial omics has led to an unprecedented volume of complex
microbiological data sets. Importantly, these data sets are rich in biological information
with potential for predictive environmental classification and forecasting. However, the
patterns in this information are often hidden amongst the inherent complexity of the data.
There has been a continued rise in the development and adoption of machine learning
(ML) and deep learning architectures for solving research challenges of this sort. Indeed,
the interface between molecular microbial ecology and artificial intelligence (AI) appears
to show considerable potential for significantly advancing environmental monitoring
and management practices through their application. Here, we provide a primer for
ML, highlight the notion of retaining biological sample information for supervised ML,
discuss workflow considerations, and review the state of the art of the exciting, yet
nascent, interdisciplinary field of ML-driven microbial ecology. Current limitations in
this sphere of research are also addressed to frame a forward-looking perspective
toward the realization of what we anticipate will become a pivotal toolkit for addressing
environmental monitoring and management challenges in the years ahead.

Keywords: machine learning, microbial ecology, metagenomics, environmental monitoring, microbiology,
artificial intelligence, microbial omics, predictive modeling

INTRODUCTION

Expansion of the human population is increasing resource consumption and discharge of waste
products, placing significant burdens on the biosphere (Burrell et al., 2020; Grantham et al., 2020;
Lv et al., 2020; Albert et al., 2021; Lu et al., 2021; Naumann et al., 2021; Ortiz-Bobea et al., 2021).
These activities are contributing to the multifaceted pollution of the global ecological systems
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(Julinová et al., 2018; Santos et al., 2019; Turan et al., 2019;
Vardhan et al., 2019; Briffa et al., 2020; Pulster et al., 2020;
Simul Bhuyan et al., 2021; Sohrabi et al., 2021; Li and Fantke,
2022). Consequently, we are witnessing an accelerating loss of
biodiversity, habitats, and climate change (Sintayehu, 2018; Brühl
and Zaller, 2019). Gauging and forecasting such anthropogenic
environmental impacts is often limited in scope due to scale-up
challenges. At large scale, this endeavor remains an inordinately
complex and resource-intensive task and therefore represents a
major scientific goal.

At 93 gigatons carbon (Gt C), microbial communities
comprise approximately 20% of the total estimated global
biomass and exclusively form the deep subsurface biome
(estimated at 70 Gt C) (Bar-On et al., 2018). These communities
are ubiquitously distributed across the biosphere where their
activities are central in shaping the environments of our
planet (Gibbons and Gilbert, 2015); microbial communities
possess exceptionally broad metabolic capabilities, enabling their
utilization of many xenobiotics (Katsuyama et al., 2009; Junghare
et al., 2019). Microbes can have short generation times and are
amongst the first responders with perturbation-specific cues and
markers (De Anda et al., 2018; Astudillo-García et al., 2019) these
can therefore serve as a valuable source of biological information
for establishing the status of their respective environmental
niches and can serve as dynamic biosensors for monitoring and
tracing environmental changes (Cesare et al., 2020; Morimura
et al., 2020).

Omics methodologies enable rapid community-wide profiling
of microbial populations across environmental perturbations.
Omics data are information-rich, leading to an unprecedented
volume of large multidimensional data sets with potential for
predictive environmental classification and forecasting. However,
the inherent complexity in these data conceals the patterns
underlying the biological information, challenging manual
curation and interpretation. Machine learning (ML) is well
suited to address such challenges and there has been a sharp
rise in their application in health-oriented microbiomics (Zeller
et al., 2014; Szafrański et al., 2015; Knight et al., 2018). ML-
driven omics is now being applied to address environmental
challenges (Figure 1). Here, we will discuss the state of the art in
this interdisciplinary field and highlight considerations, ongoing
limitations, and challenges for future work. The interface between
ML and molecular microbial ecology (MME) holds great promise
for significantly advancing environmental monitoring and
management practices. Indeed, ML will likely become a routine
toolkit for the molecular microbiologist and will be essential to
manage large multidimensional environmental omics data.

MAIN BODY

A Primer on Machine Learning
Machine learning approaches can be supervised (SML) or
unsupervised (USML). In SML methods, data sets are
reduced/converted into the sets of features which serve as
the input and form a variable for the SML model. Features are
measurable and informative properties of the data, e.g., taxa

abundances, annotated with metadata of interest (labels) which
define the desired output (the target). Feature sets are subset
into groups for model training and model testing/validation for
SML learning. The SML architecture then attempts to derive a
model that can predict the label for new input data. SML can be
carried out to address regression or classification challenges. For
regression, the SML tool predicts values for a continuous series
(such as levels of environmental pollutants). For classification,
the SML will predict the conditional label pertaining to the
sample (such as contamination status). Deep learning (DL) is a
subset of SML, which employs neural networks with multiple
(>3) processing layers and has the highest capacity for learning.
For USML, no label or target output is defined; instead the USML
architecture establishes patterns in the data naively, usually
by clustering or ordination projections. USML is particularly
useful for exploratory analysis of microbial omics data and
includes ordination methods that are commonly applied in
microbiology. Here we focus primarily on SML applications
for environmentally centered microbial omics research. For
more details on the underlying principles of ML for microbial
ecology, readers are encouraged to see reviews (Ghannam and
Techtmann, 2021; Goodswen et al., 2021).

Omics Data Sets Are Rich in Learnable
Biological Information
Anthropogenic perturbations give rise to spatiotemporal
patterns in microbial communities by influencing the
following: abundances, interactions between, and dispersal
of community members (Blaser et al., 2016; Liao et al., 2018).
Community dynamics are perturbation-specific, reproducible,
and predictable, affecting taxonomic diversity, differential
abundances in taxa, functional gene clusters, and shifts in
metabolic circuits which influence microbial interactions
(Figure 1). Microbial omics approaches are rapidly advancing
our views of these complex shifts and have opened myriad
avenues for the utilization of microbial data to address
environmental challenges. Often these omics approaches
scrutinize a single systems level (e.g., DNA or RNA), but can
synergistically provide more information when integrated with
supporting omics data from other systems layers (Franzosa
et al., 2015). Such integrative omics represents a powerful
means to understand communities through cross-systems-level
descriptions but is in its infancy and yet to be much applied in
this area. A central challenge for any ML-led omics analyses is
the preservation of the biological information hidden within
the microbial community, throughout the workflow (Figure 1),
to allow for effective learning. There are numerous ways via
which the biological information in omics samples can be
compromised. These pitfalls occur at virtually all decision points
in the omics workflow and begin with the experimental design
phase. The significance of a given pitfall is highly dependent
on the phenomena under investigation and aims of the study
but common pitfalls include inadequate sampling, improper
preservation, sample transport conditions or subcommunity
sampling (e.g., planktonic/sessile), biases arising from sample
handling (e.g., during extraction and amplification), the choice of
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FIGURE 1 | The interface of microbial omics and machine learning (ML). A generalized and simplified overview of the workflows is presented highlighting the major
steps in the microbial omics and ML workflows as they relate to one another along with key outcomes obtainable from the application of ML to omics data. Microbial
community responses (biological information on which learning is aimed) are summarized below the cartoon snapshot of a contaminated environment of interest.
Here, HC cont., hydrocarbon contamination; PAH, polyaromatic hydrocarbons (as examples of targets in petroleum hydrocarbon scenarios); QC, quality control;
ASV, amplicon sequence variant (ASVs are given here as an example of an omics classification, other examples include the often used OTU, genes, mRNA
transcripts, protein categories or metabolite IDs); DL, deep learning; ANN, artificial neural networks (shallow); RF, random forest; SVM, support vector machine; GB,
gradient boost; LR, logistic regression; SMOTE, synthetic minority oversampling technique; SML, supervised machine learning; and MP, model performance.
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sequencing/liquid chromatography-mass spectrometry (LC–MS)
platform and analytical methodology, classification and filtering
of omics data (which can remove rare but important taxa,
transcripts, or proteins), artifacts from data transformation and
normalization approaches (correcting for library size is especially
essential for meta-analyses), and the choice and engineering of
features. A number of considerations can help in preserving
the biological information for omics-led SML, and many are
discussed in the following.

Workflow Considerations
Microbial Omics Input
Microbial omics pitfalls, from sampling to the bioinformatics
pipeline, can reduce or bias the information yielded (Gutleben
et al., 2018; Kaster and Sobol, 2020). Typically, some trade-off
must be made in the experimental design, for which options
have been suggested (Franzosa et al., 2015). In metataxonomics,
resolution is usually limited to the genus level, though it is
the most commonly used omics input for SML (Table 1),
wherein relative operational taxonomic unit (OTU) abundances
form the feature set (Miao et al., 2020; Janßen et al., 2021;
Kim and Oh, 2021). However, the use of OTUs is inherently
limiting for retaining community information and can miss
important taxonomic groups. Indeed, since the development of
the more biologically meaningful amplicon sequence variants
(ASVs; Callahan et al., 2017), the absence of ASVs in most
metataxonomic studies is striking. As ASVs represent a more
accurate basis for taxa assignment, it will be interesting to see how
their application influences ML performances in future.

Metagenomics is highly sensitive for low-abundance taxa,
but is rarely applied for SML and carries additional costs
which may limit sampling and options for ML (Chen and
Tyler, 2020). Importantly, metagenomic approaches do not
always convey a clear advantage over the more cost-effective
metataxonomic approach (Xu et al., 2014). The choice between
metataxonomics and metagenomics is evidently not clear-
cut and should be considered in light of the expected
community under study, choice of sequencing platform, and
research goals. Microbial omics inputs are most often derived
from closed-reference databases, leading to inevitable loss of
learnable biological information in environmental samples due to
unclassified/misclassified data (Chen and Tyler, 2020). However,
the development of ML and DL tools (Liang et al., 2020) for
enhancing taxonomic classification in metagenomic data sets
could prove helpful. Alternatively, the direct use of biological
sequences (from microbial omics surveys) circumvents this
issue (by forgoing categorical assignment), thereby permitting
the inclusion of more comprehensive feature spaces, at the
cost of reducing the immediate interpretability for the user.
Informative abstractions of omics data, such as the use of
K-mer distributions as a feature set, have shown success
in both taxonomic (Fiannaca et al., 2018) subtyping (Solis-
Reyes et al., 2018) and phenotypic (Aun et al., 2018)
classification, and are applicable to environmental applications.
Indeed, K-mer abstractions have shown predictive potential
for classifying sample environment and host-phenotype (an

environmental status) that excels over OTU features (Asgari et al.,
2018). Environmental metatranscriptomics-led SML is currently
limited. However, the approach has been shown to uncover
the mixotrophic processes of protists in response to nutrient
gradients in the Pacific Ocean (Lambert et al., 2021), thereby
demonstrating that trophic modes can be readily predicted from
metatranscriptomic data.

