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Editorial on the Research Topic

Cell compartments and intracellular trafficking of lipids and proteins:

Impact on biomedicine

Endocytosis and cell compartments define eukaryotic cells and evolution has sculpted

a complex subset of intracellular structures to arrange the modern cell. This process has

been long, implicating each single organelle to eventually develop a functional consortium

where spatio-temporal distribution becomes essential.

Because of this intrinsic extreme complexity minor alterations must be repaired,

replaced, or undergo reorganization. This is also important when it comes to biochemical

processes within and between cellular compartments developing a new concept that

implicates cell compartments not to function as individual and isolated entities, but as a

dynamic and regulated ensemble facilitating the intracellular trafficking of lipids and

proteins. The diverse intracellular compartments contribute to a global cell homeostasis

and alterations provide new insights relevant for a number of human diseases and offer

opportunities for the design of innovative therapies and treatments.

In recent years we increasingly appreciate the complex organization of the crowded

intracellular space. Sorting and trafficking along major routes travelled by vesicles

implicate maturation, fission, and fusion of membranes and the most universal means

of achieving compartmentalization is probably by the self-assembly of membranes into

units, the organelles. These units maintain specific form and composition and emerge

from elaborate and coordinated membrane trafficking pathways that manifest themselves
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either as explicit membrane bound carriers or through regulated

physical proximity of organelles (membrane contact sites).

Indeed, the endoplasmic reticulum (ER) is the organelle “to

rule them all”; it is the most extensive membrane

compartment, lead regulator of membrane trafficking, the

largest Ca2+ store and the compartment in charge for the

biosynthesis of lipids, proteins and assembly of

glycoconjugates (Wenzel et al., 2022).

The 14 articles in this collection cover only a small part of the

wide panorama, but representative aspects are discussed to

understand membrane trafficking across organelles from a

wide biological, biophysical, or engineering perspectives and

where protein sorting, membrane traffic, and organelle

dynamics are the targets and alterations may be the cause of

disease.

Endocytosis plays a key role in the regulation of signalling

from cell surface receptors. In an original research article by

Artyokov et al., endocytosis of death receptors is explored.

Tumour necrosis factor (TNF)-associated ligand inducing

apoptosis (TRAIL) binds cell surface death receptors DR4 and

DR5, initiating a signalling cascade that results in apoptosis.

Through unknown mechanisms, some cancer cells are resistant

to TRAIL-induced apoptosis, limiting the anti-cancer potential.

Here, Artyokov et al. determine the role of DR4 and

DR5 endocytosis in conferring sensitivity to TRAIL-induced

apoptosis. The authors demonstrate that TRAIL binding

universally stimulated endocytosis of DR4 and DR5 in sensitive

and resistant cells alike, concluding that sensitivity to TRAIL-

induced apoptosis arises through post-endocytosis mechanisms.

Membrane lipid composition is a key determinant of

endocytic traffic and receptor signalling and Hasegawa et al.

review the importance of endosomal phosphatidylserine (PS)

distribution on trafficking pathways. PS is the major anionic

phospholipid in the plasma membrane but is also enriched on

recycling endosomes where it recruits proteins involved in

recycling and retrograde transport for cargo delivery to the

plasma membrane and Golgi respectively. Here Hasegawa

et al. discuss the role of PS flipping from luminal to cytosolic

leaflets of recycling endosomes by the P4-ATPase ATP8A in

recycling and retrograde traffic. PS flipping is likely to be

coordinated with the recently identified transport mechanism

of newly synthesized PS from the ER to recycling endosomes at

ER:endosome contact sites to promote recycling and retrograde

transport (Kawasaki et al., 2022). Endosomal PS has also been

implicated in YAP signalling, that regulates cell proliferation

(Matsudaira et al., 2017), further demonstrating the importance

of endosomal PS in membrane traffic and cell fate and Hasegawa

et al. consider the potential significance of

ATP8A1 mislocalisation in YAP signalling and Hermansky-

Pudlak syndrome (HPS). On loss of the adaptor protein AP-3,

that is defective in HPS, ATP8A1 accumulates on recycling

endosomes, increasing the cytosolic exposure of PS, activating

YAP and promoting cell division and migration.

The Research Topic continues to highlight the significance of

the lipid environment in membrane traffic and disease. The

importance of cholesterol transport and distribution inside of

cells is a recurring theme (Ikonen, 2008; Lu, 2022). Here, a

comprehensive review dissects the pathways for cholesterol efflux

highlighting the state-of-the-art technology (Juhl and Wüstner).

In addition, two original research articles study the role of

cholesterol uptake in two pathogenic protozoa during

infection. In Toxoplasma gondii, the relevance of cholesterol

transport (Croce et al.) is underpinned using the cholesterol

transport inhibitor U18666A demonstrating the potential of

cholesterol for the recruitment of CHMP4, in MVBs

formation, for optimum antigen presentation and parasite

replication. Other related research (Okamoto et al.) addresses

the problem of cholesterol uptake, in the pathogenic yeast

Candida glabrata, as strategy to decrease antifungals

susceptibility for proliferation and the possibilities of using

ERG25 in the stabilization of sterol-rich lipid domains as therapy.

The family of low-density lipoprotein receptors (LDLR) plays

a key role in cholesterol internalization and homeostasis (Go and

Mani, 2012). This family comprises plasma membrane receptors

that bind several unrelated ligands, which are subsequently

endocytosed. Megalin is one of the members (Saito et al.,

1994; Hussain et al., 1999), which has a critical function in

recovering low molecular weight proteins, from the renal

glomerular filtrate, (Leheste et al., 1999). Thus, alterations in

the trafficking of this receptor may result in proteinuria (Marzolo

and Farfan, 2011). In this collection, an original research article

analyzes the post-transcriptional modulation of megalin in the

Lowe Syndrome (LS) (Sandoval et al.). LS patients present

mutations in a gene encoding a phosphatase known as

OCRL1. Megalin is proteolytically cleaved in its ectodomain

and in LS patients reduced levels of this megalin fragment are

detected. In addition, the levels of the receptor in endocytic/

recycling compartments increase in the proximal tubule renal

cells. The authors show that silencing OCRL1 mimics the altered

parameters found in LS patients with a significant decrease of

megalin at the plasma membrane, indicative of a reduced

recycling of the receptor. Furthermore, in these LS conditions

the phosphorylation levels of megalin were reduced, explaining,

in part, the altered recycling transport. Sandoval et al. also

uncovered the role of insulin in the reduction of megalin

phosphorylation and trafficking to the plasma membrane. The

generation of this LS-mimicking cellular model may potentially

help to develop novel therapeutic tools for this disease.

Lipid droplet (LD) landscape (Olzmann and Carvalho, 2019;

Bosch et al., 2020) is also covered in this Research Topic

emphasizing the great importance of LD as dynamic

intracellular compartment found in most cells playing

fundamental roles in lipid metabolism but having interactions

and contacts with other organelles that remain elusive. Two

reviews, one summarizing the major mechanisms of biogenesis

and breakdown of LD (Fader Kaiser et al.) and a second review
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about LD in the nucleus and their function at this novel sub-

world (McPhee et al.). Both articles discuss and dissect the

molecular components to correlate with the involvement in

human pathologies.

In the recent years the lysosome has emerged as an essential

organelle for cellular homeostasis, being not only involved in the

degradation of complex substrates but also able of sensing the

nutrient environment and participate in signal transduction,

thereby regulating fundamental processes such as cellular

clearance and autophagy (Ballabio and Bonifacino, 2020). A

review in this collection (Cabrera-Reyes et al.) focuses on

lysosome homeostasis alterations in lipid-related disorders,

particularly in prevalent diseases such as obesity and also in

the less frequent Lysosomal Storage Diseases (LSDs), such as

Niemann-Pick C (NPC) and Gaucher diseases and discusses the

mechanisms involved in lysosomal alterations that are common

among cells of metabolic tissues, including adipose tissue and the

liver, which are primarily affected in these pathologies. An

original research article of this collection (Marín et al.)

explores the relevance of alterations in c-Abl tyrosine kinase

signalling in the LSD Niemann-Pick type A (NPA), a fatal

neurodegenerative disorder caused by the deficiency in acid

sphingomyelinase (ASM) activity and characterized by an

accumulation of sphingomyelin in lysosomes and dysfunction

in the autophagy-lysosomal pathway. The results show the

participation of c-Abl signalling in NPA neurodegeneration

and autophagy-lysosomal alterations, supporting the potential

use of c-Abl inhibitors for the clinical treatment of NPA patients.

Lysosome related organelles (LROs) are a unique class of

intracellular compartments performing specialized functions in

different types of cells. In vascular endothelial cells, the

prominent LROs are Weibel-Palade bodies (WPBs). They

serve as storage organelles for the blood clotting von-

Willebrand factor and the leukocyte receptor P-selectin that

are released via evoked exocytosis of WPBs following

endothelial activation by inflammation or blood vessel damage

(McCormack et al., 2017). The unique biogenesis and exocytotic

response ofWPBs are highlighted in one minireview of this series

focussing on recent developments that identified factors involved

in WPB maturation and WPB-actin as well as WPB-plasma

membrane interactions in the course of exocytosis (Naß et al.).

An original research article describes the interesting trafficking

route of a vacuolar ATPase (vATPase) subunit on its way to

maturing WPBs (Lu et al.). WPBs are acidic organelles, and the

low intraluminal pH is required for the proper folding

(tubulation) of VWF in the organelle. Recently, vATPase

activity and the vATPase V0a1 subunit were reported to be

required for proper WPB acidification and biogenesis of the

organelle (Yamazaki et al., 2021; Terglane et al., 2022) and Lu

et al. now extend this to another vATPase subunit, V0D1.

Importantly, they show that this subunit is transported to

WPBs in a manner requiring the HPS6 subunit of the

endosomal BLOC-2 complex. Knockdown of HPS6 in primary

human endothelial cells results in misshaped WPB and impaired

VWF tubulation, a phenotype also seen in HPS6 deficient mouse

endothelial cells. Lu et al. also report a direct interaction of the

vATPase V0D1 subunit with HPS6 suggesting that the BLOC-2

complex is involved in transporting vATPase V0D1 from

endosomes to WPBs for assembly of a functional vATPase in

the limiting membrane of the organelle.

Macroautophagy is a degradative pathway that intersects with

both the lysosomal and the proteosomal pathway to maintain

cellular homeostasis by degrading and recycling critical

components. Increasing evidence indicates that autophagy can be

regulated, either in a positive or negative way, by the ubiquitin

proteasome system, indicating that both systems function as an

interconnected network (Korolchuk et al., 2010; Bustamante et al.,

2018). An original research article of this series addressing this topic

(Vargas et al.) identified an ERmembrane protein calledHERPUD1.

Expression of a deletion mutant lacking the ubiquitin-like domain,

critical for proteosomal degradation, negatively modulates

autophagy. In addition, overexpression of this mutant leads to an

increase in ER tubular stacks as well as an augment in the biogenesis

of lysosomal vesicles. The authors propose that ER-lysosome

intercommunication is promoted to favor cell survival under

stress conditions, such as nutritional deficiency or certain drug

treatments.

Finally, membrane contact sites (MCS) are now at the crest of

the wave in cell biology (Prinz et al., 2020). The paradigm has

changed, and compartments communicate by vesicular trafficking

but also via dynamic close contacts with a plethora of tethers and

molecular machineries in charge for transport and exchange of

lipids, cholesterol, ions, and metabolites. MCS modulate endosome

maturation, organelle positioning, metabolic platforms and for

cellular homeostasis. A Mini Review in this collection (Enrich

et al.) put together recent findings regarding a subset of annexins

(Gerke et al., 2005) and discusses their multiple possibilities to

regulateMCS dynamics, function and possible contribution to novel

pathways providing new insights relevant for several human

diseases and offering opportunities to design innovative treatments.

In summary, the present collection of research articles and

reviews under this Research Topic highlights the advances in the

field with novel insights to uncover the fine structure,

distribution, and dynamics of molecular machineries and

protein complexes in cell compartments. Throughout the

collection, a relationship between the lipid environment and

membrane trafficking/signalling pathways is emerging. The

composition of membrane lipids is diverse and complex and

key open questions remain about the maintenance of membrane

lipid homeostasis and its influence over the endocytic pathway. A

role for MCS in coordinating these dynamic and adaptable

processes is becoming apparent but the picture in different

physio/pathological situations is incomplete and key

intracellular cholesterol transport mechanisms remain elusive.

With improved understanding, new interventions to help in the

cure of multiple human diseases become a possibility.
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Tumor necrosis factor-associated ligand inducing apoptosis (TRAIL) induces apoptosis
through the death receptors (DRs) 4 and 5 expressed on the cell surface. Upon ligand
stimulation, death receptors are rapidly internalized through clathrin-dependent and -
independent mechanisms. However, there have been conflicting data on the role of
death receptor endocytosis in apoptotic TRAIL signaling and possible cell type-specific
differences in TRAIL signaling have been proposed. Here we have compared the
kinetics of TRAIL-mediated internalization and subsequent recycling of DR4 and DR5
in resistant (HT-29 and A549) and sensitive (HCT116 and Jurkat) tumor cell lines of
various origin. TRAIL stimulated the internalization of both receptors in a concentration-
dependent manner with similar kinetics in sensitive and resistant cell lines without
affecting the steady-state expression of DR4 and DR5 in cell lysates. Using the receptor-
selective TRAIL variant DR5-B, we have shown that DR5 is internalized independently
of DR4 receptor. After internalization and elimination of TRAIL from culture medium,
the receptors slowly return to the plasma membrane. Within 4 h in resistant or 6 h in
sensitive cells, the surface expression of receptors was completely restored. Recovery
of receptors occurred both from newly synthesized molecules or from trans-Golgi
network, as cycloheximide and brefeldin A inhibited this process. These agents also
suppressed the expression of cell surface receptors in a time- and concentration-
dependent manner, indicating that DRs undergo constitutive endocytosis. Inhibition of
receptor endocytosis by sucrose led to sensitization of resistant cells to TRAIL and to an
increase in its cytotoxic activity against sensitive cells. Our results confirm the universal
nature of TRAIL-induced death receptor endocytosis, thus cell sensitivity to TRAIL can
be associated with post-endocytic events.

