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Editorial on the Research Topic

Intelligent analysis of biomedical imaging data for precision medicine

Biomedical imaging, such as X-ray, ultrasound, computed tomography (CT),

magnetic resonance (MR), positron emission tomography (PET), and microscopic

imaging, has been widely applied in clinical practices due to its capabilities in depicting

physical anatomy and revealing functional and biochemical process of the human

body. Biomedical images are becoming indispensable for more accurate diagnosis and

precision medicine including pre-/intraoperative planning, survival prediction, and

evaluation of the therapeutic response. However, the accuracy of the diagnostic decisions

often heavily relies on the experience of radiologists, and thereafter inevitably is subject to

inter-/intra-operator variations. Besides, due to the limitations of imaging techniques, the

image artifacts, inhomogeneity in intensity, and low contrast between tissues also impede

the accurate diagnosis. Thus, there is a demand to design intelligent analysis methods of

biomedical imaging data for more efficient, objective, and effective precision medicine.

Intelligent analysis methods, based on biomedical imaging data, are designed

to provide quantitative and qualitative evaluation for auxiliary diagnosis. In this

Research Topic, the intelligent analysis methods are used to segment and recognize

the region of interest (ROI) in different organs and tissues (Zhang T. et al., Peng

et al., Ma et al., Li D. et al., Bo et al., Chen H. et al., Zhang D. et al., Zhang J.

et al., He et al., Wang et al.), evaluate the histological risk (Han et al., Li D. et

al., Bo et al., Yang Y. et al., Xiao et al.), locate, count and classify cells (Li H. et

al., Song et al.), reconstruct and visualize the three-dimensional model (Cao et al.),

predict the progression-free survival (Chen N. et al.) and measure organs (Yang C.

et al.).
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For evaluation of histological risk types, Han et al.

introduced the acute angle between adjacent lobulations as

a new quantitative indicator for the prediction of the risk

classification on thymomas. In their method, the least absolute

shrinkage and selection operator (LASSO) was adopted to

make the feature selection and the individualized imaging

nomogram was used to evaluate the prediction ability of the

selected feature. The authors verified that the acute angle was

significantly associated with the risk classification (p < 0.05).

For improving the diagnostic ability of prostate cancer, Li

D. et al. divided the deep learning model into three parts:

prostate gland segmentation, classification, and prostate cancer

area segmentation. First of all, the prostate gland segmentation

network was implemented to acquire the mask of the gland,

based on which, the mask was moreover cropped on ADC,

DWI, and T2WI sequences. Secondly, the prostate classification

network was executed to determine whether the cropped area

contained prostate cancer. Once the gland was abnormal, the

prostate cancer area segmentation network was finally applied

to segment the lesion area. The experimental results showed

that all the accuracy, precision, and sensitivity had obtained an

evident improvement. Bo et al. combined deep transfer learning

with hand-crafted radionics features for classification between

brain abscess and cystic glioma, which achieved higher accuracy

than deep learning or hand-crafted based model. To understand

the relationship between the chronic obstructive pulmonary

disease (COPD) risks and age, Yang Y. et al. separated the

subjects by COPD stages. Within each group, the age data

is divided into eight equal intervals. Then, the survival Cox

model was created on lung radionics features to estimate the

risk probability of COPD. The evaluation metrics area under

curve showed the excellent performance of the proposed model.

To enrich the image and provide more details for the clinical

diagnosis of lung cancer, Xiao et al. proposed a siamese pyramid

fusion network for PET images and CT images fusion (PET-

CT) to simultaneously display the metabolic and anatomical

information. In order to validate the improvement of image

fusion, the authors used five classification methods (multlayer

perceptron, support vector classifier, random forest, K-nearest

neighbor, and naive Bayes classifier) for training and testing

on PET, CT, and PET-CT. The experimental data demonstrated

that all the models based on PET-CT data obtained an evident

improvement compared to PET and CT data.

For brain tumor segmentation, Zhang T. et al. creatively

applied the wormhole theory on quantum-behaved particle

swarm optimization (QPSO) for dealing with smeared and

irregular shapes in medical image segmentation tasks. Even

with the low contrast and high inhomogeneity in the medical

image, the proposed QWPSO method recovered the contours

of the tumor well which were consistent with the ground

truth. In recent years, coronavirus disease 19 (COVID-19)

has been spread around the world. Peng et al. designed

an ensemble model consisting of deep supervised learning

networks (DeepLab V3+, U-Net, PAN, and FPN) for COVID-

19 lesion segmentation. The proposed ensemble model achieved

a better segmentation result thanmanual segmentation as 0.7279

in IOU metric and 92.4604 in Hausdorff distance metric. As

the lymph nodes are highly relative to lung adenocarcinoma,

it is necessary to identify lymph nodes from CT to make a

better diagnosis and treatment. To identify the lymph node

accurately, Ma et al. constructed a cost-sensitive uncertainty

hypergraph learning (CSUHL) scheme. On the one hand, both

epistemic and aleatoric uncertainty were adopted to improve the

quality of pathological representation. A new hypergraph-based

learning scheme was used to reconsider the correlation between

samples to generate high-order representations. On the other

hand, the scheme was devised to capture the cost sensitivity of

negative samples and assign more weights to the lymph node.

The loss function let the model focus on the patient with lung

adenocarcinoma. In the experiment phase, the proposed model

obtained the highest prediction accuracy in 0.95238 among

state-of-the-art methods. It is evidently better than the method

BC-GNN which has the second highest prediction accuracy

in 0.91667.

Intelligent medical image segmentation has also become

important in the orthopedic area. As the manual segmentation

for knee bone and cartilage is tedious and subjective, Chen

H. et al. chose a three-dimensional deep neural network

(nnU-Net) as their baseline model, and the adversarial loss

was selected to provide the prior shape constraints and

expand the contextual receptive filed for resampled volume

segmentation. The proposed method was assessed on the

public dataset SKI10 and achieved a score of more than

76 in the validation phase. It was proven that the method

can either extract the area of healthy bone and cartilage

accurately or the pathological cases. Similar to research in

Chen H. et al., He et al. introduced an adversarial learning

scheme into 3D U-Net. Additionally, a Squeeze and Excitation

(SE) module was added to increase the weight of relevant

features and decrease the weight of irrelevant features for

liver segmentation. As for the malignant melanoma recognition

tasks in a whole-slide image (WSI) with huge size, Zhang D.

et al. first broke up the WSI into several patches to relieve

the computational burdens. Then, the location information,

predicted categories, as well as confident probabilities, were

combined to acquire the recognition result of malignant

melanoma. Thirdly, as the pathological features appear on

different scales, a multi-scale feature fusion architecture was

designed to enrich the lesion features. Meanwhile, for irregularly

shaped lesion areas, the deformable convolution style residual

blocks and channel attention mechanism were constructed

to focus on the essential features and reduce the influence

of noise.

For intelligent medical image analysis methods, segmenting

the thin structure from low contrast and ambiguous images

is still a great challenge. Zhang J. et al. attempted to fuse
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multi-scale features within each layer called intra-layer pyramid-

scale aggregation blocks (IPABs). The blocks generated two

associations at both high and low scales. Besides, the pyramid

skip connection and deep pyramid supervision were used for

further enhancement. The performance of the proposed block

was verified in three public datasets (DRIVE, STARE, and

CHASE-DB1). The experimental data showed that the proposed

block can effectively extract thin vessels and outperformed

the current state-of-the-art methods. As biomedical images

often come from different domains, directly applying the same

intelligent analysis model to different domains may cause

poor prediction results. To relieve this problem, Wang et

al. put forward to model of the semi-supervised learning

approach and unsupervised domain adaptation approach into

the same framework. And generative adversarial network

changed to predict the label for each pixel for leveraging

the annotated and unannotated data in the segmentation

task here.

Intelligent diagnosis of a pathological image often demands

counting the number of positive cells to estimate the illness

state. Li H. et al. selected the two-stage feature pyramid network

as the baseline model. The anchor-based model predicted

the categories and refined the anchors several times which

is more suitable for cell counting tasks. Some researchers

created an intelligent analysis method for predicting progress-

free survival (PFS) in patients with cancer. For example, Chen

N. et al. explored radiomics signatures from the contrast-

enhanced CT images to predict the PFS of a patient with

small cell lung cancer. At first, the image features, including

shape, intensity, texture, and so on, were calculated from each

tumor area. The univariate prognostic ability of features was

estimated by Cox proportional hazard (CPH) model. Then,

the variation inflation factor (VIF) method was performed to

remove the redundant features. Random survival forests (RSFs)

were further applied to simplify the features. Only the features

with a high importance score could be selected to form the

radiomics signature. Based on selected radiomics and clinical

features, the prognostic model was created. Finally, 11 radiomics

features are selected and the model can predict the PFS with

high accuracy.

After reviewing this Research Topic, we conclude that

the intelligent analysis of biomedical image data for precision

medicine can improve the diagnosis procedure in a more

efficient and scientific way. The featured researchers are devoted

to obtaining more accurate diagnosis results for specialized

clinical problems, and the experiment results show that their

method is positive examples of precision medicine, which

indicates that the methods could be assisted in making

personalized clinical plans for diagnosis in the future.
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Background: Computed tomography plays an important role in the identification and

characterization of thymomas. It has been mainly used during preoperative evaluation for

clinical staging. However, the reliable prediction of histological risk types of thymomas

based on CT imaging features requires further study. In this study, we developed and

validated a nomogram based on CT imaging and included new indices for individualized

preoperative prediction of the risk classification of thymomas.

Methods: We conducted a retrospective, multicenter study that included 229 patients

from twoChinesemedical centers. All the patients underwent cross-sectional CT imaging

within 2 weeks before surgery. The results of pathological assessments were retrieved

from existing reports of the excised lesions. The tumor perimeter that contacted the lung

(TPCL) was evaluated and a new quantitative indicator, the acute angle (AA) formed by

adjacent lobulations, was measured. Two predictive models of risk classification were

created using the least absolute shrinkage and selection operator (LASSO) method in

a training cohort for features selection. The model with a smaller Akaike information

criterion was then used to create an individualized imaging nomogram, which we

evaluated regarding its prediction ability and clinical utility.

Results: A new CT imaging-based model incorporating AA was developed and

validated, which had improved predictive performance during risk classification of

thymomas when compared with a model using traditional imaging predictors. The new

imaging nomogram with AA demonstrated its clinical utility by decision curve analysis.

Conclusions: Acute angle can improve the performance of a CT-based predictivemodel

during the preoperative risk classification of thymomas and should be considered a

new imaging marker for the evaluation and treatment of patients with thymomas. On

the contrary, TPCL is not useful as a predictor for the risk classification of thymomas in

this study.
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INTRODUCTION

Thymomas are rare primary thymic epithelial neoplasms, and
they account for <1% of all adult malignancies (1). These tumors
are often located in the anterior mediastinum and have the
potential for local invasion (1, 2). Traditionally, thymomas are
usually divided into invasive (Masaoka stage III/IV) and non-
invasive (Masaoka stage I/II) lesions according to the Masaoka–
Koga clinical staging system (3, 4). Thymomas can also be
histologically classified as A, AB, B1, B2, or B3 according to the
WHO classification system (revised version of 2015), based on
the morphology of epithelial cells and the ratio of lymphocytes to
epithelial cells (5).WHO types B2 and B3 are typically considered
to be more invasive and are associated with lower survival rates
than types A, AB, and B1. Therefore, thymomas can be divided
into a low-risk group (types A, AB, and B1) and a high-risk
group (types B2 and B3) (6). CT plays an important role in the
identification and characterization of thymomas. This imaging
technique has been mainly used during preoperative evaluation
for clinical staging (4). However, the reliable prediction of
histological risk types of thymomas based on CT imaging features
still needs further exploration (7, 8).

Previous studies have focused on the relationship between CT
imaging findings and the WHO histological classification (9–15).
For instance, one study reported that some features (contours,
heterogeneous enhancement, infiltration of surrounding fat and
lung, and node enlargement) are significantly associated with
the WHO classification categories (13). Another study reported
that the histological features of aggressive thymomas were
significantly correlated with decreased doubling time (DT) and
increased growth when DT was evaluated retrospectively and
dynamically (14). However, these studies were based exclusively
on the evaluation of inter-group CT imaging feature differences
and did not include the development of models for classification
prediction. Furthermore, other studies have explored the
relationship between the tumor perimeter contacting the lung
(TPCL) with postoperative pleural recurrence on preoperative
CT findings (16, 17). One study developed a more objective
and quantitative method, with which the authors measured the
angle formed by adjacent lobulations to predict lung invasion
by thymomas (18). In this previous study, the authors found
that adjacent lung invasion can be precisely predicted by the
multilobulated aspect of the thymoma when it includes at
least one acute angle (AA). However, the relationship between
these quantitative imaging indicators and the WHO histological
classification has been rarely reported.

Until now, the classification of thymomas from preoperative
CT imaging has mostly employed traditional morphological
indicators, without reproducible individualized prediction
models or the inclusion of objective and quantitative indicators
(19–22). Therefore, in this study, we sought to investigate
whether TPCL and an AA formed by adjacent lobulations could
constitute quantitative and reliable predictors of thymoma
classification. We hypothesized that these new quantitative
imaging indicators could be used as independent factors in
the development of a predictive model for the risk categories
included in the WHO histological classification system of

thymomas. Moreover, we also hypothesized that this new
model would outperform a model that only includes traditional
morphological indicators. The goal was to develop and validate
an imaging nomogram to be used in individualized prediction
of the risk classifications of thymomas preoperatively using
non-invasive data and with minimal demand on patients.

METHODS

Clinical Samples
We conducted a retrospective multicenter study that included
229 patients. Inclusion criteria were (i) thymoma diagnosed
by postoperative pathological examination, (ii) contrast-
enhanced CT examination performed, and (iii) CT imaging
performed within 2 weeks before surgery. Exclusion criteria
were (i) CT imaging performed after preoperative neoadjuvant
chemotherapy; (ii) myasthenia gravis, hormone therapy, or other
treatment options; (iii) CT artifacts that affected the assessment
of the lesions; and (iv) recurrent anterior mediastinal mass
after thymectomy. We included 169 patients treated between
September 2011 and May 2019 in center 1 and 60 patients
treated between February 2017 and March 2019 in center 2.
We divided the patients into training, internal validation, and
external validation cohorts. The training cohort included 120
patients (58 low-risk and 62 high-risk) treated consecutively
between September 2011 and October 2016 in center 1. The
internal validation cohort contained 49 patients (26 low-risk and
23 high-risk) treated consecutively between November 2016 and
May 2019 in center 1. The external validation cohort included 60
patients (29 low-risk and 31 high-risk) from center 2 (Figure 1).
We retrieved related clinical information on age, sex, symptoms,
myasthenia gravis, clinical stages, and histological classification
from the surgical records and pathological reports in the
medical records database. Ethical approval was obtained from
the institutional review boards of both center 1 (China-Japan
Friendship Hospital in China) and center 2 (Jinling Hospital,
Medical School of Nanjing University); the need for informed
consent was waived because of the retrospective nature of
this study.

Computed Tomography Imaging
All the patients underwent CT imaging within 2 weeks before
surgery and obtained the pathological examination results.
They also underwent preoperative cross section spiral CT
scanning examinations. CT images were obtained with a
variety of scanners, namely, 16-row multi-detector CT (MDCT)
(Aquilion; Toshiba, Tokyo, Japan), 320-row MDCT (Aquilion
TM ONE; Toshiba, Tokyo, Japan), and 256-row MDCT
(Revolution; GE Healthcare, Chicago, IL, United States) in
center 1 and dual-source CT (Somatom Definition; Siemens
Healthineers, Erlangen, Germany), 128-row MDCT (Somatom
Perspective, Siemens Healthineers, Erlangen, Germany), and
second-generation dual-source CT (Somatom Flash; Siemens
Healthineers, Erlangen, Germany) in center 2. All images
were obtained when the patients were in a supine position
with suspended inspiration. An intravenously administered
contrast medium was used in all the patients. The images were
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FIGURE 1 | Flow diagram of the study population. The study included 169 patients from center 1 treated between September 2011 and May 2019, and 60 patients

from center 2 treated between February 2017 and March 2019. The training cohort included 120 patients (58 low-risk and 62 high-risk) treated consecutively between

September 2011 and October 2016 in center 1. The internal validation cohort included 49 patients (26 low-risk and 23 high-risk) treated consecutively between

November 2016 and May 2019 in center 1. The external validation cohort included 60 patients (29 low-risk and 31 high-risk) from center 2. IEC, inclusion and

exclusion criteria.

reconstructed from both the mediastinal (window width, 400–
450 HU; window level, 20–50 HU) and lung windows (window
width, 1,000–1,500 HU; window level, −650 to −750 HU).
Images with 5-mm slice thickness after reconstruction were
used for evaluation, and original images with 0.6–1.25-mm slice
thickness were available, when necessary, in all cases.

Computed Tomography Imaging
Interpretation and Pathological
Examination Findings
All the CT images were reviewed using a picture archiving
and communications system (PACS; GE Heathcare, Chicago,
IL, United States) and were retrospectively reviewed by two
radiologists with 10 years of experience, who were all blinded
to the clinical details of the patients and pathological findings
at the time of image interpretation. Where differences occurred,
a third chest tumor radiologist with 23 years of experience
addressed the differences for the final decision. The image
interpretation criteria used standard reporting terms defined by
the International Thymic Malignancy Interest Group (ITMIG)
for anterior mediastinal masses suspected to be thymoma (23).
Evaluated CT features included the following data about the
primary mass and its surrounding structures: lesion location
(tumors in the anteriormediastinumwere classified into centrally
located, right-sided, and left-sided lesions; any tumors that were
located around or on the line running through the sternum were
considered to be central); size in the x, y, and z axes; contour
(smooth, single-lobulated, or irregular multilobulated); internal
density (homogenous or heterogeneous); calcifications (without
calcification, single, or multiple calcifications); infiltration of
surrounding fat; tumor abutment≥ 50% or <50% of an adjacent
mediastinal structure; and direct vascular endoluminal invasion.
The following information regarding the surrounding structures
was also included: adjacent lung abnormalities, pleural effusion

(without, unilateral, or bilateral), mediastinal lymph node
enlargement (>1 cm in short axis on an axial image), and phrenic
nerve involvement (consistent with elevated hemidiaphragm).
Any differences in findings were resolved on a consensual basis.

The thymomas were classified according to the 2015 revised
WHO histology classification (5), which is mainly based on
the morphology of epithelial cells and the ratio of lymphocytes
to epithelial cells. When a tumor showed multiple histological
components, it was classified based on the predominant
component. The thymomas were divided into low-risk (types A,
AB, and B1) and high-risk (types B2 and B3) subgroups, because
types B2 and B3 are considered to bemoremalignant than type A,
AB, or B1 (3, 6). A modified Masaoka–Koga stage was obtained
by reviewing surgical records and pathological reports (24).

Measurement of the New Quantitative
Indices and Evaluation of Their
Consistency
The maximum tumor diameter was measured at the largest
section of the tumor on axial images (size_max) by the same
two radiologists who reviewed the CT images. The TPCL was
measured by manually drawing the surface of the tumor contour
adjacent to the lung, at the two maximum adjacent sections of
the tumor shown on axial images. The average TPCL was then
calculated as the final value. When the tumor contacted the
bilateral mediastinal pleura, only the side overhanging the pleural
cavity was measured to measure the TPCL. In multilobulated
thymomas interfacing with the lung, the smallest angle formed
by adjacent lobulations was uniformly measured twice on lung
windows. The average angle was then calculated and classified
as an AA or an obtuse angle (OA) (Figure 2). All tumors with
smooth contours were counted as OA (18).

Intraclass correlation coefficients were used to determine
intra- and inter-observer agreement in the measurement of new
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FIGURE 2 | Computed tomography imaging evaluation of contour, internal density, and measurement of the new index. (A) Axial contrast-enhanced chest CT image

obtained at the level of the pulmonary trunk demonstrated a thymoma with smooth contour (white arrowhead) in a 42-year-old woman (WHO classification AB). (B)

Axial contrast-enhanced chest CT image showed a thymoma (WHO classification B1) in a 54-year-old woman. The multilobulated contour and internal calcifications

were seen, and the tumor perimeter that contacted the lung (TPCL) was measured along the margin between tumor and adjacent lung (yellow arc line). (C) Axial

contrast-enhanced chest CT image obtained at the level of the aortic arch demonstrated a thymoma (WHO classification B2) in a 49-year-old man who complained of

chest distension and chest pain. The tumor has several obtuse angles formed by adjacent lobulations (red arrowhead), and low-density cystic or necrotic areas are

indicated by stars. (D) In the same patient as (C), the acute angle (AA) formed by adjacent lobulations can be seen in the upper slices.

indices. A pool of 50 patients was randomly selected from
the cohorts, including 25 low-risk and 25 high-risk patients.
For inter-observer agreement, two radiologists independently
identified the cross-sectional images of the largest tumor area and
measured the TPCL and the smallest angle in these patients at
the same time. The intraclass correlation coefficients (ICCs) were
calculated and analyzed between measurements. To evaluate
intra-observer agreement, the TPCL and AA were all measured
twice for each patient by each radiologist within 1 month, and
the ICCs were separately calculated and analyzed.

Feature Selection and Building of the
Models
For imaging features defined by ITMIG terms and the new
quantitative indices, regularized multivariate logistic regression
with the least absolute shrinkage and selection operator (LASSO)
penalty method was applied to the training cohort to reduce
overfitting or any type of bias in feature selection (25).
The selected features were then weighted by their respective
coefficients in the regression equation formula as follows:

y = β0 +

n
∑

s=1

βiXj+ε (1)

where y is 1 for patients with high-risk thymoma and 0 for low-
risk patients, β0 is the constant term, n is the number of features
used in the model, βi (i = 0, 1, 2, . . . , n) is the model parameter

of coefficient, Xj(j = 0, 1, 2, . . . , n) is the feature, and ε is the
error term.

The LASSO criteria for selecting parameters based on
minimizing the value of the following cost equation:

N
∑

i=1



yi −

n
∑

j=1

Xijβj − β0





2

+ λ

n
∑

j=1

∣

∣βj

∣

∣ (2)

where N is the number of patients, yi is the outcome labels of
patient i, n is the number of features,Xij is the jth feature of the ith
patient, βi (i= 0, 1, 2, . . . , n) is themodel parameter of coefficient,
β0 is the constant term, and λ is the regularization parameter.

Least absolute shrinkage and selection operator method is a
shrinkage and selection method for linear regression (26). It aims
to minimize the sum of squares of residual errors (MSE) under
the condition that the sum of absolute values of a regression
coefficient that is less than a constant is deleted during variable
selection. We selected the optimal value of λ by leave-one-
out cross-validation. We considered λ optimal if it minimized
MSE and maximized the area under the receiver operating
characteristic curve (AUC) in the training cohort. To test the
robustness of the final number of features included in the model,
we repeated the feature selection procedure at one SE of the
optimal λ value (lambda 0.1se).

The model, including the new quantitative index, was
compared with a model without this new index using the
corresponding Akaike information criterion (AIC) values for
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each model and their related statistical tests to estimate model
complexity and data fitting performance. Furthermore, DeLong
tests were performed to compare all pairs of receiver operating
characteristic curve (ROC) (27).

Construction and Evaluation of the
Nomogram
We constructed a nomogram based on CT imaging features
with the new quantitative index and applied it to predict the
risk classification of thymomas. We assessed the accuracy of
the nomogram using ROC curves. We then calculated AUCs
and compared them between the training cohort and the two
validation cohorts by DeLong tests (27). We also determined
sensitivity and specificity.

We assessed the calibration of the nomogram using
calibration curves and unreliability (U) statistics. We also
conducted a decision curve analysis to evaluate the clinical utility
of the nomogram by quantifying the net benefit of its use at
different threshold probabilities in the validation datasets.

Statistical Analysis
Statistical analysis was conducted using SPSS (version 23.0; IBM,
Armonk, NY, United States), R (version 3.5.0; R Foundation,
Vienna, Austria), STATA (version 15.0; StataCorp, College
Station TX, United States), and MATLAB (version 2013a;
Mathworks, Natick, MA, United States). A two-sided p < 0.05
was used as a threshold for statistical significance.

RESULTS

Clinical Information and Imaging Features
The clinical characteristics of the patients are summarized
in Supplementary Table 1. We found that imaging features,
namely, size_max, contour, density, calcification, and the new
index, AA, were significantly associated with risk classification
in the training cohort (p < 0.05). Only AA was significantly
associated with risk classification in the internal validation
cohort (p < 0.05). The inter-group statistical results of
features, such as density, calcification, and pleural effusion,
approached statistical difference. Size_max, density, and AAwere
significantly associated with risk classification in the external
validation training cohort (p < 0.05); contour and calcification
trended toward significance.

Evaluation of the Consistency of the
Measurement of the New Quantitative
Indices
We found that the measurement of both TPCL and AA presented
good inter- and intra-observer agreements. The ICCs were 0.9 for
TPCL and 0.85 for AA between the two radiologists. For intra-
observer agreement, the ICCs were 0.93 for TPCL and 0.88 for
AA in one radiologist, and 0.92 for TPCL and 0.89 for AA in
the other.

Feature Selection and Model Development
From all the imaging features, 23 (with AA) were reduced
to three potential predictors based on data from the 120

patients of the training cohort (8:1 ratio; Figures 3A,B). These
three features were retained with non-zero coefficients in
the LASSO logistic regression model with a minimum λ of
0.1052 and then used in the regression equation to build
the first model. The result demonstrated that TPCL was
ineligible for the risk classification of thymoma (11:1 ratio;
Figure 3). Without considering the AA factor, 22 features
were reduced to two predictors with a minimum λ of
0.1155 based on data from the training cohort. These two
features were used in the regression equation to build the
second model (Supplementary Table 2). We found significant
differences between the two models for both AIC and AUC
(Supplementary Table 3; Figure 4).

Construction and Evaluation of an
Individualized Nomogram
We used the first model with the smaller AIC to construct
an individualized imaging nomogram incorporating three
independent predictors: contour, density, and AA (Figure 5).
The classification accuracies were 77.5, 73.47, and 70% in the
training, internal validation, and external validation cohorts,
respectively. The sensitivities were 74.19, 60.87, and 70.97%, and
the specificities were 81.03, 84.62, and 68.97% in the training,
internal validation, and external validation cohorts, respectively
(Supplementary Table 4; Figure 4).

Validation of Individualized Nomogram
We found that calibrations for the probability of risk
classification of thymomas were good in the three cohorts
(training, p = 0.062; internal validation, p = 0.267; external
validation, p = 0.14). The C-index of the nomogram for the
prediction of lymph node status was 0.811 (95% CI, 0.731
to 0.889), 0.766 (95% CI, 0.63 to 0.902), and 0.765 (95% CI,
0.644 to 0.886) in the training, internal validation, and external
validation cohorts, respectively (Supplementary Table 2;
Supplementary Figure 1).

Clinical Use
We present the decision curve analysis for the first and
second models in Figure 6. The decision curve showed
that if the threshold probability in the clinical decision is
higher than 18%, using the radiomics nomogram to predict
risk classification performs better than either the treat-all-
patients or the treat-none schemes. Within this range, the
net benefit was comparable between the two models with
several overlaps.

DISCUSSION

In this study, we developed and validated a diagnostic CT-
based predictive model for individualized preoperative risk
classification in patients with thymomas. The new model
incorporates contour, density, and the new quantitative index
AA. The new model successfully stratified the histological
grading of tumors according to their risk classifications. We
established a nomogram that can facilitate the clinical evaluation
and treatment of thymomas.
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FIGURE 3 | All imaging features were selected by regularized multivariate logistic regression with the least absolute shrinkage and selection operator (LASSO) method

in the training cohort. (A) Twenty-three features (with AA) were reduced to three potential predictors to build the first model in the training cohort; the area under the

receiver operating characteristic curve (AUC) was plotted vs. log (λ). Dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1

standard error of the minimum criteria (the 1-SE criteria). (B) A coefficient profile plot was produced against the log (λ) sequence. A vertical line was drawn at the value

selected by 10-fold cross-validation, where optimal λ (0.1052) resulted in 3 non-zero coefficients. (C) Twenty-two features (without AA) were reduced to two potential

predictors to build the second model in the training cohort; the area under the receiver operating characteristic (AUC) curve was plotted vs. log (λ). Dotted vertical lines

were drawn at the optimal values using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). (D) A coefficient profile plot was

produced against the log (λ) sequence. A vertical line was drawn at the value selected by 10-fold cross-validation, where optimal λ (0.1155) resulted in 2 non-zero

coefficients.

FIGURE 4 | Model development and comparison. The model with AA of multilobulated contour identified as a new independent predictor improved the identification

performance for risk classification of thymoma compared with the model without AA. (A) Comparison of the performance of the models in the training cohort. (B)

Comparison of the performance of the models in the internal validation cohort. (C) Comparison of the performance of the models in the external validation cohort.
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FIGURE 5 | Construction of an individualized imaging nomogram in the training cohort incorporated three independent predictors consisting of contour, density, and

AA.

FIGURE 6 | Decision curve analysis with the comparison of the imaging

models. The decision curve showed that if the threshold probability in the

clinical decision is more than 18%, using the imaging nomogram to predict risk

classification adds more benefit than either the treat-all-patients scheme or the

treat-none scheme. Within this range, the net benefit was comparable based

on two models with several overlaps, and the model with AA showed better.

In this study, all the patients underwent preoperative cross-
sectional spiral CT examinations using the same body position
and scanning methods. However, we should highlight that the
CT images were obtained with different types of scanners in
the two centers. This is a common limitation in multicenter
studies, and we have performed the following measures to
improve the consistency of the results. First, all the patients
underwent preoperative cross-section spiral CT examinations.
They were scanned in the same body position and samemethods,
although the CT images were obtained with different types
of scanners. All the images were reconstructed with the same
parameters and methods, thus ensuring consistent evaluation

and measurement of image quality and reducing errors in
imaging processes among the different CT scanners (28, 29).
In addition, the research focused on the imaging features and
quantified indicators based on CT from the perspective of
clinical diagnosis. Therefore, any error mainly comes from the
experience of the radiologists and measurements. We introduced
two new key quantitative indices, TPCL and AA (16–18) and
showed that they can be consistently measured. Indeed, the
results of the consistency analysis by the ICC evaluation of inter-
and intra-observer agreements showed that the consistencies of
both TPCL and AA measurements were satisfactory. The use of
standardized techniques in this study minimized errors related to
image assessment, assuring the quality of these new quantitative
indices (30).

During the construction of the first and second models in
this study, the candidate imaging features were reduced to
three or two potential predictors using the LASSO method
to obtain a subset of features with optimal stability and
accuracy (25, 26). The LASSO regression algorithm is a
regularized feature selection method with which all independent
variables are processed simultaneously based on variance
trade-off. Several previous studies have demonstrated the
advantages of using LASSO to select parameters when
constructing predictive models (25, 26, 31, 32). However,
we are not aware of any study that has used this method
for histological grading of thymomas. Tumor size, contours,
internal density, calcification, and the new index AA all
showed significant differences between low- and high-risk
thymomas in this study. However, tumor size, TPCL, and
calcification were not selected as independent risk factors
in the final regression model. These results match those of
previous studies in the field, although we should note that CT
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imaging was shown to not differentiate between histological
subtypes of thymomas in these previous studies. Of note,
Johnson et al. reported an association between CT imaging
and pathologic assessments of the tumor response after
neoadjuvant treatment (21). Tumor size and calcification
have been found to be related to type B3 thymoma in
previous studies; however, we could not replicate these
findings (33).

By comparing AICs and AUCs between the two models,
we show that the new model that included AA has better
predictive performance. The AIC is a standard method for
estimating associations between model complexity and data-
fitting performance (34). In this study, we used the AIC to
examine whether the inclusion of three predictors in the first
model would counteract the performance benefits by bringing
additional complexity costs. We found that this is not the case.
In fact, the differences between the two models in the AIC
pinpointed that the benefits of including an extra predictor
outweighed the costs caused by the increased complexity. We
also compared the predictive performance of the two models
by testing for differences between their AUCs by DeLong tests.
We found that the new model with AA performed better in
the identification of risk classifications in thymomas in all the
three cohorts, but we determined that TPCL is ineligible for
risk classification of thymoma. The presentation of an AA in
tumors indicates a high-risk pathological type with high invasion
potential. Therefore, we speculate that AA, being an independent
predictor of risk category, is closely related to this pathological
category of thymomas (18).

Thymomas are heterogeneous tumors, and their
histopathology grading is associated with multiple imaging
features (8, 35–37). Choe et al. reported that the histological
features of aggressive tumors were significantly correlated
with decreased DT and increased growth (14). In addition,
Green et al. found that the presence of an AA between
lobulations in multilobulated thymomas can predict lung
invasion with satisfactory accuracy (18). Until now, there
has been no study reporting the reliable identification of
histological types of thymomas based on CT imaging features
(36). We aimed to bridge this gap by constructing and
validating a nomogram incorporating new quantitative imaging
variables. The nomogram presents a good performance in
generating individualized probabilities of the risk classification
of thymomas. The results demonstrated good generalizability
and provided a tool that can be used by both physicians and
patients to perform preoperative individualized prediction of
the risk classification of thymomas, following the current trends
toward personalized medicine.

The introduction of the model in clinical practice has
the potential to benefit both the diagnosis and treatment
of patients with thymomas. We comprehensively evaluated
the discrimination and calibration of the risk classification
predictions and demonstrate the reliability of the results of the
model. However, it is also important to consider whether the
nomogram-assisted decisions would improve clinical outcomes.
We performed a decision curve analysis to examine the
clinical consequences of the tool based on different threshold
probabilities and net benefits. We implemented this analysis by

calculating the proportion of true positives minus the proportion
of false positives weighted by the relative harm of false-
positive and false-negative results. We found that for threshold
probabilities higher than 18%, the use of the nomogram to predict
risk classification outperforms both the treat-all-patients and the
treat-none schemes. This analysis demonstrates the clinical utility
of the tool.

This study has some limitations. First, the incidence rate
of thymoma was very low. It is very precious and time-
consuming to obtain patients with complete clinical, imaging
(qualified contrast- enhanced CT), and definite pathology results.
Second, we relied on data collected retrospectively; 120 and 49
patients were used for model training and internal validation
in this study, respectively, while only 60 patients were included
for external validation. Compared with the training set and
internal validation set, the proportion of the two risk types was
relatively balanced and may support the results of this study.
Third, the CT scanners used in this study and their parameters
were different, and the diaphragm evaluation was based on
the coronal reconstruction of images. However, we suggest
that these parameters are unlikely to have strongly affected the
evaluation of parameters that can be assessed andmeasured using
CT images. Using high-dimensional data from a quantitative
analysis of tumor volume and radiomics could improve the
predictive models.

CONCLUSIONS

In conclusion, we developed and validated a newCT-basedmodel
incorporating AA that can improve predictive performance
during the risk classification of thymomas, when compared
with traditional imaging predictors. By decision curve analysis,
we demonstrated the clinical utility of the tool. AA should be
considered as a new imaging marker for the evaluation and
treatment of patients with thymomas.
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1 Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health
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Objectives: To develop and validate the model for distinguishing brain abscess from

cystic glioma by combining deep transfer learning (DTL) features and hand-crafted

radiomics (HCR) features in conventional T1-weighted imaging (T1WI) and T2-weighted

imaging (T2WI).

Methods: This single-center retrospective analysis involved 188 patients with

pathologically proven brain abscess (102) or cystic glioma (86). One thousand DTL

and 105 HCR features were extracted from the T1WI and T2WI of the patients. Three

feature selection methods and four classifiers, such as k-nearest neighbors (KNN),

random forest classifier (RFC), logistic regression (LR), and support vector machine

(SVM), for distinguishing brain abscess from cystic glioma were compared. The best

feature combination and classifier were chosen according to the quantitative metrics

including area under the curve (AUC), Youden Index, and accuracy.

Results: In most cases, deep learning-based radiomics (DLR) features, i.e., DTL features

combined with HCR features, contributed to a higher accuracy than HCR and DTL

features alone for distinguishing brain abscesses from cystic gliomas. The AUC values

of the model established, based on the DLR features in T2WI, were 0.86 (95% CI: 0.81,

0.91) in the training cohort and 0.85 (95% CI: 0.75, 0.95) in the test cohort, respectively.

Conclusions: The model established with the DLR features can distinguish brain

abscess from cystic glioma efficiently, providing a useful, inexpensive, convenient, and

non-invasive method for differential diagnosis. This is the first time that conventional MRI

radiomics is applied to identify these diseases. Also, the combination of HCR and DTL

features can lead to get impressive performance.
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INTRODUCTION

Brain glioma is the most common intracranial brain tumor
that is extremely difficult to treat. Currently, surgical resection
is the standard treatment of resectable diseases, followed by
postoperative radiotherapy and chemotherapy (1). The majority
of gliomas are solid tumors, but some present cystic changes, such
as cystic glioma, which has different clinicopathological features
from other tumors. Brain abscess is an infectious disease that
has high morbidity and mortality (2, 3). Though the treatment
and prognosis of these two diseases are different, accurate and
timely differential diagnosis is crucial. In many cases, CT and
MR images lack specificity for cystic glioma and brain abscess,
especially when the medical history and clinical manifestations
of the diseases cannot provide a differential diagnosis for
timely treatment measures. At present, the two diseases are
mainly distinguished by pathological examination, with the
caveat of invasive procedure and intra-operator variability. To
accurately distinguish the two diseases, previous studies have
proposed advanced MR images diagnosis techniques (2, 4),
such as susceptibility-weighted imaging and apparent diffusion
coefficients (ADC). However, these diagnosis techniques cannot
obtain high accuracy, and they rely on the experience of
radiologists (5). The use of the most rudimentary imaging
modalities of T1-weighted imaging (T1WI) and T2-weighted
imaging (T2WI) for a training model with a large sample size
contributes to more universality and fewer errors.

As a method of machine learning, radiomics is used for
quantitative image feature extraction from tumor regions of
interest. It has great potential for oncology practice, including
differential diagnosis, prediction of pathological classification,
lymph node metastasis, and survival (6–10). Radiomics has
been applied to brain tumor diseases (11–15), especially in
differentiating brain tumors (16–21). For example, Qian et
al. investigated the ability of radiomic analysis to distinguish
between isolated brain metastases and glioblastoma (16); Dong
et al. used the radiomic features derived from the areas
of peripheral enhancing edema to differentiate glioblastoma
from supratentorial single brain metastasis (17); Zhang et al.
investigated the feasibility of contrast-enhanced T1WI radiomics
features extracted by machine-learning algorithms to distinguish
between low-grade oligodendroglioma and atypical anaplastic
oligodendroglioma (18); Chen et al. applied radiomics analysis to
distinguish between metastatic brain tumors and glioblastomas
based on contrast-enhanced T1WI, and they validated the
discriminative performance of this method (19); Artzi et
al. used radiomics-based machine learning to differentiate
between brain metastasis subtypes and glioblastoma based on
conventional postcontrast T1WI (20). However, the radiomics

Abbreviations:DTL, deep transfer learning; HCR, hand-crafted radiomics; T1WI,

T1-weighted image; T2WI, T2-weighted image; KNN, k-nearest neighbors; RFC,

random forest classifier; LR, logistic regression; SVM, support vector machine;

AUC, Area Under the Curve; DLR, deep learning-based radiomics; ADC, apparent

diffusion coefficients; CNN, convolutional neural networks; LASSO, least absolute

shrinkage and selection operator; RFE, recursive feature elimination; comb-HCR,

combined HCR; comb-DTL, combined DTL; comb-DLR, combined DLR; ROC,

receiver operating characteristic; RQS, radiomics quality score.

features are mainly the texture, size, volume, shape, and intensity
characteristics of the tumor, limiting the potential of this
method. Therefore, extracting more complex features and fusing
them with radiomic features may improve the prediction and
generalization capabilities of the model (21–23).

In recent years, deep convolutional neural networks (CNNs)
(24) with complex network structures have achieved remarkable
results in the field of computer vision, such as tumor grade
prediction, patient prognosis, pathology classification, and organ
segmentation (25, 26). The successful application of deep
learning requires a large number of training cohort sets.
Since the available medical data sets have a limited size, a
pretrained CNN known as “transfer learning” can be employed
to avoid overfitting and replace deep learning in many practical
applications (21, 27, 28).

It is not clear whether T1WI and T2WI, as conventional
routine images in hospitals, also have diagnostic values for
distinguishing brain abscess from cystic glioma. In this study,
we hypothesized that conventional T1WI and T2WI would also
be valuable in distinguishing between these two diseases. To
this end, the DLR features extracted from patients with brain
abscesses or cystic gliomas were used to validate the diagnostic
capability of T1WI and T2WI.

MATERIALS AND METHODS

Patients
This study was reviewed and approved by the Institutional
Review Board of Xiangya Hospital and informed consent was
provided by the patient participating in this study. From January
2017 to October 2020, 216 patients who met requirements
and underwent T1WI and T2WI MRI were included in the
cohort after an initial case screening. Twenty-eight patients were
excluded due to poor MRI quality caused by technical operations
or inspection processes. Finally, 188 patients were enrolled in
this study, among which, 102 patients were diagnosed with brain
abscesses (age [mean ± SD], 47.8 ± 17.6 years; 33 males and 69
females) and 86 were diagnosed with cystic gliomas (age [mean
± SD], 46.2 ± 15.1 years; 27 males and 59 females). The training
cohort and test cohort were divided by stratified sampling with a
ratio of 7:3, and the distribution of the two diseases was almost
the same as that of the overall data set. Then, a nested 5-fold
cross-validation was performed on the training cohort.

Figure 1 showed the flowchart of our study, consisting of
image preprocessing, feature extraction, feature analysis, and
model construction.

Image Acquisition
All MRI examinations were conducted in the radiology
department of Xiangya hospital with a 3.0T MR Scanner.
High-quality MR images were obtained under the following
configurations: ①axial T1WI: layer thickness = 5mm, layer
spacing = 1.5mm, matrix = 512 × 416, field of view = 24
× 24 cm. ②axial T2WI: layer thickness = 5mm, layer spacing
= 1.5mm, matrix = 416 × 512, field of view = 24 × 24 cm.
All MR images were retrieved from the picture archiving and
communication system for further image feature extraction.
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FIGURE 1 | Study workflow overview. (A) Imaging processing; (B) Feature extraction; (C) Feature analysis and model construction.

Image Preprocessing and Tumor
Segmentation
To convert T1WI images to the space of T2WI images,
automatic rigid registration was performed with the ITK-SNAP
software (Version 3.8.0, http://www.itksnap.org/) to segment
the structures in the 3D medical image. Meanwhile, manual
segmentation of the lesions of all subjects was performed on
registered T2WI and T1WI images by a neuroradiologist with
10 years of experience. Then, a radiologist (with 10-years
experience) segmented 50 cases, consisting of 25 pathologically
proven brain abscess cases and 25 cystic glioma cases randomly
selected from all samples. In this way, the consistency of the
extracted HCR and DTL features of the neuroradiologist and
radiologist was evaluated, and the impact of inter-operator
variation on model stability and generalizability was reduced.
Besides, the intra-class correlation coefficient of each feature of
these 50 cases is calculated.

Image preprocessing was performed as follows. Before DTL
features were extracted, an image of the largest cross-sectional
area and its upper and lower layers were chosen as a three-
channel image. Then, a rectangular region of interest around the
tumor contour was used to crop the MR image. Next, the size
of the tumor patch was resized to 224 × 224 to meet the input

size requirement of the pretrained CNN model. Before the HCR
features were extracted, B-spline interpolation was adopted to
resample all images to the same voxel size of 1 × 1 × 1 mm3.
To avoid the influence of different MR image machine scanners
on feature extraction, all images were normalized. Moreover, it
seems that deep learning is less affected by different MR machine
types than radiomics.

Feature Extraction
In line with the Imaging Biomarker Standardization Initiative,
two kinds of features were extracted, i.e., DTL feature and HCR
feature. As for the extraction of the DTL feature, ResNet-50
(29) and VGG-19 (30) pretrained on the natural image dataset
ImageNet (http://www.image-net.org/) were taken as our base
models. (Visual Geometry Group) VGG-19 contains 19 hidden
layers (16 convolution layers and 3 full connection layers). It
uses 3 × 3 convolutional kernels in all layers to deepen the
number of layers and avoid excessive parameters. As for ResNet,
it integrates residual learning to avoid gradient dispersion and
accuracy reduction in deep networks, improving the network
efficiency, accuracy, and execution speed. The internal deep
learning features in the image are also visualized while the
convolutional layer receives the input features and generates
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the output feature mapping. As for the extraction of the HCR
feature, 105 original HCR features were extracted from each of
the axial T1WI and T2WI images using PyRadiomics (Version
2.1.0, https://pyradiomics.readthedocs.io/).

Feature Selection
To prevent overfitting, the multistep feature selection method
was adopted to select the best features for distinguishing brain
abscesses from cystic gliomas. First, all the HCR features were
analyzed in order by the Spearman rank correlation test and
mutual information method. The Spearman rank correlation
test was used to investigate the internal linear correlation
between individual features. The higher the absolute value of
the correlation coefficient, the stronger the correlation. As for
the non-redundant features (with a linear correlation coefficient
< 0.95), the mutual information method was used to capture
arbitrary relationships (both linear and non-linear) between each
feature and object variable. Then, according to the imaging
modality and feature category, the remaining radiomics features
and all DLR features were divided into four feature groups, i.e.,
T1WI-HCR, T2WI-HCR, T1WI-DTL, and T2WI-DTL group.
Finally, the least absolute shrinkage and selection operator
(LASSO) and recursive feature elimination (RFE) method based
on LR and SVMwere adopted to repeatedly create the model and
select the best feature subset in each feature group.

Feature Fusion
Feature fusion indicates that two feature groups are put together.
The T1WI-HCR and T2WI-HCR feature groups were fused to
combined HCR (comb-HCR), and 10 optimal MR image features
were selected; similarly, T1WI-DTL and T2WI-DTL were fused
to combined DTL (comb-DTL); the T1WI-HCR and T1WI-DTL
feature groups were fused to T1WI-DLR, and 10 optimal MR
image features were selected; the T2WI-HCR and T2WI-DTL
feature groups were fused to T2WI-DLR, and 10 optimal MR
image features were selected; the comb-HCR and comb-DTL
feature groups were fused to combined DLR (comb-DLR), and
10 optimal MR image features were selected. Refer Figure 2 for
details of feature selection and fusion flow chart.

Feature Analysis/Model Construction and
Validation
After feature fusion and selection, we used each feature
group separately to build machine learning classification
models, including LR, RFC, KNN, and SVM, implemented by
Python Scikit-learn (https://scikit-learn.org/stable/user_guide.
html). The performance of different classifiers was compared.
To prevent overfitting, we performed 1,000 iterations of nested
5-fold cross-validation to select the best parameters for the
classifier in the training cohorts. The discriminative power
of the model was assessed by AUC values, Youden Index,
and receiver operating characteristic (ROC) curves. Accuracy,
precision, recall, specificity, and F1-score were also used as
quantitative metrics. The AUC values for comparative disease
identification were carried out using DeLong test.

Clinical ADC Maps vs. Our Model
In this study, two experienced radiologists (with more than
10 years of experience in brain tumor MRI) were assigned
to jointly perform image ADC diagnosis, but they were not
involved in the quantitative image analysis described above.
All clinicopathological information were removed, and the
radiologists distinguished brain abscesses from cystic gliomas
based on ADC images only. The proportion of ADCmaps in our
study cohort was counted. Besides, the diagnostic performance
of the two radiologists on the same dataset following the current
clinical practice (including the use of ADC maps) was compared
to that of the established classifier.

Statistical Analysis
The comparison of categorical variables was performed through
chi-square tests or Fisher tests, and the comparison between
quantitative variables was performed through t-tests or Mann-
Whitney U-test. Meanwhile, the Spearman rank correlation test
was adopted to evaluate the correlation and executed in Python.
A p < 0.05 (two-sided) indicates a significant difference in
distinguishing cystic gliomas from brain abscesses. Statistical
analysis was performed with IBM SPSS Statistics (version 25;
IBM Corporation, Armonk, NY, USA), R (https://cran.r-project.
org/), and Python (version 3.6.6, https://www.python.org). A
pretrained CNN model was run using Keras with a Tensorflow
backend (https://keras.io/applications/#Resnet-50 and https://
keras.io/applications/#VGG-19).

RESULTS

Patient Characteristics
A total of 131 and 57 patients were involved in the training
and test cohort of this study, respectively. Specifically, the
training cohort involved 71 patients with brain abscesses and
60 patients with gliomas, while the test cohort involved 31
patients with brain abscesses and 26 patients with gliomas. The
patient characteristics are provided in Supplementary Table 1.
The gold standard for distinguishing between brain abscess
and cystic glioma was confirmed by pathologists through
pathological examination.

Results of the Feature Extraction
To extract the DTL features, the tumor patch images were
input to the pretrained CNN to extract 1,000 features from
each MR image modality, and the extracted features were
outputs from the last fully connected layer of VGG-19 and
ResNet-50. The extracted HCR features included First Order
Statistics (18 features), Shape-based (3D) (14 features), Gray
Level Cooccurrence Matrix (22 features), Gray Level Run Length
Matrix (16 features), Gray Level Size Zone Matrix (16 features),
Neighboring Gray Tone Difference Matrix (5 features), and Gray
Level Dependence Matrix (14 features).

Results of the Feature Selection and
Fusion
After feature selection and fusion, only the features with intra-
class correlation coefficients >0.95 were retained, indicating that
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FIGURE 2 | Feature selection and fusion flow chart. The red box is the original extracted feature. The black box is the feature group. Each feature group contains 10

features. A new feature group was formed after feature fusion and screening of two feature groups.

these features are not affected by multiple tumor segmentation
operators and present high reproducibility. For single image
modality analysis, a feature selection method was used to
preserve 10 optimal features in each group. In multimodality
analysis, the two groups of each modality were combined, and
10 features were filtered out. Refer Supplementary Table 2 for
detailed feature selection results.

DLR vs. DTL vs. HCR
The modeling effects of the combined modality feature with
different category were compared. On the test cohort, the feature
obtained from comb-DLR presented higher diagnostic accuracy
than those from comb-HCR and comb-DTL for distinguishing
brain abscess from cystic glioma. The AUC values of the models

established with the comb-DLR, comb-HCR, and comb-DTL
models features were 0.82, 0.79, and 0.76, respectively; the
AUC values of the models established with the T2WI-DLR,
T2WI-HCR, and T2WI-DTL features were 0.85, 0.80, and 0.71,
respectively; the AUC values of the models established with the
T1WI-DLR, T1WI-HCR, and T1WI-DTL features were 0.74,
0.77, and 0.80, respectively. Refer Figure 3, Table 1 for details of
model comparison results.

Multimodality vs. Single Modality
Since the AUC value of the model established with the
DLR features was statistically higher than that of the models
established with the HCR and DTL features in most cases, the
DLR features were used in the multimodal experiments. On
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FIGURE 3 | ROC comparison. (A,B), comb-HCR vs. comb-DTL vs. comb-DLR in the training cohort (A) and test cohort (B). (C,D) T1WI-DLR vs. T2WI-DLR vs.

comb-DLR in the training cohort (C) and test cohort (D).

the test cohort, the AUC value of the model established with
the T2WI-DLR features was statistically higher than that of the
model established with the T1WI-DLR and com-DLR features.
Model comparison results are provided in Figure 3, Table 1.

Construction and Validation of the Final
Model
As can be seen from Table 1, the optimal model was obtained by
using the T2WI-DLR features combined with an SVM-based RFE
feature selection method, and an SVM classifier. The AUC value
of themodel on the training and test cohort reached 0.86 (95%CI:
0.81, 0.91) and 0.85 (95% CI: 0.75, 0.95) for distinguishing brain
abscess from cystic glioma, respectively. Figure 4 presents the
performance of the optimal model. It can be seen from the figure
that on the training set, the AUC values of the nested 5-fold were
0.86, 0.86, 0.92, 0.88, and 0.80, respectively. Besides, the standard
deviation of the mean AUC value was 0.04, indicating that our
model has good stability and robustness and reduces overfitting.
The optimal cutoff value of the model was determined by Youden

Index. On the test cohort, the sensitivity and specificity of the
model were 73.1 and 87.1%, respectively, with an optimal critical
value of 0.512 and a Jorden index of 0.601. The details of HCR
and DTL feature selection and model construction are listed in
Tables 2, 3, respectively. The selection of the hyperparameters
for each model is listed in Supplementary Table 3. Moreover,
the ROC curves for each model were compared, and the Delong
test results are detailed in Supplementary Table 4. It can be seen
from the table, that T2WI-DLR features (AUC, 0.85) are superior
to T2WI-DTL (AUC, 0.71; P = 0.0058; DeLong test).

DTL Feature Visualization
As shown in Figure 5, the feature maps output by the last
convolutional layer in the VGG-19 and Resnet-50 model are
visualized. The feature map of the visually perceptible tumor
region captures most of the details in the image. To a certain
extent, it confirms the reliability of transfer learning for feature
extraction. By visualizing the learning of the features in the
image by these two networks, more insight into the working of
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TABLE 1 | Model representation.

Imaging modality

and feature category

Features

selection+

Classifier

Training

cohort(Cross

validation)

Test cohort

Mean AUC

(95% CI)

AUC (95% CI) Accuracy Precision Recall F1-score Specificity

HCR T1 WI-HCR RFE(LR)+LR 0.75 (95% CI: 0.61,

0.89)

0.79 (0.67–0.91) 0.67 0.65 0.77 0.61 0.74

T2WI-HCR RFE(LR)+SVM 0.84 (95% CI: 0.72,

0.96)

0.75 (0.62–0.88) 0.75 0.73 0.73 0.73 0.77

comb-HCR RFE(LR)+LR 0.85 (95% CI: 0.74,

0.96)

0.79 (0.68–0.91) 0.77 0.77 0.74 0.75 0.77

DTL T1 WI-DTL RFE(SVM)+SVM 0.89(95% CI: 0.84,

0.94)

0.81 (0.69–0.93) 0.74 0.76 0.62 0.68 0.84

T2WI-DTL RFE(SVM)+SVM 0.9(95% CI: 0.85, 0.95) 0.71 (0.58–0.85) 0.68 0.72 0.5 0.59 0.84

comb-DTL RFE(LR)+LR 0.88(95% CI: 0.81,

0.95)

0.77 (0.65–0.90) 0.65 0.69 0.42 0.52 0.84

DLR T1 WI-DLR RFE(LR)+LR 0.86(95% CI: 0.80,

0.92)

0.75 (0.63–0.88) 0.67 0.65 0.63 0.64 0.68

T2 WI-DLR RFE(SVM)+SVM 0.86(95% CI: 0.81,

0.91)

0.85 (0.75–0.95) 0.77 0.73 0.76 0.75 0.81

comb-DLR RFE(SVM)+SVM 0.89(95% CI: 0.82,

0.96)

0.83 (0.73–0.94) 0.72 0.65 0.71 0.68 0.77

FIGURE 4 | ROC curves of the optimal model (T2WI-DLR). (A) training cohort; (B) test cohort.

the networks can be obtained, and the reasons why the disease
may be correctly identified by transfer learning models can
be understood.

Clinical ADC Maps vs. Our Model
The cases containing ADC maps in the cohort were counted.
There were 33 cases in total, including 21 cases of brain abscess
and 12 cases of cystic glioma. A detailed comparison of the
distinguishment performance between the clinical ADC maps
diagnosis and our model is shown in Table 4. For each patient,

the diagnosis of the radiologist and the model prediction are
listed in Supplementary Table 5. It can be found that our model
has the same accuracy as the clinical ADC assessment, so it has
great potential for distinguishing between the two diseases.

DISCUSSIONS

Accurate identification of brain abscesses and cystic gliomas is
essential to planning appropriate treatment, assessing outcome,
and future prognosis. However, due to the similarity in the
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TABLE 2 | HCR model construction.

Classifier Feature selection method T1 T2

Optimal Mean AUC AUC Optimal Mean AUC AUC

feature number (training cohort) (test cohort) feature number (training cohort) (test cohort)

LR RFE(LR) 10 0.75 0.77 10 0.84 0.81

RFE(SVM) 10 0.74 0.76 10 0.83 0.81

LASSO 5 0.72 0.75 11 0.81 0.80

SVM RFE(LR) 10 0.72 0.75 10 0.84 0.80

RFE(SVM) 10 0.75 0.71 10 0.84 0.80

LASSO 5 0.72 0.75 11 0.82 0.79

KNN RFE(LR) 10 0.70 0.75 10 0.75 0.88

RFE(SVM) 10 0.71 0.78 10 0.74 0.81

LASSO 5 0.71 0.75 11 0.79 0.82

RFC RFE(LR) 10 0.69 0.75 10 0.76 0.83

RFE(SVM) 10 0.73 0.72 10 0.75 0.80

LASSO 5 0.71 0.72 11 0.74 0.86

TABLE 3 | DTL model construction.

Classifier Feature selection method T1 T2

Optimal Mean AUC AUC Optimal Mean AUC AUC

feature number (training cohort) (test cohort) feature number (training cohort) (test cohort)

LR RFE(LR) 10 0.84 0.72 10 0.87 0.73

RFE(SVM) 10 0.89 0.80 10 0.87 0.68

LASSO 0 – – 9 0.81 0.75

SVM RFE(LR) 10 0.86 0.70 10 0.86 0.85

RFE(SVM) 10 0.90 0.71 10 0.83 0.69

LASSO 0 – – 9 0.81 0.75

KNN RFE(LR) 10 0.72 0.54 10 0.82 0.75

RFE(SVM) 10 0.73 0.60 10 0.81 0.61

LASSO 0 – – 9 0.80 0.63

RFC RFE(LR) 10 0.69 0.71 10 0.79 0.69

RFE(SVM) 10 0.72 0.69 10 0.82 0.74

LASSO 0 – – 9 0.72 0.71

conventional MR images, i.e., ring enhancement, it is difficult
to distinguish between the two diseases. In this study, a deep
learning-based statistical analysis method based on multistep
feature selection and fusion was demonstrated and verified.
The experimental results indicate that the method can be
used to distinguish between brain abscess and cystic glioma in
conventional T1WI and T2WI. The previous literature on disease
prediction prognosis and classification differential diagnosis
for quantitative image analysis has shown that deep learning
contributes to better performance of radiomics analysis (21, 27,
31, 32). Our study demonstrates that by extracting DTL features
with VGG-19, a model with excellent feature learning and feature
representation abilities can be obtained. Besides, as shown in
Figure 5, VGG-19 can better focus on the details of the tumor
region than Resnet-50.

According to the feature selection results of the optimal
model, two “good” HCR features were selected for statistical
significance analysis. It can be seen from the box plots in Figure 6
that there is notmuch difference in the distribution of the features
between brain abscess and cystic glioma. All corresponding p-
values of the statistical tests for distinguishing the two diseases
are presented in the figure. These results indicate that these two
features have a good identification ability in this work, showing
the reproducibility and usefulness of feature engineering. Besides,
the two “good” HCR features are all texture features, which reflect
the homogeneous phenomenon in the image, which once again
demonstrates the superiority of texture features in distinguishing
brain abscess from cystic glioma. Previous studies have also
shown that texture features are highly predictive in many tasks,
which is consistent with the results obtained in this study (33, 34).
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FIGURE 5 | Feature visualization. (A,D) The grayscale T1WI, T2WI, and the corresponding heat map are shown, and the red areas indicating greater weighting, with

color bars on the right side of the plot. (B,E), the feature map of the last convolutional layer in the VGG-19 model. (C,F), the feature map of the last convolutional layer

in the Resnet-50 model.

TABLE 4 | Clinical ADC maps vs. our model.

Accuracy Precision Recall F1-score Specificity

ADC maps 0.848 0.818 0.75 0.783 0.905

T2WI-DLR 0.848 0.706 1 0.889 0.762

Compared with using T1WI and T2WI alone in DLR, the
model based on combined modality does not achieve improved
performance. This indicates that the single modality of T2WI is
also a good predictor for distinguishing between brain abscesses
and gliomas, and this is consistent with the fact that the T2
modality is more commonly used in imaging diagnosis of brain
diseases in clinical practice. When the performance of the two
models is stable and the results are complementary, model fusion
can lead to better performance (35).

Previous studies (5, 36–38) have demonstrated that the
advanced MRI techniques, such as magnetic resonance
spectroscopy, susceptibility-weighted imaging, ADC, and
dynamic susceptibility contrast-enhanced, can distinguish
brain abscesses from gliomas, but these techniques have
some limitations. Refer Supplementary Table 6 for model
performance comparison. First, the sample size of these
techniques is small, and only a few cases of pyogenic abscess
and glioblastoma are included, hindering the direct application
of the results to daily clinical practice. Second, the model

based on the combination of intralesional susceptibility
signal and ADC achieved a good AUC value (38). However,
the combination does not lead to obvious improvement of
differential diagnosis, because only a small number of patients
with abscess/glioblastoma show atypical high/low ADC. Finally,
none of the techniques were based on conventional MR images,
increasing the image acquisition difficulty and cost. In this study,
some measures were taken to overcome these limitations. The
relatively larger sample size contributes to a better performance
of conventional MR images for distinguishing brain abscesses
and gliomas. The comparison of dataset size is listed in
Supplementary Table 6. Also, the HCR and DTL features were
extracted from conventional MR images. To our knowledge,
there is no report on integrating HCR and DTL features for
distinguishing brain abscesses from cystic gliomas. Besides,
our research is based on some ordinary image data and does
not require special training, so it has significant potential. In
addition, DTL feature extraction uses a fixed-size bounding
box for the tumor region, which not only provides information
about intertumoral heterogeneity but also provides tumor
microenvironment information to a certain extent.

To promote the development of radiomics as imaging
biomarkers, a plethora of studies have used radiomics quality
score (RQS) to evaluate and standardize radiomics (8, 39, 40).
The RQS of our study was satisfactory at 15 points (41.7%
of the ideal quality score), and the detailed result is listed in
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FIGURE 6 | The box plots of two “good” T2WI-HCR of T2WI-DLR with the results of the statistical test. (A) original_glszm_SmallAreaEmphasis; (B)

original_gldm_DependenceNonUniformityNormalized. Brain abscess:0; Cystic glioma:1.

Supplementary Table 7. The RQSs of the relevant work (16–
20) were analyzed in our study, but only our study is open
to science and data, only one study conducted a multivariable
analysis with non-radiomics features (20), and only one study
based on multicenter validation (16). Besides, no research has
conducted a phantom study, collected images of individuals at
additional time points, discussed biological correlates, conducted
a prospective study, or reported the cost-effectiveness of the
clinical application.

The limitations of our work are as follows. First, due to
the difficulty of obtaining external validation data, the patients
in our study were single-center. The effects of clinical ADC
maps diagnosis were compared with our proposed model,
but this sequence was not added to our model due to the
insufficient sample size of ADC maps. Multicenter validation,
multi-MRI sequences, and prospective studies will be involved
in our future work. Meanwhile, additional features such as
proteomics, transcriptomics, pathomics, and genomic features
were not considered in our study. Multi-omics joint analysis that
integrates complex structural systems with multiple layers, levels,
and functions may enhance the performance to identify brain
abscess and cystic glioma and overcome the limitations of a single
theoretical model. Besides, this study only used the image of the
largest cross-section area with the upper and lower layers as the
input to the VGG-19 or ResNet-50 model. The use of the 3D
volume of the tumor/region of interest should be investigated in
future research. Finally, the application of our study to identify
other brain tumors and the enhancement of the algorithm will
be explored.

CONCLUSIONS

This paper first reports a model combining DTL features and
HCR features from conventional MRI for distinguishing brain
abscesses from cystic glioma. The study results provide an
effective, inexpensive, convenient, and non-invasive method for
differential diagnosis.
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Retinal vessel segmentation plays an important role in the diagnosis of eye-related

diseases and biomarkers discovery. Existing works perform multi-scale feature

aggregation in an inter-layer manner, namely inter-layer feature aggregation.

However, such an approach only fuses features at either a lower scale or a higher scale,

which may result in a limited segmentation performance, especially on thin vessels.

This discovery motivates us to fuse multi-scale features in each layer, intra-layer

feature aggregation, to mitigate the problem. Therefore, in this paper, we propose

Pyramid-Net for accurate retinal vessel segmentation, which features intra-layer pyramid-

scale aggregation blocks (IPABs). At each layer, IPABs generate two associated branches

at a higher scale and a lower scale, respectively, and the two with the main branch

at the current scale operate in a pyramid-scale manner. Three further enhancements

including pyramid inputs enhancement, deep pyramid supervision, and pyramid skip

connections are proposed to boost the performance. We have evaluated Pyramid-Net on

three public retinal fundus photography datasets (DRIVE, STARE, and CHASE-DB1). The

experimental results show that Pyramid-Net can effectively improve the segmentation

performance especially on thin vessels, and outperforms the current state-of-the-art

methods on all the adopted three datasets. In addition, our method is more efficient

than existing methods with a large reduction in computational cost. We have released

the source code at https://github.com/JerRuy/Pyramid-Net.

Keywords: deep learning, neural network, feature aggregation, pyramid scale, retinal vessel segmentation

1. INTRODUCTION

The subtle changes in the retinal vascular, including vessel width, tortuosity, and branching
features, indicate mass eye-related diseases, such as diabetic retinopathy (1), glaucoma (2),
and macular degeneration (3). Meanwhile, those characteristics are important biomarkers for
numerous systemic diseases, including hypertension (4) and cardiovascular diseases (5). Retinal
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vessel segmentation is one of the cornerstones to access those
characteristics, particularly for automatic retinal image analysis
(6, 7). For example, hypertensive retinopathy is a retinal disease,
which is caused by hypertension. Increased vascular curvature
or stenosis can be found in patients with hypertension (8).
Conventionally, manual segmentation is laborious and time-
consuming, and suffers subjectivity among experts. To improve
efficiency and reliability and reduce the workload of doctors, the
clinical practice puts forward high requirements for automatic
segmentation (9).

Recently, deep neural networks have boosted the
segmentation performance of retinal vessel segmentation
(10, 12) by a large margin compared with traditional methods
(13, 14). However, thin vessels cannot be segmented accurately.
For example, Figure 1 demonstrates a commonly-seen fundus
image containing numerous thin vessels and thick vessels,
and corresponding segmentation (11) and ground truth. We
can easily notice that the thick vessels enjoy a promising
performance, but the thin vessels suffer a big miss. A potential
reason is that the continuous pooling operations in most neural
networks are used to encode the features, which leads to a mass
loss of appearance information and harms the segmentation
accuracy, especially on thin vessels. Note that in practice, it is
also difficult to segment these thin vessels for experts due to
low contrast and ambiguousness. Currently, some works have
been proposed to tackle the above problems, e.g., a particular
processing branch for thin vessels (12), a new loss function
to emphasize thin vessels (10). However, the segmentation
performance is still limited considering the clinical requirement
of retinal image analysis.

Meanwhile, multi-scale feature aggregation to fuse coarse-
to-fine context information has been popular to segment
thin/small objects (15–19). There are mainly two approaches:
input-output level category and intra-network level category. In
the input-output level category, connections exist between inputs

FIGURE 1 | Examples of challenging thin vessels in retinal vessel segmentation. The retinal fundus image (left) contains numerous thin vessels (1–2 pixels wide) and

thick vessels (3 pixels wide or more) (10). Regions of representative thin and thick vessels, and their corresponding ground truth and predictions (11) are shown in the

right. It can be noticed that the thick vessels obtain a better segmentation performance, while the thin vessels suffer a big miss (indicated by red rectangles).

at various scales and corresponding intermediate layers (15), or
between the intermediate layers and the final predictions with
corresponding scales (18). In the intra-network level category,
features from previous layers are adjusted in channel numbers
and spatial dimension and then aggregated with the ones in the
later layer (16). However, current multi-scale feature aggregation
works in an inter-layer manner, inter-layer feature aggregation,
which can only fuse features at either a lower scale or a higher
scale. For example, in the encoder, feature maps at the lower
scale cannot be fused by that at the current scale because of the
processing order of the layers. A possible solution is to fuse multi-
scale features in each layer, intra-layer feature aggregation, to
consider features at both the high scale and the low scale.

Motivated by the above discoveries, in this paper, we propose
Pyramid-Net for accurate retinal vessel segmentation. In each
layer of Pyramid-Net, intra-layer pyramid-scale aggregation
blocks (IPABs) are employed in both the encoder and the
decoder to aggregate features at pyramid scales (the higher
scale, the lower scale, and the current scale). In this way,
two associated branches at the higher scale and the lower
scale are generated to assist the main branch at the current
scale. Therefore, coarse-to-fine context information is shared
and aggregated in each layer, thus improving the segmentation
accuracy of capillaries. To further improve the performance,
three optimizations, including pyramid inputs enhancement,
deep pyramid supervision, and pyramid skip connections,
are applied to IPABs. We have conducted comprehensive
experiments on three retinal vessel image segmentation datasets,
including DRIVE (20), STARE (21), and CHASE-DB1 (22) with
various segmentation networks. The experimental results show
that our method can significantly improve the segmentation
performance, especially on thin vessels, and achieves state-of-the-
art performance on the three public datasets. In addition, our
method is more efficient than the existing method with a large
reduction in computational cost.

Frontiers in Medicine | www.frontiersin.org 2 December 2021 | Volume 8 | Article 76105031

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhang et al. Pyramid-Net for Retinal Image Segmentation

Overall, this work makes the following contributions:

1) We discovered that thin vessels suffer a big miss in the
segmentation results of existing methods;

2) We proposed Pyramid-Net for retinal vessel segmentation in
which intra-layer pyramid-scale aggregation blocks (IPABs)
aggregate features at the higher, current, and lower scales to
fuse coarse-to-fine context information in each layer;

3) We further propose three enhancements: pyramid input
enhancement, deep pyramid supervision, and pyramid skip
connections to boost the performance;

4) We conducted comprehensive experiments on three public
vessel image datasets (DRIVE, STARE, and CHASE-DB1),
and our method achieves the state-of-the-art performance on
three datasets.