Choice of Machine Learning Architecture
There is a broad selection of the SML tools to select from
and each carries its own advantages and limitations (Goodswen
et al., 2021). Not a single architecture performs best in all
environmental application cases and users must make a trade-off
in terms of interpretability, learning performance, computational
costs, data requirements, and ease of implementation (Ghannam
and Techtmann, 2021). At the outset, selecting a set of
architectures can help to ensure the delivery of research
goals. Random forest (RF) is a popular choice for microbial
omics-driven SML for its learning capacity, straightforward
implementation, and high degree of interpretability (Ghannam
and Techtmann, 2021). For especially complex tasks, or
where knowledge is limited, DL approaches (multi-layered
architectures) have the highest performance, as they can self-
learn (i.e., do not require user extraction of) the feature
set (Christin et al., 2019). However, DL comes with elevated
computational costs and low interpretability of the underlying
model (“black box” effect) and requires large volumes of data
(thousands of samples). Consequently, though very promising,
DL approaches for environmental omics are currently limited.

Feature Engineering
Feature selection and engineering are crucial for generating
meaningful SML-based ecological models. Reducing the feature
space can help to limit overfitting, reduce computational costs,
improve cross-study comparison, and improve generalized
prediction performance across data sets (Ghannam and
Techtmann, 2021). However, care is needed when reducing
features for training as biologically meaningful features can
be missed if feature selection is based on abundance. This is
especially so when assessing anthropogenic perturbations of
pollutants in the environment, wherein the rare microbiome
(taxa representing <0.1% of the total community) comprise a
significant reservoir of gene clusters that enable the utilization
and degradation of xenobiotic organic compounds (Wang
et al., 2017). Taking embedded approaches for feature selection
(that can evaluate across the full feature space) (Wang et al.,
2017) or a biologically driven feature selection method (such as
taxonomically aware hierarchical feature engineering) (Oudah
and Henschel, 2018) may help in optimizing feature selection
in metataxonomics-driven ML applications. Feature selection
methods designed for functional feature sets are still notably
lacking in this space.

Conventional statistics require assumptions on the underlying
data and care is needed, given the compositional nature of
microbial omics data sets (Gloor et al., 2017). For example,
conventional ecological models often assume monotonicity
in relationships, which can hinder ecological explanations
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TABLE 1 | Example applications of the SML of microbial Omics data for addressing environmental challenges.

Environment Niche Application Omics Input data Feature Target(s) SML
architectures

Software References

Aquatic Marine (Coral
Reef)

Prediction of environmental
status

metataxonomics 16S rRNA
OTUs

OTU
abundance

Eutrophication
indicators and
temperature

RF Caret and RF R packages Glasl et al.,
2019

Industrial WWTP Prediction of environmental
variable to identify key
subpopulations

metataxonomics 16S rRNA
OTUs

OTU
abundance,
PCA
coordinates

WWTP water
temperature

LR, RF, SVML,
DT, KNN,
SVMRBF

Scikit-Learn Kim and Oh,
2021

Terrestrial Soil1 Prediction of carbon cycling metataxonomics 16S rRNA
OTUs

OTU
abundance

[DOC] RF, ANN THEANO, Scikit-Learn Thompson
et al., 2019

Terrestrial Compost Classification of microbial
biomarkers

metataxonomics 16S rRNA
OTUs

OTU
abundance

Compost cycle RF RF R package Zhang et al.,
2020

Terrestrial Ground
water + Soil1

Prediction of environmental
contaminants

metataxonomics 16S rRNA
OTUs

OTU
abundance

[dioxane] and
[CVOCs]

RF Miao et al.,
2020

Terrestrial Soil Prediction of environmental
quality

metataxonomics 16S rRNA
OTUs

OTU
abundance

Soil
physicochemical
features

RF RF R package Hermans et al.,
2020

Aquatic Marine (coastal
waters)1

Prediction of environmental
contaminants

metataxonomics 16S rRNA
OTUs

OTU
abundance,
16S rRNA gene
sequences

Glyphosate RF, ANN RF R package and DL4J Janßen et al.,
2019

Aquatic Freshwater
(river)

Classification of
anthropogenic pathogen
loads

metataxonomics2 16S rRNA
OTUs

OTU
abundance

Fecal source RF, MCMC RF R package and
SourceTracker

Dubinsky et al.,
2016

Aquatic Marine and
Freshwater

Classification of microbial
biomarkers

metataxonomics 16S rRNA and
ITS OTUs

OTU
abundance

Plastisphere
communities

RF RF R package Li et al., 2021

Aquatic Marine
sediment
(munitions
dumpsite)

Prediction of environmental
contaminants

metataxonomics 16S rRNA
OTUs

OTU
abundance

TNT RF, ANN Ranger R package ANN R
keras
framework + TensorFlow
back end

Janßen et al.,
2021

Aquatic Freshwater
(river)

Classification of sample
origin

metataxonomics 16S rRNA
OTUs

OTU
abundance (top
taxa)

Sample origin RF RF R package Wang et al.,
2021

Aquatic Marine (oceanic
waters)

Classification of trophic
modes

Metatranscriptomics Gene
expression
levels

expression
levels of
selected Pfam
entries

Trophic mode
(photo/hetero/mixo)

RF, DT, ANN NR and XGBoost Lambert et al.,
2021

Terrestrial Soil Prediction of crop
productivity

metagenomics Shotgun
sequencing

OTU
abundance

Crop productivity RF Ranger R package Chang et al.,
2017

Terrestrial Soil Prediction of soil
phylogroups from
environmental metadata

metagenomics NR NR Listeria species RF RF R package Liao et al.,
2021

1 Indirectly studied in microcosms.
2Using PhyloChip array.
Here, ANN, Artificial Neural Network; CVOCs, Chlorinated Volatile Organic Compounds; DOC, Dissolved Organic Carbon; DT, Decision Tree; KNN, K-Nearest Neighbors; LR, Logistic Regression; MCMC, Markov Chain
Monte Carlo; NR, Not reported; RF, Random Forest; SVML, Support Vector Machine (SVM) with a linear kernel; SVMRBF, SVM with a radial basis function kernel; TNT, trinitrotoluene; WWTP, Wastewater Treatment Plant.
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of community variance across study sites. By applying SML
(allowing for non-monotonic feature capture), the ability to
capture this variance can increase nine-fold (Fontaine et al.,
2021). It is important to note that the goal of SML should
not be to replace classical statistical modeling, but rather to
complement it. Integrating these two approaches presents an
promising opportunity to leverage their advantages for predictive
environmental microbiology (Lopatkin and Collins, 2020) and
monitoring. For multi-omics studies, feature selection and
engineering becomes increasingly complex with the successive
systems levels, and there is much to be done in this area. In
such studies, functional data across systems levels will likely need
to be empirically assessed prior to SML to identify the most
informative biomarkers for learning (Xu et al., 2014).

Evaluating Data Leakage
Data leakage is a subtle but important aspect of ML, referring
to the unintended use or influence of data (that should not be
available at the time of prediction) during the training process.
This often occurs when the features used for training hide
within themselves the result of the prediction, resulting in an
overestimation of performance of the model during validation
(Chiavegatto Filho et al., 2021). Due to the subtleties with which
this can occur, avoiding data leakage is challenging and should
be evaluated on a case by case basis. Important aspects for
consideration here have been discussed previously (Wirbel et al.,
2021) and include (1) data filtering that is influenced by the target
label and (2) the splitting of dependent data (e.g., replicates and
time-series data points) across training and validation sets. The
use of an externally generated test data set (handled separately
from the training set) for additional validation checks can help
(Oyetunde et al., 2019; Wirbel et al., 2021), though data leakage
is seldom discussed in microbial omics papers that use SML. We
urge future authors in this space to consider including at least a
statement on leakage assessment in studies based on SML.

Applications of Molecular Microbial
Ecology–Machine Learning for
Environmental Challenges
Microbes as Environmental Biosensors
Anthropogenic impacts are motivating the development
of cost-effective and scalable environmental bioassessment
methodologies (Fruehe et al., 2021). Microbes have long
been recognized as potential in situ biosensors for following
human impacts (Su et al., 2011), allowing for highly accurate
quantitative SML predictions of the perturbation. Indeed,
metataxonomic data can be valuable for the prediction of a
variety of environmental contaminants (Table 1), spanning from
relatively inert plastics (Li et al., 2021) to petroleum hydrocarbons
[which illicit strong responses with detectable influences even
after the pollutant is degraded and undetectable by conventional
measures (Smith et al., 2015)]. Hydrocarbonoclastic indicator
species have also been identified as key biosensors in ML-
based bioprospecting of hydrocarbon seepage from subsurface
reservoirs and can improve the likelihood of success in drilling
for new assets (de Dios Miranda et al., 2019; Chitu et al., 2022).
The same approach is also being explored as the potential

early-warning indicators of leakage from hydrocarbon transport
lines (Shaheen et al., 2011). Indeed, the SML of microbial
fingerprints has even demonstrated reasonable predictions
(accuracies of 72–85%) of the future production of hydrocarbon
reservoirs (using metataxonomic input) (Zijp et al., 2021) which
can facilitate decision-making for enhanced asset management.
These approaches thereby have real potential for reducing the
carbon footprint and ecological impact of upstream oil and gas
activities.