Keywords: DR5, DR4, receptor endocytosis, receptor recycling, membrane traffic, brefeldin A
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INTRODUCTION

Cell surface receptor uptake and subsequent intracellular
sorting for degradation or recycling regulates the specificity
of downstream signaling. Some receptors are internalized
continuously whereas others remain on the surface until a
ligand is bound. In cancer cells the endocytic trafficking of
signaling receptors such as receptor tyrosine kinases (RTKs), G
protein–coupled receptors (GPCRs), and cytokine receptors is
altered, affecting signaling pathways to enhance tumorigenesis
and metastasis (Mellman and Yarden, 2013; Cendrowski et al.,
2016; Schmid, 2017).

Ligand-mediated receptor internalization plays an important
role in tumor necrosis factor (TNF) family member receptor
signaling. Internalization of TNF-R1 and CD95 receptors is
required for TNF- and FasL-mediated apoptosis signaling
(Schütze and Schneider-Brachert, 2009; Schneider-Brachert
et al., 2013). Studies have also been conducted to elucidate
the role of death receptor internalization in binding to TNF-
associated ligand inducing apoptosis (TRAIL). TRAIL induce
apoptosis in cancer cells by activating death receptors DR4
and DR5 (LeBlanc and Ashkenazi, 2003). After stimulation
with ligands, DR4 and DR5 rapidly internalize, and the
role of this process in the regulation of TRAIL-mediated
apoptosis is unclear. In some studies, inhibition of endocytosis
by specific molecules or inactivation of dynamin increased
TRAIL-mediated apoptosis (Kohlhaas et al., 2007; Zhang
and Zhang, 2008; Zhang et al., 2009). Recently it was
demonstrated that TRAIL selectively activated dynamin-
1 to self-regulate death receptors endocytosis, attenuate
apoptotic signaling and increase cell survival (Reis et al.,
2017). In addition, clathrin-independent mechanisms were also
suggested to participate in TRAIL death receptor internalization
(Kohlhaas et al., 2007). Blocking caveola-mediated DR4
internalization by filipin III enhanced TRAIL-induced apoptosis
(Zhao et al., 2009).

In contrast to the aforementioned studies, TRAIL-induced
internalization of death receptors was proved important for
apoptosis signaling. TRAIL-induced DR5 internalization is
necessary for permeabilization of lysosomal membranes and
apoptosis in malignant liver cells (Akazawa et al., 2009).
Dominant-negative dynamin mutant and Rab7 silencing inhibit
apoptotic signaling in human hepatocellular carcinoma cell lines
Huh-7 and HNU 499, cholangiocarcinoma cell lines Mz-ChA-1
and HuCCT-1, but not in human cervical cancer cell line HeLa.
Increased surface expression of endogenous lectin galectin-3
in metastatic colon adenocarcinoma LiM6-TR cells prevented
the endocytosis of TRAIL receptors. Reduction of galectin-3
expression restored endocytosis of TRAIL receptors and TRAIL-
dependent apoptosis (Mazurek et al., 2012). Thus, the role of
internalization of TRAIL death receptors for signaling apoptosis
is cell type-dependent. While DISC (death inducing signaling
complex) formation and activation of caspase 8 at the plasma
membrane are sufficient to induce apoptosis in type I cells, the
induction of TRAIL-mediated apoptosis in type II cells may
strongly depend on receptor internalization (Kohlhaas et al.,
2007; Akazawa et al., 2009).

In addition to TRAIL-induced internalization, death receptors
can also undergo constitutive endocytosis as a part of
desensitizing mechanism. DR4 and DR5 constitutive endocytosis
in breast cancer cell lines decreased their surface expression
regardless of mRNA and total protein levels leading to TRAIL
resistance (Zhang and Zhang, 2008).

A growing body of evidence indicates that the subcellular
localization and the regulation of membrane transport of death
receptors play an important role in determining apoptotic
and non-apoptotic TRAIL signaling (Bertsch et al., 2014). In
addition to its canonical location in the plasma membrane,
TRAIL death receptors have been identified in the endosomes,
lysosomes, autophagosomes, in the cytosolic compartment as
well as in the nucleus (Zhang et al., 2000; Akazawa et al.,
2009; Leithner et al., 2009; Di et al., 2013; Haselmann et al.,
2014). It was also demonstrated that colon carcinoma cells
can secrete extracellular vesicles coated with DR5 receptor,
and competitive binding of TRAIL to DR5 on target cells
and DR5 on vesicles leads to a decrease in apoptosis
signaling (Setroikromo et al., 2020). The nuclear DR5 inhibits
maturation of the microRNA let-7 in pancreatic cancer cell
lines and increases their proliferation (Haselmann et al.,
2014). Importin β1-mediated nuclear localization of DR5 limits
TRAIL-induced death of tumor cells (Kojima et al., 2011).
Later, the authors demonstrated that inhibition of importin
β1 enhances the anticancer effect of an anti-DR5 agonist
antibody in TRAIL-resistant tumor cells (Kojima et al., 2020).
Recent studies demonstrated that death receptors DR4 and
DR5 are constitutively localized to chromatin from the plasma
membrane via clathrin-dependent endocytosis, and this process
is greatly enhanced by TRAIL-mediated receptor endocytosis
(Mert et al., 2019).

In this study, we showed that the death receptors DR4 and
DR5 undergo constitutive and ligand-stimulated endocytosis
with similar kinetics in TRAIL-sensitive and TRAIL-resistant
tumor cell lines. Using the receptor-selective TRAIL variant
DR5-B, we proved that death receptors can be internalize
independently of each other. After internalization, the receptors
slowly returned to the plasma membrane when TRAIL was
washed out from culture medium. Within 6 h the surface
expression of receptors was completely restored, regardless
of the sensitivity of the tumor cells to TRAIL. The levels
of receptors were restored through a combination of newly
synthesized protein and recycling from endocytic compartments.
Inhibition of receptor endocytosis by sucrose sensitized resistant
cells to TRAIL and increased its cytotoxic activity against
sensitive cells.

MATERIALS AND METHODS

Cell Lines and Culture Conditions
Human colorectal adenocarcinoma cell lines HT-29 and
HCT116, Jurkat T-lymphoblastic leukemia cells, A549 human
lung adenocarcinoma cell line were purchased from the
Research Institute of Cytology, Russian Academy of Sciences
(St. Petersburg, Russia). Nutrient medium DMEM supplemented
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with 10% fetal calf serum was used to cultivate A549 and HCT116
cells and RPMI1640 medium supplemented with 10% fetal calf
serum for HT-29 and Jurkat cells. All cells were cultured in a
humidified incubator at 37◦C in 5% CO2. Cell culture media
DMEM and RPMI1640 were purchased from PanEco (Moscow,
Russia). Fetal bovine serum was from HyClone (Cramlington,
United Kingdom).

Reagents
Recombinant proteins TRAIL (amino acid residues
114–280) and its DR5-selective mutant variant DR5-B
were expressed in Escherichia coli and purified in our
laboratory as previously described (Yagolovich et al., 2019).
Brefeldin A and cycloheximide were purchased from
Tocris (Bristol, United Kingdom). Pan-caspase inhibitor
Z-VAD-FMK was from Santa Cruz Biotechnology (Dallas,
TX, United States).

Cell Viability Assay
A549, HT-29, and HCT116 cells were seeded in 96-well plates
at a density of 1 × 104 per well in 100 µl culture medium
and incubated for 24 h in humidified atmosphere of 5%
CO2 (New Brunswick, Eppendorf, Germany) at 37◦C. The
culture medium was aspirated and 100 µl of fresh serum free
medium supplemented with TRAIL or DR5-B was added to
the wells. In the case of Jurkat, cells were harvested, washed
with serum-free medium and plated in 96-well plates (5 ×

104 cells per well) in 100 µl of culture medium without
serum and 50 µl of TRAIL or DR5-B solutions at the
appropriate concentrations were added to each well. The cells
were incubated for 24 h, 10 µl of water soluble tetrazolium salts
reagent (WST-1) (Sigma-Aldrich, St. Louis, MO, United States)
was added to each well and incubation was continued for
another 2 h at 37◦C. The WST-1 assay is based on the
cleavage of the tetrazolium salt WST-1 to formazan by cellular
mitochondrial dehydrogenases. Viable cells have a high activity
of mitochondrial dehydrogenases, which leads to the formation
of the dye formazan. The optical density of the wells was
measured using an iMark plate spectrophotometer (Bio-Rad,
United States) at a wavelength of 450 nm with background
subtraction at 655 nm.

Flow Cytometry
The assays were performed as described earlier, with some
modifications (Artykov et al., 2020).

The cells were seeded in 6 well plate at a density of 2 ×

105 cells per well in 2 ml of culture media and incubated
for 24 h in humidified atmosphere of 5% CO2 at 37◦C. After
washing with serum-free medium, the cells were incubated with
TRAIL or DR5-B for the indicated time (5–60 min or 1–
24 h). Cells were detached from the culture flasks with Versene
solution, washed with ice-cold PBS, and resuspended in FACS
buffer (PBS with 1% BSA). Cell suspensions were incubated
for 1 h at 4◦C with 5 µg/ml anti-DR4 (DR-4-02) or anti-
DR5 (DR5-01-1) monoclonal antibodies (GeneTex, Irvine, CA,
United States). Next the cells were washed twice and incubated

with 20 µg/ml secondary antibodies Alexa Fluor 488 (Invitrogen,
Waltham, MA, United States) for 1 h at 4◦C, washed twice,
and suspended in FACS buffer supplemented with propidium
iodide. Mouse IgG1 (15H6, Genetex) was used as an isotype
control. The cell surface expression of DR4 and DR5 was
analyzed on a CytoFlex flow cytometer (Beckman Coulter, Brea,
IN, United States).

Confocal Microscopy Analysis
Glass slides were placed in 6 well plates and 2 × 105 cells
were seeded in each well. Cells were cultured in 2 ml of
culture media and incubated for 24 h. After washing with
serum-free medium cells were treated with 100 ng/ml or 1,000
ng/ml of TRAIL variants. At the indicated times, the medium
was aspirated and the dishes were transferred to ice and
washed with cold PBS. Subsequently, cells were fixed in 3%
paraformaldehyde for 20 min. In order to analyze the expression
of receptors only on the surface of the plasma membrane, the
permeabilization step was skipped. After washing with ice-cold
PBS and blocking in 3% BSA in PBS for 30 min, the primary
antibodies to death receptors DR5 (DR5-01-1) and DR4 (DR-
4-02) were added at a concentration of 2 µg/ml and the cells
were incubated for 1 h at room temperature. The slides were
washed three times with PBS and incubated with 4 µg/ml goat
anti-mouse IgG Alexa Fluor 488 and Hoechst 33342 in the
dark for 1 h at room temperature. The confocal LSM analysis
was performed on Leica TCS SPE (Leica microsystems, Wetzlar,
Germany) equipped with immersion ×100 objective with a 1.4
numerical aperture.

Statistical Analysis
Statistical analyses for each experiment were performed
as described in the corresponding figure legends.
Multiple comparison analyses for one-way ANOVA
followed by Tukey test or followed by Dunnett’s
post hoc test were performed using GraphPad Prism 8.
Experimental phenotypes were confirmed in at least three
independent experiments.

RESULTS

TRAIL Decreases the Surface Expression
of DR4 and DR5 Receptors in a
Concentration-Dependent Manner
To study TRAIL-stimulated traffic of death receptors DR4 and
DR5, two sensitive (HCT116 and Jurkat) and two resistant (HT-
29 and A549) tumor cell lines were selected (Figure 1A). All
cell lines expressed a comparable amount of death receptors
on the cell surface, except that the level of the DR4 receptor
was practically undetectable in Jurkat cells (Figure 1B). The
absence of the surface expression of DR4 on Jurkat cells
has been shown earlier in several studies (Jang et al., 2003;
Merino et al., 2006). Thus, the traffic of this receptor in
Jurkat cells was not investigated in the further experiments.
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To analyze possible competition for receptor binding between
TRAIL and antibodies, we used recombinant DR5 and DR4
extracellular domains captured at plates. The binding of anti-DR
antibodies analyzed by ELISA (enzyme-linked immunosorbent
assay) was not affected by TRAIL, indicating no competition
(Supplementary Figure 1 and Supplementary Table 1). In all
cell lines, a decrease in surface expression of death receptors
was measured during 1 and 24 h upon stimulation with TRAIL
in a concentration-dependent manner (Figure 1C). Significant
decrease of surface receptor expression was detected at TRAIL
concentration of more than 10 ng/ml. The exception was Jurkat
cells, where the effect was observed at lower concentrations
of TRAIL probably because the ligand was not titrated by
the DR4 receptor. The level of receptors on the cell surface
did not differ significantly after incubation 1 or 24 h with
high concentration of TRAIL (1,000 ng/ml), while at lower
concentrations of ligand the number of receptors remaining
on the plasma membrane was slightly lower after 24 h. These
data indicated that TRAIL mediated downregulation of surface
DRs in time- and concentration- dependent manner. It should
be noted that the concentration of endogenous soluble TRAIL
in blood is approximately 0.1–1 ng/ml, which is insufficient to
stimulate the significant decrease of surface receptor exposure
(Cheng et al., 2015). Thus, the possible physiological role
of downregulation the surface expression of DR4 and DR5
upon stimulation of higher TRAIL concentrations currently
remain unclear. To our knowledge, there are no publications
describing a dramatic increase in the concentration of TRAIL
under physiological conditions. The concentration of TRAIL
in the blood rises sharply in clinical trials using high doses of
the drug (5–20 mg/kg). According to pharmacokinetic profiles,
after 1 h of drug administration, the concentration of TRAIL
in the blood of patients was 20–150 ng/ml, depending on
the dosage (Soria et al., 2010). Therefore, when treating the
neoplastic diseases with TRAIL, it is extremely important to
consider the effect of death receptor traffic on drug efficacy.
In addition, numerous studies have shown that the surface
expression of TRAIL DRs is upregulated under the influence of
various chemotherapeutic and natural agents, what in turn can
reduce the concentration of the ligand required to induce their
internalization.