The remainder of this paper is organized as follows. Section 2
introduces related works and the motivation of the proposed
method. Section 3 details the overall framework of the
proposed Pyramid-Net, including IPABs and three optimizations
(pyramid inputs enhancement, deep pyramid supervision,
and pyramid skip connections). Section 4 first introduces
datasets, implementation, and evaluation. Second, quantitative
evaluations on three vessel image datasets, comparisons with
the state-of-the-art algorithms, and several visual retinal
segmentation results are presented. Third, several ablation
studies that included evaluating the thin vessel, ablation analysis,
and cross-training evaluation are discussed. Section 5 concludes
the paper.

2. RELATED WORK AND MOTIVATION

2.1. Vessel Image Segmentation
With the emergence of numerous public-available retinal
image datasets (20–22), the supervised vessel segmentation
methods became popular in the community. Commonly-seen
supervised methods consist of two steps: feature extraction and
classification. Some methods extracted the color intensity (24)
and principle components (25) from the images, while some
methods utilized wavelet (26) and edge responses (27). In terms
of classification, various classic classifiers, including Support
Vector Machine (SVM) (28), perceptron (29), random decision
forests (30), and Gaussian model (26) are commonly seen and
widely used in traditional supervised vessel image segmentation.
Recently, in the light of fully convolutional networks (FCNs)
(31) and U-Net (23), data-driven deep learning-based methods
have demonstrated promising results and dominated the area
of vessel image segmentation. Yan et al. (10) pointed out that
the training loss tends to ignore the loss of thin vessels and is
dominated by the thick vessels, which may be caused by the
imbalance between thin vessels and thick vessels. Furthermore,
Yan et al. (12) explored a three-stage network separating the
segmentation of thick vessels, thin vessels, and the vessel fusion
into different stages to make full use of the difference between
thick and thin vessels to improve the overall segmentation
performance. Considering that the consecutive pooling may
lead to accuracy loss, CE-Net (32) encodes the high-dimension
information and preserves spatial information to improve the

overall segmentation. HA-Net (33) dynamically assigns the
regions in the image hard regions or simple regions, and then
introduces attention modules to help the network concentrate
on the hard region for accurate vessel image segmentation.
Meanwhile, some works introduce the spatial attention (34)
and the channel attention (34) to the vessel segmentation
domain and achieve promising results. The proposed method
extends considerably to our previous work (35), which only
supply some simplified evaluation on two public available vessel
segmentation datasets. In this work, we have added a new
module named “pyramid skip connections,” which furthers boost
the performance. Meanwhile, we have added another widely-
used dataset (STARE) to demonstrate the generalization of our
proposed Pyramid-Net. Moreover, in terms of the analysis,
we have supplied in-depth analyses of our method including
evaluation on thin vessel segmentation, ablation analysis, and
cross-training evaluation.

2.2. Motivation
Multi-scale feature aggregation is widely used in medical
image segmentation, which fuses the previous feature maps
with different scales to improve the network performance. As
shown in Figure 2, recent works (36–39) introduced multi-
scale feature aggregation to strengthen feature propagation,
alleviate the vanishing gradient problem, and improve the
overall segmentation. We divide those methods into two major
categories: input-output level and intra-network level.

Input-output level category: The connections exist between
inputs at various scales and corresponding intermediate layers,
or between the intermediate layers and the final predictions with
corresponding scales. For example, Wu et al. (40) generated
multi-scale feature maps by max-pooling and up-sampling layer
and employed two sub-models to extract and aggregate features
at multiple scales.MIMO-Net (41) fused scaled input images with
multiple resolutions into the intermediate layers of the network
in the encoder, and optimized the features in the decoder to
improve the overall segmentation performance. MILD-Net (42)
fused scaled original images with multiple resolutions to alleviate
the potential accuracy decline caused by max-pooling.

Intra-network level category: In this approach, features
from previous layers are adjusted in channel numbers and
spatial dimension and then aggregated with the ones in the
later layer. For ease of discussion, we discuss the network
structures of related works based on the U-Net as shown in
Figure 2. Note that U-Net is the most widely-used network in
medical image segmentation. These works contain three main
approaches: dense connections in the encoder (encoder sub-
level), dense connections in the decoder (decoder sub-level) and
dense connections in the cross of the encoder and the decoder
(cross sub-level): (1) Encoder sub-level: (15) aggregated the scale
inputs into the intermediate layers in the encoder to alleviate
the accuracy decline caused by pooling; (2) Decoder sub-level:
Dense decoder short connections (18) made full use of the feature
maps in the decoder by fusing them with the feature maps in
later layers; (3) Cross sub-level: Complete bipartite networks (16)
inspired by the structure of complete bipartite graphs connected
every layer in the encoder and the decoder.
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FIGURE 2 | Illustrations of network structures of (a) basic U-Net (23) and (b–e) existing multi-scale feature aggregation methods, which mainly consist of two major

categories: input-output level and intra-network level. The input-output level category means that the network employs multiple scaled inputs, and the scaled ground

truth supervises the inter feature maps. In the intra-network level category, the encoder level, the decoder level, and the cross-level indicate implemented multi-scale

feature aggregation in the encoder, the decoder, and their cross, respectively.

FIGURE 3 | The network structure of the proposed Pyramid-Net. IPABs (green rectangle) not only aggregate features at pyramid scales [the current scale (green

line), the higher scale (dark green line) and the lower scale (bright green line)] containing coarse-to-fine context information. Meanwhile, pyramid input enhancement

(yellow rectangle), deep pyramid supervision (purple rectangle), and pyramid skip connections (rad rectangle) are employed to further improve the overall

segmentation. Best viewed in color.
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Though multi-scale feature aggregation can significantly
improve segmentation performance, we discover that they
usually work in an inter-layer manner, inter-layer feature

aggregation. In such a manner, features at either a lower scale or
a higher scale are fused by the current layer. For example, in the
encoder, feature maps at the lower scale cannot be fused by that
at the current scale because of the processing order of the layers.
The same phenomenon also exists in the decoder. Note that a
successful segmentation needs to consider both feature maps at
high scales for global localization information and low scales
for detailed appearance information. Thus, we may mitigate the
above problem by performing multi-scale feature aggregation
in each layer of the network, intra-layer feature aggregation.
How to obtain the multi-scale features in each layer becomes
another problem. We may use pooling and upsampling to obtain
two associated branches operating on a higher scale and a low
scale, respectively. In this way, there exist three branches at three
different scales (namely pyramid scales) in each layer, which is
like a ResNet block (43). In this way, we may aggregate coarse-
to-fine context information from pyramid-scale feature maps in
each layer to further improve the segmentation performance.

3. METHODS

In this section, we first introduce IPABs and then describe
three optimizations, including pyramid input enhancement, deep
pyramid supervision, and pyramid skip connections. Figure 3
presents the structure details of Pyramid-Net.

3.1. Intra-layer Pyramid-Scale Aggregation
Block
Intra-layer pyramid-scale aggregation block are based on the
ResNet block (43), which is widely adopted in deep learning.
Figure 4 illustrates the structure of the ResNet block (43), which
is formulated as

Xl+1 = f (Xl)+ Xl, (1)

where Xl and Xl+1 are the input and the output of the current
layer, while f (·) represents the main branch of the current layer.
ResNet learns the additive residual function f (·) with respect
to the unit input through a shortcut connection between them.
Meanwhile, the multi-scale feature aggregation inspires us to
propose associated branches to learn coarse-to-fine features in
each residual branch. Figure 4 illustrates the detailed structures
of traditional ResNet blocks and our IPABs. Different from
ResNet blocks, in each layer, IPABs generate two associated
branches to aggregate coarse-to-fine feature maps to assist the
main branch at the current scale. In each branch, the processing
steps are almost the same as those in traditional ResNet blocks.
Some extra steps such as up-sampling and down-sampling are
adopted at the higher and the lower scales to adjust scales. In
order to reduce the potential increase of computational cost, the
number of channels of the inputs Xl in the main branch has
been reduced to half, while the number of channels of resized

inputs X
p

l
and Xd

l
in the associated branches is reduced to one-

fourth. The feature maps with channel adjustment are fed to the
processing steps at three scales and are processed in parallel. The
three outputs at pyramid scales are then concatenated. The whole
process is formulated as follows,

˜Xl+1 = H(f (̂X
p

l
), f (̂Xl), f (̂X

d
l ))+ Xl, (2)

where X
p

l
and Xd

l
are the up-sampled and the down-sampled

results of the current input Xl with channel adjustment,
respectively. ̂X

p

l
, ̂Xl and ̂Xd

l
are the enhanced results using

pyramid input enhancement, which only exists in the encoder
and is detailed in section 3.2. Meanwhile, ̂X

p

l
, ̂Xl, and ̂Xd

l
are

replaced by X̂
p

l
, X̂l, and X̂d

l
in the decoder, which represents

the enhancement results by pyramid skip connections and are
detailed in section 3.4. H(·) represents the aggregation process,
which performs re-scaling and feature concatenation.˜Xl+1 is the
strengthened results of Xl+1 by IPAB.

The channel attention module selectively emphasizes
interdependent channel maps by integrating associated features
among all channel maps. To improve the efficiency of feature
extraction, we also employ an attention mechanism (44, 45) in
IPAB as follows,

8(˜Xl+1) = Q(8Avg(˜Xl+1))+Q(8Max(˜Xl+1)). (3)

9(˜Xl+1) = σ (8(˜Xl+1)⊗˜Xl+1. (4)

where 9(·) is the operation of attention process, Q is
the conventional operation using 1×1 kernels for channel
adjustment, and σ is the activation function. Average-pooling
8Avg(·) and max-pooling 8Max(·) are adopted to aggregate
channel information. By utilizing IPAB, each layer of the
network aggregates the feature with pyramid scales, which helps
fuse coarse-to-fine context information to improve the overall
segmentation performance.

3.2. Pyramid Input Enhancement
Pyramid input enhancement fuses the input image with multiple
scales to IPABs to reduce the loss of information caused by
re-scaling and enhance feature fusion. Pooling operations with
various pooling sizes are used to guarantee spatial resolution
consistency. Particularly, in each layer, the input image is
scaled at higher, current, and lower scales, and fed to three
parallel processing steps at multiple scales in the IPAB. Pooling
operations over larger regions successively reinforce the scale
and translation invariance while reducing noise sensitivity at the
same time as more and more context information is added. The
aggregation should facilitate discrimination between relevant
features and local noises. The above three pyramid-scale images
are concatenated with corresponding outputs of up-sampling,
down-sampling, and channel adjustment, respectively. Suppose
that Xl is denoted as the input of the current layer, and X

p

l
, and

Xd
l
are results at the higher scale and the lower scale, respectively.

Meanwhile, Il−1, Il and Il+1 are the scaled inputs ofX
d
l
,Xl, andX

p

l
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FIGURE 4 | The network structure of (A) ResNet blocks and (B) our intra-layer pyramid-scale aggregation blocks (IPABs). IPABs (marked by green rectangles)

aggregate coarse-to-fine features at the current scale and both the higher scale and the lower scale (pyramid scales). Meanwhile, pyramid input enhancement

(marked by yellow rectangles) and deep pyramid supervision (marked by purple rectangles) are employed to fuse the original images with corresponding scales, and

supervise the intermediate results in each layer of the decoder, respectively.

with the same size, respectively. The fusion process of the current
scale is formulated as follows,

̂Xl−1 = H(Xd
l ,W

d(Il−1)), (5)

̂Xl = H(Xl,W(Il)), (6)

̂Xl+1 = H(X
p

l
,Wp(Il+1)), (7)

where Wp(·),Wd(·), and W(·) represents 3×3 convolutional
operations and is applied before concatenating to the pyramid-
scale features, and H(·) denotes channel adjustment.

3.3. Deep Pyramid Supervision
Deep pyramid supervision optimizes feature maps at multiple
scales to improve the segmentation of multi-scale objects and
fast the training process. Similar to pyramid input enhancement,
deep pyramid supervision connects the intermediate layer to the
final prediction thus fusing coarse-to-fine context information.
Particularly, the feature maps at multiple scales from each IPAB
in the decoder are fed into a plain 3 × 3 convolutional layer
followed by Sigmoid function. Deep pyramid supervision at the
lth scale of the decoder can be defined as,

Ll = L(Y
p

l
,Ml−1)+ L(Yl,Ml)+ L(Yd

l ,Ml+1). (8)

The ground truths M are scaled to the same size as the
pyramid-scale feature maps for deep supervision, e.g., Y

p

l
,Yl,

and Yd
l
are supervised by the corresponding ground truth Ml−1,

Ml, and Ml+1, respectively. Note that the feature maps in
each layer can be directly fused with the final prediction and
optimized without massive convolutional processing. Therefore,
deep pyramid supervision can be adapted to different depths
for different tasks in training, which supply adaptive model
capacity, thereby facilitating the segmentation of objects with
different scales.

3.4. Pyramid Skip Connections
Pyramid skip connections perform feature reuse among the three
scaled feature maps (the higher scale, the current scale, and the
lower scale) in each IPAB module. Suppose that Xl is the input of
the current layer in the decoder, and X

p

l
, and Xd

l
are the results

at the higher scale and the lower scale, respectively. Meanwhile,
(X̃

p

l
, X̃l+1, X̃

d
l+2

), (X̃
p

l−1
, X̃l, X̃

d
l+1

), and (X̃
p

l−2
, X̃l−1, X̃

d
l
) are three

groups of learned feature maps from the encoder, and feature
maps in each group have the same spatial dimension with the
corresponding scaled input X̂l−1, X̂l, and X̂l+1, respectively. The
fusion process of the current scale is formulated as follows,

X̂l−1 = H(Xd
l ,H(X̃

p

l
, X̃l+1, X̃

d
l+2)), (9)
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X̂l = H(Xl,H(X̃
p

l−1
, X̃l, X̃

d
l+1)), (10)

X̂l+1 = H(X
p

l
,H(X̃d

l , X̃l−1, X̃
p

l−2
)), (11)

whereH(·) denotes channel adjustment. We can see that features
at the current-scale l can reuse and aggregate feature maps at
most five scales (l− 2, l− 1, l, l+ 1, andl+ 2).

4. EXPERIMENTS

4.1. Datasets
We used three public available retinal vessel datasets, DRIVE
(20), STARE (21), and CHASE-DB1 (22) for evaluation. The
images in the three datasets are collected using digital retinal
imaging, a standard method of documenting the appearance of
the retina. More details of the datasets are as follows.

DRIVE: The DRIVE dataset (20) consists of 40 images with
a resolution of 565 × 584 pixels, which were acquired using a
Canon CR5 non-mydriatic 3CCD camera with a 45-degree field
of view (FOV). Two trained human observers labeled the vessels
in all images, and the ones from the first observer were used for
network training. The dataset has been divided into a training
and a test set (20), both of which contain 20 images.

CHASE-DB1: The CHASE-DB1 dataset (22) contains
vascular patch images with a resolution of 999× 960, which were
acquired from 28 eyes of 14 ten-year-old children. Since images
were captured in subdued lighting and the operators adjusted
illumination settings, the images contain more illumination
variation in CHASE-DB1 compared with the DRIVE datasets.
Following the configuration in Li et al. (46), the first 20 images
and the remaining 8 images are employed as the training set and
the test set, respectively.

STARE: The STARE dataset (21) consists of 20 equal-sized
images with a resolution of 700 × 605 pixels. Each image is
with a 35◦ FOV, and half of the images of eyes are with ocular
pathology. As the training set and the test set are not explicitly
specified, the same leave-one-out cross-validation is adopted (33)
for performance evaluation, where models are iteratively trained
on 19 images and tested on the rest images. Liking other methods
(10), manual annotations generated by the first observer are used
for both training and test.

4.2. Implementations
All experiments were conducted on an Nvidia GeForce Titan X
(pascal) containing 12 GB memory. Meanwhile, we employed
CE-Net (32), one of the state-of-the-art methods in retinal vessel
segmentation, as the backbone models to implement IPABs,
pyramid input enhancement, deep pyramid supervision, and
pyramid skip connections. Normalization of the training data has
been implemented. In order to express the details of multi-scale
feature fusion more clearly, we use U-Net as the basic network to
explain, which is widely used in the medical image segmentation
domain. In practice, we use the state-of-the-art method CE-Net
to replace U-Net to obtain better performance. During training,
we adopted AdaptiveMoment Estimation (Adam) as the learning
optimizer with a batch size of 4. Data augmentation operations
including horizontal flip, vertical flip, and diagonal flip are used

TABLE 1 | Performance comparison of Pyramid-Net and the state-of-the-art

methods on the DRIVE dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

FCN (31) 74.89 96.21 94.13 95.67

U-Net (23) 75.31 96.45 94.45 96.01

DeepVessel (11) 76.12 97.68 95.23 97.52

(10) 76.53 98.18 95.42 97.52

(47) 77.92 98.13 95.56 97.84

(40) 78.44 98.07 95.67 98.19

CE-Net (32) 83.09 97.47 95.45 97.79

BTS-DSN (48) 78.91 98.04 95.61 98.06

(49) 79.16 98.11 95.70 98.10

(50) 79.40 98.16 95.67 97.72

Vessel-Net (51) 80.38 98.02 95.78 98.21

MResU-Net (52) 79.69 97.99 - 97.99

CTF-Net (53) 78.49 98.13 95.67 97.88

Hybrid-Net (6) 83.53 97.51 95.79 -

HA-Net (33) 79.91 98.13 95.81 98.23

Pyramid-Net 82.38 98.19 96.26 98.32

Bold values mean the state-of-the-art performance.

to enlarge the train samples. We use a threshold to obtain the
final segmentation from pixel probability vectors. Particularly,
the pixels with values smaller than the threshold are assigned to
the background class, and the remaining pixels with values equal
to or greater than the threshold are categorized as the vessel class.
The final prediction is the ensemble of the segmentation output
of the vessel images, its rotation (90◦), and its flip (horizontal
and vertical).

4.3. Evaluation Metrics
We introduce four evaluation metrics including Sensitivity
(Sens), Specificity (Spec), Accuracy (Acc), and Area Under the
ROC Curve (AUC) to validate our proposed Pyramid-Net. The
metrics are calculated as follows:

Sensitivity = TP/(TP+ FN), (12)

Specificity = TN/(TN+ FP), (13)

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN). (14)

True positive (TP) and true negative (TN) present that pixels
are correctly classified to objects or backgrounds, respectively.
Meanwhile, pixels will be labeled as false positive (FP) or
false negative (FN), if they are misclassified to objects or
backgrounds, respectively.

4.4. Quantitative Results
We compared our Pyramid-Net with existing state-of-the-art
works on three vessel image segmentation datasets (DRIVE,
CHASE-DB1, and STARE). Tables 1–3 illustrate the comparison
results of Pyramid-Net and the current state-of-the-art methods.
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TABLE 2 | Performance comparison of Pyramid-Net and the state-of-the-art

methods on the CHASE-DB1 dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

(54) 76.15 95.75 94.67 96.23

(46) 75.07 97.93 95.81 97.16

(55) 81.94 97.39 96.30 -

(10) 76.33 98.09 96.10 97.81

(47) 77.56 98.20 96.34 98.15

FCN (31) 76.41 98.06 96.07 97.76

(56) 81.55 97.52 96.10 98.04

(48) 78.88 98.01 96.27 98.40

(50) 80.74 98.21 96.61 98.12

(51) 81.32 98.14 96.61 98.60

Three-stage (12) 76.41 98.06 96.07 97.76

CTF-Net (52) 79.48 98.42 96.48 98.47

Hybrid-Net (6) 81.76 97.76 96.32 -

HA-Net (33) 82.39 98.13 96.70 98.70

Pyramid-Net 81.17 98.26 96.89 98.92

Bold values mean the state-of-the-art performance.

TABLE 3 | Performance comparison of Pyramid-Net and the state-of-the-art

methods on the STARE dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

(54) 73.20 98.40 95.60 96.70

(57) 77.91 97.58 95.54 97.48

(58) 76.80 97.38 - -

(10) 75.81 98.46 96.12 98.01

(56) 75.95 98.78 96.41 98.32

Three-stage (12) 77.35 98.57 96.38 98.33

MResU-Net (52) 81.01 97.95 - 98.16

Hybrid-Net (6) 79.46 98.21 96.26 -

HA-Net (33) 81.86 98.44 96.73 98.32

Pyramid-Net 82.35 98.87 97.19 98.62

Bold values mean the state-of-the-art performance.

For the DRIVE dataset, Pyramid-Net achieves a high score of
82.38, 98.19, 96.26, and 98.32% on Sens, Spec, Acc, and AUC,
respectively, and outperforms state-of-the-art methods in three
metrics including Spec, Acc, and AUC. In terms of Sens, CE-
Net achieves the best performance of 83.09%, while our method
achieves a comparable result, which is 0.71% lower. Overall,
Pyramid-Net achieves higher overall performance than CE-Net.
For the CHASE-DB1 dataset, compared with the state-of-the-
art results, the proposed Pyramid-Net achieves high score of
81.17, 98.26, 96.89, and 98.92% for Sens, Spec, Acc, and AUC,
respectively, which consistently enjoys a better performance than
all the current state-of-the-art methods. For the STARE dataset,
Pyramid-Net achieves a promising score of 82.35, 98.87, 97.19,
and 98.62% for Sens, Spec, Acc, and AUC, respectively, which
is also consistently better than all the current state-of-the-art
methods. The consistent improvements in Tables 1–3 indicate
the effectiveness and robustness of our Pyramid-Net.

4.5. Qualitative Results
The visual comparisons between Pyramid-Net and the state-
of-the-art methods, including DeepVessel and CE-Net on
the DRIVE dataset and the CHASE-DB1 dataset are shown
in Figure 5. White (TP) and black (TN) pixels are correct
predictions of vessels and the background, respectively, while red
(FP) and green (FN) pixels are incorrect predictions. In Figure 5,
dark yellow rectangles contain the selected areas used for detail
comparison, and the bright yellow rectangles contain the zoomed
area in the dark yellow rectangle. We can notice that current
methods enjoy a good performance on the segmentation of main
retinal vessels, but the effect on some capillaries is poor. For
example, Row 1 of Figure 5 shows that the result of DeepVessel
misses a large number of thin vessels on the DRIVE dataset,
and that of CE-Net obtains a much better accuracy on thin
vessels. However, in Row 2, there is no significant difference
between the results of the two methods. In both Rows 1 and
2 of Figure 5, our method can achieve much higher accuracy,
but we can still notice that our method cannot segment them
correctly if the vessels are too thin. We can further observe
that our method has much fewer false-negative pixels (indicated
by green) than the other two. This may due to the fact that
our proposed IPABs can consider more scales thus improving
the segmentation accuracy. Overall, our proposed Pyramid-Net
evidently improves the segmentation performance, especially for
those narrow, low-contrast, and ambiguous retinal vessels.

4.6. Evaluation on Thin Vessels
In the previous subsection, the results in Figure 5 indicate
that though the main vessels enjoy a promising segmentation
performance, the segmentation of thin vessels always suffers a big
miss in the prediction. In practice, it is challenging to segment
the thin vessels from the complex retina background, which are
always low-contrast and extremely narrow (1–2 pixels). Thus,
in this subsection, to evaluate the effectiveness of Pyramid-Net
on thin vessels, we compared Pyramid-Net with the state-of-
the-art methods on an additional dataset only containing thin
vessel labels. Vessels with a width of 1 or 2 pixels are commonly
regarded as the thin vessels in the DRIVE dataset. To avoid
potential unfair in the evaluation on the manual addition label of
the thin vessel, we distinguish thick vessels from thin vessels by an
opening operation (10). The evaluation results are summarized
in Table 4. It can be noticed that Pyramid-Net achieves a high
ACC score of 96.26, 96.51, and 91.64% on all vessels, thick vessels,
and thin vessels, respectively. Overall, our method outperforms
the state-of-the-art methods on all metrics. As for the thin vessel
segmentation, our methods achieve an improvement of 4.73%
over backbone model CE-Net and outperforms the state-of-the-
art method by about 3.86%. The experiment results indicate that
our Pyramid-Net is particularly effective on thin vessels.

4.7. Ablation Analysis
To justify the effectiveness of IPABs, pyramid input
enhancement, deep pyramid supervision, and pyramid skip
connections in the proposed Pyramid-Net, we conduct ablation
analysis using the DRIVE dataset as a vehicle. The ablation
experimental results are summarized in Table 5. We use CE-Net
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FIGURE 5 | Visual comparison of Pyramid-Net and the state-of-the-art methods including DeepVessel (11) and CE-Net (32) on DRIVE (Row 1–2), CHASE-DB1 (Row

3–4), and STARE (Row 5) datasets. White (TP) and black (TN) pixels indicate correct predictions of object and background, respectively, while red (FP) and green (FN)

pixels indicate incorrect predictions. The dark yellow rectangle contains the area used to compare segmentation details, and the bright yellow rectangle contains the

zoomed area in the dark yellow rectangle. Best viewed in color.

(32) as our backbone, which achieves a good score of 95.45 and
97.79% on Acc and on AUC, respectively. Firstly, we evaluate
the effectiveness of IPABs on the backbone. Benefiting from
aggregating coarse-to-fine context information from pyramid
scale in each layer, the backbone model with IPABs achieves
improvements of 0.62% on Acc and 0.30% on AUC. Second,
we evaluate pyramid input enhancement and deep pyramid
supervision to feed the original image at multiple scales into the
network and supervise the immediate layers contains features
at various scales. In Table 5, we can notice that the above two
optimizations achieve improvements of more than 0.10 and
0.07% in AUC, respectively. Third, pyramid skip connections
connect the encoder and the decoder and make full use of the
features from multiple layers and scales in the encoder, which
achieves an improvement of about 0.15% on AUC. Overall,
integrating the pyramid-scale concept into the design of the
basic unit and skip connections can obviously improve the
network segmentation, and the other two optimizations also
bring some improvement.

TABLE 4 | Performance comparison on thick and thin vessels of Pyramid-Net on

the DRIVE dataset.

Method All vessel (%) Thick vessel (%) Thin vessel (%)

(10) 95.42 95.78 87.78

CE-Net (32) 95.45 95.96 86.91

Pyramid-Net 96.26 96.51 91.64

Bold values mean the state-of-the-art performance.

4.8. Cross-Training Evaluation
To evaluate the generalization of Pyramid-Net, we performed
a cross-training evaluation on the DRIVE dataset and the
STARE dataset. We directly implemented our models trained
on the source dataset and tested on the target dataset for
fair comparisons. The experimental results are summarized
in Table 6. Overall, our method achieves the state-of-the-art
transfer performance on both configurations. Particularly, for
the configuration that models are trained on the STARE dataset
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TABLE 5 | Ablation analysis of Pyramid-Net on the DRIVE dataset.

Method Acc (%) AUC (%)

Baseline 95.45 97.79

Baseline + IPABs 96.07 98.09

Baseline + IPABs + pyramid input 96.10 98.15

Baseline + IPABs + Pyramid supervision 96.15 98.12

Baseline + IPABs + pyramid skip connection 96.21 98.24

Pyramid-Net 96.26 98.32

Bold values mean the state-of-the-art performance.

TABLE 6 | Cross-training evaluation on the DRIVE dataset and the STARE

dataset.

Method Sens (%) Spec (%) Acc (%) AUC (%)

DRIVE (train) -> STARE (test)

(12) 70.14 98.02 94.44 95.68

(56) 65.05 99.14 94.81 97.18

HA-Net (33) 71.40 98.79 95.30 97.58

Pyramid-Net 75.71 98.86 95.57 97.78

STARE (train) -> DRIVE (test)

(12) 73.19 98.40 95.80 96.78

(56) 70.00 97.59 94.74 97.18

HA-Net (33) 81.87 98.79 95.30 97.58

Pyramid-Net 82.67 98.76 95.36 97.72

Bold values mean the state-of-the-art performance.

and tested on the DRIVE dataset, it can be noticed that the
transfer model can achieve competitive results on Spec and suffer
a big loss of accuracy on Sens. The potential reason is the
imbalance between thick vessels and thin vessels in the STARE
dataset. Manual annotations of the STARE dataset contain
more thick vessels than thin vessels, which led that the pre-
trained model on the STARE dataset obtains a bad segmentation
performance of thin vessels on the DRIVE dataset. When the
conditions are reversed, the above situation is alleviated, and
the corresponding scores on Sens, Spec, Acc, and AUC on the
STARE dataset are comparable with the model trained on the
STARE dataset.

4.9. Comparison With Multi-Scale
Aggregation Methods
To evaluate the effectiveness of the multi-scale information
aggregated in the proposed Pyramid-Net, we compare existing
multi-scale aggregation methods, including Dense Pooling
Connections (15), Complete Bipartite Network (CB-Net) (16),
Dense Decoder Short Connections (DDSC) (18), and U-Net++
(17) on the DRIVE dataset. For fair comparisons, we directly
implement those different connection styles and our Pyramid-
Net on U-Net (23). The comparison results and the p-values
for the paired t-test are summarized in Table 7. Compared
with existing methods, our method outperforms them by 0.65–
0.99% and 0.67–1.50% on Acc and AUC, respectively. On
the other hand, we also compare the computational cost of
the proposed Pyramid-Net with existing methods. Obviously,

TABLE 7 | Comparison with existing multi-scale aggregation methods on the

DRIVE Dataset.

Method Acc (%) AUC (%) FLOPs p-values

U-Net (23) 94.45 96.01 334.95G <0.01

DPC (15) 95.56 97.65 351.33G <0.01

CB-Net (16) 95.61 97.52 441.62G <0.01

DDSC (18) 95.42 97.48 381.07G <0.01

U-Net ++ (17) 95.27 96.82 828.69G <0.01

CE-Net (32) 95.45 97.79 - <0.05

Pyramid-Net 96.26 98.32 188.15G -

Bold values mean the state-of-the-art performance.

existing methods improve the network performance and increase
the computational cost by 16.38–493.74G (104.9–247.4%) on
FLOPs from the numerous feature reuse. Particularly, our
proposed Pyramid-Net achieves state-of-the-art performance
with a computational cost reduced by 216.8G (64.7%) on FLOPs.
The reason for the above phenomenon is the channel reduction
in each IPAB. The channels’ main branch is reduced to half, while
the number of channels at associated branches is half of that of
the main branch. Overall, our method achieves the state-of-the-
art performance of 96.26% on Acc and 98.32% on AUC with a
64.7% reduction on FLOPs.

5. CONCLUSION

In this paper, we introduced Pyramid-Net for accurate retinal
vessel segmentation. In Pyramid-Net, the proposed IPABs are
utilized to generalize two associated branches to aggregate
coarse-to-fine feature maps at pyramid scales to improve the
segmentation performance. Meanwhile, three optimizations
including pyramid inputs enhancement, deep pyramid
supervision, and pyramid skip connections are implemented
with IPABs in the encoder, the decoder, and the cross of the two
to further improve performance, respectively. Comprehensive
experiments have been conducted on three retinal vessel
segmentation datasets, including DRIVE (20), STARE (21), and
CHASE-DB1 (22). Experimental results demonstrate that our
IPABs can efficiently improve the segmentation performance,
especially for thin vessels. In addition, our method is also much
more efficient than existing methods with a large reduction in
computational cost.
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Clinically, red blood cell abnormalities are closely related to tumor diseases, red blood

cell diseases, internal medicine, and other diseases. Red blood cell classification is the

key to detecting red blood cell abnormalities. Traditional red blood cell classification is

done manually by doctors, which requires a lot of manpower produces subjective results.

This paper proposes an Attention-based Residual Feature Pyramid Network (ARFPN) to

classify 14 types of red blood cells to assist the diagnosis of related diseases. The model

performs classification directly on the entire red blood cell image. Meanwhile, a spatial

attention mechanism and channel attention mechanism are combined with residual units

to improve the expression of category-related features and achieve accurate extraction

of features. Besides, the RoI align method is used to reduce the loss of spatial symmetry

and improve classification accuracy. Five hundred and eighty eight red blood cell images

are used to train and verify the effectiveness of the proposed method. The Channel

Attention Residual Feature Pyramid Network (C-ARFPN) model achieves an mAP of

86%; the Channel and Spatial Attention Residual Feature Pyramid Network (CS-ARFPN)

model achieves an mAP of 86.9%. The experimental results indicate that our method

can classify more red blood cell types and better adapt to the needs of doctors, thus

reducing the doctor’s time and improving the diagnosis efficiency.

Keywords: attention mechanism, feature pyramid network, red blood cells, classification, microscopic image

INTRODUCTION

As a connective tissue, blood has the following four forms, namely white blood cells (WBCs), red
blood cells (RBCs), platelets, and plasma. Plasma can be regarded as an intercellular substance.
The other three types of cells can be distinguished according to their shape, size, presence or
absence of nucleus, color, and texture (1). RBCs are the majority component of blood cells, which
transport oxygen to various parts of the human body and discharge the carbon dioxide produced
by the human body (2, 3). The morphology of RBCs is non-nucleated, with biconvex and concave
round pie-shaped cells. Its average diameter and thickness of this type of cell are about 7 and
2.5µm, respectively. RBCs are produced in the bone marrow, and the development of primitive
RBCs into mature RBCs consists of four stages: basophilic normoblast, polychromatic normoblast,
orthochromatic normoblast, and reticulocytes. After mature, RBCs enter the peripheral blood, as
shown in Figure 1. The average life span of RBCs is about 120 days, and abnormal RBCs may live

42
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FIGURE 1 | Red blood cell maturation process.

longer or shorter. Common RBC abnormalities include
polycythemia, erythropenia, decreasing or increasing in size and
hemoglobin, and changes in RBC morphology.

Diseases associated with RBCs include anemia, malaria,
kidney tumors, malnutrition, and hemolytic disease, and anemia
is the most common disease (4). These diseases cause many
abnormal RBCs to appear in the peripheral blood. Mainly
manifested as a change in the shape, size, and hemoglobin
content of RBCs (5). Since abnormal RBCs may be a signal of
certain diseases (6, 7), the detection and classification of RBCs
are of great significance for the timely detection of diseases.

Clinically, doctors need to use a microscope to check whether
there are abnormal RBCs or immature cells in the peripheral
blood (8). In this case, there are usually hundreds of RBCs in
the field of view, and a large number of images are obtained
by microscopic image capturing equipment. This requires a lot
of manpower. Meanwhile, the operation relies on the subjective
judgment of the doctor, and different operators may produce
different results (9), which will affect the accuracy of the
test results.

In recent years, with the development of image processing
technology, medical image analysis has become an indispensable
tool in medical research, clinical disease diagnosis, and treatment
(8). This technique has been used to analyze various types of
medical images and extract more useful medical information
from images to help clinical diagnosis. An automatic and effective
cell classification method can be used to assist doctors in
improving treatment plans and predicting treatment results. At
present, the microscopic images generally have the following
shortcomings: (1) The image capture process is affected by
many factors such as light, color changes, blurring, etc.; (2)
There may be interferences such as noise. In recent years,
deep learning has developed into a research hotspot in medical
image analysis. It can extract the hidden diagnosis features
from medical images and solves the problems in medical image
processing, such as object tracking (10), multi-label classification
(11), pedestrian detection (12), andmulti-class classification (13).
Aiming at the challenges in RBC images, our study attempts to
use the deep learning method to greatly improve the efficiency

of doctors and ensure the accuracy and objectivity of the
detection results.

A lot of research works have been done on the detection
and classification of RBCs. Yi et al. (14) proposed a method
to analyze the equality of the covariance matrix in the Gabor
filtered holographic image to automatically select the linear or
non-linear classifier for RBC classification. This method used a
single RBC image to classify three types of RBCs. Maji et al.
(15) proposed to use mathematical morphology to automatically
characterize RBCs. Mahmood et al. (16) used geometric features
and Hough transform to detect the center of RBCs. Morphology
was used to identify and extract RBCs from the background or
other cells, Hough transform is used to identify the shape of
RBCs. Besides, K-means clustering (17), boundary descriptors
(18), and geometric features (19) were used to extract features.
Sen et al. (20) used machine learning to divide RBCs into three
categories. The method first divides RBCs into individual cells
and then extracts features and classifications, which achieves an
accuracy of 92%.

Lee et al. (21) proposed a hybrid neural network structure
that combines parallel and cascading topologies for RBC
classification. The authors used a single RBC image to extract
shape features and clustering features. Then, the extracted
features were input into a feedforward neural network with
a three-layer structure for classification. Jambhekar et al. (22)
studied the use of artificial neural networks to classify blood
cells. The three-layer network achieves an accuracy of 81% for
classifying sickle RBCs,WBCs, and overlapping cells. Elsalamony
et al. (23) proposed to use a three-layer neural network to classify
sickle cells and elliptical cells using the shape features of RBC.
Xu et al. (24) used deep convolutional neural networks to classify
eight types of RBCs, and the proposed method achieves an
accuracy of 87.5%. Alzubaidi et al. (25) proposed a convolutional
neural network using the ECOCmodel as a classifier. Themethod
divides RBCs into normal cells, sickle cells, and other three
categories, which achieves an accuracy of 88.11%. Kihm et al. (26)
used a regression-based convolutional neural network to classify
two types of RBCs (“slipper” and “croissant”) in a flowing state.
Parab et al. (27) used a convolutional neural network to extract
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FIGURE 2 | RBC classification based on the ARFPN classification network.

and classify individual RBCs after segmentation. They divided
RBCs into nine categories and achieved an accuracy of 98.5%. Lin
et al. (28) used FPN-ResNet-101 and Mask RCNN to classify two
types of RBCs (hRBCs and tRBCs) in quantitative phase images,
with an accuracy of 97%.

Most of the current works to segment red blood cell images
into individual RBCs and then perform feature extraction and
classification; very few works perform direct classification of the
entire red blood cell image, and the number of RBCs in each
image is small (about dozens). After fully understanding the
needs of doctors and summarizing the methods in the research
field, this paper proposed an Attention Residual Feature Pyramid
Network (ARFPN). In this method, dense red blood cell images
(each image contains about 230 red blood cells) are used for
direct classification. Meanwhile, the feature pyramid network
(29) is combined with spatial and channel attention mechanisms
to focus on the multi-scale features related to categories, thus
improving the expression of related features and suppressing
background features. Besides, an anchor intensive strategy is
adopted to better cover RBCs in the proposal stage. Moreover,
the RoI align method is used to improve the extraction accuracy
of RoI and locate the object more accurately. The contributions of
this paper are summarized as follows: (i) the method can detect
and classify 14 red blood cells; (ii) there is no single red blood
cell segmentation, which simplifies the implementation steps and
improves the efficiency; (iii) themethod provides convenience for
doctors, which can better adapt to the needs of doctors, and has
better clinical applicability.

The rest of this paper is organized as follows. Section
Materials and Methods introduces the used data set, data
preprocessing methods, and the feature extraction and
classification methods based on the channel and spatial
attention feature pyramid network; section Results analyzes and
introduced the experimental results; the results are discussed
in section Discussion. Finally, conclusions are put forward in
section Conclusions.

MATERIALS AND METHODS

As shown in Figure 2, the workflow of our proposed method for
RBC classification includes the image processing stage, feature
extraction stage, post-processing stage, and cell classification
stage. Each stage is described in detail in the following.

Data Acquisition
The dataset was collected from the Department of Clinical
Laboratory of Shandong Provincial Hospital, affiliated with
Shandong First Medical University. The RBC images in the

dataset were collected by CellaVision DM96 (CellaVision AB,
Lund, Sweden). The blood sample was put into a blood smear
and then detected by the device to capture the image. The finished
blood smear is shown in Figure 3.

The resolution of each collected images is about 1,418 ×

1,420. There are approximately 1,300 RBCs in each image (not
including edge cells). All collected microscope images are in
BMP format and contain RGB channels. Three types of cells
are included in the images, i.e., RBC, white blood cells (WBC),
and platelets. The obtained data set was verified by experienced
doctors to avoid the interference of external factors, such as light.

Pre-processing
The obtained images were preprocessed to make them more
suitable for our study. First, the image in BMP format was
converted to JPG format, and the noise was eliminated by a
Gaussian filter. Then, the image was cropped according to the
Pascal VOC dataset format. The size of the cropped image is
375 × 500, and the number of RBCs in the image is usually
more than 200. The repeat parameter was set to 30% during
cropping to expand the data. In the cropping process, the
image containing many rare RBCs was horizontally flipped to
expand the data and increase the sample size. Finally, LabelImg
was adapted to label the RBCs in the image. Labeling and
inspection were conducted by two experienced doctors. All the
RBCs were divided into 14 categories (schistocyte, spherocyte,
stomatocytes, target cells, hypochromic, elliptocytes, normal
RBCs, overlapping RBCs, hyperchromic, microcyte, macrocyte,
teardrop cells, basophilicstippling and the cells at the edge of the
image). In RBC image, the resolution size of normal RBCs is
21 × 21, those with a resolution >24 × 24 are macrocyte, and
those with a resolution <18× 18 are microcyte. The schistocytes
are broken red blood cells that resemble “fragments” in shape.
Hyperchromic and hypochromic are related to the content of
hemoglobin, and elliptocytes are shaped like ellipses. The target
cell is shaped like a “shooting target,” and stomatocytes is shaped
like a “mouth.” The corresponding quantity of each RBC category
is listed in Table 1. The obtained dataset was used to evaluate our
method and compare the results. After preprocessing, there are
588 images in total, each of which is a 350× 500× 3 RGB image.
Four hundred and seventy images were used as the training set,
and the remaining 118 images were used as the test set. As shown
in Table 2.

Feature Extraction of Shape, Size, and
Hemoglobin Content
The size of normal RBCs is about 7∼8µm, which is reflected in
the image with a resolution of 21 × 21. The size of abnormal
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FIGURE 3 | Schematic diagram of blood smear. A large number of red blood cells overlap in the green box area. The number of red blood cells in the yellow frame

area is small. The number of cells in the red frame area is appropriate and evenly distributed, which is suitable for observation.

TABLE 1 | Various types of RBCs.

Name Number Name Number

Schistocyte 772 Overlap 6,064

Spherocyte 4,021 Hyperchromic 17,693

Stomatocytes 615 Microcyte 17,060

Target cells 537 Macrocyte 9,084

Hypochromic 5,414 Teardrop cells 1,287

Elliptocytes 15,439 Basophilicstippling 451

Normal RBC 18,126 Edge cells 20,661

RBCs in the image varies widely, and each has its specific shape.
The characteristics of the RBC images can be summarized as: (a)
Large changes in cell size; (b) RBCs are small objects; (c) Cells
are densely distributed; (d) The contrast between the RBC and

TABLE 2 | Allocation of training set and test set (number of cells and number of

images).

Cell number Image number

Train 9,3885 470

Test 2,3366 118

the background is low. In deep learning object detection, the
detection of small objects has always been a difficult problem
due to low resolution, blurry pictures, less information, and weak
feature expression. This study used feature pyramid network
(FPN) to overcome the above problems because it can better deal
with the multi-scale changes in object detection. The FPN makes
reasonable use of the features of each layer in the convolutional
network and merges the features of different layers. Specifically,
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FIGURE 4 | Schematic diagram of the Channel Attention Residual Feature Pyramid Network (C-ARFPN) structure. Resnet-101 is used as the backbone. Channel

Attention Residual Units (CARU) are located at the front of each residual congestion unit and stacked in varying numbers to form residual blocks.

it constructs a top-down, horizontally connected hierarchical
structure that combines low-resolution and strong semantic
features with high-resolution and weak semantic features.

In recent years, attention network models have achieved good
performance in classification tasks. In this research, channel
attention mechanism (30) and spatial attention mechanism (31)
were integrated into the feature extraction network to achieve
accurate classification of RBCs. In the feature extraction stage,
the attention mechanism (32) can highlight the features related
to categories while focusing on the key features of red blood
cells and generating more discriminative feature representations.
The integration of these two mechanisms contributes to a
great performance improvement when the number of growth
parameters is small.

Channel Attention Residual Feature Pyramid Network
The structure of Channel Attention Residual Feature Pyramid
Network (C-ARFPN) is shown in Figure 4. ResNet-101 and
ResNet-50 are used as the backbone of our network. Each
bottleneck of the residual network is replaced with channel
attention residual units (CARUs) that are located behind the
residual unit. CARU first averages and pools the input features,
so that the features can respond to the global distribution, thus
expanding the global receptive field and reducing the calculation
amount. The following two full connection layers map the
channel feature representation to the sample label space, and the
output represents the weight of each feature channel. The feature
channel is weighted with the input feature to recalibration the
input feature on the channel dimension.

Channel and Spatial Attention Residual Feature

Pyramid Network
The structure of Channel and Spatial Attention Residuals Feature
Pyramid Net-work (CS-ARFPN) is shown in Figure 5. The upper
part of the figure illustrates the overall flow chart of feature
extraction. Similarly, ResNet-50 and ResNet-101 are used as the

backbone. The lower part of the figure shows the structure of the
Channel and Spatial Attention Residual Unit (CSARU), which is
nested in each residual unit of the residual network and located
behind the three convolution cores. The input feature is first
compressed in the spatial dimension, and average pooling and
maximum pooling are used to aggregate the spatial information
of the feature map. The obtained feature space information
is sent to the multi-layer perceptron for element-by-element
summation, and the compressed space information is multiplied
by the original feature points to obtain the channel attention
feature. Then, the channel attention feature is input to the spatial
attention unit, and average pooling and max pooling are used
to compress channels and extract the maximum value. After
dimensionality reduction through convolution operation, the
attention feature is obtained by dot product with the original
channel attention feature.

Both C-ARFPN and CS-ARFPN use ResNet-101 and ResNet-
50 as the backbone. Each attention module is distributed
in a residual unit according to its position. Since RBCs are
small objects, the feature pyramid network combined with the
attention mechanism can merge deep and shallow features and
focus on category-related features. This improvement makes the
characteristics of RBCs more accurate and richer, thus improving
the model’s detection and classification ability of small objects,
and improving the performance of the model.

Post-processing and Classification
After feature extraction, the features are input to the subsequent
network for post-processing and classification. First, the feature
map is input into the RPN to filter out the anchors containing
the foreground. Then, the high-quality object candidate box is
selected and input into the ROI pooling layer. In the pooling
operation, RoI align (33) instead of RoI pooling operation is used.
Compared with RoI pooling, RoI align removes the quantization
rounding operation, so it can overcome the bounding box offset
problem (34) and extract more accurate RoI. After the RoI
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FIGURE 5 | Schematic diagram of the Channel and Spatial Attention Residual Feature Pyramid Network (CS-ARFPN) structure. This structure still uses ResNet-101

as the backbone. Channel and Spatial Attention Residual Units (CSAU) are located behind each residual congestion unit. They focus on the key and detailed features

of the red blood cell image.

align operation is performed on the feature map, the candidate
recognition regions of different sizes are normalized into a fixed-
size object recognition region.

The features after RPN and RoI pooling are sent to the
subsequent network for classification and regression. In this
process, 14 types of RBCs are classified including schistocyte,
spherocyte, stomatocytes, target cells, hypochromic, elliptocytes,
normal RBCs, overlapping RBCs, hyperchromic, microcyte,
macrocyte, teardrop cells, basophilic stippling, and the cells at the
edge of the image. The schematic diagram is shown in Figure 6.
Normal RBCs and macrocytes are displayed in one image to
make their difference obvious. It can be seen from the figure that
each cell has its characteristics. During the training process, the
weight of the network is adjusted according to the input data to
minimize the error between the input and the target. Then Fast
RCNN (35) is used to perform cell classification, and the output
of the classification prediction is converted into a probability
distribution through softmax.

Ablation Study
Our proposed method uses the attention module to learn
the features related to categories. First, the effectiveness of
the attention module was verified, and the performance of
two different attention modules was compared. Meanwhile,
the performance of RoI align and RoI pooling methods was
compared. Besides, the impact of Adam optimizer, momentum
optimizer, and various training parameters on the model

performance was investigated. All comparisons and analyses
were performed under the same parameter settings. Moreover,
the effectiveness of the proposed model on different was verified
public datasets.

Training Implementation
Our proposed method was implemented on a computer
equipped with Intel R© CoreTM i7-8700k CPU@3.70GHz with
32GB memory, and the computationally intensive calculations
were offloaded to an Nvidia Tesla P100 GPU with 16 GB HBM2
memory and 3,584 computer unified device architecture (CUDA)
cores. To visually present the obtained model parameters,
all experiments were conducted using Python programming
language under the TensorFlow framework (36). In the training
process, momentum and Adam optimizer were used in the
parameter configuration to minimize the loss. The batch size
was set to 1, and the number of iterations was set to 110,000.
It takes 35 h to complete the optimization. In the early stage of
training, a large learning rate was used to make the model easy
to obtain the optimal solution; in the later stage of training, a
small learning rate was used to ensure that the model will not
fluctuate too much. The learning rate was divided by 10 after
60,000 and 80,000 iterations, and the minimum learning rate
was set to 10−6. Besides, the momentum of the model was set
to 0.9, and the weight decay was set to 10 −4. During training,
random initialization was used to initialize the weights, and used
the cross-entropy loss function was adopted to evaluate the error
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FIGURE 6 | Schematic diagram of normal and abnormal red blood cells. This picture illustrates the most obvious characteristics of each red blood cell, such as the

shape, size, and hemoglobin content.

between the predicted value and the true value of our model. The
calculation formula of the cross-entropy loss function is shown
in Equation (1).

C =

k
∑

i=1

yi log(pi) (1)

where k represents the number of classes; yi represents the label
of category i; pi represents the output probability of class i, and
this value was calculated by Softmax.

Evaluation Metrics
In our experiments, the metrics of precision, recall, and F1-score
were taken to evaluate the performance of our proposed method.
The calculation formulas of the evaluation metrics are expressed
in Equations (2–4).

Precsion =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score =
2 × Precision × Recall

Precision + Recall
(4)

Where, TF (True Positive) indicates the number of positive
samples that are also judged by the model as positive; TN (True
Negative) indicates the number of negative samples that are also
judged by the model as negative; FN (False Negative) indicates
number of positive samples that are judged by the model as
negative. FP (False Positive) indicates the number of negative
samples that are judged by the model as positive. Based on
this, precision is the ratio of the number of correctly predicted
positive examples to the number of samples predicted as positive;
recall is the ratio of correctly predicted positive examples to the
number of real positive samples. F1 score is the harmonic average
of precision and recall, so it can comprehensively reflect the
performance. In general, the higher the F1 score, the better the
performance of the model.

TABLE 3 | The evaluation metrics of the model with/without the attention module.

The best results are shown for each model.

Models Recall Precision F1 mAP

FPN 0.756 0.759 0.759 0.798

Our proposed (S-ARFPN) 0.8 0.838 0.816 0.86

Our proposed (CS-ARFPN) 0.811 0.831 0.819 0.869

RESULTS

Ablation Study: Comparison of FPN With or
Without Attention Module, ROI Pooling or
ROI Align, and Others
In the ablation study, ResNet-101 and ResNet-50 were used as
the backbone in the training, and different learning rates were
set. Since the RBC object is small and densely distributed, a small
anchor size was used.

In Table 3, FPN is the original model without attention
module; C-ARFPN is the feature pyramid network with channel
attention residual unit; CS-ARFPN is the feature pyramid
network with channel and spatial attention residual unit. It can
be seen that the CS-ARFPN model achieves better performance.
Compared with FPN, the accuracy, recall, F1 score, and mAP of
CS-ARFPN and S-ARFPN are improved by {4.4, 7.9, 5.7, 6.1%}
and {5.5, 7.4, 6.0, 7.2%}, respectively. Compared with the S-
ARFPN model, the accuracy, recall, F1 score, and mAP of the
CS-ARFPN model is improved by 1.1,−0.7, 0.3, and 0.9%.

Figure 7 presents the feature map of the two models with
different attention residual units and the original FPNmodel. The
leftmost column shows the input image, and the next six columns
show the feature maps of the three models including CS-ARFPN,
S-ARFPN, and FPN (eachmodel contains two columns of feature
maps). They are the feature maps extracted by the convolutional
layer {C2, C3, C4} and the pyramid layer {P2, P3, P4}. It can be
seen that the feature maps extracted by the CS-ARFPN model
pay more attention to the object to be recognized, so the model
achieves better performance.

Figure 8 shows the precision-recall curve (PR) of the three
models of FPN, C-ARFPN, and CS-ARFPN. The closer the curve
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FIGURE 7 | (A) The feature map of the Channel Spatial Attention Residual Feature Pyramid Network (CS-ARFPN) model; (B) The feature map of the Spatial Attention

Residual Feature Pyramid Network (S-ARFPN) model; (C) The feature map of the original FPN model. The feature maps extracted from each layer are presented,

where warmer colors, such as red and yellow, indicate higher attention weights. The figure, the model with an attention module has a stronger expression of target

characteristics and focuses more on the object.

FIGURE 8 | Precision-Recall (PR) curve of the cell classification results. Different colored PR curves represent different types of RBCs. The closer the curved surface is

to the upper right, the better the classification effect of the red blood cell.

to the upper right, the larger the area under the line and the better
the performance of the model. The PR area under the curve (PR-
AUC) of the three models is 0.798, 0.86, 0.869, respectively. Thus,
the CS-ARFPN model achieves the best performance, followed
by C-ARFPN.

Table 4 lists the recall, precision, F1-score, and AP of the
CS-ARFPN model for classifying the 14 types of cells.

Table 5 shows the AP of the three models with two
different optimization strategies. In the FPN, C-ARFPN,
and CS-ARFPN models, the Momentum optimizer leads to
1.9, 18.7, and 9.7% higher performance than the Adam
optimizer, respectively.

The performance of using two different RoI processing
methods, i.e., Roi pooling and RoI align is shown in Table 6. The
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TABLE 4 | Results of different red blood cells by the CS-ARFPN model.

Class Recall Precision F1 AP

Schistocytes 0.681 0.841 0.753 0.787

Spherocyte 0.822 0.782 0.801 0.879

Stomatocytes 0.697 0.853 0.768 0.840

Target cells 0.744 0.821 0.786 0.815

Hypochromic 0.772 0.855 0.811 0.890

Elliptocytes 0.890 0.859 0.874 0.946

Edge 0.987 0.987 0.987 0.997

Normal RBC 0.804 0.810 0.807 0.880

Overlap 0.966 0.964 0.965 0.973

Hyperchromic 0.838 0.791 0.814 0.883

Microcyte 0.876 0.842 0.859 0.913

Macrocyte 0.857 0.784 0.819 0.893

Teardrop cells 0.570 0.686 0.622 0.631

Basophilic 0.837 0.761 0.797 0.843

TABLE 5 | Performance comparison of models using Adam and Momentum.

FPN S-ARFPN CS-ARFPN

Adam 0.779 0.673 0.774

Momentum 0.798 0.860 0.869

TABLE 6 | Comparison of the precision of ROI pooling and ROI align methods.

FPN S-ARFPN CS-ARFPN

ROI Pooling 0.786 0.823 0.858

ROI Align 0.798 0.860 0.869

model using the RoI align method achieves better performance
than that using the RoI pooling method.

Comparison With the State-of-the-Art
Models and Comparison of Results
Obtained on Other Data Sets
Our proposed method was compared with five classification
methods based on deep learning, including Faster RCNN (32),
RetinaNet (37), Cascade RCNN (38), R-FCN (39), and Cascade-
FPN (40). All the models used were trained from scratch on the
RBC dataset.

ResNet-50 and ResNet-101 were used as the backbone for
model training; then, different parameters were set to finetune
the models; finally, showed the best results for each model
were obtained. Table 7 lists the classification performance of
different models. The highest performance values are bolded in
the table. The mAP of the two proposed models is 0.86 and 0.869,
respectively, and the two models achieve the best performance
among all the models.

Besides, to verify the effectiveness of the proposed model,
the performance of our proposed model on different datasets
was compared, and the comparison results are listed in Table 8.

Among them, in the IDB data set, the accuracy of circular and
elongated red blood cells are 99 and 94.4%, respectively. In the
BCCD data set, the accuracy of WBC and Platelets are 97.43
and 92.89%, respectively. The proposed model achieves an mAP
of 91% and 98.8% on the BCCD dataset and IDB dataset is
91.23%, respectively.

DISCUSSION

To better assist doctors in diagnosing the diseases related to
RBCs, this paper proposed an attention feature pyramid network
model that can directly classify dense red blood cell images.
Since RBCs are small objects, this paper combined the attention
mechanism with the feature pyramid network to improve the
detection of small objects. The experimental results show that
the two proposed attention residual units can capture more
key feature information of RBCs, which helps to classify RBCs
more accurately.

In the training process, different backbones, learning
strategies, and anchor settings were used, and the optimal
parameter setting of the two models was obtained after a lot of
training. The results show that different learning rates, anchor
sizes, backbones, and attention modules led to performance
differences. When ResNet-50 was used as the backbone, the
CS-ARFPN model achieved the best performance under the
learning rate of 0.001 and the anchor size of 32. When ResNet-50
was used as the backbone, the S-ARFPN model achieved the
best performance under the learning rate of 0.002 and the
anchor size of 4. The subsequent experiment and analysis
were conducted based on the model and the above-mentioned
optimal parameters.

In the experiment, the performance of FPN, C-ARFPN and
CS-ARFPN with two different attention residual unit models was
compared to verify the effectiveness of the attention mechanism.
The effectiveness of our method was proved through evaluation
metrics, feature maps, and PR curves.

It can be seen fromTable 3 that, comparedwith FPN, both CS-
ARFPN and C-ARFPN achieved improved performance, which
shows the effectiveness of the attention mechanism. Meanwhile,
the CS-ARFPN model performed better than the C-ARFPN
model, indicating that the CS-ARFPNmodel pays more attention
to features, channel feature information and spatial feature
information. To make the function of the attention module more
intuitive, the feature maps of FPN, C-ARFPN, and CS-ARFPN
are shown Figure 7. It can be seen that as the number of layers
increases, the extracted features become more and more abstract
and more difficult to understand. Compared with FPN, C-
ARFPN and CS-ARFPN weaken the background characteristics
and highlight the relevant components of the category, so the two
models can more accurately capture the shape and size of RBCs.
Besides, CS-ARFPN can better focus on the detailed features
than C-ARFPN.

Figure 8 shows the PR curves of the three models. The curves
in the figure show that for each type of RBC, different attention
modules led to different classification performances. In general,
the PR curve obtained by the CS-ARFPN model is located on the
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TABLE 7 | Comparison of our proposed method with other advanced methods.

Backbone Models Recall Precision F1 mAP Param (MB)

ResNet-50 Cascade RCNN (33) 0.361 0.687 0.463 0.385 254.47

Faster RCNN (32) 0.398 0.652 0.481 0.394 54.07

R-FCN (34) 0.530 0.757 0.638 0.551 95

RetinaNet (31) 0.695 0.751 0.736 0.684 61.92

Cascade-FPN (35) 0.759 0.757 0.736 0.736 98.14

FPN 0.753 0.758 0.759 0.796 79.05

ResNet-101 Cascade RCNN (33) 0.429 0.699 0.525 0.416 290.69

Faster RCNN (28) 0.447 0.687 0.526 0.434 63.70

R-FCN (34) 0.528 0.880 0.620 0.548 95.66

RetinaNet (31) 0.686 0.738 0.709 0.683 133.58

FPN 0.756 0.759 0.759 0.798 115.27

ResNet-50 Our proposed (S-ARFPN) 0.754 0.758 0.753 0.792 88.67

Our proposed (CS-ARFPN) 0.811 0.831 0.819 0.869 88.68

ResNet-101 Our proposed (S-ARFPN) 0.800 0.838 0.816 0.860 133.44

Our proposed (CS-ARFPN) 0.791 0.789 0.788 0.833 133.43

Each model was trained under different parameter settings, and the best results of each model are shown. The classification effect of Cascade-FPN is not ideal when the backbone is

Resnet101, so it is not displayed in the table. The best results are highlighted in bold.

TABLE 8 | Comparison of the accuracy of the proposed method on different

datasets.

Dataset Images Class AP (%)

BCCD (41) 364 WBC 97.43

RBC 83.05

Platelets 92.89

IDB (42) 626 circular 99

elongated 94.4

other 80.3

upper right, which indicates that the area under the line is the
largest, and the performance is the best.

The performance of the Adam optimizer and momentum
optimizer was compared and analyzed. The results in Table 5

show that the Momentum optimizer performs better for RBCs
classification. During the training process, the Momentum
optimizer had a slower convergence speed than the Adam
optimizer, but it obtained better results and the generalization
performance in our work.

As shown in Table 6, the RoI align method achieved higher
AP than the RoI pooling method. The rounding operation in the
RoI pooling method has little impact on the classification of large
objects, but it will have a huge impact on the classification of
small objects such as RBCs. The RoI align method removes the
rounding operation, so it can accurately extract RoI and achieve
better performance.

Table 4 shows the performance metrics of classifying the
14 types of RBCs obtained by the CS-ARFPN model. Among
them, the classification results of teardrop cells and schistocytes
are not as accurate as other types. Although the attention
mechanism focuses on the features related to categories,

inaccurate classifications are caused by certain features. This
is because different types of feature extraction have different
difficulties, and certain red blood cell types have a specific
definition standard. In this case, the model fails to learn the
abnormal RBC, thus resulting in misclassifications. Secondly,
some types of red blood cell samples are small. Although the
RBCs were expanded during the cutting process, the sample
imbalance problem still existed in the study, which makes the
model fail to learn the characteristics of red blood cells with
few samples.

The comparison between our method and other advanced
methods is shown in Table 7. Our method achieves better
performance than other models. Meanwhile, our method was
compared with other red blood cell classification methods,
including Kihm et al. (26), Parab et al. (27), Lin et al. (28),
and others. These methods all use a single red blood cell
image for feature extraction and achieve good accuracy. The
classification of the entire red blood cell image can be regarded
as the classification of dense small objects with weak feature
expression and diverse target changes, so feature extraction is
more difficult. Due to this, our method obtains a slightly lower
accuracy than the comparison methods. To better compare with
other methods and verify the effectiveness and generalization
of the proposed method, our method was evaluated on two
public data sets, i.e., namely the BCCD dataset and the
IDB dataset. As shown in Table 8, the classification results

of WBCs and Platelets in the BCCD dataset in Table 8 are

better. The reason for the low accuracy of RBC classification

is that the dataset is mainly provided for WBC classification,

and most of the RBCs in the image are overlapping cells.

In the IDB dataset, the classification results of circular and

elongated are good. The reason for the low accuracy of the

RBCs of the other category is that the category contains many
small and medium categories, which poses a challenge to the
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classification. The results indicate that our method is effective
and generalizable, and the classification of the entire image can
be further improved.

At present, due to the limited dataset and the imbalance
of different types of RBC samples, it is difficult to improve
the classification performance. After communicating with the
doctor, we will collect RBC images under a microscope so
that clear images with obvious RBC characteristics can be
obtained. In future work, we will collect more data, especially
the rare type of RBC. Meanwhile, we will investigate the use
of a fully connected layer and loss function of the model to
reduce the impact of sample imbalance to further improve the
classification performance.

CONCLUSIONS

Abnormal red blood cells can cause changes in shape, size, and
amount of hemoglobin, which are closely related to the diagnosis
of many diseases. This paper proposed a classification method
that can directly classify 14 types of red blood cells on the entire
red blood cell image. The feature pyramid network extracts the
multi-scale features of RBCs, and the attention mechanism is
used to improve the learning and representation of RBC features.
Besides, the ROI alignment layer with good performance is used
to unify the size of the candidate area. This method proposed in
this study can achieve accurate red blood cell classification, which
provides a clinically feasible, universal and convenient method
for the diagnosis of red blood cell diseases.
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Computer-aided diagnosis of pathological images usually requires detecting and

examining all positive cells for accurate diagnosis. However, cellular datasets tend to

be sparsely annotated due to the challenge of annotating all the cells. However, training

detectors on sparse annotations may be misled by miscalculated losses, limiting the

detection performance. Thus, efficient and reliable methods for training cellular detectors

on sparse annotations are in higher demand than ever. In this study, we propose a training

method that utilizes regression boxes’ spatial information to conduct loss calibration to

reduce the miscalculated loss. Extensive experimental results show that our method can

significantly boost detectors’ performance trained on datasets with varying degrees of

sparse annotations. Even if 90% of the annotations are missing, the performance of our

method is barely affected. Furthermore, we find that the middle layers of the detector

are closely related to the generalization performance. More generally, this study could

elucidate the link between layers and generalization performance, provide enlightenment

for future research, such as designing and applying constraint rules to specific layers

according to gradient analysis to achieve “scalpel-level" model training.

Keywords: cellular detection, spatial loss calibration, sparsely annotated pathological datasets, convolutional

neural network, object detection network

1. INTRODUCTION

Locating and counting cells in the pathological whole slide images (WSIs) is a direct way to find
effective and important biomarkers, which is an essential and fundamental task of pathological
image analysis (1–3). For instance, the spatial arrangement of tumor cells has been proved to be
related to cancer grades (4, 5). Therefore, the qualitative and quantitative analysis of different types
of tumors at cellular-level detection can help us better understand tumors and also explore various
options for cancer treatment (6, 7).

Recently, object detection frameworks of Convolutional Neural Networks (obj-CNNs) have
been proved powerful for locating instances in medical images [e.g., in CT images (8) and
colonoscopy images (9)]. The big empirical success of obj-CNNs depends on the availability of
a large corpus of fully annotated instances in training images (10). However, different from images
of other modalities, we find two kinds of distributions of cells in pathological images, namely
embedded and dense distribution, making full annotations of cellular-level instances difficult to
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FIGURE 1 | The examples of annotations in the two kinds of datasets. (A) Cells of embedded distribution, which are sampled from the MITOS-ATYPIA-14 dataset.

Obviously, mitoses that need to be annotated are often hidden among hundreds of other cells, tough to categorize and locate. (B) Cells of dense distribution in our

Ki-67 dataset, usually more than hundreds of cells are required to be annotated in a small patch sampled from the whole slide image (WSI), which is an expensive and

laborious task.

be guaranteed (refer to Figure 1). Specifically, the embedded
distributionmeans that positive cells are hidden among hundreds
of other cells, which are challenging for pathologists to categorize,
locate, and then annotate. As for the dense distribution, a small
patch sampled from the WSIs may contain hundreds of positive
cells, making the annotation task expensive and laborious.
Therefore, sparsely annotated datasets (SADs) are common in the
field of the detection of cells.

In fact, when the training dataset contains a certain amount
of sparse cellular annotations, the overfitting issue tends
to easily occur, naturally leading to poor performance in
generalization (11). In this study, we show the fundamental
problems that decrease the generalization performance of the
detector trained on SADs. First, deviation-loss, that is, numerous
unannotated positive cells are mistaken for negative ones in the
SADs, resulting in a serious miscalculated loss during training.
Second, the deviation-loss dominates the early training process,
and then drives the detector to learn only the features of the
annotated cells, which yields the overfitting issue (Experimental
testify can be seen in Appendix A1).

In this study, we point out that alleviating the deviation-
loss during the training process can guide the detector to
continuously learn the features of positive cells rather than
only the annotated ones, and the SADs overfitting problem
can be solved. In order to achieve that goal, the first
cornerstone is how to identify those positive cells from
negative ones when annotations are missing. We observe the
more and more significant difference in densities between
the predictions of the positive and negative cells during
training (refer to Figure 2). Based on this observation, we
propose a SADs training method named Boxes Density
Energy (BDE), which utilizes densities’ information to reduce
the deviation-loss. Specifically, the more predictions for a
cell, the more likely the cell is to be positive, and these
predictions deserve smaller losses. In this way, deviation-
loss disappears, and meanwhile, the overfitting problem is
solved naturally.

We have conducted experiments on two datasets, namely
the MITOS-ATYPIA-14 dataset (embedded distribution)1 and
the Ki-67 dataset (dense distribution), which can be seen in
Figure 1. Sufficient experimental results prove that our training
method can significantly boost the performance of SADs. More
importantly, we explore the gradient in the network and find that
BDE brings a significant improvement on the middle layers (20–
60 layers, 80 layers in total) of the network, indicating that the
network’s generalization performance seems to be closely related
to the middle layers of the network. This may change the current
training paradigm, such as applying constraint rules to specific
layers according to gradient analysis to achieve the “scalpel-level"
model training.

The organization of the study is as follows. The review of obj-
CNNs and recent literature on SADs training methods is given
in Section 2. Section 3 describes the proposed method in detail,
and experimental results are presented in Section 4. Finally, we
analyze the gradient of the trained network and conclude in
Sections 5, 6, respectively.

A preliminary version of this study has been published in a
conference study (12), which is only evaluated on the MITOS-
ATYPIA-14 dataset. In this study, we have made significant
extensions to generalize our methods on the Ki-67 dataset,
aiming to provide a strong and comprehensive theory for relevant
research. To be specific,

• We explore that some specific layers of CNN are strongly
related to generalization performance, may provide theoretical
guidance for future related research, e.g., one can improve the
generalization of the network through more constraints on
middle layers when training the network.

• In this study, we define the networks’ training problems on
SADs, from deviation-loss to the overfitting issue.

1MITOS-ATYPIA-14 dataset: https://mitos-atypia-14.grand-challenge.org/

dataset/.
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FIGURE 2 | The change of regression boxes’ density during training on the MITOS-ATYPIA-14 dataset. Among them, the regression box is in green and manually

annotated as red. This typical example shows that as the training process progresses, regression boxes increasingly surround the positive cells. (A) Regression boxes

in 1 k training steps. (B) Regression boxes in 4 k training steps. (C) Regression boxes in 7 k training steps. (D) Regression boxes in 10 k training steps.