Microbes as Predictors of Environmental Status
Microbes have proved valuable as ecological assessment
indicators in multiple diverse environments (Astudillo-García
et al., 2019; Glasl et al., 2019; Hermans et al., 2020; Chen et al.,
2021). Moreover, improvements in sequencing technologies
are facilitating the upscaling and deployment of omics-based
ML for more ambitious environmental monitoring and
mitigation applications (Wang et al., 2021). These indicators
can reveal important relationships for land management, when
conventional field measurements are unhelpful (Chang et al.,
2017). Indeed, the SML of microbial 16S rRNA abundances
can directly predict soil productivity in arable land and risks
posed for agriculture (Yuan et al., 2020). USML is routinely
applied via ordination techniques to establish the organization of
microbiome data in relation to their environmental parameters.
However, in instances where conventional ordinations fail to
determine clear relationships, SML may still yield community
subpopulations that can serve as predictors for environmental
parameters and processes of interest. For example, the influence
between temperature and key phosphate and glycogen-
accumulating organisms involved in the enhanced biological
phosphorous removal processes of a set of wastewater treatment
plants (WWTPs) in South Korea was identified using an SML
approach, resulting in findings with clear implications for
WWTP design and operation (Oh and Kim, 2021). Additionally,
the SML of metabarcoded environmental DNA (eDNA) can
provide superior performance for environmental quality
monitoring over conventional bioindicator values for marine
aquaculture monitoring (Fruehe et al., 2021). Furthermore, RF
learning of eDNA has been shown to outperform conventional
taxonomy-based biotic indices assessments (Cordier et al., 2018).
Biodiversity in microbial communities can also be a useful
proxy to assess the environmental impact of anthropogenic
perturbations through changes in biotic indices (Aylagas
et al., 2017). In these ways, SML is a useful means to improve
environmental monitoring programs.

Predicting Sample Origin With Microbiological Data
The predictive power of ML for monitoring environmental status
also enables sample origin to be established (Raza et al., 2021).
Microbial metrics have proved to be exceptionally sensitive
indicators of human impacts on freshwater environments (Liao
et al., 2018). Indeed, via ML modeling, the partitioning of
microbes along complex anthropogenic xenobiotic gradients
from urban and agricultural runoffs is sufficient to identify
the origin of water samples from the 30 most abundant taxa
(Wang et al., 2021) and is able to resolve sample origin depth
and local salinity in the Baltic Sea (Alneberg et al., 2020).
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Such origin tracing carries the potential to inform for public
health by accurately predicting the origins of fecal contaminants
in public waters (Chen et al., 2021; Raza et al., 2021) and
the source of food-borne pathogen outbreaks (Wheeler, 2019).
The ability to identify sample origin sources is likely to be of
critical importance moving forward for tracing runoffs from
agricultural and industrial entities to ensure compliance with
environmentally mindful legislation. It will be interesting to
see whether this sort of tracing application will lend itself to
following waterbodies in other settings, or indeed, other mobile
elements within the environment (forensic analysis of migratory
animals under conservation management, for example). Given
the perceived stability in the gut microbiome, it is possible that
this approach could also be extended as a biological tagging
approach for following animal populations at the center of
conservation efforts.

Supporting Environmental Meta-Analyses and Data
Mining
The high volumes of omics data are enabling large-scale meta-
analyses (Zeller et al., 2014) that can provide a global view
of microbial roles within major environments (Ramirez et al.,
2018; Wu et al., 2019; Yuan et al., 2020). However, several
challenges arise in such studies owing to non-standardized
sample collection, extraction methods, and primer choice
(Ramirez et al., 2018). Additionally, technicalities of sequencing
platforms, variable library sizes, and environmental confounders
can reduce concordance across omics studies (though SML
is alleviating this issue) (York, 2021). ML tools are well
suited for uncovering patterns within these challenging data
collections. For example, a meta-analysis of soil microbiomes
with SML was able to reveal microbiological indicators for
predicting propensity for Fusarium wilt (Yuan et al., 2020),
an agriculturally important pest. Additionally, a meta-analysis
of global soil (Ramirez et al., 2018) and WWTP (Wu et al.,
2019) communities provided macroecological insights into
the microbial biogeography communities and confirmed the
importance of the rare microbiome members as bioindicators.
There remains significant scope for standardizing the workflows
in both omics and SML. Such standardizations are crucial to
mitigating common pitfalls; these enhance reproducibility and
promote meta-analyses and data mining. An important limiting
factor here is that many data sets are unavailable, uploaded to
repositories without raw data or lacking metadata descriptions.
This issue has been raised before (Ramirez et al., 2018) and
impedes otherwise valuable work. For instance, bioprospecting
of biosynthetic gene clusters with SML-based omics data mining
can yield proteins with biotechnological potential (Correia
and Weimann, 2021) for bioremediation, biodegradable plastic
production, and sustainable biofuels (Haque et al., 2020; Keasling
et al., 2021). We therefore urge that omics data sets be uploaded
in their raw form with metadata made available.

Supervised Machine Learning of Microbial Omics
Data to Address Climate Change
The collective effects of anthropogenic perturbations are
driving the consequences of climate change (notably, losses

of ecosystem function, services, biodiversity, and habitat) at
unprecedented rates (Giuliani et al., 2017). The actions of
microbial communities are implicitly tied to geochemical cycling,
global water chemistries, nutrient availabilities, and soil/plant
health (Gorbushina and Krumbein, 2000; Falkowski et al.,
2008; Lian et al., 2008; Dong, 2010; Panke-Buisse et al.,
2014). Microbes are thereby drivers of numerous ecosystem
services on which the global population relies (Marco and
Abram, 2019). Understanding microbe–ecosystem interactions
and functions is therefore central to their utilization in ecological
models and biotechnologies for intervening on climate change.
The generation of high-resolution spatiotemporal dynamics
data and incorporation of different omics data sets can
provide important insights into the molecular mechanisms
behind climate changes responses and improve the accuracy
of forecasting models (Herold et al., 2020; Layton and
Bradbury, 2021). Together with their ubiquitous nature, the
core roles of microbial communities afford us with a broad
framework for potential microbiological tools with which
the fundamental impacts of global climate change can be
understood, monitored, predicted, and conceivably, mitigated.
The short generation times of microbial community members
and their predictable changes following changing environmental
parameters (Larsen et al., 2012) open the possibility for their
use as early-warning indicators of climate change-led impacts
on macroecological networks (Shah et al., 2022) before further
biodiversity loss is observable on the macroscale. Conversely,
microbial contributions to climate change via carbon cycle-
climate feedback and N2O production (Bardgett et al., 2008)
are an ideal candidate for predictive SML modeling and
intervention. Indeed, predictive models from microbial omics
data have also shown utility across a range of climate change-
linked phenomena, including browning (Fontaine et al., 2021),
eutrophication (Glasl et al., 2019), harmful algal blooms (Hennon
and Dyhrman, 2020), and arability of soils (Chang et al., 2017;
Hennon and Dyhrman, 2020; Yuan et al., 2020). omics in soil-
plant, subsurface, and aquatic microbiomes is also central to
making inroads in the development of carbon capture and
sequestration (CCS) biotechnologies (Schweitzer et al., 2021). It
will be interesting to see whether such developments benefit from
SML-based modeling, which could prove useful for establishing
taxa and metabolisms that predict stability and sequestration
rates in CCS systems. Therefore, SML modeling can facilitate
the establishment and optimization of carbon fluxes in microbial
communities (particularly for the poorly characterized deep
subsurface microbiome) and may also help to bridge bioenergy
production to CCS, which is considered essential for many
climate change mitigation plans (Hanssen et al., 2020). At
present, the ability of microbes to inform on, and forecast, climate
change impacts via ecological monitoring programs is perhaps
the most immediately applicable area for the SML of microbial
omics in climate change research. In this way, microbes can
assist decision-makers for sustainable policies and intervention
measures to ensure food security and maintain ecosystem
services before further ecological detriment occurs (Cordier et al.,
2021; Shah et al., 2022). The potential future applications in this
space, however, are vast and may be key for realizing goals in
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global-scale climate management and engineering against climate
change.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Machine learning is a powerful toolbox for drawing meaningful
biological insights from large multidimensional microbial data.
Here, we discussed how SML can contribute to environmental
challenges by valorizing microbial community data sets. The
predictive potential of interfacing omics and SML has opened
exciting new avenues for managing environmental pollution and
status. The ability to identify key species and functional elements
can be expected to accelerate biotechnological developments
with implications for environmental intervention (such as
bioremediation). Through the interface of these important
disciplines, we are rapidly advancing our view of global
microbiome and the ecological impacts from human activities.

This nascent, but fast-evolving, application area for ML has
several notable opportunities which are yet to be exploited.
Metataxonomics-centric ML efforts have dominated this space,
but has yet to apply long-read and metagenome-assembled
genomic data for feature set development in this research
area. Additionally, several advanced systems-level techniques
(metaproteomics, metabolomics, and in particular, integrative
omics) remain at much earlier stages of development compared
with DNA sequencing-based approaches and are consequently
lagging in this arena. ML tools will likely become integral to
pipelines for these advanced omics methodologies. We foresee
SML becoming a routine complement to conventional statistics
and expect that this will key for revealing the often-overlooked

rare microbiome. As omics approaches continue to advance, and
sample costs reduce, we can expect to see a rise in the application
of promising DL architectures at this interdisciplinary interface.
DL tools will no doubt prove indispensable in data mining
the ever-increasing public omics repositories and represent an
exciting means to address feature engineering challenges via
unsupervised feature extractions.

AUTHOR CONTRIBUTIONS

JM: structure of manuscript, figure design and production,
literature review, manuscript writing, population of table, and
revisions. MC: initial draft of manuscript, figure design, and
literature review. AM: literature review, population of table,
figure design, and development of content. AH: structure
of the manuscript, secured funding, manuscript review, and
development of content. JD: conceptualize the manuscript,
manuscript review, and development of content. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was funded by the Competitive Internal Research
Award (CIRA2019-019) of Khalifa University.