TRAIL Mediates Decrease of Surface
Death Receptors With Similar Rate in
Resistant and Sensitive Cell Lines
We then compared the kinetics of TRAIL-induced
downregulation of the DR4 and DR5 receptors in sensitive
(HCT116 and Jurkat) and resistant (A549 and HT-29) cell
lines (Figure 2A). Cells were incubated with 100 ng/ml TRAIL
for 5, 15, 30 min and then from 1 to 24 h, and the surface
expression of receptors was determined by flow cytometry.
According to the data, the bulk of both receptors were
internalized within 1 h in all cell lines. One hour later, the
process slowed down and after 2 h reached an equilibrium, in
which the values practically did not change during 24 h. The

flow cytometry data were confirmed by confocal microscopy
analysis. To detect receptors only on the plasma membrane, the
permeabilization step was excluded during samples preparation
(Figures 2B,C). Obtained data clearly indicated that TRAIL
induced decrease of DR4 and DR5 exposure in both TRAIL-
sensitive HCT116 and TRAIL-resistant HT-29 cells with similar
efficiency. Thus in both sensitive and resistant lines TRAIL
does induce internalization despite the differences in the
phenotype—apoptosis induction.

DR5-Selective TRAIL Variant DR5-B
Internalizes Only DR5 Receptor
To elucidate the possible interaction of death receptors during
internalization, a DR5-selective TRAIL variant was used. We have
previously designed and purified TRAIL mutant variant DR5-
B that selectively binds to DR5 receptor and lacks the affinity
to DR4 and to decoy receptors DcR1 and DcR2 (Gasparian
et al., 2009). TRAIL- and DR5-B-sensitive (HCT116) and
resistant (HT-29) cells (Figure 3A) were incubated with ligands
at a concentration of 1,000 ng/ml, and the time-dependent
decrease of DR4 and DR5 surface expression was determined
(Figure 3B). TRAIL and DR5-B stimulated the internalization
of the DR5 receptor in both cell lines, but DR5-B worked
faster and more efficiently. The rate of internalization as well
as the absolute amount of internalized molecules was higher
when cells were treated with DR5-B. After 5 min of incubation
of HCT116 cells with DR5-B, 68% of DR5 was internalized,
while TRAIL reduced the amount of this receptor by only
26%. The similar results were obtained in HT-29 cells. This
is apparently due to the fact that TRAIL is titrated by the
other receptors (DR4 or decoy receptors) as the dissociation
constants of TRAIL and DR5-B to the DR5 receptor, determined
earlier using surface plasmon resonance, practically did not
differ (0.51 × 10−9 M and 0.71 × 10−9 M, respectively)
(Gasparian et al., 2009). In contrast, the DR4 surface expression
was not affected by DR5-B, whereas TRAIL reduced it by
90% in both lines. These data were confirmed by the confocal
microscopy measurements of receptor exposure on the plasma
membrane (Figure 3C). Our results are in good agreement
with the data obtained in the work of Nahacka et al. (2018),
where the authors compared the composition of DISC (death
inducing signaling complex) formed by different DR-selective
mutant variants of TRAIL. It was demonstrated that the DISC
formed by DR5-B did not contain DR4 receptor in the HT-
29 and PANC-1 cell lines, while in the DISC formed by
TRAIL both DRs were detected. However, DR4 internalization
by DR5-B was observed earlier after strong upregulation of
the surface DRs by chemotherapeutic agents (Artykov et al.,
2020). Obviously, increased expression of death receptors on the
cell surface promotes the formation of heterodimers where the
receptors can be internalized together as part of the same DISC
(Szegezdi et al., 2012). Based on the obtained data, it can be
assumed that DR5 can be internalized independently of DR4
receptor.
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FIGURE 1 | TRAIL decreased surface expression of DR4 and DR5 receptors in concentration dependent manner. (A) Viability of HT-29, A549, HCT116, and Jurkat
cells after TRAIL treatment for 24 h determined by WST-1 colorimetric assay. (B) Cell surface expression of TRAIL death receptors determined by flow cytometry.
(C) Cells were treated with TRAIL in indicated concentrations for 1 or 24 h and surface expression of DR4 and DR5 was determined by flow cytometry. The data
represent means ± SDs of triplicate assays. *p < 0.05, **p < 0.01, and ***P < 0.001 indicate significant difference from the control according to One-way ANOVA
followed by Dunnett’s post hoc test.

TRAIL Did Not Affect the Steady-State
Expression of DR4 and DR5 in Cell
Lysates
We then investigated the effect of TRAIL on the total expression
of DR4 and DR5 receptors in cell lysates. TRAIL-sensitive
(HCT116 and Jurkat) and TRAIL-resistant (HT-29 and A549)
cells were incubated with 1,000 ng/ml TRAIL for 1, 2, 4, 6, and
24 h, and the receptors content was analyzed by Western blotting
with monoclonal antibodies to DR4 and DR5 (Figure 4A). In
all tested cells, we did not register significant changes in both
DR4 and DR5 contents during the entire incubation period
with TRAIL (Figure 4B). Usually the endocytosed receptors are
shuttled to early endosomes, sorted to late endosomes and finally
to the lysosomes for degradation. In the event when the cell is re-
sensitized with a stimulatory agent, the receptor travels back to
the plasma membrane directly or through recycling endosomes.
Post-endocytic localization and trafficking of the TRAIL death

receptors are poorly investigated. It has been shown that DR4
and DR5 receptors, after TRAIL stimulation, are transported
from the plasma membrane to the nucleus or can co-localize
with endosomes or lysosomes (Zhang et al., 2000; Akazawa
et al., 2009; Mert et al., 2019). In any case, evidently during
the incubation of cells with TRAIL, the rate of the supposed
receptor degradation is comparable to the rate of synthesis of
new molecules, and, therefore, the total level of protein in the
cells remains stable.

Brefeldin A Inhibited the Recovery of
Surface DR4 and DR5
We then investigated the kinetics of cell surface receptor recovery
after TRAIL-induced endocytosis. For this, cells were incubated
with TRAIL for 1 h, the ligand was washed off, and the surface
expression of receptors was determined for 1, 2, 4, 6, and 24 h
(Figure 5A). After removing the ligand from the culture medium,
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FIGURE 2 | The rate of TRAIL-mediated downregulation of surface DR4 and DR5 in resistant and sensitive tumor cell lines. (A) TRAIL-resistant (HT-29, A549) and
TRAIL-sensitive (HCT116, Jurkat) cells were treated with 100 ng/ml TRAIL and surface expression of DR4 and DR5 was determined at indicated times by flow
cytometry. The data represent means ± SDs of triplicate assays. Immunofluorescence staining of DR4 (B) and DR5 (C) receptors in HT-29 and HCT116 cells before
and after TRAIL treatment analyzed by confocal LSM. To detect receptors only on the plasma membrane, the permeabilization step was excluded during samples
preparation.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 September 2021 | Volume 9 | Article 73368814

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-733688 January 28, 2022 Time: 15:52 # 7

Artykov et al. TRAIL-Mediated Membrane Traffic of DR4 and DR5

FIGURE 3 | DR5-selective variant of TRAIL DR5-B induced the decrease of surface expression of DR5 but not of DR4 receptor. (A) Viability of HT-29 and HCT116
cells after treatment with TRAIL or DR5-B at the indicated concentrations for 24 h as determined by the WST-1 colorimetric assay. The data represent means ± SDs
of triplicate assays. *p < 0.01 and **p < 0.001 indicate significant difference from the control according to One-way ANOVA followed by Dunnett’s post hoc test.
(B) TRAIL-resistant HT-29 and TRAIL-sensitive HCT116 cells were treated with 1,000 ng/ml TRAIL or DR5-B and the surface expression of DR4 and DR5 was
determined as shown in Figure 2. The data represent means ± SDs of triplicate assays. *p < 0.001 indicate significant difference between groups according to
Two-way ANOVA. (C) Immunofluorescence staining of the DR4 and DR5 receptors in HT-29 and HCT116 cells before and after TRAIL treatment analyzed by
confocal LSM. To detect receptors only on the plasma membrane, the permeabilization step was excluded during samples preparation.
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FIGURE 4 | Expression of DR4 and DR5 in cell lysates remained relatively stable after TRAIL treatment. (A) HT-29, A549, HCT116 and Jurkat cells were treated with
1,000 ng/ml TRAIL for 1, 2, 4, 6, and 24 h, and the expression of death receptors in cell lysates was analyzed by Western blotting. (B) Protein band intensities was
calculated using the ImageJ software (http://rsbweb.nih.gov/ij/, NIH, Bethesda, MD, United States) and data were normalized to GAPDH. Data are expressed as the
means ± SD of three independent experiments. The Dunnett’s multiple comparisons tests following one-way ANOVA did not find a significant difference among
means.

the amount of surface DR4 and DR5 increased slowly and
after 4 h (in HT-29 and A549 cells) and 6 h (in HCT116 and
Jurkat cells) reached values corresponding to that of untreated
cells. It remains unclear whether faster DRs recovery plays an
important role in cell resistance. Additional experiments are
needed to verify this phenomenon. Interestingly, after prolonged
(24 h) incubation, the number of receptors on the cell surface
was even higher (20–30%) compared to TRAIL-untreated cells
indicating that TRAIL promoted the upregulation of its death
receptors surface expression. Brefeldin A (BFA), an potent ER
stressor, which destroys Golgi compartments and depletes the
delivery of substances to the cell surface from secretory pathway,

significantly decreased DR5 and DR4 surface expression in time-
(Supplementary Figure 2 and Supplementary Table 2) and
concentration-dependent manner in all cell lines (Figures 5B,C
and Supplementary Table 3). Obtained data indicate that
TRAIL receptors undergo spontaneous ligand-independent
internalization regardless of the cell sensitivity. The recovery
of surface DR4 and DR5 after TRAIL-stimulated endocytosis
was also strongly inhibited by BFA in all cell lines. In addition,
receptor surface levels were comparable after BFA treatment with
and without TRAIL. These data indeed show the importance of
the Golgi apparatus and indicate the existence of constitutive
endocytosis of DRs. It was earlier shown that BFA leads to
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TRAIL DRs accumulation in the Golgi apparatus, suggesting
that this organelle forms a platform for DR signaling in stressed
cells (van Raam et al., 2017). Recently it was demonstrated that
endoplasmic reticulum (ER) stress initiated apoptosis through
intracellular activation of DR5 independently of TRAIL and that
misfolded proteins can directly engage with DR5 in the ER-Golgi
intermediate compartment, where DR5 assembles pro-apoptotic
caspase 8-activating complexes (Lam et al., 2020). Thus, the Golgi
apparatus may be involved in the signaling of the post-endocytic
DR4 and DR5 receptors.

Cell-Type Specific Action of
Cycloheximide on the Expression and
Recovery of Surface the DR4 and DR5
The effect of BFA on the receptor surface expression was
unambiguous for all cell lines before and after TRAIL
treatment (Figures 5B,C and Supplementary Table 3). However,
the protein synthesis inhibitor cycloheximide (CHX) affected
differently the expression of surface DRs in various cell
types. CHX significantly inhibited both surface and total
DR5 expression in A549 and HCT116 cells, whereas this
effect was negligible in HT-29 and Jurkat cells (Figures 6A–
C and Supplementary Table 4). Accordingly, after TRAIL-
stimulated endocytosis, the surface restoration of this receptor
was completely blocked in A549 and HCT116, but in HT-
29 and Jurkat cells, it was only partially inhibited by CHX.
The surface DR4 was virtually unaffected by CHX in HCT116
and A549 cells and decreased by about 20% in HT-29 cells
(Figure 6D and Supplementary Table 4). However, the DR4
recovery after TRAIL stimulation was completely inhibited in
HCT116 and HT-29 cells. Interestingly, CHX did not affect
either DR4 surface expression in general or its recovery
after TRAIL stimulation in A549 cells, indicating that DR4
recovery occurred from the intracellular compartments where
it could be accumulated. Thus, the results of the experiment
using CHX showed that there is no correlation between
the sensitivity of cells to TRAIL and the balance between
degradation, synthesis and recycling of receptors. Despite the
fact that the effect of two inhibitors (BFA and CHX) was aimed
at reducing the number of surface receptors, the inhibitory
effect of BFA was more potent and universal either with
or without TRAIL. Comparing the results in Figures 5, 6,
it can be seen that there are significant differences in the
effects of BFA and CHX on the DRs surface expression. BFA
significantly (by 60–70%) reduced the amount of DR5 on
the surface of all tested cell lines, while CHX acted only
on A549 and HCT116. In lines A549 and HCT116, the
surface expression of DR4 was decreased by BFA, but not by
CHX. These data indicated the important role of the Golgi
apparatus in the restoration of post-endocytic receptors. Thus,
it can be concluded that post-endocytic receptor recovery can
occur not only from newly synthesized molecules, but also
from the intracellular compartments, in particular from TGN.
The inhibitory effects of BFA and CHX on the restoration
of receptor surface expression indicated that TRAIL death
receptors are continuously synthesized, externalized, internalized

and degraded, and these processes are more pronounced
for DR5 receptor.

