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Translational Informatics, Geisinger Health System, USA

This eBook contains the 19 articles that were part 
of a Special Topic in Frontiers in Genetics entitled 
“Genetics Research in Electronic Health Records 
Linked to DNA Biobanks”. The Special Issue was 
published on-line in 2014-2015 and contained 
papers representing the diverse research ongo-
ing in the integration of electronic health records 
(EHR) with genomics through basic, clinical, and 
translational research. 

We have divided the eBook into four Chapters. 
Chapter 1 describes the Electronic Medical Records 
and Genomics (eMERGE) network and its contri-
bution to genomics. It highlights methodological 
questions related to large data sets such as impu-
tation and population stratification. Chapter 2 
describes the results of genetic studies on different 
diseases for which all the phenotypic information 
was extracted from the EHR with highly specific 
ePhenotyping algorithms. Chapter 3 focuses on 
more complex analyses of the genome including 
copy number variants (CNV), pleiotropy com-
bined with phenome-wide association studies 

(PheWAS), and epistasis (gene-gene interactions). Chapter 4 discusses the use of genetic data 
together with EHR-derived clinical data in clinical settings, and how to return genetic results to 
patients and providers. It also contains a comprehensive review on genetic risk scores. We have 
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included mostly Original Research Articles in the eBook, but also Reviews and Methods papers 
on the relevant topics of analyzing and integrating genomic data.

The release of this eBook is timely, since several countries are launching Precision Medicine 
initiatives. Precision Medicine is a new concept in patient care taking into account individual 
variability in genetic, environmental and lifestyle factors, when treating diseases or trying to 
prevent them from developing. It has become an important focus for biomedical, clinical and 
translational informatics. The papers presented in this eBook are well positioned to educate 
the readers about Precision Medicine and to demonstrate the potential study designs, meth-
ods, strategies, and applications where this type of research can be performed successfully. The 
ultimate goal is to improve diagnostics and provide better, more targeted care to the patient.

We would like to thank the Editorial Staff of the Frontiers in Genetics for their patience and 
support and for making this eBook possible.

Mariza de Andrade, PhD
Helena Kuivaniemi, MD, PhD
Marylyn D. Ritchie, PhD
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The members of the Genomics Workgroup in the Electronic Medical Records and Genomics
(eMERGE) network (Gottesman et al., 2013) led the development of a Special Topic in Frontiers in
Genetics titled “Genetics Research in Electronic Health Records Linked to DNA Biobanks1.” The
goal was to publish papers representing the diverse research ongoing in the integration of elec-
tronic health records (EHR) with genomics through basic, clinical, and translational research. The
special topic with its 18 papers is extremely timely given the recent announcement of the Precision
Medicine initiative by the White House2, which includes the potential to build a biobank of 1 mil-
lion Americans with rich, phenotypic data—likely from EHR. eMERGE has, therefore, served as
an excellent test case for how a 1 million person project might work across several medical centers,
EHR systems, and genetic datasets.

The first group of papers (Almoguera et al., 2014; Crawford et al., 2014; Crosslin et al., 2014;
Verma et al., 2014) belonging to this special issue presents the eMERGE network and its contribu-
tion to genomics. The paper by Crawford et al. (2014) describes the initial goal of eMERGE network
that was to explore the utility of EHRs in genomics and whether the phenotypes identified through
algorithms using EHRs combined with the genome-wide genotypes could lead to fruitful results.
The beginning of the network included individual genotype datasets that were later combined to
form the merged eMERGE datasets and the combination with phenotypes from EHRs has led to
new genomic discoveries. All of these steps subsequently lead to new goals that have included next
generation sequencing and clinical practice. The second paper (Verma et al., 2014) introduces the
new challenges involved in merging genotype data from different eMERGE sites. Since genotypes
at different sites were derived from different genotyping platforms it was impossible to create a
single merged data file based on raw genotype data alone. The solution was first to impute each
site separately using the same software and pipeline, and then merge the imputed genotype data
sets to form a combined dataset. The authors used two different imputation software packages
and describe the challenges involved in using diverse ethnic populations and different genotype
platforms, which lead to a complete pipeline that not only performs imputation but also ensures
appropriate quality control for merging genotype data sets. The final eMERGE imputed data set is

1Available online at: http://journal.frontiersin.org/ResearchTopic/2198
2Available online at: WH.GOV/PRECISION-MEDICINE
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a valuable resource for genomic discovery by using the clini-
cal data generated by the EHRs and will be available in dbGaP
soon. The third paper (Crosslin et al., 2014) discusses the issues
of population stratification and genotype platform bias. Princi-
pal components analysis (PCA) is commonly used to control
for population stratification; however other factors such as local
genomic variation, multiple study sites and multiple genotyp-
ing platforms may also increase the correlation patterns in the
PCA. In this paper Crosslin et al. (2014) provided an alternative
approach to PCA by deriving components from subject loadings
determined by the 1000 Genomes reference sample that avoid
the bias introduced by site and genotype platform effects. This
alternative approach was applied successfully in the eMERGE
genome-wide association study (GWAS) for venous thromboem-
bolism in African Americans. The fourth paper in this group by
Almoguera et al. (2014) evaluated the utility of large imputed
genotype data sets to identify subjects with TPMT defective alle-
les. They used around 87,000 samples from the biobank at the
Children’s Hospital of Philadelphia. For 12 samples also Sanger
sequencing data were available allowing comparison between the
imputed and observed genotypes. The concordance rate between
the non-carriers of the risk alleles was 98.88%; however the sen-
sitivity of imputation for homozygous carriers was ∼80%. The
authors recommend using imputation of TMPT alleles as a first
step to screen individuals at risk.

The papers of group 2 (Kullo et al., 2014a; Mitchell et al.,
2014; Namjou et al., 2013; Parihar et al., 2014; Ye et al., 2014)
describe different applications of the EHR derived phenotypes.
The first paper (Namjou et al., 2013) investigated whether the
common variants in the genes FTO, MC4R and TMEM18 asso-
ciated with BMI in adults are also associated in pediatric popula-
tion in the eMERGE network. First they used a linear regression
model with the dependent variable BMI, adjusted for age, sex,
and PC by cohort; and then meta-analyzed the results using a
weighted z-score approach. They not only reproduced the find-
ings for the pediatric cohorts but also identified a novel locus at
COL6A5. The second paper (Mitchell et al., 2014) described the
issues when using cases generated from Stroke Genetics Network
(SiGN) and using genotyped controls from eMERGE leading
to recommendations regarding the controls selection, popula-
tion stratification, imputation, and association analysis. The third
paper by Kullo et al. (2014a) performed a two-stage association
study to identify variants associated with peripheral arterial dis-
ease. The first stage was a GWAS adjusted for age and sex in
subjects of European ancestry. In the second stage the top 48
SNPs were replicated in new set of cases and controls. One sin-
gle nucleotide polymorphism (SNP) in the ATXN2-SH2B3 gene
was significant where this SNP is in high LD with a missense
variant in SH2B3, a gene that is related to immune and inflam-
matory response pathways and vascular homeostasis, indicat-
ing a pleiotropic effect. The fourth paper (Parihar et al., 2014)
carried out a GWAS for lipid-related phenotypes derived from
the EHR using the Metabochip array. These phenotypes con-
sist of laboratory, anthropomorphic and demographic data on a
cohort of extremely obese subjects. They replicated 12 of 21 pre-
viously identified lipid-associated SNPs demonstrating the valid-
ity of using phenotype data available from the EHR and the

usefulness of the Metabochip array. The fifth paper (Ye et al.,
2014) performed GWAS to identify genetic variants associated
with diseases caused by Staphylococcus aureus infection. They
used different approaches to identify the genetic susceptibility
from single SNP, gene set and pathway. No SNPs or genes were
found to be genome-wide significant leaving with the speculation
that multiple genes contribute to the severity of the infection.

The third group of papers (Connolly et al., 2014; Cronin et al.,
2014; Namjou et al., 2014; Patel et al., 2014; Sun et al., 2014) in this
special issue focused on more complex analyses of the genome
including copy number variants (CNV), pleiotropy combined
with phenome-wide association studies (PheWAS), and epista-
sis (gene-gene interactions). The first paper by Namjou et al.
(2014) describes the first PheWAS in a pediatric cohort based on
4268 samples and 2476 sSNPs selected from previously published
GWAS studies. A total of 539 EMR-derived phenotypes were
explored. The authors identified a number of known associations
which serve as a positive control as well as several novel associ-
ations including NDFIP1 associated with mental retardation and
PLCL1 associated with developmental delays and speech disor-
der. The second paper by Cronin et al. (2014) is another Phe-
WAS, focused on one specific gene, FTO, in 10,487 individuals
from the eMERGE network and another 13,711 individuals from
the Vanderbilt biobank BioVU. They identified highly significant
associations between FTO and obesity, type II diabetes, and sleep
apnea, all of which are expected for variants in this gene. A novel
association was identified between FTO and fibrocystic breast
disease. The third paper by Sun et al. (2014) is a review of meth-
ods to filter genome-wide SNP data to explore epistasis models
effectively. There are a number of challenges with the search for
epistasis in genome-wide data including the computational com-
plexity of exploring that many different combinations of variables
which can exceed computational feasibility as well as the mag-
nitude of the multiple testing incurred by testing the genome in
exhaustive interaction analyses. The authors discuss two different
filtering approaches, namely using statistical effects or biologi-
cal prior knowledge. Strengths and weakness of these different
strategies are described as well as additional resources for con-
sideration before a genome-wide epistasis analysis is initiated.
The fourth paper by Connolly et al. (2014) is a review on recent
research in the area of CNV including successful applications in
rare and common diseases. Methods for identifying CNVs from
array-based genotyping data and sequencing data are described.
Finally, how CNVs might be evaluated and used with medical
records is discussed. The fifth paper of this group is by Patel et al.
(2014) and describes quality control processes for whole exome
sequencing data, specifically using Mendelian errors as a filtering
strategy to minimize errors. The group developed the Cincin-
nati Analytical Suite for Sequencing Informatics (CASSI) to store
sequencing files, metadata, and others. Their data cleaning pro-
cess can be used to improve the signal-to-noise ratio and improve
the identification of candidate disease causative variants.

The fourth group of papers (Goldstein et al., 2014; Kullo et al.,
2014b; Schrodi et al., 2014; Sleiman et al., 2014) belonging to this
special issue discusses the use of genetic data together with EHR-
derived clinical data in clinical settings. The first one of these
papers (Sleiman et al., 2014) used imputed GWAS data to study
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two loss-of-function variants in the PCSK9 gene. The study of
8028 genotyped biobank participants with extensive laboratory
data from the EHR demonstrated that EHR-linked biobanks are
a rich resource for exploring functional aspects of genetic vari-
ants. The second paper (Schrodi et al., 2014) is a review article
about genetic-based prediction by Schrodi et al. (2014) and it
provides a comprehensive discussion about disease prediction
using both genetic and clinical data, again highlighting the use-
fulness of available EHR-linked genetic data on large cohorts.
As the title of their article reveals, predicting who is at risk for
a given disease has turned out to be a difficult task. Currently
the most promising results can be found in cancer genomics,
population screening of rare Mendelian diseases, and pharma-
cogenetics. Developing prediction models for common complex
diseases such as type 2 diabetes mellitus, stroke and inflamma-
tory arthritis has beenmore challenging and the results have been
disappointing. This was also evident in the third paper of this
group (Goldstein et al., 2014) in which coronary heart disease was
investigated in the NIH-funded Atherosclerosis Risk in Commu-
nities (ARIC) cohort. The authors combined a genetic risk score
derived from 45 SNPs with a clinical risk score, but received only
minimal improvement in discrimination and calibration statis-
tics of the risk score. Schrodi et al. (2014) conclude their review
article with a positive note pointing out that in the near future we
can rely on having access to additional genome-wide data which
might help in refining the risk prediction. These data will include
whole genome and whole exome sequence data, and other omics
data such as information on DNA methylation, histone modi-
fication, and the transcriptomes of different tissues. Additional
advances leading to more refined phenotyping, and development
of new, more robust computational approaches will contribute
to improved accuracy in risk estimates. The last paper in the
fourth group (Kullo et al., 2014b) deals with the key questions
about returning results to patients and providers. The authors are
from the eMERGE network and point out that one of the man-
dates of the network is to come up with the best practices for

implementing genomic medicine. The goal is to have the clini-
cally relevant genetic results in the EHR so that they are easily
available for the practicing physician to be used at point-of-care.
These results could be individual risk genotypes or combined
risk scores. Each of the eMERGE network sites is carrying out
a feasibility projects, e.g., the group at Icahn School of Medicine
at Mount Sinai is using APOL1 variants in African Americans
to predict chronic kidney disease and investigators at Vanderbilt
University have chosen 14 actionable pharmacogenetic variants
to be returned to the EHR.

Precision medicine (See Footnote 2) is an important focus
for biomedical, clinical and translational informatics in the cur-
rent era. The manuscripts presented in this special topic are
well positioned to educate and demonstrate the potential study
designs, methods, strategies, and applications where this type of
research can be performed successfully. The ultimate goal is to
improve diagnostics and provide better, more targeted care to the
patient.
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The electronic MEdical Records & GEnomics (eMERGE) network was established in 2007
by the National Human Genome Research Institute (NHGRI) of the National Institutes of
Health (NIH) in part to explore the utility of electronic medical records (EMRs) in genome
science. The initial focus was on discovery primarily using the genome-wide association
paradigm, but more recently, the network has begun evaluating mechanisms to implement
new genomic information coupled to clinical decision support into EMRs. Herein, we
describe this evolution including the development of the individual and merged eMERGE
genomic datasets, the contribution the network has made toward genomic discovery
and human health, and the steps taken toward the next generation genotype-phenotype
association studies and clinical implementation.

Keywords: biobanks, genome-wide association studies, pharmacogenomics, electronic medical records

INTRODUCTION
Revolutions in genotyping technology (Ragoussis, 2009) and
computational power coupled with the creation of public sci-
entific resources such as The Human Genome Project (2001;
Venter et al., 2001), The International HapMap Project (2003; The
International HapMap Consortium 2005), and most recently the
1000 Genomes Project (2012), have accelerated genomic discov-
ery, most commonly through genome-wide association studies
(GWAS). As of late March 2014, the National Human Genome
Research Institute (NHGRI) GWAS catalog listed 1201 publica-
tions with 3961 SNPs associated with approximately 571 human
diseases and traits at a significance threshold of 5.0 × 10−8

(Welter et al., 2014) (https://www.genome.gov/26525384)
The majority of genomic discoveries published to date have

been from case-control or cohort epidemiologic studies that
collected specific health-related data and DNA samples. These
traditional epidemiologic collections already exist and are primed
for genomic discovery studies (Willett et al., 2007), mak-
ing them ideal for large-scale GWAS. Also, although currently
under-utilized in genomic discovery, many of the cohorts have

collected exposure data that can be interrogated for gene-
environment interaction studies (Manolio et al., 2006; Thomas,
2010). However, a major disadvantage of accessing existing epi-
demiologic cohorts for genomic discoveries is limited represen-
tation of diverse racial/ethnic groups (Rosenberg et al., 2010) and
of children (Collins and Manolio, 2007). Also, the existing health-
related data can be limiting, especially for cohorts or case-controls
collections designed with very specific disease outcomes for study
such as cancers or cardiovascular disease. Finally, establishing and
maintaining an on-going cohort study can pose significant cost
burden (Rukovets, 2013).

The disadvantages of accessing existing case-control and
cohort studies coupled with the continued need for genotype-
phenotype data for genomic discoveries led to the consideration
of alternative study designs and data sources such as bioreposito-
ries linked to electronic medical records (EMRs). In addition for
the potential for large sample sizes of diverse groups, biobanks
linked to EMRs make possible the study of many different out-
comes and traits, many of which may not be routinely collected by
traditional epidemiologic cohorts. And, in this burgeoning era of
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precision or personalized medicine, biobanks in clinical settings
offer unprecedented opportunities to quickly translate research
findings to improvements in patient care.

In recognition of the potential for EMR-linked biobanks to
genomic discovery and personalized medicine, NHGRI estab-
lished the electronic MEdical Records & GEnomics (eMERGE)
network. The eMERGE network began in 2007 with a
Coordinating Center (Vanderbilt University) and five study
sites: Group Health/University of Washington, Marshfield Clinic,
Mayo Clinic, Northwestern University, and Vanderbilt University
(McCarty et al., 2011). The network expanded to include new
adult study sites (The Icahn School of Medicine at Mount
Sinai and Geisinger Health System) in 2011 as well as pedi-
atric study sites in 2012 (Children’s Hospital of Philadelphia
and Boston Children’s Hospital/Cincinnati Children’s Hospital
Medical Center) (Gottesman et al., 2013). The major goals of
eMERGE I (McCarty et al., 2011) have evolved with experience,
and the major activities of the Genomics Work Group of the
eMERGE II network are outlined in Figure 1. Here we review
from the perspective of the eMERGE Genomics Work Group
the contributions the network has made toward genomic dis-
covery since 2007. We also foreshadow the eMERGE network’s
contributions to the second generation of genotype-phenotype
associations as well as implementation of genomic medicine.

eMERGE GENOMIC RESOURCES
The first few years of the eMERGE network required data gener-
ation both at the phenotype and genotype levels (McCarty et al.,
2011; Gottesman et al., 2013). In the first phase of the eMERGE
network, each study site proposed an outcome or trait for pheno-
type algorithm development and selection of DNA samples for
genotyping. Since EMR data are generated for the purposes of
clinical care, a necessary step to identifying populations of interest
was to create and validate algorithms that queried data elements
from the EMR to find phenotypes of interest (Kho et al., 2011;
Newton et al., 2013). Typically, these algorithms involved Boolean
combinations of billing codes, medication exposures, laboratory,
and test results, and/or natural language processing. All algo-
rithms and their validation results in the eMERGE network are
available on PheKB (www.phekb.org).

After validation of phenotype algorithms by blinded review,
typically by physicians, matching case, and control samples
were genotyped. All DNA samples were genotyped using either
the Illumina 660-Quad (primarily for participants of European
ancestry) or the Illumina 1M (primarily for participants of
African ancestry) at either the Broad Institute Center for
Genotyping and Analysis or the Center for Inherited Disease
Research (CIDR). The eMERGE Coordinating Center established
a pipeline to process each study site’s data for quality control, data
cleaning, and eventual Database of Genotypes and Phenotypes
(dbGaP) (Mailman et al., 2007) documentation and deposition
(Turner et al., 2011a). The initial round of phenotyping and
genotyping resulted in the generation of GWAS-level data on
19,637 samples, of which 18,663 passed quality control metrics.
The phenotypes and samples sizes available from these eMERGE
phase I efforts included cataracts/HDL-C (2642 cases and 1322
controls; led by Marshfield Clinic), dementia (1241 cases and

2043 controls; led by Group Health Cooperative/University of
Washington), electrocardiographic traits (3034 individuals; led by
Vanderbilt University), peripheral artery disease (1641 cases and
1604; controls led by Mayo Clinic), and type 2 diabetes (2706
cases and 1496 controls; led by Northwestern University).

During phase I of the eMERGE network, high-density geno-
typing had matured such that many large cohorts and biorepos-
itories linked to EMRs had existing GWAS-level data. This
included expanded genotype datasets at some eMERGE I sites
and as such, no new high density genome-wide genotyping was
performed in eMERGE phase II. All existing and new study sites
in eMERGE II offered existing data on a variety of genotyp-
ing platforms and genetic ancestries. With the inclusion of the
eMERGE phase I data, a total of 60,766 (47,507 adult and 13,259
pediatric) samples with GWAS-level genotypes or other large-
scale data [such as Metabochip (Voight et al., 2012)] generated
by either Illumina or Affymetrix arrays are available for study in
eMERGE phase II. As detailed in a separate manuscript (Verma
et al., in press), pooling and merging of these data required impu-
tation and extensive quality control. The current eMERGE phase
II merged dataset (version 2) available for analysis includes 51,038
samples linked to EMRs imputed to >36 million SNPs using the
1000 Genomes Project cosmopolitan reference panel (n = 1092)
and IMPUTE2 (Verma et al., in press).

New to eMERGE phase II is the eMERGE-PGx project, which
involves the targeted sequencing of 84 pharmacogenes identified
by the Pharmacogenomics Research Network (PGRN) using DNA
capture and contemporary sequencing technologies (known as
PGRN-Seq) (Rasmussen-Torvik et al., in press). For this effort,
each eMERGE II study site is enrolling ∼1000 patients as a
pilot study of pharmacogenetic sequencing in clinical practice.
Enrollment and sequencing is on-going, and the anticipated
network-wide sample size is 9000. All variants annotated through
this effort will be available in summary data form via the eMERGE
on-line resource “Sequence, Phenotype, and pHarmacogenomics
INtegration eXchange” or “SPHINX” (www.emergesphinx.org).
The eMERGE-PGx project will help establish best practices for
implementing personalized medicine including exploring and
establishing guidelines for returning results to physicians and
patients (Kullo et al., 2014). These data will also contribute toward
the catalog of rare and less common variants and couple them to
EMR data which may increase their clinical utility.

eMERGE GENOMIC DISCOVERIES
It was recognized early in the phenotype and genotype data gen-
eration phase of eMERGE I that large sample sizes are needed
to have sufficient statistical power for genetic association stud-
ies. Indeed, initial GWAS of single eMERGE study site datasets
demonstrated that known genotype-phenotype associations such
as SCN10A and PR duration (Chambers et al., 2010; Holm et al.,
2010; Pfeufer et al., 2010) could be replicated albeit at a signif-
icance threshold above 5.0 × 10−8 (Denny et al., 2010b). While
this exercise of replication demonstrated that EMR-derived phe-
notypes could be used in genotype-phenotype studies, genomic
discovery of new associations would require larger sample sizes.

To achieve this goal, the eMERGE network employed several
strategies, including (1) pooled analysis across the network, (2)
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FIGURE 1 | Major activities of the Genomics Work Group of the eMERGE

network. Abbreviations: CHOP, Children’s Hospital of Philadelphia; CCHMC,
Cincinnati Children’s Hospital Medical Center; BCH, Boston Children’s
Hospital; GHC, Group Health Cooperative; UW, University of Washington;

PSU, Pennsylvania State University; QC, quality control; EMR, electronic
medical record; PheWAS, phenomewide association study; EWAS,
environment-wide association study; CNV, copy number variation; PGx,
pharmacogenomics.

meta-analysis within and with outside consortia, and (3) gen-
eration of new phenotype and genotype data for new studies.
In the first strategy, each eMERGE study site deployed not only
the phenotype used to select study subjects for the genotype-
phenotype association studies of the site’s primary phenotype,
but also the phenotype algorithms designed by other sites to
identify additional cases and controls with existing GWAS-level
genotyping for these secondary phenotypes, This strategy was
successful and identified >15,000 additional samples with exist-
ing GWAS-level data to be repurposed for other phenotypes.
This effort to share and deploy phenotype algorithms across
sites enabled network-wide genomic discoveries for a variety of
quantitative traits (Table 1) and facilitated data sharing for meta-
analysis efforts outside of the eMERGE network for complex
diseases such as late onset Alzheimer’s disease (Naj et al., 2011)
and electrocardiographic traits (Jeff et al., in press).

Implicit in the eMERGE data sharing strategy is the concept
that phenotype algorithms are portable across different study sites
with different EMRs software systems as well as different health

care practices and cultures (Kho et al., 2011). Also, it was assumed
that each study site could reuse data collected for a specific phe-
notype or trait to conduct studies for other unrelated phenotypes
without introducing substantial biases. For example, in the type
2 diabetes (T2D) association study, there was considerable het-
erogeneity in the proportion of type 2 diabetes cases at each site,
as well the odds ratio estimates for the index T2D SNP within
each site’s cohort, but when combined across the sites the odds
ratio was indistinguishable from those using larger purposely-
collected T2D case-control collections (Kho et al., 2012). These
data suggest that potential study heterogeneity was magnified or
measurable at the single study level but dampened at the larger
network-wide level of analysis.

To further test the boundaries of these assumptions and
early observations, eMERGE undertook a network-wide study of
hypothyroidism, a new phenotype not related to any of the study
site-specific phenotypes. The phenotype algorithm was developed
at the Vanderbilt University study site and deployed and evalu-
ated by all eMERGE study sites, like other eMERGE phenotypes.
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Table 1 | eMERGE and genomic discovery.

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

Alzheimer’s Disease, late
onset

BIN1
(rs7561528)

OR = 1.17
(95% CI: 1.13, 1.22)

4.2 ×10–14 Consortium
meta-analysis, replication
(EA)

8309 cases
7366 controls

Naj et al., 2011

CD2AP
(rs9349407)

OR = 1.11
(95% CI: 1.07, 1.15)

8.6 ×10–9 Consortium
meta-analysis, discovery
+ replication
(EA)

18,762 cases
29,827 controls

CD33
(rs3865444)

OR = 0.91
(95% CI: 0.88, 0.93)

1.6 ×10–9 Consortium
meta-analysis, discovery
+ replication
(EA)

18,762 cases
29,827 controls

CLU
(rs1532278)

OR = 0.89
(95% CI: 0.85, 0.93)

1.9 ×10–8 Consortium
joint-analysis, replication
(EA)

8309 cases
7366 controls

CR1
(rs6701713)

OR = 1.16
(95% CI: 1.11, 1.22)

4.6 ×10–10 Consortium
meta-analysis, replication
(EA)

8309 cases
7366 controls

EPHA1
(rs11767557)

OR = 0.90
(95% CI: 0.86, 0.93)

6.0 ×10–10 Consortium
meta-analysis, discovery
+ replication
(EA)

18,762 cases
35,597 controls

MS4A4A
(rs4938933)

OR = 0.88
(95% CI: 0.85, 0.92)

1.7 ×10–9 Consortium
meta-analysis, discovery
+ replication
(EA)

8309 cases
7366 controls

PICALM
(rs561655)

OR = 0.87
(95% CI: 0.84, 0.91)

7.0 ×10–11 Consortium
meta-analysis, replication
(EA)

8309 cases
7366 controls

Erythrocyte
sedimentation rate

C1orf63
(rs1043879)

β = −0.09 2 ×10–9 eMERGE joint analysis,
discovery + replication
(EA)

7607 individuals Kullo et al., 2011

CR1
(rs650877)

β = −0.18 3 ×10–26 eMERGE joint analysis,
discovery + replication
(EA)

7607 individuals

CRIL
(rs7527798)

β = 0.10 2 ×10–9 eMERGE joint analysis,
discovery + replication
(EA)

7607 individuals

TMEM50A
(rs25547372)

β = −0.10 2. × 10–13 eMERGE joint analysis,
discovery + replication
(EA)

7607 individuals

TMEM57
(rs25631242)

β = −0.10 1 ×10–12 eMERGE joint analysis,
discovery + replication
(EA)

7607 individuals

TMEM57
(rs25641524)

β = −0.10 5 ×10–13 eMERGE joint analysis,
discovery + replication
(EA)

7607 individuals

HDL-C CETP
(rs3764261)

β = 2.25
(SE = 0.21)

1.22 ×10–25 eMERGE analysis,
replication
(EA)

3740 individuals Turner et al., 2011b

LIPC
(rs11855284)

β = 2.00
(SE = 0.26)

3.92 ×10–14 eMERGE analysis,
replication
(EA)

3740 individuals

(Continued)
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Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

Hypothyroidism FOXE1
(rs7850258)

OR = 0.74
(95% CI: 0.67, 0.82)

3.96 ×10–9 eMERGE joint analysis,
discovery
(EA)

1317 case
5053 controls

Denny et al., 2011

LDL-C APOE
(rs7412)

β = −20.0 mg/dl
(95% CI: −25.9,
−14.1)

6.3 ×10–11 eMERGE joint analysis,
discovery
(AA)

618 individuals Rasmussen-Torvik
et al., 2012

Monocyte count CCBP2
(rs2228467)

β = 0.32 2.39 ×10–8 eMERGE joint analysis,
discovery
(EA)

11,014
individuals

Crosslin et al., 2013

IRF8
(rs424971)

β = −0.25 6.32 ×10–18 eMERGE joint analysis,
discovery
(EA)

11,014
individuals

ITGA4
(rs2124440)

β = −0.22 1.35 ×10–14 eMERGE joint analysis,
replication
(EA)

11,014
individuals

RPN1
(rs2712381)

β = −0.22 4.52 ×10–14 eMERGE joint analysis,
replication
(EA)

11,014
individuals

PheWAS EXOC2
(rs12210050)

OR = 1.32
(95% CI: 1.20, 1.45)

1.9 ×10–8 eMERGE pooled
analysis, discovery for
actinic keratosis
(EA)

13,835
individuals

Denny et al., 2013

IRF4
(rs12203592)

OR = 1.69 (95% CI:
1.53, 1.86)

4.1 ×10–26 eMERGE pooled
analysis, discovery for
actinic keratosis
(EA)

13,835
individuals

IRF4
(rs12203592)

OR = 1.50
(95% CI: 1.36, 1.64)

3.8 ×10–17 eMERGE pooled
analysis, discovery for
non-melanoma skin
cancer
(EA)

13,835
individuals

NM37
(rs16861990)

OR = 3.71
(95% CI: 2.57, 5.34)

2.0 ×10–12 eMERGE pooled
analysis, discovery for
hypercoagulable state
(EA)

13,835
individuals

TYR
(rs1847134)

OR = 1.28
(95% CI: 1.18, 1.38)

2.6 ×10–10 eMERGE pooled
analysis, discovery for
non-melanoma skin
cancer
(EA)

13,835
individuals

Platelets ARHGEF3
(rs1354034)

β = −0.19 9.0 ×10–34 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals Shameer et al., 2014

ARHGEF3
(rs1354034)

β = 7.97 6.0 ×10–24 eMERGE pooled
analysis, discovery for
platelet counts
(EA)

13,424
individuals

BET1L
(rs11602954)

β = −6.46 5.0 ×10–12 eMERGE pooled
analysis, discovery for
platelet counts
(EA)

13,424
individuals

(Continued)

www.frontiersin.org June 2014 | Volume 5 | Article 184 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Crawford et al. eMERGE Genomics Work Group review

Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

DNM3
(rs2180748)

β = 0.09 2.0 ×10–8 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals

FLJ36031-
PIK3CG
(rs342240)

β = −0.15 5.0 ×10–22 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals

HBS1L-MYB
(rs4895441)

β = −5.42 9.0 ×10–10 eMERGE pooled
analysis, discovery for
platelet counts
(EA)

13,424
individuals

JMJD1C
(rs4379723)

β = 0.13 3.0 ×10–16 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals

NFE2
(rs10506328)

β = −0.09 2.0 ×10–9 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals

RCL1
(rs423955)

β = 4.94 1.0 ×10–9 eMERGE pooled
analysis, discovery for
platelet counts
(EA)

13,424
individuals

SH2B3
(rs3184504)

β = −5.33 5.0 ×10–11 eMERGE pooled
analysis, discovery for
platelet counts
(EA)

13,424
individuals

TAOK1
(rs9900280)

β = 0.10 1.0 ×10–10 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals

TMCC2
(rs9660992)

β = 0.11 3.0 ×10–13 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals

WDR66
(rs7961894)

β = −0.31 6.0 ×10–38 eMERGE pooled
analysis, discovery for
mean platelet volume
(EA)

6291 individuals

QRS duration SCN5a
(rs1805126)

β = −1.0 1.45 ×10–8 eMERGE pooled
analysis, replication
(EA)

5272 individuals Ritchie et al., 2013

Red blood cell traits G6PD
(rs1050828)

β = −0.20
(SE = 0.03)

4.0 ×10–13 eMERGE pooled
analysis, discovery +
replication for RBC count
(AA)

2315 individuals Ding et al., 2013

G6PD
(rs1050828)

β = 2.46
(SE = 0.32)

1.0 ×10–14 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular volume
(AA)

2315 individuals

(Continued)
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Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

G6PD
(rs1050828)

β = 0.72
(SE = 0.12)

9.0 ×10–9 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular hemoglobin
(AA)

2315 individuals

ITFG3
(rs9924561)

β = −3.57
(SE = 0.32)

5.0 ×10–29 eMERGE pooled
analysis, discovery +
replication for mean cell
volume
(AA)

2315 individuals

ITFG3
(rs9924561)

β = −1.56
(SE = 0.12)

8.0 ×10–36 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular hemoglobin
(AA)

2315 individuals

ITFG3
(rs9924561)

β = −0.47
(SE = 0.06)

4.0 ×10–13 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular hemoglobin
concentration
(AA)

2315 individuals

(rs7120391) β = 0.30
(SE = 0.05)

5.0 ×10–9 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular hemoglobin
concentration
(AA)

2315 individuals

Red blood cell traits CDT1
(rs837763)

−0.06 2.0 ×10–8 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular hemoglobin
concentration
(EA)

12,486
individuals

Ding et al., 2012

PTPLAD1/
C15orf44
(rs8035639)

0.13 8.0 ×10–9 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular hemoglobin
(EA)

12,486
individuals

THRB
(rs9310736)

0.35 6.0 ×10–9 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular volume
(EA)

12,486
individuals

(rs9937239) 0.06 2.0 ×10–8 eMERGE pooled
analysis, discovery +
replication for mean
corpuscular hemoglobin
concentration
(EA)

12,486
individuals

Type 2 diabetes TCF7L2
(rs7903146)

OR = 1.41 2.98 ×10–10 eMERGE meta-analysis,
replication
(EA)

2413 cases
2392 controls

Kho et al., 2012

(Continued)
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Table 1 | Continued

Phenotype Nearest gene Genetic effect P Study design Sample References

(rs number) size (Population) size

White blood cell count DARC
(rs12075)

β = 1.28
(SE = 0.12)

4.92 ×10–24 eMERGE joint analysis,
discovery
(AA)

361 individuals Crosslin et al., 2012

White blood cell count GSDMA
(rs3859192)

β = 0.14
(SE = 0.02)

1.75 ×10–12 eMERGE joint analysis,
discovery
(EA)

13,562
individuals

Crosslin et al., 2012

MED24
(rs9916158)

β = −0.13
(SE = 0.02)

4.92 ×10–10 eMERGE joint analysis,
discovery
(EA)

13,562
individuals

PSMD3
(rs4065321)

β = 0.14
(SE = 0.02)

3.47 ×10–11 eMERGE joint analysis,
discovery
(EA)

13,562
individuals

The eMERGE network has conducted or contributed data toward genome-wide association studies. For each study with genome-wide significant results

(p < 5 × 10−8), we list the primary phenotype, the nearest genes associated, the index rs number, the reported genetic effect size, the p-value, the study design,

the population, the sample size, and the reference. Abbreviations: AA, African American; EA, European American; β, beta; CI, confidence interval; OR, odds ratio;

SE, standard error.

Despite potential differences in billing and coding practices across
study sites, a total of 1317 cases and 5053 controls were identi-
fied with average weighted positive predictive values of 92.4 and
98.5, respectively (Denny et al., 2011). The subsequent GWAS
identified common genetic variants near FOXE1 associated with
European American cases, and the findings were replicated in an
independent dataset from the Mayo Genome Consortia as well
as externally in the literature (Eriksson et al., 2012). These stud-
ies illustrate that existing genotype data linked to EMR data can
be reused for other genomic discovery studies, a potentially cost-
effective strategy. However, further study is needed to determine
the extent of biases that were introduced in the generation of these
data that may impact the widespread adoption of this strategy
across a range of phenotypes available in the EMR.

As evident in the FOXE1/hypothyroidism example, existing
genotype data linked to EMR data enable the relatively rapid
identification of cases and controls for traditional GWAS where
one disease or trait is studied. These data have also enabled
the study of pleiotropy, whereby a genetic variant influences or
impacts multiple phenotypes or traits (Stearns, 2010; Solovieff
et al., 2013). In one popular approach, known as phenome-
wide association studies or PheWAS, a GWAS-identified variant
is interrogated for other associations throughout the available
phenome. PheWAS has been performed in both epidemiologic
(Pendergrass et al., 2013a) and EMR-based datasets such as
eMERGE (Denny et al., 2010a, 2013). Collectively, these and other
data (Sivakumaran et al., 2011) suggest that pleiotropy among
GWAS-identified variants is not uncommon. PheWAS con-
ducted in the EMR setting can reveal novel genotype-phenotype
pleiotropic relationships not possible in traditional epidemio-
logic cohorts. For example, a recent PheWAS in the eMERGE
participants of European ancestry revealed a potential associ-
ation between actinic keratosis and IRF4 rs12203592 (Denny
et al., 2013) (Table 1), a GWAS-identified variant previously
associated with hair color, eye color, and non-melanoma skin

cancer (Han et al., 2008; Eriksson et al., 2010; Zhang et al.,
2013).

Much like its contributions toward the study of pleiotropy,
the eMERGE network is beginning to make substantial contribu-
tions to understudied or burgeoning areas of interest in genomic
discovery such as the study of pediatric populations and diverse
racial/ethnic groups. Indeed, with the addition of the pediatric
study sites, eMERGE II boasts one of the largest collections of
pediatric DNA samples linked to EMRs for genomic discovery
(Gottesman et al., 2013). The current version (2) of the merged,
imputed eMERGE II dataset includes >12,000 pediatric samples
linked to EMRs. As of March 15, 2014, fewer than 5% of the
GWAS annotated by the NHGRI GWAS Catalog (Welter et al.,
2014) mention children as a study population, highlighting the
tremendous opportunity for genomic discovery in this cohort.
To calibrate the eMERGE II datasets, a site-specific investigation
was recently performed for body mass index (BMI) z-scores using
BMI extracted from the pediatric EMRs and calculated using
the Centers for Disease Control and Prevention (CDC) growth
charts (Namjou et al., 2013). Similar to epidemiologic datasets
(Frayling et al., 2007; Meyre et al., 2009; Scherag et al., 2010), this
EMR-based study demonstrated that adult GWAS-identified obe-
sity variants such as those in FTO were also relevant for children
of European-descent (Namjou et al., 2013). Genomic discovery
using GWAS in pediatric populations is currently underway in
eMERGE II for complex phenotypes such as autism and asthma.

In the past several years, most GWAS have included indi-
viduals of European ancestry (Rosenberg et al., 2010). Indeed,
only approximately 10% of the GWAS annotated in the NHGRI
GWAS Catalog include populations of African ancestry (https://
www.genome.gov/26525384). The eMERGE network is signifi-
cantly poised to contribute to GWA studies for populations of
non-European ancestry given that several study sites (notably
Northwestern University, Vanderbilt University, and The Icahn
School of Medicine at Mount Sinai) include participants of
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African ancestry. eMERGE I has already contributed genome-
wide associated variants (at a threshold of p < 10−5) in par-
ticipants of African ancestry to the NHGRI GWAS Catalog for
LDL-C (Rasmussen-Torvik et al., 2012), red blood cell traits
(Ding et al., 2013), white blood cell traits (Crosslin et al., 2012),
type 2 diabetes (Kho et al., 2012), and electrocardiographic traits
(Jeff et al., 2013). As an extension of GWAS, eMERGE investiga-
tors have also begun fine-mapping GWAS-identified regions to
identify the best index variant in African ancestry populations as
well as exploring alternative genomic discovery methods such as
admixture mapping to identify potentially novel or population-
specific associations (Jeff et al., 2014).

Beyond conventional GWAS, the eMERGE network has also
led efforts to identify genetic (G × G) and environmental (G × E)
modifiers of common, complex phenotypes. In an early example,
eMERGE investigators used extrinsic biological knowledge via the
Biofilter algorithm (Bush et al., 2009) to prioritize genetic vari-
ants for SNP-SNP modeling to identify gene-gene interactions
relevant for HDL-C (Turner et al., 2011b). The extrinsic biolog-
ical knowledge approach has also been recently implemented for
both G × G and G × E tests of association for cataracts, with the
latter including only environmental variables known to be asso-
ciated with the eye disease (Pendergrass et al., 2013b,c). Finally,
eMERGE investigators have implemented environmental-wide
association studies (EWAS) to identify and prioritize environ-
mental factors important for type 2 diabetes (Hall et al., 2014),
a relatively new approach to identify all possible environmental
variables that may be relevant for G × E studies for the disease of
interest.

eMERGE SECOND GENERATION GWAS
The majority of GWAS described to date for the eMERGE net-
work represent data and efforts from phase I of the network’s
existence. Phase II analyses of larger, more diverse sample sizes are
on-going (Gottesman et al., 2013). As documented and described
in an accompanying article (Verma et al., in press), eMERGE
II network datasets include single site datasets, a network-
wide merged genotyped dataset, single site imputed datasets,
and a network-wide merged imputed dataset; the merged set
includes >36 million SNPs for samples from >50,000 indi-
viduals linked to EMRs. Imputation of the X-chromosome is
underway, and future eMERGE II analyses will include this
chromosome. Network-wide efforts are also underway to anno-
tate copy number variants (Connolly et al., 2014) as well as
to annotate and identify potentially deleterious null variants.
Site-specific efforts are also underway to collect or extract addi-
tional standardized environmental data for GxE studies using
the PhenX Toolkit (Hamilton et al., 2011; McCarty et al.,
2014). Efforts are underway to develop analytical approaches
for repeated measures data characteristic of the EMR, to con-
duct mapping studies for populations with three-way admixture
events, and to incorporate phenotyping uncertainty when bal-
ancing sample size/power and misclassification (McDavid et al.,
2013). With >36 million SNPs, large sample sizes, and phe-
notypically dense EMRs, eMERGE II and beyond promises
to continue genomic discovery in the second generation of
GWAS.
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The electronic MEdical Records and GEnomics (eMERGE) network brings together
DNA biobanks linked to electronic health records (EHRs) from multiple institutions.
Approximately 51,000 DNA samples from distinct individuals have been genotyped
using genome-wide SNP arrays across the nine sites of the network. The eMERGE
Coordinating Center and the Genomics Workgroup developed a pipeline to impute and
merge genomic data across the different SNP arrays to maximize sample size and power to
detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan
reference panel was used for imputation. Imputation results were evaluated using the
following metrics: accuracy of imputation, allelic R2 (estimated correlation between the
imputed and true genotypes), and the relationship between allelic R2 and minor allele
frequency. Computation time and memory resources required by two different software
packages (BEAGLE and IMPUTE2) were also evaluated. A number of challenges were
encountered due to the complexity of using two different imputation software packages,
multiple ancestral populations, and many different genotyping platforms. We present
lessons learned and describe the pipeline implemented here to impute and merge
genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for
discovery, leveraging the clinical data that can be mined from the EHR.

Keywords: imputation, genome-wide association, eMERGE, electronic health records

Abbreviations: AA, African American descent; ACT, Group Health Illumina
Human Omni Express genotyped subject dataset; AffyA6, Affymetrix Genome-
Wide Human SNP Array 6.0; BCH, Boston Children’s Hospital, eMERGE network
site; BEAGLE, BEAGLE Genetic Analysis Software Package; CCHMC, Cincinnati
Children’s Hospital Medical Center, eMERGE network site; CHOP, The Children’s
Hospital of Philadelphia, eMERGE network site; DDR3, an abbreviation for double
data rate type three synchronous dynamic random access memory in comput-
ing systems; EA, European American descent; EHRs, Electronic Health Records;
eMERGE, The Electronic Medical Records and Genomics (eMERGE) Network is
a national consortium organized by NHGRI; GB, A unit of computer memory or
data storage capacity equal to 1024 megabytes; GHz, When measuring the speed
of microprocessors, a GHz represents 1 billion cycles per second; HA, Hispanic
American descent; HapMap, The HapMap is a catalog of common genetic variants
that occur in human beings; IBD, identical by descent (IBD); IMPUTE2, IMPUTE
version 2 (also known as IMPUTE2) is a genotype imputation and haplotype phas-
ing program; kB, kilobyte is a multiple of the unit byte for digital information, 1024
bytes; kbp, kbp stands for kilobase pairs, a unit of length equal to 1000 base pairs in
deoxyribonucleic acid or 1000 nitrogenous bases in ribonucleic acid; KING, soft-
ware making use of high-throughput SNP data for determining family relationship
inference and pedigree error checking and other uses; LD, linkage disequilibrium
(LD) SNPs in the genome that can represent broader genomic regions; LIFTOVER,

INTRODUCTION
Imputation methods are widely used for inferring unobserved
genotypes in a genotypic dataset using haplotypes from a more
densely genotyped reference dataset (Browning, 2008; Howie
et al., 2009, 2011, 2012; Li et al., 2009). This process is partic-
ularly important when combining or performing meta-analysis
on data generated using multiple different genotyping platforms.
Imputation allows for the utilization of a reference dataset and
a genotyping backbone, identifying what the unobserved likely

software tool that converts genome coordinates and genome annotation files
between assemblies; MAF, minor allele frequency (MAF) refers to the frequency at
which the least common allele occurs in a given population; MB, unit of computer
memory or data storage capacity equal to 1,048,576 bytes (1024 kilobytes or 220)
bytes; NHGRI, National Human Genome Research Institute; NWIGM, Northwest
Institute of Genetic Medicine (NWIGM): Group Health Illumina 660W-Quad
BeadChip genotyped subject dataset; PCA, Principal Component Analysis; Pos,
chromosome position of a SNP; SHAPEIT2, version 2 of the haplotype inference
software; UCSC, The University of California, Santa Cruz (UCSC).
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SNPs are using patterns of linkage disequilibrium (LD) amongst
surrounding markers. Multiple imputation software packages and
algorithms have been developed for imputing SNPs (Browning,
2008; Browning and Browning, 2009; Li et al., 2010; Delaneau
et al., 2013) (Howie et al., 2012, 2009). Although each method
has clear strengths and limitations, a single “best-practice” impu-
tation software package has not yet emerged as each tool will have
different assumptions, benefits and weaknesses.

In the electronic MEdical Records and GEnomics (eMERGE)
network (Gottesman et al., 2013) funded by the National Human
Genome Research Institute (NHGRI), multiple genotyping plat-
forms were have been used to generate genome-wide genotype
data for thousands of patient samples and a variety of pheno-
types extracted from electronic health records (EHR). To allow
for either meta-analysis across the eMERGE sites or a com-
bined mega-analysis whereby all of the eMERGE datasets are
combined in a single analysis, imputation is essential to fill
in the missing genotypes caused by using disparate genotyp-
ing platforms. The eMERGE Coordinating Center (CC) at the
Pennsylvania State University performed genotype imputations
for the eMERGE Phase-II project data [which includes all sam-
ples from eMERGE-I (McCarty et al., 2011; Zuvich et al., 2011),
and eMERGE-II (Gottesman et al., 2013; Overby et al., 2013)
using two different imputation pipelines: (1) BEAGLE (Browning
and Browning, 2009) version 3.3.1 for phasing and imputation,
and (2) SHAPEIT2 (version r2.644) (Delaneau et al., 2013) for
phasing in combination with IMPUTE2 (version 2.3.0) soft-
ware (Howie et al., 2012) for imputation. Imputation was per-
formed for all autosomes, with a cosmopolitan reference panel
selected from the 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2012). BEAGLE used the October 2011 release
and IMPUTE2 used the March 2012 release based on the tim-
ing of when imputations were performed. We did not perform
X-chromosome imputations as part of this paper but the impu-
tation of the X chromosome for these datasets is currently in
progress. In these imputations, 1000 Genomes cosmopolitan
reference panel was selected whereby 1092 samples from mul-
tiple race, ethnicity and ancestry groups were included in the
reference panel. Using a cosmopolitan reference panel is advanta-
geous when imputing data based on multiple ancestry or mixed-
ancestry groups (Howie et al., 2011), as is the case in eMERGE
datasets. To maximize our use of computational resources and
allow for high quality imputations, the CC imputed the data as
they were submitted to the CC, in datasets by site and geno-
typing platform, using the cosmopolitan panel from the 1000
Genomes.

Imputed data from all eMERGE sites were merged based
on the set of intersecting SNPs present in all datasets. For the
merging process, datasets that were not genotyped on dense,
genome wide platform, and the datasets with fewer than 100
samples were not included as these sets routinely showed much
lower quality imputation results (See Materials and Methods;
additional data not shown). For example, genotyping panels con-
taining markers in only some regions of the genome [such as
the Illumina MetaboChip (Voight et al., 2012)] do not pro-
vide a suitable backbone for high quality genome-wide impu-
tation. We looked at the quality of imputation in each of these

datasets by the estimated imputation “info” score (See Results).
Additionally, for datasets with very small sample size and/or
not genotyped densely, median info score was close to 0 (For
e.g., CHOP Illumina OmniExpress dataset with only 32 samples
had median info score of 0.007), so we excluded these datasets
from the merged data. After imputation and merging of the
datasets, quality control procedures were implemented to create
high quality, analysis-ready data set for genome-wide association
studies.

Here we describe the imputation pipelines implemented using
BEAGLE and SHAPEIT2/IMPUTE2; provide results of the two
imputation pipelines; and describe the quality control procedures
after merging multiple imputed datasets. Numerous lessons were
learned along the way for each of these imputation pipelines and
we share all of the challenges encountered in the project. The
imputation and quality control procedures resulted in unique and
comprehensive a dataset of over 50,000 samples with genotypes
imputed to the 1000 Genomes reference panel, all linked to de-
identified EHR to allow for a vast array of genotype-phenotype
association studies.

MATERIALS AND METHODS
STUDY DATA
The eMERGE network consists of seven adult sites and two
pediatric sites, each with DNA databanks linked to EHR. Each
site in the network has a set of at least 3000 samples that
have been genotyped on one or more genotyping platforms
(Gottesman et al., 2013). Table 1 provides a summary of the
number of samples from each site and the genotyping plat-
forms used. Previous studies have shown that the quality of
input genotype data does not affect imputation quality in a
significant manner (Southam et al., 2011), but nevertheless we
selected the genomic data sets for the current imputation study
that had all undergone the pre-processing recommended by the
eMERGE CC to eliminate samples and SNPs with call rates less
than 99–95% depending on the coverage of genotyping for each
platform (Zuvich et al., 2011). Minor allele frequency (MAF)
threshold of 5% was also applied. This ensures that only high
quality data were considered for imputation and downstream
analyses.

Several eMERGE sites genotyped duplicate samples on multi-
ple different genotyping platforms, for quality control purposes.
A total of 56,890 samples were submitted to the eMERGE CC
for imputation, out of which 53,200 samples were unique. All of
these samples were genotyped and deposited to CC at different
times, so imputation was performed as the datasets arrived. This
resulted in imputing some datasets with fewer than 100 samples.
When the dataset was less than 100 samples, we included the 1000
Genomes dataset with the study data during phasing. We imputed
all samples; however, for the purpose of merging the data, we only
merged high quality datasets (defined by having masked analy-
sis concordance rate greater than 80%; described in more detail
below). We included only one sample from pairs of duplicates;
specifically the sample genotyped on the higher density genotyp-
ing platform. Our final merged dataset contains 51,035 samples.
Samples that had low quality due to either of the following two
reasons were not included:
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Table 1 | Sample summary across all eMERGE datasets.

Sample set Genotyping platform Samples for imputations Samples in merged data set

ADULT DNA SAMPLES

eMERGE-I 1M Illumina 1M 2634 2634

eMERGE-I 660 Illumina 660 18663 16029

Geisinger OMNI Illumina HumanOmni Express 3111 3111

Geisinger Metabochip Metabochip 918 0

Mayo Clinic Illumina Human 610, 550, and 660W Quad-v1 3149 3118

Mt. Sinai AA Affymetrix 6.0 863 863

Mt. Sinai EA Affymetrix 6.0 700 700

Mt. Sinai HA Affymetrix 6.0 1212 1212

Mt. Sinai OMNI_AA Illumina HumanOmni Express 3515 3515

Northwestern University Illumina HumanOmni Express 12v1_C 3030 2951

Vanderbilt University Illumina HumanOmni Express 12v1_C 3565 3461

Group Health/ACT Illumina HumanOmni Express 398 398

Group Health/NWIGM Illumina 660W-Quad Beadchip 341 333

Marshfield Clinic Affymetrix/Illumina 660 500 500

Total for adult DNA samples 42,599 38,824

PEDIATRIC DNA SAMPLES

CCHMC 610/660W/AffyA6/OMNI1/OMNI5 5558 4322

BCH Affymetrix Axiom 1038 1038

CHOP 550/610/Beadchip/AffyA6/AffyAxiom/OmniExpress 7695 6850

Total for pediatric DNA samples 14,291 12,210

Total 56,890 51,035

“Samples for imputations” column contain number of samples that were obtained by coordinating center at different time points. “Samples in merged dataset”

contain number of unique samples that were used in merged dataset. For the samples that were genotyped on multiple platforms, sample on platform with high

genotype efficiency was used in merged dataset.

1. Samples not genotyped on dense, genome-wide genotyping
platform (e.g., the MetaboChip).

2. Sample size of the dataset on the specific platform for phas-
ing was fewer than 100 (as recommended in SHAPEIT2
guidelines).

A small number of samples were also genotyped for two
SNPs (rs1799945 and rs1800562) using commercially avail-
able 5′-nuclease assays (TaqMan® Assay; Life Technologies).
Genotyping reactions were carried out in 10 µl volumes in an
ABI 7500 Fast Real-Time PCR System (Life Technologies). The
genotypes were called using ABI 7500 software version 2.0.4 (Life
Technologies). These data were used to evaluate the concordance
of imputed genotypes with TaqMan generated genotypes.

PRE-IMPUTATION DATA PROCESSING
The quality of imputation relies on the quality of the refer-
ence panel as well as the quality of the study data. To ensure
high data quality, there are a number of steps that were taken
before imputation begins. At the start of the BEAGLE imputa-
tion, the GENEVA HAPO European Ancestry Project Imputation
Report (Geneva_Guidelines1) by Sarah Nelson through GENEVA

1Available at: https://www.genevastudy.org/sites/www/content/files/data
cleaning/imputation/Lowe_Eur_1000G_imputation_final.pdf

(Gene-Environment Association Studies) was used as a guide
and a starting point for implementation of the eMERGE
imputation pipeline. GENEVA is an NIH-funded consortium of
sixteen genome-wide association studies (GWAS) and this guide
served as the basis to begin the eMERGE Phase-II imputation
process.

CONVERTING REFERENCE PANEL AND STUDY DATA TO THE SAME
GENOME BUILD
The genotype data were initially accessed from binary PLINK
files (Purcell et al., 2007). All SNP names and locations for
the genotypic data being imputed had to be specified based
on the same genome build, as well as the same genome build
of the reference genome. The Genome Reference Consortium
Human build 37 (GRCh37 or build 37) is the reference genome
used in our study (2010). Some eMERGE sites had their
data in build 37, while others were still in build 36. Any
datasets that were not in build 37 were first converted from
build 36 to build 37 using the Batch Coordinate Conversion
program liftOver (Karolchik et al., 2011) via the following
steps:

1. SNPs with indeterminate mappings were removed (either
unknown chromosome and/or unknown position) in build 37.

2. SNP names were updated.
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3. The chromosome positions were updated.
4. The base pair positions were updated.

The program liftOver is a tool developed by the Genome
Bioinformatics team at the University of California, Santa Cruz
(UCSC) to convert genome coordinates and genome annotation
files between assemblies. This process ensures that all study data
from eMERGE sites and the 1000 Genomes reference data are
referring to SNPs by the same alleles and genome location.

CHECKING STRAND
Study and reference data allele calls must be on the same strand
for proper imputation, however the strand could vary from study
site to study site due to genotyping platform and calling algo-
rithm. High quality imputation is exceptionally reliant upon the
study and reference data allele calls to be on the same physi-
cal strand of DNA in respect to the human genome reference
sequences (“reference”). Datasets could have different notations
depending on the genotyping platform and the calling algo-
rithm. For example, Genome Studio will allow the user to create
genotype files using different orientations. In addition, some
users may use custom genotype callers—not provided by the
genotyping chip manufacturer. For example, some platforms use
the forward strand of the human genome assembly and some
use Illumina’s TOP alleles, and some use Illumina’s AB alleles
(Illumina TechNote2). To identify the SNPs requiring a strand
flip to convert the forward allele to the “+” strand of the human
genome reference assembly so that all sites were consistent in
terms of the same strand, we used the BEAGLE strand check util-
ity for BEAGLE imputations and the SHAPEIT2 strand check
for IMPUTE2 imputations even though IMPUTE2 automati-
cally addresses ambiguous strand alignments by comparing allele
labels. During strand check, alleles are changed to their com-
plementary alleles (C-G and A-T) based on three criteria: (a)
the observed alleles, (b) minor allele frequencies (MAF), and (c)
linkage-disequilibrium (LD) pattern within 100-SNP windows.
SNPs where MAF and LD patterns are inconsistent and also can-
not be resolved by flipping, those SNPs are discarded from the
dataset. Before phasing, we subset the data by chromosomes and
also flipped strand for the SNPs to align the dataset with “+”
strand so that it corresponds to reference panel strand correctly.

PHASING
Haplotype phasing is the next step after ensuring that all data
was using the same strand, identifying alleles co-localized on
the same chromosome. BEAGLE performs phasing jointly with
imputations. “Pre-phasing” indicates that a computational step is
implemented prior to imputation where haplotype phase is esti-
mated for all of the alleles. We utilized a pre-phasing approach
because it helps to make the process of imputation faster, and the
phased data can be used for any future imputation of the data.
Improved reference panels will be introduced over time, and thus
having the data saved pre-phased for imputation can speed up
later imputation of the data. Phasing the data can introduce some

2Available at: http://res.illumina.com/documents/products/technotes/tech
note_topbot.pdf

error to the imputations, because of any haplotype uncertainty
(Howie et al., 2012).

For IMPUTE2 imputations, following “best practices” guide-
lines in the IMPUTE2 documentation (Howie et al., 2009)
(Impute2, 2.3.0) we first phased the study data with the
SHAPEIT2 haplotype estimation tool (Howie et al., 2012). We
were able to reduce general runtime through using multiple
computational processing cores via the “—thread” argument. A
general example of the command line syntax used to run the
SHAPEIT2 program on chromosome 22 using the “—thread”
argument is shown below:

shapeit2 --input-ped StudyData_chr22.ped
StudyData_chr22.map \
--input-map genetic_map_chr22_combined_
b37.txt \
--output-max StudyData_chr22.haps
StudyData_chr22.sample \
--thread 2 --output-log shapeit_chr22.log

IMPUTATION USING BEAGLE
To expedite the imputation using BEAGLE, we divided each chro-
mosome into segments including 30,000 SNPs each (referred to
as SNPlets), following one of several recommendations in the
BEAGLE documentation (Browning and Browning, 2009) for
imputing large data sets. A buffer region of 700 SNPs was added
to each end of every SNPlet to account for the degradation in
imputation quality that may occur at the ends of imputed seg-
ments. An illustration of this segmentation is shown in Figure 1.
Partitioning was implemented by dividing the “.markers” files
created at the end of the strand check into 1 “.markers” file for
each SNPlet of 30,000 SNPs and a 700 SNP buffer region on
either end. In each results file, the data for all SNPs in the buffer
regions were removed such that each imputed SNP had results
from only one segment. The SNP annotation and quality metrics
file accompanying these data indicate to which segment each SNP
was assigned.

Below is an example of the command line syntax used to run
BEAGLE on the first segment of chromosome 22. The “phased=”
argument corresponds to the 1000 Genome Project reference
panel input file; the “excludemarkers=” argument points to a
combined list of SNPs that are either (1) triallelic SNPs or (2) have
reference MAF < 0.005. The “unphased=” argument points to a
BEAGLE-formatted input file:

java -Djava.io.tmpdir=/scratch/tmp
-Xmx4700m -jar BEAGLE.jar \
unphased= chr22_mod.bgl \
phased= chr22.filt_mod.bgl \
markers= chr22_*.markers \
excludemarkers= allchr22_snpsexclude.txt \
lowmem=true verbose=true missing=0
out=out_chr22set1

IMPUTATION USING IMPUTE2
To perform imputation with IMPUTE2 on our phased data, we
divided each chromosome into base pair regions of approximately
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FIGURE 1 | Chromosome segmentation strategy for genome-wide

imputation with BEAGLE. Each chromosome was divided into SNPlets
which included 30,000 SNPs with a buffer of 700 SNPs at each end.

FIGURE 2 | Chromosome segmentation strategy for imputation with

IMPUTE2. Each chromosome was divided into 6 MB segments with
250 kbp overlap between them.

6 Mb in size, beginning at the first imputation target, as displayed
in Figure 2. As a result, we partitioned 22 autosomes into 441
segments, ranging from only 7 segments on chromosome 21, to
the largest number of segments (39) on chromosome 2. It is of
interest to note that there were 36 segments on chromosome 1. It
was beneficial to use this process of breaking the genotypic data
into smaller regions because IMPUTE2 has been reported to have
improved accuracy over smaller genomic regions and also sepa-
rating data into segments helps allows for the parallelization of
jobs over a multi-core compute cluster. Segments either overlap-
ping the centromere or at the terminal ends of chromosomes were
merged into the segment immediately upstream.

IMPUTE2 labels SNPs by the panels in which they have been
genotyped. Each label denotes a specific functional role. SNPs that
have genotype data only in the reference panel are labeled Type
0 or Type 1 (for phased and unphased reference panels, respec-
tively), whereas SNPs that have genotypes in the study dataset
are labeled Type 2. These are considered SNPs for the imputa-
tion basis. Type 2 SNPs dictate which reference panel haplotypes
should be “copied” for each individual; then, the reference panel
alleles at Type 0/1 SNPs are used to fill in the missing genotypes of
the individual.

As recommended by the IMPUTE2 guidelines, we ensured
that each base pair region that was imputed contained at least
some observed (type-2) SNPs. To utilize type-2 SNPs for esti-
mating haplotype structure, a buffer region on both sides of
segments is required. 250 kb buffer region is default for IMPUTE2
so we used the default buffer size of 250 kb for eMERGE
imputations. By default, IMPUTE2 flanks imputation segments
with a 250 kb buffer, where type-2 SNPs are used to estimate
haplotype structure. We used the default buffer size of 250 kb for
imputations.

An example of the command line syntax we used to run first
6 MB segment (pre-phased) for chromosome 22 by IMPUTE2
(version 2) is shown below:

impute2 -use_prephased_g -m genetic_map_
chr22_combined_b37.txt \
-h ALL_1000G_phase1interim_jun2011_chr22_
impute.hap.gz \
-l ALL_1000G_phase1interim_jun2011_chr22_
impute.legend.gz \
-int 16000001 2.1e+07 -buffer 500 -allow_
large_regions \
-known_haps_g StudyData_chr22.haps \
-filt_rules_l Study_data.maf<0.001
-align_by_maf_g \
-o StudyData_chr22.set1.gprobs \
-i StudyData_chr22.set1.metrics -verbose

RESULTS
COMPUTATION TIME AND MEMORY USAGE
Imputation jobs were run in parallel across several high-
performance computing clusters; specialized systems were chosen
depending on the memory and processor requirements of the
software and the size of the datasets. Figure 3 shows the work-
flow of both imputation methods using the different software and
how the performance results and computational requirements
differed for each. Each job required between 4 and 24 GB RAM
and from 4 to 80 CPUs (cores). The number of jobs submitted
to be run in parallel also ranged from a few 100 to several 1000
at a time according to the sample size of each data set. Table 2A
provides information on one of the computing clusters that were
used to perform these extensive imputations by the eMERGE
CC. Table 2B lists maximum time and memory from each of the
datasets that was required to run both imputation and phasing.
One thing to note here is that according to available sources at the
time of running specific job, different CPU cores were utilized.

The largest variance for computing resource requirements was
in the computational time required on the same cluster comput-
ing systems for the two different pipelines. Previous studies have
compared both BEAGLE and IMPUTE2 programs based on the
quality and imputation times (Pei et al., 2008; Howie et al., 2009,
2011; Nothnagel et al., 2009). Our work similarly showed that
IMPUTE2 ran much faster than BEAGLE. For BEAGLE imputa-
tions, SNPlet runtimes varied between 40 and 200 h, on average
using 6 GB of memory for each job for a total of 1.64 × 106 CPU
hours.

In summary SHAPEIT2 and IMPUTE2 processing, took only
13 h on an average for phasing using 10 GB memory with a max-
imum of 16 CPUs (4 cluster computing nodes where each node
had 4 CPUs). Similarly imputations on average could be com-
pleted in 4.5 h of time using 24 CPUs (across multiple cluster
nodes). For processing the final merged set, approximately 80
CPUs were required. The total computational time required for
the SHAPEIT2 and IMPUTE2 processing was less than 600 CPU
hours. Using the pre-phasing approach, imputation time was
decreased by more than 10–fold with the unfortunate side-effect
of utilizing intensive memory.
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FIGURE 3 | Workflow and performance metrics for imputation with BEAGLE and IMPUTE2.

COMPARISION OF BEAGLE AND IMPUTE2
BEAGLE and IMPUTE2 methods have been compared exten-
sively by previous studies of a single ancestry (i.e., European or
African) and using a cosmopolitan reference panel (Browning
and Browning, 2009; Howie et al., 2009; Nothnagel et al.,
2009; Jostins et al., 2011; 1000 Genomes Project Consortium
et al., 2012). Initially, we planned to perform a direct com-
parison of the two imputation programs. We found that the
resource requirements to do that were prohibitive, since the

1000 Genomes reference was updated in between our BEAGLE
runs and our IMPUTE2 runs. This update presented a conun-
drum since the update includes a large number of InDels and
our proposed downstream analyses would be improved by using
the updated reference set. Due to BEAGLE’s compute intensive
implementation we did not have the compute resources or the
time to repeat the imputation with the new reference dataset.
Similarly repeating the IMPUTE2 runs using the old reference,
even though it was much faster than BEAGLE was prohibitive
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Table 2 | Computational resources used for conducting the imputations.

(A) Penn State Lion XG: systems specifications

Component Server Quantity Processor Number of processor cores Memory (GB)

Login Node Dell PowerEdge R620 1 Intel Xeon E5-2670 2.6 GHz 16 64

Compute Node Dell M620 48 Intel Xeon E5-2665 2.4 GHz 16 128

Compute Node Dell M620 48 Intel Xeon E5-2665 2.4 GHz 16 64

Compute Node HP BL460c Gen8 96 Intel Xeon E5-2665 2.4 GHz 16 64

(B) Phasing and imputation time and RAM required for each dataset

Site_name #Samples Phasing time Phasing RAM Imputation_time Imputation

(maximum seconds) (maximum seconds) RAM

eMerge-I-1M 2634 199984 4 7728 20

eMerge-I-660 18663 17263 4 35517 75

BCH 1038 22963 4 2380 12

Geisinger_Metabochip 918 55002 8 6011 24

Geisinger_OMNI 3111 2010 8 7397 20

Grouphealth_ACT 398 62141 8 1330 16

Grouphealth_NWIGM 341 8063 6 730 20

Mayo 6307 5627 6 21172 16

MtSinai_EA 700 130737 16 3617 30

MtSinai_AA 863 33832 10 2308 12

MtSinai_HA 1212 50884 10 3120 12

MtSinai_OMNI 3515 52000 16 13276 12

NU 3030 311211 32 6089 24

Vanderbilt 3565 19392 12 10583 20

Total CCHMC 4322 82450 12 4310 28

Total CHOP 6850 74501 12 7768 30

in terms of compute time and storage space with a dataset
of 55,000 samples. Therefore, we will provide only anecdotal
differences that we observed between IMPUTE2 and BEAGLE.
For more complete, direct comparisons of the two approaches,
we direct the reader to some of the earlier studies mentioned
above.

In our study dataset, we observed that IMPUTE2 is sub-
stantially faster than BEAGLE but they both achieved com-
paratively equal accuracy with a large reference panel, such as
the 1000 Genomes. Our BEAGLE imputations were only per-
formed for adult data, so to look at the frequency of high
quality markers, we compare the counts to adult only data
in IMPUTE2. We observed that 8,899,961 SNPs passed allelic
R2 filter of 0.7 in BEAGLE imputations whereas for same
data using IMPUTE2 imputations, 12,504,941 SNPs passed info
score filter of 0.7. Lastly, we also observed that in BEAGLE
imputed data at MAF = 0.05, there were SNPs with Allelic R2

value less than 0.6 whereas with IMPUTE2 imputed data all
SNPs with MAF = 0.05, were above info score value greater
than 0.6.

Keeping the huge computational advantage of IMPUTE2 as
well as quality of imputation in mind, especially when deal-
ing with the imputation of over 50,000 samples, we used
IMPUTE2 for further imputations and analyses. Thus, in the
remainder of the paper, we will describe the output and

quality metrics that we observed for IMPUTE2 in the eMERGE
dataset.

MASKED ANALYSIS
One of the greatest challenges with imputation is knowing how
well it is working. A common strategy used to evaluate this is
called “masked analysis.” In a masked analysis, a subset of SNPs
that were actually genotyped in the study sample are removed,
those SNPs are then imputed as though they were not geno-
typed, and then the imputed SNPs are compared to their original
genotypes. The results of the imputation are contrasted with
the original genotypic data, showing the degree of concordance
between the original genotypic data and the imputed data after
masking. This gives a good sense of how accurate the imputa-
tions are with respect to that set of SNPs. An additional way the
results of masking and imputation are evaluated is to compare
the allelic dosage of the original genotypic data with that of the
allelic dosage in the imputed data. If there are three genotypes
AA, AB, and BB, the allelic dosage for each individual can be
represented as probabilities (P) of each of three genotypes via
2∗P(AA) + 1∗P(AB) + 0∗P(BB) to obtain the expected allelic
dosage from the original genotypic data and the observed allelic
dosage for the masked and imputed genotype for each SNP. The
correlation between the expected allelic dosages and the observed
allelic dosages over all individuals can then be calculated at each
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masked SNP. This correlation metric is an exact variant of the
imputation R2 metrics of MACH (Li et al., 2010) and BEAGLE,
which corresponded with the IMPUTE “info” score which is cal-
culated automatically as part of IMPUTE2. Here Type 2 SNPs
are removed from imputation, and then imputed, and contrasted
with imputation input. Thus, metric files from IMPUTE2 provide
information from these masked SNP tests, including concordance
and correlation metrics, and an “info” metric for having treated a
Type2 the SNP as Type 0.

Overall concordance is vigorously impacted by the MAF and
we say so on the grounds that for SNPs with MAF < 5% by sim-
ply allocating imputed genotypes to the major homozygous state
would result in >90% concordance. Thus, there is an inclina-
tion of high concordance values at low MAF SNPs, where major
homozygotes are prone to be imputed “correctly” just by chance.
We observed approximately 99% average concordance in masked
SNPs grouped by MAF.

ORTHOGONAL GENOTYPING ANALYSIS
As another imputation quality check, we compared the genotypes
generated in the imputation with those genotyped on orthogonal
genotyping platforms. Two SNPs, rs1800562 and rs1799945 were
genotyped using TaqMan by the genotyping facility at Geisinger
Health System. The concordance between the TaqMan genotype
and the imputed data was 98.9 and 98.3% for rs1800562 and
rs1799945, respectively. These are very similar to results observed
in the Marshfield Clinic PMRP where an orthogonal platform was
used (Verma et al., 2014).

MERGING OF IMPUTED DATASETS
Prior to imputation, we explored the option of combining the
raw genotype data based on overlapping SNPs from the multi-
ple GWAS platforms. Unfortunately the number of overlapping
SNPs was minimal (only 37,978 SNPs). This was not sufficient
for imputation. Thus, we imputed each dataset based on site

FIGURE 4 | Frequency distribution of “info” quality metric (A,B) and relationship between the “info” score and MAF are shown (C,D). The secondary
axis indicates the count of SNPs in each MAF bin (0.01 intervals).
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Table 3 | Number and proportion of SNPs dropped and remaining at

different genotyping call rate threshold after merged data is filtered

at info score >0.7.

Threshold SNPs Proportion of SNPs Proportion of

dropped SNPs dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

ADULT DNA SAMPLES

0.95 1650764 0.1494 9400761 0.8506

0.98 3609986 0.3267 7441539 0.6733

0.99 5619475 0.5085 5432050 0.4915

PEDIATRIC DNA SAMPLES

0.95 2165777 0.1275 14810393 0.8724

0.98 4983111 0.2935 11993059 0.7065

0.99 7692022 0.4531 9284148 0.5469

and platform individually. After imputing each study dataset,
we attempted to merge all of the imputed datasets together to
generate a mega-analysis ready dataset (combining all eMERGE
sites together). The imputed data from all eMERGE sites study-
ing adult-onset diseases were merged into one dataset and all
pediatric data were merged into a second set. Future directions
include combining adult and pediatric data. Imputed datasets
were merged based on the set of intersecting markers [only
markers that were of high quality in all of the imputed data
were combined (i.e., info score >0.7)]. Duplicate samples were
removed, whereby the highest quality version of the sample was
maintained. For example, if a sample was genotyped on two
platforms with different call rates, we kept the result from the
platform with the higher call rate. Additionally, the low qual-
ity data were omitted from the final version of the merged
data. Low quality of imputation was determined by assessing the
masked concordance rates calculated from IMPUTE2. Notably,
most data that were not genotyped on a dense, genome-wide
platform (such as MetaboChip or Illumina HumanHap 550
Duo BeadChip) had masked concordance rates <80% (Nelson
et al., 2013). The lower concordance was probably due to a
lack of a uniform backbone or imputation basis to use for con-
struction of the LD patterns for imputation. As such, those
datasets were not included in merged dataset. Finally, as rec-
ommended in both the SHAPEIT2 and IMPUTE2 guidelines
(Impute23), small sample size datasets (<100 samples) did not
achieve high quality imputations; thus, we excluded them from
the merged data.

To merge all of the datasets together, we implemented a script
that takes IMPUTE2-formatted input files and cross-matches
them based on SNP position and alleles, rather than the marker
label (as sometimes marker labels are not shared). For each
matching position, allele1, and allele2, which are found in all
inputs, the output is given the most common label from among
the inputs. The script detects cases where there are different SNP
labels for the same Chr:Pos and alleles and resolves it by treating

3Available at: https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Table 4 | Number and proportion of samples dropped and remaining

at different sample call rate threshold after merged data is filtered at

info score >0.7 and marker call rate 99%.