• This study formulated two cells’ distribution in pathological
images, namely embedded and dense distribution which may
easily lead to SADs, and BDE can solve the SADs training
problem on both embedded and dense distributions.

2. RELATED STUDY

2.1. Object Detection Networks
2.1.1. The Framework

Object detection networks can be divided into two major
categories, anchor-free and anchor-based frameworks. Among
them, anchor-free frameworks (13, 14) are essentially making
dense predictions, receiving higher recall rates but lower accuracy
results (15), which do not meet the requirement of precisely
pathological image analysis. On the other hand, anchor-based
frameworks are more suitable for our tasks, and can be
generally divided into one-stage methods (16, 17) and two-stage
methods (18, 19). Both of them first tile a large number of preset
anchors on the image, then predict the category and refine the
coordinates of these anchors by one or several times, finally
output these refined anchors as detection results. Because two-
stage frameworks refine anchors several times more than one-
stage frameworks (as shown in Figure 3), the former has greater
accuracy. Hence, we choose the two-stage Feature Pyramid
Network (FPN) (19) as the baseline in this paper.

2.1.2. The Loss Function and Deviation Loss

In order to locate and recognize positive cells in the image,
the object detection network has two parallel output layers to
generate regression boxes (b) with probability distribution (p).
The original loss (L) consists of the classification loss Lcls and
bounding-box regression loss Lloc:

L
(

p, u, b, v
)

= Lcls(p, u)+ Lloc
(

b, v
)

, , (1)

Lcls(p, u) =
∑

k

−
[

uk · log
(

pk
)]

, (2)

Lloc
(

b, v
)

=

∑

k

smoothL1
(

bk − vk
)

, (3)

smoothL1 (x) =

{

0.5x2 if |x| < 1
|x| − 0.5 otherwise.

(4)

In Equation (2), uk represents a one-hot label for a regression box
indexed by k. When k-box’s Intersection Over Union (IoU) with
any instance annotation higher than a threshold, is assigned with
a positive one-hot label (uk 6= 0), otherwise a negative (uk = 0).
In Equation 3, v indicates the annotated bounding-boxes.

The loss function can accurately measure themargins between
p and u, b, and v on the fully annotated dataset. However, on
the sparsely annotated cellular dataset, all unannotated positive
cells are mistaken for negative, and u and v are translated into
“untrustworthy” ground-truths. Thus, Lcls and Lloc may deviate
seriously from the correct value, which we name deviation-loss.
As a result, the deviation-loss confuses the training of networks,
leading to limited performance.

2.2. Sparsely Annotated Datasets Training
Methods
2.2.1. Pseudo-Annotation Based Methods

In order to solve the SADs training problem, pseudo-annotation
based methods have been proposed and achieved success on
natural images (20, 21). They first train the detector using
available instance-level annotations, then generate pseudo-
annotations, and merge them with the original annotations to
iteratively update the detector. For example, Niitani et al. (22)
trained the detector to generate annotations using the Open
Images Dataset V4 (OID). They then sampled the pseudo-
annotations using assumptions such as “cars should contain
tires.” However, such a priori assumption in the field of
cell detection is unknown. Other methods based on pseudo-
annotations still need a certain number of fully annotated
datasets, like Yan et al. (23) and Inoue et. al. (24) employ a
subset of fully annotated datasets to obtain a pre-trained detector,
generating pseudo-annotations for the next training.
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FIGURE 3 | Illustration of the anchor based two-stage framework. (A) The input image with manual annotations. (B) The first stage refines the initial thousands of

anchors. (C) The second stage refines previous results and obtains hundreds of regression boxes.

Obviously, such an iterative process brings uncontrollability
into the training process, e.g., a bad pseudo-annotation generator
may significantly influence the final results. In addition, there is
not much consensus on how to utilize the pseudo-annotations
until now, especially for object detection (22), e.g., determining
the optimal number of iterations is tricky, therefore, it is urgent to
solve the SADs training problem in a non-iterative way. Besides,
considering that such methods are relatively difficult to replicate,
with respect to, empirical and tricky parameter selection or
special requirements of the forms of datasets, this study does not
include such methods in the comparative experiment.

2.3. Loss-Calibration Based Methods
Compared with pseudo-annotation based methods, the loss-
calibration methods for solving noise labels are more relevant
to our study. The meaning of noise labels is wrong labels or
missing labels (25, 26). These methods aim to reduce noise labels
by establishing loss functions that are more noise-tolerant. For
example, Müller et al. (27) softens the labels by adding a uniform
distribution. Wang et al. (28) assumes that the network will
become more and more reliable as the training continues and
proposes reducing the loss gradually to reduce the influence
of noise labels. However, these loss calibration methods also
inevitably reduce the core contributions of correct labels for
the training of the network. On the contrary, our BDE utilizes
the regression boxes’ density to encourage correct predictions
and give relatively more significant losses to wrong predictions,
whether the label is missing or not.

It is worth noting that in view of the class imbalance problem
they, the have put forward many loss weighting schemes (17, 29).
However, these methods may cause relatively large losses to
correct predictions lacking corresponding annotations, which
makes them ineffective on SADs.

3. BOXES DENSITY ENERGY

The overall process of our proposed BDE is shown in Figure 4.
BDE is proposed to encourage the correct predictions of
unannotated positive cells to ignore the adverse effect of the
deviation-loss, which can be summarized into five core steps.

Figure 4A A sparsely annotated image is inputted for the
training. At the second stage of the detector, each cell is
surrounded by some regression boxes automatically that we
regard as a group. Figure 4B Boxes Density: Calculate the average
distance between each box and the others. Figure 4C Boxes
Energy: Normalized operation by dividing the Box Density by
the maximum distance between all boxes. Figure 4D Calculate
the original total loss. Figure 4E BDE loss: Calibrate the original
loss with Boxes Energy to guide the detector training in the
right direction.

3.1. Boxes Density
The boxes density can be measured by the average distance
between each box, so that denser boxes have smaller average
distances than isolating ones. The density of a box indexed by i
can be represented as:

Density(bi) =
1

N

N
∑

j

D
(

bi, bj
)

, (5)

where N is the number of boxes per image, D is the distance
function, we choose Manhattan distance (Equation 6) in this
study considering the less computational cost.

D
(

bi, bj
)

=
∣

∣xi − xj
∣

∣ +
∣

∣yi − yj
∣

∣ , (6)

In which, the xi and yi represent the x-coordinate and y-
coordinate of the center point of the box indexed by i.

We can prove that the average distance can measure
the density effectively; if we treat regression boxes around
a cell as a group, and assume that we have k groups
{

G1, . . . ,Gj, . . .Gk

}

. Meanwhile, there are
{

m1, . . . ,mj, . . . ,mk

}

boxes in the corresponding group.
For simplicity, we assume that the distances within a group

are all close to 0, the distances between the groups are all d,
and the total number of boxes is N, which means that N =
∑k

l=1mL. Thus, the average distance of each box in the j-group is
Equation (7). This indicates that the box in a denser group (larger
mj)of the j-group has a smaller density value.

Density(bi) =
0×mj+(N−mj)×d

N = d × (1−
mj

N ). (7)
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FIGURE 4 | The process of Boxes Density Energy (BDE). The core idea of BDE is to use the distribution of regression boxes in (A), to obtain the Boxes Energy of (C),

and to correct the deviation loss in (D).

3.2. Boxes Energy and Loss Calibration
The main idea of our proposed method is that the more
prediction boxes around a cell, the cell is more likely to be
positive, and therefore, the predictions should have a smaller loss.
The density of each box has been modeled, however, the range
of density is not normalized. Therefore, we use Equation (8) to
convert the Boxes Density to Boxes Energy which is normalized
from 0 to 1. Afterward, Boxes Energy can be utilized as a weight
of Lcls and Lloc (refer to Equations 9, 10). By that, the deviation
loss is alleviated by calibrating the original loss.

Energy(bi) =
Density(bi)

max(D(b))
. (8)

LBDEcls (p, u) =
∑

k

[

1uk=0

(

Energy
(

bk
))

+ 1uk 6=0

]

·
[

−uk · log
(

pk
)]

,

(9)

LBDEloc (b, v, u) =
∑

k

[

1uk=0

(

Energy
(

bk
))

+ 1uk 6=0

]

·
[

smoothL1
(

bk − vk
)]

.

(10)

In Equations 9, 10, uk equals zero indicates the one-hot label of
the box indexed by k is negative.With the loss-calibration of BDE,
the detector can be trained along the right direction on the SADs.
For example, if the box indexed by k is mistaken for negative (uk
is zero) due to SADs, but has a small Energy(bk), then, the original
deviation-loss is calibrated by the term of Energy(bk). Finally, the
total loss is improved from Equation (1) to:

LBDE
(

p, u, b, v
)

= LBDEcls (p, u)+ LBDEloc

(

b, v
)

. (11)

4. EXPERIMENTS

We utilize the FPN (19) with the backbone resnet50 (30) as the
baseline. Our method is also compared with the representative
loss-calibration methods, namely Label Smooth (LS) (27) and
ProSelfLC (28). In Section 4.3, we conduct experiments to
detect mitosis on the 2014 MITOS-ATYPIA Grand Challenge
dataset and to detect tumor-cells on the Ki-67 dataset in
Section 4.4. These two datasets can represent embedded and
dense annotations. Experimental results demonstrate that BDE
outperforms other methods on the SADs significantly, and BDE
can address the training problem of SADs of both embedded and
dense annotations.
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4.1. Description and Implementation
Details
The experiments for KI-67 and 2014 MITOS-ATYPIA datasets
set the same hyperparameters. The inputted image is resized to
the resolution of 800×800 pixels. The number of training steps is
10 k. The learning rate is initially set to 0.001 and is divided by 10
at 5 k and 7.5 k steps. In order to objectively evaluate our method,
we perform 4-fold cross-validation on the MITOS-ATYPIA-14
dataset and 3-fold cross-validation on the Ki-67 dataset. We
implement our framework with the open source software library
TensorFlow version 1.12.0 on a workstation equipped with two
NVIDIA GeForce 2080 Ti GPUs.

4.2. Evaluation Metrics
The average precision (AP) and recall are used for performance
evaluation. The recall is defined as the proportion of all positive
examples ranked above a given rank. Precision is the proportion
of all examples above that rank that are from the positive class.
The AP summarizes the shape of the precision/recall curve and
is defined as the mean precision at a set of eleven equally spaced
recall levels [0, 0.1,..., 1]:

AP =
1

11

∑

r∈{0,0.1,...,1}

pinterp(r). (12)

The precision at each recall level r is interpolated by taking
the maximum precision measured for a method for which the
corresponding recall exceeds r:

pinterp (r) = max
r̃ : r̃≥r

p(r̃), (13)

where p(r̃) is the measured precision at recall r̃ (31).

4.3. Experiments on the 2014
MITOS-ATYPIA Grand Challenge Dataset
(embedded annotations)
4.3.1. Data Description

We have conducted experiments on the 2014 MITOS-ATYPIA
Grand Challenge Dataset (MITOS-ATYPIA-14 dataset). The
data samples were scanned by two slide scanners Aperio
Scanscope XT andHamamatsu Nanozoomer 2.0-HT, whole-slide
histological images (WSIs) stained with standard hematoxylin
and eosin (H&E) dyes. The centroids pixels of mitoses were
manually annotated via two senior pathologists. In a situation of
contradiction between the pathologists, the third one will provide
the final say.

We choose the train-set of WSIs scanned from Hamamatsu
Nanozoomer 2.0-HT, and we sample 393 patches that contain
743 mitoses with a sliding window of resolution of 1,663 ×

1,485 pixels. Annotations for training the FPN are generated
by 32×32 bounding boxes centered on all centroids pixels. For
the MITOS-ATYPIA-14 dataset, we refer to the original data
as a fully annotated dataset. Meanwhile, we randomly delete
annotations until there is only one per training image and name
it as an extremely sparse dataset. It is worth noting, we only
conduct the sparse operations on the training dataset, and the
testing dataset is intact.

4.3.2. Results of MITOS-ATYPIA-14 dataset

Boxes Density Energy can improve recall results on the fully
annotated dataset. Table 1 lists the recall and AP results on the
fully annotated dataset. For the AP results, all methods have
lower AP results than the baseline (FPN), which demonstrates
that when loss-calibrationmethods are introduced to the training
on fully annotated embedded annotations, interfering with the
network’s accuracy. On the other hand, for the recall results,
BDE can improve the recall results significantly. FPN, LS,
and ProSelfLC achieve 89.8, 85.5, and 88.7% average recall,
respectively. While BDE achieves 94.6%, exceeding that of FPN
by 4.8%.

Boxes Density Energy improves the network’s performance
in all aspects on the sparsely annotated dataset. As shown in
Table 2, BDE outperforms other methods significantly on both
AP and recall results. However, LS’s overall performance is
reduced compared with the baseline, which indicates that the
assumption of annotation-distribution of LS is incompatible in
the embedded annotations, whose positive and negative samples
are extremely unbalanced.

4.4. Experiments on the Ki-67 Dataset
(Dense Annotations)
4.4.1. Data Description

The Ki-67 dataset is used for training FPN to detect tumor-cells
and count their number. We have 206 patches with a resolution
of 1,080× 1,920 pixels sampled fromWSIs, and the pathologists
try their best to annotate all the tumor cells with key points in all
patches. Finally, 21,025 tumor cells have been annotated. Then,
we generate 32×32 bounding boxes centered on all key points.

4.4.1.1. The SAD of the Ki-67 Dataset
For the Ki-67 dataset, considering that there is an average of 102
annotated tumor cells in each patch, so we can retain different
annotation rates to train the network to fully validate BDE, e.g.,
the retentive rate is 0.1 if 10% of annotations are retained. We
have carried out experiments starting from the retentive rate of
0.1 and increasing it to 1 by 0.1. We believe that if the retentive
rate is below 0.5, then the dataset we can define as a SADs
because the number of unannotated instances is greater than the
number of annotated instances in such a dataset. Experimental
results have demonstrated the BDE can significantly boost the
performance of networks trained on that SADs.

4.4.2. The Quantization Results

We evaluate the performance of our BDE which is trained
on datasets with different retentive-rates, and observe that
BDE is a robust training method, which is hardly affected
by the quality of data annotations. For example, in Table 3,
when the retentive-rate is dropped from 1.0 (original) to
0.1, BDE’s AP result dropped from 49.02 to 46.45%, only
reducing by 2.57%. On the other hand, FPN decreased by
23.88%, and LS decreased by 27.17%, and ProSelfLC decreased
by 21.05%.

Similarly, Table 4 lists the recall results of different methods
trained on different retentive-rates. When the retentive-rate
decreases from 1.0 to 0.1, BDE only reduces recall results by
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TABLE 1 | The recall and average precision (AP) results on the fully annotated MITOS dataset (original dataset).

Method
Fold1 Fold2 Fold3 Fold4 Avg. Recall Avg. AP

Recall AP Recall AP Recall AP Recall AP

FPN (Baseline) 80.2 41.8 89.4 46.9 95.8 44.6 93.6 60.7 89.8 48.5

LS (27) 75.6 36.7 84.6 47.7 91.6 41.7 90.4 64.2 85.5 47.6

ProSelfLC (28) 80.2 32.7 86.5 40.6 95.2 40.3 93.1 62.7 88.7 44.1

BDE (ours) 90.6 40.7 93.3 42.3 99.4 43.2 95.0 59.1 94.6 46.3

TABLE 2 | The recall and AP results on the sparsely annotated MITOS dataset (retain one annotation in each image).

Method
Fold1 Fold2 Fold3 Fold4 Avg. Recall Avg. AP

Recall AP Recall AP Recall AP Recall AP

FPN (Baseline) 69.8 34.5 81.7 32.9 94.6 37.4 88.1 55.9 83.6 40.2

LS (27) 65.8 24.6 71.1 30.4 86.8 33.9 83.4 54.6 76.7 35.8

ProSelfLC (28) 80.2 28.8 84.6 28.4 95.8 30.1 85.7 50.1 86.5 34.3

BDE (ours) 88.5 41.8 89.4 37.1 95.8 40.2 91.3 60.1 91.3 44.8

TABLE 3 | The AP results on different annotations-retentive rates on the Ki-67 dataset.

Retentive rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPN (Baseline) 26.22 33.57 39.92 41.94 43.88 45.15 46.17 47.28 48.22 50.1

LS (27) 24.30, 37.39 41.01 44.16 45.48 46.47 47.69 48.96 50.01 51.47

ProSelfLC (28) 30.67 38.85 43.07 45.37 46.57 47.72 48.79 49.91 50.87 51.72

BDE (ours) 46.45 46.36 46.24 46.71 46.94 47.52 47.24 48.05 48.60 49.02

TABLE 4 | The recall results on different annotations-retentive rates on the Ki-67 dataset.

Retentive rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPN (Baseline) 38.84 44.81 48.34 49.84 51.01 51.73 52.39 53.14 53.64 54.22

LS (27) 31.45 45.23 48.01 50.82 51.93 52.84 53.46 54.00 54.43 54.69

ProselfLC (28) 43.43 48.24 50.28 51.62 52.25 52.78 53.31 53.90 54.16 54.38

BDE (ours) 52.70 53.07 53.12 53.32 53.25 53.68 53.37 53.82 53.95 53.29

0.59%. While FPN, LS, and Proself LC decreased by 15.38, 23.24,
and 10.95%, respectively. Furthermore, from Figures 5, 6, the
robustness and stability of BDE can be demonstrated from the
perspective of AP results and recall results’ curves. Our method is
almost unaffected by sparse annotations. In particular, when the
retentive rate is in the range of 0.1–0.5, that is, sparse annotation,
BDE achieves significant improvements.

4.4.3. The Qualitative Results

In Figure 7, we list some detection results produced by different
methods. A score threshold of 0.6 is used for display. Obviously,
other methods trained on the sparsely annotated dataset (the
retentive rates is 0.1) tend to miss tumor cells, while our method
largely avoids that mistake. Meanwhile, our BDE trained on the
0.1 retentive rate even achieve better performance than other
methods trained on the 0.4 retentive rate.

5. LAYER-LEVEL GRADIENT ANALYSIS

5.1. Why Need Layer-Level Gradient
Analysis
The gradient of a kernel is obtained by taking the chain derivative
of the loss with respect to the weight, so that, the larger the
weight of the kernel, not only its gradient is smaller but it also
indicates that the kernel is more important. Thus, by comparing
gradients of the same kernel but trained by different methods, we
can know the advantages and disadvantages of training methods
for this kernel. However, there are usually more than thousands
of kernels in a single network, and it is not instructive to
understand the superiority of kernel-level training. On the other
hand, the same layer’s kernels are responsible for similar feature
extractions, e.g., kernels of a specific layer extract edges from
different angles. Naturally, all kernels’ average gradients in each
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FIGURE 5 | The average precision (AP) test-results curve of different methods trained on the Ki-67 dataset of different retentive rates. The horizontal coordinate

stands for different retentive rates and the vertical coordinate for AP(%).

FIGURE 6 | The recall test-results curve of different methods trained on the Ki-67 dataset of different retentive rates. The horizontal coordinate stands for different

retentive rates and the vertical coordinate for recall(%).
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FIGURE 7 | Examples of detection results on the Ki-67 dataset. These results are trained on the dataset with the retentive rate of 0.1 and tested on the test-set.

Predictions are drawn in green diamond, and manual annotations are in red boxes. A score threshold of 0.6 is used for display.

layer can be used as an objective evaluation standard for feature
extraction ability. Therefore, we analyze the gradient of each layer
to investigate why BDE can improve the performance.

5.2. How to Analyze the Gradient
We analyze the mean value of the gradients in each
layer of the network by computing the back-propagation

via the testing loss. Specifically, for a layer indexed
by l, whose mean gradient (µl) can be computed
as follow:

µl =

k=K
∑

k=1

1

K
· Al,k; µl ∈ R1, (14)
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FIGURE 8 | The gradient is visualized on the whole network (80 layers) with different training methods and different retention rate annotations (from 0.1 to 1.0, bottom

to top). Each row in this figure contains 80 grids representing 80 layers, and the color of each grid encodes which training method obtains the minimum gradient at a

layer, e.g., the red grid representing BDE has the minimum gradient for a specific layer.

in which, K is the number of convolution kernels in the layer
indexed by l, and Al,k can be obtained by Equation (15).

Al,k =
1

d × w× h

d
∑

i

w
∑

j

h
∑

m

G
i,j,m

l,k
, (15)

where Gl,k is the gradient of k-th convolutional kernel in the l-th
layer. Meanwhile, d, w, and h are the depth, the width, and the
height of this kernel. Gl,k can be computed by Equation (16).

Gl,k =

N
∑

i

1

N
· |

∂Litest
∂Wl,k

|; Gl,k ∈ Rd×w×h, (16)

where Litest represents the loss computed on the i-th testing image,
and there are N testing images, and Wl,k is the weights of the
k-th convolutional kernel in the l-th layer. Further, the gradient
represents the direction whether it is positive or negative, so that
we perform an absolute operation on the calculated gradient.

5.3. Visualization and Discussion of the
Gradient
As shown in Figure 8, we visualize the layer-level gradient of the
networks (with 80 layers), which are trained on the Ki-67 dataset
(retentive rates range from 0.1 to 1), and the gradient is obtained
by the testing loss of the Ki-67 dataset. For each layer, we compare
whose gradient is trained on different methods. Specifically, a
grid with different colors indicates which method can obtain
the minimum gradient, e.g., a red grid shows that our approach
reduces the test gradient for a particular layer.

We can observe from Figure 8when the network is trained on
a dataset whose retentive rate below 0.5, BDE improves most of
the middle layers (roughly 20–60 layers), which does not seem to
happen by accident. Therefore, we can further presume that the
generalization performance improvement of the cell detection
task is closely related to the middle layers of the network.

6. CONCLUSION

In this study, through theoretical analysis and experimental
verification, we identify that the detector trained on sparsely
annotated cellular datasets may fall into overfitting due to
deviation-loss. In order to address the training limitation,
we propose a novel training method, which is utilized
to calibrate the deviation-loss based on the cues provided
by the density of regression boxes. Extensive experiments
demonstrated the strength of BDE to significantly improve
the training performance of the cellular detector, even with
90% of annotations missing, the performance of our method
is barely affected. Thus, our proposed BDE might enable
better and faster development of accurate cellular detection.
More importantly, through the visual analysis of the network
gradient, we find that the improvement of generalization
performance is closely related to the middle layer of the network,
which is expected to provide a new theoretical direction for
future research.
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APPENDIX

Overfitting Issues When Datasets Are
Sparsely Annotated
Figure A1A in Appendix exhibits the loss curve of a
standard object detector trained on the KI-67 dataset at
different cellular-level retentive annotation rates. Before
3,000 steps, the detector trained on the datasets with

a lower retentive annotation rate leads to a larger loss,
which indicates that the deviation-loss dominates the
training process. After that, lower retentive annotation
rates lead to smaller losses, which indicates that the
detector tends to focus on the annotated instances and
then drives the overfitting issue. As shown in Figure A1B

In Appendix, our method can significantly solve the
overfitting issue.

FIGURE A1 | The loss curves for a standard detector and our method training under different cellular-level retentive annotation rates of the training dataset, smaller

retentive rate indicates fewer annotations. (A) For a standard detector’s loss curve. (B) The loss curve of our training method.
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Background: The novel coronavirus disease 2019 (COVID-19) has been spread widely

in the world, causing a huge threat to the living environment of people.

Objective: Under CT imaging, the structure features of COVID-19 lesions are

complicated and varied greatly in different cases. To accurately locate COVID-19 lesions

and assist doctors to make the best diagnosis and treatment plan, a deep-supervised

ensemble learning network is presented for COVID-19 lesion segmentation in CT images.

Methods: Since a large number of COVID-19 CT images and the corresponding lesion

annotations are difficult to obtain, a transfer learning strategy is employed to make up for

the shortcoming and alleviate the overfitting problem. Based on the reality that traditional

single deep learning framework is difficult to extract complicated and varied COVID-19

lesion features effectively that may cause some lesions to be undetected. To overcome

the problem, a deep-supervised ensemble learning network is presented to combine

with local and global features for COVID-19 lesion segmentation.

Results: The performance of the proposed method was validated in experiments with

a publicly available dataset. Compared with manual annotations, the proposed method

acquired a high intersection over union (IoU) of 0.7279 and a low Hausdorff distance (H)

of 92.4604.

Conclusion: A deep-supervised ensemble learning network was presented for

coronavirus pneumonia lesion segmentation in CT images. The effectiveness of

the proposed method was verified by visual inspection and quantitative evaluation.

Experimental results indicated that the proposed method has a good performance in

COVID-19 lesion segmentation.

Keywords: under CT imaging, deep learning, COVID-19 lesion segmentation, deep-supervised ensemble learning

network, transfer learning, local and global features
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INTRODUCTION

Since the end of 2019, acute infectious pneumonia characterized
by novel coronavirus disease 2019 (COVID-19) infection has
been rapidly spread in the world, posing a huge threat to the lives
of people (1). The outbreak of pneumonia caused by COVID-19
infection has been identified by theWHO as an emergency public
health event of international concern, the number of patients
with COVID-19 is rapidly growing in the world (2). So far, the
cumulative confirmed cases of COVID-19 in the world exceeded
200 million, and the cumulative deaths reached 3.6 million. The
early symptoms of pneumonia are not obvious but are strongly
infective. It has caused huge economic losses to society and
aroused wide concern in the world (3, 4).

The difficulty of prevention and treatment of COVID-19
has put forward urgent requirements to the research of rapid
diagnosis methods. The prevention and control measures of
early diagnosis, early isolation, and early treatment for patients
with COVID-19 are one of the most effective strategies to solve
the pneumonia epidemic (5). However, widely used nucleic
acid testing and specific antibody detection technologies have
several disadvantages, such as lagging, long time consuming, low
detection efficiency, and serious risk of missed detection (6). As
one of the most effective lung imaging modes, CT has the ability
to identify the changes in lung lesions and pathological features
in patients with COVID-19 (7, 8). Therefore, a large number of
researchers have designed many different deep learning models
to assist clinic doctors in the rapid diagnosis of COVID-19 in CT
images (9).

Traditional methods achieve the purpose of different semantic

segmentation tasks by extracting features of the target objects
(10–12), but the segmentation performance was not good

enough. To overcome the problem, various deep learning

frameworks have been proposed to effectively segment the target
objects (13). It could be divided into four classifications, deep-
supervised learning, semi-supervised learning, weakly supervised
learning, and unsupervised learning approaches in COVID-19
lesion segmentation. Compared with traditional methods, the
segmentation performance has been largely improved by deep
learning networks (14–16).

Although deep learning frameworks can achieve a good
performance in COVID-19 lesion segmentation, they required
a lot of data and the corresponding data annotations (17).
To solve the problem, data augmentation is one of the most
common operations, which can generate large amount of data
through rotation, scaling, clipping, and transposing. However,
using only data augmentation may cause some lesions to
be undetected. Therefore, many advanced strategies, such as
transfer learning, multi-task approach, and attention mechanism
have been proposed to improve the performance of COVID-
19 lesion segmentation. Based on this theory, a multi-task
approach was designed by Yazdekhasty et al. to reach the purpose
(18), it had a good performance in lacking data and model
generalization. Using a different strategy, Wang et al. integrated
with transfer learning, UNet model, and multi-task learning to
improve the segmentation performance of COVID-19 lesions
(19). Recently, an attention mechanism (19, 20) was employed

to make up for the shortcoming of partial information missed
caused by convolution operation in deep learning networks. To
further improve the segmentation performance, semi-supervised
learning strategies were proposed to train mounts of pseudo
annotations. Based on this strategy, Zhao et al. presented
a randomly selected propagation strategy to improve the
segmentation performance of COVID-19 lesions (21). Similarly,
Abdel-Basset et al. proposed an innovative semi-supervised few-
shot segmentation method for COVID-19 lesion segmentation
from a few amounts of annotated lung CT images (22). Existing
supervised and semi-supervised methods require mounts of
voxel-based annotations in the training stage (23). Unfortunately,
it is difficult for clinicians to precisely annotate COVID-19
lesions due to the complex structural changes and blurred
boundary information (24). To overcome this problem, mounts
of weakly supervised methods have been proposed to segment
COVID-19 lesions. The advantage of the weakly supervised
approaches is that it can replace the complicated COVID-19
lesion labels with simple ones for training. Based on this strategy,
Yang et al. presented a weakly supervised method based on a
generative adversarial network (GAN) to improve the accuracy
of COVID-19 lesion segmentation (25). A generator was adopted
to remove lesions and generate healthy slices from input
images, while a discriminator was used to force the generator
to generate more accurate results with mounts of image-level
annotations. The method was improved by Laradji et al. (26),
where they utilized two encoder-decoder frameworks with shared
weights. The first one encoded the original images, and the
point annotations were treated as the corresponding supervised
term. While the second one encoded the original image with
geometric transformation, and the outputs of the first one with
geometric transformation were regarded as the corresponding
supervised term. Similarly, Wu et al. proposed a new 3D active
learning framework called COVID-AL to segment COVID-19
lesions with volume-annotations (27). Recently, Wang et al.
proposed a weakly supervised deep learning framework for
COVID-19 lesion segmentation (28). First, a pre-trained UNet
is applied to remove unrelated tissues for lung segmentation.
Subsequently, the segmented lung is fed into the designed
DeCoVNet to acquire the COVID-19 lesion feature map. Finally,
a class activation mapping algorithm and a 3D connected
component algorithm were combined for COVID-19 lesion
localization. The fatal flaw of the deep supervised approach,
semi-supervised approach, and weakly supervised approach is
that mounts of data labels are required to supervise the training
model in the training stage. Whereas data annotations need
clinical experts to spend a lot of time to annotate it. Different
from the above deep learning approaches, the unsupervised
approach has a good performance in objects segmentation
without any annotated labels. To alleviate the burden of data
annotation, Yao et al. designed an unsupervised NormNet model
to distinguish COVID-19 lesions from complex lung tissues (29).
Based on the observation that parts of tracheae and vessels
exhibit strong patterns, a three-stage (random shape, noise
generation, and image filtering) strategy was used to generate
lesion shape for subsequent segmentation. Taking the difference
between COVID-19 lesions and other tissues into consideration,
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TABLE 1 | Coronavirus disease 2019 (COVID-19) lesion segmentation with different methods.

Methods Advantages Disadvantages

Deep-supervised learning Yazdekhasty et al. (18) Good performance in sufficient data

and model generalization

Mounts of voxel-based Data

annotationWang et al. (19)

Gao et al. (20)

Semi-supervised learning Zhao et al. (21) Good performance in lacking data Parts of voxel-based Data

annotationAbdel-Basset et al. (22)

Weakly supervised learning Yang et al. (25) Class annotation Poor segmentation in small

lesionsLaradji et al. (26)

Wu et al. (27)

Wang et al. (28)

Unsupervised learning Yao et al. (29) No data annotations Bad performance

a novel method named NormNet based on generative adversarial
networks was presented for COVID-19 lesion segmentation.
Unfortunately, the unsupervised NormNet model had a bad
performance than some supervisedmethods. The advantages and
disadvantages of different types of deep learning methods are
summarized in Table 1.

Motivated by the fact that different deep learning methods
have their own unique advantages, these advantages can be
fused using a deep-supervised ensemble learning network to
improve the COVID-19 lesion segmentation results in CT
images. Unfortunately, the specific deep learning framework may
take up more time and space.

In this study, a deep-supervised ensemble learning network
is proposed for COVID-19 lesion segmentation in CT images.
To alleviate the overfitting problem on small datasets, a transfer
learning strategy is used to acquire initialization parameters
with better feature performance. Subsequently, an enumeration
grid model is exploited to estimate the optimal weights
for multiple deep learning model integration. In particular,
we pay special attention to the COVID-19 lesion and its
boundary segmentation, which can illustrate the effectiveness
of the proposed method. Compared with several methods, the
proposed model has a good performance in COVID-19 lesion
segmentation in CT images.

MATERIALS AND METHODS

In this study, we presented a deep-supervised ensemble learning
network as an alternative model to segment COVID-19 lesions
compared with several models in publicly available datasets.
Visual inspection and quantitative evaluation were established in
this study to verify the proposed ensemble learning network.

Evaluation Criteria
To illustrate the validation of the proposed method, an IoU
criterion and F1-measure (10) are applied to verify the good
performance. As shown in Figure 1, annotations A are divided
into false negative (FN) and true positive (TP), whereas
predictions B are divided into TP and false positive (FP). In
which, TP is the common region between annotations A and

FIGURE 1 | An intersection over union (IoU) criterion.

predictions B. Therefore, the mathematical description of IoU,
precision (P), recall (R), and F1 can be defined as follows:

IoU =
TP

TP + FP + FN
(1)

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 =
2× P × R

P + R
(4)

In other words, the greater proportion of the common region
between annotations and predictions, the greater IoU and F1
values will be. The smaller proportion of common region
between annotations and predictions, the smaller IoU and F1
values will be. Especially in the case with small COVID-19
lesions, IoU has a strong ability to illustrate the effectiveness
of the proposed method. Additionally, the F1-measure criterion
denotes the similarity between annotations and predictions.

As we all know that IoU and F1 pay more attention to the
regional sensitivity of image segmentation, but the description
of the segmentation boundary is also important. To further
illustrate the effectiveness of the proposed method, Hausdorff
distance is employed to evaluate the validation of the deep
learning framework. The Hausdorff distance from annotations A
to predictions B can be defined as
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FIGURE 2 | Hausdorff distance.

h(A,B) = max
a∈A

{

min
b∈B

{

d(a, b)
}

}

(5)

Where h(A,B) is the Hausdorff distance from A to B, d(a, b) is
the distance between point a and point b. In which, point a and b
are belonging to A and B, respectively. To illustrate the distance
between A and B, a more general definition would be:

H(A,B) = max
{

h(A,B), h(B,A)
}

(6)

As shown in Figure 2, the pink area is the annotations A,
the green area is the predictions B, and the white area is the
common region covered by both predictions A and annotations
B. Hausdorff distance measures the biggest distance from both
predictions A and annotations B to common region. To avoid the
influence of noise on Hausdorff distance, 95%Hausdorff distance
(HD95) are treated as useful values sorted from small to large. To
avoid Hausdorff distance being too large, a simple mathematical
transformation is given as:

H =

n
∑

i= 1

lg(HD95i + 1) (7)

Where i is the number of the test CT slices. In other words, the
better detection of the COVID-19 lesion boundary, the smaller
H value will be. Whereas the worse detection of the COVID-
19 lesion boundary, the larger H value will be. The evaluation
criteria IoU, F1, and H are used to evaluate the validation of the
proposed method.

Data and Annotations
We employed a dataset from the China consortium of chest CT
image investigation (30), which is a publicly available dataset.
The dataset includes 150 CT scans. In which, 750 CT slices were
selected from the dataset and annotated by four doctors with
extensive clinical experience, 400 CT slices were treated as a
training set, 200 CT slices were considered as a validation set, and
150 CT slices were used as a test set. In this work, we treated the
corresponding annotations as the ground truth.

Overview of the Proposed Method
In this article, we present a deep-supervised ensemble learning
network for COVID-19 lesion segmentation in CT images in
Figure 3. First, data augmentation is applied to increase the
training data and improve the generalization ability of the model.
Subsequently, a transfer learning strategy is employed to copy
with small datasets and alleviate the overfitting problem. Finally,
a deep-supervised ensemble learning network is presented to
combine with local and global features for COVID-19 lesion
segmentation in CT images.

Data Augmentation
Clinicians spend a great deal of time to annotate complex
structures of COVID-19 lesions, which is too expensive. In
general, data augmentation (31) is applied to process and increase
the training data to make the data as diverse as possible andmake
the training model generalization ability stronger. To reach the
purpose, CT image operations, such as horizontal flip, vertical
flip, rotation, and scaling are adopted to increase training data
and the corresponding COVID-19 lesion annotations. After data
augmentation, the number of training data is varied from 400
to 4,000.

Transfer Learning
Deep learning models have been widely applied in medical
image processing (32). To acquire accurate COVID-19 lesion
segmentation results, a large amount of CT images and manual
annotations are required to adjust the parameters for the special
deep learning model. However, it is too difficult to obtain
mounts of CT images and the corresponding manual lesion
annotations. In general, the designed deep learning models
are trained with small datasets, which may lead to poor
generalization ability and serious overfitting performance. To
cope with the shortcomings, many technical means, such as data
augmentation (31), multi-task learning (33), transfer learning
(34), and attention mechanism (35) can be used to achieve the
segmentation task. In this section, a transfer learning strategy is
applied to solve the shortcomings.

It is a challenging task for doctors to manually annotate
complex and variable COVID-19 lesions. To acquire the best
parameters of the designed model with the limited COVID-19
lesion annotations, a transfer learning strategy is employed to
accurately segment COVID-19 lesions in CT images. In this,
the ImageNet dataset is treated as the pre-training dataset,
which is one of the largest image datasets in the world (36).
Whereas the EfficientNet model (37, 38) is considered as the pre-
training model. First, the model is trained with the training data
and the corresponding manual annotations to generate pseudo
annotations, it was treated as the teacher in the “teacher-student”
model. Whereas a powerful EfficientNet model is retrained by
using manual and pseudo annotations, it was considered as the
student in the “teacher-student” model. In the student learning
stage, adding noise processing is used to make the generalization
ability of students better than teachers (39). In this section, the
estimated parameters are regarded as the initialized parameters
for the deep-supervised ensemble learning network.
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FIGURE 3 | A pipeline for COVID-19 lesion segmentation in CT images.

FIGURE 4 | UNet model.

FIGURE 5 | Pyramid attention network (PAN).

Deep-Supervised Ensemble Learning
Network
Different networks have different advantages and disadvantages,
the advantages can be integrated together by effectively
integrating various networks. To acquire the best COVID-19
lesions segmentation performance, a deep-supervised ensemble
learning network is presented for COVID-19 segmentation in
CT images.

The UNet model was applied according to Su et al. and
Wang et al. (40, 41). As shown in Figure 4, the network had
three encoding and decoding blocks, respectively. Encoding
was designed using max-pooling, whereas the decoding was
performed via a deconvolution. In addition, the encoder and the
decoder were connected via skip connections.

As a second architecture, we implemented the pyramid

attention network (PAN) by Li et al. (42). Unlike the traditional
deep learning model, the basic principle of the pyramid attention

network is to effectively extract local and global features of

target objects by integrating the attention mechanism and spatial
pyramid structures. As shown in Figure 5, an encoder-decoder

scheme was adopted to locate target objects. In the encoder
module, a feature pyramid attention (FPA) was introduced to
the adopted spatial pyramid attention mechanism in the high-
level output, and the global information was applied to learn
stronger feature representation. In the decoder module, a global
attention upsample (GAU) module was applied to extract the
global information of the target objects to effectively segment
COVID-19 lesions.
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FIGURE 6 | DeepLabv3+ model.

FIGURE 7 | Feature pyramid network (FPN) model.

The third implemented architecture is the DeepLabv3+
by Chen et al. (43). As shown in Figure 6, it is the
DeepLabv3 extended version by adding a decoder module
to refine the segmentation results, especially along the novel
coronavirus pneumonia lesion boundaries. Specifically, the
Xception model was explored and the depthwise separable
convolution was applied to both atrous spatial pyramid pooling
and decoder modules, resulting in a faster and stronger encoder-
decoder network.

The fourth implemented architecture is themulti-scale feature
pyramid network (FPN) by Lin et al. (44). As shown in Figure 7,
a top-down architecture with skip connections was designed to
express high-level feature maps at all scales. Subsequently, the
semantic feature maps with different scales were integrated to
improve the segmentation performance of COVID-19.

In these deep learning networks, training was performed using
the Adam optimizer with a learning rate of 10−5, the dice loss
was considered as the loss function to express the relationship
between the predicted probabilities and the corresponding lesion
annotations. Inspired by the previous work of Golla et al. (45), we
present an ensemble module to ensemble the probability feature
maps of four networks. To give a mathematical expression:

E = w1 × E1 + w2 × E2 + w3 × E3 + w4 × E4 (8)

Where w1, w2, w3, and w4 are the weighting parameters, E1,
E2, E3, and E4 represent the predicted probabilities of PAN,
FPN, Unet, and Deeplabv3+ networks. In which, the relationship
among the weighting parameters w1, w2, w3, and w4 can be
represented as follows:
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FIGURE 8 | Weighting parameters optimization. (A) w1 = 0.0. (B) w1 = 0.1. (C) w1 = 0.2. (D) w1 = 0.3. (E) w1 = 0.4. (F) w1 =0.5. (G) w1 = 0.6. (H) w1 = 0.7.

TABLE 2 | The maximum values of Z.

Maximum points Maximum values

w3 w4 Z

0.0 0.2 0.7 0.1 54.28

0.1 0.1 0.6 0.2 56.55

0.2 0.1 0.6 0.1 108.83

0.3 0.0 0.6 0.1 44.09

0.4 0.1 0.5 0 42.54

0.5 0.0 0.5 0 40.91

0.6 0.1 0.2 0.1 40.07

0.7 0.1 0.1 0.1 39.09

0.8 0 0.1 0.1 37.40

0.9 0 0 0.1 35.81

1.0 0 0 0 35.08

Z = 108.83, is the largest values. It illustrates that the proposed method has the best

segmentation performance in this case.

TABLE 3 | Architecture parameters with different networks.

Parameters Value

Input image size 512 × 512

Output image size 512 × 512

Learning rate 10−5

Activation layers Adam

Epochs 300

Batch size 4

Loss function Dice

w1 + w2 + w3 + w4 = 1 (9)

To acquire the most effective segmentation results of COVID-19
lesions in CT images, an enumeration grid model (46) is used to
achieve the optimal weighting parameters.

Weighting parameters play an important role in COVID-19
lesion segmentation. To overcome the problem, a simple but

effective approach is designed to acquire the optimal weighting
parameters with the enumeration grid model, which is a traversal
method, it has the ability to enumerate all the parameters w1,
w2, w3, and w4. First, w1 is set to be a fixed value varied from
0.0 to 1.0, and w2 and w3 are treated as variable values. As we
all know that the sum of all the weighting parameters is 1.0, the
weighting parameterw4 is 1–w2–w3. In other words,w4 is defined
by variable w2and w3. As a result, all the weighting parameters
and the corresponding quantitative index IOU can be acquired
with the enumeration grid model. Since the IoU value difference
is very small, it is difficult to distinguish. To better distinguish
the quantitative index IoU for a good presentation, a simple
mathematical transformation is given as:

Z = log
|IoU−max(IoU)−0.0001|
9/10 (10)

As shown in Figure 8, the maximum values of Z are marked with
a red cross and the corresponding values are described in Table 2.
The optimal weighting parameters are 0.2, 0.1, 0.6, and 0.1.

Table 3 lists the architecture parameters with different
networks. The dice loss function was regarded as the loss
function. Adaptive moment estimation (Adam) was employed
for the training process, which iteratively updates different
network weights based on a publicly available novel coronavirus
pneumonia dataset. The learning rate was initialized with 10−5.
The above deep learning model was implemented in python
using PyTorch with Lenovo Ren-9000 34IMZ, GPU GFX 2060,
and CPU 32G.

RESULTS

We present a deep-supervised ensemble learning network as
an alternative model to segment COVID-19 lesions in CT
images. The segmentation performance of the proposed method
is validated in experiments with a publicly available dataset.
The effectiveness of the proposed method was verified by visual
inspection and quantitative evaluation.
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FIGURE 9 | Segmentation of COVID-19 lesions with different deep learning methods. (A) CT slice. (B) Anotation. (C) DeepLabV3+. (D) Unet. (E) PAN. (F) FPN. (G)

Linknet. (H) MAnet. (I) PSPnet. (J) The proposed method.

FIGURE 10 | COVID-19 lesion segmentation with different weighting parameters. (A) CT slice. (B) Anotation. (C) [0.2, 0.1, 0.5, 0.2]. (D) [0.1, 0, 0.9, 0]. (E) [0.4, 0,

0.3, 0, 0.3]. (F) [0.5, 0.5, 0, 0]. (G) [0.1, 0, 0, 0.9]. (H) [0, 0, 0.2, 0.8]. (I) [0, 0.7, 0.1, 0.2]. (J) [0.2, 0.1, 0.6, 0.1].

Visual Inspection
For visual inspection, we selected a typical CT slice from a public
dataset for demonstration. The CT slice, the corresponding
annotation, DeepLabV3+ (43), UNet (40), PAN (42), FPN (44),
Linknet (47), MAnet (48), PSPnet (49), and the proposed method
are displayed in Figure 9. In this, many methods (40, 43, 48,
49) used the local features to segment COVID-19 lesions, the
approaches may cause parts of small lesions to be undetected.
While parts of methods (42, 44, 47) exploited the local and
global features for COVID-19 lesion segmentation, the strategy
may cause parts of clutters to be unremoved. On the contrary,
a deep-supervised ensemble learning network is presented to
combine with the advantages of different deep learning networks
(40, 42–44) for COVID-19 lesion segmentation. As observed, the

proposed method has largely improved the segmentation results
compared with seven deep learning networks (40, 42–44, 47–
49). In other words, by using the deep-supervised ensemble
learning network, the proposed method has a good performance
in COVID-19 lesion segmentation.

To accurately segment novel coronavirus pneumonia lesions,
the enumerationmethod is applied to estimate the best weighting
parameters w1, w2, w3, and w4. In Figure 10, COVID-19 lesion
segmentation results with different weighting parameters are
displayed to evaluate the validation of the proposed method. It
can be seen that the best weighting parameters are 0.2, 0.1, 0.6,
and 0.1.

To investigate the effect of the proposed method in COVID-
19 lesion segmentation, a CT slice is chosen in Figure 11A and
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FIGURE 11 | Hausdorff distance with different methods. (A) CT slice. (B) Anotation. (C) DeepLabV3+. (D) Unet. (E) PAN. (F) FPN. (G) Linknet. (H) MAnet. (I) PSPnet.

(J) The proposed method.

TABLE 4 | The IoU values with different methods.

Method IoU F1 H

DeepLabV3+ (43) 0.7058 0.7886 99.8686

Unet (40) 0.6927 0.7720 96.9404

PAN (42) 0.7081 0.7931 97.6020

FPN (44) 0.7031 0.7881 98.9161

Linknet (47) 0.6883 0.7618 101.9168

MAnet (48) 0.6067 0.7216 112.6191

PSPnet (49) 0.6696 0.7557 104.5176

The proposed method 0.7279 0.8065 92.4604

Compared with seven methods, the proposed method has the largest IoU value 0.7279

and F1 value 0.8065, whichmeans that the proposedmethod has the best performance in

regional sensitivity of COVID-19 lesion segmentation. What’s more, the proposed method

has the smallest H value 92.4604, which indicates that the computational model has the

best performance in COVID-19 lesion boundary.

the corresponding annotation data are shown in Figure 11B.
To better illustrate the effectiveness of the proposed method,
the detected COVID-19 lesions with different methods were
magnified. As shown in Figure 11, the pink region is the
annotations, the green region is the predictions, and the white
area is the common region covered by both predictions and
annotations. In Figures 11C–J, the Hausdorff distance with
different methods are 3.6056, 3.1623, 4.1231, 4.4721, 3.6056,
32.8938, 27.5862, and 2.2361. In other words, the proposed
method has a lower Hausdorff distance than these typical
methods (40, 42–44, 47–49).

Quantitative Evaluation
We employed a dataset from the China consortium of chest
CT image investigation, the dataset includes 750 CT images.
As observed in Table 4, The IoU values corresponding to the
DeepLabV3+ (43), Unet (40), PAN (42), FPN (44), Linknet

TABLE 5 | The relationship between the weighting parameters and the IoU index.

w1 w2 w3 w4 IoU

0.1 0.0 0.9 0.0 0.6929

0.4 0.3 0.0 0.3 0.7083

0.0 0.7 0.1 0.2 0.7101

0.4 0.3 0.1 0.2 0.7108

0.7 0.1 0.1 0.1 0.7116

0.1 0.1 0.2 0.6 0.7232

0.2 0.3 0.4 0.1 0.7219

0.3 0.0 0.1 0.6 0.7150

0.5 0.1 0.2 0.2 0.7142

0.6 0.0 0.2 0.2 0.7120

0.8 0.0 0.0 0.2 0.7075

0.0 0.1 0.8 0.1 0.6951

0.2 0.0 0.7 0.1 0.7252

0.0 0.1 0.6 0.3 0.7229

0.2 0.1 0.6 0.1 0.7279

Compared with different weighting parameters, the best weighting parameters are 0.2,

0.1, 0.6, and 0.1 and the maximum IoU value is 0.7279.

(47), MAnet (48), PSPnet (49), and the proposed method are
0.7058, 0.6927, 0.7031, 0.7081, 0.6883, 0.6067, 0.6696, and 0.7279.
Whereas the F1 values corresponding to different methods
are 0.7886, 0.7720, 0.7881, 0.7931, 0.7618, 0.7216, 0.7557, and
0.8065, and the Hausdorff distance with different methods
are 99.8686, 96.9404, 97.6020, 98.9161, 101.9168, 112.6191,
104.5176, and 92.4604. Both visual inspection and quantitative
evaluation exhibited that our method can outperform these
typical methods (40, 42–44, 47–49).

The relationship between the weighting parameters and
the IoU index is shown in Table 5. Both visual inspection
and quantitative evaluation exhibited that the best weighting
parameters are 0.2, 0.1, 0.6, and 0.1.
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DISCUSSION

In this article, a deep-supervised ensemble learning network
is presented for COVID-19 segmentation in CT images,
the proposed method has many specific characteristics and
advantages. Based on the fact that a large number of COVID-
19 CT images and the corresponding lesion annotations are
difficult to be obtained, a transfer learning strategy is employed
to make up for the shortcoming and alleviate the overfitting
problem. Second, a unique ensemble module is presented to
improve the segmentation performance. While many studies use
only one neural network to segment COVID-19 lesions, which
cannot effectively discriminate COVID-19 lesions and other
unrelated structures in CT images. Third, the proposed method
is expected to preserve the completeness of COVID-19 lesions
while maximally eliminating the unrelated structures. Last, the
proposed method has a good performance in COVID-19 lesion
segmentation in CT images.

The proposed method was validated in a publicly available
dataset from the China consortium of chest CT image
investigation. Both visual inspection and quantitative evaluation
exhibited that the proposed approach could outperform
these typical deep learning networks in COVID-19 lesion
segmentation (40, 42–44, 47–49). Compared with manually
defined annotations, our methods obtained a higher accuracy
in COVID-19 lesion segmentation with an IoU index of 0.7279
and an F1 value of 0.8065 than these typical methods. In which,
many typical methods (40, 43, 48, 49) used the local features
to segment COVID-19 lesions, the approaches may cause parts
of small lesions to be undetected. While parts of methods
(42, 44, 47) exploited the local and global features for COVID-19
lesion segmentation, the strategy may cause parts of clutters to
be unremoved. On the contrary, a deep-supervised ensemble
learning network is presented to combine with the advantages
of different deep learning networks (40, 42–44) for COVID-19
lesion segmentation. In other words, the proposed method
uses weight parameters to measure the importance of local and
global features for COVID-19 lesion segmentation. While the
compared methods used only one neural network to segment
COVID-19 lesions, it may cause parts of COVID-19 lesions to
be undetected.

Compared with these conventional neural networks (40, 42–
44, 47–49), the proposed method appears more efficient on
COVID-19 lesion segmentation. This is ascribed to a well-
designed fusion of transfer learning strategy, data augmentation,
and multiple neural networks-ensemble approaches. In other
words, the proposed method outperforms the conventional
methods in that the merits of local and global features are
efficiently combined. In addition, the segmentation of COVID-
19 lesions has important clinical research significance. It can
help doctors to diagnosis COVID-19 and develop the best
treatment plan.

However, the designed deep-supervised ensemble learning
network may take up more time and space than traditional

conventional neural networks (40, 42–44, 47–49). Additionally,
based on the fact that a large number of COVID-19 CT images
and the corresponding lesion annotations are difficult to be
obtained, accurate segmentation of small coronavirus pneumonia
lesions is still a long way off.

In conclusion, a deep-supervised ensemble learning network
is presented for coronavirus pneumonia lesion segmentation in
CT images. Based on the reality that mounts of COVID-19 CT
images and the corresponding lesion annotations are difficult
to acquire, a transfer learning strategy is used to alleviate the
overfitting problem in a small dataset. Another contribution of
the proposed method concerns the deep-supervised ensemble
learning network. Using a single deep learning network, the
accuracy of COVID-19 lesion segmentation results cannot
reach a satisfactory performance. To overcome the problem,
an ensemble strategy is presented to integrate multiple deep
learning networks for COVID-19 lesion and its boundary
segmentation in CT images. Experimental results indicated that
our proposed deep-supervised ensemble learning model has
a good performance in COVID-19 lesion and its boundary
segmentation in CT images.
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Malignant melanoma (MM) recognition in whole-slide images (WSIs) is challenging due

to the huge image size of billions of pixels and complex visual characteristics. We

propose a novel automatic melanoma recognition method based on the multi-scale

features and probability map, named MPMR. First, we introduce the idea of breaking

up the WSI into patches to overcome the difficult-to-calculate problem of WSIs with

huge sizes. Second, to obtain and visualize the recognition result of MM tissues in

WSIs, a probability mapping method is proposed to generate the mask based on

predicted categories, confidence probabilities, and location information of patches. Third,

considering that the pathological features related to melanoma are at different scales,

such as tissue, cell, and nucleus, and to enhance the representation of multi-scale

features is important for melanoma recognition, we construct a multi-scale feature

fusion architecture by additional branch paths and shortcut connections, which extracts

the enriched lesion features from low-level features containing more detail information

and high-level features containing more semantic information. Fourth, to improve the

extraction feature of the irregular-shaped lesion and focus on essential features, we

reconstructed the residual blocks by a deformable convolution and channel attention

mechanism, which further reduces information redundancy and noisy features. The

experimental results demonstrate that the proposed method outperforms the compared

algorithms, and it has a potential for practical applications in clinical diagnosis.

Keywords: malignant melanoma, whole slide image, multi-scale feature, probability map, neural networks

1. INTRODUCTION

Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues
to increase at a great rate worldwide (1). It is characterized by an extraordinary metastasis capacity
and chemotherapy resistance, and the difficulty of effective treatment increases with its continually
developing aggression. Therefore, early diagnosis is essential to improve the survival rate of MM
patients. Pathological examination is the gold standard for the diagnosis of MM (2), which enables
the most reliable diagnosis based on pathological features at the cell level compared to other
methods. Tissue cut from the lesion on the skin is made into pathological slices and scanned by
a Digital Pathology Microscope Slide Scanner to get a whole-slide image (WSI). Through the WSI,

78

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.775587
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.775587&domain=pdf&date_stamp=2022-01-05
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wanglin@nwu.edu.cn
mailto:xumf96@163.com
https://doi.org/10.3389/fmed.2021.775587
https://www.frontiersin.org/articles/10.3389/fmed.2021.775587/full


Zhang et al. Multi-Scale Feature for Melanoma Recognition

the pathologist finds out the property of the tissue and marks
the MM region, if it exists, to measure related pathological
indicators, such as lesion size, invasion depth, etc., which provide
an important reference for treatment planning and surgical
prognosis (3).

Analyzing WSIs is a challenging task (4). Even an experienced
pathologist spends an average of 10-20 min recognizing the
region of MM in a WSI, of which identifying the MM region
takes up much time. First, a WSI has billions of pixels, and
the physician needs to perform a scanned screening of the
pathology images in a zoomed-in window. Second, the complex
visual characteristics of the skin lesions, such as irregular-
shaped texture, fuzzy boundaries, etc., increase the difficulty of
recognition. Some MM tissues are hard to distinguish from some
benign tissues (5), which is a challenge for MM recognition.
These problems aggravate the work burden of pathologists,
affecting the efficiency of pathological examination. Third, the
difficulty in training and scarcity of pathologists, as well as
the uneven distribution of medical resources, make it difficult
to obtain a timely and accurate diagnosis for every melanoma
patient. Therefore, there is an urgent need for an effectivemethod
for automatic MM recognition in WSIs.

MM region screening in WSIs is an image recognition task
that utilizes computer vision. Since convolutional neural
networks (CNNs) have provided state-of-the-art image
classification and segmentation performance, medical image
analysis methods based on CNNs have been developed. The
U-Net proposed by Ronneberger et al. (6) and its derivative
improved networks (7–10) have achieved considerable success in
medical image segmentation in recent years. However, pixel-wise
image segmentation methods have limitations in MM region
recognition in WSIs. The huge size of WSIs poses problems
to the computation of the network. Some MM recognition
methods based on deep learning are proposed. For example,
Hekler et al. (11) trained a CNN based on ResNet-50 (12)
to realize the classification of histopathological images of
melanomas and nevi with an accuracy of 81%. The limited
feature extraction capabilities of ResNet make it challenging
to achieve higher accuracy. Wang et al. (13) used a deep CNN
to establish a diagnosis model through the patch of eyelid
melanoma histopathological slides and obtained good results.
Yu et al. (14) proposed a method for melanoma recognition by
leveraging very deep CNNs and constructed a fully convolutional
residual network for accurate MM segmentation. However, it
applies only to dermoscopy images analysis, which is easier
to realize but not as reliable and detailed as pathological
analysis.

However, these methods only work for the region of interest
marked by pathologists. They cannot achieve good results in
WSIs. The huge number of pixels makes network training
difficult or impossible. Resizing images by down-sampling will
lead to the loss of detailed information, which is unacceptable
for MM diagnosis focusing on pathological features at the
cellular level. Furthermore, due to the characteristics of WSIs
and the limited feature extraction capability of related networks,
the existing methods are difficult to adapt for WSIs-based
MM recognition.

Based on the above considerations, we proposed a novel MM
recognitionmethod based on amulti-scale feature representation
and probability map to recognize the MM tissue region in WSIs,
as shown in Figure 1. The following contributions are made to
our work.

• Aiming at the difficult and inaccurate problems of recognizing
the enormous size of WSIs, the breaking up the whole into
parts idea is introduced to recognize melanoma. Furthermore,
using predicted results and probabilities generates the mosaic-
style mask and lesion region.

• To take both global and local features, we propose an
efficient multi-scale network for improving melanoma
recognition, combining high-level features with more
semantic information and low-level features with more detail
information. A multi-scale sliding cropping operation is used
to obtain patch and sub-patch images.

• To enhance the feature representation of irregular-shaped
lesions, highlight the critical features, and reduce the
impact of information redundancy and data noise, we
reconstruct the residual block by deformable convolution and
channel attention.

The paper is arranged as follows. Section 2 details the proposed
method, including the description of our method’s framework,
the realization principles, and the equations of each module.
Section 3 shows the experimental results of our method,
compares algorithms on an available WSI dataset, and further
provides the ablation analysis to prove the effectiveness and
rationality of the proposed method. Section 4 provides a
further discussion on the feature representation capability of the
proposed multi-scale network. And section 5 provides a brief
summary and the conclusions of this work.

2. METHODOLOGY

2.1. Framework of Our Method
On super-largeWSI images, patch-based recognition is necessary
and feasible. Melanoma pathological analysis mainly focuses
on cell-scale characteristics. We set patch size according
to pathologists’ professional advice, which ensures that cell
morphology and local distribution are well represented in the
patches. On the boundary of the patch, some cells may be
torn, but the overlapping sampling method can effectively avoid
the loss of information caused by incomplete splitting. For
lesion areas without clear boundaries, mixed cell tissue limits
feature extraction by conventional rectangular convolution.
Therefore, the proposed method reconstructed the residual
block by deformable convolution and channel attention to
overcome the irregular-shaped lesion and focus on important
features. Furthermore, to overcome the influence of cell-
scale differences, we built multi-scale feature fusion layers
to enhance feature information and improve identification
accuracy. The framework of the proposed method shown in
Figure 2 consists of the following seven components: patch
processing, feature extraction, feature fusion, feature selection,
predictive classification, mask generation, and loss function
in training.
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FIGURE 1 | The idea of the proposed method. The WSI is broken up into patch images. The classification results are aggregated and generate the mosaic-type mask

based on the probability map, and the MM regions are segmented based on a settable probability threshold.

FIGURE 2 | The framework of the proposed method. (A) Patch processing, (B) feature extraction, (C) feature fusion, (D) feature selection, (E) predictive classification,

(F) probability map generation, and (G) loss function of training model.

• Patch processing: A WSI is broken up into N patches
through sliding cropping (N depends on the sliding window
size and sliding stride), from which tissue-contained patches
are picked out by a color analysis method. Each tissue-
contained patch is broken up into sub-patches. And then,
patch images and sub-patch images are normalized to a
uniform size.

• Feature extraction: The lesion features are extracted by
backbone Conv1 to Conv5. Considering the irregular-
shaped cells, and focusing on essential features, deformable
convolution (DC) and channel attention (CA) operations are
embedded in the Conv2 to Conv5 layers to enhance the feature
extraction capability of the network. Then extracted features
Fconvi(i = 2, 3, 4, 5) are produced separately from Conv2
to Conv5.

• Feature fusion: As the network is gradually deepened, the
resolution of the feature map decreases, and the semantic
properties of the features are enhanced. The features of the
next layer, which contains richer semantic information, are
concatenated with those of the current layer, which contains
richer detailed texture information, to enhance the lesion
feature representation capability of the network.

• Feature selection: After the fused features Fi(i = 2, 3, 4, 5),
the channel attention mechanism is separately used to select
the critical features and to enhance the correlation between
high-level semantic features and low-level detailed features.

• Predictive classification: The output features from each
branch are flattened into a vector, respectively, and then they
are concatenated. Fully connected layers are constructed to
obtain the predictive classification results of patch images.
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• Probabilitymap generation: The prediction results of patches
(containing prediction labels and confidence probabilities)
are combined with the location information to generate
the probability map of malignant tissues. And a mosaic-
type mask of MM regions is obtained through a confidence
probability threshold.

• Loss function: Sigmoid binary cross-entropy loss function is
used in training for parameter optimization.

2.2. Multi-Scale Features
In the pathological examination, it is necessary to carry out
comprehensive analysis according to various characteristics of
lesions, such as tissue morphology and cell distribution, which
are reflected on a large scale, and cell morphology and nuclear
size, which are reflected on a smaller scale (15). Therefore,
computational analysis of WSIs at different scales is beneficial to
represent pathological features at different scales. A multi-scale
sliding cropping method is embedded in the proposed algorithm.
For each patch of a WSI, besides the whole patch image, cropped
sub-patch images from the patch are normalized to a uniform
size and input into the network together for the classification of
the patch. The size and quantity of the sub-patch depend on the
cropping method, for example, Figure 2A shows five sub-patches
cropped from a patch image.

Furthermore, the idea of multi-scale is also reflected in the
construction of the feature extraction network. As the network
deepens, feature resolution decreases and channels increase,
low-level detail information is being transformed into higher-
level semantic information. However, factors such as data noise
and chain derivative attenuate or lose the information in the
forward and back propagation, which becomes more and more
apparent with increasing network depth. The fusion of shallow
features and deeper features, which are with different scales, to
supplement the semantic information of high-level features is
beneficial to improve the feature representation capability of the
network. Based on the above considerations, a network with
enhanced multi-scale feature extraction capability is constructed.
As Figure 2 shows, additional branches are added to the
backbone network for feature fusion. In each branch, the feature
of (i + 1)-th level FConvi+1(i = 2, 3, 4) is concatenated with the
feature of i-th level FConvi(i = 2, 3, 4) after 1× 1 convolution and
up-sampling, as shown in Figure 2C, and then Fi(i = 2, 3, 4) is
obtained, as shown in Equation (1).

Fi = f(1×1)∗2 (Fi+1) ⊕ FConvi (1)

where f(1×1)∗2(∗) indicates that the Fi is obtained by the
convolution of 1×1 and double up-sampling of features Fi+1 and
has the same shape maps as the i-th conv output features FConvi.
⊕

denotes the concatenation of the normalized features of the
two groups.

The concatenated features F2 ∼ F4, together with F5, which
is obtained from FConv5, are transferred to feature vectors and
input into the fully connected layer via shortcut connections
for classification.

FIGURE 3 | Structure of deformable convolution module. (A) The deformable

convolution and (B) the deformable convolution layer.

2.3. Deformable Convolution
MM tissues in histopathological images mainly show as
interstitial or heterogeneous tumor cells, which are mainly
enlarged and darkly stained nuclei with varying shapes (16). This
irregularity leads to the inadequate learning of melanoma feature
information by traditional convolution for its fixed rectangular
receptive field of the kernel. Inspired by Dai et al. (17) and Zhu
et al. (18), we introduce offsets in the traditional convolution
to make the geometry of the kernel more flexible, as shown in
Figure 3, which improves the representation of irregular-shaped
features. The deformable convolution format for each position p
in the input feature map is shown in Equation (2).

y(p) =
∑

pk∈R

w
(

pk
)

· x
(

p+ pk + 1pk
)

(2)

where y(p) indicates the feature obtained by the convolution on
one sampling point p of the feature map. R is the receptive field
size of the regular kernel. pk denotes the difference between the
sampling points and y(p), k = 1, 2, 3 . . .N,N = |R|, 1pk is the
learned offset, and w is the kernel parameter. The offset of the
deformable convolution has a dilated value, which determines the
maximum distance for resampling and is set to 2.

2.4. Channel Attention
First, multi-scale feature fusion enriches the extracted feature
information of the network, but while enhancing feature
representation capability, it also brings some redundant features,
which are unrelated to melanoma recognition, and interferes
with model learning. It is particularly obvious in low-level
features with higher resolution, and this effect becomes more
prominent when low-level features are fused with high-level
features through additional branch paths. Second, the deformable
convolution helps in the feature extraction of irregular lesions
and enhances lesion feature representations, but also generates
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FIGURE 4 | Structure of channel attention module. (A) The intuitive diagram of the channel attention mechanism and (B) channel attention module. It firstly performs

global pooling to the input feature map (128c denotes 128 channels) to obtain the overall representations. Then a weight vector is learned by 1× 1 convolution

operations. The learned weight vector allocates weight coefficients for each channel of the original feature map, and the weighted feature map is output.

some noisy features influenced by non-lesion tissue. Therefore,
to extract more valuable information and suppress the impact
of redundant information and noises features, we need a
mechanism that focuses on essential features and filters the
irrelevant features.

Based on the above considerations, and inspired by the work
of Hu et al. (19), a channel attention mechanism is used in
the shortcut connection between features Fi(i = 2, 3, 4, 5) and
fully connected layers, as shown in Figure 2D. It highlights
high-value feature maps by a series of weights learned by the
channel attention (CA) module. The filtering of channels is
actually the weighting of different types of features. Although
the convolution operation itself also correlates each channel of
the feature map with each other, it is difficult to accurately
assign appropriate weights to each channel due to the influence
of the w and h dimensional feature distributions. To address
this problem, the channel attention mechanism obtains a global
representation of each channel by global pooling, and the weights
of each channel are calculated by 1 × 1 convolution based on
the resulting feature vectors. In Figure 4, the CA module firstly
performs global pooling to the input feature map to obtain the
overall representation of it. Then a weight vector is learned by
1 × 1 convolution. The learned weight vector allocates weight
coefficients for each channel of the original feature map, and the
weighted feature map is output. The mathematic description of
the channel attention module is formatted as Equation (3).

Y = σ



WConv2δ



WConv1
1

hw

∑

i∈h,j∈w

X
(

i, j
)







 ⊗ X (3)

where X means the input feature map, and Y denotes the output
feature map of the channel attention module, h and w are the
height and width in the input feature maps. WConv1 and WConv2

indicate the parameters of two 1 × 1 convolution operations,
which are equivalent operations to fully connected layers. δ is
the ReLU activation. σ is the sigmoid function, and⊗means the
weighting calculation of the learned weight vector and the input
feature map.

In addition to calculating the channel weights of feature
weights, the channel attention mechanism also strengthens the
correlation between channels through global pooling and 1 x 1
convolution; making up for the defect of the weak correlation
between channels in the convolution module is conducive to the
enhancement of feature expression ability. Therefore, the channel
attentionmodules are also embedded into the backbone network,
as shown in Figure 2B.

3. EXPERIMENTS

3.1. Experimental Setup
MM WSIs labeled by pathologists are rare and valuable data.
The dataset is collected from the Second Affiliated Hospital of
Xi’an Jiaotong University (Xibei Hospital), containing 30 WSIs
labeled by experienced pathologists. Sliding window size is set
to 1, 024 × 1, 024, sliding stride is set to 1024, 18,698 tissue-
included patches are obtained, containing 7,369 malignant tissue
patches and 11,329 benign tissue patches. They are divided into
training, validation, and test datasets by a ratio of 6:2:2. Five sub-
patches are cropped from each patch, as shown in Figure 2A, and
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TABLE 1 | The experimental results of the proposed algorithms and comparison algorithms, the higher the values of precision, recall, accuracy, and F1, the better the

recognition performance.

Algorithms Layer Precision Recall Accuracy F1

Inception V3 (2016) 50 0.8919 0.8876 0.8326 0.8897

ResNeXt (2017) 50 0.8974 0.9241 0.8618 0.9106

SENet (2018) 50 0.8915 0.9472 0.8721 0.9185

SENet (2018) 101 0.9120 0.9477 0.8812 0.9295

ResNeSt (2020) 50 0.9314 0.9327 0.8877 0.9321

ResNeSt (2020) 101 0.9526 0.9601 0.9355 0.9513

MPMR (ours) 50 0.9683 0.9709 0.9498 0.9696

MPMR (ours) 101 0.9740 0.9861 0.9553 0.9749

Bold indicate maximum values.

all images are resized to 512 × 512 when input to the network.
Considering that melanoma tissue features are non-directional
and non-chiral, we introduce data augmentation operations by
the mirror and random rotation in the range of (−90◦,+90◦).