Inhibition of Receptors Endocytosis by
Hypertonic Sucrose Sensitized the
Resistant Cells to TRAIL
We then investigated the role of ligand-mediated endocytosis
of DR4 and DR5 on the cytotoxic activity of TRAIL. In
our hands, the inhibitor of clathrin-mediated endocytosis
dynasore or cholesterol-depleting agent filipin III did not
significantly inhibit TRAIL-mediated endocytosis of DR4 or
DR5 (Supplementary Figure 3 and Supplementary Table 5).
The hypertonic sucrose is known to non-selectively block
the receptor endocytosis (Guo et al., 2015). TRAIL-mediated
endocytosis of DR4 and DR5 was inhibited when cells were
pretreated with sucrose at concentration 250 mM for 1 h
(Figures 7A,B and Supplementary Table 6). In addition, A549
and HT-29 resistant cells were effectively sensitized to TRAIL
when pre-incubated with 250 mM sucrose (Figure 7C and
Supplementary Table 7). The cytotoxicity of TRAIL was also
increased in HCT116 and Jurkat cells in the presence of sucrose.
Hyperosmotic sucrose was highly cytotoxic to Jurkat cells during
prolonged exposure (data not shown). Therefore, these cells
were incubated with TRAIL for 3 h, which is insufficient to
manifest the cytotoxic activity of TRAIL. Nevertheless, upon
treatment of these cells with sucrose, a decrease in cell viability
by TRAIL was observed in 3 h. The general caspase inhibitor
z-VAD-FMK (10 µM) completely blocked the increased cytotoxic
activity of TRAIL observed after incubation of cells in a
hyperosmotic state, demonstrating that the decrease in cell
viability is a result of the apoptotic mechanism activation induced
by TRAIL but not by sucrose as hyperosmolarity itself did
not induce apoptosis. Thus, the inhibition of TRAIL death
receptor endocytosis by sucrose enhances the cytotoxic activity
of TRAIL, suggesting that endocytosis is a defense mechanism
for cell survival.

DISCUSSION

The cytokine TRAIL induces apoptosis through the death
receptors DR4 or DR5, predominantly in cancer cells, but
not in normal cells (Wajant, 2019). However, many cancer
cells are resistant to DRs-mediated apoptosis due to a
variety of mechanisms, and this is the reason for the
low antitumor activity of its various therapeutic agonists
(recombinant TRAIL variants or antibodies to receptors) in
clinical trials (Micheau et al., 2013; Kretz et al., 2019). Although
multiple proteins are involved in DR-mediated apoptosis,
surface expression of death receptors is a prerequisite for the
activation of TRAIL apoptosis signaling. Expression of DR4
and DR5 receptors is regulated at the transcriptional level by
epigenetic modification, transcription factors, microRNA and
RNA-binding proteins, as well as at post-translational level by
ubiquitination and glycosylation (Song et al., 2010; van de
Kooij et al., 2013; Micheau, 2018; Min et al., 2019). However,
a high level of surface receptor expression does not always
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FIGURE 5 | Brefeldin A inhibited the recovery of surface DR4 and DR5 receptors. (A) HT-29, A549, HCT116, and Jurkat cells were treated with 1,000 ng/ml TRAIL
for 1 h, the ligand was washed three times with ice-cold medium and the kinetics of surface receptor recovery was analyzed for 24 h by flow cytometry. Mean
Fluorescence Intensity (MFI) values are presented as a percentage relative to control cells. Data represent means ± standard deviation of three analyzes. (B) Cells
treated with Brefeldin A (BFA) before or after TRAIL (1 µg/ml) treatment at indicated concentrations for 6 h and the surface expression of DR5 (B) and DR4 (C) was
determined by flow cytometry. Mean Fluorescence Intensity (MFI) values are presented as a percentage relative to BFA non-treated cells. Data represent
means ± SD of three independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001 indicate significant difference between groups according to One-way
ANOVA followed by Tukey test. #p < 0.05, ##p < 0.01, and ###p < 0.001 indicated significant difference from the untreated with BFA cells according to One-way
ANOVA followed by Dunnett’s post hoc test. Raw data for (B,C) are available in Supplementary Table 3.
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FIGURE 6 | Effect of cycloheximide on expression and recovery of surface DR4 and DR5. HT-29, A549, HCT116 and Jurkat cells were treated with cycloheximide
(CHX) before or after TRAIL (1 µg/ml) treatment at indicated concentrations for 6 h and the surface expression of DR5 (A) and DR4 (D) was determined by flow
cytometry. Mean Fluorescence Intensity (MFI) values are presented as a percentage relative to CHX non-treated cells. (B) Western blot analysis of DR5 receptor in
cell lysates after treatment with 50 Âţg/ml CHX for 3, 6 and 9 h. (C) Protein band intensities calculated using the ImageJ software (http://rsbweb.nih.gov/ij/, NIH,
Bethesda, MD, United States) and data were normalized to GAPDH. Data are expressed as the means ± SD of three independent experiments. Mean Fluorescence

(Continued)
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FIGURE 6 | (Continued)
Intensity (MFI) values are presented as a percentage relative to BFA non-treated cells. Data represent means ± SD of three independent experiments. *p < 0.01 and
**p < 0.001 indicate significant difference between groups to One-way ANOVA followed by Tukey test. #p < 0.05, ##p < 0.01 and ###p < 0.001 indicated significant
difference from the untreated with CHX cells according to One-way ANOVA followed by Dunnett’s posthoc test. Raw data for (A,D) are available in Supplementary
Table 4.

FIGURE 7 | Hypertonic sucrose inhibited TRAIL-mediated receptor endocytosis and sensitized resistant cells to TRAIL. HT-29, A549, HCT116 and Jurkat cells were
treated with or without 250 mM sucrose for 1 h followed by treatment with 100 ng/ml TRAIL for another 1 h and the surface expression of DR4 (A) and DR5 (B) was
determined by flow cytometry. (C) Cells were incubated with or without 250 mM sucrose for 1 h in the absence or presence of 10 µM Z-VAD-FMK followed by
treatment with 100 ng/ml TRAIL for 16 h in the case of HT-29 and A549 cells, 7 h for HCT116 and 3 h for Jurkat cells. Viability was determined by WST-1 colorimetric
assay. The results are presented as mean ± SD of triplicate independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 indicate significant difference between
groups according to One-way ANOVA followed by Tukey test. Raw data are available for (A,B) in Supplementary Table 6 and for (C) in Supplementary Table 7.

correlate with the sensitivity to TRAIL (Chen et al., 2012).
Numerous studies have demonstrated that DRs can be located
in various cellular compartments such as autophagosomes,
trans-Golgi network, and nucleus or even in the cytosol
(Bertsch et al., 2014). The mechanisms of DRs expression
and signaling have been extensively studied in the last two
decades, but little research has focused on the regulation of their
membrane transport.

In the present study, we compared the kinetics of TRAIL-
mediated decrease of surface DR4 and DR5 receptors expression
in TRAIL-resistant (HT-29, A549) and TRAIL-sensitive
(HCT116, Jurkat) tumor cell lines. Both receptors surface
expression was rapidly decreased after TRAIL binding in a
concentration-dependent manner with similar kinetics in all
tested cell lines. TRAIL-mediated rapid internalization of DR5
in Colo205 cells (Austin et al., 2006) or rapid internalization of
TRAIL itself in BJAB, Hela (Kohlhaas et al., 2007), MDA-MB-231
and A549 (Zhang et al., 2009; Reis et al., 2017) and Huh-7
(Akazawa et al., 2009) cells have been described earlier. We

measured for the first time the kinetics of TRAIL-mediated
decrease in surface DR4 simultaneously with DR5 and showed
that both receptors were internalized at the same rate. The
receptor-selective TRAIL variant DR5-B decreased only surface
DR5 but not DR4 indicating that death receptors can be
internalized independently of each other. We did not observe
changes to total death receptor levels during incubation of cells
with TRAIL, since steady-state expression of DR4 and DR5 in
cell lysates remained unchanged, possibly because the rate of
putative degradation was equilibrated with the rate of synthesis
of new molecules.

The recycling of DR4 and DR5 back to the plasma membrane
after endocytosis was not investigated until now. Here we have
demonstrated that both receptors slowly return to the plasma
membrane after TRAIL washing from culture medium and
within 6 h the surface expression of receptors was completely
restored, regardless of the sensitivity of the tumor cells to TRAIL-
induced apoptosis. The slow recycling pathway involves the
transport of cargo proteins from the early endosome to the
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endocytic recycling compartment (ERC) and from the ERC to the
plasma membrane (Grant and Donaldson, 2009). The recovery
of surface DR4 and DR5 was blocked by Golgi-disrupting agent
BFA and partially suppressed by protein synthesis inhibitor CHX.
Since TRAIL did not affect the stable expression of DRs in cell
lysates. it can be assumed that the recovery of surface receptors
can occur both from ERC (late endosomes and Golgi apparatus,
or nucleus), where they accumulate, and from the newly
synthesized molecules. It has recently been demonstrated that
nuclear TRAIL-DRs are directly translocated from the plasma
membrane through an initial clathrin-dependent endocytosis
in a TRAIL-dependent manner, independently of its apoptotic
activity (Mert et al., 2019). More research is needed to clarify how
DRs endocytosis correlates with their recovery and how these
processes are regulated.

We have also shown that TRAIL death receptors undergo
constitutive endocytosis in the absence of a ligand. BFA
decreased surface expression of both receptors in time- (1–
6 h) and concentration-dependent manner, and this effect was
more pronounced for DR5. The effect of brefeldin A was
not associated with receptor degradation, since the content
of DR5 in HT-29 and Jurkat cells or surface expression
of DR4 in A549 and HCT116 cells were not affected by
cycloheximide. The secretory stressors such as BFA and
thapsigargin (Tg) have been shown to induce accumulation of
death receptors in the Golgi apparatus and its compensatory
expression (Lu et al., 2014; van Raam et al., 2017). Despite its
importance, the details of TRAIL death receptors endosomal
traffic have not been investigated. The signal recognition
particle complex (SRP) is required for DR4, but not DR5
localization on the cell surface, indicating that receptors
transport may be regulated in different ways (Ren et al., 2004).
Recently it has been demonstrated that depletion of MLKL
(Mixed lineage kinase domain-like) reduced the endosomal
traffic and degradation of DR5, resulting in increased TRAIL
cytotoxicity (Park et al., 2020). A deeper understanding of
the molecular mechanisms that support DRs transport along
the recycling pathway will provide a deeper understanding of
the mechanisms of resistance of tumor cells to TRAIL and,
probably, will determine new approaches to the treatment
of tumor diseases.

Several studies have shown that the disruption of clathrin-
dependent endocytosis of DRs by inactivation of dynamins
(particularly by dynamin 1) leads to increased cell apoptosis
(Austin et al., 2006; Reis et al., 2017). We did not observe any
effect of the inhibitor of clathrin-mediated endocytosis dynasore
on TRAIL-mediated DR4 or DR5 endocytosis. Dynasore is a
cell-permeable inhibitor of dynamin GTPase activity that leads
to the accumulation of late invaginated coated pits (Nankoe
and Sever, 2006). One of the possible reasons for the lack of
dynasore effect may be that antibodies to DRs cannot recognize
receptors when they are in the O-shaped pits. Hyperosmotic
sucrose blocks formation of type 1 coated pits by preventing
clathrin and adaptors from interacting (Hansen et al., 1993).
Under such conditions, the availability of receptors for antibodies
is not impaired, and this is probably why we observed inhibition
of TRAIL-mediated decrease in surface DRs upon pretreatment

of cells with hyperosmotic sucrose. Resistant A549 and HT-
29 cells were effectively sensitized to TRAIL-induced cell death
under sucrose hyper-osmosis. Several studies have demonstrated
that DR internalization is not required for the formation of
the death inducing signaling complex (DISC) or for apoptosis
(Kohlhaas et al., 2007; Zhang et al., 2009). However, the reasons
for DISC inactivation after endocytosis remain unclear. In our
experiments, the kinetics of receptor internalization practically
did not differ in resistant and sensitive cells. However, the rate
of DRs recovery in sensitive cells was relatively reduced. It
can be assumed that the DISC components dissociate relatively
faster after internalization in TRAIL-resistant cells, preventing
the initiation of apoptosis.

Thus, we have demonstrated that the sensitivity of tumor cells
is not related to the rate of TRAIL-mediated DR endocytosis.
Based on our results it can be proposed that the post-endocytic
events, such as the rate of DISC dissociation and accumulation
of receptors in different compartments, or the rate of their
degradation play a significant role in triggering apoptotic TRAIL
signaling. Additional experimental data are needed to confirm
this hypothesis.
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Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue
and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the
more prevalent diseases, which results in energy imbalance within metabolic tissues and
lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and
Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs),
where lysosomal dysfunction within metabolic tissues remains to be fully characterized.
Adipocytes and hepatocytes share common pathways involved in the lysosome-
autophagic axis, which are regulated by the function of cathepsins and CD36, an
immuno-metabolic receptor and display alterations in lipid diseases, and thereby
impacting metabolic functions. In addition to intrinsic defects observed in metabolic
tissues, cells of the immune system, such as B cells can infiltrate adipose and liver
tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on
lysosomes to promote the processing and presentation of extracellular antigens and thus
could also present lysosome dysfunction, consequently affecting such functions. On the
other hand, growing evidence suggests that cells accumulating lipids display defective
inter-organelle membrane contact sites (MCSs) established by lysosomes and other
compartments, which contribute to metabolic dysfunctions at the cellular level. Overall,
in this review we will discuss recent findings addressing common mechanisms that are
involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC,
and Gaucher diseases. We will discuss whether these mechanisms may modulate the
function of B cells and how inter-organelle contacts, emerging as relevant cellular
mechanisms in the control of lipid homeostasis, have an impact on these diseases.
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INTRODUCTION

Dyslipidemias are diseases that exhibit an imbalance or abnormal
concentrations of lipids such as cholesterol, low-density lipoprotein
(LDL) cholesterol (LDL-c), high-density lipoprotein (HDL),
cholesterol (HDL-c) and triglycerides. Causes of dyslipidemias
are classified as primary and secondary. The first ones are due
to mutations in genes coding for proteins related to lipid
metabolism and transport. Among the most common primary
diseases is familial hypercholesterolemia, which is caused by
autosomal dominant mutations in LDL receptors, increasing
LDL-c levels (Helkin et al., 2016). Less frequent diseases related
to the accumulation of lipids, include the Lysosomal Storage
Diseases (LSDs), Niemann-Pick type C (NPC) and Gaucher
diseases (Marques and Saftig 2019).

Secondary dyslipidemias are associated with an unhealthy
lifestyle, including excessive drug and alcohol consumption, where
the most frequent manifestation is obesity, which results from
consumption of an unbalanced diet with high fat content (Klop,
Elte, andCabezas 2013). Obesity is a complex chronic disorder with a
multifactorial etiology, considered to be an inflammatory disease that
results from an excessive accumulation of fat and the disruption of
metabolic homeostasis (Lee et al., 2013; Liu and Nikolajczyk 2019).
The prevalence of obesity has increased exponentially in all countries
in the past decades and has thus become a major heath burden
(Popkin and Doak 2009; Blüher 2019).