ACKNOWLEDGMENTS

We would like to acknowledge valuable discussions on this topic
with Olivier Monga and Andreas Henschel.

REFERENCES
Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff,

T., Reis, R. E., et al. (2021). Scientists’ warning to humanity on the
freshwater biodiversity crisis. Ambio 50, 85–94. doi: 10.1007/s13280-020-01
318-8

Alneberg, J., Bennke, C., Beier, S., Bunse, C., Quince, C., Ininbergs, K., et al. (2020).
Ecosystem-wide metagenomic binning enables prediction of ecological niches
from genomes. Comm. Biol. 3:119. doi: 10.1038/s42003-020-0856-x

Asgari, E., Garakani, K., McHardy, A. C., and Mofrad, M. R. K. (2018).
MicroPheno: predicting environments and host phenotypes from 16S
rRNA gene sequencing using a k-mer based representation of shallow
sub-samples. Bioinformatics 34, i32–i42. doi: 10.1093/bioinformatics/
bty296

Astudillo-García, C., Hermans, S. M., Stevenson, B., Buckley, H. L., and Lear, G.
(2019). Microbial assemblages and bioindicators as proxies for ecosystem health
status: potential and limitations. Appl. Microbiol. Biotechnol. 103, 6407–6421.
doi: 10.1007/s00253-019-09963-0

Aun, E., Brauer, A., Kisand, V., Tenson, T., and Remm, M. (2018). A k-mer-based
method for the identification of phenotype-associated genomic biomarkers and
predicting phenotypes of sequenced bacteria. PLoS Comput. Biol. 14:e1006434.
doi: 10.1371/journal.pcbi.1006434

Aylagas, E., Borja, Á, Tangherlini, M., Dell’Anno, A., Corinaldesi, C., Michell,
C. T., et al. (2017). A bacterial community-based index to assess the ecological
status of estuarine and coastal environments. Mar. Poll. Bull. 114, 679–688.
doi: 10.1016/j.marpolbul.2016.10.050

Bardgett, R. D., Freeman, C., and Ostle, N. J. (2008). Microbial contributions
to climate change through carbon cycle feedbacks. ISME J. 2, 805–814. doi:
10.1038/ismej.2008.58

Bar-On, Y. M., Phillips, R., and Milo, R. (2018). The biomass distribution
on Earth. Proc. Natl. Acad. Sci. 115, 6506–6511. doi: 10.1073/pnas.17118
42115

Blaser, M. J., Cardon, Z. G., Cho, M. K., Dangl, J. L., Donohue, T. J., Green, J. L.,
et al. (2016). Toward a Predictive Understanding of Earth’s Microbiomes to
Address 21st Century Challenges. mBio 7:e00714-16. doi: 10.1128/mBio.007
14-16

Briffa, J., Sinagra, E., and Blundell, R. (2020). Heavy metal pollution in the
environment and their toxicological effects on humans. Heliyon 6:e04691. doi:
10.1016/j.heliyon.2020.e04691

Brühl, C. A., and Zaller, J. G. (2019). Biodiversity Decline as a Consequence of
an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ.
Sci. 7:177. doi: 10.3389/fenvs.2019.0017

Burrell, A. L., Evans, J. P., and De Kauwe, M. G. (2020). Anthropogenic climate
change has driven over 5 million km2 of drylands towards desertification. Nat.
Commun. 11:3853. doi: 10.1038/s41467-020-17710-7

Callahan, B. J., McMurdie, P. J., and Holmes, S. P. (2017). Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis. ISME
J. 11, 2639–2643. doi: 10.1038/ismej.2017.119

Cesare, A. Di, Pjevac, P., Eckert, E., Curkov, N., Miko Šparica, M., Corno, G., et al.
(2020). The role of metal contamination in shaping microbial communities in
heavily polluted marine sediments. Environ. Poll. 265:114823. doi: 10.1016/j.
envpol.2020.114823

Frontiers in Microbiology | www.frontiersin.org 8 April 2022 | Volume 13 | Article 851450114

https://doi.org/10.1007/s13280-020-01318-8
https://doi.org/10.1007/s13280-020-01318-8
https://doi.org/10.1038/s42003-020-0856-x
https://doi.org/10.1093/bioinformatics/bty296
https://doi.org/10.1093/bioinformatics/bty296
https://doi.org/10.1007/s00253-019-09963-0
https://doi.org/10.1371/journal.pcbi.1006434
https://doi.org/10.1016/j.marpolbul.2016.10.050
https://doi.org/10.1038/ismej.2008.58
https://doi.org/10.1038/ismej.2008.58
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1128/mBio.00714-16
https://doi.org/10.1128/mBio.00714-16
https://doi.org/10.1016/j.heliyon.2020.e04691
https://doi.org/10.1016/j.heliyon.2020.e04691
https://doi.org/10.3389/fenvs.2019.0017
https://doi.org/10.1038/s41467-020-17710-7
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1016/j.envpol.2020.114823
https://doi.org/10.1016/j.envpol.2020.114823
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-851450 April 18, 2022 Time: 14:53 # 9

McElhinney et al. Machine Learning and Microbial Omics

Chang, H.-X., Haudenshield, J. S., Bowen, C. R., and Hartman, G. L. (2017).
Metagenome-Wide Association Study and Machine Learning Prediction of
Bulk Soil Microbiome and Crop Productivity. Front. Microbiol. 8:519. doi:
10.3389/fmicb.2017.00519

Chen, F., Koh, X. P., Tang, M. L. Y., Gan, J., and Lau, S. C. K. (2021).
Microbiological assessment of ecological status in the Pearl River Estuary. Chin.
Ecol. Indicat. 130:108084. doi: 10.1016/j.ecolind.2021.108084

Chen, J.C.-y, and Tyler, A. D. (2020). Systematic evaluation of supervised machine
learning for sample origin prediction using metagenomic sequencing data. Biol.
Dir. 15:29. doi: 10.1186/s13062-020-00287-y

Chiavegatto Filho, A., Batista, A. F. D. M., and dos Santos, H. G. (2021). Data
Leakage in Health Outcomes Prediction With Machine Learning. Comment on
“Prediction of Incident Hypertension Within the Next Year: Prospective Study
Using Statewide Electronic Health Records and Machine Learning”. J. Med.
Internet Res. 23:e10969. doi: 10.2196/10969

Chitu, A. G., Zijp, M. H. A. A., and Zwaan, J. (2022). A novel exploration technique
using the microbial fingerprint of shallow sediment to detect hydrocarbon
microseepage and predict hydrocarbon charge — An Argentinian case study.
Interpretation 10, 1F-T211.

Christin, S., Hervet, É, and Lecomte, N. (2019). Applications for deep learning in
ecology. Methods Ecol. Evol. 10, 1632–1644. doi: 10.1111/2041-210x.13256

Cordier, T., Alonso-Sáez, L., Apothéloz-Perret-Gentil, L., Aylagas, E., Bohan, D. A.,
Bouchez, A., et al. (2021). Ecosystems monitoring powered by environmental
genomics: A review of current strategies with an implementation roadmap. Mol.
Ecol. 30, 2937–2958. doi: 10.1111/mec.15472

Cordier, T., Forster, D., Dufresne, Y., Martins, C. I. M., Stoeck, T., and
Pawlowski, J. (2018). Supervised machine learning outperforms taxonomy-
based environmental DNA metabarcoding applied to biomonitoring. Mol. Ecol.
Res. 18, 1381–1391. doi: 10.1111/1755-0998.12926

Correia, A., and Weimann, A. (2021). Protein antibiotics: mind your language. Nat.
Rev. Microbiol. 19:7. doi: 10.1038/s41579-020-00485-5

De Anda, V., Zapata-Peñasco, I., Blaz, J., Poot-Hernández, A. C., Contreras-
Moreira, B., González-Laffitte, M., et al. (2018). Understanding the Mechanisms
Behind the Response to Environmental Perturbation in Microbial Mats: A
Metagenomic-Network Based Approach. Front. Microbiol. 9:2606. doi: 10.3389/
fmicb.2018.02606

de Dios Miranda, J., Seoane, J. M., Esteban, Á, and Espí, E. (2019). Microbial
Exploration Techniques: An Offshore Case Study, Oilfield Microbiology. Florida:
CRC Press, 271–298.

Dong, H. (2010). Mineral-microbe interactions: a review. Front. Earth Sci. Chin.
4:127–147. doi: 10.1007/s11707-010-0022-8

Dubinsky, E. A., Butkus, S. R., and Andersen, G. L. (2016). Microbial source
tracking in impaired watersheds using PhyloChip and machine-learning
classification. Water Res. 105, 56–64. doi: 10.1016/j.watres.2016.08.035

Falkowski, P. G., Fenchel, T., and Delong, E. F. (2008). The Microbial Engines
That Drive Earth’s Biogeochemical Cycles. Science 320, 1034–1039. doi: 10.1126/
science.1153213

Fiannaca, A., La Paglia, L., La Rosa, M., Lo Bosco, G., Renda, G., Rizzo, R.,
et al. (2018). Deep learning models for bacteria taxonomic classification of
metagenomic data. BMC Bioinform. 19:198. doi: 10.1186/s12859-018-2182-6

Fontaine, L., Khomich, M., Andersen, T., Hessen, D. O., Rasconi, S., Davey, M. L.,
et al. (2021). Multiple thresholds and trajectories of microbial biodiversity
predicted across browning gradients by neural networks and decision tree
learning. ISME Commun. 1:37.

