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The Vital Role of Central Executive
Network in Brain Age: Evidence From
Machine Learning and
Transcriptional Signatures
Keke Fang1, Shaoqiang Han2, Yuming Li3, Jing Ding1, Jilian Wu1 and Wenzhou Zhang1*
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Recent studies combining neuroimaging with machine learning methods successfully
infer an individual’s brain age, and its discrepancy with the chronological age is used
to identify age-related diseases. However, which brain networks play decisive roles in
brain age prediction and the underlying biological basis of brain age remain unknown.
To answer these questions, we estimated an individual’s brain age in the Southwest
University Adult Lifespan Dataset (N = 492) from the gray matter volumes (GMV) derived
from T1-weighted MRI scans by means of Gaussian process regression. Computational
lesion analysis was performed to determine the importance of each brain network in
brain age prediction. Then, we identified brain age-related genes by using prior brain-
wide gene expression data, followed by gene enrichment analysis using Metascape.
As a result, the prediction model successfully inferred an individual’s brain age and
the computational lesion prediction results identified the central executive network as
a vital network in brain age prediction (Steiger’s Z = 2.114, p = 0.035). In addition,
the brain age-related genes were enriched in Gene Ontology (GO) processes/Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways grouped into numbers of
clusters, such as regulation of iron transmembrane transport, synaptic signaling,
synapse organization, retrograde endocannabinoid signaling (e.g., dopaminergic
synapse), behavior (e.g., memory and associative learning), neurotransmitter secretion,
and dendrite development. In all, these results reveal that the GMV of the central
executive network played a vital role in predicting brain age and bridged the gap
between transcriptome and neuroimaging promoting an integrative understanding of
the pathophysiology of brain age.

Keywords: brain age, Allen Human Brain Atlas, structural brain imaging, machine learning, gene

INTRODUCTION

Normal brain aging is accompanied by a decline of brain region volumes (Anderton, 2002) and
cognition such as conceptual reasoning, executive function, and memory (Harada et al., 2013;
Kirova et al., 2015). As the brain ages, many age-related diseases emerge, such as Alzheimer’s disease
(AD) (Amaducci and Tesco, 1994; Ferri et al., 2005). As the fifth leading cause of death in people
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over the age of 65 years (Kirova et al., 2015), AD burdens
the society heavily. The risk of developing AD increases
exponentially with age (Plassman et al., 2007). Thus, revealing the
mechanism of the normal brain age is the key to understanding
age-related diseases (Raji et al., 2009). Recent studies combining
neuroimaging and machine learning methods predict brain age
successfully and found that the chronological age is not exactly
equal to brain age in both normal and pathological subjects such
as patients with schizophrenia, mild cognitive impairments, and
depression (Gaser et al., 2013; Habes and Janowitz, 2016; Hajek
et al., 2019; Han et al., 2021; He et al., 2020). This discordance
between brain age and chronological age helps explain individual
differences in brain aging (Jylhävä et al., 2017). However, the
underlying biological basis of brain age is not well elaborated.

Extensive efforts have been made to identify reliable indictors
of biological age (Wagner et al., 2016). In recent years, the
brain age method identifying normal aging pattern has turned
out to be an informative biomarker of healthy brain aging
at the individual level (Cole and Franke, 2017; Franke et al.,
2010). For example, Vishnu et al. accurately predicted MRI-
derived brain age, helping to identify various brain diseases
(Bashyam et al., 2020). Using this framework, studies have
uncovered accelerated brain aging in several neurological diseases
using the brain-predicted age difference (brain-PAD) scores,
defined as the discordance between the predicted brain age
and the chronological age (Gaser et al., 2013; Habes and
Janowitz, 2016; Hajek et al., 2019; Han et al., 2021; He
et al., 2020). The brain age method outperforms other state-
of-the-art biomarkers, with accuracy rates reaching 81% in
identifying mild cognitive impairments (Gaser et al., 2013).
Despite these remarkable findings, these studies have failed to
elucidate the underlying biological basis of brain age, limiting
our understanding of the biological mechanism of brain age and
its application.

It is widely accepted that genetic factors play important roles
in normal brain aging (Lin et al., 2020). For example, the
expressions of genes playing roles in synaptic functional and
neuronal plasticity in the frontal cortex are reduced with aging
(Sikora et al., 2021). However, the relation between genetic factors
and brain age derived from neuroimaging remains unknown.
Advances in comprehensive brain-wide gene expression atlases
make possible linking the spatial variations in gene expressions to
macroscopic neuroimaging phenotypes (Fornito et al., 2019; Zhu
et al., 2021). For example, Reardon et al. found that the genetic
spatial expression is tied with cortical scaling gradients (Reardon
and Seidlitz, 2018). Resting-state intrinsic brain synchronization
is also supported by related gene expression (Richiardi et al.,
2015). Combing neuroimaging and gene transcripts provides
insights into how disease-related aberrance at the microscale
architecture drives macroscale brain abnormalities in mental
disorders such as depression and schizophrenia (Romero-Garcia
et al., 2020; Li and Seidlitz, 2021). The details of the underlying
transcriptional mechanisms of brain age remain unknown.

The aims of the current study were twofold. Firstly, we
investigated the importance of brain networks in brain age
prediction. The Southwest University Adult Lifespan Dataset
(N = 492) was used in the current study. For each subject, the gray

matter volumes (GMV) quantified by voxel-based morphometry
(VBM) of brain regions were treated as features to predict an
individual’s brain age. In the prediction model, Gaussian process
regression (GPR) was chosen for its superior performance
compared to existing methods (Han et al., 2021). The importance
of a distinct brain network was determined by computational
lesion analysis (Feng et al., 2018). Secondly, genetic annotation of
the brain networks playing decisive roles in brain age prediction
was generated by employing the Brain Annotation Toolbox
(BAT) (Liu et al., 2019) followed by functional enrichment
analysis to infer the ontological pathways of the brain age-
related genes.

MATERIALS AND METHODS

Sample
The dataset used in the current study come from the Southwest
University Adult Lifespan Dataset (SALD). This dataset was
obtained from healthy participants (N = 492, 308 females and 187
males; age range, 19–80 years). The exclusion criteria included
MRI-related exclusion criteria, current psychiatric/neurological
disorders, and use of psychiatric drugs in the past 3 months prior
to scanning, among others. More description on the subjects and
data acquisition parameters can be found in Wei et al. (2018). The
data are available for research purposes through the International
Neuroimaging Data-Sharing Initiative.1

Data Acquisition
High-resolution T1-weighted anatomical images of the
participants were acquired using a magnetization-prepared rapid
gradient echo (MPRAGE) sequence (repetition time = 1,900 ms,
echo time = 2.52 ms, inversion time = 900 ms, flip angle = 90◦,
resolution matrix = 256 × 256, slices = 176, thickness = 1.0 mm,
and voxel size = 1 mm3

× 1 mm3
× 1 mm3).

Voxel-Based Morphometry Analysis
We followed the standard pipeline of the CAT12 toolbox2 to
calculate the VBM. The main steps included bias field correction,
segmentation [gray and white matter and cerebrospinal fluid,
adjustment for partial volume effects, normalization into the
Montreal Neurological Institute (MNI) space, resampled to
1.5 mm × 1.5 mm × 1.5 mm], and non-linear modulation
(Ashburner, 2009). Finally, the gray matter (GM) maps
were smoothed using 6 mm full width at half maximum
(FWHM) Gaussian kernel. The total intracranial volume
(TIV) of each participant was also calculated to explore its
association with brain age.

Prediction Model
GPR was used to infer an individual’s brain age from the
mean GMV of 246 brain regions (Fan et al., 2016) due to its
superior performance (Han et al., 2021). The GPR method used
in this study was implemented in the Gaussian Processes for

1http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
2http://dbm.neuro.uni-jena.de/cat12/
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Machine Learning (GPML) toolbox.3 As done in previous study
(Marquand et al., 2016; Rasmussen and Williams, 2005), the
parameters were optimized using a conjugate gradient optimizer
(included in the GPML toolbox).

Model Validation
A 10-fold cross-validation was used to evaluate the performance
of the prediction model (Sone et al., 2019; Ziegel, 2010).
This procedure was repeated 100 times to obtain more
stable results. To evaluate the performance of the prediction
model, we calculated (1) the mean absolute error (MAE)
between the estimated brain age (output of the prediction
model) and the chronological age and (2) the correlation
between the chronological age and the estimated brain age
across 100 repetitions. The mean brain-PAD score of each
subject was calculated (brain-PAD score: predicted age - the
chronological age).

To explore whether there was gender difference in the
brain-PAD score, the brain-PAD scores of male subjects were
compared with those of female subjects using a two-sample
t-test controlling for age and age2. The correlation between
the TIV and brain-PAD was also calculated to investigate its
effect on brain age.

Computational Lesion Prediction
As done in a previous study, lesion prediction analysis was
performed to examine the importance of the brain networks
defined in the 17 networks of Yeo et al. (2011). Specifically, the
regions belonging to one specific network were excluded and
the GMV of the rest of the networks were treated as features to
predict brain age (Feng et al., 2018). Afterward, the importance
of an individual network was determined by comparing the
performance of a “lesioned” model with that of a model with all
regions using Steiger’s Z (Feng et al., 2018; Ren et al., 2021). Here,
we used the opposite value of the Z value. A higher Z meant
a lower of performance of the “lesioned” model, thus declaring
the more important role of the “lesioned” network in brain age
prediction. The correlation between the chronological age and
the mean GMV of each network was also calculated.

Genetic Annotation Using BAT
Then, we performed a genetic annotation analysis for the brain
age-related networks to identify the gene expression profile for
this network using BAT4 (Hawrylycz et al., 2012). The gene
profiles used in BAT (see text footnote 4) come from the
Allen Human Brain Atlas (AHBA)5 obtained from six adult
human brains (Hawrylycz et al., 2012). The number of anatomic
samples obtained for each brain varied from 363 to 946. Details
on the processing expression data were included in Liu et al.
(2019). Here, we just provide a brief description. Processing
the raw expression data followed the pipeline provided by the
AHBA. The probe with the highest average expression was
picked to represent that gene. In sum, 3,695 unique anatomic

3www.gaussianprocess.org/gpml/code/
4http://123.56.224.61/softwares
5http://human.brain-map.org/

samples with 20,738 gene expression profiles were obtained.
Expressions were normalized by extracting the median of the
gene’s expression across all samples of the individual, then divided
by the median. For each AHBA tissue sample, a 6-mm sphere
region of interest (ROI) in the MNI volume space centered
on its MNI centroid coordinate. Finally, 3,695 ROIs with their
corresponding normalized gene expression profiles were used in
the following analysis (Hawrylycz et al., 2012).

For each background AHBA sample, that with more than
50% of voxels that were also present in the given background
mask was mapped to one of the given clusters. The gene
expression profile of each cluster was defined as the average
gene expression of all the samples mapped to the given
cluster. Permutation analysis was adopted to identify the
differentially expressed genes in the given cluster. Lastly, for
each gene, the name and the corresponding p-value were
obtained. In the current study, brain age-related genes were
identified if their p < 0.05 [family-wise error (FWE) corrected]
(Hawrylycz et al., 2012).

Enrichment Pathways Associated With
Brain Age-Related Genes
Thereafter, we aligned the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways with the genes obtained in the previous step
using Metascape. Metascape provided automated meta-
analysis tools to understand either common or unique
pathways in 40 independent knowledge bases (Zhou et al.,
2019). The gene list was input into the Metascape website
and the results corrected by the false discovery rate (FDR;
p < 0.05).

RESULTS

Demographic Information
Demographic information of the dataset used in the current study
is included in Table 1.

Performance of the Prediction Model
The correlation between the chronological age and the estimated
brain age reached R = 0.889 (Figure 1). Consistent with the
findings of a previous study, the performance of the prediction
model was better that that in Han et al. (2021) because the sample
size used in the current study was larger (Franke et al., 2010).
There was no significant difference between male and female
subjects (p > 0.05). The correlation between TIV and brain-PAD
was also not significant (p > 0.05).

TABLE 1 | Demographic information of the dataset.

Subjects

Age (years), mean ± SD, (range), y 45.10 ± 17.43, (19–80)

Gender, male: female 186: 306
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FIGURE 1 | Performance of the prediction model.

Computational Lesion Prediction
The results of computational lesion prediction revealed that
the performance of the prediction model significantly degraded
(Steiger’s Z = 2.114, p = 0.035) only if the central executive
network, including the bilateral middle temporal gyrus, right
middle frontal gyrus, the bilateral dorsolateral frontal gyrus, and
the right inferior parietal lobule, was excluded (Supplementary
Figure 1). The mean GMV of the 17 networks were all negatively
correlated with the chronological age, suggesting that the GMV
decreases in normal aging (Supplementary Figure 2).

Enrichment Pathways
BAT identified 2,927 genes associated with brain age-related
networks. Then, we aligned the GO biological processes and
KEGG pathways using Metascape. The results reported in
this study were corrected for FDR (p < 0.05) and discrete
enrichment clusters were discarded. The GO processes and
KEGG pathways were clustered into a number of groups such as
regulation of iron transmembrane transport, synaptic signaling,
synapse organization, retrograde endocannabinoid signaling
(e.g., dopaminergic synapse), behavior (e.g., memory and
associative learning), neurotransmitter secretion, and dendrite

development. The top 20 enrichment terms were included in
Figure 2 and the enrichment networks were drawn in Figure 3.

DISCUSSION

In this study, we investigated the importance of brain networks
contributing to brain age prediction and the underlying
molecular mechanisms of brain age. As a result, the central
executive network turned out to be a vital network in predicting
brain age due to the performance of the prediction model being
significantly degraded (Steiger’s Z = 2.114, p = 0.035) when it
was excluded from the model. The genes associated with the
central executive network were ontologically enriched in clusters
such as regulation of ion transmembrane transport, synaptic
signaling, synapse organization, retrograde endocannabinoid
signaling (e.g., dopaminergic synapse), behavior (e.g., memory
and associative learning), and so on. In all, these results reveal that
the GMV of the central executive network played a vital role in
predicting brain age and bridged the gap between transcriptome
and neuroimaging promoting an integrative understanding of the
pathophysiology of brain age.

Our results hinted that the GMV of the central executive
network is a potential biomarker of brain age. Normal brain

Frontiers in Neuroscience | www.frontiersin.org 4 September 2021 | Volume 15 | Article 7333167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-733316 September 3, 2021 Time: 12:53 # 5

Fang et al. Brain Network Underlying Brain Age

FIGURE 2 | Top 20 significant Gene Ontology (GO) biological processes/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The count meant the
number of genes involved in the given term.

aging is associated with GM volume loss (Allen et al., 2005;
Walhovd et al., 2005), including in the parietal lobe, temporal
cortex, and especially in the frontal lobe (Matsuda, 2013;
Van Petten et al., 2004). Along with losses of GMV, normal aging
is characterized by a gradual decline in cognitive processes
such as executive function, episodic memory, working memory,
and processing speed (Lee et al., 2016). Consistent with these
studies, our results presented that the GMV of all networks
correlated with brain age significantly. In addition, we found
that only when the central executive network was excluded did
the performance of the prediction model significantly degrade
(Steiger’s Z = 2.114, p = 0.035). These results hinted that the
central executive network could be a potential biomarker of brain
age. The reason might be that the effect of brain aging on the
central executive network was more consistent across different
populations than regions like the amygdala, hippocampus, and
thalamus (Matsuda, 2013). Individuals exhibiting age-related
decline tended to show impairments of executive functions first,
suggesting that this network might be particularly vulnerable
during normal aging (Sorel and Pennequin, 2008). In addition,
a linear volume reduction of the central executive network
with increasing age even occurred during the earlier stages of
adulthood (Terribilli et al., 2011). As a supplement to these
studies, our results revealed that the GMV of the central executive
network played a decisive role in predicting brain age.

We further investigated the transcriptional signatures of the
brain age-related networks. Although brain age was employed

in abnormal aging trajectories in various diseases (Gaser
et al., 2013; Habes and Janowitz, 2016; Hajek et al., 2019;
Han et al., 2021; He et al., 2020), studies investigating the
underlying biological foundation of brain age are scarce. To
the best of our knowledge, only one study linked polygenic
risk score and accelerated brain aging in AD (Habes and
Janowitz, 2016). For the first time, we found that brain age-
related genes were enriched in GO processes/KEGG pathways
clustered into a number of groups such as regulation of
iron/calcium transmembrane transport, synaptic signaling,
synapse organization, retrograde endocannabinoid signaling
(e.g., dopaminergic synapse), behavior (e.g., memory and
associative learning), neurotransmitter secretion, and dendrite
development. Calcium-dependent signals were key triggers of
the molecular mechanisms underlying learning and memory;
dysregulation of its homeostasis in the aging brain was
hypothesized to underlie aging-related cognitive decline (Oliveira
and Bading, 2011). In the brain, iron was involved in many
fundamental biological processes, including neurotransmitter
synthesis and metabolism; its homoeostasis played an important
role in maintaining normal function (Ward et al., 2014). Normal
brain aging is accompanied by selective accumulation of iron.
Greater accumulation of iron was observed in neurodegenerative
diseases associated with oxidative stress and cellular damage
(Zecca et al., 2004). In addition, both the density and
morphology of dendritic trees mainly possessed by pyramidal
neurons underwent progressive regression in the neocortex

Frontiers in Neuroscience | www.frontiersin.org 5 September 2021 | Volume 15 | Article 7333168

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-733316 September 3, 2021 Time: 12:53 # 6

Fang et al. Brain Network Underlying Brain Age

FIGURE 3 | Metascape enrichment network visualization.

(Dickstein et al., 2013) without neuronal death (Morrison and
Hof, 1997). Consistent with the notion that no single mechanism
explains the aging process (Kyng et al., 2003), we identified a
number of GO processes/KEGG pathways underlying brain age.

Several limitations should be considered when understanding
our results. Firstly, factors such as educational level could also

affect the GMV. For example, greater GMV in the superior
temporal gyrus, insula, and anterior cingulate cortex were found
in more educated individuals (Arenaza-Urquijo et al., 2013).
As this information was not included in the dataset used in
the current study, future studies might explore its effect on
brain age. Secondly, the gene expression data and neuroimaging
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data did not come from the same subjects. Considering the
high degree of conservation in overall gene expression across
human populations (Stranger et al., 2007; Zhu et al., 2021), the
expressions of brain age-related genes could be believable.

CONCLUSION

As a supplement to previous studies exploring brain age, our
results reveal a decisive role of the GMV of the central executive
network in brain age prediction. In addition, the present
study investigated the underlying transcriptional profiling of
the central executive network. As a result, we found that
brain age-related genes were enriched in GO processes/KEGG
pathways clustered into a number of aging-related mechanisms
such as regulation of iron/calcium transmembrane transport
and dendrite development. In all, these results reveal that the
GMV of the central executive network played a vital role in
predicting brain age and bridged the gap between transcriptome
and neuroimaging promoting an integrative understanding of the
pathophysiology of brain age.
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Disruptions in brain connectivity have been widely reported in Alzheimer’s disease (AD).
Morphometric similarity (MS) mapping provides a new way of estimating structural
connectivity by interregional correlation of T1WI- and DTI-derived parameters within
individual brains. Here, we aimed to identify AD-related MS changing patterns and
genes related to the changes and further explored the molecular and cellular mechanism
underlying MS changes in AD. Both 3D-T1WI and DTI data of 106 AD patients and
106 well-matched healthy elderly individuals from the ADNI database were included in
our study. Cortical regions with significantly decreased MS were found in the temporal
and parietal cortex, increased MS was found in the frontal cortex and variant changes
were found in the occipital cortex in AD patients. Mean MS in regions with significantly
changed MS was positively or negatively associated with memory function. Negative
MS-related genes were significantly downregulated in AD, specifically enriched in
neurons, and participated in biological processes, with the most significant term being
synaptic transmission. This study revealed AD-related cortical MS changes associated
with memory function. Linking gene expression to cortical MS changes may provide
a possible molecular and cellular substrate for MS abnormality and cognitive decline
in AD.

Keywords: Alzheimer’s disease, morphometric similarity, Allen Human Brain Atlas, gene transcription, sMRI =
structural MRI

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease marked by progressive neuron loss,
manifested by short-term memory and other cognitive impairment symptoms (Wang et al.,
2020). AD-related neurodegeneration involves several brain regions, in which the entorhinal,
hippocampal and temporal cortices are the most reported (Lerch et al., 2005; Im et al., 2008; Morra
et al., 2008; Seong et al., 2010; Li et al., 2014; Femminella et al., 2018). Structural indicators of these
regions, including gray matter density (Frisoni et al., 2002), volume (Busatto et al., 2003), cortical
thickness (Pettigrew et al., 2017), and curvature (Im et al., 2008; Seong et al., 2010), have been found
to be decreased in AD patients. White matter studies based on diffusion tensor imaging (DTI) have
also demonstrated reduced integrity in the temporal lobe as well as white matter tracts connecting
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frontal and temporal regions in AD (Naggara et al., 2006;
Kantarci et al., 2017). In recent years, AD has been widely
regarded as a disconnected syndrome whereby a large-scale
brain network is progressively disrupted by neuropathological
processes. MR topological studies constructed whole-brain
structural networks and demonstrated abnormal topological
properties in multiple brain regions, including the hippocampal,
frontal, temporal, parietal and occipital regions, verifying brain
network disruption and disconnection between anatomically
connected brain regions in AD patients (Lo et al., 2010;
Yao et al., 2010).

All the above-mentioned multiregional changes in either
gray matter (from 3D T1WI) or white matter (from DTI)
may be attributed to dysconnectivity of large-scale brain
structural networks in AD. However, a structural covariance
network using T1WI could not be applied to single-subject
level analysis, and precisely estimating long-distance connections
still constrains DTI-based tractography. Here, we adopted a
different parameter from the past—“morphometric similarity
(MS)”—which is estimated as the inter-regional correlation
of multiple macro- and micro-structural multimodal MRI
variables, based on both structural T1WI and DTI (Stam
et al., 2007). It reflects the anatomical connections of different
brain areas from histological similarity and axonal connectivity
within an individual human brain (Seidlitz et al., 2018).
Given that AD has been considered a disconnection syndrome
due to regional vulnerability to cellular neurodegeneration
and disconnection of distant cortical regions (Gonzalez-
Escamilla et al., 2020), it is suitable to evaluate brain
anatomical connectivity in AD patients using MS as a
neuroimaging indicator.

AD is a highly heritable disease (Bellenguez et al., 2020).
Investigating the link between related gene expression
and internal brain structure helps to understand the
pathophysiological processes of the disease. The Allen Human
Brain Atlas (AHBA) can present gene transcription information
in the same standard space as neuroimaging data, providing
a new approach for linking gene expression to neuroimaging
phenotypes. With this approach, only a few reports combine
gene transcription data with gray matter volumes in AD.
However, it is unclear which genes related to AD-specific
MS changes are specific to which neurological functions and
how the expression of these genes affects MS changes. In the
current study, we investigated the MS changing pattern map
in AD and spatially associated the MS changing pattern map
with anatomically patterned gene expression using data from
the AHBA. We aimed to identify AD-related MS changing
patterns and genes closely related to the changes and further
explore the cellular and molecular mechanism underlying
MS changes in AD.

MATERIALS AND METHODS

Participates
A total of 113 AD patients with their initial 3T MRI scans,
including both 3D T1WI and DTI data, were obtained from

ADNI database1 which followed the standard ADNI-GO and
ADNI-2 protocols (Jack et al., 2010; Weiner et al., 2017). The
main inclusion criteria were as follows: (1). subjective memory
concern as reported by subject, study partner or clinician; (2).
abnormal memory function documented by scoring within the
education adjusted ranges on the Logical Memory II subscale
from the Wechsler Memory Scale-Revised; (3). Mini-Mental
State Exam (MMSE) score between 20 and 26; (4). Clinical
Dementia Rating 0.5 or 1.0; and 5. NINCDS/ADRDA criteria
for probable AD. All images were visually inspected by two
radiologists, and seven patients with poor image quality (2
patients’ 3D T1WI and five patients’ DTI) were excluded.
Finally, 106 AD patients with qualified image data were included
(63 males and 43 females; mean age 75, ranging from 55 to
90 years). For comparison, an equal number of age- and gender-
matched healthy elders with qualified 3D-T1WI and DTI were
selected from the ADNI database (63 males and 43 females;
mean age 75, ranging from 55 to 90 years). The detailed scan
parameters are provided in Supplementary Table 1. General
cognitive function was assessed by the MMSE and the Clinical
Dementia Rating. Memory function was evaluated by a memory
composite score obtained for the majority of participants (94
subjects with AD and 99 subjects with healthy elderly individuals)
(Crane et al., 2012).

Morphometric Similarity Estimation
Surface-based morphology parameter estimation from high-
resolution T1WI was performed using FreeSurfer v6.0.0.2 The
DTI data were preprocessed according to the pipeline of FMRIB’s
Diffusion Toolbox implemented in FSL 5.0.10.3 The detailed
preprocessing procedures for T1WI and DTI data are provided
in Supplementary Material.

The DTI parameters of fractional anisotropy and mean
diffusion were defined as myelination metrics. Among the
surface-based morphology parameters, the gray matter, surface
area and cortical thickness were defined as gray matter metrics,
and the intrinsic/Gaussian curvature and mean curvature were
the curvature metrics.

To adjust the variation from multiple sites and scanners,
the ComBat harmonization of surface-based morphology and
diffusion parameters across scanners and sites was performed
before the downstream morphometric similarity estimation
(Fortin et al., 2017, 2018). Then, these metrics were Z-score
transformed to improve normality.

The Pearson correlation of gray matter, curvature and
myelination metrics between each pair of cortical regions
was performed to generate 308 × 308 MS matrices for each
subject. Then, the 308 × 308 MS matrices were averaged
across the 308 cortical regions to calculate the regional MS
for every 308 cortical regions. From the brain connectome
perspective, the regional MS represents the weighted degree
of each cortical node, which was connected by signed and

1http://adni.loni.ucla.edu
2http://surfer.nmr.mgh.harvard.edu/
3http://www.fmrib.ox.ac.uk
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weighted edges of pairwise similarity to all other cortical nodes
in the whole brain.

Transcription-Imaging Association
A compiled transcription matrix of six postmortem adult
brains from the AHBA4 was acquired from the data directory
for Neuroscience in Psychiatry Network manuscript,5 which
provided expression values for each of 20,737 genes estimated
in 151 cortical regions of the left hemisphere. PLS regression
was used to identify genes whose transcriptional profiles
were significantly associated with regional MS differences.
In this study, the independent variable was the compiled
AHBA transcription matrix (151 regions × 20,737 genes),
and the dependent variables were the vector of regional
MS case-control T-values from the left hemisphere (151
regions). The first PLS component (PLS1) weight of each
gene was assigned in terms of its contribution to the
overall model. Then, the ratio of each gene’s PLS1 weight
to its bootstrapped standard error (1,000 resamplings with
replacement of the 151 cortical regions) was calculated as a
Z score. Here, genes with | Z score | > 4.72 (Bonferroni
correction of P < 0.05) denoted the PLS1 gene set. Details
about the transcription-imaging association are provided in
Supplementary Material.

Disease Enrichment Analyses
Disease enrichment analyses were used to explore whether
the PLS1 gene set was enriched in AD-related differentially
expressed genes (DEGs). The expression dataset with series
accession number GSE5281 from the Gene Expression
Omnibus database6 was acquired to screen the AD-related
DEGs. The LIMMA package (version 3.42.2) of R software
was used to analyze the DEGs between AD and normal
elderly individuals. P < 0.01 and | log2 (fold change) |
> 1 were defined as the thresholds for screening AD-
related DESs. Fisher’s exact test was used to evaluate the
significance of the overlap between PLS1 gene sets and AD-
related DEGs. The Bonferroni method was used to correct
for multiple comparisons (both up- and downregulated
DEGs) (Pc < 0.05, an uncorrected P < 0.05/2 = 0.025).
Details about the disease enrichment analyses are provided in
Supplementary Material.

Cell-Type-Specific Analysis
The RNAseq dataset with series accession number GSE73721
from the Gene Expression Omnibus database was acquired
to perform cell-type-specific analysis. pSI v1.17 was used to
determine the specific neocortical cell type for which the PLS1-
genes were enriched. A pSI threshold of 0.05 was used to generate
the cell-type-enriched gene lists for each type of cortical cell.
Fisher’s exact test was used to evaluate the significance of the
overlap between PLS1 gene sets and cell-type-specific genes for

4http://human.brain-map.org/
5https://doi.org/10.6084/m9.figshare.2057796.v1
6https://www.ncbi.nlm.nih.gov/geo/
7http://genetics.wustl.edu/jdlab/psi_package/

each type of cortical cell. The Bonferroni method was used
to correct for multiple comparisons (5 cell types) (Pc < 0.05,
an uncorrected P < 0.05/4 = 0.01). Details about the cell
type-specific analysis are provided in Supplementary Material.

Gene Ontology Analysis
The clusterProfiler package (v3.14.3) of R software was used to
perform the gene ontology (GO) analysis. Our study only focused
on the biological process of GO terms in which the PLS1 gene
sets were enriched. A Bonferroni adjusted P-value < 0.05 was
considered significant.

Statistical Analysis
The statistical analyses for demographic and cognitive data were
performed using the Statistical Package for the Social Sciences
(SPSS version 18.0). Comparisons between AD patients and
healthy elderly individuals were performed using a two-sample
T-test for continuous variables with a normal distribution and

TABLE 1 | Demographics and cognition.

AD (n = 106) NC (n = 106) T/χ2 P-value

Age, years 74.94 ± 8.02 74.92 ± 7.84 0.026 0.979

Education, years 15.59 ± 2.60 16.27 ± 2.50 −1.92 0.06

Gender, male/female 63/43 63/43 0 1

MMSE 22.92 ± 3.13 28.57 ± 1.73 −16.26 0.0001

CDR 0.81 ± 0.27 0.04 ± 0.13 26.13 0.0001

Memory composite score* −0.85 ± 0.50 0.79 ± 0.54 −22.01 0.0001

The data are shown as means (SD). The symbol * indicates that the composite
memory score was available from 94 of the 106 AD and 99 of the 106 NC. AD,
Alzheimer’s disease; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State
Examination; NC, normal control subject.

FIGURE 1 | Case-control differences in regional morphometric similarity
(P < 0.05, FDR corrected). Regions in blue indicate significantly decreased
morphometric similarity in AD, whereas regions in red indicate significantly
increased morphometric similarity in AD. FDR, false discovery rate; L, left; R,
right.
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TABLE 2 | Cortical regions of case-control differences in regional morphometric similarity.

Cortical regions Coordinates (MNI) T value P-value FDR

x y z

L_middletemporal_part5 −60.019 −27.635 −13.299 −4.8294 2.66E-06 7.74E-04

L_fusiform_part1 −30.238 −46.494 −17.452 −4.2592 3.11E-05 3.196E-04

R_bankssts_part1 53.969 −39.123 1.4973 −4.1341 5.18E-05 3.986E-03

L_superiorparietal_part8 −23.65 −73.056 29.861 −3.5866 4.18E-04 0.021429

L_parahippocampal_part1 −25.991 −25.187 −25.332 −3.5065 5.57E-04 0.021429

R_lateraloccipital_part2 44.513 −70.022 −2.0359 −3.4184 7.59E-04 0.024105

L_entorhinal_part1 −24.011 −5.8614 −32.827 −3.4094 7.83E-04 0.024105

L_bankssts_part2 −53.141 −49.843 8.2646 −3.2373 0.001405 0.035229

R_parahippocampal_part2 27.448 −24.861 −24.205 −3.0702 0.002426 0.04151

L_supramarginal_part7 −49.357 −38.912 32.554 −3.0206 0.00284 0.046042

R_superiorfrontal_part7 9.6868 8.2947 60.026 4.6868 5.03E-06 7.74E-04

R_superiorfrontal_part11 9.2005 24.389 53.686 4.0632 6.87E-05 4.232E-03

R_paracentral_part2 5.3566 −16.772 61.135 3.5071 5.56E-04 0.021429

R_frontalpole_part1 9.8338 62.819 −10.737 3.285 0.0011976 0.033534

R_lateraloccipital_part1 18.646 −99.162 −7.394 3.2203 0.001487 0.035229

L_lingual_part2 −6.5596 −88.407 −8.0452 3.1896 0.001646 0.036218

L_superiorfrontal_part2 −11.687 −8.4248 64.785 3.1488 0.001882 0.038635

R_superiorfrontal_part6 10.21 54.909 26.16 3.1191 0.002073 0.039895

R_superiorfrontal_part3 12.367 −3.2651 65.643 3.0906 0.002272 0.041168

The cortical regions above the middle line of the table are regions with significantly decreased morphometric similarity in AD, whereas the cortical regions under the middle
line of the table are regions with significantly increased morphometric similarity in AD. FDR, the corrected P-value with the false discovery rate method.

FIGURE 2 | The relationship between the memory composite score and regional morphometric similarity. (A) The average morphometric similarity in regions with
significantly increased morphometric similarity in AD is significantly negatively correlated with the memory composite score. (B) The average morphometric similarity
in regions with significantly decreased morphometric similarity in AD is significantly positively correlated with the memory composite score.

a chi-squared test for categorical variables. To test whether the
MS of brain regions with significant case-control differences were
associated with memory function, partial correlation analysis was
conducted with age, gender, and years of education as nuisance
covariates. The Pearson correlation analysis was used to test the
association between the Z scored expression values of PLS1 gene

sets and the T statistics of case-control differences in MS. The
resulting P-values above were Bonferroni corrected for multiple
comparisons. The case-control difference in regional MS was
estimated by fitting linear models with age, gender and education
as covariates, and the resulting P-values for each region were false
discovery rate (FDR) corrected for multiple comparisons.
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FIGURE 3 | The relationship between PLS1 gene set expression and regional morphometric similarity differences. (A) The regional morphometric similarity
case-control T map in the left hemisphere. The regions in red indicate increased morphometric similarity in AD, whereas the blue color indicates decreased
morphometric similarity in AD. (B) The PLS1 + gene set expression map illustrates that regions in red have increased expression of the PLS1 + gene set, whereas
regions in blue have decreased expression of the PLS1 + gene set. (C) The PLS1- gene set expression map illustrates that regions in red have increased expression
of the PLS1- gene set, whereas regions in blue have decreased expression of the PLS1- gene set. (D) The point plot in red shows that the expression of the
PLS1 + gene set is significantly positively correlated with the regional morphometric similarity difference between AD patients and healthy elderly individuals. (E) The
blue point plot shows that the expression of the PLS1- gene set is significantly negatively correlated with regional morphometric similarity differences between AD
patients and healthy elderly individuals.

RESULTS

Demographics and Cognition
A total of 106 AD patients and the same number of age-
and gender-matched healthy elderly individuals with qualified
image data were ultimately included in the present study. The
demographic and cognitive data of these subjects are shown in
Table 1. Significant differences were found in terms of MMSE
(P = 0.0001), Clinical Dementia Rating (P = 0.0001), and memory
composite scores (P = 0.0001). No significant differences were
observed in terms of age (P = 0.98), gender (P = 1), or years of
education (P = 0.06).

Morphometric Similarity Differences
Between Alzheimer’s Disease and
Healthy Elders
The cortical map in Figure 1 demonstrated the significant
differences in regional MS at each cortical area between AD and
healthy elderly individuals. Cortical regions with significantly
decreased MS were observed in the left middle temporal
lobe, left fusiform gyrus, bilateral banks of superior temporal

sulci, bilateral parahippocampal lobes, left entorhinal cortex,
left superior parietal lobe, left supramarginal gyrus and right
lateral occipital lobe (Table 2). Cortical regions with significantly
increased MS were found in the bilateral superior frontal lobes,
right paracentral lobe, right frontal pole cortex, left lingual gyrus
and right lateral occipital lobe (Table 2). The partial correlation
analysis showed that the mean MS average across the 10 regions
with decreased MS was significantly positively associated with
the memory composite score (r = 0.43, P = 0.0001), and the
mean MS average across the nine regions with increased MS was
significantly negatively associated with the memory composite
score (r =−0.35, P = 0.0001) (Figure 2).

Gene-Morphometric Similarity Spatial
Correlations and Characters
First PLS Component Gene Expression Associated
With Morphometric Similarity Difference
The PLS regression analysis revealed 1,932 genes with normalized
PLS1 weights Z score < −4.72 (Bonferroni correction of
P < 0.05), which were defined as the PLS1- genes, and 2,139
genes with normalized PLS1 weights Z score > 4.72 (Bonferroni
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FIGURE 4 | AD-related DEG enrichment analyses for PLS1 gene sets. (A) The volcano plot shows 708 upregulated genes in red on the right and 1,092
downregulated genes in blue on the left. (B) The PLS1- genes significantly overlapped with downregulated genes. The number of overlapping genes was 176,
accounting for 0.9% of the total genes. The purple circle indicates 1,092 downregulated genes, the yellow circle indicates 1,932 PLS1- genes and the green circle
indicates 20,177 background genes. (C) The PLS1 + genes did not significantly overlap with downregulated genes. The number of overlapping genes was 126,
accounting for 0.6% of the total genes. The purple circle indicates 1,092 downregulated genes, the yellow circle indicates 2,139 PLS1 + genes and the green circle
indicates 20,177 background genes. (D) The PLS1- genes did not significantly overlap with the upregulated genes. The number of overlapping genes was 49,
accounting for 0.2% of the total genes. The purple circle indicates 708 up-regulated genes, the yellow circle indicates 1,932 PLS1- genes, and the green circle
indicates 20,177 background genes. (E) The PLS1 + genes did not significantly overlap with upregulated genes. The number of overlapping genes was 66,
accounting for 0.3% of the total genes. The purple circle indicates 708 upregulated genes, the yellow circle indicates 2,139 PLS1 + genes and the green circle
indicates 20,177 background genes. DEGs, differentially expressed genes; FC, fold change; PLS, partial least squares regression.
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TABLE 3 | The significance of the overlap between PLS1- genes and
cell-type-specific genes.

Astrocytes Neurons Oligodendrocytes Microglia

Overlapped genes 139 195 33 71

Cell-type-specific
genes

1,160 1,770 684 746

Gene ratio 0.12 0.11 0.048 0.095

Pc values 1.83 × 10−5 1.74 × 10−5 1 0.57

PLS1, the first component of partial least squares regression; Overlapped genes,
the number of overlapping genes between PLS1- genes and cell-type-specific
genes; Gene ratio, gene ratio between the number of overlapping genes and the
number of cell-type-specific genes; Pc values, the Bonferroni corrected P-values.

correction of P < 0.05), which were defined as the PLS1 + genes
(Supplementary Table 2). The majority of cortical regions on the
PLS1 + gene expression map were in accordance with those on
the case-control T map of regional MS (Figures 3A,B), whereas
the majority of cortical regions on the PLS1- gene expression
map were in contrast with those on the case-control T map
of regional MS (Figures 3A–C). Pearson correlation analysis
revealed that the expression of PLS1 + genes was significantly
positively correlated with regional MS differences (r = 0.45,
P = 0.0001) (Figure 3D), whereas the expression of PLS1-
genes was significantly negatively correlated with regional MS
differences (r =−0.44, P = 0.0001) (Figure 3E).