The proposed method is developed by Python 3.6 on
Ubuntu18.04, and the hardware is RTX2080-12G with CUDA-
10.1. The development libraries include MXNet-1.5, Gluoncv-
0.5, Numpy-1.17, OpenCV-4.2, etc. Themodels iterate 30 epochs,
and the batch size is 32. Gradient descent with momentum (20) is
used for optimization.We set themomentum to 0.9. The learning
rate is 0.001, and the decay rate is 0.99. Both recall (R) and
precision (P) for MM recognition are considered in diagnosis,
so the evaluation criterion F1 score is used to comprehensively
measure the performance of the proposed method, which is
calculated as Equation (4).

F1 =
2× P × R

P + R
(4)

3.2. Results of Patch Classification
In order to verify the effectiveness and recognition performance
of the algorithm, the proposed method is compared with
some popular algorithms in recent years, including Inception
V3 (21), ResNeXt (22), SENet (19), and ResNeSt (23). The
experimental results are shown in Table 1, the higher the values
of F1, recall, precision, and accuracy, the better the recognition
performance. The F1 values of all algorithms exceeded 90%,
except Inception V3, and the scores of the proposed method
also achieved the best results. SENet and ResNeSt, containing
the channel attention module, outperform other comparison
algorithms, indicating that the channel attention mechanism
improves performance.

The proposed method outperforms all the comparison
algorithms for the same number of layers, mainly benefiting
from the deformable convolution, the channel attention, and the
multi-scale feature fusion. In particular, the learning capability
of multi-scale features in the proposed method effectively adapts
the different scale samples. It sufficiently learns the feature
information of melanoma in the training and validation datasets
and has better robustness on the testing dataset. Therefore, the
proposed algorithm outperforms other algorithms on the WSI
test dataset.

3.3. Results of the Probability Map
The prediction results of patch images containing prediction
labels and confidence probabilities are combined with the
location information to generate the probability map. The
visualization results of a WSI containing malignant melanoma
tissues are shown in Figure 5. The probability of being predicted
as MM tissues is visualized as different colors, from 0 to
1. The threshold of malignant tissues and benign tissues is
set to 0.5; red regions display the recognized MM tissues.
The prediction results of some difficult samples of different
algorithms are compared, and the proposed method provides the
most correctly recognized patches, marked by green boxes, while
other comparison algorithms provide some incorrect recognition
results, marked by red boxes. The results indicate that the
proposed method can obtain more accurate recognition results
in WSIs.

3.4. Ablation Analyses
To analyze the contributions of multi-scale feature fusion,
deformable convolution, and channel attention in the proposed
method, ablation analyses are performed for these impacts. The
results of ablation analyses are shown in Tables 2–4, the higher
the values of precision, recall, accuracy, and F1, the better the
recognition performance.

3.4.1. Multi-Scale Features

The proposed method realizes multi-scale feature fusion by
constructing additional branch paths and adopting shortcut
connections between fused features and the fully connected
layers. Low-level features containing more detail information
are expected to supplement the semantic features of high-level
features for enhancing the classification capability of the model.
The experimental results of the networks with different numbers
of branch paths are shown in Table 2. The more branch paths
added, the higher the values of F1, recall, precision, and accuracy
obtained. It indicates that the prediction method based on
multi-scale features helps the proposed method to recognize
melanoma. In the results of F5/F4/F3/F2, the accuracy of the
proposed method decreases compared to F5/F4/F3, and the
other evaluation indicators show weak increases. It indicates
that multi-scale feature fusion should be carried out in an
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FIGURE 5 | The mosaic-style mask result of a WSI in the test dataset is generated through the probability map obtained through patch image classification. The

recognition results of some patches, which are difficult to recognize, through different algorithms are compared. A green box represents a correct prediction, and a red

box represents a misclassification. The probabilities of being predicted as MM tissues are marked in each patch image, and the threshold is 0.5.

TABLE 2 | The experimental results of the ablation analysis of multi-scale features, the higher the values of precision, recall, accuracy, and F1, the better the recognition

performance.

Multi-scale features Layer Precision Recall Accuracy F1

F5 50 0.9400 0.9457 0.9367 0.9428

F5/F4 50 0.9448 0.9633 0.9493 0.9540

F5/F4/F3 50 0.9590 0.9675 0.9567 0.9632

F5/F4/F3/F2 50 0.9683 0.9709 0.9498 0.9696

Bold indicate maximum values.

TABLE 3 | The experimental results of the ablation analysis of deformable convolution, the higher the values of precision, recall, accuracy, and F1, the better the

recognition performance.

Deformable convolution Layer Precision Recall Accuracy F1

None 50 0.9380 0.9509 0.9387 0.9444

DConv5 50 0.9396 0.9522 0.9402 0.9458

DConv5/4 50 0.9464 0.9563 0.9462 0.9513

DConv5/4/3 50 0.9604 0.9619 0.9569 0.9611

DConv5/4/3/2 50 0.9683 0.9709 0.9498 0.9696

Bold indicate maximum values.

appropriate range, and an excess of fusions will cause information
redundancy, which is not conducive to feature representation.

3.4.2. Deformable Convolution

The melanoma characteristics in the pathological images
are mainly enlarged and darkly stained nuclei with varying
shapes. This irregularity leads to the inadequate learning

of melanoma feature information by traditional convolution.
Deformable convolution is embedded into the convolution
layers of the proposed network to enhance irregular-shaped
feature representation ability. The experimental results of the
networks with different numbers of deformable convolution
layers are shown in Table 3, indicating that the more deformable
convolution layers embedded, the better the recognition
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TABLE 4 | The experimental results of the ablation analysis of channel attention, the higher the values of precision, recall, accuracy, and F1, the better the recognition

performance.

Channel attention Layer Precision Recall Accuracy F1

None 50 0.9320 0.9216 0.9222 0.9242

Backbone (B) 50 0.9340 0.9321 0.9256 0.9331

Shortcut (S) 50 0.9472 0.9552 0.9460 0.9512

Both B and S 50 0.9683 0.9709 0.9498 0.9696

Bold indicate maximum values.

performance of the proposed method. Accuracy decrease occurs
in the results of DConv5/4/3/2. It indicates that too many
deformable convolution layers may amplify the impact of noise
on learning and influence feature representation.

3.4.3. Channel Attention

Channel attention in the proposed method selectively enhances
information-rich features, allowing subsequent processing of the
networks to take full advantage of these features and suppress
noisy features. The experimental results of channel attention
with different numbers of layers are shown in Table 4, where
the B-case indicates that channel attention modules are only
embedded in the backbone network for feature extraction, and
the S-case indicates that channel attention modules are used
in the shortcut connection between fused features and fully
connected layers. The recognition performance of the model is
significantly improved after using channel attention modules.
However, both the embedded B-case and S-case can obtain
the best performance of the proposed method. This further
demonstrates that the embedding of channel attention can
facilitate positive network learning.

4. DISCUSSION

The pathological features related to melanoma are at different

scales, such as tissue, cell, and nucleus, and enhancing the
representation of multi-scale features is important for melanoma

recognition. From the experimental results, it can be concluded
that the residual block based on deformable convolution and
multi-scale feature fusion brings considerable performance
improvement in the patch-wise classification of WSIs.

The visual features of malignant melanoma and benign
nevi tissues are very similar, and the shape of the features is
irregular and has uneven distribution, which further increases
the difficulty of recognition. When learning the feature space
of a histopathological skin image, the traditional convolutional
network is limited by its fixed spatial geometric structure, as
shown in Figure 3, which is not suitable for the irregular
shape of lesions and the uneven distribution of melanoma cells.
However, the deformable convolution layers effectively avoid
the rectangular limitation of traditional convolution sampling.
The experimental results in Table 3 demonstrate that dynamic
convolution can better extract the features of tissue images. The
performance improvement of deformable convolution on the
model grows as the number of layers increases, which introduces
extra computational consumption but can be neglected for some
tasks with low real-time requirements.

Shortcut connections, also known as skip connections, show
considerable advantages in residual networks and U-shaped
networks. The residual connections ensemble the feature at
different layers through sum operation, and (24) put forward
similar views. The connections between the encoder and the
decoder in U-shaped networks, through deconvolution and
concatenation, realize the fusion of features at different scales.
In addition, extra information flows, brought by shortcut
connections, provide shorter paths for the transmission of
parameters in the forward- and back-propagation, reducing
information attenuation. These ideas are embodied in the
construction of the proposed networks. The additional branch
paths in the proposed network realize multi-scale feature fusion
through 1× 1 convolution, 2× up-sampling, and concatenation.
Another fusion of several fused features is performed through
the shortcut connections between the fused features and the fully
connected layers. The above operations are expected to enhance
feature representation and make contributions to improve MM
recognition precision.

In order to further analyze the influence of multi-scale
fusion on the quality of features extracted from the network,
t-distributed stochastic neighbor embedding (t-SNE) (25), a
manifold learning dimensionality reduction method, is used
to visualize the features extracted from the network with the
different number of feature fusion branch paths. The feature
vectors in the second-to-last layer of the full connection layers
are transferred from 1,024 dimensions to 2 dimensions and
visualized as shown in Figure 6. The higher the linear separability
of benign features and malignant features after dimensionality
reduction, the more beneficial the features extracted from the
network are for classification. The dimension reduction results
of F5, which represents the features extracted by the network
without multi-scale feature fusion, are shown in Figure 6A,
and some of the benign features are interspersed with the
malignant features. The results of F5/F4 shown in Figure 6B,
which represents the features extracted by the network with one
branch path for multi-scale feature fusion, show considerable
improvement. Figures 6C,D show more improvements, which
indicates that the additional branch paths for multi-scale
feature fusion improve the quality of the features extracted
by the network, enhancing the feature representation for MM
recognition, and finally provide more accurate MM recognition
results. This is consistent with the experimental results inTable 2.

5. CONCLUSIONS

This work proposes a novel automatic MM recognition method
in WSI based on multi-scale features and the probability map.
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FIGURE 6 | The visualization results of the features extracted by networks with different numbers of feature fusion branch paths. (A) F5, (B) F5/F4, (C) F5/F4/F3, and

(D) F5/F4/F3/F2. The feature vector in the second-to-last layer of the full connection layers are transferred from 1,024 dimensions to 2 dimensions through t-SNE. The

blue scatter plots represent malignant features, and the purple scatter plots represent malignant features. The higher the linear separability of benign features and

malignant features after dimensionality reduction, the more beneficial the features extracted from the network are for classification.

The idea that breaking up a WSI into patches and sub-patches
through multi-scale sliding cropping solves the difficult-to-
calculate problem of WSIs with huge sizes, and the probability
map is generated based on the predicted class and confidence
probabilities and location information of patch images to
visualize the recognition result ofMM tissues inWSIs. Additional
branch paths and shortcut connections are established for multi-
scale feature fusion, which realizes the information supplement
of low-level features containing more detail information to deep
features containing more semantic information. Deformable
convolution operations are embedded into the backbone
network to enhance the representation capability of irregular-
shaped features in tissues. Channel attention modules are
used in the shortcut connection between fused features and
fully connected layers, and also the backbone network to
highlight the high-value features and reduce the negative
impacts of information redundancy caused by additional
branch paths.

The results of comparison experiments indicate that
the proposed method outperforms Inception V3, ResNeXt,
SENet, and ResNeSt. The results of ablation analyses prove

the effectiveness of multi-scale feature fusion, deformable
convolution, and channel attention modules. Through the
proposed method, MM regions in WSIs can be recognized
accurately and efficiently, which is a great help to pathological
examination and the diagnosis of MM.
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Medical imaging provides a powerful tool for medical diagnosis. In the process of

computer-aided diagnosis and treatment of liver cancer based on medical imaging,

accurate segmentation of liver region from abdominal CT images is an important step.

However, due to defects of liver tissue and limitations of CT imaging procession, the

gray level of liver region in CT image is heterogeneous, and the boundary between

the liver and those of adjacent tissues and organs is blurred, which makes the liver

segmentation an extremely difficult task. In this study, aiming at solving the problem

of low segmentation accuracy of the original 3D U-Net network, an improved network

based on the three-dimensional (3D) U-Net, is proposed. Moreover, in order to solve the

problem of insufficient training data caused by the difficulty of acquiring labeled 3D data,

an improved 3D U-Net network is embedded into the framework of generative adversarial

networks (GAN), which establishes a semi-supervised 3D liver segmentation optimization

algorithm. Finally, considering the problem of poor quality of 3D abdominal fake images

generated by utilizing random noise as input, deep convolutional neural networks (DCNN)

based on feature restoration method is designed to generate more realistic fake images.

By testing the proposed algorithm on the LiTS-2017 and KiTS19 dataset, experimental

results show that the proposed semi-supervised 3D liver segmentation method can

greatly improve the segmentation performance of liver, with a Dice score of 0.9424

outperforming other methods.

Keywords: CT image, 3D segmentation of liver, semi-supervised, generative adversarial networks, feature

restoration

INTRODUCTION

Recent advances in deep convolutional neural networks (DCNN) have shown great promises in
handling many computer vision tasks such as target detection, image classification, and semantic
segmentation, which can usually reach human-level performance. However, one of the main
limitations of DCNN is that they require a large amount of labeled data for training process.
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This limitation is particularly prominent in dealing with medical
image segmentation problems. At present, the acquisition of
labeled three-dimensional (3D) medical images requires manual
annotation, which is time-consuming and labor-intensive,
limiting the further development of DCNN in medical image
processing. Moreover, 3D image segmentation for medical
applications needs great amount of computing resources,
hurdling its practical application. Although the neural network
has the characteristics of parameter sharing, it acquires a deeper
network structure to improve the performance of the model. As
the number of network layers increases, the parameter quantity
is increased proportionally. Therefore, the deep neural network
needs a large dataset to train the model for obtaining the
model parameters. In the absence of sufficient training data, the
neural network will have relatively low performance and poor
generalization ability.

In addition, there are some problems with liver tissue’s
structure and CT imaging procession. Firstly, due to the
differences in gender, age, and body type of patients, the shape
and size of the liver of individual patients are different in
appearance in their CT images. Moreover, there are many
abdominal organs of compact structure, with tissue density
similar to that of liver. Secondly, the area of the diseased area
in patients’ liver is not fixed in size and with random location
that will cause interference to the network in the process of the
liver recognition. Finally, there are problems such as sensitivity
to noise, metal artifacts, and body motion during the imaging
process of CT images, leading to variation of the gray value
of liver area due to the influence of the imaging environment,
resulting in uneven gray level of liver area, which affects the
accuracy of liver segmentation.

Aiming at the difficulty of liver segmentation in abdominal CT
images, this paper improves the contrast of the liver in the CT
images by preprocessing abdominal CT images, which improves
the recognition ability of the liver. Furthermore, semi-supervised
learning algorithms reduce the need of large amount of labeled
data. In recent years, generative adversarial networks (GAN) have
shown great potentials for improving semantic segmentation in a
semi-supervised manner (1). Thus, this study also employs GAN
to generate fake images by combining labeled CT images to train
the network in a semi-supervised manner, which can further
improve the algorithm’s performance of liver segmentation by
expanding the dataset.

The rest of this paper is organized as follows. In section
“Related Work”, we give a brief overview of relevant work on
liver segmentation. Section “Methods” then presents our 3D liver
image segmentation approach based on GAN, which is evaluated
and analyzed on the challenging task of liver segmentation in
section “Experiments and Discussion”. Finally, we conclude with
a summary of our main contributions and results.

RELATED WORK

Before deep learning was widely used, many methods have
been proposed for the liver segmentation of abdominal CT
images based on graphics, morphology, and traditional machine

learning. With the rapid development of deep learning and
its blossom in the field of computer vision, the direction of
research in the field of medical image segmentation has also
begun to transform to deep learning. In the field of liver image
segmentation, more and more methods based on deep learning
have also appeared.

Traditional Methods
Apollon proposed a hybrid liver segmentation algorithm based
on pixel intensity threshold (2). It manually selects multiple
initial seed points in the image and calculates the average pixel
intensity value of nine adjacent pixels of the selected seed
points to obtain the segmentation results of the liver image.
Amir proposed a two-step liver segmentation method based on
threshold and active contour by the contrast characteristics of
liver CT image data set, liver shape diversity, and uneven texture
(3). Seong proposed an abnormal liver segmentation method
based on the adaptive threshold and angle line (4). Moreover,
Farzaneh applied the Bayesian-based adaptive threshold to
address the issue of liver segmentation (5). This algorithm
adjusts the threshold through self-learning to obtain the initial
segmentation result of the target area. Then, super pixels are used
to constrain the boundary of the liver area for obtaining the final
segmentation result. Chen proposed an improved slice-to-slice
region growing method, which introduced centroid detection
and intensity analysis, and applied morphological operations
to extract the liver region (6). Gambino proposed a texture-
based volume region growth algorithm, which effectively reduced
the impact of artificially selected seed points (7). Lu proposed
an improved region growing algorithm for liver segmentation
(8). Firstly, the original image is preprocessed by the non-
linear mapping. Then, the feature region of the liver is selected
through human-computer interaction. Finally, it used the quasi-
Monte Carlo method to generate seed points in the feature
region, improving the region growth criterion. Rafiei proposed
an innovative preprocessing and adaptive 3D region growth
method, which uses the map intensity and position of the
most probable voxel in the probability map as the region
growth boundary to limit the region growth so as to realize the
dynamic changes of region growth criterion during the training
process (9).

The level set method was first proposed by Osher (10). It has
become a classic image segmentation algorithm and has been
successfully applied to medical image segmentation problems.
Yang proposed a semi-automatic method based on level set
and threshold, which includes two level set methods (11). Zhou
proposed a liver tumor segmentation algorithm of unified level
set by combining regional with boundary information, which is
better than applying a single information-driven level set method
(12). Alirr proposed a method for automatically segmenting
the liver from CT dataset (13). This algorithm utilizes the
local shape model and the estimated liver intensity range to
establish the initial mask, and then the active contour algorithm
is utilized to make the initial mask into the liver boundary.
Kass first proposed the active contour model (Snake model)
in 1988 (14). This method modeled the problem of image
segmentation and transformed it into the problem of minimizing
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the energy generalization function, which provided a new way of
image segmentation. Chi proposed an automatic strategy-based
active contour segmentation method for accurate and repeatable
liver volume segmentation, which combines rotating template
matching, K-means clustering, and local edge enhancement
with gradient vector flow model (15). Bereciartua proposed a
method for automatic 3D liver segmentation, which achieved
liver segmentation by minimizing the fully variable dual (16).

Chen proposed a two-step liver segmentation method
based on low-contrast images (17). In the first step, K-
Means clustering algorithm and prior knowledge are applied
to find and identify liver and non-liver pixels. In the second
step, the liver is segmented from the low-contrast image
based on graph cutting. Sangewar proposed a new variational
model for segmentation of liver regions based on the idea
of intensity probability distribution and regional appearance
propagation, which overcomes the poor segmentation results
caused by the low contrast and edge blur of liver CT
images (18).

Deep Learning Methods
Deep learning (DL), as a branch of machine learning, has
shown potentials in medical image segmentation (19).
When using deep convolutional neural networks for organ
segmentation, thanks to its powerful feature extraction
capabilities, it can accurately extract the complex and
semantically rich feature information of organs, making
the network have high segmentation capabilities (20). The
advantages of deep learning are incomparable to traditional
machine learning algorithms. Therefore, the current mainstream
segmentation algorithms are based on deep learning, and
the segmentation accuracy is generally better than traditional
segmentation algorithms.

There are various types of segmentation methods. Some
researchers applied two-dimensional (2D) convolutional neural
networks (CNN) to deal with liver segmentation by learning 2D
context of the image (21, 22). Others designed models with 3D
contexts only in small voxels due to the high computation cost
and memory consumption of 3D CNN (23–25). Furthermore,
they used several 2D CNNs that are combined to enhance 2D
contexts during the liver segmentation (26, 27). Finally, the
2D and 3D contexts were considered to fuse for training the
network (28–31).

For the research of live segmentation, Ben-Cohen directly
applied the full convolutional network on a relatively small
liver dataset for liver and lesion segmentation. However, the
segmentation results were not ideal (32). Christ proposed a way
to automatically segment liver and lesions in CT abdominal
images using cascaded fully convolutional networks and dense
3D conditional random fields for the joint segmentation of the
liver and its lesions to achieve ideal effect (33). Yao proposed a
cascade structure to realize automatic segmentation of liver CT
images (34). A fully convolutional network is trained to roughly
segment the liver, and then the conditional random field model
is used as a post-processing refinement liver segmentation to
improve the effect.

METHODS

Overview of the Framework
This paper proposed a semi-supervised 3D liver segmentation
method based on deep convolutional GAN (DCGAN), which
consists of the discriminator and generator. Among them, the
improved 3D U-Net network is applied as a discriminator to
identify real images and generated fake images and obtain the
3D segmentation results of the liver. Then, we design a DCNN
based on feature restoration method to generate fake images by
the feature map of the real images. The network structure of
the optimization segmentation algorithm based on the GAN is
shown in Figure 1.

Preprocessing
Data preprocessing is an important means to improve the
effect of deep learning training, which can adjust the overall
distribution of the sample to make it more suitable for training.
Improving the quality of the sample can make the model easier
to fit the feature distribution of the sample. In CT images, CT
value is used to measure the density of human tissues or organs
by the Hounsfield Unit (HU). The CT value range is generally
[−1,000HU, +1,000HU], in which air is −1,000HU and dense
bone is +1,000HU. Therefore, the CT value in the image needs
to be converted into gray value before the liver segmentation. The
main steps are as follows:

(1) CT value truncation: As the highest contrast range of the
liver in the images is [−200HU, +200HU], so we cut the CT
value to a certain range, which the CT values smaller and
larger than −200HU and +200HU are set to −200HU and
+200HU to accomplish the CT value truncation. Clipping
is used to improve the contrast between the liver and other
tissues. This is a key step in preprocessing CT images.
Without clipping, the segmentation performance of CT
images is poor, and after the clipping processing, the network
can also converge faster. In addition, this paper is mainly to
segment the liver, which is not sensitive to bony structure
information. By clipping the intensity range of CT images,
the interference of bones and other tissues can be reduced.

(2) CT value normalization: CT images in the dataset were
obtained from several image acquisition sources with various
scanning equipment and imaging environments, which led
to different imaging effects and grayscales. Such difference in
the gray level has a greater impact on the training process
of the samples. Therefore, it is necessary to eliminate the
influence of imaging differences as much as possible in the
process of converting the CT value to the gray value. T The
normalized formula is shown in Formula (1):

H′
(

x, y,z
)

=
H

(

x, y,z
)

−HUmin

HUmax−HUmin
, (1)

where the values of HUmax and HUmin are +200 and
−200, H(x, y, z) represents the CT value of the voxel with
coordinates (x, y, z) in the CT image before normalization,

and H
′

(x, y, z) represents the normalized value.
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FIGURE 1 | The schematic diagram of the semi-supervised deep learning framework for liver segmentation.

(3) Gray value interval mapping: The normalization is set to
facilitate the calculation and supervision of the training
process. In the normalization stage, we multiply the
normalized value by 255 according to the range of RGB value
and convert it to an integer. Moreover, the normalized value
below zero is invisible to the naked eye, therefore, it needs
to be multiplied by a reasonable value in order to make the
contrast of the image clearer. Thereby the CT value of [−200,
+200] is mapped to the gray value interval of [0, 255].

Improved 3D U-Net Network Structure
The U-Net model was originally designed to solve the task of
2D medical image segmentation, which all network layers in
the model are 2D. In order to realize the 3D segmentation
of the images, a 3D version of the U-Net model needs to be
applied. On the basis of not changing the original encode-decode
structure of model, all the network layers in the model are
replaced with a 3D type to obtain the 3D U-Net segmentation
model (35). The 3D U-Net network structure is used to segment
3D images through the extension of the classic U-Net network
in processing data dimensions. Compared with the classic U-
Net network structure, in addition to the difference in the
dimension of the convolution kernel, the 3D U-Net network
only performs three down-sampling operations followed by one

batch normalization (BN) layer. In this paper, the liver 3D
segmentation algorithm is to increase the performance of the
network by adding some modules on the basis of the 3D U-
Net network. The specific improvements and operations are
described as follows.

Squeeze and Excitation (SE) Module
The original 3D U-Net model only uses convolution to extract
features. This paper has added SE structure to extract image
features, which can weight each feature channel according to the
value of the feature image to increase the weight of important
features and reduce the weight of the irrelevant features, thereby
improving the effect of feature extraction. The SE structure is
an attention mechanism based on feature channel weighting
(36). In this paper, the 3D SE structure and convolutional
layer are combined as the basic convolution module, which
is called the SE module. The SE module consists of two
convolutional layers. The first convolutional layer adjusts the
resolution and the number of channels of the input feature map
to a specific size. In addition, it can compress the feature channel
to reduce the amount of calculation. The second convolutional
layer is utilized in conjunction with the SE structure. The SE
structure first performs global pooling on the feature map and
applies the bottleneck structure to finally obtain the weights
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of each channel with a value range [0, 1] by the sigmoid
activation function. The structure of the SE module is shown in
Figure 2.

Among them, W×H×D×C represents the size of the feature
map, W, H, and D represent the width, height, and depth of the
feature map, respectively, C represents the number of channels
of the feature map, and r is the multiple of the restoration of
the number of channels in the Excitation operation. Scale is a
weighted operation which is followed by the rectified linear unit
(ReLU) activation function to output the result.

Pyramid Pooling Module
The 3D U-Net model only uses three downsamplings to obtain
the receptive field of the 3D image, and it elevates the role of
shallow features by jump connections allowing the model to
determine the importance of different scale receptive fields. In
this study, we have introduced the pyramid pooling module to
obtain a larger receptive field (37). The pyramid pooling module
applies multiple scales of pooling operations to obtain and fuse
feature information of multiple scales, which can improve the
degree of freedom of the model for multi-scale receptive field
selection. It also can add multi-scale information of features
without affecting the original features. Furthermore, in order
to splice the original feature image with the pooling results of
different scales, it is necessary to make the pooling results of
different scales to be the same size as the original feature map.
This module enables each location to obtain the information of
multiple ranges. Thus, the maximum range can directly reach
the global size, and the module can quickly acquire a larger
variety of information. This article will use the 3D structure of
the module to obtain a larger range of receptive fields. Firstly,
we applied the 1 × 1 convolution operation to perform feature
channel fusion for each scale pooling result, and it is up-sampled
to the original feature map size and spliced. Then, the number of
feature channels is also reduced through the 1 × 1 convolution
operation, and finally spliced with the original feature map as
the output.

Improved 3D U-Net Model
In order to improve the segmentation accuracy of the original
3D U-Net network, an improved network based on 3D U-Net is
proposed to perform the 3D segmentation of the liver. Firstly,
all the convolutional layers in the original 3D U-Net network
are replaced with the SE module. The improved structure is a
deep learning model based on the encoder-decoder structure,
in which the encoder is composed of SE module and down-
sampling, which is mainly responsible for extracting features
and expanding the receptive field. The decoder consists of
SE module and up-sampling, which has the main function of
extracting features and expanding resolution. There is a skip
connection between the encoder and the decoder. The skip
connection splices the shallow features in the encoder with the
deep features in the decoder, and the shallow features provide
detailed information for the decoder. The purpose is to make the
network pay more attention to the feature information related to
the liver and increase its importance while reducing the role of
irrelevant information such as background, enabling it to obtain

a finer segmentation boundary. In addition, the pyramid pooling
module was introduced to make the network obtain multi-scale
feature information and expand the receptive field of network. In
the improved 3D U-Net network, the pyramid pooling module
is added at the end of the encoding path that has the smallest
resolution in the entire network. The modified network structure
is shown in Figure 3.

The encoding part is shown in the left half of the figure. In
the encoding part, the model applies four SE module groups of
which each module group consists of two SE modules. The first
convolution step in the first SE module is 2 while the number
of channels is increased. After the four SE module groups, we
have added the pyramid pooling module that contains 3 parallel
average pooling layers with sizes of 1, 2, and 5, respectively. The
encoding part includes a total of 4 down-sampling, which are
all performed by convolution with a step size of 2. The pyramid
pooling module is added to the end of the encoding path that is
the place with the smallest resolution in the entire network.

The decoding part is shown in the right half of the figure. The
first part of decoding consists of three SE module groups—each
of which contains two SE modules. The first SE module has two
inputs: one is the output from the previous layer of the decoding
part, and the other is the output from the corresponding position
of the encoding part. The module first applies the transposed
convolution with a step size of 2 to expand the output resolution
of the previous layer to double the original resolution, reduce
the number of channels to 1/2 of the original, and splice the
output at the corresponding position of the encoding part. After
that, it performs another SE convolution operation. After three
SE module groups, the feature image is restored to the original
image size using the transposed convolution. After splicing with
the original image, it obtains the final segmentation result.

Deep Convolutional Generative Adversarial
Networks (DCGAN)
At present, convolutional neural networks have been widely
applied in generative adversarial networks. However, generative
adversarial networks lacked a general network architecture until
the emergence of DCGAN, which is an unsupervised learning
algorithm combining deep convolutional neural networks and
generative adversarial networks (38). The design idea of DCGAN
is to restrict the network structure based on the original network
framework to achieve a more powerful generative model.

The generator of DCGAN generates fake images by
convolution and up-sampling of random noise, which is
widely used in the task of generating 2D images. To generate a
3D image, the effect of using random noise is very poor because
of the difficulty to learn the 3D image distribution through a deep
neural network. Learning high-dimensional image distribution
is very slow by using noise as input, while using 3D U-Net
network as a discriminator is very quick to converge during the
training process. The contradiction will cause the problem of
gradient dispersion. In addition, we have used random noise to
generate CT images. However, the contours of the CT images are
difficult to generate, let alone the internal distribution. In order
to generate more realistic 3D images, it is necessary to add more
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FIGURE 2 | The structure of SE module.

real image distribution information to replace random noise,
which can speed up the learning rate of the generator.

In this article, we design a convolutional neural network based
on feature restoration method. By extracting the feature map
generated by the improved 3D U-Net network, a part of the

feature map is randomly selected as the input of neural network
due to the following reasons. Recovering all the feature maps
is a reverse process of feature extraction, which the distribution
obtained is the same as the real image. If a part of the feature map
is selected, the generator will learn the real image distribution

Frontiers in Medicine | www.frontiersin.org 6 January 2022 | Volume 8 | Article 79496993

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


He et al. 3D Liver Image Segmentation

FIGURE 3 | Improved 3D U-Net model.

and complete the missing parts. Moreover, the image obtained
is different from the real image which increases the variety
of images and achieves the purpose of expanding the dataset.
Because the feature map is randomly selected, the missing part
is also random, and, therefore, the generator can be trained to
restore the real image at any position. In addition, the reason why
the feature map, rather than the partially missing real image, is
applied is that the real image contains much useless information,
which causes the generator to converge slowly. Through up-
sampling and convolution operations, a fake image with the same
size as the real image slice is obtained. After that, the feature map
of fake and real images are, respectively, extracted through the
improved 3D U-Net network, and the mean difference between
the two feature maps is applied as the loss. Then, the network
parameters of generator are updated through multiple iterations,
making the generator better restore the feature map and, also,
making a fake image closer to the real image. The generator
structure is shown in Figure 4.

The Definition of Label and Loss Function
The proposed segmentation optimization algorithm is semi-
supervised. There are fully supervised learning for labeled
data and unsupervised learning for unlabeled data and fake
images. Therefore, the labels need to be redefined so that the
discriminator can identify fake images. The original label defines
the background and liver as 0 and 1. Now a new label category
needs to be added to mark the fake images, in which the label
is defined as 2. The output size of the improved 3D U-Net
network is H×W×D×3, 3 represents the number of labels, the

output vector of each voxel is [li,1, li,2, li,3], which represents the
probability that the current voxel is false. In order to learn from
unlabeled data, its output is forced to be a label of the real data
that is achieved by maximizing the output vector.

The loss function of the discriminator is shown in
Formula (2):

Ldiscriminator = Llabeled+Lunlabeled + Lfake (2)

where Ldiscriminator is the loss of the discriminator, Llabeled is the
loss of labeled data, Lunlabeled is the loss of unlabeled data, and
Lfake is the loss of fake images generated by the generator.

For labeled data, we use cross entropy loss function to
calculate as shown in Formula (3):

Llabeled =−Ex,y∼pdata(x,y)

H×W×D
∑

i=1

logPmodel

(

yi|x,yi<K+1
)

(3)

where x represents the input image, K represents the number
of classes labels, y represents labeled image, x, y∼pdata(x, y)
represents that the input image is labeled, and pmodel(yi|x,
yi<K+1) represents the probability of the voxel prediction
category is yi in the image.

For unlabeled data, the loss function is shown in Formula (4):

Lunlabeled =−Ex∼pdata(x,y)

H×W×D
∑

i = 1

log
(

1− Pmodel

(

yi|x,yi<K+1
))

(4)
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FIGURE 4 | The generator structure.

where x represents the input image, x∼pdata(x, y) represents that
the input image is unlabeled, and pmodel(yi|x, yi<K+1) represents
the probability of the voxel prediction category is fake images.

For the fake images, the loss function is shown in Formula (5):

Lfake =−Ee∼Encoder(x)

H×W×D
∑

i=1

log Pmodel

(

yi = K+1|GθG (e)
)

(5)

where x represents the input unlabeled image, e∼Encoder (x)
represents the fake images generated by the generator based on
the unlabeled image distribution, and pmodel (yi =K+1|GθG(e))
represents the probability that the voxel prediction category is a
fake image in the fake images.

The loss function of generator is shown in Formula (6):

Lgenerator =
∥

∥Ee∼Encoder(x)f (x)−Ee∼Encoder(x)f
(

GθG (e)
)∥

∥

2

2
(6)

where x represents the input unlabeled image, f (x) represents the
extracted feature map from the unlabeled images through the 3D
U-Net network decoder, e represents the fake image generated
by the generator, f (GθG(e)) represents the extracted feature map
from the fake images through the 3D U-Net network decoder.

EXPERIMENTS AND DISCUSSION

Datasets
LiTS-2017 is a liver tumor segmentation challenge dataset
launched in 2017 (39). The data set includes 100 3D abdominal
CT scan images (nii format). In the experiment, 60 images were
selected as the training set, and the validation and test set contain
20 images, respectively. The training set is divided into 50 labeled
and 10 unlabeled images. The labeled and unlabeled images are
applied to train the segmentation network and generate fake
images. Firstly, we scale each image in the dataset and intercept
the liver position to change the size of the image to 256 × 256
× N. Then, the image is cut into patches with the size of 256
× 256 × 16 to obtain a total of 500 patches for training, which
the number of labeled and unlabeled patches is 400 and 100.
In the meantime, the validation and test set are processed to
contain 200 patches, respectively. Moreover, in order to verify

the generalization of the proposed model, we applied another
dataset, named KiTS19, which is a kidney tumor segmentation
challenge dataset launched in 2019 (40). The dataset includes
200 3D abdominal CT scan images (nii format). For the dataset,
we perform the same operations as the LiTS-2017. Finally, a
total of 1,000 patches are generated for training, of which the
number of labeled and unlabeled patches is 900 and 100. In the
meantime, the validation and test set are processed to contain
210patches, respectively.

Evaluation Etrics
To evaluate the segmentation performance of the proposed
network, we adopted the widely used segmentation evaluation
metric: Dice coefficient (Dice) (41). Dice is a function of ensemble
similarity measurement to calculate the similarity of two samples
with the range [0, 1] at the pixel level. The real target (Ground
truth) appears in a certain area A, and the target area of themodel
prediction result is B. Then the calculation of Dice is shown in
formula (7):

Dice (A,B) =
2 |A ∩ B|

A+B
(7)

where |AnB| represents the intersection between A and B, |A| and
|B| represent the total number of A and B pixels, respectively.
Because there are overlapping elements between A and B in the
denominator A + B, it adds a coefficient 2 to the numerator. In
the problem of medical image segmentation, A and B represent
the real label image and the segmented image predicted by
the model.

Training Process
Generation of Fake Images
Firstly, the unlabeled image is input into the improved 3D U-Net
network to obtain the feature map. Then, we randomly select a
part of the feature map as the input of the generator. Finally,
the generator generates fake images base on feature restoration
method. The flowchart is shown in Figure 5.

Discriminator Training
The labeled, unlabeled, and fake images are, respectively, passed
into the discriminator, and then the loss of the discriminator
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FIGURE 5 | The flow chart of generating fake images.

is calculated to update the gradient of the discriminator. The
flowchart is shown in Figure 6.

Generator Training
The fake and unlabeled images are, respectively, passed to the
improved 3D U-Net network after the gradient update to obtain
the feature map, and the generator loss is calculated according
to the similarity of the feature map to update the gradient of the
generator. The flowchart is shown in Figure 7.

The Results of Generated Images
The experiment proves that the fake image is very close to the real
image by the feature restoration method, and the speed of the
network learning distribution is faster than that of the network
using random noise as the input, which avoids the problem of
gradient dispersion. The fake images generated by the generator
is shown in Figure 8.

Experimental Results
Comparison of Experimental Results
For each group of experiments, the segmentation results were
verified on the same public dataset LiTS-2017. In the process of
network training, the Adam optimization algorithm is applied,

the learning rate of discriminator and generator are set to
10−4 and 3 × 10−4, and the batch size is set to 1. We have
trained the original 3D U-Net network, the improved 3D U-Net
network, and the generative adversarial network based on the
feature restoration method, respectively, and set up comparative
experiments for the improvement of each part.

In this study, each ablation experiment uses the same training
set, verification set and the test set, of which results are shown
in Table 1. From the comparison experiment, it can be seen
that the improved 3D U-Net network has improved compared
with the original 3D U-Net network in the validation set. The
improved 3D U-Net network also has a certain improvement
over the original 3D U-Net in the test, especially the introduction
of the GAN. The addition of the GAN not only improves the
segmentation effect of the training set and validation set, but also
improves the performance of the test set. For the improvement of
segmentation performance, we have analyzed the contribution of
each module, which are presented as follows.

Similar to the attention mechanism, the SE module integrated
in the original 3D U-Net network extracts the relationship
between the channels using the global information of each
channel and weights each channel. The SEmodule can determine
the importance of various features according to the value of each
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FIGURE 6 | The flow chart of discriminator training.

FIGURE 7 | The flow chart of generator training.
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FIGURE 8 | Fake images generated by the generator: (A) 1,000 iterations; (B) 5,000 iterations; (C) 10,000 iterations; (D) 15,000 iterations; (E) 20,000 iterations; (F)

Real images.
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TABLE 1 | Comparison of experimental results on the LiTS-2017 dataset.

Method Validation set Test set

dice coefficient dice coefficient

3D U-Net 0.9160 0.881

3D U-Net+SE+Pyramid pooling 0.9304 0.905

3D U-Net+SE+Pyramid pooling+GAN 0.9638 0.942

The bold values represent the highest score.

TABLE 2 | Comparison of experimental results with other methods.

Method Dice coefficient

DenseNet (42) 0.923

3D DenseUNet-65 (43) 0.929

FCN+ACM (44) 0.943

GIU-Net (45) 0.951

3D U-Net+SE+Pyramid pooling+GAN 0.942

The bold values represent the highest score.

channel, which can effectively improve the performance of the
model. Adding the pyramid pooling module, the application of
multi-scale pooling layer allows the model to obtain different
sizes of receptive fields, while further expanding the receptive
field of model. The two operations, together, improve the feature
extraction capability of the model. Furthermore, the GAN,
based on the feature restoration method, can generate more
diverse images containing real distribution information. On a
limited dataset, it can improve the segmentation performance
and generalization of the model, which is a promising way for
the generation of 3D medical images.

Finally, we have compared the proposed algorithm with
others. As shown in Table 2, our algorithm is better than
the DenseNet and 3D DenseUNet-65 algorithms (42, 43). In
addition, the performance of the proposed method is slightly
lower than the FCN+ACMmethod (44). The GIU-Net algorithm
(45) outperformed our proposed model for liver segmentation.
A suitable explanation for that is that they utilized more data
to train the model, while our model is trained on a limited
dataset. In the future, we will further improve the performance
and reduce the complexity of the model.

The Segmentation Results
The partial segmentation result is selected from the test set
as shown in Figure 9. The first column is the original image,
the second column is the ground truth, and the third and last
column are the segmentation results by the original 3D U-Net
and proposed algorithm. It can be found that using the proposed
algorithm, the 3D segmentation results of the liver are very
close to the real labels, which the problem of poor segmentation
accuracy of head and tail regions of the liver has been improved.
In order to further analyze the segmentation results, we have also
supplied the 3D surface plots with the color bar of the Hausdorff
Distance (HD).

In Figure 10, the first row is the 3D surface plot generated by
the original 3D U-Net network for two representative test data,
while the second row is generated by the proposed algorithm.
As we can see in the left column, the HD values of these
two algorithms are relatively high. The 3D surface plot above,
generated by the original 3D U-Net network, has a redundant
prediction (the blue area) and obtains an HD value of 18.68mm.
The 3D surface plot below is generated by the proposed algorithm
that has some outliers with the purple area, which has a greater
impact on HD obtaining the HD value of 15.33mm. In addition,
the average symmetric surface distance (ASSD) values are 0.93
and 0.64mm for the original 3D U-Net network and proposed
algorithm, respectively. For this test data, the segmentation
results of the two algorithms are not very good. However, the
proposed algorithm still performs better than the original 3D U-
Net network. For the right column, the segmentation effect of the
two algorithms is better than the previous one. The 3D surface
plot above was generated by the original 3D U-Net network
whose boundary segmentation is not ideal. In this case, the HD
value of 9.70mm. The 3D surface plot below is generated by the
proposed algorithm that is better than that the original 3D U-
Net network and reduces the HD value (8.06mm). Moreover,
the average symmetric surface distance (ASSD) value of the
original 3D U-Net network and proposed algorithm are 0.93 and
0.87mm. For the scores of HD and ASSD, they are not as ideal
as the Dice coefficient, because that we use the Dice coefficient to
determine the end of training and the model is more inclined to
calculate Dice to a certain degree. In the future, we will further
improve the performance of the model.

Evaluation of Model Generalization
Generally speaking, a network model is proposed to solve
and optimize a certain problem for obtaining satisfactory
results. Therefore, most of models have poor generalization
ability and can only be applied to a certain area or
dataset. In order to establish a general network model, the
accuracy may be sacrificed. However, thanks to the powerful
generation ability of the generative adversarial network,
the distribution of different organs can be learned through
iteration to generate fake images. By this expansion of the
dataset, the generalization ability of the model can be greatly
improved. In this study, the proposed 3D liver segmentation
model is applied to the KiTS19 kidney dataset to test the
generalization ability of the model. The results are shown in
Table 3.

It can be seen from the experimental results that the model
still performs well for the 3D segmentation of the kidney.
Comparing with the classic 3D U-Net network, the accuracy of
kidney segmentation is significantly improved on the verification
set. Furthermore, the segmentation ability of the model is still
strong on the test set, even exceeding the performance of the
verification set.

The partial segmentation result is selected from the test set
as shown in Figure 11. The left column is the original image,
the middle column is the annotated kidney image, and the right
column is the segmentation result. It can be found that the 3D
segmentation results of the kidney are also very close to the real
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FIGURE 9 | Schematic representation of the liver 3D segmentation results.
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FIGURE 10 | Comparison of the 3D surface plots of the two algorithms.

labels. Since it is only to verify the generalization of the image
generation method based on feature restoration, it has not been
further analyzed. In the future, we will further study and verify
the general 3D image generation method.

The Contribution and Future Work
Aiming at the problem of low segmentation accuracy of the
original 3D U-Net network, an improved network based on
3D U-Net is proposed to perform the 3D segmentation of the
liver. In order to make the network pay more attention to the
characteristic information of the liver and reduce the role of
irrelevant information, such as background, we introduce the
squeeze and excitation (SE) module to the network. Meanwhile,
in order to allow the network to obtain feature information of
multiple scales and expand the receptive field of the network,
we also introduce the pyramid pooling module to the model.
Through the combination of the two modules, we have improved
the overall segmentation performance of the liver.

TABLE 3 | Comparison of experimental results on the KiTS19 dataset.

Method Validation set Test set

dice coefficient dice coefficient

3D-UNet 0.906 0.871

3D-UNet+SE+Pyramid pooling+GAN 0.959 0.959

The bold values represent the highest score.

In view of the lack of labeled 3D data, we embed the
improved 3D U-Net network in the GAN as the discriminator
and propose a semi-supervised liver segmentation method. The
limited labeled images and unlabeled images are used to train
the learning model to generate fake images for expanding
the dataset. Aiming at the poor quality of generating 3D
abdominal fake images by using random noise as input, a
DCNN based on feature restoration method is designed to
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FIGURE 11 | Schematic representation of the kidney 3D segmentation results.
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generate more realistic fake images using randomly selected
feature maps, which is embedded in the GAN as the generator.
Based on the feature restoration method, the generator can
make better use of the real image distribution information to
generate more realistic images, which increases the diversity
of the images.

However, the network has a large number of parameters,
which leads to a long training period when the computing
resources are limited. Because the data is 3D volume of the liver,
the encoder-decoder structure is applied to extract features and
restore 3D images every time during the training. In addition, the
generator needs to use the random feature map generated by the
encoding part of the improved 3D U-Net model to generate fake
images. Therefore, it takes up massive video memory during the
training of the model. In this study, the training of the proposed
model (100 epochs) required approximately 50 h on a single
NVIDIA GTX 1080Ti with 11 GB, indicating that each epoch
takes about 30min. The total parameters of the proposed network
are about 150 million, which is a relatively complex model.

Because the images take up too much memory, we can
optimize the network structure and adjust the efficiency of
the video memory to reduce the training time of the model.
Moreover, in the field of medical image processing, there are
many methods that use GAN to expanse datasets. However, by
now, there is no meaningful and universal quantitative way to
judge the authenticity of the composite images generated by
these methods. Therefore, the improvement and application of
generative adversarial networks in the field of medical image
processing is a direction worthy of in-depth research.

CONCLUSION

In this study, we mainly conduct a lot of research on
the 3D segmentation of liver CT images, which has mainly
achieved the following research results. Firstly, in view of
the poor effect of 3D U-Net network feature extraction and
insufficient accuracy of liver segmentation results, the SE

module and pyramid pooling module are introduced into
the 3D U-Net network to improve the accuracy of the

segmentation results. Secondly, in view of the difficulty in
obtaining labeled 3D CT images, the improved 3D U-Net
network is embedded in generative adversarial network as the
discriminator. In view of the poor quality of using random
noise as input to generate 3D abdominal CT fake images,
more real image distribution information is added to the input
of the network, and a deep convolutional neural network is
designed as the generator based on feature restoration method
to generate more realistic fake images. Finally, the network
model was applied in the 3D segmentation of kidney to test
the generalization ability of the model, which have showed that
the model can also obtain better segmentation results on the
kidney dataset.
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Background:Multiparametric magnetic resonance imaging (mpMRI) plays an important

role in the diagnosis of prostate cancer (PCa) in the current clinical setting. However,

the performance of mpMRI usually varies based on the experience of the radiologists at

different levels; thus, the demand for MRI interpretation warrants further analysis. In this

study, we developed a deep learning (DL) model to improve PCa diagnostic ability using

mpMRI and whole-mount histopathology data.

Methods: A total of 739 patients, including 466 with PCa and 273 without PCa, were

enrolled from January 2017 to December 2019. The mpMRI (T2 weighted imaging,

diffusion weighted imaging, and apparent diffusion coefficient sequences) data were

randomly divided into training (n = 659) and validation datasets (n = 80). According

to the whole-mount histopathology, a DL model, including independent segmentation

and classification networks, was developed to extract the gland and PCa area for PCa

diagnosis. The area under the curve (AUC) were used to evaluate the performance of

the prostate classification networks. The proposed DL model was subsequently used in

clinical practice (independent test dataset; n = 200), and the PCa detective/diagnostic

performance between the DL model and different level radiologists was evaluated based

on the sensitivity, specificity, precision, and accuracy.

Results: The AUC of the prostate classification network was 0.871 in the validation

dataset, and it reached 0.797 using the DL model in the test dataset. Furthermore, the

sensitivity, specificity, precision, and accuracy of the DL model for diagnosing PCa in the

test dataset were 0.710, 0.690, 0.696, and 0.700, respectively. For the junior radiologist

without and with DLmodel assistance, these values were 0.590, 0.700, 0.663, and 0.645

versus 0.790, 0.720, 0.738, and 0.755, respectively. For the senior radiologist, the values

were 0.690, 0.770, 0.750, and 0.730 vs. 0.810, 0.840, 0.835, and 0.825, respectively.

The diagnosis made with DL model assistance for radiologists were significantly higher

than those without assistance (P < 0.05).
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Conclusion: The diagnostic performance of DL model is higher than that of

junior radiologists and can improve PCa diagnostic accuracy in both junior and

senior radiologists.

Keywords: prostate cancer, deep learning, magnetic resonance imaging, segmentation, detection

INTRODUCTION

Prostate cancer (PCa) is a major public health problem,
representing the most common cancer type and the second
highest cancer mortality among men in western countries (1).
Multiparametric magnetic resonance imaging (mpMRI) plays
an important role in diagnosis, targeted puncture guidance,
and prognosis assessment of PCa in the current clinical
setting (2). However, the performance of mpMRI usually varies
based on the experience of radiologists at different levels (3),
and the demand for MRI interpretation is ever-increasing.
A convolutional neural network (CNN) approach, which can
surpass human performance in natural image analysis, is
anticipated to enhance computer-assisted diagnosis in prostate
MRI (4, 5).

The CNN-based deep learning (DL) method revolutionizes
and reshapes the existing work pattern. Diffusion weighted
imaging (DWI), apparent diffusion coefficient (ADC), and T2-
weighted imaging (T2WI) sequences are probably the most
important and practical components of clinical prostate MRI
examinations (6, 7). Several previous studies on DL involved a
PCa diagnosis using only one or two of the above sequences
and thus cannot be directly compared with clinical performance
(8, 9).

Some studies focused on DL models with MRI data labeling
based on biopsy locations that were determined by radiologists
(10), which could result in inaccurate labeling. Whole-mount
tissue sections, in which the entire cross-section of tissue
from the gross section is mounted to the slide, provide
pathologists with a good overview facilitating the identification
of tumor foci (11–13). The use of prostate specimen whole-
mount sectioning provides significantly superior anatomical
registration for PCa than just mpMRI. Herein, we propose that
the radiologists label PCa lesions on the MRI images using
whole-mount histopathology images as reference to increase the
accuracy of the labels.

In this study, a DL method was proposed to automatically
conduct prostate gland segmentation, classification, and regional
segmentation of PCa lesions, and subsequently compare
its diagnostic efficiency with different level radiologists in
clinical practice.

MATERIALS AND METHODS

This retrospective study was approved by the Ethics Institution
of Nanjing Drum Tower Hospital, and informed consent was
waived since T2WI, DWI, and ADC sequences are part of the
routine protocols for prostate MRI scans.

Patients
A total of 1125 patients who underwent prostate mpMRI
between January 2017 and December 2019 were enrolled in the
study. The inclusion criteria were as follows: (a) preoperative
mpMRI within 3 months of surgery or puncture, (b) radical
resection and whole-mount histopathology-confirmed PCa, and
(c) mpMRI/ultrasonography (US) fusion target-guided biopsy or
surgery confirmed non-PCa. Patients without PCa were defined
as having negative biopsy or surgery. The exclusion criteria
were (a) a history of treatment for prostate disease (radiation
therapy, focal therapy, etc.), (b) incomplete imaging sequences,
(c) severe MRI artifacts (missing sections, motions, etc.), and (d)
unavailable whole-mount history. All MRI scans were reviewed
in consensus by two radiologists, a 5-year junior and 10-year
senior radiologist specializing in genitourinary imaging. A total
of 739 patients, including 466 patients with PCa and 273 patients
without PCa, were included for training and validation in the
model. The independent dataset was consecutively collected from
January 2020 to June 2020 with the same inclusion and exclusion
criteria as mentioned above. A flowchart of the patient selection
is shown in Figure 1.

MR Imaging
Patients were scanned using two 3.0 T MRI scanners (uMR770;
United Imaging, Shanghai, China and Ingenia; Philips
Healthcare, Best, the Netherlands) with the same sequences
and standard phased array surface coils according to the
European Society of Urogenital Radiology guidelines. T1WI,
T2WI, DWI and ADC sequences were acquired. Detailed
parameters for transverse DWI (b-values of 50, 1,000, and
1,500 s/mm2) were as follows: repetition time (TR), 5,100ms;
echo time (TE), 80ms; field of view, 26 ×22 cm; and thickness,
3mm. Low b-value images were acquired at 50 s/mm2 to avoid
perfusion effects at a b-value of 0 s/mm2. ADC maps were
calculated from the b-value (1,500 s/mm2) using the scanner
software. T2WI, DWI (b-values of 1,500 s/mm2), and ADC
(b-values of 1,500 s/mm2) sequences were used in this study.

Histopathology
All the cases were confirmed by mpMRI/US fusion-guided
targeted biopsy, and patients with PCa were further confirmed
by radical resection and whole-mount histopathology. All the
biopsies were conducted using the MRI-trans rectal ultrasound
scan (TRUS) image registration system (Esaote R© and RVS R©).
Whole-mount specimens were sliced from the apex to the base at
3-mm intervals following prostatectomy. All the specimens were
examined by two independent urological pathologists.
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FIGURE 1 | Study flowchart of patient selection. PSA, prostate-specific antigen; mpMRI, multiparametric MRI; US, ultrasound.

Prostate Gland and Cancer Region
Labeling Referenced by Whole-Mount
Histopathology Image in the Training and
Validation Datasets
Based on the whole-mount histopathology images, the prostate
gland and all the cancer regions on T2WI, DWI, and ADC
sequences were labeled by two radiologists (with 5 and 10 years
of expertise, respectively) under the supervision of a superior
radiologist (with 15 years of expertise) using the open-source
software ITK-SNAP (http://www.simpleitk.org, version 3.8.0).
The workflow is illustrated in Figure 2.

The DL Network Structure
A CNN was constructed for prostate gland segmentation,
classification, and cancer region segmentation/detection tasks.
The model structure is illustrated in Figure 3.

First, a prostate gland segmentation network based on the
T2WI sequence was implemented to obtain a mask of the gland.

The mask was subsequently cropped to obtain three image
patches including the gland on T2WI, DWI, and ADC sequences.
Second, a prostate classification network based on the image
patches from the T2WI, DWI, and ADC sequences was used to
determine whether the gland had PCa lesion(s). If the gland was
abnormal, a PCa segmentation network was used to obtain the
lesion region. It is worth noting that the T2WI, DWI, and ADC
patches were obtained based on the prostate gland segmentation
results and were of fixed and similar sizes, including the gland.

The prostate gland segmentation network was based on V-
Net (14), as shown in Supplementary Figure 1. The classification
network was based on dense convolutional network (DenseNet)
(15), which was used to determine whether the gland was normal.
DenseNet connects each layer to every other layer in a feed-
forward fashion. The feature maps of all the preceding layers
were used as inputs for each layer, and their feature maps were
used as inputs to all the subsequent layers. Prostate cancer lesion
segmentation was also performed based on the image patches of
T2WI, DWI, and ADC sequences. To obtain a more accurate
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FIGURE 2 | Flowchart of region of interest delineation for prostate cancer lesion. All the prostate cancer lesions were manually labeled on the magnetic resonance

images using whole-mount histopathology as a reference. Representative cases of prostate cancer in different zone distributions: (A) the lesion is in the left peripheral

zone, (B) in the right peripheral and transition zone, and (C) in the transition zone and anterior fibromuscular stroma.

FIGURE 3 | Flowchart of the study. The blocks highlighted in blue (prostate gland segmentation network, prostate cancer classification network, prostate cancer

segmentation/detection network) denote network models used in our study. “Crop” represents a fixed size region of interest (ROI) to crop the prostate gland according

the result of the prostate gland segmentation network. The cropped ROI of ADC and DWI would be registered to the cropped ROI of the T2-weighted imaging (T2WI)

and then three cropped ROI would be fed into the prostate cancer classification network. “Positive” represents the positive output of the classification network; in that

case, the cropped ROI would be fed into the prostate cancer segmentation network to obtain the lesion region. “Negative” represents the negative output of the

classification network; in that case, the cropped ROI would not be fed into the prostate cancer segmentation network.

cancer region, the Up-Block in V-Net was changed to an Up SE-
Block, which adds a squeeze-and-excitation operation following
two convolutions, as shown in Supplementary Figure 2.

Training and Optimization Details
In this study, all the networks were implemented using
the PyTorch framework and Python 3.7. All the learning
computations were performed on a Tesla V100 DGXS GPU with

32 GB of memory. The adaptive moment (Adam) algorithm was
applied to optimize the parameters of the prostate segmentation
network. The training dataset was randomly shuffled, and a batch
size of four was selected. The stochastic gradient descent (SGD)
algorithm was applied to optimize the parameters of the PCa
network (15). The training dataset was randomly shuffled, and
a batch size of 12 was selected. Finally, the Adam algorithm
was applied again to optimize the parameters of the PCa
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TABLE 1 | Clinical and imaging characteristics of the included patients.

Characteristics Training dataset Validation dataset Test dataset F/χ² P

n = 659 n = 80 n = 200

Age, mean ± SD(y) 68.1 ± 7.8 67.5 ± 5.4 67.7 ± 7.4 0.53 0.58

Prostate cancer, n (%) 425 (64.5) 41 (51.3) 100 (50) 17.22 <0.01

Non prostate cancer, n (%) 234 (35.5) 39 (48.7) 100 (50)

tPSA level (ng/ml) 17.8 ± 22.2 14.9 ± 15.7 15.9 ± 22.1 0.91 0.40

Prostate cancer 15.3 ± 21.3 22.0 ± 23.1 13.1 ± 17.7 0.04 0.96

Non prostate cancer 9.0 ± 5.3 7.35 ± 4.7 9.1 ± 6.4 1.18 0.31

Prostate cancer lesion numbers 500 59 127

Prostate cancer zone distribution, n (%)

PZ 315 (63.0) 42 (71.2) 78 (61.4) 5.37 0.49

TZ 146 (29.2) 10 (16.9) 38(29.9)

AFS 3 (0.6) 0 1 (0.8)

Mixed 36 (7.2) 7 (11.9) 10 (7.9)

The data are reported as the mean ± standard deviations.

PSA, prostate-specific antigen; PZ, peripheral zone; TZ, transitional zone; AFS, anterior fibromuscular stroma.

region segmentation network. The training dataset was randomly
shuffled, and a batch size of four was selected. During the
training process for the prostate gland and cancer segmentation
networks, the Dice loss was adopted, and the network weights
were updated using the Adam optimizer with an initial learning
rate of 0.0001. During the training process for the classification
network, the cross-entropy loss was adopted, and the network
weights were updated using SGD with an initial learning rate
of 0.1.

Image Analysis of the Junior and Senior
Radiologists for the Test Dataset Without
and With DL Assistance
The T2WI, DWI, and ADC images were imported from
the DICOM format into ITK-SNAP (version 3.8.0). The MR
images with and without DL delineations were independently
reviewed by two radiologists, a 5-year junior and 10-year
senior radiologist specializing in genitourinary imaging, who
were blinded to the pathological results. PI-RADS v2.1
(16) recommendations were used by the junior and senior
radiologists to evaluate the PCa likelihood of suspicious
areas on mpMRI for each patient (17), and the results
were divided into PCa (PI-RADS score 4-5 and partly PI-
RADS score 3 cases) and non-PCa. Particularly, referring
to PI-RADS score 3 cases, the final diagnosis would be
further made by another 20-year radiologist specializing in
genitourinary imaging.

Statistical Analysis
Continuous variables are described using mean ± standard
deviation, while categorical variables are described using
frequency and ratio. The chi-square test was used for the sample
size and location distribution. The DL model was verified using
the validation and test datasets. The Dice loss was used to
evaluate the performance of prostate gland and PCa lesion

segmentation networks. The cross-entropy loss and AUC were
used to evaluate the performance of the classification networks.
Furthermore, the sensitivity, specificity, precision and accuracy
were used to evaluate the diagnostic performance of the model in
clinical application.

RESULTS

Study Sample Characteristics
Patient demographic data and characteristics of the training,
validation, and test datasets are shown in Table 1. There were no
significant differences in the patient age or total prostate-specific
antigen (PSA) values among the three groups. In the training
dataset, there were 500 pathologically proven cancer lesions, with
315 lesions in the peripheral zone (PZ), 146 in the transitional
zone (TZ), 3 in the anterior fibromuscular stroma (AFS), and
36 in the mixed region. In the validation data set, there were 59
pathologically proven cancer lesions, with 42 lesions in the PZ,
10 in the TZ, 0 in the AFS, and 7 in the mixed region. In the
test dataset, there were 127 pathologically proven cancer lesions,
with 78 lesions in the PZ, 38 in the TZ, 1 in the AFS, and 10 in the
mixed region.

Performance of the DL Model in the
Training Dataset
The training epoch was set as 700 for the prostate
gland segmentation network, while the Dice loss values
converged to 0.068; the convergence graph is shown in
Supplementary Figure 3. A total of 330 epochs were set for
training the prostate classification model, and the cross-entropy
loss converged to 0.120; the convergence graph is shown in
Supplementary Figure 4. For the PCa segmentation model, the
network was trained for 240 epochs, when the value of the loss
function converged to 0.167. A convergence graph is shown in
Supplementary Figure 5.
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FIGURE 4 | The graph shows the receiver operating characteristic (ROC) curve for prostate classification network performance. The ROC curves for validation set (A)

and test set (B) show area under the curve (AUC) of 0.871 and 0.797, respectively. DOC1, senior radiologist; DOC2, junior radiologist.

TABLE 2 | Diagnostic performance of prostate cancer by different radiologists

and DL model.

Group Sensitivity Specificity Precision Accuracy

Junior radiologist 0.590 0.700 0.663 0.645

Senior radiologist 0.690 0.770 0.750 0.730

DL model 0.710 0.690 0.696 0.700

DL+Junior 0.790 0.720 0.738 0.755

DL+Senior 0.810 0.840 0.835 0.825

Junior and senior radiologist, experienced in interpreting prostate MRI (5 and 10 years,

respectively); DL, deep learnig.

Performance of the DL Model in the
Validation Dataset
For the prostate gland automatic segmentation efficacy, the Dice
loss values converged to 0.076, and the convergence graph is
shown in Supplementary Figure 3. For the prostate automatic
classification efficacy, the cross-entropy loss converged to 0.224,
and the convergence graph is shown in Supplementary Figure 4.
The AUC value for the prostate classification network was 0.871
(Figure 4A). For the prostate cancer automatic segmentation
efficacy, the Dice loss values converged to 0.484, as shown in
Supplementary Figure 5.

Diagnostic Performance of Prostate
Cancer by Different Radiologists and DL
Model in the Test Dataset
For the prostate automatic classification efficacy, the cross-
entropy loss converged to 0.236. The AUC value for the prostate

classification network was 0.797 in the test dataset (Figure 4B).
Table 2 shows the evaluation of the model’s diagnostic efficiency
in practical applications based on the sensitivity, specificity,
precision, and accuracy, with values of 0.710, 0.690, 0.696, and
0.700, respectively. For the junior radiologist without and with
DL model assistance, these values were 0.590, 0.700, 0.663,
and 0.645 vs. 0.790, 0.720, 0.738, and 0.755, respectively. For
the senior radiologist, the values were 0.690, 0.770, 0.750,
and 0.730 vs. 0.810, 0.840, 0.835, and 0.825, respectively. The
values obtained with DL model assistance for radiologists were
significantly higher than those without assistance (P < 0.05).
Figure 5 shows a representative PCa example of radiologist-
negative but DL model positive.

DISCUSSION

We proposed a DL model for improving the diagnostic ability
of PCa using mpMRI and whole-mount histopathology images
referenced delineations. The DL model diagnostic ability was
higher than that of a junior radiologist and can improve PCa
diagnostic accuracy in both junior and senior radiologists in
clinical practice.

MpMRI plays an important role in the diagnostic workflow
of patients with suspected PCa (18). DWI, ADC, and T2WI
are probably the most important sequences in the detection,
identification, and staging of PCa (19–21), and the DCE sequence
offers limited added value compared to T2+ADC+DWI (22).
According to PI-RADSV2.1, the role of the DCE sequence is only
helpful for score 3 lesions in the PZ (7). Some study also observed
that for DWI score 3 lesions in the PZ of biopsy-negative
patients, the DCE sequence had no significant increased value
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FIGURE 5 | Demonstrate representative prostate cancer (PCa) example of

radiologists negative (A–C) and deep learning (DL) model positive (D,E).

Images show a case of DL model segmentation in a 60-year patient in a test

set with prostate-specific antigen (PSA) of 5.59 ng/mL. Axial T2-weighted

image (A) shows an ill-defined area of little low signal in the right peripheral

zone (arrow), with slight restricted diffusion on apparent diffusion coefficient

(ADC) maps (B). (C) Diffusion weighted imaging (DWI) (b-value 1,500

sec/mm2 ) shows slightly increased signal in this region, with an obvious

conspicuity over background normal signal; this lesion would be PI-RADS

score 3 for magnetic resonance imaging (MRI). (D,E) show overlapping areas

between DL focused PCa region and genuine cancer location. The overlapped

areas are colored in red. The software ITK-SNAP was used to open the

probability map and MR images at the same time. Through the software

function, the probability map is displayed as a jet type color map and

overlappedon the T2 weighted imaging (T2WI) to obtain (E); The window width

and window level of the probability map is adjusted to 0.5 and 0.75

respectively to display the probability map of the detected cancer area and

overlapped on the image to obtain (D).

in improving the identification of PCa (13). So, we proposed a
DL model based on DWI, ADC, and T2WI sequences without
contrast medium injections. Furthermore, some previous studies
on DL model using only one or two of the above sequences
and thus cannot be directly compared with clinical performance
(8, 9).

The use of whole-mount histopathological specimens is
a strong reference standard. Moreover, Padhani et al. (23)
suggested that training datasets with spatially well-correlated
histopathologic validation should be used. Our previous studies
confirmed that whole-mount sections can be used as a reference
to obtain a highly accurate prostate lesion label on prostate
mpMRI (13). We subsequently labeled the PCa lesions on MR
images using whole-mount histopathology images as references.
Furthermore, the DL model was developed based on the classic
V-Net and DenseNet networks; SE-Block integrated variables
controlling also helped in improving the model accuracy and
performance (24). In our study, the DLmodel was used to extract
the gland and PCa areas, and accurately identify PCa compared
to the gold standard of histopathology. The AUC value was
0.797 for the prostate classification network in the test dataset,
and the accuracy of PCa detection/diagnosis was 0.700, which is
higher than that of several reports. For example, Ishioka et al.
(25) proposed a CNN deep learning model with AUCs of 0.645
and 0.636 in two validation sets, respectively. Moreover, our

independent test dataset is imported without gland or lesion
labeling in order to evaluate the model in real clinical work
scenarios. The average PSA level of non-PCa group in the test
dataset was 9.1 ± 6.4 ng/ml. It was a little high because all
the patients were confirmed by targeted biopsy or resection for
prostatitis, hyperplasia, or other prostate benign diseases; thus,
the differential diagnosis could be challenging (26).

Castillo et al. (27) systematically reviewed the performance
of machine learning applications in PCa classification based on
MRI, and found that only one paper (27 publications) compared
the performance of radiologists with or without DL model
assistance, and presented that evaluation should be performed
in a real clinical setting since the ultimate goal of these models
is to assist the radiologists in diagnosis. Seetharaman et al. (28)
developed a SPCNet model accurately detected aggressive PCa.
In our study, we evaluated the DL model in an independent test
dataset to assess its clinical application value and to compare
it with junior and senior radiologists. This DL model showed
higher accuracy than junior radiologist in diagnosing PCa
and slightly lower than the senior radiologist. Furthermore,
the DL model improved PCa diagnostic accuracy for both
junior and senior radiologists. This is similar to the findings
of Cao et al. (29), who presented a DL algorithm (FocalNet)
that achieved slightly but not significantly lower PCa diagnosis
performance than genitourinary radiologists. Additionally, some
studies demonstrated diagnostic accuracy for prostate cancer
using PI-RADS was 71.0 83.5%, which was similar with our
results, but PI-RADS usually varies based on the experience of
radiologists at different levels (30, 31).

Currently, most DL models are not fully automated diagnosis
systems; rather, they are adjunct tools that aid radiologists in
reading prostate mpMRI results. Kotter et al. (32) determined
that new DL technology would not threaten a radiologist’s career
but rather help strengthen his or her diagnostic ability. In
summary, our proposed DL model can improve PCa diagnostic
performance for both senior and junior radiologists, indicating
that DL assistance can potentially improve the clinical workflow.

Limitations and Outlook
There are several limitations to this study. First, all the patients
were recruited from a single center. This may have negatively
affected the performance of the model because larger and
more diverse patient groups improve the generalizability of the
classification algorithms. Second, the study was retrospective,
the clinical data and traditional image parameters were not
used in this study. Future studies should focus on multicenter
data, biomarkers, and optimized algorithms to produce more
reliable models for improving diagnosis, staging, and recurrence
prediction of PCa. At last, all the patients were scanned using
two 3.0 T MRI scanners in this study. The DL model may not
perform so well using images provided by different machines or
by a machine with a lower magnetic field.

CONCLUSION

In this study, we proposed an automated DL model for
the segmentation and detection of PCa based on mpMRI
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and whole-mount histopathology referenced delineations. The
diagnostic performance of DL model is higher than junior
radiologist and could be capable of improving the diagnostic
accuracy for both junior and senior radiologists and applying for
young radiologist training.
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Deep learning has achieved considerable success in medical image segmentation.