Threshold SNPs Proportion of SNPs Proportion of

dropped dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

ADULT DNA SAMPLES

0.95 5 0.0001 38823 0.9999

0.98 57 0.0015 38771 0.9985

0.99 4632 0.1193 34196 0.8807

PEDIATRIC DNA SAMPLES

0.95 10 0.0008 12200 0.9991

0.98 79 0.0647 12131 0.9935

0.99 497 0.0407 11713 0.9592

Table 5 | MAF distribution for all SNPs after applying info score (0.7)

and marker call rate filter (99%).

Threshold SNPs Proportion of SNPs Proportion of

dropped SNPs dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

ADULT DNA SAMPLES

0.05 2803753 5.1615e-01 2628296 0.4838

0.01 995223 1.8321e-01 4436826 0.8168

0.005 466779 8.5930e-02 4965270 0.9141

0.001 13979 2.5734e-03 5418070 0.997

0.0005 624 1.1487e-04 5431425 0.9998

0.0001 1 1.8409e-07 5432048 0.9999

PEDIATRIC DNA SAMPLES

Threshold #SNPs Proportion of #SNPs Proportion of

dropped SNPs dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

0.05 6523370 7.3938e-01 2299322 0.2606

0.01 4631783 5.2498e-01 4190909 0.4750

0.005 3141053 3.5601e-01 5681639 0.6440

0.001 240254 2.7231e-02 8582438 0.9728

0.0005 30674 3.4767e-03 8792018 0.9965

0.0001 19 2.1535e-06 8822673 0.9999

these as equivalent markers which will be joined into one output
line, using the marker label which has larger rs#. For cases where
there are more than one position for the same SNP label, the script
will then drop both of them.

Imputation results have multiple columns of information. The
first five columns relate to Chromosome, SNP ID, base pair loca-
tion, and the two SNP alleles, where the first allele indicated is
assigned “allele A,” and the second is assigned “allele B.” The
following three columns represent the genotype probabilities of
the three-genotype classes (AA, AB, and BB) for each individual
sample; a simulated example shown here:
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CHR SNP_ID POSITION allele A allele B Sample1_AA Sample1_AB Sample1_BB

22 rs149201999 16050408 T C 0.251 0.501 0.248

22 rs146752890 16050612 C G 0.302 0.495 0.203

22 rs139377059 16050678 C T 0.252 0.501 0.247

22 rs188945759 16050984 C G 1 0 0

Imputed genotype files contain three types of IMPUTE2 SNPs:
Type 0 (imputation target); Type 2 (imputation basis); and Type
3 (study only). Accompanying information metrics files provide
information on what type of SNP each SNP within the dataset
was. Note there are no sample identifiers in the probabilities
files, consequently it is important to utilize sample information
documents provided to adjust imputed probabilities to sample
data. Merged “info” or quality metrics file contains following
information:

1. “snp_id” is always “---”which is how it often appears in the
input files, and “rs_id” and “position” match the genotype
output file.

2. “type” is the numeric minimum of the observed input values.
3. The other columns are all simple (equally weighted) averages

of the input values, except that any −1 inputs are ignored
(for example. the average of 0.5, −1, 0.3 is 0.4, ignoring
the −1).

4. There is also a special case for the “exp_freq_a1” column for
inputs which have alleles reversed compared to the first input

(allele1 is not always major or minor allele); in that case the
value is subtracted from 1.0 before going into the average so
that we always report frequencies for minor allele in merged
dataset.

IMPUTED DATA STATISTICS FOR IMPUTE2
There are multiple results from imputation that should be eval-
uated before proceeding with association analyses for imputed
SNPs. For instance, it is critical to consider the uncertainty of
the imputed genotypes Figure 4A shows the distributions of the
information (reported as “info score”) metrics for all variants
in the adult imputed datasets and Figure 4B demonstrates the
relationship between MAF and imputation quality for all vari-
ants in the pediatric imputed datasets by showing average “info”
scores plotted in all variants grouped by MAF (bin sizes of 0.1).
Although the total number of imputed variants for the adult and
pediatric datasets is very similar, it was notable that there were
comparatively more markers with low info score in the pediatric
dataset. One potential reason for this discrepancy could be due to
a much large number of genotyping platforms in the imputations

FIGURE 5 | Best practices for analyzing imputed data.
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of the pediatric datasets. While the average “info” scores with
MAF < 0.05 fall lower than an info score of 0.8 as demonstrated
in Figures 4C,D for adults and pediatric data respectively, within
higher MAF bins, the average “info” scores increase to approx-
imately 0.9. This metric demonstrates that variants imputed to
have low MAF in the study samples are likely to have low MAF in
the reference panel. We attempted to not include any monomor-
phic SNPs in the imputed dataset, our inclusion criteria was to
include any imputed SNP that had at least one copy of minor
allele. So the reason that we see a lot of SNPs with low “info”
score is mostly due to the chosen imputation target and not any
procedural error. Although there is no consensus in filtering the
imputed datasets based on uncertainty of imputation, we used a
variant level filter (info score >0.7) (Lin et al., 2010; Southam
et al., 2011) for the downstream analyses. This is a conservative
threshold, whereby we are balancing the quantity of lost data with
data quality. Other studies may choose to be more liberal (info
score >0.3) or even more conservative (info score >0.9).

QUALITY CONTROL PROCEDURE
We performed downstream analysis of the complete, imputed
merged dataset to take into account the uncertainty of the
imputed genotypes. We filtered data based on info score of 0.7
after looking at the distribution of markers at all possible info

Table 6 | SNP summary for samples from adults participants of the

eMERGE network.

Chromosome Imputation output Filter at info score 0.7

1 2992265 857604

2 3292685 934303

3 2751021 807422

4 2725555 804138

5 2519463 725837

6 2414293 760529

7 2205621 633948

8 2174126 625724

9 1645320 479658

10 1874401 572475

11 1885432 553047

12 1818431 531244

13 1367340 414471

14 1251729 365975

15 1125278 312685

16 1204600 325272

17 1039660 276340

18 1083944 312821

19 810927 224571

20 851007 242258

21 515507 149262

22 491574 141941

Totals 38040179 11051525

“Imputation output” lists number of SNPs as result of imputation and “Filter at

info score 0.7” lists number of SNPs passing info score threshold.

scores. Because of the potential for genotyping errors in SNPs and
samples with low call rates, it is essential to investigate the distri-
bution of call rates by marker and by sample and the overlap of
the two. Table 3 shows, for each marker call rate threshold, the
number of SNPs dropped and the proportion of the total SNP
count. Table 4 shows the sample call rate after filtering the mark-
ers with <99% call rate. At this point, we have not excluded any
samples from the merged data based on sample call rates but it is
very important to keep that in mind for any further analyses with
these data.

We have also investigated the distribution of SNPs at differ-
ent MAF thresholds. We expected that imputing using the 1000
Genomes reference panel will result in a high proportion of low
frequency variants. Table 5 shows the number of SNPs below and
above each threshold. This summary table can be used for decid-
ing what MAF threshold to use for association analyses. Based on
power calculations, one can determine at what MAF the dataset
is sufficiently powered. Subsequently, the MAF threshold can be
used as a filter for analysis. We have also illustrated MAF as a filter
after using a SNP call rate filter of 99%. As expected, the greater
majority of the dataset consists of variants with MAF < 5%.

In Figure 5 we summarize all of the “Best Practices” steps and
measures for imputed data prior to using the data in any further
analyses. We provided a final quality control (QC) dataset filtered

Table 7 | SNP summary for samples from pediatric participants of the

eMERGE network.

Chromosome Imputation output Filter at info score 0.7

1 2992265 1323149

2 3292686 1363591

3 2751022 1234814

4 2725555 1264290

5 2519464 1158692

6 2414294 1157434

7 2205622 990787

8 2174126 994888

9 1645320 740663

10 1874401 869202

11 1885432 851466

12 1818431 826132

13 1367340 640670

14 1251729 562490

15 1125278 491576

16 1204601 496824

17 1039661 411860

18 1083944 490988

19 810927 311239

20 851007 369387

21 515507 225258

22 491574 200770

Totals 38040186 16976170

“Imputation output” lists number of SNPs as result of imputation and “Filter at

info score 0.7” lists number of SNPs passing info score threshold.
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FIGURE 6 | Summary on principal component (PC) analysis for adult DNA samples. (A) PC1 and PC2 colored by self-reported race (AA, African American;
EA, European American; HA, Hispanic, Others and -9, missing), (B) PC1 and PC2 colored by site, (C) Variance explained by first 10 PCs.

at info score = 0.7 and marker call rate = 99%. We did not apply
any sample call rate, and MAF filter as that depends on the type of
analysis being performed. Tables 6, 7 show total counts of SNPs at
each threshold we used during quality control for both the adults
and pediatric datasets.

POPULATION STRUCTURE
For accurate imputations, it is important that the samples from
imputed data cluster closely to the reference panel. We performed
Principal Component Analysis (PCA) as it has been shown to
reliably detect differences between populations (Novembre and
Stephens, 2008). Population stratification can inflate identity-by-
descent (IBD) estimates; thus, we used the KING program which
is designed to circumvent the inflation of IBD estimates due to
stratification (Manichaikul et al., 2010).We used a kinship coef-
ficient threshold of 0.125 (second degree relatives) to identify
clusters of close relatives, and we retained only one subject from
each relative cluster. We used R package SNPRelate (Zheng et al.,
2012) to carry out principal components analysis (PCA), which is
a form of projection pursuit capture, because it is computation-
ally efficient, and can be parallelized easily. Principal components
(PCs) were constructed to represent axes of genetic variation
across all samples in unrelated adult and pediatric datasets that
were pruned using the “indep-pairwise” option in PLINK (Purcell
et al., 2007) such that all SNPs within a given window size of 100
had pairwise r2 < 0.1 (for adults) and 0.4 (for pediatric) and also

only included very common autosomal SNPs (MAF > 10%). We
pruned data to reduce the number of markers to approximately
100,000 as previous studies have shown that 100,000 markers
not in LD can detect ancestral information correctly (Price et al.,
2006). These 100,000 markers included both imputed and geno-
typed SNPs, as the number of SNPs of overlap across the different
genotyping platforms was too small to use only genotyped vari-
ants. It has been shown that PCA is most effective when the
dataset includes unrelated individuals, low LD, and common vari-
ants (Zou et al., 2010; Zhang et al., 2013). We calculated up to 32
PCs, but show only the results for up to the first 10 PCs in scree
plots represented in Figures 6C, 7C. It can be noted from these
figures that only the first two PCs explain all of the appreciable
variance and the other PCs explain very little of the variance.

For the merged imputed adult data, we removed all related
individuals (IBD estimation done using KING (Manichaikul
et al., 2010) kinship >0.125), performed QC, LD pruned with
r2 < 0.1 and MAF > 10% to include only common variants.
Thus, PCA included 37,972 samples and 1,948,089 markers.
Figure 6 presents plots for PCs 1 and 2 colored by race and
eMERGE site. Population structure is very well evident from these
PC plots and it shows the ancestral distributions of the data from
all of the eMERGE sites.

For the pediatric data, we removed all related individuals
(IBD estimation done using KING18 kinship >0.125), performed
QC, LD pruned with r2 < 0.4 and MAF > 10% to include
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FIGURE 7 | Summary on principal component (PC) analysis for pediatric DNA samples. (A) PC1 and PC2 colored by self-reported race (AA, African
American; EA, European American; HA, Hispanic and Others), (B) PC1 and PC2 colored by site, (C) Variance explained by first 10 PCs.

only common variants. Thus, PCA included 11,798 samples and
162,576 markers.

Figures 6, 7 represent plots for the first two PCs colored
by self-reported race or ethnicity and also represent variance
explained by the first 10 PCs for both adult and pediatric
datasets. Detailed PCA results on the merged eMERGE dataset
are described in another publication by the eMERGE Network
investigators (Crosslin et al., 2014).

DISCUSSION
We have performed genotype imputation to facilitate the merging
of data from all eMERGE datasets. We imputed using the cos-
mopolitan 1000 Genomes Project reference panel and IMPUTE2
software (after a comparison with BEAGLE software). We also
performed initial QC steps after merging the datasets to assess
the quality and accuracy of the imputed data. Imputation results
appear to be very accurate, based on the high concordance rates
in the masked analysis. In addition, there was a clear distinction
between the different ancestral groups, as expected, based on the
PC analysis. It is very difficult to merge all of the genotype data
from different platforms together prior to imputation, as a strat-
egy to perform imputation, due to lack of sufficient overlapping
markers between different genotyping platforms. Therefore, our

pipeline performs imputations separately on each platform and
origin of the genotype data, and then we merged the data together.
We obtained very good results using this strategy and there-
fore consider it is an appropriate approach. It allows for the
maximization of the number of genotyped markers available as
study SNPs to use as the backbone to initiate imputation. It
is suggested to remove all palindromic SNPs from the dataset
before running any imputations to future pipelines. We per-
formed a test on two of our datasets, running the imputation both
before and after removing palindromic SNPs. Concordance check
between the two runs of imputations revealed that the results were
99.8% concordant. More exploration of this issue is important for
future work.

This manuscript is meant to serve as an applied, educa-
tional resource and to provide guidance for imputation. There
are a number of other reviews and comparisons of different
imputation packages available (Pei et al., 2008; Ellinghaus et al.,
2009; Nothnagel et al., 2009; Hancock et al., 2012; Comparing
BEAGLE, IMPUTE2, and Minimac Imputation Methods for
Accuracy, Computation Time, and Memory Usage | Our 2
SNPs. . . ®). The imputed genotypes, phenotype information,
accompanying marker annotation and quality metrics files for
these eMERGE data will be available through the authorized
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access portion of the dbGaP (http://www.ncbi.nlm.nih.gov/
gap). Numerous references are accessible for users wanting
additional information on imputation methods, as well as
recommendations for downstream analyses (Marchini et al.,
2007; Servin and Stephens, 2007; Browning, 2008; Guan
and Stephens, 2008; Li et al., 2009; Aulchenko et al., 2010;
International HapMap 3 Consortium et al., 2010; Hancock et al.,
2012; Nelson et al., 2012).
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Combining samples across multiple cohorts in large-scale scientific research programs
is often required to achieve the necessary power for genome-wide association studies.
Controlling for genomic ancestry through principal component analysis (PCA) to address
the effect of population stratification is a common practice. In addition to local genomic
variation, such as copy number variation and inversions, other factors directly related
to combining multiple studies, such as platform and site recruitment bias, can drive
the correlation patterns in PCA. In this report, we describe the combination and
analysis of multi-ethnic cohort with biobanks linked to electronic health records for
large-scale genomic association discovery analyses. First, we outline the observed site
and platform bias, in addition to ancestry differences. Second, we outline a general
protocol for selecting variants for input into the subject variance-covariance matrix, the
conventional PCA approach. Finally, we introduce an alternative approach to PCA by
deriving components from subject loadings calculated from a reference sample. This
alternative approach of generating principal components controlled for site and platform
bias, in addition to ancestry differences, has the advantage of fewer covariates and
degrees of freedom.

Keywords: principal component analysis, ancestry, biobank, loadings, genetic association study

1. INTRODUCTION
To reach the statistical power needed for genome-wide associ-
ation studies, large numbers of participants are needed. This
can be achieved through large research networks such as the
Electronic Medical Records and Genomics (eMERGE) Network,
which comprises a multi-ethnic cohort of ∼57,000 participants
linked to electronic health records (EHRs) for phenotype mining
from nine participating sites (seven adult; two pediatric) in the
United States (U.S.) (Gottesman et al., 2013). When combining
genetic data from diverse data sets, understanding the contribu-
tion of ancestry, genotyping platform, and site bias are of vital
importance.

Through the course of the eMERGE project, multiple genotyp-
ing platforms from both Illumina and Affymetrix were utilized
(Gottesman et al., 2013; Crawford et al., 2014). Imputation using
the BEAGLE software was then carried out to allow merging of
the diverse data sets (Verma et al., Imputation and quality control

steps for combining multiple genome-wide data sets. Manuscript
submitted for publication).

There were ancestry or racial/ethnic differences both
within and across the eMERGE Network sites in addition to
the platform heterogeneity. The majority of eMERGE study
sites based race/ethnicity on self-report while Vanderbilt
University’s BioVU used third-party or administratively
assigned race/ethnicity (Dumitrescu et al., 2010). The major
group for the entire eMERGE sample set is of European-
descent. eMERGE also includes a sizeable African-descent
and Hispanic sample (Gottesman et al., 2013). The latter
represents a three-way admixture event (Manichaikul et al.,
2012) that further contributes to expected ancestral differences
within and across eMERGE. There are also both cryptic and
known related participants, especially in Marshfield Clinic
Research Foundation (Gottesman et al., 2013; Crawford et al.,
2014).
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We present an example of integrating the diverse genetic data
sets from the eMERGE Network in a systematic fashion and pro-
vide guidance for other investigators in large research networks.
We outline a general approach for selecting variants for input into
a sample variance-covariance matrix on the adult participants in
eMERGE, the conventional principal component analysis (PCA)
approach in human genetics research (Patterson et al., 2006).
We also describe how we categorized genetic ancestry based on
self-reported race, framed in terms of continental origin, in line
with standard protocol in human genetic research (NHGRI, 2005;
Ali-Khan et al., 2011).

Given our “sizeable” non-European sample in the presence of
platform bias and imputation, the eMERGE Network took great
care in not only assessing and adjusting for ancestry, but also
exploring alternative methods to do so and increase power. To
assess ancestry in related individuals, Zhu et al. (2008) intro-
duced a method of generating principal components (PCs) by
deriving SNP loadings from founders, and applying them to
the entire sample. We introduce this concept of deriving SNP
loadings from the BEAGLE imputation 1000 Genomes reference
sample, and apply it to the entire imputed sample set of 57,000
genotyped individuals from the eMERGE Network as an alterna-
tive approach to control for site and platform bias in addition to
ancestry differences for our large cohort.

2. MATERIALS AND METHODS
The eMERGE Network comprises a multi-ethnic cohort
of ∼57,000 participants linked to EHRs for phenotype mining
from nine participating sites (seven adult; two pediatric) in
the United States (Gottesman et al., 2013) with genotype and
imputed data.

2.1. IMPUTATION
The imputation and merging were performed by the eMERGE
Coordinating Center (CC) at Pennsylvania State University
(PSU). Detailed quality assurance /quality control (QA/QC) mea-
sures are outlined in the imputation guide provided on the
PSU eMERGE CC web site (see Web Resources). Before impu-
tation, study site data were converted to the same build (Build
37) as the imputation reference data set. Next, strand flip-
ping was employed to account for different strand alignments
including Illumina TOP/BOT strand, plus(+) / minus(−), and
forward/reverse (Nelson et al., 2012). Finally, phasing and impu-
tation were performed on randomized ancestry sub-samples
against a “Cosmopolitan” reference set from the 1000 Genomes
containing multiple ancestry groups provided by the BEAGLE
software package (Browning and Browning, 2009). While the
imputation data presented are derived from using BEAGLE soft-
ware (Browning and Browning, 2009), it should be noted that
IMPUTE2 software (Howie et al., 2012) produced nearly iden-
tical results (see Supplementary Figure S1) (Howie et al., 2011;
Delaneau et al., 2013).

2.2. PCA
There are multiple software packages for running PCA to esti-
mate genomic ancestry, but we utilized the high-performance
computing toolset SNPRelate R package (Zheng et al., 2012) for

multiple reasons. First, the increased computational performance
allows for PCA analyses of a large number of participants such
as eMERGE. Second, this tool allows the extraction of both sam-
ple and SNP loadings, which allows the correction of population
stratification for related and unrelated participants (Zhu et al.,
2008). The two types of matrices are mathematically equivalent
and can be derived from one another. Finally, SNPRelate allows
for absolute genotype-PC correlation to assess whether a local
region of the genome is driving the correlation structure (Zheng
et al., 2012).

We derived PCs using three general approaches, each applied
to the overall set and to each ancestry group. First, we performed
PCA on a combined data set (across sites) after imputation using
the BEAGLE software package (Version 3.3.1) (Browning and
Browning, 2009). Second, we performed PCA on a pre-imputed
merged version (across sites) of the data. Finally, we derived PCs
for the entire set using SNP loadings generated from the BEAGLE
imputation reference set (Browning and Browning, 2009).

For all genotype data used to generate the variance-covariance
matrices and to eliminate redundant SNPs in high linkage dise-
quilibrium (LD), we applied the following thresholds. The auto-
somal variants were selected after LD pruning at r > 0.5 with a
500 kbp (kilo basepairs) sliding window, and a minor allele fre-
quency (MAF) > 0.05. In addition, a variant missingness filter of
0.02 was applied. For both PCA on the combined imputed and
the combined preimputed, which is basically the singular value
decomposition on the sample covariance matrix as outlined in
Patterson et al. (2006).

2.2.1. Deriving PCA using reference sample loadings
We also assessed PCA using the Zhu et al. (2008) method
by deriving SNP loadings from the BEAGLE imputation 1000
Genomes reference sample, and applying it to the entire sam-
ple set. As such, we utilized their nomenclature with respect
to generating the components. This was implemented using
the SNPRelate R package (Zheng et al., 2012), specifically the
snpgdsPCASampLoading and snpgdsPCASNPLoading
functions (see Web Resources).

We treated the entire eMERGE cohort as one “related” family,
and the imputation reference sample as (a = 1, 2, . . . , B) unre-
lated. Because of this, the gij marker genotype value of the jth
individual in the ith family as utilized by Zhu et al. (2008), sim-
plified to gj. The column vector Xij = (xj1, xj2, . . . , xjM)T of l =
1, 2, . . . , M biallelic markers, and was coded as an additive model
of inheritance.

The variance-covariance matrix for the marker data from the
reference sample (unrelated), took on the form � = �B

a = 1(Xa −
X)(Xa − X)T , assuming X as the overall genotype mean for those
samples. Following Zhu et al. (2008), we let el be the lth eigen-
value of �, where l = 1, 2, . . . , M, which is a vector of the SNP
loadings. We then derived the lth PC for the individual (j) of the
entire cohort or “related” family by tjl = (Xj − X)Tel.

2.3. VENOUS THROMBOEMBOLISM ASSOCIATION
The venous thromboembolism (VTE) phenotype was extracted
using an EHR-driven algorithm from African ancestry
participants (Pathak et al., personal communication), excluding
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patients with cancer. A total of 400 VTE cases and 5,065 controls
were selected from 4 sites and 4 different genotype platforms
(Illumina 660, 1M, and Omni; and Affymetrix 6.0). We per-
formed two logistic regressions for association using the software
PLINK v1.07 (Purcell et al., 2007). The first was adjusted for
age, sex, stroke, sickle cell genetic variant, site-platform, and
conventional PC1 and PC2 and the second was adjusted for
age, sex, stroke, sickle cell genetic variant and “loadings” PC1
and PC2.

3. RESULTS
3.1. DEMOGRAPHICS
Table 1 outlines the breakdown of the 38,288 adult participants
included in these analyses by eMERGE site, self-reported or
administratively assigned ancestry, sex, and genotyping platform.
Most sites were predominantly of European ancestry. Compared
with most other eMERGE study sites, both Vanderbilt University
and Northwestern University had a greater representation of
African ancestry (26 and 12%, respectively). Mount Sinai School
of Medicine had the greatest proportion of African ancestry
(70%), followed by a sizeable proportion of Hispanic partici-
pants (19%). Overall, there were more females than males (57%
vs. 43%). All sites followed this pattern, except for Geisinger
Health System (53% male). Most of the genotyping across all
sites was performed using Illumina arrays (610, 660, 1M and
Omni), with the exception of Mount Sinai School of Medicine
(Affymetrix 6.0).

Eigenvectors 1 and 2 for the 38,288 adult eMERGE par-
ticipants are illustrated in Figure 1, annotated by self-reported
race (Figure 1A), genotyping platform (Figure 1B), and by
eMERGE study site (Figure 1C). Genetically determined ances-
try was assigned by creating subjective boundaries for the
African, European and Hispanic groups. These boundaries
were set using the respective medians (Q2) and standard

deviations (SD) calculated for each genetic ancestry group,
as illustrated in Figures 2A–C for the African (Q2A ± 2SD),
European (Q2E ± 4SD) and Hispanic (Q2H ± 1SD) groups,
respectively.

3.2. EXAMINATION OF THE VARIANCE EXPLAINED PER PC USING
SCREE PLOTS

To assess the variance explained from each PCA, we plotted
the first ten PCs against the variance explained as illustrated in
Figure 3. Across the columns of the trellis we show scree plots of
joint, African ancestry, European ancestry, and Hispanic groups.
Across each row, we have scree plots representing PC analyses
on the imputed merged set, pre-imputed merged set, and on the
PC analyses using the “loadings” method outlined in Subsection
2.2.1. As expected, eigenvector 1 explains most of the variance
for the joint ancestry imputed (∼7%), pre-imputed (∼4%), and
“loadings” (∼7%). When we stratified by ancestry (across the
trellis), the variance explained by eigenvector 1 for the imputed
and pre-imputed data sets was <1%. For the “loadings” approach
with the African and European genetic ancestry data sets, the vari-
ance explained <1%, and >2% for the Hispanic group. In all
scenarios (joint and all ancestry groups) the variance explained
approached 0 for eigenvectors 2 through 10 for the imputed
and pre-imputed data sets. Interestingly, the “loadings” approach
allows for more variance explained for eigenvectors 2 and beyond,
especially for the Hispanics. For the joint loadings approach, the
variance explained by eigenvector 2 approached ∼4%, while the
genetic ancestry groups approached 1%.

3.3. EVALUATION OF THE EFFECT OF ANCESTRY ON PC PLOTS—JOINT
AND STRATIFIED ANCESTRY

We evaluated the population structure by plotting eigenvectors
1 and 2 for the joint data set (Figure 4) as well as for the African
(Figure 5), European (Figure 6) and Hispanic (Figure 7) ancestry

Table 1 | Summary of eMERGE sample by self-reported ancestry, sex, and genotyping platform for the adult participants.

Geisinger Group Health Marshfield Mayo Mt. Sinai Northwestern Vanderbilt Combined

(N = 3, 111) (N = 3, 520) (N = 4, 193) (N = 6, 836) (N = 6, 290) (N = 4, 858) (N = 9, 480) (N = 38, 288)

(%) (%) (%) (%) (%) (%) (%)

SELF-REPORTED ANCESTRY

African 0 4 0 0 70 12 26† 20% (7, 651)

European 99 92 99 99 11 88 66† 74% (28, 469)

Hispanic 0 0 0 0 19 0 0 3% (1, 258)

Other 0 5 1 0 0 0 7† 2% (910)

SEX

Female 47 57 58 45 59 83 53 57% (21, 802)

Male 53 43 41 55 41 17 47 43% (16, 486)

GENOTYPING PLATFORM

Affymetrix 6 0 0 0 0 44 0 0 7% (2, 775)

Illumina 1M 0 0 0 0 0 12 21 7% (2, 634)

Illumina 610 0 0 0 45 0 0 0 8% (3, 081)

Illumina 660 0 89 100 55 0 27 42 43% (16, 362)

Illumina Omni 100 11 0 0 56 61 37 35% (13, 436)

†Race/ethnicity is administratively assigned.
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FIGURE 1 | PC plots of PCs 1 and 2 for all adults of

eMERGE by self-reported race. (A), genotyping platform (B),

and eMERGE study site (C), using BEAGLE imputed data. (1)
geis, Geisinger Health System, (2) ghuw, Group Health Research

Institute/University of Washington; (3) mrsh, Marshfield Clinic
Research Foundation; (4) mayo, Mayo Clinic; (5) mtsi, Mount
Sinai School of Medicine; (6) nwun, Northwestern University; and
(7) vand, Vanderbilt University.

groups, separately. In each case of ancestry analysis, we plotted
the imputed and pre-imputed merged data set, and the data set
derived from the “loadings” method. Figures 4A,B illustrate the
imputation and pre-imputation data sets, respectively, and are
generally opposites with respect to eigenvector 1 due to different
projections for that component. Figure 4C illustrates the “load-
ings” data set, which offers a different characterization of the joint
data set, with the African and European genetic ancestry groups
largely represented by two ellipses.

Figures 5A–C illustrate the African ancestry imputation data
set, annotated by self-reported race, genotyping platform, and
site, respectively. As illustrated in Figures 5B,C, there are batch
effects by platform and study site. The pre-imputed data set
(Figure 5D) has two distinct bands for both eigenvectors 1 and 2.
The “loadings” approach (Figure 5E) produces an ellipse, indicat-
ing no effect due to platform or study site. Figures 6A–C illustrate
the European ancestry imputed and pre-imputed data set, and
the “loadings” data set, respectively. Eigenvectors 1 and 2 for the
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FIGURE 2 | PC plots of PCs 1 and 2 comparing eMERGE

genetically determined and self-reported ancestry, using BEAGLE

imputed data. (A) African ancestry assigned using (Q2A ± 2SD) of
eigenvectors 1 and 2 for self-reported as African ancestry.

(B) European ancestry assigned using (Q2E ± 4SD) of eigenvectors 1
and 2 for self-reported as European ancestry. (C) Hispanic assigned
using (Q2H ± 1SD) of eigenvectors 1 and 2 for self-reported as
Hispanics.

imputed data set (Figure 6A) produce separation much like the
joint ancestry analyses, while the pre-imputed data set produces
two separate bands (Figure 6B). Like the African genetic ances-
try “loadings” set, the European set produces an ellipse. Finally,
the Hispanic data sets are illustrated in Figures 7A–C. With only
994 participants, most of the variance seems to be explained by
eigenvector 1 for both the imputed (Figure 7A) and pre-imputed
(Figure 7B). The “loadings” approach (Figure 7C) produces the
familiar ellipse, with the mixed ancestry in the middle, most likely
representing the Hispanic sample.

3.4. EXAMINATION OF SNP-PC CORRELATION
We also illustrate component-genotype absolute correlation plots
generated using the SNPRelate R package for the imputed and
pre-imputed data sets. Ideally, a component will be driven by
genome-wide correlation patterns, as illustrated by eigenvector 3
of the pre-imputed data in Figure 8A. However, many times chro-
mosomal artifacts will drive local regions of correlation, resulting
in components dominated by that pattern. Examples of this
include Figures 8B,C. Figure 8B illustrates a known chromosome
8 inversion (Feuk et al., 2006) driving the correlation patterns for
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FIGURE 3 | Scree plots illustrating variance explained for PCA outlined in this manuscript.

eigenvector 9 in the imputed data. Figure 8C illustrates the corre-
lation pattern driven by the HLA region for eigenvector 10 of the
pre-imputed data.

3.5. VENOUS THROMBOEMBOLISM ASSOCIATION
We applied our approach using the eMERGE VTE African ances-
try cohort that consists of four adult sites and four genotyp-
ing platforms that had previously been analyzed controlling for
site, platform and genomic ancestry (Heit et al., 2013). For
clarity, the original analysis’ first two eigenvectors along with
site and platform will be referred to as “PCs.” The principal
components derived from the imputed data set by the conven-
tional approach will be referred as normal eigenvectors (normal
“EIGs”), and derived by the “loadings” approach as “loading”
eigenvectors (“loadings EIGs”). We first compared the two first

PCs obtained using the eMERGE African ancestry from the
original analysis with the two first eigenvectors (PCs) using the
“loadings” method (Figure 9). We observed that the PCs used
in the analysis had similar pattern as the standard eigenvectors
(Figures 9A,B, first row), but just in a different direction for the
projections. Figure 9C illustrates a bivariate normal distribution
with low variance of the African genetic ancestry when using the
“loadings” eigenvectors.

We observed dispersion between the first PC and the first
“loading” eigenvector (Figure 9D), demonstrating that the “load-
ings” approach captured a different aspect of variance. The first
PC showed an inverse correlation with the first PC and first
normal eigenvector (Figure 9E). Such an inversion is a con-
sequence of the arbitrary nature of mathematical sign in the
computation of PCs resulting in opposite projections. Figure 9F
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FIGURE 4 | PC plots of eMERGE joint ancestry. (A) Plot of eigenvectors 1 and 2 for the joint imputed data set. (B) Plot of eigenvectors 1 and 2 for the joint
pre-imputed data set. (C) Plot of eigenvectors 1 and 2 for the joint imputed data set using the “loadings” method.

illustrates the second PC compared to the second “loadings”
PC, which shows no correlation and some outliers in the PC
projection.

Figure 9G depicts the comparison between the second PC with
the second normal eigenvector that showed the same outliers
observed previously but in a different scale. Thus, by using the
BEAGLE loadings we have a more parsimonious model, and the
association results in P-values and −log10(P) are tighter for chro-
mosome 22 (Figures 9H,I). Finally, Figures 10A,B represent the
QQ plots for the conventional PC adjusting for site and platform
method (λ = 1.01) and the “loadings” approach (λ = 1.02),
respectively.

4. DISCUSSION
Imputation depends on how well the genotype data (the observed
LD) capture the true underlying LD. The more completely LD
is represented, the more accurately the imputation will extend
the LD to non-genotyped markers. There is always an inherent
risk that the imputed genotypes will not represent the true state
of nature accurately; this risk increases as the genotyped den-
sity decreases and the genotypes do not capture the underlying
LD. We detected effects from the genotyping platform when per-
forming the PCA (here we use platform to indicate the design
as well as the method). The effect was most evident when a
low-density platform such as the MetaboChip (data not shown)
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FIGURE 5 | PC plots of eMERGE participants geneticaly

determined to be of African ancestry. (A) Plot of
eigenvectors 1 and 2 for the imputed data set African
ancestry participants, annotated by self-reported ancestry. (B)

Plot of eigenvectors 1 and 2 for the imputed data set
African ancestry participants, annotated by genotyping platform.

(C) Plot of eigenvectors 1 and 2 for the imputed data set
African ancestry participants, annotated by eMERGE site.
(D) Plot of eigenvectors 1 and 2 for the pre-imputed data
set African ancestry participants. (E) Plot of eigenvectors 1
and 2 for the imputed data set African ancestry participants
using the “loadings” method.
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FIGURE 6 | PC plots of eMERGE participants genetically determined

to be of European ancestry. (A) Plot of eigenvectors 1 and 2 for the
imputed data set Hispanic participants. (B) Plot of eigenvectors 1 and 2

for the pre-imputed data set Hispanic participants. (C) Plot of
eigenvectors 1 and 2 for the imputed data set Hispanic participants using
the “loadings” method.

were combined with high-density platforms: the MetaboChip
data set was an outlier even at overview scale. Platform differences
re-appear when PCA is performed on apparently homogeneous
subsets, e.g., African and European genetic ancestry subsets.
These platform differences in homogeneous racial groups are
amplified as the overall variance in the data set diminishes. Some
of the differences might actually reflect subtle differences in LD in
the populations due to ethnic stratification correlated with plat-
form, because the populations were not randomly represented in
the Biobank and therefore not randomized to platform.

In addition to difference of LD capture by platform, genotype
encoding remains problematic when combining large data sets
genotyped at different sites and on different platforms. A number
of tools, e.g., liftOver (Hinrichs et al., 2006), can be used to stan-
dardize the allele states between data sets. Nevertheless, coding
remains fraught with problems (Nelson et al., 2012). One data
set was initially submitted with non-standard coding resulting
in the data set being an outlier even with respect to other data
sets on the same platform and chip. Such miscoding results in
an extreme form of platform bias, as the LD is misrepresented.
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FIGURE 7 | PC plots of eMERGE participants genetically determined

to be Hispanic. (A) Plot of eigenvectors 1 and 2 for the imputed data
set Hispanic participants. (B) Plot of eigenvectors 1 and 2 for the

pre-imputed data set Hispanic participants. (C) Plot of eigenvectors 1
and 2 for the imputed data set Hispanic participants using the
“loadings” method.

Other potential source of bias could be induced by the sites or
genotyping center.

It is likely that the imputed data can exaggerate some under-
lying features. Any chromosomal variation that is poorly repre-
sented in the reference set can lead to more uniformity around
the variation that causes that chromosome to be selected. Some
regions that are promoted (occur prominently in a lower number
PC), probably are reflecting rare chromosomes in the reference
panel.

We have outlined a general checklist for filtering variants to be
utilized with PCA: (1) Ensure uniformity of strand representa-
tion among different platforms to avoid the bias induced by site;

(2) Select variants on autosomal chromosomes only, no sex chro-
mosomes; (3) Filter variants with LD pruning (r = 0.50 − 0.84),
in a sliding window of 500 kbp; (4) Filter variants on MAF >0.05,
and for missingness <0.02; and (5) Examine plots of absolute cor-
relation between PC and genotype as illustrated in Figure 10 and
remove regions where chromosome artifacts (e.g., HLA, chromo-
some 8 inversion) are driving the correlation pattern for a given
component (Laurie et al., 2010). However, in many cases remov-
ing the HLA region will not completely eliminate the correlation
pattern in that region (data not shown). Normally the first ten
eigenvectors are appropriate, but this depends on the proportion
of variance explained and the specific analysis conducted.
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FIGURE 8 | Eigenvector-genotype correlation plots from the joint ancestry PCA analyses representing genome-wide correlation (A), correlation driven

the chromosome 8 inversion (B), and correlation driven by the HLA region (C).

As a proof of concept, we repeated a previously presented
genome-wide association for VTE in participants of African
ancestry (Heit et al., 2013). We compared the performance of
the two approaches described above: (a) PCs derived from the

“loadings” method and (b) PCs derived from the equivalent of
the conventional method. Our results showed that using the
“loadings” approach provided similar association results and con-
trolled for inflation while controlling for fewer covariates and
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FIGURE 9 | PC comparisons derived from the “loadings” method and PCs derived from the equivalent of the imputation method for venous

thromboembolism association in African ancestry participants.

consequently fewer degrees of freedom. This method will need
further validation using simulated data, but does seem promising
nonetheless.

We have demonstrated that analysis of data across sites in
research networks can expose subtle biases and stratification
effects. The conventional approach of adjusting for the first
number of PCs does not adequately adjust for the bias of plat-
form and site. We recognize that in comparison to most meta
analyses which use summary statistics for aggregation, we have
both individual subject genotypes as well as information on
genotyping platform and site. We hope our research study will
serve as a reference for similar projects that attempt to con-
trol for confounders and ancestry in large genetic association
studies.

5. CONCLUSION
In summary, we outline a general checklist for filtering genetic
variants for conventional PCA to avoid the bias induced by plat-
form and site as well as to avoid false-positive results due to the
correlation between the PCs and the SNP genotypes. We have
also proposed the “loadings” method as an alternative to the
conventional method to derive PCs that control for bias due to
the site and platform. Furthermore, we demonstrated the applica-
bility of this new approach for the VTE genome-wide association
analysis in genetic African ancestry eMERGE participants.

WEB RESOURCES
– eMERGE Coordinating Center genotyping data: http://emerge.

mc.vanderbilt.edu/genotyping-data-released

Frontiers in Genetics | Applied Genetic Epidemiology November 2014 | Volume 5 | Article 352 | 48

http://emerge.mc.vanderbilt.edu/genotyping-data-released
http://emerge.mc.vanderbilt.edu/genotyping-data-released
http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Crosslin et al. Controlling for population structure

FIGURE 10 | QQ plots of the venous thromboembolism (VTE)

association in African ancestry participants. PC comparisons derived
from the “loadings” method and PCs derived from the equivalent of the
imputation method. (A) QQ plots of the VTE association in African ancestry
participants using PCs derived from the equivalent of the imputation
method. (B) QQ plots of the VTE association in African ancestry participants
using PCs derived from the equivalent of the “loadings” method.

– R package SNPRelate: https://github.com/zhengxwen/
SNPRelate
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Background: The activity of thiopurine methyltransferase (TPMT) is subject to
genetic variation. Loss-of-function alleles are associated with various degrees of
myelosuppression after treatment with thiopurine drugs, thus genotype-based dosing
recommendations currently exist. The aim of this study was to evaluate the potential utility
of leveraging genomic data from large biorepositories in the identification of individuals
with TPMT defective alleles.

Material and methods: TPMT variants were imputed using the 1000 Genomes Project
reference panel in 87,979 samples from the biobank at The Children’s Hospital of
Philadelphia. Population ancestry was determined by principal component analysis using
HapMap3 samples as reference. Frequencies of the TPMT imputed alleles, genotypes and
the associated phenotype were determined across the different populations. A sample of
630 subjects with genotype data from Sanger sequencing (N = 59) and direct genotyping
(N = 583) (12 samples overlapping in the two groups) was used to check the concordance
between the imputed and observed genotypes, as well as the sensitivity, specificity and
positive and negative predictive values of the imputation.

Results: Two SNPs (rs1800460 and rs1142345) that represent three TPMT alleles (∗3A,
∗3B, and ∗3C) were imputed with adequate quality. Frequency for the associated enzyme
activity varied across populations and 89.36–94.58% were predicted to have normal
TPMT activity, 5.3–10.31% intermediate and 0.12–0.34% poor activities. Overall, 98.88%
of individuals (623/630) were correctly imputed into carrying no risk alleles (553/553),
heterozygous (45/46) and homozygous (25/31). Sensitivity, specificity and predictive
values of imputation were over 90% in all cases except for the sensitivity of imputing
homozygous subjects that was 80.64%.

Conclusion: Imputation of TPMT alleles from existing genomic data can be used as a first
step in the screening of individuals at risk of developing serious adverse events secondary
to thiopurine drugs.

Keywords: TPMT, genotype imputation, DNA biobank, pharmacogenetics, Electronic Medical Records

INTRODUCTION
Thiopurine S-methyltransferase (TPMT) is an enzyme involved
in the metabolism of purine analogs such as azathioprine,
6-mercaptopurine and thioguanine, drugs that are used as
chemotherapeutic and immunosuppressant agents in diseases
such as lymphoid malignancies, leukemias, inflammatory bowel
disease, and other immune conditions (Relling et al., 2011;
Appell et al., 2013). TPMT maps to chromosome 6p22.3. It
is subject to genetic variation and, to date, 34 alleles have
been identified and characterized, most of which are associated
with reduced activity in vitro (Relling et al., 2011). Alleles ∗2
(rs1800462), ∗3A (rs1800460 and rs1142345), ∗3B (rs1800460),
and ∗3C (rs1142345) account for 95% of all defective alle-
les and all four involve missense mutations: allele ∗2 results
in the p.Ala80Pro change (chr6:18143955), allele ∗3A con-
tains two missense changes: p.Ala154Thr (chr6: 6:18139228)

and p.Tyr240Cys (chr6:18130918), and alleles ∗3B and ∗3C are
defined by p.Ala154Thr and p.Tyr240Cys, respectively (refer-
ence sequence NP_000358.1). The frequencies of these alleles
vary significantly across ethnic populations (Appell et al., 2013):
while ∗3A is the most frequently found in Caucasians (4.5%)
(Schaeffeler et al., 2004), ∗3C is more prevalent in Africans or
Asians, with 5.4–7.6% and 0.3–3%, respectively (reviewed in Teml
et al., 2007).

TPMT enzymatic activity exhibits a trimodal distribution
and approximately 0.3% of the population carry two defec-
tive alleles (associated with negligible activity), about 10% are
heterozygous (intermediate activity), and 89% have normal activ-
ity (Weinshilboum and Sladek, 1980; Schaeffeler et al., 2004).
Therefore, both heterozygous and homozygous individuals are at
higher risk of developing myelosuppression within a few weeks
after starting treatment with conventional doses that can be lethal
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if unrecognized, independent of the underlying disease being
treated (Sim et al., 2013).

Due to the potential cytotoxicity and narrow therapeutic index
of thiopurines, the US Food and Drug Administration (FDA)
recommends TPMT testing prior to starting treatment with
thiopurine drugs, and TPMT genotype-guided dosing recom-
mendations are currently in use (Relling et al., 2011, 2013).

Results of genetic tests are potentially relevant over a patient’s
lifetime and having that information incorporated into patients’
medical records may be useful in the improvement and guid-
ance of drug treatments, if ever needed. With electronic medical
records (EMR) currently widely implemented at academic hos-
pitals and other treatment institutions, pharmacogenetic action-
able variants can be integrated to the already available patient’s
information, helping optimize clinical decision making and care
planning (Gottesman et al., 2013). Moreover, genome-wide data
is increasingly accessible due to decreasing costs of genomic
technologies and the development of methods that allow for
accurate imputation of genotypes not directly probed by spe-
cific arrays could influence health care decisions (Marchini and
Howie, 2010). Genomic data is frequently stored within large
biorepositories where DNA samples are linked with phenotypic
data. These biorepositories have been efficient and successful
in studies of genotype-phenotype associations and they can be
used as a model for the implementation and evaluation of phar-
macogenomics in routine clinical practice (Gottesman et al.,
2013).

In the present study, we leverage existing genome-wide geno-
typing data to impute common defective TPMT alleles with the
aim of identifying individuals carrying high-risk genotypes for
thiopurines-induced adverse events.

MATERIAL AND METHODS
SUBJECTS AND GENOTYPING
This study was approved by the institutional review board and
the ethics committee of The Children’s Hospital of Philadelphia
(CHOP). Written informed consent was obtained from each
participant in accordance with institutional requirements and
the Declaration of Helsinki Principles. Subjects were selected
from the biorepository at the Center for Applied Genomics
at CHOP. The CHOP biobank has a collection of over
160,000 samples including 60,000 internal pediatric samples
and over 100,000 adult and pediatric samples from exter-
nal collaborators genotyped using standard GWAS arrays from
Illumina and Affymetrix (summarized in Gottesman et al.,
2013).

Figure 1 illustrates the study process. For TPMT imputation,
we selected a total of 87,979 samples genotyped with either
InfiniumII HumanHap550 (550; N = 45,893) or Human610-
Quad version 1 (Quad; N = 42,086) arrays (Illumina, San
Diego, CA). Genotyping data were used to impute sex using
PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell
et al., 2007); population ancestry was determined by princi-
pal component analysis (Eigenstrat 3.0) (Price et al., 2006), and
samples were grouped into populations using nearest neighbors
analysis and the HapMap3 samples (https://www.sanger.ac.uk/
resources/downloads/human/hapmap3.html) as a reference.

IMPUTATION OF TPMT GENOTYPES
Imputation of unobserved genotypes in TPMT gene locus
(chr6:18,128,545–18,155,374) was carried out with the IMPUTE2
package (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html)
(Howie et al., 2009) with the 1,000 Genomes Project reference
panel, after prephasing chromosome 6 haplotypes with SHAPEIT
version 2 (http://www.shapeit.fr/) (Delaneau et al., 2013). Since
rs1800460 is probed on the Illumina HH610 Quad array, prephas-
ing and imputation was performed for each chip type separately.
Quality control filters were applied and only SNPs with an info
score >0.9 were kept.

VALIDATION OF THE IMPUTED GENOTYPES
To determine the accuracy of imputation, TPMT imputed hap-
lotypes were compared to those obtained by other genotyping
platforms covering TPMT variation. Of the 87,979 samples, 583
also had genotyping data on Illumina Infinium Immunochip
(Immunochip), and HumanOmni1-Quad version 1 (Omni),
which captured both rs1800460 and rs1142345. Additionally,
Sanger sequencing of rs1800460 in exon 7 and rs1142345 in exon
10 was used to validate the imputation results (primers previ-
ously described in Schaeffeler et al., 2001). The sample selected for
Sanger sequencing consisted of 59 individuals predicted to carry
one or two defective alleles by imputation that had been exposed
to a TPMT medication based on the EMR.

DETERMINATION OF THE CONCORDANCE AND THE SENSITIVITY,
SPECIFICITY, POSITIVE AND NEGATIVE PREDICTIVE VALUES OF THE
IMPUTATION FOR THE IDENTIFICATION OF CARRIERS OF TPMT
DEFECTIVE ALLELES
We determined the concordance of the imputation as the number
of imputed genotypes that correspond with output from direct
genotyping or sequencing (expressed as percentage). Sensitivity,
specificity and positive and negative predictive values of the
imputation in the discrimination of subjects carrying the ∗1/∗1
genotype, and one and two TPMT defective alleles were deter-
mined as shown in Figure 2.

RESULTS
SUBJECTS AND TPMT IMPUTATION
Ancestry, sex estimation and imputation of TPMT genotypes
for the 89,797 individuals were performed in eleven batches
of ∼8,000 samples. An average of 174,911 SNPs with r2 < 0.2
were used for principal components calculation.

There were 50.04% males out of the 89,797 individuals
(imputed sex for 0.87% of the individuals was undetermined).
Principal component analysis classified 72.74% of individuals as
Caucasians, 18.78% with African ancestry, 6.55% Hispanics, and
1.93% Asians (Table 1). There were also data on self-reported
ethnicity for 24,527 out of the 89,797 individuals, with 50.15%
Caucasians (N = 12,304), 41.81% African Americans (N =
10,263), 1.6% Asians (N = 385), 0.08% American Indians (N =
21), 0.03% Native Hawaiians (N = 7), 0.02% Indians (N = 5),
and 6.29% were considered as “Other” (N = 1542). Concordance
between self-reported and imputed ancestry was >80% for
Caucasians, African Americans, and Asians (93.92, 98.34, and
81.30%, respectively). For the remaining groups, 57.58% were
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CHOP Biobank (N=87,979) 
Hap550: N=45,893  

Quad: N=42,086  

Imputation 
SHAPEIT 
IMPUTE2 

QC: info > 0.9 
Known functional consequence 

Imputation of sex 
(PLINK) and ancestry 

(EIGENSTRAT) 

Determination of the TPMT haplotype 
TPMT*1 rs1800460C/rs1142345T 

TPMT*3A: rs1800460T/rs1142345C 
TPMT*3B: rs1800460T/rs1142345T 
TPMT*3C: rs1800460C/rs1142345C 

Validation of the accuracy of the imputation 
Concordance 
Sensitivity 
Specificity 

Positive predictive value 
Negative predictive value 

Sanger sequencing 
59 individuals with 1 (N=28) or 2 

alleles (N=31) 

Genotyping 
583 individuals genotyped with 

Immunochip and Omni 

FIGURE 1 | General schema for the study process. Hap550 is the InfiniumII HumanHap550 array, Quad is Human610-Quad version 1 array, Immunochip is
the Illumina Infinium Immunochip array and Omni is the HumanOmni1-Quad version 1.

FIGURE 2 | Definition of true and false positive and negative values and formulae used for the determination of the sensitivity, specificity, and

predictive values of the imputation.

classified as Hispanics (19 out of 33), 15.15% as Asians (N =
5) and Caucasians (N = 5) and 12.12% as African Americans
(N = 4).

Three hundred and fifty four variants were imputed in the
TPMT gene, including 322 SNPs and 33 insertion/deletion

polymorphisms (indels). Out of these, only 117 had an info
value ≥0.9 (103 SNPs and 14 indels). However for the subse-
quent analysis only those with a known functional significance
were considered: rs1800460 and rs1142345, which define alleles
∗3A, ∗3B, and ∗3C. The loss-of-function variant rs1800462 that
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Table 1 | Frequencies of the different ethnicities in the sample

investigated based on principal component analysis of imputed

genotype data.

Population N (%)

Caucasians 63,998 72.74

CEU, Utah residents with
ancestry from northern and
western Europe

56,675 64.42

TSI, Toscans in Italy 7,323 8.32

African ancestry 16,519 18.78

ASW, African ancestry in
Southwest USA

15,457 17.57

YRI, Yoruba in Ibadan, Nigeria 947 1.08

MKK, Maasai in Kinyawa, Kenya 96 0.11

LWK, Luhya in Webuye, Kenya 19 0.02

Hispanics 5,764 6.55

MEX, Mexican ancestry in Los
Angeles, California

4,786 5.44

GIH, Gujarati Indians in Houston,
Texas

978 1.10

Asians 1,698 1.93

CHD, Chinese in Metropolitan
Denver, Colorado

1,043 1.19

JPT, Japanese in Tokyo, Japan 269 0.91

CHB, Han Chinese in Beijing,
China

386 0.43

defines allele ∗2 was also imputed but did not pass the quality
filters, thus it was excluded from the further analyses.

TPMT alleles were assigned as ∗1 when the rs1800460
C>T/rs1142345 T>C diplotype was CT, ∗3B when TT, and ∗3C
when CC. For allele ∗3A, given the high linkage disequilibrium
between rs1800460 (∗3B) and rs1142345 (∗3C) and the low minor
allele frequency, whenever an individual carried both variants
(rs1800460T and rs1142345C), the allele was assigned as ∗3A.

TPMT allelic, genotypic and associated phenotypic frequen-
cies for ∗3A, ∗3B, and ∗3C across ethnic groups are illustrated in
Tables 2, 3 and 4, respectively. As shown in Table 2, the distribu-
tion of the three defective alleles varied largely across populations:
∗3A was more represented among the Caucasians, ∗3B in the
Hispanics and ∗3C in both Asians and African Americans, being
the latter the group with the highest frequency of carriers of
TPMT defective alleles (5.49 vs. 4.07% in Caucasians, 4.41%
in Hispanics and 2.77% in Asians). According to the genotype-
associated enzymatic activity, Asians harbored the lowest rates of
poor metabolizers with only 0.12% whereas Caucasians, African
Americans and Hispanics have a frequency close to 0.33%.

CONCORDANCE, SENSITIVITY, SPECIFICITY, AND POSITIVE AND
NEGATIVE PREDICTIVE VALUES OF THE IMPUTATION
Out of the 87,979 samples used for imputation, 583 had geno-
typing data on both rs1800460 and rs1142345: 94.8% of them
carried the genotype ∗1/∗1, 4.5% ∗1/∗3A, and 0.7% the geno-
type ∗1/∗3C. Concordance of the imputed haplotypes compared
to those determined by genotyping was 99.8% (Table 5).

Sanger sequencing was performed in a subset of 59 samples
predicted to carry 1 (N = 28) or 2 (N = 31) defective alleles
(∗3A, or ∗3C). Twelve of the 59 samples also had genotype data
and results were consistent across the two methods and with
the imputation. The overall concordance was 84.7% for the total
59 samples. Table 6 illustrates the concordance of the imputed
genotypes after validation with Sanger sequencing.

When taking into account the number of defective alleles,
98.88% of individuals (623 of the 630 individuals—excluding the
12 in the two groups-) were accurately imputed. All of the sam-
ples identified as carrying no risk alleles (∗1/∗1) were confirmed
by direct genotyping or sequencing (553/553) and for heterozy-
gous and homozygous individuals, the concordance was lower,
with 97.8% (45/46) and 80.64% (25/31), respectively (Table 7).
Sensitivity, specificity and positive and negative predictive values
of imputation of TPMT genotypes are summarized in Table 7.
Since the importance of TPMT genotyping lies in the discrim-
ination of individuals carrying defective alleles, these metrics
were determined for the discrimination of individuals carrying
the ∗1/∗1 genotype, individuals with one defective allele and
individuals with two defective alleles. Sensitivity, specificity, and
predictive values were close to 100% for all cases except for
the positive predictive value of identifying homozygous carriers,
which was 80.64%.

DISCUSSION
A growing number of drug-gene interactions, affecting rou-
tinely prescribed drugs, are being validated (Relling and Klein,
2011). The FDA has to date recommended the inclusion of
pharmacogenetic markers in the labels of more than a 100
drugs (http://www.fda.gov/drugs/scienceresearch/researchareas/
pharmacogenetics/ucm083378.htm) (Shuldiner et al., 2013)
and initiatives such as Pharmacogenomics Knowledge Base
(PharmGKB) and the Clinical Pharmacogenetics Implementation
Consortium (CPIC) (Relling and Klein, 2011) provide essential
pharmacogenetic information and play a major role in establish-
ing recommendations to aid clinicians in guiding therapies. If
one considers the report by Schildcrout et al, who demonstrated
that up to 65% of patients were exposed to at least one medi-
cation with an established drug-gene association within 5 years
(Schildcrout et al., 2012), then pharmacogenetics integration
into individuals’ medical records for clinical use is becoming an
urgent need. Availability of pharmacogenetic information prior
to patients’ treatment has the opportunity to identify individuals
potentially benefiting from a given therapy, select adequate med-
ications and doses, in order to ultimately administer the most
effective treatment to each patient, with the lower incidence of
adverse events.

Using existing genomic data from the CHOP biobank repos-
itory we have been able to impute three of the most common
defective TPMT alleles ∗3A, ∗3B, ∗3C in a cohort of 87,979
individuals. The sensitivity, specificity and positive and nega-
tive predictive values of the imputation were sufficiently high to
allow discrimination of patients carrying one or two defective
alleles from those with a ∗1/∗1 genotype. Concordance between
observed and imputed genotypes was 100% for individuals with
∗1/∗1 genotype, and for carriers of TPMT alleles, discordant
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Table 2 | Distribution of allele frequencies for TPMT alleles *3A, *3B, and *3C across the different ethnic groups.

Caucasian AA Hispanic Asian Total

(N = 63,998) (N = 16,519) (N = 5,764) (N = 1,698) (N = 87,979)

Allele N (%) N (%) N (%) N N (%)

*1 122,787 (95.93) 31,225 (94.51) 11,020 (95.59) 3,302 (97.23) 168,333 (95.67)

*3A 4,305 (3.36) 303 (0.92) 334 (2.90) 19 (0.56) 4,961 (2.82)

*3B 86 (0.07) 1 (0.00) 12 (0.10) 0 (0.00) 99 (0.06)

*3C 817 (0.64) 1,509 (4.57) 162 (1.41) 75 (2.21) 2,563 (1.46)

Table 3 | Distribution of genotypes for TPMT alleles *3A, *3B, and *3C across the different ethnic groups.

Caucasian AA Hispanic Asian Total

(N = 63,998) (N = 16,519) (N = 5,764) (N = 1,698) (N = 87,979)

Genotype N (%) N (%) N (%) N (%) N (%)

*1/*1 58,981 (92.16) 14,761 (89.36) 5,275 (91.52) 1,606 (94.58) 80,623 (91.64)

*1/*3A 4,119 (6.44) 286 (1.73) 322 (5.59) 19 (1.12) 4,746 (5.39)

*1/*3B 10 (0.02) 1 (0.01) 1 (0.02) 0 (0.00) 12 (0.01)

*1/*3C 697 (1.09) 1,416 (8.57) 147 (2.55) 71 (4.18) 2,331 (2.65)

*3A/*3A 81 (0.13) 1 (0.01) 5 (0.09) 0 (0.00) 87 (0.10)

*3A/*3B 1 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.001)

*3A/*3C 23 (0.04) 15 (0.09) 2 (0.03) 0 (0.00) 40 (0.05)

*3B/*3C 75 (0.12) 0 (0.00) 11 (0.19) 0 (0.00) 86 (0.10)

*3C/*3C 11(0.02) 39 (0.24) 1 (0.02) 2 (0.12) 53 (0.06)

Table 4 | TPMT genotype-associated phenotypic frequencies across the different ethnic groups.

Caucasian AA Hispanic Asian Total

(N = 63,998) (N = 16,519) (N = 5,764) (N = 1,698) (N = 87,979)

TPMT activity N (%) N (%) N (%) N (%) N (%)

Normal 58,981 (92.16) 14,761 (89.36) 5,275 (91.52) 1,606 (94.58) 80,623 (91.64)

Intermediate 4,826 (7.54) 1,703 (10.31) 470 (8.15) 90 (5.30) 7,089 (8.06)

Low 191 (0.30) 55 (0.33) 19 (0.33) 2 (0.12) 267 (0.30)

results were essentially cases of individuals predicted to be het-
erozygous by imputation that were found to be homozygous by
genotyping or sequencing. Additionally, probably because of the
rarity of SNPs rs1800460 and rs1142345 and the increase in impu-
tation errors as minor allele frequency decreases, alleles ∗3A and
∗3C were frequently switched, and allele ∗3B was only identified
in the subset of samples genotyped with the Quad array. The rar-
ity of allele ∗2 may also be the explanation for the inability of
imputing with adequate quality.

TPMT deficiency exhibits an extensive interethnic variability
(Wang et al., 2010; Appell et al., 2013). The population inves-
tigated in this study is characterized for being largely admixed
with African Americans, Asians and Hispanics accounting for
almost 30% of all individuals. As previously described, frequency
of alleles ∗3A, ∗3B and ∗3C is population-specific. Whereas ∗3A
and ∗3B were predominantly found in Caucasians and Hispanics
(3.36 and 2.90%, for ∗3A and 0.07 and 0.1%, for ∗3B, respec-
tively), the most prevalent defective allele in African Americans

Table 5 | Concordance between the imputed genotypes and

genotypes determined by genotyping using Immunochip (Illumina

Infinium Immunochip array) and Omni (HumanOmni1-Quad version

1) (N = 583).

Imputation Genotyping

*1/*1 *1/*3A *1/*3C Total

*1/*1 553 0 0 553

*1/*3A 0 26 0 26

*1/*3C 1 0 3 4

Total 554 26 3 583

and Asians was ∗3C (4.57 and 2.21%, respectively). These results
were similar to frequencies previously reported for those pop-
ulations (Oliveira et al., 2007; Taja-Chayeb et al., 2008; Appell
et al., 2013). Regarding TPMT associated-phenotypes, African
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Americans had the highest proportion of intermediate (10.31%)
and low methylators (0.33%), being the ethnic group with the
highest risk of developing adverse events derived from TPMT
treatment. Conversely, Asians are the lowest risk group, with only
5.4% of individuals carrying one (5.30%) or two alleles (0.12%).
Caucasians and Hispanics had a similar percentage of individuals
with TPMT intermediate (7.54 and 8.15%, respectively) and low
activity (0.30 and 0.33%, respectively). Other population-specific
alleles not imputed in the current study, such as ∗2 that is almost
restricted to Caucasians, or ∗6 (rs75543815) and ∗8 (rs56161402)
that occur at frequencies between 1.5 and 3.5% in some African
and Asian populations (Oliveira et al., 2007), are also impor-
tant contributors of TPMT deficiency. These rare TPMT alleles
or novel variants will not be detected with this approach and can
only be identified by direct genotyping or sequencing. Thus, the
frequency of intermediate and low methylators in this study may
be slightly underestimated.

It is worth mentioning that approximately 1 in 10 individ-
uals tested from our biobank were found to carry at least one
high-risk TPMT allele. There are currently over 2.5 million
children enrolled in the CHOP healthcare system, and if one
extrapolates the results yielded from this study to the entire pop-
ulation at CHOP, then more than 170,000 patients would be
expected to be TPMT deficient. Identification of such carriers
is especially important in the pediatric population, as thiop-
urines are commonly prescribed drugs in children. Thiopurines
are the backbone drugs for maintenance of acute lymphoblastic
leukemia (ALL), which is the most common childhood malig-
nancy (Pui and Evans, 2006), and are also frequently used as

Table 6 | Concordance between imputed genotypes and genotypes

determined by Sanger sequencing (N = 59).

Imputation Sanger sequencing

*1/*1 *1/*3A *1/*3C *3A/*3A *3A/*3C *3C/*3C Total

*1/*1 0 0 0 0 0 0 0

*1/*3A 0 19 0 0 0 0 19

*1/*3C 0 0 9 0 0 0 9

*3A/*3A 1 0 0 6 0 0 7

*3A/*3C 0 0 1 0 3 1 5

*3C/*3C 0 0 4 1 1 13 19

Total 1 19 14 7 4 14 59

chronic immunosuppressive therapy after organ transplantation
and in inflammatory bowel disease (Dubinsky, 2004; Relling
et al., 2011; Appell et al., 2013). A major limitation of their
use is their narrow therapeutic index and the severe myelosup-
pression they cause, a life threating adverse event highly asso-
ciated with TPMT deficiency (Relling et al., 1999). In a study
by Relling and coworkers in 180 children with ALL receiving
conventional doses of 6-mercaptopurin, the authors found that
the cumulative incidence of toxicity was 100% for homozy-
gous TPMT deficiency, 35% for heterozygous, and 7% for
patients homozygous for allele ∗1 (Relling et al., 1999). This
association has been widely replicated, so genotyping of TPMT
is recommended in US FDA-approved labeling and currently
genotype-based dosing recommendations exist (Relling et al.,
2011, 2013). The high genotype-phenotype correlation existent
for TPMT and the large interethnic variability in the suscepti-
bility to thiopurine hematopoietic toxicity, sustain the need of
availing such genetic information to prospectively identify indi-
viduals where thiopurine therapy may need to be modified or
changed.

Biorepositories where DNA samples are linked to the EMR
of patients, such as the CHOP biobank, offer the ideal
platform for screening and identification of individuals with
high-risk genotypes that may require a modification in the
therapy if a given drug is prescribed. CHOP is part of the
Electronic Medical Records and Genomics (eMERGE) con-
sortium that is actively working on large-scale testing and
integration of information on actionable pharmacogenetic vari-
ants, such as TPMT alleles, into clinical practice using EMR
technologies (Gottesman et al., 2013). One of the goals of
eMERGE is the creation of SPHINX (Sequence, Phenotype,
and pHarmacogenomics INtegration eXchange http://www.

emergesphinx.org/), a web accessible repository of genomic
variants derived from a panel of 84 genes involved in the
pharmacogenetics of a large number of drugs, designed by the
NIH-supported Pharmacogenetics Research Network (PGRN),
and linked to clinical information. To date, SPHINX contains
data on 2000 of the nearly 9000 subjects that are planned to
be enrolled in the project. Interestingly, so far SPHINX lists
174 variants in the TPMT gene, including known and novel
variants, and the minor allele frequency information. Variant
repositories such as SPHINX allow the advance in the knowledge
of pharmacogenetics through the exploration of new hypothe-
ses and the further integration of this information into the
EMR.

Table 7 | Concordance between imputed and observed genotypes according to the number of defective alleles and characteristics of the

imputation in terms of sensitivity (S), specificity (SP), positive predictive value (PPV) and negative predictive value (NPV) (N = 630).

Observed genotypes Imputation metrics

Imputed genotypes 0 alleles 1 allele 2 alleles S SP PPV NPV

0 alleles 553 0 0 99.64 100 100 97.40

1 allele 1 45 0 90.00 99.83 97.82 99.14

2 alleles 1 5 25 100 99.01 80.64 100

Total 555 50 25
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The results yielded from this study demonstrate that imputa-
tion of TPMT alleles from existing genomic data is feasible and
may be used as a first step in the screening of high-risk individuals
for thiopurine drugs toxicity. Sensitivity, specificity, and predic-
tive values of the imputation were over 90% in all cases, except
for the positive predictive value of the imputation of homozygous
subjects. Given that around 90% of the population is expected to
have two fully functional TPMT alleles, being able to accurately
identify such individuals based on existing genomic data yields
10% of the population to be screened for high-risk genotypes
with direct genotyping methods. The positive and negative pre-
dictive values of 100 and 97.40%, respectively, obtained for the
discrimination of individuals with the ∗1/∗1 genotype supports
the potential utility of imputation in narrowing the target pop-
ulation where TPMT genotypes need to be determined. Further
integration of such pharmacogenetic information into the EMR,
with clinical decision support, may be used to aid clinicians pre-
scribe therapies with the maximum risk-benefit ratio based on
each individual’s information.
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Common variations at the loci harboring the fat mass and obesity gene (FTO), MC4R, and
TMEM18 are consistently reported as being associated with obesity and body mass index
(BMI) especially in adult population. In order to confirm this effect in pediatric population
five European ancestry cohorts from pediatric eMERGE-II network (CCHMC-BCH) were
evaluated.

Method: Data on 5049 samples of European ancestry were obtained from the Electronic
Medical Records (EMRs) of two large academic centers in five different genotyped cohorts.
For all available samples, gender, age, height, and weight were collected and BMI was cal-
culated.To account for age and sex differences in BMI, BMI z -scores were generated using
2000 Centers of Disease Control and Prevention (CDC) growth charts. A Genome-wide
association study (GWAS) was performed with BMI z -score. After removing missing data
and outliers based on principal components (PC) analyses, 2860 samples were used for
the GWAS study. The association between each single nucleotide polymorphism (SNP)
and BMI was tested using linear regression adjusting for age, gender, and PC by cohort.
The effects of SNPs were modeled assuming additive, recessive, and dominant effects of
the minor allele. Meta-analysis was conducted using a weighted z -score approach.

Results: The mean age of subjects was 9.8 years (range 2–19). The proportion of male
subjects was 56%. In these cohorts, 14% of samples had a BMI ≥95 and 28 ≥ 85%. Meta
analyses produced a signal at 16q12 genomic region with the best result of p = 1.43 × 10−7

[p 8
(rec) = 7.34 × 10− ) for the SNP rs8050136 at the first intron of FTO gene (z = 5.26)

and with no heterogeneity between cohorts (p = 0.77). Under a recessive model, another
published SNP at this locus, rs1421085, generates the best result [z 5.782, p(rec)

8.21 × 10−9
= =

]. Imputation in this region using dense 1000-Genome and Hapmap CEU
samples revealed 71 SNPs with p < 10−6, all at the first intron of FTO locus. When hetero-
geneity was permitted between cohorts, signals were also obtained in other previously
identified loci, including MC4R (rs12964056, p = 6.87 × 10−7, z = −4.98), cholecystokinin
CCK (rs8192472, p = 1.33 × 10−6, z = −4.85), Interleukin 15 (rs2099884, p = 1.27 × 10−5,
z = 4.34), low density lipoprotein receptor-related protein 1B [LRP1B (rs7583748,
p = 0.00013, z = −3.81)] and near transmembrane protein 18 (TMEM18) (rs7561317,
p = 0.001, z = −3.17). We also detected a novel locus at chromosome 3 at COL6A5 [best
SNP = rs1542829, minor allele frequency (MAF) of 5% p = 4.35 × 10−9, z = 5.89].

Conclusion: An EMR linked cohort study demonstrates that the BMI-Z measurements
can be successfully extracted and linked to genomic data with meaningful confirmatory
results. We verified the high prevalence of childhood rate of overweight and obesity in
our cohort (28%). In addition, our data indicate that genetic variants in the first intron of
FTO, a known adult genetic risk factor for BMI, are also robustly associated with BMI in
pediatric population.

Keywords: BMI, obesity, polymorphism, GWAS
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INTRODUCTION
The electronic MEdical Records and GEnomics (eMERGE) Net-
work, founded in 2007, is a consortium of multiple adult and
pediatric institutions developed to explore the utility of DNA bio
repositories linked to electronic medical records (EMR) in advanc-
ing genomic medicine (McCarty et al., 2011). For each site, the
primary site-specific phenotypes have undergone genome-wide
association studies (GWAS) with data and results shared through
the network. In the pediatric population, however, genetic studies
are challenging due to different developmental phase and growth
patterns, different spectrums of disease, and unusual rare genetic
or congenital abnormalities.

In both adults and children, obesity is a major risk factor for
a number of chronic diseases, a steady and continuous rise in
prevalence over the past four decades holds serious and ominous
medical and economic burdens (Kopelman, 2000). The pheno-
type is highly heritable. Family and twin studies have shown that
between 40 and 70% of the inter-individual variation in obesity
can be attributable to genetic factors (Maes et al., 1997). In recent
years, large-scale GWAS have identified many loci associated with
Body Mass Index (BMI), the most common measure of obesity,
but these loci combined explain only 2–4% of the heritability
(Speliotes et al., 2010). Thus far, four waves of GWAS studies for
BMI identified 32 loci that reached genome-wide significance and
unequivocally were associated with BMI in a large meta-analysis
performed by the GIANT (Genetic Investigation of ANtropomet-
ric Traits) consortium (Frayling et al., 2007; Scuteri et al., 2007;
Loos et al., 2008; Willer et al., 2009; Speliotes et al., 2010; Loos,
2012; Mägi et al., 2013). The firstly identified locus, FTO (fat mass
and obesity associated gene), has the largest effect on obesity-
susceptibility with obesity at a risk of 1.20 fold. Moreover, the
frequency of the BMI-increasing allele is high in white Europeans
(i.e., 40%). As a consequence, of all 32 BMI-associated loci, the
FTO locus explains the largest proportion of the inter-individual
variation in BMI (0.34%; Speliotes et al., 2010; Loos, 2012).

In this study, we investigated the genetic association of pediatric
BMI using anthropomorphic measures extracted from medical
records in a collection of already genotyped samples from two
large pediatric cohort repositories (CCHMC and CHB) in order
to confirm and identify additional genetic loci.

MATERIALS AND METHODS
STUDY SUBJECTS
Protocols for this study were approved by the Institutional Review
Boards (IRBs) at the institutions where participants were recruited.
Only those self-reported to have European ancestry were selected
for study. The anthropometric measurements of height and
weight, as well as age of measurement and gender, were extracted
from the EMR. All enrolled participants with measured weight
and height on the same day were included. All inconsistent or
out of range values were excluded. Out of range was defined
as any height or weight values higher or lower than is consid-
ered biologically possible according to Centers of Disease Control
and Prevention (CDC) growth charts. Children and teens, aged
2 through 19 years old were included based on CDC growth
chart requirements. In addition, three patients with the ICD-9
code for Prader Willi syndrome were excluded from final results.

After removing the missing data and outliers, out of a total
of 5,049 individuals, 2860 samples were included in the study.
The demographic distributions of these samples are shown in
Table 1.

GENOTYPING
High throughput single nucleotide polymorphism (SNP) geno-
typing was carried out previously in CCHMC and BCH using
different IlluminaTM or AffymetrixTM platforms (Table 1). Qual-
ity control (QC) of the data was performed before imputation.
In each genotyped cohort, standard QC criteria were met and
SNPs were removed if (a) >10% missing genotyping, (b) out
of Hardy–Weinberg equilibrium (HWE, P < 0.001), or a minor
allele frequency (MAF) <1%. Samples with call rate <98% were
excluded. Principle component analysis (PCA) was performed to
identify outliers and hidden population structure using EIGEN-
STRAT (Price et al., 2006). Based on examination of the scree plot,
the first two PCs were retained and used as covariates during the
association analysis in order to adjust for population stratification.