Franzosa, E. A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan,
X. C., et al. (2015). Sequencing and beyond: integrating molecular ’omics’ for
microbial community profiling. Nat. Rev. Microbiol. 13, 360–372. doi: 10.1038/
nrmicro3451

Fruehe, L., Cordier, T., Dully, V., Breiner, H. W., Lentendu, G., Pawlowski, J., et al.
(2021). Supervised machine learning is superior to indicator value inference
in monitoring the environmental impacts of salmon aquaculture using eDNA
metabarcodes. Mol. Ecol. 30, 2988–3006. doi: 10.1111/mec.15434

Ghannam, R. B., and Techtmann, S. M. (2021). Machine learning applications in
microbial ecology, human microbiome studies, and environmental monitoring.
Comput. Struct. Biotechnol. J. 19, 1092–1107. doi: 10.1016/j.csbj.2021.01.028

Gibbons, S. M., and Gilbert, J. A. (2015). Microbial diversity–exploration of natural
ecosystems and microbiomes. Curr. Opin. Genet. Dev. 35, 66–72. doi: 10.1016/
j.gde.2015.10.003

Giuliani, G., Dao, H., De Bono, A., Chatenoux, B., Allenbach, K., De Laborie,
P., et al. (2017). Live Monitoring of Earth Surface (LiMES): A framework for
monitoring environmental changes from Earth Observations. Rem. Sensing
Environ. 202, 222–233. doi: 10.1016/j.rse.2017.05.040

Glasl, B., Bourne, D. G., Frade, P. R., Thomas, T., Schaffelke, B., and
Webster, N. S. (2019). Microbial indicators of environmental perturbations
in coral reef ecosystems. Microbiome 7:94. doi: 10.1186/s40168-019-0
705-7

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017).
Microbiome Datasets Are Compositional: And This Is Not Optional. Front.
Microbiol. 8:2224. doi: 10.3389/fmicb.2017.02224

Goodswen, S. J., Barratt, J. L. N., Kennedy, P. J., Kaufer, A., Calarco, L., and
Ellis, J. T. (2021). Machine learning and applications in microbiology. FEMS
Microbiol. Rev. 45:fuab015.

Gorbushina, A. A., and Krumbein, W. E. (2000). “Subaerial Microbial Mats and
Their Effects on Soil and Rock,” in Microbial Sediments, eds R. E. Riding and
S. M. Awramik (Berlin, Heidelberg: Springer), 161–170. doi: 10.1007/978-3-
662-04036-2_18

Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., and Beyer, H. L. (2020).
Anthropogenic modification of forests means only 40% of remaining forests
have high ecosystem integrity. Nat. Comm. 11:5978.

Gutleben, J., De Mares, M. Chaib, van Elsas, J. D., Smidt, H., Overmann, J., and
Sipkema, D. (2018). The multi-omics promise in context: from sequence to
microbial isolate. Crit. Rev. Microbiol. 44, 212–229. doi: 10.1080/1040841X.
2017.1332003

Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Doelman, J. C., Van Vuuren,
D. P., and Huijbregts, M. A. J. (2020). The climate change mitigation potential
of bioenergy with carbon capture and storage. Nat. Clim. Change 10, 1023–1029.
doi: 10.1038/s41558-020-0885-y

Haque, R., Paradisi, F., and Allers, T. (2020). Haloferax volcanii for biotechnology
applications: challenges, current state and perspectives. Appl. Microbiol.
Biotechnol. 104, 1371–1382. doi: 10.1007/s00253-019-10314-2

Hennon, G. M. M., and Dyhrman, S. T. (2020). Progress and promise of omics
for predicting the impacts of climate change on harmful algal blooms. Harmful
Algae 91:101587. doi: 10.1016/j.hal.2019.03.005

Hermans, S. M., Buckley, H. L., Case, B. S., Curran-Cournane, F., Taylor, M., and
Lear, G. (2020). Using soil bacterial communities to predict physico-chemical
variables and soil quality. Microbiome 8:79. doi: 10.1186/s40168-020-00858-1

Herold, M., Martínez Arbas, S., Narayanasamy, S., Sheik, A. R., Kleine-Borgmann,
L. A. K., Lebrun, L. A., et al. (2020). Integration of time-series meta-omics data
reveals how microbial ecosystems respond to disturbance. Nat. Comm. 11:5281.
doi: 10.1038/s41467-020-19006-2

Janßen, R., Beck, A. J., Werner, J., Dellwig, O., Alneberg, J., Kreikemeyer, B., et al.
(2021). Machine Learning Predicts the Presence of 2,4,6-Trinitrotoluene in
Sediments of a Baltic Sea Munitions Dumpsite Using Microbial Community
Compositions. Front. Microbiol. 12:626048. doi: 10.3389/fmicb.2021.626048

Janßen, R., Zabel, J., von Lukas, U., and Labrenz, M. (2019). An artificial
neural network and Random Forest identify glyphosate-impacted brackish
communities based on 16S rRNA amplicon MiSeq read counts. Mar. Poll. Bull.
149:110530. doi: 10.1016/j.marpolbul.2019.110530

Julinová, M., Van̆harová, L., and Jurča, M. (2018). Water-soluble polymeric
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The use of next-generation sequencing technologies in drinking water distribution systems 
(DWDS) has shed insight into the microbial communities’ composition, and interaction in 
the drinking water microbiome. For the past two decades, various studies have been 
conducted in which metagenomics data have been collected over extended periods and 
analyzed spatially and temporally to understand the dynamics of microbial communities 
in DWDS. In this literature review, we outline the findings which were reported in the 
literature on what kind of occupancy-abundance patterns are exhibited in the drinking 
water microbiome, how the drinking water microbiome dynamically evolves spatially and 
temporally in the distribution networks, how different microbial communities co-exist, and 
what kind of clusters exist in the drinking water ecosystem. While data analysis in the 
current literature concerns mainly with confirmatory and exploratory questions pertaining 
to the use of metagenomics data for the analysis of DWDS microbiome, we present also 
future perspectives and the potential role of artificial intelligence (AI) and mechanistic 
models to address the predictive and mechanistic questions. The integration of meta-
omics, AI, and mechanistic models transcends metagenomics into functional 
metagenomics, enabling deterministic understanding and control of DWDS for clean and 
safe drinking water systems of the future.

Keywords: drinking water production, drinking water monitoring, high-throughput sequencing technology, 
metagenomics, machine learning, water distribution

INTRODUCTION

The importance of access to clean water and sanitation has been recognized worldwide as 
one of the main themes in the UN Sustainable Development Goals. While developed nations 
have connected their population to the water network, access to safe and clean water poses 
a challenge to the water management authorities. The rapid depletion of groundwater and the 
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contamination of surface water by industrial, agricultural, and 
urban waste streams have contributed to this problem. Sanitation 
and hygiene also rely heavily on adequate access to clean water 
for preventing and containing diseases to reduce the spread 
of pathogens and viruses (WHO, 2020). While the majority 
of drinking water bacteria is not dangerous for human health 
and is actually useful for the production of drinking water at 
the treatment plant, these organisms can cause unpleasant taste, 
odor, and turbidity of drinking water when present in excess 
(van Lieverloo et  al., 2002; Vreeburg et  al., 2004). Around 
80% of customers’ complaints to the water utilities are about 
unwanted aesthetic aspects of drinking water that are generated 
during its distribution. These impaired aesthetics, which are 
a result of the uncontrolled growth of indigenous bacteria in 
particles, sediments, and biofilms in distribution pipelines might 
even include the presence of invertebrates in the water 
(Polychronopolous et  al., 2003; Vreeburg and Boxall, 2007).

Uncontrolled growth of indigenous bacteria in water 
distribution systems results in microbially induced operational 
problems in distribution pipes which introduce significant 
investment and maintenance costs for water utilities (Allion 
et  al., 2011). In the Netherlands alone, investment costs on 
distribution pipelines require approximately 50% of water utility 
investments (de Moel et al., 2006). For example, sulfate-reducers 
and iron-oxidizers cause bio-corrosion of cast-iron pipes (Sun 
et  al., 2014), and the growth of bacteria to high numbers in 
the form of a biofilm cause fouling of concrete pipes In addition, 
the suspension of some of the bacteria which are attached to 
particles, sediments, or biofilms in distribution pipes can result 
in turbid or discolored water (Vreeburg et  al., 2004). These 
bacteria are non-pathogenic and their excessive growth makes 
the water yellowish (Vreeburg and Boxall, 2007). Iron particles 
and manganese precipitates in water which are partially produced 
by bio-corrosion of iron pipes (Sun et al., 2014) or manganese-
oxidizing or reducing organisms (Cerrato et  al., 2010) cause 
water to be  red or black colored (Seth et  al., 2004). Other 
bacteria produce molecules affecting the taste and odor of 
water. For example, Actinomycetes produce Geosmin which 
is responsible for an earthy-muddy water taste (Srinivasan and 
Sorial, 2011), and sulfate-reducing or sulfur-oxidizing bacteria 
can enhance a sulfur-based odor (Scott and Pepper, 2010). 
On top of that, fungi, and yeast induce other aesthetic problem 
that has been recorded in drinking water systems. They negatively 
alter water odor and taste Protozoa and invertebrates such as 
worms (e.g., Annelida), crustaceans (e.g., Asellidae), or snails 
(e.g., Mollusca) have also been found in distribution systems 
(Christensen et  al., 2011). As protozoa and invertebrates are 
at the top of the trophic chain, they indicate the presence of 
a high number of bacteria in water.

This uncontrolled growth of indigenous bacteria during 
water distribution can result in the exceedance of water 
quality regulatory guidelines (Sartory, 2004). The current 
regulation dictates that water treatment processes should yield 
drinking water that causes less than 1 infection per 10,000 
people per year. However, continuous threats from newly 
emerging micro-pollutants and the risk of recontamination 
due to the growth of environmental pathogens in drinking 

water sources are still a concern. For instance, numerous 
pathogens which are opportunistic and hygienically threatening 
such as Legionella pneumophila, Aeromonas hydrophila, 
Pseudomonas aeruginosa, Klebsiella pneumoniae, Mycobacteria, 
and Campylobacter are able to grow at low nutrient 
concentrations in drinking water distribution systems and/
or in household pipelines.