Alzheimer’s Disease -Related Differentially Expressed
Genes Enrichment for First PLS Component- Genes
A total of 1,800 significant DEGs between AD and normal elderly
individuals were identified from the GSE5281 series, with 708
upregulated and 1,092 downregulated genes (Figure 4A and
Supplementary Table 3). Both upregulated and downregulated
genes were defined as AD-related DEGs. The enrichment
analysis revealed that PLS1- genes were significantly enriched in
downregulated DEGs (Pc = 5.43× 10−12) but not in upregulated
DEGs (Pc = 1) (Figures 4B–D). In addition, PLS1 + genes were
not significantly enriched in upregulated DEGs (Pc = 1) or in
downregulated DEGs (Pc = 1) (Figures 4C–E).

Cell-Type Specificity of First PLS Component- Genes
The cell-type-enriched gene lists for each type of cortical cell are
provided in Supplementary Table 4. The PLS1- genes showed
significant specific expression in neurons (Pc = 1.83 × 10−5)
and astrocytes (Pc = 1.74 × 10−5) but not in oligodendrocytes
(Pc = 1) or microglia (Pc = 0.57) (Table 3 and Figure 5A). The
PLS1 + genes were not significantly enriched in any type of
neocortical cell (Pc = 1 for all) (Table 4 and Figure 5B).

Gene Ontology Enrichment for First PLS Component-
Gene Sets
The GO analysis revealed that significant biological processes
of the PLS1- genes were mainly enriched in neuron-specific
terms, including synaptic signaling, neurotransmitter release,
axonogenesis, and cognition (Figure 6A and Supplementary
Table 5). However, the PLS1 + genes were involved in non-
neuron-specific biological processes, including potassium

ion transport and protein localization (Figure 6B and
Supplementary Table 5).

DISCUSSION

Morphometric Similarity Changing
Patterns and Associated Memory
Function in Alzheimer’s Disease
The MS quantifies the similarity in terms of multiple MRI
parameters measured in each area. Compared with traditional
measurements based on a single MRI sequence, MS considering
multiple MRI morphometric indices (based on both structural
T1WI and DTI) could reflect the anatomical connections of
different brain areas based on histological similarity and axonal
connectivity within an individual human brain.

This study showed that AD patients had decreased regional
MS in multiple AD-susceptible regions in the temporal and
parietal cortex. Additionally, increased regional MS in several
frontal areas and variable changing MS in parts of the occipital
cortex were also detected in AD patients compared with healthy
elderly individuals. The mean MS average across those regions
with decreased regional MS was positively associated with
memory function. In contrast, the mean MS average across those
regions with increased regional MS was negatively associated
with memory function.

Our findings were consistent with a large number of studies
reporting decreased gray matter volume and cortical thickness
(Lerch et al., 2005; Femminella et al., 2018), lower average
mean curvature (Im et al., 2008; Morra et al., 2008) and
shallower sulcal depth (Im et al., 2008) in the hippocampus,
temporal lobe, fusiform gyrus, and entorhinal cortex in AD,
with the left hemisphere being dominant. DTI studies revealed
disruptions of white matter integrity in the early stage of AD in
limbic fiber tracks with direct connections to medial temporal
lobe structures (Kalus et al., 2006; Zhang et al., 2007; Sexton
et al., 2010). Moreover, decreased connectivity of multiple brain
regions, including the temporal lobe, hippocampus, fusiform
gyrus and parietal lobe, has also been documented as the cause of
cognitive decline in AD patients (Bokde et al., 2006; Stam et al.,
2007; He et al., 2008). Decreased MS in multiple brain regions,
including the temporal, parietal and part of the occipital cortical
regions in AD, reflected the weakening of the abovementioned
brain regions’ anatomical connections from the histological and
cellular architecture level and implied increased architectonic
differentiation and decreased axonal connectivity between these
cortical regions. We further found a correlation between the
weakening of this anatomical connection and the impairment of
memory function, suggesting that the anatomical disconnection
caused by the reduction of the similarity of histology and cellular
architecture may be the neural basis for the impairment of
memory function in AD patients.

Our result of elevated MS in the prefrontal areas and the left
lingual gyrus in AD patients suggested increased architectonic
similarity and enhanced axonal connectivity in these regions
in AD patients. These findings were consistent with enhanced
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FIGURE 5 | The percentage of gene ratio between overlapping genes and cell-type-specific genes for each type of neocortical cell. (A) The PLS1- genes significantly
overlapped with cell-type-specific genes in neurons and astrocytes (asterisk) but not in oligodendrocytes and microglia. (B) The PLS1 + genes did not significantly
overlap with cell-type-specific genes in any type of neocortical cell.

functional activation and connectivity within frontal regions in
the early stage of AD (Grady et al., 2003; Aganj et al., 2020). In
addition, at the local network level, changes in connectivity of the
left lingual gyrus were also reported to be significantly negatively
correlated with behavioral performance in AD patients (Chang
et al., 2020). We tended to interpret the increased prefrontal
and lingual MS in AD as a structural compensatory reallocation
of cognitive resources. This explanation was further supported
by the negative correlation between the average MS value of
the brain areas and increased MS and memory function in
AD patients. The more structural compensatory the increase
in MS is, the worse the performance of the memory function
is. As the disease becomes severe, the structural compensatory
increase may disappear, but this needs to be confirmed by
future longitudinal studies. Regarding the occipital areas, most
AD studies have reported atrophy, hypometabolism (Ten Kate
et al., 2018; Das et al., 2021) and connection changes (Huang
et al., 2020) in this area in AD patients. Studies have also found
an up-regulated signaling pathway located in the occipital area
in AD patients, which suggests that an enhancement in dying
or surviving neurons plays a protective role by compensating
for decreased neurotransmission during the progression of AD
(Jacobs et al., 2006). The inconsistent MS change patterns in the

TABLE 4 | The significance of the overlap between PLS1 + genes and
cell-type-specific genes.

Astrocytes Neurons Oligodendrocytes Microglia

Overlapped genes 67 153 62 61

Cell-type-specific
genes

1,160 1,770 684 746

Gene ratio 0.058 0.086 0.091 0.082

Pc values 1 1 1 1

PLS1, the first component of partial least squares regression; Overlapped genes,
the number of overlapping genes between PLS1 + genes and cell-type-specific
genes; Gene ratio, ratio between the number of overlapping genes and the number
of cell-type-specific genes; Pc values, the Bonferroni corrected P-values.

occipital areas in AD patients in the current study may be related
to different functional areas with distinct changing patterns in
the occipital lobe, which was supported by the evidence of
the dissociation between impaired explicit memory encoding
in secondary visual areas and intact implicit encoding in the
primary visual cortex in AD.

Linking Gene Expression to
Morphometric Similarity Difference Map
and Functional Annotation
PLS analysis showed that the PLS1 + gene was positively
correlated with the AD-related MS difference map, and the PLS1-
gene was negatively correlated with the AD-related MS difference
map. However, only PLS1- genes were significantly enriched in
downregulated AD-related DEGs. GO analysis and cell-type-
specific analysis showed that the PLS- genes were cytologically
enriched in neurons and astrocytes and functionally involved
in neuron-specific biological processes, including synaptic
signaling, neurotransmitter release, axonogenesis, and cognition.
Because PLS1+ genes were not enriched in AD differential genes
and implicated in non-neuron-specific functions, the following
discussion mainly focuses on the PLS1- genes.

The circuitry of the human brain is formed by neuronal
networks in which astrocytes embed. Synaptic signaling,
neurotransmitter release and axonogenesis are fundamental to
highly efficient neuronal networks, which maintain normal
cognition in humans (Verkhratsky et al., 2010). The loss of
neurons and synapses and axon destruction are common findings
in AD neuropathology and are related to cognitive decline in
AD patients. Exposure of astrocytes to Aβ may induce astrocyte
activation (Diniz et al., 2017) and release proinflammatory
cytokines, contributing to neuronal death (Wood et al., 2015). As
PLS1- genes were significantly enriched in downregulated AD-
related DEGs, it can be presumed that the reduced expression
of PLS1- genes may lead to neuron death, axon deterioration
and synapse loss, causing histological similarity and anatomical
connectivity destruction and, thus, abnormal MS changes in AD.
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FIGURE 6 | The significant gene ontology terms of biological process for PLS1 gene sets. (A) The PLS1- genes were significantly enriched in synaptic signaling,
neurotransmitter release, axonogenesis and cognition. (B) The PLS1 + genes were significantly enriched in potassium ion transport and protein localization. Pc, the
Bonferroni corrected P-values.

The PLS1- genes acted as a whole gene set in the enrichment
analysis for AD-related DEGs, cortical cell types and GO terms.
We cannot ensure that every single gene in the PLS1- gene set was
enriched in AD-related DEGs, cortical cell types and GO terms
simultaneously. The significance of the enrichment analysis did
not represent for the true biological connection. Further in vitro
and in vivo experiments are warranted to validate our hypothesis.
Although variation from multiple sites and scanners could be
moderately adjusted using ComBat harmonization, different scan
protocols still affected the results. More robust methods are
needed in the future to properly control the batch effect from
multiple sites and scanners.

In summary, this study revealed AD-related cortical MS
changes associated with memory function. Linking gene
expression to cortical MS changes, the negative MS-related
genes were found to be enriched explicitly in neurons and
astrocytes, participate in neuron-specific biological processes
and be significantly downregulated in AD. These findings may
provide a possible molecular and cellular substrate for MS
abnormalities and cognitive decline in AD.
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Cortical atrophy is a common manifestation in Parkinson’s disease (PD), particularly in
advanced stages of the disease. To elucidate the molecular underpinnings of cortical
thickness changes in PD, we performed an integrated analysis of brain-wide healthy
transcriptomic data from the Allen Human Brain Atlas and patterns of cortical thickness
based on T1-weighted anatomical MRI data of 149 PD patients and 369 controls.
For this purpose, we used partial least squares regression to identify gene expression
patterns correlated with cortical thickness changes. In addition, we identified gene
expression patterns underlying the relationship between cortical thickness and clinical
domains of PD. Our results show that genes whose expression in the healthy brain is
associated with cortical thickness changes in PD are enriched in biological pathways
related to sumoylation, regulation of mitotic cell cycle, mitochondrial translation, DNA
damage responses, and ER-Golgi traffic. The associated pathways were highly related
to each other and all belong to cellular maintenance mechanisms. The expression of
genes within most pathways was negatively correlated with cortical thickness changes,
showing higher expression in regions associated with decreased cortical thickness
(atrophy). On the other hand, sumoylation pathways were positively correlated with
cortical thickness changes, showing higher expression in regions with increased cortical
thickness (hypertrophy). Our findings suggest that alterations in the balanced interplay
of these mechanisms play a role in changes of cortical thickness in PD and possibly
influence motor and cognitive functions.

Keywords: cortical thickness, neurodegenerative diseases, neuroimaging data, imaging-genetics, gene
expression analysis

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of
dopaminergic and non-dopaminergic neurons in the brain and peripheral and autonomic nervous
system (Hirsch et al., 2012). Cortical atrophy occurs during the later disease stages and has
been associated with cognitive decline, including executive, attentional, memory, and visuospatial
deficits (Aarsland et al., 2017; Wilson et al., 2019). Although MRI studies of patient brains have
tried to link regional cortical atrophy to clinical features of the disease (Rosenberg-Katz et al., 2016;
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Wang et al., 2016; Chen et al., 2017; Li et al., 2018; Zheng et al.,
2019), little is known about the pathobiology that underlies the
selective cortical vulnerability in PD.

Analyzing the transcriptome in vulnerable cortical regions
may aid in better understanding the underlying molecular
mechanisms of atrophy in PD. Although gene expression data
of human post-mortem PD brains is available, most findings
relate to studies that focused only on one or few coarse brain
regions (Oerton and Bender, 2017). To perform whole brain
analysis of both gene expression and imaging data, studies turn
to the Allen Human Brain Atlas (AHBA), a high resolution gene
expression atlas covering the entire brain of six adult donors
without any history of neurological disorders (Hawrylycz et al.,
2015; Arnatkevičiūtė et al., 2019). The AHBA has been combined
with functional MRI data of PD patients and revealed that the
regional expression of MAPT, but not SNCA, correlated with the
loss of regional connectivity (Rittman et al., 2016). Using a similar
approach, correlations were identified between a cortical atrophy
pattern and the regional expression of 17 genes implicated in
PD (Freeze et al., 2018). Although both studies used spatial
transcriptomics to explore gene expression across the whole
brain, they only analyzed the expression of a limited set of
genes that are of interest to PD, e.g., those that are known as
genetic risk factors.

To investigate the relationship between high dimensional
genome-wide expression patterns and imaging data, multivariate
analysis methods are required. Partial least squares (PLS)
regression has been used to perform simultaneous analysis of
brain-wide gene expression from the AHBA and neuroimaging
data of adolescents, healthy adults, and Huntington’s disease
patients (Vértes et al., 2016; Whitaker et al., 2016a; McColgan
et al., 2018). The PLS approach allows the linking of multiple
predictor variables (genes) and multiple response variables
(imaging features) and deals with multicollinearity by projecting
variables to a smaller set of components that are maximally
correlated between both datasets. Thus, PLS is an attractive
model to identify gene expression patterns associated with
imaging features.

Here, we exploited PLS regression to find transcriptomic
signatures that are related to changes in cortical thickness (CT)
in PD. MRI data was obtained from patients and age-matched
controls to find CT changes across all cortical regions. Gene
expression samples from healthy donors in the AHBA were
anatomically mapped to the cortical regions to find brain-wide
gene expression patterns predictive of the CT changes observed
in PD patients. In addition, we assessed the relationships between
CT and clinical scores in PD patients and used a second
PLS model to find expression patterns associated with these
relationships across all cortical regions. With these models we
address three research questions: (1) Which cortical regions show
CT changes in PD, (2) Which genes and biological pathways
show expression patterns associated with these regional changes,
and (3) Which molecular mechanisms underlie the relationships
between CT and clinical scores in PD. To answer these questions,
we explored the whole transcriptome in cortical regions of
the healthy brain to find expression signatures predictive of
imaging features in PD.

MATERIALS AND METHODS

MRI Data Acquisition
MRI images of 149 PD patients (mean age = 64.8 years; 65.7%
male) were obtained from a cross-sectional cohort study and
is part of the “PROfiling PARKinson’s disease” (PROPARK)
study (de Schipper et al., 2017; Supplementary Table 1).
PD patients were recruited from the outpatient clinic for
Movement Disorders of the Department of Neurology of the
Leiden University Medical Center and nearby university and
regional hospitals. All participants fulfilled the United Kingdom
Parkinson’s Disease Society Brain Bank criteria for idiopathic
PD (Gibb and Lees, 1988); written consent was obtained from
all participants. The Medical Ethics Committee of the LUMC
approved the study. Three-dimensional T1-weighted anatomical
images were acquired on a 3 Tesla MRI scanner (Philips Achieva,
Best, Netherlands) using a standard 32-channel whole-head coil.
Acquisition parameters were: repetition time = 9.8 ms, echo
time= 4.6 ms, flip angle= 8◦, field of view 220× 174× 156 mm,
130 slices with a slice thickness of 1.2 mm with no gap between
slices, resulting in a voxel size of 1.15 mm× 1.15 mm× 1.20 mm.

Three−dimensional T1−weighted images from 369 controls
(mean age = 65.7 years; 48.1% male) were acquired in a
different cohort (Altmann-schneider et al., 2012), where all
imaging was performed on a whole body 3 Tesla MRI scanner
(Philips Medical Systems, Best, Netherlands), using the following
imaging parameters: TR = 9.7 ms, TE = 4.6 ms, FA = 8◦,
FOV = 224 × 177 × 168 mm. The anatomical images covered
the entire brain with no gap between slices resulting in a nominal
voxel size of 1.17 × 1.17 × 1.4 mm. Acquisition time was
approximately 5 min.

Cortical Thickness Changes in
Segmented Cortical Regions
Cortical thickness in cortical regions of PD patients and controls
was determined using cortical parcellation implemented in
FreeSurfer version 5.3.0 (Fischl and Dale, 2000). The FreeSurfer
algorithm automatically parcellates the cortex and assigns a
neuroanatomical label to each location on a cortical surface
model based on probabilistic information. The parcellation
scheme of the Desikan–Killiany atlas was used to divide the cortex
into 34 regions per hemisphere (Desikan et al., 2006).

To assess CT changes between patients (149) and controls
(369), a two-tailed t-test assuming unequal variances was applied
in SPSS Statistics version 23. P-values were corrected for multiple
testing across 68 cortical regions using the Benjamini-Hochberg
(BH) method. A two-tailed t-test was also used to assess CT
differences between the left and right hemisphere for each one of
the 34 cortical regions, with P-values being BH-corrected across
the 34 cortical regions.

Clinical Scores
All patients underwent standardized assessments, and an
evaluation of demographic and clinical characteristics
(de Schipper et al., 2017). MDS-UPDRS is a clinical rating
scale consisting of four parts: (I) Non-motor Experiences of
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Daily Living; (II) Motor Experiences of Daily Living; (III) Motor
Examination; and (IV) Motor Complications (Goetz et al., 2008).
UPDRSTOTSCR is the total score of all four parts. The SENS-PD
scale is a composite score of non-dopaminergic symptoms (van
der Heeden et al., 2016), LED is the levodopa equivalent dose
(Tomlinson et al., 2010), and MMSE is the mini-mental state
examination (Folstein et al., 1975).

Relationship Between Cortical Thickness
and Clinical Scores
We used CT data and clinical scores from 149 PD patients
to determine the relationships between CT and clinical
domains. We selected nine clinical features with numeric (non-
nominal) values for which scores were available for 82–123
patients: AGEONSET, SENSPDSC, MDS_UPDRS_3, MMSE,
LED, MDS_UPDRS_1, MDS_UPDRS_2, MDS_UPDRS_4, and
UPDRSTOTSCR (Supplementary Figure 1).

The correlation between CT and the scores of each clinical
feature individually was determined across patients by applying
linear regression. To obtain maximum correlation, separate
linear regression models were used for each combination of a
region and clinical feature:

CTi = α+ β1K j + β2Age+ ε (1)

where CTi is the CT of one region i across patients, Kj is the score
of one clinical feature j across patients. Age is taken into account
to correct for the age of patients. α is the background term, β1 is
the regression coefficient for Kj, β2 is the regression coefficients
for Age, and ε is the residual. The regression coefficient β1 was
used to determine the relationship between CT and clinical
domain scores, and assessed for statistical significance where
P-values were BH-corrected for 34 regions and nine clinical
features (t-test, H0: β1 = 0, P < 0.05).

Mapping Transcriptomic Data to Cortical
Regions
We downloaded normalized gene expression data from the
Allen Human Brain Atlas (AHBA1), a microarray data set
of 3,702 anatomical brain regions from six non-neurological
individuals [5 males and 1 female, mean age 42, range 24–57 years
(Hawrylycz et al., 2015)]. Preprocessing steps are described in
Supplementary Methods. To analyze the transcriptome in the
cortical regions, we used the mapping of AHBA samples to
cortical regions in neuroimaging data proposed in Arnatkevičiūtė
et al. (2019), where they applied Freesurfer on T1 MRIs of
the six donors in the AHBA to segment the cortical regions
according to the Desikan-Killiany atlas. AHBA samples were
mapped to 34 cortical regions from the left hemisphere, since
for only two out of six brains samples were collected from both
hemispheres and for four brains they only sampled from the left
hemisphere. By only analyzing the left hemisphere, we assumed
that there are small to no differences in gene expression between
the left and right hemisphere (Hawrylycz et al., 2015). Samples
were assigned to a segmented cortical region when their MNI

1http://human.brain-map.org/

coordinates corresponds to a voxel within a parcel, including
samples that are up to 2 mm away from any voxel in the parcel.
In total 1,284 samples from the AHBA were assigned to the 34
cortical regions.

Partial Least Squares (PLS) Model-1 and
Model-2
We used PLS regression (R-package pls 2.7) to find gene
expression patterns across the 34 cortical regions that are
predictive of gray matter atrophy and possibly their relationship
to scores of nine clinical domains (Supplementary Methods).
PLS regression and principal component analysis regression are
both methods where the original measurements are projected
to latent variables to study the data in reduced dimensions
(Figure 1A). PLS, however, projects variables from each dataset to
latent variables such that they are maximally correlated between
two datasets X and Y (Figure 1B). In this study, the predictor X is
a gene expression matrix of 34 regions (n) in the left hemisphere
and all 20,017 genes (m) and is used to predict imaging variables
(p) in the same set of 34 cortical regions. For each cortical
region and each gene, expression levels were averaged across
samples that fall within that cortical region and then averaged
across the six donors from the AHBA, such that the input
matrix of predictor variables contains one expression value for
every gene per cortical region. We implemented two PLS models
(Figure 1C): one single-response PLS model, model-1, to predict
CT changes, measured as the t-statistics of 1CT between PD
patients and controls, and one multi-response PLS model, model-
2, to predict the correlation between CT and clinical scores in PD
patients, measured as the t-statistics of the coefficients β1 in Eq. 1.

Pathway Enrichment
Pathway enrichment analysis was done using gene set enrichment
analysis (GSEA) and 2,225 pathways from the Reactome database
in ReactomePA R-package version 1.28. Genes were ranked based
on their weights to each PLS component; R in Eqs. 5 and 6 in
Supplementary Methods. Pathways were significant when the
FDR-adjusted P < 0.05.

Data and Code Availability
Transcriptomic data from the AHBA is available at http://human.
brain-map.org/. All scripts were run in R version 4 and can be
found online at https://github.com/arlinkeo/pd_pls.

RESULTS

Cortical Thickness Changes Between
Parkinson’s Disease Patients and
Controls
We analyzed CT changes between PD patients and healthy
controls (1CT) as a measure for gray matter loss (Figure 1C).
Each of the 68 cortical regions from both hemispheres was
assessed, for which 1CT was statistically significant in 10
cortical regions (t-test, BH-corrected P < 0.05; Figure 2A and
Supplementary Table 2). The lateral occipital cortex showed
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FIGURE 1 | Principal of partial least squares regression (PLS). (A) Principal component analysis (PCA) and PLS project measurements to a new latent space. Unlike
PCA, PLS tries to find a latent space that is maximally correlated with another measurement y from dataset Y on the same samples. (B) The first latent component
t1 of dataset X is maximally correlated with the first latent factor u1 of dataset Y . T and U scores determine the outer relations of individual datasets in the model.
The coefficient β determines the inner relation between both datasets X and Y in the model (more details in Supplementary Methods). (C) In PLS model-1, we
used regional gene expression as input to predict the regional t-statistics of 1CT. Given the PLS model, R in Eqs. 5 and 6 in Supplementary Methods is used as
gene weights. In PLS model-2, we used the same input to predict the t-statistics of correlation coefficients β1 of clinical features from Eq. 1.

decreased CT in patients compared to controls in both the
left hemisphere and right hemisphere. The left caudal anterior
cingulate, right isthmus cingulate, and right pericalcarine also
showed decreased CT in patients. Cortical regions with increased
CT in patients included the pars opercularis from both the left
hemisphere and right hemisphere, the right rostral middle frontal
cortex, right temporal pole, and right superior temporal cortex.
In general, we observed more decreased CT (atrophy) in caudal
regions of the cortex compared to rostral regions that showed
increased CT (hypertrophy).

Cortical Thickness Changes Between
Hemispheres in Parkinson’s Disease
Clinical symptoms appear asymmetrical at disease onset with
the left hemisphere being more susceptible to degeneration
than the right (Claassen et al., 2016). To assess whether this
asymmetry is reflected also in the observed atrophy patterns,
we compared the CT between the left and right hemisphere for
each of the 34 cortical regions in PD patients. We found six
cortical regions that showed significant hemispheric differences
(BH-corrected P < 0.05; Figure 2B and Supplementary Table 3).
For five out of six significant regions, CT was indeed smaller
in the left hemisphere compared to the right: banks of superior
temporal sulcus, entorhinal cortex, temporal pole, medial
orbitofrontal cortex, and lateral occipital cortex. For the lateral
orbitofrontal cortex, the CT was larger in the left hemisphere
compared to the right.

Gene Expression Patterns Predictive of
Cortical Thickness Changes in
Parkinson’s Disease Patients
To identify the molecular mechanisms underlying CT changes
in PD, we integrated the imaging features with brain-wide gene
expression profiles from the AHBA (Figure 1C). Using PLS

model-1 (see section “Materials and Methods”), the expression
of all 20,017 genes in 34 brain regions from the left hemisphere
was used as predictor variables and we used the t-statistics
of 1CT between PD patients and controls in the 34 regions
(Supplementary Table 2) as a single response variable. The
number of AHBA samples varied between 0 and 92 for
each one of the six brain donors and 34 cortical regions
(Supplementary Table 4).

The PLS components that explain maximum covariance
between the input space and the response variable are derived
from successively deflated predictor and response matrices.
Hence, the first component of the predictor matrix, component-
1, has maximum covariance with the first component of the
response matrix, and the second component of the predictor
matrix, component-2, has maximum covariance with the second
component of the response matrix, etc. Since PLS model-1 has
a single response variable, component-1 of the response matrix
is equal to a scaled version of the single response variable.
As such, we only examined PLS component-1 of the predictor
matrix (additional checking with leave-one-out cross-validation
showed that the optimal number of components is indeed one,
Supplementary Figure 2).

The scores of PLS component-1 of the predictor variables
(genes) showed a caudal-to-rostral expression pattern
(Figure 3A) that was correlated with CT changes in PD
brains (Figure 3B), i.e., gene expression of PLS component-1
was high in caudal regions associated with atrophy and low in
regions associated with hypertrophy. The Pearson correlation
between the PLS component-1 scores of the predictor variables
(gene expression) and the response variable (t-statistics of 1CT)
was 0.58, and explained 20.5% of the variance in gene expression
and 34.2% of the variance in CT changes. Cortical atrophy was
highest in the lateral occipital cortex and related to high PLS
component-1 scores. The pericalcarine showed the highest PLS
component-1 score. These results showed that the expression
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FIGURE 2 | t-Statistics of cortical thickness changes (1CT) across cortical regions. (A) CT was assessed between PD patients and healthy controls. Higher
t-statistics (red) indicate a larger CT in controls compared to the CT in patients and thus corresponds to cortical atrophy. (B) CT in the left hemisphere compared to
the right hemisphere in PD patients. Higher t-statistics (red) indicate a larger CT in the right hemisphere compared to the left hemisphere and thus corresponds to
cortical atrophy in the left hemisphere. P-values are BH-corrected and significant regions (P < 0.05) are labeled.

profiles of a weighted combination of genes can be predictive of
CT changes in PD.

Functionality of Genes Predictive of
Cortical Thickness Changes
A PLS component of the predictor variables is a linear
combination of weighted gene expression. We used the
gene weights of PLS component-1 to perform GSEA analysis
and revealed significant enrichment of 90 pathways, which were
among others involved in DNA damage checkpoints, stabilization
of p53, regulation of apoptosis, mitochondrial translation,
and SUMOylation of chromatin organization proteins
(Supplementary Table 5). High overlap of genes between
the enriched pathways suggested that these functional processes
are highly related to each other (Supplementary Figure 3).

Significant pathways are either positively or negatively
correlated with CT changes based on the median weight of genes

within pathways. Out of the 90 pathways that were significantly
enriched, three pathways were positively correlated with the
t-statistic of 1CT. These included SUMOylation of chromatin
organization proteins, signaling by cytosolic FGFR1 fusion
mutants, and class C/3 (Metabotropic glutamate/pheromone
receptors). Higher mean expression of genes within these three
pathways is related to cortical atrophy (higher t-statistics of
1CT); as apparent in the lateral occipital cortex (Figure 3C
and Supplementary Figure 4). The positive correlation also
indicates that a lower expression of these pathways is related to
cortical hypertrophy (lower t-statistics of 1CT). We found 87
negatively correlated pathways (median gene weight < 0). These
pathways seem to play a role in the mitochondrial regulation of
mitosis as we found pathways for mitochondrial translation, the
regulation of mitotic cell cycle, p53-(in)dependent DNA damage
checkpoints, and the degradation of mitotic proteins, such as
cyclins A, and D. In general, the mean expression of genes in
the negatively correlated pathways was high in cortical regions
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FIGURE 3 | Transcriptional signatures to predict t-statistics of 1CT between PD patients and controls in PLS model-1. (A) PLS component-1 scores of predictor
variables (gene expression) visualized in cortical regions (lateral and medial view of the left hemisphere). (B) Regression fit of the latent predictor variable, PLS
component-1 scores, with the single response variable, CT changes in PD measured as the t-statistics of 1CT between PD patients (149) and controls (369) across
the 34 cortical regions. (C) Mean expression of genes in the top 30 significant pathways (rows) across cortical regions (columns). A complete heatmap with all
significant pathways is given in Supplementary Figure 4. The correlation between transcriptomic signatures and CT changes in PD across cortical regions is
predicted by the gene weights for PLS component-1 shown in boxplots for each pathway where the median weight is either negative or positive. Negatively
correlated pathways show high gene expression in regions with low t-statistics of 1CT and gene expression decreases in regions with higher t-statistics of 1CT. In
our analysis, negative t-statistics correspond to increased CT (cortical hypertrophy) and positive t-statistics of 1CT correspond to decreased CT (cortical atrophy).
Positively correlated pathways show low expression in regions with low t-statistics of 1CT and expression increases in regions with higher t-statistics of 1CT.
* = APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfaction of the cell cycle checkpoint. ** = APC/C:Cdh1 mediated degradation of Cdc20 and
other APC/C:Cdh1 targeted proteins in late mitosis/early G1.

that showed hypertrophy, such as the pars opercularis or the
entorhinal cortex.

Relationships Between Clinical Scores
and Cortical Thickness
Next, we set to understand the relationship between CT in
34 cortical regions and clinical scores of PD patients. Linear
regression was used to predict clinical scores from CT across
patients and obtain regression coefficients, β1, for each cortical

region and clinical domain (Eq. 1). We assessed the t-statistics
of the regression coefficients instead of the coefficients β1
themselves (H0: β1 = 0) (Figure 4). Negative t-statistics showed
that most combinations of cortical regions and clinical features
are negatively correlated. For all clinical features, higher scores
also indicate more severe symptoms, except for MMSE scores
where lower scores indicate more severe symptoms, and thus
showed positive relationships with CT. In most regions, age at
onset (AGEONSET) also showed positive relationships with CT,
indicating that age at onset has an effect on the loss of CT. While
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FIGURE 4 | Relationship between clinical scores and CT across PD patients. Linear regression was used to predict clinical scores from CT across at most 123 PD
patients (Supplementary Figure 1). Separate models were used for each clinical feature (row) and cortical region (column) to obtain regression coefficients, see
Eq. 1. The heatmap shows the two-sided t-statistics of the regression coefficient when tested for H0: β1 = 0. Regions (columns) are clustered based on complete
linkage of the Euclidean distance of the t-statistics of β1.

these general interpretations apply to most cortical regions, some
regions showed different relationships with CT. For example, CT
in the rostral anterior cingulate is negatively related to age at
onset, and positively related to MDS-UPDRS 4 scores.

Genes Predictive of Relationships
Between Clinical Scores and Cortical
Thickness
With PLS model-2, we examined gene expression patterns that
are predictive of the relationship between CT and clinical scores
measured as t-statistics of the correlation coefficients β1 in
Eq. 1 (Figure 1C). We selected the first two PLS components
for further analysis, which explained 36% of the variance
of the predictor variables and 37% of the variance of the
response variables (Supplementary Figure 5). PLS component-
1 scores of the predictor variables showed a ventral-to-dorsal
gene expression pattern (Figure 5A) that is correlated with
the PLS component-1 scores of the response variables (Pearson
r = 0.76, Figure 5B). The dorsal regions include the postcentral
gyrus which is part of the primary somatosensory cortex. PLS
component-2 scores of the predictor variables showed a caudal-
to-rostral gene expression pattern (Pearson r = 0.56, Figure 6A)
that is correlated with the PLS component-2 scores of the response
variables (Figure 6B). Moreover, we assessed PLS component-
3 (Pearson r = 0.76 between the predictors and response
variables), which additionally explained 9% variance of the
predictor variables and 11% variance of the response variables.
However, further analysis revealed there were no enriched
pathways for component-3 limiting the functional interpretation
of this component.

Partial least squares component-1 and component-2 of
the predictor variables showed 144 and 230 significantly

enriched pathways, respectively, with 54 overlapping pathways
between the two components (Supplementary Tables 6, 7).
Both components showed a cluster of related pathways
involved in anterograde and retrograde transport between
Golgi and endoplasmic reticulum (ER), and asparagine
N-linked glycosylation (Supplementary Figures 6, 7). Other
pathways that overlapped between the two components
included macroautophagy, mitochondrial translation,
mitochondrial biogenesis, mitochondrial protein import,
DNA damage/telomere stress induced senescence, oxidative
stress induced senescence, and protein localization.

Furthermore, PLS component-1 showed enrichment of
pathways involved in tRNA and rRNA processing in the nucleus
and mitochondrion, voltage-gated potassium channels, uptake
and actions of bacterial toxins, and interleukin signaling.
PLS component-2 showed strong enrichment of neutrophil
degranulation, DNA replication, p53-(in)dependent DNA
damage response, and chaperonin-mediated protein folding,
and tubulin folding. Notably, the gene expression pattern of
PLS component-2 was also associated with several sumoylation
pathways and pathways involved in mitotic cell cycles and the
degradation of mitotic proteins (Supplementary Table 7).

The enriched pathways for PLS component-1 and component-
2 either showed negative or positive median gene weights that
inform about the sign of the correlation between genes within
a pathway and the PLS component score of the response
variables (Figures 5C, 6C and Supplementary Figures 8, 9).
For example, the expression of genes within pathways relating
to mitochondrial processes increases for higher PLS component-
1 scores of the response variables. We further assessed PLS
component-1 and component-2 scores of the predictor variables
and their correlation with each individual response variable,
which are the clinical features and their relationship with CT in
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FIGURE 5 | Transcriptional signatures of PLS component-1 in PLS model-2 predictive of the relationship between cortical thickness (CT) and clinical scores. (A) PLS
scores for PLS component-1 of the predictor variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-statistic of β1 in
Eq. 1). Axes show the percentage of explained variance for each component; r indicates the Pearson correlation. (C) Mean expression across cortical regions
(columns) of genes in the top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in Supplementary Figure 8. * = Respiratory
electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.

PD patients (Figure 7). The rostral-to-dorsal expression pattern
of PLS component-1 is highly predictive of the relationship
between CT and MMSE score in patients (Pearson’s r = 0.71).
Thus, pathways associated with PLS component-1 may play
an important role in cognitive circuits, which seems to be
apparent based on their expression in the postcentral gyrus,
but also the entorhinal cortex. PLS component-2 scores showed
low correlations with the clinical features and their relation
with CT across cortical regions, and suggests weak associations
between the expression patterns of PLS component-2 and the
response variables.

DISCUSSION

To examine the selective vulnerability of brain regions to PD,
we explored PLS regression to find correlations between gene
expression signatures across the healthy brain and cortical
thinning patterns in PD brains. PLS regression is a suited
method to identify relationships between gene expression and
neuroimaging data, especially when the number of predictor
variables (genes) are highly interdependent or multi-collinear,
which is the case for gene expression data. This was shown before
by earlier studies (Vértes et al., 2016; Whitaker et al., 2016b;
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FIGURE 6 | Transcriptional signatures of PLS component-2 in PLS model-2 predictive of the relationship between cortical thickness (CT) and clinical scores. (A) PLS
scores for PLS component-2 of the predictor variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-statistic of β1 in
Eq. 1). Axes show the percentage of explained variance for each component; r indicates the Pearson correlation. (C) Mean expression across cortical regions
(columns) of genes in the top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in Supplementary Figure 9.

McColgan et al., 2018) and we show here that PLS can also be
used to identify molecular signatures that are relevant to PD,
namely, we found genes that participate in different pathways
involved in cellular maintenance mechanisms. By mapping genes
to latent components, genes with similar expression patterns
are grouped and can be explored to better understand their
collective behavior and their relationship with structural changes
in the PD brain. In our study, we found a caudal-to-rostral gene
expression pattern that was correlated with CT changes in PD
(PLS model-1); cortical atrophy was found in caudal regions while
rostral regions showed cortical hypertrophy. This transcriptional
signature was highly enriched for genes in biological pathways
associated with mitochondrial translation and mitotic cell cycle

regulation. We also found a ventral-to-dorsal and caudal-to-
rostral gene expression pattern that was correlated with the
relationship between CT and clinical domains of PD (PLS model-
2). Both transcriptional signatures were associated with similar
pathways, including macroautophagy and Golgi-ER trafficking,
and may be involved in the effect of CT on clinical scores, namely
MMSE scores for cognitive assessment.

The CT analyses between disease conditions and hemispheres
in patients revealed cortical regions that are susceptible to
atrophy. Cortical atrophy in PD commonly occurs asymmetrical,
with a preference for the left hemisphere, particularly in the
early disease stages (Brück et al., 2004; Mak et al., 2014;
Pereira et al., 2014; Claassen et al., 2016). Here, we showed

Frontiers in Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 73350131

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-733501 October 1, 2021 Time: 14:46 # 10

Keo et al. Brain-Wide Transcriptomics and Cortical Thickness

FIGURE 7 | Correlations between PLS model-2 component-1 and component-2 scores of the predictor variables and individual response variables. Each plot
shows the correlation between the predictor variables of gene expression (x-axis) and the response variables which are the relationships between CT and scores of a
clinical feature across cortical regions (y-axis). On top of each plot, the Pearson correlation and the Y-loadings (Q in Eqs. 4 and 8) are shown; both values tell
something about the sign (−/+) and magnitude (high/low) of the correlation. Each point or sample is one of the 34 cortical regions. Regions are labeled for those
with minimum or maximum value along one of the axes.

that five out of six regions with significant CT changes
between hemispheres, indeed revealed more atrophy in the left
hemisphere. Two cortical regions that showed significant changes
between patients and controls, also showed changes between
the left and right hemisphere. Our findings are in line with
those of a previous study showing that cortical atrophy in PD
most prominently affects the lateral occipital cortex, particularly
in the left hemisphere (Freeze et al., 2018). The temporal pole
showed hypertrophy in patients compared to controls, which
was only significant in the right hemisphere. However, our
analysis between hemispheres of PD brains suggests that the
left temporal pole is more susceptible to CT loss than the right
hemisphere. The remaining regions that were susceptible to CT
changes showed atrophy in either the left or right hemisphere;
however, differences between hemispheres in patients could not
be confirmed. All 10 regions that were different between patients
and controls, except the pericalcarine, were earlier identified as
part of two structural covariance networks that were related to

gray matter atrophy in the same PD dataset as in this study (de
Schipper et al., 2017). Overall, we observed atrophy in caudal
regions, which earlier has been associated with late stage PD
(Claassen et al., 2016).

With our findings of the PLS models we interpret gene
expression patterns of the healthy brain in relation to imaging
features observed in PD. The six adult donors of the AHBA
had no known neuropsychiatric or neuropathological history
(Hawrylycz et al., 2012), however, it is unknown whether these
individuals could have developed neurodegenerative diseases
later in life. The observed spatial gene expression patterns
reflect the physiological conditions in the adult healthy brain
and are informative of important molecular mechanisms that
are vulnerable in PD. The biological pathways found for PLS
model-1 were closely related as they shared many similar
genes. These interrelated pathways suggest a strong functional
relationship between molecular processes involving mitotic cell
cycle, mitochondrial translation, transport between ER and Golgi,
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FIGURE 8 | Schematic overview of the balance between biological pathways and their influence on CT across cortical brain regions. The big arrow indicates the
caudal-to-rostral (red-to-blue) or rostral-to-caudal (blue-to-red) change in CT across cortical brain regions of PD patients with red indicating decreased CT (atrophy)
in caudal regions and blue indicating increased CT (hypertrophy) in rostral regions. Genes within pathways associated with sumoylation showed that the expression
of these genes within the pathways increases from rostral to caudal regions. Other biological pathways that were correlated with CT changes in PD included
regulation of mitotic cell cycle, mitochondrial translation, DNA damage responses, and ER-Golgi traffic, and the involved genes showed decreasing expression
patterns from rostral to caudal regions (or increasing from caudal to rostral regions). All enriched pathways shared many common genes and were generally
associated with cellular maintenance mechanisms. Literature studies suggest that these biological pathways may be involved in the pathobiology of PD through their
interaction with genetic risk variants.