PHENOTYPING
We obtained height and weight measurements from EMR in order
to calculate BMI [wt (kg)/(ht(m)2]. When multiple measurements
were available for a subject, the most recent measurement was
selected and all inconsistent measures were excluded. BMI z-scores
and percentiles were generated using the 2000 CDC growth charts
(study1). These z-scores and percentiles account for the age and
sex differences in BMI throughout childhood. All data for BMI-z
scores (−3 to +3, mean = 0) were scaled to positive value (+4,
1–7, mean = 4) to be used as a quantitative trait for the GWAS
study. In order to assess the burden of increased body weight on
health and estimate the effect size, standard cut-offs were also
used, and the tail BMI distribution was considered as a binary
phenotype (≥95% as case and ≤20% as control). For the published
FTO locus, Phenome wide association study (PheWas) was also
performed in which presence or absence of each ICD-9 codes
were considered as binary phenotype. Only ICD-9 codes with
50 or more available samples were included (143 codes) in the
analysis.

STATISTICAL ANALYSIS
Genome-wide association studies analysis was performed by
cohort in PLINK (Purcell et al., 2007) using regression models
and adjusting for age, sex, and the first two principal components
(PC). For BMI z-score, the primary analysis was performed using
an additive effect of the minor alleles. However, as previous BMI
associations have reported better model fit with different models,
recessive and dominant models were subsequently evaluated. For
binary phenotypes (dichotomization of BMI using a tails approach
and PheWas analyses), allelic association was assessed between
cases and controls by chi-square with 1 degree of freedom (df).
Allelic odds ratio (OR) and 95% confidence intervals (95% CIs)
were obtained. In PheWas analyses, permutation procedure was
performed using sample randomization strategy in which case

1http://www.cdc.gov/healthyweight/downloads/BMI_group_calculator_
English.xls
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Table 1 | Demographic distribution of pediatric cohorts under study.

# Europeans # After removing outliers

and missing values

M/F Mean age (95% CI) Array

CHB 741 613 387/226 13.30 (12.97–13.66) Affymetrix-Axiom

CCHMC 829 696 338/358 10.80 (10.53–11.12) Omni-5

657 405 261/144 7.18 (6.73–7.63) Omni-1

1270 942 589/353 7.32 (7.03–7.62) Illumina-610

1552 204 28/176 13.70 (13.13–14.23) Affymetrix-6

Total 5049 2860 1603/1257 9.8 (8.67–10.85)

and control labels are permuted randomly (×10000) in order to
obtain empirical p values and to correct for multiple testing.

For specific target regions, imputation-based analyses were
performed using the impute2-Gtool pipeline and the publicly
available 1000 Genomes Project as the reference haplotype panel
composed of 1092 samples (release version 2 of the 1000 Genomes
Project Phase I2 (Howie et al., 2011). For each batch of imputa-
tion runs, the standard Markov Chain Monte Carlo (MCMC)
algorithm implemented in impute-2, was used with the following
threshold criteria (burnin = 10, iteration = 30, and Ne = 20000,
buffer = 250 kb). A threshold of 0.90 for the posterior probability
of each genotype was then applied for genotype calling and con-
version using Gtool. For each imputation run, the overall genotype
concordance rate was more than 95%. Additional post imputation
filtering were also implemented to remove poorly imputed variants
with low concordance rate according to the impute-2 standard
protocol (info >0.4; Howie et al., 2011). To graphically display the
results, LocusZoom was used (Pruim et al., 2010).

META-ANALYSES
The results from primary analysis in each cohort were assem-
bled to conduct a fixed effects weighted Z meta-analysis using
Metal (Willer et al., 2010). This approach controls the differences
in phenotype scaling across the studies and weights the signed Z
statistics from each study by its sample size (i.e., weighted sum),
from which a probability is calculated. The program also applies
the genomic control correction to control type I error rates using
summary statistics from each cohort. After QC filtrations in each
cohort (as described above), meta-analyses were performed on
SNP markers that were overlap among all five cohorts. 92670
SNP markers were in this category. At the next step in order
to allow heterogeneity between cohorts, we applied a minimum
weight of at least 1000 samples for analyses and identify addi-
tional effects. 583824 SNP markers were evaluated in this mode.
We considered genome-wide significance thresholds of nominal
p-value <10−8 for any new findings and report all significant
results (p < 0.001) of previously known loci that concurred with
previous publications in terms of strand direction, MAF, and sup-
porting evidence from nearby region. In addition, to describe
the presence or absence of excess variation between cohorts, we

2ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521

evaluated the Q-statistic and I2 as a measure of heterogeneity
(Willer et al., 2010).

RESULTS
The demographic distribution of the European ancestry popu-
lation under study (Table 1) shows that the overall mean age
of participants was 9.8 (95% CI = 8.67–10.85) years old with
56% being male. Table 2 shows the estimated prevalence of over-
weight and obesity in these pediatric cohorts with a rate of 28%
overweight (≥85th %ile) and 14% of obesity (≥95th %ile). This
distribution was consistent across all cohorts (Table 2).

Genome-wide analyses were conducted within each cohort.
Associations between SNPs and BMI assumed an additive genetic
model and summary statistics were subsequently used for meta-
analysis using a weighted z-score method. After cleaning the data
by applying our QC criteria, the ratio of the observed to expected
χ2 test statistic (lambda) was λ = 1.007 (Figure 1B). The results
of the meta-analyses of all studies revealed a significant signal of
association at 16q12 (Manhattan plot, Figure 1A).

The typed SNP rs8050136 at first intron of FTO gene pro-
duced consistent evidence of association in all cohorts with the
best overall result of (P = 1.43 × 10−7, z = 5.26) and with
no heterogeneity between study cohorts (p = 0.77; Figure 1A;
Table 3). In addition, the allele frequencies and strand alignment
are similar across cohorts and consistent with European ancestry.
In consistent with previous publications, when mean of BMI-z
was stratified by genotype (AA, AC, CC) for SNP (rs8050136),
the additive association with risk allele was observed and it is

Table 2 | Summary of BMI-for-age and prevalence of overweight and

obese children from the CCHMC-BCH cohorts.

Male Female Total

Number of children assessed 1603 1257 2860

Underweight (<5th %ile) 10 9 10

Normal BMI (5th–85th %ile) 62 63 62

Overweight or obese (≥85th %ile)* 28 28 28

Obese (≥95th %ile) 15 12 14

Summary of children’s BMI-for-age and prevalence of overweight and obesity.
*Terminology based on Barlow and the Expert Committee (2007).
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FIGURE 1 | (A,B) Manhattan plot and Q–Q plot of SNP markers used for meta-analyses (genomic inflation, λ = 1.007).

Table 3 | Most associated SNPs with BMI-z in CCHMC-BCH pediatric cohorts.

Chr Position Gene SNP Minor allele MAF Z score* P(add) P (rec) PDom Cochran-q I 2 (%)

16 53816275 FTO rs8050136 A 0.39 5.26 1.43e−07 7.34e−08 0.0008 0.71 0

16 53813367 FTO rs17817449 G 0.39 5.02 5.56e−07 5.10e−08 0.001 0.49 0

16 53820527 FTO rs9939609 A 0.39 5.01 6.07e−07 8.53e−08 0.001 0.75 0

16 53800954 FTO rs1421085 C 0.39 4.65 3.45e−06 8.21e−09 0.02 0.61 0

18 57673799 Near MC4R rs12964056 A 0.24 −4.98 6.87e−07 0.0004 4.96e−06 0.95 0

3 42299870 CCK rs8192472 A 0.37 −4.85 1.33e−06 0.0007 0.0002 0.89 0

4 142763570 IL15 rs2099884 T 0.15 4.29 1.27e−05 0.0006 0.0004 0.82 0

2 142855291 LRP1B rs7583748 G 0.10 −3.81 0.0001 0.03 8.08e−005 0.19 0.41

2 644953 TMEM18 rs7561317 A 0.17 −3.17 0.001 0.09 0.02 0.74 0

*The direction of all effect (weighted z scores) are for the minor alleles. The I 2 inconsistency metric was null to small for all of the markers (I 2 = 0–42%).

shown in Figure 2 (risk allele, A). There was 0.4 z-score-unit dif-
ference in mean of BMI-z score between homozygotes with risk
and non-risk genotype in our pediatric cohorts (Figure 2). We
further subdivided all cohorts into two age strata of less than
5 and above 5 years old. In meta-analyses of both strata, the
minor allele (A) was associated additively with a higher BMI
(Figure 2).

Next, we performed imputation-based association followed by
conditional analysis to identify independent association in the
FTO locus. We identified 71 SNPs at the first intronic region of FTO
that were significantly associated with BMI in European ancestry,
all of which were of similar magnitude (Z score 4.4 < z < 5.26,
p-values between 10−7 < p < 10−6) and with high linkage dis-
equilibrium (LD) with each other (r2 > 0.8; Figure 3A). The
haplotype boundaries and recombination rate in this ancestry are

also shown in Figure 3. Indeed, the SNP rs8050136 was in proxy
with other well-known variants in this region including rs9939609
(r2 = 0.98), rs17817449 (r2 = 0.99), rs1421085 (r2 = 0.93) and all
resided in the same haplotype and are associated with obesity in
adults (4–9). Therefore, no independent effect has been identified.
Table 3 shows the summary of SNP results after regression analy-
ses under additive and recessive models adjusted for age, gender,
and PC. No significant difference was observed when the cohort
site is included as another covariate (Data not shown). Of note,
and only in this intron, more than 10 polymorphic indels were
also associated with BMI-z, in particular A/AT at chr16:53822169
(MAF = 36%) and TTTC/T at chr16:53829962 (MAF = 35%;
p = 2.41 × 10−5, p = 8.09 × 10−5, respectively). We noticed a
subtle improvement of overall results using recessive model in our
cohorts (Figure 3B; Table 3). In particular, another published SNP
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FIGURE 2 | Genotypic correlation of FTO-SNP rs8050136 with mean of

BMI-z score. The result further divided by age above and less than 5 years
old respectively. All BMI-z scores (−3 to +3, mean = 0) were transformed
to positive value (+4, 1–7, mean = 4).

rs1421085 generated the best result z = 5.782, p(Rec) = 8.21 × 10−9

(Table 2).
Although BMI is a continuous trait, standard cut-offs were also

used to assess the burden of increased body weight on health as
a binary phenotype and estimate the effect size. When the tail
distribution was considered (>95% as case and <20% as con-
trol), an OR of 1.61 (95% CI = 1.31–1.97, p = 4.04 × 10−6)
was detected for the best surrogate marker rs8050136, adjusted by
age, sex, and PC. The strongest effect size was observed using a
recessive model for rs1421085 [(OR = 2.79, 95% CI = 1.89–4.10),
p = 1.83 × 10−7].

When heterogeneity was allowed between cohorts, weaker sig-
nals were also obtained in loci, such as near the MC4R region
(rs12964056, p = 6.87 × 10−7, z = −4.98), cholecystokinin
CCK (rs8192472, p = 1.33 × 10−6, z = −4.85), Interleukin 15
(rs2099884, p = 1.27 × 10−5, z = 4.34), low density lipopro-
tein receptor-related protein 1B [LRP1B (rs7583748, p = 0.00013,
z = −3.81), and near transmembrane protein 18 (TMEM18;
rs7561317, p = 0.001, z = −3.17)], all of which have been pre-
viously reported to be associated with obesity or BMI (Table 3;
4–10). The imputation result for the MC4R region shows multiple
association markers (Figure 3C).

We also performed imputation in additional regions of inter-
est. Of note, one new locus that has not been previously reported
to be associated with BMI, passed the GWAS significance level
in our cohorts (p < 1.0E−10−8). The best marker was a rela-
tively infrequent intronic SNP, rs1542829 in the COL6A5 gene
in chromosome 3, with overall MAF of 5% that produced a
p = 4.35 × 10−9, z = 5.89 under an additive model adjusted
for age, gender, and PC. The allele frequency of this marker was
consistent among cohorts and with CEU-Hapmap data, and it
was in HWE. Additional SNP markers in this region, after impu-
tation, produced probabilities at the level of 10−5(Figure 3D). Of
note, the majority of these SNPs had MAF of less than 10% with
less cohesive haplotype boundaries (Figure 3D). When we con-
sidered the tail distribution (>95% as case and <20% as control)
of BMI-z as a binary phenotype, an OR of 2.90 (95% CI = 1.93–
4.34), p = 9.03 × 10−8 was obtained for this marker with MAF
of 9% in cases vs. 3% in controls. Other unreported loci with
suggestive associations to pediatric BMI (10−7 < p < 10−5),

include KCNH5 (rs10136789, p = 4.62 × 10−7, z = 5.05), APOL5
(rs2016586, p = 3.26 × 10−6, z = −4.67), LRRC7 (rs10889850,
p = 1.77 × 10−6, z = −4.78), and GALNT13 (rs12693973,
p = 1.65 × 10−6, z = −4.80).

Finally, using ICD-9 diagnostic codes in our collections, we
have also performed a Phewas study for the best identified mark-
ers in the FTO locus. In this approach, presence or absence of
each diagnostic ICD-9 code was included as a binary pheno-
type, allelic associations were assessed between cases and controls,
and the final results were corrected for multiple testing. By this
approach, a negative association was detected between cases with
hypertrophic cardiomyopathy or valvular structural heart disease
and the FTO common risk alleles (ICD-9 codes = 424.0–424.3
and 425) in a subset of 81 cases and 2259 controls. This effect
remained significant after 10000 permutations [p(perm) = 0.0009,
OR = 0.53 (95% CI 0.37–0.77)]. Suggestive positive associations
were also observed between the risk alleles and ICD-9 codes for
impaired glucose tolerance test (ICD-9 = 790.2) and myopia
(ICD-9 = 367.1; p < 0.05), however, this effect did not remain
significant after permutation and correcting for multiple testing.
It is noteworthy to mention that in our pediatric cohorts, the
number of patients with diabetes related diagnostic codes (one
of the BMI-related phenotype) was small and not sufficient for
independent analysis.

DISCUSSION
In this study, we evaluated BMI in five European ancestry pedi-
atric cohorts with available EMR-linked genotyped data from the
CCHMC-BCH eMERGE-II Network site. We successfully utilized
anthropomorphic measures to calculate BMI-for-age percentile,
derived BMI-z scores according to CDC growth charts, performed
quantitative trait locus GWAS study and conducted meta analyses.
The overall adjusted meta-analysis result of 2860 European sam-
ples produced the best signal in the 16q12 genomic region at the
first intron of the FTO locus for a cluster of SNPs. The best typed
marker rs8050136 produced [p(Rec) = 7.34 × 10−8), z = 5.26]
and with no heterogeneity between cohorts (p = 0.77). When the
tail distribution was considered (≥95% as case and ≤20 as con-
trol), an OR of 1.61 (95% CI = 1.313–1.965, p = 4.04 × 10−6)
was detected. Notably, this OR estimate in our data was relatively
higher than previous adult studies (OR = 1.2; Loos, 2012). In
any case, considering the effect size (or OR) at the range of 1.2
and the high MAF of the FTO loci (0.40) in Europeans, 700 sam-
ples were sufficient for us to achieve an optimum power of 0.8
with a type 1 error level of 0.05. In fact, genetic variants in the
first intron of FTO present as the strongest BMI-associated GWAS
locus in humans. Over the past few years, the association of the
FTO locus has been repeatedly replicated, not only for BMI, but
also for obesity risk, body fat percentage, waist circumference, and
other obesity-related traits, in particular type II diabetes (Scuteri
et al., 2007; Frayling et al., 2007). Recent association with dyslipi-
demia, hypertension, reduced brain volume, Alzheimer’s disease,
and dementia has also been reported that could be confounded
with obesity and vascular complications (Pausova et al., 2009;
Keller et al., 2011).

The functional mechanism of FTO however is still elusive and
is currently the subject of intense interest. It is an AlkB-like, Fe(II)-
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FIGURE 3 | Post imputation results on selected regions. (A) Imputation
results and signal at FTO locus contributing to BMI. SNPs are plotted by
position in a 0.2 Mb window of chromosome 16 against association with
BMI-z (−log10 P -value). The panel highlights the most significant SNP in a
meta-analysis using an additive model. Estimated recombination rates
(from HapMap) are plotted in cyan to reflect the local LD structure. The
SNPs surrounding the most significant SNP (rs8050135), are color-coded
to reflect their LD with this SNP (taken from pairwise r2 values from the

HapMap CEU database, www.hapmap.org). Regional plots were
generated using LocusZoom (http://csg.sph.umich.edu/locuszoom).
(B) Regression results at the FTO locus under recessive model, best
marker = rs1421085, p(rec) = 8.21 × 10−9. (C) Imputation results near
the MC4R locus at chromosome 18, is shown. Best marker rs12964056,
p = 6.87 × 10−7, z = −4.98. (D) A new effect at the COL6A5 locus
in chromosome 3. Best marker rs1542829 p = 4.35 × 10−9,
z = 5.889.

and 2-oxoglutarate-dependent nucleic acid demethylase that has
been shown to demethylate 3-methylthymine and 3-methyluracil
in single-stranded DNA and RNA, respectively (Gerken et al.,
2007). A link between FTO demethylase activity and increased fat
mass was suggested by recent animal studies. Notably, homozy-
gous mutant fto−/− mice show postnatal growth retardation and

a significant reduction in adipose tissue and lean body mass, an
observation that also was supported by the deleterious muta-
tion Ile367Phe in mouse FTO protein with an impaired activity
from a separate study (Church et al., 2009; Gao et al., 2010). In
both studies, the leanness of fto-deficient mice seems to be the
result of increased energy expenditure and systemic sympathetic
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activation. Interpreting energy expenditure from these results,
however, was challenging because of body composition differ-
ences and growth retardation. Overall, these experimental data
suggest that inactivation of the FTO gene protects from obesity.
On the other hand, mice globally overexpressing FTO are obese,
hyperphagic, and exhibit normal energy expenditure when cor-
rected for lean tissue mass (Church et al., 2010). Most human
studies also report that obesity-predisposing FTO alleles are
associated with increased food intake, but not energy expendi-
ture (Speakman et al., 2008; Haupt et al., 2009). Although the
detailed mechanisms are still not clear, this is suggested to be
the result of increased expression of FTO in humans, due to
cis-regulatory variation in intron 1 of this gene which is con-
sistent with the mouse models, in which decreased levels of
FTO cause a lean body habitus (Zabena et al., 2009; Berulava
and Horsthemke, 2010). Moreover, a positive correlation of
FTO gene expression with other adipocytokine gene expressions,
including leptin, perilipin, and visfatin, has also been shown
(Haupt et al., 2009).

Consistent with previous studies and because of high LD
between FTO intron-1 markers in Europeans (Figure 2), con-
ditional analyses didn’t produce independent effect; however, we
observed a subtle improvement of FTO association using reces-
sive models in comparison to additive models (Figure 1; Table 2).
This effect was unique to the FTO locus, while use of a domi-
nant model was best near the MC4R region (Table 3). Indeed,
between-study variations in regard to the optimal inheritance
model of the FTO polymorphisms have been noticed previously.
In one study, eight different meta-analysis results of BMI in women
with polycystic ovary syndromes were systematically reviewed
and the recessive model was found to fit best in half of them
and the additive model worked best in the rest (Wojciechowski
et al., 2012). In our pediatrics population in which we had an
enrichment of earlier age of obesity with a prevalence rate of
28%, a recessive pattern may be more relevant in comparison
to the general population. Under this model, another intron-1
marker, rs1421085, produced the best result p(Rec) = 8.21 × 10−9,
z = 5.78 (Table 3; r2 = 0.93 with rs8050136). Indeed, the variant
rs1421085 is particularly interesting. It is located within a highly
conserved element and the risk allele C has been predicted to sub-
stantially reduce binding affinity for CUX1, a transcription factor
implicated in the regulation of FTO (Stratigopoulos et al., 2011;
Peters et al., 2013).

Limited evidence suggests that the cross-sectional FTO asso-
ciation with BMI varies by age. Specifically, at early ages (up to
5–7 years), the association between common variation at FTO
and BMI appears to be reduced in magnitude (Hardy et al., 2010).
Longitudinal twin studies also suggest that with increasing age loci
such as FTO may be able to exert a greater effect on BMI which
depends on the influence of shared environmental effect and the
timing of adiposity rebounds (Haworth et al., 2008; Sovio et al.,
2011). In our cohorts when we divide all samples into two strata
of less than 5 and above 5 years old, we didn’t observe any oppos-
ing effect, however a higher magnitude was identified for strata
above 5 years old (OR = 1.72) (Figure 2). Larger sample size
with detailed longitudinal data would seem to be needed to fully
elucidate this correlation.

Furthermore, in the context of rare and severe phenotypes,
recently, in a large Palestinian Arab consanguineous multiplex
family with nine affected, a homozygous R316Q enzyme inacti-
vating mutation in the FTO gene, resulted in a broad spectrum
of clinical manifestations including severe intrauterine growth
retardation, severe microcephaly, and death from infection before
the age of three (Boissel et al., 2009). Of note, six out of eight
cases had structural heart defect with cardiomyopathy. This would
appear consistent with our unique observation of a negative
association of obesity-predisposing FTO alleles with cardiomy-
opathy [p(corr) = 0.0009, OR = 0.53 (95% CI 0.37–0.77)] that
could result in lower expression of FTO; although further stud-
ies with larger sample sizes are necessary to confirm or refute
this finding. In fact, to our knowledge, no SNP in intron 1 of
FTO has been previously associated with any trait unrelated to
BMI. Recently, an independent effect at the eighth intron of the
FTO locus has been reported to be associated with melanoma
(GenoMEL Consortium et al., 2013). The best marker, rs16953002,
was replicated using 12,313 cases and 55,667 controls of Euro-
pean ancestry in a study conducted by the GenoMEL consortium
(combined P = 3.6 × 10−12, OR = 1.16). Notably, in their
study, none of the BMI related SNPs in intron 1 were associ-
ated with melanoma. Similarly, in our collection, there was no
effect observed at the eighth intron of the FTO gene with BMI
(p = 0.54 for rs16953002, r2 < 0.01 with rs8050136). This suggests
independent functions and genetic risks for FTO that broaden
the existing paradigm and identify distinct pathogenic effects
(GenoMEL Consortium et al., 2013).

In this report, we have supported association in other previ-
ously reported BMI loci, in particular loci near the MC4R region
(rs12964056, p = 6.87 × 10−7, z = −4.98), cholecystokinin
CCK (rs8192472, p = 1.33 × 10−6, z = −4.85), Interleukin 15
(rs2099884, p = 1.27 × 10−5, z = 4.34), low density lipopro-
tein receptor-related protein 1B [LRP1B (rs7583748, p = 0.00013,
z = −3.81)] and near transmembrane protein 18 (TMEM18;
rs7561317, p = 0.001, z = −3.17; Table 2). Because of their lower
effect on BMI and obesity risk (OR ∼1.10, in adult meta-data)
and lower allele frequency, the identification of these loci requires
a quadrupling of the sample size in a random population. Finding
all of these loci in our pediatric collections, despite limited sample
size, indicate the enrichment of the genetic signal to noise ratio
given the shorter amount of time that environment has had an
effect.

Additionally, we have detected a new unreported signal at
chromosome 3 (Col6A5) (best SNP is rs1542829, MAF of 5%
p = 4.35 × 10−9, z = 5.89). This marker produced an OR of 2.90
when the tail distributions (>95% as case and <20% as control,
386 cases, and 572 controls) was considered as binary phenotype.
Considering this level of OR (2.90), even with MAF of 5%, 500
samples were sufficient for us to achieve the extraordinary power
(0.99) with a type 1 error level of 0.05. This could be considered as
one of the rare obesity risk loci that we expect to detect in these spe-
cial cohorts. The α5-containing collagen VI (Col6A5, COL29A1),
belongs to the class of collagens containing von Willebrand fac-
tor type A domains. These collagens form filaments with globular
domains containing vWA motifs, which are involved in protein-
ligand interactions for the organization of tissue architecture and
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cell adhesion. Collagen VI is a major extracellular matrix (ECM)
protein with a critical role in maintaining skeletal muscle func-
tional integrity. It has been suggested that type VI collagen is a
fibrotic component that restricts adipose tissue expandability. In
humans, Col6A3 gene expression in adipose tissues was found to
correlate with visceral adipose tissue mass and pro-inflammatory
gene expression (Pasarica et al., 2009). Mutations in different fam-
ilies of this gene have also been associated with myopathy and
muscular dystrophy. Recently, it has been shown that COL6A5
is involved in adhesion at myotendinous and dermal–epidermal
junctions (Sabatelli et al., 2012). Different polymorphisms in or
near this gene have been linked to atopic dermatitis and eczema,
but with contradictory reports (Söderhäll et al., 2007; Naumann
et al., 2011). In our cohorts, the number of samples with Atopic
dermatitis and related conditions (ICD-9 = 691) was only 49 with
a trend of association for published SNP rs7629719 (p = 0.14);
adjusting the results based on presence or absence of atopy, didn’t
have any effect on overall BMI associations. A larger sample size
is necessary to further elucidate this coexistent condition and
to determine whether COL6A5 has any role in obesity related
conditions.

Four additional novel loci with homogenous but suggestive
associations (10−7 < p < 10−5) to childhood BMI were also
identified in this study. These include KCNH5 (rs10136789,
p = 4.62 × 10−7, z = 5.05), a voltage-gated potassium channel
with various function in neurotransmitter regulation, hormone
release, cardiac function, and cell volume; APOL5 (rs2016586,
p = 3.26 × 10−6, z = −4.67), a component of high-density
lipoprotein with a potential role in lipid metabolism; LRRC7
or Densin (rs10889850, p = 1.77 × 10−6, z = −4.78) a core
component of post-synaptic densities and GALNT13 (rs12693973,
p = 1.65x10−6, z = −4.80) a member of the UDP-N-acetyl-alpha-
D-galactosamine and a major enzyme responsible for the synthesis
of O-glycan. Independent cohorts are necessary to confirm these
preliminary suggestive findings and their importance in childhood
obesity.

Despite the limitations of using an EMR-derived data set for
analysis of secondary phenotypes including errors in data extrac-
tions, discordant time of sampling, and underlying coexistent
conditions of our pediatric cohorts, we demonstrate that a strong
signal, larger than seen in adult populations is detectable. We
have removed all inconsistent data and outliers to the best of
our ability. We have also excluded infants and those less than
2 years old because of the complexity of growth chart pattern
and many potential maternal effects on infants from perinatal
periods. In addition we assessed the distribution of BMI-z in the
whole population with a large sample size as a quantitative trait
rather than attempting to identify limited cases and controls. From
the statistical standpoint, quantitative traits usually are preferred
in meta-GWAS studies because they improve power to detect a
genetic effect and often have a more interpretable outcome (Bush
and Moore, 2012). Furthermore, BMI is a highly heritable trait
in humans and, as mentioned above, up to 70% of the inter-
individual variation in obesity can be attributable to genetic factors
per se (Maes et al., 1997); therefore, given the strong genetic con-
firmation described here, indeed, we managed to repurpose the
genotyping data collected for the analyses of another phenotype

and successfully find association between the new phenotype and
genotypic data.

In summary, using the EMR-linked genotyped data, we have
confirmed association of several previously known BMI loci, in
particular with the FTO gene [OR of 1.61 (95% CI = 1.31–1.97)].
Our data also support the importance of variants at the FTO locus
in childhood obesity and with saturation of an earlier age of onset,
these data point to a closer functional variant in this locus.

ACKNOWLEDGMENTS
We are grateful to the individuals who participated in this study.
We thank the genotyping core facilities in both academic centers
(CCHMC-BCH) and our colleagues who facilitated the genotyp-
ing and recruitment of subjects. This work was supported by
a grant from the National Human Genomic Research Institute:
1U01HG006828. “TL and IS were partially supported by NIH
grants 5R00LM010227-04 and 1R21HD072883-01.”

REFERENCES
Boissel, S., Reish, O., Proulx, K., Kawagoe-Takaki, H., Sedgwick, B., Yeo, G. S., et al.

(2009). Loss-of-function mutation in the dioxygenase-encoding FTO gene causes
severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85,
106–111. doi: 10.1016/j.ajhg.2009.06.002

Berulava, T., and Horsthemke B. (2010). The obesity-associated SNPs in intron 1 of
the FTO gene affect primary transcript levels. Eur. J. Hum. Genet. 18, 1054–1056.
doi: 10.1038/ejhg.2010.71

Bush, W. S., and Moore, J. H. (2012). Chapter 11: genome-wide association studies.
PLoS Comput. Biol. 8:e1002822. doi: 10.1371/journal.pcbi.1002822

Barlow, S. E., and the Expert Committee. (2007). Expert committee recom-
mendations regarding the prevention, assessment, and treatment of child and
adolescent overweight and obesity: summary report. Pediatrics 120, S164–S192.
doi: 10.1542/peds.2007-2329C

Church, C., Moir, L., McMurray, F., Girard, C., Banks, G. T., Teboul, L., et al. (2010).
Overexpression of Fto leads to increased food intake and results in obesity. Nat.
Genet. 42, 1086–1092. doi: 10.1038/ng.713

Church, C., Lee, S., Bagg, E. A., McTaggart, J. S., Deacon, R., Gerken, T., et al. (2009).
A mouse model for the metabolic effects of the human fat mass and obesity
associated FTO gene. PLoS Genet. 5:e1000599. doi: 10.1371/journal.pgen.1000599

Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren,
C. M., et al. (2007). A common variant in the FTO gene is associated with body
mass index and predisposes to childhood and adult obesity. Science 316, 889–894.
doi: 10.1126/science.1141634

Gerken, T., Girard, C. A., Tung,Y. C. L., Webby, C. J., Saudek,V., Hewitson, K. S., et al.
(2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent
nucleic acid demethylase. Science 318, 1469–1472. doi: 10.1126/science.1151710

Gao, X., Shin, Y. H., Li, M., Wang, F., Tong, Q., and Zhang, P. (2010). The fat
mass and obesity associated gene FTO functions in the brain to regulate postnatal
growth in mice. PLoS ONE 5: e14005. doi: 10.1371/journal.pone.0014005

GenoMEL Consortium, Iles, M. M., Law, M. H., Stacey, S. N., Han, J., Fang, S., et al.
(2013). A variant in FTO shows association with melanoma risk not due to BMI.
Nat. Genet. 45, 428–432. doi: 10.1038/ng.2571

Haupt, A., Thamer, C., Staiger, H., Tschritter, O., Kirchhoff, K., Machicao, F.,
et al. (2009). Variation in the FTO gene influences food intake but not energy
expenditure. Exp. Clin. Endocrinol. Diabetes 117, 194–197. doi: 10.1055/s-0028-
1087176

Hardy, R., Wills, A. K., Wong, A., Elks, C. E., Wareham, N. J., Loos, R. J., et al. (2010).
Life course variations in the associations between FTO and MC4R gene variants
and body size. Hum. Mol. Genet. 19, 545–552. doi: 10.1093/hmg/ddp504

Haworth, C. M., Carnell, S., Meaburn, E. L., Davis, O. S., Plomin, R., and Wardle,
J. (2008). Increasing heritability of BMI and stronger associations with the FTO
gene over childhood. Obesity 16, 2663–2668. doi: 10.1038/oby.2008.434

Howie, B., Marchini, J., and Stephens, M. (2011). Genotype imputation with
thousands of genomes. G3 (Bethesda) 1, 457–470. doi: 10.1534/g3.111.001198

Keller, L., Xu, W., Wang, H. X., Winblad, B., Fratiglioni, L., and Graff, C. (2011). The
obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s

Frontiers in Genetics | Applied Genetic Epidemiology December 2013 | Volume 4 | Article 268 | 65

http://www.frontiersin.org/Applied_Genetic_Epidemiology/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


“fgene-04-00268” — 2013/12/2 — 10:50 — page 9 — #9

Namjou et al. GWAS study for childhood BMI

disease risk: a prospective cohort study. J. Alzheimers Dis. 23, 461–469. doi:
10.3233/JAD-2010-101068.

Kopelman, P. G. (2000). Obesity as a medical problem. Nature 404, 635–643.
Loos, R. J. (2012). Genetic determinants of common obesity and their value

in prediction. Best Pract. Res. Clin. Endocrinol. Metab. 26, 211–26. doi:
10.1016/j.beem.2011.11.003

Loos, R. J., Lindgren, C. M., Li, S., Wheeler, E., Zhao, J. H., Prokopenko, I., et al.
(2008). Common variants near MC4R are associated with fat mass, weight and
risk of obesity. Nat. Genet. 40, 768–775. doi: 10.1038/ng.140

Maes, H. H., Neale, M. C., and Eaves, L. J. (1997). Genetic and environmental
factors in relative body weight and human obesity. Behav. Genet. 27, 325–351.
doi: 10.1023/A:1025635913927

McCarty, C. A., Chisholm, R. L., Chute, C. G., Kullo, I. J., Jarvik, G. P., Larson, E.
B., et al. (2011). The eMERGE Network: a consortium of biorepositories linked
to electronic medical records data for conducting genomic studies. BMC Med.
Genomics 4:13.doi: 10.1186/1755-8794-4-13.

Mägi, R., Manning, S., Yousseif, A., Pucci, A., Santini, F., Karra, E., et al.
(2013). Contribution of 32 GWAS-identified common variants to severe obe-
sity in European adults referred for Bariatric surgery. PLoS ONE 7:e70735. doi:
10.1371/journal.pone.0070735

Naumann, A., Söderhäll, C., Fölster-Holst, R., Baurecht, H., Harde, V., Müller-
Wehling, K., et al. (2011). A comprehensive analysis of the COL29A1 gene does
not support a role in eczema. J. Allergy Clin. Immunol. 127, 1187.e7–1194.e7. doi:
10.1016/j.jaci.2010.12.1123

Pasarica, M., Gowronska-Kozak, B., Burk, D., Remedios, I., Hymel, D., Gimble, J.,
et al. (2009). Adipose tissue collagen VI in obesity. J. Clin. Endocrinol. Metab. 94,
5155–5162. doi: 10.1210/jc.2009-0947

Pausova, Z., Syme, C., Abrahamowicz, M., Xiao, Y., Leonard, G. T., Perron, M., et al.
(2009). A common variant of the FTO gene is associated with not only increased
adiposity but also elevated blood pressure in French Canadians. Circ. Cardiovasc.
Genet. 2, 260–269. doi: 10.1161/CIRCGENETICS.109.857359

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and
Reich, D. (2006). Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet. 38, 904–909. doi: 10.1038/ng1847

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al.
(2007). PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795

Pruim, R. J., Welch, R. P., Sanna, S., Teslovich, T. M., Chines, P. S., Gliedt, T.
P., et al. (2010). LocusZoom: regional visualization of genome-wide association
scan results. Bioinformatics 26, 2336–2337. doi: 10.1093/bioinformatics/btq419

Peters, U., North, K. E., Sethupathy, P., Buyske, S., Haessler, J., Jiao, S.,
et al. (2013). A systematic mapping approach of 16q12.2/FTO and BMI in
more than 20,000 African Americans narrows in on the underlying functional
variation: results from the Population Architecture using Genomics and Epi-
demiology (PAGE) study. PLoS Genet. 9:e1003171. doi: 10.1371/journal.pgen.
1003171

Stratigopoulos, G., LeDuc, C. A., Cremona, M. L., Chung, W. K., and Leibel, R. L.
(2011). Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and
obesityassociated and retinitis pigmentosa GTPase regulator-interacting protein-
1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J. Biol. Chem.
286, 2155–2170. doi: 10.1074/jbc.M110.188482

Söderhäll, C., Marenholz, I., Kerscher, T., Rüschendorf, F., Esparza-Gordillo,
J., Worm, M., et al. (2007). Variants in a novel epidermal collagen gene
(COL29A1) are associated with atopic dermatitis. PLoS Biol. 5:e242. doi:
10.1371/journal.pbio.0050242

Sabatelli, P., Gualandi, F., Gara, S. K., Grumati, P., Zamparelli, A., Martoni, E.,
et al. (2012). Expression of collagen VI a5 and a6 chains in human muscle and in
Duchenne muscular dystrophy-related muscle fibrosis. Matrix Biol. 31, 187–196.
doi: 10.1016/j.matbio.2011.12.003

Sovio, U., Mook-Kanamori, D. O., Warrington, N. M., Lawrence, R., Briollais,
L., Palmer, C. N., et al. (2011). Association between common variation at the
FTO locus and changes in body mass index from infancy to late childhood: the
complex nature of genetic association through growth and development. PLoS
Genet. 7:e1001307. doi: 10.1371/journal.pgen.1001307

Speakman, J. R., Rance, K. A., and Johnstone, A. M. (2008). Polymorphisms
of the FTO gene are associated with variation in energy intake, but not
energy expenditure. Obesity (Silver Spring) 16, 1961–1965. doi: 10.1038/oby.
2008.318

Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson,
A. U., et al. (2010). Association analyses of 249,796 individuals reveal 18 new loci
associated with body mass index. Nat. Genet. 42, 937–948. doi: 10.1038/ng.686

Scuteri, A., Sanna, S., Chen, W. M., Uda, M., Albai, G., Strait, J., et al. (2007).
Genome-wide association scan shows genetic variants in the FTO gene are
associated with obesity-related traits. PLoS Genet. 3:e115. doi: 10.1371/jour-
nal.pgen.0030115

Wojciechowski, P., Lipowska, A., Rys, P., Ewens, K. G., Franks, S., Tan, S., et al.
(2012). Impact of FTO genotypes on BMI and weight in polycystic ovary syn-
drome: a systematic review and meta-analysis. Diabetologia. 55, 2636–2645. doi:
10.1007/s00125-012-2638-6

Willer, C. J., Li, Y., Abecasis, G. R. (2010). METAL: fast and efficient meta-
analysis of genomewide association scans. Bioinformatics 26, 2190–2191. doi:
10.1093/bioinformatics/btq340

Willer, C. J., Speliotes, E. K., Loos, R. J., Li, S., Lindgren, C. M., Heid, I. M.,
et al. (2009). Six new loci associated with body mass index highlight a neuronal
influence on body weight regulation. Nat. Genet. 41, 25–34. doi: 10.1038/ng.287

Zabena, C., González-Sánchez, J. L., Martínez-Larrad, M. T., Torres-García, A.,
Alvarez-Fernández-Represa, J., Corbatón-Anchuelo, A., et al. (2009). The FTO
obesity gene. Genotyping and gene expression analysis in morbidly obese patients.
Obes. Surg. 19, 87–95. doi: 10.1007/s11695-008-9727-0

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 11 October 2013; paper pending published: 31 October 2013; accepted: 16
November 2013; published online: 03 December 2013.
Citation: Namjou B, Keddache M, Marsolo K, Wagner M, Lingren T, Cobb B, Perry C,
Kennebeck S, Holm IA, Li R, Crimmins NA, Martin L, Solti I, Kohane IS and Harley JB
(2013) EMR-linked GWAS study: investigation of variation landscape of loci for body
mass index in children. Front. Genet. 4:268. doi: 10.3389/fgene.2013.00268
This article was submitted to Applied Genetic Epidemiology, a section of the journal
Frontiers in Genetics.
Copyright © 2013 Namjou, Keddache, Marsolo, Wagner, Lingren, Cobb, Perry, Ken-
nebeck, Holm, Li, Crimmins, Martin, Solti, Kohane and Harley. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original pub-
lication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org December 2013 | Volume 4 | Article 268 | 66

http://dx.doi.org/10.3389/fgene.2013.00268
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


METHODS ARTICLE
published: 29 April 2014

doi: 10.3389/fgene.2014.00095

Using previously genotyped controls in genome-wide
association studies (GWAS): application to the Stroke
Genetics Network (SiGN)
Braxton D. Mitchell1,2*, Myriam Fornage3, Patrick F. McArdle1, Yu-Ching Cheng1,2, Sara L. Pulit4,

Quenna Wong5, Tushar Dave1, Stephen R. Williams6,7, Roderick Corriveau8, Katrina Gwinn8,

Kimberly Doheny9, Cathy C. Laurie5, Stephen S. Rich6 and

Paul I. W. de Bakker 4,10, on behalf of the Stroke Genetics Network (SiGN)

1 Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
2 Veterans Administration Medical Center, Baltimore, MD, USA
3 Department of Medicine, University of Texas Health Science Center, Houston, TX, USA
4 Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
5 Department of Biostatistics, University of Washington, Seattle, WA, USA
6 School of Medicine, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
7 School of Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
8 National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
9 Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
10 Department of Epidemiology, University Medical Center Utrecht, Utrecht, Netherlands

Edited by:

Marylyn D. Ritchie, The
Pennsylvania State University, USA

Reviewed by:

David Fardo, University of Kentucky,
USA
Andrew DeWan, Yale School of
Public Health, USA

*Correspondence:

Braxton D. Mitchell, Department of
Medicine, University of Maryland
School of Medicine, 302 MSTF,
Baltimore, MD 21201, USA
e-mail: bmitchel@
medicine.umaryland.edu

Genome-wide association studies (GWAS) are widely applied to identify susceptibility loci
for a variety of diseases using genotyping arrays that interrogate known polymorphisms
throughout the genome. A particular strength of GWAS is that it is unbiased with respect
to specific genomic elements (e.g., coding or regulatory regions of genes), and it has
revealed important associations that would have never been suspected based on prior
knowledge or assumptions. To date, the discovered SNPs associated with complex human
traits tend to have small effect sizes, requiring very large sample sizes to achieve robust
statistical power. To address these issues, a number of efficient strategies have emerged
for conducting GWAS, including combining study results across multiple studies using
meta-analysis, collecting cases through electronic health records, and using samples
collected from other studies as controls that have already been genotyped and made
publicly available (e.g., through deposition of de-identified data into dbGaP or EGA).
In certain scenarios, it may be attractive to use already genotyped controls and divert
resources to standardized collection, phenotyping, and genotyping of cases only. This
strategy, however, requires that careful attention be paid to the choice of “public controls”
and to the comparability of genetic data between cases and the public controls to
ensure that any allele frequency differences observed between groups is attributable to
locus-specific effects rather than to a systematic bias due to poor matching (population
stratification) or differential genotype calling (batch effects). The goal of this paper is to
describe some of the potential pitfalls in using previously genotyped control data. We
focus on considerations related to the choice of control groups, the use of different
genotyping platforms, and approaches to deal with population stratification when cases
and controls are genotyped across different platforms.

Keywords: genome-wide association study, case-control study, genetic association study, population

stratification, power

INTRODUCTION
Genome-wide association studies (GWAS) have been widely used
in recent years as a tool for identifying susceptibility loci for a
number of complex human traits and, in particular, multifactorial
diseases. Indeed, the NHGRI-maintained Catalog of Published
Genome-Wide Association Studies includes 1788 publications
and 12,329 SNP (single nucleotide polymorphism)-trait asso-
ciations as of 1/10/2013 (http://www.genome.gov/gwastudies/)
(Hindorff et al., 2009). With few exceptions, the associated loci

have small effect sizes, and large sample sizes were required to
detect them.

One popular approach to increase sample size and power
for GWAS has been to combine information (either individual-
level data or summary statistics) across multiple studies through
meta-analysis (Panagiotou et al., 2013). As more and more geno-
type data are being made publicly available through various
databases such as the database of Genotypes and Phenotypes
(dbGaP) or the European Genome-phenome Archive (EGA), an
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alternative approach to increase the statistical power of a study
at no extra cost is to devote available clinical and genotyping
resources almost entirely to cases and use publicly available data
from already genotyped samples as controls. Using available con-
trols may be particularly attractive for registry-based studies from
which a large number of cases can be rapidly identified. While
this strategy has the obvious benefit of allocating scarce resources
toward genotyping a larger number of cases, it can also introduce
potential bias into the experimental design leading to spurious
associations if not applied carefully. For example, control popu-
lations must be comparable to cases in terms of ancestry so that
any allele frequency differences observed between cases and con-
trols can be attributed to disease susceptibility loci and not just to
differences in ancestral background between the two populations
(i.e., population stratification). Ascertainment of the population
to be used as controls is also critical. For example, a study of
low-density lipoprotein (LDL) concentration could recruit par-
ticipants at high LDL (a risk factor for stroke) as well as low LDL
(not a risk factor); thus, inclusion of all participants as controls
could introduce a different bias in the comparison with cases.
Equally important is the requirement that genotyping quality and
allele calls be comparable between the two groups. Even minor
differences in genotype calling, possibly attributable to a labora-
tory or technician bias, may translate into subtle but systematic
differences in allele frequencies between cases and controls that
can result in false positive associations.

The goal of this paper is to describe some of the potential
pitfalls in using previously genotyped control data. To provide
context for these discussions we present as an example the Stroke
Genetics Network (SiGN), an international collaboration initi-
ated to carry out a GWAS of ischemic stroke and stroke subtypes
that utilizes site-collected cases and already genotyped controls
for nearly all sites. We focus on considerations related to the
choice of control groups, the use of different genotyping plat-
forms, and approaches to deal with population stratification
when cases and controls are genotyped on different platforms.

OVERVIEW OF THE STROKE GENETICS NETWORK (SiGN)
The SiGN was initiated in 2009 to carry out a GWAS of ischemic
stroke and stroke subtypes using previously collected DNA sam-
ples from multiple centers throughout the US and Europe. These
centers included 19 sites contributing 9789 cases to be genotyped.
Because of the well-recognized heterogeneity within ischemic
stroke, a key feature of SiGN was its focus on standardizing the
assignment of stroke subtypes (presumed etiology) for the pur-
pose of performing subtype-specific association analyses. In order
to increase the sample size, the decision was made to channel
resources into genotyping as many cases as possible and use pub-
licly available control genotypic data wherever possible. A detailed
description of the design of SiGN has been previously published,
including collection of stroke cases at each study site and the stan-
dardizing procedures for assigning stroke subtype (Meschia et al.,
2013).

Briefly, stroke research centers with carefully phenotyped
ischemic stroke cases were invited to join SiGN and have their
stroke cases genotyped using an existing GWAS array. The three
requirements for joining SiGN were (1) that the stroke research

center have at least 100 cases with DNA immediately available
for genotyping, (2) that participating sites must have informed
consent on the participants to permit genotypes to be deposited
into dbGaP, and (3) that sufficient imaging and additional clini-
cal information had been collected to allow assignment of stroke
subtype by Causative Classification of Stroke (CCS) methodol-
ogy (Ay et al., 2007). CCS phenotyping was performed under a
standardized protocol using a web-based system (Meschia et al.,
2013).

As indicated in Table 1, the 19 participating sites contributed
a total of 11,033 samples for genotyping. With the exception of
two sites (Leuven, Belgium and Krakow, Poland) all sites pro-
vided cases only. The decision was made to genotype both cases
and controls from Leuven and Krakow because of the difficulty in
locating previously genotyped controls from those areas.

Genotyping of SiGN cases was performed at the Center
for Inherited Disease Research (CIDR) in Baltimore, Maryland,
using the Illumina HumanOmni 5M Exome genotyping array.
This array consists of a total of 4,511,703 variants, including
1,084,398 (24%) “rs” (refSNP) SNPs, 3,178,220 (70%) “kgp”
(1000 Genomes) SNPs, 231,910 (5%) “exm” (exome) SNPs, and
17,175 (0.4%) other SNPs.

IMPROVEMENT IN POWER IN SiGN BY PREFERENTIALLY
GENOTYPING CASES
There may be multiple reasons to consider utilizing already geno-
typed control groups for a genetic association study. Foremost
among these is the increase in sample size of cases for the same
genotyping budget to allow detection of variants with smaller
effect sizes, assuming a sufficient number of genotyped controls.
Within the context of SiGN, we contrasted the power to detect
stroke-associated loci using the strategy of genotyping cases only
(with already genotyped controls) vs. genotyping a comparable
number of cases and controls at each site. The results of these
analyses are shown in Figure 1 for a range of allele frequencies and
an alpha level of p = 5 × 10−8. Sample size estimates are guided
by the SiGN genotyping budget of ∼11,000 subjects. Power is
shown for three sets of results: (1) genotyping 11,000 cases and
utilizing 27,000 previously genotyped controls (as per SiGN); (2)
genotyping 5500 cases and 5500 controls and utilizing no pre-
viously genotyped controls; and (3) genotyping 5500 cases and
5500 controls but also utilizing an additional 21,500 previously
genotyped controls for a total of 27,000. Shown in Figure 1 are the
minimal odds ratios detectable at 80% power at a genome-wide
significance alpha level of p = 5 × 10−8.

As indicated in Figure 1, substantially lower odds ratios can
be detected at 80% for sample 1, which includes 11,000 geno-
typed cases and 27,000 previously genotyped controls, vs. sample
2, which includes only 5500 genotyped cases and 5500 genotyped
controls. While much of the gain in power seen in sample 1 comes
from the increased number of controls, sample 3 shows that there
remains a sizable increase in power in sample 1 that is attributable
to genotyping more cases even when the same number of con-
trols is used (e.g., detectable odds ratios of 1.11–1.18 across a
range of minor allele frequencies in sample 1 vs. 1.14–1.23 in
sample 3). One caveat about applying power calculations to data
that includes publicly available controls is that if controls have
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Table 1 | Ischemic stroke cases genotyped as part of the SiGN study and previously genotyped control groups, according to study site*.

Site Location Genotype platform Cases (n) Controls (n)

CASES GENOTYPED THROUGH SiGN (US SITES)

GASROS Boston, USA Illumina HumanOmni 5M Exome 470
GCNKSS Greater Cincinnati region, USA Illumina HumanOmni 5M Exome 499
ISGS Multi-center, USA Illumina HumanOmni 5M Exome 187
MCISS New Jersey, USA Illumina HumanOmni 5M Exome 630
MIAMISR Miami, USA Illumina HumanOmni 5M Exome 299
NHS National sample, USA Illumina HumanOmni 5M Exome 316
NOMAS(S) Manhattan, USA Illumina HumanOmni 5M Exome 363
REGARDS National sample, USA Illumina HumanOmni 5M Exome 311
SPS3 Multi-center; USA; Latin America, Spain Illumina HumanOmni 5M Exome 962
SWISS Multi-center, USA Illumina HumanOmni 5M Exome 271
WHI National sample, USA Illumina HumanOmni 5M Exome 458
WUSTL St. Louis, USA Illumina HumanOmni 5M Exome 455
CASES GENOTYPED THROUGH SiGN (INTERNATIONAL SITES)

BASICMAR Barcelona, Spain Illumina HumanOmni 5M Exome 930
BRAINS London, England Illumina HumanOmni 5M Exome 114
GRAZ Graz, Austria Illumina HumanOmni 5M Exome 639
KRAKOW Krakow, Poland Illumina HumanOmni 5M Exome 952 776
LEUVEN Leuven, Belgium Illumina HumanOmni 5M Exome 482 468
LUND Lund, Sweden Illumina HumanOmni 5M Exome 651
SAHLSIS Gothenburg, Sweden Illumina HumanOmni 5M Exome 800
PREVIOUSLY GENOTYPED CONTROL GROUPS

HABC Multi-center, USA Illumina 1M-Duo 2802
HRS Multi-center, USA Illumina HumanOmni 2.5M 12507
OAI Multi-center, USA Illumina HumanOmni 2.5M 4011
ADHD Barcelona, Spain Illumina HumanOmni 1M 435
GRAZ Graz, Austria Illumina 610 829
INMA Barcelona, Spain Illumina HumanOmni 1M 1061
KORA Southern Germany Illumina Human 550 820
WTCCC United Kingdom Illumina 660 5186

*SiGN cases genotyped at the Center for Inherited Diseases (CIDR) on the Illumina HumanOmni 5M Exome array.

not been screened for the absence of disease, there is the poten-
tial for misclassification and a subsequent loss in power. Potential
misclassification was not taken into account in the power calcula-
tions above. We further note that such misclassification bias will
be more pronounced for common diseases. The power calcula-
tions provided also assume equivalent type 1 error rates across the
three samples—i.e., no inflation of type 1 error rates introduced
by use of publicly available controls.

CHOICE OF ALREADY GENOTYPED CONTROL GROUPS
An important consideration in the design of case-control stud-
ies is that cases and controls come from comparable underlying
populations so that any differences observed between the groups
can be attributed to the exposure under study and not to other
unmeasured factors that might differ between the groups (i.e.,
confounding). Compared to other types of epidemiologic studies,
however, genetic association studies are well-suited for utilizing
already available control groups because of the limited role of
confounding in genetic epidemiology studies. When germ-line
variation in DNA sequence is the measured exposure of interest,
confounding is limited to the presence of population stratifica-
tion, that is, the ancestral differences between cases and controls.

Choosing already genotyped controls from a similar ancestral
background as the cases is thus highly important. Fortunately,
the high density of coverage of modern SNP platforms makes
this a feature that can be empirically investigated from the data
themselves without making any assumptions.

The multicenter design of SiGN that included cases with
diverse ancestral origins required the inclusion of multiple con-
trol groups. In addition to the samples included for GWAS
genotyping through CIDR, SiGN also included cases previously
genotyped on multiple genotyping arrays and platforms (see
Table 1). To reduce variability between cases and controls that
could be introduced solely from artifacts related to genotyp-
ing platform, the availability of potential controls was limited to
those genotyped on a platform believed to be compatible with
the Illumina HumanOmni 5M Exome genotyping array used
to genotype the cases. This decision limited potential controls
groups to sets that had previously been genotyped on a com-
patible Illumina array and were available to the Network upon
request.

Three different multicenter studies were identified for
SiGN to serve as controls for the cases from the US sites:
The Health and Retirement Study (Juster and Suzman, 1995)

www.frontiersin.org April 2014 | Volume 5 | Article 95 | 69

http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Mitchell et al. Previously genotyped controls in GWAS

FIGURE 1 | Minimum odds ratio to detect SNP associations at 80%

power for three different sample sets. (1) 11,000 cases and 27,000
previously genotyped controls; (2) 5500 cases and 5500 controls; and (3)
5500 cases and 27,000 previously genotyped controls∗.

(HRS; phs000428.v1.p1), The Osteoarthritis Initiative (Lester,
2008) (OAI; http://www.oai.ucsf.edu/datarelease/About.asp),
and HealthABC (Yaffe et al., 2009) (HABC; phs000169.v1.p1).
These studies were selected because of their large sizes (12,500,
4000, and 2800, for HRS, OAI, and HABC, respectively), their
geographic diversity within the US, and the dense genotyping
available on each (Illumina HumanOmni 2.5M array in HRS and
OAI and Illumina Human 1M array for HABC). All three studies
included substantial representation of European Caucasians and
African Americans, while HRS also included substantial numbers
of Hispanics.

For each international (non-US) site, studies with previously
genotyped controls were identified from the same ancestral back-
ground. For two sites (Leuven and Krakow), previously geno-
typed ancestry-matched control groups could not be identified,
and so controls at these sites were genotyped alongside SiGN
cases. For other sites (e.g., Barcelona), multiple control groups
were identified to allow cases to be matched to suitable controls
at a later stage, where we initially included as many genotyped
controls as possible to improve power.

AVAILABILITY OF DISEASE RISK FACTORS AND OTHER
COVARIATES
One drawback of using an already available control group is that
that the clinical and covariate data may be limited or even absent
altogether. This issue is of particular importance when effect
decomposition is of interest, for example, whether a SNP acts
through a modifiable risk factors such as smoking, or interacts
with such a factor (Vanderweele and Hernan, 2012). Additionally,
utilizing properly selected publically available controls can pro-
duce unbiased estimates of total genetic effects, even in the
presence of gene by environment interactions, but these estimates
may not be generalizable to populations with drastically different
covariate distributions. If covariate information is missing in the

controls, extending research findings to other populations may
be limited. This limitation is mitigated in the absence of gene
by environment interaction or the low prevalence of the genetic
variant.

A second potential drawback of using already available con-
trols is that misclassification bias can result if controls are not
“disease free.” In studying an aging-related disease such as stroke,
one may want to choose already genotyped controls that are
disease-free and older so that genetically susceptible individuals
are under-represented in the control pool. To the extent that phe-
notypic characterization is limited and disease status unknown,
the use of publicly available controls may be better suited for
studies of rare/uncommon diseases for which the likelihood that
controls are affected is small. The prevalence of stroke in the adult
population is approximately 3–4% (Go et al., 2014). We note that
misclassification bias only reduces power and does not influence
type 1 error (false positives).

COMPARABILITY OF GENOTYPING PLATFORMS BETWEEN
CASES AND CONTROLS
In case-control studies it is critical to obtain measurements from
cases and controls in comparable fashion to ensure that any mea-
surement differences between groups are not due to artifacts in
measurement procedures. In the case of genetic association stud-
ies, spurious differences between cases and controls can occur by
virtue of systematic differences in sample processing, genotype
assays (choice of genotyping platform), and genotype calling pro-
cedures. Potential biases due to different genotyping procedures
constitute perhaps the biggest challenge for genetic association
studies that utilize previously genotyped controls. This poten-
tial source of bias can be minimized by choosing control groups
that have been previously genotyped on the same, or a highly
compatible, platform as the one used for cases.

As additional quality control, it may be useful to genotype a
small number of previously genotyped individuals alongside the
cases to evaluate genotype discordance across different platforms.
SiGN cases are genotyped using the Illumina HumanOmni 5 M
Exome genotyping array, but controls had previously been geno-
typed on different arrays, primarily the Illumina Omni 1 M and
the Illumina Omni 2.5 M. To evaluate genotyping quality between
these platforms, DNA from 30 previously genotyped subjects
were identified from five of the control populations (HRS, OAI,
INMA GRAZ, and LUND) and then re-genotyped at CIDR along-
side the cases so that genotype calls from the same sample could
be compared across the two arrays. Genotype concordance rates
were calculated across each set of 30 samples and all SNPs hav-
ing one or more discordant genotypes (n = 17, 401 SNPs) were
flagged as potentially problematic and excluded from subsequent
imputation and case-control analysis. The effectiveness of this fil-
ter can be evaluated empirically by assessing type 1 error rates in
association analysis among these SNPs.

POST-GENOTYPING QUALITY CONTROL PROCEDURES TO
ENHANCE GENOTYPE COMPARABILITY BETWEEN CASES
AND CONTROLS
Differential genotyping quality between newly genotyped cases
and previously genotyped controls is a primary source of spurious
results in GWAS. Thorough quality control analysis of the case
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and control data sets is therefore critical. The first step is to
identify poor quality samples in cases and controls and remove
these from further analyses. In SiGN preference was given to
control groups genotyped and cleaned by the same labs that pro-
cessed case genotype data. Genotyping of cases was performed
on the Illumina HumanOmni5Exome-4v1 array at CIDR, which
also performed initial quality control (QC), including manual
review and, as needed, manual re-clustering of SNPs selected as
potentially problematic (such as many low minor allele frequency
exome SNPs). Additional QC was performed at the University
of Washington using methods described by Laurie et al. (2010)
in general and by Meschia et al. (2013) specifically for SiGN.
Among ∼11,000 subjects genotyped, 8 were excluded due to
unresolved identity issues (e.g., sex mismatches and unexpected
relatedness).

Using the KING-robust method (Manichaikul et al., 2010)
to analyze cryptic relatedness revealed that 99% of the sub-
jects are mutually unrelated. We defined a related pair of sub-
jects as connected by a kinship coefficient achieving the lower
limit of the 95% prediction interval for second-degree relative
pairs (KC > 0.088). Among 4.5 million SNPs assayed, 4.2%
were either failed by CIDR or flagged as potentially low qual-
ity. Starting with 4.3M non-monomorphic and unique SNPs,
110K were failed by CIDR (for various reasons, including
manual review of zCall-flagged SNPs), an additional 60K for
missing call rate ≥2%, an additional 5K for 3 or more dis-
cordant calls among 343 duplicate pairs, an additional 1.8K
for 2 or more Mendelian errors among 24 HapMap trios,
and an additional 2.5K for HWE p-value <0.0001 (in con-
trols only), resulting in 4.1M SNPs passing QC. The median
call rate was 99.9% and the error rate estimated from 343
pairs of sample duplicates was 2 × 10−5, indicating very high
quality data.

The QC procedures were applied to all SNPs regardless of
minor allele frequency, but standard quality metrics have less
power to detect problems with rare than with common variants.
A post-processing procedure has been proposed for modifying
GenomeStudio calls to improve accuracy of genotypes for rare
variants (Goldstein et al., 2012). CIDR used a modified version of
zCall to flag SNPs with potential problems as those with specific
differences in genotype calling between GenomeStudio and zCall.
Specifically, the CIDR QC process for low MAF SNPs includes
running zCall to identify SNPs where possible heterozygous clus-
ters were missed by GenCall (parameters T = 21 and I = 0.2).
SNPs with 4 or more possible new heterozygotes were manually
reviewed and manually re-called (or failed) as needed.

ASSESSMENT OF POPULATION STRATIFICATION,
IMPUTATION, AND DATA ANALYSIS STRATEGY
Identifying matching control groups from the same ancestral
background as cases is a necessary step to ensure case-control
comparability in GWAS studies. Analysis of population sub-
structure was particularly challenging in SiGN because of the
desirability in generating population substrata that were based
not only on ancestry but also on array content to minimize the
pairing of samples genotyped on very dense arrays (e.g., Illumina
HumanOmni 5M Exome) with samples genotyped on relatively
sparse (e.g., Illumina 610) arrays. The approach we took in SiGN
to accommodate these two competing strategies is summarized in
Figure 2. Our first step was to define four array groups (Illumina
610, Illumina 660, Illumina 1M, and Illumina 2.5/5M). Within
each array group, we then defined three different continental
groupings (Europe, Africa, and Admixed) using principal com-
ponents analysis (PCA) (Price et al., 2010), projecting onto the
HapMap 3 samples. Only “high-quality” SNPs were used for
these analyses, defined as those with extremely low missingness

FIGURE 2 | Flowchart of the proposed analysis by SiGN.
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Table 2 | Considerations when using already genotyped controls.

SELECTION OF CONTROLS:

• When possible, identify control sets that are from similar ethnic
ancestry and were genotyped on the same platform as the cases.

• Consider using multiple control groups, especially when cases and
controls are genotyped on different platforms and/or when the size of
available control groups is small.

• Cross-study duplicates: if possible, re-genotype a small number of
previously genotyped controls to allow evaluation of SNP concordance
rates across the two platforms.

POPULATION SUBSTRUCTURE, IMPUTATION, AND ASSOCIATION
ANALYSIS:

• Combine cases and previously genotyped controls together for
assessment of population substructure, using a subset of non-imputed
markers common to all samples (and after excluding SNPs found to be
discordant from analysis of cross-study duplicates).

• Impute genotypes of cases and controls within population substrata.

• For confirmation, it is prudent to replicate observed associations after
re-genotyping cases and control samples together.

(e.g., <0.1%) on all platforms, high frequency (e.g., >20%, as
these are easier to genotype than low-frequency SNPs), outside
of regions, such as the MHC or lactase (LCT) gene, that tend to
be highly diverse even across populations of similar ancestry, and
LD-pruned at an r2 of 0.2.

Once continental groupings were defined within array groups,
we then performed a second round of quality control analy-
ses within ancestry by array group strata to remove problematic
samples and SNPs, such as those samples or SNPs with high miss-
ingness rates or samples with inbreeding coefficients further than
3 SD from the mean of the sample distribution.

With the QCed set of samples, the next task was to combine
continental groupings across array groupings to investigate pop-
ulation stratification across the full study sample. To do this, we
started with a set of SNPs that were common across all samples
and arrays (n = 206, 476 SNPS) and selected high-quality sites
only (as described above). After this SNP selection, the remaining
50–60K SNPs (depending on continental group) were used for PC
analysis to check case-control clustering across all groups. Only 10
cases were missing matched controls and were removed from the
analysis.

Iterative logistic regression and evaluation of statistical infla-
tion (lambda) (Devlin and Roeder, 1999) will be necessary to
recognize the extent of false-positives in the data and remove
SNPs showing association to the trait due to systematic genotyp-
ing differences. Following identification of discrete case-control
strata with well-behaved association statistics, imputation will be
performed in continent-specific and array-specific groups. The
SiGN analysis plan is for case-control analysis for stroke and its
subtypes to be performed separately within each stratum using
logistic regression, and then merged across strata using standard
meta-analysis procedures.

SUMMARY
GWAS have been undeniably successful in identifying novel dis-
ease susceptibility loci (e.g., Billings and Florez, 2010; Teslovich
et al., 2010; Chasman et al., 2012). Nonetheless, results from

GWAS have also made clear that very large sample sizes are
required to detect trait-associated SNPs that have small effect
sizes. Large collections of cases suitable for genetic studies can
often be obtained by pooling cases from a variety of sources, such
as case reports, registries or large epidemiologic studies or, as
demonstrated more recently, through the use of electronic health
records (Ritchie et al., 2010). As we describe in this manuscript,
there can be immense efficiency achieved in power by devoting
genotyping resources to cases and using previously genotyped
controls.

Availability of large collections of previously genotyped con-
trols has been greatly facilitated by the decision of NIH that all
genotypes for GWAS studies funded by federal dollars be made
available for further research. In 2007 the tool dbGaP was intro-
duced to facilitate community-wide access to these data (Mailman
et al., 2007). It was this decision, the making available of publicly
funded genotyping data, that affords researchers the opportu-
nity to expand further scientific discoveries, as outlined here.
Genetic researchers are thus favorably positioned to take advan-
tage of this tremendous resource and are not as beholden to
the initial study design as other etiologic research. This benefit
does not come without a cost. We have outlined here, and sum-
marized in Table 2, some considerations researchers may wish
to consider as they design case-control studies using publicly
available data.
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Objectives: In contrast to coronary heart disease (CHD), genetic variants that influence
susceptibility to peripheral arterial disease (PAD) remain largely unknown.

Background: We performed a two-stage genomic association study leveraging an
electronic medical record (EMR) linked-biorepository to identify genetic variants that
mediate susceptibility to PAD.

Methods: PAD was defined as a resting/post-exercise ankle-brachial index (ABI) ≤0.9
or ≥1.4 and/or history of lower extremity revascularization. Controls were patients without
history of PAD. In Stage I we performed a genome-wide association analysis adjusting for
age and sex, of 537, 872 SNPs in 1641 PAD cases (66 ± 11 years, 64% men) and 1604
control subjects (61 ± 7 year, 60% men) of European ancestry. In Stage II we genotyped
the top 48 SNPs that were associated with PAD in Stage I, in a replication cohort of 740
PAD cases (70 ± 11 year, 63% men) and 1051 controls (70 ± 12 year, 61% men).

Results: The SNP rs653178 in the ATXN2-SH2B3 locus was significantly associated
with PAD in the discovery cohort (OR = 1.23; P = 5.59 × 10−5), in the replication cohort
(OR = 1.22; 8.9 × 10−4) and in the combined cohort (OR = 1.22; P = 6.46 × 10−7). In
the combined cohort this SNP remained associated with PAD after additional adjustment
for cardiovascular risk factors including smoking (OR = 1.22; P = 2.15 × 10−6) and
after excluding patients with ABI > 1.4 (OR = 1.24; P = 3.98 × 10−7). The SNP is in
near-complete linkage disequilibrium (LD) (r2 = 0.99) with a missense SNP (rs3184504)
in SH2B3, a gene encoding an adapter protein that plays a key role in immune and
inflammatory response pathways and vascular homeostasis. The SNP has pleiotropic
effects and has been previously associated with multiple phenotypes including myocardial
infarction.

Conclusions: Our findings suggest that the ATXN2-SH2B3 locus influences susceptibility
to PAD.

Keywords: genome-wide association study, peripheral arterial disease, ankle-brachial index, electronic medical

records, biorepository

INTRODUCTION
Peripheral arterial disease (PAD) affects nearly 10 million people
in the US and more than 200 million people worldwide (Hirsch
et al., 2001; Fowkes et al., 2013). PAD is associated with signifi-
cant mortality and morbidity, underscoring the need to discover
genetic variants that mediate susceptibility to this disease (Leeper
et al., 2012). In contrast to coronary heart disease (CHD), genetic
variants that influence susceptibility to PAD remain unknown.
A genome-wide association study (GWAS) of smoking quantity
revealed a variant in CHRNA3 that was associated with PAD and
lung cancer (Thorgeirsson et al., 2008).

Repositories of DNA from patients seen in the clinical setting
and linked to the electronic medical record (EMR) systems can be

leveraged to conduct genotyping or sequencing studies to iden-
tify genetic variants associated with human diseases and related
quantitative traits. Extensive clinical data residing in the EMR can
be leveraged for high-throughput phenotyping of medically rele-
vant traits (Kullo et al., 2010). Such an approach may reduce the
time, effort, and cost involved in conducting genomic studies to
identify disease susceptibility loci.

The Electronic Medical Records and Genomics (eMERGE)
consortium (McCarty et al., 2011) was created to develop and
implement approaches for leveraging biorepositories linked to the
EMR for large-scale genomic research, including but not limited
to GWAS, sequencing, and structural variation (Kho et al., 2011).
We undertook a GWAS of PAD cases and controls identified

www.frontiersin.org June 2014 | Volume 5 | Article 166 | 74

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/journal/10.3389/fgene.2014.00166/abstract
http://community.frontiersin.org/people/u/120142
http://community.frontiersin.org/people/u/138205
http://community.frontiersin.org/people/u/94965
mailto:kullo.iftikhar@mayo.edu
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive
http://community.frontiersin.org/people/u/37559


Kullo et al. A GWAS for PAD

from the EMR using a two-stage study design. In Stage I we per-
formed a GWAS of 1641 PAD cases and 1604 controls, and in
Stage II we attempted replication of the top significant SNPs in
an independent sample of 740 PAD cases and 1051 controls.

MATERIALS AND METHODS
STUDY PARTICIPANTS
All participants gave written informed consent for participation
in the study and the use of their data for future research. The
Institutional Review Board of the Mayo Clinic approved the study
protocol.

ASCERTAINMENT OF PAD CASES AND CONTROLS
The PAD patients were recruited from the non-invasive vascu-
lar laboratory at the Mayo Clinic Rochester, MN, based on the
following criteria: (1) an ankle brachial index (ABI) of ≤0.9 at
rest or 1 min after exercise, along with an abnormal continuous
wave Doppler signal in one of the lower extremity arteries; (2) his-
tory of lower extremity revascularization if the ABI was normal;
and (3) ABI ≥ 1.4 or ankle systolic BP > 250 mm Hg, repre-
senting poorly compressible arteries. Exclusion criteria included
PAD secondary to vasculitis, radiation to the abdomen or lower
extremities, trauma to a lower extremity artery, thrombophilia,
and arterial thrombosis. Controls were identified from patients
referred to the Cardiovascular Health Clinic for exercise ECG to
screen for cardiovascular disease. We excluded patients who had a
positive exercise ECG, were younger than age 50, or had an abnor-
mal ABI or history of PAD. A proportion (60%) of the subjects
who underwent exercise ECG also underwent measurement of
ABI. The prevalence of an abnormal ABI in patients who had a
negative stress ECG was <1%.

Patient-level data elements in the Mayo EMR included demo-
graphics, outpatient visits and hospitalizations, providers, diag-
nosis and procedure codes, and results of non-invasive lower
extremity arterial evaluation. Birth date, race, sex, and eth-
nicity were obtained from the demographic database; the cat-
egories for race were “White,” “Black or African American,”
“Hispanic,” “Asian/Pacific Islander,” “American Indian/Alaskan
Native,” “Others,” and “Unknown.”

STAGE-I: HIGH-DENSITY GENOTYPING OF DISCOVERY COHORT
Genotyping was performed using the Illumina 660W-Quad
BeadChip at the Center for Genotyping and Analysis at the Broad
Institute, Cambridge, MA. This platform consists of 561,490 SNPs
and 95,876 intensity-only probes. In addition to 3347 patient
DNA samples, 58 blind duplicates, and 37 Coriell controls were
genotyped. The Coriell controls include 1 trio (3 unique samples)
that was duplicated on each plate. Genotyping calls were made
using BeadStudio version 3.3.7 (2010).

Analysis tools used for quality control (QC) procedures
included Illumina BeadStudio (2010), PLINK (Purcell et al.,
2007), R (The R Development Core Team, 2007), STRUCTURE
(Pritchard et al., 2000), and Eigenstrat in the Eigensoft package
(Price et al., 2006). Data were cleaned using the QC pipeline
developed by the eMERGE Genomics Working Group (Turner
et al., 2011). This process includes evaluation of sample and
marker call rate, gender mismatch and anomalies, duplicate and

HapMap concordance, batch effects, Hardy-Weinberg equilib-
rium, sample relatedness, and population stratification. The data
from all the patients, in addition to the HapMap II popula-
tions, were evaluated for population structure/substructure using
Eigenstrat (Price et al., 2006). Of the 3347 unique samples, 3336
passed genotyping QC (see Supplementary Data and Figures
S1–S3).

STAGE-II: GENOTYPING OF LEAD SNPs IN THE REPLICATION COHORT
The replication cohort consisted of 744 (470 males and 274
females) patients who had PAD based on the criteria listed above
and 1053 (645 males and 408 females) controls with no prior his-
tory of PAD. The top 48 SNPs associated with PAD in the discov-
ery cohort were genotyped using an Illumina custom genotyping
panel with primers and probes from Assay-by-Design (Applied
Biosystems, Foster City, CA). Custom capture and genotyping
was performed at Mayo Clinic’s Genotyping Core lab/Genotyping
Shared Resource Lab.

Standard QC procedures were applied including evaluation of
sample and marker call rate, HapMap concordance, and Hardy-
Weinberg in controls only. We excluded six patients with low
call rates (<95%). Of the 48 SNPs selected for replication, one
(rs7900716) had a low call rate. All the 47 remaining SNPs had call
rates >99% and Hardy-Weinberg P-value > 0.05 in the controls.