Obesity-related pathogenesis results in energy imbalance within
metabolic tissues, mainly affecting white adipose tissue (WAT) and
the liver (Vázquez-Vela, Torres, and Tovar 2008). These tissues
also acquire an inflammatory phenotype, where innate immune
cells such as macrophages promote inflammation upon exposure
to metabolic stress (Cousin et al., 2001; Weisberg 2003; Russo and
Lumeng 2018). Inflammation is also promoted by cells of the
adaptive immune system, such as B lymphocytes, which manage to
infiltrate adipose and liver tissues (Wu et al., 2019), and produce
pro-inflammatory cytokines and autoreactive antibodies
(Aschermann et al., 2009; Winer et al., 2011; Kao et al., 2015;
Srikakulapu and McNamara 2020). Interestingly, inflammation in
response to obesity may be B cell-driven, where these cells have
been proposed as potential therapeutic targets to overcome this
disease (Shaikh et al., 2015).

Cells belonging to metabolic tissues, including adipocytes and
hepatocytes, share common pathways that regulate metabolic
functions. However, the organelles or cellular pathways within
these cells that respond to and are affected by an excess of
nutrients, remain incompletely understood. Metabolic
functions, and cell signaling are regulated by interactions
between the endoplasmic reticulum (ER) and a variety of
organelles as well as lipidic structures, including mitochondria,
Golgi, lysosomes, the plasma membrane, lipid droplets and the
nucleus. There is a growing amount of evidence indicating that
obesity leads to dysfunctional interactions between various
organelles of different cell types. A prominent example is the
dysregulation of mitochondrial dynamics, which affects their
associations with the ER, promoting oxidative stress and a
imbalance in lipid and glucose metabolism (Bournat and
Brown 2010; Arruda et al., 2014; Ejarque et al., 2019).

Additionally, emerging evidence regarding lysosome function,
an essential organelle involved in cellular homeostasis suggests
that this organelle is susceptible to changes in lipid homeostasis in
obesity and LSDs, especially those that accumulate lipids, such as
NPC and Gaucher diseases (Dugail 2014; Cermak et al., 2016;
Jaishy and Dale Abel 2016; Marques and Saftig 2019). Such
dysfunctions can trigger an inflammatory response in
adipocytes and hepatocytes, promoting the activation of
immune cells and the persistence of a local inflammatory
environment (Jaishy and Dale Abel 2016; Ballabio and
Bonifacino 2020). Interestingly, B cells in obesity, NPC and
Gaucher diseases could also present lysosome dysfunction due
to an excess of nutrients, which can lead to alterations in their
immune effector functions, such as the degradation and
presentation of antigens, which depend on lysosomal activity.
However, such functional aspects remain to be investigated.

This review will focus on lysosome homeostasis alterations in
lipid-related disorders, particularly in prevalent diseases such as
obesity and less frequent NPC and Gaucher diseases. We will
discuss the mechanisms involved in lysosomal alterations that are
common among cells of metabolic tissues, including adipose
tissue and the liver, which are primarily affected in these
pathologies. In this context, we will explore common pathways
that are altered in the lysosome-autophagic axis, including
cathepsins and CD36. We also speculate whether these
mechanisms are also perturbed in cells of the adaptive
immune system, specifically in B cells, since they rely on
lysosomes to promote the processing and presentation of
extracellular antigens. Finally, we will address the impact of
lysosomal dysfunction on the functionality of MCS in obesity
and NPC and Gaucher diseases.

ALTERATIONS IN LIPID METABOLISM IN
LIVER AND ADIPOSE TISSUE IN
LIPID-RELATED DISORDERS
Adipose tissue is classified into different types according to its
function and appearance; among these are WAT and brown
adipose tissue (BAT). WAT acts as an energy store by
accumulating free fatty acids (FAs), while BAT is responsible
for thermogenesis and energy expenditure (Vázquez-Vela et al.,
2008). Adipose tissue is an endocrine organ that undergoes
remodeling during metabolic diseases. For example, during
obesity, adipocytes, which represent most of the WAT
undergo hyperplasia and hypertrophy, as well as cellular death
due to hypoxia, infiltration of immune cells with pro-
inflammatory phenotypes and high levels of surrounding
cytokines (Khan et al., 2020). It is widely described that
obesity and its comorbidities are associated with an increased
risk of nonalcoholic fatty liver disease (NAFLD) (Neuschwander-
Tetri and Brent 2005). This occurs mainly because adipocytes
diminish their capacity to store fat, causing chronic elevation of
FAs, which are transported by blood circulation to the liver. Lipid
accumulation in non-adipose tissues, such as muscle, heart and
pancreas, including the liver, as well as an excess in the utilization
of FAs cause deleterious effect on glucose metabolism, a term
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known as lipotoxicity (Engin and Basak 2017; Yazıcı and Sezer
2017). In fact, in liver, FAs are stored as triglycerides in and
repackaged as very low-density lipoprotein (VLDL), which then
are transported to other tissues, producing global dyslipidemia.
Furthermore, in the liver, FAs-induced lipotoxicity promotes ER
and oxidative stress, as well as the release of cytokines from
inflamed adipose tissue. This promotes inflammation and
fibrosis, resulting in progression to nonalcoholic steatohepatitis
(NASH) (Peverill et al., 2014; Rada et al., 2020). The increased
delivery of FAs to the liver, circulating proinflammatory
cytokines, such as TNF-α and interleukin 1β and other
bioactive substances, including adipokines and hepatokines, as
well as infiltrated immune cells contribute to the appearance of
insulin resistance (Kahn and Flier 2000; Jung and Choi 2014; Shi
et al., 2019). Overall, obesity causes significant metabolic defects
within organs, which have been extensively discussed in previous
reviews (Uranga and Keller 2019; Chait and den Hartigh 2020).
Altogether, there is a close link between functional changes in
WAT that directly affect the liver and vice versa.

Interestingly, changes in lipid metabolism may also contribute
to lysosome dysfunction in the liver. Recent studies have
underscored the importance of BMP [bis (monoacylglycero)
phosphate or lysobisphosphatidic acid, LBPA], a key lysosomal
phospholipid in the cellular pathophysiology of patients with
lysosomal lipid accumulation, such as obesity and LSDs
(Showalter et al., 2020). An increase in the circulating levels of
BMP has been described in plasma of patients with NAFLD and
NASH, as well as in plasma and livers of mice fed with a high-fat
diet (HFD) (Grabner et al., 2019; Showalter et al., 2020). BMP is
enriched in late endosomes/lysosomes, where its negative charge
plays a key role in the formation of intraluminal vesicles, in lipid
and cholesterol sorting, docking structures for the activation of
lysosomal hydrolytic enzymes, and degradation of lipids and
internal lysosomal membranes (Gallala and Konrad 2011;
Pribasnig et al., 2015). In fact, BMP negative charges facilitate
the adhesion of soluble positively charged hydrolases, allowing
the degradation of lipids at the interface of inner lysosomal
membranes (Gallala and Konrad 2011). In LSDs, Showalter
et al. (2020) proposed that “accumulation of some glycolipid
substrates triggers an adaptive mechanism to bolster BMP levels
in an effort to promote the degradation of these species.”
Nevertheless, it remains to be determined whether altered
levels of BMP are a mediator or a marker of pathological states.

On the other hand, the simplest bioactive phospholipid that is
critical in the production and remodeling of intracellular lipids is
lysophosphatidic acid (LPA). This phospholipid is implicated in
the metabolism of adipose and liver tissues and in the
pathogenesis and progression of obesity (Kaffe et al., 2019). In
obesity or under conditions of increase lipids, there is an impact
on organelle homeostasis and function in adipocytes and
hepatocytes, with the lysosome one of the most altered, thus
negatively influencing their cellular metabolic function, which
will be discussed in the following sections.

Lysosomal Storage Diseases
LSDs, comprise approximately 70 hereditary diseases produced
by mutations in genes encoding for lysosomal hydrolases,

transporters or membrane proteins, leading most of the times
to accumulation in this organelle of partially degraded substrates
within this organelle (Platt et al., 2018). Particularly, LSDs with
lipid accumulation show pronounced alterations in lipid
metabolism and transport (Platt et al., 2018).

NPC disease is characterized by progressive
neurodegeneration and visceral damage caused by mutations
in either the Npc1 (95% of the clinical cases) or Npc2 genes.
Both genes encode for lysosomal proteins involved in cholesterol
efflux from lysosomes towards other compartments within the
cell (Yañez et al., 2020). Therefore, unesterified cholesterol and
other lipids with physicochemical affinity for cholesterol, such as
glycosphingolipids, including sphingomyelin, sphingosine and
BMP are accumulated in endosomes and lysosomes (Davidson
et al., 2009;Neßlauer et al., 2019). Alterations in lysosomal
cholesterol transport fail to maintain cellular, tissue, and
whole-body lipid homeostasis (Beltroy et al., 2005; Kulinski
and Vance 2007). In fact, in the liver, de novo synthesis of
unesterified cholesterol increases to supply adequate amounts
of cholesterol for the synthesis of bile acids or the turnover of
membrane sterol (Xie, Turley, and Dietschy 2000; Beltroy et al.,
2007). In this context, NPC cells, such as hepatocytes and
fibroblast show decreased cholesterol esterification (Soccio and
Breslow 2004; Maetzel et al., 2014), which is a key factor, because
accumulation of unesterified cholesterol is associated with the
infiltration of activated macrophages to metabolic tissues, which
produce proinflammatory cytokines and other inflammatory
factors and thereby play a critical role in parenchymal cell
death (Liu et al., 2007; Liu et al., 2009). Importantly, the
nervous system is particularly affected in this pathology, where
Purkinje neurons are altered early during the onset of these
diseases and are especially sensitive to loss of NPC1 function.
Some of the neurological symptoms are associated with their
death and early cerebellar degeneration. Moreover, dysfunction
of non-neuronal cells in the brain, such as microglia and/or
astrocytes, contribute to neurodegeneration (Vanier and Millat
2003). This leads to progressive damage such as generalized
neurological deficits including ataxia, dystonia, seizures, and
dementia that eventually lead to premature death that
characterizes NPC disease (Wraith et al., 2009; Pallottini and
Pfrieger 2020). Defects in cells of the nervous system are
associated with the accumulation of lipids in lysosomes, which
perturbs their interactions with other organelles, their
functionality, motility, and cellular distribution, also
contributing to a failure in autophagy (Oyarzún et al., 2019).
How the accumulation of cholesterol caused by the loss of NPC1
leads to lysosomal dysfunction is not fully understood and will be
addressed in this review.

Gaucher disease (GD) is one the most prevalent LSDs and is
caused by mutations in the GBA1 gene, which encodes for the
(lysosomal) glucosylceramide degrading enzyme
β-glucocerebrosidase [also named acid-β-glucosidase (GCase)].
GCase deficiency leads to lysosomal storage of glucosylceramide
and its deacylated product, glucosylsphingosine. GD has been
classified into three types: Type I; is characterized by
organomegaly, cytopenia and adult onset non-neuropathic or
visceral, Type II and III; both of them have an early onset and
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progressive compromise brain functions (Nagral 2014; Platt et al.,
2018). Cytopenia, splenomegaly and hepatomegaly, result from
the infiltration of Gaucher cells, particularly phagocytic
macrophages, to the bone marrow, spleen, and liver
(Stirnemann et al., 2017; Marques and Saftig 2019). Among
alterations reported for liver in GD type I patients, are
oscillations in body weight (Kałużna et al., 2019), as well as
metabolic abnormalities, including peripheral insulin resistance,
dyslipidemia including low levels of high-density lipoprotein
(Nascimbeni, Dalla Salda, and Carubbi 2018). Interestingly, a
study carried out in patients with GD type 1 revealed high
prevalence for liver steatosis (Nascimbeni et al., 2020) and
alterations in liver including fibrosis, cirrhosis, and carcinoma
(Starosta et al., 2020).

Although GD is considered a multisystemic disease due to the
wide spectrum of symptoms, the molecular mechanisms
underlying adipose and hepatic tissue alterations caused by the
accumulation of glycosphingolipids in lysosomes, remain largely
unknown. Most studies have addressed changes at the systemic
level, where alterations have been reviewed mainly based on case
reports, systematic reviews, and clinical trials (Kałużna et al.,
2019). So far, several studies have focused on Gaucher cells (lipid-
laden macrophages) that infiltrate liver tissue and the spleen and,
in general, there is more information on GD type I, the most
common and less aggressive type. In this scenario, current
evidence obtained from studies in Gaucher disease suggest that
lysosomal dysfunction is due to the accumulation of
glucosylceramide and other lipids, such as cholesterol, in this
organelle (Yañez et al., 2020). Observations made by
immunofluorescence staining of dopaminergic neurons of
patients with Parkinson’s that carry mutations in the GBA1
gene reveal that their lysosomes display a larger size (Kim
et al., 2021). Additionally, evidence of lysosomal dysfunction
has been reported in a Gaucher neuronopathic murine model
after observing changes in the expression of lysosomal marker
genes, as well as lower lysosomal biogenesis (Brown et al., 2019).
In addition to this, an increase in the presence of multilamellar
bodies has been observed in lysosomal structures and perinuclear
lysosome clustering in fibroblasts of patients with Parkinson’s
disease that carry mutations in theGBA1 gene (García-Sanz et al.,
2017). These alterations in lysosomes also affect the autophagic
pathway, where autophagic flux blockage has been observed in
Gaucher mouse neurons (Farfel-Becker et al., 2014). Thus,
considering that lysosomes are one of the most relevant
organelles in sensing the homeostatic state of the cell, a better
comprehension of the cellular mechanisms involved in the
regulation of lysosome function is essential for the
development of new therapeutic approaches to treat LSDs.