Limiting changes in the bacterial community during drinking 
water distribution and the prevention of uncontrolled growth 
up to high bacterial cell numbers and to the occurrence of 
unwanted microorganisms is done through removing carbon 
sources and nutrients, inactivating pathogenic organisms, 
removing chemical toxic compounds, and improving the 
transparency, taste, odor, and color of the water at the water 
treatment plant. Achieving high-quality drinking water that is 
biologically stable during transportation is done through physical, 
chemical, and biological processes such as dosing chlorine, 
aeration, ozonation, UV irradiation, active carbon filtrations, 
coagulation, flocculation, sedimentation steps, and/or rapid or 
slow sand filtration. The choice of which steps to apply to 
treat the water will depend on the source of the water and 
the initial water quality. After treatment, the water is transported 
via a pipeline system to the point of use or discharge. In this 
transportation process, residual organic material and 
microorganisms in the water may alter the quality of the water 
in this distribution system. The microbiological activity influences 
the chemical composition of the water and vice versa. The 
presence of organic material in water sustains the growth of 
microorganisms that form undesired biofilms and/or turbidity 
in the distribution system. The current removal of the organic 
material in the upstream purification steps aims to minimize 
regrowth but does not always result in biologically stable water. 
A balance between the efforts put in the removal and the 
risks for regrowth may be  found in the specific quality of the 
organic material (Hijnen et  al., 2014). However, detailed 
characteristics of the organic material are largely unknown, 
hampering the design of more effective treatment steps to 
produce biological stable water, i.e., water that does not support 
the growth of bacteria and other organisms in the 
distribution system.

While many countries around the world add disinfectant 
(such as chlorine, mono-chloramine, or chlorine dioxide) to 
drinking water as a secondary disinfection step, some European 
countries such as the Netherlands, Germany, Austria, and 
Switzerland use extensive treatment strategies which eliminate 
the bacterial growth supporting compounds (nutrients) in the 
water supplied to limit the potential regrowth in the distribution 
system. One disadvantage of using disinfectants in drinking 
water is that disinfectants react with organic compounds which 
results in the potential formation of carcinogenic by-products. 
Therefore, the concentrations of added disinfectants are kept 
to a minimum, with a higher risk of regrowth. Both methods 
are very effective at limiting bacterial growth in drinking water 
distribution systems. Yet, microbial changes in drinking water 
during distribution have been recorded in many countries. A 
more comprehensive overview of the drinking water distribution 
system microbiome is provided by Gomez and Aggarwal (2019).
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This paper presents a review of recent advances in the 
monitoring, production, and distribution of drinking water 
using various -omics technologies. Firstly, the literature on 
microbial ecology in drinking water systems is revisited and 
various standard practices by water management authorities 
to monitor their activities are presented in “Microbiome in 
Water Systems” section. In “NGS Technology for Drinking 
Water Distribution Systems” section, the emergence of genetic 
sequencing technology as a new key-enabling water technology 
is discussed. This high throughput technology can shed light 
on microbial activities in much finer detail and allows us to 
understand the dynamics and various roles of microbial 
communities. This knowledge, through the employment of 
artificial intelligence and mechanistic models, can in turn 
be  used to monitor and control the biological processes in 
drinking water systems as illustrated in “Artificial Intelligence 
Methods in DWDS” section.

MICROBIOME IN WATER SYSTEMS

Factors Affecting Drinking Water Microbial 
Ecology
The complexity of water in a DWDS, as a living aquatic 
ecosystem, is further enhanced by numerous aspects which 
are influencing the network of microbial interactions that exist 
in it during its distribution. Some of the aspects that influence 
bacterial growth during water distribution are: (1) the existence 
of the food chain, (2) concentration and type of nutrients, 
(3) type and concentration of residual disinfectant (if any), 
(4) microcosmic environmental conditions found in bulk water, 
sediment and/or biofilm, (5) system-wide environmental 
conditions (temperature, pH, etc.), (6) prevailing hydraulic 
condition and pipe materials, (7) and water residence time/
water age (Prest et  al., 2016).

Assessment of Drinking Water Microbial 
Quality
Characterizing organic material in water and quantifying its 
growth-promoting properties for micro-organisms has been 
previously done using different methods. The assimilable organic 
carbon (AOC) method is based on the measurement of the 
growth of two pure bacterial strains in a pasteurized water 
sample. The biodegradable dissolved organic carbon (BDOC) 
method measures the uptake of dissolved organic carbon (DOC) 
by the autochthonous bacteria in a water sample, the liquid 
chromatography–organic carbon detection technique (LC-OCD) 
identifies and quantifies natural organic matter constituents in 
aquatic environments, and the biofilm formation rate (BFR) 
method quantifies the ability of water to promote the growth 
of bacteria into a biofilm. However, these methods are indicative 
tools and do not provide detailed characteristics of the organic 
material which subsequently hampers real-time monitoring of 
treatment processes and their optimization.

In addition, understanding microbial dynamics in drinking 
water distribution systems has been limited because of drawbacks 

of available methods for characterizing drinking water bacterial 
communities which rely heavily on culture-based techniques. 
Assessing water microbial quality has been traditionally done 
using heterotrophic plate counts (HPC) which is a method 
for bacterial enumeration. Alternatively, bioassays which are 
analytical methods for determining the concentration or potency 
of a substance by its effect on living cells or tissues can 
be  applied. When microorganisms grow on organic substrates, 
specific degradation pathways are induced to enzymatically 
metabolize these organic compounds. Specific assays that can 
detect these enzymes require time-consuming, lengthy laboratory 
work. These methods are hypothesis-driven whose goal is to 
detect a targeted suspected compound and a selection of enzyme 
assays needs to be  determined upfront. As these methods 
generate an assessment of the water quality with a time lag, 
detect only a minute fraction of the bacteria found in water 
in reality, and are limited when it comes to identifying all 
characteristics of the bacterial community found in the water, 
Next Generation Sequencing (NGS) technologies have been 
introduced in order to better assess the microbial drinking 
water quality. Initially, NGS technologies were utilized by the 
medical field for studying the gut microbiome (Malla et  al., 
2019) and by pharmaceutical industries for drug discoveries 
and personalized medicine (Vandeputte, 2021). Progressively, 
this technology has been introduced into the field of 
environmental microbiology to study soil microbiome (Nesme 
et  al., 2016), and aquatic systems (Behera et  al., 2021), and 
subsequently into the fields of wastewater treatment and drinking 
water quality and their respective processes (Tan et  al., 2015; 
Zhang and Liu, 2019). While the development of the NGS 
technologies is a process of continuous enhancements (Slatko 
et  al., 2018), the greatest advantage of NGS technologies is 
that they can provide a comprehensive assessment of the 
abundance, viability, and community composition of the 
microorganisms found in the water sample. The new field of 
meta-omics enables scientists to study mixtures of genetic 
material from all organisms in a sample. Figure  1 shows the 
subfields of meta-omics and what kind of questions these fields 
attempt to address.

Mechanistic Models for Simulating 
Drinking Water Quality in Distribution 
Networks
Water utilities have been using mechanistic hydraulic models 
to simulate drinking water quality in drinking water distribution 
systems. These simulation tools are used for the purpose of 
optimizing the design of the water infrastructure and its facilities, 
the real-time hydraulic operation and monitoring of the network, 
simulation of events of contamination and tracing the source 
of such an event, and establishing guidelines for the operation 
and maintenance (O&M) of the supply system.

In 1990, the United States Environmental Protection Agency 
(USEPA) developed the Environmental Protection Agency 
Network (EPANET) which is the first computational software 
package for modeling the hydraulics of drinking water distribution 
systems (Rossman, 2000). Since then several commercially 
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available spin-offs of EPANET were released. EPANET model 
start from a link-node structure where pipes are modelled as 
links, and junctions, hydraulic control elements, consumers, 
and sources are modelled as nodes. Drinking water quality is 
modeled in EPANET as an “additional simulation layer” on 
top of the hydraulic simulations which provide the core 
functionality of EPANET. Water age and source-tracing are 
two functionalities in EPANET which can provide an overarching 
assessment of the overall drinking water quality in distribution 
systems. Water age provides a proportional indicator of the 
decay of the residual disinfectant in the system and the formation 
of the respective disinfection by-products (DBP). On the other 
hand, source-tracing, which simulates the flow-path of water 
from the point of supply up to the point of consumption, has 
an added value when modeling drinking water quality in multi-
quality water distribution systems where water comes from 
different sources. Source-tracing provides insight into a source 
of a contaminate in case of a contamination event, indicates 
potential mixing areas in the water supply network and provides 
knowledge about source influence areas in the system. Water 
age and source-tracing are mere high-level indicators of drinking 
water quality and in actuality drinking water quality may differ 
remarkably (Chenevey, 2022).

In EPANET, the Dynamic Water Quality Model (DWQM) 
serves as the basis for water quality modelling. For this, EPANET 
uses continuity equations for energy, mass, flow at nodes, flow 
for each storage component, mass for each storage component 
and each quality parameter, and equations for dilution 
requirements for modelling water quality under unsteady state 

flow conditions (Todini and Rossman, 2012). DWQM models 
single species concentration in the distribution system under 
first-order kinetics and plug-flow advection assumptions. 
However, the single species models do not account for microbial 
growth in the drinking water system and are merely limited 
to modeling process parameters throughout the distribution 
network (Woolschlager et  al., 2005).

Recently, the National Health Systems Resource Centre 
(NHSRC) released a Multi-Species eXtension to EPANET 
called EPANET-MSX that enables modelling of numerous 
interacting species in the bulk flow and on the pipe walls, 
while modelling microbial growth, as well. This extension 
models heterotrophic microbial growth in both their fixed 
and suspended forms through solving a set of interdependent, 
multispecies, mass balance equations which is an expansion 
of the fundamental equations provided in the DWQM (Shang 
et al., 2011). Other multi-species models which are empirical, 
semi-mechanistic, and mechanistic were developed for research 
purposes to simulate microbial drinking water quality are 
not commercially available (). However, the modeling of 
microbial growth in the multi-species models is limited to 
two species/values (i.e., mass of free bacteria in bulk water, 
and mass of attached bacteria on pipe wall), and does not 
account for the rich microbial diversity which exist in the 
drinking water. In addition, the computation nature of 
EPANET-MSX, which solves a set of differential-algebraic 
equations (DAEs) in semi-explicit form, renders this model 
computationally inefficient for modeling the concentration of 
each bacterial species in a system that contains bacterial 

FIGURE 1 | Subfields of meta-omics and the questions they address.
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diversity in the magnitude of thousands. Hence, incorporating 
machine learning algorithms, which are good at handling 
data that are multi-dimensional and multi-variety, with 
metagenomics dataset can potentially present a computationally 
more efficient approach for simulating microbial drinking 
water quality (Rackauckas et  al., 2020).