STATISTICAL ANALYSES
Statistical analyses were conducted using SAS v. 9.3 {SAS Institute
Inc., Cary, NC} and PLINK v1.07 (Purcell et al., 2007), and
plots were created using R v2.11.0 (The R Development Core
Team). Descriptive analyses were performed for the covariates
and outcome variables using t-tests for continuous variables and
chi-square tests for discrete variables. To adjust for population
stratification, we used principal components to identify outliers
in the study cohort (Price et al., 2006). Quantile-quantile (QQ)
plots of observed –log10 P-values for PAD association versus
the expected –log10 P-values under the null hypothesis of no
association were generated to display the potential significant
associations and to calculate the genomic inflation factor λ and
to check for over dispersion of the test statistics. For each locus,
we determined the set of HapMap SNPs in linkage disequilibrium
(LD) (r2 > 0.5) with the most significantly associated SNP. We
then bounded the associated interval by the flanking HapMap
recombination hotspots. These windows are likely to contain
the causal variants explaining the associations. We used logistic
regression analyses that adjusted for age and sex to identify the
SNPs associated with PAD case/control status in the discovery,
replication, and combined sets. All analyses were forced to test
the same allele as the original sample. We performed sensitivity
analyses by including additional adjustment variables for smok-
ing, CHD, statin use, diastolic and systolic blood pressure, and
diabetes. Since the additional adjustment variables did not have
a qualitative impact on the final inferences, the results are not
shown.

FUNCTIONAL ANNOTATION OF THE LEAD SNP
Data for the SNP rs3184504 (c.784T>C), which is in nearly com-
plete LD with the most significant SNP, were obtained from the
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Exome Variant Server. The impact of the variant was assessed
using SIFT (Ng and Henikoff, 2003), PoplyPhen2 (Adzhubei
et al., 2010), and conservation based measures such as PhastCons
(Siepel et al., 2005), GRANTHAM (Grantham, 1974), and GERP
(Cooper et al., 2005) scores. We performed Gene Ontology (GO)
term enrichment analysis of SH2B3 using first-degree interacting
partners that were obtained from the protein-protein interac-
tion database “STRING” (http://www.string-db.org). To under-
stand the impact of SNP rs3184504 on protein structure, we
performed a molecular dynamics simulation using GROMACS
v4.5.7 (http://www.gromacs.org/) of the pleckstrin homolog
(PH) domain of the SH2B3 protein where the SNP is localized.

RESULTS
DISCOVERY
After exclusions based on QC, including removal of related
individuals and those of non-European Ancestry, a total of
3245 individuals—1641 PAD subjects and 1604 controls—were
included in the analyses. No evidence of population stratification
was found and therefore correction for population stratifica-
tion was not needed in the analyses. Since the estimate of λ

was 1.0, the test statistics showed no significant over dispersion.
The study population demographic and clinical characteristics by
case-control status are presented in Table 1. Among PAD cases,
64.3% were men, while among the controls, 60.3% were men. The
mean age of the PAD patients was higher than the mean age of the
control patients (65.7 years vs. 60.8 years) (Table 1). Assuming an
additive genetic model and adjusting for age and sex, 60 SNPs
were associated with PAD at P < 1 × 10−4. Figure 1 presents
a Manhattan plot of the P-values. Of these 60 SNPs, 48 were
selected for replication based on Illumina designability score, LD,
and minor allele frequency (MAF) in controls (see Supplementary
Data for details).

REPLICATION
Characteristics of participants in the discovery and replication
cohorts are presented in Table 1. The allele C of the intronic

SNP rs653178 at the ATXN2-SH2B3 locus on chromosome 12
was present more frequently in PAD cases (52%) than in con-
trols (47%) with a resulting odds ratio (OR) of 1.23 (95% CI,
1.11–1.36, P = 5.59 × 10−5) in the discovery cohort (Table 2).
In the replication cohort, the OR was 1.25 (95% CI, 1.10–
1.40, P = 8.94 × 10−4) and in the combined sample, the
OR was 1.22 (95% CI, 1.13–1.32, P = 6.46 × 10−7) (Table 2).
The lead SNP rs653178 is in strong LD (r2 = 0.99) with a
missense SNP (rs3184504) in SH2B3, an adapter protein that
plays a key role in immune and inflammatory response path-
ways and vascular homeostasis (Devalliere and Charreau, 2011;
Devalliere et al., 2012). A locus specific visualization of lead vari-
ants associated with PAD is provided in the Supplementary Data
(Figure S4).

Two additional SNPs rs11726269 (intronic region of MAPK10)
and rs131408 (intergenic region between LOC388882 and IGLL1)
were significant at P < 0.05 in the replication cohort with similar
direction of effect. However the P values exceeded the Bonferroni
threshold for testing 48 SNPs (see Supplementary Table S1). The
two most significant SNPs in the discovery cohort, rs7795096
in PRKAG2 on chromosome 7 and rs2587888 in GNAO1 on
chromosome 16, did not replicate.

STRUCTURAL AND FUNCTIONAL IMPLICATIONS OF THE
W262R VARIANT IN THE SH2B3 PROTEIN
Our analyses indicate that SH2B3 encodes a multi-functional pro-
tein involved in diverse molecular pathways. Comparative protein
sequence analyses using wild type and mutant sequences indi-
cated that that rs3184504 leads to substitution of tryptophan with
arginine (W262R) thereby introducing a new cAMP phosphory-
lation site in the PH domain of SH2B3 (see Supplementary Data
and Figure S5). The PH domain in SH2B3 is important for lipid
binding, membrane tethering and protein-protein interactions.
GO terms (Ashburner et al., 2000) that are enriched among pro-
teins interacting with SH2B3 include blood coagulation; wound
healing, and cell signaling events (see Supplementary Data,
Table S2 and Figure S6). Conservation measures like Genomic

Table 1 | Participant characteristics.

Discovery cohort Replication cohort

Cases (n = 1641) Controls (n = 1604) Cases (n = 740) Controls (n = 1051)

Men, n (%) 1055 (64.3) 968 (60.3) 468 (63.2) 643 (61.2)

Age, years 65.7 ± 10.68 60.8 ± 7.41‡ 70.6 ± 11.60 70.2 ± 12.42

European ancestry, n (%) 1547 (94.3) 1512 (94.3) 721 (97.4) 1023 (97.3)

“Ever” smoker, n (%) 1322 (80.5) 963 (60.1) 632 (85.4) 641 (61.0)

ABI (pre-exercise) 0.72 ± 0.25 1.1 ± 0.07‡ 0.79 ± 0.30 1.07 ± 0.16‡

ABI (post-exercise) 0.54 ± 0.25 1.1 ± 0.12‡ 0.56 ± 0.28 1.03 ± 0.19‡

Hypertension, n (%) 1358 (82.8) 843 (52.6)‡ 583 (78.8) 634 (60.3)‡

Type 2 diabetes, n (%) 507 (30.9) 141 (8.8)‡ 225 (30.4) 126 (12.0)‡

Statin use, n (%) 774 (49.2) 398 (24.8)‡ 532 (72.0) 326 (61.1)‡

CHD, n (%) 903 (55) 251 (15.6)‡ 483 (65.3) 235 (22.4)‡

Continuous traits are depicted as mean ± standard deviation and categorical traits as count (percent); ABI, ankle-brachial index; CHD, coronary heart disease.
‡P < 0.001 for differences between PAD cases and controls.
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FIGURE 1 | Manhattan plot for the Stage I discovery cohort showing genome wide P-value distribution and the corresponding Q-Q plot (inset). SNP
rs653178 is circled. A line at p = 1 × 10−4 is included on the Manhattan plot to provide a visual reference for p-values across the chromosomes.

Table 2 | Association of rs653178 with PAD in discovery, replication,

and combined cohorts, after adjustment for age and sex in logistic

regression models.

Cohort PAD Controls Risk allele OR (95% CI) P-value

(n) (n) (frequency*)

Discovery 1641 1604 C (0.469) 1.23 (1.11,1.36) 5.59 ×10−5

Replication 740 1051 C (0.475) 1.25 (1.10,1.40) 8.90 ×10−4

Combined 2381 2655 C (0.469) 1.22 (1.13,1.32) 6.46 ×10−7

CI, confidence interval; OR, odds ratio; PAD, peripheral disease.
*Controls.

Evolutionary Rate Profiling (GERP: 2.97) and phastCons (pos-
terior probability: 0.159) suggest the variant is marginally con-
served. Effect prediction analysis using Variant Effect Predicator
(McLaren et al., 2010) indicate the variant as tolerant (SIFT: score
= 1) benign (PolyPhen-2; score = 0.0), and moderately radi-
cal (GRANTHAM; score = 101). Molecular dynamic simulation
suggested that the mutation in the PH domain of the SH2B3
results in structural perturbations and conformational changes
(see Supplementary Data; Figures S7 and S8).

DISCUSSION
A better understanding of the genetic basis of PAD is required
to improve risk stratification and identify new pathophysiologic
pathways and drug targets. Conventional linkage and association
approaches have failed to identify replicable susceptibility loci
for PAD (Leeper et al., 2012) and the genome-wide association
approach is currently the most promising design to uncover such
loci. Heritable factors contribute to the risk of developing PAD.
In the large population-based Swedish Twin Registry (Wahlgren
and Magnusson, 2011), the odds ratio of having PAD in persons
whose twin had PAD compared with persons whose twin did not
have PAD was 17.7 (95% CI, 11.7–26.6) for monozygotic twins
and 5.7 (95% CI, 4.1–7.9) for dizygotic twins. In a large case con-
trol study we found that family history of PAD was associated with
doubling the odds of the presence of PAD (Khaleghi et al., 2014).
Heritability estimates for ABI have varied from 0.21 (Kullo et al.,
2006; Murabito et al., 2006) to 0.48 (Carmelli et al., 2000). In spite
of evidence supporting the presence of heritable contribution to
PAD, little is known about the genetic determinants of PAD.

In the present study, the SNP most strongly associated with
PAD was an intronic SNP rs653178 in ATXN2 on chromosome
12q24-12q24.1. This SNP is in near-complete LD with a missense
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SNP in SH2B adaptor protein 3 gene (SH2B3) (rs3184504; r2 =
0.99) that is likely the causal SNP. The SNP in SH2B3 results
in a substitution of tryptophan (large size and aromatic side
chain) by arginine (large size and basic side chain) that induces
changes in the structure and hydrophilic properties of the pleck-
strin homology domain. This may result in altered lipid binding
and protein–protein interactions as indicated by our molecular
dynamics analyses. The variant also introduces a new phosphory-
lation site in the pleckstrin homology domain which may influ-
ence signaling pathways mediated by SH2B3. The SNP rs3184504
exhibits significant pleiotropic effects and has been implicated in
immunological disorders, cardiovascular diseases (Gudbjartsson
et al., 2009) and hematologic traits such as platelet count, mean-
platelet volume (Gieger et al., 2011) and eosinophil count (Barrett
et al., 2009). A summary of disease/trait associations of rs3184504
and rs653178 in the ATXN2-SH2B3 locus is provided in the
Supplement (Table S3).

The pleiotropic nature of SH2B3 may be due to its role in
immune and inflammatory signaling pathways including ery-
thropoietin, cytokine receptor-mediated and integrin signaling
(20). The protein also regulates hematopoietic cell lineage
and endothelial cells, and influences adhesion and migra-
tion of platelets by modulating actin cytoskeleton organization
(Takizawa et al., 2010; Gieger et al., 2011; Devalliere et al., 2012;
Shameer et al., 2014). SH2B3 is also involved in platelet pro-
duction via megakaryocyte development; mice lacking SH2B3
(Lnk/SH2B3−/−) (Kwon et al., 2009) have altered platelet func-
tion and thrombus development (Tong et al., 2005). The relatively
high frequency of this SNP in the general population is specu-
lated to be due to a protective effect against bacterial infection
(Zhernakova et al., 2010). We (Ding and Kullo, 2011) and others
(Pickrell et al., 2009) have previously demonstrated that the SNP
may have been subject to natural selection.

Two GWAS in European ancestry cohorts have reported vari-
ants associated with PAD. Thorgeirsson et al (Thorgeirsson et al.,
2008) found a common variant in the nicotinic acetylcholine
receptor gene cluster on chromosome 15q24 to affect nicotine
dependence, smoking quantity, and the risk of PAD and lung
cancer. A synonymous SNP (rs1051730) within the cholinergic
receptor nicotinic alpha 3 gene (CHRNA3) was significantly asso-
ciated with PAD (OR = 1.19). In a meta-analysis (Murabito et al.,
2012) of GWAS for ABI consisting of 21 population-based cohort
studies and 41,692 participants of European ancestry among
whom 3409 participants had PAD (ABI < 0.90), six SNPs were
associated (P = 1 × 10−6) with PAD, but none at a genome-wide
significance level. The ATXN2-SH2B3 locus was not associated
with PAD in this study. One possible explanation may be the
differences in case ascertainment, the present study including
symptomatic PAD patients from the clinical setting whereas in
the meta-analyses by Murabito et al, most individuals had under-
gone ABI measurement as part of prospective cohort studies.
Koriyama et al. (2010) found the OSBPL10 locus to be associ-
ated with PAD in a Japanese cohort. We assessed the strength of
association of these SNPs in our dataset and found that the 9p21
variant and the OSBPL10 variants were not associated, whereas
the CHRNA3 variant was weakly (P = 1 × 10−3) associated with
PAD case status.

In conclusion, our findings suggest that SNP rs653178 in
the ATXN2-SH2B3 locus is associated with clinically defined
PAD. The SNP is in near complete LD with rs3184504, a non-
synonymous SNP in SH2B3, a gene implicated in immune,
inflammatory, and hematopoietic pathways. This SNP is emerg-
ing as a key pleiotropic genetic variant influencing multiple
cardiovascular traits. Our findings motivate additional investiga-
tion of this locus including sequencing, gene expression and drug
targeting studies as well as studies in experimental animals.
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A variety of health-related data are commonly deposited into electronic health records
(EHRs), including laboratory, diagnostic, and medication information. The digital nature
of EHR data facilitates efficient extraction of these data for research studies, including
genome-wide association studies (GWAS). Previous GWAS have identified numerous
SNPs associated with variation in total cholesterol (TC), low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). These findings
have led to the development of specialized genotyping platforms that can be used for
fine-mapping and replication in other populations. We have combined the efficiency of
EHR data and the economic advantages of the Illumina Metabochip, a custom designed
SNP chip targeted to traits related to coronary artery disease, myocardial infarction, and
type 2 diabetes, to conduct an array-wide analysis of lipid traits in a population with
extreme obesity. Our analyses identified associations with 12 of 21 previously identified
lipid-associated SNPs with effect sizes similar to prior results. Association analysis using
several approaches to account for lipid-lowering medication use resulted in fewer and
less strongly associated SNPs. The availability of phenotype data from the EHR and
the economic efficiency of the specialized Metabochip can be exploited to conduct
multi-faceted genetic association analyses.

Keywords: GWAS, lipids, obesity, EHR

INTRODUCTION
Genome-wide association studies (GWAS) have been highly suc-
cessful at identifying SNPs associated with a wide variety of phe-
notypes, including lipid disorders, although such studies require
very large sample sizes (Willer et al., 2013). This limits their util-
ity because of economic considerations and the need to acquire
phenotype data from across diverse sources. These limitations
can be minimized using data obtained from electronic health
records (EHRs), which can be an efficient means to obtain robust
and extant phenotype data (Pathak et al., 2012) from poten-
tially a large number of individuals, including for metabolic traits
(Wood et al., 2012) and genetics studies (Wood et al., 2008).
Furthermore, this approach provides the opportunity to assess
the relevance of genetic associations in real-world patient pop-
ulations with selected phenotypic characteristics such as extreme
obesity. Because lipid screening is part of standard of care testing
and body weights are often measured, these data are commonly
present in EHRs. The electronic nature of EHR data facilitates
efficient extraction for research studies (Prokosch and Ganslandt,
2009). However, the accuracy of EHR-based data depends upon

how the data were obtained and entered and how it was extracted.
Certain portions of the EHR are more standardized, such as
laboratory measures. Other data, such as medications, may not
be as straight-forward because of the complexity of coding for
medication use.

Large meta-analyses of GWAS have identified numerous
genetic loci associated with variation in lipid phenotypes, includ-
ing 39 loci for total cholesterol (TC), 22 loci for low-density
lipoprotein cholesterol (LDL-C), 31 loci for high-density lipopro-
tein cholesterol (HDL-C), and 16 loci for triglycerides (TG) (Van
Dongen et al., 2013) as well as body mass index (BMI) (Sandholt
et al., 2012). These loci are estimated to underlie about one-
quarter to one-third of the genetic basis for these traits, a result
that has motivated the search for additional loci through even
larger GWAS studies (Willer et al., 2013). Few GWAS have been
conducted in populations with extreme obesity (Sarzynski et al.,
2011; Rinella et al., 2013), which may differ significantly from
the large GWAS population-based samples in prevalence of co-
morbidities such as dyslipidemia and use of corresponding lipid
lowering medications.
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Results from GWAS data have led to the development of
specialized platforms designed to identify additional genetic loci
as follow-up to initial analyses and to allow for finer genetic
mapping of previously identified loci. An economical genotyp-
ing platform, the Illumina Metabochip, was custom designed
for analysis of traits related to coronary artery disease and type
2 diabetes (Voight et al., 2012). As a proof-of-principle use of
EHR data, we genotyped DNA from a cohort of individuals with
extreme obesity, ascertained on the basis of undergoing bariatric
surgery and on whom a rich database of EHR-derived pheno-
type data were available (Still et al., 2013), using the Metabochip
to evaluate associations with lipid traits. The presence of SNPs
on the Metabochip residing in loci known to be previously
associated with blood lipid levels enabled extension of findings
to the context of extreme obesity. The use of EHR data and
the Metabochip platform thus provided an effective strategy to
test the relevance of lipid trait GWAS findings in this patient
population.

MATERIALS AND METHODS
STUDY PARTICIPANTS, EHR SOURCE DATA, AND COLLECTION OF
BLOOD SAMPLES
Study participants were patients treated in the Geisinger Clinic
Center for Nutrition and Weight Management who met clinical
inclusion and exclusion criteria for bariatric surgery and were
prospectively recruited into a research program on obesity from
2004 to 2012. The Geisinger Health System is an integrated health
care delivery system that serves residents in central and north-
eastern Pennsylvania that includes the Geisinger Clinic, a network
of 37 community-based primary care practices that provide care
to over 400,000 patients. All sites have used the EpicCare™ EHR
since 2001 (Allen-Ramey et al., 2013).

Data used for this study were obtained from an obesity
database based on the EHR as previously described (Wood
et al., 2012). Source data included patient demographics, clini-
cal measures, problem list based on ICD-9 codes, medical history,
medication history, and lab results. Blood drawn for lipid mea-
surements and DNA isolation was obtained as part of a standard
of care phlebotomy performed during the pre-surgery period,
which consisted of a 6–12 month program during which a com-
prehensive medical history was obtained, a physical exam con-
ducted, body weight, waist circumference, and height measured,
and disease-specific, standard of care laboratory tests obtained,
including fasting TC, HDL-C, LDL-C, and TG. Clinical data were
recorded in the EHR. Blood for DNA isolation was transported
to the research laboratory for processing and storage. Genomic
DNA was isolated from patient whole blood samples as pre-
viously described (Chu et al., 2008), arrayed into microplates,
and transported to the University of Maryland Translational
Genomics Laboratory for Metabochip genotyping. The research
was approved by the Geisinger Clinic and Penn State Hershey
Institutional Review Boards and all participants provided written
informed consent.

GENOTYPING AND GENOTYPE CLEANING
A total of 1851 samples was selected for genotyping using the
Illumina Metabochip. The Metabochip array consists of ∼200,000

SNPs that include: (1) “replication” SNPs corresponding to vali-
dated associations; (2) a set of 63,450 SNPs that were the most
significantly associated with over 20 traits related to coronary
artery disease or T2D, including lipids, (3) SNPs previously asso-
ciated with BMI and waist circumference, as well as 122,241
SNPs to fine-map these loci; and (4) 16,992 other SNPs selected
for a variety of reasons, including those that reached genome-
wide significance in any GWAS (Voight et al., 2012; Shah et al.,
2013). Genotyping of the Metabochip was performed as per
the manufacturer’s protocol. A total of 196,725 were polymor-
phic. Samples that had call rates across all SNPs of <95% were
removed, leaving a total of 1827 samples (Supplementary Table
1). Eight of the 1827 samples were excluded due to missing phe-
notype data. After excluding samples discordant for reported and
genetically determined sex, unresolvable duplicates, and samples
related to another sample (Supplementary Methods), the remain-
ing number of subjects available for the analysis set was 1686
(Supplementary Table 1).

A series of analyses were also conducted to identify potentially
problematic SNPs. Starting with the 196,725 polymorphic SNPs,
we identified a total of 6279 problematic SNPs (Supplementary
Methods) that were excluded, with the final cleaned dataset con-
sisting of a total of 190,446 SNPs of which 63,134 SNPs had minor
allele frequencies <0.01.

ASSOCIATION ANALYSIS
Statistical association testing between individual SNPs and lipid
phenotypes was conducted under an additive model by regressing
the genotype score (coded as number of copies of the refer-
ence allele) against the outcome lipid variable. Age and sex were
included in the model as covariates. Further analyses addressed
the issue of use of lipid-lowering agents (see Results). Our ini-
tial aim was to assess associations with 21 SNPs present on the
Metabochip previously associated with lipid levels in prior meta-
analysis of GWAS results (Kathiresan et al., 2008). For these
analyses, we regarded a p-value of 0.0024 (0.05/21) to be statisti-
cally significant. We additionally assessed associations of 21 SNPs
previously associated with body mass index and waist circumfer-
ence (Willer et al., 2009; Speliotes et al., 2010; Sandholt et al.,
2012), regarding a p-value of 0.002 (0.05/21) to be statistically
significant.

We performed a secondary analysis to assess associations of
all Metabochip SNPs with lipid and body weight traits in which
we adjusted for the total number of SNPs tested, defining the
significance cut-off as p < 2.6 × 10−7 after Bonferroni’s cor-
rection (p = 0.05/190,446). We estimated that our final sample
size of 1686 individuals provided 80% power to detect SNPs
explaining 2–2.5% of the variation in lipid or BMI levels at this
significance level.

RESULTS
COHORT CHARACTERISTICS
The demographic, anthropometric, and lipid profiles of the
population (Table 1) were characteristic of a bariatric surgery
cohort (Wood et al., 2012). Over 99% of the population was
Caucasian/European ancestry. Just under 46% of study subjects
reported taking one or more lipid-lowering medications, the
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Table 1 | Demographic and laboratory data.

Trait Female Male Total

(n = 1365) (n = 321) (n = 1686)

Mean Stdev Mean Stdev Mean Stdev

BMI (kg/m2) 46.5 8.1 48.6 9.1 46.9 8.3

WaistCir (inches) 50.0 12.5 56.8 15.1 51.3 13.3

TG (mg/dl) 162.7 106.2 190.6 145.5 168.0 115.0

TC (mg/dl) 184.8 46.7 168.4 51.1 181.8 48.0

HDL-C (mg/dl) 46.9 13.7 38.4 12.6 45.3 13.9

LDL (mg/dl) 104.3 38.4 88.6 42.5 101.4 39.7

TC/HDL-C 3.8 2.1 4.1 2.7 3.9 2.2

majority taking statins (Supplementary Table 2). The percent of
patients with a diagnosis of hypertension was 48.7%. The diagno-
sis of type 2 diabetes was 35.2% (Supplementary Table 2), which
was reflected in the concomitant use of diabetes medications
(Supplementary Table 2).

ASSOCIATION OF SNPS AT KNOWN LIPID LOCI WITH LIPID LEVELS
Results from association testing of previously identified lipid loci
(Kathiresan et al., 2008) are shown in Table 2. Of the 21 lipid-
associated SNPs tested, 12 were nominally associated with one or
more lipid traits at a p < 0.05, including 3 that remained signifi-
cant following adjustment for multiple comparisons (p < 0.002).
The loci marked by these three SNPs included GCKR (associ-
ated with TG levels at 5.3 × 10−4), LPL (associated with HDL-C
levels at 1.4 × 10−5), and CETP (associated with HDL-C levels
at 4.1 × 10−11). The directions of the observed effects for all of
the 12 SNPs nominally or significantly associated with lipid levels
were directionally consistent with those previously reported.

ADJUSTMENT FOR LIPID-LOWERING MEDICATIONS
A significant proportion (46%) of subjects in this cohort were
being treated with lipid-lowering medications. Medication use
was not associated with levels of LDL-C (beta = −2.74; p = 0.12)
or TC (beta = 2.70; p = 0.19), but was significantly associated
with levels of HDL-C (beta = −2.78; p = 1 × 10−6) and TG
(beta = 0.22; p = 1 × 10−17). The observed values TC, LDL-C,
and TG levels would likely have been higher, and HDL-C lev-
els lower, had they not been taking lipid-lowering medications.
We therefore considered three additional analytic approaches to
accommodate the effect of the medications. Our first approach
was to repeat the association analyses after removing all sub-
jects on lipid-lowering medications (final n = 945). Our sec-
ond approach was to include use of lipid-lowering medications
as a covariate (medication user vs. non-user) in the regres-
sion model (final n = 1686). Our final approach was to restrict
analysis to subjects taking lipid-lowering medications (final n =
741).Results of the association analyses of SNPs at known lipid
loci using all three approaches to address the use of lipid-lowering
medications are shown in Table 2. Results obtained from anal-
ysis restricted to subjects not taking lipid-lowering medications
were generally consistent with those obtained from the ini-
tial analysis of the entire cohort. With only a few exceptions
(e.g., rs6544713 near ABCG8), the effect sizes at most loci

tended to be of the same magnitude, although the p-values
tended to be less significant in the sample with medication-
users removed, consistent with a smaller sample size. The same
trend, i.e., comparable effect sizes but lower statistical signifi-
cance, was also observed when analyses were restricted to sub-
jects taking lipid-lowering medications. Inclusion of medica-
tion use as a covariate in the model had virtually no effect
on the genotype-lipid phenotype association at any of the
tested SNPs.

Array-wide association analysis of lipid levels was also carried
out using the same three approaches to evaluate the impact of
lipid-lowering medication use. Manhattan plots for these results
are shown in Supplementary Figures 3–5. In these analyses, we
detected the association of HDL-C with the CETP locus at array-
wide significance thresholds in subjects not taking lipid-lowering
medications and with medication use as a covariate, but not in
the subgroup taking lipid-lowering medications (Supplementary
Table 4). A similar result was obtained for association of LDL-C
with the APOE locus. The association of TG with the APOA1-
APOA3-APOA4-APOA5 locus was detected only when using
medication use as a covariate.

Association of SNPs at known BMI and waist circumference
loci For BMI and waist circumference, no SNP achieved a p-value
of less than 0.002 (Supplementary Table 5).

ARRAY-WIDE ASSOCIATION ANALYSIS
Following analysis of the candidate SNPs, association analysis
was undertaken for all SNPs on the array using an additive
genetic model for 7 phenotypes; BMI, waist circumference, TC,
LDL-C, HDL-C, TG, and TC/HDL-C ratio. For BMI and waist
circumference, no SNP achieved a p-value of less than 1 ×
10−6(Supplementary Figures 1 and 2).

Results of the array-wide association analyses for 5 lipid
phenotypes are summarized in Manhattan plots shown in
Figures 1A–E. SNPs at three loci achieved p-values at less than
1 × 10−7 in association with HDL-C (Figure 1A). A cluster of
SNPs with p-values less than 1 × 10−12 was identified at the
HERPUD1-CETP locus on chromosome 16 (Keebler et al., 2009).
All associated SNPs were in high linkage disequilibrium with
rs173539 (Figure 2), the peak SNP identified in this region pre-
viously associated with HDL-C (Kathiresan et al., 2008). A cluster
of SNPs at the LPL locus on chromosome 8 also associated with
HDL-C levels, as has been previously reported (Heid et al., 2008).
As shown in Figure 3, the associated SNPs were in high linkage
disequilibrium with rs12678919, the peak SNP previously iden-
tified in this region associated with HDL-C (Kathiresan et al.,
2008). The third locus associated with HDL-C levels was tagged
by only a single SNP with a p-value of 7.46 × 10−9 was located at
the NPAS3 locus.

For TC (Figure 1B), the peak association occurred with mul-
tiple SNPs on chromosome 1 at the CELSR2-PSRC1-SORT1
locus (peak association: p < 2.6 ×10−7), which has previously
been associated with TC in multiple studies (Lu et al., 2010;
Ma et al., 2010). Associations at this locus were also apparent
for LDL-C levels (Figure 1C), as has been reported in previous
studies (Kathiresan et al., 2008; Nakayama et al., 2009), although
the associations did not achieve the Bonferroni-corrected
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FIGURE 1 | Manhattan plots for associations of TC, HDL-C, LDL-C, TG, and TC/HDL-C with 190,446 SNPS from the Metabochip. (A) HDL-C. (B) TC. (C)

LDL-C. (D) TG. (E) TC/HDL-C.
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FIGURE 2 | Zoom plot showing association of SNPs in CETP region (Chromosome 16) associated with HDL-C, and linkage disequilibrium between

associated SNPs and index SNP.

FIGURE 3 | Zoom plot showing association of SNPs in LPL region (Chromosome 8) associated with HDL-C, and linkage disequilibrium between

associated SNPs and index SNP.

level of statistical significance. The well-documented asso-
ciation of LDL-C levels with APOE on chromosome 19
(Waterworth et al., 2010), was also detected, with a p-value of
1.56 × 10−12.

A significant association was observed between TG and the
APOA1-APOA3-APOA4-APOA5 locus on chromosome 11 (SNP
rs number not available; resides at position 116,156,325; see
Figure 1D) as has been previously reported (Johansen et al.,
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2011). Statistically significant associations with TC/HDL-C ratio
were found at three loci (Figure 1E), two overlapping with TC
and LDL-C, the CELSR2-PSRC1-SORT1 and APOE regions.

DISCUSSION
Large-scale genomic studies can be costly due to the large sample
sizes required for sufficient power to detect statistically signifi-
cant differences of alleles with small to moderate effect sizes. Both
phenotyping and genotyping can be expensive depending upon
what is required for phenotyping and which genotype platform is
selected. For this study, we used phenotype data derived from a
clinical database constructed using EHR data (Wood et al., 2012).
The laboratory data were obtained as part of clinical standard of
care saving on the costs of thousands of blood lipid analyses; the
anthropomorphic and demographic data were obtained by pro-
fessionally certified clinicians and providers remunerated as part
of clinical care. Importantly, the data were obtained in an elec-
tronic format allowing for the efficient construction of a flexible
database. Despite the electronic format, careful data quality con-
trol and scrubbing were required in order to ensure robust results.
In particular, the recording of body weights in a cohort of patients
with extreme obesity must be carefully curated to ensure accu-
racy. Similarly, despite selection for high success rates, generating
accurate SNP calls for the Metabochip platform required quite
extensive manual curation and data cleaning.

We successfully extended to an extremely obese cohort asso-
ciations between SNPs identified by large meta-GWAS studies
and lipid traits. Failure to replicate associations with many of the
SNPs was likely due to insufficient power from the smaller sam-
ple size in our cohort vis-à-vis the very large populations analyzed
in previous studies. Alternatively, it is possible that some of the
non-replicated SNPs have smaller effect sizes in extreme obese
populations. However, the direction of effects and the effect sizes
were similar to that previously reported by the large meta GWAS
studies in all but two of the SNPs analyzed.

The SNPs we associated with TC and LDL-C largely over-
lapped. This is not surprising since the value for LDL-C is cal-
culated using the Friedewald equation based on adjusting TC for
HDL-C and TGs levels (subtract HDL-C and one-fifth of the TGs
from TC). They are thus correlated values, so linear regression
analyses will identify similar associations. Medication use was also
not associated with either TC or LDL-C. Levels of HDL-C appear
to be under strong genetic control, yet despite such high heritabil-
ity (Ober et al., 2006), GWAS loci do not explain a large propor-
tion of HDL-C variation (Willer and Mohlke, 2012). Nevertheless,
we replicated several known loci. One locus, LPL, has also been
robustly associated with risk for cardiovascular disease (Deloukas
et al., 2013). Our results indicate that this locus may therefore
also be a risk locus for CVD in patients with extreme obe-
sity similar to previous studies of other CVD loci (Wood et al.,
2008). Our results for HDL-C are similar to those reported for
a bariatric surgery cohort of similar sample size in which a total
of 60 SNPs in the ATP-binding cassette, sub-family A member 1
(ABCA1), apolipoprotein A1/C3/A4/A5 cluster (APOA5), choles-
terol ester transfer protein (CETP), UDP-GalNAc transferase
2 (GALNT2), hepatic lipase (LIPC), endothelial lipase (LIPG),
lipoprotein lipase (LPL), and the methylmalonic aciduria cblB

type (MMAB)/mevalonate kinase (MVK) loci were genotyped
(Sarzynski et al., 2011). Only SNPs in the LPL, LIPC, and CETP
loci were statistically associated with pre-operative HDL-C level,
similar to our results, although the multiple test correction factor
was far less stringent than ours.

We found only a single locus associated with TG that repli-
cated from the loci reported by the Global Lipids Genetics
Consortium meta-analysis of over 100,000 individuals comprised
of multi-ethnic and multi-racial populations (Teslovich et al.,
2010). This is likely due to the much smaller sample size or alter-
natively, variation at the APOA1/C3/A4/A5 gene cluster (Lai et al.,
2005) may be the only genetic locus of the previously identified
loci that associates with TG in extreme obesity. Which gene or
genes in the APOA1/C3/A4/A5 cluster harbors the TG influencing
variant is not known.

A limitation of our study is that many of our subjects were
on lipid lowering medications that may have masked our abil-
ity to identify genetic associations. A priori, lowering (or raising
in the case of HDL-C) lipid levels through medication use may
be expected to disproportionately occur in subjects with dyslipi-
demia due to a genetic predisposition, thus decreasing the ability
to identify lipid-genotype associations. To address this issue, we
performed three complementary analyses, including removing all
subjects on lipid-lowering medications, the strategy employed by
large meta-GWAS (Kathiresan et al., 2008). This predictably led to
a major loss of statistical power, perhaps acceptable for very large
sample sizes but not for our cohort. The approach of adjusting for
medication use as a covariate had virtually no effect on the sensi-
tivity of detecting SNP-lipid associations. However, this approach
is biased by the indication for medication being high lipid levels,
thus any identified associations between genotype and lipid levels
are not independent of medication use.

Another potential limitation is that some patients may not
have been fasting for a sufficient length of time prior to the
blood draw to avoid an artifactual dietary effect on blood lipid
measurements. For example, triglyceride levels are particularly
sensitive to prandial state and other influences (Yuan et al., 2007).
About 25 patients had triglyceride levels greater than 500 mg/dl,
considered the highest category of hypertriglyceridemia by the
Adult Treatment Panel III of the National Cholesterol Education
Program (Expert Panel on Detection, Evaluation, and Treatment
of High Blood Cholesterol in Adults, 2001). Hypertriglyceridemia
may be expected to have a higher prevalence in populations
with extreme obesity. In addition, assuming that the probability
of non-fasting was independent of genotype, one would expect
that measurement error due to non-fasting would obscure gene-
lipid associations, not create false positives. The replication of
associations at known loci supports the utility of using clinical
samples.

No SNPs were found to be significantly associated with
either BMI or waist circumference. The SNPs selected for
the Metabochip included those from GWAS from the Genetic
Investigation of Anthropometric Traits (GIANT) consortium,
which studied anthropometric traits BMI and waist circumfer-
ence. A total of 18,211 SNPs from 24 loci (Expert Panel on
Detection, Evaluation, and Treatment of High Blood Cholesterol
in Adults, 2001; Brahm and Hegele, 2013) found to be associated
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with BMI, plus 5055 replication SNPs, were included on the
Metabochip, along with 1374 SNPs and 1048 replication SNPs
from 2 loci associated with waist circumference (Yuan et al.,
2007). These studies involved multiple cohorts each with a mean
BMI of about 27–28 kg/m2 with a standard deviation of less
than 5 kg/m2. The proportion of these cohorts with a BMI of
greater 40 kg/m2 is thus likely less than 5–10%, with a relatively
limited range of BMIs of less than 25 kg/m2. The cohort with
extreme obesity studied here had an average BMI of 48 ± 8 kg/m2,
representing a much higher average BMI, as well as a much
wider range in BMI. The BMI of individuals at the upper range
of the human body weight distribution may represent a dis-
tinct phenotype (Still et al., 2011) and harbor rarer variants
with higher penetrance and larger effect sizes than the common
variants interrogated by the Metabochip platform. Next gen-
eration sequencing may be required to identify those variants
(Gerhard et al., 2013).

In summary, we conducted a GWAS of major lipid traits using
EHR derived data to analyze SNPs that had previously been asso-
ciated with lipid phenotypes, as well as other SNPs residing on
the Metabochip, in an extremely obese cohort. Although several
lipid loci replicated, other previously identified lipid and body
weight loci did not. Possible differences may be due to the use of
EHR data for phenotyping, characteristics of the cohort, and/or
decreased statistical power. Nevertheless, the availability of extant
EHR phenotype data and the relatively low cost of the specialized
Metabochip can be effectively used to conduct a GWAS.
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Background: We conducted a genome-wide association study (GWAS) to identify specific
genetic variants that underlie susceptibility to diseases caused by Staphylococcus aureus
in humans.

Methods: Cases (n = 309) and controls (n = 2925) were genotyped at 508,921 single
nucleotide polymorphisms (SNPs). Cases had at least one laboratory and clinician
confirmed disease caused by S. aureus whereas controls did not. R-package (for
SNP association), EIGENSOFT (to estimate and adjust for population stratification) and
gene- (VEGAS) and pathway-based (DAVID, PANTHER, and Ingenuity Pathway Analysis)
analyses were performed.

Results: No SNP reached genome-wide significance. Four SNPs exceeded the p < 10−5

threshold including two (rs2455012 and rs7152530) reaching a p-value < 10−7. The nearby
genes were PDE4B (rs2455012), TXNRD2 (rs3804047), VRK1 and BCL11B (rs7152530),
and PNPLA5 (rs470093). The top two findings from the gene-based analysis were NMRK2
(pgene = 1.20E-05), which codes an integrin binding molecule (focal adhesion), and DAPK3
(pgene = 5.10E-05), a serine/threonine kinase (apoptosis and cytokinesis). The pathway
analyses identified epithelial cell responses to mechanical and non-mechanical stress.

Conclusion: We identified potential susceptibility genes for S. aureus diseases in this
preliminary study but confirmation by other studies is needed. The observed associations
could be relevant given the complexity of S. aureus as a pathogen and its ability to exploit
multiple biological pathways to cause infections in humans.

Keywords: Staphylococcus aureus, skin and soft tissue infection, GWAS, disease susceptibility, integrin and

keratin disease pathway

INTRODUCTION
Staphylococcus aureus is a complex human pathogen due to its
ability to survive both as a carriage organism, and behave as
an opportunistic pathogen in a susceptible host. It is a leading
cause of invasive bacterial infection that contributes to substan-
tial morbidity and mortality worldwide. This bacterium can cause
a variety of diseases ranging from mild to severe skin and soft
tissue infections, keratitis, and osteomyelitis to life-threatening
bacteremia, pneumonia, endocarditis, and sepsis (Lowy, 1998;
Rehm, 2008). Even though S. aureus colonizes human anterior
nares and other sites on skin in 30–50% of the general popu-
lation (Graham et al., 2006; Kuehnert et al., 2006; Gordon and
Lowy, 2008), not everyone who is colonized gets infected. One
reason could be differences in genetic susceptibility to coloniza-
tion and infections. The established role of host susceptibility in
other infectious diseases lends support for a role of host genet-
ics in S. aureus infection (de Bakker and Telenti, 2010). Genetic
susceptibility to S. aureus infections is expected to be complex
because this pathogen uses a wide variety of virulence factors that
interact with several host pathways to cause disease in humans.

Numerous alleles segregating at a large number of loci
contribute to complex disease susceptibility (Yang et al.,
2011) with contributions from both common and rare
alleles. Because genetic risk factors for S. aureus infections
have not been previously studied on a genome-wide scale,
we utilized the Personalized Medicine Research Project
(PMRP) of Marshfield Clinic—a large, population-based
biobank of DNA samples—to perform a preliminary genome-
wide association study (GWAS) of laboratory-confirmed
S. aureus infections to discover the underlying host-pathogen
interactions.

MATERIALS AND METHODS
SUBJECTS
This study utilized Marshfield Clinic’s PMRP biobank, a
cohort of ∼20,000 individuals from 14 Zip Codes surround-
ing Marshfield, Wisconsin, USA. DNA samples from 3234
PMRP participants were genotyped at >500,000 SNPs as part
of the NHGRI/NIGMS-funded eMERGE network (McCarty
et al., 2011). These genotypic data are linked to longitudinal
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electronic medical records (EMR) at the Marshfield Clinic
and have served as a powerful resource in previous stud-
ies (McCarty et al., 2011; Cross et al., 2012; Hebbring
et al., 2013). The population of PMRP is stable and highly
homogeneous with a predominant Northern European genetic
background and so carries lower risk of confounding by pop-
ulation stratification. All individuals in the study provided
informed consent and the study was approved by the Marshfield
Clinic IRB.

STUDY DESIGN
This study examined host susceptibility genes for S. aureus infec-
tion regardless of S. aureus colonization status. We performed a
case/control GWAS on a subgroup of the PMRP population: 3234
subjects (309 cases/2925 controls). All study subjects were over
49 years of age. Cases were defined as individuals who had at
least one laboratory confirmed test in their medical record of a
disease caused by S. aureus. Controls were subjects who did not
have any evidence of infection due to S. aureus in their EMR.
We reasoned that because cases had to have evidence of labora-
tory confirmed S. aureus infection in the EMR, patients with no
evidence of infection in the EMR would form an ideal control
group. The results using our control group are likely very similar
to those that would be obtained using population-based con-
trols, as is often employed in GWAS studies (Burton et al., 2007).
Only subjects with self-identified Northern European ancestry
were included; therefore, both cases and controls had the same
genetic ancestry. Additionally, a principal components analysis
of their genome-wide genotypes in all study subjects (without
knowledge of case/control status) was performed, revealing no
evidence of population substructure (Supplemental Figure 1).
With this filtered set of case/control subjects, we performed
three levels of statistical analysis: SNP-based, Gene-based, and
Pathway-based, to identify novel polymorphisms, genes, and
pathways involved in susceptibility to S. aureus diseases. This
hierarchical investigation of genetic effects allows for the incor-
poration of a gradation of biological information into the statis-
tical tests—the SNP-based scan is the most comprehensive and
agnostic to prior biological knowledge, the gene-based analysis
uses positional information and collapses effects from the same
protein-coding region, and the pathway-based analysis incor-
porates information obtained from various molecular biology
studies.

PHENOTYPES
We extracted demographic and medical information on all
case/control subjects from the Marshfield Clinic EMR. All cases
had an active infection that had yielded S. aureus as the major or
the only bacterium on a culture plate from a clinical sample such
as blood, sputum, etc. Hospital surveillance subjects who were
positive for S. aureus colonization by PCR were excluded from
the study. Age, sex, body mass index (BMI), and Type 2 Diabetes
(T2D) status as determined from the EMR were tested for associ-
ation with case/control status. The binary variables were analyzed
using a Fisher’s exact test, and the continuous variables were ana-
lyzed through a two-tailed T-test to test mean differences between
cases and controls.

GENOTYPIC DATA
The Illumina 660W-QUAD Beadchip array (Illumina, San Diego,
California, USA) was used to generate genotype data on over
500 K SNPs from cases and controls. To ease automation of anal-
ysis, only data obtained from autosomes were analyzed. After
filtering out SNPs with low minor allele frequency (<0.01), miss-
ing genotype data (≥ 0.05 of the study population with missing
genotypes) or a significant departure from Hardy-Weinberg equi-
librium (HWE) (p < 1E-5), there were 508,921 SNPs that passed
the quality control screening and were used in subsequent analy-
sis. For a sample to be included in the analysis, we ensured that it
had at least 99% of the non-missing SNPs and for each SNP to be
included in the analysis, we required that the SNP should have at
least 95% of the non-missing subjects.

POPULATION STRATIFICATION ESTIMATION USING EIGENSOFT
We used the EIGENSOFT program (Price et al., 2006) to examine
population stratification in our dataset. The program combines
population genetics methods and the use of PCA to explicitly
capture ancestry differences between cases and controls along
continuous axes of variation.

SNP-BASED ANALYSIS USING PLINK AND R–PACKAGE
PLINK (Purcell et al., 2007), a whole genome association analysis
tool set, was used to perform the filtering and QC procedures (as
described under “Genotypic data” above) on the raw dataset to
generate the data set employed in this study. R is a free software
programming language and software environment for statistical
computing and graphics (R. Core Team, 2013). The glm() func-
tion within R was used to establish the logistic model assuming
an additive mode of inheritance with adjustment for the follow-
ing risk factors: age, gender, BMI, diabetes and the top three
principal components estimated from EIGENSOFT for popula-
tion stratification. The p-values calculated from the logistic model
were used to test the associations between SNPs and case/control
phenotype.

GENE-BASED ANALYSIS USING VEGAS
VEGAS is a software program that tests association between a
gene and phenotype trait. VEGAS uses SNP-level data to incorpo-
rate information from a full set of markers annotated to each gene
and accounts for linkage disequilibrium (LD) between markers
(Neale and Sham, 2004; Liu et al., 2010). All SNPs annotated to a
gene were used in the calculation, and the method adjusted by the
linkage disequilibrium structure by using HapMap data. Monte
Carlo simulations from multivariate Gaussian random variables
and Cholesky decomposition matrices were employed by VEGAS
to produce disease association p-values per gene, correcting for
the correlation structure between nearby SNPs. This type of anal-
ysis has several advantages including the collapsing of effects for
all genotyped SNPs within each gene, and reducing the multiple
testing burdens. The LD structure of each gene region is fac-
tored into the analysis through applying decomposition matrices
in the analysis, effectively factoring-out the correlational struc-
ture between tightly linked SNPs. Additionally, gene-based results
enable the subsequent use of many pathway analysis packages
designed to use a single measurement from each gene.
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PATHWAY-BASED ANALYSIS BY DAVID, PANTHER, AND INGENUITY
PATHWAY ANALYSIS (IPA) PROGRAMS
All genes with a p-value = 0.01 from the VEGAS analysis were
used as input to perform separate pathway analysis by DAVID,
PANTHER, and IPA. The DAVID analyses consisted of three
steps: measurement of the functional relationship of gene pairs,
a DAVID agglomeration procedure to partition genes into func-
tional gene groups, and visualization of the results (Huang et al.,
2007, 2009a,b). PANTHER is a publically-available database hav-
ing gene ontology, functional annotation, and evolutionary con-
servation information. PANTHER Pathways are available within
the database and these pathways were used in our analysis. We
calculated p-values for enrichment of S. aureus-associated genes
within specific PANTHER pathways using a standard hypergeo-
metric statistical approach. The statistical over-representation test
was implemented in the PANTHER program. A binomial test was
used to compare our gene list to a reference list (all human genes)
to determine over- or under- representation of genes from our
list in PANTHER gene function categories using an experiment-
wise approach (experiment-wise α = 0.05) (Mi and Thomas,
2009). Gene-based analyses using IPA (Ingenuity® Systems,
www.ingenuity.com, Redwood City, California, USA, www.

ingenuity.com) were used to generate protein-protein interaction
networks.

RESULTS
POPULATION STRATIFICATION
Using EIGENSOFT to perform PCA of the 508,921 genotypes
from all study subjects (without knowledge of case/control sta-
tus), we found no evidence of strong population stratification
(Supplemental Figure 1). Therefore none of the 3234 study sub-
jects were excluded because of population stratification.

STUDY SUBJECT CHARACTERISTICS
It has been previously noted that male sex, age, high BMI and
T2D are risk factors for invasive S. aureus infection (Graffunder
and Venezia, 2002). As expected, the percent of males was signifi-
cantly greater in the cases than the control group (51 vs. 39%; p =
5.50E-05) (Table 1). There was no significant difference in mean
age of case and controls. The prevalence of T2D was significantly
higher among cases than controls (22.3 vs. 12.7%; p = 1.03E-05)
and so was the mean BMI (cases: 32.1 vs. control: 29.5 kg/m2;

Table 1 | Demographic and other phenotypic characteristics.

Characteristic Cases Controls p-value*

(N = 309) (N = 2925)

Age (years) (mean ± SD) 74.5 ± 10.9 73.5 (10.8) 0.13

Males (N, %) 159 (51.5) 1153 (39.4) 5.50E-05

Type 2 diabetes (N, %) 69 (22.3) 370 (12.7) 1.03E-05

Body mass index (kg/m2)
(mean ± SD)

32.1 ± 8.0 29.5 ± 6.1 3.50E-08

*Two-tailed t-test assuming unequal variances used to compare continuous

variables (age and body mass index) and Fisher’s exact test used to compare

categorical variables (% males and % with type 2 diabetes).

p = 3.50E-8). Our findings are consistent with those of previous
reports.

Q-Q PLOT
We performed Q-Q analysis on the p-values obtained using logis-
tic model assuming additive model of inheritance (Figure 1). The
plot showed no evidence of population stratification, confound-
ing effects, or systematic bias in the results from the statistical
routines employed.

HWE
Eight hundred forty three SNPs were excluded from the analysis
due to departure from HWE exceeding α = 1E-05.

SNP-BASED ANALYSES
SNP associations were tested using logistic regression analysis
after adjusting for risk factors such as age, gender, BMI, diabetes
and three principal components. No single SNP in the GWAS
reached the level of genome-wide significance (p < 5 × 10−8)
(Figure 2). However, four SNPs exceeded the p < 10−5 threshold,
including two SNPs (rs2455012 and rs7152530) with a p < 10−7

(Table 2). Out of these four SNPs, two were intronic (PDE4B and
TXNRD2), one was intergenic with respect to VRK1 and BCL11B,
and one was in the 3’UTR of PNPLA5. Of the four SNPs on
chromosome 14 (Table 2), rs1892234 was in weak linkage dise-
quilibrium (LD) with the other three SNPs (r2 < 0.42) which were
in strong LD with each other (r2 = 0.80). The two SNPs in XRN1
were in strong LD (r2 = 0.92), two of the SNPs on chromosome
22 (rs470093 and rs9614174) were in moderate LD (r2 = 0.49),
and the two SNPs on chromosome 19 exhibited low LD (r2 =
0.09).

VEGAS-BASED GENE ANALYSES
Table 3 shows the top 15 genes ranked by their p-values from the
VEGAS analysis and four additional interesting genes that could
potentially have a role in S. aureus-caused diseases based on their
known involvement in immune and inflammatory processes. The
topmost hit was NMRK2 (or ITGB1BP3; p = 1.20E-05) which
encodes nicotinamide riboside kinase 2. Two of the 15 genes
also featured in the list from the SNP-based analysis: DAPK3
(p = 5.10E-05) and XRN1 (p = 1.85E-04).

PATHWAY ANALYSES
The top-ranked 196 genes (p-value = 0.01) resulting from the
VEGAS analysis were selected for the DAVID analyses but none
of the gene groups were statistically significant. One of the top
gene groups (gene group 1; Supplemental Table 1) included CST8
(cystatin 8), SERPINA6 (serine peptidase inhibitor, clade A, mem-
ber 6), SERPINA10 (serine peptidase inhibitor, clade A, member
10), and SPINK1 (serine peptidase inhibitor, Kazak type 1). The
enriched genes in group 2 (Supplemental Table 1) included four
keratin genes: KRT24 (form intermediate filament), KRT82 (type
II hair keratin), KRT12 (type I intermediate filament keratin 12),
and KRT75 (form intermediate filament in in the cytoplasm of
epithelial cells). As expected, the PANTHER analysis also sug-
gested enrichment for intermediate filament cytoskeleton path-
way (Supplemental Table 2). Using the same gene set input as in
DAVID and PANTHER, the IPA was also explored with the intent
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FIGURE 1 | The Q-Q plot of the p-values from all 508,921 SNPs. The x-axis shows the expected −log10(p-value). The y-axis shows the
observed –log10(p-value).

FIGURE 2 | The manhattan plot of the p-values from all 508,921 SNPs. The x-axis shows the chromosome numbers. The y-axis is the -log10 (p-value). The
blue line is p-value of 10−5 whereas the red line shows the genome wide significance p-value of 5 × 10−8.

of hypothesis-generating protein-protein interaction networks
associated our gene data set. The IPA yielded 12 protein networks
(data not shown) of which network 7, involving cell death, and
survival, appeared interesting (Supplemental Figure 2).

DISCUSSION
Multiple diseases (endocarditis, skin infections, etc.) caused by
S. aureus are mediated by two main classes of virulence factors,
adhesion and secretory proteins, which interact with host recep-
tors and inflammatory/anti-inflammatory molecules to produce
the disease phenotype (Gordon and Lowy, 2008). Adhesion pro-
teins help the pathogen to attach to the skin and survive on

the epidermis and in the sub-epidermal layer through a reper-
toire of molecules collectively known as MSCRAMMS (microbial
surface components recognizing adhesive matrix molecules). The
MSCRAMMS can bind to fibronectin, fibrinogen, and platelets
among others. Subsequent to attachment, S. aureus can secrete
tissue and organ-specific virulence proteins (e.g., coagulase, pro-
teases, toxins, superantigens) with a wide range of virulence
functions that enable the pathogen to infect its host.

So far, most of the genetic susceptibility data related to S.
aureus has been limited to S. aureus colonization. For example,
the glucocorticoid receptor gene polymorphisms are associated
with carriage risk (van den Akker et al., 2006), whereas DEFB1 has
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Table 2 | Top 20 SNPs, their chromosomal locations, associated genes, major and minor alleles, minor allele frequency of cases and controls,

p-value and odds ratio and 95% confidence interval.

db SNP ID Chr Position Nearby genes Variant Major/minor Case control P-value Odds ratio

(hg19) location alleles MAF* MAF (95% CI)

rs2455012 1 66520998 PDE4B Intron C/T 0.090615 0.045190 6.68E-07 2.17 (1.59, 2.93)

rs7152530 14 98641215 VRK1, BCL11B Intergenic G/A 0.270227 0.366746 8.47E-07 0.62 (0.51, 0.75)

rs3804047 22 19879637 TXNRD2 Intron T/C 0.368932 0.281143 3.32E-06 1.52 (1.27, 1.81)

rs470093 22 44276171 PNPLA5 3′ UTR G/T 0.211974 0.146838 7.19E-06 1.63 (1.31, 2.02)

rs1381281 14 98615771 VRK1, BCL11B Intergenic A/G 0.322006 0.410024 1.07E-05 0.67 (0.56, 0.80)

rs13107325 4 103188709 SLC39A8 Exon 8 G/A 0.113269 0.065299 1.09E-05 1.88 (1.41, 2.47)

rs1892234 14 98720904 VRK1, BCL11B Intergenic T/C 0.364078 0.455897 1.38E-05 0.68 (0.57, 0.81)

rs6948646 7 152945284 ACTR3B, DPP6 Intergenic G/A 0.444984 0.362393 1.41E-05 1.46 (1.23, 1.73)

rs1012203 9 104626708 GRIN3A, CYLC2 Intergenic A/G 0.048544 0.104103 1.59E-05 0.44 (0.29, 0.62)

rs987514 14 98628943 VRK1, BCL11B Intergenic C/T 0.330097 0.415356 1.95E-05 0.68 (0.56, 0.81)

rs11950651 5 103009768 NUDT12, EFNA5 Intergenic C/T 0.032362 0.079829 2.09E-05 0.37 (0.22, 0.57)

rs12160908 22 25928620 LRP5L, ADRBK2 Intergenic C/T 0.067961 0.127401 2.13E-05 0.49 (0.35, 0.67)

rs12696090 3 158669688 MFSD1, IQCJ-SCHIP1 Intergenic G/T 0.150485 0.226635 2.72E-05 0.61 (0.48, 0.76)

rs9614174 22 44082454 EFCAB6 Intron A/C 0.215210 0.151795 2.78E-05 1.56 (1.26, 1.92)

rs7255123 19 3958397 DAPK3 3′ near gene G/A 0.263754 0.198632 4.11E-05 1.51 (1.24, 1.84)

rs6135407 20 15397676 MACROD2 Intron C/T 0.220065 0.158858 4.91E-05 1.54 (1.25, 1.90)

rs4807532 19 3928369 ATCAY 3′ near gene G/A 0.461165 0.375897 5.32E-05 1.42 (1.20, 1.69)

rs7643377 3 142114694 XRN1 Intron C/T 0.483819 0.400342 5.70E-05 1.41 (1.19, 1.67)

rs2535368 7 83157207 SEMA3E Intron G/A 0.202265 0.144494 5.90E-05 1.56 (1.25, 1.93)

rs9867210 3 142132749 XRN1 Intron TIC 0.495146 0.411453 6.17E-05 1.41 (1.19, 1.67)

*Minor allele frequency.

been shown to promote persistent colonization by modulating
beta-defensin expression in keratinocytes (Nurjadi et al., 2013).
In contrast, the Danish middle-aged/elderly twin study showed
that host genetics had a modest influence only on S. aureus car-
rier state (Andersen et al., 2012). While our manuscript was
under review, a study by Nelson et al did not find any SNP
that has genome wide significance for association with S. aureus
bacteremia (SAB) although an intronic SNP in CDON was specu-
lated to be associated with complicated SAB (Nelson et al., 2014).
In a report by Stappers et al., four SNPs from three toll-like
receptor (TLR) genes, TLR1, TLR2, and TLR6, increase the sus-
ceptibility to complicated skin and soft tissue infections caused
by staphylococci, streptococci, and enterococci (Stappers et al.,
2014).

In our multi-tiered GWAS-based investigation, we have
identified a number of potentially interesting genes that
need further investigation. Although the individual SNP
results did not pass genome-wide significance, the top-tier
SNPs, Gene-based, and Pathway-based results were enriched
for genes that have plausible functions in bacterial infec-
tions. This includes genes that have roles in intracellular
signaling, inflammation, zinc transport, and integrin bind-
ing. Thus, these genes have relatively high prior probabil-
ities for involvement in S. aureus infection susceptibility—
an aspect of the results that we believe supports consid-
erable interest in subsequent studies to follow-up on these
findings.

Notably, two genes (DAPK3 and XRN1) were identified in
both the SNP-based and gene-based analyses. DAPK3 is a protein

kinase that modulates apoptosis-related signaling pathways (Wu
et al., 2010) and, in interaction with RhoD, modulates actin
filament assembly and focal adhesion reorganization (Nehru
et al., 2013). S. aureus is known to induce apoptosis of host
cells during host invasion, leading to a compromised host
immune response (Haslinger-Löffler et al., 2005). XRN1 encodes
a 5′–3′ exonuclease family member involved in cellular mRNA
turnover (Nagarajan et al., 2013). The gene is shown to com-
plete host mRNA degradation initiated by viral pathogens
(Gaglia et al., 2012). These functions suggest possible roles
for DAPK3 and XRN1 in susceptibility to diseases caused by
S. aureus.

Some of the other genes we identified have been implicated
in infectious disease processes. PDE4B is involved in modulating
bacteria-induced inflammation (Komatsu et al., 2013). PNPLA5
appears to be critical for autophagosome functions, including
microbial clearance (Dupont et al., 2014). Mammalian hosts are
known to reduce the level of free zinc to thwart pathogen growth
(Kehl-Fie and Skaar, 2010) and it is plausible that SLC39A8, a
zinc transporter, could be involved. BCL11B encodes a transcrip-
tional repressor involved in T-cell development (Wakabayashi
et al., 2003). NMRK2, an integrin beta1 binding protein, could
function in host responses to bacterial function based on the
finding that host fibronectin forms a bridge between S. aureus
fibronectin-binding proteins and host cell beta1 integrins during
S. aureus cellular invasion (Fowler et al., 2000). Keratin inter-
mediate filaments are shown to have a protective role during
infection with Bartonella henselae in cat scratch disease (Zhu et al.,
2013). Interleukin 1 cytokine family members (IL1A, IL1B, IL1R1,

www.frontiersin.org May 2014 | Volume 5 | Article 125 | 94

http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Ye et al. Genetic susceptibility to S. aureus infection

Table 3 | Top 15 and four other potentially interesting gene hits from

VEGAS gene-based analysis.

Gene Number Chr. Start End p-value

of position position

SNPs (hg19) (hg19)

NMRK2
(ITGB1BP3)

20 19 3933101 3942414 1.20E-05

DAPK3 18 19 3958452 3969827 5.10E-05

NPM3 4 10 103541082 103543170 0.000142

EEF2 17 19 3976054 3985461 0.000167

XRN1 12 3 142025449 142166853 0.000185

CDK7 11 5 68530622 68573257 0.000206

FBXL4 17 6 99321601 99395849 0.000257

ATR 20 3 142168077 142297668 0.000269

FGF8 3 10 103529887 103535759 0.000294

MRPS36 8 5 68513573 68525985 0.000423

CCDC125 10 5 68576519 68616407 0.000424

ATCAY 33 19 3880618 3928080 0.000571

KCNIP2 6 10 103585731 103603677 0.000637

MGEA5 6 10 103544200 103578222 0.000654

LDOC1L 30 22 44888450 44894178 0.000664

*IL1RL2
(75)

60 2 102803433 102855811 0.0031

*IL1B (80) 20 2 113587337 113594356 0.00322

*ILIA (93) 22 2 113531492 113542971 0.00363

*IL1R1
(168)

54 2 102770401 102796334 0.00806

*Ranks of these genes are mentioned in parenthesis.

and IL1RL2) are known mediators of immune and inflammatory
responses (Garlanda et al., 2013).

It is known that many Mendelian and oligogenetic immun-
odeficiency disorders confer risk to staphylococcal infection
including lymphocyte deficiencies such as severe combined
immunodeficiency, chronic granulomatous disease, and hyper-
IgE syndrome (Stephan et al., 1993; Grimbacher et al., 1999; Van
de Vosse et al., 2009). These disorders are typified by highly dis-
ruptive mutations occurring in genes central to lymphoid cell
competency including STAT3, JAK3, DOCK8, and CD18, among
others (Hogg et al., 1999; Kalman et al., 2004; Jiao et al., 2008;
Zhang et al., 2009). However, most cases of severe staphylococcal
infection are not attributable to these more rare conditions and
have unknown genetic etiology.

In summary, this preliminary GWAS applied a SNP-to-
gene-to-disease-pathway approach to identify susceptibility genes
against a broad umbrella of laboratory confirmed S. aureus infec-
tions. While no one SNP and gene was found to be highly
significant in this study, we suspect that for a versatile pathogen
like S. aureus, that needs to overcome barriers presented by a
variety of tissues and defense systems to infect various sites in
the body, there are bound to be several genes involved in host
susceptibility. Not everyone exposed to a virulent or a colo-
nizing strain of S. aureus has similar severity of infection. It
is reasonable to speculate that effects of variants segregating at
multiple genes contribute to the severity of S. aureus infection.

Similarly, there could be protective alleles that may lower the risk
of clinically-attended infection as well. Additional studies will be
needed to confirm these findings but eventually functional stud-
ies will be needed to illuminate the detailed mechanisms of how
these variants confer predisposition to infection. Once consen-
sus disease loci and pathways are identified, they can serve as
targets for future pharmaceutical development and further elu-
cidation of how aberrant cellular processes/signaling give rise to
Staphylococcus-induced pathologies.
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Objective: We report the first pediatric specific Phenome-Wide Association Study
(PheWAS) using electronic medical records (EMRs). Given the early success of PheWAS
in adult populations, we investigated the feasibility of this approach in pediatric cohorts in
which associations between a previously known genetic variant and a wide range of clinical
or physiological traits were evaluated. Although computationally intensive, this approach
has potential to reveal disease mechanistic relationships between a variant and a network
of phenotypes.

Method: Data on 5049 samples of European ancestry were obtained from the EMRs of two
large academic centers in five different genotyped cohorts. Recently, these samples have
undergone whole genome imputation. After standard quality controls, removing missing
data and outliers based on principal components analyses (PCA), 4268 samples were
used for the PheWAS study. We scanned for associations between 2476 single-nucleotide
polymorphisms (SNP) with available genotyping data from previously published GWAS
studies and 539 EMR-derived phenotypes. The false discovery rate was calculated and,
for any new PheWAS findings, a permutation approach (with up to 1,000,000 trials) was
implemented.

Results: This PheWAS found a variety of common variants (MAF > 10%) with prior GWAS
associations in our pediatric cohorts including Juvenile Rheumatoid Arthritis (JRA), Asthma,
Autism and Pervasive Developmental Disorder (PDD) and Type 1 Diabetes with a false
discovery rate < 0.05 and power of study above 80%. In addition, several new PheWAS
findings were identified including a cluster of association near the NDFIP1 gene for mental
retardation (best SNP rs10057309, p = 4.33 × 10−7, OR = 1.70, 95%CI = 1.38 − 2.09);
association near PLCL1 gene for developmental delays and speech disorder [best SNP
rs1595825, p = 1 8.13 × 10− , OR = 0.65(0.57 − 0.76)]; a cluster of associations in the
IL5-IL13 region with Eosinophilic Esophagitis (EoE) [best at rs12653750, p = 3.03 × 10−9,
OR = 1.73 95%CI = (1.44 − 2.07)], previously implicated in asthma, allergy, and eosinophilia;
and association of variants in GCKR and JAZF1 with allergic rhinitis in our pediatric cohorts
[best SNP rs780093, p = 2.18 × 10−5, OR = 1.39, 95%CI = (1.19 − 1.61)], previously
demonstrated in metabolic disease and diabetes in adults.

Conclusion: The PheWAS approach with re-mapping ICD-9 structured codes for our
European-origin pediatric cohorts, as with the previous adult studies, finds many previously
reported associations as well as presents the discovery of associations with potentially
important clinical implications.

Keywords: PheWAS, ICD-9 code, genetic polymorphism
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INTRODUCTION
Phenome-wide association study (PheWAS) is a relatively new
genomic approach to link clinical conditions with published vari-
ants (Denny et al., 2010). The concept, although not new, was
originally applied to genomic research by the eMERGE (electronic
MEdical Records and GEnomics) network, which is in a unique
position to access tens of thousands of Electronic Medical Records
(EMR) linked to ICD-9 codes in structured data. Multiple
eMERGE PheWAS results have been published that primarily
address adult cohorts (Denny et al., 2011, 2013). The phenotypic
data used in PheWAS may include ICD-9 codes, epidemiologic
data in health surveys, biomarkers, intermediate or quantitative
traits (Pendergrass et al., 2011, 2013; Neuraz et al., 2013; Liao
et al., 2014). By virtue of this inclusive approach, new hypotheses
may be generated that provide insight into genetic architecture
of complex traits. Challenges with PheWAS include multiple test
corrections across the thousands of phenotypes tested and auto-
correlation of some of the phenotypes. Nevertheless, novel robust
insights have resulted from PheWAS, for example, genetic associ-
ation findings with heart rate variability are notable (Ritchie et al.,
2013).

PheWAS combines multiple phenotypes from previous GWAS,
and identify common SNPs affecting different traits. In this study,
we used this approach to evaluate whether known GWAS vari-
ants identified in adult diseases can be also identified in children
using two EMR-linked pediatric datasets from eMERGE. PheWAS
in pediatrics is particularly important because it not only assesses
the effect of early age of onset on many established adult-GWAS
loci, but also may provide insights into how a primary pheno-
type during child development develops into one or more diseases
in adulthood. A priori, there are several reasons that in principle
might make a pediatric PheWAS more challenging. These include
the change in heritability with age for several traits (St Pourcain
et al., 2014), the flux in the recommendations for pediatric mon-
itoring for traits that are routinely measured in adults (Gidding,
1993; Klein et al., 2010) and the use of cross-sectional standard-
ization rather than longitudinal standardization of developmental
traits such as height (Tiisala and Kantero, 1971).

To determine whether robust association signals would be
present in the context of these challenges, we conducted the first
PheWAS study in pediatrics on our available samples. We suc-
cessfully translated 93,724 specific ICD-9 diagnostic codes into
1402 distinct PheWAS code groups and 14 major disease concept
paths and evaluated 2481 previously published variants. After
quality control, only 2476 genetic variants were analyzed in 539
diseases in the two pediatric sites. Finally we replicated 24 genetic
variants and identified 14 new possible associations confirming
our hypothesis. Our primary results highlight the utility of an
EMR-based PheWAS approach as a new line of investigation for
discovery of genotype-phenotype associations in pediatrics.

MATERIALS AND METHODS
STUDY SUBJECTS
Protocols for this study were approved by the Institutional
Review Boards (IRBs) at the institutions where participants
were recruited. All study participants provided written con-
sent prior to study enrolment; consent forms were obtained at

each location under IRB guidelines. Children and teens, aged
through 19 years old were included. The EMR-linked pedi-
atric emerge cohorts consist of 4560 subjects from Cincinnati
Children’s Hospital Medical Center (CCHMC) and 1000 subjects
from Boston Children’s Hospital (BCH). Only those self-reported
to have European ancestry were selected for this study (Table 1).

SNP PRIORITIZATION
We limit our investigation to particular genetic variants: First,
we obtained the list of all previously published SNPs from
different public domain databases including The National
Human Genome Research Institute (NHGRI) catalog of pub-
lished Genome-Wide Association Studies (http://www.genome.
gov/gwastudies), Genetic Association of Complex Diseases
and Disorders (GAD, http://geneticassociationdb.nih.gov), the
UCSC Genome Browser database (UCSC, http://genome.ucsc.
edu/), Online Mendelian Inheritance in Man (OMIM, http://
www.omim.org/), and PharmGKB (pharmgkb, https://www.

pharmgkb.org). After linking this collection to PubMed refer-
ence numbers, only those with at least one reported of positive
associations were selected regardless of the previously observed
p values or number of publications. In addition, all down-
loaded databases were current at the time of this submission.
From the filtered variants, 2476 variants were available and
assessed in our clean, post-imputation genotyping dataset for
analysis.

GENOTYPING AND STATISTICAL ANALYSES
High throughput SNP genotyping was carried out previously
in CCHMC and BCH using Illumina™ or Affymetrix™ plat-
forms, as previously described (Namjou et al., 2013). Quality
control (QC) of the data was performed before imputation. In
each genotyped cohort, standard quality control criteria were met
and single nucleotide polymorphisms (SNPs) were removed if
(a) >5% of the genotyping data was missing, (b) out of Hardy-
Weinberg equilibrium (HWE, p < 0.001) in controls, or a minor
allele frequency (MAF) <1%. Samples with call rate <98% were
excluded.

Recently all eMERGE cohorts have also undergone whole
genome imputation. The details of these procedures are avail-
able in this issue of Frontiers in Genetics (Setia et al.,
2014). Briefly, the imputation pipeline was implemented using
IMPUTE2 program and the publicly available 1000-Genomes
Project as the reference haplotype panel composed of 1092 sam-
ples (release version 2 from March 2012 of the 1000 Genomes
Project Phase I, ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
release/20110521) (Howie et al., 2011). The eMERGE imputed
data provided to us were already filtered, i.e., imputed data with a
threshold of 0.90 for the genotype posterior probability and with
a IMPUTE2 info score > 0.7 (Howie et al., 2011). Principle com-
ponent analysis (PCA) performed to identify outliers and hidden
population structure using EIGENSTRAT (Price et al., 2006). The
first two principle components explained most of the variance
and were retained and used as covariates during the association
analysis in order to adjust for population stratification. In addi-
tion, 14 outlier samples were removed. To illustrate the overall
inflation rate a phenotype with sufficient number of cases and
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Table 1 | The demographic distribution of the European ancestry population (CCHMC-BCH).

Cohort names #Europeans M/F Mean age (95%CI) Array

BCH* The gene partnership 727 449/278 13.30(12.97–13.66) Affymetrix-Axiom

CCHMC** Cytogenetics 1228 758/470 7.32(7.03–7.62) Illumina-610

Cytogenetics 609 373/236 7.18(6.73–7.63) Illumina-Omni-1

EoE† 543 394/149 12.27 (11.70–12.67) Illumina-Omni-5

JIA‡ 488 101/387 13.70(13.13–14.23) Affymetrix-6

Cincinnati- control cohorts 673 329/344 13.50(13.25–13.84) Illumina-Omni-5

Total 4268 2403/1865 11.52(11.16–11.91)

*BCH, Boston Children’s Hospital; **CCHMC, Cincinnati Children’s Hospital Medical center; †, Eosinophilic Esophagitis (EoE) cohorts; ‡, Juvenile Idiopathic Arthritis

cohorts (JIA). The details of platforms used have been described elsewhere (Namjou et al., 2013).

controls has been selected (autism) and the inflation of λ = 1.03
was obtained.

Next, from our prioritized SNP list mentioned above, 2481
variants were available. Five of these SNPs had a site-specific
effect with either CCHMC or BCH (p < 10−5 for the differ-
ence between sites) and were removed from final analyses. For
each phenotype, logistic regression was performed between cases
and control adjusted for two principal components using PLINK
(Purcell et al., 2007). To investigate whether either the pheno-
type or the genotype has an effect on the outcome variable, we
perform phenotypic and genotypic conditional analyses, control-
ling for the effect of a specific SNP or phenotype. After pruning
of highly correlated SNPs (r2 > 0.5), we used false discovery
rate (FDR) methods to correct for multiple testing using the
Benjamini–Hochberg procedure implemented in PLINK (Purcell
et al., 2007). As a result of LD pruning 1828 independent variants
were used for the purpose of FDR estimation. Q values corre-
spond to the proportion of false positives among the results. Thus,
Q values less than 0.05 signify less than 5% of false positives
and are accepted as a measure of significance (FDR < 0.05) in
this study. For any novel PheWAS findings, an adaptive permu-
tation approach was performed using a sample randomization
strategy in which case and control labels were permuted ran-
domly (with up to 1,000,000 trials) in order to obtain empirical
p values [PLINK (Purcell et al., 2007)]. We also report previ-
ous known effects that only produce suggestive findings in our
study (0.05 < p < 0.001). Sample size and power calculations
based on the size effect and risk allele frequency were esti-
mated using QUANTO (Gauderman and Morrison, 2006). To
graphically display results, LocusZoom was used (Pruim et al.,
2010).