DNA damage checkpoints, and sumoylation. We found that
differential regulation of these molecular processes across the
brain was associated with CT changes observed in PD. Similar
pathways were found in PLS model-2 with multiple response
variables corresponding to the relationships between CT and nine
clinical domain scores in PD.

There is evidence that impaired cell cycle control plays a role
in the pathogenesis of neurodegenerative diseases. In healthy
conditions, differentiated neuronal cells become quiescent cells
that cannot re-enter the cell cycle, however, in neurodegenerative
diseases they are reactivated which is associated with increased
cell death (Bonda et al., 2018). Cell cycle checkpoints are
controlled by cyclins that guide the cell from one phase to
the next phase and its expression can induce cell cycle re-
initiation (Walton et al., 2019). Here, we found that regional
expression of pathways associated with the degradation of cell
cycle proteins in healthy conditions were negatively correlated
with CT changes in PD, i.e., higher expression was associated
with cortical hypertrophy in rostral regions such as the pars
opercularis and temporal pole. Reversely, we observed low
expression of protein degradation pathways in caudal regions that
were associated with atrophy, and therefore suggests that regions
with low expression are more vulnerable to improper degradation
of cell cycle proteins leading to cell cycle initiation. This indicates
that regions with low expression of such essential pathways are
predisposed to neurodegeneration.

We found that the expression of several pathways associated
with DNA replication and p53-(in)dependent DNA damage
responses and checkpoints were correlated with CT changes.

DNA replication during the S-phase may control the survival
of post-mitotic cells by DNA repair mechanisms or apoptosis
followed by DNA damage, which seems to be the case in
neurodegenerative diseases (Tokarz et al., 2016). Furthermore,
DNA damage response signaling can be modulated by tumor
suppressor p53 and may also contribute to apoptosis in aging
and age-related neurodegenerative disorders (Mohammadzadeh
et al., 2019). These pathways showed similar expression patterns
as those associated with the mitotic cell cycle, and therefore a
lower expression of these DNA damage response pathways in
caudal regions is related to cortical atrophy in PD.

Similar caudal-to-rostral expression patterns were found for
pathways associated with mitochondrial translation. Increased
risk for PD has been associated with mutations in SNCA, PARK2
(parkin), PINK1, DJ-1, and LRRK2 which have been linked to
mitochondrial function and oxidative stress (Yan et al., 2013).
PINK1 and parkin mediates clearance of damaged mitochondria
by mitophagy and may therefore influence mitotic cell cycle
progression (Sarraf et al., 2019). PINK1 also regulates both
retrograde and anterograde axonal transport of mitochondria
via axonal microtubules (Liu et al., 2012). The interaction
between PINK1 and parkin is likely involved in mitochondrial
quality control mechanisms, where anterograde transport of
damaged mitochondria is reduced and retrograde transport is
enhanced for elimination by mitophagy in the neuronal cell body
(Lionaki et al., 2015).

A cluster of pathways involved in ER-Golgi traffic were
found enriched for PLS model-2 component-1 and component-
2, and involved both ER-to-Golgi anterograde and Golgi-to-ER
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retrograde transport. Component-1 showed a ventral-to dorsal
gene expression pattern that was associated with higher
correlations between CT and clinical scores, namely, the
mental state of PD patients and the performance of motor
functions. The pathways involved in ER-Golgi traffic were
notably high expressed in the postcentral gyrus which contains
the somatosensory cortex that is known for its role in processing
sensory information and the regulation of emotion (Kropf
et al., 2019). Our results suggest that genes in ER-Golgi
traffic pathways are important for cognitive functions controlled
by the postcentral gyrus. Genes involved in ER-Golgi vesicle
trafficking have the ability to modify α-synuclein toxicity in
yeast (Cooper et al., 2006). Moreover, fragmentation to the Golgi
apparatus has been associated with the accumulation of aberrant
proteins in neurodegenerative diseases, including α-synuclein
(Fan et al., 2008). A study in yeast models has showed that
α-synuclein expression modulates ER stress signaling response
and inhibits viral infections and viral replication (Beatman
et al., 2016). We found several pathways associated to HIV
and influenza infections that were correlated to the relationship
between CT and clinical scores. Another pathway that shared
overlapping genes with those involved in ER-Golgi traffic was
asparagine N-linked glycosylation, which is a biochemical linkage
important for the structure and function of proteins. The
N-glycosylated proteins are synthesized essentially in the ER and
Golgi through sequential reactions and aberrant glycolysation
of proteins may lead to inflammation and mitochondrial
dysfunction in PD and consequently to a cellular overload of
dysfunctional proteins (Videira and Castro-Caldas, 2018).

We found that the expression of genes involved in
sumoylation of chromatin organization proteins was correlated
with CT changes, i.e., higher expression within caudal brain
regions, such as the pericalcarine and the lateral occipital cortex,
was associated with greater atrophy in PD. Therefore, higher
activity of sumoylation events may play a role in the regional
vulnerability to neurodegeneration observed in PD. On the other
hand, lower expression of these pathways, such as in the pars
opercularis, was associated with hypertrophy in rostral regions,
suggesting that lower expression of sumoylation pathways
has a protective effect. Additionally, the higher expression of
sumoylation pathways was associated with higher correlations
between CT and clinical scores as projected by PLS component-
2 in model-2. Sumoylation involves small ubiquitin-like modifier
(SUMO) proteins that increase in response to cellular stress,
such as DNA damage and oxidative stress, and can promote
α-synuclein aggregation and Lewy body formation (Bologna
and Ferrari, 2013; Eckermann, 2013; Rott et al., 2017). Several
proteins associated with inherited forms of PD are targets
modified by SUMO regulating mitochondrial processes, these
include α-synuclein, DJ-1, and parkin (Guerra de Souza et al.,
2016). Sumoylation has been associated with several diseases,
including cancers, cardiac diseases, and neurodegenerative
diseases (Yang et al., 2017). In cancer, sumoylation mediates
cell cycle progression and plays an essential role during mitosis
(Eifler and Vertegaal, 2015). SUMO seems to promote cell death
mediated by the p53 tumor suppressor protein, which may
be responsible for the cell death of dopaminergic neurons in

PD (Eckermann, 2013). Our findings are in support of these
hypotheses, and further suggest that sumoylation is important in
specific cortical regions that are atrophic in PD, such as the lateral
occipital cortex.

Spatial gene expression data from PD brains are limited in the
number of brain donors and brain regions, which is mainly due to
the limited availability of well-defined post-mortem PD patients.
Therefore, we used healthy gene expression from the AHBA to
perform unbiased whole brain and whole transcriptome analysis.
Gene expression for all the six healthy adult donors in AHBA was
only available for the left hemisphere. Therefore, this study was
restricted to the analysis of the left hemisphere when combining
gene expression with MRI data. Furthermore, it is generally
assumed that gene expression changes with age, however, due to
the limited number of brain donors in the AHBA, age-related
differences in gene expression were not taken into account. In
addition, MRI data from the patient and control groups were
collected from different studies in separate cohorts and were age-
matched, but the difference in the percentage of men in was not
taken into account. In addition, the different scanner parameter
settings were used in both studies. However, both datasets were
processed with FreeSurfer which is a widely used tool to reliably
measure thickness of gray matter in the cerebral cortex and
was shown to be robust to variations in scanner platforms,
sequence parameters, scan sessions, scanner manufacturer, and
field strength (Fischl, 2012). Brain volumetric measurements by
FreeSurfer have also been shown to be reproducible between
different scanners in multiple sclerosis (Guo et al., 2019) and
in vivo assessments of cortical thickness from MRI are similar to
histological examinations of cortical thickness (Scholtens et al.,
2015). Furthermore, an Alzheimer’s disease study showed that
FreeSurfer competed with manual measurements and encourages
the use of FreeSurfer in clinical practice (Clerx et al., 2015).
Finally, to determine whether genes and pathways truly have
predictive power of imaging features, both PLS models need to
be validated with an independent imaging cohort of PD patients.

Imaging cohorts of PD patients are generally quite
heterogeneous because PD is a complex disorder with a wide
spectrum of symptoms that vary substantially across patients.
To better understand the different forms of PD, previous
neuroimaging-genetics studies have grouped PD patients based
on the presence of a genetic mutation associated with PD, e.g.,
LRRK2 and GBA (van der Vegt et al., 2009; Weingarten et al.,
2015), however, PD diagnosis cannot be confirmed based on
genetic mutations. It is nowadays based on clinical observations,
but true diagnosis can only be confirmed by pathological
examination when patients are diseased. Therefore, it should be
noted that patients with different forms of PD cannot be clearly
distinguished based on clinical manifestations, genetic overlap or
neuroimaging findings.

The 34 brain regions defined by the Desikan-Killiany atlas
consist of different volumes and also differ in the number of
gene expression samples that fall within a brain region. Since
PLS requires the same number of samples for the predictor and
response datasets, the transcriptomic and neuroimaging data
was processed such that both datasets had an equal number of
samples, which are the 34 brain regions. For the transcriptomic
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data this meant that the expression for one brain region was based
on the average expression of all samples that fall within the brain
region. For the neuroimaging data, the CT reported by FreeSurfer
is the average CT for a brain region given its volume. Because
volume and sample size can affect these estimates, the average
gene expression and average CT, the sample size can also affect the
correlations predicted by the PLS model. Finally, our PLS models
also do not account for the number of subjects used in this study.
Future studies may improve in applying machine learning models
that are better fitted to the data to find statistical associations that
are more relevant to the disease being studied.

CONCLUSION

We set out to find biological explanations for the selective
regional vulnerability in PD. For this purpose, we applied PLS to
assess the healthy transcriptome across the whole brain and find
correlations with cortical thickness changes in PD, which can be
observed as atrophy and hypertrophy patterns in neuroimaging
data. Previous PD studies analyzed gene expression in only
few brain regions due to the limited availability of PD donors,
however, we made use of the AHBA to study the healthy
transcriptome across the whole brain at a high resolution. We
found genes that point toward pathways involved in cellular
maintenance mechanisms that are well known in PD and
other neurodegenerative diseases, but here we show that these
pathways are differently regulated across brain regions. More
specifically, sumoylation pathways showed opposite expression
patterns across the brain compared to pathways associated
with the regulation of mitotic cell cycle, p53-(in)dependent
DNA damage response, mitochondrial translation, and ER-
Golgi trafficking (Figure 8). In addition, multiple genes and
biological pathways identified in this study have been associated
to PD before, however, their relationship with cortical thickness
and clinical features was previously not known. Also, similar
pathways were identified that were associated with the severity
of clinical symptoms in PD, which could be a consequence of
cortical atrophy or hypertrophy. All identified pathways were
highly interconnected as shown by the number of shared genes
and suggest a balanced interplay between sumoylation events
and the other molecular mechanisms that seem to be important
in controlling CT in different cortical regions. We believe that
these particular pathways are interesting for further research to
better understand the shared molecular mechanisms between the
multiple pathways that are involved in PD progression. With our
multivariate PLS approach we were able to combine multiple data
modalities to provide meaningful new insights into the selective
vulnerability of brain regions to PD.
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Arnatkevičiūtė, A., Fulcher, B. D., and Fornito, A. (2019). A practical guide to
linking brain-wide gene expression and neuroimaging data. Neuroimage 189,
353–367. doi: 10.1016/j.neuroimage.2019.01.011

Beatman, E. L., Massey, A., Shives, K. D., Burrack, K. S., Chamanian, M.,
and Morrison, T. E. (2016). Alpha-synuclein expression restricts RNA viral

Frontiers in Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 73350135

http://human.brain-map.org
https://www.frontiersin.org/articles/10.3389/fnins.2021.733501/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.733501/full#supplementary-material
https://doi.org/10.1038/nrneurol.2017.27
https://doi.org/10.1111/j.1474-9726.2012.00868.x
https://doi.org/10.1111/j.1474-9726.2012.00868.x
https://doi.org/10.1016/j.neuroimage.2019.01.011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-733501 October 1, 2021 Time: 14:46 # 14

Keo et al. Brain-Wide Transcriptomics and Cortical Thickness

infections in the brain. J. Virol. 90, 2767–2782. doi: 10.1128/JVI.02949-15.
Editor

Bologna, S., and Ferrari, S. (2013). It takes two to tango: ubiquitin and SUMO in
the DNA damage response. Front. Genet. 4:106. doi: 10.3389/fgene.2013.00106

Bonda, D. J., Casadesus, G., Zhu, X., and Smith, M. A. (2018). Review: cell cycle
aberrations and neurodegeneration. Neuropathol. Appl. Neurobiol. 36, 157–163.
doi: 10.1111/j.1365-2990.2010.01064.x.Review

Brück, A., Kurki, T., Kaasinen, V., Vahlberg, T., and Rinne, J. O. (2004).
Hippocampal and prefrontal atrophy in patients with early non-demented
Parkinson’s disease is related to cognitive impairment. J. Neurol. Neurosurg.
Psychiatry 75, 1467–1469. doi: 10.1136/jnnp.2003.031237

Chen, B., Wang, S., Sun, W., Shang, X., Liu, H., Liu, G., et al. (2017). Functional
and structural changes in gray matter of Parkinson’s disease patients with
mild cognitive impairment. Eur. J. Radiol. 93, 16–23. doi: 10.1016/j.ejrad.2017.
05.018

Claassen, D. O., McDonell, K. E., Donahue, M., Rawal, S., Wylie, S. A., Neimat, J. S.,
et al. (2016). Cortical asymmetry in Parkinson’s disease: early susceptibility of
the left hemisphere. Brain Behav. 6:e00573. doi: 10.1002/brb3.573

Clerx, L., Gronenschild, E. H. B. M., Echavarri, C., Verhey, F., Aalten, P., and
Jacobs, H. I. L. (2015). Can FreeSurfer compete with manual volumetric
measurements in Alzheimer’s disease? Curr. Alzheimer Res. 12, 358–367. doi:
10.2174/1567205012666150324174813

Cooper, A. A., Gitler, A. D., Cashikar, A., Haynes, C. M., Hill, K. J., Bhullar, B.,
et al. (2006). a-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss
in Parkinson’s models. Science 313, 324–328. doi: 10.1126/science.1129462

de Schipper, L. J., van der Grond, J., Marinus, J., Henselmans, J. M. L., and
van Hilten, J. J. (2017). Loss of integrity and atrophy in cingulate structural
covariance networks in Parkinson’s disease. Neuroimage Clin. 15, 587–593.
doi: 10.1016/j.nicl.2017.05.012

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,
D., et al. (2006). An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Eckermann, K. (2013). SUMO and Parkinson’s disease. Neuromol. Med. 15, 737–
759. doi: 10.1007/s12017-013-8259-5

Eifler, K., and Vertegaal, A. C. O. (2015). SUMOylation-mediated regulation of cell
cycle progression and cancer SUMO: a ubiquitin-like modifier that regulates
nuclear processes. Trends Biochem. Sci. 40, 779–793. doi: 10.1016/j.tibs.2015.
09.006

Fan, J., Hu, Z., Zeng, L., Lu, W., Tang, X., Zhang, J., et al. (2008). Golgi apparatus
and neurodegenerative diseases. Int. J. Dev. Neurosci. 26, 523–534. doi: 10.1016/
j.ijdevneu.2008.05.006

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781. doi: 10.1016/j.neuroimage.
2012.01.021

Fischl, B., and Dale, A. M. (2000). Measuring the thickness of the human cerebral
cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97,
11050–11055. doi: 10.1073/pnas.200033797

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “Mini-mental state”
a practical method for grading the cognitive stte of patients for the clinician.
J. Psychiatr. Res. 12, 189–198. doi: 10.1016/0022-3956(75)90026-6

Freeze, B. S., Acosta, D., Pandya, S., Zhao, Y., and Raj, A. (2018). Regional
expression of genes mediating trans-synaptic alpha-synuclein transfer predicts
regional atrophy in Parkinson disease. Neuroimage Clin. 18, 456–466. doi: 10.
1016/j.nicl.2018.01.009

Gibb, W. R., and Lees, A. J. (1988). The relevance of the Lewy body to the
pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry
51, 745–752.

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-
Martin, P., et al. (2008). Movement disorder society-sponsored revision of the
unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and
clinimetric testing results. Mov. Disord. 23, 2129–2170. doi: 10.1002/mds.22340

Guerra de Souza, A. C., Prediger, R. D., and Cimarosti, H. (2016). SUMO-regulated
mitochondrial function in Parkinson’s disease. J. Neurochem. 137, 673–686.
doi: 10.1111/jnc.13599

Guo, C., Ferreira, D., Fink, K., Westman, E., and Granberg, T. (2019). Repeatability
and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric
measurements and the effect of lesion filling in multiple sclerosis. Eur. Radiol.
29, 1355–1364. doi: 10.1007/s00330-018-5710-x

Hawrylycz, M., Miller, J. A., Menon, V., Feng, D., Dolbeare, T., Guillozet-
Bongaarts, A. L., et al. (2015). Canonical genetic signatures of the adult human
brain. Nat. Neurosci. 18, 1832–1844. doi: 10.1038/nn.4171

Hawrylycz, M. J., Lein, E. S., Guillozet-bongaarts, A. L., Shen, E. H., Ng, L., Miller,
J. A., et al. (2012). An anatomically comprehensive atlas of the adult human
brain transcriptome. Nature 489, 391–399. doi: 10.1038/nature11405

Hirsch, E. C., Vyas, S., and Hunot, S. (2012). Neuroinflammation in Parkinson’s
disease. Park. Relat. Disord. 18, S210–S212. doi: 10.1016/s1353-8020(11)
70065-7

Kropf, E., Syan, S. K., Minuzzi, L., and Frey, B. N. (2019). From anatomy to
function: the role of the somatosensory cortex in emotional regulation. Braz.
J. Psychiatry 41, 261–269. doi: 10.1590/1516-4446-2018-0183

Li, X., Xing, Y., Martin-Bastida, A., Piccini, P., and Auer, D. P. (2018). Patterns of
grey matter loss associated with motor subscores in early Parkinson’s disease.
Neuroimage Clin. 17, 498–504. doi: 10.1016/j.nicl.2017.11.009

Lionaki, E., Markaki, M., Palikaras, K., and Tavernarakis, N. (2015). Mitochondria,
autophagy and age-associated neurodegenerative diseases: new insights into
a complex interplay. Biochim. Biophys. Acta 1847, 1412–1423. doi: 10.1016/j.
bbabio.2015.04.010

Liu, S., Sawada, T., Lee, S., Yu, W., Silverio, G., Alapatt, P., et al. (2012). Parkinson’s
disease-associated kinase PINK1 regulates miro protein level and axonal
transport of mitochondria. PLoS Genet. 8:e1002537. doi: 10.1371/journal.pgen.
1002537

Mak, E., Zhou, J., Tan, L. C. S., Au, W. L., Sitoh, Y. Y., and Kandiah, N. (2014).
Cognitive deficits in mild Parkinson’s disease are associated with distinct areas
of grey matter atrophy. J. Neurol. Neurosurg. Psychiatry 85, 576–580. doi: 10.
1136/jnnp-2013-305805

McColgan, P., Gregory, S., Seunarine, K. K., Razi, A., Papoutsi, M., Johnson, E.,
et al. (2018). Brain regions showing white matter loss in Huntington’s disease
are enriched for synaptic and metabolic genes. Biol. Psychiatry 83, 456–465.
doi: 10.1016/j.biopsych.2017.10.019

Mohammadzadeh, A., Mirza-aghazadeh-attari, M., Hallaj, S., and Majidinia, M.
(2019). Crosstalk between P53 and DNA damage response in ageing. DNA
Repair 80, 8–15. doi: 10.1016/j.dnarep.2019.05.004

Oerton, E., and Bender, A. (2017). Concordance analysis of microarray studies
identifies representative gene expression changes in Parkinson’s disease: a
comparison of 33 human and animal studies. BMC Neurol. 17:58. doi: 10.1186/
s12883-017-0838-x

Pereira, J. B., Svenningsson, P., Weintraub, D., Brønnick, K., Lebedev, A., Westman,
E., et al. (2014). Initial cognitive decline is associated with cortical thinning
in early Parkinson disease. Neurology 82, 2017–2025. doi: 10.1212/WNL.
0000000000000483

Rittman, T., Rubinov, M., Vértes, P. E., Patel, A. X., Ginestet, C. E., Ghosh, B. C. P.,
et al. (2016). Regional expression of the MAPT gene is associated with loss of
hubs in brain networks and cognitive impairment in Parkinson disease and
progressive supranuclear palsy. Neurobiol. Aging 48, 153–160. doi: 10.1016/j.
neurobiolaging.2016.09.001

Rosenberg-Katz, K., Herman, T., Jacob, Y., Kliper, E., Giladi, N., and Hausdorff,
J. M. (2016). Subcortical volumes differ in Parkinson’s disease motor subtypes:
new insights into the pathophysiology of disparate symptoms. Front. Hum.
Neurosci. 10:356. doi: 10.3389/fnhum.2016.00356

Rott, R., Szargel, R., Shani, V., Hamza, H., Savyon, M., Abd, F., et al. (2017).
SUMOylation and ubiquitination reciprocally regulate α-synuclein degradation
and pathological aggregation. Proc. Natl. Acad. Sci. U.S.A. 114, 13176–13181.
doi: 10.1073/pnas.1704351114

Sarraf, S. A., Sideris, D. P., Giagtzoglou, N., Ni, L., Kankel, M. W., Sen, A., et al.
(2019). PINK1/Parkin influences cell cycle by sequestering TBK1 at damaged
mitochondria, inhibiting mitosis. Cell Rep. 29, 225–235. doi: 10.1016/j.celrep.
2019.08.085

Scholtens, L. H., de Reus, M. A., and van den Heuvel, M. P. (2015). Linking
contemporary high resolution magnetic resonance imaging to the von economo
legacy: a study on the comparison of MRI cortical thickness and histological
measurements of cortical structure. Hum. Brain Mapp. 36, 3038–3046. doi:
10.1002/hbm.22826

Tokarz, P., Kaarniranta, K., and Blasiak, J. (2016). Role of the cell cycle re-
initiation in DNA damage response of post-mitotic cells and its implication
in the pathogenesis of neurodegenerative diseases. Aging Dis. 19, 131–140.
doi: 10.1089/rej.2015.1717

Frontiers in Neuroscience | www.frontiersin.org 14 October 2021 | Volume 15 | Article 73350136

https://doi.org/10.1128/JVI.02949-15.Editor
https://doi.org/10.1128/JVI.02949-15.Editor
https://doi.org/10.3389/fgene.2013.00106
https://doi.org/10.1111/j.1365-2990.2010.01064.x.Review
https://doi.org/10.1136/jnnp.2003.031237
https://doi.org/10.1016/j.ejrad.2017.05.018
https://doi.org/10.1016/j.ejrad.2017.05.018
https://doi.org/10.1002/brb3.573
https://doi.org/10.2174/1567205012666150324174813
https://doi.org/10.2174/1567205012666150324174813
https://doi.org/10.1126/science.1129462
https://doi.org/10.1016/j.nicl.2017.05.012
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1007/s12017-013-8259-5
https://doi.org/10.1016/j.tibs.2015.09.006
https://doi.org/10.1016/j.tibs.2015.09.006
https://doi.org/10.1016/j.ijdevneu.2008.05.006
https://doi.org/10.1016/j.ijdevneu.2008.05.006
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1073/pnas.200033797
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/j.nicl.2018.01.009
https://doi.org/10.1016/j.nicl.2018.01.009
https://doi.org/10.1002/mds.22340
https://doi.org/10.1111/jnc.13599
https://doi.org/10.1007/s00330-018-5710-x
https://doi.org/10.1038/nn.4171
https://doi.org/10.1038/nature11405
https://doi.org/10.1016/s1353-8020(11)70065-7
https://doi.org/10.1016/s1353-8020(11)70065-7
https://doi.org/10.1590/1516-4446-2018-0183
https://doi.org/10.1016/j.nicl.2017.11.009
https://doi.org/10.1016/j.bbabio.2015.04.010
https://doi.org/10.1016/j.bbabio.2015.04.010
https://doi.org/10.1371/journal.pgen.1002537
https://doi.org/10.1371/journal.pgen.1002537
https://doi.org/10.1136/jnnp-2013-305805
https://doi.org/10.1136/jnnp-2013-305805
https://doi.org/10.1016/j.biopsych.2017.10.019
https://doi.org/10.1016/j.dnarep.2019.05.004
https://doi.org/10.1186/s12883-017-0838-x
https://doi.org/10.1186/s12883-017-0838-x
https://doi.org/10.1212/WNL.0000000000000483
https://doi.org/10.1212/WNL.0000000000000483
https://doi.org/10.1016/j.neurobiolaging.2016.09.001
https://doi.org/10.1016/j.neurobiolaging.2016.09.001
https://doi.org/10.3389/fnhum.2016.00356
https://doi.org/10.1073/pnas.1704351114
https://doi.org/10.1016/j.celrep.2019.08.085
https://doi.org/10.1016/j.celrep.2019.08.085
https://doi.org/10.1002/hbm.22826
https://doi.org/10.1002/hbm.22826
https://doi.org/10.1089/rej.2015.1717
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-733501 October 1, 2021 Time: 14:46 # 15

Keo et al. Brain-Wide Transcriptomics and Cortical Thickness

Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R., and Clarke,
C. E. (2010). Systematic review of levodopa dose equivalency reporting
in Parkinson’s disease. Mov. Disord. 25, 2649–2653. doi: 10.1002/mds.
23429

van der Heeden, J. F., Marinus, J., Martinez-Martin, P., and van Hilten, J. J.
(2016). Evaluation of severity of predominantly non-dopaminergic symptoms
in Parkinson’s disease: the SENS-PD scale. Park. Relat. Disord. 25, 39–44. doi:
10.1016/j.parkreldis.2016.02.016

van der Vegt, J. P. M., Van Nuenen, B. F. L., Bloem, B. R., Klein, C., and Siebner,
H. R. (2009). Imaging the impact of genes on Parkinson’s disease. Neuroscience
164, 191–204. doi: 10.1016/j.neuroscience.2009.01.055

Vértes, P. E., Rittman, T., Whitaker, K. J., Romero-Garcia, R., Váša, F., Kitzbichler,
M. G., et al. (2016). Gene transcription profiles associated with inter-modular
hubs and connection distance in human functional magnetic resonance
imaging networks. Philos. Trans. R. Soc. B Biol. Sci. 371:20150362. doi: 10.1098/
rstb.2015.0362

Videira, P. A. Q., and Castro-Caldas, M. (2018). Linking glycation and
glycosylation with inflammation and mitochondrial dysfunction in Parkinson’s
disease. Front. Neurosci. 12:381. doi: 10.3389/fnins.2018.00381

Walton, C. C., Zhang, W., Patiño-parrado, I., Barrio-alonso, E., Garrido, J., and
Frade, J. M. (2019). Primary neurons can enter M-phase. Sci. Rep. 9:4594.
doi: 10.1038/s41598-019-40462-4

Wang, M., Jiang, S., Yuan, Y., Zhang, L., Ding, J., Wang, J., et al. (2016). Alterations
of functional and structural connectivity of freezing of gait in Parkinson’s
disease. J. Neurol. 263, 1583–1592. doi: 10.1007/s00415-016-8174-4

Weingarten, C. P., Sundman, M. H., Hickey, P., and Chen, N. K. (2015).
Neuroimaging of Parkinson’s disease: expanding views.Neurosci. Biobehav. Rev.
59, 16–52. doi: 10.1016/j.neubiorev.2015.09.007

Whitaker, K. J., Vértes, P. E., Romero-garcia, R., Moutoussis, M., and Prabhu, G.
(2016a). Adolescence is associated with genomically patterned consolidation of
the hubs of the human brain connectome. Proc. Natl. Acad. Sci. U.S.A. 113,
9105–9110. doi: 10.1073/pnas.1601745113

Whitaker, K. J., Vértes, P. E., Romero-Garcia, R., Váša, F., Moutoussis, M.,
Prabhu, G., et al. (2016b). Adolescence is associated with genomically patterned

consolidation of the hubs of the human brain connectome. Proc. Natl. Acad. Sci.
U.S.A. 113, 9105–9110.

Wilson, H., Niccolini, F., Pellicano, C., and Politis, M. (2019). Cortical thinning
across Parkinson’s disease stages and clinical correlates. J. Neurol. Sci. 398,
31–38. doi: 10.1016/j.jns.2019.01.020

Yan, M. H., Wang, X., and Zhu, X. (2013). Mitochondrial defects and oxidative
stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62,
90–101. doi: 10.1016/j.freeradbiomed.2012.11.014

Yang, Y., He, Y., Wang, X., He, G., Zhang, P., Zhu, H., et al. (2017). Protein
SUMOylation modification and its associations with disease. Open Biol.
7:170167.

Zheng, D., Chen, C., Song, W. C., Yi, Z. Q., Zhao, P. W., Zhong, J. G., et al. (2019).
Regional gray matter reductions associated with mild cognitive impairment
in Parkinson’s disease: a meta-analysis of voxel-based morphometry studies.
Behav. Brain Res. 371:111973. doi: 10.1016/j.bbr.2019.111973

Conflict of Interest: The authors declare that this study received funding from
AbbVie, Hoffmann-La-Roche, and Lundbeck. The funders were not involved in the
study design, collection, analysis, interpretation of data, the writing of this article
or the decision to submit it for publication.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Keo, Dzyubachyk, van der Grond, van Hilten, Reinders and
Mahfouz. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 October 2021 | Volume 15 | Article 73350137

https://doi.org/10.1002/mds.23429
https://doi.org/10.1002/mds.23429
https://doi.org/10.1016/j.parkreldis.2016.02.016
https://doi.org/10.1016/j.parkreldis.2016.02.016
https://doi.org/10.1016/j.neuroscience.2009.01.055
https://doi.org/10.1098/rstb.2015.0362
https://doi.org/10.1098/rstb.2015.0362
https://doi.org/10.3389/fnins.2018.00381
https://doi.org/10.1038/s41598-019-40462-4
https://doi.org/10.1007/s00415-016-8174-4
https://doi.org/10.1016/j.neubiorev.2015.09.007
https://doi.org/10.1073/pnas.1601745113
https://doi.org/10.1016/j.jns.2019.01.020
https://doi.org/10.1016/j.freeradbiomed.2012.11.014
https://doi.org/10.1016/j.bbr.2019.111973
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-755870 November 5, 2021 Time: 15:21 # 1

REVIEW
published: 11 November 2021

doi: 10.3389/fnins.2021.755870

Edited by:
Jiajia Zhu,

First Affiliated Hospital of Anhui
Medical University, China

Reviewed by:
Chuanjun Zhuo,

Tianjin Anding Hospital, China
Xiaoxia Du,

Shanghai University of Sport, China

*Correspondence:
Wei Chen

srrcw@zju.edu.cn
Jinsong Tang

tangjinsong@zju.edu.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 09 August 2021
Accepted: 14 October 2021

Published: 11 November 2021

Citation:
Shao X, Liao Y, Gu L, Chen W and

Tang J (2021) The Etiology of Auditory
Hallucinations in Schizophrenia: From

Multidimensional Levels.
Front. Neurosci. 15:755870.

doi: 10.3389/fnins.2021.755870

The Etiology of Auditory
Hallucinations in Schizophrenia:
From Multidimensional Levels
Xu Shao1, Yanhui Liao1, Lin Gu2,3, Wei Chen1* and Jinsong Tang1*

1 Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 2 RIKEN
AIP, Tokyo, Japan, 3 Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

Enormous efforts have been made to unveil the etiology of auditory hallucinations
(AHs), and multiple genetic and neural factors have already been shown to have
their own roles. Previous studies have shown that AHs in schizophrenia vary from
those in other disorders, suggesting that they have unique features and possibly
distinguishable mechanisms worthy of further investigation. In this review, we intend
to offer a comprehensive summary of current findings related to AHs in schizophrenia
from aspects of genetics and transcriptome, neurophysiology (neurometabolic and
electroencephalogram studies), and neuroimaging (structural and functional magnetic
resonance imaging studies and transcriptome–neuroimaging association study). Main
findings include gene polymorphisms, glutamate level change, electroencephalographic
alterations, and abnormalities of white matter fasciculi, cortical structure, and cerebral
activities, especially in multiple regions, including auditory and language networks. More
solid and comparable research is needed to replicate and integrate ongoing findings
from multidimensional levels.

Keywords: auditory hallucination, DTI, EEG, fMRI, genetics, schizophrenia

INTRODUCTION

Auditory hallucinations (AHs) are defined as experiences that without an external stimulus,
individuals perceive voices as distinct from their own thoughts, whether the voices are familiar
or not (American Psychiatric Association, 2013). With nearly 10% of lifetime prevalence rate
among the general population (Maijer et al., 2018), this debilitating symptom occurs among healthy
population, as well as people with various clinical conditions such as psychiatric diseases (including
schizophrenia, mood disorders, dissociative disorders, etc.), neurological diseases, and hearing
impairment (Laroi et al., 2012). AHs are most commonly found in major psychotic disorders, with
the lifetime prevalence rate of 60-80% in schizophrenia spectrum disorders (Lim et al., 2016), and
1-year prevalence rate of 50-70% in schizophrenia specifically (Bauer et al., 2011; Waters et al.,
2014). AHs are a main positive symptom of schizophrenia (American Psychiatric Association, 2013)
and can bring severe damage to one’s mental health, for instance, increasing depressive symptoms
(Chiang et al., 2018) and leading to suicidal ideation or attempt (Koyanagi et al., 2015).

As to the etiology, the past decades have witnessed a rapid growth in clinical studies investigating
the genetic and neural substrates for AHs generally and the verbal type specifically [auditory
verbal hallucinations (AVHs)] in schizophrenia. Notwithstanding, the possible mechanism remains
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unclear, and the existing findings are divergent to some extent.
A comprehensive analysis of the ongoing studies will help
depict a clearer picture of what current science knows about
AHs in schizophrenia. Thus, in this review, we summarize the
results from previous research, especially in the field of genetics,
neurobiology, and neuroimaging. And we mainly focus on
“trait” studies conducted in schizophrenia, that is, schizophrenia
with auditory (verbal) hallucinations were compared to patients
without the symptom instead of healthy controls. Another type of
research, “state” studies that compare on-the-state period to off-
the-state period within the same patient group, is also included
in the respective sections. At the end of this review, we further
discuss the limitations of previous studies and propose several
suggestions for ways forward.

GENETIC RESEARCH

Genetic Factor
It is well-known that gene and its interaction with environment
play an important role in the development of psychiatric
symptoms or disorders. And researchers have been investigating
how genetic and environmental factors are linked to AHs.

Most studies were conducted among schizophrenia
patients, considering the frequent occurrence of AHs in
this population. Abundant studies showed that DNA variations
in the cholecystokinin A receptor (CCK-AR) gene contributed to
the formation of schizophrenia and AHs (Wei and Hemmings,
1999; Tachikawa et al., 2001; Sanjuan et al., 2004; Toirac et al.,
2007). Schizophrenia carrying glutathione S-transferase (GST)
A1∗B allele had more severe AHs than non-B carriers (Spalletta
et al., 2012). Rajasekaran et al. (2016) found an association
between (human leukocyte antigen-G) HLA-G 14-bp Ins/Ins
genotype and lifetime presence of third person AHs, and this
association was more significant in males with schizophrenia.
The genotype frequency of matrix metalloproteinase 1 (MMP1)
single-nucleotide polymorphism (SNP) rs470558 was reported
to be associated with AHs, and its A allele frequency was higher
in schizophrenia with AHs (SZ-AH) than schizophrenia without
AHs (SZ-non-AH) (Kim et al., 2012). Dystrobrevin binding
protein 1 (DTNBP1) gene was involved with neurotransmission
regulation and neurodevelopment in schizophrenia, and its
SNP rs4236167 was found to be associated with AHs generally
and third-person and abusive form ones specifically (Cheah
et al., 2015). One linkage and association analyses found
that D8S1769, located 350 kb upstream of the 5′ end of
the first exon of neuregulin 1 (NRG1) gene, had significant
linkage signal for SZ-AH, and the frequency of the G allele of
SNP8NRG241930 was significantly higher in SZ-AH compared
to healthy controls (Kim et al., 2006). Previous research on the
association between serotonin transporter (5-HTT) gene and
AHs has been controversial. 5-HTT gene-linked polymorphic
region (5-HTTLPR) is generated by a 44-bp deletion in the
promoter site with two principal alleles, short (s) and long (l),
respectively (Heils et al., 1996). At first, l allele was found to be
associated with the frequency or the severity of hallucinations in
schizophrenia (Malhotra et al., 1998). However, Sanjuan et al.

(2006a) found that s allele was related to emotional response to
AHs in schizophrenia, but not to the AH frequency. In another
study, 5-HTTLPR polymorphism was also associated with the
emotional response to AHs, specifically the distress caused by
the symptom, but only with marginal statistical significance
(Rivero et al., 2010).

Genetic × Environmental Factor
Some other genes have been reported to predispose to AHs
through the interaction with environmental factors. For instance,
forkhead box P2 gene (FOXP2) was involved in the development
of the neural systems mediating speech and language (Liegeois
et al., 2003). Patients with abnormal FOXP2 function showed
significant underactivation in Broca’s area and other language-
related cortical regions (Liegeois et al., 2003). And investigators
found that FOXP2 SNPs were associated with SZ-AH (Sanjuan
et al., 2006b), but not directly with the symptom of AHs
(Tolosa et al., 2010). Further study showed that SNP rs1456031
interacted with childhood parental emotional abuse to predict
AVHs (McCarthy-Jones et al., 2014a). Putting these evidences
together, FOXP2 mutation might cause the symptom only in the
presence of the environmental factor.

Based on previous findings, multiple genes, along with the
influences of psychosocial factors, play their own part in the
occurrence of AHs. But it is still unclear whether these genes
function independently or they interact with each other, and
how much percentage each gene makes up to the pathogenesis
of AHs. Among them, DTNBP1 seems to be the most potential
gene candidate for AHs. It is a schizophrenia susceptibility
gene related to regulation of glutamate level (Tang T. T.-T.
et al., 2009), and its mRNA expression is lower in AH-related
regions including superior temporal gyrus, hippocampus, and
dorsolateral prefrontal cortex (Talbot et al., 2004; Weickert et al.,
2004; Tang J. et al., 2009).

Although great joint efforts have been made to analyze data
of large-scale genome-wide association studies in the population
of schizophrenia to search for regulatory genes, such efforts
are not yet made to investigate the genetic connection with
AHs. Moreover, previous results are mainly derived according to
bioinformatics methodologies, and it remains to be solved from
molecular biological level how much influence individuals might
receive from these genetic mutations.