Cellular Pathways Involved in Defective
Lysosome-Autophagic Axis
Lysosomes are intracellular organelles essential for the
degradation and recycling of macromolecules released by
endocytosis, phagocytosis, and autophagy (Appelqvist et al.,
2013; Jaishy and Dale Abel 2016). These organelles not only
participate in the degradation of molecules but are also highly

dynamic complex organelles involved in detecting the state of
cellular metabolism, controlling changes between anabolism/
catabolism, participating in immune functions, plasma
membrane repair, as well as cell adhesion and migration
(Ballabio and Bonifacino 2020).

Autophagy provides the required molecular building blocks,
such as amino acids, glucose, nucleotides, and FAs, which are
used by starving cells. Additionally, autophagy regulates lipid
metabolism including FAs oxidation, lipolysis, lipogenesis,
ketogenesis, and cholesterol efflux (Martinez-Lopez and Singh
2015; Saito et al., 2019). Lipolysis involves the breakdown of
triacylglycerols and esters by cytosolic lipases, while autophagy
participates in part of this process, modulating lipoprotein
trafficking, as well as, supplying and expanding lipid droplets
(LDs) (Zhang et al., 2018a). However, lipid stores can also be
accessed via lipophagy, a specific subset of selective autophagy
that targets LDs and catabolizes their components into free FAs
and glycerol (Kounakis et al., 2019). At present, abnormalities in
lysosomal and autophagic function are associated with the
pathogenesis of metabolic disorders, such as obesity and LSDs
(Oyarzún et al., 2019; Wang, et al., 2017).

In this context, several studies have demonstrated the role of
autophagy and lysosomes in regulating lipid storage within the
two main organs that maintain lipid homeostasis: adipose and
liver tissues (Christian, Sacco, and Adeli 2013; Lahiri, Hawkins,
and Klionsky 2019). In fact, lipid-related disorders are
characterized by a defect in the function of lysosomes that
coexists both in the liver and adipose tissue, which negatively
influences their metabolic function (Christian et al., 2013). In the
next section, we will analyze the resulting lysosomal dysfunction
andmechanisms involved including the role of cathepsins and the
CD36 receptor as well as its relationship with autophagic
functions.

LYSOSOMAL DYSFUNCTION COEXISTS IN
ADIPOCYTES AND HEPATOCYTES IN
LIPID-RELATED DISORDERS: RELEVANCE
OF CATHEPSINS, AUTOPHAGY AND CD36
ALTERATIONS

Role of Cathepsins and Autophagy in
Obesity
Several studies regarding lysosomal dysfunction in obese WAT
and liver focus on cathepsins and autophagy function, because of
their association with lipid storage (Ju et al., 2019; Mizunoe et al.,
2019). Cathepsins are a group of proteases involved in
intralysosomal protein degradation, which cleave different
proteins and polypeptides (McGrath 1999; Turk 2001). These
proteases have unique reactive-site properties and a tissue-
specific expression pattern (Turk et al., 2012). The most
abundant cathepsins (CTS) are L (CTSL) and B (CTSB),
which are involved promoting autophagy (Kaminskyy and
Zhivotovsky 2012). Moreover, they have been implicated in
lysosomal dysfunction in obese murine models in adipose and
liver, which display different alterations, such as, oxidative stress,
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which lead to abnormal lysosomal pH (reduced acidification)
(Pascua-Maestro et al., 2017). Such alterations attenuate the
maturation of CSTL, causing the accumulation of
autophagosomes, and the consequent, suppression of
autophagic clearance (Inami et al., 2011; Mizunoe et al., 2017,
Mizunoe et al., 2019). Moreover, increased CTSL and decreased
CTSB expression at the transcriptional level have been recently
observed in abdominal subcutaneous adipose tissue of
overweight/obese men and women, but further research is
required to establish whether such changes impact protein
levels and activity (Xu et al., 2020).

In particular, human obese adipose tissues display high
expression levels of autophagic genes, but exhibits attenuated
adipocyte autophagic flux (Soussi et al., 2016; Mizunoe et al.,
2017). A recent study revealed that omental adipose tissue of
obese individuals and adipocytes treated with TNFα, a cytokine
secreted within the adipose tissue microenvironment in obesity
show an upregulation of lysosomal/autophagic genes (Ju et al.,
2019). In contrast, this proinflammatory factor promotes
autophagic flux and increases basal lipolysis, impairing
triglyceride storage, where CTSB was required for the
autophagic process (Ju et al., 2019). In fact, CTSB and CTSD
gene expression are upregulated in obese WAT (Mizunoe et al.,
2020). Lipolysis is exacerbated during obesity in WAT and
induced overexpression of CTSB gene expression in adipocytes
displays an increased basal lipolysis (Gaidhu et al., 2010; Mizunoe
et al., 2020). Therefore, CTSB has been proposed as a therapeutic
candidate for obese WAT. Autophagy is essential for the correct
function of adipocytes. Accordingly, it has been reported that
inhibition of autophagy by ATG5 or ATG7 knockdown or
pharmacological inhibition in preadipocytes, impair their
differentiation into mature WAT and lipid storage capacity
(Zhang et al., 2016). Nevertheless, it remains to be determined
whether upregulation of the expression of genes related to
autophagy is sufficient to increase autophagic flux. There is
currently a discrepancy regarding the effects on autophagy
(enhanced or diminished) in adipose tissue of obese
individuals, gene-modified obese animals or diet induced
obesity models (García-Barrado et al., 2020). This has been
discussed in detail by Zhang et al., 2018b; Zhang et al., 2018a).

Additionally, HFD or FAs exposure induces lysosomal
membrane permeabilization in adipose tissue, leading to the
release of lysosomal proteases, such as CTSB. The increase of
cytosolic CTSB affects mitochondria, increasing ROS production
and inducing mitochondrial dysfunction (Gornicka et al., 2012).
In fact, CTSB−/− mice showed protection against adipocyte cell
death (Gornicka et al., 2012). Interestingly, distinct cellular
models have shown that cytosolic CTSB and CTSD participate
in the degradation of the pro-apoptotic mediator Bid, which
result in its activation and translocation to mitochondria. This
translocation leads to cytochrome C release from mitochondria
followed by caspase activation, triggering apoptotic cell death
(Droga-Mazovec et al., 2008; Yadati et al., 2020). Therefore, we
suggest that adipocytes could exhibit a similar mechanism, where
cathepsins liberated to the cytosol due to lysosomal impairment
induce mitochondrial damage and cell death, thus exacerbating
lysosome dysfunction and cell damage. Overall, the role of

autophagy and the participation of cathepsins in adipocyte
function remains unclear.

In hepatocytes, ER stress alkalinizes lysosomal pH, which
reduces the activity of CTSL, CTSB and CTSD, causing the
accumulation of autophagosomes and suppressing autophagic
clearance, which is associated with hepatic inflammation (Koga
et al., 2010; Mizunoe et al., 2019). In line with these findings,
autophagy-related proteins were also decreased in the liver of
obese mice (Yang et al., 2010; Tong et al., 2019). On the other
hand, extracellular CTSD function is relevant in the accumulation
of hepatic lipids and intracellular CTSD is involved in essential
processes, such as mitochondrial oxidative phosphorylation and
electron transport function (Yadati et al., 2021). Recently, it was
described that administration of the extracellular CTSD inhibitor
reduced hepatic triglyceride levels in mice fed with a HFD,
whereas intracellular or the extracellular CTSD inhibitor
decreased hepatic cholesterol levels (Yadati et al., 2021). With
these results the authors concluded that extracellular CTSD is
involved in pathways related to lipids and inflammation.

Similar to adipocytes, a HFD also induces lysosomal
membrane permeabilization and lipotoxicity in the liver of
mice with NASH and NAFLD (Feldstein et al., 2006; Fucho
et al., 2014). It has been reported that lysosome permeabilization
is mediated by Bax, a pro-apoptotic mediator, which induces the
release of cytosolic cathepsins (Feldstein et al., 2006). This results
in caspase activation or mitochondrial membrane
permeabilization mediated by caspase activation, triggering
apoptosis and liver injury (Feldstein et al., 2006; Fucho et al.,
2014; Jaishy and Dale Abel 2016).

Overall, these reports suggest that in obesity, autophagy is
mostly downregulated in adipose tissue and in the liver. Also, that
cathepsins are relevant in mediating the autophagy process and
their release to the cytosol contributes to lysosome and cellular
dysfunction through mitochondrial damage. However, more
studies are needed to clarify the role of cathepsins in
lysosomal dysfunction in these tissues in the context of obesity.

At present, several studies have focused on alterations in
lysosomal distribution and dynamics, motility, and autophagic
function involved in a variety of conditions, such as
neurodegenerative diseases, cancer, and obesity (Seranova
et al., 2017; Oyarzún et al., 2019). However, as expected,
lysosomal dysfunction is also a common feature in LSDs, and
their functional implications will be discussed in the following
section.

Role of Cathepsins and Autophagy in
Niemann-Pick Type C
This section will focus on the role of cathepsins and autophagy in
hepatocytes in the context of NPC and Gaucher diseases,
considering that most of the studies have been performed in
the liver. An increase in the expression of CTSB, CTSD, CTSS,
and CTSZ were recently observed in the liver and hepatocytes of
Npc1−/− mice (Balboa et al., 2021; van der Lienden et al., 2021),
suggesting that lysosomal proteases were increased. However,
Npc1−/− mouse embryonic fibroblasts showed increased levels of
mature CTSB and CTSD and normal lysosomal proteolytic
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functions, suggesting that they remained unaffected (Sarkar et al.,
2013). Interestingly, impaired clearance of autophagosomes has
been observed in human dermal fibroblasts with mutations in
Npc1 and fibroblasts of Npc1−/− mice, which correlated with an
inhibition of lysosomal protease activity produced by stored lipids
(Elrick et al., 2012). In fact, NPC1-deficient lysosomes derived
from HEK293T cells have proteolytic defects, where inhibition of
mTORC1 by genetic and pharmacologic manipulation restores
lysosomal proteolysis without correcting cholesterol storage
(Davis et al., 2021). Regarding autophagic vesicle
accumulation, an increase in levels of LC3-II (light chain 3 of
microtubule-associated protein 1), a specific autophagosome
maker, has been reported in the cerebellum, the hippocampus
and livers of Npc1−/−mice as well as mouse embryonic fibroblasts
(Pacheco et al., 2007; Sarkar et al., 2013; Meske et al., 2014). In
addition, NPC1 iPSC (patient-specific induced pluripotent stem
cells) show dysfunctional autophagic flux, where LC3-II and p62,
an autophagy adaptor protein responsible for cargo delivery of
ubiquitinated substrates, were significantly increased (Maetzel
et al., 2014). However, it remains unclear whether an increase in
the number of autophagosomes results from an increase in
autophagic activity or a reduction in autophagy flux caused by
impaired autophagosome-lysosome fusion (Dai et al., 2017). On
the other hand, lysosome membrane permeabilization has been
observed in NPC disease (Chung et al., 2016). As we have
described before, lysosomal permeabilization promotes
cytosolic release of CTSD, which triggers apoptosis in adipose
and liver tissues of mice fed with a HFD. Interestingly,
hippocampal neurons incubated with U18666A (a classic
NPC1 inhibitor) have increased levels of CTSD mRNA and
enzyme activity, which is associated with neuronal apoptosis
(Amritraj et al., 2013). However, it has been reported that
early lysosomal cholesterol accumulation induced by U18666A
in human fibroblast attenuates apoptosis by preventing lysosome
permeability and reducing CTSD release from lysosomes
(Appelqvist et al., 2011). Cholesterol overload ultimately
triggers lysosome membrane permeabilization, which disrupts
lysosome homeostasis. Hence, we speculate that NPC livers could
exhibit a similar mechanism thus contributing to lysosome
dysfunction, but this remains to be investigated.

Role of Cathepsins and Autophagy in
Gaucher Disease
Cathepsins have not been extensively studied in GD. However, in
neuronopathic forms of GD changes in the subcellular
distribution of CTSD have been detected in the brain and as
well as an increase of CTSD in areas with neuronal loss,
astrogliosis, and microgliosis, suggesting a role for CTSD in
neuronal injury (Vitner et al., 2010). Also, GD mouse models
show an increase of CTSD and CTSS in the liver and spleen,
whereas patients with GD show increased serum levels of both
proteases (Mistry et al., 2010; Afinogenova et al., 2019). Similar to
NPC disease, there is evidence suggesting that autophagy is
defective in GD. Primary fibroblasts deficient in saposin C
have impaired autophagosome degradation associated with
reduced CTSB and CTSD activity (Tatti et al., 2012; Seranova

et al., 2017). Defects in the maturation and accumulation of
autophagosomes including autophagic cargo were found in
neurons and astrocytes cultured from mice deficient for
glucocerebrosidase, prosaposin or glucosylceramidase (Farfel-
Becker et al., 2014; Seranova et al., 2017). Additionally,
LAMP2 and p62 accumulate in the brain of neuronopathic
GD mouse models suggesting that autophagosome/lysosome
function is compromised (Sun et al., 2010). In contrast, fewer
autophagic vacuoles have been reported in peripherical blood
mononuclear cells derived from GD patients with an increase of
cytoplasmic localization of LC3A/B. This was accompanied by
lysosome accumulation suggesting that constitutive autophagy is
inactivated (Ivanova et al., 2019). In addition, neuronal mouse
models of glucocerebrosidase deficiency showed a redistribution
of CTSD from the lysosome to the cytosol suggesting that these
cells also contain lysosomes with permeabilized membranes
(Serrano-Puebla and Boya 2016). Similar to what was
discussed in NPC disease, this cytosolic cathepsin may be
promoting the mitochondrial damage that is observed in
Gaucher disease (Cleeter et al., 2013; Osellame et al., 2013).
Altogether, these data indicate common mechanisms
coexisting among these diseases, where the functional
deterioration of cathepsins is associated with impaired
autophagy and their cytosolic distribution by lysosome
membrane permeabilization is directly linked with lysosomal
dysfunction and cellular damage (Figure 1).