PHENOTYPING
A phenome-wide association analysis (PheWAS) was performed
in which presence or absence of each PheWAS code [mapped
from translated ICD-9 codes as per Carroll et al., 2014)] were
considered as a binary phenotype. The per-patient ICD-9 codes
were obtained from the i2b2 Research Patient Data Warehouse
at CCHMC and BCH. Also, these PheWAS codes were used
to define comparison control groups by excluding the PheWAS
case- code and those closely related to them in the ICD-9 hier-
archy. Control groups for Crohn’s Disease (CD), for instance,

excluded CD, ulcerative colitis, and several other related gas-
trointestinal complaints. Similarly, control groups for myocardial
infarction excluded patients with myocardial infarctions, as well
as angina and other evidence of ischemic heart disease. The
current PheWAS map and PheWAS script written in R is avail-
able [http://phewascatalog.org, (Carroll et al., 2014)]. In this
study, subgroups of European cases with more than 20 samples
were selected for PheWAS association study (539 subgroups) and
the available published SNPs that passed quality controls were
evaluated. The case cohorts for the two phenotypes of Juvenile
Idiopathic Arthritis (JIA) and Eosinophilic Esophagitis (EoE)
have both been previously published as parts of larger phenotype
specific studies (Rothenberg et al., 2010; Thompson et al., 2012;
Hinks et al., 2013). The origin of all case records is presented in
Table 1. In this study, Juvenile Onset Rheumatoid Arthritis (JRA)
is identified by ICD-9 codes and designated as JRA; when the cri-
teria for Juvenile Idiopathic Arthritis (JIA) were applied in the
studies of others (Thompson et al., 2012), then this phenotype
was referred to as JIA.

RESULTS
In this study only European ancestry was included in the analy-
sis to avoid potential bias induced by ancestry. The demographic
distribution of the European ancestry population under study
(Table 2) had 93,724 specific ICD-9 diagnostic codes representing
1402 distinct PheWAS code groups and 14 major disease concept
paths. The frequencies of concept path hierarchy of the ontology
(Figure 1) show the neuropsychiatric concept path as the most
frequent and neoplastic and infection paths as the least frequent.

Replication of existing associations using PheWAS
We compared SNPs with previous GWAS-reports and present
association findings (FDR-q < 0.05) after corrected for popula-
tion stratification and standard quality control (Table 2).

First, for the two phenotypes of JRA and EoE samples overlap
largely with those previously reported phenotype specific GWAS
study (Rothenberg et al., 2010; Thompson et al., 2012; Kottyan
et al., 2014). We reproduced the major findings of those publi-
cations using different methodology. For JRA, association with
PTPN22 is a consistent finding. As expected, we replicated a previ-
ous report of association of PTPN22 at non-synonymous coding
SNP rs2476601 with this phenotype and with the same direction
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FIGURE 1 | Frequency and distribution of 14 major ontology concept path categories from CCHMC/BCH European pediatric cohorts.

of allele frequency, (p = 9.10 × 10−7, OR = 1.87, 95%CI 1.46 −
2.40). The SNP in proxy (rs6679677, r2 = 1) also produced a
similar result (Table 2). In our cohorts, variants in PTPN22 are
also associated with thyroiditis as well as Type 1 diabetes mel-
litus (T1DM), consistent with previous reports and despite low
sample size (Table 2) (Plenge et al., 2007; Todd et al., 2007; Lee
et al., 2011). From these three known associations of PTPN22,
i.e., JRA, T1DM, and thyroiditis, the largest magnitude of the
association is with pediatric onset thyroiditis (Table 2, OR = 3.52
95%CI 1.84 − 6.75).

For JRA, multiple loci in the HLA region were also associ-
ated at the level of p < 10−12 including rs477515 and rs2516049
near HLA-DRB1 (Table 2). Of note, the size effect of HLA related
SNPs, were highest for those with coexisting uveitis (best SNP
rs477515, OR = 6.5, 95% CI = 2.73 − 15.68 for the risk allele,
Table 2). In addition, for JRA, another previously published asso-
ciation (rs12411988 in REEP3) was also found and with the
same size effect as previously described (OR = 1.53) (Table 2)
(Thompson et al., 2012).

Furthermore, with regard to EoE traits, we also replicated pre-
vious major finding of association of SNP rs3806932 located at
the vicinity of the TSLP gene at 5q22 region [p = 5.59 × 10 − 7,
OR = 0.69 (95%CI = 0.59 − 0.80)] in these cohorts (Table 2)
(Rothenberg et al., 2010; Kottyan et al., 2014).

For asthma, the best PheWAS results were detected at 17q21
which includes GSDMB and has been previously reported to
be associated specifically with childhood onset Asthma (Verlaan
et al., 2009). In fact, the best associated SNP rs8067378 in our
cohorts [p = 3.13 × 10−6, OR = 1.37 (1.19 − 1.57)], tags the
asthma associated haplotype in which the allele-specific expres-
sion analyses for this haplotype has previously shown strong

association with Asthma risk (Verlaan et al., 2009). There is strong
support for this association from a cluster of variants in this
neighborhood (Figure 2A).

The minor allele (T) of the intronic SNP rs7903146 in TCF7L2
is one of the larger magnitude and more frequently identified
associations in Type 2 diabetes mellitus (T2DM) and hyper-
lipidemia in many adult GWAS studies (Lyssenko et al., 2007;
Huertas-Vazquez et al., 2008). In fact, the best PheWAS trait in
our cohorts at this variant was also related to T2DM and hyper-
lipidemia as well, although our sample size was small. In this
family of ICD-9 codes the best suggestive result was obtained for
an abnormal glucose test with [p = 0.001, OR = 2.00 (95%CI
1.29 − 3.08)] (Table 2).

Specifically, for T1DM, in addition to the positive associa-
tion with PTPN22 mentioned above, additional published loci
were confirmed and with relatively larger effect sizes (OR > 2)
including known HLA-SNP rs660895 [p = 7.85 × 10−7, OR =
2.73 (95%CI = 1.80 − 4.13)], as well as variants near CENPW
that previously have been reported for this trait (Table 2) (Barrett
et al., 2009).

Other effects
Several loci previously associated with autism and pervasive
developmental disorders (PDD) (GWAS or copy number vari-
ations reports) including those at MACROD2, ITGB3, CADM2,
and GRIK2 (Jamain et al., 2002; Weiss et al., 2006; Thomas
et al., 2008; Anney et al., 2010) also provided evidence of asso-
ciation in our cohorts for these traits (Table 2). Variants in the
FOXE1 gene that have been previously associated with primary
hypothyroidism and thyroiditis in adult eMERGE cohorts (Denny
et al., 2011), produced a trend of association and consistent in
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FIGURE 2 | Association results and signals contributing to Asthma,

Eosinophilic Esophagitis, Mental Retardation, and Developmental

Delays. SNPs are plotted by position in a 0.2 Mb window against association
signals (−log10 P-value). For each trait, the most significant SNP is
highlighted. Estimated recombination rates (from HapMap) are plotted in
cyan to reflect the local LD structure. The SNPs surrounding the most
significant SNP, are color-coded to reflect their LD with identified SNP (taken

from pairwise r2 values from the HapMap CEU database, www.hapmap.org).
Regional plots were generated using LocusZoom (http://csg.sph.umich.edu/
locuszoom). (A) Cluster of the association effect for asthma at 17q21 near the
gasdermin-B (GSDMB) gene. (B) Association signal for Eosinophilic
Esophagitis at 5q31 (IL5-IL13 cluster region). (C) Cluster of association near
the NDFIP1 gene for Mental Retardation traits. (D) Plot of association effects
in the PLCL1 region for Developmental Delays-Speech Disorders.

directionality with thyroiditis in our pediatric cohorts despite
low sample size (Table 2). No gene-gene interaction was evident
between PTPN22 and FOXE1 for hypothyroidism in these data.
Rs7574865 is a SNP in the third intron of the STAT4 that has been
associated with SLE and related autoimmune diseases (Namjou

et al., 2009). In these cohorts, pediatric onset lupus was under-
represented (less than 20 cases), however, suggestive associations
with wheeze and asthma were detected [p = 0.004, OR 1.46
(95%CI = 1.11 − 1.92) (Table 2)] with the same direction of the
difference in allele frequency previously observed in autoimmune
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traits. This possible association has also been reported in another
study (Pykäläinen et al., 2005). Of note, in contrast to rheumatoid
arthritis, the STAT4 association effect was weak for JRA in our
cohorts (effect size = 1.12, p = 0.17). GWAS studies have linked
Inflammatory Bowel disease (IBD) to a number of IL-23 path-
way genes, in particular IL23R. The well-known coding variant in
the IL23 receptor (rs11209026) also showed a trend toward asso-
ciation with IBD in our cohorts with the same allelic direction
but due to low sample size (31 cases) it did not reach significance
(FDR-q > 0.05) (Li et al., 2010) (data not shown).

Novel findings from this PheWAS
A number of potentially novel associations remained significant
after the permutation procedure to assess the probability of the
observed distribution with beta > 0.8 FDR-q < 0.05 (Table 3).
Variants in the Glucokinase Regulator gene (GCKR) have been
previously implicated in metabolic disease, diabetes and hyper-
triglyceridemia in adults (Bi et al., 2010; Onuma et al., 2010)
and were mostly associated with allergic rhinitis in our pediatric
cohorts [best SNP rs780093 p = 2.18 × 10−5, p(perm) = 8.06 ×
10−5, OR = 1.39, 95%CI = (1.19 − 1.61)] (Table 3), while no sig-
nificant association was found for diabetes. Indeed, conditional
analyses, controlling for diabetes related traits suggest that this
is an independent effect (p-conditional = 6.75 × 10−5). Another
major regulatory locus for diabetes in adults, JAZF1, also was
associated with allergic rhinitis in our cohorts (Table 3) even
after controlling for diabetes (p-conditional = 8.46 × 10−5, for
rs1635852). No significant gene-gene interaction was detected
between these two loci or with TCF7L2.

Variants in a cytokine cluster of the IL5-IL13 region, which is
known to be associated with Asthma, Allergy, Atopic Dermatitis
(AD) and Eosinophilia, produced a cluster of association with
EoE in our cohorts [best SNP rs12653750, p = 3.03 × 10−9,
p(perm) = 1.00 × 10−6, OR = 1.73 (1.44 − 2.07)] (Bottema et al.,
2008; Granada et al., 2012). There is a cluster of significant vari-
ants in this neighborhood of chromosome 5 (5q31) associated
with EoE (Figure 2B). In our cohorts, weaker associations can
be detected for all allergy-related phenotypes with the associa-
tion with Eosinophilia being the most impressive [p = 9.74 ×
10−5 (Table 2)]. However, conditional analyses and controlling
for Asthma and Eosinophilia suggest that an independent effect
still exists for EoE at this locus using EMR data (conditional
p = 9.74 × 10 - 5 for rs20541). Moreover, no long distance link-
age disequilibrium between rs3806932 in TSLP gene at 5q22 and
rs20541 was detected in this population (r2 = 0.0002, D’ = 0.02).

We also observed association with AD within this cytokine
cluster consistent with previous reports (Paternoster et al., 2011).
However, the best associated SNP for AD (rs272889) was located
at SLC22A4 in our population (Table 2). These two variants,
rs272889 and rs12653750, were separated by more than 300kb
with low linkage disequilibrium (r2 < 0.1). A residual effect still
exists for AD and rs272889 after controlling for EoE status or the
rs12653750 variant that suggests a distinct effect (p-conditional =
0.002). Noteworthy, with regard to AD, another reported SNP
(rs2897442) downstream of this cluster at KIF3A gene produced
only a suggestive association (p = 0.005) in our cohort (data not
shown). T
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Because of the pleotropic effects between EoE and other allergy
related traits, in addition to conditional analyses, we also found
possible synergistic effects. One of the closely related phenotypes
with EoE is the presence of food allergy. When we combined
these two as a subgroup, two additional effects were identified.
One cluster was in IL1RL1 that was previously associated with the
related phenotype, i.e., allergy and asthma (best SNP rs3771180,
p = 5.71 × 10−5, Table 2, Torgerson et al., 2011) and another was
in CLEC16A, previously associated with different autoimmune
diseases [best SNP rs12924729, p = 3.34 × 10−8 (Table 2), (Mells
et al., 2011)] and was reported as a suggestive effect in recent
GWAS study for EoE (Kottyan et al., 2014).

Variants near RGS cluster of genes on chromosome 1, pre-
viously reported to be associated with IBD and other autoim-
mune diseases (Hunt et al., 2008; Esposito et al., 2010), were
associated with susceptibility to infection, in particular sup-
purative otitis media [best SNP rs10801047, p = 1.61 × 10−6,
p(perm) = 2.00 × 10−6, OR = 1.77 95%CI = 1.398 − 2.24].

New association signals have been detected near the NDFIP1
gene for mental retardation related traits. Variants near this gene
that is expressed mostly in brain, were previously reported to be
associated with IBD through an unknown mechanism and with
a risk effect for major allele (SNP = rs11167764) (Franke et al.,
2010). Instead, we found a risk effect for the minor allele [best
SNP rs10057309, p = 4.33 × 10−7, p(perm) = 2.00 × 10−6, OR =
1.702, 95%CI = 1.38 − 2.09] (Table 3). Similarly, cerebral palsy,
which is linked to mental retardation, was also associated with this
variant (p = 9.00 × 10−4). However, conditional analyses con-
trolling for cerebral palsy suggest an independent effect for overall
mental retardation (conditional p = 8.00 × 10−4). Furthermore,
excluding the small number of samples with known chromoso-
mal abnormalities (N < 40) did not affect this result. The overall
cluster effect in this neighborhood for mental retardation bolsters
the suspicion that an association is found here (Figure 2C).

Additionally, for developmental delays of speech and language,
a novel signal effect was detected in the PLCL1 gene at chro-
mosome 2 [best SNP rs1595825, p = 1.13 × 10−8, OR = 0.65
(0.57 − 0.76)] (Figure 2D, Table 3). Weaker associations (0.01 >

p > 0.00001) were also detected for related neurologic pheno-
types including abnormal movement, lack of coordination and
epilepsy at this locus (data not shown).

NRXN3 polymorphisms that have been previously reported to
be associated with substance dependence (Docampo et al., 2012),
smoking behavior and attention related problems (Stoltenberg
et al., 2011), were associated with depression in our pediatric
cohorts (Table 3 Noteworthy, the major allele of our reported
SNP (rs7141420) has been linked to obesity in adult cohorts
(Berndt et al., 2013), while we found association with the minor
allele for depression [p = 4.76 × 10−5, OR = 1.78 (1.34 − 2.34),
Table 3]. Furthermore, rare micro-deletions in this gene were pre-
viously reported for Autism case reports but these rare variants
are not available to assess in our genotyped cohorts (Vaags et al.,
2012).

DISCUSSION
This first pediatric PheWAS finds 38 associations, 24 previ-
ously known phenotype-genotype associations in a pediatric

population using EMR-linked eMERGE databases and identi-
fied 14 new possible associations at beta > 0.8 and FDR-q <

0.05. From analysis performed on EMR-linked data from 4268
European individuals, we successfully confirmed several major
effects for phenotypes with moderate to large sample size, in par-
ticular for Asthma, Autism, and neurodevelopmental disease as
well as several effects for Type 1 and Type 2 Diabetes (T1DM,
T2DM) and Thyroiditis. Almost all of the significant pheno-
type associations were with common variants (MAF > 10%)
(Tables 2, 3). In addition, we compared and verified the con-
sistency of allele frequency of reported markers among cohorts,
sample collection sites and with CEU-Hapmap data. Considering
a desired power of 0.8, for variants at the fixed allele frequency
of 10% and size effect of 1.5 or above, 200 cases are sufficient
to detect association at an alpha level of 0.05. Indeed, we have
surpassed this level for most of our reported traits. In addition,
for all reported phenotypes the control sample was at least two
or three times larger than cases (Tables 2, 3). Importantly, since
our control samples for each trait are an EMR-derived population
and not healthy individuals, this large number of control samples
provides minor allele frequencies consistent with hapmap-CEU
frequencies for all of our reported variants.

The results for JRA and EoE depend upon previously pub-
lished studies of these phenotypes. While the case samples are
mostly identical, the control samples were substantially differ-
ent. Consequently, we cannot refer to these particular findings
as constituting confirmation and yet our results and different
methodology support the previous reports.

In addition, we also identified several novel PheWAS find-
ings for pediatric traits in particular for Allergic Rhinitis, Otitis
Media, EoE, Mental Retardation, and Developmental Delays all
with sufficient power (beta > 0.8) (Table 3, Figures 2B–D). This
study, however, is underpowered to make discoveries for rare
variants or uncommon traits. The power to detect a finding in
PheWAS is determined by many factors, including sample size,
risk allele frequency, effect size, model of inheritance, the effect
of environment and the prevalence of a phenotype within the
population.

Similar to previous studies, we also observed pleiotropy for
a number of loci in particular PTPN22 for JRA, T1DM, and
Thyroiditis, IL5 for Eosinophilia, Asthma, and EoE and NDFIP1
for Mental Retardation traits and Cerebral Palsy. These pleotropic
effects are specifically expected to be due to underlying biologic
correlations. On the other hand, we rarely observed simultaneous
robust associations with multiple unrelated phenotypes that had
sufficient power. Furthermore, one of the advantages of PheWAS
studies is the ability to control the granularity of a database with
regard to related phenotypes. For example, by combining two
related phenotypes such as uveitis with JRA or food allergy with
EoE, we were able to evaluate new subgroups and identify new loci
responsible for shared underlying pathways that otherwise cannot
be detected or require much larger sample sizes. Further stud-
ies with larger sample sizes would be useful to test and perhaps
corroborate these findings.

Association of Allergic Rhinitis with loci responsible for dia-
betes in adults (GCKR-JAZF1) may highlight a shared underlying
mechanism. In fact, the connection between allergy and diabetes
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has been previously suggested in humans but cannot be explained
by the Th1/Th2 paradigm (Dales et al., 2005). Moreover, in ani-
mal experiments, treating mice with mast cell-stabilizing agents
reduced diabetes manifestations (Liu et al., 2009). It is also pos-
sible that in our pediatric cohorts we have under-diagnosed
children who are diagnosed with diabetes which would appear in
a later stage of development. In fact, GCKR is an inhibitor of glu-
cokinase (GCK), a gene responsible for the autosomal dominant
form of T2DM that usually develops later in life and in adulthood.
Of note, neither of these two loci showed significant association
with Body Mass Index (BMI) in our previous report with these
data nor has the obesity link been established in adult studies
(Namjou et al., 2013).

The novel association of a cytokine cluster in the IL5-IL13
region for the EoE trait is particularly interesting since anti-
IL5 monoclonal antibodies have been recommended as a novel
therapeutic agent for EoE and other eosinophilia–related traits
(Corren, 2012). In general, both IL5 and IL13 play a major
role for regulation of maturation, recruitment, and survival of
eosinophils and the variant reported here has been previously
associated with other allergic-related traits and with the same
direction of allele frequency difference (Bottema et al., 2008;
Granada et al., 2012). In particular, a non-synonymous polymor-
phism in the IL13 gene, rs20541 (R130Q) (Table 3), has been
shown to be associated with increased IL-13 protein activity,
altered IL-13 production, and increased binding of nuclear pro-
teins to this region (van der Pouw Kraan et al., 1999). Perhaps,
the association is a reflection of linkage disequilibrium with
another polymorphism in the 5q31 region. In fact, in our anal-
yses residual effect still exists for the best SNP (rs12653750),
shown in Figure 2B after controlling for rs20541 (p-conditional =
2.27 × 10−5) (r2 = 0.35). This possible association did not reach
significance in previous GWAS studies for EoE and had only
produced a suggestive effect (0.05 < p < 0.001). Perhaps, this
behavior is explained partly by phenotypic heterogeneity since
minor allele frequency of independent set of both control pop-
ulations were the same. Indeed, we found that those with the
subphenotype of EoE with Eosinophilia had the strongest size
effect (OR = 1.83, 95%CI = 1.44 − 2.32) and our cohorts were
enriched with this subphenotype [177 of total 446 EoE cases
(40%)]. Of note, the SNPs in this region were originally selected
because of eosinophilia-related publications (Bottema et al., 2008;
Granada et al., 2012).

Moreover, combining subgroups of patients with food allergy
and EoE revealed two new loci that may explain shared etiol-
ogy. Indeed, the connection between allergy and Interleukin 1
receptor-like-1 (IL1R1) is already known (Torgerson et al., 2011).
The ligand for IL1R1, IL-33, is a potent eosinophil activator
(Bouffi et al., 2013). Interestingly, there is also a report of associa-
tion of CLEC16A variants with allergy in large analysis with more
than 50,000 subjects from 23andMe Inc. (Hinds et al., 2013). C-
type lectin domain family 16, also known as CLEC16A, is mostly
associated with autoimmune related traits and is highly expressed
in B lymphocytes and natural killer cells. The molecular and
cellular functions of CLEC16A are currently under investigation.

Our conditional analyses suggest an independent effect at the
SLC22A4 gene for Atopic Dermatitis. This solute carrier family

gene is predominantly expressed in CD14 cells and has an impor-
tant role for elimination of many endogenous small organic
cations as well as a wide array of drugs and environmental tox-
ins. The associated SNP, rs272889, has been previously shown to
be correlated with blood metabolite concentration (Suhre et al.,
2011). Other variants in this gene were associated with IBD and
Crohns disease as well (Feng et al., 2009). Of note, a key substrate
of this transporter is ergothioneine, a natural antioxidant, which
Mammalia acquire exclusively from their food. Ergothionine is
a powerful antioxidant though its precise physiological purpose
remains unclear.

Asthma is associated at the 17q21 in our cohorts (Figure 1).
The best associated SNP, rs8067378, is known to function as a cis-
regulatory variant that correlates with expression of the GSDMB
gene (Verlaan et al., 2009). Variants in GSDMB have been shown
to determine multiple asthma related phenotypes specifically in
childhood asthma including associations with lung function and
disease severity (Tulah et al., 2013). These gasdermin-family genes
are implicated in the regulation of apoptosis mostly in epithelial
cells and have also been linked to cancer; however, their actual
function with respect to disease association remains unknown.
The associated variants in this cluster are suspected to be regula-
tory SNPs that govern the transcriptional activity of at least three
nearby genes (ZPBP2, GSDMB, and ORMDL3) (Verlaan et al.,
2009).

We confirmed several loci responsible for Autism and
Pervasive Developmental Disease including MACROD2, ITGB3,
CADM2, and GRIK2. ITGB3 has been known as a quantita-
tive trait locus (QTL) for whole blood serotonin levels (Weiss
et al., 2004, 2006). Serotonin is a monoamine neurotransmit-
ter that has long been implicated in the etiology of Autism. In
fact, about 30 percent of patients with autism have abnormal
blood serotonin levels (Weiss et al., 2004). Similarly, GRIK2 is
an ionotropic glutamate receptor associated with autism (Cook,
1990; Cook et al., 1997). CADM2 is a member of the synaptic cell
adhesion molecule with roles in early postnatal development of
the central nervous system (Thomas et al., 2008). The function
of MACROD2 (previously c20orf133) is still largely unknown.
For Autism that is more commonly seen in males, we found no
significant gender effect for these loci.

Association of variants in the neighborhood of RGS cluster
genes with suppurative otitis media is another novel finding.
SNPs in this region have been previously linked to celiac dis-
ease, multiple sclerosis and other autoimmune diseases (Hunt
et al., 2008; Esposito et al., 2010). The link between suscepti-
bility to infection and autoimmunity has been long suggested
given the fact that the level and regulation of RGS proteins in
lymphocytes also significantly impact lymphocyte migration and
function. In our pediatric cohort the number of patients with
celiac disease was small (n = 23) and the association was not
detected. Interestingly, one of the major risk variant for celiac
disease, rs13151961 (KIAA1109), as well as known HLA variants,
produced a tread toward association for celiac disease but did not
pass the FDR threshold (data not shown).

Finally we also detected a novel association between mental
retardation and the NDFIP1 gene (Figure 2C, Table 3). Of note,
no effect was detected with Autism at this locus. Indeed, the
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only other effect observed in this region was related to Cerebral
Palsy (p = 9.00 × 10−4) and, as mentioned above, an indepen-
dent effect exists for Mental Retardation. The PheWAS code
for mental retardation includes ICD-9 codes for mild, moderate
and profound degrees of retardation as well as not-otherwise-
specified (MR-NOS). Indeed, an additive correlation can also
be detected when we score these subgroups according to sever-
ity excluding the MR-NOS subgroup (p = 3.00 × 10−4). Larger
sample size is necessary to fully elucidate this interesting effect.
The Nedd4 family-interacting protein 1 (Ndfip1) is an adaptor
protein for the Nedd4 family of E3 ubiquitin ligases important for
axon and dendrite development. In fact, cerebral atrophy is one
of the main findings in Ndfip1 KO mice (Hammond et al., 2014).
Another neurodevelopmental association effect was observed in
the vicinity of the Phospholipase C-Like 1 (PLCL1, PRIP-1) gene
for overall Developmental Delays-Speech and Language Disorder
(Table 3, Figure 2D). This gene which is expressed predominantly
in brain, regulates the turnover of GABA-receptors, contributes
to the maintenance of GABA-mediated synaptic inhibition, and
has been implicated in several pathologies in animal models and
human including epilepsy, bone density and cancer (Liu et al.,
2008; Zhu et al., 2012). Finally, we also detected a link between
Neuroxin-3 and early onset depression in this study (Table 3).
In fact, this gene has a major role in synaptic plasticity and
function in the nervous system as a receptor and cell adhesion
molecule.

In summary, by using the PheWAS approach and re-mapping
the ICD-9 codes on our European ancestry pediatric cohorts
we have been able to verify and confirm a variety of previ-
ously reported associations as well as discover new effects that
potentially have clinical implications. Similar to adult PheWAS
studies, our data also support the importance of this approach
in pediatrics. We replicated known phenotype-genotype associa-
tions in a pediatric population using these EMR-linked eMERGE
databases, and also noted a number of new possible associations
that warrant additional study, especially including the relation-
ship of PLCL1 to speech and language development and IL5-IL13
to EoE. Some of the limitations to the current PheWAS map
include the fact that current map does not take into account
of the correlation between some phenotypes and treat them as
independent. Future pediatric PheWAS directions will include
enhancements of a PheWAS map for more precise modeling of
trait associations as well as improvements for richer querying and
filtering.
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Phenome-wide association studies (PheWAS) have demonstrated utility in validating
genetic associations derived from traditional genetic studies as well as identifying novel
genetic associations. Here we used an electronic health record (EHR)-based PheWAS
to explore pleiotropy of genetic variants in the fat mass and obesity associated gene
(FTO), some of which have been previously associated with obesity and type 2 diabetes
(T2D). We used a population of 10,487 individuals of European ancestry with genome-wide
genotyping from the Electronic Medical Records and Genomics (eMERGE) Network and
another population of 13,711 individuals of European ancestry from the BioVU DNA
biobank at Vanderbilt genotyped using Illumina HumanExome BeadChip. A meta-analysis
of the two study populations replicated the well-described associations between FTO
variants and obesity (odds ratio [OR] = 1.25, 95% Confidence Interval = 1.11–1.24,
p = 2.10 × 10−9) and FTO variants and T2D (OR = 1.14, 95% CI = 1.08–1.21, p = 2.34 ×
10−6). The meta-analysis also demonstrated that FTO variant rs8050136 was significantly
associated with sleep apnea (OR = 1 5.14, 95% CI = 1.07–1.22, p = 3.33 × 10− ); however,
the association was attenuated after adjustment for body mass index (BMI). Novel
phenotype associations with obesity-associated FTO variants included fibrocystic breast
disease (rs9941349, OR = 0.81, 95% CI = 0.74–0.91, p = 5 5.41 × 10− ) and trends toward
associations with non-alcoholic liver disease and gram-positive bacterial infections. FTO
variants not associated with obesity demonstrated other potential disease associations
including non-inflammatory disorders of the cervix and chronic periodontitis. These results
suggest that genetic variants in FTO may have pleiotropic associations, some of which are
not mediated by obesity.

Keywords: PheWAS, genetic association, pleiotropy, Exome chip, FTO, BMI
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INTRODUCTION
Pleiotropy, the phenomenon in which a single gene or genetic
variant is associated with multiple phenotypes, is essential to
the functionality of the human genome (Crespi, 2010; Wagner
and Zhang, 2011; Pavlicev and Wagner, 2012). Through com-
paring multiple genome-wide association studies (GWAS) and
candidate gene studies, pleiotropy has been noted in many sin-
gle nucleotide polymorphisms (SNPs) and genes, potentially
providing greater insight into putative biological mechanisms
(Sivakumaran et al., 2011; Stranger et al., 2011; Solovieff et al.,
2013). The increasing prevalence of DNA biobanks linked to rich
phenotype resources and large epidemiological databases have
enabled the development of phenome-wide association study
(PheWAS) method as an additional tool to investigate pleiotropy
(Denny et al., 2010a; Pendergrass et al., 2011). As a complement
to GWAS, PheWAS enables both the validation of genotype-
phenotype associations identified through traditional GWAS and
the generation of new hypotheses, identifying potentially novel
associations as well as putative instances of genetic pleiotropy
(Denny et al., 2011; Pendergrass et al., 2013). A recent applica-
tion of PheWAS to 3144 GWAS-identified variants, replicated 210
known associations and noted 63 new, pleiotropic associations
(Denny et al., 2013).

The Electronic Medical Records and Genomics (eMERGE)
Network was formed in 2007 to use phenotypes derived from
electronic health record (EHR) data to perform GWAS and other
genomic investigations (Kullo et al., 2011; Pathak et al., 2011;
Crosslin et al., 2013; Ding et al., 2013). eMERGE investigators
have also used EHR-based PheWAS methods to evaluate multiple
phenotypes associated with specific genetic variants (Denny et al.,
2010a; Pathak et al., 2012; Hebbring et al., 2013). PheWAS has
been used to enhance our understanding of the genetic determi-
nants of complex traits discovered through GWAS. For example,
a PheWAS of variants associated with longer cardiac conduction
(Ritchie et al., 2013) demonstrated an association with atrial fib-
rillation, and a PheWAS of variants affecting platelet count and
size identified associations with autoimmune diseases (Shameer
et al., 2013).

Variants in the fat mass and obesity associated gene (FTO) have
been studied since 2007, when it was discovered that some were
associated with body mass index (BMI) and obesity (Frayling
et al., 2007). Multiple GWAS have demonstrated further asso-
ciations between variants in FTO and obesity (Jacobsson et al.,
2012). Some of these variants have also been noted to be associ-
ated with both obesity and type 2 diabetes (T2D) (Hertel et al.,
2011; Rees et al., 2011; Li et al., 2012) including SNPs rs9939609
and rs8050136, which are in high linkage disequilibrium (LD)
with each other in people of European ancestry (r2 = 1.00; using
1000 Genomes Pilot 1 reference in the CEU population). The SNP
rs8050136 is located in an intronic region where the transcription
factor cut-like homeobox (CUTL1) protein (Li et al., 2000) is pre-
dicted to bind (Stratigopoulos et al., 2008). This variant has been
associated with T2D and obesity in Han Chinese and European
populations (Hubacek et al., 2008; Liu et al., 2010; Hotta et al.,
2011) but other studies found no association between this variant
and T2D or obesity in the Chinese Han population (Li et al., 2008;
Xi and Mi, 2009). These differences in associations of SNPs with

phenotypes have been further analyzed through fine mapping of
BMI loci (Gong et al., 2013). This study reported that GWAS
studies primarily performed in European populations of numer-
ous loci associated with BMI are not generalizable to other ethnic
groups, for example African Americans. Another study demon-
strated that rs8050136 was associated with increased energy
intake from fat with similar total energy intake (Park et al., 2013).
A more recent study noted that the mechanism of action for com-
mon variants in FTO may be through regulation of IRX3 expres-
sion, which is highly expressed in the brain (Smemo et al., 2014).

There is also evidence of other putative disease associa-
tions with FTO variants that have not achieved genome-wide
significance, such as pancreatic cancer, Alzheimer’s disease, atten-
tion deficit hyperactivity disorder, alcoholism, and osteoarthritis
(Keller et al., 2011; Lurie et al., 2011; Sobczyk-Kopciol et al., 2011;
arcOGEN Consortium et al., 2012; Corella et al., 2012; Reitz et al.,
2012; Velders et al., 2012). These varied disease-SNP associations
suggest that SNPs in FTO may have pleiotropic effects. Utilizing
the population and diagnostic diversity contained within the real-
world clinical environment for variants within FTO, our goal
was to determine whether an EHR-based PheWAS could iden-
tify genetic pleiotropy that might otherwise remain undetected
in traditional cohort study designs. In the present study, we
utilized PheWAS method and data sets from the eMERGE net-
work (McCarty et al., 2011; Gottesman et al., 2013) to evaluate
pleiotropy of variants in FTO.

MATERIALS AND METHODS
PARTICIPATION OF eMERGE SITES
The eMERGE Network data used in this study consists of
seven institutions (Group Health Cooperative and University
of Washington, Marshfield Clinic, Mayo Clinic, Northwestern
University, Mount Sinai, Geisinger Health System, and Vanderbilt
University Medical Center), each with DNA biorepositories
linked to their EHRs. Each site pulled demographic, vital sign,
and billing data from their EHR research data repositories for this
study. All projects were either approved by local IRBs or classified
as IRB exempt as non-human subjects research.

GENOTYPING OF eMERGE SUBJECTS
Variants for eMERGE subjects were selected from extant
genome-wide genotypes with either the Human660W-Quadv1_A
or Illumina OmniExpress chips. The Human660W-Quadv1_A
BeadChip was completed at the Center for Genotyping and
Analysis at the Broad Institute, and the Center for Inherited
Disease Research at Johns Hopkins University. Genotyping
for Illumina OmniExpress BeadChips was performed at the
University of Pittsburgh Genomics and Proteomics Core
Laboratories. These genotyping data comprised 10,487 individ-
uals of European ancestry, as designated in the EHRs.

Quality-control (QC) of the genotype data was performed
using a pipeline developed by the eMERGE Genomics Working
Group (Turner et al., 2011). This process included call rate restric-
tions listed below, identification of sex mismatch and anoma-
lies, checking duplicate and HapMap concordance, as well as
identifying batch effects, sample relatedness, and minor allele
frequency (MAF). Population stratification was evaluated using
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STRUCTURE (Pritchard et al., 2000) and EIGENSTRAT (Price
et al., 2006). Only SNPs with call rates >99% and MAF >0.01
in unrelated samples were included for further study. Relatedness
was determined on the basis of identity by descent (IBD) esti-
mates generated from the genome-wide genotype data in PLINK
(Purcell et al., 2007). All study sites had pairs of individuals with
an IBD estimate greater than 0.25; only one of the individuals in
each related pair was randomly selected and used in the analysis.
Additional genotypes were imputed using IMPUTE2 (Marchini
et al., 2007) and 1000 Genomes Project as the reference (1000
Genomes Project Consortium et al., 2010). We used imputed
SNPs with a minimum info score of 0.7 and called genotypes
based on the maximum posterior probability.

We selected 54 SNPs, of which 51 were imputed in at least
one site, located in FTO that met the QC criteria above and were
previously associated with obesity (Jacobsson et al., 2012). QC
and subsequent association tests were performed using PLINK
(Purcell et al., 2007) and the R statistical package (R Core Team,
2013).

GENOTYPING OF VANDERBILT SUBJECTS USING HumanExome
BeadChips
We selected 13,711 individuals of European ancestry from the
BioVU DNA databank with BMI data who were genotyped
using the Illumina Infinium HumanExome BeadChip, which
includes >240,000 markers, mostly within exonic regions, as well
as SNPs from the GWAS catalog (Welter et al., 2014) including
rs8050136 in FTO. Genotyping was performed at the Vanderbilt
Technologies for Advanced Genomics (VANTAGE) Core, and
genomic data were processed by the Vanderbilt Technologies for
Advanced Genomics Analysis and Research Design (VANGARD)
Core. Clustering was performed using GenomeStudio’s GenTrain
clustering algorithm followed by manual review and reclustering;
genotype calling was performed using GenomeStudio’s GenCall
algorithm. Genotyping quality was evaluated using SNP call rates
and concordance rates with HapMap controls; SNPs with <99.8%
call rate or <98% concordance were excluded. In the first analy-
sis, we focused on rs8050136, which had a call rate of >99.9%.
In the subsequent analyses, we further analyzed eight FTO SNPs
on the Exome chip, which had call rates greater than 99.8% and
MAFs >0.01. Similar to the eMERGE set, for individuals with an
IBD estimate greater than 0.25; only one of the individuals in each
related group was selected randomly and used in our analyses.

PheWAS ANALYSES
We first tested the 54 eMERGE SNPs for association with BMI
using linear regression. We calculated LD with our reference SNP
rs8050136, chosen as the reference because of its GWAS asso-
ciations with BMI and T2D in the literature and since it was
directly genotyped on all of the platforms. To evaluate pheno-
type associations and potential pleiotropy among different FTO
SNPs, we grouped SNPs into three groups for convenience based
on their LD with rs805136: high LD (r2 > 0.80), moderate LD
(0.80 ≥ r2 > 0.60) and low LD (r2 ≤ 0.60) with rs8050136. Our
hypothesis was that SNPs in high LD would show similar patterns
of phenotype associations with rs8050136, and that different
patterns may be observed in SNPs with lower LD.

Analyses for the eMERGE and the BioVU datasets were con-
ducted separately and then meta-analyzed. The eMERGE popu-
lation had 54 SNPs and the BioVU population had nine SNPs
for analysis, which were also present in the eMERGE dataset.
We used logistic regression adjusted for age, sex, eMERGE
site, and the first three principal components as calculated for
each dataset by EIGENSTRAT, using an additive genetic model.
We performed PheWAS using each SNP using methods and
code groupings described previously (Denny et al., 2013) using
the R PheWAS package (Carroll et al., 2014), briefly, calcu-
lating comprehensive associations between SNPs and a total
of 1645 clinical phenotypes derived from the International
Classification of Disease, 9th CM (ICD-9) edition codes from
each site’s EHR. The ICD-9 codes that are associated with
each phenotype can be found at the PheWAS catalog located
online at http://phewas.mc.vanderbilt.edu/. Cases for a given
disease were defined as having at least two relevant ICD-9
codes on different days. The PheWAS method also defines con-
trol groups for each disease, which ensures that related dis-
eases do not serve as controls for the current disease being
analyzed. We performed association testing for all PheWAS
phenotypes occurring in at least 20 individuals (effectively 20
“cases”).

We then compared our results to performing PheWAS for
each FTO SNP adjusting for BMI. The BMI, obtained from each
site’s EHR, was estimated using the average BMI from individu-
als within our dataset. To minimize erroneous data, we only used
BMI measurements between 15 and 70, a range that we have used
in prior studies and has good precision (Denny et al., 2010b).
Plotting was performed in R using the PheWAS and ggplot2
packages.

Meta-analysis was performed using the inverse-variance
method (Hunter et al., 1982) for the nine shared SNPs. There were
1010 phenotypes that were in common across both datasets and
met our minimum case criteria of at least 20 cases. This yields a
Bonferroni corrected p-value of 4.95 × 10−5, (p = 0.05/1010 =
4.95 × 10−5), for a single SNP. We chose a single SNP, phenome-
wide correction threshold since most of the SNPs in this analysis
were in high LD with each other and thus do not represent truly
independent tests. A false discovery rate (FDR) of q = 0.05, cal-
culated with the Benjamin and Hochberg method using the R
p.adjust method, yields a p-value of 2.48 × 10−4 (Benjamini and
Hochberg, 1995). For our latter analyses, we considered a total of
54 SNPs. Since many phenotypes are correlated with each other
and many of the SNPs are in LD, we also used simpleM (Gao et al.,
2010) to estimate the number of unique tests performed, lead-
ing to an adjustment of p = 2.36 × 10−6. All analyses assumed a
two-tailed distribution.

RESULTS
OVERVIEW
A total of 24,198 individuals were used in our analyses (Table 1).
Both the eMERGE and BioVU datasets were similar in median
age, sex, and BMI. Our analysis of the association of the FTO SNPs
with BMI (Table 2) showed that most SNPs in high linkage dis-
equilibrium with rs8050136 (r2 > 0.80) have highly significant
p-values (< 3 × 10−9) and betas for BMI (Table 2). SNPs with
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Table 1 | Characteristics of the study sets.

eMERGE

n = 10,487

BioVU

n = 13,711

Combined

n = 24,198

Genotyping Platform Illumina Human660W-Quadv1_A Illumina HumanExome

Number of SNPs 54 9 9

Total number of
phenotypes

1094 1254 1010

Median age (IQR) 58 (48–68) 60 (47–72) 59 (48–70)

Female (%) 52.24 54.31 53.35

BMI (average ± SD) 30.86 ± 7.48 28.43 ± 6.44 29.54 ± 7.04

Most frequent diagnoses Hypertension (66%)
Hyperlipidemia (61%)
Pain in limb (47%)
Malaise and fatigue (39%)
Abdominal/pelvic symptoms
(36%)

Hypertension (63%)
Malaise and fatigue
(51%)
Eye infection, viral (50%)
Hyperlipidemia (40%)
Pain in limb (39%)

Hypertension (64%)
Hyperlipidemia (49%)
Malaise and fatigue
(46%)
Pain in limb (43%)
GERD (34%)

This table shows the main characteristics of the study populations of European ancestry, including age, sex, BMI and the five most significant PheWAS phenotypes

observed in the datasets. The sample size included 10,487 from the eMERGE population and 13,711 from the BioVU population for a total of 24,198 people. For a

given phenotype, in the combined dataset our maximum number of cases was 14,592 in hypertension and the minimum number of cases was 44.

lower correlations with rs8050136 have highly variable associa-
tions with BMI.

PheWAS OF FTO rs8050136 UNADJUSTED FOR BMI
In the BioVU population, we observed that obesity (OR = 1.22,
p = 1.4 × 10−6, 95% CI = 1.13–1.33) was significantly associ-
ated with rs8050136. Three obesity-related diseases also trended
toward significance; T2D (OR = 1.14, p = 5.3 × 10−5, 95% CI =
1.07–1.21), obstructive sleep apnea (OSA; OR = 1.15, p = 4.6 ×
10−3, 95% CI = 1.04–1.26) and chronic non-alcoholic liver dis-
ease (NAFLD; OR = 1.20, p = 6.06 × 10−3, 95% CI = 1.05–
1.38) (Supplementary Table 1). We observed similar odds ratios
for obesity and T2D in eMERGE (obesity: OR = 1.37, p =
1.88 × 10−4, 95% CI = 1.16–1.61; T2D: OR = 1.16, p = 0.014,
95% CI = 1.03–1.32). eMERGE results also demonstrated similar
trends toward significant associations with OSA (OR = 1.14, p =
2.4 × 10−3, 95% CI = 1.05–1.24) (Supplementary Table 1). After
meta-analysis, obesity (OR = 1.25, p = 2.1 × 10−9, 95% CI =
1.16–1.35), morbid obesity (OR = 1.34, p = 1.07 × 10−7, 95%
CI = 1.20–1.48), and two obesity-related diseases, T2D (OR =
1.14, p = 2.3 × 10−6, 95% CI = 1.08–1.21) and OSA (OR =
1.15, p = 3.3 × 10−5, 95% CI = 1.07–1.22), were associated with
rs8050136 (Table 3). Additionally, the associations with NAFLD
and fibrocystic breast disease were also q < 0.05.

PheWAS OF FTO rs8050136 ADJUSTED FOR BMI
After adjusting for average BMI, some of the associations were
greatly attenuated, while others remained relatively unchanged
(Table 3, Figure 1). The associations with obesity and OSA
were largely attenuated by adjustment for BMI (obesity:
OR = 1.11, p = 0.017, 95% CI = 1.02–1.22; morbid obesity:
OR = 1.17, p = 0.016, 95% CI = 1.03–1.33; OSA: OR = 1.07,
p = 0.040, 95% CI = 1.00–1.15). Chronic non-alcoholic liver
disease demonstrated a possible association with rs8050136,
which was only slightly attenuated between unadjusted and

BMI-adjusted analyses (OR: 1.23 vs. 1.19; p: 2.2 × 10−4 vs. 1.9 ×
10−3, 95% CI = 1.10–1.37 vs. 1.07–1.33). Additional phenotypes
trended toward association with rs8050136, including fibrocys-
tic breast disease (OR = 0.84, p = 4.8 × 10−4, 95% CI = 0.75–
0.92), staphylococcal infections (OR = 1.16, p = 5.8 × 10−3,
95% CI = 1.04–1.29), streptococcal infections (OR = 1.21,p =
6.6 × 10−3, 95% CI = 1.05–1.39), osteomyelitis (OR = 1.21,
p = 0.011, 95% CI = 1.04–1.41), and joint effusions (OR = 1.22,
p = 6.9 × 10−3, 95% CI = 1.06–1.41). These were not notably
changed by BMI adjustment. Due to the number of gram-
positive bacterial infections, we tested post hoc for the association
between the SNP and a composite phenotype of all gram-positive
infections, which were defined as staphylococcal infections, strep-
tococcal infections, pneumococcal pneumonia, and gram positive
septicemia. When combining all gram-positive phenotypes, the
result was similar to the individual phenotypes (n = 1095, OR =
1.15 95% confidence interval [95% CI] = 1.06–1.26).

PheWAS OF OTHER FTO SNPs ASSOCIATED WITH OBESITY
The results of SNPs in high LD with rs8050136 (r2 > 0.8) showed
a similar pattern of phenotypes to rs8050136 (Figures 2A,B).
Rs9941349, which is in LD with rs8050136 (r2 = 0.92) trended
toward association with cystic mastopathy prior to BMI adjust-
ment (p = 5.4 × 10−5, OR = 0.81, 95% CI = 0.73–0.90). SNPs
with moderate to low correlation with rs8050136 had much
different patterns of associations. Some of these SNPs demon-
strated associations with obesity (e.g., rs9939609, rs9941349),
and some did not (e.g., rs6499640, rs7199182; see Table 2).
Of these SNPs, we only had eMERGE and BioVU data for
rs6499640 (Figure 3A). All other SNPs were only available in
the eMERGE data. “Non-inflammatory disorders of the cervix”
was associated with some FTO SNPs (rs16952520: n = 21, p =
1.92 × 10−6, OR = 6.76, 95% CI = 3.08–14.84), and was unaf-
fected by adjustment for BMI (OR = 6.66, 95% CI = 3.03–
14.64, p = 2.36 × 10−6) (Figure 3B, MAF = 0.087). One less
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Table 2 | Association between FTO variants and average BMI.

SNP Minor allele Major allele MAF Beta (95%CI) p† r2

rs8050136 A C 0.41 0.535 (0.363, 0.707) 1.28E-09 1.00

rs9935401 A G 0.41 0.535 (0.363, 0.707) 1.26E-09 1.00
rs11075990 G A 0.42 0.534 (0.362, 0.706) 1.29E-09 1.00
rs9923233 C G 0.42 0.534 (0.362, 0.706) 1.29E-09 1.00
rs9926289 A G 0.42 0.534 (0.362, 0.706) 1.29E-09 1.00
rs9936385 C T 0.42 0.534 (0.362, 0.706) 1.29E-09 1.00
rs9939609 A T 0.42 0.534 (0.362, 0.706) 1.29E-09 1.00
rs8043757 T A 0.41 0.539 (0.367, 0.711) 9.71E-10 1.00
rs7185735 G A 0.42 0.536 (0.364, 0.708) 1.17E-09 1.00
rs17817449 G T 0.40 0.548 (0.376, 0.720) 5.07E-10 1.00
rs7193144 C T 0.41 0.529 (0.357, 0.701) 1.96E-09 1.00
rs3751812 T G 0.34 0.572 (0.400, 0.744) 9.34E-11 0.99
rs55872725 T C 0.35 0.561 (0.389, 0.733) 1.67E-10 0.94
rs1558902 A T 0.35 0.560 (0.388, 0.732) 1.84E-10 0.94
rs62048402 A G 0.35 0.560 (0.388, 0.732) 1.84E-10 0.94
rs11642015 T C 0.35 0.561 (0.389, 0.733) 1.70E-10 0.94
rs1421085 C T 0.35 0.561 (0.389, 0.733) 1.70E-10 0.94
rs9941349 T C 0.37 0.564 (0.392, 0.736) 1.42E-10 0.92
rs9931494 G C 0.37 0.561 (0.389, 0.733) 1.72E-10 0.92
rs12149832 A G 0.35 0.560 (0.388, 0.732) 1.71E-10 0.90
rs1121980 A G 0.44 0.522 (0.351, 0.693) 2.40E-09 0.88
rs9939973 A G 0.43 0.528 (0.357, 0.699) 1.48E-09 0.88
rs9940646 G C 0.43 0.528 (0.357, 0.699) 1.48E-09 0.88
rs9940128 A G 0.43 0.527 (0.356, 0.698) 1.61E-09 0.88
rs9937053 A G 0.43 0.530 (0.359, 0.701) 1.35E-09 0.88
rs9930333 G T 0.44 0.534 (0.363, 0.705) 9.67E-10 0.88
rs9932754 C T 0.39 0.544 (0.373, 0.715) 4.63E-10 0.85
rs9930506 G A 0.39 0.544 (0.373, 0.715) 4.63E-10 0.85
rs9922619 T G 0.39 0.553 (0.382, 0.724) 2.37E-10 0.85
rs8057044 G A 0.47 0.530 (0.359, 0.701) 1.25E-09 0.72
rs17817288 G A 0.48 0.528 (0.357, 0.699) 1.19E-09 0.68
rs9922047 C G 0.44 0.502 (0.331, 0.673) 7.21E-09 0.64
rs1861866 C T 0.44 0.498 (0.327, 0.669) 9.63E-09 0.64
rs8055197 G A 0.44 0.498 (0.327, 0.669) 9.63E-09 0.64
rs10852521 T C 0.44 0.497 (0.326, 0.668) 1.02E-08 0.64
rs8047395 G A 0.43 0.496 (0.325, 0.667) 1.10E-08 0.64
rs8044769 T C 0.42 0.504 (0.333, 0.675) 6.64E-09 0.62
rs3751813 G T 0.45 0.419 (0.247, 0.591) 2.06E-06 0.57
rs4783819 G C 0.33 0.414 (0.236, 0.592) 5.43E-06 0.41
rs1477196 A G 0.32 0.410 (0.232, 0.588) 6.74E-06 0.40
rs7190492 A G 0.33 0.426 (0.248, 0.604) 2.83E-06 0.40
rs7186521 G A 0.45 0.251 (0.080, 0.422) 3.79E-03 0.09
rs1861869 G C 0.47 0.274 (0.103, 0.445) 1.62E-03 0.08
rs1861868 T C 0.44 0.256 (0.087, 0.425) 3.04E-03 0.08
rs6499640 G A 0.39 0.264 (0.090, 0.438) 3.15E-03 0.06
rs11075986 G C 0.12 0.065 (− 0.251, 0.381) 0.69 0.06
rs16945088 G A 0.12 0.001 (− 0.317, 0.319) 0.99 0.06
rs8063946 T C 0.12 0.101 (− 0.260, 0.462) 0.58 0.04
rs1075440 G A 0.28 0.173 (− 0.011, 0.357) 0.06 0.04
rs16952520 G A 0.09 0.205 (− 0.238, 0.648) 0.36 0.03
rs12447107 C G 0.08 0.246 (− 0.379, 0.871) 0.44 0.01
rs7204609 C T 0.10 0.469 (− 0.111, 1.049) 0.11 0.01
rs7199182 G A 0.06 2.346 (0.472, 4.220) 0.01 0.00
rs1108102 A T 0.03 1.045 (− 1.732, 3.822) 0.46 0.00

Analysis used an additive genetic model and linear regression adjusted for age, sex, and first three principal components using the imputed eMERGE samples. The

SNPs below are sorted by p-value. The beta represents the kg/m2 increase in BMI per minor allele. Linkage disequilibrium (r2) was calculated between rs8050136

(bolded) and other FTO SNPs using the eMERGE imputed set. The Bonferroni correction alpha = 0.05 for 54 SNPs is 9.26 × 10−3.
†Values are not corrected for multiple testing.
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Table 3 | Meta-analysis PheWAS results for rs8050136 with and without adjustment for average BMI.

Phenotype Cases Not adjusted for BMI Adjusted for BMI

p† OR (95% CI) p† OR (95% CI)

Overweight 3943 1.38 × 10−8 1.17 (1.11–1.24) 0.185 1.05 (0.98–1.12)

Obesity 1662 2.10 × 10−9 1.25 (1.16–1.35) 0.017 1.11 (1.02–1.22)

Morbid obesity 756 1.07 × 10−7 1.34 (1.20–1.48) 0.016 1.17 (1.03–1.33)

Type 2 diabetes 3936 2.34 × 10−6 1.14 (1.08–1.21) 4.56 × 10−4 1.09 (1.03–1.15)

Sleep apnea 2335 3.33 × 10−5 1.14 (1.07–1.22) 0.040 1.07 (1.00–1.15)

Cystic mastopathy 967 2.00 × 10−4 0.82 (0.74–0.91) 4.75 × 10−4 0.84 (0.75–0.92)

Chronic Nonalcoholic Liver disease 684 2.22 × 10−4 1.23 (1.10–1.37) 1.86 × 10−3 1.19 (1.07–1.33)

Chronic Ulcer of Leg or Foot 768 8.31 × 10−4 1.19 (1.08–1.32) 2.55 × 10−3 1.17 (1.06–1.30)

Acute Renal Failure 2047 1.12 × 10−3 1.12 (1.05–1.20) 3.74 × 10−3 1.11 (1.03–1.19)

Staphylococcus infections 723 2.44 × 10−3 1.18 (1.06–1.31) 5.76 × 10−3 1.16 (1.04–1.29)

Superficial cellulitis and abscess 2861 5.65 × 10−3 1.09 (1.02–1.15) 0.039 1.06 (1.00–1.13)

Streptococcus infection 428 4.26 × 10−3 1.21 (1.05–1.39) 6.56 × 10−3 1.21 (1.05–1.39)

Osteomyelitis 352 6.15 × 10−3 1.23 (1.06–1.43) 0.011 1.21 (1.04–1.41)

All gram positive infections 1095 6.21 × 10−4 1.16 (1.07–1.27) 1.3 × 10−3 1.15 (1.06–1.26)

Joint effusions 387 2.35 × 10−3 1.25 (1.08–1.44) 6.90 × 10−3 1.22 (1.06–1.41)

This table includes all phenotypes with p-value less than 1.00 × 10−4 prior to BMI adjustment. The Bonferroni alpha = 0.05 equates to a p-value of 4.95 × 10−5, and

an FDR of q = 0.05 gives a p-value of 2.48 × 10−4. OR, Odds ratio; CI, confidence interval. The ICD-9 codes that are associated with each phenotype can be found

at the PheWAS catalog located online at http:// phewas.mc.vanderbilt.edu/ .
†Values are not corrected for multiple testing.

common genetic variant rs7199182 (Figure 3C, MAF = 0.064)
was associated with chronic periodontitis (202 cases, OR = 14.58,
95% CI = 3.97–53.57, p = 5.40 × 10−5), and was not changed
with adjustment for BMI with the signal being slightly stronger
(OR = 14.66, 95% CI = 3.99–53.84, p = 5.20 × 10−5). Neither
rs16952520 nor rs7199182 were associated with obesity or T2D.
Detailed results for selected SNPs are shown in Supplementary
Tables 3, 4.

DISCUSSION
We studied the pleiotropic patterns for FTO variants with and
without adjustment for BMI using phenome-wide associations
in two large EHR cohorts. Consistent with other studies, we
identified statistically significant associations with obesity, mor-
bid obesity, and T2D among SNPs known to be associated with
BMI; these associations were attenuated by adjustment for BMI.
We also identified an association with OSA and trends toward
association with NAFLD, fibrocystic breast disease, and infec-
tions, primarily gram-positive, with obesity-related SNPs. Some
of these potential associations seem independent of BMI adjust-
ment. Fibrocystic breast changes are a common benign breast
disease and traditionally not thought related to obesity, includ-
ing several epidemiological studies (Friedenreich et al., 2000; Baer
et al., 2005; Li et al., 2005). Gram-positive infections could be
explained in part by higher incidence of T2D in genetic vari-
ants of FTO. By analyzing other SNPs not significantly associated
with BMI in our analysis, we also identified a few other potential
associations with less common traits not associated with obesity
(periodontitis, non-inflammatory diseases of the cervix); nei-
ther of these SNPs is in high LD with obesity-related SNPs. The
most common ICD-9 code for “non-inflammatory disorders of

the cervix” is cervical stenosis or stricture not related to con-
genital abnormalities or labor, which can result from surgical
procedures, radiation, trauma, repeated vaginal infections, or
menopause-related atrophy. These results, along with the recent
association of FTO variants with IRX3 regulation (Smemo et al.,
2014), suggest a broader role for FTO beyond that of regulating
fat mass.

The question of whether the association of FTO variants and
T2D is influenced by obesity or both obesity and FTO has been
studied previously. A UK study of 9103 individuals demonstrated
the loss of association after adjustment for BMI, as the T2D-
FTO association prior to adjustment for BMI showed an OR =
1.15, p = 9 × 10−6 and after adjustment showed an OR = 1.03,
p = 0.44 (Frayling et al., 2007). However, other studies suggest
that T2D’s association with FTO remains after adjustment for
BMI (Hertel et al., 2011; Li et al., 2012). Li et al. studied 96,551
East and South Asians and demonstrated an association with
T2D (OR = 1.15, p = 5.5 × 10−8) that was only partially atten-
uated after adjustment for BMI (OR = 1.10, p = 6.6 × 10−5)
(Li et al., 2012). Similarly, Hertel et al. observed a significant
T2D-FTO association even after adjustment for BMI in 41,504
Scandinavians, with the OR prior to adjustment of 1.13, p =
4.5 × 10−8 and after adjustment, OR = 1.09, p = 1.2 × 10−4

(Hertel et al., 2011). Finally a meta-analysis of 24,198 individ-
uals demonstrated FTO rs9939609 (in high LD with rs8050136
with r2 > 0.8) was highly significantly associated with T2D before
and after adjustment for BMI (before adjustment OR = 1.14,
95% CI = 1.12–1.16, p = 1.00 × 10−41; after adjustment OR =
1.07, 95% CI = 1.05–1.09, p = 6.42 × 10−41) (Xi et al., 2014).
However, among individuals of European ancestry, the associa-
tion was markedly attenuated after adjustment for BMI (before
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adjustment OR = 1.14, 95% CI = 1.11–1.16, p = 1.36 × 10−36;
after adjustment OR = 1.06, 95% CI = 1.04–1.09, p = 3.51 ×
10−8). In our study, the association between FTO and T2D did
not decrease after adjustment for BMI as markedly as phenotypes
such as obesity or sleep apnea. The effect sizes of these associa-
tions with T2D in our study closely parallels these larger studies
(before BMI adjustment: OR = 1.14, 95% CI = 1.08–1.21, p =

2.11 × 10−6; after adjustment: OR = 1.09, 95% CI = 1.03–1.15,
p = 2.62 × 10−3). Although these results show an association
of FTO with T2D, a mediation analysis first demonstrating the
associations of FTO SNPs with BMI and pre-diagnostic BMI
with T2D, and subsequently modeling both FTO SNPs and pre-
diagnostic BMI on T2D would help determine the direct and
indirect effects of FTO on T2D.

FIGURE 1 | Continued
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FIGURE 1 | PheWAS plots for FTO rs8050136 with and without BMI

adjustment. The pink horizontal line represents p = 4.95 × 10−5, which is the
Bonferroni correction, and the blue horizontal line represents an FDR q = 0.05
(p = 2.48 × 10−4). (A) without BMI adjustment, (B) with BMI adjustment, and

(C) most significant phenotypic associations before and after BMI adjustment
(BMI-unadjusted values are shown as triangles and average BMI values are
shown as dots) plotted on the same axis. The colors of points indicate the
membership according to the phenotype classes identified on the X axis.

Many of our findings, while having strong signals, were not
significant after Bonferroni correction. The significant associa-
tions using Bonferroni correction included obesity, T2D, and
OSA prior to BMI adjustment. After adjustment for average BMI,
no associations retained statistical significance, but multiple phe-
notypes approached significance including T2D, NAFLD, and the
protective effect on fibrocystic breast disease.

There is still much debate and uncertainty about both phe-
notypic association and protein functionality of FTO. Human
FTO protein expression studies fail to replicate FTO’s associ-
ation with obesity observed in mouse models (Klöting et al.,
2008; Wåhlén et al., 2008; Grunnet et al., 2009). Recent studies
have shown that the SNPs in FTO that are associated with obe-
sity regulate IRX3 expression, which is highly expressed in the
brain (Smemo et al., 2014). Studies have described the associ-
ation between FTO and obesity, while the association between
T2D and FTO is debated (Hubacek et al., 2008; Li et al., 2008;
Xi and Mi, 2009; Liu et al., 2010; Hotta et al., 2011). More stud-
ies with larger populations are required to assess the validity of
many of these associations. The results of these associations show
the power of the PheWAS method to efficiently detect known and
novel pleiotropic associations of genetic variants.

BMI is an inexact surrogate for adiposity. Indeed, individu-
als with a high BMI do not necessarily have a high body fat

percentage, thus BMI may not be the optimal definition of the
phenotype (Müller et al., 2010). However, BMI has been shown
to be as good a surrogate for obesity and diabetes as other central
obesity indicators in multiple studies and meta-analyses (Vazquez
et al., 2007; Nyamdorj et al., 2008, 2009).

Prior studies have suggested several other phenotypes that
may be associated with FTO variants, including pancreatic can-
cer, Alzheimer’s disease, attention deficit hyperactivity disorder,
and alcoholism (Keller et al., 2011; Lurie et al., 2011; Sobczyk-
Kopciol et al., 2011; arcOGEN Consortium et al., 2012; Corella
et al., 2012; Reitz et al., 2012; Velders et al., 2012). We did not
find evidence for these associations in our data set (p > 0.05)
(Table 4), but in these cases we may be underpowered to find an
association, with case sizes of 76 (attention deficit hyperactivity
disorder), 183 (pancreatic cancer), 192 (Alzheimer’s disease), and
267 (alcoholism) in our population. A trend toward association
between FTO rs8044769 and osteoarthritis was observed in a pre-
vious GWAS study (rs8044769, r2 = 0.647 with rs8050136, p =
4 × 10−6) (arcOGEN Consortium et al., 2012). Our observation
of a trend toward associations with joint effusions, which may be
caused by osteoarthritis, lends some support to this inflammatory
association.

Further analysis of multiple SNPs associated with obesity in
FTO yielded some interesting results. First, the SNPs that are

Frontiers in Genetics | Applied Genetic Epidemiology August 2014 | Volume 5 | Article 250 | 117

http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Cronin et al. PheWAS of FTO variants

FIGURE 2 | PheWAS plots for other obesity associated SNPs in high LD

with rs8050136. These plots show unadjusted values and the average BMI
adjusted values on the same axis. These SNPs are associated with BMI and
have different correlations with rs8050136. These SNPs are present in both
datasets and are presented as meta-analyses below. The pink horizontal line
represents p = 4.95 × 10−5, which is the Bonferroni correction, and the blue

horizontal line represents an FDR q = 0.05 (p = 2.48 × 10−4). (A) rs9939609
is reported widely in the literature and has a nearly identical pattern of
associations to rs8050136 (r2 = 0.96). (B) rs9941349 also has a similar
pattern to rs8050136 but cystic mastopathy is marginally more associated
(p = 5.41 × 10−5, OR = 0.81 before BMI adjustment) than in rs8050136
(r2 = 0.88).
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FIGURE 3 | Continued
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FIGURE 3 | PheWAS plots for other obesity associated SNPs in low LD

with rs8050136. These plots show values without adjustment for BMI
(shown as triangles) and with adjustment for average BMI (shown as dots)
plotted on the same axis. (A) rs6499640 is in both datasets with a lower LD
with rs8050136 (r2 = 0.06) and has a different phenotype pattern than
rs8050136 (B) rs16952520 is only present in the eMERGE population and has
low LD with rs8050136 (r2 = 0.03) and while not strongly associated with

obesity or diabetes does show significant association with non-inflammatory
disorders of the cervix (OR = 6.76, p = 1.92 × 10−6), unaffected by
adjustment for BMI (OR = 6.66, p = 2.36 × 10−6) (C) rs7199182 is only
present in the eMERGE population and has a low LD with rs8050136
(r2 = 0.04) and is associated with chronic periodontitis before and after BMI
adjustment (no adjustment: p = 5.40 × 10−5; BMI adjustment:
p = 5.20 × 10−5).

Table 4 | Meta-analysis PheWAS results of rs8050136 for previously reported phenotypes associated with genetic variants.

Phenotype Cases Not adjusted for BMI Adjusted for BMI

p† OR (95% CI) p† OR (95% CI)

Attention deficit hyperactivity disorder 76 0.085 0.74 (0.52–1.04) 0.11 0.75 (0.53–1.06)

Pancreatic cancer 183 0.23 1.14 (0.92–1.40) 0.19 1.15 (0.93–1.42)

Alcoholism 267 0.37 1.08 (0.91–1.29) 0.32 1.09 (0.92–1.30)

Senile dementia 192 0.90 0.99 (0.80–1.22) 0.90 0.99 (0.80–1.22)

Osteoarthritis 6328 0.20 1.03 (0.98–1.08) 0.88 1.00 (0.95–1.06)

This table includes select phenotypes that have been previously reported in the literature. The Bonferroni alpha = 0.05 equates to a p-value of 4.95 × 10−5, and an

FDR of q = 0.05 gives a p-value of 2.48 × 10−4. OR, Odds ratio; CI, confidence interval.
†Values are not corrected for multiple testing.

in high correlation with rs8050136 (r2 > 0.8) have very simi-
lar results to rs8050136, which is what we would expect. There
are also SNPs that were associated with fibrocystic breast dis-
ease prior to adjustment for BMI. rs7199182, is in low LD
with rs8050136 (r2 < 0.01), showed significant associations with
chronic periodontitis before and after adjustment for BMI.
Further analysis of this SNP and its association with chronic peri-
odontitis will need to be investigated to validate this finding.

One important consideration of this analysis is the small over-
lap of genotyped SNPs between the BioVU and eMERGE pop-
ulation. There are multiple SNPs that are present in both
datasets and are highly correlated with rs8050136, but only
rs6499640, which is in weak LD with rs8050136 (r2 = 0.06),
was genotyped in both datasets. We are unable to impute the
BioVU. The lack of overlapping SNPs limits our sample size
to evaluate more of the potentially novel findings. Limitations
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caution interpretation of this study. Some of the case sizes were
small and will require larger populations to validate. PheWAS
analyses require robust EHR systems that can query patient
cohorts efficiently. We used ICD-9 codes for the determina-
tion of phenotypes, codes which can be unreliable, inaccurate,
and incomplete (Kern et al., 2006; Campbell et al., 2011); how-
ever, this could tend to result in missed, rather than false,
associations. In addition to the caveats of ICD-9 codes, there
are limitations of multiple hypothesis testing that come with
comparisons of over 1000 phenotypes. Significance corrections
like Bonferroni may be too strict; some of the near-significant
pleiotropic associations may, in fact, represent genuine associa-
tions. Further testing with larger populations and more carefully
defined phenotypes are needed to determine whether these asso-
ciations are real.

Here we demonstrate the use of the PheWAS method to illus-
trate pleiotropic effects of variation in the gene FTO. When
examining this gene with known pleiotropy, we were able to
reproduce previously-discovered associations and identify poten-
tial new associations, some of which appear independent of
obesity.
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Gene–gene interactions may contribute to the genetic variation underlying complex traits
but have not always been taken fully into account. Statistical analyses that consider
gene–gene interaction may increase the power of detecting associations, especially for
low-marginal-effect markers, and may explain in part the “missing heritability.” Detecting
pair-wise and higher-order interactions genome-wide requires enormous computational
power. Filtering pipelines increase the computational speed by limiting the number of
tests performed. We summarize existing filtering approaches to detect epistasis, after
distinguishing the purposes that lead us to search for epistasis. Statistical filtering includes
quality control on the basis of single marker statistics to avoid the analysis of bad and
least informative data, and limits the search space for finding interactions. Biological
filtering includes targeting specific pathways, integrating various databases based on
known biological and metabolic pathways, gene function ontology and protein–protein
interactions. It is increasingly possible to target single-nucleotide polymorphisms that
have defined functions on gene expression, though not belonging to protein-coding genes.
Filtering can improve the power of an interaction association study, but also increases the
chance of missing important findings.

Keywords: epistasis, genetic interaction, biological interaction, filtering pipeline, optimal search

INTRODUCTION
Genome-wide association studies (GWAS) and next generation
sequencing association studies based on single marker tests can
identify many associated genetic variants, but typically explain
only a small portion of the total estimated heritability. Gene–gene
interactions may play an important role in the genetic etiology
underlying complex phenotypes and statistical analyses that con-
sider interaction may increase the power to detect epistatic genetic
associations, especially among low-marginal-effect markers.

Bateson (1909) defined epistasis as distortions from Mendelian
segregation ratios due to one gene masking the effects of another.
Fisher (1918) introduced the term “epistacy,” considering it to be
any departure from a linear model in which the phenotypic effects
of genotypes at two or more loci are assumed to be additive. Ever
since, the terms “epistasis” and “gene–gene interaction” have often
been used interchangeably and we make no distinction between
these two terms here. However, the purpose of including such
terms in any genetic model must be considered. If, for example,
we know that segregation at each of two loci affects a particular
phenotype, whether quantitative or binary, we already know there
must be biological interaction. So, unless our purpose is to describe
that interaction, no further analysis is necessary to detect its pres-
ence. In the case of a quantitative trait, whether or not there are
interactions can depend on the scale of measurement, so the scale
of the outcome is relevant. Factors that are additive with respective

to the outcome measured on one scale may not be additive on
another (Elston, 1961; Frankel and Schork, 1996; Greenland et al.,
1998; Wang et al., 2010; Steen, 2012). Similarly, in the analysis
of a binary trait, the link function used in a generalized linear
model may determine whether or not interaction terms are neces-
sary (Satagopan and Elston, 2012). If no transformation or change
in link function can remove the interaction, it is called essential;
in that case the best way to describe the interaction depends on
how much of it is removable by a transformation or change of
link function, and how much is essential. Simply describing the
interaction by an appropriate statistical model may be useful for
prediction in the same population as that sampled, but a predic-
tion model may not be generalizable to other populations unless
it is based on biological function.

Detecting pair-wise or higher-order statistical interactions can
require enormous computational time. In a genome-wide analysis,
the increased computational cost makes it impractical to examine
whether interactions are non-essential or can be better described
by removing non-additivity. Advances in computational methods,
such as using a GPU framework (Yung et al., 2011; Zhu et al., 2013)
and parallel computing strategies may overcome this limitation.
However, the multiple hypothesis testing issue needs to be consid-
ered: this is the major reason why most existing epistasis studies are
limited to searching for pair-wise interactions among a moderate
number of genetic markers.
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STATISTICAL METHODS FOR DETECTING STATISTICAL INTERACTIONS
Regression-based approaches are mostly used to model and
test interactions. The regression approach has been imple-
mented in the epistasis module of PLINK (Purcell et al., 2007)
to test pair-wise diallelic by diallelic epistasis for both quanti-
tative and binary traits. An extension of the PLINK epistasis
module, FastEpistasis, uses an efficient parallel computation algo-
rithm to test pair-wise interactions. FastEpistasis is 15 times
faster than PLINK using a single core computer (Schüpbach
et al., 2010). Marchini et al. (2005) proposed an approach for
joint association analyses allowing for pair-wise interactions
based on logistic models; their approach uses an exhaustive
search among single-nucleotide polymorphisms (SNPs) meet-
ing some low marginal significance threshold. The software
package PLATO can perform linear or logistic regression inter-
action analysis, calculating the full model, the reduced model,
and the likelihood ratio test comparing the two (Grady et al.,
2010).

The advantages of regression-based approaches are the clear
interpretation of the model and the parameters that relate geno-
types to phenotype. However, regression-based approaches have
many technical and computational disadvantages for testing
higher-order interactions and require many more tests: the num-
ber of parameters to be tested increases exponentially with the
number of SNPs in the model.

Model-free approaches, such as machine learning and pat-
tern recognition, afford an alternative strategy, and are capa-
ble of detecting high-dimensional non-linear interactions. This
approach generally does not estimate parameters. It finds com-
binations of SNPs that can best separate cases and controls
associated with the disease by epistatic interactions or joint effects.
Some model-free approaches collapse high dimensional data into
two dimensions, such as the combinatorial partitioning method
(CPM; Nelson et al., 2001), restricted partition method (RPM;
Culverhouse et al., 2004), set association (Wille et al., 2003), and
multifactor dimensionality reduction (MDR; Ritchie et al., 2001,
2003; Hahn et al., 2003).

Unsupervised pattern recognition has also been used to detect
interactions. Li et al. (2011) proposed a method for family based
studies to detect differentially inherited SNP modules by hierar-
chically clustering SNPs that could be interactively associated with
a disease. They first construct a genomic context-based SNP net-
work based on adjacency on the chromosome. The association
between each SNP and disease is evaluated on the basis of mutual
information between SNP identity by descent sharing and affec-
tion status sharing of pairs of siblings. Then they use a hierarchical
clustering algorithm to find risk SNP modules (clusters) for which
discriminative scores are locally maximal. In each module, the
SNPs are within a certain network distance (defined as the num-
ber of edges separating connected SNPs), and the discriminative
score of a module is the maximum mutual information of the SNPs
in the module, reflecting the risk associated with the module.