However, applying deep learning in clinical environments often involves two problems:

(1) scarcity of annotated data as data annotation is time-consuming and (2) varying

attributes of different datasets due to domain shift. To address these problems, we

propose an improved generative adversarial network (GAN) segmentation model, called

U-shaped GAN, for limited-annotated chest radiograph datasets. The semi-supervised

learning approach and unsupervised domain adaptation (UDA) approach are modeled

into a unified framework for effective segmentation. We improve GAN by replacing

the traditional discriminator with a U-shaped net, which predicts each pixel a label.

The proposed U-shaped net is designed with high resolution radiographs (1,024 ×

1,024) for effective segmentation while taking computational burden into account. The

pointwise convolution is applied to U-shaped GAN for dimensionality reduction, which

decreases the number of feature maps while retaining their salient features. Moreover,

we design the U-shaped net with a pretrained ResNet-50 as an encoder to reduce the

computational burden of training the encoder from scratch. A semi-supervised learning

approach is proposed learning from limited annotated data while exploiting additional

unannotated data with a pixel-level loss. U-shaped GAN is extended to UDA by taking

the source and target domain data as the annotated data and the unannotated data in

the semi-supervised learning approach, respectively. Compared to the previous models

dealing with the aforementioned problems separately, U-shaped GAN is compatible with

varying data distributions of multiple medical centers, with efficient training and optimizing

performance. U-shaped GAN can be generalized to chest radiograph segmentation for

clinical deployment. We evaluate U-shaped GAN with two chest radiograph datasets.

U-shaped GAN is shown to significantly outperform the state-of-the-art models.

Keywords: semi-supervised learning, unsupervised domain adaptation, generative adversarial network, medical

image segmentation, chest radiograph
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1. INTRODUCTION

Recently, deep learningmodels have gained increasing popularity
in medical segmentation. However, deep learning models with
supervision require substantial pixel-level annotated data to
achieve sufficient accuracy and prevent over-fitting (1–4). Pixel-
level annotation is expensive, especially with medical images,

because it is time-consuming and requires highly skilled
experts (3, 5). Therefore, medical image datasets are usually
small, which cannot meet the requirement of deep learning, due
to a lack of annotations (6, 7). Even if a model is well-trained
on a certain medical dataset, its accuracy decreases when it is
applied to unseen domains (8, 9). The deep learningmodels suffer
an accuracy drop between two domains due to domain shift (8).

These problems limit the application of deep learning models in
clinical environments.

An alternative to supervised learning is semi-supervised

learning, which involves using unannotated data to identify
specific hidden features of the dataset to facilitate prediction.
Semi-supervised deep learning using generative adversarial
networks (GANs) (10) has been highly successful (1, 2), especially
with nonmedical images (3). A semi-supervised GAN model
was proposed to distinguish between predicted probability maps
and the ground truth (2). In Souly et al. (1), a GAN was used
to generate fake images close to real images as learned by the
segmentation network. In medical segmentation, a few semi-
supervised models have been developed using the model in
Hung et al. (2) to improve the prediction accuracy with specially
designed loss functions for particular image types, such as
computed tomography of the liver (3), retinal optical coherence
tomography (11), and pediatric MRI (12).

Domain adaptation (DA) suffers domain shift by transferring
knowledge from the source domain to the target domain (13–16).
A popular solution is transfer learning, which fine-tunes parts
of a pre-trained model with annotated target domain data (13).
However, transfer learning approaches rely on additional
annotated data on the target domain, which is expensive or
sometimes impractical. Instead, unsupervised domain adaptation
(UDA) ismore appealing to generalizemodels in clinical practice.
UDA using GAN is becoming increasingly popular in the
medical field (14–16). GAN-based UDA models use generators
to transform the target data to the source domain, discriminate
the source data from the target data, and improve segmentation
accuracy with a specific training method (16), net structure (14),
or training loss (15).

Deep learning algorithms require large amounts of data,
which cannot be collected from a single medical center.
Therefore, data from multiple collection centers, comprising
large medical centers and small clinics, are required (17–19). The
large medical centers provide partly annotated datasets for semi-
supervised learning, while the clinics provide unannotated data.
The annotated and unannotated data may come from either the
same or different domains in the dataset collected from multiple
centers. A single model that can deal with the semi-supervised
and UDA approach at the same time is urgently needed.

To tackle the aforementioned problems, we propose an
improved GAN model, called U-shaped GAN, for medical

image segmentation. U-shaped GAN is improved by replacing
the traditional discriminator with a U-shaped net to assign
each pixel a label. Training the segmentation model with
images of high resolution is effective; however, it increases the
computational burden (20, 21). U-shaped GAN is designed with
high resolution radiographs for effective segmentation while
considering computational burden. The pointwise convolution is
applied to U-shaped GAN for dimensionality reduction, which
decreases the number of feature maps while retaining their
salient features. Moreover, the U-shaped net takes a pretrained
ResNet-50 as an encoder to reduce the computational burden
of training from scratch. A pixel-level semi-supervised loss is
proposed to leverage the unannotated data to assist the annotated
data for semi-supervised learning. U-shaped GAN is extended to
UDA with minimal modification. The semi-supervised learning
approach and UDA approach are merged into a single model to
handle datasets from multiple medical centers conveniently and
efficiently. We evaluate U-shaped GAN on lung segmentation
for radiographs.

To conclude the introduction, we outline the major
contributions of this work as follows:

(1) U-shaped GAN is proposed for high resolution medical
image segmentation while taking computational burden
into account.

(2) A semi-supervised learning approach is proposed to
overcome the lack of annotated data.We employ a pixel-level
semi-supervised loss that leverages the unannotated data to
assist the annotated data for segmentation.

(3) U-shaped GAN is extended to UDA with minimal
modification to transfer knowledge among different domains
without additional annotated data on the target domain.

(4) In our framework, the semi-supervised learning approach
and UDA approach are merged into a single model to
handle datasets from multiple medical centers conveniently
and efficiently.

2. METHODS

2.1. Background
In recent years, GAN has garnered considerable attention
because of its superior performance in terms of generating
images (2). GAN consists of a generator network G and
discriminator net D. G generates fake images close to real data
from a noise distribution deceiving the discriminator, while D
distinguishes the real images from fake ones. G and D can be
considered as two competitors in a min-max game with the
following formulation:

minGmaxD V(D,G) = Ex∼pdata(x)[log(D(x)real)]

+Ez∼pnoise(z)[log(1− D(G(z))real)],
(1)

where E is the expectation of a random variable, pdata(x) is the
real data distribution, and pnoise(z) is a noise distribution.D(∗)real
stands for the possibility that the sample is from the real data. G
transforms the noise variable z from the distribution pnoise(z) into
G(z). Themin-max game provides a useful feature representation
for auxiliary supervised discrimination tasks (22).
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2.2. Proposed Model
The goal of this study is to develop a unified framework for semi-
supervised learning and UDA. Analyzing the influence factors
in semi-supervised learning and UDA on chest radiographs,
we propose a similar solution for the semi-supervised learning
approach and UDA approach. A pixel-level semi-supervised
loss is proposed to leverage the unannotated data to assist the
annotated data for segmentation.

2.2.1. Semi-Supervised Learning
We propose a U-shaped GAN for semi-supervised lung
segmentation from chest radiograph datasets. U-shaped GAN
is based on the following hypothesis: the features in an ideal
representation correspond to the underlying causes of the data.
If label y is among the salient causes of data x, a suitable
representation for the probability distribution p(x) may also
be a suitable representation for computing the distribution of
conditional probability p(y|x) (23). The marginal probability
p(x) is related to the conditional probability p(y|x) through the
Bayes rule:

p(y|x) =
p(x|y)p(y)

p(x)
(2)

Under this hypothesis, we use the unannotated and annotated
data to find a representation for the radiographs. A particular
semi-supervised loss, which can be divided into a supervised
loss and an unsupervised loss, is proposed. The supervised
loss using the annotated data is employed for segmentation
prediction, and the unsupervised loss using the unannotated
data is utilized for a better representation of the whole dataset,
as shown in Figure 1A. The unannotated data generalize the
model as a regularizer. In U-shaped GAN, we employ a generator
to generate realistic data segmented by a multiclass classifier
(our discriminator) from the noise input, which in addition to
classifying the pixels into lungs, determines whether a given pixel
belongs to the real or generated data. The generator converges
the realistic data to the real distribution p(x) of the partly
annotated real data. This enables the discriminator to learn better
features to represent the radiographs and to filter irrelevant
individual features. Moreover, we employ the annotated data to
find the relations among those features and the segmentation
task. We modify a GAN by replacing the original discriminator
with a U-shaped net (24) for assigning a label to each pixel.
Training convolutional neural networks (CNNs) with a high
resolution is effective for lung segmentation (20, 21). U-shaped
GAN is designed for high-resolution chest radiographs. Unlike
the segmentation GAN (1), we use the semantic classes and
the background as an additional class for segmentation as the
background contains several unannotated organs that reflect the
imaging condition.

We improve GAN by replacing the traditional discriminator
with a U-shaped net, which, instead of predicting each image a
label, assigns to each pixel a label. The proposed end-to-end deep
learning model is illustrated in Figure 2. The discriminator acts
as a segmentation network to assign one of the following labels to
each pixel: lung class, background, or fake data. The annotated

data is used to train the discriminator D to minimize the loss
function Ll:

Ll = −Ex∼pdatal
(x,y)[log(D(y|x))], (3)

where pdatal (x, y) is the joint distribution of the pixel-level labels
y and pixel values x of the annotated data; the discriminator D
predicts the possibility D(y|x) of pixel x belonging to label y.

In semi-supervised learning, where the labels are partly
available among the training images, it is convenient to leverage
the unannotated data for estimating a representation with useful
features for segmentation. The true labels y of the pixels of the
unannotated data are set as real data. The loss function for
training the discriminatorDwith the unannotated data is defined
as follows:

Lu = −Ex∼pdatau (x)
[log(D(y|x))]

= −Ex∼pdatau (x)
[log(1− D(x)fake)],

(4)

where pdatau (x) is the distribution of pixels of chest radiographs
without annotation; D(x)fake is the possibility of the pixel
belonging to the fake data. In U-shaped GAN, there is no
output designed with the label “real data.” We used the 1 −

D(x)fake instead.
The generator Gmaps a random noise z to a sample G(z) that

is close to chest radiographs, while the discriminator D is trained
to label the generated sample G(z) as fake. The true labels y of the
pixels of the generated data are set as fake data. The loss function
for the discriminator D with the generated data is given as

Lg = −Ez∼pnoise(z)[log(D(G(z))fake)], (5)

where D(G(z))fake is the possibility of the generated pixel
belonging to the fake data.

We minimize the pixel-level discriminator loss LD with
respect to three types of input data, as follows:

LD = −Ex∼pdatau (x)
[log(1− D(x)fake)]

−Ez∼pnoise(z)[log(D(G(z))fake)]

−Ex∼pdatal
(x,y)[log(D(y|x))].

(6)

The first and second terms of LD are devised for unannotated data
as an unsupervised loss to increase the ability of the discriminator
to identify the real radiographs from fake ones and to find salient
features in the chest radiograph. The third term is devised for
annotated data as a supervised loss training D to find correct
relations among these features and the segmentation task.We use
a soft maximum over the outputs.D(y|x) for the annotated data is
a component of the 1−D(x)fake. Increasing the probabilityD(y|x)
will decrease the probability of D(x)fake. The third term has the
same effect as the first term and acts as an unsupervised loss
to increase the ability of the discriminating and salient features
finding. Weminimize the generator loss LG to train the generator
G as follows:

LG = Ez∼pnoise(z)[log(D(G(z))fake)]. (7)

Because all of the annotated and unannotated data contribute
to the discriminating ability of U-shaped GAN, G generates
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FIGURE 1 | (A) Overview of the proposed semi-supervised segmentation approach. We utilize an unsupervised loss to obtain a better representation for the

radiographs and a supervised loss to relate those features to the segmentation task. (B) Overview of the proposed unsupervised domain adaptation (UDA)

segmentation approach. We leverage U-shaped GAN to find a better representation with basic features supporting radiograph imaging with an unsupervised loss. The

distributions of the source and target data are aligned in this representation.

FIGURE 2 | Schematic description of U-shaped GAN. The generator transforms noise into fake images. The fake and real data are used to train the discriminator for

pixel-level predictions as lungs Clung, background Cback , and fake Cfake.

a distribution pg(G(z)) converging to the real distribution
p(x) of the whole dataset consisting of annotated and
unannotated radiographs.

2.2.2. UDA Approach
The chest radiographs from various sources acquired by the same
imaging modality differ in three aspects: image quality, image
appearance, and spatial configuration (8). The features relevant

to the basic imaging causes among the radiographs are similar.
Based on this property, we aim to develop a UDA approach to
find these similar features, filter features of individual domains,
and align the source and target domains in a representation,
which is similar to our semi-supervised learning approach. U-
shaped GAN is extended to UDA with minimal modification
and uses nearly the same training process in the semi-supervised
learning and UDA approaches. We use a U-shaped GAN to
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search for the aforementioned features with the annotated source
domain and unannotated target domain, as shown in Figure 1B.
The target data serves as the unannotated data in the semi-
supervised learning approach to generalize the model trained on
the source dataset. The source data serves as the annotated data
to ensure the accuracy of the segmentation task.

U-shaped GAN is extended to UDA, where only the source
data are annotated, and the labels of target data are not available.
The source and target domain data are used as the annotated and
unannotated data in LD, respectively, to train the discriminator.
The generator loss function is the same as LG in the semi-
supervised approach. The generator G produces the fake data
matching the aligned representation of the source and target data
in the min-max game of G and D. The fake data are close to the
real radiographs in both domains, and the discriminator learns
better features related to the basic imaging causes of radiographs.
U-shaped GAN then finds a suitable representation for the
radiographs of the target and source data. The distributions of
source and target data are aligned in this representation. LD and
LG encourage domain-invariant detectors to emerge in U-shaped
GAN. The annotated source data also guarantees the correct
segmentation prediction.

2.3. Network Architecture
U-shaped GAN is proposed to label each input image pixel
y as a lung, background, or fake pixel. The U-shaped net
is incorporated into the structure of GAN, serving as the
discriminator, to label each pixel. A schematic description of
U-shaped GAN is shown in Figure 2. Training CNNs at a
high resolution is effective for lung segmentation predictions;
however, it increases the computational burden (20, 21).
Therefore, we use a pointwise convolution layer followed by
two 4 × 4 fractionally strided convolution layers to form a new
generator block (Figure 3), instead of the fractionally strided
convolution layers used in deep convolutional GANs (25), to
achieve a high resolution of 1, 024 × 1, 024. The pointwise
convolution layer reduces feature dimensions while retaining
the salient features and leaves the 4 × 4 layers with
fewer parameters. This approach significantly reduces the
computational complexity. The model parameters decrease from
1.34 × 108 to 1.35 × 107 and the floating-point operations
(FLOPs) decrease from 5.84 × 108 to 1.53 × 108. In addition,
we improve U-shaped GAN with a modified U-shaped network
as the discriminator, as shown in Figure 4. The U-shaped net
consists of a feature encoder and decoder modules (24). We
replace the encoder with a pretrained ResNet-50 (26), which
further reduces the computational burden of training from
scratch. Moreover, ResNet-50 solves the degradation problem by
adding identity connections to the convolution network (26). The
feature decoder module restores the high-level semantic features
extracted from the feature encoder module. The modified
decoder module comprises four building blocks, as shown in
Figure 4. The fundamental building block mainly comprises a
3 × 3 convolution layer followed by a 4 × 4 fractionally strided
convolution layer. A pointwise convolution layer is used to
connect them to reduce relevant parameters. Skip connections
take information directly from the encoder to the decoder

FIGURE 3 | The overall structure of the proposed generator. The generator

block consists of a pointwise convolution layer and two 4× 4 fractionally

strided convolution layers. Conv3×3 denotes the 3× 3 convolution layer.

Conv1×1 represents the 1× 1 convolution layer.

layers and recover the information loss due to consecutive
pooling and striding convolutional operations (24). We use
instance normalization (27) followed by LeakyReLU activation
functions (28) between each layer.

3. EXPERIMENTS

3.1. Datasets
In our experiments, we utilize the Japanese Society of
Radiological Technology (JSRT) (29) and Montgomery County
(MC) datasets (30, 31). The JSRT dataset contains 247 posterior-
anterior (PA) chest radiographs, of which 154 contain lung
nodules and 93 have no nodules (29). The ground truth lung
masks can be obtained in the Segmentation in Chest Radiographs
dataset (32). The MC dataset contains PA chest radiographs
collected from the National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA. It consists of 80 normal
and 58 abnormal cases with manifestations of tuberculosis (30,
31). The ground truth lung masks are also contained in the
MC dataset.

3.2. Metrics
Several algorithms with different evaluation metrics are available
in the literature. We used two commonly used methods, the
Jaccard index and Dice score metrics, to compare U-shaped GAN
with the state-of-the-art models.

(1) The Jaccard index statistic is used for gauging the similarity
and diversity of sample sets. It shows the agreement between the
ground truth B and the predicted set of pixels A and is given as:

J(A,B) =
|A ∩ B|

|A ∪ B|
. (8)

(2) The Dice score measures the overlap between the ground
truth B and the predicted set of pixels A as follows:

D(A,B) =
2× |A ∩ B|

|A| + |B|
. (9)
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FIGURE 4 | The overall structure of the discriminator. ResNet block stands for the block used in ResNet-50. Conv3×3 indicates the 3× 3 convolution layer. Conv1×1

indicates the 1× 1 convolution layer. Decoder block mainly comprises a 3× 3 convolution layer and 4× 4 fractionally strided convolution layer. A pointwise

convolution layer is used to connect them.

3.3. Implementation Details
U-shaped GAN is implemented in Python using the PyTorch
framework. The gray chest radiographs are resized to 1, 024 ×

1, 024 and converted to RGB images compatible with the
pre-trained ResNet-50 before placement in the network. The
weights of ResNet-50 in our discriminator are pre-trained on
the ImageNet dataset (33). The default 5-fold cross-validation
is considered to train the semi-supervised model. In the semi-
supervised approach, U-shaped GAN is trained with the JSRT
or MC dataset with a portion of pixel-wise annotated data and
the remainder without pixel-level annotations with 500 epochs.
The Adam optimizer (34) is used to train 500 epochs of the
generator and discriminator with initial learning rates of 0.001
and 0.0001, respectively, and multiplied by 0.1 after 200 epochs.
For semi-supervised learning, we randomly select 12.5, 25, and
50% of the radiographs from the training set as the annotated
set, with the remainder forming the unannotated set. Moreover,
we train our model with 100% of the training dataset in the
supervised approach. An ablation study is performed to discover
the performance contribution from the modified architecture of
U-shaped GAN and the proposed pixel-level semi-supervised
loss. As in Li et al. (35), we train U-shaped GAN via the
semi-supervised approach and supervised approach with 35
annotated radiographs on the JSRT dataset andwith 24 annotated
radiographs on the MC dataset. The supervised approach is
conducted solely with the same annotated set and segmentation
network. Moreover, we explore the effect of U-shaped GAN
with the original GAN loss, called the original approach, by
adding classification layers to U-shaped GAN paralleling with
the decoder of our discriminator. The classification layers are
identical to those in ResNet-50. In the original approach, the
classification layers discriminate the real radiographs from the
fake ones, and our discriminator just works as a segmentation
network to predict the probability of belonging to the lungs of
each pixel in the original approach. For UDA, we first employ
the MC and JSRT datasets as the source and target domains,

TABLE 1 | Comparison of U-shaped generative adversarial network (GAN) with

the state-of-the-art semi-supervised model.

Dataset Model Main method Dice IoU

JSRT Li (35) Semi-supervised CNN(35) 0.967 -

U-shaped GAN Semi-supervised GAN(35) 0.971 0.944

The numbers after the main method are the numbers of the annotated radiographs

used in the semi-supervised approach. Numbers in bold indicate the best result among

the models.

respectively, and then swap their roles. We randomly split each
dataset into 7:1:2 for training, validation, and test sets. We train
U-shaped GAN similarly to the semi-supervised approach using
the source and target data as the annotated and unannotated
data, respectively.

4. RESULTS

4.1. Semi-Supervised Segmentation
U-shaped GAN is trained on the MC and JSRT datasets
independently. The comparison with the state-of-the-art semi-
supervised CNN (35) is shown in Table 1. As few semi-
supervised models on chest radiographs are available, we also
compare U-shaped GAN with 1) human observation (32); 2)
traditional methods (30, 36); and 3) supervised CNNs (21, 35, 37,
38). The comparison is shown in Table 2.

U-shaped GAN trained with 100% annotated data achieves
a performance increase of 0.4–10.8% over the state-of-the-art
traditional models and supervised CNNs on both the JSRT and
MC datasets. The results validate the effectiveness of the design
of the segmentation network.

Our semi-supervised model (Dice = 0.975, IoU = 0.951)
trained with 25% annotated data outperforms the state-of-the-art
supervised models and human observation on the JSRT dataset.
Our semi-supervised model (Dice = 0.968, IoU = 0.940) trained
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TABLE 2 | Comparison of U-shaped GAN with other lung segmentation methods for chest radiograph datasets.

Dataset Model Main method Dice IoU

JSRT Human (32) Human observation - 0.946 ± 0.018

Candemir (30) Traditional method 0.967 ± 0.008 0.954 ± 0.015

U-net (35) Supervised CNN 0.946 -

InvertedNet (21) Supervised CNN 0.974 0.950

Li (35) Supervised CNN 0.967 -

U-shaped GAN Supervised GAN 0.979 ± 0.001 0.958 ± 0.003

U-shaped GAN Semi-supervised GAN(25%) 0.975 ± 0.001 0.951 ± 0.002

MC Bosdelekidis (36) Traditional method 0.923 0.862

Candemir (30) Traditional method 0.960 ± 0.018 0.941 ± 0.034

U-net (37) Supervised CNN - 0.942 ± 0.046

Souza (38) Supervised CNN 0.936 0.881

U-shaped GAN Supervised GAN 0.976 ± 0.006 0.955 ± 0.010

U-shaped GAN Semi-supervised GAN(25%) 0.968 ± 0.011 0.940 ± 0.019

The number after the main method is the proportion of annotated radiographs from the training set in the semi-supervised approach. Numbers in bold indicate the best result among

the models.

with 25% annotated data outperforms the most state-of-the-art
supervised models but performs slightly worse than the U-net
model (IoU = 0.942) on the MC dataset. Our proposed semi-
supervisedmodel achieves outstanding performance with limited
annotated datasets. Moreover, U-shaped GAN outperforms the
state-of-the-art semi-supervised model (35) in both supervised
and semi-supervised settings by 1.2 and 0.8%, respectively.
Figure 5 shows a few examples of semi-supervised results with
U-shaped GAN. The ground truth contour of the lungs is shown
in green, and the segmentation result of the algorithm is in red.

We evaluate our approach with 12.5, 25, 50, and 100%
annotated radiographs (remaining portions consist of
unannotated radiographs). The annotated radiographs in
the data splits are randomly sampled from the whole dataset.
Notably, the approach works well even with 12.5% annotated
data, as shown in Table 3. For the details, readers are referred to
Supplementary Figures 1, 2.

We apply U-shaped GAN on a pneumothorax segmentation
dataset (39) with a semi-supervised approach. This dataset
contains 2,669 radiographs with annotated pneumothorax lesion
areas. U-shaped GAN shows promising performance on the
pneumothorax segmentation in the semi-supervised approach.
Most of the results predict rough areas of the pneumothorax
lesion correctly, which provides credible help to the radiologist
to find the lesion rapidly. For the details, readers are referred to
Supplementary Figure 3.

4.2. Unsupervised Domain Adaptation
We use the MC and JSRT datasets as the source and target
domains, respectively, and then swap their roles for UDA. The
performances of our UDA model on the target domains are
compared under various settings: 1) the model being trained on
source data and tested on the target domain with no DA (T-
noDA); 2) UDA model testing on the source domain (S-test); 3)
human observation (32); 4) UDA models with CNNs (15, 37).

As shown in Table 4, when directly applying the learned
source domain model to target data, the model performance
significantly degrades, indicating that domain shift would
severely impede the generalization performance of CNNs.
However, remarkable improvements are achieved by applying
the unsupervised loss on the target images. Compared to the
T-noDA results, the segmentation predictions increase by 3.3%
and 5.3% on the JSRT and MC datasets, respectively, with our
UDA approach.

Experimental results demonstrate a significant enhancement
in performance compared to other models. Compared with
other UDA models based on CNNs (15, 37), U-shaped GAN
achieves a significant improvement overMUNIT (5.7%), CyUDA
(4.0%), and SeUDA (2.1%). Moreover, U-shaped GAN is even
comparable to human observation. Figure 6 shows a few
examples of UDA results with U-shaped GAN. The ground truth
contour of the lungs is shown in green, and the segmentation
result of the algorithm is in red.

Compared to models trained with 100% annotated data on
source domains, the UDA models obtain similar accuracy on
the source domains (S-test). Therefore, U-shaped GAN is able
to improve results on the target domains while maintaining
segmentation performance on the source domains. For the
details, readers are referred to Supplementary Figures 4, 5.

4.3. Ablation Study
For the ablation study, we study the effectiveness of our modified
segmentation network, the architecture of U-shaped GAN, and
the proposed pixel-level semi-supervised loss. To demonstrate
the advantage of U-shaped GAN, we report the scores of U-net
(the original U-shaped net), U-shaped GAN trained with the
supervised approach, U-shaped GAN trained with the original
approach, and U-shaped GAN trained with our pixel-level loss.

First, the results of the comparison of our modified
segmentation network and the original U-shaped net are shown
in Table 5. The segmentation network of U-shaped GAN is
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FIGURE 5 | Semi-supervised results (25% annotated data) with U-shaped GAN. The radiographs from the Japanese Society of Radiological Technology (JSRT)

dataset and Montgomery County (MC) dataset appear at the top and bottom, respectively. Green and red contours indicate the true ground and automatic

segmentation results, respectively.

TABLE 3 | Comparison of the results of U-shaped GAN trained with different

proportions of annotated data.

Dataset Annotated data (%) Dice IoU

JSRT 100 0.979 ± 0.001 0.958 ± 0.003

50 0.977 ± 0.002 0.956 ± 0.003

25 0.975 ± 0.001 0.951 ± 0.002

12.5 0.964 ± 0.007 0.934 ± 0.008

MC 100 0.976 ± 0.006 0.955 ± 0.010

50 0.973 ± 0.007 0.949 ± 0.013

25 0.968 ± 0.011 0.940 ± 0.019

12.5 0.958 ± 0.021 0.922 ± 0.034

designed with high resolution radiographs following the main
idea of the U-shaped net (24). It is shown that our modified
segmentation network improves the prediction by 3.28% on the
JSRT dataset and 2.02% on the MC dataset when trained with the
whole annotated datasets.

Second, the effectiveness of the architecture of U-shaped
GAN is investigated. The U-shaped net is incorporated into
the structure of GAN leveraging unannotated data to assist
the segmentation task. By adding an original GAN loss to the
supervised approach, the Dice scores increase from 0.968 to 0.970
on the JSRT dataset and from 0.966 to 0.971 on the MC dataset.
The architecture of U-shaped GAN is successful in leveraging
unannotated data to find a representation for the whole dataset,
shown in Table 6.

Third, we show the comparison between results gained by
the GAN original loss and our pixel-level GAN loss with semi-
supervised training. The pixel-level GAN loss increases the
capacity of U-shaped GAN in finding the representation of the

TABLE 4 | Comparison of segmentation results among different unsupervised

domain adaptation (UDA) methods.

Dataset Model Main method Dice IoU

MC → JSRT Human

observation (32)

Human observation - 0.946

T-noDAg - 0.934 0.895

S-test - 0.981 0.963

MUNIT (37) UDA with MUNIT - 0.882

CyUDA (15) UDA with CycleGAN 0.928 -

SeUDA (15) UDA with CycleGAN 0.945 -

Our method UDA with GAN 0.965 0.932

JSRT → MC T-noDAg - 0.918 0.880

S-test - 0.980 0.961

Our method UDA with GAN 0.967 0.936

Numbers in bold indicate the best result among the models.

whole dataset. The segmentation results improve from Dice =

0.970, IoU = 0.941 to Dice = 0.971, IoU = 0.944 on the JSRT
dataset and Dice = 0.971, IoU = 0.945 to Dice = 0.973, IoU =

0.948 on the MC dataset, shown in Table 6.
Some results of U-shaped GAN with different training

approaches on confusing samples are shown in Figure 7. U-
shaped GAN seems to be resistant to interference by irrelevant
features, such as other organs and lesion areas, by using the
GAN architecture and to increase the resistant capability by the
pixel-level loss.

5. DISCUSSION

In this study, we propose U-shaped GAN to address the
scarcity of annotated data and domain shift. U-shaped GAN
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FIGURE 6 | UDA results with U-shaped GAN. The radiographs from the JSRT dataset with MC → JSRT UDA results are on the top; the radiographs from the MC

dataset with JSRT → MC UDA results are on the bottom. Green and red contours indicate the ground truth and automatic segmentation results, respectively.

TABLE 5 | Comparison of U-shaped GAN and U-net trained with the whole

dataset.

Dataset Model Main method Dice IoU

JSRT U-net (35) Supervised approach 0.946 -

U-shaped GAN Supervised approach 0.977 0.955

MC U-net (37) Supervised approach - 0.942

U-shaped GAN Supervised approach 0.980 0.961

Numbers in bold indicate the best result among the models.

for radiographs shows strong performance in semi-supervised
learning and UDA approaches. To handle datasets from multiple
medical centers conveniently and efficiently, we combine semi-
supervised learning and UDA in radiograph segmentation into
a single method. U-shaped GAN functions similarly with the
annotated and unannotated data in the semi-supervised and
UDA approaches. The effectiveness of the model is demonstrated
through extensive experiments.

Training models with high image resolution is effective;
however, it would increase the computational burden (20, 21).
The previous models concentrated on the 256 × 256 or 512 ×

512 image resolutions (15, 21, 35, 37, 38). We propose U-
shaped GAN for high resolution radiographs (1, 024 × 1, 024).
We use pointwise convolution for dimensionality reduction,
decreasing the number of feature maps while retaining their
salient features. Moreover, we design the U-shaped net with
a pretrained ResNet-50 as encoder, which further reduces
the computational burden of the training encoder from
scratch. U-shaped GAN trained with the whole annotated data
achieves a more accurate performance than the state-of-the-
art supervised models as well as the original U-shaped net.
This prediction result shows that U-shaped GAN is effective for
segmentation prediction.

TABLE 6 | Comparison of U-shaped GAN with different training approaches.

Dataset Model Main method Dice IoU

JSRT U-shaped GAN Supervised approach(35) 0.968 0.939

U-shaped GAN Original approach(35) 0.970 0.941

U-shaped GAN Semi-supervised approach(35) 0.971 0.944

MC U-shaped GAN Supervised approach(24) 0.966 0.936

U-shaped GAN Original approach(24) 0.971 0.945

U-shaped GAN Semi-supervised approach(24) 0.973 0.948

The number after the main method is the number of the annotated radiographs used

in training. Numbers in bold indicate the best result among the models.

The previous studies often analyzed semi-supervised
learning and UDA problems separately (3, 11, 12, 14–16). In
semi-supervised learning, the previous GANs were usually
proposed to distinguish between segmentation probability maps
and the ground truth (3, 11, 12). The generators produced
the segmentation probability maps as the segmentation
networks (3, 11, 12). In UDA, the previous GANs were
usually proposed to distinguish between source data and target
data (14–16). The generators transferred the target domain
to the source domain and extra networks were designed for
the segmentation (14–16). The annotated and unannotated
data may come from either the same or different domains
in the dataset collected from multiple centers. Dealing with
the two problems separately increases the model complexity.
Moreover, separating the dataset to train two segmentation
networks decreases the utilization efficiency of collected
data. Therefore, we propose a single model to deal with the
semi-supervised learning and UDA approaches at the same
time. We attribute the model’s remarkable generalization
capabilities to the effective use of the unannotated data. We
use adversarial learning to achieve a representation for lung
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FIGURE 7 | Comparison of the results of U-shaped GAN with different training approaches on confusing samples. The radiographs in the first row are results of the

supervised approach. The second row is the results of the original approach. The third row is the results of the semi-supervised approach. Green and red contours

indicate the ground truth and automatic segmentation results, respectively.

segmentation in chest radiographs. In U-shaped GAN, we
employ a generator to generate realistic data, which, together
with the real data (most of them are unannotated data),
force the discriminator to find the most salient features. Our
discriminator, which in addition to classifying the pixels into
lungs, determines whether a given pixel belongs to the real or
generated data.

U-shaped GAN exploits more widely available unannotated
data to complement small annotated data with a semi-supervised
loss. U-shaped GAN achieves greater performance than the state-
of-the-art semi-supervised model. Moreover, it is comparable to
the supervised models with 25% annotated data. U-shaped GAN
works well even with 12.5% annotated data with Dice scores of
0.964 and 0.958 on JSRT and MC datasets, respectively. Unlike
the previous semi-supervised study using the generators to
produce the segmentation probability maps as the segmentation
networks (3, 11, 12, 25), U-shaped GAN uses the generator to
generate realistic data. The realistic data, together with the real
data, force our discriminator to learn a better representation
for the radiographs. Compared with the result achieved by
trained in the supervised approach, U-shaped GAN achieves
increased performance in the semi-supervised learning approach
with adversarial learning. Instead of discriminating real or

fake labels on image-level (3, 11, 12, 25), a pixel-level loss is
proposed to extract more information from the radiographs. The
segmentation accuracy is improved when using the proposed
loss. For the data from one domain, U-shaped GAN effectively
leverages the unannotated data to achieve high segmentation
accuracy and reduces the cost of medical image annotation.

U-shaped GAN is extended to UDA to reduce domain
shift without the extra expense of annotation on the target
domain. Instead of transferring the target domain to the
source domain (14–16, 37), our generator generates realistic
data. Discriminating the realistic data from the real ones, our
discriminator learns a better representation. U-shaped GAN is
better than the state-of-the-art UDA models and comparable
to human observation. It achieves high accuracy on the target
domain while maintaining the accuracy on the source domain
(S-test). Thus, the model can be trained with data collected from
multiple medical centers. Regardless of whether the unannotated
data come from single or multiple domains, the prediction
accuracies on their corresponding domains are increased, and
the accuracies on other domains are maintained. Because the
same networks are used in the two approaches, the datasets
are sufficient to train U-shaped GAN and generalize the
model among various domains, making it suitable for clinical
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applications in a multiple center system. In addition, using
the same architecture at multiple medical centers reduces the
model complexity.

Results of our evaluation are promising, but U-shaped GAN
has only been fully tested with lung segmentation. In the future,
we will extend the model to detect a wider range of lung diseases
by collecting additional chest radiographs of different diseases
from multiple medical centers.

6. CONCLUSION

In this study, we propose U-shaped GAN to overcome the
crucial problems caused by scarce labeled data and inevitable
domain shift. The GAN-based model is designed at a high
resolution (1, 024× 1, 024) for effective segmentation. The semi-
supervised learning approach and UDA approach are modeled
into a unified framework for effective radiograph segmentation.
We leverage unannotated and annotated data with a pixel-
level semi-supervised loss. U-shaped GAN is compatible with
varying data distributions of multiple medical centers, with
efficient training and optimizing performance. Our experiment
results demonstrate that U-shaped GAN achieved more accurate
lung segmentation performance as compared with the state-
of-the-art models. U-shaped GAN is more appealing to the
model development and clinical application by eliminating
the need to use two different models to deal with the
aforementioned problems.
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Lung adenocarcinoma (LUAD) is the most common type of lung cancer. Accurate

identification of lymph node (LN) involvement in patients with LUAD is crucial for

prognosis and making decisions of the treatment strategy. CT imaging has been

used as a tool to identify lymph node involvement. To tackle the shortage of high-

quality data and improve the sensitivity of diagnosis, we propose a Cost-Sensitive

Uncertainty Hypergraph Learning (CSUHL) model to identify the lymph node based

on the CT images. We design a step named “Multi-Uncertainty Measurement” to

measure the epistemic and the aleatoric uncertainty, respectively. Given the two types of

attentional uncertainty weights, we further propose a cost-sensitive hypergraph learning

to boost the sensitivity of diagnosing, targeting task-driven optimization of the clinical

scenarios. Extensive qualitative and quantitative experiments on the real clinical dataset

demonstrate our method is capable of accurately identifying the lymph node and

outperforming state-of-the-art methods across the board.

Keywords: lymph node involvement, CT imaging, hypergraph learning, cost-sensitive, lung cancer

1. INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death
worldwide (1, 2). About 2.1 million new lung cancer cases and 1.8 million deaths were predicted
in 2018 (3). In 2020, these two numbers rise to 2.2 million and 1.8 million, respectively, (2).
Lung adenocarcinoma (LUAD) is the most common type of lung cancer (4–6). The presence of
metastasis in the lymph nodes (7) is an important prognostic factor in lung cancer. Accurate
identification of lymph node (LN) involvement in patients with LUAD, as shown in Figure 1, is
crucial for prognosis and treatment strategy decisions (8, 9). Patients without metastatic lymph
nodes, or with only intrapulmonary or hilar lymph nodes, are generally considered candidates for
straightforward resection. Although the sub-types of LUAD are found related to the predictors
of LN metastasis, they are available postoperatively (10). Information of the preoperative LN
metastasis is valuable for the adequacy of surgical resection and the decision of the adjuvant
therapy (11). The accurate prediction of pathologic stage for patients with lung cancer is of
utmost importance. Pathologic tumor stage is considered a pivotal factor relating to survival in
NSCLC, and the 5-year survival rates vary from 83% in pathological stage IA to 23% in stage IIIA
tumors (12). Computed tomography (CT) is commonly used for the evaluation of pulmonary
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FIGURE 1 | It is difficult for humans to identify the difference between the LUAD with LN metastasis cases as well as the LUAD without metastasis cases based on

the general visualized CT images, as shown in the examples for comparison.

nodules (13, 14). Many studies were designed to determine
whether pulmonary nodules are benign or malignant. Zhong
et al. (15) propose to use relief-based feature method and
support vector machine to evaluate the impact of radiomics
features in predicting the prognosis of occult mediastinal lymph
node metastasis in lung adenocarcinoma. Dai et al. (16) find
that lymph node micrometastases are more frequently seen in
adenocarcinomas with a micropapillary component, which could
give suggestive prognostic information to patients with stage I
resected lung adenocarcinoma with a micropapillary component.
CT has been widely used as a noninvasive diagnostic modality
for diagnosis, clinical staging, survival prediction, surveillance of
therapeutic response in lung cancer patients (17, 18). However,
few studies have used chest CT to explore whether lymph node
metastasis in LUAD (19). Therefore, in order to make a better
decision on the prognosis and treatment strategies of lung cancer,
as well as more fully grasp the information of lymph nodes, in this
work, we utilize CT to predict whether LUAD has lymph node
metastasis.

There are two main challenges of identifying the lymph node
with CT imaging, listed below, that motivate our approach.

1. Noisy data, due to the collection of clinical CT images using
different reconstruction kernels and CT manufacturers, along
with possible patient movements;

2. The reliable sensitivity of diagnosis is relatively more
important and meaningful than other criteria in the clinical
scenario.

For the first challenge, a few current research works are proposed
to tackle the issue of clinical data quality, mainly focusing on
noise and artifact reduction, super resolution and other aspects
(20). Zhang and Yu (21) propose to train their convolutional
neural network using virtual metal-inserted CT images, targeting
on the noise of metal artifacts. Tan et al. (22) further utilizes the
SRGAN neural network to reconstruct super resolution images
from the original chest CT images to improve the resolution and
ultimately improve the classification results of COVID-19. Due
to the scale of available data in this task being limited, we adopt
the two uncertainty measurements (23) to improve the quality
of pathological representations, i.e., epistemic and the aleatoric
uncertainty, respectively, generated by the “Classifier Measuring”
and “Statistical Measuring.” In this manner, our model is
capable of allocating the different attentional weights combined
with the two uncertainty measurements. Due to ignoring the
underlying correlation between samples, some machine learning
methods such as Random forest, Boosting, or CNN are lacking
in effect, but graph learning and further hypergraph learning
methods can make up for this deficiency. Hypergraph Learning
methods (24–26) perform well on generate the high-order
representations for complex data, such as whole-slide images
(WSI) (27), CT imaging (23), drug-target interactions (28),
etc.Therefore, given the data with uncertainty weights, we further
propose an uncertainty hypergraph learning to extract the high-
order representations from the CT images, which augments the
pathological informative features effectively.
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With regards to the second challenge, several works have
made efforts on lymph node involvement. Zhou et al. (29)
studied one or a combination of machine learning methods
in Logistic regression, Random forest, XGBoost, and GBDT
to construct lymph node metastasis in patients with poorly
differentiated intramucosal gastric cancer. Supervised machine
learning methods including random forest classifier, artificial
neural network, decision tree, gradient boosting decision
tree, extreme gradient boosting, and adaptive boosting can
also be used to predict central lymph node metastasis in
patients with papillary thyroid cancer (30). Besides improving
the accuracy of overall prediction, we further focus on
boosting the performance on sensitivity by the designed “Two-
Stage Cost Sensitive Hypergraph Learning.” One stage is to
capture the cost sensitivity of negative cases in the latent
feature spaces, which will enable the hypergraph model to
allocate the lymph node involvement cases more weights.
The other is called “Supervising Cost Sensitivity,” making
the loss function supervise the hypergraph model with more
attached importance on the patients with LUAD for individual
preoperative prediction of LN metastasis. Combining the
structures introduced above, the overall framework we proposed,
named as “Cost-Sensitive Uncertainty Hypergraph Learning
(CSUHL)” has the ability to identify the lymph node accurately
and outperform state-of-the-art methods on our collected real
clinical dataset.

The main contributions of this paper are summarized
as follows:

1. We propose a framework—CSUHL to tackle the task of
identifying the lymph node, focusing on the uncertainty
measurement of clinical CT imaging, as well as the cost
sensitive hypergraph learning for identifying.

2. On our collected real clinical dataset, we conduct extensive
experiments to demonstrate the proposed method
consistently outperforms state-of-the-art methods across-the-
board, relatively improving the performance on the accuracy
(ACC), sensitivity (SEN), specificity (SPEC), Balance (BAC)
by up to 3.90, 8.00, 2.02, and 4.95%, respectively, compared
with the previous best method.

2. MATERIALS AND METHODS

In this section, we will first introduce the materials we collected
and the processing for extracting the initial features in details.
Thenwewill illustrate our proposed framework—“Cost-Sensitive
Uncertainty Hypergraph Learning (CSUHL),” as shown in
Figure 2, which is composed of three steps, i.e., “Pathological
Features Initialization,” “Multi-Uncertainty Measurement,” and
“Two-Stage Cost Sensitive Hypergraph Learning,” respectively.

2.1. Materials and Preprocessing
In this study, a total of 61 CT images were collected, including
35 from lymph node negative patients and the rest 26 from
lymph node positive patients. These images were provided by
the China-Japan Friendship Hospital. All the cases were acquired
from January 2017 to March 2019. The CT scanners used in this
study include Aquilion ONE from TOSHIBA, MEDICAL System
Revolution from GE, and SOMATOM Definition Flash from
SEMENS. The CT protocol here includes: 120KV, reconstructed
CT thickness is 1mm, and breath-hold at full inspiration. All
images were de-identified before sending for analysis. This
study was approved by the Institutional Review Board. Written
informed consent was waived due to retrospective nature of
the study.

FIGURE 2 | Illustration of our proposed Cost-Sensitive Uncertainty Hypergraph Learning (CSUHL) for identification of the LUAD with lymph node metastasis cases

with CT imaging.
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2.2. Cost-Sensitive Uncertainty
Hypergraph Learning
2.2.1. Pathological Features Initialization

In this stage, we extract the initial features from the patient’s CT
images, consisting of regional features and radiomics features.
We first apply the deep learning pre-trained method, named VB-
Net (31), to segment the left/right lung, 5 lung lobes, 18 lung
segments and infection lesions for each CT image in the portal
software. In the expression of regional features, we generate a
feature with a dimension of R96 for each patient, expressing
features such as the count of infected lesions and the mean
value of lesion area. When extracting the radiomics features, we
generated a feature with a dimension of R93 for each patient,
which means first-order intensity statistics and texture features.
In the end, we concatenate the regional features and radiomics
features obtained above to obtain an overall feature with a
dimension of RC (C = 191) representing patient information.

2.2.2. Multi-Uncertainty Measurement

As shown in Figure 2, there are two types of uncertainty
measurement in our method, namely “EpistemicWeighting” and
“Aleatoric Weighting,” respectively. The epistemic uncertainty
refers to the inability of model for classifying the lymph node
involvement in patients with LUAD. We utilize the general
Multilayer Perceptron (MLP) Neural Network with the dropout
variation inference to classify the data based on the initialized
features. Illustrated as the “Epistemic Weighting” module in
Figure 2, denoted as UE

∈ R
N×M , the effect of the dropout can

be attributed to imposing a Gaussian distribution on each layer
during the inference stage. For N samples, there are M layers
that, respectively, generate the epistemic uncertainty weights in
different levels. For the M layers, each case with x∗ features, is
predicted for K times, the final epistemic weight for each case
is calculated using the variance of these K values, formulated as
Equation (1):

U
E
q(y∗|x∗)

(

y∗
)

=
1

KM

K
∑

k=1

M
∑

l=1

ŷ∗(l)

(

x∗,ωk
)

(1)

where i denotes the ith sample and k denotes the kth test with
dropout. (l) denote the lth layer of the constructed MLP model.
ŷ∗ denotes the corresponding output of the input x∗. ωk

= {Wi}
k

denotes the trainable variables for a model at the kth time.
We adopt a statistical measuring method to generate the

aleatoric uncertainty weights UA. As shown in Figure 2, the
dimension of aleatoric uncertainty weights is R

N×C, where
N and C denotes the number of samples and the scale of
features, respectively. For each feature, we estimate the weights
of aleatoric uncertainty by minimizing the Kullback-Leibler (KL)
divergence (32–34) between the standard feature distribution and
the predicted features. The detailed theoretical derivation and
demonstration of calculation can be found in UVHL (23) and the
main formulation is following:

U
A(xi) = σ 2

2(xi) = exp(α2(xi)) (2)

where σ 2
2 denotes the predicted variance. To avoid the potential

division by zero, α2(x) is the replacement of log σ 2
2(x).

Therefore, α2 :R
191

7→ R
1 is the module to yield the aleatoric

uncertainty score for each case.

2.2.3. Two-Stage Cost Sensitive Hypergraph Learning

To identify the LUAD cases with higher sensitivity, we
design a two-stage cost sensitive hypergraph learning in
the final step of our framework. Given the vertices with
initialized pathological features as well as the corresponding
two types of uncertainty weights, we sequentially construct
the uncertainty-vertex hypergraph and conduct cost-sensitive
hypergraph learning.

When constructing the uncertainty-vertex hypergraph, we
take each vertex v ∈ V denoting one sample with the
corresponding two types of uncertainty weights UE and UA. We
use V to denote the vertex set, E denoting the hyperedges set,
and W denoting the pre-defined matrix of hyperedge weights.
We adopt the k-nearest neighbors algorithm (KNN) to define the
relationships for each vertex. There are two groups of hyperedges,
respectively, stand for the regional features and radiomics
features, denoted as Ereg and Erad, which are represented by

the corresponding incidence matrices Hreg ∈ R
N×|Ereg | and

Hrad ∈ R
N×|Erad|. The final combined global incidence matrix

H ∈ R
N×(|Ereg |+|Erad|) can be formulated as Equation (3).

H(vi, ej) =

{

UA
i + UE

i , vi ∈ ej, ej ∈
[

Hreg‖Hrad

]

0, vi /∈ ej, ej ∈
[

Hreg‖Hrad

] (3)

where [·‖·] denotes the concatenating operation between two
matrices. Finish constructing the hyperedges, the uncertainty-
vertex hypergraph can be denoted as G = 〈V , E ,H,W,U〉, where
U is the summary matrix of UA and UE.

There are two stages of operating the cost sensitivity, namely
latent cost sensitivity and supervising cost sensitivity. When
measuring the epistemic uncertainty weights in the stage of
“Multi-Uncertainty Measurement,” we design the first latent
cost sensitivity by the modified cross-entropy loss function,
formulated as follows:

L =
1

N

N
∑

i

−
[

λ · yi · log
(

pi
)

+ (1− λ) ·
(

1− yi
)

· log
(

1− pi
)]

(4)

where yi denotes the label of ith sample, whose value is 0 or 1
for negative case and positive case. λ ∈ (0, 1) is the parameter
to represent the degree of cost sensitivity, whose value larger
the more sensitivity. The other cost sensitivity for supervising is
designed in the procedure of hypergraph learning, formulated as:

QU(F) = argmin
F

{

�(F)+ ψ˜Remp(F)
}

(5)

where �(·) and ˜Remp(·) denote the smoothness regularizer
function and the cost-sensitive empirical loss term,
respectively. The hypergraph Laplacian matrix is
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2U = D
−

1
2

v HWD−1
e HTD

−
1
2

v . The smoothness regularizer
function is formulated as:

�(F,V ,U, E ,W) = tr(F⊤(U⊤
− U⊤2UU)F) (6)

The cost-sensitive empirical loss term is designed as:

˜Remp(F,U) =

K
∑

k=1

[

λ‖F(:, k)− Y(:, k)‖2y=1

+ (1− λ)‖F(:, k)− Y(:, k)‖2y=0

]

(7)

where F(:, k) is the kth column of F. The λ in Equation (7) is same
with the role in Equation (1).

The uncertainty vertex-weighted hypergraph loss function
Remp(·) can be further rewritten as:

˜Remp(F,U, λ) = λ�

[

tr(F⊤U⊤UF+ Y⊤U⊤UY− 2F⊤U⊤UY)
]

(8)
Therefore, the target label matrix F can be obtained as:

F = λ�

[

ψ(U⊤
− U⊤2UU+ λU⊤U)−1U⊤UY

]

(9)

where � denotes the degree of cost-sensitive λ operating on the
following item, referring the effect in Equations 1 and 7. With
the generated label matrix F ∈ R

n×K (K = 2 in our task), the
new coming testing case can be identified as LUAD or normal
case accordingly.

3. EXPERIMENT

In this section, we will elaborate on the dataset, evaluation
metrics, implementation, comparison methods, experimental
results, and discussion.

3.1. Evaluation Metrics
In the experiment, we adopt six metrics to evaluate the accuracy
of the model.

(1). Accuracy (ACC) represents the proportion of correct
predictions by the model and can be calculated as ACC =

TP+TN
TP+TN+FP+FN . (2). Sensitivity (SEN), (3). Specificity (SPEC), (4).
Positive Predictive Value (PPV), and (5). Negative Predictive
Value (NPV), respectively, represent the proportion of correct
predictions among the positive sample values, negative sample
values, positive predicted values, and negative predicted values.
The calculation formulas can be found in Table 1. (6). Balance
(BAC) represents the mean value of SEN and SPEC.

Sensitivity, known as true positive rate, represents the
proportion of patients with lymph node involvement that are
successfully detected in the task. Specificity represents the
possibility of patients without lymph node involvement that
are excluded. Ideally, the model with both high sensitivity and
high specificity is what we most hope for, but in practice,
there is a trade-off between these two indicators. Compared
with specificity, higher sensitivity basically possesses greater
practical value.

TABLE 1 | The definition of the confusion matrix for identification of lymph node

involvement.

Classify as

lymph node

involvement

Classify as non

involvement

Lymph node

involvement

True Positive (TP) False Negative (FN) SEN =
TP

TP+FN

Non involvement False Positive (FP) True Negative (TN) SPEC =
TN

TN+FP

PPV =
TP

TP+FP
NPV =

TN
TN+FN

3.2. Implementation
The entire dataset contains 61 CT images, of which 26 are lymph
node involvement and the remaining 35 are on the contrary, are
randomly partitioned into 10 subsets when comparing our model
with the comparison models. In the task, the cross-validation
process is performed 10 times, each time a subset is selected as
the validation set, and the rest as the training set. To reduce the
impact of random data on the results, the value of each metric
in the experiment is an average of 10 times, and the standard
deviation is reported as a comparison. To prevent inductive bias,
each dimension of the training set features is normalized to [0, 1]
using its own mean and variance and samples in validation set
utilize the same parameters to normalize.

The uncertainty score Ui of each sample and the uncertainty
measurement model are generated by the overall training set. The
algorithm used to construct the incidencematrix of hypergraph is
K-nearest neighbors (KNN), which leads the choice of parameter
K to affect the effect. However, choosing K is not a easy job.
A hyperedge from a large K connects too many modes, which
may over-describe the relationship between the data and generate
noise. On the contrary, a hyperedge with small K means that the
number of connected nodes is small, which limits the exploration
ability of the high-order relationship of hypergraph and not
obtain full information.We conduct a strategy to learn the proper
parameter K automatically here. We put 2 to 20 in the candidate
pool of K to select the applicable K for the task. In one training
and testing, we cross-validate the training data 10 times for each
K in the candidate pool to obtain prediction values on different
K. The K with the highest predicted score will be used in testing,
so the whole process is the automatic selection of K. The total
training time for each fold is about 1 h, while the testing time is
extremely fast, only taking about 5 s.

3.3. Comparison Methods
The following methods are compared by our experiment:

1. Support Vector Machine (SVM) (35): It is a linear
classifier that uses supervised learning to perform two-
class classification of data. It relies on the convex quadratic
programming problem to separate the samples correctly and
away from the classification hyperplane.

2. Transductive Hypergraph Learning(tHL) (36): It is an
algorithm for hypergraph embedding and transduction
inference, mainly extending the spectral clustering technology
of graphs to hypergraphs.
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3. Multilayer Perceptron (MLP) Neural Network (37, 38): It
contains a multi-layer feedforward neural network that maps
multiple inputs to a single output.

4. GNN (39): It is a basic graph neural network that applies
the local first-order approximation of the spectral graph
convolution to determine the convolutional network structure
for semi-supervised classification.

5. UVHL (23): It is an uncertainty vertex-weighted hypergraph
learning method, which can reduce the problems caused
by noisy data and confusing cases with clinical or imaging
features.

6. B-GNN (40): It is a binary graph convolutional network,
in which some floating-point operations are replaced by
binary operations to achieve inference acceleration. A back-
propagation method based on gradient approximation is used
to train the binarized graph convolutional layer.

7. BC-GNN (40): It is an improved version of B-GNN, adding a
cost-sensitive loss function.

3.4. Experimental Results
The experimental mean results and phenomena of our model
and compared models can be seen in Figure 3; Table 2, and the
following can be observed:

1. Comparing all methods, our proposed model is in a leading
position in various metrics. Compared with non-graph-based
methods (SVM and MLP), our models has a great lead. There
are 12.04 and 38.89% improvements in ACC metric for the
two, respectively, which shows that hypergraph has the ability
to describe the correlation and handle this task.

2. In the GNN-based methods, compared with GNN, B-GNN,
BC-GNN in ACC, the improvement is 24.22, 5.26, and 3.90%,

FIGURE 3 | The statistic performance of CSUHL and other compared methods. The results show that CSUHL outperforms other methods for ACC, SEN, SPEC, and

BAC consistently.

TABLE 2 | Prediction accuracy comparison of different methods on our collected LUAD dataset.

Methods ACC SEN SPEC BAC PPV NPV

SVM (p-value) 0.85000 2.324e−5 0.92000 5.624e−4 0.80000 1.824e−4 0.86000 6.815e−5 0.76667 0.0498e−5 0.93333 6.781e−5

THL (p-value) 0.70238 1.173e−5 0.59167 1.438e−6 0.74667 4.235e−4 0.66917 1.037e−4 0.61667 0.1.237e−5 0.75333 3.283e−6

MLP (p-value) 0.68571 6.734e−4 0.59167 3.568e−5 0.72167 8.967e−3 0.65667 2.358e−4 0.61667 8.845e−4 0.74333 2.781e−5

GNN (p-value) 0.76667 4.891e−4 0.65385 6.784e−4 0.85294 3.578e−4 0.75339 3.567e−4 0.77273 9.487e−4 0.76316 7.034e−4

UVHL (p-value) 0.88333 2.346e−3 0.82143 7.624e−4 0.93750 6.78e−4 0.87946 1.895e−3 0.92000 - 0.85714 3.181e−4

B-GNN (p-value) 0.90480 7.823e−3 0.87500 2.135e−3 0.92300 7.895e−3 0.89900 8.233e−3 0.87500 9.356e−3 0.92300 9.392e−3

BC-GNN (p-value) 0.91667 4.721e−2 0.88889 1.468e−3 0.92857 2.568e−2 0.90873 9.134e−3 0.84211 7.804e−3 0.95122 -

CSUHL (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

For each 10-fold, we compute the accuracy of the proposed method on testing data, and compare them with those of CSUHL via paired t-test to generate the p-values for each metric.

(“†” denotes significance level is reached as p− value < 0.05). The bold values represent the best values of the indicators in each set of experiments.
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respectively, which proves that our methods can describe
complex associations better.

3. Compared with hypergraph-based methods such as THL
and UVHL, the model has 35.59 and 7.82% rises on
the acc, respectively, which benefits from the uncertainty
measurement and multiple loss.

4. Except for ACC, our method is the only one that exceeds
and close to 95% on SEN and SPEC, respectively, which has
practical value for actual medical diagnosis.

5. From Figure 3, it can be observed from the standard deviation
that our model has more stable results compared to other
comparison methods, which shows that our model provides
more reliable and robust prediction results.

4. DISCUSSION

To evaluate the effectiveness of different uncertainty and different
hypergraphs and different cost sensitivity, in this section, we
conduct ablation experiments, respectively, to determine the
contribution of each component.

4.1. Study on Multi-Uncertainty
To evaluate the effectiveness of different uncertainty, we conduct
an ablation study, which uses aleatoric uncertainty or epistemic
uncertainty, respectively.

4.1.1. Aleatoric Uncertainty

Denoted as UA, the results of using aleatoric uncertainty
individually are shown in row 1 of Table 3.

We can find out that the use of both types of uncertainty
brings about 7.58, 4, and 10.53% growth in ACC, SEN, and
SPEC, respectively, than using aleatoric uncertainty. It is worth
mentioning that even with only aleatoric uncertainty, the model
is still higher than most comparison methods in ACC and better
than other methods in SEN according to Table 2.

More specifically, the pathological features with higher
aleatoric uncertainty weights are consistent with the clinical
experience, such as the distribution of different nodules, i.e.,
lobulated nodules, spiculate nodules, and globular nodules.

4.1.2. Epistemic Uncertainty

Denoted as UE, the results of using epistemic uncertainty
individually are shown in row 2 of Table 3.

It can be observed using epistemic uncertainty alone lags
behind 10.49, 7.85, and 12.54 than CSUHL in acc, sen, and
spec metrics, respectively. Compared with the results of using
aleatoric uncertainty, the indicators using epistemic uncertainty
are lower, indicating that aleatoric uncertainty plays a greater
role in our model. The combination of the two uncertainties
is better than the single-use, which proves the effectiveness of
multi-uncertainty.

4.2. Study on Types of Hypergraph
To evaluate the effectiveness of different hypergraphs, we conduct
an ablation study, using regional hypergraph or radiomics
hypergraph, which use regional features and radiomics features
from CT, respectively.

4.2.1. Regional Hypergraph

Denoted as Greg , the results of using regional hypergraph
individually are shown in row 4 of Table 3.

The regional hypergraph only has an accuracy rate of
about 80%, and the same for SEN and SPEC, indicating
that only extracting the regional features of CT has little
effect and the regional hypergraph cannot provide accurate
correlation information.

4.2.2. Radiomics Hypergraph

Denoted as Grad, the results of using radiomics hypergraph
individually are shown in row 5 of Table 3.

The results of radiomics hypergraph are much better than the
former, with ACC and SEN exceeding 90%, although there is still
a gap in the combination of two hypergraphs. It can be found
that the results in radiomics hypergraph have better sensitivity
than specificity, which proves that the radiomic hypergraph has
more advantages in identifying lymph node involvement. The
combined hypergraph is higher in all indicators than when used
alone, showing that it has the ability to utilize a variety of
different features.

TABLE 3 | Prediction accuracy comparison of different methods on our collected LUAD dataset.

Methods ACC SEN SPEC BAC PPV NPV

1) Aleatoric Uncertainty (UA) (std) 0.88525 ±0.1845 0.92308 ±0.2451 0.85714 ±0.1684 0.89011 ±0.1795 0.82759 ±0.0781 0.93750 ±0.1864

2) Epistemic Uncertainty (UE ) (std) 0.85246 ±0.0351 0.88462 ±0.0763 0.82857 ±0.0374 0.85659 ±0.0746 0.79310 ±0.0890 0.90625 ±0.0785

3) CSUHL (UA
+ UE ) (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

4) Regional Hypergraph (Greg) (std) 0.80328 ±0.0567 0.80769 ±0.978 0.80000 ±0.1643 0.80385 ±0.0776 0.75000 ±0.1347 0.84848 ±0.1613

5) Radiomics Hypergraph (Grad ) (std) 0.90164 ±0.0891 0.92308 ±0.0346 0.88571 ±0.0917 0.90440 ±0.0176 0.85714 ±0.0783 0.93939 ±0.0635

6) CSUHL (Greg + Grad ) (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

7) Latent Cost Sensitivity (std) 0.86885 ±0.0678 0.88462 ±0.0341 0.85714 ±0.0867 0.87088 ±0.1456 0.82143 ±0.1034 0.90909 ±0.0918

8) Supervising Cost Sensitivity (std) 0.91803 ±0.0451 0.92308 ±0.0813 0.91429 ±0.0561 0.91868 ±0.0971 0.88889 ±0.0936 0.94118 ±0.0771

9) CSUHL (std) 0.95238† ±0.0346 0.96000† ±0.0596 0.94737† ±0.0277 0.95368† ±0.0150 0.90654 ±0.0286 0.88235 ±0.0735

For each 10-fold, we compute and report the average performance of the proposed method on testing data. The bold values represent the best values of the indicators in each set of

experiments.
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4.3. Study on Cost Sensitivity
To evaluate the effectiveness of different cost sensitivity, we
conduct an ablation study, which uses latent cost sensitivity or
supervising cost sensitivity, respectively.

4.3.1. Latent Cost Sensitivity

The results of using latent cost sensitivity individually are shown
in row 7 of Table 3.

When only latent cost sensitivity is used, it is equivalent to
not using supervising cost sensitivity. As a result, the hypergraph
information cannot be captured in order that various indicators
are significantly reduced.

4.3.2. Supervising Cost Sensitivity

The results of using supervising cost sensitivity individually are
shown in row 8 of Table 3.

Compared with the combination of the two cost sensitivity,
the supervising cost sensitivity has an accuracy disparity of about
3.61%, but it is higher than latent cost sensitivity. It should
be noticed that cost sensitivity of using only supervising is the
highest among the three on NPV, indicating that the true label
is mostly negative in the samples identified as non lymph node
involvement. In general, using two cost sensitivities together is
better than using one of them, proving the effectiveness of cost
sensitivity component.

5. CONCLUSION

In this paper, we propose a cost-Sensitive Uncertainty
Hypergraph Learning (CSUHL) to identify lung adenocarcinoma
(LUAD) cases with lymph node (LN) metastasis from the
cases without lymph node (LN) metastasis. Confronting
the challenging issues from the shortage of high-quality
data and unreliable sensitivity of diagnosis, our proposed
method employs three stages, namely “Pathological Features
Initialization,” “Multi-Uncertainty Measurement,” and “Two-
Stage Cost Sensitive Hypergraph Learning” to represent the

complex clinical information and formulate the high-order

data correlation among the known LUAD with LN metastasis
cases and the LUAD without LN metastasis cases. Through the
epistemic and aleatoric uncertainty as well as the two types of
cost sensitivity (latent and supervising), our method is capable of
outperforming state-of-the-art methods on our collected LUAD
dataset across the board.

In future work, we will further investigate the practical
limitations on the computer-aid-diagnosis (CAD), such as
enhancing the speed of inference, transferring the model to learn,
and predicting the other related downstream clinical tasks.
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Purposes and Objectives: The aim of this study was to predict the progression-free

survival (PFS) in patients with small cell lung cancer (SCLC) by radiomic signature from

the contrast-enhanced computed tomography (CT).

Methods: A total of 186 cases with pathological confirmed small cell lung cancer were

retrospectively assembled. First, 1,218 radiomic features were automatically extracted

from tumor region of interests (ROIs) on the lung window and mediastinal window,

respectively. Then, the prognostic and robust features were selected by machine

learning methods, such as (1) univariate analysis based on a Cox proportional hazard

(CPH) model, (2) redundancy removing using the variance inflation factor (VIF), and

(3) multivariate importance analysis based on random survival forests (RSF). Finally,

PFS predictive models were established based on RSF, and their performances were

evaluated using the concordance index (C-index) and the cumulative/dynamic area under

the curve (C/D AUC).

Results: In total, 11 radiomic features (6 for mediastinal window and 5 for lung window)

were finally selected, and the predictive model constructed from them achieved a C-index

of 0.7531 and a mean C/D AUC of 0.8487 on the independent test set, better than the

predictions by single clinical features (C-index = 0.6026, mean C/D AUC= 0.6312), and

single radiomic features computed in lung window (C-index = 0.6951, mean C/D AUC

= 0.7836) or mediastinal window (C-index = 0.7192, mean C/D AUC = 0.7964).

Conclusion: The radiomic features computed from tumor ROIs on both lung window

and mediastinal window can predict the PFS for patients with SCLC by a high accuracy,

which could be used as a useful tool to support the personalized clinical decision for the

diagnosis and patient management of patients with SCLC.

Keywords: small cell lung cancer (SCLC), radiomics analysis, progression-free survival (PFS), contrast-enhanced

CT, mediastinal window
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INTRODUCTION

Small cell lung cancer (SCLC) is an aggressive pulmonary
neuroendocrine tumor that causes about 250,000 deaths
worldwide yearly (1, 2). SCLC accounts for approximately 13%
of lung cancers (3). SCLC is sensitive to both chemotherapy and
radiotherapy, but has poor treatment performance with rapid
recurrence, early metastatic dissemination, and poor prognosis
(1, 4). Particularly, the overall survival (OS) rate and mortality
of patients with SCLC have remained the same during the past
several decades (5, 6). SCLC typically appears as a central tumor
with hilar/mediastinal lymphadenopathy and distant metastases
(7). The prognosis of SCLC strongly depends on the tumor stage.
For example, the 5-year survival rate of limited stage is 20–25%,
while only 2% for an extensive-stage (ES) disease (8).

In clinical practice, CT imaging is widely used for the clinical
diagnosis of SCLC. However, CT-based SCLC diagnosis greatly
depends on the experience and knowledge of radiologists. They
can provide some qualitative analysis for SCLC prognosis by their
experience, but the quantitative analysis of SCLC prognosis is
generally lacked (9). In the clinical treatment of SCLC, etoposide–
cisplatin or irinotecan–platinum remains the first choice for the
first-line treatment of SCLC. Clinicians have observed that some
patients made poor response to the chemotherapy (10, 11). It
is clinically important to predict which patients with SCLC will
have poor response to the chemotherapy, but this prognosis
problem is seldom studied. In this paper, we try to construct a
prediction model to quantitatively predict outcomes for patients
with SCLC by their CT images scanned before treatment.

Recently, radiomics analysis is increasingly popular in tumor
field, which is used for the diagnosis, stage, histology, prognosis,
and treatment response assessment of various tumors (12, 13). By
extracting a large number of image features from tumor regions,
which depict the spatial heterogeneity in tumors, radiomics
analysis is able to quantitatively characterize the tumor genomics
and phenotypes, and identify tumor attributes that may be
relevant to the tumor prognosis (14–16). However, due to the
relatively low incidence of SCLC in all lung cancer subtypes, there
were few reports focusing on the prognostic ability of radiomic
features in SCLC. In regular diagnostic radiology, contrast-
enhanced CT images are usually scanned for SCLC diagnosis.
Radiologists observed CT images on both the lung window and
mediastinal window. Here, an enhanced mediastinal window can
provide more information for lung cancer diagnosis by providing
clear tumor margin and enhancing pattern and intensity. It
has been reported that the contrast-enhanced lung CT scan
could influence the accuracy of pulmonary nodule classification
(17, 18), and could independently predict the pathologic grade
of lung adenocarcinoma (19). Additionally, researchers have
mentioned the advantages of radiomics analysis in the prediction
of response to chemotherapy in patients with SCLC (20), but
radiomics analysis is performed only on the lung window of
CT images. In such case, important radiomic features from the
mediastinal window might be lost. This paper will study the
progression-free survival (PFS) analysis in patients with SCLC
by radiomics analysis on both the lung window and contrast-
enhanced mediastinal window of CT images. By screening risk

factors for SCLC prognosis and constructing a high-accuracy
prediction model for outcomes of patients with SCLC, we will
provide a useful tool for quantitatively predicting the PFS in
patients with SCLC.

MATERIALS AND METHODS

Patients
We retrospectively search the database from November 2012
to May 2019 under an active institutional review board, and
written informed consents were acquired. The inclusion criteria
were as follows: (1) patients pathologically proved SCLC by
biopsy or operation. (2) Patients underwent chest CT scans.
(3) Patients received standard Etoposide–Cisplatin combination
chemotherapy. The exclusion criteria were as follows: (1) patients
with treatment history before baseline CT scans; (2) patients
lack of stage before treatment; (3) patients losing contact or
die before progression; (4) patients without progression until
deadline; (5) patients without contrast enhanced CT imaging;
and (6) insufficient CT imaging. Finally, 186 cases were included
in this study and divided into a training set (130 cases) and an
independent test set (56 cases). The clinical information, such as
age, gender, and stage were recorded.