Transcriptional Factor
How gene is expressed in the cerebral area offers a clearer
picture of genetic function on human brain. And an increasing
amount of studies has investigated differentiated gene expression
in specific brain areas using postmortem or database of
schizophrenia. ATPase type 13A4 (ATP13A4) gene (verbal and
social interaction skills) expression was up-regulated in Broca’s
area of schizophrenia (Gibbons et al., 2020). Expressions of genes
related to cell–cell adhesion, synaptic transmission, and neural
excitability were enriched in the prefrontal cortex (Pergola et al.,
2019). In dorsolateral prefrontal cortex, to be further, expressions
of genes related to regulation of cell survival and growth as
well as response to external stimuli (Petralia et al., 2020),
related to learning and memory processes (Ohayon et al., 2020),
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and related to immune-related functions (Enwright and Lewis,
2021) were up-regulated, whereas expressions of genes related to
mitochondrial function (Enwright and Lewis, 2021); related to
neurotransmitter release modulation (Tao et al., 2020); related
to cell proliferation, differentiation, and transformation (Huang
et al., 2019); and related to neuronal homeostasis and intracellular
signaling (Petralia et al., 2020) were down-regulated. Oxytocin
receptor (social cognition) mRNA was down-regulated in the
temporal cortex (Uhrig et al., 2016), and sodium-dependent MI
transporter-1 (SLC5A3) gene (metabolic precursor regulation)
expression was up-regulated in the superior temporal cortex
(Vawter et al., 2019).

There are scattered reports about gene transcription
concerning AHs only using peripheral blood samples. The
mRNA level of mitochondrial complex I gene (NDUFV2) was
found to be positively correlated with both overall and positive
symptoms in the first-episode schizophrenia patients (Akarsu
et al., 2014). Complement 4A (C4A) mRNA expression was
found to be positively correlated with positive symptoms in
schizophrenia, specifically the presence and severity of delusions
(Melbourne et al., 2018). Using gene expression profiling from
schizophrenia and related disorders, four genes were found to
decrease in high hallucinatory state (Fn1, Rhobtb3, Aldh1l1,
Mpp3), and three genes were found to increase (Arhgef9,
Phlda1, S100a6) (Kurian et al., 2011). Only one study used
gene expression profiling of postmortem brain samples from
prefrontal cortex and found that plexin B1 (PLXNB1) expression
was decreased in SZ-AH compared to SZ-non-AH (Gilabert-
Juan et al., 2015). The different expression of PLXNB1 might be a
signature of the hallucinatory endophenotype in schizophrenia.

Therefore, cerebral transcriptomic study of AHs in
schizophrenia is scarce. As the importance is increasingly
attached to transcriptomics, this research field leaves much
to be exploited.

NEUROPHYSIOLOGICAL RESEARCH

Neurometabolic Study
Magnetic resonance spectroscopy (MRS) has been an effective
tool to measure cerebral metabolic level of targeted substance
and has been used to investigate how certain neurochemicals
might affect the occurrence of AHs. For example, as to
the measurement of Glx level (composite of glutamate and
glutamine), schizophrenia with AVHs (SZ-AVH) had higher
Glx level than schizophrenia without AVHs (SZ-non-AVH) in
the left lateral prefrontal region (Curcic-Blake et al., 2017),
although schizophrenia group generally had lower Glx level than
the control group in the temporal and frontal areas (Hugdahl
et al., 2015; Curcic-Blake et al., 2017). Besides, AH severity
was reported to positively correlate with Glx level both in the
frontal and temporal regions (Hugdahl et al., 2015). Glutamate
excitatory function is usually balanced by γ-aminobutyric acid
(GABA) inhibitory function (Carlsson et al., 2001). Therefore, the
glutamate-GABA excitatory–inhibitory imbalance could lead to
the development of AHs (Hugdahl and Sommer, 2018). Further,
Hjelmervik et al. (2019) found in a larger sample that Glx level

was positively correlated with AVH in the left superior temporal
gyrus and negatively in the anterior cingulate cortex, but they
failed to find any significant result for GABA level. Consequently,
they proposed that compared to Glu–GABA imbalance within
regions, Glu–Glu imbalance between regions was more plausible
especially in the frontal and temporal regions. Therefore, studies
above have shown that glutamatergic metabolites serve as a
mediating factor in AHs.

Other neurochemical studies remain scarce. N-acetyl-
aspartate/choline (NAA/Cho) ratio in the right thalamus
was lower in SZ-AH, relative to SZ-non-AH or healthy
controls (Martinez-Granados et al., 2008). Besides, NAA
level was decreased in the hippocampus in schizophrenia
during the episode of AHs (Heckers, 2001) and was also
reported to be negatively correlated with the duration
of positive symptoms (Theberge et al., 2003). Moreover,
phospholipids (phosphomonoesters and phosphodiesters)
and energy metabolism (adenosine triphosphate, inorganic
phosphate, and phosphocreatine) in left superior temporal gyrus
were both positively correlated with AH severity in SZ-AH
(Nenadic et al., 2014).

Based on existing findings, the association between glutamate
level and AHs is relatively solid, but whether GABA level has
a role remains inconclusive. Interregional Glu–Glu imbalance
rather than intraregional Glu–GABA imbalance is more suitable
at present. Findings of other neurochemical and neurometabolic
studies remain scarce. It is worthwhile to finding out in future
investigations how chemical substance in the brain and their
metabolism influence hallucinatory activities of schizophrenia.

Electroencephalogram Study
The forward model has been illustrated in many studies and
can be applied in the auditory system (Wolpert and Miall,
1996; Heinks-Maldonado et al., 2007). When a sound initiates,
the auditory feedback can be predicted by the efference
copy of the motor command. This corollary discharge is
compared with the actual auditory feedback. If the sound
is self-generated, the predicted auditory feedback often
matches the actual one; the sensory input is suppressed,
leading to a dampened auditory experience. If the sound is
externally produced, the predicted auditory feedback often
contradicts with the actual one, leading to no suppression of
the auditory response. During self-generated vocalizations,
neural discharges in a majority of auditory cortical neurons
are suppressed, and the suppression precedes the onset of
vocalizations (Eliades and Wang, 2003), and this suppression
helps distinguish between internally and externally initiated
sensations. Event-related potential (ERP) results revealed that
in healthy controls, N1 to self-voice feedback was dampened
compared to alien voice (Heinks-Maldonado et al., 2007).
Phase coherence of prespeech electroencephalogram (EEG)
was found to be related to reduced speech-onset N1 potentials,
showing prespeech neural synchrony suppressed subsequent
responsiveness to self-spoken sound (Ford et al., 2007). However,
hallucination predisposition in healthy controls might affect
voice discrimination and recognition (Pinheiro et al., 2019).
These evidences indicate that people with AHs could not
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recognize self-generated voice correctly, and they displayed
improperly high response to it, as the result of which the forward
model was damaged.

Schizophrenia is characterized by the disturbance of sensory
gating mechanism that filters out extraneous stimuli from
meaningful sensory inputs to focus attention (Freedman et al.,
1987). And auditory sensory gating is one way of directly
measuring auditory perceptual abnormality, and it assesses
modulation of incoming auditory information 50 ms into cortical
processing (Thoma et al., 2017). At 50 ms comes a positive
wave, P50 potential, as the largest initial cerebral response to an
auditory stimulus (Javitt and Freedman, 2015). Sensory gating
deficit has been frequently found in schizophrenia (Potter et al.,
2006), but limited studies have explored the relationship between
sensory gating deficit and AHs. Smith et al. (2013) demonstrated
that AVH severity was positively associated with the extent of
P50 sensory gating deficit. Faugere et al. (2016) found that
schizophrenia with P50 sensory gating impairment had more
severe AVH than without that impairment. For the P50, N100,
and P200 components, gating ratios were higher in schizophrenia
on the state of AVH than those off the state (Thoma et al.,
2017). In one magnetoencephalographic study, gating ratio of
the magnetic analog of P50 (P50m) in the left hemisphere was
positively associated with AHs in schizophrenia (Hirano et al.,
2010). These evidences suggest that sensory gating deficit directly
contributed to the formation of AHs as well.

Mismatch negativity (MMN) is another EEG-derived ERP,
which functions as a neurophysiological index signaling auditory
processing (Naatanen et al., 2007) and reflects detection of
the change of stimulus in the environment (Salisbury, 2012).
Compared to SZ-non-AH, SZ-AH possessed smaller MMNs
to duration deviants (Fisher et al., 2008). In SZ-AH, MMN
amplitude to gap deviants was negatively correlated with the
duration, loudness, and clarity of AHs (Fisher et al., 2012).
Furthermore, reduced MMN amplitude was found to be directly
correlated with AHs in schizophrenia with early psychosis
(Rudolph et al., 2015). Considering previous studies already
reported the association between reduced MMN amplitude and
general hallucinatory trait in schizophrenia (Youn et al., 2003;
Fisher et al., 2011, 2014; Perrin et al., 2018), it is plausible
that deficits of auditory processing and external stimulus
detection, indicated by MMN alterations, could contribute to the
development of AHs.

Studies have found dysfunctional γ frequency (30–100 Hz)
oscillations in AHs. γ-Band oscillations play a role in selecting
neurons, which communicate about sensory inputs, and higher
cognitive functions including perceptual organization and
language processing (Uhlhaas et al., 2008). The auditory steady-
state response (ASSR), as one kind of ERPs that is elicited
by temporally modulated auditory stimulation, has been used
to study neural synchrony in schizophrenia (O’Donnell et al.,
2013). Phase locking factor of the left hemisphere source was
correlated with AHs in schizophrenia during ASSR to 40-Hz γ

frequency stimulation (Spencer et al., 2009). In another study,
40-Hz ASSR was found to be diminished in schizophrenia, and
phase synchronization between the primary auditory cortices was
positively correlated with AHs (Mulert et al., 2011). In SZ-AVH,

40-Hz EEG activity decreased left-laterally, and global measure
of phase locking decreased with stimulation (Koenig et al., 2012).
Induced 40-Hz γ power in the left hemisphere was correlated
with AHs in schizophrenia (Hirano et al., 2015). In another,
80-Hz ASSR-BOLD (blood oxygen–level dependent) signal was
positively associated with AHs in acute episode schizophrenia
(Kuga et al., 2016). Interestingly, when 40-Hz ASSR was divided
as early-latency and late-latency γ response, researchers did
not find group differences of early or late γ activity signatures
between SZ-AH and SZ-non-AH (Griskova-Bulanova et al.,
2016). Apart from ASSR-related results, correlation dimension
in the γ-band in the right prefrontal cortex was more chaotic in
schizophrenia with treatment-refractory AHs than counterparts
without (Lee et al., 2008). Therefore, despite that participants
recruited and measures reflecting γ-band oscillations differ in
previous studies, results could still suggest that deficit of γ

oscillations in schizophrenia was related to AHs.
Alterations of other frequency spectrums and prominent

spectral interactions are also reported to be associated with
AHs. Compared to SZ-non-AH, SZ-AH had increased α-
band coherence between the left and right superior temporal
cortices (Sritharan et al., 2005). Schizophrenia with AHs
also had increased α-band phase-coupling intrahemispherically
and interhemispherically and increased α-band synchrony
(Angelopoulos et al., 2011). Correlation dimension in the β-band
in the left parietal cortex was more coherent in schizophrenia
with treatment-refractory AHs than counterparts without (Lee
et al., 2008). Phase coupling between theta and γ rhythms
was increased in the left frontotemporal cortices during AVH
(Koutsoukos et al., 2013). β1 and β2 frequency amplitude were
higher in SZ-AH than SZ-non-AH (Lee et al., 2006). Also, γ

frequency was correlated with β (2 and 3) frequencies in SZ-
AH, and β (1 and 2) activity was enhanced in the left inferior
parietal lobule and the left medial frontal gyrus in SZ-AH relative
to SZ-non-AH (Lee et al., 2006).

Combining these evidences together, SZ-AH are deficient in
auditory processing, including suppressing inner speech, filtering
out meaningless auditory stimuli, detecting stimulus change
in the environment, and proper cerebral circuitry function
(especially in the primary auditory cortex).

NEUROIMAGING RESEARCH

Structural Magnetic Resonance Imaging
Study
Diffusion Tensor Imaging Study
Compared to SZ-non-AH, SZ-AH had lower fractional
anisotropy (FA) in bilateral superior longitudinal fasciculi
and arcuate fasciculi (Chawla et al., 2019). Compared to
schizophrenia with audiovisual hallucinations, SZ-AH showed
lower white matter connectivity in the pathways connecting the
hippocampal complex with visual areas including the forceps
major and the inferior fronto-occipital fasciculus (Amad et al.,
2014). Different correlational studies reported that FAs in
bilateral arcuate fasciculus (Rotarska-Jagiela et al., 2009), bilateral
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superior longitudinal fasciculi (Seok et al., 2007; Shergill et al.,
2007), and left anterior cingulum (Shergill et al., 2007) were
positively associated with AHs in schizophrenia. Meanwhile,
mean diffusivity in left superior temporal gyrus white matter
was associated with AHs specifically in male schizophrenia
(Lee et al., 2009).

Previous studies focusing on verbal type of AHs have yielded
inconsistent results. Relative to SZ-non-AVH, SZ-AVH had
higher FA in the lateral parts of the temporoparietal section
of the arcuate fasciculus (Hubl et al., 2004), in the left arcuate
fasciculus (Psomiades et al., 2016), and in parts of the anterior
corpus callosum (Hubl et al., 2004). Paradoxically, other studies
showed that SZ-AVH had lower FA in the left frontal–temporal
regions involved in language networks (including left inferior
fronto-occipital fasciculus and left arcuate fasciculus segments)
(Curcic-Blake et al., 2015; McCarthy-Jones et al., 2015; Oestreich
et al., 2016) and in tracts involved in interhemispheric language
connections (including bilateral anterior corona radiata and
posterior parts of the corpus callosum) (Curcic-Blake et al., 2015).
Mulert et al. (2012) reported higher but Wigand et al. (2015)
reported lower FA in the interhemispheric auditory fibers in SZ-
AVH. In correlational analysis, Psomiades et al. (2016) found
AVH positively correlated with FA in the left arcuate fasciculus,
but Curcic-Blake et al. (2015) found AVH negatively correlated
with FA in the left frontal–temporal regions including arcuate
fasciculus segments. In addition, some studies did not find the
difference of structural integrity of internal capsule (Xi et al.,
2016), anterior corona radiata (Xi et al., 2016), the language
pathways (Catani et al., 2011; Leroux et al., 2017; Xie et al.,
2019), and the interhemispheric auditory pathways (Leroux et al.,
2017) between SZ-AVH and SZ-non-AVH, although white matter
integrity in SZ-AVH or SZ-non-AVH, respectively, differed from
that in healthy controls.

The debate on the involvement of the intrahemispheric and
interhemispheric fasciculi in the etiology of AHs thus remains
open. And the verbal type might have unique abnormalities
of white matter fasciculi relative to the general hallucination.
Diffusion tensor imaging (DTI) studies in the past decades
are relatively inadequate, and findings of previous studies
have been incongruent and contradictory. Still, it can be
implied that pathological fasciculus alterations in the language
pathways and interhemispheric auditory pathways lead to the
emergence of AHs.

Morphological Thickness
Structural correlates of AHs have been frequently reported in
schizophrenia. Compared to SZ-non-AVH, SZ-AVH showed
reduced thickness in the right Heschl gyrus (Chen et al., 2015),
in the language and primary auditory areas including the Broca’s
area, the Heschl gyrus, and Wernicke’s area of the left hemisphere
(van Swam et al., 2012), in the bilateral postcentral gyrus (van
Swam et al., 2012), and in the left middle temporal gyrus (Cui
et al., 2018). Promisingly, the abnormality of the left Heschl
gyrus was replicated in schizophrenia spectrum patients with
AHs (Morch-Johnsen et al., 2017), and the abnormality of
the left middle temporal gyrus was confirmed by the negative
correlation between its cortical thickness and AH severity (Cui

et al., 2018). On the other hand, SZ-AVH showed increased
thickness in the frontal cortex (left insular cortex, and bilaterally
anterior/posterior cingulate, and dorsal middle frontal gyrus)
and parietal lobe (van Swam et al., 2012). Among all, the left
middle temporal gyrus is most related to AHs and deserves
closer investigation in the future, as it is a vital part of language
pathways connected to other areas (Xu et al., 2015) and related to
self-monitoring dysfunction (Shergill et al., 2000).

Morphological Volume
Comparatively, more studies have been conducted concerning
structural volume. SZ-AH showed larger volumes of temporal
white matter, frontal gray matter, and temporal gray matter
when compared to SZ-non-AH (Shin et al., 2005), but Kubera
et al. (2014) yielded contrary results when comparing SZ-AVH
to schizophrenia without or in remission with AVH. Compared
to schizophrenia with audiovisual hallucinations, SZ-AH showed
smaller hippocampal complex (Amad et al., 2014). Compared
to SZ-non-AVH, SZ-AVH showed increased volume of the
right Heschl gyrus (Hubl et al., 2010), but reduced volume
of the left insula (Shapleske et al., 2002). Apart from cerebral
pathological changes, Cierpka et al. (2017) found that SZ-AVH
had lower gray matter volume in lobule VIIIa than SZ-non-
AVH, suggesting the possible involvement of cerebellum in the
pathophysiology of AVH.

There have been studies investigating the direct relationship
between the hallucinatory symptom and morphological volume.
In a dichotic listening task, AH severity was negatively correlated
with the volume of left anterior superior temporal gyrus in SZ-
AH (Levitan et al., 1999). In resting state among schizophrenia,
AH severity was reported to be negatively correlated with the
volume of the left superior temporal gyrus (Barta et al., 1990),
corpus callosum (Knochel et al., 2012), the left Heschl gyrus,
left inferior supramarginal gyrus, right middle/inferior prefrontal
gyri (Gaser et al., 2004), the right superior temporal gyrus,
right fusiform gyrus, and left inferior temporal gyrus (O’Daly
et al., 2007), as well as left inferior frontal gyrus and right
postcentral gyrus (Garcia-Marti et al., 2008). On the contrary,
other studies found positive correlations between AH severity
and the volume of left inferior frontal gyrus (Modinos et al.,
2009), bilateral superior temporal cortex (including Heschl
gyrus), left supramarginal/angular gyrus, left postcentral gyrus,
and left posterior cingulate cortex (Nenadic et al., 2010). Voxel-
based meta-analysis found a negative correlation between AH
severity and gray matter volume in the left insula or right
superior temporal gyrus (Palaniyappan et al., 2012). Another
meta-analysis found the severity of AVH was correlated with
volume reductions in the left and marginally the right superior
temporal gyri (including Heschl gyri), implicating the bilateral
structural pathology of this region (Modinos et al., 2013). But
Modinos et al. (2013) failed to find group difference between SZ-
AVH and SZ-non-AVH. Therefore, correlational findings very
much contradict with each other.

Previous structural magnetic resonance imaging (sMRI)
studies were mainly conducted in participants’ resting state.
Evidences have demonstrated morphological changes in certain
cerebral regions among schizophrenia, and the majority shows
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the shrinkage rather than the enlargement of the cerebral regions
including auditory and language areas. Among all, reduced
volume of temporal gyri, including Heschl gyrus, is most
frequently replicated in recent research. According to studies of
morphological thickness and volume, it is obvious that temporal
region plays the most crucial part in the pathogenesis of AHs.
However, current MRI results are heterogeneous to a certain
extent and are in lack of replicability, which therefore calls for
further confirmation of these results in the future.

Functional Magnetic Resonance Imaging
Study
Cerebral Blood Flow Study
Studies across decades have shown that cerebral blood flow (CBF)
contributes to the neural underpinning of AHs. “State” study
showed that schizophrenia had higher blood flow in Broca’s
area in auditory hallucinating state than in their resolved state
(McGuire et al., 1993). Compared to SZ-non-AVH, SZ-AVH
displayed increased CBF in the right superior temporal gyrus and
caudate nucleus (Zhuo et al., 2017), in the left superior temporal
gyrus and right supramarginal gyrus (Wolf et al., 2012). SZ-AVH
also had decreased CBF in the bilateral occipital and left parietal
cortices (Zhuo et al., 2017), and in the bilateral superior and
middle frontal gyri and postcentral gyri, and right supplementary
motor area (Cui et al., 2017a). There were also studies focusing on
CBF during task mode. When generating and monitoring inner
speech, SZ-AH had reduced CBF in the left middle temporal
gyrus and the rostral supplementary motor area compared to
SZ-non-AH (McGuire et al., 1995). During verbal memory
activation, SZ-AH had increased CBF in the left basal ganglia
(Busatto et al., 1995). To sum up, CBF studies have implicated
increased brain activities among auditory- and language-related
regions, which accords with findings in functional MRI (fMRI)
studies talked about later. Still, some results are rather sporadic,
thus calling for further replications.

Resting-State Functional MRI
The past decades have witnessed fMRI findings emerging one
after another concerning the brain activities during AHs. In
order to achieve definite conclusions, meta-analysis has become
a powerful systematic tool. Across populations of schizophrenia-
spectrum disorder, psychotic disorder, and healthy controls,
meta-analyses of trait studies revealed that AVHs were frequently
related to activations in the left middle and superior temporal
gyrus, left postcentral and precentral gyrus, left insula, left
hippocampus/parahippocampal region, right inferior frontal
gyrus, and so on (Jardri et al., 2011; Kompus et al., 2011; Kühn
and Gallinat, 2012; van Lutterveld et al., 2013; Zmigrod et al.,
2016). The inferior parietal lobule was also frequently reported
in these analyses, but the lateralization was inconsistent. Other
less frequent reported regions include anterior cingulate cortex
and thalamus. Generally speaking, the cerebral activations in
trait studies reflect lateralization in the left hemisphere, and
related regions extensively cover the language/speech, auditory,
and limbic networks. On the other hand, meta-analysis of state
studies revealed that AVHs were associated with activation in

bilateral inferior frontal gyrus, bilateral postcentral gyrus, and left
parietal operculum (Kühn and Gallinat, 2012).

Functional connectivity is used to detect the temporal
correlation of the low-frequency fluctuation in the BOLD signal
between regions (Fox and Raichle, 2007), and the abnormalities
of interregional resting-state functional connectivity were found
among different brain areas including those reported above.
Compared to patients without the symptom, schizophrenia
spectrum patients with AHs had higher functional connectivity
of left Heschl gyrus (belonging to the primary auditory
cortex) with left frontoparietal regions and lower one with
right hippocampal formation and mediodorsal thalamus, and
functional connectivity of the left Heschl gyrus was correlated
with AH severity in regions related to language, memory,
and self-monitoring (Shinn et al., 2013). SZ-AH, compared to
patients with audiovisual hallucinations, had lower functional
connectivity of the bilateral hippocampal complex with the
medial prefrontal cortex and the caudate nuclei and had a higher
one with the thalamus (Amad et al., 2014), and dysconnectivity of
hippocampal subregions was also reported in SZ-AVH (Liu et al.,
2019). SZ-AH, compared to SZ-non-AH, displayed enhanced
functional connectivity of the bilateral nucleus accumbens with
the left superior temporal gyrus, the cingulate gyri, and the
ventral tegmental area, indicating that the increased activity of
the mesolimbic pathway might underlie the occurrence of AHs
(Rolland et al., 2015), while in terms of AVH, SZ-AVH showed
higher functional connectivity in a neural circuit involving
the anterior cingulate cortex, insula, and language-related
areas including superior temporal gyrus and inferior parietal
lobule, compared to SZ-non-AVH (Chang et al., 2017). SZ-
AVH also showed thalamic–auditory cortical hyperconnectivity
and auditory cortical–hippocampal hypoconnectivity, and AVH
severity was positively correlated with the connectivity from
Broca’s area to the auditory cortex (Li et al., 2017). Direct
correlational analyses among SZ-AVH showed that AVH severity
was negatively correlated with functional connectivity in the
left anterior cingulate cortex, positively correlated with the
left superior temporal gyrus and right lateral prefrontal cortex
(Wolf et al., 2011), and negatively correlated with neural
coupling between left temporoparietal junction, bilateral anterior
cingulate, and bilateral amygdala (Vercammen et al., 2010).

Within the auditory network, SZ-AH had lower
interhemispheric connectivity in both primary and secondary
auditory cortices when compared to SZ-non-AH (Gavrilescu
et al., 2010). In another study, SZ-AH was reported to have
decreased functional connectivity between two regions inside
the auditory network, right Heschl gyrus, and right posterior
superior temporal gyrus, compared to SZ-non-AH (Guo et al.,
2020). Within the language network, SZ-AVH had higher
functional connectivity of bilateral Wernicke’s area with the
left inferior frontal gyrus (Hoffman et al., 2011) and reduced
causal interactions from the left inferior frontal gyrus to left
middle temporal gyrus (Zhang et al., 2017). In addition, the
auditory cortex–posterior language network involving auditory
cortex and posterior language regions was more active during
AVH-on periods in schizophrenia spectrum disorders, whereas
occipital–temporal and medial prefrontal networks were more
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active during AVH-off periods (Thoma et al., 2016). Within
the default mode network (DMN), SZ-AVH had lower effective
connectivity from anteromedial prefrontal cortex to left inferior
temporal gyrus and from posterior cingulate cortex to left
cerebellum posterior lobe, inferior temporal gyrus, and right
middle frontal gyrus than SZ-non-AVH (Zhao et al., 2018).
Although Guo et al. (2020) did not find dysconnectivity in
the DMN, they reported that SZ-AH had reduced functional
connectivity of overall parietal memory network adjacent to the
DMN and also reduced functional connectivity between core
regions, and the latter negatively correlated with AH severity.

Interactions between multiple networks have also been
reported. With independent component analysis and dual
regression, Cui et al. (2017b) demonstrated AVH-related
coactivation within the auditory, default mode, executive, motor,
and frontoparietal networks, which were involved in auditory
processing, language production and monitoring, and sensory
information filtering. Alonso-Solis et al. (2015) found alterations
of resting-state functional connectivity of DMN subsystems
with hubs of the salience network, suggesting cross-network
abnormalities related to AVH. Further, stochastic dynamic causal
modeling analysis captured the link between general ongoing
hallucinatory state in schizophrenia with memory-based sensory
input from the hippocampus to the salience network (Lefebvre
et al., 2016). In another study, Scheinost et al. (2019) put
forward a potential AVH network overlying the default mode and
language processing networks.

Task-State Functional MRI
Studies of task-state fMRI related to AHs in schizophrenia are
in lack so far. During a voice recognition task, SZ-AVH had
reduced functional connectivity of right superior temporal gyrus
with right superior frontal gyrus (Mou et al., 2013). Within
the inner speech processing network, loudness of AVH in SZ-
AVH was correlated with reduced activity in bilateral angular
gyrus, bilateral anterior cingulate gyrus, left inferior frontal gyrus,
left insula, and left middle temporal gyrus, during a metrical
stress evaluation task activating inner speech production and
perception (Vercammen et al., 2011). During verbal speech
perception, SZ-AVH displayed hypercoupling in auditory–motor,
language processing, and DMNs compared to SZ-non-AVH
(Lavigne and Woodward, 2018), and SZ-AH comorbid with other
hallucinatory types displayed a hypercoupling left-dominant
temporal–frontal network involving speech-related auditory and
motor regions (Lavigne et al., 2015).

Currently, neuroimaging results are still insufficient to draw
any decisive conclusions. That being said, fMRI has been an
effective tool to offer abundant evidences, implying that neural
mechanisms underlying AHs involve abnormal activation among
multiple cerebral regions related to speech/language processing,
auditory perception, and so on, and disordered brain connections
can be found at interregional, intranetwork, and internetwork
level. Matching sMRI results and abnormal activation of superior
and middle temporal gyrus are replicated constantly in fMRI
studies, suggesting these regions have both structural and
functional abnormalities related to AHs. As to the interregional
connection, functional connectivity of Heschl gyrus, superior

temporal gyrus, and hippocampus region is most noteworthy.
As to intranetwork and internetwork connection, deficits of the
auditory network and language network are most prominent,
followed by DMN.

Transcriptome–Neuroimaging Study
Transcriptional and neuroimaging combined studies have
received huge popularity in recent years, but few has been
conducted related to schizophrenia, let alone AHs. Using
postmortem prefrontal cortex samples of male schizophrenia and
controls and high-resolution anatomical MRI with optimized
voxel-based morphometry, Sanjuán et al. (2021) found low
FOXP2 (language mediation) mRNA level was associated with
reduced gray matter density, and SNP rs2396753 played a part
in this association. One posttranscriptional study using PET
imaging to measure the α5 subtype of the GABA receptor (α5-
GABAARs) availability found that α5-GABAARs protein level was
reduced in the hippocampus of antipsychotic-free schizophrenia
and correlated positively with total symptom score (Marques
et al., 2020), which extended previous results of lower mRNA
and protein levels of α5-GABAARs in schizophrenia (Duncan
et al., 2010; Beneyto et al., 2011). These evidences provided
moderate support for central GABA hypofunction underlying
the pathophysiology of clinical symptoms, albeit no direct
connection with AHs. Only two studies in latest years did belong
to transcriptome–neuroimaging association study of AHs. Using
high-throughput RNA sequencing and resting-state fMRI data,
expression of an lncRNA-mRNA network centered by lncRNA
MSTRG.96171.1 was upregulated in SZ-AVH relative to SZ-non-
AVH, and functional connectivity of DMN regions was positively
correlated with AVH severity and MSTRG.96171.1 expression,
respectively (Zhu et al., 2019). Furthermore, Yu et al. (2020)
replicated the upregulated expression of this interactive network,
and the positive correlation between functional connectivity of
similar DMN regions and this lncRNA expression. These two
pilot studies offered a clue for coexisting transcriptional and
neuroimaging alterations related to AVH.

Up to present, seldom has focused on “trait” studies of SZ-
AH measuring the direct relation between cerebral expression
of AH-related genes and neuroimaging features. Transcriptome–
neuroimaging association studies are urgently required in the
future to hopefully better the understanding of endophenotypes
of AHs from both molecular and imaging angles.

NEUROCOGNITIVE MODEL

Various models of AHs have been put forward combining
evidence of all levels. Generally, there are two main models
of the hallucinatory pathogenesis concerning perceptual beliefs
and inner speech.

According to the computational model of perception (Fletcher
and Frith, 2009; Powers et al., 2017), perceptual beliefs,
originating from prior experiences, influence one’s sensation
together with the actual sensory input, and hallucinations
occur when the beliefs cause a percept without actual stimuli.
Usually, perceptual beliefs are updated when prediction error
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FIGURE 1 | Etiology of auditory hallucinations in schizophrenia from multidimensional levels. Previous work has utilized methods of various kinds, including genetic,
neurophysiological, and neuroimaging studies. Main findings are summarized in the figure. Abbreviations: CCK-AR, cholecystokinin A receptor; GST, glutathione
S-transferase; HLA-G, human leukocyte antigen-G; MMP1, matrix metalloproteinase 1; DTNBP1, dystrobrevin binding protein 1; NRG1, neuregulin 1; 5-HTT,
serotonin transporter; FOXP2, forkhead box P2; EEG, electroencephalogram; sMRI, structural magnetic resonance imaging; SZ-AH, schizophrenia with auditory
hallucinations; FA, fractional anisotropy; L, left; R, right; L/R, bilateral; SLF, bilateral superior longitudinal fasciculi; AF, arcuate fasciculi; SZ-AVH, schizophrenia with
auditory verbal hallucinations; CC, corpus callosum; HES, Heschl’s gyrus; PoCG, postcentral gyrus; MTG, middle temporal gyrus; INS, insula; STG, superior
temporal gyrus; fMRI, functional magnetic resonance imaging; PreCG, precentral gyrus; HIP, hippocampus; PHG, parahippocampal gyrus; IFG, inferior frontal gyrus;
PO, parietal operculum; NAcc, nucleus accumbens; ACC, anterior cingulate cortex; ACPLN, auditory cortex-posterior language network; DMN, default mode
network.

occurs, which is the discrepancy between what is expected
and what happens. Nevertheless, this mechanism has been
demonstrated abnormal in schizophrenia (Corlett et al., 2007).
In addition, hallucinating psychosis, regardless of the diagnosis,
is less sensitive to the changes in contingency so as to have
rigid perceptual beliefs and weighs more on perceptual beliefs
than on actual sensory input, compared to non-hallucinating
counterparts (Powers et al., 2017). Therefore, pathological
perceptual beliefs may result in sensory perception even without
objective stimuli, which further contributes to the formation of
AHs among schizophrenia.

Another well-known model is inner speech model, which
suggests that AHs arise on condition that inner speech (thinking
in words) is perceived as someone else’s, and this condition results

from the deficits of self-monitoring (Frith and Done, 1988).
Self-monitoring refers to one’s ability to distinguish sensations
evoked by one’s own actions from those by external factors (Allen
et al., 2007). This process is achieved, as what is mentioned
earlier about the forward model, by the comparison between
the corollary discharge and the actual auditory outcome to
induce different neural responses to internally or externally
generated motor action. Abnormal cerebral connectivity impairs
the transmission of the corollary discharge in the forward model,
resulting in the deficits of self-monitoring among schizophrenia
(Stephan et al., 2009; Nazimek et al., 2012). Inner speech,
in this case, could also be viewed as a motor action and
is accompanied by a corollary discharge (Jack et al., 2019).
Thus, failure to executive the function of self-monitoring leads
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to the misinterpretation of inner speech as if evoked by
external source.

There have been other less popular models. The aberrant
memory model postulates that failure to inhibit recalling and
unintendedly activation of the memory system brings past
traumatic memories to consciousness and generated unexpected
intrusive thoughts. Early time trauma is closely connected to
later life AVH. Consequently, memories that appear out of
context contribute to the sensation of “otherness” and authorship
from external side and then cause AVH (Tracy and Shergill,
2013). According to the spontaneous neural activity model (also
called resting-state hypothesis), the occurrence of AVH is due to
enhanced resting-state activity in the auditory cortex, aberrant
modulation of the auditory cortex by anterior cortical midline
regions (part of the DMN), and neural confusion between
auditory cortical resting-state changes and stimulus-induced
activity (Northoff and Qin, 2011). According to the expectation–
perception model (related to the self-monitoring mechanism),
prefrontal regions are normally responsible for prediction and
expectation of sensory input. As AHs happen, anatomical
abnormalities in neurons, imbalance of neurotransmitter, and
dysfunction of auditory cortex contribute to the deficient
processing of prediction error, as a result of which the prediction
from prefrontal regions becomes so unconstrained and vague that
random fluctuations in spontaneous activity enhance the signal
input and becomes a conscious percept in auditory cortex in the
absence of external input (Nazimek et al., 2012).

CONCLUSION

Findings From Multidimensional Levels
With advances in our understanding of AHs, there lies an
intricate fact that no single explanation so far has simply served
for the full mechanism underlying these symptoms. Fruitful
findings in the past decades have shown that the pathogenesis
of AHs in schizophrenia has independent genetic basis and
neural substrates revealed by multidimensional levels. Based
on what is summarized in this review, AHs are influenced
by multiple gene and gene × environment interactions from
genetic level, by glutamate level imbalance from neurometabolic
level, by dysfunctional forward model, sensory gating deficits,
MMN deficits, dysfunctional γ frequency oscillations, and
alterations of other frequency spectrums and spectral interactions
from EEG level, by fasciculus alterations of white matter and
morphological changes from sMRI level, and by altered cerebral
blood flow, abnormal cerebral activations, and dysfunctional
brain connectivity of interregion, intranetwork, and internetwork
from fMRI level (summarized in Figure 1).

However, there are several aspects worthy of discussion in
order to improve current research. First, small sample size,
heterogeneous patients’ condition, and diversified methodologies
and study designs make current evidences less easy to be
replicated. One priority of future studies is to enlarge sample
size and devise comparable design to allow confirmation of
existing findings. Second, other types of AHs apart from the
verbal type warrant more attention in the future as they are

seldom studied up to present. And multimodal studies are also
welcomed to combine evidences from different aspects. Third,
a body of previous studies was conducted in schizophrenia
with auditory (verbal) hallucinations and healthy individuals,
which makes it difficult to tell whether the group differences
result from the hallucinatory experience or the disease itself.
As a result, “trait” study that directly compares SZ-AH and
SZ-non-AH or compares SZ-AVH and SZ-non-AVH is more
preferred to rule out the possible influence of the clinical state.
Fourthly, “state” study that compares hallucinatory with non-
hallucinatory period using self-control is tremendously scarce,
probably because the ongoing hallucinatory state is relatively
tricky to fully capture, and fMRI and EEG are ones of the few tools
capable of distinguishing “trait” and “state” studies. Therefore,
study of this kind is also wanted in the future. Last but not least,
current scanty of transcriptional–neuroimaging studies of AHs
calls for more endeavor in this field.

Hypothesis 1. Schizophrenia: Auditory
Hallucinations vs. Auditory Verbal
Hallucinations
Although plenty of studies focus on AHs in general, there is
still an abundant load of work specifically on the verbal type,
AVH, probably due to the verbal type as a core positive symptom
of schizophrenia. And previous research of the general and the
verbal type has yielded inconsistent results.

In genetic research, gene candidates and transcriptomic
studies are solely found in SZ-AH, whereas gene × environment
interaction is solely found in SZ-AVH. In neurometabolic
research, interregional Glu–Glu imbalance was concluded from
combined evidence of both general AHs and the verbal type,
and other neurometabolic studies have been mainly conducted
in SZ-AH. In EEG research, sensory gating deficits are solely
found in SZ-AVH, whereas other results are mainly found in SZ-
AH. In sMRI research, although cerebral alterations are found
from combined evidence of both SZ-AH and SZ-AVH, two
groups have yielded inconsistent results. For example, regarding
DTI study, “trait” studies showed SZ-AH lower FA in bilateral
superior longitudinal fasciculi and arcuate fasciculi. Differently in
SZ-AVH, although FA changes in other fasciculi were reported,
those in superior longitudinal fasciculi were not, and results
concerning arcuate fasciculi were inconclusive. For another
example, regarding morphological study, scanty “trait” study
in SZ-AH showed larger volumes of temporal white matter,
frontal gray matter, and temporal gray matter, which did not
accord with findings in SZ-AVH. In fMRI research, SZ-AVH had
specific regional activation replicated by meta-analyses. While
SZ-AH had enhanced functional connectivity of regions related
to mesolimbic pathway, SZ-AVH of regions related to language
and auditory system. While SZ-AH had dysconnectivity within
the auditory network, SZ-AVH had dysconnectivity not only
within the language, the inner speech processing, and the DMNs,
but also between cerebral networks.

Therefore, our first hypothesis is that AVH may have
independent mechanism from other types of AHs. In fact,
one reason for poor replicability of current studies could be
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that AHs of different subtypes are treated as a whole group during
research. Currently, comparative studies among subtypes of AHs
in schizophrenia, although scarce, have shown that different
subtypes may have distinct phenomenological features and
functional brain patterns. McCarthy-Jones et al. (2014b) classified
AHs into constant commanding and commenting AVH, replay
AVH, own though AVH, and non-verbal AHs. One study
found schizophrenia with non-verbal AHs showed higher global
functional connectivity density in bilateral superior temporal
gyri and lower global functional connectivity density (gFCD) in
bilateral prefrontal cortex, inferior frontal lobe, and occipital lobe
(Zhuo et al., 2020). These preliminary evidences have supported
our hypothesis. We suggest future research should separate AHs
into different groups to make subtype comparisons.