A likelihood ratio-based Mann–Whitney approach (Lu et al.,
2012) and its extension (Wei et al., 2013) are other non-parametric
methods for detecting interaction. They use a multi-locus
Mann–Whitney statistic to evaluate the joint association of a
SNP combination. Using a computationally efficient forward

selection algorithm makes these methods feasible for genome-
wide gene–gene interaction analyses. Nevertheless, they require
at least one SNP in the combination to have a significant
marginal association. The non-parametric approaches do not
suffer from the issue of an increasing number of parame-
ters when modeling high-order interactions, but it is difficult
to determine how the detected SNP combinations affect the
disease, either via the single marker associations or via their
interactions.

Some studies test marker–marker interactions by testing link-
age disequilibrium (LD) in the diseased population (Zhao et al.,
2006), or test the contrast of LD or Pearson correlation in cases
and controls (Kam-Thong et al., 2010; Prabhu and Pe’er, 2012).
These methods are based on the idea that, if two unlinked markers
are interactively associated with a disease, the two markers will
have LD patterns in the disease population. If controls are not
studied, these methods assume that the controls do not exhibit
similar patterns.

FILTERING PIPELINES FOR EPISTATIC INTERACTIONS PRIOR TO
ANALYSIS
In GWAS, an exhaustive search among millions of SNPs for
higher-order statistical interactions, or even just pair-wise inter-
actions, could be computationally and statistically challenging.
Filtering pipelines limit the number of tests performed between
selected SNPs, whereas the use of computational technology
and optimal algorithms increases the computational speed, and
accelerates convergence if maximization is involved. While data
driven filtering such as statistical filtering cleans the data to avoid
the analysis of bad and least informative data, other types of
filtering can be used purely to improve the power of interac-
tion association analyses. In particular, filtering using biological
knowledge limits the analysis to find the biologically most likely
interactions.

Knowledge-driven filtering
Interaction models that are constructed based on specific bio-
logical knowledge are more likely to make sense. Research
over the last several decades has accumulated vast amounts
of biological information that is stored in public databases.
These include gene ontology annotation, gene–gene interac-
tion databases, pathways, disease related gene networks and
systems, as shown in Table 1. This information can greatly
assist GWAS to find epistatic interactions. Many recent studies
have used such biological knowledge and databases for filtering
in their interaction studies. The databases have helped iden-
tify biological pair-wise interactions among SNPs in pathways,
and hence new associations and potential drug targets. For
example, Liu et al. (2012) generated genome-wide SNP pairs
based on multiple biological pathways such as KEGG, STRING,
T2DGADB, etc.

Biofilter is an analysis pipeline that catalogs biological infor-
mation by integrating data from the Reactome, KEGG, GO,
DIP, Pfam, Ensembl, and NetPath (Bush et al., 2009; Pender-
grass et al., 2013b). It can build SNP–SNP models based on
known interactions between genes and proteins in curated path-
ways and networks. Grady et al. (2011) utilized the Biofilter
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Table 1 | Biological information databases on gene ontology annotation, gene–gene interactions, pathways, disease related gene networks and

systems.

Database URL Description Reference

KEGG http://www.genome.jp/kegg/pathway.html KEGG is a collection of manually drawn pathway maps

representing knowledge on the molecular interaction and

reaction networks for metabolism, genetic information

processing, environmental information processing,

cellular processes, organismal systems, human diseases,

and drug development.

Kanehisa and Goto (2000)

GO http://www.geneontology.org/ GO provides an ontology of defined terms representing

gene product properties. The ontology covers three

domains: cellular component, molecular function, and

biological processes.

Ashburner et al. (2000)

DIP http://dip.doe-mbi.ucla.edu/dip/ Databases of experimentally determined interactions

between proteins.

Xenarios et al. (2000)

BioGRID http://thebiogrid.org/ A comprehensive resource of protein–protein and genetic

interactions for all major model organism species.

Stark et al. (2006)

NetPath http://www.netpath.org/ Resource of signal transduction pathways in humans. Kandasamy et al. (2010)

IntAct http://www.ebi.ac.uk/intact/ Database of molecular interactions that are derived from

literature curation or direct user submissions.

Orchard et al. (2014)

MINT http://mint.bio.uniroma2.it/mint/ MINT focuses on experimentally verified protein–protein

interactions mined from the scientific literature by expert

curators.

MINT now uses the IntAct database infrastructure to limit

the duplication of efforts and to optimize future software

development.

Chatr-aryamontri et al. (2007)

MIPS http://mips.helmholtz-

muenchen.de/proj/yeast/CYGD/interaction/

The MIPS mammalian protein–protein interaction

Database is a collection of manually curated high-quality

interactions.

Pagel et al. (2005)

Pfam http://pfam.sanger.ac.uk/ The Pfam database is a large collection of protein families,

each represented by multiple sequence alignments and

hidden Markov models. There are two kinds of entries in

Pfam: Pfam-A entries are high quality, manually curated

families; Pfam-B entries have lower quality.

Punta et al. (2012)

STRING http://string-db.org A database of known and predicted protein interactions,

including direct (physical) and indirect (functional)

associations.

Szklarczyk et al. (2011)

MSigDB http://www.broadinstitute.org/gsea/msigdb/ Molecular signatures database, a collection of annotated

gene sets integrating canonical pathways representing

biological processes.

Subramanian et al. (2005)

BioCarta http://www.biocarta.com/genes/ Includes classical pathways as well as current

suggestions for new pathways.

Nishimura (2001)

Reactome http://www.reactome.org/PathwayBrowser/ The Reactome pathway database aims to provide intuitive

bioinformatics tools for visualization, interpretation and

analysis of pathway knowledge.

Croft et al. (2011)

T2DGADB http://t2db.khu.ac.kr:8080/ A disease gene network database for type 2 diabetes. Lim et al. (2010)
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software to look for epistasis contributing to the risk of viro-
logic failure. Approximately two million SNP–SNP interaction
models were produced by Biofilter, and Grady et al. (2010)
tested these models by using logistic regression via the software
package PLATO. They identified interactions between SNPs in
the TAP1 and ABCC9 genes. Pendergrass et al. (2013a) iden-
tified five significant GxG interactions associated with cataract
using Biofilter. Bush et al. (2011) studied multiple sclerosis sus-
ceptibility with Biofilter, identifying gene–gene interactions of
susceptibility loci involved in the central nervous system and
neuron function. Turner et al. (2011) used Biofilter to detect
associations with low density lipoprotein cholesterol level, iden-
tifying 11 significant GxG interactions, eight of which were
replicated in a second cohort. In each of these examples,
Biofilter generated biologically plausible gene–gene and SNP–
SNP interaction models that were replicated in an independent
study.

Some studies reduce the number of tests by performing a gene-
based, as opposed to a SNP-based, interaction test. Baranzini
et al. (2009) combined the SNP-wise P-values to form a gene-
wise P-value for each gene (such as using the minimum P-value
for the gene), and superimposed the gene-wise P-values on
a human protein interaction network to identify sub-networks
containing a higher proportion of genes associated with mul-
tiple sclerosis than expected by chance. Ma et al. (2013) tested
interactions of SNP pairs that are separately located in two
different genes as marker-based tests. To test the interaction
between each pair of genes, they combined these marker-based
interactions and the LD between markers into a gene-based
statistic.

Knowledge-driven filtering approaches can test models of
genes that participate in the same biological pathway or net-
work, and the interpretation of the interactions is then more
straightforward. But their precision and power are hard to val-
idate by simulation. Because such approaches depend on prior
knowledge, which may not be accurate or may not be appli-
cable to a particular dataset, they may miss what could be
important findings among the genes for which we have little
knowledge.

Data-driven filtering
Filtering based on statistical tests is data-driven. Statistical
data-driven filtering includes, apart from SNP quality control,
single marker associations, feature selection to keep only the
most informative markers, and statistical tests to screen for
potential interactions. Using data-driven filtering in GWAS can
dramatically decrease the search space used to find interac-
tions, so that subsequent statistical tests and machine learn-
ing methods can be applied as an exhaustive search among
a smaller number of SNPs. The performance of data-driven
filtering depends on the assumptions that the statistical tests
or filtering algorithms make. Single marker association fil-
tering can only screen interactions among SNPs showing at
least a moderate effect on the trait of interest, while feature
selection filtering and variance heterogeneity filtering can be
used to detect SNP interactions with very weak marginal SNP
effects.

Filtering according to single marker association. Filtering SNPs
based on their marginal effects is frequently used for a high-
dimensional gene–gene interaction search. It is often combined
with biological filtering to identify interactions among SNPs
that are marginally associated with a phenotype (Baranzini et al.,
2009; Grady et al., 2011; Turner et al., 2011; Ma et al., 2012;
Pendergrass et al., 2013a). This approach follows the princi-
ples of hierarchical model building in the general linear model,
where the interaction terms are tested only after all main-effect
terms are deemed statistically significant. Typically the signifi-
cance threshold used is less stringent than the usual genome-
wide threshold of 5 × 10−8. The advantage of this filtering
is that it is easy to implement; its disadvantage is that it has
low power for detecting interactions among low-marginal-effect
SNPs.

Filtering by feature selection algorithms. Feature selection
algorithms such as Relief (Kira and Rendell, 1992), ReliefF
(Kononenko, 1994), Tuned ReliefF (TuRF; Moore and White,
2007), and Spatially Uniform ReliefF (SURF; Greene et al., 2009)
can also be used. They screen pairs of diallelic SNPs that can clus-
ter individuals with similar phenotypes, on the basis of the nine
two-SNP genotypes, into two distinct classes (e.g., cases versus
controls). For each individual only a small subset of neighboring
individuals, i.e., individuals most similar to that individual over
all the SNPs, is examined. Iterating over each individual and its
chosen subset of neighboring individuals, SNPs are up-weighted
for selection on the basis of belonging to the SNP pairs most
frequently found in all such sets. Simulation results have indi-
cated this is able to identify SNP pairs with purely non-additive
effects in genome-wide datasets. Evaporative cooling (McKinney
et al., 2007) is another feature selection approach which cou-
ples mutual information and thermodynamics theory. It filters
SNPs by removing those with least information for epistatic inter-
actions. Such feature selection filtering is able to retain pure
epistatic (i.e., essential) interaction between markers with low-
marginal effects, offering a powerful alternative to single-marker
filtering.

Filtering by testing variance heterogeneity of phenotype among
SNP genotypes. For a quantitative trait, the presence of gene–gene
interactions will result in heterogeneity of the phenotype vari-
ances among the genotypes of a single SNP, and this heterogeneity
of phenotype variance has been proposed as a screen to priori-
tize SNPs for interaction testing (Paré et al., 2010; Struchalin et al.,
2010). SNPs selected on the basis of variance heterogeneity would
then be used for later gene–gene or gene–environment interac-
tion analyses. However, unless the phenotypic means are the same
for all the SNP genotypes, a transformation corresponding to a
non-linear change in the scale of measurement may equalize the
variances (Sun et al., 2013). This transformation, if it can be found,
would eliminate any interactions detected this way.

USING OPTIMAL SEARCH ALGORITHMS AND COMPUTATIONAL
TECHNOLOGY TO SPEED A SCAN FOR INTERACTIONS
Exhaustive search of interactions among millions of SNPs in
GWAS data is computationally time-consuming. However, heuris-
tic stochastic searching algorithms and efficient computational
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technology, such as parallel computing and bit operation, can
boost the computational speed and, if maximization is involved,
speed the convergence required to calculate test statistics. Some
interaction studies use optimal searching and computational tech-
nology to search the whole space for potential interactions. An
ultrafast genome-wide scan approach for SNP–SNP interactions,
SIXPAC, employs a randomization searching algorithm – prob-
ability approximate complete (PAC) testing – to drastically trim
the universe of SNP combinations. The approach samples small
groups of cases and highlights combinations of alleles carried by
all individuals in the group. By further incorporating bit operation
technology, SIXPAC can scan genome-wide pair-wise interactions
in a few hours, compared to PLINK in weeks (Prabhu and Pe’er,
2012).

Lu et al. (2012) developed a likelihood ratio-based Mann–
Whitney approach that can test high-order interactions. It is
computationally efficient and only conducts one test for all the
identified interaction, so that no adjustment is necessary for mul-
tiple testing. A further extension of the approach introduces a
randomizing algorithm into the scan, using ensemble tree mod-
els (Wei et al., 2013), to increase the computational efficiency and
convergence precision.

Schüpbach et al. (2010) developed an efficient extension of
the PLINK epistasis module by using a parallel computing algo-
rithm running on multiple processors to increase the speed of an
exhaustive scan of all SNP pairs.

Heuristic or randomized search is much more efficient than
exhaustive search, so it can perform a genome-wide scan of inter-
actions among millions of SNPs without any filtering in reasonable
time. However, it cannot guarantee reaching the optimal solu-
tion, which means it may not find all the biologically relevant
interactions.

CONCLUSION
Numerous approaches have been proposed for the analysis of
epistatic interactions, each of which has advantages and disad-
vantages. Regression models are easy for model interpretation,
but they are less suitable for modeling high-order interac-
tion on a large number of markers. Model-free approaches do
not give an explicit explanation of interaction findings, but
they are good at detecting high dimensional non-linear inter-
actions. Tests for interactions by contrasting LD between cases
and controls or by studying phenotype variance heterogene-
ity among the different genotypes of a SNP, are two spe-
cial tests for detecting epistasis in the absence of any main-
effect.

With the emergence of massive amounts of genome sequenc-
ing data, developing efficient searching algorithms and filter
pipelines are especially important. Heuristic searching is much
faster than exhaustive searching, at the cost of missing some true
positive results and finding more false positive results. Filter-
ing pipelines based on biological knowledge have the advantage
of providing a clearer biological explanation for the detected
interactions, but the assumed knowledge may be limited and
not error-free, in which case such filtering may also lead to
testing some irrelevant interaction models and may miss novel
and important signals. Data-driven filtering cleans the data by

removing low quality and the least informative SNPs, but its
performance depends on the underlying assumptions of the fil-
ter. Because statistical and biological filtering each has unique
features, they should be viewed as complementary to, rather
than as competing with, each other. Through novel approaches
for filtering and modeling GxG interactions, we may iden-
tify more of the missing heritability for common, complex
traits.
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WHAT ARE COPY NUMBER VARIATIONS?
Copy number variations (CNVs) are deletions and duplications
in the genome that vary in length from ∼50 base pairs to many
megabases (50 base pair to 1 kilobase CNVs are typically consid-
ered indels). Events that cause CNVs include non-allelic homolo-
gous recombination, non-homologous end-joining, transposition
of transposable elements, transposition of pseudogenes, vari-
able numbers of tandem repeats, and replication errors following
template-switching or fork stalling. CNVs are the primary mode
by which an individual acquires a mutation, and occur at a rate of
approximately 1.7 × 10−6 per locus as opposed to 1.8 × 10−8 for
sequence variation (Lupski, 2007). Estimates of CNV frequency
vary depending on the size of the structural variation classed as
CNV – some estimates suggest that up to 12% of the genome
may be variable in copy number, and that the cumulative result
of CNV inheritance may constitute more than 10% of the human
genome (Carter, 2007; Lupski et al., 2010). Recent studies suggest
that the average human genome contains >1000 CNVs, cover-
ing approximately four million base pairs (Conrad et al., 2010;
Mills et al., 2011), and occur at a rate of 0.07–0.12 per generation
(Cordaux and Batzer, 2009; Itsara et al., 2010; Beck et al., 2011;
Malhotra and Sebat, 2012). The Database of Genomic Variation
(DGV)1 currently lists over 100,000 published, unique, CNVs
across the genome. While the majority continues to be benign,
an increasing number of CNVs have been associated with dis-
ease susceptibility. Common functional consequences of CNVs
typically demonstrate gene dose effect and include truncated pro-
tein sequences, eliminated/reduced protein expression (typically

1http://dgv.tcag.ca/dgv/app/home

the result of deletions), or increased protein expression (typically
caused by duplications).

HOW ARE COPY NUMBER VARIATIONS IDENTIFIED?
ARRAY-BASED APPROACHES
A range of approaches are available for detecting CNVs (Figure 1).
The most common methods rely on computational methods,
which leverage signals from genotyping and sequencing to infer
CNVs. For example, large chromosomal anomalies can be detected
through log R ratio (LRR) and B-allele frequency (BAF), data
routinely generated and provided with single nucleotide poly-
morphism (SNP) and exome microarrays (e.g., Figure 2). For
replication and validation, quantitative PCR – which compares
the threshold cycles of a target versus reference sequence –
is still widely deployed. In a similar vein, paralogs-ratio test-
ing and molecular copy number counting are also used for
validation.

For high-throughput CNV detection, the most common plat-
forms are genome hybridization (CGH) arrays, genome-wide
association (GWA) arrays, and second-generation sequencing
(SGS). CGH arrays use artificial bacterial chromosomes or long
synthetic oligonucleotides to probe either specific regions of inter-
est or the entire genome (Greshock et al., 2007; Haraksingh et al.,
2011). While this method has relatively low spatial resolution (typ-
ically >5–10 Mb; Kallioniemi et al., 1993) and requires a relatively
large volume of DNA, CGH does offer high sensitivity and speci-
ficity (Greshock et al., 2007; Haraksingh et al., 2011), which is
critical in a diagnostic context.

Single nucleotide polymorphism (SNP) arrays are more com-
monly used for CNV analysis, and CNVs can be identified from
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FIGURE 1 | CNV detection using different platforms: platforms vary in their capacities to detect CNVs.

FIGURE 2 | CNV detection in SNP-array data using PennCNV:

example log R ratio (LRR) and B Allele Freq (BAF) values for the

chromosome 15 q-arm of an individual. Three normal chromosomal
BAF genotype clusters (AA, AB, and BB genotypes) have LRR values
around zero. The copy-neutral loss-of-heterozygosity (LOH) region has

normal LRR values, but no AB cluster. Increased copy number can be
observed in the increased number of peaks in the BAF distribution and
increased LRR values. LRR and BAF patterns are different for different
CNV regions, and can be used to generate CNV calls. Adapted from
Wang et al. (2007).
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standard GWA array signals, or from arrays that utilize custom
probes. Custom probes offer greater coverage of non-SNP sites,
and can offer high sensitivity, particularly with regard to break-
point resolution (Haraksingh et al., 2011). While conventional
(i.e., non-custom) SNP arrays offer less specificity, they never-
theless represent a cost-effective option for characterizing CNVs
and have been successfully applied to a wide range of phenotypes
to date (Connolly and Hakonarson, 2012).

Importantly, it is possible to retroactively characterize CNVs
from existing genome-wide association study (GWAS) data. In
this context, the observed SNP signal of an allele relative to
the normalized intensity of the allele can be used to deduce a
deletion (decreased intensity) or duplication (increased inten-
sity; Glessner et al., 2012). This possibility constitutes a major
opportunity for custodians of large biorepositories such as elec-
tronic medical record and genomics (eMERGE), where a large
volume of GWAS data has already been generated. Since its found-
ing in 2007, the eMERGE consortium has produced dozens of
GWASs on a range of phenotypes including lipids (Rasmussen-
Torvik et al., 2012), arrhythmia (Ritchie et al., 2013), and white
blood cell count (Crosslin et al., 2012) to name a few. For
many of these phenotypes, no CNV studies have been pub-
lished to date. This, we believe, represents an opportunity to
identify new disease-associated loci without the generation of
new genotype data, and will be addressed by the consortium
in the immediate future. Similarly, we note that a large num-
ber of studies listed in the NHGRI GWAS catalog2 do not have
complementary CNV data, suggesting a largely under-utilized
resource.

For array-based analyses, a range of packages are available.
Both Affymetrix and Illumina – the two primary purveyors of
SNP arrays – offer free software packages for CNV analysis. Inde-
pendently developed toolsets are also available. These include
circular binding segmentation (Olshen et al., 2004) MixHMM (Liu
et al., 2010), GADA (Pique-Regi et al., 2008), PennCNV (Figure 2;
Wang et al., 2007), and ParseCNV (Glessner et al., 2013a; the lat-
ter two were developed by eMERGE researchers and are widely
used).

SEQUENCING-BASED APPROACHES
Common CNVs are well-covered by SNPs in existing arrays
(Conrad et al., 2010; Wellcome Trust Consortium et al., 2010).
However, a resequencing study by Pang et al. (2010) suggests
that coverage of rare CNVs may be less comprehensive. The
authors identified over 12,000 structural variants in 4,867 genes
across 40 + mb of sequence (the Venter genome), which had
been initially unreported. More than 24% of these CNVs would
not have been imputed by SNP-association. Given that rare
alleles can have large effect sizes and a high penetrance, these
results underline the limitations of SNP arrays to identify certain
pathogenic CNVs. SGS, which is far more proficient at identi-
fying rare CNVs, offers an attractive solution in this regard –
particularly in identifying novel insertions absent in the refer-
ence genome. This has obvious clinical utility. SGS also confers a
number of other critical advantages in terms of ability to identify

2http://www.genome.gov/gwastudies/

smaller CNVs (<50 bp), and an enhanced capability for detect-
ing breakpoints (Li and Olivier, 2013). Indeed, because SGS
allows us to probe breakpoints at the level of base pairs, it facili-
tates capture of the signature of potential mutational mechanisms
(Li and Olivier, 2013).

With SGS data, the most common methods for CNV iden-
tification from short-read analysis (Medvedev et al., 2010) are
read-depth analysis (Xie and Tammi, 2009; Yoon et al., 2009;
Abyzov et al., 2011), split-read mapping (Mills et al., 2006), paired-
end read mapping (Korbel et al., 2009), and clone-based sequenc-
ing (Kidd et al., 2008). For all approaches, the most important
determinants of accuracy are alignment and read-length. The aver-
age length of (reliable) reads is ∼ from 100 to 150 bp, which
is insufficient to eliminate erroneous mapping. As this metric
improves, CNV-calling algorithms will become more accurate.

A large number of algorithms have been developed for
indentifying CNVs from sequencing data, including CNVnator
(Abyzov et al., 2011), PennCNV-Seq (in press), GenomeStrip
(Handsaker et al., 2011), cnvHiTSeq (Bellos et al., 2012), and
XHMM (Fromer et al., 2012). Different CNV algorithms have
different strengths and weaknesses (see Li and Olivier, 2013 for
review), and the most effective strategy in terms of minimizing
erroneous CNV calls is to incorporate multiple toolsets, which
can be validated computationally via local de novo assembly (e.g.,
see SVMerge, Wong et al., 2010).

DISEASE-ASSOCIATED COPY NUMBER VARIATIONS
As discussed elsewhere in this issue, GWASs have been success-
ful in identifying common risk variants, particularly where the
frequency of such variants is >5%. In addition to common vari-
ants, certain disorders have been shown to be enriched for rare
CNVs (Conrad et al., 2010; Pang et al., 2010). In terms of func-
tional impact, CNVs have been shown to be enriched in genes
involved in immune responses, cell–cell signaling, and retrovirus-
and transposition-related protein coding (Li and Olivier, 2013). A
large number of phenotypes have now been associated with CNVs,
including several rare diseases (Matsuura et al., 1997) and a range
of neurodevelopmental disorders (Glessner et al., 2012), includ-
ing depression (Glessner et al., 2010c), schizophrenia (Glessner
et al., 2010b), and autism (Glessner et al., 2009). Autism pro-
vides a particularly good example of how our understanding of
genetic risk factors and etiology is enhanced by CNV research,
as demonstrated by a recent exome sequencing study (Iossifov
et al., 2012) involving 343 families from the Simons Simplex
Collection.

The study identified 59 “likely gene disruptions (LGDs)” in
autism cases. Interestingly, the 59-strong LGD shared overlapped
strongly with a set of 842 proteins that interact with the fragile
X protein, FMRP. In total, 14 of the 59 LGDs encoded FMRP-
interacting proteins (P = 0.006), as did 13 of 72 CNV candidates
from the group’s previous CNV paper (P = 0.0004). Thus, 26 of
129 candidates were FMRP-related (P < 1 × 10−13). These results
mark the fragile X mental retardation 1 (FMR1) gene as a high-
profile autism candidate. Screening upstream targets of FMR1, the
same group identified a deletion in GRM5 that removes a single
amino acid, causing an additional substitution at the same site.
GRM5 encodes the glutamate receptor mGluR5 (Bear et al., 2004),
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which has been proposed as translational target in both ASD and
ADHD (Elia et al., 2012; Silverman et al., 2012).

Several other CNV studies of autism have uncovered rare recur-
rent CNVs that have been informative. Our laboratory recently
identified a range of CNVs in two major gene networks, ubiq-
uitins and neuronal cell adhesion molecules that predispose to
autism (Glessner et al., 2009). The ubiquitin–proteasome system
is known to operate at pre- and post-synapses, and mediate neu-
rotransmitter release, recycling of synaptic vesicles in pre-synaptic
terminals, and modulating changes in dendritic spines and post-
synaptic density (Yi and Ehlers, 2005). Neuronal cell adhesion
molecules contribute to neurodevelopment by facilitating axon
guidance, synapse formation and plasticity, and neuron–glial
interactions.

Results from these and several other CNV studies suggest that
genomic hotspots may be particularly vulnerable, which for autism
include loci on chromosomes 1q21, 3p26, 15q11–q13, 16p11, and
22q11 (Bucan et al., 2009; Glessner et al., 2009; Pinto et al., 2010).
Interestingly, these hotspots are part of large gene networks that
are important to neural signaling and neurodevelopment, and
have additionally been associated with other neuropsychiatric dis-
orders. For example, studies of schizophrenia have highlighted
structural mutations incorporating chromosomes 1q21, 15q13,
and 22q11 (Glessner et al., 2010b). From an etiological perspec-
tive, autism and schizophrenia seem extremely different and it
would seem counter-intuitive that associated loci should overlap.
Some authors have addressed this peculiarity by proposing that
the two disorders may in fact be opposite poles of the same spec-
trum (Crespi and Badcock, 2008). While such propositions await
confirmation, they do highlight the potential of CNV studies to
generate new hypotheses about the nature of complex diseases.
Although individual structural variants explain relatively little by
way of genetic variance, their cumulative is likely to be consider-
able. For autism, Marshall et al. (2008) suggested that CNVs play
a causal role in 7% cases.

Beyond neuropsychiatric diseases, CNV studies have been pub-
lished across a range of disease types, including heart disease
(Goldmuntz et al., 2011), obesity (Glessner et al., 2010a), and
cancer (Kuusisto et al., 2013). They have also recently been impli-
cated in altered lifespan through alternative splicing mechanism
(Glessner et al., 2013b).

COPY NUMBER VARIATIONS IN THE CONTEXT OF THE
EMERGE CONSORTIUM
As illustrated in Table 1, the eMERGE consortium bioreposi-
tory includes ∼60,000 individuals that have been genotyped on
high-density GWA arrays3, all of which have been linked with
electronic medical records (EMRs). The size and diversity of the
repository is such that it invokes the possibility for deep mining
of disease-associated variants across multiple phenotypes. It is
inevitable that a reasonable proportion of these individuals have
disease-associated CNVs, and a larger proportion may be carriers
of structural variants in recessive disease genes. By systematically
characterizing CNVs across the biorepository, we have a very obvi-
ous opportunity to catalog CNVs and their disease-burden status.

3http://www.genome.gov/27540473

We have now run PennCNV on eMERGE Phase I data (2007–
2011), and will soon have circular binary segmentation analyses
complete for the same set (50-kb to whole-chromosome). Rele-
vant analyses will play a major role in the consortium’s Phase II
genomics program (2012–2015).

Similarly, the eMERGE consortium recently embarked upon
a large-scale pharmacogenomics project [n = ∼9000, review at
Rasmussen-Torvik et al. (2012) in this issue], featuring a tar-
geted sequencing platform developed by the Pharmacogenomics
Research Network (PGRN), and covering 84 genes considered
important for drug–gene interactions4. While the primary pur-
pose of this project is to screen for existing pathogenic variants,
this does offer an important opportunity to probe for novel vari-
ants in existing candidate genes, and to return results to patients’
medical records. This clearly cannot be accomplished without
paying heed to extensive medical, psychological, and ethical con-
siderations, which are addressed elsewhere in this issue and in
previous literature (Green et al., 2013). Assuming, however, that
such considerations are adequately addressed, the section below
considers how this might be accomplished and the potential to
impact clinical care.

INTEGRATING CNVs WITH MEDICAL RECORDS – WHAT ARE
THE OBSTACLES?
As discussed at length in this issue, the possibility of linking
genomics data with EMRs represents a potentially major health-
care opportunity. What variants/results and how to report them
remains open to debate, and indeed part of the remit of the
eMERGE consortium is to think through these hurdles.

An obvious first step is determining the pathogenicity of rel-
evant CNVs. Traditionally (e.g., cytogenetics), interpretation of
CNVs has concentrated on diseases where the mode of inheritance
was dominant, and relied on simple case–control comparisons to
discriminate pathogenic from non-pathogenic variations. Where
the CNV was common (i.e., frequency >1–5%), it was typi-
cally classed as non-pathogenic. Thus, by process, “rare” implied
“pathogenic.” With SGS and the increased capacity to detect
smaller CNVs, this assumption falls down to a certain extent.
We have started to see numerous studies where control and
case de novo rate of small CNVs is as high as 5–10%. For
rare CNVs in complex diseases, there is often insufficient power
on which to base a judgment. Public databases that catalog
pathogenic and non-pathogenic CNVs are therefore critical to
determining frequencies of CNVs in disease cases and healthy
controls.

Perhaps the most widely used catalog is the DGV, which aims
to provide a “comprehensive summary of structural variation in
the human genome” based on peer-review of relevant studies.
While the DGV has obvious clinical and research relevance, sev-
eral recent commentaries (Duclos et al., 2011; Hehir-Kwa et al.,
2013) have urged caution in relying too heavily on its frequency
and mapping statistics. As highlighted by Lee et al. (2007), many
CNVs in the DGV are derived from single platforms/technologies,
which may not necessarily translate to alternate approaches. Sev-
eral recent studies (Perry et al., 2008; Conrad et al., 2010) suggest

4www.pgrn.org

Frontiers in Genetics | Applied Genetic Epidemiology March 2014 | Volume 5 | Article 51 | 135

http://www.genome.gov/27540473
http://www.pgrn.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Connolly et al. CNV analysis of eMERGE phenotypes

Table 1 | Summary of biorepositories and electronic medical records (EMRs) at 10 eMERGE-Institutions. Adapted from Gottesman et al. (2013).

Institution Biorepository Recruitment model Biorepository size Race/ethnicity and age of donors

Boston Children’s

Hospital

Gene Partnership Outpatient and

hospital-based

3,372 83% European 9% African 6% Asian

11% Hispanic/Latino Mean age:

23 years

Children’s Hospital

of Philadelphia

A Study of the Genetic Causes of

Complex Pediatric Disorders

Population-based

and disease-specific

60,000 internal (plus

100,000 external)

47.0% European 43.3% African 7.0%

Admixed 1.7% Asian 0.8% Hispanic

0.2% Native Amer. Mean age: 11 years

Cincinnati Children’s

Hospital

Better Outcomes for Children Outpatient and

hospital-based

8,472 73% European 10% African Mean age:

9 years

Geisinger Clinic MyCode® Population-based

and disease-specific

35,000 98% European Age: < 89 years

Group Health Seattle ACT Study; Alzheimer’s Disease

Patient Registry (ADPR); Northwest

Institute of Genetic Medicine (NWIGM)

Disease-specific and

HMO-based

5,859 92% European Age: > 50 years

Marshfield Clinic

Research Foundation

Personalized Medicine Research

Project

Population-based 20,000 98% European Mean age: 48 years

Mayo Clinic Vascular disease biorepository (VDB);

Mayo Clinic Biobank; other

disease-specific

Outpatient-based 36,000 97% European Mean age: 63 years

Mount Sinai School

of Medicine

BioMeTM, The Charles Bronfman

Institute for Personalized Medicine

Biobank Program

Outpatient and

hospital-based

25,000 40% Hispanic/Latino 25% African

25% European

Northwestern

University

NUgene Outpatient and

hospital-based

12,000 9% Hispanic/Latino 12% African

78% European Mean age: 48 years

Vanderbilt University BioVU Outpatient and

hospital-based

155,000 2% Hispanic/Latino 15% African

80% European Mean age: 49 years

that because of relatively low resolution in some studies, the size
of relevant CNVs may be smaller than outlined in the DGV.
Duclos et al. (2011) drew similar conclusions, stressing the“urgent
need to validate the frequencies and boundaries of the CNVs
recorded in the DGV.” This conclusion is based on the groups
finding that some of the recorded CNVs are erroneously listed as
polymorphic, which, if implemented in a medical setting may
led to a deleterious CNV being called benign. Alternate CNV
databases (e.g., dbVar; Lappalainen et al., 2013) have been estab-
lished, but all are restrained by the quality of data on which they are
based.

Other obstacles that have hampered development of CNV
databases are inconsistent annotation of genomic data across
studies, ill-defined curation protocols (e.g., QC-reporting, CNV-
calling parameters), and incomplete phenotypic data. In each
case, there is potential for consortium-led efforts to delineate
best practices. To address the challenge of incomplete pheno-
types, there is a particular opportunity for the eMERGE network.
The majority of individuals enrolled in the eMERGE repos-
itory have their longitudinal EMRs linked to their genotype.
This affords far greater potential for determining pathogenic-
ity than traditional case–control studies, where controls may be

categorized as lacking a specific disease state, with no other phe-
notype data. Completeness-of-EMR is critical in this regard. For
patients enrolled in the biorepository at The Children’s Hospi-
tal of Philadelphia, the mean duration of EMRs is ∼5.5 years,
and is similar across other eMERGE sites. Relevant data include
all ICD-9 diagnoses, lab values, procedures, and medications.
Data of this length and depth should be considered minimal
requirements for addressing pathogenicity on a large scale, while
supplementation with disease-specific measures is also highly
desirable.

Another major challenge in returning CNV data to patients’
EMR concerns the nature of inheritance. An interesting study
by Boone et al. (2013) recently sought to determine the rate of
CNVs in recessive disease genes. The group used CGH to char-
acterize deletion CNVs in 21,470 individual, identifying 3,212
heterozygous potential carrier deletions in 419 unique disease-
associated genes. While many of these CNVs are likely benign
polymorphisms, the group identified 206 heterozygous CNVs
in multiple recessive genes, spanning 2–6 genes in each dele-
tion. These CNVs, therefore, confer carrier status for multiple
recessive conditions. Similarly, 307 individuals had multiple dele-
tions in recessive disease genes. While many of these gene pairs
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have unrelated function, a non-trivial proportion belongs to a
shared pathway. Indeed, one participant had a CNV spanning
three recessive immune genes PSMB8, TAP1, and TAP2, which
are associated with autoinflammation, lipodystrophy, dermato-
sis syndrome (PSMB8), and type I bare lymphocyte syndrome
(TAP1 and TAP2). He also had a CNV in CD19, mutations of
which are associated with common variable immunodeficiency.
The authors were unable to determine whether the individual had
a compromised immune system or presented with a history of
immune disease (samples were anonymized). Nevertheless, he was
clearly a multiple-deletion carrier, as were ∼1.5% of the cohort:
such information may be of direct clinical relevance to individ-
uals’ offspring – whether this should be shared remains open to
debate.

Inherited CNVs pose a similar set of problems. While the
majority of inherited CNVs may be in loci that lead to reces-
sive disorders, this is not always the case. Indeed, one of the
best-known CNVs is duplication at 15q11–q13, which accounts
for up to 3% of autism cases (Sebat et al., 2007; Marshall et al.,
2008). A complex scenario was recently described by Knijnen-
burg et al. (2009), where a child with a homozygous deletion in
15q13.3 (inherited from non-consanguineous, hemizygous car-
rier parents), resulted in hearing loss. Critically, if the CNV is a
gain, three copies may have no phenotypic effect but four copies
may have clinical consequences (Giorda et al., 2011). Conversely,
when one parent carries a CNV loss in a recessive disease gene
and the other parent carries a mutation in the same gene, this
can result in compound heterozygosity in offspring (Hehir-Kwa
et al., 2013; Paciorkowski et al., 2013). These findings stress the
point that not only is the size, location, and direction of the
CNV important, but so too is the number of copies. A range
of other inheritance scenarios are reviewed by Hehir-Kwa et al.
(2013), including X-linked CNVs (wide vary widely across indi-
viduals), and mosaic imbalances (Kousoulidou et al., 2013; may
vary across an individual’s cell types; Biesecker and Spinner, 2013;
Forsberg et al., 2013).

Another point concerning CNV interpretation is the phe-
nomenon of pleiotropy. As discussed above, a large proportion of
reported recurrent CNVs have replicated across diseases (Cooper
et al., 2011; Girirajan et al., 2011; Sahoo et al., 2011; Williams
et al., 2011). Thus, the same microduplications at 1q21.1 have
been associated with both autism and schizophrenia (Weiss
et al., 2008; McCarthy et al., 2009). Relevant factors influenc-
ing the expressivity of this microduplication are a combination
of environmental, epigenetic, and oligogenic (other modifier
genes; Girirajan et al., 2010) factors. The precise mechanisms
of causality that lead to a particular etiology are thus likely to
be extremely complex, which calls into question what, if any-
thing, might be reported in patients’ EMRs. Such questions are
the subject of ongoing debate (Fabsitz et al., 2010; Cassa et al.,
2012), and are beyond the scope of this review. However, it
is obvious that as genomic data becomes increasingly ubiqui-
tous, we will require extensive guidelines in determining how
CNV results should be interpreted and shared. For the same
reason, it is critical that healthcare professionals receive ade-
quate training and resources to understand and communicate test
results.

Additionally, due to large numbers of cell divisions, CNVs, par-
ticularly deletions, can be acquired in the hematogenic progenitor
cells. We have previously shown that acquired mosaicism increases
with age and can be associated with hematological disorders
(Laurie et al., 2012; Schick et al., 2013). However, when analyz-
ing CNVs associated with neurological disorders, such acquired
CNVs must be distinguished from germline mutations that are
represented in non-hematological tissues, such as brain.

CONCLUSION
To date, a large number of diseases, across a large range of
fields, have been associated with CNVs. We are still in our rel-
ative infancy in terms of deciding-upon the pathogenicity of such
structural variants. We have stressed the need for a large, publicly
accessible, and curated repository where CNVs that have been val-
idated across platforms and technologies are stored. Whether this
repository stems from improving existing catalogs or is developed
ab initio remains to be determined, but the necessity of such a
resource is compelling. Several eMERGE-led projects could fun-
nel directly into such a repository, which would have real potential
to impact healthcare.

A number of obstacles have stymied result-sharing – difficulties
identifying CNVs (particularly in regions enriched for repetitive
content), a shortage of standards, and the nature of CNV disease
burden. These problems have attracted much attention in the past
several years, and are well-characterized. While there is general
agreement that such obstacles are substantial, there is a similar
degree of optimism that benefits to be derived from solving these
problems far outweigh the costs required. Again, consortium-led
initiatives will likely be the most effective platforms for standardiz-
ing CNV-calling algorithms and developing guidelines for clinical
care. The time is ripe for such initiatives, and we expect to see
CNV-driven research make a major impact in clinical care in the
next decade.
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Next Generation Sequencing studies generate a large quantity of genetic data in a
relatively cost and time efficient manner and provide an unprecedented opportunity to
identify candidate causative variants that lead to disease phenotypes. A challenge to these
studies is the generation of sequencing artifacts by current technologies. To identify and
characterize the properties that distinguish false positive variants from true variants, we
sequenced a child and both parents (one trio) using DNA isolated from three sources
(blood, buccal cells, and saliva). The trio strategy allowed us to identify variants in the
proband that could not have been inherited from the parents (Mendelian errors) and would
most likely indicate sequencing artifacts. Quality control measurements were examined
and three measurements were found to identify the greatest number of Mendelian errors.
These included read depth, genotype quality score, and alternate allele ratio. Filtering the
variants on these measurements removed ∼95% of the Mendelian errors while retaining
80% of the called variants. These filters were applied independently. After filtering, the
concordance between identical samples isolated from different sources was 99.99% as
compared to 87% before filtering. This high concordance suggests that different sources
of DNA can be used in trio studies without affecting the ability to identify causative
polymorphisms. To facilitate analysis of next generation sequencing data, we developed
the Cincinnati Analytical Suite for Sequencing Informatics (CASSI) to store sequencing files,
metadata (eg. relatedness information), file versioning, data filtering, variant annotation,
and identify candidate causative polymorphisms that follow either de novo, rare recessive
homozygous or compound heterozygous inheritance models. We conclude the data
cleaning process improves the signal to noise ratio in terms of variants and facilitates
the identification of candidate disease causative polymorphisms.

Keywords: whole exome sequencing, variant filtering, next-generation sequencing, disease causative

polymorphisms, Mendelian errors, Mendel errors, CASSI

INTRODUCTION
Next-generation sequencing (NGS) has emerged as a powerful tool
to investigate the genetic etiology of diseases. The use of NGS data
has revolutionized clinical treatment and bench research. In gen-
eral, the data generated in a NGS study are massive by comparison
to that generated by a genome-wide genotyping array. In NGS,
a fastq file of millions of short DNA sequences is generated for
each sample. These fastq files are aligned to the reference genome
using one of many different alignment tools. The alignment pro-
grams create a sequence alignment/map (SAM file) or a binary
alignment/map (BAM file; Yu and Sun, 2013). It is widely appreci-
ated that NGS generates a large number of sequencing errors. The
extraordinary quantity of data generated even with a low error rate

generates a large number of sequencing artifacts which will likely
be called variants. This gives the appearance that NGS does not
compare well with Sanger sequencing or genotyping arrays (4), but
we show herein that the error rate of NGS of the called variants
can be substantially reduced with the relative preservation of the
vast majority of the data. To address the limitations imposed upon
NGS studies by sequencing artifacts, we find refuge in redundancy.
Typically, researchers obtain 40–200 reads of each base. Therefore,
SAM and BAM files are large files and contain hundreds of millions
of short sequences aligned to the reference genome. Variant callers
such as the Genome Analysis Tool Kit (GATK) are used to gener-
ate a list of the variants in the variant call format (VCF; McKenna
et al., 2010). VCF files contain meta-information for each variant

www.frontiersin.org February 2014 | Volume 5 | Article 16 | 140

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Journal/10.3389/fgene.2014.00016/abstract
http://www.frontiersin.org/people/u/114788
http://www.frontiersin.org/people/u/83340
http://www.frontiersin.org/people/u/128078
http://community.frontiersin.org/people/MarcWilliams_1/133996
http://www.frontiersin.org/people/u/130461
http://www.frontiersin.org/people/u/127869
http://www.frontiersin.org/people/u/120343
http://www.frontiersin.org/people/u/124119
http://www.frontiersin.org/people/u/127924
http://www.frontiersin.org/people/u/127873
http://www.frontiersin.org/people/u/84528
http://community.frontiersin.org/people/MargaretHostetter/132335
http://www.frontiersin.org/people/u/117350
mailto:kenneth.kaufman@cchmc.org
http://www.frontiersin.org/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Patel et al. Filtering exome sequencing errors

relative to a known reference genome sequence, as well as qual-
ity measurements for each subject’s individual genotypes. These
individual quality metrics include the overall number of reads at
each position as well as the number and depth of alleles detected.
In addition to predicting the nucleotide base or generating a base
call calculated from a statistical algorithm, GATK also calculates a
confidence score for the predicted nucleotide, the genotype quality
score (Nielsen et al., 2011).

A multi-sample VCF file includes all of the genotypes for which
at least one subject has a variant. Due to the flexibility of the
format, the information contained in these files can vary widely.
Furthermore, different variant callers are known to produce dif-
ferent calls (Rosenfeld et al., 2012; Liu et al., 2013). To further
complicate matters, there is no currently agreed upon consensus
to guide the analytical choices that are made when deciding which
variant calls to include in a VCF file [as reviewed in Nekrutenko
and Taylor (2012)]. One approach is to exclude (or filter) variants
from a VCF file based on various criteria. These filters are based on
a meta- or individual-sequencing parameter used to remove a par-
ticular variant. For example, variants can be filtered based upon
the read depth (the number of the times the variant was detected),
ratio of reads that contained the reference and alternate genotype
calls (alt read), or by genotype quality scores. A recent comparison
of the most common next-generation sequencing platforms and
methodologies demonstrated that only 57% of the variants are
common amongst five different pipelines using the same initial
data (O’Rawe et al., 2013).

Typically a whole exome NGS experiment will generate ∼50–70
million bases of sequence. Greater than 99.99% of the bases match
the reference genome. The remaining 0.01% of bases that differ
from the reference genome is identified as variants. Importantly,
most sequencing artifacts do not match the reference genome
and are mis-identified as variants. Thus, identifying variants also
has the effect of concentrating the sequencing artifacts. These
sequence artifacts can be detected by identifying non-concordance
of sequence from multiple assays of the same samples or as
Mendelian errors if family data are available. Mendelian errors
are genotypes that are found in the child that could not have been
inherited from either parent.

After obtaining the data from a whole exome NGS experiment,
analytical strategies range from identifying novel variants, to per-
forming genetic association studies, to identifying variants that are
candidates for potentially causing disease. Within the last 5 years,
exome sequencing methods have been employed to successfully
identify mutations in novel genes for a number of genetic con-
ditions, including Sensenbrenner syndrome, Kabuki syndrome,
and Miller syndrome (Gilissen et al., 2010; Ng et al., 2010a,b). One
highly successful strategy uses the healthy parents of a patient with
a severe disease to identify genetic variants in the patient that were
not inherited, termed de novo variants. In fact, disruptive de novo
variants appear to cause a substantial proportion of intellectual
disability and many rare genetic disorders (Hoischen et al., 2010,
2011; Vissers et al., 2010; Bartnik et al., 2011; Filges et al., 2011;
Gilman et al., 2011; Girard et al., 2011; Gonzalez-del Pozo et al.,
2011; Paulussen et al., 2011; Xu et al., 2011; Bujakowska et al.,
2012; Dauber et al., 2012; Harakalova et al., 2012; Iossifov et al.,
2012; Lederer et al., 2012; Lin et al., 2012; Neale et al., 2012; Need

et al., 2012; Neveling et al., 2012; O’Roak et al., 2012b; Riviere et al.,
2012; Sanders et al., 2012; Santen et al., 2012; Schrier et al., 2012;
Tsurusaki et al., 2012; Van Houdt et al., 2012; Whalen et al., 2012).

Using a trio study design (father, mother, and child) we can
identify non-inherited variants in a child. These variants are
sequencing errors, somatic mutations, or de novo mutations. We
have used this analysis of trios as an opportunity to identify
methodologies to filter the data to remove sequencing artifacts
while retaining true mutations. In this study, we systematically
assessed quality metrics to minimize Mendelian errors and iden-
tified a set of filters that remove these erroneous variants. These
critical metrics are the depth of read (DP), the genotype quality
score (GQ), and the alternate allele ratio. Filters based on these
metrics were applied to a trio in which each family member was
sequenced using three different sources of DNA (blood, saliva,
and buccal cells). We tested the efficiency and specificity of our
filters to remove sequencing artifacts by measuring the number of
Mendelian errors and total variants removed by each filter singly
and in combination. After testing the efficiency of our variant call-
ing filters, we evaluated the filters on the concordance rate between
identical samples from different DNA tissue sources. In order to
make these analyses accessible to clinician researchers with limited
command line programming experience, we have developed the
Cincinnati Analytical Suite for Sequencing Informatics (CASSI)
to seamlessly integrate the data storage, versioning, filtering, and
annotation of NGS data through a web-based interface.

METHODS
DATA DESCRIPTION
We performed whole exome sequencing on a family trio. For this
trio, three sources of DNA were obtained: blood, buccal, and
saliva. Blood samples were collected from the three individuals
using EDTA VacutainerTM Tubes (BD Franklin Lakes, New Jer-
sey, USA). The buccal cells were collected by taking a cheek swab
of each individual using the OGR-575 tubes from DNA-Genotek
(Kanata, ON, Canada) and the saliva samples were collected by
having each individual directly spit into the OGR-500 tube from
DNA-Genotek. DNA was extracted using the DNeasy Blood and
Tissue kit from Qiagen (Valencia, CA, USA). Each subject gave
informed consent or assent approved by the institutional review
board at Cincinnati Children’s Hospital Medical Center. We stud-
ied all samples by exome capture using the Illumina HiSeq 2000
100-base pair-end platform with the IlluminaTruSeq kit. (San
Diego, CA, USA; In our experience, exome data generated with the
AgilentSureSelect capture kit behaves similar to the data presented
in this paper). Samples were sequenced at Perkin Elmer (Branford,
CT, USA). These filters have been applied to data generated with
IlluminaTrueSeq and AgilentSureSelect capture technologies.

Reads were aligned to the UCSC reference human genome
assembly 37.681 using BWA with the following commands: aln-o
1-e 10-i 5-k 2-l 32-t 4 (Li and Durbin, 2010). The mapping files
in SAM format were converted to the BAM format using SAM
tools version 0.1.19 (Li et al., 2009). The variants were called with
the Broad Institute’s Genome Analysis Tool Kit (McKenna et al.,

1http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
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2010; DePristo et al., 2011) using the following commands: -T Uni-
fied Genotyper-dcov 1000-stand_call_conf 30.0-stand_emit_conf
30.0 – min_base_quality_score 20 -A Depth Of Coverage -A Indel-
Type -A QualByDepth -A ReadPosRankSumTest -A FisherStrand
-A MappingQualityRankSumTest -l INFO -glm.

We obtained an average of 94.5 million reads (range 80–115
million reads per subject, with 106-fold mean depth in the tar-
get regions). On average, approximately 98% of these reads were
mapped to the human reference genome.

DATA ANALYSIS
The VCF file generated by GATK was analyzed using Golden
Helix Software (ver. 7.7.8) (Bozeman, MT, USA) and the newly
developed CASSI. Variants located on the X and Y chromo-
somes were excluded from this analysis due to limitations in the
Golden helix software. Only informative genotypes for each family
were considered (genotypes where all three members of the trio
were homozygous and identical to the reference sequence were
removed). When sequencing data from multiple DNA sources
were compared, only informative SNPs within the trio from one
particular DNA source were included in the analysis. Variants
were only removed based on individual quality measurements.
When assessing the number of variants present in the child, all
variants that remained in the child’s dataset after the filters were
applied were counted (i.e., if the genotypes for both parents were
removed with a filter, but the child’s genotype remained, this
variant was still counted for the child), Mendelian errors were
calculated for each variant by determining genotypes in the child
which could not be inherited from the parents based on the par-
ent genotypes. Mendelian errors were inferred for variants with a
missing parental genotype if one parent and the child had opposite
homozygous genotypes. The Mendelian error calculation did not
include cases in which the child was heterozygous and only one
parent was called. People interested in using CASSI should contact
the corresponding author.

THE CINCINNATI ANALYTICAL SUITE FOR SEQUENCING INFORMATICS
Cincinnati Analytical Suite for Sequencing Informatics was
developed to address the data management requirements of
next-generation sequencing data and to facilitate access to state-
of-the-art open source analysis packages through a centralized
web-based interface. CASSI analysis pipelines are run on the
CCHMC 700 core Linux-based computational cluster and can also
run on a local Linux-based machine. It leverages existing open
source VCF file parsers and annotation tools including VCF tools,
ANNOVAR, UCSC Genome Browser, Exome Variant Server, and
dbGAP (Mailman et al., 2007; Wang et al., 2010; Danecek et al.,
2011; Meyer et al., 2013).

Cincinnati Analytical Suite for Sequencing Informatics consists
of a web-based front end driven by a MySQL backend. Users are
able to upload their NGS data in the form of VCF files along
with files that contain the family relatedness information for each
sample (fam files). CASSI performs basic quality control checks on
the uploaded files before they are accepted into the database. These
checks include looking for an abundance of Mendelian errors and
verifying the sex of the uploaded samples.

Fields that are commonly queried, such as sample name, family
ID, and variant position are parsed out of the VCF file and indexed
in the MySQL database. Storing only commonly queried fields in
the database while keeping the genotype information in the origi-
nal VCF file keeps the database size to a minimum while allowing
quick access to the original VCF file and sample information. Anal-
ysis begins by sample selection and analysis type selection from the
CASSI web interface. Using this information, CASSI then dynam-
ically generates a custom pipeline for the specific type of analysis,
which is launched using the LONI pipeline software (Rex et al.,
2003; Dinov et al., 2010). Pipeline parameters can be changed
through the LONI pipeline’s point-and-click interface. This allows
for a seamless transition between search and analysis interfaces
without requiring the user to have programmatic experience.

The LONI Pipeline simplifies computational cluster workflow
creation using a drag and drop interface. CASSI users can launch
and modify existing processing workflows directly from their web
browser by using Java Web Start technology. The selected pipeline
is preloaded into the LONI Pipeline client along with any sample
data retrieved from the web interface. This is achieved by injecting
the file locations of the sample data into a template .pipe LONI
Pipeline file. Users are then free to modify the workflow. Input
parameters are easily modified via the modules within the LONI
Pipeline. The LONI Pipeline server interfaces with existing high
performance computing environments in order to handle task
dependencies and parallelization. In our case it communicates
with the LSF job scheduler, but can also be used to communi-
cate with other scheduling systems such as Oracle Grid Engine.
Each modified LONI workflow can then be saved as XML and
versioned using existing source control solutions (Subversion, Git,
CVS, etc.). These XML files can be saved, shared, and submitted
directly to a Linux-based machine.

For trio analysis, each member of the trio is initially extracted
into a separate VCF file using VCFtools and then filtered on
parameters selected by the user. After filtering for high quality
variants, the samples are then scanned for amino acid altering
variants (non-synonymous, splicing, insertions, deletions, and
variations that alter initiation codons or stop codons) using the
UCSC genome browser build 37 human Reference Sequence Gene
table. Rare and novel variants are identified by filtering against
the 1000 genomes project phase 1 v3 database2 and the NHLBI
exome sequence project ESP6500 variant frequency data3. We also
generated and use an internal allele frequency table of 312 whole
exomes analyzed at CCHMC.

Individual and summary reports are generated for all candidate
causative variants. These variants are annotated with chromo-
some, position, minor allele frequency, Gene name (hyperlinked
to www.Genecards.org), transcript, and protein ID, amino-acid
position and functional predictions based on dbSNP functional
predictions Version 2 table.

IDENTIFICATION OF POTENTIALLY CAUSATIVE MUTATIONS
Three different models of inheritance were used to identify
candidate causative variants. We defined de novo variants as

2ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
3http://evs.gs.washington.edu/EVS/
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non-synonymous polymorphisms in which both parents are
homozygous for the reference allele and the proband contained
a heterozygous genotype. For homozygous recessive variants we
required both parents to be heterozygous for the variant and
the proband to be homozygous for the non-synonymous rare
allele. For compound heterozygous polymorphism, we required
the proband to contain at least two heterozygous non-synonymous
polymorphisms in the same gene and neither parent could contain
both variants. One variant could have a minor allele frequency in
the general population up to 5% (based on the 1000 genome and
exome sequence project); however, the other polymorphism had
to have a minor allele frequency below 1%.

RESULTS
We collected biological samples from the blood, saliva, and buc-
cal cells of a child and the two biological parents. By extracting
DNA from these nine samples and sequencing the exome, we used
Mendelian errors to identify those variants that were most likely
to be sequencing artifacts. In developing informatics filters for the
NGS exome data, we aimed to retain the largest number of total
variants while removing the largest possible number of Mendelian
errors in the child.

The vast majority of Mendelian errors in the unfiltered NGS
data is due to sequencing error rather than de novo mutations
based on the high fidelity of DNA replication in humans (Schmitt
et al., 2009; Korona et al., 2011) and provide a method of tracking
the effect of filters on sequencing artifacts. The initial analysis of
the VCF file from the DNA obtained from blood revealed 2519
Mendelian errors compared to 79,911 called variants (3.15%).
(These sequencing reads were mapped to 50 million bases, and for
more than 99% of these calls, each of the subjects were homozy-
gous for the reference base.) The mapped sequencing reads from
different DNA samples of the same trio showed similar sequenc-
ing quality parameters (Table 1), similar proportion of Mendelian
errors(3.05–3.15%), and total number of variants (79,234–79,911)
called. We systematically applied filters to the VCF files until
we identified the most efficient way to remove erroneous geno-
type calls while retaining the greatest number of true genotype
calls. The first filter was based on the read depth (DP-number
of sequencing reads that contain the variant) called within the

trio (Figure 1). The read depth histogram of all variants in the
proband using DNA isolated from blood shows a left-skewed dis-
tribution with two peaks located approximately at 5 reads and
at 80 reads (near the mean read depth for this sample). A his-
togram for the same sample for the Mendelian errors shows the
majority have a read depth below 12 reads and a sharp drop in the
number of Mendelian errors as the read depth increases. Based
on these results, we created filters with increasing stringency with
a goal of removing the largest portion of the Mendelian errors
while retaining the most variant calls. When applied to the unfil-
tered data a Read Depth < 10 removed 55% of the Mendelian
errors, while retaining 92% of the called variants. With a Read
Depth < 15 we were able to remove 59.2% of the Mendelian
errors while retaining 90% of the called variants. Increasing
the Read Depth filter above 15 had little effect on the number
of Mendelian Errors removed (Figure 1C). Similar results were
obtained with DNA isolated from buccal cells (61.6%) and saliva
(56.1%).

There were a number of variants called with a read
depth > 2000. It is possible that the sequences for these vari-
ants are the result of a PCR artifact during library construction
or corresponds to repetitive regions of the genome. We assessed
filters that excluded variants with Read-Depth > 800, >500, and
>300. After applying these filters, we removed 5, 8, and 12% of
Mendelian errors and 3, 6, and 15% of the total variants, respec-
tively. These data suggested that by filtering out variants with a
large relative mean number of reads we were not specifically fil-
tering out Mendelian errors, rather we were randomly removing
Mendelian errors by decreasing the number of variants. Thus, we
did not exclude variants with a relatively large read depth.

Our second filter was based on the genotype quality score (GQ)
of each of the variants called within the trio (Figure 2). The geno-
type quality score assesses the quality of sequencing information
at each of the bases and ranges from 0 to 99 (see also discussion).
A genotype quality score histogram for all variants found in the
child blood DNA showed a right-skewed distribution with nearly
all variants having GQ > 95. A similar histogram for the Mendelian
errors shows a bi-modal distribution with a large portion of the
data with a GQ < 20. Based on these results, we developed filters
using increasingly stringent criteria and determined the effects of

Table 1 | Sequencing quality parameters for all three individuals in blood, buccal, and saliva trio.

Sample Percentage of reads

with GQS > 30 (%)

Mean GQS Percentage of targeted

sequence covered (%)

Mean read depth

Blood – proband 84.19 33.46 97.07 167

Blood – father 83.58 33.25 96.46 146

Blood – mother 84.57 33.57 94.69 150

Buccal– proband 84.12 33.4 95.89 90

Buccal – father 84.82 33.63 96.73 155

Buccal – mother 85.04 33.71 97.35 136

Saliva – proband 83.38 33.17 95.95 106

Saliva – father 84.21 33.46 95.93 154

Saliva – mother 84.31 33.48 96.3 132
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FIGURE 1 | Depth of Coverage:The histograms depict the read depth by all
called variants (A) and for the Mendelian errors (B) in the child. Similar
histograms were obtained for the other samples regardless of the DNA
source. The arrows depict the coverage depth cutoff (Depth < 15 reads) used
to remove sequencing artifacts from the data. The bar graph depicts the

number of variants remaining after applying an increasingly stringent read
depth filter (C). The line graph (-•-) depicts the number of Mendelian errors
remaining after applying an increasingly stringent read depth filter (C). The
sequencing data of the DNA extracted from blood are shown and are
representative of the other two DNA sources.

those filters on the number of Mendelian errors and the number
of variants. The GQ < 20 filter removed 72.4% of the Mendelian
errors while retaining 94% of the variants. These data suggest that
the GQ filter is very selective and effective at removing Mendelian
errors (Figure 2). This filter removed 70.8% of the Mendelian
errors in the DNA isolated from buccal cells and 70.1% from saliva.

The third filter was based upon the expected alternate allele
ratio (alt ratio) for a particular genotype (Figure 3). Variants
are determined to be homozygous reference, heterozygous, or
homozygous non-reference based upon algorithms in the caller.
The alternate allele ratio is the proportion of the number of reads
with the alternate allele at a position relative to the total number
of reads at that same position. We use this metric to identify geno-
types that are unlikely to be accurate given the available allele read
depth. The histogram for variants with a heterozygous genotype
displayed a distribution centered on 0.5. Interestingly, the het-
erozygous genotypes generated a peak in the histogram near 0.2
and often a smaller peak near 0.8. One possible explanation for
these peaks is that the misalignment of two or more regions of the

genome that are nearly identical but unevenly sequenced generate
these ratios (Figure 3). As expected, the histogram for variants
with a homozygous genotype for the reference allele showed a
left-skewed distribution and the histogram for variants with a
homozygous genotype for the alternate allele had a right-skewed
distribution (Figure 3). Unlike the previous two filters, which used
the same criteria for all the variants, the alt ratio filter has different
selection criteria based upon the genotype of the sample for each
variant. For this particular filter, all homozygous reference vari-
ants with alt ratio >0.15 were removed, all homozygous alternate
variants with alt ratio <0.85 were removed, and all heterozy-
gous variants with alt ratio <0.3 or alt ratio >0.7 were removed.
With this filter, we were able to remove 61.8% of the Mendelian
errors while retaining 88% of the total variants. In buccal cell
DNA 57.7% of the Mendelian errors were removed and 61.5% in
saliva.

Our goal was to use multiple low stringency filters to selec-
tively remove Mendelian errors while maintaining as much data
as possible. Each of our filters based on the mean number of
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FIGURE 2 | Genotype Quality Score: The histograms depict the distribution
of genotype quality scores by all called variants (A) and by all the
Mendelian errors (B) in the child. The arrows depict the genotype quality
score cutoff (GQS < 20) used to remove sequencing artifacts from the
data. The bar graph depicts the number of variants remaining after applying

an increasingly stringent genotype quality score filter (C). The line graph (-•-)
depicts the number of Mendelian errors remaining after increasingly
stringent filters are applied (C). The sequencing data of the DNA extracted
from blood are shown and are representative of the other two DNA
sources.

reads, genotype quality score, or alternate allele ratio was able
to remove over half of the Mendelian errors in all of the DNA
sources tested (Total Mendelian Errors: 2430–2519) while retain-
ing a majority of the called variants (∼90%). We determined the
cut-off for each filter based on the variant and Mendelian Error
histograms for each parameter (Figures 1–3) and a cost-benefit
analysis setting the filter at the point at which increasing the fil-
ter stringency removed the same proportion of total variants as
Mendelian errors. To improve the filtering, we sequentially applied
these filters to our trio data (Figure 4). As mentioned previously,
we were able to exclude 61.8% of the Mendelian errors while
retaining 88% of the data by excluding variants with alternate
allele ratios differing by 0.2 or greater from the expected alternate
allele ratio (Figure 3). By adding a filter that also excluded variants
with GQ < 20, we were able to exclude 92.7% of the Mendelian
errors while retaining 85% of the original sequencing data in
the blood sample (Figure 5). By excluding variants with read
depth less than 15, we were able to further remove 50 Mendelian
Errors. Although this may not seem to be a large decrease in the
number of Mendelian Errors, these 50 Mendelian Errors comprise

approximately 30% of the Mendelian Errors remaining after the
Genotype Quality Score and the Alternate Allele Ratio filter are
applied. By combining the three filters, we were able to remove
95% of the Mendelian errors, while retaining nearly 80% of the
called variants. As shown in Figure 6, nearly 60% of the excluded
variants are removed by only one filter, supporting our strat-
egy of using multiple low-stringency filters to remove sequencing
artifacts.

The Mendelian Error rate in unfiltered data is 3.7%. Based
on the observation that the true error rate is three to four times
the Mendelian Error rate detected by SNPs (Gordon et al., 1999)
we estimate the actual error rate to be 9–10% in unfiltered NGS
data. This estimate is in agreement with concordance rates seen
when DNA from three different sources: blood, buccal-cells, and
saliva for the same sample were compared. We assessed the con-
cordance rates of non-filtered variants that were found in all
of the DNA sources and found ∼96% concordance for vari-
ants which were present in all three DNA sources (Table 2).
The concordance dropped to ∼84% if we also considered geno-
types which were non-reference in one DNA source, but not
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FIGURE 3 | Alternate Allele Ratio: The histograms depict the distribution
of Alternate Allele Ratio by all called variants with a heterozygous
genotype (A), by all the Mendelian errors with a heterozygous genotype
(B), by all the called variants with a homozygous reference genotype
(C), and by all the called variants with a homozygous alternate
genotype (D). The arrows depict the alternate allele ratios used to

remove sequencing artifacts for heterozygous genotype calls (Alt-Allele
Ratio > 0.7 or Alt-Allele Ratio < 0.3), homozygous reference genotype
calls (Alt-Allele Ratio > 0.15), and homozygous alternate genotype calls
(Alt-Allele Ratio < 0.85). The sequencing data of the DNA extracted
from blood are shown and are representative of the other two DNA
sources.

called in one of the other two as being discordant. These
unique genotypes were probably enriched for sequencing errors,
as the vast majority were removed after applying the three fil-
ters described above (Table 3). After applying the filters, we
were able to increase this concordance to greater than 99.999%
amongst the variants that were common between the DNA sources
(Table 2).

A trio study design is often used to identify candidate causative
rare variants. In order to identify those amino-acid changing
variants most likely to contribute functionally to a phenotype,
we performed analyses to identify de novo, recessive homozy-
gous (with less than 1% allele frequency in public sequencing
databases), and compound heterozygous mutations. Filtering the
sequencing data before this functional analysis reduced the appar-
ent de novo mutations from 321 to 1. Similarly, potentially causal
recessive homozygous variants were reduced from 32 to 3 and
potentially causal compound heterozygous variants were reduced
from 242 to 47. When these analyses were applied to each of the
three DNA sources, we further reduced the number of potential
causal variants to 0 apparent de novo, 3 rare homozygous, and 17

compound heterozygous variants which are identified in all three
samples from different DNA sources (Table 4).

We developed CASSI to meet the need to store, version, filter,
and annotate NGS data. CASSI is an application that seamlessly
integrates file storage, metadata storage (e.g., family structure),
and downstream processing with a web-based front-end that con-
tains a user-friendly query interface (Figure 7). The web interface
of CASSI enables biologists and clinicians without any computer
science background to launch sophisticated analytical workflows
to analyze next-generation sequencing data in an automated pro-
cedure. For example, the interface allows users to directly interface
with annotation and filtering packages (such as vcftools, variant
tools, and ANNOVAR), which are executed on a high-performance
cluster at CCHMC.

The key technical component in CASSI is the LONI pipeline
engine from UCLA, which is a graphical user interface for execut-
ing complex workflows on a cluster that can be launched directly
from a web browser. Query results obtained through the CASSI
web interface are made available as a data source in the LONI
pipeline, and users can choose from a large number of filtering and
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FIGURE 4 | Filter Schema:The bioinformatics filters are sequentially
applied. Variants that fail a filter are excluded and the next filter in the
sequence is applied to the variants that pass a filter. To be excluded a
variant has to fail only one filter. The order of filter is not important.

annotation workflows to analyze variant data. CASSI allows the
user to efficiently compare various filtering strategies; for exam-
ple, it can easily record the number of variants and Mendelian
errors remaining after individual filters are implemented. Most
importantly, CASSI can be used to assess concordance between
samples and to identify de novo, rare recessive, and compound
heterozygous variants. The flexibility of the pipeline facilitates
the implementation of new analytical strategies directly from
the interface. Other groups have independently developed a
genomic pipeline using LONI, supporting the utility of this
resource for sequencing data (Dinov et al., 2011; Torri et al., 2012;
Figure 6).

DISCUSSION
Next-generation sequencing provides investigators with the abil-
ity to quickly and economically generate human sequencing data
including the presence of SNPs and insertions/deletions (O’Rawe
et al., 2013). This ability to generate large volumes of data also
presents the challenge of determining which variants to validate

FIGURE 5 | Effect of applying multiple filters:The bar-graph depicts the
number of variants remaining after the application of filters on the data. The
line-graph depicts the number of Mendelian Errors remaining after the
application of additional filters (Top Panel). The sequencing data of the DNA
extracted from blood is shown.

FIGURE 6 | Impact of Filters upon Data Quality:The Venn diagram shows
the number of variants excluded by each of the filters. The numbers
represent a mean ± range/2 from all three DNA sources.

and study biologically (Nielsen et al., 2011). As reviewed in
Nekrutenko and Taylor, there is no generally accepted method
for filtering variants in clinical studies (Nekrutenko and Taylor,
2012). The usual approach for shortening the list of top variants
relies on filtering on two parameters, read-depth, and PHRED
quality score (Girard et al., 2011; Xu et al., 2011; O’Roak et al.,
2012a; Sanders et al., 2012). Although these particular methods
successfully remove many of the variants, due to the stringency
of filters, they are also excluding real variants present within the
sequencing data. By using a combination of three filters based
on the intrinsic characteristics of NGS, we removed a large pro-
portion of the Mendelian errors, while retaining the highest
portion reasonable of variants called. We estimate that these filters
removed 90% of the sequencing artifacts at a cost of 20% of the
data.
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Table 2 | Concordance analysis of DNA from three individuals was collected from three biological sources and sequenced.

DNA source Sample Concordance rate

no filter applied (%)

Concordance rate all filters

applied, not including

variants that are unique to

a single DNA source (%)

Concordance rate all filters

applied, including variants

that are unique to a single

DNA source (%)

Blood vs. buccal Individual 1 96.23 99.99 84.06

Individual 2 96.61 99.99 84.71

Individual 3 96.62 99.98 84.48

Blood vs. saliva Individual 1 96.30 99.99 84.22

Individual 2 96.53 99.99 84.42

Individual 3 96.50 99.99 83.79

Buccal vs. saliva Individual 1 96.27 99.99 84.14

Individual 2 96.86 99.98 85.05

Individual 3 96.73 99.99 84.22

Using variants that were common amongst all of the DNA sources, we assessed the genotype concordance.We observed a significant improvement in the concordance
after applying the three bioinformatics filters.

One limitation of using Mendelian errors to identify sequencing
artifacts is that they under represent the true sequencing error
rate as they have low power to detect errors in bi-allelic poly-
morphisms. In cases where both parents are heterozygous for a
polymorphism the child could have any one of the potential geno-
types and it would follow Mendelian inheritance. In genotyping
experiments it has been estimated that Mendelian errors only pre-
dict one-third to one-fourth the number of actual errors (Gordon
et al., 1999). Furthermore, the identification of Mendelian errors
does not indicate which sample’s genotype is erroneous. Even
with the limitations, Mendelian errors provide a useful method
to determine the quality of the data.

The number of variants with a particular depth of cover-
age demonstrated a clear peak around 120 (Figure 1), which
was close to the target coverage depth of 100 reads. On the
other hand, the histogram for the depth of coverage amongst
Mendelian errors (Figure 1) confirmed that the majority of
Mendelian errors had a low depth of coverage. This low depth

of coverage for the Mendelian errors indicated that many of
them may be occurring due to selective sequencing of one chro-
mosome rather than equal sequencing of both chromosomes.
This would be particularly relevant for heterozygous SNPs. If
only one of the chromosomes was sequenced, the individual
would be called either a homozygous reference or homozy-
gous alternate at a particular variant. As the number of reads
increases, the probability of sequencing the same chromosome
for each read decreases exponentially. By sheer chance at a read
depth of 10 with 50-million total reads, there will be 50,000
instances of only one chromosome being read. If the read-depth
is increased to 15 reads, this number decreases to approximately
1,500 instances. Based on the difference in the distribution of
Mendelian errors and total variants for depth of coverage, a
filter which excludes variants with low depth of coverage (15
reads or <20% of average reads) removed a small portion of the
total variants while removing a large portion of Mendelian errors
(Figure 2).

Table 3 | DNA from the proband (child) was collected from three biological sources and sequenced.

DNA source Unique compared to

blood

Unique compared to

buccal

Unique compared to

saliva

Unique compared to the

other two sources

Blood Unfiltered 2636 1997 1095

Filtered 10 4 2

Buccal Unfiltered 1267 1437 535

Filtered 0 2 0

Saliva Unfiltered 1268 1438 669

Filtered 1 0 0

The data set from each DNA source had unique variants that were not found in one or both of the other sources. After three bioinformatics filters were applied to the
genotyping data, the number of unique genotypes was considerably reduced. The number of variants in one DNA source that are unique compared to another DNA
source (e.g., blood compared to buccal) is different than the inverse comparison (e.g., buccal compared to blood).
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Table 4 | Candidate causative sequence variants were identified in unfiltered and filtered data from the same trio that was sequenced three

times using different DNA sources.

DNA source De novo variants Recessive homozygous variants Compound heterozygous

Called Unique to a

single DNA

source

Common to all

DNA sources

Called Unique to a

single DNA

source

Common to all

DNA Sources

Called Unique to a

single DNA

source

Common to all

DNA sources

Unfiltered

Blood 321 228 12 32 3 23 242 47 153

Buccal 306 219 12 36 12 23 285 79 153

Saliva 304 230 12 28 4 23 284 80 153

Filtered

Blood 1 0 0 3 0 3 47 21 17

Buccal 0 0 0 3 0 3 39 11 17

Saliva 1 0 0 3 0 3 45 16 17

Only novel or rare amino acid altering variants were considered. The numbers of unique variants (not found in any other DNA source) are indicated. Common variants
were found in all three DNA sources. Variants found in two of the DNA sources, but not in the third are not included in this table. Filters applied to the variants included
read depth >15, genotype quality score >20 and alternate allele ratio less than 0.15 for all homozygous reference, greater than 0.85 for homozygous alternate allele
and between 0.3 and 0.7 for heterozygous genotypes.