Lysosomal Dysfunction in Obesity, Role of
CD36 in Adipocytes and Hepatocytes
CD36 is a multifunctional immuno-metabolic receptor that
belongs to the family of class B scavenger receptors. This
receptor is primarily localized in caveolae and mediates FA
uptake by endocytosis (Hao et al., 2020). This glycoprotein is
widely expressed in tissues and different cell types, including
adipocytes, hepatocytes, macrophages, monocytes, platelets,
among others (Silverstein and Febbraio 2009). Scavenger
receptors recognize modified self-antigens and are defined by
their ability to bind oxidized-LDL, which is relevant in
atherosclerosis pathogenesis, where the formation of lipid-
laden foam cells promotes atherosclerotic plaques (Febbraio
and Silverstein 2007; Silverstein and Febbraio 2009; Tian et al.,
2020). In particular, CD36 binds these and other oxidized
phospholipids, long-chain FA, and thrombospondin and its
function varies according to each cell type (Gillotte-Taylor
et al., 2001; Silverstein and Febbraio 2009). Evidence indicates
that CD36 is not only a FA transporter but also an essential
regulator of intracellular FA and immune homeostasis and has
emerged as a relevant player connecting lysosomal dysfunction
and lipid homeostasis alterations (Pepino et al., 2014; Rawnsley
and Diwan 2020; Tian et al., 2020).

CD36 plays an important role in liver lipid homeostasis,
lipophagy and autophagy, and its levels increase in hepatocytes
exposed to high-fat diets as well as in hepatic steatosis and
NAFLD (Bechmann et al., 2010; Love-Gregory and Abumrad
2011; Miquilena-Colina et al., 2011; Li et al., 2019). Indeed, in
obesity, lipid accumulation and lysosomal dysfunction in
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adipocytes and hepatocytes depends on the expression and role of
CD36 (Koonen et al., 2007; Li et al., 2019; Rawnsley and Diwan
2020).

A recent study described an increase in the expression of CD36
in preadipocytes of mice fed with a HFD and also in obese
patients (Luo et al., 2020). At a cellular level, CD36 was shown to
interact with Fyn leading to the phosphorylation and activation of
IP3R1 [inositol (1,4,5)-trisphosphate receptor 1], in FA-treated
adipocytes. Consequently, an excess of calcium is transported
from the ER to the lysosomes, generating an increase in lysosomal
pH and in the production of inflammatory cytokines, while
decreasing lipophagy and impairing lysosomal function (Luo
et al., 2020; Rawnsley and Diwan 2020). Accordingly,
lysosomal disruption is promoted by CD36/Fyn/IP3R1-
mediated lysosomal calcium overload, which can be associated
with a failure in autophagic flux observed in adipocytes of obese
mice (Mizunoe et al., 2017). Additionally, activation of PPAR-γ
(peroxisome proliferator-activated receptor c), a nuclear receptor
responsible for adipocyte differentiation and adipogenesis
mediates FAs uptake through an increase of CD36 expression

(Tontonoz and Spiegelman 2008; Cai et al., 2012). It has been
reported that CD36 contributes to inflammation and cell death in
adipose tissue of mice fed with a HFD (Cai et al., 2012). These
findings indicate that CD36 participates in mediating the
alteration of lysosomal calcium homeostasis and uptake of
lipids in adipocytes, which leads to an alteration in autophagy
and lysosomal function.

On the other hand, an increase in plasma LPA levels has been
reported in mice fed with a HFD, which is associated with an
increase in adipose tissue ATX (autotoxin) mRNA levels
(Dusaulcy et al., 2011). Extracellular LPA is mainly produced
from lysophosphatidylcholine by lysophospholipase D activity of
ATX. Thus, LPA levels are closely related to the ATX protein
content and/or activity (D’Souza et al., 2018; Ferry et al., 2003).
The ATX-LPA pathway may contribute to obesity-induced
insulin resistance by stimulating fibrosis, inflammation, and/or
suppressing BAT, mitochondrial function and impairing PPAR-c
expression and activity. This last idea is supported by studies
showing that mice with ATX deletion fed with an obesogenic diet
present an increase in PPAR-c mRNA levels (Dusaulcy et al.,

FIGURE 1 | Lysosomal dysfunction coexists in adipocytes and hepatocytes in lipid-related disorders. Overload of lipids induces permeabilization of lysosomal
membrane in both adipose and liver tissues, leading to the release of lysosomal proteases. Reports have shown that cytosolic proteases increase ROS production and
induce mitochondrial dysfunction, triggering apoptosis and liver injury. Whether similar alterations exist in adipocytes under these conditions, remains to be evaluated.
Additionally, a imbalance in cathepsins levels exists in both tissues in obesity. Overall, obesity is associated with oxidative stress, which lead to alkalinization of
lysosomal pH, causing the accumulation of autophagosomes, and suppression of autophagic clearance. In NPC and Gaucher diseases there are alterations in the levels
or activity of cathepsins which are associated with proteolytic impairment and inhibition of autophagy, which altogether contribute to lysosome dysfunction probably by
analogous mechanisms as those observed in obesity. On the other hand, dyslipidemia is associated with an increase in the expression of CD36 in adipocytes and
hepatocytes, which leads also to an increase in lysosomal pH and an inhibition of autophagy. In adipocytes, CD36 mediates lysosomal calcium overload through the ER,
and we speculate that a similar mechanism could occur in hepatocytes. Additionally, lipid uptake is mediated by an increase in CD36 expression in adipocytes and
hepatocytes by PPAR-c, which promotes lipid accumulation and contributes to lysosome dysfunction. Although the upregulation of CD36 in NPC liver has been
observed, its role in NPC and Gaucher hepatic diseases remains unclear.
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2011; D’Souza et al., 2018). Although, the data suggest that the
ATX-LPA axis reduces PPAR-c function, the specific
mechanisms by which it contributes to obesity remains to be
elucidated (Jose and Kienesberger 2021). In contrast, it has been
reported that obese individuals have higher PPAR-c mRNA
levels, which contributes to an increase in the numbers of
adipocytes (Vidal-Puig et al., 1997; McCann and Ratneswaran
2019). Interestingly, activation of PPAR-c induces an increase in
the number of small and insulin-sensitive adipocytes and up-
regulates adiponectin, improving insulin sensitivity in the liver
and muscle (Jakab et al., 2021). Therefore, more research is
needed to address the precise role of ATX-LPA signaling and
the PPAR-c function in adipose tissue under obesity.

Additionally, studies have shown that the expression of CD36
under a HFD negatively regulates autophagy in hepatocytes. In
mice with NASH, translocation of CD36 to the plasmamembrane
in hepatocytes is associated with lower AMPK (adenosine
monophosphate-activated protein kinase) activity and lower
FA oxidation (Zhao et al., 2018). Conversely, CD36 knockout
mice fed with a HFD show increased autophagy/lipophagy, which
promotes lipolysis and FAs catabolism by β-oxidation to produce
energy, attenuating the accumulation of lipids (Li et al., 2019). In
this report, the authors suggest that CD36 deficiency results in an
increase in autophagy, which is correlated with a rise in the
translocation of TFEB to the nucleus. Indeed, an increase in
nuclear TFEB was observed upon knockdown of CD36 in human
hepatoma cells in the presence of palmitic acid; however it was
not quantified. In line with this work, inhibition of the
internalization of CD36 by a deficiency of SNX10 (Sorting
Nexin 10, a protein involved in protein sorting and membrane
trafficking in endosomes) in lipid tissue-resident macrophages,
suppresses the Lyn-AKT signaling pathway, which results in
increased translocation of TFEB to the nucleus and enhances
the function of the autophagy-lysosome system (Fan et al., 2020;
You et al., 2020). Overall, one could speculate that, under obesity,
translocation of TFEB could be inhibited in hepatocytes, thus
decreasing the expression of genes related to lysosomal biogenesis
and autophagy. This also suggests that an increase in CD36
expression in hepatocytes could cause an alteration of
lysosomal calcium homeostasis as observed in adipocytes,
enhancing lysosomal dysfunction.

Interestingly, the levels of CD36 in the liver are much higher in
ATG5−/− mice, suggesting that the autophagy machinery also
regulates CD36 expression (Li et al., 2018). Alternatively, in
adipocytes, silencing of ATG5 led to a deterioration in the
accumulation of triglycerides during adipogenesis and the
inhibition of autophagy (Singh et al., 2009; Clemente-Postigo
et al., 2020). The latter suggests that, in obesity, an increase in the
expression of CD36 in adipocytes may be dependent on ATG5,
which would contribute to the inhibition of autophagy through
the aforementioned mechanisms.

On the other hand, elevated levels of plasma FA, induced by
FA-rich diets, contribute to hepatic insulin resistance, increased
glucose production and hepatic steatosis (Seppala-Lindroos
2002). Accordingly, it was shown that hepatocytes from obese
rats require high insulin levels to translocate CD36 to the plasma
membrane to improve the uptake of FA and the synthesis of

triglycerides (Buqué et al., 2012). The authors of this work
propose that hyperinsulinemia present in animal models and
patients with insulin resistance and fatty liver may contribute to
an increase in the expression of CD36 and in the accumulation of
fat in the liver (Buqué et al., 2012). Conversely, CD36 deficiency
decreased insulin resistance in primary adipocytes isolated from
HFD-fedmice (Kennedy et al., 2011; Luo et al., 2020). Thus, based
on the above, the expression of CD36 would also modulate the
levels of insulin resistance. Consequently, high insulin levels
observed in obesity may contribute to lysosomal dysfunction
by generating an increase in the expression CD36, which together
contribute to obesity-associated dyslipidemia.

Alternatively, similar to what was discussed in adipose tissue,
several studies have shown that the hepatic expression of CD36 is
positively regulated by activation of PPAR-γ under conditions of
nutrient overload (Jung, Zhou, and Xie 2008; Pettinelli and
Videla, 2011; Wang et al., 2020a; Yu et al., 2021). Interestingly
(Yu et al., 2021), showed that hepatic extracellular galectin-3
promotes fatty acid uptake through CD36 in a PPAR-γ pathway-
dependent manner (Yu et al., 2021). Indeed, galectin-3 is a lectin
involved in liver inflammation, fibrosis, and related metabolic
disorders (Iacobini et al., 2011; Pejnovic et al., 2013). Moreover, it
has been reported, that hepatic extracellular galectin-3 is
upregulated in NASH and its inhibition in mice fed with a
HFD, reduced hepatic CD36 expression, the accumulation of
lipids and hepatic steatosis (Iacobini et al., 2011; Yu et al., 2021).
These findings indicate that CD36 expression in obese liver
tissues is regulated by activation of PPAR-γ through galectin-3.

On the other hand, it has been reported that LPA is an agonist
of PPAR-c (McIntyre et al., 2003). LPA upregulates CD36
expression on the surface of monocytes through PPAR-c
stimulation and induces lipid accumulation through oxidized-
LDL absorption (McIntyre et al., 2003). However, this
mechanism has not yet been described in hepatocytes.
Interestingly, LPA is involved in the progression of liver
fibrosis, so it has been proposed as a therapeutic target (Kaffe
et al., 2019). Therefore, we suggest that LPA (which increases with
the overload of lipids) could participate as an agonist of PPAR-c,
promoting an increase in fatty acid uptake by CD36 in
hepatocytes. Nevertheless, more research is required to
demonstrate whether this mechanism contributes to lysosome
dysfunction in obesity.

Concerning NPC disease, proteomic analysis from
hepatocytes of Npc1−/− mice, performed by our group, showed
an increase in the levels of CD36 protein levels (Balboa et al.,
2021). Increased transcript levels of the CD36 in hepatocytes of
Npc1−/− mice have been observed by our group and others
(Vázquez et al., 2011; Dos Reis et al., 2020). Intriguingly,
galectin-3 is increased in liver tissues from Npc1−/− mice
(Cluzeau et al., 2012). In this sense, we propose that this
galectin could be mediating lysosomal dysfunction by
increasing CD36 expression through the PPAR-c pathway.

Alternatively, LPA accumulation in liver tissues of Npc1−/−

zebrafish, which reproduces the pathological features of NPC
disease has been reported (Lin et al., 2018). Recently, lipidomic
studies of liver tissue from Npc1−/− mice showed an increase of
BMP (Pergande et al., 2019). However, they do not analyze the
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levels of LPA. Based on this, it is possible to speculate that the
hepatic levels of LPA increase inNpc1−/−mice. Under this scenario,
we suggest that LPA may also promote the expression of CD36 in
NPC hepatocytes through the PPAR-c pathway (similar to what
was discussed in obesity), promoting lysosome dysfunction.
However, this requires further investigation.

On the other hand, BMP levels are increased in fibroblasts
pretreated with U18666A, in fibroblasts derived from NPC1
patients, and fibroblasts and livers of Npc1−/− mice (Appelqvist
et al., 2011; Moreau et al., 2019; Ilnytska et al., 2021).
Interestingly, NPC1-deficient human fibroblasts incubated with
BMP show a reduction in lysosomal cholesterol levels, which was
associated with a direct interaction between BMP and NPC2,
leading to an increase in lysosomal cholesterol efflux (McCauliff
et al., 2019). This suggests that the increase in BMP compensates
lipid accumulation at early stages until BMP production and the
endosomal system collapse under lipid overload (Liu et al., 2014).

Interestingly, BMP levels were shown to be elevated in skin
fibroblasts and plasma samples from patients with Gaucher
disease (Meikle et al., 2008). However, its relevance remains
unclear. Additionally, there are few studies that have evaluated
the levels of LPA in Gaucher disease. LPA plasma levels seem to
increase in Gaucher patients, but the results are not conclusive
due to the low number of samples (Byeon et al., 2015). Overall,
alterations in the expression or function of CD36 have not been
reported in adipocytes in NPC or in Gaucher disease. Nevertheless,
based on the evidence described in obesity, we speculate that
CD36 expression and function could also be compromised in
GD adipocytes and hepatocytes. Therefore, elucidating the role
of CD36 may contribute to a better understanding of the
dysregulated lysosomal function observed in both diseases.

Taken together, these findings show that in obesity, adipocytes
and hepatocytes express higher levels of CD36, which leads to
defective lysosome homeostasis and negatively regulates
autophagic function. Thus, it is possible to speculate that
CD36 could participate in the modulation of lysosomal
dysfunction in NPC and Gaucher diseases (Figure 1).
However, the mechanism by which these processes are
controlled, requires further investigation.