Hypothesis 2. Auditory Hallucinations:
From Genotype to Phenotype
Our second hypothesis is that AHs are heterogeneous symptoms
rooted deeply in genetic background. Mediating genes cause
neurophysiological alterations and structural and functional
cerebral changes, which further cause distinct clinical features
of AHs in schizophrenia. Based on existing genetic research,
DTNBP1 is a promising gene candidate for AHs. Its function is
related to regulation of glutamate level, which is consistent with
neurometabolic findings of interregional Glu–Glu imbalance
(especially in the frontal and temporal regions). Its mRNA
expression is lower in superior temporal gyrus and hippocampus.
Regarding superior temporal gyrus, correlation between
glutamate level and AHs based on neurometabolic study was
found in this area. Morphological volume changes based on
sMRI study and aberrant activation and functional connectivity
changes based on fMRI study were also found in this area.
Regarding hippocampus, structural and functional changes were
also found based on sMRI and fMRI study. We hypothesized
that reduced cerebral DTNBP1 expression leads to glutamate
level changes and structural and functional changes of superior

temporal gyrus and hippocampus. Our hypothesis is according
to current multidimensional research, but these evidences are
not collected from the same patients. Research to date often
utilizes a single scale, resulting in incoherent understanding of the
etiology. We suggest future research use a multimode framework
that uses multiscale data, from genomics, transcriptomic,
neurophysiology, to neuroimaging (i.e., from genotype to
phenotype). Therefore, multidimensional research conducted on
one batch of patients is strongly preferred to confirm the effect of
genetic variants on brain structures that contribute to AHs.

Investigations on pathogenesis of mental disorders and related
phenomenology have always been a challenge hard to conquer,
and AHs in schizophrenia are no exception. Although great
advancement has been accomplished in the past decades, much
more endeavor still needs to be made in the future. Hopefully,
discovery of mechanisms underlying AHs will contribute to a
deeper understanding of the essence of this symptom and will
have substantial implications for clinical practice.
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Although recent evidence indicates an association between gene co-expression and
functional connectivity in human brain, specific association patterns remain largely
unknown. Here, using neuroimaging-based functional connectivity data of living
brains and brain-wide gene expression data of postmortem brains, we performed
comprehensive analyses to dissect relationships between gene co-expression and
functional connectivity. We identified 125 connectivity-related genes (20 novel genes)
enriched for dendrite extension, signaling pathway and schizophrenia, and 179 gene-
related functional connections mainly connecting intra-network regions, especially
homologous cortical regions. In addition, 51 genes were associated with connectivity
in all brain functional networks and enriched for action potential and schizophrenia; in
contrast, 51 genes showed network-specific modulatory effects and enriched for ion
transportation. These results indicate that functional connectivity is unequally affected
by gene expression, and connectivity-related genes with different biological functions
are involved in connectivity modulation of different networks.

Keywords: functional connectivity, gene co-expression, coupling, network, tensor decomposition algorithm,
schizophrenia

INTRODUCTION

Functional connectivity calculated from functional magnetic resonance imaging (fMRI) has been
widely used to characterize intrinsic low-frequency synchronization of brain activity at rest
between anatomically distinct brain regions (Ogawa et al., 1992). Regions and connections are
organized into brain functional networks responsible for such distinct functions as vision, audition,
motion, attention, memory, and emotion. Different combinations of connectivity impairments
are indicative of different neuropsychiatric disorders, which are useful for diagnosing diseases,
monitoring clinical courses, and predicting outcomes (Seeley et al., 2009; Vertes and Bullmore,
2015). Despite functional connectivity is found to be heritable (Jansen et al., 2015), the molecular
mechanisms supporting functional connectivity remain largely unknown.

Genome-wide association study (GWAS) is a putative method to identify genetic substrates
of neuroimaging phenotypes, such as functional connectivity. Using a discovery dataset of 8428
subjects, a GWAS study has identified several genetic loci that are associated with a few functional
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connectivity phenotypes (Elliott et al., 2018). However, rather
large sample size is needed to identify reliable genetic loci in
GWAS studies, and most GWAS-identified loci are located in
non-coding regions of the genome. Instead, a bulk of studies have
used brain-wide gene expression data from the Allen Human
Brain Atlas (AHBA) to identify genes associated with functional
connectivity by interrogating spatial correlations between gene
co-expression and functional connectivity across brain regions.

A pioneer study reveals that brain regions within a functional
network showing strong correlations of brain activity at rest also
demonstrate highly correlated gene expression (CGE) and that
genes with significant association with functional connectivity
are enriched for ion channel and synaptic function (Richiardi
et al., 2015). Thereafter, several specific associations between gene
expression and functional connectivity have been reported. The
long-range cortico-cortical functional connectivity is found to
be associated with the co-expression of genes uniquely enriched
for the supra-granular layers of the cerebral cortex in humans
(Krienen et al., 2016). In human brain functional networks,
high inter-modular degree and long connection distance are
associated with genes enriched for oxidative metabolism and
mitochondria, whereas high intra-modular degree and short
connection distance are associated with genes enriched for
RNA translation and nuclear components (Vertes et al., 2016).
The parallel limbic and somato/motor cortico-striatal functional
networks are associated with different sets of genes (Anderson
et al., 2018), which is also true for the functional connectivity of
different visual subregions (Zhang et al., 2021).

Although these studies have advanced our knowledge on the
association between functional connectivity and gene expression
in the human brain, there are at least three questions need
to be further answered. Prior studies have identified genes
associated with the averaged functional connectivity phenotypes
derived from a group of subjects. It is still unknown that which
expression-connectivity associations are consistently present in
most individuals. Heritability analysis indicates that genetic
and environmental factors influence functional connectivity
architecture with different weights (Ge et al., 2017; Teeuw
et al., 2019). It is an open question that which kinds of
functional connectivity are prone to be affected by genetic factors
(e.g., gene expression). Inter-regional gene expression similarity
within brain functional networks is much higher than those
between networks (Richiardi et al., 2015), suggesting that the
distributed brain functional networks may possess dissociable
genetic signatures (Richiardi et al., 2015; Anderson et al., 2018;
Zhu et al., 2021). However, we barely know which genes
contribute generally to functional connectivity architecture of
all functional networks, and which genes contribute specifically
to a certain functional network. Answering these questions will
largely improve our understanding on the molecular mechanisms
of functional connectivity.

In this study, we calculated correlations between gene co-
expression and functional connectivity across 4005 pairs of brain
regions for each of the 800 healthy subjects and identified 1291
genes with significant correlations in most of the 800 subjects
(>80%). Then we used multiple comprehensive methods to
identify genes associated functional connectivity and functional

connectivity more likely affected by gene expression. By assigning
4005 connections into eight functional networks, a series of
methods were used to differentiate genes contributing generally
to all functional networks and genes contributing specifically to a
certain network. The pipeline of this study is shown in Figure 1.

MATERIALS AND METHODS

Calculating Functional Connectivity and
Networks
Subjects
According to the inclusion criteria of Chinese Han, aged
18–30 years and right handedness and the exclusion
criteria of a history of alcohol or drug abuse, a history of
neuropsychiatric disorders, and MRI contraindications, we
recruited 800 healthy young adults (330 males, 470 females;
mean age = 23.8 ± 2.4 years, range: 18–30 years) from the
Tianjin Medical University General Hospital (n = 400) and
Cancer Hospital (n = 400). This study was approved by the ethics
committee of Tianjin Medical University and all volunteers
signed written informed consent before the experiment.

MRI Data Acquisition
MRI data from the two hospitals were acquired using the
same type of 3.0-Tesla MR scanners (Discovery MR750,
General Electric, Milwaukee, WI, United States) with the same
scan parameters. The high-resolution structural T1-weighted
images were acquired using a brain volume sequence with the
following parameters: repetition time (TR) = 8.14 ms; echo
time (TE) = 3.17 ms; inversion time (TI) = 450 ms; field of
view (FOV) = 256 mm × 256 mm; matrix = 256 × 256;
flip angle (FA) = 12◦; slice thickness = 1 mm; and 188
sagittal slices. The resting-state fMRI data were obtained using
single shot gradient-echo echo-planar imaging (SS-GRE-EPI):
TR = 2000 ms; TE = 30 ms; FOV = 220 mm × 220 mm;
matrix = 64× 64; FA = 90◦; slice thickness = 3 mm; gap = 1 mm;
40 axial slices; and 180 volumes. During fMRI scans, all subjects
were instructed to keep still with their eyes closed, to think of
nothing in particular, to stay as motionless as possible, and to
not fall asleep.

Functional Magnetic Resonance Imaging Data
Preprocessing
The resting-state fMRI data were preprocessed using the
Statistical Parametric Mapping (SPM121). The first five volumes
from each subject were discarded to allow signal to reach
equilibrium and ensure the subject to adapt to scanning noise.
The acquisition time delay between slices was corrected using
sinc-interpolation to make the acquisition time of all voxels
consistent within a TR. Head motion of each subject was
assessed and corrected using rigid-body transformation. All 800
subjects had acceptable head motion (translational or rotational
parameters less than 2 mm or 2◦). A unified normalization-
segmentation method was used to normalize fMRI images to

1http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Pipeline of data analysis. In brief, this study includes four steps: screening connectivity-related genes at individual level; constructing
gene × connection × individual tensor; identifying connectivity-related genes and gene-related connections; and uncovering network-shared and network-specific
connectivity-related genes. The s represents a connection between region i and region j. CECs, connectivity-expression coupling at connection s; CGEs, correlated
gene expression at connection s; Csa, the contribution of gene a to CECs; Eia × Eja, the contribution of gene a to the CGE between region i and region j; and FCs,
normalized functional connectivity strength of connection s.

the Montreal Neurological Institute (MNI) space. fMRI images
were coregistered to structural images, and then structural
images were segmented and coregistered to the MNI space. The
transformation parameters were used to normalize fMRI images
to the MNI space. The normalized fMRI images were resampled
into 3-mm cubic voxels and smoothed with a Gaussian kernel
of 8-mm full-width at half-maximum (FWHM). The frame-
wise displacement (FD) was also calculated and time points
with FD >0.3 mm were deleted and imputed using cubic spline
interpolation. The linear drift, 24 head motion parameters and

averaging blood oxygenation level dependent (BOLD) signals of
white matter and cerebral spinal fluid were regressed out from the
fMRI data. Finally, the fMRI images were filtered with a frequency
range of 0.01–0.08 Hz.

Constructing Functional Connectivity Matrix and
Functional Networks
For each subject, we constructed a functional connectivity
matrix (90 × 90) based on the 90 non-cerebellar regions
derived from the automatic anatomical labeling (AAL)
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(Tzourio-Mazoyer et al., 2002) using DPABI (Yan et al., 2016),
and then the obtained functional connectivity matrix was used to
form a column vector including 4005 independent connections.
The final functional connectivity matrix (4005 × 800) was
constructed by combining the column vectors of all subjects
(n = 800). Based on a canonical cortical functional network mask
(Yeo et al., 2011), cortical brain regions and their connections
were assigned to seven resting-state networks, including the
visual network (VN), somatomotor network (SMN), dorsal
attention network (DAN), ventral attention network (VAN),
fronto-parietal control network (FPN), default-mode network
(DMN), and limbic network (LN). And the rest subcortical
regions were defined as the subcortical network.

Gene Expression Data Processing
The normalized microarray gene expression data of two donated
brains with the whole brain coverage were obtained from the
Allen Institute for Brain Science (AIBS). Gene expression data
were processed following a newly proposed pipeline for linking
brain-wide gene expression and neuroimaging data (Arnatkevic
Iute et al., 2019). Briefly, the latest information from NCBI was
used to re-assign probes to genes, and then the noise from
gene expression signals was removed. Based on the principle
of one probe for one gene, RNA-seq information was used as
the reference to select a probe for each gene with more than
one probe. Consequently, 10,185 genes were finally selected for
1209 samples according to the pipeline (detailed procedures see
Supplementary Material). According to the distance between the
coordinate of each sample and the boundary of brain regions in
the MNI space, each sample was assigned to a specific region.

Dissecting Associations Between Gene
Expression and Functional Connectivity
Screening Connectivity-Related Genes at Individual
Level
In each subject, we calculated the CGE score for each pair of brain
regions across genes using the following equation:

CGEij = (

N∑
a=1

(
Eia × Eja

)
)/N (1)

here, N was the total number of genes (N = 10,185); i and
j represented a pair of brain regions; and Eia and Eja were the
normalized expression values (z-scores) of gene a in region i and
region j. Eia × Eja denoted the contribution of gene a to the
global gene co-expression between these two regions. CGEij was
the Pearson correlation coefficient of gene expression between
these two regions across all genes, which indicates the similarity
of global gene expression between any pair of regions.

In each subject, we could obtain the normalized functional
connectivity strength (FCij) and (Eia × Eja) for each pair of
brain regions. For a given gene (n = 10,185) of this subject,
we calculated Pearson correlation between FCij and (Eia × Eja)
across the 4005 pairs of regions. If the correlation was significant
(Bonferroni corrected, P < 4.9 × 10−6 = 0.05/10,185), this gene
was considered to be associated with functional connectivity.

These steps were independently conducted in 800 subjects,
and only genes with significant correlations with functional
connectivity in more than 80% subjects were regarded as
connectivity-related genes. The resulting 1291 connectivity-
related genes (Supplementary Table 1) were used for the
further analyses.

Identifying Genes Highly Associated With Functional
Connectivity
Two additional methods were used to further identify genes
with high and reliable associations with functional connectivity
from genes obtained by the individual-level analysis. Before these
analyses, we defined the connectivity-expression coupling (CECs)
of a connection s (i.e., a pair of brain regions i and j) as the
product (FCs × CGEs) of the normalized FCs and CGEs of
this connection in each subject. The global CEC of this subject
was defined as the Pearson correlation coefficient between the
normalized FCs and CGEs across the 4005 connections (Eq. 2).
S was the total number of connections (S = 4005 in this study).

CEC = (

S∑
s=1

(FCs × CGEs))/S (2)

We also calculated the contribution of each gene to the CEC at
each connection in each subject using the following Eq. 3:

Csa = (FCs × CGEs) × (Eia × Eja) (3)

here, s represented a pair of brain regions (i and j); FC
was the normalized functional connectivity strength; CGE was
the normalized correlated gene expression; Csa indicated the
contribution of a given gene a to CECs. Based on this equation,
a Csa matrix (1291 genes × 4005 connections) was generated for
each subject. In the following parts, the population-averaged Csa
for each gene and each connection was computed by averaging
Csa values of this gene at this connection in the 800 subjects; and
the population- and connection-averaged Csa for each gene was
computed by averaging Csa values of this gene for all included
connections (n = 4005 for whole brain connectivity analysis
and n = the number of connections within a given network for
network-level analysis) and subjects (n = 800).

A Tensor Decomposition Model
The “MultiCluster” method2 is proposed to explore three-
way interactions of genes, tissues, and individuals using semi-
nonnegative tensor decomposition (Wang et al., 2019). This
approach handles heterogeneity in each dimension and learns
the clustering patterns across different dimensions of the data
in an unsupervised manner. In this study, we replaced tissue by
functional connectivity (n = 4005) and replaced gene expression
by the Csa of each gene (n = 1291). Using the “MultiCluster”
method, we can identify genes closely associated with functional
connectivity and connections more influenced by these genes.

The 400 subjects from each of the two hospitals were randomly
divided into two groups, and finally creating four independent
groups. The semi-nonnegative tensor decomposition model

2https://github.com/Miaoyanwang/MultiCluster
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was used to investigate complex interactions of 1291 genes,
4005 functional connections and 200 individuals of each group
(Supplementary Figure 1). This method decomposed tensor
into 10 components that represent major data variations in
the group. Only the first component was selected for further
analyses because this component had much greater output
score than other components (Supplementary Table 2 and
Supplementary Figure 2). Detail methods for component
selection and consistency assessment between groups are
described in Supplementary Methods. The component included
three vectors of individual, gene and connection. From each
vector, we can extract a weight score for each item to represent the
relative contribution of the item to the component. We defined
genes with high associations with functional connectivity as those
with absolute weight scores > (mean + SD) of the absolute
weight scores of the 1291 genes.

A Permutation Test
The labels of genes and connections were randomly shuffled 1000
times to generate a random distribution of the population- and
connection-averaged Csa values of each gene. The significance
of each gene was inferred by observing if the true Csa value of
this gene was greater than all permutation-derived Csa values
of this gene (P < 0.001). To further reduce false positive of
the identified connectivity-related genes, only genes identified
by both tensor decomposition and permutation test were finally
considered as genes with high and reliable associations with
functional connectivity.

Identifying Functional Connectivity Highly Associated
With Gene Expression
The functional connections with absolute population-averaged
CECs values greater than the (mean + SD) of all the 4005
connections were defined as connections associated with gene
expression. The identified gene-related functional connections
were further validated using the tensor decomposition model.
From the first component of the tensor decomposition model,
we can extract a weight score for each connection from the
connection vector to represent the relative contribution of this
connection to the component. We defined connections with high
associations with gene expression as those with absolute weight
scores greater than the (mean+ SD) of the 4005 connections.

Dissecting Connectivity-Related Genes at the
Network Level
The whole brain was divided into eight functional networks, and
then functional connections within each functional network were
extracted to identify connectivity-related genes common to all
functional networks or specific to a certain network.

Identifying Genes Shared by Brain Functional Networks
For each gene, one-way analysis of variance (ANOVA) was used
to compare the population-averaged Csa values among the eight
groups of intra-network connections from different functional
networks. Genes without significant difference (P ≥ 0.05) across
the eight groups were defined as connectivity-related genes
common to all functional networks.

Identifying Network-Specific Genes
We used conserved criteria to identify network-specific genes.
A gene was considered to be specific to a given functional network
if the gene satisfied the following four criteria.

Identifying Network-Specific Genes by Tensor Decomposition
Model. A prerequisite for a network-specific gene is that this
gene should be highly correlated with functional connections of
the network. The non-negative tensor decomposition algorithm
was applied to functional connections of each functional network
to identify genes with higher contribution to connections of
the functional network. For each network, the connectivity-
related genes were defined as those with absolute weight
scores > (mean + SD) of all the 1291 genes. The resulting 764
genes were used to further network-specific analyses.

Network-Type Specific Analysis. As commonly used in cell-type
specific analysis (Dougherty et al., 2010; Xu et al., 2014), the
specificity index (SI) was adapted to assess the specificity of a gene
to a particular functional network relative to all other networks.
Here, cells were replaced by brain functional networks, and
gene expression values were replaced by the population-averaged
Csa values of each gene for connections within a functional
network. For each gene, a P-value for SI was calculated via
the permutation testing (1000 permutations). This method was
applied to each gene identified by the network-based tensor
decomposition model, and significant genes (n = 144) (P < 0.001)
were used for further network-specific analyses.

Comparing Contributions of Genes to Different Networks. For
each of the identified candidate genes (n = 144), ANOVA
was performed to compared the difference in the population-
averaged Csa values among the eight groups of intra-network
connections from different functional networks. Genes
(n = 144) with significant difference (Bonferroni corrected,
P < 3.47 × 10−4 = 0.05/144) among the eight groups
were selected for further post hoc analysis. According to the
population- and connection-averaged Csa value of each gene of
each network, we can identify the first two functional networks
with the greatest contribution from this gene. Two strategies
were then used to assess the specificity of this gene to the first
functional network. First, the gene was considered to be specific
to the first network if its population- and connection-averaged
Csa of the first network was at least twice greater than that of the
second network. To further assess the significance, a two sample
t-test was conducted to compare the population-averaged Csa
differences (P < 0.05) between the two networks. Only genes
satisfied the two criteria (twice greater and significant) were
considered as genes specific to the first functional network.

Gene Enrichment Analysis
With regards to functions of our main gene clusters, Toppogene
(Chen et al., 2009) was used in gene enrichment analysis,3

which calculates the functional similarity to training gene list
to prioritize candidate genes. Moreover, associations between
connectivity-related genes and common brain disorders

3https://toppgene.cchmc.org/
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were identified by MAGMA (de Leeuw et al., 2015), which
provides gene-set analysis based on GWAS data. Among the
common neuropsychiatric disorders, autistic spectrum disorder
(ASD), attention-deficit/hyperactivity disorder (ADHD),
bipolar disorder (BP), major depression disorder (MDD),
and schizophrenia (SCZ) were included in our analyses. The
GWAS summary statistic results of the five neuropsychiatric
disorders were collected from previous studies (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014;
Autism Spectrum Disorders Working Group of The Psychiatric
Genomics Consortium, 2017; Wray et al., 2018; Demontis
et al., 2019; Stahl et al., 2019; Supplementary Table 3). For all
enrichment analyses, multiple comparisons were corrected d
by the Benjamini and Hochberg method of false discovery rate
(FDR-BH correction, P < 0.05).

RESULTS

Genes Associated With Connectivity in
Most Individuals
In each subject, connectivity-related genes were identified by
detecting significant correlations between FCij and (Eia × Eja)
of each gene across the 4005 pairs of brain regions (Bonferroni
corrected P < 4.9 × 10−6 = 0.05/10,185). Correlation maps
between FCij and (Eia × Eja) of two representative genes (VAV3
and MAGEL2) in two individuals are shown in Figures 2A,B. By
calculating the ratio of a gene present in the significant gene list in
the 800 subjects, 1291 connectivity-related genes were identified
in at least 80% of these subjects (Supplementary Table 1).

Two sample t-test demonstrated that the mean contributions
of the 1291 genes were greater (t = 6.57, P = 5.3 × 10−11)
than those of the rest 8894 genes (Figure 2C) and the
1291 genes had much stronger population-averaged correlations
(t = 81.08, P < 10−300) than the rest 8894 genes (Figure 2D and
Supplementary Figure 3).

Moreover, in the 800 subjects, two sample t-test demonstrated
that the global CEC values calculated based on the 1291 genes
were greater (t = 11.00, P < 10−300) than those derived from the
10,185 genes (Figure 2E) and the population- and connection-
averaged Csa values of the 1291 genes were also much stronger
(t = 20.13; P < 10−300) than those of the 10,185 genes (Figure 2F).

Genes Highly and Reliably Associated
With Functional Connectivity
Selecting Connectivity-Related Genes With Tensor
Decomposition Model
From the 10 components derived from the tensor decomposition
of each group (n = 200), the first component with the largest
weight was selected for further analyses (Supplementary Table 2
and Supplementary Figure 2), and this component showed
low mismatch rate (0.077) and high component correspondence
(mean correlation = 0.998) among the four groups. For each
group, we defined connectivity-related genes as those with
absolute weight scores > (mean + SD) of the scores of the
1291 genes. With the criterion of the 100% repeated rate among

the four groups, we selected 185 candidate connectivity-related
genes. In the 1291 genes, two sample t-test demonstrated that the
population- and connection-averaged Csa values of the 185 genes
were much greater (t = 34.07; P < 10−300) than those of the rest
1106 genes (Figures 3A,B).

Selecting Connectivity-Related Genes With
Permutation Test
A permutation test showed that the population- and connection-
averaged Csa values of 143 genes were significantly greater than
all permutation-derived Csa values of this gene (P < 0.001)
(Supplementary Table 4). Two sample t-test demonstrated that
the population- and connection-averaged Csa values of the 143
genes were much greater (t = 34.86; P < 10−300) than those of
the rest 1148 genes (Figures 3C,D).

Genes With High and Reliable Association With
Functional Connectivity
The 125 genes identified by both tensor decomposition (n = 185)
and permutation test (n = 143) were considered as genes
with high and reliable association with functional connectivity
(Supplementary Table 4 and Figure 3E). Among the 125
connectivity-related genes, 105 genes have been previously
reported as connectivity-related genes (Richiardi et al., 2015;
Krienen et al., 2016; Anderson et al., 2018) and 20 genes were
novel (Supplementary Table 4). The 125 genes were mainly
enriched for the regulation of dendrite extension, response to
external stimulus, and G protein-coupled receptor signaling
pathway, protein secretion and transport, calcium ion binding
(FDR-BH corrected, P < 0.05) (Supplementary Table 5 and
Figure 3F). Moreover, these genes showed significant association
with schizophrenia (FDR-BH corrected, P = 0.017).

Functional Connections Highly
Associated With Gene Expression
Firstly, the absolute value of the population-averaged CECs
score was used to identify functional connections associated
with gene expression with a threshold of greater than the
(mean+ SD) of all the 4005 connections. This method generated
255 gene-related functional connections (Supplementary Table 6
and Supplementary Figure 4). Then we used the tensor
decomposition model to independently identify gene-related
connections. From the first component of the model, gene-
related connections were defined as those with absolute
weight scores greater than the (mean + SD) of the 4005
connections, resulting in 180 gene-related connections. Among
those connections, the 179 gene-related connections identified
by tensor decomposition model were completely included in
the 255 gene-related connections identified based on the mean
CECs score. Therefore, the 179 connections were considered as
functional connections highly associated with gene expression
(Figure 4A and Supplementary Table 6).

In the 179 connections, 140 connections (78.2%) were
intra-network connections and 39 (21.8%) were inter-network
connections (Figure 4B). In the total of 45 homologous
connections between the two hemispheres, 41 homologous
connections (91.1%) were identified as gene-related connections
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FIGURE 2 | The analysis of the connectivity-related genes. (A,B) Are representative correlation maps between functional connectivity and gene contribution to
co-expression of VAV3 in the 308th subject and MAGEL2 in the 327th subject. (C) Shows the mean contributions of 1291 genes to gene co-expression greater
(t = 6.57, P = 5.3 × 10−11) than those of the rest 8894 genes. (D) Demonstrates the population-averaged correlations between connectivity and the contribution of
1291 genes to gene co-expression stronger (t = 81.08 and P < 10−300) than those of the rest 8894 genes. (E) Shows the global CEC values calculated based on
the 1291 genes greater (t = 11.00, P < 10−300) than those derived from the 10,185 genes. (F) Demonstrates the population- and connection-averaged Csa values
of the 1291 genes stronger (t = 20.13; P < 10−300) than those of the 10,185 genes. Mean + SEM for all graphs. The significant difference between two groups was
showed as *. CEC, connectivity-expression coupling; Csa, the contribution of each gene (a) to the CEC at each connection (s); FC, functional connectivity.
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FIGURE 3 | Reliable connectivity-related genes. (A) Is the population- and connection-averaged Csa values of the 1291 genes, and the 185 connectivity-related
genes identified by tensor decomposition model are marked in dark orange. (B) Shows that the 185 genes demonstrate stronger population- and
connection-averaged Csa values (t = 34.07; P < 10−300) than the rest 1106 genes. (C) Shows the population- and connection-averaged Csa values of the 1291
genes, and the 143 connectivity-related genes identified by the permutation test are marked in dark blue. (D) Shows the population- and connection-averaged Csa

values of the 143 genes greater (t = 34.86; P < 10−300) than those of the rest 1148 genes. (E) Is word-cloud representation of the 125 reliable connectivity-related
genes identified by both methods. (F) Shows enrichments of the 125 reliable connectivity-related genes. Mean + SEM for all graphs. The significant difference
between two groups was showed as *. Csa, the contribution of each gene (a) to the connectivity-expression coupling at each connection (s).

(Figure 4C). The 140 intra-network connections were assigned
to the eight functional networks, and the number and the
percentage of gene-related connections in each network are listed
in Table 1.

Connectivity-Related Genes Shared by
Brain Functional Networks
In the 1291 genes, 51 genes without significant difference
(P≥ 0.05) in the population-averaged Csa values among the eight
groups were considered as connectivity-related genes common
to all functional networks (Figure 5A). These genes were
enriched for the positive regulation of neuronal action potential
(Supplementary Table 5 and Figure 5B). Moreover, these
network-shared connectivity-related genes were also enriched for
schizophrenia (FDR-BH corrected, P = 0.017).

Network-Specific Genes
The tensor decomposition model was applied to each functional
network to identify 764 genes with higher Csa with the threshold
of absolute weight scores > (mean + SD) of all the 1291 genes.
The SI was then used to assess the specificity of each of the 764

genes to each network relative to other networks. We found that
144 genes were significantly enriched for a certain functional
network (P < 0.001). All the 144 genes showed significant
difference (Bonferroni corrected, P < 3.47 × 10−4 = 0.05/144)
among the eight groups by ANOVA. To further identify genes
specific to each functional network, we assessed the contributions
of each gene (n = 144) to its first two most associated functional
networks with two criteria. Only 51 genes satisfied the two
criteria (twice greater and significant) were considered as genes
specific to the first functional network (Table 2, Figure 5A,
and Supplementary Figure 5). These network-specific genes
were mainly enriched for the regulation of ion transport and
transmembrane transport, and ion homeostasis (Supplementary
Table 5 and Figure 5B).

DISCUSSION

In this study, we performed a comprehensive analysis on
associations between functional connectivity and gene co-
expression in the human brain. We identified 125 connectivity-
related genes (20 novel genes), which are linked to dendrite
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FIGURE 4 | Functional connections associated with gene expression. (A) Shows gene-related functional connections with a circle map. The eight functional
networks are represented by different colors. The blue lines represent the intra-network functional connections, and the orange lines denote the inter-network
functional connections. The thickness of a line indicates the mean strength of the connectivity-expression coupling at each connection. (B) Demonstrates the
proportions of intra- and inter-network connections in all gene-related connections (n = 179). (C) Shows that 91% homologous connections are gene-related
connections.

extension and signaling pathway. Moreover, we identified
179 gene-related connections that are influenced more by
gene expression than other connections. Most of gene-
related connections were intra-network connections, especially
homologous connections. Finally, we identified 51 network-
shared genes and 51 network-specific genes, which were involved
in different molecular processes (action potential for the former
and ion transportation for the latter). These findings may
improve our understanding of the molecular mechanisms of
functional connectivity in the human brain.

In previously conducted transcription-neuroimaging
association studies (Fornito et al., 2011; Oh et al., 2015;
Richiardi et al., 2015; Krienen et al., 2016; Vertes et al., 2016;
Anderson et al., 2018; Zhang et al., 2021; Zhu et al., 2021),
spatial correlations are performed between gene expression
and group-averaged neuroimaging maps or inter-group
difference maps, which neglect inter-individual variations in
neuroimaging measures. In this study, individual variations of
functional connections were considered with two strategies:
(1) connectivity-expression correlations were conducted at an
individual level and only genes with significant correlations
in most individuals (>80%) were considered as connectivity-
related genes; and (2) a tensor decomposition algorithm
was used to simultaneously consider interactions among
genes, connections and individuals. To further control false
positive results, a permutation test was used to test the
significance of each gene derived from both strategies in
the connectivity-expression associations. The resulting 125

genes were defined as reliable connectivity-related genes and
the correctness and reliability of this finding are supported
by the fact that 105 out of 125 (84%) genes have been
reported in previous connectivity-expression association
studies (Richiardi et al., 2015; Krienen et al., 2016; Anderson
et al., 2018). More importantly, 20 novel connectivity-related
genes were identified in this study, which may provide

TABLE 1 | Intra-network functional connections associated with gene expression.

Functional networks Numbers of
intra-network
connections

Numbers of
gene-related
connections

A (%) B (%)

Visual network 91 44 31.4 48.4

Somatomotor network 91 23 16.4 25.3

Dorsal attention network 6 3 2.1 50.0

Ventral attention network 6 2 1.4 33.3

Limbic network 153 25 17.9 16.3

Frontoparietal network 45 8 5.7 17.8

Default mode network 153 29 20.7 19.0

Subcortical network 28 6 4.3 21.4

Sum 573 140 100 24.4

A (%) refers to the ratio of the number (44) of gene-related connections in a given
network (such as the visual network) to the total number (140) of gene-related
connections in all networks; B (%) refers to the ratio of the number (44) of gene-
related connections in a given network (such as the visual network) to the total
number (91) of connections in the network.
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TABLE 2 | Numbers of network-specific connectivity-related genes identified by
different combinations of criteria.

Functional networks Criterion 1
only

Criteria
1 + 2

Criteria
1 + 2 + 3

+ 4

Visual network 198 7 5

Somatomotor network 106 41 3

Dorsal attention
network

150 37 11

Ventral attention
network

119 28 23

Limbic network 157 2 0

Frontoparietal network 173 27 0

Default mode network 176 4 0

Subcortical network 133 13 9

Criterion 1: the gene should have higher Csa in the tensor decomposition model of
the functional network; Criterion 2: the gene should show significant enrichment for
the functional network in network-type specific analysis; Criterion 3: the population-
averaged Csa values of the functional network were significantly greater than
those of any other networks; and Criterion 4: the population- and connection-
averaged Csa value of the functional network was twice greater than those of
any other networks.

new insight or evidence on the molecular mechanisms of
functional connectivity.

In consistent with prior studies linking connectivity-
related genes to signal transmission processes (Richiardi et al.,
2015; Anderson et al., 2018), the identified 125 connectivity-
related genes in this study were also enriched for various
biological processes associated with signal transmission.
Six connectivity-related genes are directly related to G

protein-coupled receptor signaling pathway, and many other
genes involve in signal transmission by regulating protein
secretion and transport, and dendrite extension. Fourteen
genes including two novel ones (MCUB and DOC2B) are
associated with Ca2+ binding and Ca2+-mediated biological
processes. As an important second messenger, these Ca2+-
related biological processes are critical for signal transmission
(Bando et al., 2016; Toth et al., 2016). Twenty-five genes
including four novel ones (RIPOR2, ADTRP, IFNLR1,
and PMEPA1) are related to the regulation of response to
stimulus, including the immune response. These findings
indicate that a series of complex biological processes are
involved in the formation, development, and plasticity of
functional connectivity.

The identified 125 reliable connectivity-related genes
and the 51 network-shared connectivity-related genes were
significantly enriched for schizophrenia (34/125 reliable
genes and 17/51 network-shared genes) rather than other
common psychiatric disorders (ASD, ADHD, BP, and MDD),
which is well consistent with the notion that the functional
disconnection is the most prominent neuroimaging feature
in schizophrenia (van den Heuvel and Fornito, 2014; Dong
et al., 2018). These findings indicate that connectivity-
related genes identified in healthy subjects may be also
related to functional disconnection in schizophrenia. The
resulting 51 (34 + 17) connectivity- and schizophrenia-
related genes are the potential candidates for investigating the
molecular mechanisms underlying the functional disconnection
in schizophrenia.

It is well known that functional connectivity is influenced
by both genetic and environmental factors (Ge et al., 2017;

FIGURE 5 | Network-shared and network-specific genes. (A) Shows network-shared genes (inner circle) and network-specific genes (outer circle). The eight
functional networks are represented by different colors. (B) Demonstrates the results of enrichment analyses of the 51 network-shared genes and the 51
network-specific genes.
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Teeuw et al., 2019). However, we barely know which kinds
of functional connections are prone to be regulated by
gene expression. In this study, we identified 179 functional
connections that were highly associated with gene expression.
Most of the gene-related functional connections (78.2%) were
located in the same functional network, which is consistent
with the higher correlations between gene expression and
functional connectivity within functional networks than
between networks (Richiardi et al., 2015; Zhu et al., 2021).
Notably, 41/45 (91.1%) homologous connections were identified
as gene-related connections, indicating that homologous
connections are prone to be regulated by gene expression. This
result is also consistent with the knowledge that homologous
regions between the bilateral hemispheres have both higher
genetic correlations and stronger anatomical connections
(Stark et al., 2008; Eyler et al., 2014; Shen et al., 2015;
Elliott et al., 2018).

In this study, we identified 51 network-shared genes
associated with functional connectivity, which were enriched
for positive regulation of neuronal action potential, which
is the core biological process in brain activity throughout
the brain. Specifically, CTNND1 is related to adhesion
between cells and signal transduction, and is involved
in the regulation of protein kinase and signaling receptor
binding, WNT signaling pathway, and postsynaptic membrane
neurotransmitter receptor levels (Tang et al., 2016). GABRA2
plays a role in the regulation of GABA-gated chloride
ion channel activity and chemical synaptic transmission
(Lengeling et al., 1999).

We also identified 51 network-specific connectivity-related
genes, which were mainly enriched for the regulation of ion
transport and ion homeostasis. Several network-specific genes
are involved in various signaling pathways, such as EDNRA
and KNG1 are related to the G protein-coupled receptor
signaling pathway (Horstmeyer et al., 1996; Sato et al., 2008),
HTR2A is involved in the CREB and ELK-SRF/GATA4 signaling
pathways, and NR4A2 is associated with canonical WNT
signaling pathway (Zagani et al., 2009). Several network-specific
genes (COX7A1, SLN, GBP2, BACE2, PRKG1, SYTL2, ABCC12,
and RGS6) are related to energy metabolism, such as ATP
synthesis and GTPase activity. Several network-specific genes
(PIK3CD, AIRE, PEA15, C1QB, and CHI3L1) play a role in
immune response.

Two limitations should be mentioned when one
interprets the results of this study. First, brain imaging
data and gene expression data were obtained from
different subjects and these two groups of subjects
differ in age and race. Thus, the spatial correlation
analyses between gene co-expression and functional
connectivity may be confounded by inter-individual
conservation of brain gene expression and inter-group
differences in these demographic data. Second, we still
do not know if gene–gene spatial autocorrelation is a
meaningful biological phenomenon or a meaningless
confounding factor, and thus we did not correct for gene–
gene spatial autocorrelation in this study, which may
bias our findings.

In conclusion, this study provides new knowledge for
the relationship between gene expression and functional
connectivity in the human brain. Firstly, we confirmed
that most of the previously identified connectivity-related
genes can be detected in individual-level transcription-
neuroimaging association analysis. Secondly, we found unequal
influences of gene expression on functional connections
and identified 179 functional connections linking more
closely to gene expression than other connections. Thirdly,
we identified network-shared genes and network-specific
genes for the first time, which are involved in different
molecular processes. These findings may improve our
understanding of the relationship between gene expression
and functional connectivity.
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Functional constipation, which belongs to the functional gastrointestinal disorder (FGID),
is a common disease and significantly impacts daily life. FGID patients have been
progressively proven with functional and structural alterations in various brain regions,
but whether and how functional constipation affects the brain gray matter volume
(GMV) remains unclear; besides, which genes are associated with the GMV changes
in functional constipation is largely unknown. On account of the structural MRI
image from the 30 functional constipation patients and 30 healthy controls (HCs),
GMV analysis showed that functional constipation patients had significantly decreased
GMV in the right orbital prefrontal cortex (OFC), left precentral gyrus (PreG), and
bilateral thalamus (THA). Correlation analysis showed that the self-rating depressive
scale, patient assessment of constipation quality of life (PAC-QOL), and Wexner
constipation scores were negatively correlated with GMV of the OFC and negative
correlations between PAC-QOL score and GMV of the bilateral THA. Based on the
Allen Human Brain Atlas, a cross-sample spatial correlation was conducted and found
that 18 genes’ expression values showed robust correlations with GMV changes
in functional constipation patients. These outcomes highlight our recognition of the
transcriptional features related to GMV changes in functional constipation and could
be regarded as candidates to detect biological mechanisms of abnormality in functional
constipation patients.

Keywords: functional constipation, Allen Human Brain Atlas, gene expression analysis, gray matter volume,
imaging-genetics

INTRODUCTION

Functional constipation, as one type of the functional gastrointestinal disorder (FGID), is portrayed
by rare bowel movements, painful defecation, uncomfortable feeling of incomplete evacuation,
hard/big stools, and frequently joined with abdominal distension and/or abdominal pain (Alame
and Bahna, 2012). The incidence rate of functional constipation is relatively high in the entire
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community, about 0.7–79% (Mugie et al., 2011). Besides,
an impressive proportion of functional constipation patients
would accompany anxiety and varying severity of depression
(Hosseinzadeh et al., 2011). These symptoms severely sway the
quality of their daily life and emotional status (Glia and Lindberg,
1997; Bongers et al., 2009).