FIGURE 7 | Graphical Representation of the Cincinnati Analytical Suite

for Sequencing Informatics. Files with VCF and FAM are uploaded to
CASSI’s web interface. These data are parsed and stored in web accessible
data storage. The LONI based analysis allows users to analyze data through

the established pipeline for identifying de novo, rare recessive and compound
heterozygous variants. These pipe lines can also be changed to accommodate
specific analyses. After variants are annotated using many databases, the
results are versioned, saved in the database, and available for downloading.
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The GQ is computed based on the likelihood of a particular
genotype being called in comparison to the likelihood of the other
two genotypes being called: L(0/1) versus L(0,0) and L(1,1). Our
data based on the GQ demonstrated that the majority of variants
have high GQ, whereas the Mendelian errors have a much lower
score (Figure 2). The difference in the GQ represents the likeli-
hood in the variant calls. For many of the Mendelian errors, the
low GQ suggests a low confidence in those calls, which may be
due to inconsistent individual sequencing reads at that particular
location due to low coverage depth, difficult alignment, or poor
sequencing reads. This is expected for sequencing artifacts, since
it is unlikely that a sequencing artifact will consistently produce
the same sequencing read at a particular location. On the other
hand, a true Mendelian Error such as a de novo mutation would
produce a consistent sequencing read since it is a true difference in
the sequence. We exploited the differences in the genotype quality
scores by generating a filter that excludes variants with a genotype
quality score less than 20. This allowed us to exclude the Mendelian
errors present on the left peak of the histogram without excluding
a large portion of the called variants, which are located within the
peak on the right side of the GQ histogram (Figure 2).

We added an additional filter based on the alternate allele ratio
(alt ratio; DePristo et al., 2011; Girard et al., 2011; Xu et al., 2011;
O’Roak et al., 2012a; Riviere et al., 2012; Sanders et al., 2012). Due
to the high depth of coverage for most variants, we expected our
variants to have alternate allele ratios close to the theoretical values:
0, 0.5, and 1 representing homozygous reference, heterozygous,
and homozygous alternate, respectively. In effect, this filter assesses
the consistency of the variant call based on all the sequencing reads.
The majority of the variants that the alt ratio filter removes were
heterozygous Mendelian errors which were enriched in the peak at
0.2 (p-value < 10−50; Figure 3) suggesting that homozygous ref-
erence and homozygous alternate variant calls were more reliable
than heterozygous variant calls.

We combined these three individual filters and observed the
increased efficiency of the combined filters in removing the
sequencing artifacts. As is evident from the bar graph represent-
ing the total number of variants (Figure 5), and the line graph
representing the number of Mendelian errors called, there was a
93% decrease, in the number of Mendelian errors by the addition
of the GQ filter to the Alt Ratio without a large reduction in the
number of variants removed (14.9%). This trend continued as we
added the depth of read filter to the other filters. By excluding
variants that fail the depth of read filter, the Genotype Quality
Score Filter, or the Alt Ratio filter, we were able to exclude over
95% of the Mendelian errors. In our test trio, this lowered the
number of Mendelian errors called to approximately 130 variants.
We attributed the drastic decrease in the number of Mendelian
errors to the low likelihood of a sequencing artifact passing all
the filters. Approximately 80% of the variants passed all three
filters.

After identifying a combination of filters that removed the vast
majority of the Mendelian errors, while retaining a large por-
tion of the variants called, we assessed the concordance between
identical samples isolated from different DNA sources. The unfil-
tered sequencing data-set of samples from blood, buccal cells,
and saliva had a concordance of ∼84% (including unique calls

as discordant). After applying our filters the concordance rate
increased to >99.9% between all three samples from the three
different DNA sources. It is necessary for the filtering method to
generate concordant data, since clinical DNA samples can be col-
lected from any one of various different sources including blood,
saliva, and buccal cells.

Next-generation sequencing experiments are often used to find
rare or novel variants that lead to disease. Unfortunately, sequenc-
ing artifacts can often mimic and confound the identification of
these variants. Sequencing artifacts contribute to a large num-
ber of false positive disease-causing candidates. The vast majority
of apparent de novo variants identified in the unfiltered data are
sequencing artifacts (Table 2). However in previous experiments,
after filtering the data on read depth, genotype quality score and alt
ratio our confirmation rate by Sanger sequencing is greater than
95% for de novo variants.

Cincinnati Analytical Suite for Sequencing Informatics is a suite
that allows users with varying degrees of programming sophistica-
tion to perform documented, reproducible studies with NGS data
to gain insight into the etiology of disease. In the case of the current
study, CASSI allowed us to quickly and reproducibly assess differ-
ent filtering strategies through the calculation of Mendelian errors
and total variants remaining after specific filters were applied. With
the incorporation of a LONI pipeline we have created a fully auto-
mated system that can filter, annotate and apply various genetic
models to identify candidate causative variants. The LONI pipeline
provides investigators the ability to apply predefined values for fil-
tering or customize the pipeline to fit the type and quality of the
data being analyzed.

The filters and methods presented reproducibly generate robust
and accurate data sets with low levels of sequencing artifacts. Both
the genotype quality score and alt allele ratio filters can be applied
to data sets regardless of read depth. In data sets with >75× aver-
age read depth we recommend using a hard filter of 15× for read
depth. In data sets with less than 75× coverage we suggest using a
filter of 20% of the average read depth. While these data sets will
contain higher amounts of false variant calls, a hard filter would
remove too many true variants from the data set. These filters also
have the potential to have bias towards removing variants caused
by mosaicism. The alt allele ratio would be particularly sensitive
to variants if the cell population with different genotypes is not
close to 50%.

As the NGS technology progresses further and the per-base
sequencing cost decrease, researchers will be able to generate NGS
data-sets with increased depth of coverage and longer read lengths.
Both of these improvements will yield better calling of variants.
Additionally, the longer read lengths will allow researchers to more
accurately predict insertions and deletions. A recent review further
identifies ways to improve the fidelity of NGS data, including the
use of filtering strategies such as the one presented herein (Robasky
et al., 2014).

In summary, our three filters of NGS data selectively exclude the
sequencing artifacts, measured as Mendelian errors, while limiting
the removal of the true variation amongst the samples. In addi-
tion, we show that DNA isolated from different sources (blood,
buccal cells, and saliva) have greater than 99.9% concordance
and thus mixed DNA sources can be used for causative variant
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identification. Our work flow is based on obtaining the most accu-
rate data set possible and results in an extremely small number of
candidate causative variants for consideration and interpretation
(usually fewer than 10 genes per trio). These methods have been
automated through CASSI and greatly increase the ability of inves-
tigators and clinicians to understand and discover genetic causes
of disease by quickly identifying potential causative variations.
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Estimates from large scale genome sequencing studies indicate that each human carries up
to 20 genetic variants that are predicted to results in loss of function (LOF) of protein-coding
genes.While some are known disease-causing variants or common, tolerated, LOFs in non-
essential genes, the majority remain of unknown consequence. We explore the possibility
of using imputed GWAS data from large biorepositories such as the electronic medical
record and genomics (eMERGE) consortium to determine the effects of rare LOFs. Here,
we show that two hypocholesterolemia-associated LOF mutations in the PCSK9 gene
can be accurately imputed into large-scale GWAS datasets which raises the possibility of
assessing LOFs through genomics-linked medical records.

Keywords: loss of function (LOF), imputation, PCSK9, eMERGE, biorepository

INTRODUCTION
Complete loss of function (LOF) variants are defined as vari-
ants expected to correlate with complete LOF of affected tran-
scripts; i.e., nonsense mutations, splice site mutations, and
insertion/deletion (indel) variants that result in downstream pre-
mature stop codons, or larger deletions removing either the first
exon or more than 50% of the protein-coding sequence of the
affected transcript (MacArthur et al., 2012). Partial LOF variants
reduce gene activity but do not ablate it completely.

Data from the 1000 genomes project (1KGP), a large scale
human genome sequencing study of 1,092 individuals from 14
populations, constructed using a combination of low-coverage
whole-genome and exome sequencing data indicates that on aver-
age individuals carry ∼150 LOFs (Genomes Project Consortium
et al., 2012). However, as detailed in Table 1, the majority of
LOFs are common (>5%) and are distributed across a very small
number (100–200) of genes. Genes containing common LOFs
are strongly enriched for functional categories related to olfac-
tory reception that are apparently unessential and do not result in
any severe medical consequence. LOF enriched genes are typically
depleted for genes implicated in protein-binding, transcriptional
regulation, and anatomical development. Common LOFs are
also enriched at the 3′ ends of genes as these mutations escape
nonsense-mediated decay and are less subject to purifying natu-
ral selection. Finally, at the most highly conserved coding sites,
more than 90% of stop-gain and splice-disrupting variants have
a frequency below 0.5%. The population frequency of individual
LOFs would therefore appear to correlate with their potential to
adversely affect human health.

The 1KGP data indicates that each individual carries 10–20
LOF variants with a minor allele frequency (MAF) below 0.5%
(Table 1). As these LOFs are under purifying selection they are less
likely to be present in non-essential genes and at low conservation
sites and therefore are likely to present pathological candidates.

The population frequency of rare variants differs consider-
ably compared with common variation. Variants with frequencies
above 10% were found in all of the populations studied in the
1KGP (Genomes Project Consortium et al., 2012), albeit with dif-
ferences in MAF. Low-frequency variants in the 0.5–5% range were
also largely shared between ancestral groups with only 17% of
variants observed in a single ancestry group. For rare frequency
variants with MAFs <0.5%, the majority (53%) were observed in a
single population. Population stratification therefore represents a
major confounder for rare variant analyzes which would ideally be
controlled using principal component analysis from high-density
GWAS arrays to select ancestrally matched cases and controls.

As a consequence of their rarity, LOFs will have largely been
overlooked in GWAS studies which are best suited to the study of
variants with minor alleles >3–5%. However, due to their rarity,
very large, GWAS-type sample sets will be necessary to determine
phenotypic association.

PCSK9 is expressed primarily in the liver, it is a secreted pro-
tein that acts by reducing the amount of low density lipoprotein
receptor (LDLR) at the cell surface. Structurally, the PCSK9 pro-
tein product is composed a signal peptide, a prodomain, a catalytic
domain, and a C-terminal domain. Cleavage of the prodomain is
required for PCSK9 maturation and secretion. Cleaved PCSK9
is transported along the secretory pathway, which ultimately
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Table 1 | Loss of function allele counts in 1,092 human genomes

across three allele frequency bins.

Allele frequency (%)

Variant type <0.5 0.5–5 >5

Stop-gain 3.9–10 5.3–19 24–28

Stop-loss 1.0–1.2 1.0–1.9 2.1–2.8

Indel frameshift 1.0–1.3 11–24 60–66

Splice site donor 1.7–3.6 2.4–7.2 2.6–5.2

Splice site acceptor 1.5–2.9 1.5–4.0 2.1–4.6

promotes LDLR degradation [for review see (Marais et al., 2012)].
One LOF missense mutation in PCSK9, Q152H, has been shown
to impair cleavage and hence inhibit PCSK9 secretion (Mayne
et al., 2011). The Q152H LOF mutation was shown to result in a
79% decrease in circulating PCSK9 and a 48% decrease in LDL-C
in carriers compared with non-carriers (Mayne et al., 2011). The
C679X mutation results in a processed, partially-folded protein
that remains in the ER and is not secreted. As LDLR is degraded at
the cell surface and endosomes, the C679X mutant has no activity
toward the LDLR because of its inability to leave the ER and traf-
fic to LDLR (Benjannet et al., 2006). R46L is also a LOF PCSK9
mutation, the R46L-PCSK9 undergoes near normal autocatalytic
cleavage and is secreted, yet cells expressing the mutant displayed a
16% increase in of cell surface LDLR and a 35% increase in inter-
nalized LDL compared with WT-PCSK9, suggesting that R46L
causes hypocholesterolemia through a decreased ability to degrade
LDLR (Cameron et al., 2006).

Mutations in PCSK9 were first identified in two French families
with hypercholesterolemia that screened negative for mutations
in both the LDLR and the apolipoprotein B (apoB) genes (Abi-
fadel et al., 2003). The hypercholesterolemia PCSK9 mutations
were all missense variants that are thought to confer a gain of
function as overexpression of pcsk9 in the liver of mice produces
hypercholesterolemia by reducing LDLR numbers (Lambert et al.,
2006).

In 2005, causative LOF mutations in PCSK9 were identified in
individuals with low plasma LDL-C levels, the LOF variants were
shown to be present in ∼2% of the African–American population
but rare in European Americans (<0.1%; Cohen et al., 2005). LOF
mutation carriers displayed reduced or no PCSK9 activity, and
their plasma LDL-C levels were reduced by 40% compared with
non-carriers. Further, coronary heart disease risk in those individ-
uals was reduced by 88% compared to non-carriers (Cohen et al.,
2006). This observation sparked interest in the biology of PCSK9
and led to the development of several LDL-reducing drugs (Stein
et al., 2012).

While the cost of whole genome and exome sequencing experi-
ments has dropped dramatically with improvements in yield from
second generation sequencing technologies, very large scale stud-
ies remain prohibitively expensive. For sample sets with existing
genotypes from dense whole-genome arrays, genotype imputation
presents a viable alternative to direct sequencing. Data generated
from large sequencing projects such as the 1KGP (Genomes Project
Consortium et al., 2012) and the NHLBI exome sequencing project

(ESP; Tennessen et al., 2012) is phased (Delaneau et al., 2012) and
the haplotypes can be used as reference panel to impute miss-
ing variation into the sample genotype data (Howie et al., 2009).
Recent improvements in imputation algorithms and the expan-
sion of reference datasets have improved accuracy of imputation
for even low MAF variants. Imputed data can then be annotated
using tools developed for the annotation of sequencing data such
as SnpEff (Cingolani et al., 2012) which determine the genomic
location (i.e., exonic, intronic or intergenic, and the effects of
variants, missense, nonsense etc. on known genes). Imputed LOF
variants can then be assessed against binary phenotypes or quan-
titative laboratory values derived from patients electronic medical
records (EMR).

We sought to determine if two PCSK9 LOF mutations that are
present in the 1KGP data, the C679X nonsense mutation and the
R46L missense mutation, could be imputed into our dataset and
the previously reported association of the LOFs with decreased
serum LDL-C replicated.

MATERIALS AND METHODS
The Center for Applied Genomics (CAG) at The Children’s Hos-
pital of Philadelphia (CHOP) maintains a biorepository of over
160,000 genotyped samples, 60,000 of which are pediatric samples
randomly recruited from CHOP with complete EMRs. As a proof
of principle, we imputed the proprotein convertase subtilisin kexin
type 9 (PCSK9; NM_174936) LOFs C679X (dbSNP:rs28362286)
and R46L (dbSNP:rs11591147) into a random selection of 8,028
unrelated samples of Northern European ancestry genotyped on
the Illumina HumanHap 550 array from the CAG biorepository.
The study was approved by the Institutional Review Board at the
CHOP, and written informed consent for sample collection and
DNA genotyping/sequencing was provided by the parents of all
participating children.

Genetic ancestry was determined by computing principal com-
ponents on the dataset using smartpca, a part of the EIGENSTRAT
package, on 100,000 random autosomal SNPs in linkage equilib-
rium. Samples were clustered into 4 Continental ancestry groups
(Caucasian, African including admixed African–American, Asian,
and native American/admixed Hispanic) by K-means clustering
using the kmeans package in R. The European ancestry grouping
in our dataset mapped most closely to the HapMap CEU pop-
ulation of Utah residents with Northern and Western European
ancestry from the CEPH collection1.

Duplicate samples and cryptic relatedness were assessed by
pairwise IBD. IBD values were generated for all 8,028 samples of
Northern European ancestry using the plink genome command.
A random sample from any pair with a PI_HAT value exceeding
0.3 was excluded from further analysis.

Imputation of untyped markers (∼39 M) was carried out using
IMPUTE2 after prephasing with SHAPEIT. Each chromosome
was prephased separately. Reference phased cosmopolitan hap-
lotypes and recombination rates were obtained from the 1000
genomes project (1000 Genomes Phase I integrated variant set b37
March 2012 release). Imputation was carried out in 5Mb intervals
using an effective population size of 20000 as recommended. As

1http://hapmap.ncbi.nlm.nih.gov
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FIGURE 1 | Box and whisker plot of additively encoded PCSK9 R46L

genotypes on the X-axis versus age corrected serum LDL

concentrations on theY-axis (n = 1432; min LDL concentration 4; max

LDL concentration 241; mean LDL concentration 85). Genotype 0
indicates no copies of the mutant allele, genotype 1 indicates one copy of
the mutant allele and genotype 2 indicates 2 copies of the mutant allele.

a measure of the overall imputation accuracy we compared the
concordance between the imputed and known genotypes in the
subset of SNPs for which genotyping data was available. At a call
threshold of 0.9, over 99% of the imputed genotypes were called
and over 96% of those were concordant with the known genotypes.

RESULTS
Following imputation using SHAPEIT2 and IMPUTE23 and anno-
tation using SnpEff 4, we extracted and additively re-encoded
genotypes for C679X and R46L from the 8,028 European American
samples from the CAG biorepository. Both variants were imputed
with high confidence, info scores C679X = 0.9 and R46L = 1. The
C679X mutation was previously reported to be present in 0.1%
of European Americans (Cohen et al., 2005). We identified nine
C679X carriers out of 8,028 samples for a frequency of 0.11%,
consistent with previous reports. As the samples were randomly
selected from the biorepository, not all contained serum lipid data
in their EMR. Three of the nine C679X carriers had serum LDL
data. The frequency of the R46L was also consistent with the
NHLBI ESP data, homozygous wild-type R46L 0.98 (1432 unique
individuals with lab values mean age 12.1 years); heterozygous
R46L 0.02 (10 unique individuals with lab values mean age 13.5)
and homozygous derived allele R46L 0.001 (12 unique individuals
with lab values mean age 11.5). A total of twenty-two R46L carriers
had LDL data in the EMR.

2http://www.shapeit.fr
3http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
4http://snpeff.sourceforge.net

FIGURE 2 | Box and whisker plot of additively encoded PCSK9 R46L

genotypes on the X-axis versus age corrected serum HDL

concentrations on theY-axis (n = 1495; min HDL concentration 5; max

HDL concentration 128; mean HDL concentration 47). Genotype 0
indicates no copies of the mutant allele, genotype 1 indicates one copy of
the mutant allele and genotype 2 indicates 2 copies of the mutant allele.

There was insufficient data to assess the statistical signifi-
cance of C679X genotypes. Linear regression of EMR-derived
age-corrected serum LDL concentrations against R46L genotypes
was statistically significant (P-value 7 × 10−4) and directions of
effect consistent with the LOF allele reducing LDL cholesterol
(Figure 1). Serum HDL concentrations also showed a trend toward
association (P-value 0.04; Figure 2). By contrast, serum triglyc-
eride levels showed no association with R46L genotype (P-value
0.58; Figure 3) as previously described (Kotowski et al., 2006).
The mean age-adjusted LDL concentration for R46 wild-type
homozygotes was 85.7, mean age-adjusted LDL concentration for
R46L heterozygotes was 63 and 62.6 for R46L homozygotes which
corresponds approximately to a 26% decrease of serum LDL con-
sistent with the 23.5 mean LDL-C difference previously reported
in European American R46L carriers (Kotowski et al., 2006).

DISCUSSION
Recent genome sequencing studies have shown that each indi-
vidual carries a significant number of variants that are predicted
to result in a loss of protein function. The phenotypic effect of
the majority of these LOFs remains to be determined. Here, we
have shown a successful proof of concept that rare LOFs can
be imputed into high density genotyping array data using data
from large scale sequencing projects such as the 1KGP as a refer-
ence. While second generation sequencing remains prohibitively
expensive in large numbers, high density genotyping data has
been generated on hundreds of thousands of individuals. The
eMERGE consortium biorepository includes ∼60,000 individuals

www.frontiersin.org April 2014 | Volume 5 | Article 105 | 155

http://www.shapeit.fr
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://snpeff.sourceforge.net
http://www.frontiersin.org/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Sleiman et al. Assessing LOFs using EMR data

FIGURE 3 | Box and whisker plot of additively encoded PCSK9 R46L

genotypes on the X-axis versus age corrected serum triglyceride

concentrations on theY-axis (n = 1856; minTG concentration 12; max

TG concentration 566; meanTG concentration 82). Genotype 0 indicates
no copies of the mutant allele, genotype 1 indicates one copy of the
mutant allele and genotype 2 indicates 2 copies of the mutant allele.

that have been genotyped on high-density GWA arrays (review at
http://www.genome.gov/27540473), all of which has been linked
with EMRs. As such eMERGE would be ideally suited for the
assessment of rare LOF variants across multiple phenotypes either
by direct assessment through single variant tests or through bur-
den tests. For future analyses, in order to identify all possible
association signals, the data would be analyzed using more than
one statistical approach as detailed below.

Annotated, imputed variants, in vcf format5, would be ana-
lyzed for association using both single point and agglomerative
tests. Single variant tests for association against the EMR traits
would be implemented in EMMAX (Kang et al., 2010), a mixed
model algorithm that controls for both population substructure
and relatedness between individuals in the test. In addition to
the principal components for population stratification applicable
covariates such as age could be included. For the agglomerative
gene-based association tests, three complementary algorithms, the
sequence kernel association test (SKAT; Ionita-Laza et al., 2013),
the variable threshold test (Price et al., 2010) and the combined
multivariate and collapsing (CMC) test which assess the bur-
den of variation within the gene (Li and Leal, 2008) would be
implemented. Gene-based association tests can achieve substan-
tial increases in power to detect associations with rare variation
compared with single variant tests (Ionita-Laza et al., 2013).

5http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-
format-version-42

We anticipate that for the single variant tests greatest power
would be achieved against quantitative phenotypes such as lab
values, however, gene burden scores could equally be applied
using a pheWAS approach (Denny et al., 2010), i.e., EMR derived
ICD9-based pseudo-case control analyzes for binary traits. These
approaches will be validated on multiple LOF variants across the
eMERGE networks in the near-future.
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Translation of results from genetic findings to inform medical practice is a highly
anticipated goal of human genetics. The aim of this paper is to review and discuss the role
of genetics in medically-relevant prediction. Germline genetics presages disease onset
and therefore can contribute prognostic signals that augment laboratory tests and clinical
features. As such, the impact of genetic-based predictive models on clinical decisions
and therapy choice could be profound. However, given that (i) medical traits result from a
complex interplay between genetic and environmental factors, (ii) the underlying genetic
architectures for susceptibility to common diseases are not well-understood, and (iii)
replicable susceptibility alleles, in combination, account for only a moderate amount of
disease heritability, there are substantial challenges to constructing and implementing
genetic risk prediction models with high utility. In spite of these challenges, concerted
progress has continued in this area with an ongoing accumulation of studies that
identify disease predisposing genotypes. Several statistical approaches with the aim of
predicting disease have been published. Here we summarize the current state of disease
susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods
used to construct and evaluate genetic-based predictive models, and discuss applications.
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INTRODUCTION AND BACKGROUND
Multiple lines of evidence strongly support the notion that the
large majority of common, chronic diseases have complex causes.
Environmental components such as infection, caloric flux, and
chemical exposure, along with heritable elements such as DNA
variants, methylation patterns, and epigenetic RNA effects, are
interacting co-conspirators resulting in common diseases. In
this background of convoluted and entangled etiology, discov-
ery and use of disease predisposing alleles present a consid-
erable challenge to the human genetics community (Clerget-
Darpoux and Elston, 2013). Recent technological advances in
high-throughput genotyping, RNA expression, and massively
parallel sequencing have accelerated interrogation of genetic vari-
ation for the purpose of understanding human disease and drug
response. Among the more important uses of these discover-
ies is providing detailed, mechanistic insight into the molec-
ular pathogenesis of disease states. The two primary avenues
of utilizing this explosion in genetic information for the pur-
pose of improving clinical practice are in (1) drug development

†This is inspired by a humorous quote that is variably attributed to Mark
Twain, Niels Bohr, the Danish Parliament, Samuel Goldwyn, and Yogi Berra.

stemming from the identification of molecular targets and (2) the
prediction of disease susceptibility, pharmacogenetic response,
and disease severity/trajectory (Khoury et al., 1985; Holtzman
and Marteau, 2000; Evans and Relling, 2004). Although only
a small minority of current pharmaceuticals originated directly
from genetic findings serving as drug targets, the list is expanding
and includes inflammatory cytokine-based monoclonal antibod-
ies and targeted cancer therapeutics, among others. These ther-
apeutics often target specific biochemical pathways to improve
clinical treatment, often with a reduction in adverse reactions.
Disease prediction and diagnosis with genetic testing is a broad
field with diverse applications, ranging from karyotyping for
chromosomal abnormalities to enhancement of disease risk pro-
files using single nucleotide polymorphisms (SNPs) previously
found to be disease-susceptibility markers, such as HFE missense
polymorphisms which can lead to hemochromatosis, or the vari-
ants in the tumor suppressors BRCA1 and BRCA2 that increase
risk to breast and ovarian cancers. Clinical genetics testing can
provide physicians with an additional tool for better diagnosis
and improved medical care.

Much of the variation in disease course, severity, and response
to medication is reflective of the underlying allelic repertoire
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existing in each individual, offering the opportunity for genet-
ics to facilitate early treatment, preventative medicine, preemptive
selection of efficacious drugs, and more accurate estimation of
risk for those thought to be at intermediate risk using traditional
factors. As the cost and complexity of medical care escalates,
the promise of human genetics to provide directly actionable,
individualized information to address impediments to optimal
and cost-effective medical practice carries increasing weight and
urgency (Chen and Snyder, 2013). This review has multiple aims:
(1) provide a brief overview of the current state of human dis-
ease mapping as this provides the foundational knowledge for
genetic-based disease prediction, (2) describe the process of dis-
ease prediction in a simple probabilistic framework detailing the
general qualities of clinically useful predictive models and also
detailed examples, (3) provide an overview of the basic classes of
genetic-based prediction models and measures of prognostic util-
ity, and (4) illustrate the application of genetic-based predictive
models to data from biobanks and prospective cohorts.

Identification of replicated susceptibility variants provides
considerable material for understanding biochemical pathways
that govern diseases, particularly when the variants reside within
the coding or regulatory regions of well-understood genes and are
validated by functional studies (Manolio, 2010). Unfortunately,
many disease-associated variants are located in regions of the
genome that have not yet been functionally characterized.
Indeed, 39% of the National Human Genome Research Institute
(NHGRI) Genome-Wide Association Study (GWAS) catalog
SNPs are annotated as intergenic and more than 36% are reported
as intronic (Welter et al., 2014). The genes and pathways dis-
covered can become targets for pharmaceutical intervention,
especially when integrated with corroborating studies from dis-
ease models, signal transduction experiments, bioinformatics,
and protein biochemistry. Examples of using specific genes or
their products as pharmaceutical targets have rapidly accumu-
lated over the past decade and include mipomersen, an antisense
therapeutic targeting APOB RNA for the treatment of hyper-
cholesterolemia (Raal et al., 2010), ivacaftor which targets the
G551D mutation in CFTR found in approximately 4% of indi-
viduals with cystic fibrosis (Ramsey et al., 2011), inflammatory
cytokines and their receptors (e.g., IL-1β, IL-12/23p40, IL-17A,
IL-6R) (e.g., Krueger et al., 2007), other immune cell signaling
proteins (e.g., CTLA-4, CD30), a variety of tumorigenesis genes
that harbor somatic variants useful for individualized cancer
treatment (e.g., BRAF, KRAS, and EGFR), and lipid transfer pro-
teins (e.g., CETP, PCSK9), among many others. As more human
genetics studies are conducted, the number of these druggable
targets will expand. While the use of genetic results in pharmaceu-
tical development is impressive, some of the most highly touted
uses of genetic susceptibility data have been the accurate progno-
sis of diseases (e.g., Mendelian and oligogenetic disorders, such
as Tay-Sachs disease, phenylketonuria, Charcot-Marie-Tooth, or
rare ciliopathies including polycystic kidney disease and Bardet-
Biedl syndrome), or other areas that impact medical decisions,
such as choice of drug, selection of dose, avoidance of side-effects,
or determining the optimal intensity of clinical monitoring.
Unlike identifying potential drug targets, genetic-based predic-
tion models may serve a clinical purpose in advance of precise

identification of the functional motifs and molecular mechanisms
that drive genetic association/linkage signals. Instead, the util-
ity of predictive models is derived primarily from the correlation
patterns—provided that these are robust across intended popula-
tions. However, the strength and robustness of the correlation are
critical for a genetic prediction model to be clinically useful.

As clinical decisions are specific to individuals, physicians aim
to assess the probability of medical traits for each patient. This is
a dynamic process where physicians update assessments as addi-
tional relevant information, such as laboratory tests (both genetic
and non-genetic), or changes in physiology become known. In
this way, clinical decisions are informed as variation in an individ-
ual’s risk to disease, severity of disease and response to medication
are progressively revealed. Thus, results from clinical tests, includ-
ing genetic-based predictive models, are useful when they more
accurately discern the likelihood of the medical trait (e.g., disease
occurrence or response to medication), compared to the pre-
test assessment. For example, if a physician had estimated that a
patient had a 40% chance of having a particular disease prior to
the results of a clinical test, and the 40% prediction remains unal-
tered following the results of the test, then the clinical test and new
prediction may be of little value. Further, whether the magnitude
of this posterior-prior probability departure carries clinical utility
depends on the specific application. As an illustration of this pro-
cess, suppose a patient is referred to a rheumatologist. Prior to the
visit, the rheumatologist may not have sufficient information to
modify the assessment of the probability that the individual has,
for example, rheumatoid arthritis (RA). Upon learning that the
patient self-reported symptoms of symmetric sore joints that are
partially remediated by non-steroidal anti-inflammatory medica-
tion, the rheumatologist proceeds to update the probability of RA
and of other conditions. Some diseases would increase in their
likelihood, while others would decrease from their initial values.
Following a standard evaluation of the classification criteria for
rheumatoid arthritis assessing joint involvement, serology, acute-
phase reactants, and symptom duration (Aletaha et al., 2010),
the rheumatologist proceeds to further update the probability
that the patient suffers from RA. Subsequent testing of a genetic
panel of known RA-susceptibility markers, including polymor-
phisms within HLA-DRB1, PTPN22, STAT4, CTLA4, TRAF1,
CD40, etc., may further modify the posterior probability. This
additional updated posterior probability may be particularly use-
ful in situations where a definitive diagnosis was not available with
non-genetic approaches alone. This is, of course, neither a new
nor complete account of the diagnostic process, but it underscores
the general nature of many medical decisions, where accumu-
lation of information typically results in increasing accuracy in
the appraisal of a medical trait probability for an individual. The
process of serial refinement based on accumulating data is a hall-
mark of the diagnostic process and, statistically, can be codified
as Bayesian updating of the posterior probability of the trait. The
aim of genetic-based predictive models is to augment existing lab-
oratory, imaging, and other clinical data to improve the posterior
probabilities (i.e., drive the posterior probabilities toward 0 or 1)
of medical traits in a cost-effective manner.

In the context discussed here, predictive models are methods
designed to use clinical, analyte, genetic, or other types of data for
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the purpose of forecasting a medical trait. Predictive models—
including those based on genetic markers—are most beneficial
when they yield actionable and individualized results. However,
they are of reduced value if they only substantially modify medical
decisions for an exquisitely small fraction of the patient popula-
tion. Hence, the ideal genetic-based predictive model for clinical
applications (1) substantially modifies the posterior probability
of medical traits compared to that obtained from existing clini-
cal assessment and tests—enough to enable changes in medical
decisions and patient management, and (2) impacts a substan-
tial fraction of individuals to whom it is applied and provides
improved outcomes. While other considerations are essential,
such as more cost-effective care and the ease of adoption and
implementation of diagnostic tests, it is this concurrent maxi-
mization of (1) modifying the posterior probability of the trait
in the context of the benefits and risks of the specific medical
decisions and (2) broad applicability that defines an archety-
pal genetic-based predictive model. For example, genetic testing
of CFTR mutations for cystic fibrosis is successful in that the
recessive disease alleles have very high penetrance and the large
majority of pathogenic mutations are covered with contempo-
rary panels. Similarly, multi-gene tests for related rare diseases,
each with high penetrance, can also serve as useful clinical tests
(Rehm, 2013).

In an attempt to develop such predictive models, many have
used genome-wide association study (GWAS) results as they are
a ubiquitous source of genetic information (Manolio, 2010).
Attempts to use genetic information alone have not been as
successful as previously hoped, with posterior probabilities that
do not approach 1 or 0 and the vast majority of individuals
having decidedly intermediate posterior probabilities. A seminal
question is the extent to which genetic information can further
modify posterior probabilities for those individuals thought to
be of intermediate risk using traditional factors. Wray et al. offer
an excellent review of the challenges involved in complex trait
prediction with GWAS results (Wray et al., 2013).

The discovery of genetic markers for the prediction of medi-
cal traits is entirely dependent on the underlying genetic model
that gives rise to the trait. That is, the number of loci and the
number, frequency and penetrance of predisposing alleles deter-
mine both the likelihood of identifying causal markers and the
clinical utility of using those markers in a patient population.
For example, monogenic disorders such as phenylketonuria, Tay-
Sachs, or sickle cell anemia are likely fully penetrant with allele
frequencies that are not exceedingly rare; and therefore genetic
tests for such diseases have clinical applications, provided that dis-
ease avoidance or disease-modifying treatments exist. However,
traits like Alzheimer’s disease, diabetes, or response to statins
have etiologies that remain enigmatic. Whether or not these
complex traits follow extremely polygenic modes of inheritance
(i.e., weakly penetrant alleles, and several hundreds to thousands
of loci), high locus/allelic heterogeneity (having highly pene-
trant but unique loci and alleles involved across individuals),
high levels of epistasis (e.g., genotypic effects that vary based
on genetic background or other specific genotypes), ubiquitous
epigenetic effects (e.g., methylation patterns, histone acetylation
patterns, or transgenerational RNA artifacts affecting the trait),

gene-environment interactions, or some combination thereof,
directly impacts the identification of predictive markers as well
as their utility. GWAS interrogate the common allelic architec-
ture for disease predisposing markers exhibiting low degrees of
allelic and locus heterogeneity, whereas sequencing-based studies
in families can facilitate the discovery of rare disease-associated
variants, but are not optimal for identifying ancestral disease-
predisposing alleles. Therefore, it is reasonable to expect that
genetic markers from GWAS may modify posterior probabilities
across a large segment of the population, but with a muted impact
on those probabilities. On the other hand, rare sequence variants,
on the other hand, may have substantial impact on the posterior
probabilities for specific individuals, but with little widespread
effect.

A review of the potential of genetic-based predictive mod-
els to change medical practice in the short-term indicates that
three areas have shown promise for improving clinical care: can-
cer genomics, population screening for Mendelian diseases, and
pharmacogenetics. These three areas profit from high penetrances
of the genetic variants identified to date, though only a fraction of
patients benefit from these tests. As these areas emerge from their
infancy and additional genetic results accumulate, the proportion
of individuals benefiting will likewise increase.

PREDICTION USING TUMOR GENOMICS
The advent of genetic testing in tumor cells, through harnessing
the throughput and read depth of next-generation sequencing
platforms, has enabled detailed and clinically actionable molec-
ular pathology genetic tests for numerous cancers. Multiplex
sequencing-based assays for biopsies compared to normal tis-
sue are now available and have demonstrated usefulness in
augmenting many clinical decisions. The utility of these tests
relies on the clear relationship that has been delineated over
the past two decades between specific driver mutations, treat-
ment variants and cancer progression, and drug selection (Liaw
et al., 1997; Paez et al., 2004; Agrawal et al., 2011; Walter et al.,
2012; Kandoth et al., 2013; Vogelstein et al., 2013). Intratumor
(Gerlinger et al., 2012) and single-cell sequencing methods
(Navin et al., 2011) offer the possibility of inferring the evo-
lutionary history and driver mutations in clonal expansions of
cancer cells. These techniques have been successfully applied to
several cancers with excellent prognostic utility, for example,
kidney cancer (Xu et al., 2012). For well-defined activating muta-
tions such as those within BRAF (Loupakis et al., 2009; Borras
et al., 2011), KRAS (Linardou et al., 2008) and EGFR (Lynch
et al., 2004), the posterior probability of efficacious treatment
selection is also high. Indeed, there seems to be a clear path
to incorporating panels of well-defined oncogenesis, metastasis,
and drug response variants through next-generation sequencing
of tumors. Baylor College of Medicine, one institution among
several offering a number of clinical genetics tests, has devel-
oped a Cancer Gene Mutation Panel through next-generation
sequencing that investigates 2855 known mutations within 50
cancer-associated genes for clinical testing (http://www.bcm.edu/
cancergeneticslab/test_detail.cfm?testcode=9705). Other efforts
include the UCLA Clinical Genomics Center (http://pathology.
ucla.edu/body.cfm?id=105), the Emory Genetics Laboratory
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(http://genetics.emory.edu/egl/), and the Washington University
School of Medicine (http://gps.wustl.edu/). Identification of a
small number of specific mutations enables selective treatment
courses to be taken with higher expected efficacy, albeit often with
limited duration of effect due to the development of drug resis-
tance, an expected consequence of monotherapy. For example,
in this Baylor panel BRAF mutations are targeted, where treat-
ment with vemurafenib and dabrafenib has demonstrated BRAF
Val600-specific metastatic melanoma antitumor activity (Jang
and Atkins, 2013). Over the past five years, somatic cell and tumor
genomics has provided remarkable insights into the molecular
pathobiology of cancers. This rapidly progressing field contin-
ues to accumulate examples of improved treatment resulting from
these genetic discoveries.

PREDICTION IN SCREENING FOR MENDELIAN DISORDERS
Equally impressive has been the progress in interrogating very
highly penetrant alleles in population-based screens, particu-
larly in newborns. Next-generation sequencing has enabled rapid,
cost-effective multiplex assays that require little DNA. Given the
high positive predictive value of these variants and the ability
to modify clinical treatment in many of these Mendelian dis-
orders, genetic-based prediction in this area is an efficacious
addition to medical practice. For example, Saunders et al. recently
showed the feasibility of screening for monogenic diseases across
the genome within 50 h in a neonatal clinical setting (Saunders
et al., 2012). Importantly, infants identified as having pathogenic
genotypes (e.g., Kwan et al., 2013; Stefanutti et al., 2013) can
receive appropriate treatment while still hospitalized, often avoid-
ing life-threatening complications. Comprehensive genetic test-
ing may preclude emotionally and financially costly pediatric
odysseys (Kingsmore et al., 2011). In addition, the application
of high-throughput sequencing approaches to clinically impor-
tant, expansive gene panels can reliably identify known inherited
pathogenic variants and new germline mutations that are poten-
tially pathogenic, thereby driving effective early screening (Kurian
et al., 2014).

PREDICTION IN PHARMACOGENETICS
Pharmacogenetics is the third area in which genetic variants can
enable physicians to differentially prescribe certain medications
to individuals to avoid adverse events or to modify dosing. The
importance of these genetic variants in avoiding adverse drug
reactions is underscored by FDA black-box warnings (http:
//www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmaco
genetics/ucm083378.htm), as well as by recommendations
of other groups (https://www.pharmgkb.org/). For example,
individuals carrying the HLA-B∗5701 allele are warned against
taking abacavir (Mallal et al., 2008), dapsone-treated patients
with certain G6PD variants are at higher risk for hemolysis as
are patients receiving primaquine, many sulfonamides, nitro-
furantoin, acetanilide, niridazole, and naphthalene (Cappellini
and Fiorelli, 2008), and the beta blocker propranolol can cause
adverse reactions in those with variants conferring compromised
CYP2D6 function (Cascorbi, 2003; Samer et al., 2013). In all,
the FDA currently lists 155 pharmacogenetic warnings across
numerous therapeutic areas. Again, the validated, high positive

predictive value of these pharmacogenetic variants makes
immediate clinical utility possible, if not immediately actionable.
Clinically useful genetic variants underlying other pharmacoge-
netic traits, such as differential response to many lipid-modifying
medications, metformin, and anti-TNF therapies, still remain
largely abstruse.

Importantly, the setting of clinical application of genetic tests
is critical to the usefulness of genetic-based predictive models.
Traits, including drug response and adverse reactions, that are
(1) otherwise easily diagnosed, or (2) for which disease man-
agement would not change with the results of the predictive
model, are poor candidates for these predictive models. So, results
from the use of genetic-based predictive models must serve as
a cog in the health management machinery and clearly satisfy
an unmet medical need. For example, genetic-based predictive
models are unlikely to play a useful role in diagnosing a bone frac-
ture. Similarly, Kimmel et al. recently showed that even though
genetics can fairly accurately predict warfarin sensitivity, this
information offers no benefit over clinical management of war-
farin dosing to achieve therapeutic range (Kimmel et al., 2013).
The setting of medical care also plays an important role: nearly
half of all patients are not treated in coagulation centers, leaving
the question of how diagnostic genetic testing would fare in those
environments.

Why is it that these three above areas have enjoyed more suc-
cess in applying genetic information to clinical practice than other
applications, such as prognosis of complex diseases? In large part,
the answer lies in the relatively low complexity of the genetic
architecture behind these medical traits. The propagation of can-
cer cells, tumor survival and metastasis are promoted by specific
mutations that wield strong effects on promoting clonal expan-
sions: driver mutations. Different driver mutations accomplish
this task in different ways, but each driver mutation has pro-
found effects on cellular metabolism, mitosis, and proliferation.
Because the effects of these driver mutations are profound and
characteristic of specific molecular pathophysiologies, it is not
surprising that they are reasonably predictive of disease trajectory
and chemotherapy response. Similarly, provided that the false
positive rate of prognostic tests is low, population-based screens
for Mendelian disorders have been a useful addition to modern
medical practice because the penetrance of such traits is typically
complete or nearly complete. That is, aside from the measure-
ment error rates, the prediction of disease given a positive genetic
test is accurate and reliable. Finally, although not as definitive as
Mendelian disorders, pharmacogenetic effects identified to date
testify to reduced complexity of these traits. This is particularly
true of extreme adverse events (e.g., FDA black box warnings)
and response with those drugs having highly targeted substrates.
In contrast, therapeutics with multifold actions, such as statins
or metformin, have exhibited much more recalcitrance to genetic
dissection.

In contrast to the above-mentioned areas, currently the predic-
tion of common diseases presents a considerable challenge. Most
common diseases have been relatively reluctant to reveal a large
fraction of the genetic component of their etiologies (Manolio
et al., 2009). Several studies of complex diseases have shown lit-
tle improvement to disease prediction when adding genetic data
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to already established disease risk factors (e.g., Thanassoulis and
Vasan, 2010; Bao et al., 2013; Muhlenbruch et al., 2013); and,
even if statistically significant, the models incorporating genetic
information may not be clinically useful (Husing et al., 2012).
While there are several instances of important, influential mark-
ers that have been discovered in some common diseases, such
as APOE in Alzheimer’s, ARMS2 and CFH in age-related mac-
ular degeneration (AMD), and numerous alleles in the MHC
region for autoimmune and inflammatory diseases, many genetic
linkage results are the result of multiple infrequent alleles and
most replicated markers from GWAS have modest effect sizes.
In combination, the replicated disease susceptibility alleles dis-
covered thus far have yet to demonstrate substantial prognostic
utility. That said, there are encouraging exceptions: the combined
effect of the multiple identified loci for AMD or Crohn’s disease
may offer some clinical utility in selected circumstances. AMD
is a leading cause of compromised vision and blindness, and
individuals at heightened risk for AMD can benefit from more
frequent eye exams and early treatment to curb the likelihood
of permanent ophthalmic damage. Administration of anti-VEGF
monoclonal antibodies have shown efficacy in exudative AMD
treatment (Fung et al., 2007; Heier et al., 2012). Recent GWAS
studies in AMD have demonstrated that the 19 top AMD risk loci
are estimated to explain between 15 and 65% of the genetic por-
tion of the variance in the phenotype (the proportion depends
on the assumption of AMD prevalence being between 0.01 and
0.10). This set of SNPs also generates an area under the ROC
curve (AUC) of 0.74 (Fritsche et al., 2013), meaning that if you
choose pairs of people at random, one with and one without
AMD, and used their SNP data, the one with a higher probabil-
ity of AMD would in fact be the one with AMD 74% of the time
(Berrar and Flach, 2012). Incorporation of other known risk fac-
tors, such as age and smoking, further improves this prediction.
It is possible that other measures, including positive and negative
predictive values or those based on posterior probability distri-
butions, could provide better insight into clinical utility. Another
promising area is the use of all genetic variants genotyped in a
genome-wide array to construct predictive models, rather than
restricting the markers to those that are strongly associated with
the trait. Purcell et al. investigated the use of thousands of com-
mon alleles in predictive models for schizophrenia and bipolar
disorder, demonstrating an increase in the proportion of the max-
imum variance in these traits explained as the trait-association
significance level was relaxed (Purcell et al., 2009). In addition,
analysis of the Wellcome Trust Case Control Consortium data
for Crohn’s disease appeared to indicate that expansion of the
number of SNPs in a predictive model over just those reach-
ing genome-wide significance improves the model performance
(Kooperberg et al., 2010). These are interesting observations and
consistent with results from Yang et al. (2010) and Lee et al.
(2011) describing the rather dramatic increase in the proportion
of heritability explained with all GWAS SNPs compared to top
SNP findings. Wei et al. offer a recent example of harnessing this
effect for Crohn’s disease where expanding the number of variants
and using advanced machine learning techniques increased pre-
dictive accuracy (Wei et al., 2013). With greater resolution, Yang
et al. (2011) showed that the length of chromosomes is linearly

correlated with the percentage of the variance attributable to a
variety of phenotypes, including von Willebrand factor, height,
BMI and QT interval. However, both theoretical and applied work
appears to show limited utility of including more than a few
hundred SNPs in commonly-used predictive models (Wu et al.,
2013; Warren et al., 2014). Nonetheless, methods that exploit the
whole genome for disease prediction, such as extensions to Best
Linear Unbiased Prediction (BLUP), continue to develop and may
improve accuracy metrics for both binary disease and quantitative
traits (Zhang et al., 2014).

UTILITY AND METHODS
Given that for many diseases with effective treatments accurate
prediction of potential disease can play a critical role in deter-
mining robust clinical care that may avert severe disease or even
disease onset, it is essential to characterize the important aspects
that produce useful predictive models. For traits with polygenic
etiologies, methods must be used to combine signals from multi-
ple genetic markers together into a cohesive metric for prediction
(Wimmer et al., 2013). Seven main considerations when doing
so are: (1) which genetic markers are to be included in the pre-
dictive model—i.e., feature selection, (2) the frequencies of the
susceptible/protective genotypes at each selected marker, (3) the
strength of the correlation between the genotypes at each marker
and the predicted trait, (4) the interactions between the effects
sizes of different genetic markers, (5) the prevalence of the trait
being predicted, (6) how the genetic data are envisioned to inte-
grate into clinical practice in combination with non-genetic tests,
and (7) a determination of the robustness of the prognostic
signal across multiple populations, including those with varied
ancestries. Over the past decade, several methods have been pro-
posed to accomplish these tasks, including genetic risk scores,
various types of regression-based approaches, Bayesian networks,
and other machine learning methods. Importantly, polygenic
disease-prediction models may serve as instrumental variables
for Mendelian randomization analyses in the investigation of the
causal role of genetic-based predictors in disease (Burgess and
Thompson, 2013).

FEATURE SELECTION
Feature selection refers to the decision about which genetic vari-
ants are most effective in determining the medical trait and
should therefore be included in a predictive model. For example,
it would seem reasonable to include SNPs in the CFH, ARMS2,
C3, and C2/CFB/SKIV2L regions in a model predicting AMD
because the evidence for correlation between AMD and these
variants is both substantial and well-established. Further, selec-
tion of these variants for inclusion in a predictive model would
be prioritized over other variants with little or no evidence of
utility in AMD prediction. Jakobsdottir et al. have investigated
the properties of individual disease-susceptibility SNPs, showing
that SNPs with highly significant odds ratios may be insuffi-
cient to classify individuals (Jakobsdottir et al., 2009). There are
several different methods that can be employed. For a general
review see Guyon and Elisseff (2003). Care must be taken when
internal validation techniques are applied to datasets, as the fea-
ture selection must be incorporated in the internal validation
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routine. Ideally, feature selection should be replicated in an inde-
pendent sample set. Approaches based on stepwise selection of
features are popular. The performance of models constructed
based on a stepwise selection can be evaluated based on model
fit, accounting for the complexity of the model—the Akaike and
Bayesian information criteria are examples of measures to do
this (Akaike, 1974; Schwartz, 1978). Aside from purely statisti-
cal and computational approaches, use of biological information
can improve the selection of genetic markers. By integrating
information from numerous decades of biochemistry, molecular
biology and cellular physiology—the direct phenotypes of genetic
variants—one can construct predictive models weighted toward
those variants segregating in functionally relevant regions in an
effort to improve the robustness of the model and ease of appli-
cation to related phenotypes. For example, if one is generating
a genetic-based predictive model for Crohn’s disease response to
IL-17 monoclonal antibody therapy, higher prioritization of vari-
ants within IL-17-related genes or those polymorphisms that are
known to modify T-helper cells expressing IL-17 (Th17) activity
may provide complementary information and yield a higher like-
lihood of the test having utility when applied to other populations
or related phenotypes.

GENETIC RISK SCORES
Genetic Risk Scores (GRS), determined simply on the basis
of published GWAS results, are among the simplest meth-
ods employed for genetic prediction. The majority of these
approaches construct the predictive model based on the sum
of predisposing genotypes that each individual carries, either
unweighted or weighted by the effect size of the specific predis-
posing genotypes. The essential approach is to take a weighted
sum of risk alleles, choosing the risk alleles based on those found
to be genome-wide significant in a recent meta-analysis (e.g.,
for BMI, see Speliotes et al., 2010). Weights are determined for
each risk allele by the β estimates from the meta-analyzed GWAS.
Unweighted GRS treat each risk locus equally. To illustrate the
weighted GRS approach, assume that k SNPs are known to be
genome-wide significant and further assume that the correspond-
ing β weights from the GWAS are denoted as wi for the ith

SNP. Then the be calculated as: GRS = ∑k
i wiRi; where Ri is the

number of risk alleles at the ith SNP. Speliotes et al., using 32
confirmed obesity-associated loci, showed the distribution of the
weighted number of risk alleles across the population used in
the Atherosclerosis Risk in Communities (ARIC) study, and pre-
sented a corresponding AUC for the GRS (Speliotes et al., 2010).
Although significantly different from that expected under the
null, the AUC for this example was exceedingly modest (0.515),
where flipping an unbiased coin would be expected to have an
AUC of 0.500. In another example, Ripatti et al. developed a
genetic risk score based on 13 SNPs discovered to be associated
with coronary heart disease, myocardial infarction or both, in
seven reports (Ripatti et al., 2010). For each individual, the effects
of these SNPs were combined by summing the number of risk
alleles and the resulting risk score was partitioned into quin-
tiles for the purpose of creating a categorical variable. Comparing
extreme quintiles, the authors found roughly a 1.7-fold increased
risk for coronary heart disease in the top risk quintile compared

to the lowest risk. The genetic risk score did not show a significant
effect of the net reclassification of individuals over traditional risk
factors and family history. The combined genetic effect was able
to slightly improve the risk classification of those individuals who
were previously thought to have intermediate risk as determined
by traditional risk factors, but may not have strong clinical util-
ity. Increasing the number of informative genotypes and/or the
traditional risk factors may improve the prognostic performance
of GRS. Other applications, including age-related macular degen-
eration, exhibit more promising performance (Grassmann et al.,
2012; Seddon et al., 2014).

REGRESSION METHODS
Regression methods, familiar tools for constructing prediction
models for both dichotomous and quantitative traits, can lead
to more general predictive models than simple GRSs. One of
the first reports of a cohesive method using multiple replicated
markers under a general logistic regression model was devel-
oped by Yang et al. (2003). Yang and coworkers proposed using
a general logistic regression model to estimate the ratio of the
probability of the genotype information given disease to the
probability of the genotype information within the non-diseased
population. Incorporation of covariates and interaction effects
are possible with this generalized form. Currently, regression
is still commonly used for disease prediction. For example, a
search of PubMed revealed 10 articles published in 2013 which
applied regression methods for the prediction of a variety of
diseases, including cerebrovascular disease, age-related macular
degeneration, and hypertrophic cardiomyopathy (Abraham et al.,
2013; Borque et al., 2013; Gruner et al., 2013; Harada et al.,
2013; Mondul et al., 2013; Romano et al., 2013; Schellekens
et al., 2013; Sharma et al., 2013; Tsai et al., 2013; Uddin et al.,
2013). In addition, extensions including regression of the whole
genome using a Best Linear Unbiased Prediction method (G-
BLUP) can produce more highly predictive models (de Los
Campos et al., 2013). Importantly, Yang et al. (2009) pointed
out that one should not rely on point estimates alone, but also
provide a measure of the uncertainty of the risk estimates. Risk
estimates depend on a variety of parameters, each of which
may be estimated with some uncertainty. Cumulative uncertainty
across all estimated parameters leads to uncertainty of the risk
estimates.

There are several modeling assumptions made when applying
either linear or logistic regression but, in the specific application
area of genetics, the following concerns should be emphasized.
First, multicollinearity between nearby markers is usually a seri-
ous concern. For markers in high linkage disequilibrium with
each other, it is common to select the variant with the lowest p-
value for inclusion in the model. Principal component regression
is another useful way to address concerns arising from mul-
ticollinearity. For example, Gauderman et al. found that this
approach performs well when applied to a single candidate gene
(Gauderman et al., 2007). Another concern is marker-marker
interactions. For parsimony, it is common practice to ignore
interactions. Interaction analysis is not easy to conduct and can
be computationally intensive. Furthermore, substantially larger
sample sizes are typically needed to detect interaction effects than
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are needed to detect main effects. However, ignoring interac-
tions may underestimate genetic effects, and improvements in
the understanding of interactions would be expected to improve
genetic risk prediction models (Thanassoulis and Vasan, 2010).
Missing data are commonly problematic since genotype success
rates are never perfect (Kim and Misra, 2007). One strategy is to
drop samples with missing data (Schwender and Ickstadt, 2008).
Otherwise, when possible, imputation can be a useful solution for
“filling in” missing data (Yuan, 2000).

Usually, for presence vs. absence of disease phenotypes, a
predictive model is first developed by analyzing a case-control
dataset, and then applied to a particular population. To provide
risk estimates that are calibrated to that particular population, an
adjustment which depends on the case to control ratio must be
made to the intercept term of the case-control regression model
(Yang et al., 2003).

Many studies, but not all (Warren et al., 2014), indicate that
risk prediction would be more accurate if more predictors could
be added in the risk model (De Jager et al., 2009; van Dieren
et al., 2012). But the confidence interval (CI) of the risk esti-
mate is often not considered in the evaluation of the risk model.
When the model is built using regression in a meta-analysis of
many case-control datasets, confidence intervals are often not
even estimated.

Provided it is unbiased, a more precise risk estimate with a
smaller CI from a model with fewer predictors is better than a
less precise risk estimate with a larger CI from a model with
more predictors (Shan et al., 2013). To compute the CI for the
risk estimates from a meta-analysis, each individual study in the
meta-analysis should do a joint analysis and return coefficient
estimates and the variance-covariance matrix for the coefficients.
Then, these can be combined to estimate the overall variance-
covariance matrix and a precise CI for the risk estimates. Goddard
et al. developed a method that derives an empirical CI combin-
ing all relevant sources of variation in disease risk (Goddard and
Lewis, 2010; Crouch et al., 2013).

BAYESIAN NETWORKS
Bayesian Networks have resulted from the application of advances
in graph theory to applied probability and carry a high degree of
interpretability, along with providing an intuitive framework for
obtaining posterior probabilities and the treatment of classifica-
tion problems (Pearl, 1988; Jordan, 2004). If the features (genetic
markers) within the Bayesian Network can be reasonably modeled
as being conditionally independent (conditional on the disease
trait in our application), then the network is reduced to a highly
tractable Naïve Bayes model. Given a set of n genetic markers,
using Bayes’ rule one can write the posterior probability of the
disease trait (PPD), as:

PPDn = P
(

D
∣∣∣ ⋂n

i = 1
Gi

)
= P

(⋂n
i = 1 Gi

∣∣ D
)

P(D)

P
(⋂n

i = 1 Gi
) ,

where D denotes a random variable for the disease trait and n
genetic markers are used in the prediction. Under the condi-
tional independence assumption of Naïve Bayes, we can com-
pletely factorize the product and, for a binary trait (D = 1 to

denote disease and D = 0 for non-disease), one can re-write
the PPD as:

PPDn =
P(D = 1)

∏n
i = 1 P(Gi | D = 1)

P(D = 1)
∏n

i = 1 P(Gi | D = 1) + P(D = 0)
∏n

i = 1 P(Gi | D = 0)
.

To illustrate this type of calculation, Figure 1 shows scaled PPD
values for a rheumatoid arthritis study. In this study (Chang
et al., 2008), the PPD for every possible three-locus genotype
combination at the risk loci (HLA-DRB1, the R620W polymor-
phism at PTPN22, and diplotypes at TRAF1) was calculated,
and scaled such that the smallest value was set to 1; SRR denotes
this scaled ratio (Figure 1). While there is substantial variability
across the values for different genotype combinations: over a
41-fold difference in predicted rheumatoid arthritis-risk, it is
important to keep in mind how these bins are populated with
individuals with and without the disease trait (the case-control
frequencies given for each combination), for a prognostic loses
general utility as intermediate combinations become frequent.
In concrete terms, while a 41-fold difference is impressive, only
0.1% of the general population is calculated to carry genotypes
producing this level of effect. 3.2% have multi-locus genotypes
that generate at least a 21-fold increase in RA risk, and 13.7%
carry a multi-locus genotype with >5-fold increase in RA risk
(all compared to the lowest category).

Figure 2 displays the results from a simplified model. Five
hundred disease susceptibility SNPs, all having equal effect sizes
and genotype frequencies, were modeled. A prior probability of
disease was set to 0.20 and the predisposing genotype frequency

FIGURE 1 | Rheumatoid arthritis scaled posterior probabilities (SRR).

Genotype data at three strongly predisposing loci, HLA-DRB1, TRAF1, and
PTPN22 are combined and the posterior probabilities calculated for every
possible multilocus genotype combination. The prior probability was set to
the approximate population prevalence of rheumatoid arthritis, 0.01. The
posterior probabilities are scaled such that the lowest RA-risk multilocus
genotype was set to a value of 1. The results show a 41-fold variation in
posterior probabilities. The expected frequencies of the various multilocus
genotype combinations in RA patients/controls are shown at the top of
each bar.
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FIGURE 2 | Posterior probability variation with relative risk. The
density of posterior probabilities of disease (PPD) are shown under a
simplified multilocus disease model. The number of independent,
disease-predisposing SNPs was set at 500. Relative risk was modeled as
being identical for each predisposing SNP. Frequency of the predisposing
genotype in controls was set to 0.05 at each SNP. Prior probability of

disease was set at 0.20. Naïve Bayes was used to calculate posterior
probabilities. The data points only take on discrete values (The densities
are composed of discrete values which are connected by lines to
produce the curves. While the sum of the discrete values all equal one
in each of the curves, the areas under the curves do not), but are
presented with interconnecting lines.

in the general population was set to 0.05 for all 100 SNPs. As
expected, for very small effect sizes the number of individuals
calculated to have posterior probabilities close to 0.20 is high
and rapidly tails off. However, for larger effect sizes, there is an
accumulation of individuals with posterior probabilities closer to
1 and 0. Interestingly, even with quite considerable effect sizes
(for high frequency alleles) much of the density still resides in
the intermediate region between 0.10 and 0.90. If we explore the
dynamics as the number of loci is increased, so does the variance
in the posterior probability of the disease trait (Figure 3).

Diagnosis or prognosis of disease traits with genetic informa-
tion are classical problems of classification and clustering within
machine learning. Hence, numerous machine learning methods,
such as neural networks, support vector machines, and random
forests can be applied to these types of data sets. Currently, the
use of these methods to address problems using gene expression
is arguably more advanced than the analogous methods applied
to DNA variation data.

QUANTIFYING PROGNOSTIC UTILITY
Within a population studied, once each individual is (1) assigned
a score for a risk metric, (2) assigned a posterior probability,
(3) clustered or (4) classified, a method for assessing prognostic

utility is required to quantify the usefulness in clinical practice.
The most common method used is the area under the ROC
curve, or AUC. However, although this metric is useful to assess
discrimination, it is not the appropriate measure to assess a pre-
dicted probability (Cook, 2007). Graphically, the ROC curve is
a plot of the performance of the predictor in a space defined
by the sensitivity (true positive rate) and 1—specificity (false
positive rate). Varying the threshold of calling a result positive
or negative, a curve can be produced for the predictive model.
The AUC is the integral of the curve. For a completely non-
informative predictor, the AUC is 0.50, with larger values (up to
unity) indicating improved prognostic utility (Figure 4). While
useful, sensitivity and specificity are probabilities conditional on
the state of the phenotype trait. One may want to consider met-
rics that have differential performance with the prevalence of
the disease trait. Indeed, all other diagnostic factors being equal,
a physician should be more prone to diagnose an individual
with a more common phenotype than an exceedingly rare one,
because the a priori likelihood of the disease being the common
phenotype is higher than the likelihood for the rare phenotype.
Therefore, use of positive and negative predictive values (PPV and
NPV) may be more useful in the clinical setting. PPV is defined
as the proportion of true positives out of all positive results as
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FIGURE 3 | Posterior probability variation with number of predisposing

loci. The density of posterior probabilities of disease (PPD) is shown under a
simplified multilocus disease model. The relative risk of each independent,
disease-predisposing SNP was set to 2.0. Prior probability of disease was set
at 0.20. Frequency of the predisposing genotype in controls was set to 0.05

at each SNP. The number of predisposing loci was increased from 20 to 1000.
Naïve Bayes was used to calculate posterior probabilities. The data points
only take on discrete values (the larger number of loci have many more data
points reflecting the larger number of possible multilocus genotype
combinations), but are presented with interconnecting lines.

determined from applying a diagnostic test. Conversely, NPV is
defined as the proportion of negative results that are indeed truly
negative. However, a direct ROC analog of characterizing the
tradeoff between PPV and NPV offers challenges. Motivated by
this, Pencina et al. suggest that averaging over PPV and NPV
may provide an improved metric for characterizing prognos-
tic/diagnostic utility (Pencina et al., 2008). In 2006, a new method
for characterizing disease predictions based on proportions of
individuals accurately reclassified was presented (Cook et al.,
2006). This approach was further developed in subsequent pub-
lications, describing the employment of the Hosmer-Lemeshow
goodness-of-fit statistic and the net reclassification improvement
statistic applied to reclassification categories as predictive mea-
sures (Cook, 2007; Cook and Ridker, 2009). The authors applied
these approaches to better specify results from cardiovascular risk
models.

Another approach would be to characterize the improvement
in the distribution of posterior probabilities as compared to the
distribution of prior probabilities, where the distribution is taken
across all individuals evaluated. The more informative the genetic
information becomes, the larger the departure between poste-
rior and prior probability densities. A natural measure for this is
the Kullback-Leibler Divergence, which quantifies the departure
between two densities (Kullback and Leibler, 1951). Applied to
characterizing the improvement in disease prediction following
the interrogation of a suite of features such as genetic markers,
the Kullback-Leibler Divergence is defined as:

DKL =
∑

P(Disease | G1, . . . , Gn) log

[
P(Disease | G1, . . . , Gn)

P(Disease)

]

where Gi are the random variables describing the states of each
genetic marker involved in disease susceptibility, and the sum is
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FIGURE 4 | AUC. The figure shows the ROC curve and corresponding area
under the ROC curve (AUC). The expected patterns under two extreme
scenarios are shown: an ideal diagnostic scenario and the pattern expected
using random predictions.

over all possible multilocus genotype combinations. DKL is calcu-
lated across the entire population to whom the predictive model
is applied. Larger values of DKL indicate enhanced differences
between the posterior and prior probabilities across the popu-
lation, reflecting the greater utility of the genetic information.
Hence, the Kullback-Leibler Divergence concurrently captures
both the magnitude of the effect the genetic data have on the pos-
terior probabilities for each individual (compared to the prior)
and the proportion of tested individuals exhibiting each magni-
tude of the effect. Empirical-based calibration of this or other
measures of prognostic utility can often be accomplished through
using well-studied data sets having standard prognostic tests such
as the Framingham population and cardiovascular disease risk
score (Wilson et al., 1998; Schrodi et al., 2009).

Another possible method for characterizing would be to define
some level of probability that is clinically meaningful for the spe-
cific application. That is, define critical levels τpos and τneg such
that exceeding these values with the posterior probability of dis-
ease provides actionable information for a clinician. Define the
conditions:

C1: P
(
Disease | Genotype Data, other features

)
> τpos

C2: P
(
Disease | Genotype Data, other features

)
< τneg .

We explore the dynamics of C1 and C2 as a function of the
prior probability of disease in Figure 5. The collective effect of
100 disease-predisposing SNPs, each with relative risk 2.0 and
genotype frequency 5%, is clearly not sufficient to concurrently
generate high proportions of individuals who are well-classified
as either being likely (C1) or unlikely (C2) to have disease. At
prior probabilities close to 0.50, the majority of individuals do
not satisfy either condition C1 or C2. It is only in the situations
where the prior probability is either close to 0 or 1 that large per-
centages of the population interrogated achieve very high or very
low posterior probabilities. Hence, with current results from dis-
ease genetics, it seems reasonable to assume that a clinician should
already have a strong suspicion either of a disease diagnosis or the
exclusion of a disease to warrant the use of SNPs.

To further explore these prognostic utility patterns, we con-
sidered two simplified disease models: a highly polygenic model

FIGURE 5 | Effect of prior probability. The frequency of multilocus
genotype combinations exceeding the C1 and C2 thresholds for posterior
probabilities of disease (PPD) (set at 0.05 and 0.95, respectively) are
presented as a function of the prior probability of disease. 100 predisposing
SNPs were used in the model, each having a predisposing genotype
frequency of 5% in controls and relative risk of 2.0.

consisting of 1000 predisposing SNPs, each of appreciable fre-
quency (10% in controls) (Figure 6). We set the prior probability
of disease to 0.20. As the relative risk of each SNP is increased
from 1.02 to 1.80, the C2 condition exhibits a sigmoidal pattern,
climbing to over 80% roughly when the relative risk hits 1.45.
In contrast, the C1 condition peaks at roughly the same relative
risk and declines thereafter, but never exceeding 0.02. A typi-
cal large GWAS experiment would be well-designed to identify
the SNPs with relative risks in excess of roughly 1.1. The collec-
tive effect from the 1000 SNPs is not sufficient to overcome the
prior probability of 0.20 to promote frequent individual mul-
tilocus genotype combinations to exceed the 0.95 threshold of
C1. That said, the proportion of individuals with posterior prob-
abilities exceeding the C2 < 0.05 threshold was much higher.
We explored a highly penetrant, rare allele model (Figure 7). We
constructed this model with 100 predisposing single nucleotide
variants (SNVs) with predisposing genotypes being rare (0.1%),
offset by large effect sizes ranging from relative risks of 10 to
400. Sequencing studies generate numerous SNVs. In each graph
a single effect size was assumed for all SNVs. Again, the prior
probability was set to 0.20. Here, the C1/C2 dynamics are more
complex, with the C1 and C2 conditions being very sensitive to
individual multilocus genotype combinations. Modeling a dis-
tribution of SNV frequencies would smooth this type of graph.
These are overly simplified cases examined here and the param-
eter space is vast—additional work in this area would provide
useful insights into the properties of prognostics that result from
different genetic-based disease models. That said, the proportion
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FIGURE 6 | Highly polygenic model. The dynamics of the C1/C2 threshold
values under a simplified model is shown as the relative risk of the SNPs
varies. The highly polygenic model has 1000 predisposing SNPs each
having predisposing genotype frequencies in controls equal to 10% and a
prior probability equal to 0.20. The relative risk was varied from 1.02 to 1.80.

of individuals satisfying C1 is dramatically higher than under
the highly polygenic model. Further, high values of C1 and C2

occur concurrently. Although much more work is needed to fully
explore these dynamics, this observation may give some hope to
the usefulness of rare, highly penetrant sequence variants in the
context of disease prediction. However, one might have expected
that the most common results of GWAS analyses—identification
of large numbers of common variants each with small impact
on disease risk for common diseases—would be more useful,
unless there are other effects operating, such as considerable locus
heterogeneity for common diseases.

EXAMPLES
GWAS DATA APPLIED TO A TYPE 2 DIABETES PROSPECTIVE COHORT
Type 2 diabetes (T2D) is a common medical condition with
rapidly increasing incidence worldwide (Zimmet et al., 2001).
This disease is characterized by a multitude of abnormal patho-
physiological states involving muted beta cell response, chronic
inflammation, and aberrant levels of metabolic markers that
ultimately lead to vascular damage, infection, heightened car-
diovascular disease risk, and neuropathy (Zimmet et al., 2001).
Numerous T2D GWAS have been conducted and have reliably
identified new genes and genetic regions involved in T2D sus-
ceptibility, albeit with modest effect sizes (McCarthy, 2010).
Early prediction of T2D onset and trajectory can be leveraged
into improving important medical decisions, including treatment
with therapeutics, exercise programs, and diet restriction. It is
possible that genetic variants may play a role in improving the
prediction of T2D. To test this idea, Shigemizu et al. very recently

FIGURE 7 | Highly penetrant model. The highly penetrant model uses
100 SNPs each having a predisposing genotype frequency of 0.1% and also
a prior probability of 0.20. The relative risk takes on values from 10 to 400.
Although the highly polygenic model yields a large proportion of individuals
with posterior probabilities below 0.05, the increasing relative risks have
little impact on the proportion of individuals with posterior probabilities
above 0.95. The highly penetrant model shows an overall increase in the
proportions of individuals with posterior probabilities below 0.05 and above
0.95, but the patterns are somewhat unexpected (not smooth, nor
monotone). These patterns are generated from all predisposing SNVs
having identical genotype frequencies and relative risks, coupled with
having specific PPD thresholds.

performed a two-stage study (training and test sets) that resulted
in combining nine SNPs with three clinical risk factors (age, gen-
der, and BMI) to develop a predictive model for T2D in a prospec-
tive cohort having Japanese ancestry (Shigemizu et al., 2014).
The features used in a regression model for T2D-prediction were
selected using a Bayes Factor and lasso method. From both genetic
and clinical risk factors, the resulting predictive model showed
reasonable AUC values in the independent test set (AUC = 0.808).
Further, where the sensitivity and sensitivity were concurrently
maximized, the model yielded a PPV and NPV of 77.8 and 73.8%,
respectively. Although the selected SNPs did add to the diagnos-
tic performance of the prediction model, they only did so in an
incremental fashion. The model using SNPs, interactions, and
clinical risk factors exhibited a 1.5% increase in the AUC over
the clinical risk factors alone. Perhaps the discovery of additional
T2D risk variants from sequencing efforts, rarer exome variants,
extensive epistatic models, and/or undiscovered epigenetic factors
will drive further work in this area to markedly improve the per-
formance of T2D predictive models using heritable information.
Until then, there may be greater gains through the use of dynamic
markers like metabolite profiling and proteomics. Alternatively,
exploration of prediction within T2D subgroups may offer a more
fruitful avenue of inquiry.
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STROKE PREDICTION USING GENETIC RISK SCORES
Stroke events are major contributors to mortality and morbid-
ity, constituting the fourth leading cause of death in the United
States. Accurate prediction of ischemic stroke risk would enable
medical interventions to at least partially remediate stroke occur-
rence and the resulting brain damage. Very recently, two large
studies (Ibrahim-Verbaas et al., 2014; Malik et al., 2014) have been
published evaluating risk models constructed from a number of
stroke and related phenotype-associated GWAS SNPs. The results
were consistent with GRSs achieving statistical significance, but
adding little in diagnostic utility to clinical features, as measured
by AUC. Ibrahim-Verbaas et al. evaluated the performance of
a 324-SNP GRS in four population-based cohorts totaling over
22,000 individuals in an effort to improve the discrimination of
ischemic stroke over that generated from the Framingham Stroke
Risk Score Model, age and sex. The SNPs were selected based
on association with stroke-related phenotypes and a GRS con-
structed using weights from the regression model used to test
the disease association. ROC curves from the results for the study
show that the weighted GRSs do not substantially add to the AUC
over that achieved by the Framingham Stroke Risk Score and
sex—the improvement in AUC from the GRS was approximately
0.02 for all stroke as well as for ischemic stroke alone—although
the AUC improvement was statistically significant. The authors
also examined the impact of the GRS on the net reclassification
index, showing statistically significant, but incremental improve-
ment. Concurrently published in the same issue of Stroke, Malik
et al. presented similar results for their stroke GRS performance in
comparison to clinical features using overlapping samples (Malik
et al., 2014). The study showed increased stroke risk across quin-
tiles of their GRS, obtained from an analysis of independent
samples from the Wellcome Trust Case Control Consortium 2 and
the METASTROKE consortium. Slightly under a 1.5-fold increase
in risk was found comparing the top quintile to the middle quin-
tile, and a >2-fold increase comparing the lowest quintile to the
top quintile. No significant improvement in the net reclassifica-
tion was observed and the ROC curves with and without the
GRS are virtually superimposable for a sample set composed of
a clinical trial-based derivation sample set and the replication
sample set.