NGS TECHNOLOGY FOR DRINKING 
WATER DISTRIBUTION SYSTEMS

Metagenomics Analysis for Microbial 
Communities
The emergence of new genetic sequencing technologies has 
enabled the gathering of crucial in-situ information related to 
microbial communities and occupancy-abundance dynamics in 
drinking water. In the pioneering work of Santo Domingo 
et  al. in 2003 at the US Environmental Protection Agency 
Test and Evaluation (T&E) facility, metagenomics was applied 
to investigate the role of heterotrophic bacteria and ammonia-
oxidizing bacteria in drinking water. They used a Distribution 
System Simulator (DSS) to assess the biofilm microbial 
composition in drinking water distribution systems (DWDS) 
due to the role of biofilms, which can contain human microbial 
pathogens, on public health. The researchers conducted 16S 
rDNA sequence analysis on both biofilm and bulk water samples 
from the DSS which revealed that α-Proteobacteria and 
β-Proteobacteria were the predominant bacteria in the feed 
water, discharge water, and biofilm samples. This early 
metagenomics application has been used to determine the 
effectiveness of disinfectant treatment to control microbial 
communities in DWDS. In 2005, Tokajian et  al., conducted a 
phylogenetic assessment of heterotrophic bacteria using 16S 
rDNA sequencing from an operational water distribution system 
in Lebanon. Water samples were taken from raw unchlorinated 
aquifer water and from different sites in the distribution network 
on a bimonthly basis over a period of 1 year. The analysis 
confirmed the aforementioned observations (Santo Domingo 
et  al., 2003; Williams et  al., 2004) that the majority of bacteria 
in drinking water were α-, β-, and γ-Proteobacteria. In addition, 
the study also revealed a higher presence of sphingomonads 
in drinking water samples than reported elsewhere in literature 
which can be  attributed to the specific operational conditions 
in Lebanon.

Once microbial communities are identified using 
metagenomics data, the next step is to establish their specific 
role, function, and interaction with the environment. In 2006, 
Eichler et  al. used RNA- and DNA-based 16S rRNA gene 
fingerprinting further to gain a comprehensive understanding 
of how different factors (i.e., different raw water sources, different 
treatment processes, and distribution) influence the microbial 
communities in tap water designated for human consumption. 
Based on the DWDS of the city Braunschweig in Germany 
involving two water reservoirs with two different surface water 
types: oligotrophic water and dystrophic water, Eichler et  al. 
(2006) observed that that major taxonomic groups typical of 
freshwaters such as α-Proteobacteria, β-Proteobacteria, and 

Bacteroidetes dominated the system. Comparative cluster analysis 
to the data revealed that there are three major types/clusters 
of communities in the system, each associated with the two 
types of surface water and to the chlorinated water, which is 
found to promote the growth of nitrifying bacteria. This work 
demonstrated the role of metagenomics analysis in revealing 
the importance of source water microflora to the drinking 
water microflora, in monitoring water quality, and in assessing 
the performance of different treatment processes. Further studies 
on the microbial diversity and composition in DWDS which 
support the metagenomic analysis in Eichler et  al. (2006) were 
presented in Santo Domingo et al. (2003); Tokajian et al. (2005); 
Berney et  al. (2009); Revetta et  al. (2010), and Vital et  al. 
(2012). The results of these studies are summarized in 
Supplementary Table  1.

Metagenomics Analysis for Temporal and 
Spatial Distributions and Intra-community 
Dynamics
The first study to investigate spatial and temporal dynamics 
of drinking water microbiota using metagenomics was presented 
in Rudi et  al. (2009). The authors used 16S rRNA sequencing 
analysis to assess temporal and spatial diversity of tap water 
(namely, kitchen tap and toilet tap) microbiota in a Norwegian 
hospital between January and July 2006 (for temporal analysis). 
In their study, the researchers used density distribution analyses 
to investigate tap-specific distributions of the bacterial groups. 
Based on the hierarchical clustering analysis, they concluded 
that the microbiota clustered according to the location (spatial) 
and not to the season (temporal). Related to a potential public 
health issue, metagenomics analysis in their study provided 
additional insights. It is shown in Rudi et  al. (2009) that 
Legionella had the highest relative abundance for the pathogen-
related bacteria in the dataset, especially in the low-usage tap, 
which can be investigated further for controlling local Legionella 
or other pathogens colonization. Such spatial metagenomics 
analysis can prevent pathogenic outbreaks from reoccurring, 
such as the well-known Pseudomonas aeruginosa outbreak in 
an intensive care unit at Akershus university hospital which 
could be  traced back to a single tap.

In 2014, Pinto et  al. (2014) used a spatially distributed and 
temporally varying sampling approach to conduct spatial–
temporal surveying and occupancy-abundance modelling 
techniques using metagenomics analysis in a chlorinated drinking 
water distribution system in the USA. They sampled and 
analyzed the bacterial communities in water leaving the treatment 
plant from June 2010 to August 2011 at the clean water reservoir 
of a wastewater treatment plant and at three locations from 
three different sectors in the drinking water distribution system 
(resulting in nine locations in total). The analysis, which was 
based on total DNA extracts, resulted in the identification of 
4,369 Operational Taxonomic Units (OTUs) at a 97% similarity 
cut-off, across 20 different phyla in the 138 water samples 
over the 15-month sampling period. In spite of the high diversity 
of the bacterial community found in the water, the Proteobacteria 
phylum is again the dominant DW bacterial community 
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representing 60%–70% of the bacterial community for any 
given sample. Using Mantel’s test, changes in the microbial 
community can be  explained by around 5% of the highly 
diverse OTUs which indicates that this subset of OTUs can 
be  used to track changes in the community. For instance, it 
was observed that β- and δ-Proteobacteria dominated the DWDS 
during the summer months while α- and γ-Proteobacteria were 
dominant in the winter. β-Proteobacterium Hydrogenophaga 
(a genus of comamonas bacteria) in contrast displayed peak 
relative abundance in the colder months. Pinto et  al. (2014) 
concluded also that biofilms in the neighborhood of each 
sampling location or possibly even microbial ingress into the 
DWDS led to the observed location-specific OTUs in the system.

Prest (2015) studied temporal dynamics in bacterial 
community characteristics during a 2-year drinking water 
monitoring campaign in a full-scale distribution system operating 
without detectable disinfectant residual. The data collected came 
from a total of 360 water samples which were sampled on a 
biweekly basis from Kralingen water treatment plant effluent 
and at one fixed location in the DWDS. The samples were 
analyzed for heterotrophic plate counts (HPC), Aeromonas plate 
counts, adenosine-tri-phosphate (ATP) concentrations, flow 
cytometric (FCM) total and intact cell counts (TCC, ICC), 
water temperature, pH, conductivity, total organic carbon (TOC) 
and assimilable organic carbon (AOC). Computational 
multivariate analyses showed that the change in microbial 
parameters between the water treatment plant and DWDS had 
a predictable annual trend comparable to the water seasonal 
temperature fluctuations and was negatively correlated to the 
AOC concentration in the water treatment plant effluent. Prest 
(2015) concluded that microbial growth in DWDS was not 
attributed to a single parameter only in the treated effluent. 
Roeselers et  al. (2015) conducted a similar study in which 
spatial and temporal patterns in phylogenetic diversity were 
investigated using high-throughput sequencing technology in 
32 DWDS networks in the Netherlands where residual disinfectant 
is not used. They observed that the microbial community 
compositions from water samples can be  differentiated based 
on the source of the water sample, e.g., raw water and processed 
water in different locations. In addition, the researchers observed 
that community structures of processed water did not differ 
substantially from end-point tap water which indicates that 
network-specific communities are stable in time. The analysis 
on microbial community clusters showed that the treatment 
plant rather than the sampling time points differentiates drinking 
water microbial communities.

All of the above-mentioned findings were consistent with 
the conclusions made by Blokker et  al. (2016) who used self-
organizing maps for relating water quality and water age in 
DWDS from a multi-year Dutch and United  Kingdom dataset. 
Their analysis showed that water age and temperature may 
be  treated as independent parameters influencing microbial 
water quality. In addition, they concluded that there is a clear 
influence of temperature, which is dictated by seasonal change, 
on Aeromonas and the HPC at 22°C. They also showed that 
while water age has been traditionally used as a mathematical 
modelling tool to give an indication for all system-specific 

degradation of water quality, it appears to be  of little value 
as an indicator for specific microbial water quality compared 
to water temperature. Their study recommends that specific 
DWDS conditions such as temperature, substrate concentration, 
and local shear stresses be incorporated in water quality models 
to better understand the risk of developing vulnerable water 
quality locations in drinking water distribution systems.

To assess the origin of bacteria in tap water and distribution 
system in an unchlorinated drinking water system, Liu et  al. 
(2018) looked into the bacterial communities associated with 
biofilms, suspended particles, and loose deposits which are 
released in the distribution system as they are considered the 
major potential risk for drinking water bio-safety. They quantified 
the proportional contribution of the source water, treated water, 
and distribution system in determining the tap water bacterial 
community and concluded that the water purification process 
shaped the community of planktonic and suspended particle-
associated bacteria in treated water. Correspondingly, Liu et al. 
(2018) recommended that tap water quality can be  improved 
by both improving the purification steps and by cleaning the 
DWDS regularly.