At present, robust evidence demonstrated that FGID results
from physiological changes of the gastrointestinal system because
of the bidirectional brain–gut axis, which may influence brain
functional/structural alterations, and subsequently arising
from anxiety and depression symptoms (Mayer et al., 2006;
Mazur et al., 2012). Accordingly, neuroimaging methods
have been progressively applied to investigate brain structural
and functional anomalies of FGID patients (Blankstein et al.,
2010; Zhu et al., 2016; Jin et al., 2019; Hu et al., 2020; Duan
et al., 2021; Liu et al., 2021). They found the functional
abnormalities in brain regions enrolled in emotion modulating,
including the orbitofrontal cortex (OFC), anterior insula,
dorsal anterior cingulate cortex, and hippocampus, and motor
control, including the precentral gyrus and supplementary
motor area. Besides, several pieces of research in FGID
patients demonstrated functional impairments in the thalamus,
assuming a fundamental part in sensory and motor signal
processing (Tillisch et al., 2011; Liu et al., 2021). Moreover,
a new structural MRI research had shown that functional
constipation patients demonstrated significant diminished
cortical thickness of different brain regions, including the
left orbitofrontal cortex, left middle frontal gyrus, left medial
prefrontal gyrus, left supplementary motor area, right dorsal
anterior cingulate cortex, right middle temporal gyrus, and
bilateral posterior cingulate cortex/precuneus; decreased
cortical volume in the left middle temporal gyrus and bilateral
posterior cingulate cortex/precuneus; and induced cortical
surface area in the right precentral gyrus additionally (Hu
et al., 2020). The above-mentioned brain regions are primarily
associated with somatic movement controlling and emotion
modulating (Zhu et al., 2016; Hu et al., 2020), and these
alterations were implicated in the symptoms of functional
constipation patients containing disorder of defecation and
unhealthy mood (Ringel, 2002; Alame and Bahna, 2012;
Al Omran and Aziz, 2014). Notwithstanding, there has
been no study of transcriptional neuroimaging analysis to
identify genes related to GMV alterations in functional
constipation patients.

Currently, based on the Allen Human Brain Atlas (AHBA)1,
we acquired the gene expression data and conducted the
transcriptional neuroimaging analysis to find the genes related to
GMV changes in functional constipation patients. We extracted
gene expression data from each sample and calculated GMV
changes depending on the high-resolution structural MRI image
of functional constipation and controls, in sequence, cross-
sample spatial association analysis between GMV changes and
gene expression values. An illustration of the handling flow chart
is displayed in Figure 1.

1http://human.brain-map.org

MATERIALS AND METHODS

Subjects
The experiment was approved by the Ethical Committee of
Shanghai Tenth People’s Hospital, and each subject gave written
informed consent before the study. Utilizing Rome IV criteria
(Drossman, 2016), patients diagnosed by a gastroenterologist
expert as having functional constipation with history over 1 year
were enrolled in our study. Subjects were barred from the
study if they had the following diseases, namely, congenital
giant colon, excess sigmoid colon, and mental disease, or who
were drug abusers. Besides, subjects with other brain disorders
or abnormalities (such as severe white matter hyperintensity,
lacunes, microbleeds, and tumors), as determined using T2 fluid-
attenuated inversion recovery (FLAIR) sequence, were excluded.
Finally, there were 30 right-handed patients with functional
constipation (10 men, right-handed, 46.00 ± 18.03 years) who
finished the MRI scans. The healthy control group comprised 30
subjects who were right-handed and age and gender matched (9
men, right-handed, 45.77 ± 14.63 years). Self-directed surveys,
including the patient assessment of constipation quality of life
(PAC-QOL) and Wexner constipation score, were displayed
to all members to comprehensively assess the burden of
constipation on patients’ regular working and life (Marquis
et al., 2005). Patients were additionally approached to finish the
Zung (1965) self-rating depressive scale (SDS) and Zung (1971)
self-rating anxiety scale (SAS) to survey their seriousness of
depression and anxiety.

Data Acquisition and Gray Matter
Volume Calculation
Sagittal 3D high-resolution T1-weighted data were collected
by a turbo field echo (TFE) sequence. The parameters are as
followed: repetition time (TR)/echo time (TE) = 7.0 ms/3.2 ms;
field of view = 256 mm × 256 mm; matrix = 256 × 256. The
thickness slice is 1.0 mm, and there were 192 slices with no gap
(Ingenia 3.0, Philips).

All the structural MRI data were preprocessed utilizing CAT12
software (version r1364) with the accompanying methodology:
bias correction, segmentation, the creation of population-specific
tissue templates, spatial normalization using the DARTEL
technique, and smoothing with an 8 mm × 8 mm × 8 mm
full-width. After these preprocessing steps, we acquired the
normalized, modulated, and smoothed GMV images, and each
voxel represented volume information.

Case–Control Gray Matter Volume
Changes
We conducted the voxel-based comparisons to distinguish the
brain regions that showed group differences in GMV by utilizing
the two-sample t-test, controlling the impacts of gender, age,
and whole intracranial volume. The multiple comparisons were
adjusted by the false discovery rate method (p < 0.05) and a
cluster size >200 voxels using the SPM12 software. Then, a region
of interest (ROI)-based association analysis was applied to test
relationships between the GMVs of the brain areas, which showed
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FIGURE 1 | Flow chart of the study design. (A) Based on functional constipation and HC, utilizing the two-sample t-test to make voxel-wise GMV changes for each
tissue sample. (B) Acquired gene expression values in each tissue sample. (C) Identifying genes related with GMV changes in functional constipation. The crossed
specific genes are characterized as genes related with GMV changes in functional constipation.

significant group differences with the SDS, SAS, PAC-QOL, and
Wexner constipation scores.

Gene Expression Data Preprocessing
Freely accessible gene expression data of six postmortem human
brains were obtained from the AHBA dataset (Hawrylycz
et al., 2012), and they were handled utilizing a new flow
chart to combine gene expression data with neuroimage data
(Arnatkeviciute et al., 2019). We divided the AHBA dataset into
two datasets: the first dataset consisted of two donors with the
whole brain gene expression data, which have 820 samples, and
the second dataset consisted of six donors only with the left-
brain gene expression data, which have 1,782 samples. The short
processing work was as follows: first, we reassigned probes to
genes by using the most recent sequencing databases; second, we
barred probes with lower expression signal intensity compared
to background noise; third, the probes showing high consistency
with the RNA-sequence data were picked; lastly, the expression

data were normalized. After such handling process, we obtained
10,185 genes with a normalized expression value of each sample.

Genes Associated With Gray Matter
Volume Changes in Functional
Constipation Patients
After extracting gene expression data from each sample
(820/1,782 samples) and calculating GMV changes (t-statistic
values) in these samples derived from the two-sample t-test
based on the high-resolution structural MRI image of functional
constipation patients and HC, we performed a gene-wise cross-
sample Spearman correlation analysis to decide the relationships
between GMV changes and gene expression values independently
(n = 10,185). Considering the multiple comparisons at the
gene level (n = 10,185), we adjusted the Bonferroni correction
method and set a p < 4.91 × 10−7 = 0.05/10,185 to identify
the significant genes. At last, the genes related to GMV changes
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TABLE 1 | The general clinical characteristics of functional constipation and HC.

FCon (N = 30)
(Mean ± SE)

HC (N = 30)
(Mean ± SE)

FCon vs. HC
p-value

Age (years) 46.00 ± 18.03 45.77 ± 14.63 0.123

Gender 10M/20F 9M/21F 0.781

BMI (kg/m2) 22.62 ± 3.17 21.53 ± 2.87 0.594

Depression (SDS) 53.47 ± 10.74 30.93 ± 7.01 0.008

Anxiety (SAS) 50.60 ± 9.76 33.27 ± 7.34 0.213

PAC-QOL 57.27 ± 20.18 N/A N/A

Wexner constipation score 13.47 ± 3.35 N/A N/A

FCon, patients with functional constipation; HC, healthy controls; SE, standard
error; BMI, body mass index; SDS, Zung Self-rating Depressive Scale; SAS,
Zung Self-Rating Anxiety Scale; PAC-QOL, patient assessment of constipation
quality of life.

in functional constipation patients were characterized as those
whose expression values derived from two expression datasets
were prominently associated with GMV changes.

RESULTS

Demographic and Clinical
Characteristics
The general clinical characteristics of functional constipation
patients and HC are summed up in Table 1. The two groups have
not shown significant differences in gender (χ2 = 0.077, df = 1,
p = 0.781), age (F = 2.451, df = 58, p = 0.123), body mass index
(BMI) (F = 0.287, df = 58, p = 0.594), and anxiety (F = 1.582,
df = 58, p = 0.213) between the two groups. There was significant
group difference on depression (F = 7.474, df = 58, p = 0.008).

Gray Matter Volume Changes of
Functional Constipation Patients
After analyzing voxel-wise GMV alterations (P < 0.05, FDR
corrected) between the patients with functional constipation
and HC, compared to HC groups, we found that functional
constipation patients primarily demonstrated decreased GMV in
the right orbital prefrontal cortex (OFC, peak MNI coordinates:
x = 15, y = 37.5, z = −22.5; cluster size = 230 voxels), left
precentral gyrus (PreG, peak MNI coordinates: x = −42, y = 24,
z = 52.5; cluster size = 230 voxels), and bilateral thalamus
(THA, peak MNI coordinates: x = 4.5, y = −19.5, z = −1.5;
cluster size = 338 voxels) (Figure 2). In addition, there were no
regions demonstrating a significant increased GMV in functional
constipation patients.

Correlation analysis showed that the PAC-QOL, Wexner
constipation score, and SDS score were negatively correlated with
GMV of the OFC (r = −0.638, p < 0.001; r = −0.466, p = 0.009;
and r = −0.412, p = 0.024, respectively) in functional constipation
patients (Figure 3). There was negative correlation between
PAC-QOL score and GMV of the bilateral THA (r = −0.415,
p = 0.023) in functional constipation patients (Figure 3).
However, the data showed expected heterogeneity due to the
small sample size; we should restrict the wide application of

such conclusions, as there exist correlated tendencies, which need
further verification in the future.

Genes Related to Gray Matter Volume
Changes in Functional Constipation
Patients
After the gene expression data processing, we ultimately achieved
10,185 genes with normalized expression values for every 820
and 1,782 samples from the two AHBA datasets. A cross-
sample spatial correlation was conducted between GMV changes
in functional constipation patients and gene expression value.
There were 345 genes that revealed a significant correlation with
GMV changes in functional constipation in the first dataset
and 208 genes in the second (p < 0.05, Bonferroni corrected).
The crossed 18 genes of the two AHBA expression datasets
were chosen. Detailed descriptions and correlation coefficients
of these genes are exhibited in Table 2. Hence, the positive
correlation that implies higher gene expression in brain samples
manifested a more prominent GMV decrease in functional
constipation patients. The negative correlation that implies lower
gene expression in brain samples manifested a more noteworthy
GMV decrease in functional constipation patients (Figure 4).

DISCUSSION

In this study, we mainly identified genes preferentially correlated
to GMV changes in functional constipation patients by linking
gene expression patterns to GMV difference patterns in
humans. We found 18 genes’ expression values showing robust
correlations with GMV changes in functional constipation,
including the orbitofrontal cortex, precentral gyrus, and
thalamus. These outcomes could highlight our recognition of
the transcriptional features correlated with GMV changes in
functional constipation patients.

Here, we found the decreased GMV in the right OFC and its
association with constipation scores and depression. As one of the
least understood regions, OFC assumes a vital part in emotional
regulation, visceral information integration (including sensory
and motor information), and decision-making (Kringelbach and
Rolls, 2004; Price, 2007; Rolls and Grabenhorst, 2008; Bongers
et al., 2009; Rolls, 2019). Additionally, the OFC shows anatomical
connection with the cingulate gyrus, amygdala, hypothalamus,
and midbrain (Price, 2007), which subsequently portrays its
contribution to emotional modulation and visceral coordination.
Previous functional MRI (fMRI) studies have reported that the
distension of the lower gastrointestinal tract will activate OFC
(Derbyshire, 2003), followed by another study that showed that
the painful and non-painful gastric stimulation will also activate
the right OFC (Guleria et al., 2017). Thereby, these studies further
support the vital role of OFC in regulating visceral function.
Meanwhile, increased baseline activity in OFC was found in
patients with functional constipation and showed a correlation
with the sensation of incomplete evacuation (Zhu et al., 2016).
Functional constipation is often accompanied by mental issues;
the most common are anxiety and depression (Emmanuel et al.,
2001; Waters et al., 2013). In this study, we found that the
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FIGURE 2 | GMV changes between functional constipation and healthy controls (p < 0.05, FDR correction). The color bar showed the range of t-value. There was
significantly decreased GMV in the right OFC (A), left PreG (B), and bilateral THA (C). GMV, gray matter volume; L, left; OFC, orbital prefrontal cortex; PreG,
precentral gyrus; R, right; THA, thalamus.

FIGURE 3 | Relationship between clinical information and gray matter volume of the impaired brain region in functional constipation patients. In the functional
constipation patients, the PAC-QOL, Wexner constipation score, and SDS score were negatively correlated with GMV of the right OFC. There was negative
correlation between PAC-QOL score and GMV of the bilateral THA. GMV, gray matter volume; L, left; OFC, orbital prefrontal cortex; PAC-QOL, patient assessment of
constipation quality of life; PreG, precentral gyrus; R, right; SDS, self-rating depressive scale; THA, thalamus.
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TABLE 2 | The candidate 18 genes manifesting prominent relationships between gene expression and GMV alterations in functional constipation.

Gene symbol Correlation coefficients Entrez ID Gene name

VWA3A 0.233 ENSG00000175267 Von Willebrand factor A domain-containing protein 3A

ZBBX 0.226 ENSG00000169064 Zinc Finger B-Box domain containing

PTPRT 0.208 ENSG00000196090 Protein tyrosine phosphatase receptor type T

ASB2 0.201 ENSG00000100628 Ankyrin repeat and SOCS box containing 2

PXYLP1 0.192 ENSG00000155893 2-Phosphoxylose phosphatase 1

STAC2 0.185 ENSG00000141750 SH3 and cysteine rich domain 2

ZNF385D 0.180 ENSG00000151789 Zinc finger protein 385D

SMCO4 0.166 ENSG00000166002 Single-pass membrane protein with coiled-coil domains 4

PTGIS 0.159 ENSG00000124212 Prostaglandin I2 synthase

SATB2 0.156 ENSG00000119042 SATB homeobox 2

HACL1 0.153 ENSG00000131373 2-Hydroxyacyl-CoA lyase 1

CSDC2 0.147 ENSG00000172346 Cold shock domain containing C2

PCNT 0.143 ENSG00000160299 Pericentrin

FOSB 0.140 ENSG00000125740 FosB proto-oncogene, AP-1 transcription factor subunit

PDZD2 −0.137 ENSG00000133401 PDZ domain containing 2

SLC15A3 −0.151 ENSG00000110446 Solute carrier family 15 member 3

ONECUT1 −0.174 ENSG00000169856 One cut homeobox 1

SLC17A6 −0.185 ENSG00000091664 Solute carrier family 17 member 6

FIGURE 4 | Correlations between expression of two representative genes and GMV changes in patients with functional constipation. The x-axis shows the T-statistic
of GMV difference between functional constipation patients and healthy controls, and the y-axis is the gene expression value.

decreased GMV in the right OFC showed association with
constipation scores and depression, indicating that the structural
injury in OFC might cause the functional abnormality in visceral
sensory and motor integration and emotional processing.

In addition, we noticed reduced GMV in the left precentral
gyrus and the bilateral thalamus, and the GMV of the
bilateral thalamus in patients with functional constipation
showed association with PAC-QOL score. The precentral
gyrus contributes to controlling the movement execution
(Zhu et al., 2016). The structural abnormality of PreG in
patients with functional constipation indicated the altered
ability to control bowel movement (Hu et al., 2020).
Thalamus, as an integrative hub, prominently participates
in relaying/integrating/transmitting numerous inputs and
connections with various cortical brain areas (Rouiller et al.,

1999; Sherman, 2017). Some studies focusing on irritable bowel
syndrome revealed the vital role of the thalamus in controlling
sensory information (Keszthelyi et al., 2012; Labus et al., 2014)
and displayed the activation when distending the rectum (Mayer
et al., 2009). Neuroimaging studies depicted numerous functional
abnormalities in the thalamus of the functional constipation
patients, including the lower amplitude of low-frequency
fluctuation in the female functional constipation patients and the
decreased nodal degree based on the resting-state fMRI (Jin et al.,
2019; Liu et al., 2021). Recently, a study that employed diffusion
tensor imaging showed a decreased fractional anisotropy in the
fibers communicating with the precentral gyrus, postcentral
gyrus, amygdala, and hippocampus in patients with functional
constipation, which may imply that the function of integrating
the visceral sensory or motor inputs and connecting with other
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brain regions was impaired in functional constipation patients
(Al Omran and Aziz, 2014; Liu et al., 2021).

Currently, we identified that the expression of genes (VWA3A,
ZBBX, PTPRT, ASB2, PXYLP1, STAC2, ZNF385D, SMCO4,
PTGIS, SATB2, HACL1, CSDC2, PCNT, and FOSB) showed
positive correlations with GMV difference, and the expression
of genes (ONECUT1, PDZD2, SLC15A3, and SLC17A6) showed
negative correlations. For example, there was a positive
correlation for SATB2, encoding the special AT-rich sequence-
binding protein 2, which is a known member of the AT-rich
matrix attachment region-binding transcription factor family
with a role in the central nervous system and craniofacial
development (FitzPatrick et al., 2003; Britanova et al., 2005), also
highly expressed and specific for colorectal origins (Magnusson
et al., 2011). The more prominent expression of SATB2 in
brain samples with significant GMV decrease in functional
constipation may be due to its aberrant expression influence
on the brain–gut axis. In contrast, SLC17A6 acted a negative
correlation, i.e., the lower gene expression in brain samples
manifested a more notable GMV decrease in functional
constipation. SLC17A6 is a protein-coding gene, also known as
VGluT2, highly expressed in glutamatergic neurons. As a primary
afferent neurotransmitter, glutamate transfers information from
the mucosa to the enteric plexuses and brain. Changes in
SLC17A6 expression could indicate glutamatergic dysfunction
in bowel disease (Tong et al., 2001). Even though the genes
related to GMV changes in functional constipation is a
backhanded technique, we accept that the strategy can suggest
valuable discovery on account of such firsthand datasets lacking
(Richiardi et al., 2015).

LIMITATIONS

Some limitations should be considered when interpreting our
findings. First, we have not collected a larger sample of
patients with functional constipation and healthy controls, which
restricted the wide application and weakened the statistical
robustness. Second, all the functional constipation patients that
we enrolled had a history over 1 year, and their medications
are different. Some patients only took healthcare products, while
some took laxatives occasionally. In this study, we did not
take into account the effect of medicines on the results. Third,
genes with undetectable expression variation across individuals
were omitted in such analysis, since the gene expression data
and neuroimage data were acquired from different individuals.

Finally, our study is experimental, and further, we should explore
whether the identified genes have a causal influence on the altered
GMV in functional constipation patients.

CONCLUSION

In brief, we performed transcriptional neuroimaging association
to define the genes that appear to have correlation with GMV
changes in functional constipation. The identified 18 genes,
accordantly manifesting prominent relationships between GMV
alterations in functional constipation and gene expression value,
could be regarded as candidates to detect biological mechanisms
of abnormality in functional constipation patients.
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Kaizhong Xue1, Yaoyi Wang1, Jiawei Liu1, Weiqi Man1, Zhaoxiang Ye2* , Feng Liu1* and
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Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental
disorders that are highly heritable and are associated with impaired dynamic functional
connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain
largely unknown. Eighty-eight patients with ASDs and 87 demographically matched
typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were
included in this study. A seed-based sliding window approach was then performed
to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state
functional networks and the whole brain. Subsequently, the relationships between
DFC alterations in patients with ASDs and their symptom severity were assessed.
Finally, transcription-neuroimaging association analyses were conducted to explore the
molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs,
patients with ASDs showed significantly increased DFC between the right dorsolateral
prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the
superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal
gyrus, between the FEF and the right angular gyrus, and between the left intraparietal
sulcus and the right middle temporal gyrus. Moreover, significant relationships between
DFC alterations and symptom severity were observed. Furthermore, the genes
associated with DFC changes in ASDs were identified by performing gene-wise across-
sample spatial correlation analysis between gene expression extracted from six donors’
brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment
analysis, these genes were enriched for processes associated with synaptic signaling
and voltage-gated ion channels and calcium pathways; also, these genes were highly
expressed in autistic disorder, chronic alcoholic intoxication and several disorders
related to depression. These results not only demonstrated higher DFC in patients
with ASDs but also provided novel insight into the molecular mechanisms underlying
these alterations.

Keywords: Allen Human Brain Atlas, transcriptome, autism spectrum disorders, neuroimaging, dynamic
functional connectivity
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INTRODUCTION

Autism spectrum disorders (ASDs) are a group of heterogeneous
neurodevelopmental disorders characterized by social
communication defects, stereotyped behaviors and restricted
interests or activities (Lai et al., 2014). The increasing global
prevalence of ASDs in recent years is consistent across different
data sources (Morales-Hidalgo et al., 2018). Neuroimaging
techniques have been used to characterize the complex
biomarkers of these disorders and a great deal of evidence
supports the aberrant functional connectivity (FC) of various
cortical networks. However, most previous studies used
traditional “static” approaches based on resting-state functional
magnetic resonance imaging (rs-fMRI) to describe the abnormal
FC in individuals with ASDs (Kennedy and Courchesne, 2008;
Assaf et al., 2010; Rudie et al., 2012; Di Martino et al., 2014).
An increasing body of evidence suggests that rs-fMRI data are
dynamic in essence (Hutchison et al., 2013; Allen et al., 2014),
and static functional connectivity (SFC) does not clearly show
the changes that occur over a short period of time during the scan
(Chang and Glover, 2010). It has been proposed that quantifying
changes in FC metrics over time may provide greater insight into
fundamental properties of brain networks. Recently, researchers
have conducted more dynamic functional connectivity (DFC)
studies (Liu et al., 2017; Preti et al., 2017; Du et al., 2018). Briefly,
the BOLD signals in rs-fMRI time series were divided into some
overlapping intervals, and a functional correlation matrix was
derived for each of these intervals. It was possible to track the
ongoing changes in FC between brain regions over time (Betzel
et al., 2016; Shakil et al., 2016).

There are a few studies investigating DFC in individuals
with ASDs. For example, Li et al. (2020) revealed higher
DFC between the posterior cingulate cortex (PCC) and middle
temporal pole in patients with ASDs than in typical controls
(TCs). Chen et al. (2017) demonstrated increased DFC in the
medial superior frontal gyrus and temporal pole in patients with
ASDs. Harlalka et al. (2019) also observed significantly higher
DFC between the attention network (AN) and the default mode
network (DMN) in patients with ASDs than in TCs. However,
these previous studies only performed within or between
network DFC analysis, which does not provide comprehensive
information on DFC changes in ASDs. Specifically, DFC analysis
within a given network only provides a series of relationships
between a given region and all other voxels within its network,
instead of the full pattern of whole-brain dynamic connections.
Likewise, DFC analysis between network only reveals patterns of
connectivity between these networks without taking into account
internal FC.

Recently, several studies found correlations between DFC
and symptom severity, but in the opposite direction. He
et al. (2018) found that decreased DFC between the PCC
and right precentral gyrus was negatively associated with
social motivation scores. However, Chen et al. (2017) found
that greater DFC was positively related to Autism Diagnostic
Observation Schedule (ADOS) total score in patients with ASDs.
Li et al. (2020) also found that the increased DFC between
the PCC and pars opercularis of the inferior frontal gyrus

was positively associated with Social Responsiveness Scale (SRS)
total raw scores, social awareness and cognition scores. Further
exploration of the relationship between DFC and symptom
severity may provide more insights into the pathophysiological
mechanisms of ASDs.

Although the recent studies have found atypical DFC
in patients with ASDs, questions remain about the genetic
mechanisms of higher DFC. Barber et al. (2021) examined the
heritability of rs-fMRI data of healthy young adults from the
Human Connectome Project and found that heritability was
moderate and tended to be higher for DFC than for SFC.
Epidemiological studies have shown that patients with ASDs have
high heritability, twin studies evaluating the heritability of ASDs
showed high concordance rates (up to 90%) in monozygotic
twins (Freitag, 2007), and common genetic variations account
for approximately 50% of the genetic risk for ASDs (Gaugler
et al., 2014). In the past few years, transcription-neuroimaging
association analyses have emerged as a popular and powerful
strategy for investigating the molecular basis of brain imaging
phenotypes (Fornito et al., 2019). To the best of our knowledge,
there have been no studies using such approach to identify
genes related to alterations of brain DFC patterns in patients
with ASDs.

In the current study, rs-fMRI data from Autism Brain
Imaging Data Exchange II (ABIDE II) were used, and 29
core seeds of 10 classic functional networks were selected to
perform sliding-window seed-to-whole-brain DFC analyses in
a comprehensive manner. Moreover, the relationships between
significant DFC changes and symptom severity were further
explored in patients with ASDs. Furthermore, transcription-
neuroimaging association analyses were conducted to explore
the molecular mechanisms of the DFC alterations in patients
with ASDs by leveraging the Allen Human Brain Atlas (AHBA)
database. On the basis of the findings of the previous studies,
we hypothesized that: (1) patients with ASDs have significantly
increased DFC; (2) there are positive relationship between
DFC alterations and severity of symptoms; and (3) there are
correlations between DFC alterations and gene expression. An
organized workflow diagram of our study is summarized in
Figure 1.

MATERIALS AND METHODS

Participants
The ASDs patient and TCs data used in this study were
downloaded from the ABIDE II project (Di Martino et al., 2014,
2017), and all experimental procedures were approved by the
local Institutional Review Board. The subject inclusion criteria
were as follows: (1) male only, as the prevalence of ASDs has
a strong male bias (Pisula and Porebowicz-Dorsmann, 2017);
(2) strong right-handedness; (3) TR = 2 s, for consistency in
the temporal scale (Li et al., 2020); (4) younger 18 years old,
due to the greater effects of intervention on brain plasticity
in children and adolescents (Dawson, 2008; Van Hecke et al.,
2015); (5) subjects with Full Scale Intelligence Quotient (FIQ)
within 2 standard deviation (SD) of overall ABIDE sample mean;
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FIGURE 1 | The workflow diagram of this study. (A) Download rs-fMRI data of ASDs and TCs groups from ABIDE II; (B) Calculate case-control DFC t-map; (C)
Investigate the relationship between the DFC values in areas with significant group differences and symptom severity; (D) Extract the mean t value of each tissue
sample; (E) Obtain the whole-genomic transcriptomic profiles in tissue samples from AHBA; (F) Generate the sample-wise gene expression matrix of six donors; (G)
Identify 1DFC-related genes by calculating cross-sample spatial correlation between gene expression and 1DFC; (H) Functional annotations for 1DFC-related
genes, including GO, KEGG and disease enrichment analysis. ABIDE, Autism Brain Imaging Data Exchange; AHBA, Allen Human Brain Atlas; DFC, dynamic
functional connectivity; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; t, t-statistic.

(6) subjects with mean framewise displacement (FD) (Power
et al., 2012) not exceeding 2 SD above the sample mean; (7)
availability of both structural and functional images that provide
complete whole-brain coverage with successful segmentation,

good registration and good image quality; and (8) sites with at
least 10 subjects in each group after meeting the above criteria
(Di Martino et al., 2014). Finally, 88 patients with ASDs and
87 TCs were included in our study; the number of the subjects
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excluded due to each of the exclusion criteria is shown in
Supplementary Figure 1. The detailed demographic information
of each site (Supplementary Table 1) and MRI acquisition
parameters are summarized in the Supplementary Materials. For
more information, see http://fcon_1000.projects.nitrc.org/indi/
abide/.

The ADOS is a tool that can be used by clinical doctor
to perform a standardized clinical observation of a child
(Lord et al., 2012), and comprises two behavioral domains:
restricted and repetitive behaviors and social affect. The SRS is
a parent-report quantitative assessment scale (Bruni, 2014), and
designed to evaluate children’s social deficits. SRS provides a
total score and separate scores for five subdomains, including
social awareness, social cognition, social communication, social
motivation, and autistic mannerisms. Separate scores of each
domain would provide a clearer picture of ASDs dimensions.
These tools offer distinct information from different sources
and perspectives (Duvekot et al., 2015), and the complementary
information contributed to acquire a comprehensive view of the
characteristics of ASDs. The ADOS and SRS scores can be used
to assess the severity of symptoms related to ASDs, and higher
scores indicate more severe ASD symptoms (Plitt et al., 2015;
Chen et al., 2019; Li et al., 2020).

Magnetic Resonance Imaging Data
Pre-processing
Both structural and functional images of all the subjects
were examined independently by two researchers, and all
images were reoriented to the anterior–posterior commissure
line. Functional images were pre-processed using the Data
Processing and Analysis for Brain Imaging (DPABI)1 toolbox
(Yan et al., 2016). Specifically, the first five volumes of each
subject were removed to allow the signal to reach equilibrium.
Slice timing and realignment were then performed to correct
the temporal differences between slices and head motion. The
mean FD was calculated based on head motion parameters
(Van Dijk et al., 2012), and subjects with mean FD > 0.5
were excluded (no subjects were excluded in this step).
Next, individual structural images were co-registered to the
mean motion-corrected functional images, the transformed
structural images were segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), and the motion-
corrected functional images were normalized spatially to the
standard Montreal Neurological Institute (MNI) space using
the normalization parameters estimated by the Diffeomorphic
Anatomical Registration Through Exponentiated Lie algebra
(DARTEL) (Ashburner, 2007) tool and resampled to 3 mm
cubic voxels. Subsequently, nuisance covariates [including linear
trend, Friston-24 head motion parameters (Friston et al., 1996)
and mean signals from WM and CSF] were regressed out, and
temporal bandpass filtering (0.01–0.08 Hz) was applied. Finally,
the functional images were spatially smoothed with an 8 mm
full-width at half-maximum Gaussian kernel.

1http://rfmri.org/dpabi

Resting State Network Selection and
Dynamic Functional Connectivity
Calculation
Based on prior studies (Damoiseaux et al., 2006; Mantini et al.,
2007; Power et al., 2010; van den Heuvel and Hulshoff Pol,
2010; Zuo et al., 2010; Allen et al., 2011), 29 core seeds
within 10 classic brain networks were selected as regions of
interest (ROIs) in this study. Specifically, spherical regions with
radius of 6 mm centered at the MNI coordinates served as
the ROIs. These regions were as follows: (1) the AN: bilateral
superior temporal gyrus (STG) (Albouy et al., 2013); (2) the
central executive network (CEN): bilateral dorsolateral prefrontal
cortex (DLPFC) and bilateral posterior parietal cortex (Denkova
et al., 2019); (3) the dorsal attention network (DAN): bilateral
frontal eye field (FEF) and bilateral intraparietal sulcus (IPS)
(McCarthy et al., 2013); (4) the DMN: medial prefrontal cortex
and PCC (Fox et al., 2005); (5) the dorsal visual network: bilateral
superior occipital gyrus (Shen et al., 2019); (6) the primary visual
network: calcarine fissure (Shen et al., 2019); (7) the sensorimotor
network: bilateral precentral gyrus, bilateral postcentral gyrus
and bilateral supplementary motor area (Behroozmand et al.,
2015); (8) the salience network: dorsal anterior cingulate cortex
and bilateral frontoinsular cortex (Denkova et al., 2019); (9)
the ventral attention network: bilateral orbitofrontal cortex and
bilateral temporoparietal junction (Majerus et al., 2012); and
(10) the ventral visual network (VVN): calcarine gyri (Shen
et al., 2019). The detailed MNI coordinates and the spatial
distribution of these ROIs are shown in Supplementary Table 2
and Supplementary Figure 2, respectively.

To calculate the whole-brain resting-state DFC map of each
ROI, a widely used sliding-window approach was adopted. First,
as suggested by previous studies (Li et al., 2019; Christiaen et al.,
2020), a window length of 50 TRs (100 s) and a step size of
1 TR (2 s) were employed to obtain windowed time series.
Second, in each window, the whole-brain DFC map for each ROI
was created for each subject by calculating Pearson’s correlation
coefficient between the mean time series of all voxels in the ROI
and the time series from all other brain voxels in the GM. Third,
Fisher’s r-to-z transformation was applied for all DFC maps to
improve the normality of the correlation distribution. Finally,
the SD map across time windows was calculated in each subject
to characterize the changes in individual ROI-to-whole-brain
DFC, which is a commonly used metric in previous DFC studies
(Falahpour et al., 2016; Kaiser et al., 2016; Harlalka et al., 2019;
Xue et al., 2020).

A ComBat approach2, which can remove intersite variation,
preserve biological variability, and is robust to small sample size
data, was utilized to harmonize individual DFC maps from the
five independent datasets (Fortin et al., 2017). Subsequently, a
voxel-wise general linear model was used to compare the DFC
maps of each ROI between the ASDs and TCs groups while
controlling for age, FIQ and mean FD. The Gaussian random-
field (GRF) method was used to correct for multiple comparisons
of the resulting statistical map with significant thresholds of voxel

2https://github.com/Jfortin1/ComBatHarmonization
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level p < 0.001 and cluster level p < 0.0017 (0.05/29 ROIs).
Furthermore, linear regression analyses were conducted to assess
the relationship between the DFC from significant clusters of
between-group comparison and symptom severity in patients
with ASDs with age, FIQ, and mean FD as nuisance covariates.

Gene Expression Data Processing
Gene expression data were obtained from the AHBA. The
AHBA comprises the normalized expression data of 20737
genes represented by 58692 probes taken from 3702 brain
tissue samples from six donors (one female and five males,
aged 24–57 years) (Hawrylycz et al., 2012). According to the
pipeline (Arnatkeviciute et al., 2019), the gene expression data
preprocessing steps included (1) gene information reannotation,
(2) data filtering, (3) probe selection, (4) sample assignment, (5)
gene filtering, and (6) accounting for spatial effects. Given that all
donors provided tissue samples from the left hemisphere but only
two donors provided samples from the right hemisphere, tissue
samples from the left hemisphere were used in the following
analyses. In addition, consistent with previous studies (Kang
et al., 2011; Fan et al., 2016), we restricted our analyses to
the cerebral cortex due to the substantial differences in the
gene expression patterns of the cerebral cortex, subcortex, and
cerebellum. Finally, we obtained a normalized gene expression
matrix of 1285 × 10185 (sample × gene). The detailed pre-
processing steps are described in Supplementary Material, and
the process of brain tissue samples selection is presented in
Supplementary Figure 3.

Transcription-Neuroimaging Association
Analysis
For each of the t-maps that survived from multiple comparisons,
the mean t value of the spherical region with a 6 mm radius
centered at the MNI coordinate of each tissue sample was
extracted based on the uncorrected case-control DFC t-maps,
and the mean t value was defined as the 1DFC of the
sample. Then, a gene-wise across-sample spatial correlation was
performed to explore the correlation between gene expression
and 1DFC in patients with ASDs. Multiple comparison
correction was performed using the Benjamini-Hochberg false
discovery rate (BH-FDR) method (q < 0.05), and the surviving
genes were defined as 1DFC-related genes.

Functional annotations of the identified 1DFC-related genes
of each ROI were created with the WEB-based WebGestalt
Toolkit (Zhang et al., 2005)3, which includes Gene Ontology
(GO) (enriching genes for specific biological processes, cellular
components and molecular functions) (Ashburner et al., 2000)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(identifying genes associated with specific biological pathways)
databases (Kanehisa et al., 2004). In addition, DisGeNET,
which contains one of the largest publicly available datasets
of genes and variants associated with human diseases (Pinero
et al., 2017), was used to enrich the 1DFC-related genes for
specific neurodegenerative and neuropsychiatric diseases. The

3http://www.webgestalt.org/

intersection of enriched pathways that the identified 1DFC-
related genes of each ROI for were considered to be stably
related to the genetic mechanisms of abnormal DFC patterns in
patients with ASDs.

Validation Analyses
To verify the robustness of our main findings, we performed the
following three experiments.

First, we performed validation analyses for different window
sizes (30 TRs and 70 TRs). We investigated whether the
results (including those of between-group DFC comparisons,
DFC-symptom severity associations and 1DFC-related gene
identification) of 50 TRs could be reproducible in other
window sizes.

Second, we calculated the whole-brain resting-state SFC map
of each ROI to compare with the DFC results. For each subject,
the whole-brain SFC map for each ROI was created by calculating
Pearson’s correlation coefficient between the mean time series
of all voxels in the ROI and the time series from all other
brain voxels in the GM. Then, Fisher’s r-to-z transformation
was applied for all SFC maps to improve the normality of the
correlation distribution. The subsequent procedures were the
same as those mentioned above in the DFC analysis.

Third, although the mean FD was regressed out using general
linear model when examining the DFC changes, we could
only control the linear effect of the head motion. To further
investigate whether the increased DFC is linked to the higher
head motion in ASDs, a median split based on FD in both ASD
and TC groups was performed and DFC were compared in the
subgroups of ASD and TC.

RESULTS

Demographic Information and Clinical
Characteristics
In this study, 88 patients with ASDs and 87 TCs from 5 research
sites met the inclusion criteria. In the ASDs group, 61 subjects
had ADOS-2 scores and 69 subjects had SRS scores; In the TCs
group, no subject had ADOS-2 scores and 71 subjects had SRS
scores. The two groups were matched for age and FIQ. There were
significant differences in mean FD, ADOS, and SRS total score
and all subscale scores. The detailed demographic and clinical
information of the participants is displayed in Table 1.

Case-Control Dynamic Functional
Connectivity Differences
We found that patients with ASDs exhibited significantly
increased DFC between the right DLPFC of the CEN and the
left fusiform gyrus (FFG)/lingual gyrus (LG), and between the
right DLPFC of the CEN and the left STG; significantly increased
DFC between the right FEF of the DAN and the left middle
frontal gyrus (MFG), and between the right FEF of the DAN and
the right angular gyrus (AG); and significantly increased DFC
between the left IPS of the DAN and the right middle temporal
gyrus (MTG) compared with the TCs [GRF corrected, voxel level
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TABLE 1 | Demographic and clinical information of the participants.

Variables ASDs (n = 88) (Mean ± SD) TCs (n = 87) (Mean ± SD) p value

Age (years) (5.43–17.93) 11.30 ± 2.68 (5.90–17.60) 11.30 ± 2.65 0.987

FIQ 112.43 ± 13.85 114.69 ± 12.50 0.259

Mean FD 0.115 ± 0.073 0.090 ± 0.054 0.012

ADOS-2 calibrated severity total score 6.87 ± 2.15 (n = 61) – –

SRS total score 89.00 ± 29.51 (n = 69) 19.80 ± 13.55 (n = 71) <0.001

SRS subscale score (raw)

Awareness 11.71 ± 3.94 4.30 ± 2.72 <0.001

Cognition 15.90 ± 5.9 2.66 ± 2.56 <0.001

Communication 30.23 ± 11.01 6.37 ± 5.32 <0.001

Motivation 14.61 ± 5.77 4.14 ± 3.26 <0.001

Mannerisms 16.55 ± 7.39 2.34 ± 3.00 <0.001

ADOS, Autism Diagnostic Observation Schedule; ASDs, autism spectrum disorders; FD, framewise displacement; FIQ, Full-scale Intelligence Quotient; SCQ, Social
Communication Questionnaire; SD, standard deviation; SRS, Social Responsiveness Scale; TCs, typical controls.
p values were obtained by two-sample t-tests; –, not available.

p< 0.001 and cluster level p< 0.0017 (0.05/29 ROIs)] (Figure 2).
There was no significantly decreased DFC in the patients with
ASDs compared with the TCs. Detailed information on the brain
regions with significant 1DFC in the patients with ASDs is
presented in Table 2. The uncorrected case-control t-maps for
the 29 core seeds in 10 classic resting state networks shown in
Supplementary Figures 4–13.