CT Imaging Parameters
All patients underwent contrast-enhanced chest CT on 64-slice
multidetector row CT scanner (LightSpeed 64; GE Medical
Systems, Milwaukee, WI, USA) with the following acquisition
and reconstruction parameters: tube voltage of 120 kV; tube
current of intelligent mAs; section thickness of 5mm, and
reconstruction interval of 5mm. The contrast enhanced CT
was administered intravenously with an amount of 60–70ml of
iohexol (Omnipaque 300; Amersham, Shanghai, China) followed
by a saline flush of 20ml, by using a power injector (LF CT
9000; Liebel-Flarsheim, Cincinnati, OH, USA) at a flow rate of
2.5–3.0 ml/s.

Tumor Segmentation
A radiologist with 10 years of experience segmented each
tumor region manually slice-by-slice on the axial CT images
using the ITK-SNAP software (http://www.itksnap.org/pmwiki/
pmwiki.php). Each tumor was segmented two times, first on
the mediastinal window for consistency and then on the lung
window, respectively. The lung window level (1600 and −500
HU) and the mediastinal window level (300 and 40 HU) were
used during the tumor segmentation. The vessels and air regions
were carefully excluded from the segmented tumor regions.

Radiomic Feature Extraction
As shown in Figure 1, high through image features were
automatically calculated from each tumor region using
PyRadiomics package (21), including features describing
shape, intensity, texture, etc. (22) Shape features reflect
geometric properties of tumor regions. Intensity features were
calculated using first-order statistics to depict the distribution
of voxel intensities. Texture features could quantify the tumor
heterogeneity and were calculated based on different texture
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FIGURE 1 | The workflow of radiomics analysis. (A) The tumor region of interests (ROIs), which were manually segmented by an experienced radiologist from CT

images with the lung window and contrast-enhanced mediastinal window, respectively; (B) the high throughput image features were extracted automatically from

each ROI and the radiomic signatures were selected from them; (C) Random survival forests (RSFs) models were established for the progression-free survival (PFS)

prediction.

matrixes. Additionally, wavelet filters and Laplacian of Gaussian
(LoG) filters are applied to the original images for richer feature
extraction (23). Wavelet features were extracted based on wavelet
decomposition, which performed the multi-scale analysis of
intensity and texture information. The LoG filters could enhance
edge information, and 5 different sigma values were used to
emphasize tumor textures of different coarseness. In total, 1,218
image features were extracted from each tumor region on the
lung window and mediastinal window independently, and a total
of 2,436 comprehensive CT image features were extracted.

Feature Selection
Feature selection was conducted in the training set in three
steps. First, the univariate prognostic ability of each feature was
evaluated using a Cox proportional hazard (CPH) model (24).
Features with concordance index (C-index) less than 0.5 were
removed, because their prognostic abilities are worse than a
random model:

Funi =
{

f
∣

∣c
(

CPH
(

f , y
))

> 0.5, f ǫF
}

(1)

Where, F is the unselected feature set, c(•) is the C-index
of the CPH model which can be calculated by Equation 4.
Second, to remove redundancy from image features, the variance
inflation factor (VIF) was applied to quantify the collinearity
between features (25). This procedure was performed iteratively
until VIF values of all remaining features were less than the
certain threshold, and the feature with the highest VIF value

was removed in each iteration. The iteration process can be
defined as:

Funi = Funi −
(

f
∣

∣VIF
(

f , Funi − f
)

> Tvif

)

(2)

Third, we used random survival forests (RSFs) for multivariate
analysis to further simplify the features (26). An RSF model is an
ensemble of tree-based learners which has powerful non-linear
analysis capability. For each feature, an importance score was
calculated based on the evaluation of relevance and prognosis
of all features by RSF. Features with important scores above a
certain threshold were finally selected and used to generate the
radiomic signature:

Fmul =
{

f
∣

∣Score
(

RSF
(

f , Funi, y
))

> Trsf , f ǫFuni
}

(3)

In above procedures, statsmodels (27), scikit-learn (28),
and scikit-survival (29–31) packages were used for the
implementation and grid search was performed to determine the
parameters and thresholds. To compare the prognosis of different
CT windows, the feature selection was performed on lung
window features and mediastinal window features, respectively.

Prognostic Model Establishment
Based on the selected radiomic features and three clinical features
(gender, age, and stage), the random survival forests can be used
to establish their corresponding prognostic model. For clinical
features, selected lung window features and mediastinal window
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features, three different prognostic models can be generated,
respectively. By combining the two classes of selected radiomic
features into a feature set and simplifying them according to the
Pearson’s correlation (32), the corresponding prognostic models
can be generated. By combining selected radiomic features and
clinical features, the prognostic model can be constructed. For
all above models, the 3-fold cross-validation was performed to
determine model parameters in the training set.

Statistical Analysis
A univariate analysis was used to assess the statistical significance
of the clinical characteristics of the patients, and the independent
sample t-test and χ2 test were performed for continuous and
categorical variables, respectively. The correlation matrix of
selected features was calculated based on Pearson’s correlation
coefficient and illustrated in a heatmap. The predictive capacity
of radiomic signature was evaluated using Kaplan–Meier analysis
(33). The performance of each prognostic model was evaluated
on the independent test set with the C-index which is most
frequently used in the survival analysis and assesses the overall
prognostic ability of the model and can be defined as:

c =
1

num

∑

i : δi=1

∑

j : yi<yj

I
[

ri > rj
]

(4)

Where, i, jǫ {1, · · · ,N}, num denotes the number of all
comparable pairs, δi is the binary event indicator, I [•] is
the indicator function, and r is the risk predicted by the model.
In addition, the time-dependent cumulative/dynamic AUC was
calculated to measure the performance in a specific time range,
which is an extension of the area under the receiver operating
characteristic (ROC) curve (AUC) in survival data (34, 35).
The cumulative/dynamic AUC (C/D AUC) at time t can be
defined as:

ˆAUC(t) =

∑n
i=1

∑n
j=1 I

[

yj > t
]

I
[

yi < t
]

ωiI
[

ri > rj
]

(
∑n

i=1 I
[

yi > t
]) (

∑n
i=1 I

[

yi ≤ t
]

ωi

) (5)

Where,ωi is inverse probability of censoring weights (IPCW). All
statistical analyses were two-sided with the statistical significance
level of 0.05, and performed with statsmodels, scikit-learn, and
scikit-survival packages in Python 3.6.

RESULTS

Clinical Characteristics
A total of 186 cases were enrolled and divided into a training set
and an independent test set. As shown in Table 1, the median
(range) of age in the two sets were 62 (37–80) and 62 (43–
78). In training set, 109 (83.8%) cases were men and 21 (16.2%)
cases were women, with 47 (36.2%) cases were limited stage
and 83 (63.8%) cases were extensive stage. In the test set, there
were 50 (89.3%) male cases and 6 (10.7%) female cases, and 19
(33.9%) and 37 (66.1%) cases were limited and extensive stage,
respectively. There were no significant differences for all clinical
characteristics between the training and test sets (p = 0.334–
0.771). In addition, through the univariate survival analysis, stage

TABLE 1 | Clinical characteristics.

Characteristics Training set Test set p-value

Number 130 56

Gender

Male 109 (83.8%) 50 (89.3%) 0.334

Female 21 (16.2%) 6 (10.7%)

Age 62 (37–80) 62 (43–78) 0.635

Stage

Limited stage 47 (36.2%) 19 (33.9%) 0.771

Extensive stage 83 (63.8%) 37 (66.1%)

(p = 0.007) and sex (p = 0.039) were statistically relevant to the
survival, and there was no significant difference regarding to age
(p= 0.698).

During the follow-up, different types of progression were
observed. Among 186 cases, there were 85 (45.7%) cases of
primary progression, 23 (12.4%) cases of original metastases
progression, 13 (7.0%) cases of primary progression and newly
metastases, 11 (5.9%) cases of both the primary and metastasis
progression, 16 (8.6%) cases of newly brain metastases, 14 (7.5%)
cases of newly bone metastases, 8 (4.3%) cases of newly lung
metastases, 6 (3.2%) cases of newly liver metastases, 1 (0.5%) case
of cardiac metastases, 1 (0.5%) cases of pancreas metastases, 3
(1.6%) cases of adrenal metastases, and 5 (2.7%) cases of newly
multiple metastases.

Important Radiomic Feature Selection
In total, 1,218 radiomic features were extracted from CT images
on the lung window and mediastinal window, respectively, and
the feature selection was performed independently on both
windows. After the univariate analysis, 724 and 895 features
were remained, respectively. Then, with an iterative collinearity
elimination based on VIF, a mass of redundant features was
removed, resulting in 17 and 16 remained features for the lung
window and mediastinal window, respectively. Finally, an RSF-
based multivariate analysis was performed on the remaining
features, and 6 features for the lung window (f1, f2, f3, f4, f5,
and f6) and 6 features for the mediastinal window (f7, f8, f9, f10,
f11, and f12) were selected as radiomic signature, as shown in
Table 2 and Figures 2, 3. The correlation heatmaps in Figures 2,
3 indicated that the selected features are relatively independent.
Definitions of all selected features are in compliance with the
Imaging Biomarker Standardization Initiative (IBSI) (36).

Performance of Prognostic Model
Based on 3 clinical, 6 lung window, and 6 mediastinal window
features, three basic prognostic models can be established,
respectively, namely, Model_C3, Model_L6, and Model_M6. For
these basic models, the optimal risk cut-off was determined
using log-rank test on the training set, and patients in the
training set and test set were stratified into high-risk and low-
risk groups using the same cut-off, respectively. In Figure 4,
the Kaplan–Meier curves of lung window (cut-off = 112)
and mediastinal window (cut-off = 117) features revealed the
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TABLE 2 | Description of the selected radiomic features.

Index Feature Description

F1 Lung_log-sigma-1-0-mm-3D

_glcm_Correlation

A Measure of the linear dependency

of gray level values to their respective

voxels in the GLCM

F2 Lung_log-sigma-3-0-mm-3D

_glcm_ClusterShade

A measure of the skewness and

uniformity of the GLCM

F3 Lung_original_firstorder_90

Percentile

The 90th percentile of the voxels

included in the ROI

F4 Lung_wavelet-

LHH_glcm_ClusterShade

A measure of the skewness and

uniformity of the GLCM

F5 Lung_log-sigma-4-0-mm-

3D_glszm_SmallAreaLowGray

LevelEmphasis

A measure of the proportion of the

joint distribution of smaller size zones

with lower gray-level values

F6 Lung_original_shape_Flatness A measure of the relationship

between the largest and smallest

principal components in the ROI

shape

F7 Mediastinal_log-sigma-4-0-mm-

3D_glszm_SmallAreaLowGray

LevelEmphasis

A measure of the proportion of the

joint distribution of smaller size zones

with lower gray-level values

F8 Mediastinal_wavelet-

HHL_firstorder_Skewness

A measure of the asymmetry of the

distribution of values about the Mean

value

F9 Mediastinal_original_shape_

Flatness

A measure of the relationship

between the largest and smallest

principal components in the ROI

shape

F10 Mediastinal_log-sigma-5-0-mm-

3D_glszm_GrayLevelNon

UniformityNormalized

A measure of the variability of

gray-level intensity values in the image

F11 Mediastinal_wavelet-

HLH_firstorder_Skewness

A measure of the asymmetry of the

distribution of values about the Mean

value

F12 Mediastinal_log-sigma-3-0-mm-

3D_glcm_InverseVariance

A measure of inverse variance

significant difference in PFS between high-risk and low-risk
groups, which is better than clinical features (cut-off = 112),
demonstrating the predictive capabilities of the two different
radiomic signatures.

By combining the lung window and mediastinal window
radiomic features into a feature set, the combined model based
on all 12 radiomic features (Model_L6+M6) was established.
Additionally, to simplify radiomic features and reduce the risk
of overfitting, we removed features with the higher correlation
between two feature sets (f6, which has a Pearson’s correlation
coefficient of 0.75 with f9 and a lower importance score).
Then, 11 remained radiomic features were used to generate
a simplified model (Model_L5+M6). The overall prognostic
ability of each prognostic model was evaluated with C-index
and illustrated in Table 3. The C-index values of Model_C3,
Model_L6, Model_M6, Model_L6+M6, and Model_L5+M6 are
0.6426, 0.7455, 0.7728, 0.7927, and 0.8033 for the training
set and 0.6026, 0.6951, 0.7192, 0.7362, and 0.7531 for the
test set, respectively. Model_L5+M6 attains the highest C-
index among the models. In addition, by combing the selected

radiomic features and clinical features, their corresponding
prognostic models have better performances or the performances
comparable with the radiomic features-based models.

The C/D AUC can evaluate the model performance from time
level on the test set. The C/D AUC_90 evaluates how well these
models can distinguish the patients progressing before and after
90 days, which is an important time for the prognosis of SCLC.
As illustrated in Table 3, Model_L5+M6 achieved the best C/D
AUC_90 of 0.8902. Furthermore, the restricted mean C/D AUC
(37), which is a summary measure of discrimination ability of
each model, was calculated. The mean C/D AUC of Model_C3,
Model_L6, Model_M6, Model_L6+M6, and Model_L5+M6 are
0.6312, 0.7836, 0.7964, 0.8387, and 0.8487, respectively. These
results are consistent with C-index results of these models.

Based on our survival models, a survival function can be
generated and used to analyze the prognosis for each patient.
Three typical cases with different survival time were illustrated
in Figure 5. The survival function gives the progression-free
probability at different times, which can provide clinicians with
a more intuitive and reliable prognostic prediction and is helpful
for the personalized clinical decision-making.

Two typical cases which are challenging and hard to predict
the prognosis are illustrated in Figure 6. For case A, a pulmonary
tumor with mediastinal and lateral hilar lymph node metastases
was found on CT images. No distant metastasis was detected.
This 62-year-oldman was diagnosed with a good prognosis based
on the visual analysis and limited stage. However, the actual
PFS was only 90 days, and our model correctly predicted it
with a high risk of 157.0. For case B, in a 67-year-old man,
bone metastases and lymph node metastases were found on the
primary radiological scans. The primary pulmonary tumor of
case B, with obstructive pneumonia, was larger than the case A.
This patient was diagnosed as a poor prognosis with extensive
stage. However, the actual PFS was over a year (431 days), and
our model correctly predicted it with a low risk of 55.0.

DISCUSSION

In this study, a PFS predictive model was proposed by
integrating the radiomic features extracted from lung window
and mediastinal window CT images in patients with SCLC.
Our main findings indicated the contrast enhanced-mediastinal
window radiomic features as an independent reliable prognostic
factor. Our model effectively separated the groups of high risk
and low risk, gave better predictive performance than the typical
clinical visual analysis, and generate a survival function to analyze
the prognosis for each patient. Our radiomics-based model
offers more reliable PFS predictions which could support the
personalized clinical decision-making.

Radiomics can extract more quantitative information than
bare eye to guide clinical decisions, usually from non-
enhanced CT images. Unenhanced CT images reflect the
tumor heterogeneity and microenvironment, demonstrating
the prognostication and treatment response. Fried et al. (38)
and Ganeshan et al. (39) indicated that texture features
from pretreatment non-contrast CT scans may provide the
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FIGURE 2 | The selected lung window features. (A) The RSF-based feature importance score; (B) the correlation heatmap.

FIGURE 3 | The selected mediastinal window features. (A) The RSF-based feature importance score; (B) the correlation heatmap.

prognostic information for patients with non-small cell lung
cancer (NSCLC). Mohammadhadi Khorram et al. (40) stated
that radiomics was useful for predicting the early-stage NSCLC
recurrence, progression, and recurrence free survival. For
patients with SCLC, Haifeng Wei et al. (10) revealed radiomic
texture characteristics may be an independent predictor of the
efficacy of chemotherapy and help clinical guidance. Additional
enhanced contrast mediastinal images may provide more
image information about the grade of enhancement and the
heterogeneity of the tumor, which may be due to the presence of
different tumor vascularization (41). Radiomic texture analysis
on the contrast-enhanced CT could be a good predictor of
the survival and treatment response in patients with NSCLC
(42, 43). Another study stated that the texture analysis of

CECT images provides the predicted pathologic grading of lung
adenocarcinoma (19).

In this study, we investigated the value of radiomic signature
in predicting the prognostication and treatment response in
patients with SCLC. Two cases with different prognosis are
shown in Figure 6. The prognosis was contrary to the expectation
with clinical visual analysis. Compared with the inadequate
clinical outcomes, our radiomic model with the contrast–
enhanced mediastinal window predicted an accurate outcome
with little difference.

Our radiomic models showed a good performance of C-index
in predicting the PFS with conventional lung window features
and enhanced mediastinal window features respectively, with a
lowest C-index of clinical model. Furthermore, the predictive
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FIGURE 4 | Kaplan–Meier progression-free survival curves of prognostic models based on 3 clinical features (Model_C3), 6 lung window features (Model_L6), and

mediastinal window features (Model_M6) for patients in (A) the training set and (B) the independent test set. In the training set, the median PFS were 211, 233, and

238 days for the low-risk group and 140, 99, and 112 days for the high-risk group. In the independent test set, the median PFS were 209, 209, and 209 days for the

low-risk group and 147, 91 and 90 days for the high-risk group.

performance of radiomic features in an enhanced mediastinal
window was superior to the lung window, indicating that
enhanced mediastinal window features played an important role
in predicting the PFS in patients with SCLC. Some previous
studies showed that the predictive performance of quantitative
texture features were similar between non-contrast and contrast-
enhanced CT in diagnosing lung nodule (17, 44). Another
study reported that the unenhanced CT was better than the
contrast-enhanced CT on the predictive performance. However,
those studies focused on lung adenocarcinoma and did not
include SCLC cases which may cause result deviation (45).
Our study results were generally in agreement with some other

studies. Linning et al. (18) and Liu et al. (19) investigated that

the contrast-enhanced CT were useful predictors of survival

and treatment response, which may be related to the tumor
heterogeneity. After contrast administration, tumoral vascularity

may reflect local spatial variations in image brightness, and then

result in the variability of radiomic features (18, 46).

For further verification, we analyzed the time-dependent
cumulative/dynamic ROC curve and calculated the

TABLE 3 | Prognostic performance of different survival prediction models.

Model C-index C/D AUC_90 Mean C/D AUC

Training set Test set

Basic models

Model_C3 0.6426 0.6026 0.5218 0.6312

Model_L6 0.7455 0.6951 0.7727 0.7836

Model_M6 0.7728 0.7192 0.8646 0.7964

Combined models based on radiomic features

Model_L6+M6 0.7927 0.7362 0.8769 0.8387

Model_L5+M6 0.8033 0.7531 0.8902 0.8487

Combined models based on radiomic and clinical features

Model_L6+C3 0.7500 0.7316 0.7898 0.8206

Model_M6+C3 0.7933 0.7440 0.8485 0.8367

Model_L6+M6+C3 0.7961 0.7459 0.8523 0.8413

Model_L5+M6+C3 0.8276 0.7518 0.8258 0.8441

The bold values indicate the highest score in each performancemetric. C3means 3 clinical

features, L6 means 6 selected lung window radiomic features, M6 means 6 selected

mediastinal window radiomic features, L5 means the remained 5 lung window radiomic

feature by removing the most correlated feature (f6) among the 12 radiomic features

according to Pearson’s correlation on the basis of L6.
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FIGURE 5 | Progression-free probability curves of the survival function generated by our model for three typical cases. (A) A patient with PFS less than 90 days (85

days); (B) a patient with PFS more than 90 days (156 days); and (C) a patient with PFS more than 1 year (431 days).

FIGURE 6 | Two typical cases from the visual analysis and our method: (A) a patient (male, age = 62 years, limited stage) with PFS of 90 days. Our model correctly

predicted it with a high risk of 157.0, but the visual and clinical prognosis was good. (B) A patient (male, age = 67 years, extensive stage) with PFS of 431 days. Our

model correctly predicted it with a low risk of 55.0, but the visual and clinical prognosis was poor. From left to right are the lung window CT, enhanced mediastinal

window CT, and the feature weights, respectively.

time-dependent AUC. The time-dependent cumulative/dynamic
ROC curve analysis defined a marker value updated at each
time point during the disease status individually, allowed to
compare the marker’s predictive ability and may give guidance
for medical decisions (47). In our study, we achieved similar

results with the C-index, suggesting the importance of enhanced-
mediastinal window in predicting the PFS. Our study illustrated
an important time of 90 days for the prognosis of SCLC and the
median survival time was around 200 days in high-risk groups
from Kaplan–Meier curves.
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There were numerous texture features in CT images, which
may provide different anatomical and biological information in
tumor. Thus, the selection of texture features was meaningful
and time-saving for model building. During feature extraction,
original images were transformed to derived images with the
wavelet filter and LoG filter to extract more radiomic features.
After feature selection, the most important features for lung
window and mediastinal window were selected respectively. For
both lung window and mediastinal window, 50% (3/6) selected
features were LoG-based, including the top-ranked features.
These results illustrated that LoG-based features play a more
important role in the survival analysis of SCLC. Actually, a LoG
filter could enhance the edge information by emphasizing the
areas of gray level change. The fine textures and coarse textures
of the tumor were both taken into consideration by high and low
sigma parameter. During the clinical diagnosis of SCLC based on
CT images, the texture feature of the tumor edge is always an
important indicator, which also proves the rationality of extracted
radiomic features.

There were several limitations in our study. First of all, due to
the relatively low incidence of SCLC in Asian race, the population
of this study is relatively small. Second, previous studies indicated
that the suitable section thickness may be as thin as 1.25 or
2.5mm. But the section thickness was 5mm in this retrospective
study, which may reduce the predictive accuracy of lung window.
Third, smoking is an important risk factor in patients with SCLC
especially in women, which did not calculate into the clinical
features in our study.

CONCLUSION

In summary, our study revealed that the textual features
extracting from the contrast-enhanced mediastinal window
were useful for predicting the PFS. The integration of
textual features from the lung window and contrast-enhanced

mediastinal window provided the more valuable information in

survival prediction in comparison with the conventional visual
assessment, which could be applied to support personalized
clinical decision for the diagnosis and patient management in
patients with SCLC.
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Intelligent three-dimensional (3D) reconstruction technology plays an important role in the

diagnosis and treatment of diseases. It has been widely used in assisted liver surgery.

At present, the 3D reconstruction information of liver is mainly obtained based on CT

enhancement data. It has also been commercialized. However, there are few reports on

the display of 3D reconstruction information of the liver based on MRI. The purpose of

this study is to propose a new idea of intelligent 3D liver reconstruction based on MRI

technology and verify its feasibility. Two different liver scanning data (CT and MRI) were

selected from the same batch of patients at the same time (patients with a time interval of

no more than two weeks and without surgery). The results of liver volume, segmentation,

tumor, and simulated surgery based on MRI volume data were compared with those

based on CT data. The results show that the results of 3D reconstruction based on

MRI data are highly consistent with those based on CT 3D reconstruction. At the same

time, in addition to providing the information provided by CT 3D reconstruction, it also

has its irreplaceable advantages. For example, multi-phase (early, middle and late arterial,

hepatobiliary, etc.) scanning of MRI technology can providemore disease information and

display of biliary diseases. In a word, MRI technology can be used for 3D reconstruction

of the liver. Hence, a new feasible and effective method to show the liver itself and its

disease characteristics is proposed.

Keywords: 3D precise reconstruction technology, liver, cancer, segmentation, simulated liver surgery

INTRODUCTION

With the deepening of medical development and the proposal of personalized and accurate
treatment schemes, clinicians are no longer satisfied with the information provided by traditional
imaging examination. The promotion of three-dimensional (3D) reconstruction technology greatly
meets the needs of clinicians to a certain extent. This technology has been widely used in the
human body, especially in hepatobiliary surgery, breast surgery, maxillofacial surgery, and bone
surgery (1–3). In 1990, the earliest application in the liver was proposed by Hashimoto et al. (4).
Using CT scanning data and computer software, 3D renderings of liver vessels and tumors were
reconstructed to guide the surgical treatment of liver cancer. The 3D reconstruction can observe the
characteristics of lesions frommultiple angles, determine reasonable and effective surgical methods,
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ensure perioperative safety, and greatly meet the requirements
of surgery for accuracy and safety (5). At present, the widely
used 3D liver reconstruction technology is based on three-
phase CT enhancement to show the anatomical structure of
liver parenchyma, important liver vessels and biliary system,
and clarify the relationship between liver and tumor and the
range of tumor involvement when tumor occurs (6–8). However,
some patients choose magnetic resonance liver enhancement
examination because of iodine allergy and selective use of
magnetic resonance liver-specific contrast agents. Whether these
patients can carry out 3D liver reconstruction based on MRI data
is a clinical concern. The purpose of this study is to determine
the feasibility of accurately obtaining 3D liver reconstruction
information based on MRI technology and to explore the
clinical significance of 3D reconstruction based on MRI liver
enhancement data in guiding clinical selection of accurate and
personalized treatment, which plays a positive guiding role in
both operation and interventional therapy, so as to reduce
complications. Finally, our study provides a new idea for 3D
liver reconstruction.

DATA AND METHODS

Case Data
Fifty-two patients aged from 31 to 75 years (average age
56.06 years), suspected of liver space occupying, and came to
the Fourth Affiliated Hospital of Harbin Medical University
from October 2020 to May 2021 were selected as the research
subjects. All patients underwent plain CT scan combined with
enhancement and plain MRI scan combined with enhancement
within one week.

Inclusion and Exclusion Criteria
Inclusion criteria were as follows: ① All patients received CT and
MRI enhancement scanning at the same time within two weeks;
② No corresponding liver treatment was performed between the
two examinations; and ③ The image data are relatively complete.
Exclusion criteria were as follows: the patient’s breath holding was
poor, and the image quality affected the diagnosis. All patients
signed an informed consent and obtained the approval of the
hospital Ethics Committee.

Scanning Method and Sequence
Information
Before examination, the patient was fasted of water for more
than 4 h and asked to practice breathing and breath holding
to reduced the artifacts caused by respiratory movement as
much as possible before being asked to lie on his/her back. The
scanning range was from the top of diaphragm to the lower
edge of liver. A Canon medical Aquilion ONE 320 slice CT
Scanner was used for plain scanning of the liver, gallbladder,
spleen, and pancreas. After the plain scanning, a dynamic three-
phase enhanced scanning was performed. The contrast agent was
administered through the injection of iopanol through elbow
vein. The injection rate was 3.5 ml/s, the injection amount was
0.1 mol/kg, and the reconstruction layer thickness was 1mm.
MRI examination was performed with a Philips ingenia 3.0TMRI
scanner (Philips Medical Technology) in the Netherlands and

an abdominal phased array coil. The scanning sequence was a
plain MRI scan, diffusion weighted imaging (DWI) scan, and
then a dynamic enhancement scan. The enhancement sequence
was performed by an mdixion 3D volume scanning (multi-phase
arterial phase, portal phase, delayed phase, and hepatobiliary
phase). The contrast agent, an injection amount of 0.1 mol/kg
of multihance or promethicin, was injected through an elbow
vein at the injection rate of 2 ml/s. Sequence information were
as follows: 1) Axial T2WI is TSESPAIR sequence (TR 1000ms,
TE70ms), imaging field of vision is 300 × 350 × 191mm, voxel
is 1.6 × 1.8mm, Coronal T2WI is TSE sequence (TR 626ms,
TE 80ms), imaging field of view is 300 × 402 × 167mm, voxel
is 1.6 × 1.83mm; 2) Axial DWI (b = 800 s/mm2) is sequence
with TR 3000ms and TE 71ms, imaging field of view is 380 ×

297 × 209mm, voxel is 3 × 3mm; 3) Axial dynamic enhanced
scanning ismdixon-w sequence (TR 3.7ms, TE 1.31ms), imaging
field of view is 320× 390× 225mm, voxel is 1.75× 1.76mm; 4)
Coronal enhanced scanning is mdixon-w sequence (TR 5.5ms,
TE 1.34ms), imaging field of view is 350 × 398 × 150mm,
voxel is 1.7 × 1.7mm. The layer thickness was 5mm and the
layer spacing was−2.5mm. The contrast agent was injected with
MODIS or promethicin through elbow vein. The injection rate
was 2 ml/s and the injection volume was 0.1 mol/kg.

Image Analysis and Post-Processing
Computed tomography (CT) and MRI scanning images were
evaluated by two experienced senior doctors. When the
evaluation of the two doctors were inconsistent, the image rating
was carried out through negotiation. Since liver segmentation
and simulated surgery are based on the portal and hepatic vein,
the development of portal vein is basically good. This is because
the development quality of hepatic vein directly determines the
accuracy of 3D liver reconstruction. Therefore, one radiologist
(observer 1) is familiar with abdominal imaging diagnosis and
one hepatobiliary surgeon (observer 2) are responsible for
Hepatic veins (HVS) in each group. The roughest Hepatic vein
(HV) in the image was evaluated independently. The scoring
criteria were as follows: no display of HVS was recorded as 0
points; blurred, clear, and sharp pipe wall were recorded as 1,
2, and 3 points, respectively; and slightly higher, higher, and
significantly higher lumen density were recorded as 1 point, 2
points, and 3 points, respectively. The scores were divided into
three levels: excellent (5–6 points), average (3–4 points), and poor
(0–2 points).

The qualified image is transferred to the Philips Nebula
workstation and the surface rendering algorithm was
automatically used for 3D reconstruction. The liver volume
and the left and right lobes of the liver are represented based
on 3D reconstruction. The measurement of volume for each
liver was repeated by three times, in which various values are
recorded, and the average value is taken.

3D LIVER MODEL RECONSTRUCTION
AND MEASUREMENT

The digitized liver model obtained by CT 3D reconstruction
and the fourth level portal vein vessels were clearly displayed.
The original data of plain CT scan phase, arterial phase,
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FIGURE 1 | (A) Two-dimensional CT enhanced image, (B) Three-dimensional (3D) reconstruction of liver and tumor based on growth model on CT data.

FIGURE 2 | (A) Two-dimensional CT enhanced image, (B) 3D reconstruction based on liver segmentation and tumor growth model on CT data.

portal phase, and delayed phase are imported into the Philips
Nebula workstation (Philips Medical Technology) to display the
information of transverse axis, sagittal position, and coronal
position of the original data.

The Liver Reconstruction and
Measurement Based on CT Image
The liver model is established by using the 3D reconstruction
organ cutting method based on portal phase volume
data. Then, the volume data on liver CT-enhanced portal
phase was reconstructed based on Marching Cube surface
rendering algorithm:

(1) We automatically reconstructed the liver model according
to the liver position and CT value based on the surface
rendering algorithm. At the same time, according to the
difference between vascular CT value and liver CT value, the
portal vein and hepatic vein were automatically segmented
and different sequences (coronal, sagittal, and transverse
axial) are compared. Whether the automatic selection
contained the liver model was checked. If the automatic

segmentation was wrong, several seed points were manually
constructed and the threshold range was appropriately
adjusted to induce all seed points to fill and grow to contain
liver tissue and eliminate non-liver tissue. Finally, a standard
liver model was made (Figure 1A).

(2) At the same time, according to the difference of CT values,
seed points were manually constructed to fill the growing
tumor model (Figure 1B).

(3) According to the position of blood vessels such as portal
vein and hepatic vein, the liver is automatically segmented to
obtain the liver volume of each segment of the left and right
lobes. At the same time, simulated hepatectomy is carried
out according to clinical needs to calculate the residual liver
volume to determine whether surgical treatment can be
carried out directly in a clinic (as shown in Figures 2A,B).

Liver Reconstruction and Measurement
Based on MRI Image
The establishment of the liver model was based on the 3D

reconstruction organ cutting method based on the volume data
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FIGURE 3 | (A) Two-dimensional MRI enhanced image, (B) 3D reconstruction of liver and tumor based on growth model on MRI data.

FIGURE 4 | (A) Two-dimensional MRI enhanced image, (B) 3D reconstruction based on liver segmentation and tumor growth model on MRI data.

of the portal vein phase (the signal of portal vein and hepatic vein

is higher than the signal of the liver parenchyma) or hepatobiliary
phase (the signal of portal vein and hepatic vein is lower than the
signal of the liver parenchyma). The liver MRI volume data was
reconstructed based on the Marching Cube surface-rendering
algorithm from Philips Nebula workstation. Since the MRI data
cannot be directly transferred into the liver post-processing
software, the volume data was first transferred into the AVA
vascular processing software. Only thenWas the secondary post-
processing software selected to enter the liver software. Because
the liver in the MRI data cannot be automatically identified, it is
manually identified as follows:

(1) Several seed points were manually constructed on the
liver. After the threshold range was properly adjusted, all
seed points were induced to fill the growing liver tissue.
After comparing the data from different sequences (coronal
position, sagittal position, and transverse axis position), we
analyzed whether the seed points contained the liver model.
Then, we reconstructed the 3D liver model based onMarching
Cube algorithm to make the liver model standard and
complete (as shown in Figure 3A);

(2) The reconstruction of the 3D models of liver space of which
the portal vein, hepatic vein, and liver segmentation occupy

is realized. Likewise, simulated liver surgery, via the same
method in liver reconstruction and measurement based on CT
image, is made possible (as shown in Figures 3B, 4A,B).

Statistical Analysis
The total liver volume, right liver volume, and the clarity of
hepatic vein from the two groups of patients were measured
at the same time and compared between the two groups. The
SPSS24.0 software was used for data analysis. The counting data
is expressed as n. The datameasurement was based on the normal
distribution with parameters X ± S index. Two independent
samples were analyzed by univariate analysis using t-test, p <

0.05 indicated that there is a statistical significance.

RESULTS

All 52 patients were divided into a CT group and an MRI
group according to the scanning method. We compared and
analyzed the data from the two groups on the aspect of functional
volume, total volume, right liver volume, and hepatic vein
score. It can clearly be seen that the 3D reconstruction based
on MRI volume data is consistent with the 3D reconstruction
results based on CT volume data (p > 0.05) (Tables 1, 2).
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TABLE 1 | Liver volume measured by CT and MRI reconstruction.

Project CT group MRI group Inspection

value

P value

Functional

volume (cm3,

x̄ ± s)

1270.5 ±

308.6

1257.0 ±

314.0

−0.739 0.464

Total volume

(cm3, x̄ ± s)

1305.8 ±

315.0

1284.4 ±

323.4

−1.145 0.257

TABLE 2 | Right lobe volume measured by CT and MRI reconstruction.

Project CT group MRI group Inspection

value

P value

Right liver

volume (cm3,

x̄ ± s)

824.6 ±

246.9

826.2 ±

248.3

0.110 0.913

TABLE 3 | Clarity analysis of hepatic vein reconstructed by CT and MRI.

Project CT group MRI group T-test P value

Hepatic vein

score [score,

M (P25,P75)]

4 (2∼6) 5 (5∼6) −3.963 <0.01

Moreover, the clarity of hepatic vein display in MRI group was
significantly better than that in CT group (p < 0.05) (as shown in
Table 3).

DISCUSSION

The Necessity of Selecting 3D
Reconstruction Technology Based on MRI
Data
It is well-known that MRI has certain advantages over CT.
Firstly, MRI is non-invasive and non-radiographic and hence
will not bring biological damage. Moreover, MRI has advantages
in sensitivity and spatial resolution, which is conducive to
the comparative observation of soft tissue (9). On the other
hand, some people are allergic to iodine contrast agent in
CT examination and passively give up CT examination. Also,
some patients directly choose a liver-specific MRI contrast
agent for enhancement in physical examination ultrasound,
while other patients only choose MRI examination due to
various concerns and refuse CT examination. Gadolinium-
DTPA (GD-DTPA) is the most commonly used contrast agent
for liver MRI enhancement, while hepatobiliary MRI can
provide more lesion details and better qualitative analysis
of disease characteristics. The most widely used clinical
contrast agents are gadolinium ethoxybenzyl diethylenetria
mine pentaacetic acid (GD-EOB-DTPA) whose trade names
are prometaxel and gadobenate dimeglumine (GD-BOPTA).
It is found (10, 11) that both MODIS and promethicin

can be ingested by hepatocytes and excreted into the biliary
system, which can significantly improve the sensitivity and
specificity of related liver cancer. They are mainly used for
the diagnosis of focal lesions in the liver, especially for the
detection of small lesions and the identification of benign
and malignant nodules (12). In addition, some literatures
suggest that the uptake of GD-EOB-DTPA by hepatocytes in
patients with liver cirrhosis is delayed. Therefore, it can also
be used for the staging of liver fibrosis and the non-invasive
evaluation of liver function. With the clinical popularization
of hepatobiliary specific contrast agents, enhanced MRI has
more advantages in the detection of early liver cancer.
Without the assistance of MRI 3D reconstruction technology,
it is difficult to the accurate preoperative evaluation and
simulated operation to a certain extent. Does it mean that the
assistance of 3D reconstruction is lost without the addition
of CT examination? The results of this study prove that 3D
reconstruction technology based on MRI enhancement data is
feasible (13).

Advantages of MRI 3D Reconstruction in
Analyzing Liver Segmentation
Computed tomography (CT) 3D reconstruction is based on
the portal phase. Through the display of hepatic vein and
portal vein, the four-level vascular supply area of the liver
is analyzed and segmented. According to the results of this
experiment, the clarity of the hepatic vein in the MRI group
was significantly better than that in CT group (p < 0.05).
In addition, accurate 3D reconstruction technology based on
MRI can not only be based on portal phase, but also refer to
hepatobiliary phase. Compared with CT portal phase images,

MRI has certain advantages in terms of vascular imaging

uniformity and contrast with liver parenchyma. MRI makes
the clear display of biliary system in hepatobiliary phase

after using hepatobiliary specific contrast agent—a display
which cannot be provided by CT data. Conventional magnetic

resonance cholangiopancreatography shows the morphological

characteristics of bile duct tree and pancreatic duct by inhibiting

the soft tissue and bone in all backgrounds. It cannot reflect
the functional characteristics of bile duct. Therefore, some
patients with ascites will affect its display. Under the action of
hepatobiliary-specific contrast agents, cholangiography can be
clearly displayed by T1-weighted images. MRI cholangiography,

which is widely studied at present, is very helpful for
the localization and qualitative diagnosis of biliary diseases.

Hepatobiliary-specific contrast-enhanced MRI has become a

new method to evaluate liver function (14). Hepatobiliary
phase images using hepatobiliary-specific magnetic resonance

contrast agents can provide more detailed information of liver
lesions, including qualitative analysis of lesions and analysis
of hepatocyte function (15). This can not only evaluate liver
function and reserve function, but also predict postoperative
functional liver volume more accurately combined with 3D
reconstruction technology.
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Analysis of Liver Volume in 3D
Reconstruction Technology of CT and MRI
The results of this experimental study show that there is
no significant difference between MRI 3D reconstruction
technology and CT 3D reconstruction technology. From the
MR 3D reconstruction image, we can also see that the
boundary of the liver is slightly blurred compared with the
edge of the CT 3D reconstruction model. Hence, it may
slightly expand the resection range of liver lesions to a
certain extent. This presentation of blurred boundaries may
be related to the layer thickness of MRI liver scanning.
Therefore, the relevant influencing factors are expected to
be corrected by adjusting the layer thickness and other
parameters in a follow-up study. However, MRI has many
parameters and contains a large amount of information. The
combination of multiple sequences and the application of special
imaging parameters has important research value and research
potential. Many patients with liver cancer have a history of
fatty liver. The comparison of the same inverse bitmap can
help the qualitative diagnosis of fatty liver. Moreover, the
application of quantitative magnetic susceptibility weighted
map sequence makes it possible to quantitatively diagnose

liver fat deposition and clarify the abandoned functional
liver volume with different texture and reserve function

to more accurately and effectively calculate the functional
liver volume. Hence, reducing the incidence of postoperative
liver failure.

The Significance of 3D Reconstruction
Technology of CT and MRI for Surgery
Many patients with primary liver cancer are complicated with
hepatitis and cirrhosis. Liver failuremay occur after hepatectomy,
resulting in a low expression of hepatocyte growth factor, a

reduction of the volume of liver regeneration, and an increase
of the risk of postoperative mortality in patients with primary

liver cancer (16). Liver failure after hepatectomy is the main
cause of death of perioperative patients. The main reason is

that the residual liver function is not enough to meet the

needs of human body (17). Therefore, it is very important
to accurately evaluate the liver reserve function beforehand.

According to the experimental results, the results of 3D

reconstruction technology of whole liver volume and right
liver volume are consistent. Since the outline of MRI data

is based on points, the total volume and segmented volume
data are consistent. It can be seen that the measurement of

other volumes is also consistent. According to the current
research (7, 18–20), CT 3D reconstruction technology can
accurately predict the scope of hepatectomy, evaluate the residual

liver volume by simulating the residual liver volume after
hepatectomy, evaluate the liver reserve function, guide the

formulation of surgical scheme and assist in the discrimination
of complex surgery so as to accurately judge the prognosis and
outcome of liver surgery, and give full play to the advantages
and characteristics of surgery. Therefore, the accuracy of 3D

reconstruction simulation surgery based on MRI data is of great
clinical value.

DEFICIENCIES AND PROSPECTS

This study is a retrospective study. Magnetic Resonance (MR)
data are conventional data without prospective design and
optimization. In the next study, the impact of scanning parameter
optimization on 3D reconstruction model can be studied. In
addition, all 3D reconstruction models based on MRI are
manually sketched by using the 3D post-processing software
of CT. This brings some inconvenience and factors to the
operation process. A study on effective semi-automatic or even
full-automatic 3D post-processing method based on plain MRI
scan and hepatobiliary phase may further assist the application
of clinical work.

CONCLUSION

It is feasible to accurately obtain the 3D reconstruction
information of liver based on MRI technology. In addition,
the 3D reconstruction based on MRI data has its irreplaceable
advantages in addition to the information provided by CT
3D reconstruction.
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Fetal head circumference (HC) is an important biological parameter to monitor the

healthy development of the fetus. Since there are some HC measurement errors that

affected by the skill and experience of the sonographers, a rapid, accurate and automatic

measurement for fetal HC in prenatal ultrasound is of great significance. We proposed

a new one-stage network for rotating elliptic object detection based on anchor-free

method, which is also an end-to-end network for fetal HC auto-measurement that no

need for any post-processing. The network structure used simple transformer structure

combined with convolutional neural network (CNN) for a lightweight design, meanwhile,

made full use of powerful global feature extraction ability of transformer and local feature

extraction ability of CNN to extract continuous and complete skull edge information.

The two complement each other for promoting detection precision of fetal HC without

significantly increasing the amount of computation. In order to reduce the large variation

of intersection over union (IOU) in rotating elliptic object detection caused by slight angle

deviation, we used soft stage-wise regression (SSR) strategy for angle regression and

added KLD that is approximate to IOU loss into total loss function. The proposed method

achieved good results on the HC18 dataset to prove its effectiveness. This study is

expected to help less experienced sonographers, provide help for precision medicine,

and relieve the shortage of sonographers for prenatal ultrasound in worldwide.

Keywords: prenatal ultrasound, fetal head circumference, rotating object detection, transformers, convolutional

neural network

INTRODUCTION

Prenatal ultrasound is one of the most important examination methods during pregnancy due to
its fast, low-risk and non-invasive characteristics. Fetal head circumference (HC) is one of the most
essential biological indexes in accurate assessment of fetal development, which provides a method
for monitoring fetal growth, estimating gestational age, and determining delivery mode. It is of
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paramount importance to ensure the continued wellbeing of
mothers and newborns both during and after pregnancy. In
prenatal ultrasound screening, the fetal head circumference
is measured on standard plane of thalamus according to the
obstetric ultrasound guidelines (1, 2), and the circumference of
ellipse can be identified as the fetal HC since the contour of
skull is similar to an ellipse. During measurement, the contour
of skull is marked by sonographers, and the HC can be calculated
by ellipse parameters which is obtained through fitting on post-
processing software embedded in ultrasound equipment. Some
semi-automated HC measurement is available on newer OB
ultrasound machines, like GE Voluson E10 (SonoBiometry). The
measurement results of semi-automated methods are directly
affected by the accuracy in performing segmentation.

However, it is challenging for AI models to measure HC
due to blurred or incomplete skull edge in ultrasound images.
Accurate measurement can provide an important reference for
the evaluation of fetal growth and development. Therefore, in
order to improve efficiency, reliability, and reduce the workload
of doctors, clinical practice puts forward high requirements for
automatic segmentation (3). It is of great significance to develop
an efficient and accurate method for automatic measurement of
fetal HC.

In this paper, a lightweight detection network that combined
with Transformer and Convolutional neural network (CNN) is
proposed to detect the position of the fetal head, regress the
parameters of ellipse, and then solve the head circumference
value through the parameters. For automatic measurement tasks
of HC, it is a one-stage network of detection. The process does
not require any post-processing, such as edge extraction or ellipse
fitting, and the process comparison between our method and
general detection method is shown in Figure 1. This work makes
the following contributions:

1) To our knowledge, our method is the first to apply
the rotating ellipse detection method to the skull edge
detection task. This is a one-stage network based on anchor-
free method;

2) Taking Res_DCN as baseline, Deformable Convolutional
Networks (DCN) combined with ResNet can learn the
features of irregular boundary better and promote capability
of local feature extraction. Meanwhile, powerful global
feature extraction ability of Transformer is used to obtain
more abundant continuous features of boundary from
the global view. The proposed approach combines simple
Transformer structure with CNN to obtain complete and
accurate elliptical information as much as possible without
significantly increasing the amount of computation;

3) Soft Stagewise Regression (SSR) strategy is used to map angle
regression problems into classification problems. Firstly, the
angle is roughly classified, and then the dynamic range is
introduced to make every bin can do translation and scaling
for fine classification. Classify the angles from coarse to fine
to make angle regression accuracy higher;

4) Kullback-Leibler Divergence (KLD) loss that is similar to
IOU loss is added into total loss function to solve the
problem that intersection over union (IOU) between ground
truth (GT) and prediction changes greatly caused by small

angle deviation or center point deviation of the rotating
target, as the IOU of rotate target is difficult to calculate.
KLD loss can further improve the regression accuracy of
elliptic parameters;

5) The proposed method gets good results compared with other
existing HCmeasurement methods in open data set of HC18.
It is noteworthy that the method is simple and efficient
without requiring any post-processing.

RELATED WORK AND MOTIVATION

Related Work
In the past research, many methods based on machine learning
have been used to extract skull edge features, such as Haar-
like features combined with different classifiers (4–9). There
are also some methods based on gradient (10), threshold (11),
active boundary model (12), contour fragment model (13),
multi-groupfilters mixing (14) to extract features of skull region
or boundary. After the skull features were extracted, different
methods such as Hough transform (15) and ElliFit (16) were
used to fit the elliptic skull boundary and further measure
HC. Although some good results have been achieved by above
methods, they all require prior knowledge or artificially designed
features with poor robustness and large amount of calculation.

In recent years, CNN have been widely used in medical image
segmentation (17, 18), Sinclair et al. (19) and Wu et al. (20) used
the cascaded Fully Convolutional Network (FCN) to segment the
skull region. U-net and its extended form have a symmetrical
structure and extract rich features by using the fusion of different
feature layers (21, 22). There are also somemethods with different
understanding of tasks, such as multi-organ segmentation (23),
segmentation and regression multi-task methods (24), which are
widely used in skull region or boundary segmentation. Skull
boundary detection based on CNN segmentation method has
excellent performance in regional segmentation, after predicting
the skull region, a series of complex post-processing such as
expansion, corrosion and edge extraction are carried out to
obtain the skull boundary pixels, and then ellipse parameter
fitting is carried out to solve HC, therefore, these methods
have huge networks and cumbersome process. The measurement
accuracy of head circumference depends on the segmentation
result heavily, and the effect is not good for the ultrasonic image
with unclear or incomplete boundary.

Object detection technology based on anchor method has
good detection results for standard rectangular frame targets
(25, 26), but there are no relevant studies on rotating elliptic
object detection (i.e., skull edge detection task). The method
based on anchor need to preset size of anchor according to
IOU, and an appropriate number of anchors are selected with
a certain threshold value (such as 0.5) as positive samples for
regression distribution of objects. But this leads to two problems
in rotating object detection: first, further aggravating the positive
and negative sample imbalance. Angle prior should be added
to the preset rotating anchor, doubling the number of preset
anchors. In addition, rotating anchor angle slightly deviated from
GT will lead to sharp decline of IOU. Second, classification is
inconsistent with regression. Many studies have discussed this
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FIGURE 1 | The process comparison between our method and general detection method.

FIGURE 2 | The architecture of proposed network.

problem (27), that is, the classification score of predicted results
is inconsistent with the positioning accuracy, so inaccurate
positioning may be selected when passing the NMS stage or
selecting detection results according to the classification score,
while the well-positioned anchor is omitted or suppressed.

Motivation
For skull edge detection task, due to factors such as fetuses
at different gestational ages and different positions, the skull
edge presents elliptic shapes of different sizes. The detection
method based on Anchor needs to design sizes of different
proportions according to prior, which is a very complicated
process. In addition, IOU between GT and prediction changes
greatly because of small angle deviation or center point deviation
of the rotating target. Recently, the object detection method
based on anchor-free has been greatly developed. CenterNet (28)
detects the center point of the object first, and then directly
regress the width and height of the object. Of course, we can
directly regress a rotation angle to expand CenterNet to rotating
object detection. However, the size and angle actually depend on
different rotating coordinate systems, so it is difficult to directly

regress parameters. To sum up, we are committed to studying a
lightweight and high-precision rotating ellipse detection network
for skull edge detection. The proposed method is a one-stage
method based on anchor-free to solve the above problems.

METHODS

In this section, we first describe the overall architecture of the
proposed method, and then explain the Gaussian distribution of
GT, output maps, and KLD loss function in detail. The output
maps are used to generate the oriented ellipse of the objects.

Architecture
Since our goal is to build a lightweight network, we didn’t
choose backbone which is too complicated. The proposed
network is based on an asymmetric U-shaped architecture (see
Figure 2).We use the block 1–5 of ResNet_DCN as the backbone,
simple Multi-head-self-attention [MHSA, see Figure 3, details
in reference (29)] is used in encoder’s last bottleneck module
and the whole up-sampling process. Deformable convolution
and self-attention mechanism are used to improve the access
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FIGURE 3 | The architecture of MHSA module.

to local information and the continuity of irregular boundary.
In decoder, output features of encoder are up-sampled to 1/4
of the input image (scale s = 4), we combine a deep layer
with a shallow layer through skip connections to share both the
high-level semantic information and low-level finer details. In
particular, we first up-sample a deep layer to the same size of
the shallow layer through bilinear interpolation. The up-sampled
features map is refined through a 3 × 3 convolutional layer. The
refined feature map is then concatenated with the shallow layer,
followed by a 1 × 1 convolutional layer to refine the channel-
wise features. In the end, four detection heads are used for ellipse
parameters regression (heatmap, center offset, long and short
axes of ellipse, angle).

Gaussian Distribution of GT
The proposed method locates the target based on free-anchor,
we need to map GT of keypoints to a 2D Gaussian distribution
on the heatmap. The mapping method in reference (28) is not
friendly to targets with a large aspect ratio, especially for ellipse,
so we modified the mapping method. The GT of an ellipse is (cx,
cy, a, b, angle), where (cx, cy) is the center point of an oriented
ellipse, a and b are long and short axes of ellipse, respectively,
angle is the angle between the short axis and the vertical direction.
We generate the smallest horizontal enclosing rectangular box of
the ellipse (bx, by, w, h), (bx, by) is the center point of smallest
horizontal enclosing rectangular box of the ellipse, w and h are
width and height of rectangular box, respectively. We map GT

(bx, by, w, h) which can be predicted as a positive sample to

2D Gaussian distribution exp (−(
(px−bx)

2

2σ 2
a

+
(py−by)

2

2σ 2
b

)), where

σ is a box size-adaptive standard deviation, (see Figure 4). The

heatmap P ∈ Rc×
H
s ×

w
s , H and W are height and width of input

image respectively, c is set to 1 in this work.

Output Maps
Heatmap

In this work, we use the heatmap ρ ∈ Rc×
H
s ×

w
s to detect

the center points of arbitrarily oriented objects, where c is
corresponding to one object category. The predicted heatmap
value at a particular center point is regarded as the confidence
of the object detection. We use the variant focal loss to train
the heatmap:

Lh = −
1

N

∑

i

{

(1− ρi)
α log (ρi) if Pi = 1

(1− Pi)
β
ρα
i log (1− ρi) otherwise

(1)

where P and ρ refer to the ground-truth and the predicted
heatmap values, i indexes the pixel locations on the feature, N
is the number of objects. α and β are the hyper-parameters that
control the contribution of each point. α is set to 2 and β is
set to 4.
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FIGURE 4 | The process of mapping GT of keypoints to a 2D Gaussian distribution on the heatmap. The left shows the mapping method of reference (28), the right

shows the mapping method of ours.

Center Offset
We transformGT of center point by down-sample from the input
image, which is a floating-point type C = ( cxs ,

cy
s ). However,

the predicted center point is an integer. To compensate for the
discretization error between the floating center point and the
integer center point caused by the output stride, we predict an

offset map O ∈ R2×
H
s ×

W
s can be defined as:

O =

(cx

s
−

⌊ cx

s

⌋

,
cy

s
−

⌊cy

s

⌋)

(2)

The offset is optimized with a smooth L1 loss:

LO =
1

N

N
∑

k=1

Smooth L1(Ok − ok) (3)

where N is the total number of objects, o refers to the ground-
truth offsets, k indexes the objects.

The smooth L1 loss can be expressed as:

Smooth L1(x) =

{

0.5x2 if |x| < 1
|x| − 0.5 otherwise

(4)

Long and Short Axes of Ellipse
We regress to long and short axes of ellipse for each object,

B = (a, b) ∈ R2×
H
s ×

W
s , where a is long axes length, b is short

axes length. It can be optimized with a smooth L1 loss:

LO =
1

N

N
∑

k=1

Smooth L1(Bk − bk) (5)

where B and b are the ground-truth and the predicted ellipse
parameters, respectively.

Angle
Accurate angle regression is very important for rotating object
detection, a small angle variation has marginal influence on the
total loss in training, but it may induce a large IOU difference

between the predicted ellipse and the ground-truth ellipse.
Because of the symmetry of the ellipse, the rotation angles θ ∈

[0, 180). Soft-stagewise regression strategy is adopted for angle
regression, which takes angle regression as a multi-classification
task. We set it as a three-stage classification task (S1 = 18, S2 =
10, S3 = 10). In the first stage, the angle θ ∈ [0, 180) is divided
into S1 parts with a span of 180 / S1. In the second stage, [0, 180
/ S1] is divided into S2 parts with a span of 180 / S1 / S2. The
third stage is similar, as shown in the Figure 5. In each stage, it
is a multi-classification task, the sum of the probability of each
class and the representative angle of the current class is taken as
the final prediction value. The angle is predicted by the following
formula for soft-stagewise regression:

θ =

K
∑

k=1

Sk−1
∑

i=0

p
(k)
i i(

V
∏k

j=1 sj
) (6)

where V ∈ [0, 180) , p
(k)
i refers to the probability of each class

for each stage, The last term in the above equation is the bin width
ωk =

V
∏k

j=1 sj
for the k-th stage and i is the bin index. Reference

(30) introduced a dynamic range for each bin, that is, it allowed
each bin to be shifted and scaled according to the input image.
For adjusting the bin width ωk at the k-th stage, SSR introduce a
term 1k to modify sk into s

∗

k
as follows:

s∗k = sk(1+ 1k) (7)

where 1k is the output of a regression network given the input
image. For shifting bins, we add an offset term η to each bin index
i. The bin index i is modified as follows:

i = i+ η
(k)
i (8)

Thus, the output of SSR head are p
(k)
i , 1k, and η

(k)
i , the angle

is regressed from coarse to fine by introducing dynamic range
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FIGURE 5 | The schematic diagram of SSR strategy for angle regression.

that each bin can do translation and scaling so as to improve
the precision of angle regression and reduce the error as much
as possible. Angle regression can be optimized with a smooth
L1 loss:

Lθ =
1

N

N
∑

k=1

Smooth L1(θk − θ∗k ) (9)

where θk and θ∗
k
are the ground-truth and the predicted ellipse

parameters, respectively.

Kullback-Leibler Divergence Loss
The IOU of rotate object is difficult to be calculated, we use KLD
to measure the similarity of the two distributions to approximate
the IOU. KLD loss also has some advantages when optimizing
parameters. When one of the parameters is optimized, the other
parameters will be used as its weight to dynamically adjust the
optimization rate. In other words, the optimization of parameters
is no longer independent, that is, optimizing one parameter
will also promote the optimization of other parameters. The
optimization of this virtuous circle is the key to KLD as an
excellent rotation regression loss. Reference (31) proved its
derivability and advantages. Convert GT of the ellipse (cx, cy, a,
b, θ) into a 2-D Gaussian N(µ, ε), (see Figure 6). Specifically, the
conversion is:

µ = (cx, cy)
T

ε1/2 =

(

b
2 cos

2θ +
a
2 sin

2
θ

b−a
2 cos θ sin θ

b−a
2 cos θ sin θ b

2 sin
2θ +

a
2 cos

2θ

)

(10)

Xp ∼ Np

(

µp, εp
)

and Xt ∼ Nt (µt , εt), the KLD between two
2-D Gaussian is:

Dkl

(

Np ‖Nt

)

=
1

2

(

µp − µt

)T
ε−1
t

(

µp − µt

)

+
1

2
Tr

(

ε−1
t εp

)

+
1

2
ln

|εt|
∣

∣εp
∣

∣

− 1 (11)

The KLD loss is:

Lreg = 1−
1

1+ log (Dkl

(

Np ‖Nt

)

+ 1)
(12)

The final regression loss is:

Ltotal = Lh + LO + Lθ + Lreg (13)

EXPERIMENTS

Datasets and Implementation Details
Dataset is from the HC18 grand-challenge1 which provided 1334
2D ultrasound images from standard planes, a training set with
999 images and a test set with 335 images. Manual annotations of
HC were made by senior experts. Since the data set only provides
standard planes, that is to say, each image has a target, and the
target accounts for a large proportion of the image. In order to
balance the positive and negative samples, we used two ways to
generate negative samples, one way is to remove the target in
the image and fill it with surrounding information, the other
way is to randomly crop the image into patches, and then resize
them to the size of the network input. If the IOU with GT is
<0.3, it will be considered as a negative sample. The size of
each 2D ultrasound image is approximately 540 ∗ 800 with the
pixel size ranging from 0.052 to 0.6mm. Data augmentation is

1Available online at: https://hc18.grand-challenge.org.

Frontiers in Medicine | www.frontiersin.org 6 March 2022 | Volume 9 | Article 848904157

https://hc18.grand-challenge.org
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yang et al. Auto-Measurement for Fetal Head Circumference

FIGURE 6 | The schematic diagram of converting GT of the ellipse (cx , cy , a, b, θ ) into a 2-D Gaussian N(µ, ε).

TABLE 1 | The comparison results between our method and other common methods base on segmentation algorithm.

Model MAE ± std (mm) ME ± std (mm) Params (M) AP

U-Net (33) 2.36 ± 5.60 0.41 ± 2.91 31.042 -

U-Net++ (34) 2.29 ± 2.33 0.27 ± 2.73 9.163 -

CE-Net (35) 2.24 ± 2.28 0.16 ± 2.12 29.003 -

SE-Unet (36) 2.27 ± 3.61 0.09 ± 2.33 - -

HC18 challenge best 1.72 ± 1.60 0.04 ± 2.35 - -

Ours 1.97 ± 1.89 0.11 ± 2.71 24.31 84.45

MAE, Mean Absolute Error; ME, Mean Error; std, standard deviation. Param, the size of model parameters; M, Mbyte; AP, Average precision. Bold values represent the best value of

each indicator.

FIGURE 7 | Some examples of detection results using the proposed method.

essential to make model more robust. The data augmentation
strategy was as follows: Rotation: rotation angle is [−30◦, 30◦],

and the interval is 10◦. Scale transformation: the scaling ratio

is [0.85, 1.15], and the interval is 0.05. Gamma transformation:

gamma factor is [0.5, 1.5], and the interval is 0.1. Flip: the input

image is flipped randomly. After data augmentation, training

set is expanded from 999 to 12,999, of which 200 are used as

validation set and the rest are used as a new training set. The
Stochastic Gradient Descent (SDG) optimizer is selected, the

initial learning rate is set to 0.005, the momentum is 0.9, the

droupout rate is 0.1, and the batchsize is set to 16. The training

procedure is completed on two NVIDIA GeForce RTX 2080TI
graphics cards.

Evaluation Metrics
In order to comprehensively evaluate the performance of the
model and conduct comparative analysis, regression Average
Precision (AP), Mean Absolute Error (MAE), Mean Error (ME)
of head circumference are adopted as the evaluation metrics of
the model in this paper. HC can be calculated as follows (32):

HC = π

[

3
(

a+ b
)

−

√

(3a+ b)(a+ 3b)
]

(14)
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where a and b are parameters of semi-long axis and semi-short
axis of the ellipse. Mean Absolute Error of fetal HC is defined as:

MAEhc =
1

N

N
∑

i=1

∣

∣
̂HCi −HCi

∣

∣ (15)

Mean Error of fetal HC is defined as:

MEhc =
1

N

N
∑

i=1

(̂HCi −HCi) (16)

Where ̂HC and HC denote the HC measured by the proposed
method and the real value of fetal HC, respectively.

Average Precision is a commonly used evaluation metric
in object detection that obtained by calculating the area of
Precision-Recall curve.

TABLE 2 | Ablation experiments results.

Backbone Method AP (with MHSA/ not)

Res_DCN-50 Smooth L1 (center, a, b, angle) 81.83/77.33

Smooth L1 (center, a, b) + SSR (angle) 83.25/79.97

Smooth L1 (center, a, b) + SSR (angle) +

KLD

84.45/81.71

Comparison of Res_DCN-50 with or without MHSA module, SSR, and KLD loss. Bold

values represent the best value of each indicator.

RESULTS

Our method has achieved good results on HC18 dataset, Average
precision (AP) is 84.45%. MAE ± std (mm) is 1.97±1.89, ME
± std (mm) is 0.11±2.71, the parameter size of the proposed
model is 24.31M. Table 1 shows the comparison results between
our method and other common methods base on segmentation
algorithm. It can be seen that our method has achieved good
skull edge detection results without significantly increasing the
amount of model parameters, and it can be comparable to the
state-of-the-art method. It is worth noting that our method is
simple and efficient. Unlike methods based on segmentation
algorithm, our method do not need any complicated post-
processing, which is an end-to-end network strictly for head
circumference detection task. There are some examples of
detection results in Figure 7.

Ablation Analysis
Some ablation experiments were conducted to prove the
effectiveness of each module design in our algorithm. Taking
Res_DCN-50 as the backbone as an example, the experimental
results are as shown in Table 2. It can be seen that using normal
Smooth L1 function and without MHSA module achieved the
AP: 77.33%, while adding the MHSA module AP: 81.83%,
increased 4.5%, it indicated that the MHSA module has a
significant improvement for the task.With the addition ofMHSA
module, AP was increased by 1.42-83.25% by using SSR detection
head for angle, then after adding KLD Loss, AP was increased

FIGURE 8 | A Bland-Altman diagram on validation set.
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by 1.2-84.45% further, at this time, compared with no MHSA
module AP: 81.71%, it is an increase of 2.74%. This indicated that
the excellent global feature extraction ability of MHSA module
improves the model’s ability to extract skull edge continuity
features, it is helpful for each module of the network.

Consistency Analysis
In order to evaluate the consistency between HCmeasured by the
proposed method and real value of HC, we draw a Bland-Altman
diagram on validation set, as shown in Figure 8. Compared with
the real value of HC, the Mean Difference of HC measurement is
−0.10mm with a 95% confidence interval and the error ranges
from −1.42-1.23mm. It indicated the HC measured by the
proposed method has a good consistency with the real value.

CONCLUSION

A new fetal head circumference auto-measurement method
based on rotating ellipse detection has been proposed in this
paper, which is a strictly end-to-end detection method without
any post-processing for the task. As far as we know, this is the
first application of end-to-end detection network tomeasure fetal
head circumference directly. We combine transformer and CNN
because convolution operations can extract rich context features
in local area and transformer (MHSA) module can capture
long-distance feature relationship benefitting from its ability of
global and dynamic receptive fields. The two complement each
other for promoting detection precision of fetal HC without
significantly increasing the amount of computation. For the
task of rotating elliptic object detection, the precision of angle
regression is very important. Slight angle deviation will bring
large changes in IOU. Therefore, we used SSR strategy for angle
regression and added KLD that is approximate to IOU loss
into total loss function. These methods significantly improve
the detection precision. This study is expected to help less
experienced sonographers, provide help for precision medicine,
and relieve the shortage of sonographers for prenatal ultrasound
in worldwide. There are also some shortcomings in our work, a
little deviation can be allowed in predicting the location of target

center point in the inference stage (that is, positive sample can
be determined if the IOU is greater than a certain threshold),
therefore, in order to facilitate calculation, we conducted pre-
processing operation in the process of mapping the center point
of ellipse to 2D Gaussian distribution on the heatmap. We
generated the smallest horizontal enclosing rectangle of the
ellipse, and used center point of rectangle as the new center
point for mapping. There is a slight error with the center point
of the ellipse, which may affect the precision of the detection
results. This is also the study direction that we need to improve
in the future.
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Background: The fusion of PET metabolic images and CT anatomical images can

simultaneously display the metabolic activity and anatomical position, which plays an

indispensable role in the staging diagnosis and accurate positioning of lung cancer.

Methods: In order to improve the information of PET-CT fusion image, this article

proposes a PET-CT fusion method via Siamese Pyramid Fusion Network (SPFN). In this

method, feature pyramid transformation is introduced to the siamese convolution neural

network to extract multi-scale information of the image. In the design of the objective

function, this article considers the nature of image fusion problem, utilizes the image

structure similarity as the objective function and introduces L1 regularization to improve

the quality of the image.

Results: The effectiveness of the proposed method is verified by more than 700 pairs of

PET-CT images and elaborate experimental design. The visual fidelity after fusion reaches

0.350, the information entropy reaches 0.076.

Conclusion: The quantitative and qualitative results proved that the proposed PET-CT

fusion method has some advantages. In addition, the results show that PET-CT fusion

image can improve the ability of staging diagnosis compared with single modal image.

Keywords: PET-CT fusion, image quality, siamese neural network, pyramid transform, structural similarity

1. INTRODUCTION

Medical imaging is a technique and process for obtaining images of a certain part of the human
body in a non-invasive manner (1–3). With the continuous development of computer imaging
technology, medical imaging has derived multi-modal forms. Common medical images can be
divided into Computed Tomography (CT), Positron Emission Tomography (PET), Magnetic
Resonance Imaging (MRI), UltraSound, and so on. Medical images of different modalities can
reflect disease information from different angles. The correlation and complementarity of image
information from different imaging modality can be used to merge different modalities of medical
image. Effective fusion can provide doctors with richer diagnosis and treatment information. For
lung cancer, the common imaging screening procedures mainly include CT and PET (4, 5). Among
them, CT images have the characteristics of short scanning time and clear images, which can
provide clear human bone tissue anatomy and lesion images, and are widely used for screening
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diseases such as chest and abdomen; PET uses short-lived
radionuclide metabolites (common fluorodeoxyglucose, FDG) to
reflect the metabolic activities in the human body to perform
imaging. PET has the advantages of high sensitivity and high
specificity. The PET-CT fusion image can simultaneously reflect
the pathophysiological changes and morphological structure of
the lesion. It has important clinical value for the staging of
non-small cell lung cancer, the judgment of the recurrence and
metastasis of lung cancer, and the formulation of radiation
treatment plans.

Medical image fusion technology is an important application
area in the field of information fusion technology. The fused
image has more information than the source image, which is
suitable for human eyes to distinguish, and can further enrich
some details of the image, which can provide more practical
information for clinical diagnosis. At present, researchers have
proposed many PET-CT fusion methods. The mainstream
fusion methods mainly include methods based on multi-scale
decomposition and methods based on wavelet transformation
(6, 7). For example, a multi-modal medical image fusion method
in the non-subsampled wavelet transform domain was proposed
in (8). This method first performs non-subsampled wavelet
transform on the source image, and then uses Pulse Coupled
Neural Network(PCNN) andMax selection fusion rule to analyze
high frequency sub-band and low frequency sub-band fusion,
this strategy simultaneously solves the two problems of energy
preservation and detail extraction in image fusion. An image
fusion based on guided filtering (9) used average filtering to
obtain two-scale base and detail layers, and determined the
two-scale weight of the fusion result according to the saliency
map of the image. These fusion methods follow certain fusion
rules to process the images point by point when fusing images.
Therefore, the quality of the fused image is largely affected by the
fusion rules, and the noise resistance effect is not high. During
multi-scale decomposition and transformation, some original
brightness information of the image is often lost.

In recent years, medical image fusion technology based
on convolutional neural network (10–12) has been developed
rapidly. With the help of symmetric network structure or co-
learning method, it automatically learns the direct mapping
between the original image and the fused image, which is
different from the multi-scale decomposition method and the
wavelet transform method, the convolutional neural network
learns to extract features from a large number of images
autonomously, and can obtain low-level features and high-level
semantic features at the same time. In order to obtain a clearer
fusion image, the multi-focus convolutional neural network (11)
used a high-quality image patch and its blurred patch as input to
automatically learn the coding features of the source image and
the target image; A novel image fusion framework, IFCNN (10),
was designed, which uses convolutional layers to extract salient
image features from input images, selects appropriate fusion
rules to fuse the extracted features, and finally obtains the fused
image through convolutional layer reconstruction. A multi-layer
cascaded fusion network was proposed in (12), this end-to-end
deep convolutional neural network can automatically perform
feature extraction, feature fusion, and image reconstruction on

the fused medical images, and use fast deconvolution to reduce
the number of features. The main feature of the convolutional
neural network is the invariance of feature translation. It does not
require complex fusion rules to obtain high-quality fused images
and can also retain the structural information in the original
image to the greatest extent. However, the convolutional neural
network only takes a single-dimensional picture is used as an
input, which lacks the diversity of image scales, and the standard
convolution still has the problem of unknowable content (13, 14).