PREDICTION USING BIOBANK DATA
Current efforts to discover and employ genetic risk predictors
across multiple health care systems include those of the Electronic
Medical Records and Genomics (eMERGE) Network (Gottesman
et al., 2013). The eMERGE Network has supported large-scale
genotyping efforts in biobanked DNA samples linked to elec-
tronic medical records. As such, a repository of genome-wide
genetic data can be interrogated with respect to a vast amount
of clinical information. One use of these data is to investigate how
sets of genetic markers can stratify sample sets for the purpose
of performing historical prospective studies. By analyzing longi-
tudinal data, one can specify the sets of individuals to “follow”
from a point in time to test for association with various medical
traits. In doing so, one can perform a prospective study relat-
ing genotypes to the accumulation of various medical outcomes
and laboratory values. This is an excellent venue for evaluating

genetic-based predictive models. For example, suppose one con-
structed a predictive model for myocardial infarction (MI) with
existing literature findings and then assigned a predicted MI risk
for each individual. One could then evaluate how the predicted
risk was correlated with the actual conversion rate of non-MI
individuals to MI disease states. One can also simultaneously per-
form association testing between any combination of sequence
variants and/or GWAS SNPs and prospectively occurring disease,
for the purpose of discovering novel genotype-phenotype corre-
lations. Notably, this type of experimental design is less subject to
confounding effects when compared to retrospective case-control
designs because a cohort-based design is less likely to impart bias
from sample selection being correlated with genetic factors. As
noted in a 2010 Institute of Medicine “Rapid Learning” docu-
ment, the hope is that electronic medical records, biobanks and
bioregistries will provide evidentiary support for intervention
decisions (National Research Council, 2010). Interesting, Lauer
and D’Agostino recently suggested that the next disruptive tech-
nology in clinical research would be the randomized registry trial
(Lauer and D’Agostino, 2013).

Deeply phenotyped biobanked datasets can also be used to
redefine disease states. GWAS have highlighted SNPs that are
undoubtedly correlated with susceptibility to common diseases
but, as we have discussed, the alleles discovered thus far explain
only a marginal amount of disease heritability. The reasons for
this are the subject of much debate. Resolution of this perplex-
ing problem will likely involve a multitude of discoveries, not the
least of which stem from addressing the opaque correspondence
between clinical phenotypes and underlying molecular patholo-
gies. Due to reliance on observations of complex, gross physiology
in the clinic, it is reasonable to assume that there may be multi-
ple molecular etiologies that map to a single clinical disease state
(e.g., estrogen receptor status now meaningfully partitions pre-
viously indistinguishable breast cancers and leads to profound
changes in the use of Tamoxifen) (Fisher et al., 1988, 1989; Paik
et al., 2004). Conversely, single molecular perturbations may have
pleiotropic effects (e.g., the rs2476601 SNP in PTPN22 is strongly
associated with several, clinically distinct autoimmune diseases)
(Begovich et al., 2004; Bottini et al., 2004; Kyogoku et al., 2004;
Velaga et al., 2004; Canton et al., 2005; Criswell et al., 2005). The
medical field is accustomed to defining diseases with regard to
visual inspection and gross anatomical measurements, and there-
fore may (1) aggregate disparate molecular pathophysiologies and
(2) partition the same molecular processes into different disease
classes. Indeed, there is not a one-to-one mapping between clini-
cal assessments of disease and molecular processes. Thus, it seems
reasonable to adopt the reductionist stance that redefining dis-
ease states and processes in terms of the underlying genetic and
molecular variation may significantly aid investigation of dis-
ease etiologies. In this way, one can construct phenotype-based
predictive models for sets of genetic/molecular information—a
reverse genetics approach. Several groups have recently taken this
approach to mapping disease genes: Pendergrass et al. used this
method to interrogate data from the PAGE network (Pendergrass
et al., 2013), Hebbring et al. (2013), have performed similar
types of studies in the Marshfield Personalized Medicine Research
Project samples, and Denny et al. utilized data from the eMERGE
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Network (Denny et al., 2013). In these studies, clinical pheno-
types are screened in electronic medical record (EMR) systems for
association with specific genetic variants with known function (or
highly likely to have specific impact on biological pathways)—a
method pioneered by Ritchie et al. in a large-scale effort to repli-
cate numerous associations using DNA databanks linked to EMRs
(Ritchie et al., 2010). Novel disease associations can be discovered
through these “PheWAS” studies. In addition, this “bottom-up”
(specific genetic variants-to-phenotype) approach can also be
viewed as a starting point for using genetic information to rede-
fine disease states in a classification system that more closely
mirrors the underlying molecular pathophysiology. For example,
screening diseases within a biobank for association with IL23R
missense variants uncovers sets of disease phenotypes where aber-
rant Th17 signaling plays a pathogenic role. Autoinflammatory
diseases, including ankylosing spondylitis, psoriasis, and Crohn’s
disease, would all show a common, core aspect to their molecular
pathophysiology. Additionally, partitioning by these same vari-
ants allows elucidation of disease subgroups. This reclassification
can further enable disease prediction, for the phenotypes pre-
dicted would exhibit clearer correspondence with the underlying
molecular mechanisms.

INFLAMMATORY ARTHRITIS PREDICTION IN THE MARSHFIELD
POPULATION
To illustrate how to apply machine learning methods to empiri-
cal datasets for the purpose of disease prediction and show some
of the difficulties with attaining strong predictive signals from
GWAS findings, we present an example of using genetic data and
samples from an EMR-linked biorepository for the purpose of
distinguishing between inflammatory arthritis conditions.

Worldwide and within the US, inflammatory arthritides are
common conditions representing a substantial portion of dis-
abling disease. Early treatment of these conditions can provide
substantial benefit in averting disabling articular damage and
systemic complications. In general, autoimmune and autoinflam-
matory diseases such as rheumatoid arthritis and spondyloarthri-
tides have significant heritabilities—a substantial portion of
which has been explained by identified polymorphisms, thereby
motivating the incorporation of genotype information into prog-
nostic approaches. This study aimed to investigate and charac-
terize the ability of a panel of genetic markers, identified from
genome-wide association study results, to classify individuals into
the three inflammatory arthritis categories: rheumatoid arthri-
tis, axial spondyloarthritis and psoriatic arthritis (Table 1). Using
genotyped samples from an independent sample set from Central
Wisconsin (Marshfield Clinic), several machine learning meth-
ods were applied to a filtered set of these polymorphisms to
classify individuals into the three inflammatory arthritis dis-
eases, blinded to the known disease status. The WEKA software
package was used to implement the machine learning algo-
rithms (Holmes et al., 1994; Hall et al., 2009). Accuracy was
defined as the proportion of positive and negative classifica-
tion results that were in fact true. The Naïve Bayes classifier
attained the highest average accuracy from 10-fold cross val-
idation on the training set (Table 2). However, when applied
to the Marshfield test set, there was a substantial decline in

Table 1 | Illustration of machine learning methods applied to genetic

data: feature selection.

Ankylosing spondylitis Psoriatic arthritis Rheumatoid arthritis

Rs13203464 (HLA-B27) Rs10484554 (HLA-C) Rs660895 (HLA-DRB1)

Rs30187 (ERAP1) Rs20541 (IL13) Rs2476601 (PTPN22)

Rs11209026 (IL23R) Rs13017599 (REL) Rs3761847 (TRAF1/C5)

Rs10865531 (2p15) Rs2066808 (IL23A) Rs3890745 (MMEL1)

Rs2310173 (IL1R2) Rs12924903 (RUNX3) Rs13031237 (REL)

Rs4333130 (ANTXR2) Rs4795067 (NOS2) Rs7574865 (STAT4)

Rs378108 (21q22) Rs4379175 (IL12B) Rs548234 (PRDM1)

Rs2297909 (KIF2B) Rs4982254 (PSMA6) Rs2327832 (TNFAIP3)

Rs10045431 (IL12B) Rs13151961 (IL2/21) Rs1569723 (CD40)

Rs10903118 (RUNX3) Rs11209026 (IL23R) Rs11574914 (CCL21)

Rs7720838 (PTGER4) Rs7720838 (PTGER4) Rs11172254 (KIF5A)

Rs2058276 (Y-marker) Rs231804 (CTLA4)

Rs1160542 (AFF3)

Rs13151961 (IL2/21)

SNPs were selected for the Naïve Bayes Algorithm to determine inflammatory

arthritis categories. Feature selection for the SNPs was performed through a lit-

erature search on the three diseases of interest from existing GWAS studies:

Ankylosing spondylitis (AS), Psoriatic arthritis (PsA), and Rheumatoid arthritis

(RA). The most significant and replicable SNPs were used to construct the

entire set. Subsequent evaluation of features used Wrapper Subset Evaluation,

ChiSq Attribute Evaluation, Classifier Subset Evaluation, and Information Gain

from Attributes methods within the program WEKA. These methods were cou-

pled with a variety of search methods including genetic algorithm-based, Greedy

Stepwise Selection, and Linear Forward Search methods within WEKA.

Table 2 | Relative performance across machine learning methods.

Algorithm Number Accuracy (%) 10-fold CV

of SNPs accuracy (%)

Decision tree 33 87 74.1

Neural network 5 76 77.1

Logistic regression 24 78 77.7

Support vector machine 1 73 72.6

K-nearest neighbor 7 77 77.2

Naïve bayes 29 78 77.9

Six Machine Learning algorithms using feature selection and classification were

evaluated for accuracy using complied data from the literature in a synthetic

training data set. Effect sizes and genotype frequencies were estimated from

the literature and incorporated into the synthetic data set to train the algorithms.

Accuracy was defined as the proportion of individuals that were correctly pre-

dicted (either true positives or true negatives). 10-fold Cross Validation (CV) was

performed within WEKA and used as the criterion for selection of an algorithm

to use in the test set from Marshfield. Naïve Bayes exhibited slightly higher CV

accuracy when compared to other algorithms, with a low amount of overfitting.

the performance with an average area under the ROC curve of
0.635 (Figure 8). Although the difference between this observed
AUC of 0.635 and that expected under the null (AUC = 0.500)
is statistically significant, we conclude that additional, orthog-
onal predictive variables, such as clinical features, circulating
cytokine profiles or additional genetic variants, are necessary
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FIGURE 8 | AUC for inflammatory arthritis prediction study for the

Marshfield population. The Naïve Bayes classifier developed using data
from the literature was applied to the Marshfield population of
inflammatory arthritis individuals: Rheumatoid arthritis (RA), Psoriatic
arthritis (PsA), and Ankylosing spondylitis (AS). The model generated an
AUC of 0.635, which was statistically significant via permutation. In
addition, performance on randomized sample sets is shown in red, showing
an expected null performance.

to build a clinically useful prognostic test for classifying these
diseases.

SUMMARY
We have summarized some of the seminal issues in utiliz-
ing genetic information in predictive models for disease traits.
Currently, the application of genetic-based predictive models to
common diseases is, generally speaking, disappointing from both
theoretical and empirical lines of evidence. There are some bright
spots, including AMD, Crohn’s disease, and special applications
to selected populations with increased posterior probabilities
due to non-genetic factors. Additionally, if the current wave of
sequence-based disease gene mapping uncovers sufficient num-
bers of highly penetrant alleles, then these may provide clinically
relevant prognostic utility. Outside of common disease prognos-
tics, tumor genetics, screening for inherited Mendelian disorders,
and some pharmacogenetic applications have exhibited the most
progress over the past five years. The reasons for this stem from
the reduced complexity of the genetic architecture of these traits,
yielding extremely high or extremely low posterior probabilities.
Certainly, many questions in the field remain. As our understand-
ing of the nature of elements that resolve the missing heritability
problem matures, the path to applying predictive modeling meth-
ods will become clearer. What needs to fall in place for clinically
useful prediction of complex diseases? We speculate that six
critical steps will aid this process:

(1) Through next-generation sequencing platforms applied to
both linkage and association designs, identification of

additional susceptibility variants will fully cover the allele
frequency spectrum and capture disease-predictive alleles.
However, the discovery of rare, highly penetrant risk alle-
les will be most useful as clinical sequencing becomes
widespread and applied earlier in life.

(2) As other elements besides DNA sequences are inherited and
contribute to phenotypic variance, the interrogation of addi-
tional possible contributors to heritability, including DNA
methylation patterns, histone modifications, transgenera-
tional effects, and other factors correlated with disease traits,
will capture more of the molecularly-defined heritability.

(3) Redefining disease phenotypes to more accurately mirror
the underlying molecular pathophysiology will be critical
in reducing disease complexity and better enable genetic
susceptibility mapping. For example, partitioning diseases
by molecular subtypes will identify physiological subgroups
with clearer correspondence with the underlying genetics.
Within the context of research using biobanks linked to med-
ical records, relevant laboratory tests or imaging information,
or both, would also be valuable.

(4) Considerable progress has been made in the field of machine
learning, where robust methods have been developed to select
features and use them in predictive models. Applying these
approaches to genetic data in combination with existing labo-
ratory tests, imaging data, and other established medical tests
will offer the best chance of creating viable prognostics.

(5) Metrics that capture prognostic utility in a way that accu-
rately reflects what a clinician requires to inform medical
decisions will be developed.

(6) The application of disease predictive models to diverse clin-
ical populations will clarify the performance and limitations
of proposed predictive models and improve medical practice.

In summary, while prediction will continue to be challenging,
future investigations promise to provide a wealth of informa-
tion, some of which will be clinically useful if considered in the
appropriate context.
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Purpose: Genetic risk assessment is becoming an important component of clinical
decision-making. Genetic Risk Scores (GRSs) allow the composite assessment of genetic
risk in complex traits. A technically and clinically pertinent question is how to most easily
and effectively combine a GRS with an assessment of clinical risk derived from established
non-genetic risk factors as well as to clearly present this information to patient and health
care providers.

Materials and Methods: We illustrate a means to combine a GRS with an independent
assessment of clinical risk using a log-link function. We apply the method to the prediction
of coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort.
We evaluate different constructions based on metrics of effect change, discrimination, and
calibration.

Results: The addition of a GRS to a clinical risk score (CRS) improves both discrimination
and calibration for CHD in ARIC. Results are similar regardless of whether external vs.
internal coefficients are used for the CRS, risk factor single nucleotide polymorphisms
(SNPs) are included in the GRS, or subjects with diabetes at baseline are excluded. We
outline how to report the construction and the performance of a GRS using our method
and illustrate a means to present genetic risk information to subjects and/or their health
care provider.

Conclusion: The proposed method facilitates the standardized incorporation of a GRS in
risk assessment.

Keywords: genetic risk scores, personalized medicine, coronary heart disease, electronic health records

INTRODUCTION
As genotyping technologies become more common, the inter-
pretation of genetic risk is becoming a bigger component of
clinical decision-making. A particular challenge is the interpre-
tation of such genetic information in the context of other clinical
health information. Recently, the electronic MEdical Records and
GEnomics (eMERGE) network outlined challenges and opportu-
nities for integrating genetic data into an electronic health records
(De Jager et al., 2009) system. One issue identified was the auto-
mated interpretation of genetic data (Gottesman et al., 2013; Kho
et al., 2013; Marsolo and Spooner, 2013; Ury, 2013). The sheer
size of genomic data provides many interpretative challenges, par-
ticularly in the age of whole genome sequencing with billions of
variant base pairs, many of which are de novo.

Genetic Risk Scores (GRSs) are one tool for automating the
rendition of one’s genetic risk. They provide a means to aggre-
gate the health related risk of a collection of genetic alleles into
a single number, which can then be used for risk assessment.

Using results from genome-wide association studies, one typi-
cally combines the observed (or meta-analyzed) log odds-ratio
of the risk associated single nucleotide polymorphisms (SNPs).
Such scores have been formulated for a variety of complex traits
including coronary heart disease (CHD), diabetes, multiple scle-
rosis and schizophrenia (De Jager et al., 2009; Purcell et al.,
2009; Thanassoulis et al., 2012). Overall, GRSs have been shown
to modestly improve risk assessment using both traditional and
more recently developed model performance metrics (Cook,
2007; Steyerberg et al., 2012).

We anticipate individuals will increasingly approach their
physicians with questions regarding their genetic risk of common
diseases as high density genetic profiling becomes progressively
more routinely available. In this paper, we consider the emerging
scenario where a hospital system decides to incorporate genetic
data into their EHR for the purposes of clinical risk assessment.
One obstacle hampering the effective incorporation of GRSs into
clinical practice is the lack of clarity in how to most readily
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combine a GRS with a clinical risk assessment. Here, we describe
a relatively straightforward method to combine genetic infor-
mation at established susceptibility loci with a non-genetic risk
prediction tool. We illustrate this approach in the context of CHD
using a GRS constructed from the most promising association sig-
nals reported to date for this disease. We emphasize that the goal
of this study is neither to validate the utility of a GRS in risk pre-
diction nor to assess the best way to construct a GRS but rather to
demonstrate how one might interpret a GRS and easily incorpo-
rate it into a clinical risk assessment. A GRS can be constructed in
a variety of ways (Schrodi et al., 2014). One may select SNPs and
define their respective high-risk allele either through the investi-
gation of SNP effects within the cohort itself or within external
studies that are typically much larger but not necessarily prospec-
tive in nature. One may also weigh the high-risk allele by its
effect size observed internally or externally. In this study, we used
the weighted approach deriving both the SNPs and weights from
external sources. Lastly, we illustrate one way to present risk pre-
diction analyses incorporating GRSs to patients and health care
providers.

METHODS
SNP SELECTION AND WEIGHTING
We selected SNPs from the most recent and largest multi–
stage meta-analysis of GWAS for coronary artery disease con-
ducted by the CARDIoGRAMplusC4D consortium to construct
the GRS (CARDIoGRAMplusC4D Consortium et al., 2013).
The study included 63,746 cases and 130,681 controls. The
vast majority of the subjects included in this meta-analysis
reported white/European ancestry. The meta-analysis added 15
new CHD susceptibility loci and confirmed nearly all loci that
had previously reached genome-wide significance. The inves-
tigators also identified secondary signals at four established
loci. Supplementary Table 9 of the CARDIoGRAMplusC4D
manuscript lists all uncorrelated SNPs (r2 < 0.2) with an
estimated FDR < 5% (CARDIoGRAMplusC4D Consortium
et al., 2013). From this list, we selected the 50 SNPs iden-
tified by the consortium as validated SNPs because they had
reached a genome-wide level of statistical significance in either
the CARDIOGRAMplusC4D meta-analysis or in any previous
GWAS.

We expect a subset of SNPs to be influencing the risk of CHD
through traditional risk factors as the CARDIOGRAMplusC4D
meta-analysis adjusted only for age and sex. Indeed, the
CARDIoGRAMplusC4D investigators determined that 12 and 5
of these 50 SNPs likely influence CHD risk through effects on
lipids and blood pressure based on their strong association with
these traits in the Global Lipids Genetics Consortium and the
International Consortium of Blood Pressure meta-analyses of
GWAS, respectively (CARDIoGRAMplusC4D Consortium et al.,
2013). For the purposes of this study, we classified these 17 SNPs
as “risk factor SNPs.” The remaining 33 SNPs were classified as
“non-risk factor SNPs.”

PROSPECTIVE COHORT FOR TESTING GENETIC RISK SCORES
We selected the AtherosclerosisRisk in Communities Study
(ARIC) study to develop and test a GRS constructed with the

50 SNPs of interest. The ARIC Study is an ongoing prospective
investigation of atherosclerosis and its clinical sequelae involving
15,792 white and black persons aged 45–64 years at recruit-
ment (1987–1989). Detailed descriptions of the study designs,
IRB consent process, sampling procedures, methods, definitions
of cardiovascular outcomes, and approach to statistical analyses is
published elsewhere (White et al., 1996; Volcik et al., 2006).

We selected ARIC for several reasons including the availability
of individual level genome-wide data for all participants through
the National Institutes of Health (National Human Genome
Research Institute) controlled access database of Genotypes and
Phenotypes (dbGaP), a prolonged follow up with > 1000 inci-
dent cases, and no overlap of incident cases with prevalent cases
that were included in the CARDIoGRAMplusC4D consortium
study (CARDIoGRAMplusC4D Consortium et al., 2013). The
Affymetrix 6.0 array was used to genotype all participants of the
ARIC study.

All white/Europeans without a history of CHD, myocardial
infarction, or heart failure at baseline among the ARIC cohort
subjects in dbGAP were eligible for study inclusion. Incident
CHD was defined by the recording for the first time of either non-
fatal or fatal myocardial infarction (“mi04,” “fatchd04”), CHD
related revascularization procedure (“in_by04p”), or silent MI
detected by ECG (“in_04s”).

The outcome of interest was incident CHD within 10 years.
Those without a positive event who died or were lost to follow up
prior to their 10th year anniversary of follow up were removed
from analysis. All others were deemed event free at 10-years
regardless of whether they developed incident CHD sometime
after their 10 year anniversary of follow up.

CLINICAL RISK SCORE ASSESSMENT
We calculated two clinical risk scores (CRSs) to assess clinical risk
at 10 years. The first was the well-known “external” Framingham
Risk Score (FRS) for 10-year risk of CHD. The score is based
on one’s gender, age, total cholesterol, HDL cholesterol, blood
pressure, and diabetes and smoking status. Ten-year risk of CHD
was calculated using the published regression coefficients (Wilson
et al., 1998). The second score was developed “internally” within
the ARIC and tested and incorporated the same FRS risk factor
variables using cross-validation (see below). Subjects with one or
more missing FRS risk factors were excluded from the analysis.

IMPUTATION OF ARIC RAW GENOTYPE DATA TO 1000 GENOMES
We imputed individual level genotype data from ARIC to the
latest build of the 1000 genomes project (1 kGP) used a hid-
den Markov model to minimize the need to use proxy SNPs in
the construction of the GRS (Abecasis et al., 2012; Howie et al.,
2012). We first phased each chromosome using MaCH (v1.0.16)
by running 20 rounds of the Markov sampler and considering 200
haplotypes (states) when updating each individual. We then used
phased haplotypes in each chromosome and the latest release of
the 1 kGPcosmopolitan panel (version 3 March 2012 release, 246
AFR + 181 AMR + 286 ASN + 379 EUR) to impute all SNPs in
the cosmopolitan panel using the OpenMP protocol based multi-
threaded version of Minimac (v4.6) with 20 rounds and 300 states
for each chromosome. Genotyped SNPs used for imputation were
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restricted to those with the following features: MAF > 0.1%,
missing data per SNP < 2%, and Hardy-Weinberg equilibrium
(HWE) p > 10−6. Of the 841,820 autosomal genotyped mark-
ers, 543,653 passed the initial quality filters and were used for the
imputation of over 37 million SNPs in ARIC. We used GTOOL
(Genetics Software Suite, (c) 2007, The University of Oxford) to
convert Minimac dosage files to best guess genotype calls.

GRS CONSTRUCTION
We calculated the GRS for an individual in the typical approach
as a weighted sum of the number of high risk alleles [1].

GRS =
50∑

i∈GRS

ωi

2∑
j=1

RAij (1)

where the inside summation, RAij, is the count of high risk alle-
les and the weight, wi, is the meta-analyzed log odds-ratio for
SNP i. We used the corresponding “combined beta” (i.e., the beta
across the stage 1 and 2 CARDIOGRAMplusC4D meta-analysis)
to weigh the SNP when constructing the GRS. We carefully iden-
tified the high-risk allele for each SNP. We used the GTOOL
genotype calls to count high-risk alleles for all SNPs in each indi-
vidual after first dropping SNPs with a low imputation quality
(r2 < 0.3).

There are two primary assumptions in such a construc-
tion. Since this summation is over marginal effects, each effect
is assumed to be independent. The second is that the effects
are linearly additive, i.e., there are no interactions. For the
first assumption, care was taken to select SNPs that are not
in linkage disequilibrium (i.e., correlated) with one another in
white/European descent participants (r2 < 0.2). While the sec-
ond assumption is likely violated, it is also reasonable to assume
that marginal effects capture a majority of genetic risk for CHD
(Zdravkovic et al., 2002; Speed et al., 2012). When using the GRS
we standardize it to have a mean of 0 and standard deviation of 1.

COMBINING CLINICAL AND GENETIC RISK
We present a simple and easy way to combine one’s CRS and GRS
by using the following model [2]:

log (P(CHD |Clinical & Genetic Factors )) = α + β1CRS

+β2GRS (2)

This is a standard generalized linear model, where the outcome is
a binary (0–1) indicator for incident CHD within 10 years and
the predictor variables are the CRS and GRS, respectively. The
CRS represents either a calculated risk due to non-genetic clin-
ical factors (as in FRS) or a summation over multiple clinical
risk factors (when using internal coefficients). We emphasize the
use of a log link function instead of the more frequently used
logistic link function (as in logistic regression). This allows the
two coefficients of interest (β1 and β2) to represent log relative
risks (RR), making the following transformation more straight-
forward. However, we note that using the logistic link one could
perform a similar transformation. After exponentiating equation
[2], we obtain:

P (CHD |Clinical & Genetic ) = eα+β1CRS × eβ2GRS

= P (CHD |Clinical ) × RRGRS
(GRS)(3)

In the second line, we have combined the intercept (α) with the
effect due to clinical factors. This is generally well captured by a
CRS (like FRS) that incorporates the prevalence of disease in the
general population. Since we are multiplying the estimated effects
for the GRS and CRS, the primary assumption is that the GRS is
linearly independent of the CRS. This assumption would poten-
tially be violated if the GRS consisted of SNPs that were thought to
act entirely or largely through effects on non-genetic clinical risk
factors measured at baseline. However, the impact is mitigated by
controlling for the CRS while estimating the RR for the GRS in
equation [2].

Therefore, to calculate a probability of CHD based on clinical
and genetic factors, we must:

(1) Estimate the RR for a one-unit change in GRS on the proba-
bility of CHD within 10 years controlled for CRS.

(2) For a given individual:

(a) Calculate the probability of CHD based on clinical fac-
tors via a FRS or Internal Score

(b) Calculate the GRS (based on equation 1) and standardize
it using population mean and standard deviation (SD)

(c) Multiply the probability from (a) by the RR from (1)
raised to the value of standardized GRS from (b) (based
on second line of Equation 3)

EVALUATION OF PERFORMANCE OF RISK SCORES
We used 10-fold cross-validation to test both the CRS and GRS,
dividing the cohort into a series of independent training and test
sets. We created a series of updated risk scores:

(1) A CRS based solely on the FRS (no genetic information
considered)

(2) A CRS based solely on the internal coefficients (no genetic
information considered)

(3) A CRS updated with a GRS constructed using all SNPs of
interest that were either well genotyped or well imputed in
ARIC.

(4) A CRS updated with a GRS constructed using only “non–risk
factor” SNPs among the SNPs in (3)

(5) A CRS updated with a GRS constructed using only “risk
factor” SNPs among the SNPs in (3)

The overall relative risk for a standardized one-unit change in
GRS was estimated while incorporating the CRS (either FRS or
internal). Within each of the 10-folds, the training (9/10) and test
(1/10), we created a standardized score based on the mean and
standard deviation from the training set. The models were esti-
mated on the training split and applied to the test split. We used
three forms of assessment. First, we calculated the c-statistic to
assess discrimination of the various risk scores. Discrimination
refers to a model’s ability to separate subjects into distinct groups,
in this case, those with CHD from those without. Secondly, we
calculated the RR for a one standard deviation change in GRS.
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Finally, we calculated the calibration slope to assess each models
overall calibration (Kramer and Zimmerman, 2007). The calibra-
tion of a model is the extent to which the predicted probability
reflects the true underlying probability. The calibration slope
is a more interpretable statistic than the more typical Hosmer-
Lemeshow statistic, representing the degree of miscalibration
(Crowson et al., 2014). A calibration slope of 1.0 indicates per-
fect calibration while values less than 1.0 suggest over-fitting and
above 1.0 poorer calibration. For example a calibration slope of
2.0 indicates a two-fold increase in miscalibration. We chose not
to assess our models using the Net Reclassification Index (NRI)
or the clinical NRI due to recent concerns about the utility and
validity of this metric combined with changing clinical guidelines
for cardiovascular disease risk assessment (Paynter and Cook,
2012; Ridker and Cook, 2013; Goff et al., 2014; Kerr et al., 2014;
Muntner et al., 2014).

In a sensitivity analysis, we repeated the above comparisons
but restricted the cohort to those without prevalent diabetes. We
also considered a risk prediction model using only a GRS adjusted
for age and gender and no other clinical risk factors to provide a
perspective on the overall impact of clinical risk factors compared
to the genetic risk score. Finally, we assessed the potential for
population stratification by performing a principal components
analysis (PCA) with 741 ancestry informative markers (AIMs)
using EIGENTRAT (Price et al., 2006) followed by a regression
of CHD status onto all significant components, adjusted for the
clinical factors.

All analyses were performed in R 3.0.1 (R Core Team, 2014).

RISK REPORTS
Using the generated information, we illustrate one means to pro-
vide a risk report about an individual’s clinical and genetic risk of
disease. Three key pieces of information are included:

(1) The number of risk alleles
(2) How the individual’s GRS compares to the distribution of

GRSs in a comparative population.
(3) The change in one’s overall risk after accounting for genetic

risk

The number of risk alleles represents a simple count of the num-
ber of alleles that have been associated with an increased risk of
CHD. The GRS comparison to the general population is based
on the individual’s standardized GRS. Finally the updated risk is
calculated from equation (3). A fourth piece of information that
can be included in the risk report is a statement of how the indi-
vidual’s change in overall risk after accounting for genetic risk
influences clinical management. This may be based on some well-
accepted guidelines whose recommendations can be easily and
reliably automated.

RESULTS
ARIC COHORT EXCLUSIONS
Of the 12,771 from the ARIC cohort with phenotypic and geno-
typic data, 9633 (75%) were white/European (see Figure 1).
Among the remaining subjects, 721 (7.5%) had a history of CHD
or CHF at baseline and were excluded from further analysis.

FIGURE 1 | Atherosclerosis Risk in Communities (ARIC) cohort

inclusion and exclusion criteria applied to data obtained from the

NCBI’s database of genotypes and phenotypes (dbGAP).

Lastly, we excluded 380 people who were lost to follow-up or died
of non-CHD related factors within 10 years and 41 people with
missing covariate information, comprising a final cohort of 8491.
Table 1 shows the baseline characteristics for the ARIC subcohort
used in our analyses. The predicted 10-year risk of developing
CHD based on the FRS in this subcohort is 7.4% (interquartile
range 4.3–12.3%). This predicted risk coincided very well with
the observed proportion that developed CHD (7.3%).

RISK SCORES
The 50 SNPs of interest for construction of the GRS are listed in
supplemental Table 1 along with their relationship to risk factors,
weights, high risk allele based on the 1000 G reference + strand,
imputation quality metrics, and genotype quality control met-
rics. Of the 50 SNPs, five had an estimated imputation accuracy
r2 < 0.3. These five SNPs, which included two SNPs in the APOE
locus, were dropped from the GRS. The average r2 of the remain-
ing 45 SNPs was 0.857 (range: 0.361–0.999). The unstandardized
mean value of the GRS was 3.17 (SD: 0.347) for all SNPs, 1.95
(0.307) for non-risk factor SNPs alone, and 1.22 (0.160) for risk
factor SNPs alone. Interestingly, there was no difference in the
unstandardized scores and standard deviations derived from the
entire cohort compared to the scores derived from the subset of
subjects without diabetes at baseline when considering up to three
significant figures. After standardization, the mean and SD of all
GRS was 0 and 1 as expected.

PERFORMANCE OF RISK SCORES AND SENSITIVITY ANALYSES
Table 2 summarizes the c-statistics for the 8 risk scores (as well
as the age and sex only scores) and the associated RR for a 1-unit
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change in the risk score. Adding a GRS improves overall risk dis-
crimination. As expected, the risk score using internal weights
demonstrates the best discrimination and calibration. The cali-
bration slope statistics improved (i.e., they become smaller) with
the addition of the GRS. A GRS restricted to SNPs that were not
related to traditional risk factors performed essentially equally
well to a GRS constructed from all SNPs combined, adding about
1 point to the c-statistic. This result suggests that the addition
of CHD SNPs that are associated with CHD as well as risk fac-
tors will neither aid nor hurt risk assessment. Finally, creating a

Table 1 | Characteristics of the ARIC subcohort used in analyses

(n = 8491).

mean (IQR)

Age (years) 54 (49,59)

SBP (mm/Hg) 116 (106, 128)

DBP (mm/Hg) 71 (65, 78)

HDL (mg/dL) 48 (39, 61)

TC (mg/dL) 211 (187, 238)

Count (%)

white/European 8491 (100)

Male 3848 (45)

Diabetes 626 (7.4)

SMOKING STATUS

Current 2010 (24)

Former 2914 (34)

Never 3567 (42)

IQR, inter-quartile range; SBP, Systolic Blood Pressure; DBP, Diastolic Blood

Pressure; HDL, High-Density Lipoprotein Cholesterol; TC, Total Cholesterol.

risk score only with age and sex performed worse than the risk
scores with additional clinical factors. However, the improvement
in both discrimination and calibration after adding the GRS is
comparable to the scores with the full clinical factors.

Table 3 summarizes the same risk score comparisons presented
in Table 2 after removing 626 ARIC participants (7.4%) who
reported having diabetes at baseline. We found the general trend
of results to be similar to the full cohort despite a smaller sample
size. There was a modest improvement in discrimination by about
1 point in the c-statistic as well as improvement in calibration.

PCA revealed eight significant principal components. Only
component 3 had a nominal association with CHD (p = 0.023,
not corrected for number of components tested) suggesting that
the addition of PCs into our model for this sample of self
reported white/Europeans would not materially influence our
results (Supplemental Table 2).

RISK REPORTS
In Figure 2, we illustrate a sample report for an individual to show
how the addition of a GRS to the model can change the risk assess-
ment that may be used for clinical decision-making. The goal of
this report would be to facilitate a conversation around the risk
of CHD due to genetics above beyond the known clinical risk
factors. At baseline, the participant’s estimated risk of CHD at
10 years is 5.5% based on traditional Framingham risk factors.
The participant carries 49 of 90 potential risk alleles resulting
in a weighted standardized GRS of 1.26 which places the indi-
vidual in the 89th percentile of genetic risk (i.e., only 11% of
the population has a higher risk based on alleles inherited at
these 45 SNPs). Combining the participant’s genetic risk with
their clinical risk results in a final predicted risk of CHD of 7.6%
given each SD increase in one’s GRS leads to a 38% increase in
risk of CHD (Table 2). This magnitude of increased risk may

Table 2 | Relative Risks and discrimination metrics for a genetic risk score derived from 50 genome wide significant susceptibility alleles for

CHD in the full ARIC sample (n = 8491) of white/Europeans subjects.

Relative Risk (95% CI) C-statistic* Calibration Slope

USING FRS FOR CLINICAL RISK SCORE

FRS alone – 75.8 7.32

+ full GRS 1.29 (1.20, 1.40) 76.8 6.26

+ GRS restricted to non-risk factor SNPs 1.29 (1.20, 1.40) 76.8 6.29

+ GRS restricted to risk factor SNPs 1.06 (0.98, 1.14) 75.8 7.22

USING INTERNAL COEFFICIENTS FOR CLINICAL RISK SCORE

Internal coefficients alone – 77.3 4.34

+ full GRS 1.28 (1.19,1.38) 78.3 4.17

+ GRS restricted to non-risk factor SNPs 1.29 (1.20, 1.39) 78.3 4.18

+ GRS restricted to risk factor SNPs 1.05 (0.97, 1.13) 77.4 4.31

USING ONLY AGE AND SEX

Internal coefficients alone – 68.9 11.22

+ full GRS 1.31 (1.22,1.41) 70.4 9.26

+ GRS restricted to non-risk factor SNPs 1.29 (1.20,1.39) 70.1 9.69

+ GRS restricted to risk factor SNPs 1.11 (1.03, 1.20) 69.2 10.79

CHD, Coronary Heart Disease; ARIC, Atherosclerosis Risk in Communities; FRS, Framingham Risk score; SNPs, Single Nucleotide Polymorphism; GRS, genetic risk

score; *performance of second model listed to first model listed.
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Table 3 | Relative Risks and discrimination metrics for a genetic risk score derived from 50 genome wide significant susceptibility alleles for

CHD in the ARIC subset of white/Europeans with no diabetes at baseline (n = 7865).

Relative Risk (95% CI) C-statistic* Calibration Slope

USING FRS FOR CLINICAL RISK SCORE

FRS alone – 75.2 8.84

+ full GRS 1.28 (1.17, 1.39) 76.2 7.02

+ GRS restricted to non-risk factor SNPs 1.30 (1.20, 1.41) 76.3 7.22

+ GRS restricted to risk factor SNPs 1.02 (0.94, 1.11) 75.1 8.67

USING INTERNAL COEFFICIENTS FOR CLINICAL RISK SCORE

Internal coefficients alone – 76.7 6.11

+ full GRS 1.28 (1.18, 1.39) 77.6 5.39

+ GRS restricted to non-risk factor SNPs 1.30 (1.20, 1.42) 77.7 5.40

+ GRS restricted to risk factor SNPs 1.03 (0.95, 1.12) 76.6 6.00

USING ONLY AGE AND GENDER

Internal coefficients alone – 70.5 12.86

+ full GRS 1.30 (1.20,1.41) 71.8 10.49

+ GRS restricted to non-risk factor SNPs 1.28 (1.18,1.39) 71.6 10.92

+ GRS restricted to risk factor SNPs 1.10 (1.01, 1.19) 70.7 12.44

CHD, Coronary Heart Disease; ARIC, Atherosclerosis Risk in Communities; FRS, Framingham Risk score; SNPs, Single Nucleotide Polymorphism; GRS, genetic risk

score; *performance of second model listed to first model listed.

FIGURE 2 | A sample report on CHD risk for an individual in the ARIC

study where the incorporation of genetic risk into the model of clinical

risk potentially influences clinical management based on current

guidelines.

affect the decision to treat this patient with statins (Stone et al.,
2014). Ultimately, this person did develop CHD suggesting that
the upward adjustment of risk was appropriate.

DISCUSSION
Genetic risk assessment will become an increasingly important
component of overall clinical risk assessment. In this context,
we ask the question: how can one most easily and effectively
incorporate a GRS into an existing clinical risk assessment of a
complex trait without compromising effectiveness? We present a

straightforward means to combine genetic risk with clinical risk
for a given disease where large-scale cohorts with prolonged fol-
low up exist and can be used to evaluate novel biomarkers. Our
approach requires knowing only three pieces of information: (1)
an individual’s GRS, (2) an individual’s CRS, and (3) the RR
associated with a 1-unit change in standardized GRS within the
cohort. Recent studies demonstrate an increasing clinical utility
of GRSs for CHD (Brautbar et al., 2012; Hughes et al., 2012;
Thanassoulis et al., 2012, 2013; Ganna et al., 2013; Tikkanen et al.,
2013). Using our method, we were able to confirm this trend
and demonstrate comparable or slightly improved discrimina-
tion even when comparing our results to the subset of studies
that used a GRS constructed with a similar set of SNPs (Brautbar
et al., 2012; Hughes et al., 2012; Thanassoulis et al., 2012; Ganna
et al., 2013; Thanassoulis et al., 2013; Tikkanen et al., 2013). We
should stress that evidence in the form of a well-executed clinical
trial that clearly demonstrates the value of a GRS in improving
CHD outcomes does not yet exist (Ioannidis and Tzoulaki, 2010).
Thus, we are not endorsing or negating the use of any specific
GRS in the primary prevention of CHD on the basis of our results.
Ongoing trials are examining the ability of information from GRS
to improve outcomes (Knowles et al., 2012; Grant et al., 2013).

Our approach makes the simplifying assumption that the GRS
is largely independent of the CRS. This assumption appears rea-
sonable when one reliably restricts SNPs included in the GRS to
those influencing risk independent of variables included in the
CRS. We tested this assumption by creating two subset GRSs, one
restricted to SNPs associated with risk factors and one restricted
to SNPs that appear to influence risk of CHD independent of
all established risk factors. The non-risk factor GRS performed
noticeably better than the risk factor GRS confirming the conse-
quence of grossly violating this assumption. However, we detected
no notable difference between the non–risk factor GRS compared
to the full GRS. Thus, our approach appears robust to small
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violations of this assumption. This confirms others’ and our
experiences with GRSs that they are fairly robust to alternative
constructions (Purcell et al., 2009; Simonson et al., 2011).

An important consideration is the construction of the CRS.
We suspect that the ability to derive and make use of such inter-
nal coefficients will be facilitated by the increasing availability of
EHR with prolonged follow up of individuals receiving care as
members of a large-scale health maintenance organization (Ollier
et al., 2005; Palmer, 2007; Hoffmann et al., 2011a,b; Kaufman
et al., 2012). As expected, the use of internal coefficients led to
a slightly more effective CRS compared to the FRS that was devel-
oped in a different cohort than ARIC. Despite this observation,
we observed a negligible difference in the RR suggesting that per-
haps under some circumstances one can develop a GRS using an
internal CRS and apply it successfully in other cohorts (or vice-
versa). We also note that while the GRS improves calibration, the
risk scores overall are still poorly calibrated (> 1), particularly the
one using the FRS. This reflects other work that has shown that
the external coefficients applied to new populations can often lead
to poorly calibrated models (Ridker and Cook, 2013). Finally, the
risk score using only age and sex, not surprisingly, performed the
worst. Moreover, the improvement in both discrimination (68.9
vs. 77.3) and calibration (11.22 vs. 4.34) after adding additional
clinical factors is much greater than after the addition of a GRS
highlighting the relative importance of clinical factors collectively
at this point in time over the GRS in risk assessment for CHD.
However, one should not automatically assume that the current
GRS is not clinically useful given its �AUC as it is in the same
range as that seen for the addition of any single modifiable tradi-
tional risk factor to a model that includes all other traditional risk
factors.

Several steps need to be followed in reporting of a GRS for
a trait using our method to facilitate its testing in additional
populations or to easily disseminate its use. First, the cohort in
whom the GRS was derived including the age range, sex dis-
tribution, risk factor profile, and the ethnicity of its members
must be clearly described. The GRS we present here is most rel-
evant to white/Europeans in the age range of 45 to 64 and free
of CHD at the time of clinical risk assessment given the eligibil-
ity criteria of the ARIC study and the fact that the SNPs used
in the GRS were derived from large-scale case-control studies
that included subjects in the same race/ethnic group and age
range (The ARIC Investigators, 1989; CARDIoGRAMplusC4D
Consortium et al., 2013). A different sets of SNPs with different
weights will likely be necessary for different race/ethnic groups
and possibly different age ranges although we expect substantial
overlap across race/ethnic groups in the genomic regions con-
tributing at least one SNP to the GRS (Knowles et al., 2012;
Ntzani et al., 2012). Second, one must reliably identify and report
which allele was coded as the high-risk allele as this allele is
not necessarily the minor allele. Errors in this context due to
inadvertent strand flipping either in the original study report-
ing the susceptibility variant or in the construction of the GRS
may have a profound negative impact on the performance of
the GRS. Third, the effect estimate for each SNP (generally a
log odds ratio) used in the weighting of the GRS should be
clearly presented. Lastly, the relative risk for a one-unit change
in GRS should be calculated and clearly presented along with

the mean and SD of the GRS to facilitate standardization of the
score.

We suggest a means to communicate the effect on risk of some-
one’s genetic data when combined with his or her clinical data.
Our presentation includes both a contextualization relative to the
general population and a statement on how one’s inherited vari-
ants update one’s clinical risk that is based strictly on traditional
non-genetic risk factor data. In ongoing clinical investigation, we
have applied a similar reporting system within a cardiology clinic
(Knowles et al., 2012). Such a report can easily be automated and
incorporated into an EHR. Moreover, it can also easily be updated
as new susceptibility SNPs are discovered and/or weights refined.
Given genome wide genotyping or sequencing is likely to become
routine in the near future, more research is needed to identify the
optimal way to communicate this information to subjects at risk
and health care providers.

Risk scores are likely to evolve over time and practice guide-
lines may adopt different risk scores. For example, the FRS that
we used here forms the basis of the Adult Treatment Panel III
(ATPIII) guidelines (2002). Recently, ACC/AHA released new car-
diovascular prevention guidelines, with new categories of risk,
with a change in the relevant endpoints and in the risk calculation
formulas (Goff et al., 2014; Stone et al., 2014). As of this writing,
there is still large controversy about the accuracy of the new calcu-
lations and the validity of the guidelines (Cook and Ridker, 2013;
Ridker and Cook, 2013; Ioannidis, 2014; Muntner et al., 2014).
Regardless, our proposed methods can be used to incorporate
GRS in any sets of non-genetic predictive models.

In conclusion, we present a simple but effective means to com-
bine a CRS with a GRS and illustrate one way to present such
information to an individual interested in understanding how
this genetic information influences their risk assessment and thus
potentially their clinical management. Furthermore, we highlight
information that should be included in all reports of GRSs to
facilitate the timely assessment of a new GRS by other investiga-
tors in additional populations or, alternatively, to easily incorpo-
rate it into clinical practice if its efficacy is no longer in question.
We expect the importance of such research to grow over time and
hope that future studies will more clearly delineate the optimal
way to implement a GRS and how to most effectively disseminate
a well-established GRS to patients and their health care providers.
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The original Figure 2 did not display the full sample risk report as described in the paper. Here we
illustrate how one can convey personalized genetic risk to a patient and how the inclusion of the
Genetic Risk Score changes the clinical interpretation of the individual’s risk.
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YOUR RISK SCORE

Based on the traditional Framingham risk score, your risk of coronary heart disease over the next 10 years is approximately 5.5%.

We tested for a total of 90 possible risks variants or alleles. Out of these 90, you carry 49 variants that are associated with higher risk. Your genetic profile puts you in

the 89 percentile for risk. This means 89% of the general population have a genetic risk score more favorable than you and 11% have a genetic risk score less favorable

than you.

Based on the traditional Framingham risk score plus the genetic risk score, your risk of coronary heart disease over the next 10 years is approximately 7.6%.

Your 10 year risk of coronary heart disease risk is ≥7.5% when considering your genetic risk. This information may be discussed with your physician in terms of what

would be recommended as most appropriate management given your estimated risk.
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The electronic Medical Records and Genomics (eMERGE) (Phase I) network was
established in 2007 to further genomic discovery using biorepositories linked to the
electronic health record (EHR). In Phase II, which began in 2011, genomic discovery efforts
continue and in addition the network is investigating best practices for implementing
genomic medicine, in particular, the return of genomic results in the EHR for use
by physicians at point-of-care. To develop strategies for addressing the challenges
of implementing genomic medicine in the clinical setting, the eMERGE network is
conducting studies that return clinically-relevant genomic results to research participants
and their health care providers. These genomic medicine pilot studies include returning
individual genetic variants associated with disease susceptibility or drug response, as
well as genetic risk scores for common “complex” disorders. Additionally, as part
of a network-wide pharmacogenomics-related project, targeted resequencing of 84
pharmacogenes is being performed and select genotypes of pharmacogenetic relevance
are being placed in the EHR to guide individualized drug therapy. Individual sites within
the eMERGE network are exploring mechanisms to address incidental findings generated
by resequencing of the 84 pharmacogenes. In this paper, we describe studies being
conducted within the eMERGE network to develop best practices for integrating genomic
findings into the EHR, and the challenges associated with such work.

Keywords: genomics, electronic health records, incidental findings, implementation, genetic counseling, next

generation sequencing, pharmacogenetics

INTRODUCTION
The availability and reduced costs of high-density geno-
typing and genome sequencing technologies has accelerated
genomic discovery (Green et al., 2011). Genome-wide asso-
ciation studies (GWAS) have revealed numerous common
genetic variants that influence susceptibility to disease and
adverse drug reactions, as well as inter-individual variation in
quantitative traits and drug response (Manolio, 2013). Next-
generation sequencing has also enabled discovery of variants
associated with rare heritable diseases (Yang et al., 2013).
Assessing the utility and identifying best practices for inte-
gration of this new genomic knowledge into clinical practice
to improve patient care is now a major focus in the area

of translational genomics (Kullo et al., 2013; Manolio et al.,
2013).

The electronic Medical Records and Genomics (eMERGE) net-
work (see Supplementary Figure) was established in 2007 with
support from the National Human Genome Research Institute
(NHGRI) to further genomic discovery using biorepositories
linked to the electronic health record (EHR). The initial phase
(Phase I) of the eMERGE network included five sites: Group
Health Cooperative/University of Washington, Marshfield Clinic,
Mayo Clinic, Northwestern University, and Vanderbilt University.
The network was successful in leveraging the EHR to discover
new genetic associations including variants that influence traits
such as hematologic traits, lipid levels, Alzheimer disease, and
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electrocardiographic intervals among many others (Kullo et al.,
2010; Naj et al., 2011; Ding et al., 2012, 2013; Rasmussen-Torvik
et al., 2012; Crosslin et al., 2013). Phase II of eMERGE began in
August 2011 with the addition of Geisinger Health System and
Mount Sinai Medical Center to the network. In August 2012,
three pediatric sites joined the network: Children’s Hospital of
Philadelphia, and a joint membership of Cincinnati Children’s
Hospital Medical Center and Boston Children’s Hospital. As was
the case for Phase I sites, each new site has its own bioreposi-
tory linked to clinical phenotypes obtained from the EHR. While
continuing efforts at genomic discovery, eMERGE Phase II is also
investigating ways of incorporating genomics into the clinical set-
ting (Gottesman et al., 2013), in particular, the return of genomic
results in the EHR for use by healthcare providers at the point
of care.

Although the focus in Phase I of eMERGE was primarily on
genomic discovery efforts, eMERGE investigators also reviewed
what research findings should be considered for return to partic-
ipants (Fullerton et al., 2012). A return of results working group
was set up to address the types of genomic findings that might
be returned to patients or participants in the future. The genetic
data were generated from high-density genotyping arrays and
the return of results working group considered two main cate-
gories of genomic findings for return to participants. The first
related to common variants on these arrays that may have clinical
utility, e.g., Factor V Leiden, and hemochromatosis HFE vari-
ants. The second related to sex chromosome abnormalities such
as Klinefelter and Turner syndromes incidentally discovered on
signal intensity analysis of fluorescent data from the genotyp-
ing arrays. The investigators agreed that the potential to change
immediate medical care was an important criterion for consid-
ering return of a result. Based on this criterion, homozygosity
of single nucleotide polymorphism (SNP) rs6025 (R506Q, also
known as the Factor V Leiden mutation) and rs1800562 (HFE
C282Y, associated with hereditary hemochromatosis) were judged
to have the highest clinical relevance (Fullerton et al., 2012). Sex
chromosome abnormalities were also considered for return to
participants, although context, such as the age of the participant,
was felt to be an important factor. The working group summa-
rized these recommendations in a position paper (Fullerton et al.,
2012).

In Phase II of eMERGE, genomic discovery efforts continue,
but the focus has expanded to include clinical implementa-
tion of genomic data. In addition to high-density genotype
data in a large number of patients (see Supplementary Table)
(Gottesman et al., 2013), targeted next-generation sequencing
data of 84 ‘very important pharmacogenes’ (VIPs) will be avail-
able for nearly 10,000 patients across the network as part of
the eMERGE PGx project. Genetic data being considered for
return to participants include SNPs of medical or pharmaco-
genetic relevance, genetic risk scores for common diseases as
well as pharmacogenomic variants, and clinically actionable inci-
dental findings related to next-generation sequencing of 84 VIPs
(e.g., RYR1 and CACNA1S genes associated with malignant
hyperthermia). Candidate variants for possible return to par-
ticipants and incorporation into EHR, will be validated in a
CLIA-certified laboratory. Clinical integration of genomic data

is being explored with active examination of the ethical, legal,
and social implications of such integration for both patients and
clinicians.

To start addressing the opportunities and challenges in return-
ing genomic results in the clinical setting, each site is conduct-
ing genomic medicine pilot projects to return clinically relevant
genomic results to participating patients and their health care
providers. Additionally, pharmacogenomic information is being
placed preemptively in the EHR as part of the network-wide
eMERGE PGx project. In this article, we review the current sta-
tus of the genomic medicine pilot projects at each eMERGE site
and the challenges associated with such work. The aim of each
project and the genetic variants being considered for return are
summarized in Table 1. The categories of genomic results being
considered for return to patients in eMERGE II include indi-
vidual or multiplexed SNPs that influence disease susceptibility
or drug responses. The following sections provide an overview
of the activities in eMERGE II related to return of results in
these pilot genomic medicine implementation projects. A sep-
arate manuscript is planned to address return of results in the
setting of genomic discovery.

INDIVIDUAL SNPs
Individual SNPs associated with disease risk or of pharma-
cogenomic relevance are being considered for return of results
studies within the eMERGE network, and results of this type
are being returned in two eMERGE II pilot studies. A variant
in the apolipoprotein L1 (APOL1) gene that is associated with
non-diabetic chronic kidney disease (CKD) in patients of African
American ancestry (Tzur et al., 2010; Parsa et al., 2013) is being
returned in a pilot study at the Mount Sinai Medical Center.
To understand processes and the impact of implementing a
screening and decision support system for risk of non-diabetic
CKD in African American patients with hypertension and/or
family history of renal failure, ∼40 participants will be genotyped
for three risk variants in exon 6 of APOL1. A catalog of current
evidence-based guidelines for the management of hyperten-
sion and chronic kidney disease will group the participants
into three renal care advice message categories including (i)
evaluation of CKD, (ii) identification of CKD progression, and
(iii) prevention of CKD progression. In-depth, audio-recorded
qualitative interviews are being conducted with patients before
and after they receive their APOL1 results. Analysis of the
transcribed interviews will inform the design of the clinical
decision support and patient education materials, and the
design of quantitative questionnaires for use in a planned
larger study of returning APOL1 results to patients in clinical
practice.

At Northwestern University, investigators are following up on
the recommendations from the Return of Results workgroup in
eMERGE I to include return of potentially actionable findings by
reconsenting 150 biobank participants who were genotyped dur-
ing Phase I of eMERGE. Participants will undergo CLIA-certified
genotyping of the Factor V Leiden mutation and the hereditary
hemochromatosis HFE mutations (C282Y and H63D). Results
will be deposited in the EHR and available to physicians. Study
participants will be informed of their results via a letter that will
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Table 1 | Summary of the eMERGE genomic medicine pilot projects.

Site Study aim Variants Results returned by EHR integration

Essentia Health Evaluate genetic markers for
increased risk of age-related
macular degeneration (AMD) in
the clinical setting

Five variants in CFH, one variant
in ARMS-2, one variant in C3, and
one variant in ND2, will be
genotyped and results returned

Optometrist Provider is notified
electronically that genetic
results and risk score are
available in patients’ EHR

Geisinger Health System (1) Incorporate IL28B genotyping
and genotype-guided therapy into
the standard treatment protocol
for chronic hepatitis C virus
infection
(2) Develop a clinical WGS
sequencing program.
(3) Genetic risk score to identify
patients for AAA screening

(1) Two variants in IL28B
associated with treatment
response
(2) Identify causal variants based
on indication for testing as well as
clinically actionable incidental
findings
(3) Multi-SNP panel

(1) Hepatologist
(2) Clinical geneticist and
genetic counselor
(3) Patient’s provider,
preventive care team

(1) Electronic Order Set
(2) Genomic test report
in laboratory section;
certain variants (e.g.
pharmacogenetic) will
have CDS tied to
computerized order entry
(3) CDS tied to
preventive health care
reminder system

Group Health
Cooperative and
University of Washington

Six genes with highly penetrant
variants will be sequenced and
confirmed pathogenic variants will
be returned to participants

Pathogenic variants in CACNA1C
and RYR1 (malignant
hyperthermia), KCNH2 and
SCN5A (long QT syndrome),
RYR2 (catecholaminergic
polymorphic ventricular
tachycardia), and LDLR
(hyperlipidemia)

Genetic counselor or
medical geneticist

Results placed in the
EHR

Mayo Clinic Disclosure of genomic risk of
myocardial infarction using a
genetic risk score integrated into
the Framingham risk score

28 SNPs associated with
coronary heart disease in prior
GWAS are genotyped in a CLIA
laboratory and returned

Genetic counselor using
an EHR-based tool
followed by visit with a
preventive
cardiologist/internist

An EHR-based tool is
used to communicate
genomic risk. Genotyping
results are placed in the
EHR

Icahn School of Medicine
at Mount Sinai

Evaluate implementation of a
screening and decision support
system for risk of non-diabetic
kidney disease in African
Ancestry patients with
hypertension and/or family history
of renal failure

APOL1 risk allele status Genetic counselor or
primary care provider

Placed in the EHR and
linked to CDS

Northwestern University Assess the impact and use of
genomic results on clinical care
by both physicians and patients,
to evaluate the use and impact of
physician support documents and
best practice alerts in the EHR for
genomic results, and to evaluate
the non-clinical care impact of
genomic results on patients

Variants in FV, FII, and HFE
mutations (C282Y and H63D)

Physician with referral to
study genetic counselor
available

Genomic test results
available in laboratory
section of EHR;
Physicians alerted when
results received; CDS
developed to alert if risk
is present; Contextual
links to patient and
physician information
resources

Vanderbilt University Three major outcomes are being
assessed including the efficacy of
pharmacogenomics testing in
reducing adverse drug events,
physician uptake, and patients’
knowledge and reaction

Fourteen actionable genetic
variants that include: CYP2C19
*2-*8 (clopidogrel), CYP2C9
*2-*3, VKORC1 rs9923231
(warfarin), SLCO1B1 *5
(simvastatin), and TMPT *1-*3
(thiopurines)

Ordering physician Genomic test results
available in laboratory
section of EHR, Patient
Summary, and in Patient
Portal

Children’s Hospital of
Philadelphia

The main focus is on prevention
of potentially life-threatening drug
adverse events

HLA-B*1502 (carbamazepine
induced Stevens-Johnson
syndrome) and TPMT
(thiopurines) variants

Ordering physician Results shared with
providers and placed in
the EMR

(Continued)
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Table 1 | Continued

Site Study aim Variants Results returned by EHR integration

Cincinnati Children’s
Hospital and Boston
Children’s Hospital

Explore parents’ responses to
their children’s research results

Cincinnati Children’s Hospital will
return 21 variants of CYP2D6 test
results while Boston Children’s
Hospital will return hypothetical
CYP2D6 results

Genetics clinical nurse
specialist

Results shared with
primary care providers
but not placed in EHR

AAA, abdominal aortic aneurysm; CDS, clinical decision support; GWAS, genome-wide annotation studies.

be sent by post or accessible via an online patient web-portal
called MyChart). Participants will also complete a baseline survey
and follow-up surveys at 1 and 6 months after receiving results.
Physicians and participants will also have the opportunity to dis-
cuss the results during an appointment or be referred to a study
genetic counselor. Semi-structured interviews will be conducted
with physicians after results are returned to patients and clinical
decision support has been triggered in the EHR. The impact
and use of genomic results on both physicians and patients will
be assessed, as will the use and impact of physician support
documents and best practice alerts in the EHR for genomic
results.

PHARMACOGENETIC VARIANTS
At the Vanderbilt University site, 14 pharmacogenetic vari-
ants including: CYP2C19 ∗2–∗8 (clopidogrel), CYP2C9 ∗2–∗3,
VKORC1 rs9923231 (warfarin), SLCO1B1 ∗5 (simvastatin), and
TMPT ∗1–∗3 (thiopurines) will be genotyped in their study
population. Vanderbilt University has conducted a number of
research studies to assess the efficacy of the Pharmacogenomic
Resource for Enhanced Decision in Care and Treatment
(PREDICT) program in reducing adverse drug events, physi-
cian uptake, and patients’ knowledge and attitudes toward such
testing. Physician surveys and structured interviews have been
performed. Interviews have been conducted in the following
groups of patients who have been through the interventional car-
diology clinic: (i) no medication change following PREDICT, (ii)
a change in clopidogrel medication dosing, (iii) change in statin
medication dosing, and (iv) not enrolled in PREDICT. Results of
these surveys and interviews are awaited.

At the University of Washington-Group Health site,
pathogenic variants in six highly penetrant pharmacogenes
will be genotyped in ∼450 participants. These variants include
risk alleles in CACNA1C (malignant hyperthermia), RYR1
(malignant hyperthermia), KCNH2 (long QT syndrome),
SCN5A (long QT syndrome), RYR2 (catecholaminergic poly-
morphic ventricular tachycardia), and LDLR (hyperlipidemia).
Results are expected to be returned through the Department
of Clinical Genetics with appropriate counseling and subse-
quent documentation in the EHR. Patients will be surveyed
regarding their experience. Healthcare providers will be sur-
veyed to assess their use of genetic information in EHR,
ease of use, completeness of information in the EHR, and
whether any other resources are needed. Additionally, feasibility
of implementing genomic clinical decision support will be
assessed by interviews with patients and healthcare providers

to guide development and testing of prototype interfaces
for the EHR.

In a clinical implementation project at Geisinger Health
System, all newly diagnosed patients with chronic HCV are
genotyped in a CLIA laboratory for two variants in the inter-
leukin 28B gene (IL28B) that influence treatment response and
can influence medication choice. A genotype-guided treatment
decision tree was created in consultation with expert clini-
cians and an electronic order set was implemented in the
EHR to insure that all eligible patients underwent testing.
Genotype results for any participant who is prescribed inter-
feron alpha and ribavirin for chronic HCV infection are placed
in the EHR and are available to hepatologists initiating treat-
ment. The economic impact of use of these variants is being
studied.

Investigators at Children’s Hospital of Philadelphia are work-
ing on developing tools to engage local practitioners in targeted
intervention projects trialing in-house web-based software that
integrates with the EHR (Fiks et al., 2013). This new tool can
be used to query the institutional biobank as well. So far, 515
patients have been genotyped for HLA-B∗1502 which is associ-
ated with risk of developing Stevens-Johnson syndrome following
use of carbamazepine (Chen et al., 2011), in addition to 318
patients genotyped for TPMT in patients that may be treated with
thiopurines.

Investigators at Cincinnati Children’s Hospital Medical Center
are studying the return of CYP2D6 variants in pediatric patients
in the content of codeine response, and returning these results
to the parents. Variants of CYP2D6 are genotyped using Taqman
and long polymerase chain reaction for full gene deletion and
duplication. At the time results are returned to parents, they
complete a telephone survey about their reactions and plans
to share the actual results, and their anticipated preferences
regarding receiving hypothetical incidental findings. Follow-up
telephone calls are being conducted at 3 and 12 months post-
result disclosure to learn how results were used. A subset of
parents are also participating in qualitative interviews to further
explore their reactions and perceptions to receiving their chil-
dren’s CYP2D6 results. Although results will not be placed in
the EHR, the researchers are asking parents for permission to
share the results with their child’s primary care providers and
will evaluate primary care providers’ reactions to receiving the
results. At the Boston Children’s Hospital site, the same study,
including the same survey and qualitative interviews, is being car-
ried out but using hypothetical, not actual CYP2D6 results, and
without the follow-up telephone calls. Providers will be surveyed
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about the perceived utility of pharmacogenomics research results
in their practice. Between the two sites in Cincinnati and Boston,
parents of 400 children will be enrolled. To date, Cincinnati
Children’s has returned 48 children’s CYP2D6 results to parents
and has recontacted 21 parents, all of whom have given per-
mission to share the results with their children’s primary care
providers.

GENETIC RISK SCORES
Genetic findings of clinical relevance from high-density geno-
typing arrays include numerous common alleles that influence
disease susceptibility. Because most individual variants have
modest effect sizes, investigators are exploring the utility of
combining the risk variants into genetic risk scores. At the
Marshfield/Essentia Health site, a genetic risk score for age-related
macular degeneration (AMD) is calculated based on five vari-
ants in CFH, one variant in ARMS-2, one variant in C3 and
one variant in ND2. Individuals (n = 100) attending optome-
try clinics are genotyped for these variants (Haines et al., 2005)
and a genetic risk score is calculated and incorporated into the
EHR by optometrists. Overall risk will be calculated from the
genotypes and the patient’s smoking status. The results will be
shared with the study participants and a telephone survey will
be conducted. The participating clinicians will be interviewed
after reviewing these results. Recruitment for this study began in
June 2013.

At Mayo Clinic, investigators are conducting the Myocardial
Infarction Genes (MI-GENES) clinical trial, a pilot study of com-
municating genetic risk for coronary heart disease (CHD), the
leading cause of death in the US. Patients at intermediate risk
for CHD based on conventional risk factors will undergo geno-
typing of ∼28 SNPs that are associated with CHD independent
of lipid or blood pressure levels, in a CLIA laboratory (Deloukas
et al., 2013). Study participants will be randomized to receive
a Framingham risk score or a modified Framingham risk score
that incorporates a genetic risk score based on the genotyping
results. The genetic risk scores will be placed in the EHR and
an EHR-based pictogram will be used to assist in discussing
genomic risk of CHD. Patients in the study will be followed for
at least 6 months to assess the extent to which there are differ-
ences in diet, physical activity, and other lifestyle modifications
associated with the communication of CHD-related genomic risk
information. Participants will also be evaluated for psychosocial
and behavioral changes. Recruitment for MI-GENES started in
October 2013.

At Geisinger Health System, investigators are combining clin-
ical risk factors and genomic information to develop a risk score
for abdominal aortic aneurysm (AAA), a leading cause of death
in older men (Kent et al., 2010; Kuivaniemi et al., 2012). The
goal is to develop strategies for population screening that combine
genetic susceptibility variants with clinical risk factor data mined
from EHR. Patients in the Geisinger MyCode biobank (Gerhard
et al., 2013; Gottesman et al., 2013) will be genotyped for vari-
ants known to be associated with AAA (Kuivaniemi et al., 2013)
and this information used to create a risk score that will then be
evaluated in the Geisinger patient population after performing
abdominal ultrasonography examination.

TARGETED NEXT-GENERATION SEQUENCING
The eMERGE pharmacogenomics (PGx) project is using tar-
geted sequencing of 84 pharmacogenes to initiate a multi-site
test of the concept that genomic sequence information can be
coupled to EHRs for use in the clinical setting (Gottesman
et al., 2013). The PGRNseq uses a reagent to “capture” exonic
sequences of 84 genes important in pharmacokinetic or phar-
macodynamics processes for sequencing on next-generation plat-
forms. Genotypes of established pharmacogenomics utility that
influence use of simvastatin, clopidogrel, and warfarin will be
confirmed in a CLIA environment and be placed pre-emptively
in the EHRs of patients who are “at risk” of receiving these
drugs.

Sequence information will also be generated for six genes
for which the American College of Medical Genetics and
Genomics (ACMG) guidelines suggest returning known
or expected pathogenic variants given the association with
highly penetrant actionable disorders (Green et al., 2013)
(Table 2). These include genes associated with long QT
syndrome genes (KCNH2 and SCN5A), malignant hyperther-
mia (RYR1 and CACNA1S), hypercholesterolemia (LDLR),
and catecholaminergic polymorphic ventricular tachycardia
(RYR2).

ACMG guidelines emphasize return of mutations in these
genes that are known to be pathogenic but also suggest return-
ing novel mutations that are “expected” to be pathogenic. The
recommendations have stimulated considerable debate (Green
et al., 2013), and in particular, whether patient preferences can
or should be incorporated into the return of results pipeline has
been highlighted (Allyse and Michie, 2013). While the ACMG
recommendations do not apply to research participants, mem-
bers of the eMERGE network’s Consent, Education, Regulation
and Consultation (CERC) workgroup have weighed in with
concerns about the scope of the ACMG position (Burke and
Grefenstette, 2013; Ross et al., 2013). The mechanisms for

Table 2 | Pharmacogenes being sequenced in the eMERGE PGx

project and on the ACMG incidental finding list (Green et al., 2013).

Gene Phenotype Inheritance* Variants to

report**

RYR2 Catecholaminergic
polymorphic ventricular
tachycardia

AD KP

KCNQ1
KCNH2
SCN5A

Romano-Ward long QT
syndrome types 1, 2, and
3, Brugada syndrome

AD KP and EP

LDLR Familial
hypercholesterolemia

SD KP and EP

RYR1
CACNA1S

Malignant hyperthermia
susceptibility

AD KP

*SD, semi-dominant inheritance; AD, autosomal dominant.
**EP, expected pathogenic, sequence variation is previously unreported and is of

the type that is expected to cause the disorder. KP, known pathogenic variants.

Adapted from the ACMG Policy Statement (Green et al., 2013).

www.frontiersin.org March 2014 | Volume 5 | Article 50 | 191

http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Kullo et al. Returning genomic results

whether and how to return incidental findings are being eval-
uated at each site. Several sites, in consultation with respec-
tive IRBs, are considering confirming pathogenic incidentally
found variants for example in RYR1 and CACNA1S, with an
orthogonal genotyping method. This would be followed by
inviting the study patient to a genetic counseling session dur-
ing which the option of knowing the research results with
confirmation in a CLIA lab will be discussed. Table 3 sum-
marizes the approach of the various sites toward returning
incidental findings generated as part of the eMERGE PGx
project.

WHOLE GENOME/EXOME SEQUENCING
Whole genome and exome sequencing are being increasingly uti-
lized in the clinical setting (Yang et al., 2013). Although less
than 2% of adults appear to have relevant actionable incidental
findings from whole exome sequencing (Dorschner et al., 2013)
whether to return such findings is an important topic of debate
(Green et al., 2013), particularly in the context of preserving

patient autonomy and confidentiality (Klitzman et al., 2013).
Institutional committees with diverse expertise will need to adapt
guidelines proposed by the ACMG to determine whether and
how these can be applied locally, which results will be reported
through local EHRs and what format these reports will take.
The Clinical Sequencing Exploratory Research (CSER) consor-
tium is also actively investigating return of results in studies
utilizing whole genome or whole exome sequencing (https://
cser-consortium.org). Several of the eMERGE sites have con-
ducted pilot studies of whole genome/exome sequencing in
the clinical setting. For example, at Geisinger Health System,
investigators are developing a laboratory report that summa-
rizes results of whole genome sequencing in individuals with
intellectual disability and normal chromosomal microarray that
have been recruited along with their parents to undergo whole
genome sequencing to identify an underlying genetic etiology.
Causal variants and incidental findings (from the ACMG list)
will be validated using Sanger sequencing. All patients will be
informed about the results and undergo counseling. Qualitative

Table 3 | Return of results related to the eMERGE pharmacogenomics (PGx) projects at each of the eMERGE network sites.

Site Genetic variants to be returned and placed in

the EHR

Return of incidental findings of known clinical

significance

Geisinger Health System Pharmacogenetic variants relevant to clopidogrel,
warfarin, and simvastatin

IFs will be returned only if they have clear clinical
significance.

Group Health Cooperative and University
of Washington

PGx variants for carbamazepine sensitivity are
approved for inclusion in the EHR

IFs will be returned by a clinical geneticist and this
information would be placed in the EHR at the time
of the encounter.

Marshfield Clinic Pharmacogenetic variants relevant to clopidogrel,
warfarin, and simvastatin

IFs will be returned only if they are clinically
relevant based on input from a physician, clinical
geneticist and/or medical specialist in that area of
expertise.

Mayo Clinic Pharmacogenetic variants relevant to clopidogrel,
warfarin, and simvastatin

IFs will be reviewed by a multidisciplinary group
prior to return.

Icahn School of Medicine at Mount Sinai 4 NYS/CLIA-approved genetic variants relevant to
clopidogrel, warfarin, and simvastatin

IFs will not be returned.

Northwestern University Pharmacogenetic variants relevant to clopidogrel,
warfarin, and simvastatin

IFs will not be returned.

Vanderbilt University 11 PGx variants relevant to clopidogrel, warfarin,
and simvastatin were already reported

IFs will not be returned.

Children’s Hospital of Philadelphia Variants in several pharmacogenes will be
returned: CYP2D6 and UGT2B7 (codeine), CRHR1
(fluticasone propionate), UGT1A4 (lamotrigine),
KCNH2 (loratadine), SLCO2B1 (montelukast,
CYP2D6, ABCB1, OPRM1, COMT, and UGT2B7
(morphine), CYP2C19 and AHR (omeprazole),
ABCB1 (ranitidine), ADRB2 (salbutamol), BDNF
(sertraline), and IL28B and HLA-DR/DQ (interferon
response variants)

IFs will be returned only if they are clinically
relevant based on input from a physician, clinical
geneticist and/or medical specialist in that area of
expertise.

Cincinnati Children’s Hospital (CCHMC)
and Boston Children’s Hospital (BCH)

CCHMC: Genetic variants in CYP2D6
pre-emptively placed in EMR for children at risk for
having surgery. PGx variants placed in EMR at
point of care include those relevant for warfarin,
thiopurines, tricyclic antidepressants and some
SSRIs. BCH: Genetic variants relevant to warfarin

CCHMC: IFs need to be reviewed and approved by
IRB before return and placement in EHR.
BCH: IFs will be reviewed by Informed Cohort
Oversight Board (ICOB) and appropriate action will
be determined.

IFs, incidental findings.
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data from interviews will be collated and used to improve this
process.

INTEGRATION OF GENOMIC FINDINGS INTO THE EHR
A recent theme issue of Genetics in Medicine addressed the issues
related to integrating genomic findings into the EHR with linkage
to clinical decision support at point of care (Kannry and Williams,
2013). Lack of standardized nomenclature for genetic variants is a
major hurdle to creating automated decision support. Currently,
several groups, including the Health Level 7 Genomics Work
Group, are attempting to address this challenge. Additional chal-
lenges relate to a number of ethical, legal, and social implications
that have been reviewed elsewhere (Hartzler et al., 2013; Hazin
et al., 2013). These include uniform provision of genomic CDS
to prevent worsening of disparities in healthcare, education of
patients and providers, determining which genomic information
to include in the EHR, managing incidental findings, privacy and
documentation, storage and reinterpretation of genomic data and
the results of stakeholder engagement in making these determina-
tions. Education of patients and care providers will be necessary
to facilitate the process of return of genomic results. The CERC
Work Group in eMERGE has begun to address some of the
education issues through jointly developing education materi-
als and a website for patient information (www.myresults.org)
and contributing to evaluation of online pharmacogenomics
information for physicians. The CERC Working Group also
has collaborative interactions with the CSER and Return of
Results consortia.

SUMMARY
Genomic technology has advanced greatly through the last
decade. As we attempt to implement genomic medicine,
many challenges arise, including the need to develop suitable
approaches to return results and to deal with incidental find-
ings. We have summarized activities within the eMERGE network
that are related to returning genomic results in the EHR setting
and also with the return of incidental findings. Initial experiences
within the eMERGE network highlight the need for additional
studies that address the issues related to disclosure of results from
genomic implementation studies. Ongoing work in the eMERGE
network will provide important insights into best practices for
returning genomic results and dealing with incidental findings
using the EHR.
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