Correlations Between 1DFC and
Symptom Severity
As illustrated in Figure 3, the DFC of the right DLPFC with left
STG were positively correlated with ADOS-2 calibrated severity
total score in the patients with ASDs. In addition, the DFC of the
right DLPFC with the left STG was positively correlated with the
SRS social awareness score, social communication score, autism
mannerisms score and total scores in the patients with ASDs. The
DFC of the right FEF with the left MFG was positively correlated
with the SRS social awareness score, social communication score
and total scores in the patients with ASDs.

Transcription-Neuroimaging Association
Analysis
Gene-wise across-sample spatial correlation analysis was
performed between 1DFC [three significant t-maps, with the
three seeds (the right DLPFC, right FEF and left IPS)] and gene
expression. After multiple comparison correction (BH-FDR
q < 0.05), 6803, 2722, and 1217 genes survived, respectively.
Subsequently, gene functional annotation analysis was performed
on the 1DFC-related genes in the three groups.

Gene Ontology enrichment analysis showed that the 1DFC-
related genes were significantly enriched for the biological
process of neurotransmitter secretion, neurotransmitter
transport, the cellular component of ion channel complexes and
synaptic membranes, and molecular function of voltage-gated
ion channel activity. KEGG enrichment analysis revealed that the
1DFC-related genes were significantly enriched in the calcium
signaling pathway. In the disease-related enrichment analyses,
the 1DFC-related genes were significantly enriched for autistic

disorder, chronic alcoholic intoxication, several disorders related
to depression and non-organic psychosis. Please see the detailed
results of enrichment analysis in Figures 4–6.

Validation Results
Our results showed high reproducibility across the different
window sizes. We found that the brain regions with significant
group differences (50 TRs) in DFC remained significantly
different between the ASDs and TCs groups for both 30 TR
and 70 TR windows. Moreover, we observed highly similar
results in the correlation analyses of the DFC values in areas
with significant group differences and symptom severity across
the three window sizes. Moreover, the significantly enriched
pathways (50 TRs) were largely reproducible for 30 TR and 70
TR windows. Please see the detailed results in Supplementary
Figures 14–17. We found no significant difference in SFC in
the patients with ASDs compared with the TCs. In addition, the
direction of effect (higher DFC in ASDs) in these comparisons of
subgroups with a median split based on FD was consistent with
our main results (Supplementary Table 3 and Supplementary
Figure 18).

DISCUSSION

In this study, we assessed the DFC alterations among the 29
core seeds of 10 classic resting-state networks and the whole
brain in patients with ASDs compared with TCs and calculated
the correlation between the DFC values in areas with significant
group differences and symptom severity in patients with ASDs.
In patients with ASDs, we observed significantly increased DFC
between the right DLPFC (the core seed of the CEN) and the left
FFG/LG, between the right DLPFC and the left STG; between the
right FEF (the core seed of the DAN) and the left MFG, between
the right FEF and the right AG, and between the left IPS (the core
seed of the DAN) and the right MTG.

High DFC could lead to the instability of information transfer
within and between networks (Kung et al., 2019). The DLPFC
is a core region in the CEN and is responsible for subjective
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FIGURE 2 | Brain regions with significant DFC alterations. The brain regions exhibited significant DFC alterations (GRF-corrected p < 0.0017) with the right DLPFC
(A) of CEN, and the right FEF (B) and left IPS (C) of DAN in the patients with ASDs, respectively. The color bar represents t-statistic. DLPFC, dorsolateral prefrontal
cortex; FEF, frontal eye field; IPS, intraparietal sulcus; L, left; R, right.

feelings, self-awareness, emotion regulation, working memory,
executive functions and the judgment and decision making
under goal-directed behavior (Bunge et al., 2001; Craig, 2002;
Bressler and Menon, 2010). The FFG and LG are key regions
in the VVN that are associated with visual item identification,
such as face recognition, memory for visual item identity and
planning a response to potentially threatening stimuli (Slotnick
and Schacter, 2006; Jonas et al., 2015; Li et al., 2016). The
increased DFC between the CEN and VVN may be related to the
loss of emotional regulation and social interaction impairment
in patients with ASDs (Li et al., 2016; Bi et al., 2018). The MFG
is also a core region in the CEN and is mainly responsible for
integrating and processing information (Richeson et al., 2003;
Bi et al., 2018). Previous studies have suggested that individuals
with ASDs are unable to integrate and process information;
therefore, they cannot communicate normally with others (Bi
et al., 2018). We speculated that the increased DFC between the
CEN and DAN may be associated with communication defects in
patients with ASDs.

Frontal eye field and IPS are core regions in the DAN
that are involved in mediating many higher-order cognitive

TABLE 2 | Detailed information on the brain regions with significant 1DFC in the
patients with ASDs (GRF-corrected p < 0.0017).

ROIs Region MNI coordinates (x, y, z) Cluster size Peak T

R DLPFC L FFG/LG −36, −57, −12 286 4.604

L STG −63, −27, 6 235 5.041

R FEF R AG 60, −57, 27 168 4.166

L MFG −36, 21, 36 178 5.839

L IPS R MTG 54, −6, −21 146 4.476

AG, angular gyrus; DLPFC, dorsolateral prefrontal cortex; FEF, frontal eye field;
FFG, fusiform gyrus; IPS, intraparietal sulcus; L, left; LG, lingual gyrus; MFG, middle
frontal gyrus; MNI, Montreal Neurological Institute; MTG, middle temporal gyrus; R,
right; ROIs, regions of interest; STG, superior temporal gyrus; T, t-statistic.

tasks and supporting top-down attention to visual, auditory and
somatosensory inputs (Braga et al., 2013; McCarthy et al., 2013;
Xia et al., 2015; Rohr et al., 2017). The AG is an important part of
the DMN, which is implicated in social cognition and affective
regulation associated with empathic responses (Li et al., 2013,
2016; Vatansever et al., 2017). The increased DFC between the
DAN and DMN might lead to deficits in attention switching and
cognitive function in patients with ASDs (Jia et al., 2020; Meeker
et al., 2021). The STG and MTG are crucial regions in the AN
that are associated with auditory language, visual language and
emotion (Li et al., 2013; Orlov et al., 2018; Luan et al., 2019). The
increased DFC between the CEN/DAN and AN may be related
to social interaction impairment in patients with ASDs. Similar
to our findings, some studies observed no significant difference
in SFC between the ASDs and TCs groups (Chen et al., 2015;
Li et al., 2020). No significant difference has been observed in
the SFC analyses, which is partially because DFC can capture the
time-varying properties and seems to be more sensitive than SFC
(Li et al., 2020).

In the correlation analyses between the DFC and symptom
severity in patients with ASDs, we observed positive correlations
between the DFC of the right DLPFC (core seed of the
CEN) and the left STG (core seed of the AN) and ADOS-
2 calibrated severity total score. ASDs is characterized by
socio-communicational deficits and restricted and repetitive
behaviors. Higher severity total score indicates more severe ASDs
symptoms. Functional alterations of CEN have previously been
reported in ASDs (Perez Velazquez et al., 2009). Alterations
of the AN in ASDs are associated with the severity of autistic
core symptom (Watanabe and Rees, 2016). The AN is mainly
involved with lower-level perception (Power et al., 2011). The
CEN controls attention, integrates the information processed in
the other networks and plays a central role in various cognitive
functions (Chadick and Gazzaley, 2011; Zanto and Gazzaley,
2013). The higher DFC between the DLPFC and STG could cause
unstable transmission and impaired coupling between these
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FIGURE 3 | The correlation between the DFC of the right DLPFC with the left STG and with ADOS_2 calibrated severity score (A), SRS awareness raw score (B),
SRS communication raw score (C), SRS mannerisms raw score (D) and SRS total raw score (E). The correlation between the DFC of the right FEF with the left MFG
and with SRS awareness raw score (F), SRS communication raw score (G) and SRS total raw score (H). Shades represent the 95% confidence intervals. ADOS,
Autism Diagnostic Observation Schedule; DLPFC, dorsolateral prefrontal cortex; FEF, frontal eye field; FFG, fusiform gyrus; LG, lingual gyrus; MFG, middle frontal
gyrus; SRS, Social Responsiveness Scale; STG, superior temporal gyrus; p, uncorrected p value.

brain regions. In addition, underconnectivity theory proposes
that both the two core symptoms of ASDs are associated with
impairment of integration of global information (Kana et al.,
2011; Just et al., 2012). Therefore, the higher DFC between the
DLPFC and STG observed in our study might cause the more
severe ASDs symptoms.

Additionally, we observed a positive correlation between
the DFC of the right DLPFC with the left STG and with
the patients’ SRS social awareness score, social communication
score, autism mannerisms score and total score. We also
revealed a positive correlation between the DFC of the right

FEF with the left MFG and with the patients’ SRS social
awareness score, social communication score and total score.
Social awareness contributes to one’s ability to recognize and
understand the thinking or feeling of others (Li et al., 2020), social
communication is one’s capability to respond appropriately to
what others interpret (He et al., 2018), and autism mannerisms
describe a collection of stereotypical behaviors or restricted
interests (Plitt et al., 2015). The higher DFC between the
DLPFC (core seed of the CEN) and STG (core seed of the
AN) indicated unstable information transmission (Chen et al.,
2017) and might influence auditory attention, semantic fluency,
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FIGURE 4 | Enrichment analysis for 1DFC-related genes with the right DLPFC in CEN. The GO and KEGG enrichment analysis (A) and the disease enrichment
analysis (B) for 1DFC-related genes with the right DLPFC in CEN in the patients with ASDs. The color bars represent –log10q with BH-FDR correction, and the size
of circles (GO: biological processes), triangles (GO: cellular component), rhombus (GO: molecular functions), and squares (KEGG terms) represents the overlapping
gene number. DLPFC, dorsolateral prefrontal cortex; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

the learning of social cues and the integration of appropriate
social responses. Furthermore, we found that the DFC between
the right FEF (core seed of the DAN) and the left MFG (key
region of the CEN) was positively correlated with the SRS social
awareness score, social communication score and total score.
Both the CEN and DAN are involved in cognitive regulation
and may be related to social awareness. Individuals with ASDs
cannot communicate normally with others due to deficits in
integrating and processing information, and the MFG is mainly
responsible for integrating and processing information (Richeson
et al., 2003; Bi et al., 2018). This important detail may explain
the positive correlation among the DFC of the right FEF-left
MFG, the patient’s SRS social awareness score, and the patient’s
communication score.

Overall, the 1DFC-related genes were mainly enriched for
voltage-gated ion channels, especially calcium and potassium
channels, synaptic membranes and the related processes involved
in the release and transmission of neurotransmitters. Voltage-
gated ion channels are important mediators of physiological
functions in the central nervous system. Activation of these
channels influences neurotransmitter release, neuronal
excitability, gene transcription, and plasticity. Ion channels,
especially polymorphisms in calcium and potassium channels,

are related to the pathogenesis of ASDs (Imbrici et al., 2013).
Moreover, calcium signaling is ubiquitously involved in the
process of neuronal excitability, neurotransmitter release
and cell secretion (Schmunk et al., 2017). Genetic mutations
related to the calcium signaling pathway can elevate the risk
of developing ASDs (Cross-Disorder Group of the Psychiatric
Genomics Consortium, 2013). Membrane proteins are significant
components of the proteins in cells and play a key role in
synaptic transmission; also, disruption of synaptic membrane
components may influence synaptic signaling transmission
(Wang et al., 2021). Abnormalities in synapse formation, which
contribute to functional and cognitive impairments, play a vital
role in the pathological mechanism of ASDs (Bourgeron, 2007).
Neurotransmitters can transmit nerve impulses from neurons
to other cells. Neurotransmitter transport dysfunction can affect
the transmission and absorption of neurotransmitters (Bhat
et al., 2021), and abnormalities in the balance between excitatory
and inhibitory neurotransmission may be connected with the
etiology of ASDs (Horder et al., 2018).

In the disease-related enrichment analyses, the 1DFC-related
genes were enriched for autistic disorder, chronic alcoholic
intoxication, several disorders related to depression and non-
organic psychosis. Upon initiation of alcohol use, individuals
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FIGURE 5 | Enrichment analysis for 1DFC-related genes with the right FEF in DAN. The GO and KEGG enrichment analysis (A) and the disease enrichment analysis
(B) for 1DFC-related genes with the right FEF in DAN in the patients with ASDs. The color bars represent –log10q with BH-FDR correction, and the size of circles
(GO: biological processes), triangles (GO: cellular component), rhombus (GO: molecular functions), and squares (KEGG terms) represents the overlapping gene
number. FEF, frontal eye field; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

with ASDs were at higher risk for developing alcohol dependence
(Sizoo et al., 2010). Studies have shown an increased risk for
depression symptoms in children and adolescents with ASDs who
had various IQs (Strang et al., 2012). Individuals with ASDs are
associated with a substantially increased risk for non-affective
psychotic disorder (NAPD) and bipolar disorder; notably, non-
organic psychosis was the most commonly diagnosed subtype of
NAPD among individuals with ASDs (Selten et al., 2015). Deficits
in social interactions and emotion regulation in individuals
with ASDs may be associated with elevated rates of psychiatric
comorbidity (Pouw et al., 2013; Charlton et al., 2020).

Several limitations should be considered in this study.
First, compared with single-site studies, the use of multicenter
public imaging data in this study may have involved some
issues associated with scanner differences and inconsistency
assessments. Second, head motion was a confounding factor in
DFC analyses. To reduce this effect, we carried out a series
of procedures, including regressing 24 head motion parameters
in the data pre-processing, and controlling for mean FD in
group-comparisons (Yan et al., 2013). However, the effect of
motion cannot be completely ruled out. In the future, it would
be better to recruit subjects with matched head motion to
replicate the findings. Third, although many dynamic metrics
could be used to investigate DFC, we employed SD of FC
values across time windows to characterize DFC because it was

difficult to calculate other dynamic metrics due to the highly
computational burden. Further study is needed to calculate
other dynamic metrics of seed-based voxel-level DFC by using
high-performance computing systems. Fourth, the results about
the genes expressed in autistic disorder, chronic alcoholic
intoxication and disorders related to depression were obtained
from the disease enrichment analysis, the detailed information
about these conditions of the autism patients included in our
study was not provided by ABIDE database. Fifth, we did not
include female subjects or investigate the sex-related effects in this
study due to the highly male-biased sex ratios in ABIDE. Sixth,
the weaker associations between DFC and symptom severity in
patients with ASDs may be related to the relatively small sample
size. Seventh, the average t-statistics were extracted around the
location of AHBA tissue samples; however, the uneven spatial
distribution of tissue samples in the AHBA may influence our
results. Finally, in our study, the imaging and gene expression
data were not derived from the same subjects. However, many
studies have confirmed that genes involved in the regulation
of transcription and development across human populations
are highly conserved (Bejerano et al., 2004; Woolfe et al., 2005);
therefore, our results of transcription-neuroimaging association
studies should be reliable.

In conclusion, the patients with ASDs showed increased DFC
in brain areas related to attentional and cognitive regulation,
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FIGURE 6 | Enrichment analysis for 1DFC-related genes with the left IPS in DAN. The GO and KEGG enrichment analysis (A) and the disease enrichment analysis
(B) for 1DFC-related genes with the left IPS in DAN in the patients with ASDs. The color bars represent –log10q with BH-FDR correction, and the size of circles (GO:
biological processes), triangles (GO: cellular component), rhombus (GO: molecular functions), and squares (KEGG terms) represents the overlapping gene number.
GO, Gene Ontology; IPS, intraparietal sulcus; KEGG, Kyoto Encyclopedia of Genes and Genomes.

which were associated with symptom severity. Transcription-
neuroimaging association analyses identified 1DFC-related
genes, especially those involved in processes associated with
synaptic signaling, voltage-gated ion channels, neurotransmitter
secretion and transport. These findings provide more insight
into the polygenetic and multipathway molecular mechanisms of
functional impairments in patients with ASDs.
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The pathophysiology and pharmacology of depression are hypothesized to be related
to the imbalance of excitation–inhibition that gives rise to hierarchical dynamics (or
intrinsic timescale gradient), further supporting a hierarchy of cortical functions. On
this assumption, intrinsic timescale gradient is theoretically altered in depression.
However, it remains unknown. We investigated altered intrinsic timescale gradient
recently developed to measure hierarchical brain dynamics gradient and its underlying
molecular architecture and brain-wide gene expression in depression. We first presented
replicable intrinsic timescale gradient in two independent Chinese Han datasets
and then investigated altered intrinsic timescale gradient and its possible underlying
molecular and transcriptional bases in patients with depression. As a result, patients
with depression showed stage-specifically shorter timescales compared with healthy
controls according to illness duration. The shorter timescales were spatially correlated
with monoamine receptor/transporter densities, suggesting the underlying molecular
basis of timescale aberrance and providing clues to treatment. In addition, we identified
that timescale aberrance-related genes ontologically enriched for synapse-related and
neurotransmitter (receptor) terms, elaborating the underlying transcriptional basis of
timescale aberrance. These findings revealed atypical timescale gradient in depression
and built a link between neuroimaging, transcriptome, and neurotransmitter information,
facilitating an integrative understanding of depression.

Keywords: first-episode depression, gene expression profiling, fMRI, intrinsic timescale gradient,
neurotransmitter
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INTRODUCTION

As one of the leading disabling diseases worldwide (Murray
et al., 2012), depression affects approximately 350 million
people each year (Schmaal et al., 2017). Recent studies
point out that imbalance of the excitation–inhibition
(E/I) underlays the pathophysiology and pharmacology
of the depression (Voineskos et al., 2019). Imbalance
of E/I ratio hypothetically results in the aberrance
of hierarchically organized intrinsic neural timescales
(Kiebel et al., 2008) that support synchronizing large-
scale brain networks usually measured with resting-state
functional connectivity (rsFC; Buzsáki and Draguhn,
2004). Accordingly, the intrinsic timescale gradient
is theoretically altered in depression that remains
unknown yet.

The brain regions are hierarchically organized into
increasing polyfunctional neural circuits embodied in
topographic gradients of molecular, cellular, and anatomical
properties (Huntenburg et al., 2018). Emerging through
hierarchically organized feature (Burt et al., 2018) such
as pyramidal cell dendritic spine density (Elston, 2003),
long-range interactions (Wang, 2020), and gene expression
gradients (Fulcher et al., 2019), intrinsic neural dynamics
(or intrinsic timescale gradient) are also hierarchically
organized, supporting a hierarchy of cortical functions
(Kiebel et al., 2008; Hasson et al., 2015). Brain dynamics is
also hierarchically organized along spatial gradients extending
from sensorimotor regions to association cortex (Hasson
et al., 2008) supporting functional communications between
brain regions (Cocchi et al., 2016). Regions with longer
“temporal receptive windows” are subsequently found to
exhibit more slowly changing activity and vice versa (Hasson
et al., 2015). In particular, regions such as prefrontal areas and
parietal areas, densely interconnected central regions, have
longer timescales compared to peripheral sensory areas
(Chaudhuri et al., 2015) for the reason that prolonged
neural timescale is needed to enable these high-order brain
regions to integrate various information for robust sensory
perception (Hasson et al., 2008), stable memory processing
(Bernacchia et al., 2011), and decision-making (Cavanagh
et al., 2016). By developing a large-scale biophysical model,
Chaudhuri et al. (2015) elaborate that intrinsic timescale
gradient depends crucially on recurrent network activity.
Aberrance of neural timescales is supposed to the result of
imbalance of the excitation–inhibition (E/I) ratio (Wengler
et al., 2020). Wengler et al. (2020) find evidence for distinct
hierarchical aberrance in timescale gradient as a function
of hallucination and delusion, supporting glutamatergic
and dopamine theories of psychosis (Corlett et al., 2011;
Jardri et al., 2016). Imbalance of the E/I is also implicated
in the pathophysiology and pharmacology of the depression
(Covington et al., 2010; Voineskos et al., 2019) and the
mechanism of fast-acting antidepressant is related to E/I
rebalance (Li, 2020). Although the intrinsic timescale gradient
should be altered in depression theoretically, it remains
unknown yet.

Brain function such as rsFC is also modulated by genetic
factors (Richiardi et al., 2015; Fornito et al., 2019; Richiardi
et al., 2015) and coupled to neurotransmitters (Stagg et al.,
2014; Kringelbach and Cruzat, 2020). Twin studies show that
functional connectivity within the default-mode network and
topological measures in the human brain are moderate to
highly heritable (Glahn et al., 2010; Fornito et al., 2011;
van den Heuvel et al., 2013). Recently, Allen Human Brain
Atlas (AHBA) (Hawrylycz et al., 2012), a newly proposed
brain-wide gene expression atlas, provides the possibility
of bridging the gap between transcriptome and large-scale
connectome organization (Fornito et al., 2019). Following the
work of Richiardi et al. (2015) where they find that the
transcriptome profile similarity within networks is higher than
that between networks, a number of studies begin to explore the
transcriptional basis of macroscopic neuroimaging phenotypes
(Krienen et al., 2016; Vértes et al., 2016; Anderson et al.,
2018; Li and Seidlitz, 2021). Recently, Zhu et al. (2021) find
that spatial distribution of functional connectivity strength
is modulated by genes enriched for terms such as synaptic
transmission in health (Zhang et al., 2021). In depression,
Li et al. (2021) identify that altered morphometric similarity
network is correlated with transcriptional signatures (Li and
Seidlitz, 2021). In addition, rsFC is found to be coupled
to neurotransmitter transporters/receptors (Stagg et al., 2014;
Kringelbach and Cruzat, 2020). Dysconnectivity in schizophrenia
is linked to altered neurotransmission (Landek-Salgado et al.,
2016; Limongi et al., 2020). Chen et al. (2021) find that
abnormal functional topography of brain networks is associated
with the dopaminergic and serotonergic systems underlying
cognitive decline in schizophrenia by investigating the molecular
architecture facilitating a link to treatment. The variation
of timescales is hypothesized to arise from local biophysical
properties of neurons across the cortical hierarchy, such as
the density of glutamate receptors, calcium channels, and
regulators of synaptic depression and facilitation (Zucker and
Regehr, 2002; Wong and Wang, 2006). Investigating the
molecular and transcriptional basis of altered intrinsic timescale
gradient in depression helps to advance our understanding
of how alterations at microscale architecture drive macroscale
neuroimaging aberrance in depression.

In this study, we aimed to explore altered intrinsic timescale
gradient and its underlying molecular and transcriptional
signatures bridging the gap between molecular mechanism
and macroscopic neuroimaging phenotypes in depression.
First, we presented replicable landscape of intrinsic
timescale gradient and its association with commonly
used functional indicators including amplitude of low-
frequency fluctuation (ALFF) and functional connectivity
density (FCD) in two independent Chinese Han cohorts.
Second, we investigated altered intrinsic timescale gradient
in different stages of depression according to illness duration.
Third, we inquired molecular and transcriptional basis of
altered intrinsic timescale gradient in depression. Fourth,
a functional enrichment analysis was performed to inquire
ontological pathways of timescale aberrance-related genes
in depression.
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MATERIALS AND METHODS

Datasets
Two independent Chinese Han datasets were used in this study.
The first dataset come from the Southwest University Adult
Lifespan Dataset (SALD) study including 494 healthy participants
(female: male, 308:187, 19–80 years old). The second dataset
included 121 HCs and 191 patients with depression. The resting-
state functional MRI data were acquired and preprocessed
using Data Processing & Analysis for Brain Imaging (DPABI)1

(Yan et al., 2016). The details about dataset description, scan
acquisition, and preprocessing procedures were included in
Supplementary Methods. The study was approved by the
research ethical committee of the First Affiliated Hospital of
Zhengzhou University.

Calculation of Timescales and Its
Association With Functional Connectivity
Density and Amplitude of
Low-Frequency Fluctuation
Based on previous studies (Watanabe et al., 2019; Raut and
Snyder, 2020), we calculated intrinsic neural timescales by
calculating the magnitude of autocorrelation of the resting-
state brain signals. There were two different definitions of
timescales. First, the timescale was defined as the sum of positive
autocorrelation function (ACF) values and then multiplied by the
repetition time (TR) (Watanabe et al., 2019). The results reported
in the next steps were based on this definition. The second was
defined as the half of the full width at half maximum of the ACF
(Raut and Snyder, 2020). To inquire the relationship between
these two definitions, spatial correlation was obtained between
the two mean timescale maps across healthy subjects in dataset 1
and healthy subjects in dataset 2, respectively. In addition, we also
compared spatial correlation between the altered timescale maps
of depression using these two definitions (see below).

As a newly proposed index, factors affecting landscape
of timescales remained unclear. To explore these factors, we
investigated whether factors such as gender (female vs. male),
age, motion movement, and education level could affect intrinsic
timescale gradient (Supplementary Methods). The timescales
were calculated using custom MATLAB code publicly available
at https://github.com/RaichleLab.

To intuitively elucidate the intrinsic timescale gradient
measured, we inquired the association between intrinsic
timescale gradient with other common functional indexes
such as ALFF and FCD. For FCD maps, local, long-range, and
global FCD maps were calculated (Tomasi and Volkow, 2010)
where correlation threshold was determined by significance of
single functional connection (p-value). A functional connection
(correlation coefficient) was considered significant if its
p < 0.05 (Bonferroni corrected). The obtained FCD maps were
transformed to z-scores by subtracting the mean value and
dividing by the standard deviation across gray matter voxels.
The ALFF maps were calculated using resting-state functional

1http://rfmri.org/dpabi

magnetic resonance imaging data processing toolbox (REST)
(Song et al., 2011), and normalized ALFF maps (dividing the
mean value across gray matter voxels) were chosen for the
following steps.

Dominance analysis was used to quantify the association
between mean FCD (including local, long-range and global
FCD), and mean ALFF maps to landscape of timescales
across healthy subjects in each dataset (Budescu and David,
1993; Azen and Budescu, 2003).2 The details are provided in
Supplementary Methods.

All of the above analysis steps were done in the discovery
cohort (dataset 1) and validated in the replication cohort (HCs
of dataset 2); results reported were based on the discovery cohort,
unless stated otherwise.

Altered Intrinsic Timescale Gradient in
Depression
Then, we explored whether intrinsic timescale gradient was
altered in depression. The altered timescale was obtained
by using two-tailed two-sample t-test equipped in SPM 12
where gender, age, mean FD, SNR0, and educational level
were included as covariates. To explore whether aberrance
of intrinsic timescale gradient was stage-dependent for the
reason that mental disorders were found to present progressive
brain structural alterations (Koutsouleris et al., 2014; Treadway
et al., 2015; Cao et al., 2017; Zhang et al., 2017; Yüksel
et al., 2018), patients with depression were further divided
into three stages according to illness duration (Stage 1:
0 ≤ illness duration ≤12 months; Stage 2: 12 <illness
duration ≤24 months; Stage 3: illness duration ≥24 months).
Moreover, we also compared timescales in patients whose
illness duration is less than 3/6 months to inquire whether
timescale aberrance emerged from the beginning of the disease.
Results reported in this study were corrected for multiple
comparison (voxel-wise p < 0.001, cluster-level p < 0.05;
GRF correction). To further explore the relationship between
two definitions of timescales, the same statistical procedures
were done in the second definition of timescales (half
maximum of the ACF).

Spatial Correlation Between Altered
Timescales of Depression With
Receptor/Transporter Densities
To explore association between depression-induced changes in
timescales and expression of a specific receptor/transporter,
we evaluated the spatial relationship between altered
timescales and the distribution of receptors/transporters.
The timescale difference map was spatially correlated with
PET/SPECT maps in JuSpace toolbox3 (Dukart et al., 2021).
The default neuromorphometrics atlas excluding white matter
and cerebrospinal fluid regions was used. Dopamine (D1
and D2), serotonin receptors (5-HT1a, 5-HT1b, and 5-
HT2a), transporters (dopamine transporter and serotonin

2https://github.com/dominance-analysis/dominance-analysis
3https://github.com/juryxy/JuSpace
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reuptake transporter 5-HTT), F-DOPA (a reflection of
presynaptic dopamine synthesis capacity), the GABAergic
receptor, and the noradrenaline transporter (NAT) were
investigated. The correlation results were adjusted for spatial
autocorrelation of local gray matter probabilities, and the
significance of results was computed using permutation
statistics (Dukart et al., 2021). To exclude the effect of
atlas choice on our results, we used another two atlas (268
and 246 regions) (Shen et al., 2013; Fan et al., 2016) to
validate these results.

What is more, to inquire whether the association
with receptor/transporter densities was specific to altered
timescales, we calculated spatial correlation between ALFF
differences of depression with PET/SPECT maps using default
neuromorphometrics atlas. The ALFF was chosen for the reason
that it was widely used in resting-state fMRI studies.

Cortical Gene Expression Related to
Altered Timescale of Depression
Inspired by a previous study (Reardon and Seidlitz, 2018),
we ranked genes based on the spatial correlation between
gene expression pattern and the voxel-wise unthresholded
t-statistic map of timescale difference in depression. The
gene expression data come from theAHBA4 (Hawrylycz et al.,
2012), obtained from six adult human brains (Hawrylycz
et al., 2012). Details and preprocessing procedures of AHBA
were included in Supplementary Methods. The preprocessed
AHBA used in this study comes from the Brain Annotation
Toolbox (BAT)5 (Liu et al., 2019). Because only two right
hemisphere data were included in the AHBA, we only considered
the left hemisphere in our analysis (Arnatkeviciute et al.,
2019). The correlation results were considered significant if
|r| > 0.2 and p < 0.05 (FWE corrected). Finally, the
positive and negative correlation gene lists were identified with
timescale aberrance.

Enrichment Pathways Associated With
Altered Timescales of Depression
We performed the gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways with the genes
presenting significant spatial correlation with altered timescales
of depression using Metascape (Zhou et al., 2019). Results
reported here were corrected by the FDR (p < 0.05). This
procedure was done in positive and negative correlation
genes separately.

As done in a previous study (Li and Seidlitz, 2021), we
further investigated shared enrichment terms between previously
reported polygenic risk for depression and the timescale-related
gene list (Wray et al., 2018; Howard and Adams, 2019). A multi-
gene list meta-analysis was carried out between the timescale
aberrance-related gene list and the gene list provided by these
two studies.

4http://human.brain-map.org/
5https://istbi.fudan.edu.cn/lnen/info/1173/1788.htm

RESULTS

Clinical Demographics
The clinical demographics of subjects in dataset 1 and dataset 2
are included in Supplementary Tables 1, 2.

The Landscape of Resting-State
Timescales and Its Association With
Functional Connectivity Density and
Amplitude of Low-Frequency Fluctuation
The mean timescale maps across healthy subjects in dataset 1 and
dataset 2 are drawn in Figure 1. In accordance with a previous
study (Watanabe et al., 2019), both dataset 1 and dataset 2 (only
HCs) presented similar whole-brain patterns of timescales with
longer timescales in frontal and parietal cortices and shorter
timescales in other regions such as sensorimotor and visual
areas (Figure 1). The spatial correlation between dataset 1 and
dataset 2 (only HCs) was r = 0.783 (p < 0.05, permutation test).
As there were two definitions of timescale, we calculated the
spatial correlation between mean maps of the two definitions
in dataset 1 and dataset 2 (only HCs). The landscapes of these
two definitions were in good agreement (dataset 1, r = 0.961,
p < 0.05 for permutation test; dataset 2, r = 0.893, p < 0.05
for permutation test) (Supplementary Figure 2). We observed
significantly negative correlation between age and timescales
only in dataset 1 (Supplementary Figure 3), suggesting that
the timescales might be related to normal brain aging; results
of HCs in dataset 2 were not significant, possibly due to the
limited sample size. In addition, timescales in regions such as
the left inferior temporal gyrus, sensorimotor cortex, and left
middle frontal gyrus presented significantly negative correlation
with educational level stating its potential role in the landscape of
educational level in HCs of dataset 2 (Supplementary Figure 4).

Then, we assessed the association between intrinsic timescale
gradient with common resting-state functional indexes including
FCD and ALFF using dominance analysis. Results revealed the
relative importance of each predictor (collective R2 = 0.4528,
long-range FCD = 29.19%, global FCD = 27.64%, local
FCD = 16.05%, ALFF = 27.11%), suggesting that long-range
and global FCD contributed the most to intrinsic neural
timescales. These results were validated in HCs of dataset 2
(Supplementary Table 3).

Altered Timescales in Depression
Overall, there was no significant aberrance of timescales in
patients with depression across stages according to illness
duration. Whereafter, we investigated altered timescales in
patients at different stages according to illness duration.
Timescales in patients with depression presented stage-specific
aberrance. In particular, patients presented shorter timescales
in regions including right anterior insula extending to right
putamen only at the first stage (<12 months). To further explore
whether this aberrance occurred at disease onset, we investigated
timescale aberrance in patients with shorter illness duration
(<3/6 months). Regions such as ventral medial prefrontal cortex
vmPFC/subgenual PFC, dorsal ACC, dorsal lateral PFC, the
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FIGURE 1 | The landscape of timescales and its association with ALFF and FCD. The “r” meant the spatial correlation between mean timescales maps in dataset 1
and dataset 2. The number in the dominance results meant the percentage of ALFF/FCD contributing to timescales where higher number meant higher association
with timescales.

bilateral nucleus accumbens (NAcc), the striatum, and the
bilateral insula presented decreased timescales in patients with an
illness duration of less than 3/6 months. With the prolongation of
the disease course, the timescale alterations gradually faded away
(Figure 2 and Supplementary Table 4). In addition, to further
explore the relationship between two definitions of timescales, the
same statistical procedures were done in the second definition
of timescales (half maximum of the ACF), and the results are
included in Supplementary Figure 5. These results confirmed
good consistency of altered intrinsic timescale gradient with
different definitions.

To exclude the possibility that the gradual reduction of
timescales resulted from the samples used in the current
study, we also inquired whether another functional index
also presented stage-specific aberrance. For the reason
mentioned above, ALFF was chosen. As a result, patients
with depression did not present gradual ALFF aberrance in
depression (Supplementary Figure 6).

Relationship to Receptor/Transporter
Densities
Altered timescales were significantly correlated (p < 0.05 for
permutation, FWE corrected) with seven receptor/transporter
densities (Figure 3 and Supplementary Table 5) including
5-HT2a (5-HT subtype 2a), D1 (dopamine D1), DAT
(dopamine transporter), F-DOPA (dopamine synthesis capacity),

NAT (noradrenaline transporter), and SERT (serotonin
transporter). These results were validated with a different
brain atlas (Figure 3). In addition, to explore whether the
correlation results were specific to altered timescales, we
also calculated spatial correlation between ALFF differences
of depression with receptor/transporter densities using
default neuromorphometrics atlas. As a result, there was no
significant spatial correlation between ALFF aberrance and
receptor/transporter densities, hinting that the association was
specific to timescale aberrance in depression.

Note: 5-HT1a, 5-HT subtype 1a; 5-HT1b, 5-HT subtype
1b; 5-HTaa, 5-HT subtype aa; D1, dopamine D1; D2,
dopamine D2; DAT, dopamine transporter; F-DOPA, dopamine
synthesis capacity; NAT, noradrenaline transporter; SERT,
serotonin transporter.

Cortical Gene Expression Related to
Altered Timescales in Depression
As timescales presented stage-specific aberrance and the
differences faded away as the progression of illness in
depression, we calculated the spatial correlation between gene
expression with timescale differences in patients with an illness
duration of less than 3 months (see before). As a result,
865/264 genes presented positive/negative correlation with the
unthresholded timescale differences in patients with depression
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FIGURE 2 | Stage-specific aberrance of timescales in depression.

whose illness duration was less than 3 months (see section
“Supplementary Methods”).

Enrichment Pathways Associated With
Altered Timescales of Depression
We performed the GO biological processes and KEGG
pathways with the associated gene lists obtained in the
previous step using Metascape. The top 30 significant GO
biological processes, such as “Trans-synaptic signaling,” “synapse
signaling,” “synapse organization,” “dendrite development,” and
“cognition,” and one KEGG pathway, “cGMP-PKG signaling
pathway,” were identified (Figure 4) for the positive correlation
gene list. Regulation of neurotransmitter receptor activity
such as “glutamatergic synapse,” “dopaminergic synapse,”
“glutamate receptor signaling pathway,” and “regulation of
neurotransmitter secretion” was also identified (see section
“Supplementary Methods”). These enrichment terms were
clustered into clusters such as synaptic signaling, synapse
organization (e.g., dendritic spine morphogenesis and dendrite
development), regulation of transmembrane transport, and head
development (e.g., hippocampus development and limbic system
development) (Figure 4).

Then, we investigated shared enrichment terms between
the previously reported polygenic risk for depression and the

positive correlation gene list by performing a multi-gene list
meta-analysis (Zhou et al., 2019). As a result, we found 11
common pathways. The enrichment pathways included “synaptic
signaling,” “synapse organization,” “cell–cell adhesion via plasma
membrane adhesion molecules,” and “dendrite development”
(Supplementary Figure 7).

DISCUSSION

In this study, we investigated altered intrinsic neural timescale
gradient in patients with depression and its possible underlying
molecular and transcriptional signatures. Timescales presented
stage-specific aberrance in depression. Specifically, patients at
the beginning of illness (illness duration <3 months) presented
shorter timescales in regions including vmPFC, ACC, the
bilateral nucleus accumbens (NAcc), the striatum, and the
bilateral insula. As the illness advanced, the difference faded away
(disappeared when illness duration ≥12 months). Moreover,
the shorter timescales at the beginning of depression were
associated with receptor/transporter densities including 5-HT2a,
D1/2, DAT, F-DOPA, NAT, and SERT, suggesting the underlying
molecular basis of timescale aberrance and providing clues to
treatment. Then, we identified timescale aberrance-related genes
ontologically enriched for synapse-related and neurotransmitter
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FIGURE 3 | The association between timescale aberrance with receptor/transporter densities. The “*” represented that the correlation was significant (p < 0.05 for
permutation, FWE corrected).

(receptor) terms elaborating the underlying transcriptional basis
of timescale aberrance. These findings revealed atypical intrinsic
timescale gradient in depression and bridged the gap between
neuroimaging, transcriptome, and neurotransmitter information
facilitating an integrative understanding of depression.