The feature pyramid (15, 16) is a method that can efficiently
extract the features of each dimension in the picture. The
method of image transformation is used to generate images
of various scales. The convolutional neural network model is
used to express the characteristics of images of different scales
from the low to the top, so as to generate feature maps with
stronger content expression ability. In order to consider the
multi-scale information of the image, this article introduces the
feature pyramid transformation in the traditional convolution,
which enhances the content of the original convolution feature
on the scale. Specifically, this article proposes a Siamese Pyramid
Fusion Network, which implements end-to-end image feature-
level fusion by constructing a siamese structure and multi-scale
feature modules. The network fusion process includes a multi-
scale feature extraction stage and bimodal cross-correlation.
The fusion stage and the image reconstruction stage consist of
three parts. In particular, the contribution of this article can be
summarized in the following three aspects:

• We use a siamese structure composed of a PET encoder and a
CT encoder. The two encoders have the same structure and
share parameters. This structure can extract the two modal
image features of PET and CT separately.

• When extracting image feature maps, we design a multi-scale
convolution structure. This structure can not only extract the
translation invariance of features in the original image, but also
increase the multi-scale features of image.

• When designing the objective function, we propose a novel
objective function, which takes the structural similarity
between the original image and the fusion image as the
backbone, and adds the L1 norm as a regularization term to
reduce noise interference.

The rest of the article is organized as follows. The Section 2
describes the proposed algorithm in detail. The Section 3
describes the experiment and results. The discussion is in
Section 4 and the conclusion follows in Section 5.

2. METHOD

This article uses Xct and Xpet to represent the original CT
image and PET image, Xpc represents the fused PET-CT image,
Xpc = F(Xct ,Xpet), F() represents the fusion method. In order
to be able to find this fusion method, this article designs the
Siamese Pyramid Fusion Network (SPFN). When performing
image fusion, SPFN is mainly divided into feature extraction
part, fusion part, and image reconstruction part. The feature
extraction part is mainly composed of two encoders based on

Frontiers in Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 792390163

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xiao et al. PET and CT Image Fusion

the Convolutional Layer Coupling Module (CLCM) to extract
features from original image. The fusion part is composed of
cross-correlation layer to fuse the characteristics of the two
modality images. And the image reconstruction part is a decoder
composed of three de-convolutional layers, which decodes the
fused features to reconstruct the fused PET-CT image. The
specific process is shown in the Figure 1.

2.1. Architecture Design
The main framework of the siamese autoencoder architecture
proposed in this article is mainly inspired by the siamese
network (17). The siamese network initially takes two samples
as input and outputs its embedding high-dimensional space
representation to compare the similarity of the two samples.
Based on this siamese structure, this article designs an improved
siamese autoencoder to fuse the features of two samples. The
siamese autoencoder includes two encoders, a fusion layer and
a reconstruction decoder.

The two encoders have the same structure, sharing
parameters, and respectively accept PET and CT as input.
In the encoding stage, the two inputs of the siamese encoder are
the same size 512 × 512, and the images of the two modalities
will be input to the two encoders with different parameters at
the same time. The encoder designed in this article is mainly
composed of CLCM, which specifically includes three parts:
convolutional layer, channel coupling module, and spatial
pyramid coupling module.

After the features of PET and CT extracted by the encoder,
the features of the two modality images will be fused through
the cross-correlation layer, which is implemented by inter-
correlation operations. It will be described in detail in Section
2.3. Finally, the fused features are fed into the decoder and
reconstructed to obtain the final fused image. The decoder is
mainly composed of three deconvolutional layers, which aims to
reconstruct the final input according to the features in the latent
space. The decoder is mainly composed of three de-convolutional
layers, which aims to reconstruct the final input according to the
features in the latent space.

2.2. Convolutional Layer Coupling Module
In the neural network, data will be transmitted along the designed
channel. When a module in the network changes, the data will
change accordingly, and it can also affect other channels to
change accordingly. Data coupling makes the network model
more cohesive, while designing different types of modules can
allow the model to dynamically focus on specific types of features
in the image, which is more conducive to the PET-CT fusion
image of tumor staging.

In this article, we designed the Convolutional Layer Coupling
Module. This module mainly includes a convolutional layer, a
channel couplingmodule and a spatial pyramid couplingmodule.
The initial convolutional layer is to extract the feature map
from original images. The traditional convolutional encoder is
composed of stacked convolutional layers (18, 19). The change in
the weight of each layer in this stacked convolutional structure
will cause the subsequent output to change accordingly. For
fusion tasks, the features extracted by the convolutional layer

are different from the heavy classification or segmentation of
traditional image processing tasks. There is no need to expand
the receptive field to extract features that can distinguish as many
categories as possible, but to preserve the details of the image as
much as possible. Under the conditions, it is used to characterize
the key information in the two modality of PET and CT.

Therefore, after the convolution layer in the encoder, this
article does not directly use the stacked convolution operation,
but uses the channel coupling module and the spatial pyramid
coupling module to extract the multi-scale characterization
features of the image. The role of the channel coupling module is
to assign different weights for each channel, so that the network
can focus on important features and obtain task relevance
features. The function of the spatial pyramid coupling module
is to transform the spatial information in the original image to
another space and generate multi-scale key information (20).

Specifically, this article first uses a set of 3×3 size convolution
kernels to extract features from the original image. The first
layer of convolutional layer can extract some low-level features
in the image (21). In the image fusion task, there is no need
for the network to process a larger receptive field. In addition,
deeper abstract features representing the unknowability of the
fusion task will increase the computational complexity of the
network. Therefore, after the convolution operation, the stacked
convolution and pooling operations are not performed, but
the channel coupling module and the spatial pyramid coupling
module are used. The two coupling modules perform data
coupling. The feature map generated by the convolutional layer
determines the input in the channel coupling module. At the
same time, the channel couplingmodule also directly controls the
input of the spatial pyramid coupling module.

Given a feature map F generated by the convolutional layer,
after the coupling module, the fusion task relevance feature map
and the multi-scale feature map will be sequentially obtained,
and the two types of maps obtained are superimposed with the
original image to obtain the final The characteristics of the image.
The calculation process of the two types of data coupling is
as follows:

F′ = Cc(F) (1)

F′′ = Cs(F′) (2)

Cc and Cs represent channel coupling operation and spatial
pyramid coupling operation, respectively. Under the effect
of cross-layer connection, the difficulty of training model
parameters is greatly reduced, making it easier to train a coding
model with good effect. F′′ is the final output. Next, we will
introduce the details of the two coupling module in detail.

2.2.1. Channel Coupling Module
Channel coupling module mainly use the relationship between
feature maps to generate channel coupling features. Each channel
in the feature map is regarded as a feature extractor, the features
extracted by each feature extractor are different, and the focus
of the channel coupling module is to find the most meaningful
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FIGURE 1 | The strategy of the proposed medical image fusion method. The source images first feed into encoder composed of CLCM to extract feature. Then two

modality features are fused by cross correlation layer. Finally, the fused PET-CT image is reconstructed through the deconvolutional decoder.

features of the input image in these features (22). In order to
effectively extract the channel coupling features of the image,
this article designs the structure as shown in the Figure 2.
The channel coupling module will pass the input feature map
through global max pooling and global average pooling based
on width and height, respectively, and then feed into multi-
layer perceptron (MLP). The outputs from MLP are performed
element-wise summation operation and sigmoid operation. After
a series of operations, the final channel featuremaps are obtained.
The channel feature maps are used as the input of the spatial
coupling module. The calculation process for the features of the
channel coupling module is as follows:

Fc = Cc(F) = Sig(MLP(AvgPool(F))+MLP(MaxPool(F))) (3)

Sig() indicates that the sigmoid operation is performed on the two
sets of results

2.2.2. Spatial Pyramid Coupling Module
Spatial pyramid coupling module mainly uses the spatial
relationship between pixels in the image to generate spatial
feature maps. Since the convolutional layer only keeps the
translation of an object in the image invariance, and the scale
transformation of the object cannot be processed, so when
extracting the spatial feature map, this article adds the spatial
pyramid transformation (23) to extract the multi-scale spatial
feature map. The spatial pyramid coupling module is equivalent
to performing feature convolution from the bottom up on the
feature map of the image, and then fusing feature maps of
multiple scales.

The spatial pyramid coupling module uses the feature map
obtained by the channel coupling module as the input feature
map. First, the convolution operation in the spatial pyramid
coupling module detaches the input features then uses spatial

pyramid pooling to perform multi-scale transformation of the
abstract features to obtain four features of different sizes. And
the different scales feature maps are obtained through multi-
scale convolution after spatial pyramid coupling module. Finally,
the four convolution feature results are performed through
the channel concatenation operation to obtain the final spatial
pyramid feature map, as shown in Figure 3. The calculation
process of the spatial pyramid coupling module is as follows:

Fs = Cs(F) = Concat(Conv(SPP(Conv(Fc)))) (4)

SSP() represents for spatial pyramid pooling operation.
Specifically, the pyramid pooling operation is to divide the
original input features using four different pooling scales
(16, 4, 2, 1).

2.3. Cross Correlation Layer
For the fusion of PET features and CT features, the simplest
fusion method is to linearly add them. However, this operation
ignores the association between adjacent pixels in the area, and
lacks the expression of the overall information of the image. In
order to better enhance the display ability of the fused image
features without losing the original information in PET and
CT, this article uses the cross correlation layer (24) to fuse the
features extracted by the encoder. Given the image features Fct
and Fpet , their fusion results will be calculated according to the
cross-correlation layer. The specific formula is as follows:

Fpc = Cor(Fct , Fpet) (5)

Cor() represents for cross-correlation layer, and the cross-
correlation layer is a special convolutional layer that uses cross-
correlation operation. Different from the ordinary convolution
function, the cross-correlation function is an operation between
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FIGURE 2 | The channel coupling module. The channel coupling module utilizes two different pooling operation and feed results to multi-layer perceptron. The output

of multi-layer perceptron continue to forward to element-wise summation and sigmoid operation.

FIGURE 3 | The spatial pyramid coupling module. The spatial pyramid coupling module utilizes spatial pyramid pooling to get multi-scale feature maps and

concatenate them.

two data. When the data is transferred in the network, the weight
to be trained is not needed. The calculation equation is as follows

Cor(x1, x2) =
∑

m

∑

n

x1(m, n) ∗ x2(m+ o, n+ o) (6)

x1, x2 represent the feature patch on the two feature maps fct and
fpet respectively, m,n are the size of patch, o represents the patch
stride, this article set o as 3. Each patch on the feature map fct
must be cross-correlated with all the patch on the other feature
map fpet . In order to obtain the output of the same size as the
original image, the padding pattern selects the “SAME” when
performing cross-correlation in this article (25, 26).

2.4. Loss Function
For the loss function of the network, this article selects the
structural similarity loss (6, 27) as loss function. After obtaining

the fused PET-CT, it will first calculate the structural similarity
with the original PET and CT respectively, as in the formula:

SSIM(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ 2
x + σ 2

y + C2
(7)

x and y are the fused image and the original image, respectively.
µ represents image mean, σx, σy represent image variance, σxy
represents co-variance of images. C1 and C2 are constants (avoid
the denominator being 0), the calculation formula is C1 =

k1L
2,C2 = k2L

2, where L is the grayscale change of the image.
Since this article is performing feature extraction, the image is
normalized, so L is 1. K1 and K2 are two constants, the default
value is 0.01 and 0.03. The loss of the network can be defined as:

Lssim(x, y) = 1− SSIM(x, y) (8)
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When using SSIM, there will be a problem with edge noise
defects. Therefore, this article introduces an L1 regularization
term (28) in the original loss function. The L1 regularization term
‖ω‖ can be used to estimate the difference between the target
value x and the estimated value y, which can effectively reduce
the noise in the image, has a certain degree of robustness, and can
also prevent the neural network from overfitting during training.
Therefore, the loss of the final fusion network is as follows:

Lf (xct , xpet; ypc|ω) = 2−
2µctµpc + C1

µ2
ct + µ2

pc + C1
·

2σct,pc + C2

σ 2
ct + σ 2

pc + C2

−
2µpetµpc + C1

µ2
pet + µ2

pc + C1
·

2σpet,pc + C2

σ 2
pet + σ 2

pc + C2
+ ‖ω‖

(9)

3. EXPERIMENT AND RESULT

3.1. Dataset
The PET-CT images used in this article are from Soft-tissue-
Sarcoma (29). This dataset includes clinical images of 21 patients
with lung tumors. All patients underwent FDG-PET and CT
screening from November 2004 to November 2011 by McGill
University Health Centre (MUHC). The median of intravenous
FDGwas 420MBq. The dataset also includes patient information,
histopathological type, tumor grade, follow-up information
(metastasis, survival rate). In this article, only PET and CT
corresponding to the patient’s organs including the lungs are
used as the experimental dataset, and a total of 840 CTs and
corresponding FDG-PET are extracted from the dataset. The PET
and CT images of each patient are registered by (30). We adopted
a leave-one-out cross-validation strategy to test the effectiveness
of the method in this article and divided the data set into a
training set and a validation set according to a ratio of 4:1 to
840 pairs of images. In the training verification, 672 imaging
data were used as training, and the remaining 168 imaging
data were verified, repeated five times. All patient information
are de-identified.

3.2. Implementation Details
In the used dataset, the resolution of CT is 512× 512 pixels, and
the resolution of PET is 128×128 pixels. Before fusion, this article
uses image zoom to up-sampling PET to obtain an image with the
same resolution as CT. In addition, the human body’s absorption
of X-rays recorded in CT images, unit is Hounsfield Unit (HU),
and the human body’s absorption of isotopes recorded in PET
images. Therefore, this article uses the min-max standardization
method to normalize the images in the extracted dataset. We
implement our fusion algorithm using Tensorflow 1.12.0 on a
machine running Ubuntu 16.04 with CUDA 8.0 and CuDNN
5.1. Training is performed on 32 GB NVIDIA GTX 1080 Ti. The
parameter initialization in the fusion algorithm uses the Xavier
method (31); for the optimization algorithm. This article uses
the adaptive optimization algorithm AdaGrad algorithm (32) to
optimize the parameters.

3.3. Evaluation Metric
In order to quantitatively evaluate the performance of the
proposed fusion algorithm, there are reference image evaluation

indicators and no reference evaluation indicators. This article
uses the following seven indicators for evaluation: average value,
standard deviation, average gradient, entropy, root mean square
error, normalized mutual information, visual fidelity.

The average value x̄ of the image represents the average level
of the overall pixels of the image and reflects the brightness of the
image. Assuming that the size of the image I ism ∗ n, the average
value of the image is averaged for each pixel,

x̄ =

∑m
i=1

∑n
j=1 xi,j

m ∗ n
(10)

The standard deviation σ of the image represents the degree of
dispersion between the pixel value and the average of the image,
and reflects the contrast of the image,

σ =

√

∑m
i

∑n
j (xi,j − x̄)2

m ∗ n
(11)

The average gradient G of the image reflects the clarity and
texture changes of the image,

G =
1

m ∗ n

m
∑

i

n
∑

j

√

( ∂I
∂x )

2 + ( ∂I
∂y )

2

2
(12)

∂I
∂x represents the gradient in the horizontal direction, ∂I

∂y

represents the gradient in the vertical direction.
The entropy Ent of the image is expressed as the average

number of bits in the grayscale set of the image, reflecting the
spatial characteristics of the grayscale distribution of the image.

Ent = −

∑

pxlnpx (13)

px represents the proportion of pixels in the image that have a
grayscale value of x.

The root mean square error RMSE of the image is used to
measure the difference between the two images. The mean square
error is to find the sum of the square of the error for each pixel
and find the mean and then square off:

RMSE =

√

√

√

√

1

m ∗ n

m∗n
∑

i

(yi − ŷi)2 (14)

yi and ŷi represent the original image and the fused image,
respectively.We calculate the RMSE between the fused image and
PETCT, respectively, and take the average value as the final result.

The normalized mutual information NMI (33) of the image
reflects the information correlation between the two images,

NMI = 2[2+
Ent(I1, IF)

Ent(I1)+ Ent(IF)
+

Ent(I2, IF)

Ent(I2)+ Ent(IF)
] (15)

where Ent(Ik, IF) is the joint entropy between the input image Ik
and IF .

Frontiers in Medicine | www.frontiersin.org 6 March 2022 | Volume 9 | Article 792390167

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xiao et al. PET and CT Image Fusion

The visual fidelity VIF (34) of the image was originally an
evaluation index using the statistical characteristics of natural
scenes. The image information will follow the distortion process,
which will result in poor visual quality. Therefore, the image
quality can be calculated by calculating the fidelity of the image.
The visual fidelity of the image can be defined as:

VIF =

∑

i I(ci, fi)
∑

i I(ci, ei)
(16)

Among them, I(c, f ) and I(c, e) represent the information that the
human eye can extract from the original image and the distorted
image, and c, f , e represent image blocks of different scales in the
image, i represents the index of the image block in the image.

In order to verify the quality of the fused images for clinical
diagnosis, we also invited four radiologists from the partner
hospital to visually evaluate the fused images. Four radiologists
evaluated the fusion image from four indicators: Noise
Suppression (NS), Artifact Reduction (AR), Detail Information
(DI), and Comprehensive Quality (CQ). The evaluation score
ranges from 1 to 5 points, with 1 point representing “bad”
and 5 points representing “excellent.” Each doctor conducts an
independent evaluation.

3.4. Comparative Experiment
In order to verify the effectiveness of the proposed method,
this article compared five representative methods: Multi-
layer Concatenation Fusion Network (MCFNET) (12), Guided
Filtering (GF) (9), Adaptive Decomposition(AD) (5), Parameter
Adaptive Pulse Coupled Neural Network (PAPCNN) (8), Image
Fusion Convolutional Neural Network (IFCNN) (10). The
implementation of the abovemethods has corresponding authors
to provide source code, all parameters are the default parameters
set by the author. This article verifies from qualitative results,
quantitative comparisons, and details of fusion results.

This article selects two cases of early lung cancer patients (A
and B) from the test dataset for qualitative display, as shown
in Figures 4, 6. It can be seen from Figures 4A, 5A that CT
mainly provides detailed edges, contours and other structures
of lung lesions and tissues, while PET reflects the accurate
location of lung lesions in Figures 4B, 5B. The fusion images
of different methods have obtained satisfactory results on the
texture and edges, which proves the effectiveness of the fusion
method for PET-CT. From the perspective of each fusion result,
the fusion image of AD contains some noise in Figures 4C, 5C.
In Figures 4D, 5D, the fusion result of GF has low contrast.
In Figures 4E, 5E, there are slight artifacts near the lung wall.
In Figures 4F,G, 5F,G, the brightness of the fusion result of
MCFNET and IFCNN is higher than other results. The contrast
and sharpness of the fusion result of the proposed method are
relatively high.

For medical images, the brightness of the image is not
the main indicator of quality considerations, but mainly the
presentation of the lesion area in the image and the display of
details. Therefore, this article discusses two details in the original
image, as shown in the area marked in Figures 6A,B, 7A,B.
The details are shown in Figures 5, 7. We can clearly observe

two highlighted areas from Figure 5B, which means that the
nodules in this area have rapid metabolism and the nodules
are extremely malignant. In the Figure 7, there is an obvious
adhesive nodule, however it is not highlighted in PET. This
nodule has a slow response rate and lowmalignancy, which needs
follow-up observation. Among these fusion detail results, the
fusion results of the proposed algorithm show more excellent
results in terms of the contrast between the lesion area and the
background and the details of the lesion area.

Next, in order to further verify the effectiveness of the
proposedmethod, this article evaluates the fusion results through
different objective indicators and the physician’s subjective
scores. The specific results are shown in Tables 1, 2.

Table 1 lists the objective results of the entire test dataset for
evaluating fusion images of different fusion algorithms. From the
results, it can be observed that the standard deviation, average
gradient, image entropy, normalized mutual information, and
visual fidelity of the original image mentioned in this article
have a high level, which proves that the proposed method has a
high level of image clarity, contrast and information. The mean
value of IFCNN are higher than the method in this article, which
reflects that the image fused by IFCNN is better than the method
in this article in terms of brightness index, and it also corresponds
to the qualitative result.

After displaying the objective evaluation label of image quality,
this article also lists the doctor’s subjective evaluation scores
(mean±std) of the results of different fusion algorithms, as shown
in Table 2.

The evaluation of image quality is one of the main evaluation
indicators of the fusion algorithm. In addition, the computational
complexity is also one of the factors considered by the fusion
algorithm. Therefore, this article also compares the average time
for a pair of PET-CT fusion of several algorithms, as shown in
Table 3. All fusion methods are run on the same device, and the
device parameters are shown in Section 4.2.

Among these methods, the fusion speed of the method
proposed in this article is slightly slower than that of the GF
fusion method at 2.12 s, but it is within the acceptable range,
which also indicates that the proposed method has considerable
potential in clinical applications.

3.5. Results for Staging Diagnosis
One of the main functions of PET-CT is to determine the staging
of tumors in patients with lung cancer. In order to evaluate the
fusion of PET-CT for the diagnosis of lung cancer staging, this
section uses some simple classification methods to evaluate the
collected image data and the corresponding staging information.
Specifically, different classification methods are used to train and
test PET, CT, PET-CT, including Support Vector Classifier (SVC),
Multilayer Perceptron (MLP), K-Nearest Neighbor (KNN),
Random Forest (RF), and Naive Bayes Classifier (NB), the
comparative performance is shown in the Table 4. The kernel
function of SVC adopts radial basis function that penalty slack
variable is 100 and kernel coefficient is 0.5. The maximum
iteration number of MLP is set to 300. The hyper-parameter,
neighbor numbers, of KNN is 4. The number of the RF is 100,
maximum depth is 2 and the function tomeasure is gini function.
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FIGURE 4 | The qualitative comparison results of patient A. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.

FIGURE 5 | The qualitative comparison results of patient B. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.

FIGURE 6 | The detail of fusion results of patient A. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.

Frontiers in Medicine | www.frontiersin.org 8 March 2022 | Volume 9 | Article 792390169

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Xiao et al. PET and CT Image Fusion

FIGURE 7 | The detail of fusion results of patient B. (A) CT; (B) PET; (C) AD; (D) GF; (E) PAPCNN; (F) MCFNET; (G) IFCNN; (H) OURS.

TABLE 1 | Evaluation metric of different fusion algorithm results.

Mean Std AG Ent RMSE NMI VIF

AD 0.102 0.026 0.063 0.051 0.030 3.25 0.321

GF 0.134 0.020 0.072 0.049 0.028 3.16 0.075

PAPCNN 0.204 0.021 0.072 0.065 0.030 3.27 0.303

MCFNET 0.260 0.045 0.091 0.062 0.013 3.25 0.292

IFCNN 0.273 0.065 0.082 0.072 0.019 3.21 0.287

OURS 0.157 0.085 0.091 0.076 0.013 3.28 0.350

TABLE 2 | Image quality evaluation scores of different algorithm results.

NS AR DI CQ

AD 2.75 ± 0.43 3.25 ± 0.43 3.75 ± 0.43 3.25 ± 0.43

GF 3.50 ± 0.50 3.00 ± 0.71 3.00 ± 0.71 3.17 ± 0.37

PAPCNN 3.00 ± 0.00 2.50 ± 0.50 3.00 ± 0.00 2.67 ± 0.41

MCFNET 3.75 ± 0.43 3.25 ± 0.43 3.75 ± 0.43 3.58 ± 0.36

IFCNN 4.75 ± 0.43 3.75 ± 0.43 4.75 ± 0.43 4.42 ± 0.28

OURS 4.75 ± 0.43 4.25 ± 0.43 4.50 ± 0.50 4.50 ± 0.37

TABLE 3 | Average runtime comparison of different fusion methods.

AD GF PAPCNN MCFNET IFCNN OURS

Mean time (s) 2.73 1.62 3.38 3.36 3.30 2.12

STD 0.04 0.01 0.20 0.14 0.12 0.03

TABLE 4 | Classification performance of different modal images for lung cancer

staging.

SVC(%) MLP(%) KNN(%) RF(%) NB(%)

PET 62.70 56.66 62.78 60.32 61.80

CT 79.37 79.01 74.86 76.17 81.11

PET-CT 82.71 81.49 80.05 82.34 84.01

Naive Bayes classifier uses the multinomial Naive Bayes classifier,
the number of sample class is 4.

As shown in Table 4, both CT and PET have certain staging
diagnostic capabilities for lung cancer. However, the performance
in staging diagnosis of lung cancer using PET-CT images is
generally higher than other monomodal data. The accuracy of
constructing individual classifiers in different sample spaces is
different, excluding the easy distinguishing characteristics of PET
images. PET-CT can improve generalization ability and stability
indeed. This result proves that the PET-CT fusion image has
diagnostic performance for the staging of lung cancer, which is
helpful to assist doctors in identifying lung tumors.

4. DISCUSSION

Taking into account the above comprehensive comparison, it can
be concluded that the fusion method proposed in this article has
a certain competitive performance on the quality improvement
and information retention of PET-CT. Nevertheless, this article
still has some shortcomings that need to be studied in the future.
Since the purpose of this article is to diagnose lung cancer in
stages, the collected image data are all CT and PET images of
patients, which are limited by technical problems and lack the use
of images such as Angiography (35). By selecting different tracers,
it can achieve the best results in disease diagnosis. Angiography
can show the tumor vascular characteristics of lung cancer and
provide a basis for interventional therapy. If the images of
different modalities can be fused, the comprehensive judgment
of the tumor is of great significance for the stage diagnosis of the
tumor and the formulation of the treatment plan.

In addition, the siamese network proposed in this article
requires the same resolution of the input two modal data.
However, in clinical practice, the resolution of CT and PET are
often different. Therefore, in the preprocessing, this article image
zoom PET to expand it to the same resolution as CT. Although
PET functional imaging does not display too many structure
details compared to CT, image distortion often occurs during
the up-sampling process. For the fusion of images with different
resolutions, how to avoid distortion caused by image scaling is
another new challenge.

The main research of this article is the staging diagnosis of
lung cancer through PET-CT after fusion. Although experiments
have proved that PET-CT after fusion does have a certain
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improvement in the diagnosis of lung cancer, because of
the limited space of this article, only some traditional image
classification algorithms are used. In the follow-up work, this
article will make corresponding research on the staging diagnosis
method of lung cancer.

5. CONCLUSION

In this article, we propose a novel siamese autoencoder network
for the fusion of PET and CT. The CLCM in the proposed
siamese autoencoder can extract features from both PET and
CT modal images, and while ensuring that the original image
information remains feature invariance, it can also increase
the multi-scale information of the features. In addition, this
article also designs a structural similarity loss function combined
with the L1 regularization term as the object of the model
solution. We collected 840 pairs of PET-CT images to verify the
effectiveness of the proposed fusion method in this article. From
the results of quantitative comparison, qualitative comparison
and subjective evaluation, the performance of fusion results
is relatively outstanding, which proves the effectiveness of the
proposed method. In future work, we will conduct research on

the fusion of PET-CT, aiming to propose high accuracy model
for staging diagnosis of lung cancer based on PET-CT.
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Background: Chronic obstructive pulmonary disease (COPD), a preventable lung

disease, has the highest prevalence in the elderly and deserves special consideration

regarding earlier warnings in this fragile population. The impact of age on COPD is well

known, but the COPD risk of the aging process in the lungs remains unclear. Therefore,

it is necessary to understand the COPD risk of the aging process in the lungs, providing

an early COPD risk decision for adults.

Methods: COPD risk is evaluated for adults to make an early COPD risk decision from

the perspective of lung radiomics features. First, the subjects are divided into four groups

according to the COPD stages. Their ages are divided into eight equal age intervals

in each group. Second, four survival Cox models are established based on the lung

radiomics features to evaluate the risk probability from COPD stage 0 to suffering COPD

and COPD stages. Finally, four risk ranks are defined by equally dividing the COPD risk

probability from 0 to 1. Subsequently, the COPD risk at different stages is evaluated with

varying age intervals to provide an early COPD risk decision.

Results: The evaluation metrics area under the curve (AUC)/C index of four survival

Cox models are 0.87/0.94, 0.84/0.83, 0.94/0.89, and 0.97/0.86, respectively, showing

the effectiveness of the models. The risk rank levels up every 5 years for the subjects

who had suffered COPD after 60. For the subjects with COPD stage 0, the risk rank

of suffering COPD stage I levels up every 5 years after the age of 65 years, and the

risk rank of suffering COPD stages II and III & IV levels up every 5 years after the age

of 70 years.

Conclusion: Once the age is above 60 years, the patients with COPD need to take

action to prevent the progress and deterioration of COPD. Once the age is above 65

years, the patients with COPD stage 0 need to take precautions against COPD.

Keywords: COPD risk, aging, COPD stage (GOLD), radiomics, early decision, survival Cox model, Lasso
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is characterized
by persistent airflow limitation. The gold standard for the
diagnosis and evaluation of COPD is the forced expiratory
volume in the first second (FEV1) and FEV1/forced vital capacity
(FVC) ratio examined by pulmonary function test (PFT) (1).
Previous studies on COPDmainly focus on COPD diagnosis and
classification (2), COPD treatment (3, 4), COPD exacerbation
prediction (5, 6), and COPD evaluation (7, 8). Many age-
associated changes have been confirmed in the respiratory and
pulmonary immune systems (9). Age relative risks of COPD
mortality increase exponentially in China and the US (10). Age
has become one of the factors of the score called Emphysema,
Age, Smoking, SIZE (EMPHASIZE) in predicting the presence
of clinically significant COPD and future morbidity (11). COPD
has the highest prevalence in the elderly and deserves special
consideration regarding treatment in this fragile population (9).
However, it remains unclear the impact of age on the COPD risk.

The thoracic cavity’s size decreases, limiting lung volumes and
altering the muscles that aid in respiration with adults aging (9).
The PFT result changes with the ages of both healthy people
and COPD patients. After birth, the lung tissue will continue
developing and growing to maturity. As a result, the alveoli and
the small blood vessels in the lung will increase exponentially,
and the lung volume will also become more extensive. The
median FEV1 and FVC in the PFT increase with age from 6
to 18 years, which linearly change until the adolescent growth
spurt at about 10 years in girls and 12 years in boys (12). The
median FEV1/FVC, first, decreases, then increases, and finally
decreases with age from 6 to 18 years (12). After the lungs
mature, the respiratory function of the lungs gradually declines
with aging. Previous research (13–18) shows that both the FEV1

and the FVC decline progressively with age increasing from 20
to 90 years of healthy lifelong non-smokers. The FVC and the
FEV1 in patients with COPD also show a significant decrease
during a follow-up period of 4 years (19). The FEV1 peaks
between the age of 20 and 36 years and declines with aging
(20). COPD prevalence is 2–3 times higher in people above
the age of 60 years (21, 22). The increased burden of COPD
seen in the elderly population may be due to age-associated
changes in the structure and function of the lung, increasing
the pathogenetic susceptibility to COPD (9). These changes,
described in elderly lifelong non-smokers, are characterized
by airspace dilatation resulting from loss of supporting tissue
without alveolar wall destruction, similar to changes seen with
COPD (9, 23). Therefore, it is necessary to evaluate COPD risk at
different stages with aging for precision medicine.

Compared with PFT, computed tomography (CT) has been
regarded as the most effective modality for characterizing and
quantifying COPD (24), for example, quantitatively analyzing
airway disease and emphysema in patients with COPD. Since
the concept of radiomics was formally proposed in 2012 (25),
radiomics of the chest CT images has been widely used for
the chemotherapy response prediction in non-small-cell lung
cancer (26) and pathology invasiveness prediction in patients
with solitary pulmonary nodules (27). Recently, radiomics also

has been used in COPD for survival prediction (28, 29),
COPD presence prediction (30), and the COPD exacerbations
(31). However, radiomics in COPD has not been extensively
investigated yet. Currently, there are only potential applications
of radiomics features in COPD for the diagnosis, treatment, and
follow-up of COPD and future directions (32). In particular, lung
radiomics features as an imaging biomarker that reflects the state
of lung parenchyma should be applied to COPD risk evaluation
for an early COPD risk decision.

In summary, our contributions in this study are briefly
described as follows:

• Four survival Cox models are established to evaluate
the COPD risk at different COPD stages based on lung
radiomics features;
• Earlier COPD risk decisions are made. The start age of the

COPD risk rank, which levels up every 5 years, is given for
the subjects who had suffered COPD or may suffer COPD at
different stages.

MATERIALS AND METHODS

This section mainly introduces the cohort (materials) and
research methods used in this study.

Materials
The ethics committee had approved this study of the National
Clinical Research Center of Respiratory Diseases in Guangzhou
Medical University, China. Chinese subjects were enrolled by the
China National Clinical Research Center of Respiratory Diseases
from May 25, 2009, to January 11, 2011.

Figure 1 shows the selection flow of the subjects, followed by
the inclusion and exclusion criteria (33). The 468 subjects who
met the inclusion criteria and the exclusion criteria underwent
HRCT scans (manufacturer: TOSHIBA, KVP: 120 kVp, X-ray
tube current: 40mA, slice thickness: 1.0mm, window center:
−600, and window width: 1,250) and PFT after using the
bronchodilator. All 468 subjects had been provided written
informed consent by the first affiliated hospital of Guangzhou
Medical University before chest HRCT scans and PFT. The
COPD stage is diagnosed from stages 0 to IV according to
(Global Initiative for Chronic Obstructive Lung Disease, GOLD)
2008 criteria accepted by the American Thoracic Society and the
European Respiratory Society.

Methods
A trained deep learning model ResU-Net automatically segments
the lung parenchyma images from the chest HRCT images. Then,
PyRadiomics automatically calculates the lung radiomics features
based on the lung parenchyma images. The 468 subjects are
divided into four groups A–D according to the COPD stages, and
the ages of 40–79 years are divided into eight equal age intervals
in each group. Each group includes the subjects suffering from
COPD stage 0 as the 1st subgroup. The 2nd subgroup of the four
groups includes the subjects suffering from COPD, stages I, II,
and III & IV, respectively. The Lassomodel is individually applied
to select the lung radiomics features of the four groups. To predict
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FIGURE 1 | Subject selection flow diagram, finally recruiting 468 subjects suffering the chronic obstructive pulmonary disease (COPD) (stages I, II, III, and IV) and

without COPD (stage 0*).

the COPD risk probability of the four groups, the four survival
Cox models are constructed based on the selected lung radiomics
features by the Lasso model and their age intervals, generating
intuitive radiomics nomograms. The four COPD risk ranks are
defined by equally dividing the COPD risk probability from 0 to
1. Subsequently, the COPD risk at different stages is evaluated
with varying age intervals.

Figure 1 shows the overall block diagram of research methods
in this study, including the region of interest (ROI) segmentation
(refer to the “ROI segmentation” section), lung radiomics feature
calculation (refer to the “Lung radiomic features calculation”
section), and the COPD risk evaluation for an earlier COPD
decision (refer to the “COPD risk evaluation at different stages”
section).

Region of Interest Segmentation
Considering the overall change of lung status with aging, the lung
parenchyma, including left and right lungs, is taken as the ROI
in this study. The ResU-Net model trained by human chest CT
images (34) automatically segment the ROI with red color in
Figure 2A (size: 512 × 512 × N) from the chest HRCT images
(size: 512× 512× N), and the detailed architecture of ResU-Net
has been described in our previous study (35). All the ROI images
had been checked and modified by three experienced radiologists
in Shenzhen People’s Hospital and the First Affiliated Hospital
of Guangzhou Medical University. The trained ResU-Net model

can be downloaded from the website https://github.com/JoHof/
lungmask.

Lung Radiomics Feature Calculation
Figure 2B shows the lung radiomics feature calculation using
PyRadiomics (36). PyRadiomics is available on the website
https://pyradiomics.readthedocs.io/en/latest/index.html. Before
calculating the lung radiomics features from the ROI (lung
parenchyma) images, the ROI images with Hounsfield unit (HU)
should be extracted from the chest HRCT images by our previous
method (37). The original lung parenchyma images are the ROI
images with HU. The wavelet filter (38, 39) and Laplacian of
Gaussian (LoG) filter (40, 41) are applied to filter the original
ROI images, generating two kinds of derived ROI images. The
lung radiomics features are calculated based on the original and
derived lung parenchyma images by the preset classes shown in
Figure 2B. Finally, the 1,316 lung radiomics features for each
subject are obtained.

COPD Risk Evaluation at Different Stages
The four groups A–D with the lung radiomics features divide
according to their COPD stages, and the eight equal age
intervals divide from the age 40–79 years in each group. The
four groups A–D include the subjects at COPD stage 0 and
suffering from COPD, COPD stages 0 and I, COPD stages
0 and II, and COPD stages 0 and III & IV, respectively.
However, the advantages of optimal stability and accuracy of
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FIGURE 2 | Overall block diagram of the methods in this study. (A) Region of interest (ROI) segmentation, (B) Lung radiomics feature calculation, and (C) COPD risk

evaluation model.

FIGURE 3 | Models A–D are established to evaluate the COPD risk based on the lung radiomics features.

the least absolute shrinkage and selection operator (Lasso)
model have been confirmed (42). It is applied to select the
lung radiomics features from 1,316 lung radiomics features.

COPD risk of each group is evaluated by the survival Cox
model (43, 44) with the selected lung radiomics features and
age intervals.
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Figure 3 shows the four COPD risk evaluation models of
the four groups A–D, including the four groups and eight
age intervals (refer to the “The four groups and eight age
intervals” section), the lung radiomics feature selection by Lasso
model (refer to the “Lasso model for lung radiomic features
selection” section), and the COPD risk evaluation by the survival
Cox model (refer to the “Survival Cox model for COPD risk
evaluation” section).

The Four Groups and Eight Age Intervals
Four groups A–D are divided for predicting the COPD risk
from COPD stage 0 to suffering from COPD (COPD stages
I, II, and III & IV), stages I, II, and III & IV using survival
Cox models, respectively. Figure 4A shows that all the four
groups A–D include the subjects who suffer from COPD stage
0 as the 1st subgroup (n = 130), and the 2nd subgroup in
the four groups A–D are the subjects who suffer from COPD
(I, II and III & IV, n = 338), I (n = 109), II (n = 122), and
III & IV (n = 107), respectively. The reference (19) has given
the conclusion that the FVC and FEV1 in patients with COPD
also show a significant decrease during a follow-up period of
4 years. Therefore, the eight equal age intervals are divided
from 40 to 79 years in each group every 5 years. Figure 4B
shows that the ages from 40 to 79 years of the 468 subjects are

equally divided into eight age intervals. Figure 4C shows the
age distribution map of eight equal age intervals at different
COPD stages.

Lasso Model for Lung Radiomics Feature Selection
The standard R package lars (Lasso model) is applied separately
to select the lung radiomics features affecting the COPD stages
from the normalized lung radiomics features of the four groups.
A ten-fold cross-validation (a standard R package “cv. Lars”
with K = 10) is used to ensure the effectiveness of the
Lasso model.

The lung radiomics features of the four groups are normalized
by the Equation (1).

x∗ij = (xij − xj)/
(

xjmax − xjmin

)

(1)

where, i = 1∼468 (468 subjects), j = 1∼1316 (1316 lung
radiomics features of each subject), xij is the ith row and jth
column of the 468× 1,316 lung radiomics features, xj, xjmax, xjmin

FIGURE 4 | Four groups A–D, eight equal age interval divisions, and the distribution map of the eight equal age intervals. (A) A distribution map of the four groups

A–D, (B) The eight equal age intervals from the age of 40 to 79 years, and (C) Another distribution map of the eight equal age intervals.
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TABLE 1 | The lung radiomics features of the four groups A–D selected by the Lasso model, respectively.

Lung radiomics features selected by Lasso Type of images Class Group A Group B Group C Group D

original_shape_Elongation Original images SHAPE features
√ √ √

original_shape_Maximum2DDiameterRow SHAPE features
√ √ √ √

original_shape_Maximum2DDiameterSlice SHAPE features
√

original_shape_Sphericity SHAPE features
√

original_shape_SurfaceVolumeRatio SHAPE features
√ √

original_firstorder_10Percentile FIRST features
√

original_glszm_GrayLevelNonUniformityNormalized GLSZM features
√

original_glszm_ZoneEntropy GLSZM features
√ √ √

log.sigma.1.0.mm.3D_firstorder_Maximum Derived images

generated from

LoG filter

FIRST features
√ √

log.sigma.1.0.mm.3D_glcm_ClusterProminence GLCM features
√ √

log.sigma.1.0.mm.3D_glrlm_GrayLevelVariance GLRLM features
√

log.sigma.1.0.mm.3D_glszm_SmallAreaEmphasis GLSZM features
√

log.sigma.1.0.mm.3D_glszm_ZoneEntropy GLSZM features
√

log.sigma.2.0.mm.3D_firstorder_Maximum FIRST features
√

log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis GLSZM features
√

log.sigma.2.0.mm.3D_ngtdm_Contrast NGTDM features
√ √

log.sigma.2.0.mm.3D_gldm_SmallDependenceLowGrayLevelEmphasis GLDM features
√

log.sigma.2.0.mm.3D_gldm_DependenceVariance GLDM features
√

log.sigma.3.0.mm.3D_firstorder_10Percentile FIRST features
√

log.sigma.5.0.mm.3D_firstorder_10Percentile FIRST features
√ √ √

log.sigma.5.0.mm.3D_firstorder_TotalEnergy FIRST features
√

log.sigma.5.0.mm.3D_glrlm_RunLengthNonUniformity GLRLM features
√

log.sigma.5.0.mm.3D_glszm_SmallAreaEmphasis GLSZM features
√

wavelet.LLH_glcm_ClusterTendency Derived images

generated from

wavelet filter

GLCM features
√

wavelet.LLH_glszm_GrayLevelNonUniformityNormalized GLSZM Features
√

wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis GLSZM features
√

wavelet.LLH_glrlm_GrayLevelNonUniformityNormalized GLRLM features
√

wavelet.LLH_firstorder_Mean FIRST features
√

wavelet.LLH_firstorder_RootMeanSquared FIRST features
√

wavelet.LHL_gldm_SmallDependenceLowGrayLevelEmphasis GLDM features
√

wavelet.LHL_firstorder_Kurtosis FIRST features
√ √ √

wavelet.HLH_glrlm_ShortRunLowGrayLevelEmphasis GLRLM features
√

wavelet.LLL_firstorder_10Percentile FIRST features
√ √ √

wavelet.LLL_firstorder_Minimum FIRST features
√ √

wavelet.LLL_firstorder_TotalEnergy FIRST features
√

wavelet.LLL_glcm_Imc2 GLCM features
√ √ √

are the mean, the maximum, the minimum of each radiomics
featurexj, respectively.

Formula (2) is the Lasso model to select the normalized lung
radiomics features of the four groups, respectively.

Ak ← arg min







n
∑

i=1



yi − β0 −

p
∑

j=1

βjx
∗

ij





2

+ λ

p
∑

j=0

∣

∣βj

∣

∣







(2)

where matrix Ak denotes the selected lung radiomics features,
k = 1, 2, 3, 4 respectively denotes group A-D. x∗ij denotes each

group’s normalized lung radiomics features (the independent
variable). yi denotes each group’s COPD stage (the independent
variable). Especially, yi in group A denotes the COPD stage
0 and suffering COPD. λ denotes the penalty parameter (λ
≥ 0). βj denotes the regression coefficient, i∈[1, n], and
j∈[0, p].

Survival Cox Model for COPD Risk Evaluation
The survival Cox model (45, 46), the standard R survival package
coxph, picks up the final selected lung radiomics features x of
the four groups from the selected lung radiomics features again,
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TABLE 2 | The final lung radiomics features of the four groups A–D selected from the survival Cox model, respectively.

Group Definition Lung radiomics features selected by survival

Cox

Coef HR:exp(coef)/95%CI Se(coef) z p-value

Group A Radiomics 1 original_shape_SurfaceVolumeRatio −0.396 0.673/ 0.531–0.853 0.121 −3.275 **

Radiomics 2 log.sigma.5.0.mm.3D_firstorder_TotalEnergy 0.316 1.372/1.056–1.783 0.134 2.369 *

Radiomics 3 wavelet.LLL_firstorder_Minimum −0.248 0.780/ 0.684–0.890 0.067 −3.693 ***

Group B Radiomics 4 wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis 0.414 1.512/1.137–2.012 0.146 2.838 **

Radiomics 5 wavelet.LLL_firstorder_Minimum −0.384 0.681/0.567–0.818 0.094 −4.106 ***

Group C Radiomics 6 log.sigma.1.0.mm.3D_firstorder_Maximum 0.297 1.346/1.082–1.675 0.112 2.665 **

Radiomics 7 log.sigma.1.0.mm.3D_glszm_SmallAreaEmphasis −0.529 0.589/0.399–0.871 0.200 −2.651 **

Radiomics 8 log.sigma.5.0.mm.3D_firstorder_10Percentile −0.7350 0.479/0.336–0.685 0.182 −4.045 ***

Radiomics 9 wavelet.LLH_firstorder_RootMeanSquared −0.230 0.794/0.640–0.985 0.110 −2.096 *

Radiomics 10 wavelet.LHL_firstorder_Kurtosis 0.529 1.697/1.214–2.373 0.172 3.091 **

Radiomics 11 wavelet.LLL_firstorder_10Percentile −1.085 0.338/0.223–0.513 0.213 −5.099 ***

Group D Radiomics 12 original_shape_Maximum2DDiameterRow −0.374 0.688/0.446–1.062 0.221 −1.689 .

Radiomics 13 original_firstorder_10Percentile −0.654 0.520/0.358–0.756 0.191 −3.428 ***

Radiomics 14 log.sigma.1.0.mm.3D_glcm_ClusterProminence −0.357 0.700/0.4905–0.9978 0.181 −1.972 *

Radiomics 15 log.sigma.1.0.mm.3D_glszm_ZoneEntropy 0.461 1.585/1.064–2.364 0.204 2.262 *

Radiomics 16 log.sigma.2.0.mm.3D_firstorder_Maximum 0.186 1.205/1.006–1.443 0.092 2.022 *

by statistically significant hazard ratio (HR). Then, the subjects
with the final selected lung radiomics features x are divided into
70 and 30%. Notably, 70% of the subjects train the survival Cox
models A–D by computing estimates of the survival functions,
drawing the nomograms A–D, respectively. Then, four survival
Cox models adopt the standard R rms package cph with the
significance level α = 0.1. Finally, 30% of the subjects in each
group validate the performance of the four trained survival Cox
models, respectively. It is noted that the failure event time is the
age interval. The event indicator represents the COPD stage 0,
and the suffering COPD, stage I, stage II, and stage III & IV of the
four groups.

Equation (3) gives the survival probability formula of the
survival Cox model.

λ(t|x) = λ0(t) � e
βTx (3)

where λ0(t) denotes the baseline hazard function, βTx denotes
the log-risk function, which is the product of the probability
at each event time the event has occurred to the individual. β

denotes the weights for optimizing the Cox partial likelihood.
Equation (4) converts the COPD survival probability to the

COPD risk probability.

Riski|k = 1 − λi|k (4)

where k = 1, 2, 3, 4 respectively denotes the group A-D, Riski|k
denotes the ith COPD risk probability in the kth group, and
λi|k is the ith COPD survival probability in the kth group as
Equation (3).

Specifically, the COPD risk probability in group A is the
COPD stage 0 probability and suffering COPD probability. The

COPD risk probability in groups B–D is the COPD stage 0
probability and suffering COPD stage I probability, stage II
probability, and stage III & IV probability, respectively. After
calculating the COPD risk probability, each group’s COPD risk
probability is separated according to the COPD stages. Then,
the four COPD risk ranks (mild risk: 0–0.25, moderate risk:
0.25–0.50, severe risk: 0.50–0.75, and extreme risk: 0.75–1) are
defined by equally dividing the COPD risk probability from 0 to
1. Subsequently, the COPD risk is evaluated in the four groups at
different risk ranks and age intervals.

RESULTS

This section shows the final selected lung radiomics features,
radiomics nomograms, performance evaluation of the four
survival Cox models, scatter plots, and curves of COPD risk
probability of the four groups, respectively.

The Selected Lung Radiomics Features in
Groups A–D
Tables 1, 2 report the results of the selected lung radiomics
features by the Lasso model and the survival Cox model’s
final selected lung radiomics features of the four groups,
respectively. In Table 1, the symbol

√
denotes the lung

radiomics features selected by the Lasso model. The weight
(coef), HR with 95% confidence interval (CI), and Wald’s
statistics (z) and significance (p-value) are also reported in
Table 2. The symbol in Table 2 “∗∗∗” denotes p-value <0.001,
“∗∗” denotes p-value <0.01, “∗” denotes p-value <0.05, and
“.” denotes p-value <0.1. For facilitating expression, the final
selected lung radiomics features are defined as Radiomics 1–16,
respectively. Radiomics 1–16 are used to construct the survival
Cox models.
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FIGURE 5 | Nomograms A–D of the survival Cox models (A–D), taking the 5th and 6th age interval for example.

Specifically, Radiomics 1–3 are the factors that affect the
COPD risk of the patients who have suffered from COPD with
aging. Radiomics 4–5, Radiomics 6–11, and Radiomics 12–
16 are the factors that affect the COPD risk of the patients
who had suffered the COPD stages I, II, III, and IV with
aging, respectively.

Radiomics Nomograms and Performance
Evaluation of Models A–D
Radiomics nomograms are pictorial representations depicting
the association between radiomics variables and the probability

of suffering COPD or different COPD stage events, providing an
intuitive way to interpret the survival Cox model (44).

Figure 5 shows four radiomics nomograms of the four models

A–D at the 5th and 6th age interval, respectively. The radiomics

nomograms of the four groups A–D further indicate the

importance of the final selected lung radiomics affecting COPD

with aging, respectively. The points of Radiomics X (X = 1,2,

. . . ,16) show the importance of its group. For example, Figure 5A

indicates that Radiomics 2 is more critical than Radiomics 3

in nomogram-A. Figure 5B means that Radiomics 5 is more

important than Radiomics 4 in nomogram-B. Figure 5C shows
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FIGURE 6 | Receiver operating characteristic (ROC) curves and C index of the survival Cox model with groups A–D. (A) ROC curves and C index of the survival Cox

model with the groups A and B, (B) ROC curves and C index of the survival Cox model with groups A and C, (C) ROC curves and C index of the survival Cox model

with the groups A and D, and (D) ROC curves and C index of the survival Cox model with the groups B–D.

that the order of importance is Radiomics 10, Radiomics 9,
Radiomics 11, Radiomics 8, Radiomics 7, and Radiomics 6 in
nomogram-C. Figure 5D shows that the order of importance is
Radiomics 13, Radiomics 14, Radiomics 15, Radiomics 12, and
Radiomics 16 in nomogram-D.

Figure 6 reports the models A–D’s performances to illustrate
the effectiveness of the models. After verifying the effectiveness of
the models, Figure 7 intuitively reports the results of the COPD
risk probability at different age intervals predicted by models
A–D. Figure 8 further compares the COPD risk probability of
different COPD stages at different age intervals to illustrate the
impact of suffering COPD or the COPD stage on the COPD risk.
Finally, Figure 9 summarizes the results in Figure 8 to make an
earlier COPD risk decision for adults.

The four receiver operating characteristic (ROC) curves are
drawn to evaluate themodels A–D’s performances. Figures 6A–C
show that the area under the curve (AUC, performance
measurement for classification) of model A (AUC = 0.87) is

higher than that of model B (AUC = 0.84), and the AUC of
the model C and the model D (model C: AUC = 0.94; model
D: AUC = 0.97) is higher than that of model A (AUC = 0.87).
Figure 6D shows that the AUC of the model D (model D: AUC
= 0.97) is higher than that of model B and model C (model B:
AUC = 0.84; model C: AUC = 0.89), and the AUC of the model
C is higher than that of model B. The concordance index (C
index, a standard performance metric for survival Cox analysis)
of model A (C index = 0.94) is higher than other models (model
B: C index = 0.83; model C: C index = 0.89; model D: C
index= 0.86).

COPD Risk Probability
Figure 7 shows the scattering plots of each group’s separated
COPD risk probability according to the COPD stages. Models
A–D predict the COPD risk probability at different age intervals
with 30% of the final selected lung radiomics features x.
Figure 7a1–d1 show that the COPD risk probability of the
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FIGURE 7 | Scattering plots with bar (mean with SD) of the COPD risk probability in the four groups (A–D) at different age intervals, respectively. (a1–d1) The COPD

risk probability of the subjects at the COPD stage 0, and (a2–d2) the COPD risk probability of the patients who had suffered the COPD, COPD stages I, II, and III & IV,

respectively.
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FIGURE 8 | COPD risk probability curves with age increasing from COPD stages 0 to I, II, and III & IV, respectively. (A) The COPD risk probability in group A, (B) the

COPD risk probability in group B, (C) the COPD risk probability in group C, and (D) the COPD risk probability in group D.

COPD stage 0 in the four groups significantly increases with
aging. Similarly, Figure 7a2–d2 also show that the COPD risk
probability of suffering COPD, stage I, stage II, and stage III &
IV in the four groups significantly increases with aging.

Figure 8 shows the curves of the COPD risk probability of
the four models A–D at different age intervals. The COPD risk
probability (mean with SD) of all the COPD stages 0, I, II, and
III & IV in the four groups significantly increases with aging.
Overall, the COPD risk probability of the patients who had
suffered the COPD, COPD stages I, II, and III & IV is higher than
that of subjects at COPD stage 0 in the four groups, respectively.

Figure 9 further shows the COPD risk probability curves of
the patients who had suffered the COPD and the subjects at the
COPD stage 0, respectively.

Figure 9A shows that the COPD risk of the patients who had
suffered the COPD stages I, II, and III & IV increases with aging.
Specifically, the 1st−4th age intervals of the patients who had

suffered from COPD, the COPD stages I, II, and III & IV are
basically at mild risk. In contrast, the 5th age interval of those
patients is at moderate risk, the 6th age interval of those patients
is at severe risk, and the 7th and 8 th age intervals of those patients
are at extreme risk.

Figure 9B shows that the COPD risk of subjects at COPD
stage 0 in the four groups increases with aging. Overall, in the
same age interval, the COPD risk of the subjects at the COPD
stage 0 reduces in order of suffering the COPD stages I, II, and
III & IV. The risk of those subjects who may suffer from COPD is
greater than that of COPD stages I, II, and III & IV with aging.
Similarly, the risk of those subjects who may suffer from the
COPD stage I is greater than that of the COPD stages II and III &
IV with aging, and the risk of those subjects who may suffer from
the COPD stage II is greater than that of the COPD stage III &
IV with aging. Specifically, for the subjects with COPD stage 0,
the COPD risk of the 1st−5th age intervals in groups A and B
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FIGURE 9 | COPD risk probability curves with aging in the four groups A–D, respectively. (A) COPD risk probability curves of the patients who had suffered COPD,

COPD stages I, II, and III & IV, and (B) COPD risk probability curves of subjects at COPD stage 0.

and 1st−6th age intervals in groups C and D are at mild risk. The
COPD risk of the 6th age interval in group A, the 6th and 7th
age intervals in group B, and the 7th age interval in groups C and
D are at moderate risk. The COPD risk of the 7th and 8th age
intervals in groups A and B and the 8th age interval in groups
C and D are at severe risk. The COPD risk of the subjects who
may suffer COPD stage I (10 years: the 6th and 7th age intervals)
develops slower than that of the subjects who may suffer the
COPD stages II and III & IV (5 years: the 7th age interval) in
the moderate risk rank. However, until the age of 79 years, the
COPD risk will not develop to the extreme risk rank.

DISCUSSION

In this study, four survival Cox models of the four groups A–D
are developed based on the lung radiomics features to evaluate
COPD risk at different stages for adults aged from 40 to 79 years,
providing a COPD risk decision for adults. All four survival
Cox models’ effectiveness has been evaluated. They are not only
effective in evaluating the risk of suffering from COPD (COPD
stages I, II, and III & IV) but also effective in more detailed
differentiation of COPD stages (COPD stages 0 and I, COPD
stages 0 and II, COPD stages 0 and III & IV).

The lung radiomics features, as an imaging biomarker
reflecting the lung structure (SHAPE radiomics features) and
lung tissue (the other radiomics features except for SHAPE),
are first used to evaluate COPD risk at different stages with
aging. Finally, independent features Radiomics 1–16, affecting
the COPD evolution from stage 0 to suffering COPD, COPD
stages I, II, and III & IV, are determined. Radiomics 1, 5, 10,
and 13 are the most direct risk features for COPD evolution
from stage 0 to suffering COPD, COPD stages I, II, and III &

IV, respectively. Our study discovers that different lung radiomics
features affect the COPD risk at different stages with aging. The
trends of COPD risk probability, which increase with aging, are
in line with the change law of the aging process in the lung (9, 13).

For the subjects who have suffered the COPD, COPD stages
I, II, and III & IV, our study discovers that although the COPD
risk increases with aging, each COPD risk rank of the patients
who had suffered from the COPD, COPD stages I, II, and III
& IV, basically has the same age intervals. Therefore, age is not
only a point to distinguish the “young COPD” (young patients
with COPD aged <50 years) (47, 48) from the non-young COPD
but also it can distinguish different COPD risk ranks. No matter
which is COPD stage at, it is regarded as a relatively safe COPD
risk rank (the mild risk) before the age of 60 years. The law of
COPD risk ranks to level up with age has also been revealed for
the subjects after 60 years. The risk rank of these subjects levels up
every 5 years. Therefore, once the patients with COPD are above
60 years, they need to pay close attention to prevent the progress
and deterioration of COPD. If necessary, manual intervention
should be considered, including increasing appropriate practical
exercise (49) and COPD care treatment (50) in the hospital.

For the subjects at the COPD stage 0, the COPD risk which
may suffer the COPD, COPD stages I, II, and III & IV also
increases with aging. Our study discovers that the age intervals of
each COPD risk rank of the subjects who may suffer the COPD,
COPD stages I, II, and III & IV, from the COPD stage 0 are
inconsistent. Age also can distinguish different COPD risk ranks.
It is a relatively safe COPD risk rank (themild risk) of the subjects
who may suffer the COPD and the COPD stage I before the age
of 65 years. It is also a relatively safe COPD risk rank of subjects
who may suffer the COPD stages II and III & IV before the age
of 70 years. For the subjects at COPD stage 0, the risk rank of
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suffering COPD stage I levels up every 5 years after the age of 65
years, and the risk rank of suffering COPD stages II and III & IV
levels up every 5 years after the age of 70 years. Therefore, the age
of 65 years is the start age of the increased risk of the subjects who
may suffer the COPD stage I, and the age of 70 years is the start
age of the increased risk of the subjects whomay suffer the COPD
stages II and III & IV. Although the COPD risk cannot reach the
extreme risk rank, once the subjects with COPD stage 0 are above
65 or 70 years, they also need to take precautions against COPD.

There are some limitations of the methods and materials in
this study. First, the survival Cox model considers both events
and time, but it can only analyze two opposite events. At the same
time, the model itself has high requirements for the collinearity
of input data. Although we used the Lasso model to remove the
collinearity of the lung radiomics features, some valuable features
may be omitted. Then, there is a lack of subjects aged 40–50 years
in the COPD stage I and subjects aged 40–55 years in the COPD
stages III & IV. That is because relatively few people aged 40–
50 years who suffer from COPD stage I will go to the hospital
for treatment and undergo the CT scan, and few people suffer
the COPD stages III & IV at the age of 40–55 years. Finally,
although lung radiomics features have met the needs of COPD
risk evaluation, an improved deep learning survival Cox model
(45), with a deep feed-forward neural network, has also been
used to improve the model’s performance further. Regrettably,
the deep learning survival Cox model’s AUC and C index are
not enhanced. We believe that lung radiomics features with
quantitative CT parameters and/or clinical text data will improve
the model’s performance.

CONCLUSION

Four effective models are established to evaluate COPD risk from
COPD stage 0 to suffered COPD, COPD stages I, II, and III & IV,
respectively. The early COPD risk decision is made based on the
COPD risk results. The start age of the COPD risk rank, which
levels up every 5 years, is given for the subjects who had suffered
COPD or may suffer COPD at different stages. It concludes that
once the age is above 60 years, the patients with COPD need to
be paid close attention to prevent the progress and deterioration
of COPD, and once the age is above 65 years, the patients with
COPD stage 0 need to take precautions against COPD.
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Purpose: Although classical techniques for image segmentation may work well for

some images, they may perform poorly or not work at all for others. It often depends

on the properties of the particular image segmentation task under study. The reliable

segmentation of brain tumors in medical images represents a particularly challenging

and essential task. For example, some brain tumors may exhibit complex so-called

“bottle-neck” shapes which are essentially circles with long indistinct tapering tails, known

as a “dual tail.” Such challenging conditions may not be readily segmented, particularly

in the extended tail region or around the so-called “bottle-neck” area. In those cases,

existing image segmentation techniques often fail to work well.

Methods: Existing research on image segmentation using wormhole and entangle

theory is first analyzed. Next, a random positioning search method that uses a

quantum-behaved particle swarm optimization (QPSO) approach is improved by using

a hyperbolic wormhole path measure for seeding and linking particles. Finally, our novel

quantum and wormhole-behaved particle swarm optimization (QWPSO) is proposed.

Results: Experimental results show that our QWPSO algorithm can better cluster

complex “dual tail” regions into groupings with greater adaptability than conventional

QPSO. Experimental work also improves operational efficiency and segmentation

accuracy compared with current competing reference methods.

Conclusion: Our QWPSO method appears extremely promising for isolating

smeared/indistinct regions of complex shape typical of medical image segmentation

tasks. The technique is especially advantageous for segmentation in the so-called

“bottle-neck” and “dual tail”-shaped regions appearing in brain tumor images.

Keywords: image segmentation, quantum entanglement, wormhole behavior, QPSO, QWPSO
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INTRODUCTION

The accurate analysis of medical images, especially brain tumors,
is essential in reducing clinical mortality rates. Brain tumors
grow quickly and often appear as highly irregular and “complex
shaped” in medical images. This characteristic tumor appearance
is called a “dual tail sign” or “bottle-neck.” Usually, it occurs
close to a meningioma, and the dual tail feature appears due
to thickening, enhancement, and double distal tapering of
the tumor in this area. Existing medical image segmentation
methods often wholly ignore the smeared region or require
long processing periods to obtain more accurate segmentation.
However, precise medical image segmentation is essential in
helping to better recognize and diagnose tumors. Thus, there is
a pressing need for improved methods to help solve challenging
tumor image segmentation problems. Many researchers believe
that quantum theory offers a mysterious key that may help us
interpret our future world (1–4). Significantly, the practical image
segmentation method combines quantum theory with artificial
algorithms (5–8), such as Quantum-behaved particle swarm
optimization (QPSO). QPSO has been shown to perform well
in clustering and image segmentation tasks involving complex
object shapes (9). However, prior work with QPSO has not
considered highly complex and irregular forms or indistinct
smearing problems that are apparent in difficult medical image
segmentation tasks.

Can we analyze the cause of the complex shape of brain
tumors from the microscopic process and mechanism formation
of brain tumor cells? What is the relationship between the
complex shape of a brain tumor and the internal microscopic
structure between the tumor cells?

In 2017, Maldacena and Susskind (10) reported that the
fimbriae (finger-like threads appearing on bacteria) are visible as
crooked tentacles, dragging DNA into the bacteria in a way that
was somewhat analogous to the action of a wormhole between
black holes. Particularly, it has been shown that a wormhole-like
process exists in the synthesis of cells (11). Our previous research
patent for invention (ZL200810209785.8) on the protein folding
process proved that f(x) = acos(nx) + bsin(nx) could represent
the oscillation of protein folding in a cell (12). The f(x)= acos(nx)
+ bsin(nx) is also a representation of a sin curve when proteins
are in the folding process of forming a cell. It prompts the exciting
question of whether there could be a wormhole effect amongst
tumor cells.

Moreover, wemight apply wormhole theory to improve QPSO
for solving indistinct or highly complex ’bottle-neck,’ smeared,
or irregular shaped segmentation problems in medical images.
To date, most wormhole physics has been applied in computing
parallel connection problems or network attack prevention tasks
and, to a limited extent, in ortholog prediction algorithms and
gene clustering (13). However, the contribution and highlight of
our research objective is to validate the application of wormhole
theory to QPSO by proposing a novel method of quantum and
wormhole-behaved particle swarm optimization (QWPSO) for
complex medical image segmentation.

The rest of the study is organized as follows. In section
Method, we first discuss the possibility of inducing wormhole

behavior to achieve the complex shape in image segmentation.
Then, we present the theory of wormhole path measurement
and analyze the difference between wormhole path measurement
and the Delta potential well measurement in the QPSO method.
Finally, we put forward a novel segmentation method that
we call QWPSO for complex shapes of brain tumors based
on the wormhole path measurement. In section Results and
Discussion, we apply the QWPSO algorithm to segment medical
images, especially the complex shaped brain tumor images, and
implement comparative experiments. Finally, some conclusions
are given in the last section.

METHOD

This section first discusses the possibility of similarity between
wormhole behavior and the complex shape of brain tumor
segmentation to primarily determine the tumor contour of
“bottle-neck” and “dual-tailed.” Secondly, it analyzes QPSO
algorithm and finally proposes the QWPSO algorithm to
improve QPSO.

The Possibility of Inducing From Wormhole
Behavior to Brain Tumor Contour
The concept of “wormhole” was first proposed by Austrian
physicist Ludwig Frum (14) in 1916 andwas perfected by Einstein
and Nathan Rosen (15) in 1935. Therefore, “wormhole” is also
known as “Einstein-Rosen Bridge” (16). Worm-holes, commonly
known as wormholes in space-time, is thought to be possibly
curved shortcuts in the universe that allow objects to instantly
travel through space and time. Figuratively speaking, a wormhole
is a space tunnel connecting two distant spaces and times like a
whirlpool in an ocean, ubiquitous but fleeting (17). These space-
time vortices are caused by a combination of star rotation and
gravity. Just as a whirl, it can make a part of a body of water closer
to the bottom or make two parts of space that are relatively far
apart become very close in an instant.

New research found that a wormhole’s super strong magnetic
field can keep it open by relying on a Phantom matter (18).
Scientists believe that instead of a positive case, which produces
energy, it also has a negative mass, sucking up all the energy
around it. Because exotic matter has both positive energy and
negative mass, it can create repulsive effects to prevent the
wormhole from closing, thus stabilizing the “wormhole” energy
field. In 2013, two distinguished theoretical physicists, Maldesina
and Sarskander, explored the behavior of quantum entanglement
in the macroscopic area. In their study, they boldly proposed
the following: EPR = ER. EPR refers to quantum entanglement
(19), and ER is short for wormhole (20). This puzzling formula
links microscopic and macroscopic phenomena, pointing out
that the exotic matter that stabilizes the wormhole energy field
is quantum entanglement.

Wormhole features according to Maldesina and Sarskander
(2013): physical space is by a space of two identical sheets, a
particle being represented by a “bridge” connecting these sheets.
The details are:

1. Wormholes are fragile and tiny (21).
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FIGURE 1 | Wormhole hyperboloids. (Left) Lorentzian continuation of the Euclidean cigar. (Right) Schwarzschild metric.

2. The wormhole formation and wormhole stabilization process
depends on a unique effect of exotic matter, which is the
entangled state of quantum entanglement (22).

3. Changes in the magnetic field cause wormholes (23).
4. The shape of the wormhole is derived from the rotation of a

baseline, and the baseline is hyperbolic. The embedded curved
space is a hyperboloid (24).

Worm-holes can be described as the Lorentzian continuation
of the Euclidean cigar. The Schwarzschild metric, shown in
Figure 1, is the most famous wormhole model (25). It is a two-
sided eternal black hole. The horizons are the diagonal dotted
lines. The past and future singularities are the zigzag hyperbolas
at the bottom and top (24).

Schwarzschild Metric Wormhole Model Equation

ds2 = −c2dt2 +
dr2

1−
b20
r2

+ r2
(

dθ2 + sin2 θdϕ2
)

(1)

Where c is the speed of light, r is the radius of the throat
part of the wormhole, θ is the zenith angle between positive z-
axis, and ϕ is the azimuth angle between the positive X-axis in
the spherical coordinate system. In the two-dimensional static
spherically symmetric solution of a plane, Equation (1) can be
simplified as:

ds2 =
dr2

1−
b20
r2

+ r2dϕ2 (2)

Meanwhile, the equation of the embedded surface is:

z(r) = ±b0 ln





r

b0
+

√

(

r

b0

)2

− 1



 (3)

where b0 = 2GM (26), M is the object’s mass, G is the universal
gravitational constant, and r is the radius of the throat of the

hyperbolic neck. Specifically, r is the distance of the curve
represented by a radius line. At the same time, the wormhole’s
hyperbolic Equation (3) describes the spatial shape of the entire
hyperboloid obtained by rotating numerous radius lines.