In a recent study, Douterelo et  al. (2018) used shotgun 
metagenomic sequencing to evaluate the taxonomic associations 
and functional aptitude of microbial communities found in 
chlorinated DWDS from two operational DWDS in the Southwest 
of the United  Kingdom, where one DWDS is fed by surface 
water and the other one by groundwater. They isolated DNA 
from 24 samples which were taken from six bulk water and six 
biofilm samples at each sampling site. The shotgun metagenomic 
analysis showed that all domains of life (i.e., prokaryotes, eukaryotes, 
archaea, and viruses) are diversely present in the DWDS which 
is consistent with all previous metagenomics studies in DWDS. The 
researchers noted that the identification of metazoan DNA does 
not imply that the actual organisms are in the samples, but it 
can be  used to indicate an ingress, e.g., free DNA released from 
animals or plants into the original source water or hydraulically 
introduced ingress. They concluded that limiting the entry of 
organic matter in the system can be  an approach to inhibit the 
growth of biofilms in the system. Additionally, the researchers 
suggested that understanding the mechanism of biofilm formation 
can bring about the capacity to create the environmental conditions 
which favor the growth of infrastructure-protective extracellular 
polymeric substances (EPS) or exterminate pathogens. While the 
genus Pseudomonas has been used to indicate biofilm formation, 
they recommended the use of alternative bio-indicators of corrosion 
or biofilm formation in DWDS such as Bacteroidetes. Further 
studies on the microbial dynamics in DWDS which support the 
findings in the abovementioned studies are presented in Bae 
et  al. (2019); Dai et  al. (2019); Dias et  al. (2019); Erdogan et  al. 
(2019); Kori et  al. (2019); Perrin et  al. (2019); Brumfield et  al. 
(2020); Maguvu et  al. (2020); Siedlecka et  al. (2020); Vavourakis 
et  al. (2020); Atnafu et  al. (2021); Bian et  al. (2021); Kennedy 
et  al. (2021), and Sevillano et  al. (2021). A summary of the 
results of these studies is provided in Supplementary Table  1.

The aforementioned literature review has shown the 
applicability of metagenomics analysis to understand the role 
of spatial and temporal distribution and to study the dynamics 
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of microbial communities in DWDS. A number of genetic 
markers can be  identified for monitoring the variation in the 
communities that in turn provide the health status of 
DWDS. There are many ongoing research projects that are 
built on these findings allowing the development of monitoring 
systems using predictive models based on the variation in the 
relative abundance of genetic markers and on recent advances 
in data science, statistical learning, and artificial intelligence.

ARTIFICIAL INTELLIGENCE METHODS 
IN DWDS

Current Lines of Enquiry on Microbial 
Dynamics
In previous sections, a literature overview has been presented 
on the use of metagenomics data which have been collected 
over extended periods and analyzed temporally and spatially 
to understand the dynamics of microbial communities in 
DWDS. These works addressed mostly confirmatory and 

exploratory questions corresponding to the use of metagenomics 
data for the analysis of DWDS. From a confirmatory angle, 
the results so far have addressed the questions on the associations 
between seasonality/location/type of source water/kind of 
disinfectant/treatment processes and different environmental 
parameters on the microbial community composition and 
structure found in DWDS. From an exploratory angle, research 
works hitherto have addressed the question of which factors 
influence most prevalently the microbial dynamics observed 
in DWDS. As the next step in data science, where data are 
used to answer predictive questions, there are currently many 
ongoing research activities where metagenomics data are analyzed 
for decision-making processes, such as process control and 
risk mitigation. These works involve the development of predictive 
models of DWDS that are enriched by real-time information 
of microbial communities’ activities from metagenomics data.

The field of machine learning, which is encompassed by 
the field of artificial intelligence (AI), can be  used to process 
metagenomics data into meaningful information that can enrich 
predictive models of DWDS. Figure  2 shows the circles of 

FIGURE 2 | The circle of learning in artificial intelligence.
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learning methods within the AI field that incorporate recent 
advances in machine learning and deep learning. Based on 
the data structure, problem formulation, and the machine 
learning algorithm used, data science can address different 
aspects of control and optimization of DWDS and the quality 
monitoring thereof. In this regard, machine learning can 
be  deployed for four categories of application in DWDS: 
modelling microbial network interactions, prediction and 
forecasting of microbial and chemical water quality, decision 
support for maintenance and operation, and system optimization.

Addressing any type of question using data for different 
applications can be  done through the use of three main types 
of machine learning: unsupervised learning, supervised learning, 
and reinforced learning. Unsupervised machine learning algorithms 
aim to identify meaningful patterns in the data by looking for 
hidden features in the unlabeled dataset and inferring clusters, 
accordingly. The use of such algorithms to answer questions 
regarding prevalence clusters within the microbial communities 
of drinking water has been illustrated by Pinto et  al. (2014) as 
mentioned above. K-means clustering, Neural Networks (NN), 
and Principal Component Analysis (PCA) are some of the 
unsupervised machine learning approaches which are used for 
solving clustering problems. Supervised machine learning 
algorithms are deployed on labeled training data sets to make 
predictions. Classification problems are problems where supervised 
machine learning algorithms can be used to predict which category 
something falls into. Naive Bayes Classifier, Support Vector 
Machines (SVM), Logistic Regression, and Neural Networks are 
some of the approaches that can be deployed to solve classification 
problems. In the DWDS case, Liu et al. (2018) used the Bayesian 
“SourceTracker” method to assess the origin of bacteria in tap 
water and distribution system. Supervised machine learning 
algorithms can also be  used to solve regression problems, for 
instance, in making predictions on a continuous scale. Various 
regression methods (linear, nonlinear, or Bayesian) using nonlinear 
static, dynamic, or spatially distributed models, can be  used in 
these cases. Negara et al. (2019) has used SVM to solve a nonlinear 
regression problem that maps metagenomics data from a waste-
water treatment plant into the process parameters. Finally, 
reinforcement learning algorithms use feedback-based learning 
algorithms where actions and rewards are defined, involving the 
decision-making agent and environment, in order to maximize 
a given utility/value function.

Knowledge Gaps and Latent Potential for 
the Discovery of Novel Lineages
In a study conducted by the United  States Environmental 
Protection Agency (US EPA) which aimed at identifying microbial 
communities in drinking water by analyzing 16S rRNA-based 
clone libraries, the researcher found a majority mounting to 
57.6% of the sequences belongs to the category of difficult-
to-classify bacteria. The researchers observed that 44% of these 
difficult-to-classify sequences were closely related to sequences 
retrieved from preceding genomics-based drinking water studies. 
Thus, these hard-to-classify sequences are most likely indicative 
of novel lineages which are characteristic of the drinking water 

microbiome and may play vital roles in drinking water 
biogeochemical processes (Revetta et al., 2010). As a consequence 
of this knowledge gap, light must be  shed on the limitations 
of any artificial-intelligence-based models that use metagenomics 
data because the performance of any data-driven mathematical 
model depends on the quality of data it is fed (Sessions and 
Valtorta, 2006; Alves et  al., 2021; Sambasivan et  al., 2021).

In their opinion paper Hull et al. (2019), highlight that research 
in the field of drinking water (DW) microbiome is lagging 
behind compared to research advancements in the fields of the 
human microbiome, and environmental microbiomes. Thus, they 
suggest that the field of DW microbiome can benefit greatly 
from combining efforts for building a DW microbe project 
(DWMP). By going in the footprints of other genome databases, 
the field of DW microbiome can benefit from enriching a central 
database to include within-species resolution data. In addition, 
further whole-genome sequencing of DW samples can tackle 
the issue of unclassified/unknown/sequences (Hull et  al., 2019).

Future Technology in DWDS: 
Meta-Transcriptomics
Meta-transcriptomics (RNA) data introduces additional 
dimensionality into the mathematical problem formulation that 
machine learning algorithms can accommodate to address questions 
regarding functionality. Meta-transcriptomics transcends 
metagenomics data analysis, where in addition to identifying 
the microbial communities in DWDS, it can provide information 
on the functions of each organism (functional metagenomics). 
One of the advantages of meta-transcriptomics is its ability to 
differentiate between the active part of a microbial community 
from the total community which can be  quite distinct from one 
another. The extra knowledge on the functions of species in the 
microbial community in drinking water can provide valuable 
information for better understanding the metabolic pathways 
that are expressed in the bacteria that are present in the aquatic 
environment of drinking water. The information can be  used 
by operators to deploy appropriate control actions that inhibit 
undesired metabolism and promote favorable ones (e.g., the 
metabolic pathways to convert major and minor carbon sources 
or specific compounds like pollutant degradation). Researchers 
in the medical field previously showed that meta-transcriptomics 
can provide a high-resolution picture of the microbiome’s functional 
dynamics (Lavelle and Sokol, 2018). From a meta-omics point 
of view, it is envisioned that meta-transcriptomics will be crucial 
for the next step in an obtaining accurate understanding of 
microbial communities’ activities in DWDS.

DISCUSSION

Metagenomics analysis of DWDS has revealed that high-resolution 
spatial and long-term temporal metagenomics data of DWDS 
provide insights on the variation of microbial communities under 
different environmental conditions. A group of genetic markers 
can subsequently be  identified to monitor the dynamic changes 
in the drinking water microbiome. The ability to forecast the 
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spatial distribution and temporal dynamics of a drinking water 
bacterial community can make water quality monitoring more 
cost-effective, contribute to public health safety by ensuring a 
safe water supply and increase the performance of process control 
strategies. Knowing the normal conditions for the operation of 
the system in its steady-state allows for finding anomalies and 
invasive pathogens faster. While in all the aforementioned literature 
(Supplementary Table 1), metagenomics data has been effectively 
collected over extended periods and analyzed to understand the 
dynamics of microbial water quality in both wastewater treatment 
plants and water distribution systems, the data analysis has been 
limited to correlation analysis of available process data. An 
integrated approach that combines the meta-genomic data with 
predictive kinetic-mechanistic modelling, potentially combined 
with machine learning techniques, is still lacking. Consequently, 
current and future research directions should aim towards the 
development of a new approach using machine learning techniques 
to interpret DNA and RNA Next Generation Sequencing (NGS) 
data in combination with chemical and physical process knowledge 
to form the basis of a deeper understanding and prediction of 
the biological and chemical processes in the DWDS. It will 
transcend metagenomics into functional metagenomics in the 
drinking water management systems.
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