Stage-Specifically Shorter Intrinsic
Timescales in Depression
Patients with depression presented stage-specifically shorter
timescales according to illness duration in regions including

vmPFC, ACC, the bilateral NAc, the striatum, and the bilateral
insula. The shorter timescales were only observed in patients
with illness duration less than 12 months and then faded away
as illness advanced. Converging lines of evidence confirmed that
depression was a neuroprogressive illness (Kendler et al., 2001;
Moylan et al., 2013); the morphometric alteration of critical brain
regions was related to illness progression information (such as
illness duration) (Frodl et al., 2003; McKinnon et al., 2009; van
Eijndhoven et al., 2009; Alexander-Bloch et al., 2013; Chen V.
C. et al., 2016). Consistent with this notion, we observed stage-
specifically shorter timescales in patients with illness duration
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FIGURE 4 | Functional enrichment of gene transcripts. (A) Top 30 enrichment terms of positive correlation genes. The size of the circle represented the number of
genes enriched in a given term. The color bar represented the significance of a given term. (B) Metascape enrichment network visualization. Each term was
represented as a circle node where its size is proportional to the number of genes enriched in the term and its color represented cluster identify.

less than 12 months, and even 3 months, suggesting that shorter
timescales occurred at the beginning of the disease. In our
previous study, we identified that higher brain age was also stage-
dependent (Han et al., 2021). This stage-specific aberrance might
explain inconsistent findings in depression (Chen Z. et al., 2016).

Note that the insignificant timescale aberrance in patients with
longer illness duration did not necessarily mean the remission
of depression for the reason that we did observe a significant
difference in the total score of HAMD (p = 0.139, F = 2.00)
across stages. Regions presenting shorter timescales were found
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to be related to blunted processing of incentive salience, weak
reward source memory, and reinforcement learning underlying
the anhedonia in depression (Whitton et al., 2015; Alloy et al.,
2016; Han et al., 2020). The shorter timescales of these regions
might be associated with inefficient responsiveness to rewards
in depression (Whitton et al., 2015; Alloy et al., 2016). On the
other hand, dorsal lateral PFC, subgenual PFC, and dorsal ACC
belonged to dorsal systems inhibiting amygdala activity in the
unstressed state (Phillips et al., 2008). The reduced neuronal
size and diminished dendritic arborization in the dorsal system
were found in depression (Jaako-Movits et al., 2006; Drevets
et al., 2008). The chronic stress could affect the gene expression
of monoamine (serotonin)-glutamate/GABA and subsequently
affected the E/I balance (Dygalo et al., 2020). Consistent with
some ideas, we identified the shorter timescales in the dorsal
system resulting from imbalance of the excitation–inhibition
(E/I) ratio (Wengler et al., 2020), suggesting the inability of
the dorsal system to regulate stress response in depression
(Phillips et al., 2008).

There were two possible interpretations for the stage-
dependent timescale alteration in depression. First, this
phenomenon might mirror the transition from a clinically
unstable period, with large variability in functioning, to a
relatively stable period, when patients have reached a plateau
in functioning (Davidson and McGlashan, 1997; van Haren
et al., 2003). Another possible interpretation was that shorter
timescales might be associated with primal brain dysfunction
in depression. Here, we preferred the latter one. Multimodal
lines of evidence convergently indicated that depression
was a neuroprogressive illness (Kendler et al., 2001; Moylan
et al., 2013). Even patients with depression suffering from
only one depressive episode also displayed characteristics
of a progressive illness (Moylan et al., 2013). As the disease
prolonged, brain tissue damage and physiological functioning
gradually changed, which underpinned symptomatology and
functional decline over time (Moylan et al., 2013). Our previous
results (under review) revealed that progressive morphological
alteration might originate from regions like vmPFC and then
expand to other regions in depression. Similar progressive
morphological alterations such as advanced illness were observed
in schizophrenia (Jiang et al., 2018), epilepsy (Zhang et al.,
2017), and generalized anxiety disorder (Chen et al., 2020).
The original dysfunction might be of great significance to the
pathogeny and the treatment of depression. Actually, early
treatment of patients with depression is usually accompanied
with better outcome of antidepressant treatment and remission,
and the reverse was also true. For example, a longer duration
of untreated illness was reported to have an unfavorable effect
on the subsequent course of the illness (e.g., higher number
of recurrences) (Altamura et al., 2007, 2008; Li et al., 2021).
A shorter duration of untreated illness was related to better
remission of depression and somatic symptoms (Bukh et al.,
2013). On the other hand, a longer duration of untreated
illness was found to be associated with a greater severity and
a lower improvement percentage (Hung et al., 2015; Kraus
and Kadriu, 2019). What is more, we found that the stage-
specific aberrance might be specific to an intrinsic timescale

and did not result from the sample used in the current study.
In summary, the shorter timescales at the beginning of disease
might reflect initial functional aberrance and mean a lot to
subsequent treatment.

Molecular Architecture of the Shorter
Timescales
To explore the potential neurophysiological mechanism
underlying the shorter timescales observed in depression helping
to facilitate a link to treatment (Chen et al., 2021), we calculated
spatial correlation between maps of a variety of neurotransmitter
systems with that of timescale aberrance (Dukart et al., 2021). In
line with the monoamine hypothesis (Liu et al., 2018), shorter
timescales were associated with monoamine neurotransmitters
including serotonin, noradrenaline, and dopamine at the same
time. It was not unexpected that the timescale differences were
associated with serotonin and noradrenaline neurotransmissions
because of their fatal roles in pathogenesis (Hamon and Blier,
2013) and the first-line treatment of depression by inhibiting
the action of the serotonin/noradrenaline transporter to reduce
reuptake of serotonin/noradrenaline (Pirker et al., 1995).
Consistent with studies showing that 5-HT2a and SERT were
decreased in patients with depression (Kambeitz and Howes,
2015; Steinberg et al., 2019), we observed that the substrate
of timescale differences might be related to 5-HT2a and
SERT. The reason might be that the 5-HT2A receptors have
both excitatory and inhibitory roles underlying the potential
biological mechanism of timescale hierarchies (Chaudhuri
et al., 2015). The association between SERT binding and rsFC
(Beliveau et al., 2015) and dysfunction of SERT binding could
result in altered functional connectivity in depression (Han
et al., 2019) followed by altered timescales in depression. In
addition, we found that the timescale aberrance might be also
related to dopaminergic neurotransmission. Dopaminergic
neurotransmission playing an essential role by rewarding
prediction error (Hollerman and Schultz, 1998; Bayer and
Glimcher, 2005) and mediating motivational drive by the
attribution of incentive salience to reward-related stimuli
(Berridge, 2007) was also related to anhedonia and amotivation
in depression (Mayberg et al., 2005). Reduced DAT density in
the central and basal nuclei of the amygdala was found in a post-
mortem study (Klimek et al., 2002). The association between
timescale differences with dopaminergic neurotransmission
suggested that shorter timescales of these regions might result
in inefficient responsiveness to rewards (Whitton et al., 2015;
Alloy et al., 2016). Engaging additional targets (e.g., DA) could
help patients with residual symptoms and treatment-resistant
depression (Blier, 2016). Combining with these findings, our
results revealed the role of dopaminergic neurotransmission
in timescale aberrance. What is more, the validation results
confirmed the robustness (selection of different atlas) and
specificity (Compared with ALFF) of association between
timescale aberrance and neurotransmitter information. These
results suggested a potential neurophysiological mechanism
underlying the shorter timescales observed in depression,
providing clues to treatment.
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Altered Timescale-Related Gene
Expressions Enriched for Functional
Annotations
We identified genes whose expression pattern presented
significantly spatial (positive/negative) correlation with timescale
aberrance and their ontology terms elaborated the underlying
transcriptional basis of timescale aberrance. Consistent with the
monoamine hypothesis in depression (Liu et al., 2018), positive
correlation genes related to timescale difference were significantly
enriched in monoamine neurotransmitter-related GO biological
processes/KEGG pathways including neurotransmitter secretion,
transport, and receptor activity/complex. These results
corresponded with the aforesaid findings about monoamine
aberrance, suggesting transcriptional mechanisms of association
between timescale difference and monoamine neurotransmitters.
In recent years, the synaptic dysfunction hypothesis that
depression was caused by disruption of homeostatic mechanisms
controlling synaptic plasticity (Duman and Aghajanian, 2012)
has been proposed in consideration of the moderate and delayed
effectiveness of the widely prescribed serotonin selective reuptake
inhibitors (SSRIs) (Trivedi et al., 2006) and rapid antidepressant
actions of ketamine in treatment-resistant depressed patients
(Berman et al., 2000; Zarate et al., 2006). Deficits of excitatory
glutamate neurons and inhibitory GABA interneurons resulted
in the vulnerability of these major neurotransmitter systems
followed by dendritic atrophy and spine loss in neurons of the
hippocampus and prefrontal cortex (Qiao et al., 2016; Duman
et al., 2019). Dendrite complexity and synaptic density can also
be increased after treatment with antidepressants (Li et al., 2010;
Li et al., 2011; MacQueen and Frodl, 2011). In our study, the
timescale difference-related genes were enriched in terms of
the charge of the balance of excitation and inhibition including
glutamatergic synapse, transmission, receptor signaling pathway,
GABAergic synapse, regulation of NMDA receptor activity, and
G protein-coupled receptor signaling pathway. In fact, the spatial
correlation (p = 0.024 uncorrected) between timescale aberrance
and GABAa (gamma-aminobutyric acid) was also observed in the
current study. These results elaborated possible transcriptional
basis underlying the altered intrinsic timescale gradient in
depression and provided new lines of evidence supporting the
synaptic dysfunction hypothesis. In addition to the overlapping
ontology terms with that in GWAS in depression, the multi-gene
list results stated that timescale difference-related genes were
reliable and sensitive, providing additional function-related
enrichment information for depression.

There were several limitations to be considered. First, the
timescale differences were obtained on a single dataset. However,
the stage-specific aberrance was also observed in accelerated
brain aging GMV in our previous study and might not result
from sample selection (Han et al., 2021). Second, there was
a substantial variation across subjects reflecting the individual
susceptibility of specific receptor systems (Dukart et al., 2021);
future studies should use simultaneous PET and MRI to provide
more direct evidence. Third, patients enrolled in our study were
under a depressive state. Whether the timescale difference was
differently altered in various mood states, such as remitted state

(Rive et al., 2015), could be tested in further studies. Fourth,
only cross-sectional data were included in this study, and future
studies could explore whether altered intrinsic timescale gradient
returned to normal with antidepressant treatment especially for
fast-acting antidepressants (Li, 2020).

CONCLUSION

This study revealed atypical intrinsic timescale gradient for the
first time. In virtue of brain-wide gene expression and molecular
imaging atlases, we investigated possible underlying molecular
and transcriptional basis of timescale aberrance linking
transcriptome, neurotransmitter information, and neuroimaging
findings in depression. These results consistently supported the
synaptic dysfunction hypothesis and promoted an integrative
understanding of hierarchical dynamics aberrance in depression.
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Alzheimer’s Disease-Related Genes
Identified by Linking Spatial Patterns
of Pathology and Gene Expression
Roger Mullins* and Dimitrios Kapogiannis*

Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, United States

Background: Alzheimer’s Disease (AD) is an age-related neurodegenerative disease
with a poorly understood etiology, shown to be partly genetic. Glucose hypometabolism,
extracellular Amyloid-beta (Aβ) deposition, and intracellular Tau deposition are cardinal
features of AD and display characteristic spatial patterns in the brain. We hypothesize
that regional differences in underlying gene expression confer either resistance or
susceptibility to AD pathogenic processes and are associated with these spatial
patterns. Data-driven methods for the identification of genes involved in AD
pathogenesis complement hypothesis-driven approaches that reflect current theories
about the disease. Here we present a data driven method for the identification of
genes involved in AD pathogenesis based on comparing spatial patterns of normal gene
expression to Positron Emission Tomography (PET) images of glucose hypometabolism,
Aβ deposition, and Tau deposition.

Methods: We performed correlations between the cerebral cortex microarray samples
from the six cognitively normal (CN) post-mortem Allen Human Brain Atlas (AHBA)
specimens and PET FDG-18, AV-45, and AV-1451 tracer images from AD and CN
participants in the Alzheimer’s Disease and Neuroimaging Initiative (ADNI) database.
Correlation coefficients for each gene by each ADNI subject were then entered into a
partial least squares discriminant analysis (PLS-DA) to determine sets that best classified
the AD and CN groups. Pathway analysis via BioPlanet 2019 was then used to infer the
function of implicated genes.

Results: We identified distinct sets of genes strongly associated with each PET
modality. Pathway analyses implicated novel genes involved in mitochondrial function,
and Notch signaling, as well as genes previously associated with AD.

Conclusion: Using an unbiased approach, we derived sets of genes with expression
patterns spatially associated with FDG hypometabolism, Aβ deposition, and Tau
deposition in AD. This methodology may complement population-based approaches
for identifying the genetic underpinnings of AD.

Keywords: tau, FDG-18, PLS-DA, ADNI, allen human brain atlas, Alzheimer’s disease, Alzheimer’s, amyloid-β
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that accounts for 60–70% of dementia cases in the aging
population. The pathophysiology of the disease includes glucose
hypometabolism, whereas its cardinal neuropathological features
are the accumulation of aggregates of amyloid beta-peptide (Aβ)
in extracellular plaques and intracellular hyperphosphorylated
tau tangles. Pathologic forms of these proteins and their
aggregates impair synaptic function and induce maladaptive
neuroinflammation involving astrocytes and microglia. This
process eventually results in synaptic and neuronal loss,
macroscopically evident as brain atrophy (De Strooper and
Karran, 2016; Frisoni et al., 2022). Although the proximate causes
for Aβ and Tau aggregation have been largely crystalized in
the “amyloid hypothesis,” the ultimate causes of AD remain
unknown (Frisoni et al., 2022). Specific brain regions, such
as the medial temporal, precuneus/posterior cingulate, lateral
temporoparietal cortices, are more prone to develop severe AD
pathologies and manifest them earlier during the disease. By
contrast, other regions such as the primary motor cortex, sensory
cortex and cerebellum remain almost intact (Frisoni et al.,
2022). Attempts to explain this selective regional vulnerability
have focused on the structural and functional connectivity of
the default mode network (Buckner et al., 2009; Seeley et al.,
2009) and the spatial interplay of distinct processes leading to
glucose hypometabolism, Aβ plaques, and Tau deposition within
networks (Sepulcre et al., 2016).

The pathogenic cascade of AD extends over decades and
follows a characteristic regional progression, starting in distinct
brain regions for Aβ and Tau (Arnold et al., 1991; Braak and
Braak, 1991; Braak and Del Tredici, 2012; Sepulcre et al., 2016).
AD pathology is preceded or accompanied by changes in the
expression of many genes. The brains of late-stage AD patients
exhibit severe neuronal loss, which could result in an altered
gene expression profile. The underlying spatial patterns of gene
expression have been shown to account for both structural (Burt
et al., 2018; Reardon et al., 2018) and functional (Richiardi et al.,
2015; Vertes et al., 2016) features in the human brain, and
similar methods have been used successfully to examine genes
implicated in disease states such as Parkinson’s (Keo et al., 2021)
and Huntington’s disease (McColgan et al., 2018).

Given that the distribution of most gene expression varies
widely throughout the brain, we previously hypothesized that
regional differences in normal gene expression during young to
middle age may relate to or mediate regional vulnerability to
Aβ and Tau pathologies (Diehl et al., 2017; Mullins et al., 2017).
In prior studies, we focused on limited sets of genes associated
with insulin resistance, and revealed compelling associations
between the Brodmann area topography of normal expression
of metabolism and insulin signaling-related genes, and those of
established (Arnold et al., 1991) pathological Aβ and Tau.

In the present study we expand this hypothesis to investigate
whether normal regional cortical differences in gene expression
are related to the cardinal pathological features of AD, and to use
this information to identify specific genes and pathways related

to AD pathology. Given the striking and well-characterized
regional differences in glucose hypometabolism, Aβ and Tau, we
focused on these intermediate disease phenotypes. To establish
reliable image maps of these pathologies, we used FDG-18
(glucose metabolism), AV-45 (Aβ), and AV-1451 (Tau) PET
scans from the large ADNI cohort of AD and CN subjects.
Next, we examined the spatial correlation of these maps with
co-registered maps of gene expression from the Allen Human
Brain Atlas (AHBA)(Hawrylycz et al., 2012). We then used
the resulting correlation coefficients, one for each gene per
subject, as inputs to a Partial Least Squares Discriminant
Analysis (PLS-DA). Underlying this approach is PLS regression
(PLS-R) (Wold et al., 2001), a flexible Principal Components
Analysis-based method often used to assess commonalities
between AHBA transcriptome data and 3D imaging data from
other modalities. Specifically, PLS-R has been used to find the
spatial correlation between AHBA gene expression and resting-
state functional connectivity in healthy subjects (Vertes et al.,
2016; Zhu et al., 2021), and with regional cortical thickness
changes in Parkinson’s (Keo et al., 2021) and Huntington’s
disease (McColgan et al., 2018). An assumption of PLS-R is
that the system under investigation is primarily influenced
by a small set of underlying “latent” variables which are
maximally correlated between the datasets. PLS-DA extends
this method toward classification, regressing binary group
variables against a corresponding set of predictor variables
(Perez-Enciso and Tenenhaus, 2003). See Figure 1 for a flowchart
of this process.

It is worth noting that this method does not intend to reveal
the actual spatial distribution of gene expression in the disease
condition, only that a pathology is more or less correlated
spatially with a given gene expression pattern. The rationale for
conducting a correlative analysis between data obtained from
individuals at different age groups is provided by the natural
history of AD: AD pathologies start developing in young-middle
age in brain areas with different transcriptomic signatures, these
pathologies evolve over time in varying degrees for different brain
areas and culminate at distinct patterns of pathology in older
brains. Given that gene expression was assessed in the brains of
individuals who died young or in mid-life, before the typical age
when AD pathologies begin accumulating, the correlations may
reveal genes implicated in the mechanisms conferring regional
resilience or vulnerability to the development of AD.

This study demonstrates a novel data-driven bioinformatic
approach using the spatial correlation between normal gene
expression and image intensity of three types of PET conducted
in AD and Cognitively Normal (CN) individuals as input to a
discriminant analysis. Our specific hypothesis is that the spatial
patterns of emergent pathologies in the AD brain are associated
with the normal spatial expression of specific genes. Our primary
aim was to use this method to derive sets of genes for optimal
classification of AD and CN individuals based on their PET
measures of FDG-18 hypometabolism, Aβ, and Tau deposits. As a
secondary aim, we sought to identify novel genes associated with
distinct aspects of AD pathology and uncover biological processes
that may contribute to their development.
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MATERIALS AND METHODS

Participants
Alzheimer’s Disease and Neuroimaging Initiative
Participants
Baseline FDG-PET, AV45-PET (Aβ), and AV1451-PET (Tau)
images from the ADNI Image & Data Archive site1 were
downloaded as Neuroimaging Informatics Technology Initiative
(NIFTI) file format volumes in January of 2022. We analyzed
each PET tracer for CN and AD ADNI participants ranging from
55 to 95 years old (Table 1). ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and University
of California San Francisco. For up-to-date information, see
www.adni-info.org.

Allen Human Brain Atlas Human Brain Specimens
The Allen Human Brain Atlas (AHBA) incorporates microarray
data from six postmortem brain specimens obtained from
normal donors with no known prior neuropathological or
neuropsychiatric history (Hawrylycz et al., 2012). Each specimen
provided 501–946 distributed sample sites for the microarray set
of 29,191 unique genes, with multiple probes available for 93%
of these genes. Detailed donor profile information is available
in Supplementary Table 1 and the http://human.brain-map.org/
documentation section.

Allen Human Brain Atlas Microarray Data
Preprocessing
Data for the probes, sample sites, and normalized expression
values was imported from the files available for download
at the Allen Institute for Brain Science, Allen Human
Brain Atlas site: http://human.brain-map.org/static/download.
Detailed information and white papers for the survey, platform
selection, and normalization of the Agilent 8x60K custom

1http://ida.loni.usc.edu

TABLE 1 | Positron emission tomography (PET) pathology image demographics.

PET
modality

Group N Age (yrs ± SD) Age (range) Sex (F:M)

FDG-18 AD 305 75.33 ± 7.41 55–91 123:182

CN 351 75.26 ± 5.93 56–94 177:174

AV-45 AD 174 74.59 ± 8.42 56–90 73:101

CN 421 74.27 ± 7.30 56–95 228:193

AV-1451 AD 65 74.35 ± 8.47 56–89 24:41

CN 435 73.13 ± 7.90 55–94 248:187

microarray data is available at the http://human.brain-map.
org/ documentation section. These consisted of 58,692 probes
(replicates for the 29,191 genes) for each sample. Preprocessing
was performed using R (v.4.1.0) and the Bioconductor package
(Biobase v.2.5.2). The following steps were applied: (1) Removed
AHBA microarray probes with no gene ontology (GO)
annotation or entrez-id, leaving 43,714 probes. (2) Set sample
values with expression values below background as missing
“NA” via the present-absent call (PAC) files provided in the
AHBA data, then removed probes missing more than 50% of
the samples within any specimen, leaving 27,349 probes. (3)
To further reduce missing values, improve signal, and enable
gene set expression analysis, we selected the “best” probe for
each gene using the WGCNA library collapseRows function and
the “MaxMean” method. This selected the row with the highest
mean value within a probe or the highest connectivity among
the rows if three or more probes were available. This aggregation
reduced the number of probes to the final 13,753 individual
genes used in the rest of the analysis, with only 3.4% of the
values missing. (4) Missing value imputation was performed on
the microarray data for each of the six specimens individually
via the missMDA (v. 1.18) package imputePCA function, which
uses a principal components analysis to impute missing values
(Josse and Husson, 2016). The microarray data for each of the
six donors was then concatenated into one profile. Only the 2,754
samples from the cerebral cortex were included in this analysis,
as the cerebellum and brain stem are largely spared by AD and
could drive spurious associations due only to systematic genome-
wide differences in expression levels between these regions (Kang
et al., 2011; Mahfouz et al., 2015).

Alzheimer’s Disease and Neuroimaging
Initiative Positron Emission Tomography
Image Processing
All PET images were fully preprocessed by ADNI, including
smoothing, coregistration, frame averaging, AC-PC orientation,
and intensity normalization. Each individual pre-processed
image was registered to the median image for that modality
via FSL-flirt, which was then registered to the T1 152-subject
MNI (Montreal Neurological Institute) standard template and
manually inspected for accuracy of registration. All images were
then co-registered to the MNI template using that transform. See
Figure 2 for aggregate images in each modality.

Spatial Correlation
The first step in this process was to obtain matching PET intensity
values for the brain locations sampled by the AHBA microarray.
A custom R script using RNifti (version 1.4.0) was used to load in
each PET image and read the intensity values at the coordinates
specified in the AHBA data. An optimized set of ANTs (Avants
et al., 2011) nonlinear-registered MNI coordinates2 was used as
corresponding microarray sample locations for the AHBA and
PET images. This provided tabular output with each row being
an ADNI participant and each column the PET intensity in each

2https://github.com/chrisgorgo/alleninf
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FIGURE 1 | Processing and analysis flow chart.

of the 2,754 cerebral cortex sample locations from the six AHBA
specimens. This was repeated to create a separate data table for
each PET modality.

Next, correlation coefficients as r-values were derived
as pairwise distances via the dist2 function in MATLAB
(Mathworks, Natick, MA, United States), using a Pearson
correlation metric. This correlation was performed between the
single concatenated set of AHBA gene expression values and the
PET pathology intensities for each ADNI participant in the same
AHBA sample locations. This correlation was repeated within
each PET modality, resulting in a new data table with each row
being an ADNI participant and each column being the respective
r-values for each gene. These r-values were then converted to
z-scores using the Fisher r-to-z transform and entered into the
following PLS-DA model.

(Sparse)PLS-DA
Starting with a table of z-values reflecting the spatial correlation
between gene expression and PET pathology in the cerebral
cortex microarray samples, we used the sparse PLS-DA (sPLS-
DA) from the mixomics (Rohart et al., 2017) R package (v.6.16.3)
to perform a discriminant analysis between Alzheimer’s disease
(AD) and cognitively normal (CN) ADNI participants. Sparse
PLS-DA classified the samples based on the best predictive or
discriminative features in a one-step procedure (Le Cao et al.,
2011). The table of z-scores was used as the input dataset and
the AD or CN diagnosis as the classifier. The model was tuned
using the tune.splsda function with leave-one-out (loo) validation
and 50 repeats. The tuning function consistently revealed that the

optimal number of components was two for each PET pathology.
The optimal number of classification variables for components 1
and 2, respectively were 6 & 10 for FDG, 30 & 20 for AV45, and
35 & 5 for AV1451.

Gene Set Enrichment Analysis
Enrichr (Chen et al., 2013; Kuleshov et al., 2016; Xie et al.,
2021) was used to query the gene sets derived from the PLS-
DA analysis above, using the enrichR version 3.0 package in
R. The gene sets derived from the first principal component
of the PLS-DA step were used as inputs for the enrichment
analysis individually and assessed with BioPlanet 2019 (Huang
et al., 2019), which integrates pathways from curated sources
including the Kyoto Encyclopedia of Genes and Genomes
(KEGG), NCI-Nature, BioCarta, Science Signaling, Reactome,
NetPath, and WikiPathways.

RESULTS

Sparse PLS-DA Gene Selection
Sparse PLS-DA was used to identify the optimal set of
genes whose expression-intensity correlation value discriminated
between CN and AD participants. Separate models were created
for FDG-18, AV-45, and AV-1451 PET, as described above. The
first component of the PLS-DA analysis for FDG-18 explained
21.2% of the variance, AV-45 71.6%, AV-1451 41.4%. The first
component was retained for further analyses, as the variance
explained by the second components for FDG-18, Aβ, and Tau
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FIGURE 2 | Pet Pathology Z-maps. Multi-planar Axial, Coronal, and Sagittal
views of the median of the MNI-registered ADNI AD and CN participant
images. Top row is FDG-18 maps of hypometabolism, middle is AV-45 Aβ

distribution, bottom is AV-1451 Tau distribution. FDG-18 images were
normalized to the median of a manually drawn pons ROI. AV-45 and AV1451
were normalized to whole cerebellum. Thresholding for the figures is
consistent between AD and CN groups for visual comparison. Non-brain
areas are masked and the “NIH” look-up-table was used for color scale.
Figure created in MRIcroGL v1.2.

distribution was marginal: 2.3, 2.6, and 2.6%, respectively. Sample
plots for each PET pathology showing the distribution of the data
in latent space are in Figure 3A.

Receiver Operator Characteristic (ROC) Area Under the
Curve (AUC) plots were used to further evaluate the classification
results. Results were similar between each pathology. For
discrimination between AD and CN on the first component,
the FDG-18-associated set had an AUC of 0.88, the AV-45-
associated set an AUC of 0.87, and the AV-1451-associated set
an AUC of 0.89. AUC curves presented in Figure 3B are for
comparison only, as they are generated using specificity and
sensitivity cutoff maximization rather than PLS-DA distance
metrics (Rohart et al., 2017).

Genes selected by the sPLS-DA model are shown in the
loading plots, which show the direction each expression-
intensity correlation classifies toward (Figure 4). For genes
that classified toward AD, their underlying average expression-
intensity correlation was higher in the AD group. Likewise,
genes that classified toward CN had higher expression-intensity
correlations in the CN group. This signifies that the spatial

pattern of the PET image intensity diverged far enough in either
direction from the spatial pattern of normal gene expression that
it would aid in classification. See Supplementary Tables 2,3 for
annotations and loading statistics output for these genes.

Gene Set Enrichment Analysis
Enrichr was used to examine the biological relevance of groups
of genes within the selected gene sets according to the BioPlanet
2019 pathway set. Plots of the top 15 significant (p < 0.05)
pathways for each pathology by p-value and gene count are
shown in Figure 5. The overlap with many Bioplanet pathway
gene sets is unavoidably low due to the optimal small size (6–35
genes) of the sPLS-DA derived classifier sets, so this analysis is
an exploratory measure to infer function. Correcting for multiple
comparisons by the Benjamini-Hochberg (BH) procedure, the
adjusted p-values for FDG-18 retained all pathways, those
of AV-1451 exceeded a p of.05 after the 8th listed pathway
(Metabolism), and AV-45 retained no significant pathways. See
Supplementary Table 4 for a full list of pathway outputs,
associated genes, and statistics.

DISCUSSION

Using an unbiased approach, we derived sets of genes
with expression patterns spatially associated with FDG
hypometabolism, Aβ deposition, and Tau deposition in
AD. Pathway analysis of these gene sets via BioPlanet revealed
links to mitochondrial function, Notch signaling, and other
neuropathologically interesting pathways that may underlie the
canonically distinct spatial patterns of FDG hypometabolism, Aβ

and Tau deposition in AD.
From a broad perspective, the regional patterns of different

AD pathologies implicated different sets of genes, with the
exception of NDUSF4, which was implicated in regional
vulnerability to both Tau and FDG hypometabolism. All sets
classified between AD and CN with similar accuracy, with Aβ

marginally on the low end and Tau on the highest. FDG reached
optimal classification using only six genes, compared to 30 for Aβ

and 35 for Tau. All revealed significant and meaningful pathway
results, but only FDG and Tau survived correction for multiple
comparisons. FDG and Tau also showed higher numbers of
genes classifying toward CN in the discriminant analysis, which
may imply regional protective effects of these genes against the
development of FDG hypometabolism and Tau deposition. Such
protective effects are less pronounced for Aβ, which has genes
classifying toward either group. Tau and FDG are also the only
gene sets that map to a pathway indicative of AD itself, which
does not emerge for the Aβ-associated gene set. It is worth noting
that these results reflect the current focus of AD research, which
is shifting away from the amyloid hypothesis (Morris et al., 2014)
and toward Tau (Josse and Husson, 2016) and brain metabolism
(Neth and Craft, 2017) as primary pathogenic events of interest.

The nominal “Alzheimer’s disease” pathway is the foremost
one identified by BioPlanet for the discriminant gene set
for FDG-18, implicated via the influence of BACE2 and
NDUFS4. BACE2 is the focus of considerable interest in
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FIGURE 3 | Sparse PLS-DA plots for gene selection. (A) Sample plots from sPLS-DA performed on the gene expression – PET intensity correlation data including
95% confidence ellipses. The samples are projected into the space spanned by the first two components and colored by group: blue for AD and orange for CN.
(B) Receiver Operator Characteristic (ROC) curve and AUC on the expression-intensity correlation data for component 1.

FIGURE 4 | Loading plots for the optimal classifying genes in the sPLS-DA analysis. Highest loading genes or pathologies are on the bottom (descending order),
leftward (blue) deflected bars classify to AD, rightward (orange) to CN.
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FIGURE 5 | Enrichr results as barplots for FDG-18, AV-45, and AV-1451 PET gene sets. These figures are limited to the top 15 significant pathways (p < 0.05), the
complete set is in Supplementary Table 3. The x-axis categories are the BioPlanet pathways arranged by p-value from lowest (top) to highest (bottom). The y-axis
is the gene count, or number of genes found in that pathway.

AD as a conditional β-secretase that normally suppresses the
amyloidogenic processing of APP (Huentelman et al., 2019;
Wang et al., 2019). NDUFS4 codes for a mitochondrial subunit
known to bind oligomeric Aβ (Olah et al., 2011) and may have
a role in the cognitive deficits of AD via oxidative stress (Harris
et al., 2007). The full BioPlanet pathway list in Supplementary
Table 4 also revealed numerous several entries for NOTCH
signaling via the influence of HDAC4, a histone deacetylase with
an important role in nerve function by promoting neuronal
apoptosis (Bolger and Yao, 2005) and of interest as a therapeutic
target for AD due to its deregulation and accumulation in the

AD brain (Xu et al., 2011; Shen et al., 2016; Wu et al., 2016).
Recent evidence has suggested that aberrant Notch signaling
could result in the neurodegeneration seen in AD (Woo et al.,
2009; Kapoor and Nation, 2021). In addition, the failure of
γ-secretase inhibitors as treatments of AD has been partly
attributed to its deleterious effects on Notch signaling, which may
have counteracted any benefits from reduced Aβ production (Luo
and Li, 2022). MGAT5 was implicated as part of Golgi metabolic
pathways and has attracted recent interest due to its human-
specific differential expression in brain tissue layers as well as
in AD (Jorge et al., 2021). PIGK, and DIP2A were also high
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classifier loadings in the PLS-DA. Potentially a novel candidate
gene, PIGK has little current implication in AD literature but
is linked to the maturation or modification of APP (Del Prete
et al., 2017). Similarly, the function of DIP2A is still unclear, but
it was the strongest loading gene in our FDG-18-related analysis
and has been associated with amyloid burden in epigenome-
wide association (EWAS) studies of AD using post-mortem brain
tissue (De Jager et al., 2014; Li et al., 2020).

Of the three AD pathologies probed by PET imaging, Tau
deposition (by AV-1451) appears to reveal the most relevant
pathways related to AD, as well as including “Alzheimer’s
disease” itself as the most highly significant BioPlanet-identified
pathway via NDUFS4 & 8, NDUFA6 & 7 and UQCRQ. This
“Alzheimer’s disease” pathway overlaps with other AV-1451-
associated pathways that relate to mitochondrial respiration,
electron transport, and oxidative phosphorylation (NDUFS4 &
8, NDUFA6 &7, UQCRQ, & COX17), as well as metabolism
(NDUFS4 & 8, NDUFA6 &7, UQCRQ, COX17, & ETHE1). The
mitochondrial subunit NDUSF4 was also found in the FDG-
18 gene set as above, through which it shares common features
in terms of electron transport, oxidative phosphorylation, and
metabolism. Disruptions in these pathways may contribute
to both AD metabolic abnormalities and Tau pathology by
impairment of mitochondrial function (Yao et al., 2009;
Chakravorty et al., 2019; Lim et al., 2020).

In this setting, it is important to note that FDG
hypometabolism has long been considered more closely
spatially, temporally and causally linked to Tau deposition than
Aβ deposition (Ossenkoppele et al., 2016). A common genetic
underpinning of mitochondrial and metabolic abnormalities
could help account for this relationship. Recently, we identified
decreased levels and activity of mitochondrial electron transport
chain components in plasma neuronal-derived Extracellular
Vesicles of individuals with AD compared to Controls (Yao et al.,
2021), as well as in individuals with major depressive disorder
(Goetzl et al., 2021) or neuropsychiatric symptoms due to long
COVID-19 compared to controls (Peluso et al., 2022). These
studies indicate that mitochondrial dysfunction in AD can be
studied in living individuals through biomarkers, opening the
way to establishing it as a core feature of AD progression.

Many individual genes within the AV-1451 set have been
implicated in AD pathogenesis in the past, supporting the
validity of our approach. The strongest loading individual gene
on the AV-1451 list was the cyclin-dependent kinase CDK7,
which is elevated early in AD pathogenesis and may upregulate
Amyloid(β) Precursor Protein (APP) and Tau (Zhu et al.,
2000; Lukasik et al., 2021). EMC3 is involved in endoplasmic
reticulum associated degradation, which has been implicated
in neurodegeneration in a mouse AD model (Zhu et al.,
2017). AKR1A1 codes for an aldehyde reductase, which is
protective against neurodegeneration in AD (Picklo et al., 2001).
Differentially methylated positions on B3GALT4 are linked to late
onset AD and have been associated with memory performance
and CSF levels of Aβ and tau (Madrid et al., 2018). CPSF3
is involved in the RNA life cycle and has been identified as
part of the molecular interaction network for AD (Rosenthal
et al., 2022). COX17 codes for a cytochrome C oxidase copper

chaperone involved in copper homeostastis, which has been
tentatively linked to AD (Ejaz et al., 2020). PTMPT1 is part of an
AD-risk locus identified via genome-wide analyses (Efthymiou
and Goate, 2017). However, STN1, AFG1L, PLEKHB2, DHX36,
WDR73, SDR39U1, MRS2, NSCME2, COMMD8, CCT6A,
NBPF4, SCNK2B, MFSD11, SNF684, and C16orf72, are relatively
unstudied in the context of neurodegenerative diseases and AD,
raising the possibility of having identified novel mechanisms.

Amyloid-β deposition via AV-45 PET revealed the fewest
interpretable pathways and did not reveal a significant pathway
for “Alzheimer’s disease” (p = 0.22). Of the pathways identified,
there were some related to the cell cycle via CDKN1C and ORC3.
Concerning this, there are existing hypotheses that disruptions to
cell cycling may be a cause for the neuronal death observed in
AD (Raina et al., 1999, 2004) but little in the way of experimental
research to test it or the possible role of CDKN1C and ORC3.
In terms of individual genes, there were many hints about their
involvement in AD pathophysiology. TXNDC17 interacts with
the cellular prion protein (PrPc)(Ulbrich et al., 2018), which is
the main receptor for oligomeric Aβ. GPPS1 is elevated in the
AD frontal cortex and may modify Aβ production (Hooff et al.,
2010). PDCD6IP (as ALIX) is decreased in the serum of AD
patients and AβPP/PS1 mice (Sun et al., 2015) and directs the
trafficking of APP into extracellular vesicles (Cone et al., 2020).
RCOR3 is down-regulated in the hippocampus of AD brain
specimens (Yan et al., 2019). The tripartite motif protein TRIM2
has high hippocampal expression that may be impacted by the
presence of Aβ plaques via modulatory miRNA (Schonrock et al.,
2012). LRRC8D may interact with Aβ as a binding protein
(Virok et al., 2011). DUSP22 inhibits protein-kinase A activity
and hence Tau phosphorylation and CREB signaling (Sanchez-
Mut et al., 2014). SLF1, UPS11, CEP20, TMEM107, SAMHD1,
RIMS2, WASHC5, SLC22A7, UBXN11, CCDC87, DDX19A,
FOXB1, GREM1, ANGEL1, INTS5, TRIM2, HBS1NL, NPAS2,
UQCR10, HPS3, GTPBP10, and NSD1 are relatively unstudied
in this context.

While the spatial correlation was meant to identify genes
implicated in the regional vulnerability to AD and not necessarily
to improve AD group classification, we also performed a post-
hoc comparison using only the mean PET intensity for each of
the three modalities as the dependent variable, entering each into
otherwise identical sPLS-DA models. This resulted in notably
lower AUCs: 0.63 for FDG, 0.63 for AV-45, and 0.71 for AV-
1451.

A limitation of this study is the fact that while the AHBA
contains numerous samples, they are derived from only six brain
specimens and from a younger cohort than the ADNI group. The
method of spatial correlation we implemented in this study is
currently unable to apply covariates for factors such as age and
sex, since the spatial correlation involves data derived from two
separate sets of subjects. Fortunately, the ADNI participants are
consistent in terms of age and sex, and the AHBA specimens have
undergone substantial normalization for array and batch-specific
biases. Both sex and age interact with gene expression in the
brain, particularly in terms of immune activation and metabolism
(Berchtold et al., 2008). Until there are comprehensive richly
sampled post-mortem studies of regional gene expression with
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a variety of ages, sexes, and disease statuses, it will be difficult to
predict or account for the effects of these potential confounds.

Regarding AD-related genes revealed by genome and
epigenome – wide association studies that essentially create
binary contrasts of diseased/non-diseased individuals in large
populations, we should note that a gene product may still
be important in AD without being spatially correlated with
a pathology, and vice-versa. The methodology employed in
the present study may complement these population-based
approaches for identifying the genetic underpinnings of AD. We
hope that data-driven methods like ours can identifying novel
genes implicated in vulnerability to AD for further evaluation.

CONCLUSION

We present a novel method to extract information from the
melding of microarray and imaging data to identify genes
involved in AD pathology and its regional distribution. This
method allowed us to identify both known and novel candidate
genes and highlights certain pathways for further investigation,
but also as potential therapeutic targets. This methodology
is flexible, produces an interpretable list of only the best-
classifying genes, and can be extended to provide insight into
the genetic underpinnings of other brain diseases with their own
characteristic spatial patterns of pathology.
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