Roman Konoplya (27), a research associate at the People’s
FriendshipUniversity of Russia (RUDN) Institute for Gravity and
Cosmology, proposed that the shape and mass of the wormhole
can be calculated from the displacement value and the range
of high-frequency gravitational waves. He first mathematically
described the shape of a symmetrical wormhole based on
its range of fluctuations. Then, using a quantum mechanical
approximated the wormhole, we therefore simplified Equation
(3) into Equation (4):

z(r) = ±b0ln(a) (4)

We used a hyperbolic disk to detail the equation for a hyperbola
with angular momentum in all directions (4). The coefficient of a
can be replaced by 1θ/2 and b0 can be replaced by 2/ζ . Hence,
Equation (4) is written in detail as the following Equation (5):

x(r) = r + r
′

+ (2/ζ )ln(1θ/2) (5)

Some shapes of brain tumors look like ’bottle-necks’ as hyperbolic
shapes, such as the Multitype xanthoma shown in Figure 2. Is
there any relationship between the shape of brain tumors and
wormholes? Let us analyze in detail below.

The Cause of Brain Tumor
Mounting evidence specifically from long-term mobile phone
use (cumulative exposure) shows that it can cause brain tumors,
including glioma and acoustic neuroma, and appreciable long-
term deficits in learning abilities and memory functions. Thus,
it raises public concern and compels investigation (27–32). In
Morgan’s view (33), many results and several epidemiology
studies are consistent with radiofrequency fields from which
states that mobile phones can cause brain cancer. There are many
causes to increase the risk of brain cancer, such as cumulative
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FIGURE 2 | Wormhole equations and brain tumor in bottle-neck shape. (Left) Hyperbola of angular momentum. (Middle) Hyperbolic disk. (Right) Multitype

xanthoma.

hours of use, long-time use, and radiated power. Saikhedkar’s
findings (34) indicate that extensive neurodegeneration on radio
waves increased the unstable production of reactive oxygen. It
is caused by the exhaustion of enzymatic and non-enzymatic
antioxidants and increased lipid peroxidation. It indicates that
radio waves increase the unstable production of reactive oxygen,
causing extensive neurodegeneration in selective areas of CA1
(cornu ammonis 1), CA3 (cornu ammonis 3), DG (dentate
gyrus), and the cerebral cortex. This extensive neuronal damage
results in alterations in behavior related to memory and learning.
Pronounced effects of electromagnetic fields may interfere with
the results of laboratory tests on murine experimental models
in veterinary or biomedical research (35). Electromagnetic
radiations may result in chromosomal aberrations by either
illegitimate recombination events or reduction of functionality
of nonhomologous end-joining (36). An association with high-
dose ionizing radiation and brain tumors has been observed in
A-bomb studies, nuclear-test fallout data, therapeutic radiation
for cancer and benign conditions, and occupational and
environmental studies (37). Information is somewhat limited
regarding the specific histologic type of tumor, particularly for
increasing brain tumor risk. In 2015, the Swedish team and
13 other countries reported significant risks associated with
gliomas from exposure to electromagnetic radiation, which was
reclassified by the International Agency for Research on Cancer
(IARC) from group 2B (probable) to Group 2A (highest level)
(38, 39). Researchers found that mobile phone users had an eight-
fold increased risk of brain tumors among people exposed to
electromagnetic radiation in cities (40, 41).

The Similarities Between Wormholes and Brain

Tumors
1. Both wormholes and brain tumors are caused by magnetic

fields regardless of the super-strong magnetic field or
electromagnetic radiation.

2. Their origin is the same because wormhole formation
depends on quantum entanglement, while brain tumors are
microscopic cells formed from mutated particles.

3. The formation processes of wormhole and brain tumors are all
unstable as both are caused by exposure to magnetic fields.

4. Some brain tumors are the “bottle-neck” shapes that are the
same as the hyperbolic shape of a wormhole

As for the cause, the initial formation process and the shape of
brain tumors and wormholes are all similar. Hence, in the next
section, we propose a wormhole behavior method to segment the
“bottle-neck” shaped brain tumor.

QPSO
The particle swarm optimization (PSO) method originally comes
from a simulation of the social behavior of birds while flocking.
However, PSO is not a global convergence-guaranteed algorithm.
This is because at each iteration, the particles are restricted
to a finite search space. Alternatively, the QPSO approach is
one in which individual particles are assumed to have quantum
behavior. QPSO is based on the quantum theory of a Delta
potential well which offers a robust global searching ability (42,
43). Furthermore, the particles in QPSO can appear anywhere
during the iterations, thus enhancing the population diversity.

In a Delta potential well, QPSO particles, in the process of
optimization, move around the center area of the Delta potential
toward the best position P for which the quantum potential
V (xid) is expressed as V (xid) = −λδ(xid − pid), where λ is
weight, δ(xid−pid) is the Dirac delta function, and yid = xid−pid.
For the calculation of the particle’s fitness values, we must know
the exact particle position of xid. However, we only know the
probability density function of Q

(

yid
)

from the quantum state
of each particle yid as shown below:

Q
(

yid
)

= | ψ
(

yid
)

|
2
=

1

L
e
−2|yid |

L (6)

where L = h2/mγ , γ is the intensity of the potential well, m is
the particle mass, and h is Planck’s constant. As a given particle
moves toward the potential well’s center, ψ

(

yid
)

is the spin field
operator, while the quantum state function Q

(

yid
)

represents the
location of a particle probabilistically. To make the wave collapse
to an actual state for each particle, we must use a method to
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estimate the position of the particles (44, 45). Employing the
Monte Carlo random simulation (46), it is assumed that s is a
lucky number within the range of (0, 1/L), that is:

s =
1

L
rand (0, 1) =

1

L
u, and u = rand (0, 1) (7)

Take Equation (6) into the random number Equation (7), s =

1
L e

−
2|yid|

L , and u = e−
2|yid|

L . Consequently, yid = ±
L
2 ln(1/u) and

yid = xid − pid. Therefore, the estimated position of the particle
xid can be obtained by the following prototype:

Xid = Pid ±
L

2
ln

(

1

µ

)

(8)

where L is the characteristic length of the potential well and µ

indicates the random value between 0 and 1 that represents the
arbitrary distance between particles in the quantum potential
well. Pid is the best position of the particle.

Suppose P = (P1, P2, . . . , PM), then the particles coordinates
of P is given by:

P =
(

ϕ1 × Pid + ϕ2 × Pgd
)

/(ϕ1 + ϕ2) (9)

Mbest =

∑M
i=1 P (t)

M
(10)

where ϕ1 = rand (0, 1) , ϕ2 = rand(0, 1), Pid represents the ith
components of the personal best position of the particle, and Pgd
represents the global best position of the population. Mbest is
the mean best position. The following iterative step is defined as
the local best position of all particles on average and is calculated
as follows:

If the random digital µ > 0.5,

x (t+ 1) = P− α · |Mbest− x (t) | · ln(1/µ) (11)

If the random digital µ≤ 0.5,

x (t+ 1) = P+ α · |Mbest− x (t) | · ln(1/µ) (12)

Where α is the expansion coefficient of the speed in
controlling convergence, and it represents the maximum number
of iterations.

The QWPSO Method
Because particles in QPSO move around the central area of
the Delta potential well, the existing QPSO approach, when
applied to long-range searches such as when two regions
are far apart, fails to segment well (47). However, there
exists the notion of a wormhole in quantum theory. It offers
an unusual correlation between particles, wherein actions
performed on one particle immediately affect another reverse
particle no matter how far apart the two particles are. We
therefore propose a new quantum and QWPSO method, the
details of which now follow. All nodes exist in a metric
space, where distance abstracts to node similarities (48, 49).
Hence, more similar nodes are closer in the area, and more

alike or close nodes are more likely to be connected. Thus,
particle optimization consists of links with the probability that
decreases with the hidden distance. It gives two metric spaces
between each pair of nodes: observable and hidden. Visible
teams are joined with neighborhood nodes by entanglement
(50, 51), while remote pairs can be expressed as a kind
of wormhole.

Hence, we conclude that the features of the wormhole metric
are as follows:

• All nodes exist in a metric space.
• The separation distance in this space represents one

way of describing the similarity of the node. The
more similar the nodes, the closer in the area they
appear. Worm-holes link the other measure of similarity
between nodes.

• The network consists of wormhole links. These exist with
the probability that decreases with the hidden distance. Thus,
more similar/close nodes are more likely to be connected.

• Worm-holes link long-distance nodes as a consequence of
their negative curvature.

• A node forwards information to its neighbor closest to the
destination in the wormhole space.

• Clustering is a consequence of the metric property of
the wormhole spaces.

Worm-holes in Schwarzschild’s solution form naturally in the
cosmos, as it contains no matter and is merely full of curved
space-time (52). Therefore, wormhole paths are asymptotically
the shortest. However, many wormhole paths are successful
depending on the image space geometry (51–59). Consequently,
we put forward the measure that the wormhole is Hyperbolic
in shape.

The Novel Wormhole Measure of Hyperbolic Path
Assuming a wormhole is a hyperbolic disc, we present the novel
hyperbolic wormhole equation as of N = ceR/2, where R is the
radius, N is the number of nodes in the network, and c controls
its average degree. The node distribution of uniform angular
density is ρθ (θ) = 1/(2π), where the range of θ is from 0 to
57.32, namely, θ ≤ 360/2π . The node degree at a distance r
from the disc center in an exponential radial density is ρ (r) =

sinh r/(coshR− 1) ≈ er−R, and a simple approximation, ρ(r) ≈
(4c/π)e(R−r)/2

≈ e−ζ r/2, connects each pair of nodes located
at (r, q) and (r’, q’), for which the connection probability is:
P = eζ (x− R)/2.

The wormhole measure of hyperbolic path x is
as follows:

x = r + r
′

+ (2/ζ )ln(1θ/2) (13)

where the range of 1θ is: 0 < 1θ < 57.32 and
ζ indicates the distance coefficient. When there is a
wormhole between nodes, we modify the measure of
QPSO as a wormhole path measure in a hyperbolic path
of QWPSO.
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QWPSO Method
The node probability distribution of the wormhole path measure
ρ (r) is:

ρ(r) ≈ e−ζ r/2 (14)

The position of a particle in the wormhole path measure is:

Xiw = Pid ± (2/ζ )ln(1θ/2) (15)

Pid is the best position of the wormhole particle, and x (t + 1)
represents the next step for the iteration variable wormhole
particle which is defined as the local best position of all particles
on average.

If the angle between nodes1θ > 2, then

x (t+ 1) = P(t)− (2/ζ ) · |Mbest− x (t) | · ln(1θ/2) (16)

On the other hand, if the angle between nodes1θ ≤ 2, then

x (t+ 1) = P(t)+ (2/ζ ) · |Mbest− x (t) | • ln(1θ/2). (17)

where Mbest is at the mean best position described as Mbest =
∑M

i=1 P(t)
M , P (t) represents the position of the particle Pid at time

t, and M represents the number of particles.

The Difference Between QPSO and QWPSO
Our proposed QWPSO method is based on a measure of
entanglement and wormhole theory. Using clustering, we
firstly analyze and determine the connection type, i.e., is it
entanglement or wormhole? If the connection is by trap, we
find particles by a random link and cluster. If there is a
wormhole connection between nodes, we employ our proposed
wormhole measure, Equation (13), to find the particles and
then cluster them. The main difference between QPSO and
QWPSO is the coefficient α in equations (11), (12), and ζ in
equations (16) and (17). ζ is related to distance, while α is
related to speed. It means that while every step in QWPSO
has a definite path, we know where to find a random process
that finds the next particle in QPSO. Therefore, the efficiency
in QWPSO is higher than QPSO due to the characteristic of a
definite path exiting the wormhole. This is because ln(1θ/2) in
equations (16), (17) in QWPSO, and the range of 1θ is 0 <

1θ <57.32. Otherwise, in QPSO, the integer random value
of µ in the function of ln(1/µ) is from 0 to 32767 depending
on the computing power of a computer. Corresponding to the
angular coordinate, the value range of µ in QPSO is from 0
to 360. Hence, 57.32 in 360 equals to 15.9%, the running time
of QWPSO is only 15.9 % of the QPSO, and the efficiency
of QWPSO is higher than that of QPSO. In addition, the
critical difference between the existing QPSO approach and
our QWPSO method is the definition of wormhole limitations.
We conclude the three definitions for an existing wormhole
as follows.

The three definitions for an existing wormhole:
(These limitations are more specific to image segmentation)

(1) The number of nodes clustered by the wormhole is not less
than two, i.e., there are at least two nodes as particles;

(2) Node positions are not in the neighborhood, but their gray
values are similar;

(3) The similarity matches the wormhole measure.

If the cluster nodes meet the three limitations, the segmentation
can be done by our proposed QWPSO method.

The Framework of the QWPSO Algorithm
As mentioned in previous sections, two distinguished theoretical
physicists, Maldesina and Sarskander, explored the behavior of
quantum entanglement in the macroscopic field. They boldly
proposed the equation of “EPR=ER,” where EPR refers to
quantum entanglement and E.R. is short for wormhole (6, 50, 60–
64). The puzzling formula links microscopic and macroscopic
phenomena and points out that the wormhole is caused by
quantum entanglement. Inspired by this, this study presents the
novel concept of seed and pixel particles. The seed particle is in
quantum entanglement which exists a wormhole between each
seed particle. In contrast, the pixel particle is opposite the seed
particle, and there is no quantum entanglement and wormhole
between the particles. Therefore, our proposed method of
QWPSO consists of two sections. First, we cluster particles into
seed and pixel particles. Secondly, we determine a wormhole
between two seed particles by wormhole Equation (13) and
segment the image using the QWPSO algorithm. Otherwise, if
there are no seed particles, and therefore no wormholes between
particles, the image segmentation is performed by QPSO. The
detail of the QWPSO framework is shown in Figure 3.

1. Cluster particles into seed particles and pixel particles:

Two particles are found by a random process to determine if one
particle is within the neighborhood range of the other particle.
This is done by comparing the characteristics of the gray pixel
value and position information between them. Assuming the
two-particle positions, x

(

i, j
)

and x(k, l), their gray pixel values
are fij and fkl. THo and THf are the threshold values of position
variance and pixel gray value difference, where f represents the
gray value difference of the two particles and 1d represents the
root mean square difference of the particles’ position. Only when
two particles satisfy the entanglement Equation (18) are they
considered within one cluster as seed particles. Otherwise, they
are pixel particles.

1f =| f ij − fkl |≤ THf and1d =

√

(i− k)2 + (j− l)2 ≤ THo

(18)

2. If a pixel particle encounters a seed particle:

If a pixel particle meets a seed particle, the gray seed value
fkl is replaced by the average gray value of the particles in the

seed area, represented by f . Only when two particles satisfy
the entanglement Equation (19) are the two particles entangled
together. They are then considered to be within one cluster as a
new seed particle. The entangle equation is:

1f =| f ij − f |≤ THf and1d =

√

(i− k)2 + (j− l)2 ≤ THo

(19)
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FIGURE 3 | The framework of quantum and wormhole-behaved particle swarm optimization (QWPSO) algorithm.

3. If two seeds meet:

Find a seed particle by Equation (13). If the two seed
particles meet, and there exists a wormhole between them, then
the entanglement equations (8), (11), and (12) are replaced
by the measure of the wormhole equations (13), (16), and
(17) respectively.

The QWPSO Algorithm
The process and flow chart of the QWPSO algorithm is shown in
Figure 4. There are two sections in the algorithm. The left one is
the seeds particle with wormhole path and the right one is pixel
particles that have no wormhole path between them. According
to the different paths, it will be processed with different equations.

The steps in conducting the QWPSO algorithm is
listed below:

Step 1: Input the image and initialize the position vector for
each particle.
Step 2: Cluster particles into seeds and pixels. In cases where
two-pixel particles meet, check if one particle is within the
neighborhood range of another particle by Equation (18), and
then group them otherwise, go to step 5.
Step 3: In cases where pixel quantum particles meet a seed
quantum particle, check whether any particle is within the
neighborhood range of the seed particle using Equation (19).
Then, group them. Otherwise, go to step 5.
Step 4: In cases where two seed particles meet, calculate their
distance by Equation (13) and go to step 6.
Step 5: If the random digital µ >0.5, then calculate
according to Equation (11). Otherwise, calculate using
Equation (12), and then cluster particles into foreground and
background regions.
Step 6: If the angle between nodes 1θ >2, then calculate
according to Equation (16). Otherwise, calculate using

Equation (17), and then cluster particles into foreground and
background regions.
Step 7: if all particles are clustered, output the segmented image
and then exit. Otherwise, return to step 2.

The Contributions and Highlights of the QWPSO

Algorithm
As for the complex so-called “bottle-neck” shapes in brain tumor
image segmentation, to essentially solve the problem of ’dual
tail’ shape segmentation, we propose a novel method of QWPSO
algorithm. The novelty, challenges, advantages, and limitations
are as follows.

The novelty and challenge of the QWPSO algorithm:

1. The study of wormhole behavior comes from the microscopic
process of DNA dragged into the bacteria. Between the
tumor cells, we have sensed that fimbriae appeared as
crooked tentacles to drag DNA into the bacteria, which is
somewhat analogous to the action of a wormhole between
black holes.

2. The study comes from the research of synthesis of cells as well.
They prove that a wormhole-like process exists in the synthesis
of cells.

3. The study origins from our previous research patent for
invention (ZL2008 1 0209785.8) on the protein folding
process proved that f(x)= acos(nx)+bsin(nx) could represent
the oscillation of protein folding in a cell. The f(x) =

acos(nx)+bsin(nx) is also a representation of a curve that
looks like a worm-hole.

4. Based on the novel research of the microscopic structure of
DNA into the bacteria, the wormhole-like process that existed
in the synthesis of cells, and the protein curve folding process,
we prompt an exciting and challenging research to discuss the
relationship between the shape of the tumor and the shape of
the wormhole.
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FIGURE 4 | Flow chart of the QWPSO algorithm.
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5. This study’s main contributions and highlights introduce a
wormhole behavior method to improve QPSO into QWPSO.
First, we proposed the novel concept of seeds and pixel
particles. Thus, the QWPSO consists of two sections. Then,
we present all the wormhole behavior equations, frames, and
algorithms for QWPSO.

6. The difference or superiority of the proposed QWPSO
method compared with the existing brain image segmentation
methods mainly aims to solve the segmentation problem of
special-shaped tumors, especially the shape of “bottle-neck”
and “dual tail” based on the similar shape between the special
shaped tumors and the shape of wormhole behavior.

The advantages of the QWPSO algorithm:

1. We propose the novel wormhole measure equation applied to
themethod of QWPSO. The wormholemeasure is represented
by the hyperbolic path, with angles describing the wormhole
in all directions.

2. We propose the novel framework of the QWPSO algorithm
with two sections. Firstly, the coarse clustering aims to achieve
two groups of particles: seed particles have wormholes, and
pixel particles do not. Secondly, and key to our method,
is the refined clustering by quantum entanglement and the
wormhole measure equation with seed particles.

3. The wormhole theory of a hyperbolic path in QWPSO is
proposed instead of a random path as in QPSO. The running
efficiency of QWPSO is higher than that of QPSO.

4. The QWPSO algorithm enables more accurately a segment
in complex ’bottle-neck’ and indistinct shapes, typical of
trailing brain tumor images in cases where other segmentation
algorithms often fail.

The limitations of the QWPSO algorithm:

1. The proposed QWPSO algorithm is designed for a brain
tumor with a unique shape, but in a human tumor, there
are various tissues and parts with such curved shapes, such
as lung, liver, spleen, etc. Next, our study extends from
brain tumors to image segmentation of other organs with
curved shapes.

2. The proposed method of the QWPSO algorithm should be
extended to the image segmentation of particular curved
shape targets in other fields besides medical images. Therefore,
we will study the application of this method and expand into
more research areas in future studies.

RESULTS AND DISCUSSION

Magnetic resonance imaging and CT images are typically used
to analyze medical brain images. In this section, we consider
three tests for the two types of brain images. Test 1 included
ten MRI brain images, including tumors of complex shape with
long tails or bottle-neck contours. We wished to investigate
whether our method is feasible and valuable in segmenting this
challenging brain image, and determine the distance coefficient
value of 1θ representing the angle between nodes. Test 2
aimed to test another important CT medical image beside the
image of MRI for the comparative test to examine whether

our proposed way is better than existing. There are four
CT brain images for which we compare results with five
current related reference methods. They are QPSO (65, 66), J.
Sun cooperation quantum-behaved particle swarm optimization
(SunCQPSO) (67), the Dynamic-context cooperation quantum-
behaved particle swarm optimization algorithm (CCQPSO)
(59), partitioned and cooperative quantum-behaved particle
swarm optimization (SCQPSO) (45), and the improved quantum
particle swarm optimization–intelligent fuzzy level set (IQPFLS)
(8). We aimed to prove if our proposed QWPSO algorithm
had better adaptability for object region shape, operational
efficiency, and segmentation accuracy than QPSO and other
typical competing reference methods. Test 3 is specifically for
demonstrating the advantage of the proposed QWPSO method,
the compared tests were implemented in 10 studies listed in
references (8, 68–77), of which publication years were from 2018
to 2021.

Test 1: MRI Brain Image Segmentation
Test 1 aimed to determine the distance coefficient value of
1θ in the proposed QWPSO approach. It consisted of 10
images, and they are from the benchmark datasets of brain
tumor segmentation (BRATS) (78). Their names and tumor
types are Glioma 1 and 2, Occipital, Ependymoma 1 and 2,
Edema, Meningioma 1 and 2, Hematoma, and Tuberculoma. We
aimed to test if our proposed method, QWPSO, could segment
the tumor with complex object shapes called neck and tail
features. Images of Ependymoma 1, Hematoma, Tuberculoma,
and Ependymoma 2 include neck features, while the others
all have tails features either long or short. From observation
of the segmented images, shown in Table 1, it can be seen
that the pictures with neck features, especially Ependymoma 1,
Hematoma, and Tuberculoma as segmented by our QWPSO
method, have a better and more accurate contour line than those
segmented by using theQPSOmethod. The other images with tail
features segmented by QWPSO also perform better than those
segmented using the QPSO method.

The quantitative evaluation parameters of the image
segmentation process were Time (Running time), P (Precision),
R (Recall), and F (F-measure). These were used to evaluate
whether the method can achieve good results in image
segmentation. The time parameters represented the running
time to assess the algorithm’s efficiency. P, R, and F were used
to access and compare consistency, accuracy, and sensitivity,
respectively. P is the fraction of retrieved relevant instances.
It determines how beneficial the results are. The recall rate R
is derived from our original sample, and it tells us how many
positive examples in the sample were predicted to be correct.
Finally, it was compared with the prediction. Therefore, P
and R indicators are sometimes contradictory, so they need to
be considered comprehensively by F. Specifically, P tells the
accuracy, and F demonstrates the final and mixed evaluated
results. The two parameters, P and F, are more critical among
the P, R, and F parameters. The detailed evaluation parameters
obtained from test 1 are shown in Table 2. The range of 1θ in
the 10 brain images was 0.06 to 40.00. It is within the range we
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TABLE 1 | MRI brain image segmented by quantum-behaved particle swarm optimization (QPSO) and quantum and wormhole-behaved particle swarm optimization

(QWPSO) methods.

Method Glioma 1 Occipital Ependymoma 1 Glioma 2 Edema

Original Image

QPSO method

QWPSO method (Proposed in this paper)

Meningioma 1 Hematoma Tuberculoma Ependymoma 2 Meningioma 2

Original Image

QPSO method

QWPSO method (Proposed in this paper)
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TABLE 2 | Evaluation of parameters in test 1.

Image QWPSO evaluate parameters QPSO evaluate parameters

1θ/ rad/s Time/s P/% R/% F/% Time/s P/% R/% F/%

Glioma 1 2.60 0.849 1.0000 0.9097 0.9527 0.863 0.9401 0.9090 0.9491

Occipital 2.00 0.865 1.0000 0.9903 0.9951 0.882 0.9996 0.9877 0.9936

Ependymoma 1 4.00 0.820 1.0000 0.9941 0.9970 0.840 0.9929 0.9988 0.9958

Glioma 2 40.00 0.829 0.9966 0.9868 0.9917 0.875 0.9741 1.0000 0.9869

Edema 1.60 0.823 0.9836 0.9941 0.9888 0.885 0.8344 1.0000 0.9097

Meningiom1 0.06 0.801 1.0000 0.9973 0.9986 0.950 0.9997 0.9888 0.9983

Hematoma 2.00 0.842 0.9995 1.0000 0.9967 0.976 0.9649 1.0000 0.9821

Tuberculoma 0.60 0.882 1.0000 0.9891 0.9945 0.922 0.9891 1.0000 0.9945

Ependymoma 2 2.00 1.144 0.9936 0.9256 0.9584 1.211 0.9048 1.0000 0.9500

Meningiom2 2.00 0.888 1.0000 0.9942 0.9971 1.000 1.000 0.9929 0.9964

predicted and is less than 360/2π , which is within the scope of 0
to 57.32.

The running time (Time) of our proposed method QWPSO
was also less than the QPSO method. This is because our
approach ran an angle 1θ within a changing range from in each
step, while the QPSO ran a random value in every step. This
meant that the changing rise in QWPSO had higher efficiency
than the haphazard approach used in the QPSO method. Test
1 has also shown that the run time of QWPSO was less in
the range of 84 to 98% than that of the QPSO. The evaluation
parameters of P, R, and F, especially parameter P, for our QWPSO
policy were optimal, i.e., they were all greater than the value
obtained by QPSO. Moreover, the parameter R for QWPSO
was better than that of QPSO. Furthermore, the parameter F
was obtained from our proposed method, QWPSO, which was
better than the method QPSO, except for the value 0.9945 for
Tuberculoma, which is equal to both QPSO and QWPSO. In
summary, for the essential evaluation parameters of Time, P,
and F, our QWPSO method outperforms that which is obtained
when using the QPSO method. This means that our process of
QWPSO offers higher efficiency and greater accuracy than the
QPSO method in the ten complex tumor-shaped medical image
segmentation tasks.

Test 2: CT Brain Image Segmentation
Test 2 aimed to test another important C.T. medical image
beside the image from MRI. It explored the results compared
with the latest improved QPSO methods: SunCQPSO, CCQPSO,
SCQPSO, and the IQPFLSmethod.We considered four complex-
shaped tumors that typically appear in CTmedical tumor images,
all of which included shapes with a long tail known as a ’dual
tail’ and the so-called ’bottle-neck’ feature. The test CT images
comprised CT201.86, CT201.136, CT201.29, and CT200.2, which
were all taken from reference (78). The segmented images are
shown in Table 3.

In Table 3, it may be observed that the images segmented
by our proposed method of QWPSO have a precise contour,
especially at the region with the shape of long-tail known as
the ’dual tail’ and around the so-called ’bottle-neck’ region. For

example, in image CT201.86, there is a ’dual tail’ in the object
region. Thus, the trail is clear and distinct when segmented
by our proposed method. However, the trail is comparatively
fuzzy and unclear when segmented by competing methods
like QPSO, SunCQPSO, CCQPSO, SCQPSO, and the IQPFLS
method. Similar results were obtained for images CT201.29 and
CT200.2. In the case of image CT201.136, there was a bottle-neck
shape within the object region, for which our proposed method
has achieved a distinct perfect bottle-neck curve in the object
contour. On the other hand, neither a distinct ’bottle-neck nor
angle was segmented by the other methods.

The evaluated parameters of P, R, and F are shown in Table 4.
We use1θ of 0.6 in our QWPSOmethod to segment the images.
From Table 4, we can see that all the evaluation parameters
(P, R, and F) show an improved performance for our QWPSO
method compared with that obtained using QPSO, SunCQPSO,
CCQPSO, SCQPSO, and IQPFLS. As for the mean values for R
in our approach, QWPSO is all in the range of 0.7423 to 0.9990.
Moreover, it is greater than the range of 0.3116 to 0.8876 obtained
using the other five methods. The mean value R increased from
1.12 to 2.382 times. As for the value P, our QWPSO ways are all
better than the compared methods except for our QWPSO and
IQPFLS process in Image CT200.2 which had the same value of
0.7546. This is because there was no distinct ’bottle-neck’ shape
within the object region in Image CT200.2. The value of F is the
combination of precision P and recall rate R. This reflects the
total score of image segmentation. Our method QWPSO in the
range of 0.7484 to 0.9995 is greater than the range of 0.3988 to
0.8171 obtained by the other five methods. The mean value F has
increased 1.876 to 1.223 times. Namely, our proposed method
QWPSO has significant advantages, especially in distinct ’bottle-
neck’ shape images. Furthermore, our approach’s running time
ranges from 0.810 to 0.900/s, which is less than needed for any of
the other four methods.

In summary, based on the two tests, we conclude that
our proposed method of QWPSO offers an advantage when
applied to typical MRI and CT medical image segmentation
tasks, especially for segmenting complex indistinct tumor shapes.
Compared with the existing methods of QPSO, SunCQPSO,
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TABLE 3 | Comparison segmentation test using CT brain images.

Method Image CT201.86 Image CT201.136 Image CT201.29 Image CT200.2

Original image

QPSO

SunCQPSO

CCQPSO

SCQPSO

IQPFLS

QWPSO (Our proposed method)
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TABLE 4 | Evaluate parameters in test 2.

Image name Method name Time/s P/ R/% F/%

CT201.86 QPSO 0.932 0.6769 0.7985 0.7327

SunCQPSO 1.000 0.6323 0.8876 0.7385

CCQPSO 1.022 0.6822 0.8168 0.7435

SCQPSO 1.120 0.6823 0.8164 0.7434

IQPFLS 1.108 0.9476 0.7144 0.8146

QWPSO 0.900 0.9996 0.9990 0.9993

CT201.136 QPSO 0.900 0.6078 0.5548 0.5801

SunCQPSO 0.933 0.5670 0.6594 0.6097

CCQPSO 0.912 0.5508 0.6220 0.5843

SCQPSO 0.990 0.5734 0.6597 0.6135

IQPFLS 1.102 0.9208 0.7344 0.8171

QWPSO 0.856 0.9998 0.9993 0.9995

CT201.29 QPSO 0.912 0.6439 0.7887 0.7090

SunCQPSO 1.000 0.5536 0.3116 0.3988

CCQPSO 1.021 0.5657 0.3909 0.4624

SCQPSO 1.020 0.6056 0.3355 0.4318

IQPFLS 1.099 0.7571 0.6675 0.7094

QWPSO 0.874 0.7944 0.7951 0.7948

CT200.2 QPSO 0.850 0.7216 0.6062 0.6589

SunCQPSO 0.912 0.7186 0.6192 0.6652

CCQPSO 0.923 0.7464 0.6583 0.6996

SCQPSO 0.931 0.7654 0.6622 0.7101

IQPFLS 1.111 0.7858 0.7097 0.7458

QWPSO 0.810 0.7546 0.7423 0.7484

CCQPSO SCQPSO, and IQPFLS, our approach offers improved
performance in terms of operational efficiency. In addition, we
reduced the running time to shorter and higher segmentation
accuracy, both under manual observational inspection and in
quantitative analysis using established evaluation parameters.

Test 3: Compared With Existing Methods
To demonstrate the advantage of the proposed QWPSOmethod,
test 3 implements a comparison between ten studies listed
from (8, 68–77) in references whose publication years were
from 2018 to 2021. Table 5 shows the original image, reference
segmentation results, suggested QWPSO method, and ground
truth in the 1st to 4th columns. The ground truth is obtained
by an evaluation program. The detail is that we first input
the original image into the evaluation program, and then
input our segmented image. The program gave a standard
segmentation result (red) based on the original image. Our
segmentation result was blue, red, and blue overlap, indicating a
good segmentation result. As seen in Table 5, despite the great
challenge of these images due to the low contrast and high-
intensity inhomogeneities, the QWPSO segmentation results
are pretty consistent with the ground truth, and it successfully
recovers the contours of the tumor substructures, especially in
the region with bottle-neck. Although, for example, the green
circle regions shown in the image of (8) illustrate the main
differences between the segmentation result and the ground
truth, their results lead to the fuzzy andmissing of the bottle-neck

parts. Still, our QWPSO segmentation results can enforce spatial
consistency. Consequently, the contours of different reference
images are well segmented by our QWPSO method.

In addition to the P, R, and F parameters, the receiver
operating curve (ROC) and Hausdorff evaluation parameters
were added in this part in order to better compare the methods
proposed and the experimental results of the reference studies.
The ROC curve reflects the relationship between sensitivity
and specificity, while the value of Hausdorff can measure the
distance between proper subsets in a metric space. The smaller
the Hausdorff value is, the higher the edge matching. ROC
curve is shown in Figure 5, while Tables 6, 7 demonstrate the
performance-evaluated parameters of segmentation Precision,
Recall, F-measure, and Haudorff (H, the abbreviation for
Haudorff in this study). All values of P, R, F, andH of the reference
studies and our segmentation results are in each row.

Table 6 demonstrates the reference studies (8, 68–71)
published from 2021 to 2020. These studies used newly proposed
methods within two years of the methods’ publication in higher-
level international journals from 2018 to 2019. Table 7 includes
references (72–77) published from 2019 to 2018. In Table 6, for
example, the first row P of Allioui et al. (68) is 0.9176, and
the value of 0.9785 is the P results of our proposed QWPSO
method. The corresponding segmentation results in rows P, R,
and F show that our proposed methods are higher than their
reference studies.

The first row in Table 7 shows that the mean values of P
compared to (72) are from 0.7623 to 0.7911. Our value of 0.9789
is the average P. As for the last row of Haudorff, our H values are
all less than the compared values, with the least one being three.
Despite this, the H value compared with (73) is 22.0907, and the
corresponding Ground Truth (GT) image in Table 5 is in pink
without blue, indicating that the blue is completely overlapped.
In addition, the segmented image and the standard segmentation
image are almost identical and cannot be distinguished by the
naked eye. Thus, regardless of whehter the studies were published
in the periods 2018–2019 or 2020–2021, the segmentation results
of our proposed QWPSO method are all higher than theirs. This
further illustrates that the segmented images with prominent
bottle-neck regions have even better performance, i.e., reference
images of (70, 71, 75, 76), of which our evaluated parameter P are
all 1.0000.

The ROC curve, also known as the “subject operating
characteristic curve” or sensitivity curve, is mainly used for the
prediction accuracy from X to Y. The ROC curve reflects the
relationship between sensitivity and specificity. The X-axis is 1–
specificity, also known as false-positive rate. The closer the X-axis
is to zero, the higher the accuracy. The Y-axis is called sensitivity,
also known as true positive rate (sensitivity). The higher the Y-
axis, the better the accuracy. According to the position of the
Curve, the whole graph is divided into two parts. The Area under
the Curve (AUC) indicates the accuracy of prediction. The higher
the AUC value is, the higher the accuracy of prediction. The
closer the curve is to the top left corner. Hence, the smaller the
X, the larger the Y, and the higher the prediction accuracy. The
ROC curve of the segmentation results of our proposed method
and reference studies are shown in Figure 5.
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TABLE 5 | Comparison segmentation test.

Original (68) Ours Ground Truth(G.T.)

Original (8) Ours G.T.

Original (69) Ours G.T.

Original (70) Ours G.T.

Original (71) Ours G.T.

Original (72) Ours G.T.

(Continued)
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TABLE 5 | Continued

Original (73) Ours G.T.

Original (74) Ours G.T.

Original (75) Ours G.T.

Original (76) Ours G.T.

Original (77) Ours G.T.

In comparing the two curves of our proposed QWPSO
method and the reference methods in Figure 5, we can state that
no matter the AUC, our proposed QWPSOmethod is better than
the reference studies. Therefore, we conclude that our proposed
QWPSO method has a higher segmentation accuracy than the
reference methods.

DISCUSSION

The current related works with the proposed QWPSO are
the PSO, QPSO, and their improving algorithms, such as
SunCQPSO, CCQPSO SCQPSO, and IQPFLS. The limitations
of all these related works are that they solve the general shape
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FIGURE 5 | The receiver operating characteristic (ROC) curve of the proposed QWPSO and reference methods.

TABLE 6 | Evaluate parameters in test 3-part one.

Allioui et al. (68), Ours Radha et al. (8), Ours Mahesa et al. (69), Ours Vijh et al. (70), Ours Sharif et al. (71), Ours

P 0.9176, 0.9785 0.8875, 0.9429 -, 0.9877 0.9800, 1.0000 0.994-0.998, 1.0000,

R 0.9248, 0.9541 -,0.5034 -,0.7088 -,0.9784 -,0.9265

F 0.9212,0.9661 -,0.6563 -,0.8253 -,0.9891 -, 0.9619

H 35.4683, 21.3073 24.5967, 18.1384 47.2017, 33.1813 93.1933, 10.9545 35.0571, 17.1172,

TABLE 7 | Evaluate parameters in test 3-part two.

Khairuzzaman et al.

(72), Ours

Ibungomacha

Singh et al. (73),

Ours

Hasan et al. (74), Ours Guerrout et al. (75),

Ours

Pham et al. (76), Ours Ma et al. (77), Ours

P 0.7623–0.7911,

0.9789,

0.8650, 0.9993 0.9220, 0.9656 0.855–0.991, 1.0000, 0.9126–0.9835, 1.0000 0.900, 0.9811

R -,0.9479 -,0.9920 -,0.9544 -,0.5605 -,0.7218 0.850,0.8747

F -, 0.9632 -,0.9956 -,0.9599 -, 0.7184 -,0.8384 0.870,0.9248

H 70.3847,17.5784 22.0907, 3 44.2945,28.7054 15.9374,14.6969 24.7790,10.1980 50.2905,17.8045

of the image segmentation problem rather than specifically for
the special curved ’bottle-neck’ shape of the image segmentation
problem. However, in terms of technical improvement, there
exists an interesting evolutionary relationship between the PSO,
QPSO, and our QWPSO segmentation algorithm. While our
proposed QWPSO algorithm is based on the existing QPSO
technique, the QPSO approach is an improved version of the
PSO algorithm. It is perhaps helpful to consider these algorithms’

unique properties and functions. Particles are dynamically
represented in the PSO approach. Particles adjust their speed
according to the flight experience of both individuals and groups.
The PSO algorithm works well for some image segmentation
tasks but works less for others, particularly those involving
complex and indistinct object shapes. The QPSO algorithm
represents the latest intelligent optimization algorithm. Each
particle moves well according to quantum behavior based on
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a Delta potential where they are centered during the various
iteration steps. In this way, the QPSO algorithm can usefully
enhance the population diversity and has a more robust global
searching ability than the earlier PSO algorithm. Furthermore,
this also means that the QPSO algorithm is better for more
complex object shapes than in segmentation tasks. However, in
the case of our QWPSO algorithm, all nodes are additionally
considered to potentially have existing similar nodes which are
more likely to be connected by a wormhole. This characteristic
of the QWPSO algorithm provides a unique, advantageous,
and powerful global searching ability for defining complex and
unique object contour shapes in challenging image segmentation
tasks. This unique ability to connect long-distance particles is a
significant contribution of our QWPSO algorithm.

The above experimental results indicate that the QWPSO
algorithm has good application for complex and specialized
object contour segmentation, particularly for object regions
typically encountered in medical tumor images that possess ’dual
tails’ and ’bottle-neck’ feature shapes. For example, in Table 2,
for the segmentation of MRI brain images, we present evaluation
parameters that include Time, P, R, and F. We obtained the best
values from the proposed QWPSO algorithm, namely, 0.801,
1.000, 1.000, and 0.9986 for Time, P, R, and F, respectively.
Furthermore, the average running time of the QWPSO algorithm
is 0.8743 s, which compares favorably with 0.9404 s for the QPSO
algorithm, giving a decrease of 0.0961/s or ∼12% reduction in
average running time. Together these results indicate that our
QWPSO algorithm has high efficiency in segmenting complex
and specially shaped objects. As for the evaluation parameters
of P, R, and F, our QWPSO algorithm attains optimal values of
almost 1 for all. A parameter p-value of 0.9995 was obtained.
While parameter R was slightly better for the QPSO algorithm,
parameter F, which is the product of P and R, was better
in all cases for our proposed QWPSO approach. It indicates
that the accuracy of our proposed QWPSO algorithm is better
than the QPSO algorithm for MRI brain image segmentation.
Table 4 presents results obtained for the segmentation of CT
brain images. All parameters, Time, P, R, and F, indicate
improved performance over the improved QPSO algorithms,
such as SunCQPSO, CCQPSO, and SCQPSO. Therefore, in
general, the QWPSO algorithm offers greater adaptability to
object region shape, together with better operational efficiency
and segmentation accuracy over QPSO or improved QPSO
algorithms for typically challenging MRI and CT brain image
segmentation tasks. Furthermore, the evaluated parameters P,
R, F, and H of the proposed QWPSO algorithm are shown in
Tables 6, 7. All are better than the compared typical references
within the last three years, especially achieving the highest value
1 for P among the images with distinct bottle-neck regions, such
as images from references studies (70, 71, 75, 76). Lastly, the AUC
area in the ROC curve of our proposedmethod in Figure 5 shows
higher accuracy than that of all the reference studies.

CONCLUSION

This study has presented a QWPSO algorithm for challenging
image segmentation tasks.We applied wormhole-inspired theory

to our method and put forward a hyperbolic wormhole path
measure equation that seeds and links particles to improve the
performance of the existing QPSO segmentation method. The
QPSO method uses random positioning in the search space
even if there are long distances between particles. Our QWPSO
algorithm can cluster long-distance regions into groupings
and has better adaptability than the existing QPSO algorithm
and the current improved QPSO algorithms. Experimental
results, both from MRI and CT, have demonstrated enhanced
performance in segmenting rare brain tumors with tailing
and bottle-neck regions. In addition, our QWPSO method
improved operational efficiency and segmentation accuracy
compared with current competing reference methods. Because
there are many image segmentation that consists of similar
curved targets, in the future, we are committed to extending the
proposed QWPSO algorithm in this study to the segmentation
of curved tumors in other organs’ medical images, such as
lung, liver, and/or spleen tumors. In addition to medical
images, the proposed QWPSO algorithm should also be
extended to other research areas of curving or bending target
image segmentations.
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Fast and accurate segmentation of knee bone and cartilage on MRI images is
becoming increasingly important in the orthopaedic area, as the segmentation is an
essential prerequisite step to a patient-specific diagnosis, optimising implant design
and preoperative and intraoperative planning. However, manual segmentation is time-
intensive and subjected to inter- and intra-observer variations. Hence, in this study,
a three-dimensional (3D) deep neural network using adversarial loss was proposed
to automatically segment the knee bone in a resampled image volume in order to
enlarge the contextual information and incorporate prior shape constraints. A restoration
network was proposed to further improve the bone segmentation accuracy by restoring
the bone segmentation back to the original resolution. A conventional U-Net-like
network was used to segment the cartilage. The ultimate results were the combination
of the bone and cartilage outcomes through post-processing. The quality of the
proposed method was thoroughly assessed using various measures for the dataset
from the Grand Challenge Segmentation of Knee Images 2010 (SKI10), together with a
comparison with a baseline network U-Net. A fine-tuned U-Net-like network can achieve
state-of-the-art results without any post-processing operations. This method achieved a
total score higher than 76 in terms of the SKI10 validation dataset. This method showed
to be robust to extract bone and cartilage masks from the MRI dataset, even for the
pathological case.

Keywords: cartilage segmentation, bone segmentation, MRI, deep learning, CNN

INTRODUCTION

Quantitative analysis of knee joint structure is a topic of increasing interest as its applications
continue to broaden from direct diagnostic purposes to the implant design and preoperative and
intraoperative planning. Due to the non-invasive nature and capability to discriminate cartilage
from adjacent tissues, magnetic resonance imaging (MRI) is the most effective imaging device to
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perform knee joint analysis. However, due to the low contrast
among different tissues (similar longitudinal and transverse
relaxation time), image artefacts, and intensity of inhomogeneity
problems in MRI (1), the accurate segmentation of the knee joint
is still an open problem, especially in the knee with a degenerative
disease (2).

To obtain an accurate mask for knee bone and cartilage,
fully manual and semi-automatic segmentation approaches were
often applied to clinical studies (3–5). Nonetheless, they were
time-consuming and the reproducibility highly depends on
the knowledge of experts. Hence, an automated method to
segment the knee joint structure was of great interest in the
past decade (6, 7). The popular methods for this aim can
be divided into model-based (8–10), atlas-based (11, 12), and
classification-based (1, 2, 13) methods. Although these three
types of methods showed promising results to automate the knee
structure segmentation, they might perform poorly in the case of
high subject variability (2).

Recently, deep convolutional neural network (CNN)-based
methods have achieved enormous success in biomedical imaging
problems, such as classification (14) and segmentation (15–18).
Regarding knee joint structure segmentation, Prasoon et al. (19)
first applied the two-dimensional (2D) tri-planar CNNs (axial,
coronal, and sagittal plane) to classify a pixel label (background
or tibial cartilage) by providing local image patches around that
pixel. Nevertheless, Ronneberger et al. (18) pointed out that there
were two drawbacks to the above architecture, large redundancy
and a trade-off between localisation accuracy and the use of
context, and proposed a dense prediction network with skip
connection, U-Net. This kind of architecture considered both the
low-level and high-level features for voxel classification and was
applied to the knee joint segmentation by Liu et al. (2), Zhao et al.
(20), and Ambellan et al. (21). In general, the pixel-wise or voxel-
wise loss, e.g., cross-entropy loss and dice loss, was utilized as the
loss function for U-Net. However, there was no guarantee of the
spatial consistency of the final output (22); thereafter, a further
optimisation step was always required to refine the segmentation
result such as deformable model (2), conditional random field
(CRF) (20) and statistical shape model (SSM) (21). Although
the deformable model and CRF considered the relevant spatial
information to refine the segmentation, it might cause serious
boundary leakage in the low-contrast regions (22). Ambellan
et al. (21) proposed to utilize SSM to refine segmentation using
the anatomical prior knowledge and achieved the state-of-the-
art result. Nevertheless, the introduction of SSM resulted in
a lot of extra calculations and the regulation was limited to
the variability of the training dataset. Overall, although deep
learning-based methods have been demonstrated as the state-of
the-art methods in knee joint segmentation, there is still much
room for improvement.

In this study, we aim to further study a three-dimensional
(3D) CNN-based method to perform knee bone and cartilage
segmentation. The contributions in this article are: (i)
Different neural networks are proposed for bone and cartilage
segmentation based on their features and a post-processing
step is designed to generate the final segmentation result; (ii)
the adversarial loss and a restoration network are proposed

to optimize the neural network for bone segmentation and
(iii) the performance of proposed method is tested on a public
dataset from the Medical Image Computing and Computer-
Assisted Intervention (MICCAI) Segmentation of Knee Images
2010 (SKI10) grand challenge and is fully compared with the
performance of the various CNN models (3D U-Net, V-Net,
nnU-Net and cascade nnU-Net) and some traditional methods.

MATERIALS AND METHODS

Data Description
The data used in this study were from the SKI10 competition,
which was focused on the knee bone and cartilage segmentation
(6). The image datasets were acquired in a sagittal manner with
a pixel spacing of 0.4 mm × 0.4 mm and a slice thickness of
1 mm. The total number of the knee images used in this study
was 100 (60 for training and 40 for testing), and the cases of left
and right knees were approximately equally distributed. Among
the scans, 90% of the data were acquired at 1.5 T and the rest of
the data were acquired at 3 and 1 T. The majority of data used T1
weighting and the rest of them were acquired with T2 weighting.
All the images were acquired for surgery planning of partial
or complete knee replacement and, therefore, a high degree of
pathological deformations of the knee was included in the dataset.

Automatic Workflow for Knee Bone and
Cartilage Segmentation
In this study, we aimed to establish a fully automatic workflow
to extract knee joint structure (bone and cartilage) with highly
accurate and robust segmentation, including the pathological
data. Figure 1 depicts the steps of the proposed workflow. First,
MRI images were resampled to enlarge the field of view by the
networks; second, an image normalization method standardizes
the image to a similar intensity range; third, the bone and
cartilage were segmented by the bone network (Supplementary
Figures 1–3 and Supplementary Table 1) in a resampled
resolution; fourth, the segmented bone and cartilage masks
from the bone network were restored to the original resolution
through a restoration network (Supplementary Figure 4); fifth,
the cartilage was segmented through a cartilage network in
original resolution; last, the outputs of the cartilage network and
the restoration network were post-processed for the final results.

Pre-processing
Our pre-processing included pixel size normalization and
intensity normalization. The first pre-processing step in this
study was volume resampling. One of the main challenges in
medical image segmentation using deep learning is the volume
size, as it is too large to feed into the networks due to the lack
of the graphics processing unit (GPU) memory. A patch-wise
strategy was an option to solve this issue by breaking down the
volume into multiple patches (overlapping or random patches)
to fit the GPU memory requirement (23). Yet, this strategy
may result in a higher variance among the patches and lose
the contextual information (24), especially for the large target.
For the bone segmentation, we downsampled the image volume
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FIGURE 1 | Proposed workflow for the knee bone and cartilage segmentation.

FIGURE 2 | The architecture of the bone network.

by a factor of 2 resulting in a new spacing by 0.8 × 0.8 × 2.
With the resampling step, the input patch can cover more
contextual information for bone segmentation. In contrast, the
cartilage segmentation based on CNN is relatively sensitive to the
resampling due to its small volume size. Hence, for the cartilage
segmentation, we input the neural network of the image with
the original size.

The second step of pre-processing was the intensity
normalization. The imaging noise from the reconstruction
of MRI volume, such as DC spike, results in the extreme
intensity of some voxels (25). A robust intensity cut-off was
selected to prevent the long intensity tail effect for both the bone
and cartilage segmentation (25). In this study, the minimum
and maximum cut-offs were selected as the threshold with
the first and last 2% cumulative intensity histogram. Then,
a following z-score strategy was adopted to normalize the
intensity by subtracting the mean and dividing by the standard
deviation (SD).

Deep Neural Network for Bone and Cartilage
Segmentation
Architecture of the Networks
Since the advent of U-Net (18), many architecture modifications
have been proposed to further improve the performance of the

segmentation task. However, Isensee et al. (26) demonstrated
that not all of them were effective and pointed out that a
typical U-Net architecture can achieve state-of-the-art results
with a thorough design of adaptive pre-processing, training
scheme, and inference strategy. In this study, we extended the
idea of nnU-Net (26) by adding the adversarial loss to refine
the segmentation and used nnU-Net as a baseline for the
segmentation performance comparison. The architecture of the
bone network was similar to pix2pix network (27) (Figure 2),
which consisted of a generator trained for mask prediction and a
discriminator trained to discriminate the produced masks (‘fake’)
from ground truth labels (‘real’) (Figure 2). The framework of the
generator in this study consisted of an encoding path to encode
the valid features and a decoding path to perform a voxel-based
classification. The encoding path contained the repeated layers of
two convolutions, followed by an instance normalization, a leaky
rectified linear unit, and a max pooling operation with stride 2 for
downsampling. The upsampling path also contained the repeated
layers of convolution, but a skip connection was adopted by a
concatenation of the correspondingly cropped feature from the
contraction path and the output of the up convolutions from
the last layer. At the final layer, a final 1 × 1 × 1 convolution
was used to map each component feature vector to the desired
number of classes, and a Softmax calculation was followed at last
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TABLE 1 | Comparison of automatic segmentation methods based on the Segmentation of Knee Images 2010 (SKI10) validation data.

Femur bone Tibia bone Femur cartilage Tibia cartilage

Team (reference) Total score AvgD (mm) RMSD (mm) AvgD (mm) RMSD (mm) VOE (%) VD (%) VOE (%) VD (%)

Vincent et al. (10) 52.3 ± 8.6 0.88 ± 0.24 1.49 ± 0.44 0.74 ± 0.21 1.21 ± 0.34 36.3 ± 5.3 −25.2 ± 10.1 34.6 ± 7.9 74.0 ± 7.7

Seim et al. (9) 54.4 ± 8.8 1.02 ± 0.22 1.54 ± 0.30 0.84 ± 0.19 1.24 ± 0.28 34.0 ± 12.7 7.7 ± 19.2 29.2 ± 8.6 −2.7 ± 18.2

Shan et al. (12) 40.0 ± 7.7 – – – – – – – –

*Liu et al. (2) 64.1 ± 9.5 0.56 ± 0.12 1.08 ± 0.21 0.50 ± 0.14 1.09 ± 0.28 28.4 ± 6.9 8.1 ± 12.3 33.1 ± 7.1 −1.2 ± 17.4

Dam et al. (30) 67.1 ± 8.0 0.68 ± 0.22 1.25 ± 0.41 0.50 ± 0.18 0.91 ± 0.35 26.9 ± 6.0 0.8 ± 13.5 25.1 ± 6.7 0.41 ± 13.4

*Ambellan et al. (21) 74.0 ± 7.7 0.43 ± 0.13 0.74 ± 0.27 0.35 ± 0.07 0.59 ± 0.19 20.99 ± 5.08 7.18 ± 10.51 19.06 ± 5.18 4.29 ± 12.34

3D U-net (17) 48.1 ± 12.3 1.77 ± 1.85 5.24 ± 3.99 2.60 ± 2.59 7.50 ± 5.29 23.80 ± 7.25 −5.45 ± 8.37 20.60 ± 6.40 5.48 ± 15.11

V-Net (28) 55.7 ± 10.7 0.88 ± 0.61 3.36 ± 2.46 1.04 ± 0.95 4.23 ± 3.53 21.91 ± 4.48 1.17 ± 9.14 20.08 ± 5.62 6.12 ± 16.57

Cascade nnU-Net (26) 75.4 ± 8.1 0.37 ± 0.12 0.63 ± 0.29 0.32 ± 0.15 0.57 ± 0.39 22.71 ± 4.88 1.76 ± 10.03 21.21 ± 5.83 7.05 ± 13.66

*nnU-Net 2D (26) 73.4 ± 10.7 0.37 ± 0.15 0.69 ± 0.35 0.38 ± 0.27 0.80 ± 0.77 21.34 ± 5.59 4.49 ± 11.46 21.43 ± 5.67 5.74 ± 13.41

*nnU-Net 3D full res (26) 72.5 ± 14.2 0.56 ± 1.00 1.67 ± 2.96 0.44 ± 0.57 1.34 ± 2.46 19.45 ± 5.06 6.79 ± 10.29 18.09 ± 5.09 8.32 ± 11.31

*nnU-Net 3D low res (26) 75.3 ± 9.3 0.35 ± 0.12 0.65 ± 0.30 0.34 ± 0.23 0.75 ± 1.19 21.72 ± 4.70 3.66 ± 12.14 21.78 ± 5.39 6.58 ± 12.11

*Proposed method 76.2 ± 7.6 0.38 ± 0.15 0.69 ± 0.37 0.29 ± 0.07 0.52 ± 0.12 19.45 ± 5.06 6.78 ± 10.29 18.09 ± 5.09 8.32 ± 11.31

* indicates the deep learning-related method; ‘res’ indicates resolution.

to output a probability for each class. Both the U-Net-like (17)
and V-Net-like (28) architectures were used for the generator in
this study, which might result in some slight variations compared
to the above description, and the detail of all the used networks
in this study is summarized in the Supplementary Material.

The architecture of the discriminator of the bone network was
a convolutional ‘PatchGAN’ classifier that uses the module form
of convolution-batch normalization-ReLu (27). The input of the
discriminator was the combination of the image patch and the
corresponding segmentation patch. The detail of the architecture
is provided in the Supplementary Material.

The input of the restoration network was the concatenation
of the resampled image and the segmented mask from the
bone network. The architecture of the restoration network
consisted of two convolutional layers, followed by an
upscaled deconvolutional layer, and then finally another
two convolutional layers to convert the feature maps into the
desired number of classes.

The architecture of the cartilage network was nnU-Net 3D at
full resolution (26). The input of the cartilage network was in the
original resolution, with a patch size of 160× 192× 64.

The details of both the cartilage network and restoration
network are described in the Supplementary Material.

Loss Function
As Figure 2 and Equation (1) illustrate, to test the optimal loss
options for a robust knee bone segmentation, the loss function,
Lgen, used in the generator (bone network) consisted of three
parts: category cross-entropy loss (Lcce), dice loss (Ldice), and
adversarial loss (Ladv). Lcce and Ldice concern the low-level
pixel-wise prediction, while the Ladv preserves the higher-level
consistency conditioned on the input.

Lgen
(
x, y; θgen, θdisc

)
= λcceLcce

(
G
(
x; θgen

)
, y
)
+ λdiceLdice(

G
(
x; θgen

)
, y
)
+ λadvLadv

(
G
(
x; θgen

)
, x; θdisc

)
, (1)

where x and y are the input image volume and the corresponding
label. λcce, λdice, and λadv are the weights for the corresponding
losses and the loss is ignored if the corresponding weight
sets to 0. θgen and θdisc are the parameters of the networks
of the generator and discriminator, respectively. The
pixel-wise category cross-entropy loss is formulated as
Lcce

(
ŷ, y

)
=

1
whd

∑whd
i

∑c
j yi,jln

(
ŷi,j
)
, where c represents

the number of target classes and w, h, and d indicate the width,
height, and depth of the volume patch. The pixel-wise dice loss is
formulated as:

Ldice
(
ŷ, y

)
= −

∑c
i

2
∑whd

j yi,jln(ŷi,j)∑whd
j y2

i,j+
∑whd

j ln(ŷi,j)
2 . For the adversarial

loss, we chose the adversarial loss of the Least Squares Generative
Adversarial Network (LSGAN) (29) in this study and, therefore,
is formulated as:

Ladv
(
x; θgen, θdisc

)
= LMSE

(
D
(
G
(
x; θgen

)
; θdisc

)
, 1
)
, (2)

where LMSE
(
ẑ, z
)
= (ẑ − z)2, and x indicates the input patch.

The discriminator attempts to learn the differences between the
label and prediction distributions by minimising the loss function
as:

Ldisc
(
G
(
x; θgen

)
, y
)
= LMSE

(
D
(
G
(
x; θgen

)
; θdisc

)
, 0
)

+ LMSE
(
y, 1

)
, (3)

where x and y indicate the input patch and the corresponding
annotation, respectively.

For the cartilage network, the loss function is formulated as:

Lcart
(
ŷ, y; θcart

)
= λcceLcce

(
ŷ, y

)
+λdiceLdice

(
ŷ, y

)
, (4)

where y and ŷ indicate ground truth and the prediction result
of the cartilage network, respectively, and θcart indicates the
parameters of the cartilage network.
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For the restoration network, the loss function was formulated
as:

Lrestore
(
ŷ, y; θrestore

)
= Lcce

(
ŷ, y

)
, (5)

where y and ŷ indicate ground truth and the prediction result
of the restoration network, respectively, and θrestore indicates the
parameters of the cartilage network.

Training Procedure
One common challenge in deep learning training is limited
training data. Data augmentation is one of the options to be
taken to prevent overfitting and has been generally accepted as
an add-in in the deep learning method. The data augmentation
adopted in this study was random scaling (0.85–1.15), random
elastic deformations, gamma correction augmentation, and
random mirroring along the frontal axis (simulating the left or
right knee joint).

In order to implement a fair comparison among the different
architectures, the training strategy similar to a pervious study
(26) was adopted. There are 6,000 training batches in an epoch.
The Adam optimizer with an initial learning rate of 1 × 10−3

was utilized for both the generator and the discriminator in this
study, and the learning rate was reduced by a factor of 5 if the
loss was not improved in the last 5 epochs and the training was
stopped if the loss was not improved in the last 20 epochs. The
maximum epoch was limited to 500. The proposed deep CNNs
were implemented in Python 3.7 using PyTorch with a 3.7-GHz
Intel (R) i7 Xeon (R) E5-1620 V2 CPU and a GTX 1080 Ti
graphics card with 11 GB GPU memory.

Inference
In the inference phase, the new input image volume was split
into many sub-volume patches and input to the networks. Then,
the class of each voxel was determined by the largest probability
of the output probability maps from the neural network. At
last, we needed to combine all the sub-volume patches back to
form a full volume.

Post-processing
The main purpose of the post-processing is to combinate the
advantages of the bone network and the cartilage network in
order to generate final bone and cartilage masks. Compared
to the cartilage mask from the cartilage network, the bone
network could provide less mis-segmented results due to the
large contextual information, however, less accurate due to lower
resolution. Therefore, the output of the cartilage mask from the
bone network after the restoration network was dilated by a
7 × 7 × 7 kernel, which was later used to filter the cartilage
mask from the cartilage network. Finally, the ultimate output of
the proposed workflow was the combination of the bone mask
from the restoration network and the filtered cartilage mask of
the cartilage network.

Evaluation Design
Methods Designed by the Segmentation of Knee
Images 2010
The evaluation method for knee bone and cartilage was different.
Regarding bone segmentation, average surface distance (AvgD)
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FIGURE 3 | Segmentation results based on different schemes: (A) sagittal slice of the image; (B) ground truth; (C) nnU-Net two-dimensional (2D); and (D) proposed
method.

FIGURE 4 | Segmentation results based on different schemes: (A) sagittal slice of the image; (B) ground truth; (C) nnU-Net three-dimensional (3D) full resolution;
and (D) proposed method.

FIGURE 5 | Segmentation results based on different schemes: (A) sagittal slice of the image; (B) ground truth; (C) nnU-Net 2D; (D) nnU-Net 3D full; (E) nnU-Net 3D
low; and (F) proposed method.

and root mean square symmetric surface distance (RMSD) were
proposed (6, 30).

AvgD =
1

NS+NR

( NS∑
i = 1

min
r∈∂R
||si−r||2+

NR∑
i = 1

min
s∈∂S

∣∣∣∣rj−s∣∣∣∣2
)

, (6)

RMSD =

√√√√ 1
NS+NR

( NS∑
i = 1

min
r∈∂R
||si−r||2+

NR∑
i = 1

min
s∈∂S

∣∣∣∣rj−s∣∣∣∣2
)

, (7)

where ∂R and ∂S are the boundary of the automatic segmentation
and reference segmentation, respectively, and NS and NR are the
number of boundaries, respectively.

For the cartilage segmentation, volume difference (VD) and
volume overlap error (VOE) were proposed (6, 21).

VD = 100 ·
|S| − |R|

R
, (8)

VOE = 1−
|S ∩ R|
|S ∪ R|

, (9)

where S and R indicate automatic segmentation and reference
segmentation, respectively. As indicated by Heimann et al. (6),
the cartilage boundaries to the sides were not always accurate;
regions of interest (ROIs) for cartilage mask comparison were
used in the above calculation.
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TABLE 3 | Results of the different loss functions based on the proposed network.

Femur bone Tibia bone Femur cartilage Tibia cartilage

Loss Total score AvgD (mm) RMSD (mm) AvgD (mm) RMSD (mm) VOE (%) VD (%) VOE (%) VD (%)

CE loss 73.85 ± 9.37 0.43 ± 0.36 1.17 ± 1.88 0.48 ± 0.79 1.25 ± 2.64 21.46 ± 5.17 4.44 ± 9.83 18.44 ± 5.07 6.11 ± 13.49

SD loss 67.54 ± 14.78 0.92 ± 1.50 2.57 ± 4.15 0.82 ± 1.85 2.08 ± 4.57 19.89 ± 5.70 7.65 ± 10.01 18.64 ± 6.49 13.08 ± 13.04

CE loss + SD loss 74.38 ± 10.39 0.38 ± 0.23 1.08 ± 1.33 0.31 ± 0.30 0.58 ± 0.71 20.00 ± 5.63 6.60 ± 9.98 18.62 ± 5.95 10.75 ± 13.41

Proposed loss 76.2 ± 7.6 0.38 ± 0.15 0.69 ± 0.37 0.29 ± 0.07 0.52 ± 0.12 19.45 ± 5.06 6.78 ± 10.29 18.09 ± 5.09 8.32 ± 11.31

Dice Similarity Coefficient
The Dice similarity coefficient (DSC) score is defined as:

DSC =
2TP

2TP+FP+FN
, (10)

Sensitivity =
TP

TP + FN
, (11)

Specificity =
TN

TN + FP
, (12)

where TP is true positive, TN is false negative, FP is false positive,
and FN is false negative. The thickness difference is calculated by
the thickness difference from each vertex along the normal vector
between automated and manual segmentation masks.

RESULTS

Table 1 summarizes the results of previous studies (2, 9, 10,
12, 21, 30), baseline networks [nnU-Net (26, 31), including the
2D version, 3D full-resolution version, and 3D low-resolution
version], and the proposed methods for the SKI10 validation
dataset in terms of the SKI10 metrics (6). The bone and cartilage
segmentation results with proposed networks reached a total
score of 76.2 ± 7.6, which was for the first time higher than 75
using the validation dataset [the second rater’s score was 75 in
a previous study (6)]. Overall, the results of deep learning-based
methods outperformed the traditional methods [atlas based (12)
and statistical shape-based methods (9, 10, 30)]. The new baseline
(nnU-Net) could achieve state-of-the-art results without any
post-processing. Still, the proposed method outperformed the
baseline.

Moreover, Table 2 shows the accuracy evaluation for
the SKI10 dataset between the baseline networks and the
proposed methods in terms of the DSC, sensitivity, and
specificity. For the cartilage result, the DSC is only calculated
in the defined ROI according to a previous study (6).
The DSC scores of the proposed method are 0.98 ± 0.01,
0.98 ± 0.01, 0.89 ± 0.03, and 0.88 ± 0.03 for femur bone,
tibia bone, femur cartilage, and tibia cartilage, respectively.
Overall, the performance of the proposed methods achieved
the highest score.

Some segmentation results on the SKI10 validation set
are shown in Figures 3–5, which compared the baseline
networks with the proposed method. The results of nnU-Net

2D might mis-segment the low-contrast region (bottom of
Figure 3C), while the result of nnU-Net 3D full resolution
might mis-segment some of the unrelated regions (left bottom
of Figure 4C). A segmentation result of knee joint image
with specific pathological tissue is given in Figure 5. All the
baseline networks failed to segment it successfully and the
proposed method with the adversarial loss showed a robust
result (Figure 5F).

In addition, an ablation study about the loss function selection
is shown in Table 3. The proposed loss function is capable of
improving the segmentation performance.

Computation time for the whole segmentation pipeline for
one subject is measured as around 1 min on a consumer-
grade workstation (CPU: Intel Xeon E5 2.3 GHz; GPU:
GeForce GTX 1080 Ti).

DISCUSSION

In this study, we presented an end-to-end deep learning-
based workflow for knee bone and cartilage segmentation and
evaluated the workflow thoroughly on a published dataset,
the SKI10 (6). It was the first time that a total score greater
than 76 was achieved on the SKI10 validation dataset, which
was comparable to the inter-observer variability of two expert
readers (6).

The attempt of applying deep learning-based methods to the
knee bone and cartilage segmentation was not new and has
achieved a lot of state-of-the-art results (2, 21). Nevertheless,
most of the previous attempts added a post-processing step
[deformable model (2), conditional random field (CRF) (20) and
statistical shape model (SSM) (21)] to refine the outcome of
the deep learning methods on the area of false segmentation.
The main reason behind this is that the information of highly
patient-specific areas might not be derived from the training
dataset (21). To confirm the necessity of the post-processing, a
generic U-Net architecture with fine-tuned hyper-parameter (31)
was tested in this study as the baseline. State-of-the-art results
can be achieved using the simple nnU-Net architectures (see
Table 1). Nonetheless, due to the loss of Z-axis information and
contextual information, the performance of bone segmentation
of generic 2D nnU-Net and 3D nnU-Net full resolution
might perform poorly in the low-contrast region (Figure 3C),
bone- or cartilage-like region (Figure 4C), and region with
pathological case (Figures 5C,D). Table 1 has shown a good
bone segmentation result using the 3D nnU-Net low-resolution
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version but not in cartilage segmentation. This is
because the target volume of cartilage is relatively small,
which resulted in the loss of the cartilage information,
especially in the pathological area. In this sense, whether
resampling the image volume is necessary to improve
the segmentation performance should be considered
carefully based on the size of the target and the
memory of the GPU.

Moreover, Figures 5C–E have shown that all the nnU-
Net architectures fail to segment the bone with the specific
pathological feature, which demonstrates the necessity of post-
processing from previous studies. In this study, we introduced
the adversarial loss to serve as a shape regulation penalty to
improve bone segmentation. Although the adversarial loss (32)
has been proposed to improve the segmentation performance
previously, to the best of our knowledge, it was the first
time to serve as a shape consistency term to apply to knee
bone MRI image segmentation. Figure 5F has shown that
the introduction of adversarial loss results in state-of-the-
art results for bone segmentation despite the pathological
case. In addition, a possible alternative method to improve
the segmentation performance for the pathological case is to
increase the training set size, especially for the pathological
case.

This study has a number of limitations. First of all, due
to the limited memory of Nvidia 1080 Ti, the number of
feature channels of the first layer in nnU-Net experiments is
20 rather than 30 as stated in previous research (31). Further
experiments with a better GPU should be implemented to
investigate the performance influence of the number of feature
channels. An additional limitation is that there are still a lot
of ablation studies, which can be implemented to discuss the
segmentation performance based on different choices of hyper-
parameters. Nevertheless, we believe that the experiment results
are enough to share with the community to help the development
of fully automatic segmentation of the knee joint. Moreover,
the bone segmentation was segmented in a relatively lower
resolution in order to enlarge context information. Isensee
et al. (26) proposed a cascaded mode to further improve
the low-resolution segmentations. However, the training data
for these two networks should be different; otherwise, it will
easily result in an over-fitted network. As Isensee (33) stated
that the cascaded mode was not so much better than the
3d_lowres and 3d_full_res mode in most cases, we believe
that the results of 3d_lowres and 3d_full_res are sufficient
to be a baseline and we will add the comparison with a
cascaded mode in the future when a more annotated dataset is
available.

CONCLUSION

To conclude, we presented a robust pipeline to segment the
knee bone and cartilage. The result of the proposed method is
the first time achieved more than 76 in a well-known dataset,
the SKI10 validation, to the best of our knowledge. The lower-
resolution strategy and the introduction of adversarial loss
improve the shape consistency of the bone segmentation, while
a fine-tuned V-Net network was further boosted to achieve a
promising result for the cartilage segmentation. Future studies
will include segmentation for more knee joint structures such as
ligaments and menisci.
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