ROLE OF LYSOSOMES IN THE IMMUNE
RESPONSE OF B CELLS: IMPACT OF
LIPID-RELATED DISORDERS
In recent years, several studies have suggested that B cells are also
involved in adipose and liver tissues inflammation contributing to
the pathogenesis of obesity. B cells are activated in adipose tissue
during obesity (Shaikh et al., 2015; Srikakulapu and McNamara
2020) and in HFD-fed mice, these cells migrate to the liver,
promoting inflammation, where macrophage differentiation to
pro-inflammatory phenotypes secrete pro-inflammatory
cytokines (Wu et al., 2019). Additionally, intrahepatic B cells
might be involved in NAFLD by secretion of pro-inflammatory
cytokines and IgG2a, a potent inducer of antibody-based
inflammation (Zhang et al., 2016). Importantly, lysosomal
function is critical for B cell activation during antigen

recognition (Obino et al., 2017; Sáez et al., 2019). The
question then arises as to whether such B cell functions are
affected in obese patients. It is then necessary to understand how
B cell activation occurs and the importance of lysosomes during
this process.

B cell activation occurs when the B cell receptor (BCR)
recognizes immobilized antigens on antigen-presenting cells,
triggering an immune synapse. Activation of the BCR induces
a signaling cascade that promotes the recruitment of lysosomes to
the synapse, which depends on centrosome repositioning. These
lysosomes fuse with the synaptic membrane, secreting their acidic
content, facilitating the extraction, and processing of antigens.
Activation of B cells induces an increase in the synthesis of MHC-
II (type II major histocompatibility complexes) (Lankar et al.,
2002; Yuseff et al., 2011). The synthesis of these molecules begins
in the ER, where the αβ dimers of MHC-II are associated with an
invariant chain that prevents binding to peptides and promotes
their transport towards endo-lysosomes (Roche and Cresswell
1990). In this compartment, the invariant chain undergoes
proteolysis by CTSS, an asparaginyl endopeptidase, generating
a smaller fragment called CLIP. Subsequently, the H2DM
chaperone catalyzes the exit of CLIP and the loading of the
generated peptides into the MHC-II pocket (Lankar et al., 2002;
Blum, Wearsch, and Cresswell 2013). Once the peptides are
assembled, the MHC-II molecules are transported to the
surface of B cells to be presented to the CD4+ T lymphocytes
to promote B-T cell cooperation (Lanzavecchia 1985; Mitchison
2004). This allows co-stimulation and proliferation of both cells
and the differentiation of B cells into plasma cells that produce
specific antibodies (Harwood and Batista 2010; Yuseff et al.,
2011). The impact of lipid accumulation in lysosome function,
as well as, in antigen extraction and presentation by B cells,
remains to be addressed (Figure 2).

Role of CD36 in B Cells in Obesity
As previously mentioned, CD36 is expressed in adipocytes and
hepatocytes, but has also been detected in immune cells, such as
macrophages and dendritic cells as well as T and B cells (Urban
et al., 2001; Corcoran et al., 2002; Won et al., 2008; Couturier
et al., 2019). A study published recently by He et al. (2021)
demonstrated that all peripheral human blood B cell populations
express intracellular CD36 except naïve B cells (He et al., 2021).
They found that CD36 colocalizes with LC3B upon the induction
of autophagy and splenic B cells increase CD36 expression and
autophagosome formation after LPS stimulation in vitro.
Interestingly, B cells from CD36−/− mice have less
autophagosome formation upon LPS stimulation (He et al.,
2021) and exhibit defects in mitochondrial mobilization and
also oxidative phosphorylation (He et al., 2021), as well as,
reduced plasma cell formation, subsequent antibody
production and proliferation. Remarkably, the expression of
CD36 increases in T lymphocytes of adipose tissue and in the
liver of mice fed with a HFD, but it is unclear whether it is
preferentially expressed by a specific subset of cells (Couturier
et al., 2019). However, the authors propose that there could also
be an increase in the expression of CD36 in natural killer and
B cells in these tissues (Couturier et al., 2019).
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FIGURE 2 | Lysosomes are required for antigen processing in B cells: impact of lipid-related disorders. (1) The interaction of the B cell receptor (BCR) with antigens tethered at the surface of an antigen presenting
cell (APC) gives rise to an immune synapse. Activation of the BCR triggers signaling cascades which induce extensive remodeling of the actin cytoskeleton at the synaptic interface, promoting membrane extensions and
efficient BCR-antigen internalization into late endosomal compartments. (2) BCR-antigen converges into lysosomes which contain the accessory molecules, such as GILT, H2DM, proteases andMHC class II. MHC class
II molecules are associated with the invariant chain, which undergoes proteolysis by cathepsin S generating a smaller fragment called CLIP. Subsequently, the H2DM chaperone catalyzes the exit of CLIP and the
loading of antigenic peptides into the MHC-II pocket. (3) Next, MHC-II molecules are transported to the surface of the B cell to be presented to the CD4+ T lymphocyte to promote B-T cell cooperation. We speculate that
B cells that infiltrate the inflamed adipose and liver tissue in lipid-related disorders could also present lysosomal dysfunction resulting in lower cathepsin S levels or activity. Moreover, B cells might exhibit permeabilization
of their lysosomemembrane, similarly to observations in other cell types in lipid-related disorders. We suggest that in obesity there could also be an increase in the expression of CD36, whichmay be enhanced upon B cell
activation. This might impact in autophagy, enhancing the canonical pathway and diminishing noncanonical autophagy. Such defects could impact the capacity of B cells to extract and process antigens, which relies on
lysosome integrity. However, these functions remain to be evaluated and the question that arises is how are lysosomes in B cells affected by an excess of nutrients in obesity and LSDs?
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As mentioned above, CD36 increases its expression under
a HFD inhibiting autophagy in adipocytes and hepatocytes.
In obesity, we speculate that B cells could also display
elevated expression levels of CD36, which could regulate
autophagy during their activation. B cell activation triggers a
temporary change from basal to non-canonical autophagy,
which is essential to control B cell differentiation (Martinez-
Martin et al., 2017). Under these conditions, components from
the autophagic machinery can be recruited to other pre-existing
membranes, different from the phagophore, where they generally
reside (Martinez-Martin et al., 2017). In this sense it has
been described that ATG5 is necessary for the internalization
and trafficking of BCR towards LAMP1 and MHC-II positive
compartments, as well as for the optimal presentation of
antigens to T cells (Arbogast et al., 2019). Additionally, it has
been shown that activation of B cells with BCR ligands
produces the colocalization of LC3 with the BCR and with
MHC-II vesicles, showing an association of autophagic
vesicles involving BCR and the MHC-II-mediated antigen
presentation (Ireland and Unanue 2011). Therefore, it is
tempting to speculate that in obesity there is an increase in the
expression of CD36, which may be enhanced upon B cell
activation. This may cause an imbalance in autophagy,
enhancing the canonical pathway and diminishing noncanonical
autophagy. In this sense, this could alter the lysosomal function,
impairing the processing and presentation of antigens to T cells, as
well as plasma cell formation and subsequent antibody production.

In contrast, B cells are also involved in adipose and liver
tissue inflammation contributing to the pathogenesis caused by
obesity. Several studies have shown that B cells in adipose and
liver tissues in HFD-fed mice, enhance the activation of CD4+ T
lymphocytes and their differentiation into T helper (Th) 1 cells
(Winer et al., 2011; Zhang et al., 2016). Interestingly, it has been
reported that obese patients have low levels of PPAR-cmRNA in
peripheral blood mononuclear cells and protein levels in serum
(Ramon et al., 2012). PPAR-c-deficient T cells are hyperreactive
to T cell receptor stimulation, which promotes greater B cell
activation, thereby leading to autoantibody production (Park
et al., 2014). We speculate that an imbalance in PPAR-c activity
in B cells in obesity could lead to the aforementioned defects.
Thus, clarifying the role of PPAR-c and its functional relationship
with CD36, should help elucidate how a lipid overload impacts
B cell activation, and affects antigen presentation to CD4+ T
lymphocytes.

Role of Cathepsins in B Cells in Obesity
Based on the role of cathepsins involved in antigen processing, it has
been reported that gamma-interferon-inducible lysosomal thiol
reductase (GILT) facilitates antigen processing since it reduces
the disulfide bonds of proteins in the endo-lysosomal
compartment. It has been hypothesized that the reduction of
protein disulfide bonds that pass through the endocytic
pathway may facilitate the processing of hidden epitopes so that
they are not restricted by MHC-II (Singh and Cresswell 2010). As
described previously, CTSS is essential for MHC-II processing and
has disulfide bonds susceptible to this reduction since it is found in
the lysosome together with GILT (Phipps-Yonas et al., 2013).

Expression of GILT in primary B cells derived from mice
decreases the expression and activity of CTSS but does not
substantially alter the expression of other lysosomal proteins,
such as H2DM, H2DO and CTSL (Phipps-Yonas et al., 2013).
Interestingly, a transcriptomic study showed that the gene encoding
for GILT was 1.72 times more expressed in the omental adipose
tissue of severely obese men with metabolic syndrome compared to
those without the syndrome (Turcot et al., 2012). Therefore, it is
possible to speculate that dyslipidemia caused by obesity could
induce an increase in the expression of GILT, and consequently
a defect in lysosomal function by reducing the expression and
activity of CTSS. Consistent with the previous idea, it has been
reported that antigen presentation is defective in B cells derived
from CTSS−/− or CTSL−/− Mice (Nakagawa et al., 1999).
Additionally, CTSS regulates the level of mature CTSL in
B cells, since it was shown that CTSL levels increase in the
absence of CTSS, but in this study the activity of this enzyme
was not detected (Honey et al., 2001). Thus, it is possible that a
lower expression of CTSS could induce a dysregulation of CTSL,
which could lead to a decrease in antigen processing, also altering
the presentation of antigenic peptides on MHC-II to the T cells. As
described in the previous section, reduction in levels of CTSL has
been observed in adipose tissue and the liver in obesity. On the
other hand, similar to what was discussed in obesity, B cells might
exhibit permeabilization of their lysosomemembrane. Such defects
could impact the capacity of B cells to extract and process antigens,
which relies on lysosome integrity. Based on these studies, it would
be relevant to study the role of CD36 and/or cathepsins in B cell
function associated with obesity.

Alteration of BCell Functions in NPCandGD
Diseases
In the majority of LSDs the pathology is primarily neuronal, but
the immune system has also been implicated and predisposed
towards suppression (Castaneda et al., 2008; Platt et al., 2016;
Rigante et al., 2017). Lysosomal glycosphingolipid storage
increased has been shown in splenic B cells derived from
Npc1−/− mice and peripheral B cells from NPC1 patients
(Lachmann et al., 2004; Vruchte et al., 2010). Additionally,
results from our group showed that B lymphocytes treated
with U18666A, exhibit lysosomal accumulation of unesterified
cholesterol (Oyarzún et al., 2019) The lysosomes of NPC cells
show a typical and concentrated perinuclear pattern, which
results from an increase in the reverse transport of lysosomes,
and their perinuclear clustering (Oyarzún et al., 2019). This is a
key factor, because the correct distribution and motility of
lysosomes promote a functional immune synapse between
B cells with antigen-presenting cells. Also, the fusion of
endolysosome compartments required to facilitate antigen
uptake from presenting cells, is critical to achieve an efficient
adaptive immune response (Yuseff et al., 2015). In fact, an excess
of lipids in lysosomes of B cells might also promote the
permeabilization of their lysosome membrane. However, these
functions remain to be evaluated and the question that arises is
how are lysosomes in B cells affected by an excess of lipid in
LSDs? Thus, alterations in lysosome localization and function
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could have an impact in B cell activation and its effector functions
in NPC disease.

Levels of cytokines and chemokines are increased and
participate in the initiation and propagation of the molecular
pathogenesis of GD. The excess of glucosylceramide in GD
cells can trigger and activate the release of interferon-γ,
interleukin 4 and 6, and transforming growth factor-β by
macrophages and dendritic cells. This promotes the
development of T helper and follicular helper T cells required
for the formation and activation of germinal centers that
drive B-cell differentiation and thus have an impact on
immunoglobulin (IgG, IgA, and IgM) production, triggering
hypergammaglobulinemia, which contributes to inflammation
(Fazilleau et al., 2009; Pandey and Grabowski 2013; Nguyen
et al., 2020). Additionally, the accumulation of lipid rafts and
glycosphingolipid storage in B cells in GD and NPC, leads to
degradation of lipid raft-associated B cell receptor and thus altered
immune responses (Vruchte et al., 2010). In fact, we speculate that
it could disrupt BCR-dependent signaling and activation, which
can be associated to the decrease in B cell levels observed in GD
patients (Limgala et al., 2016). Alternatively, several patients with
GD develop neoplasms and altered B-cell proliferation by
mechanisms yet to be discovered (Pandey and Grabowski 2013;
Cox et al., 2015). Thus, it is important to investigate the
contribution of B cell functions and the implication of
cathepsins and CD36 under the context of these diseases, where
alterations in homeostatic pathways could converge in lysosomal
dysfunction and their pathophysiological progress.

EMERGING CELLULAR MECHANISMS IN
THE CONTROL OF LIPID HOMEOSTASIS:
INTER-ORGANELLE CONTACTS
Recent studies have highlighted the importance of organelle contacts
in mediating intracellular lipid flux. Compartments such as
lysosomes, ER, mitochondria, Golgi complex, and lipid droplets
physically interact and communicate with each other, but preserve
their compartmentalization without membrane fusion. This form of
communication has been denominated Membrane Contact Sites
(MCSs), consisting of regions of apposition between two organelles
(with a distance between 10 and 30 nm) through anchoring proteins,
thusmodulating the function of one or both compartments (Ballabio
and Bonifacino 2020; Prinz et al., 2020). In recent years, MCSs have
gained notorious interest because they are a communication system
different from the diffusion of metabolites through membranes and
vesicular transport; however, there is still much to be elucidated
about the mechanisms that regulate their formation. Nonetheless,
among themain functions described forMCSs are signaling between
organelles, regulation of membrane dynamics, metabolic channeling,
and lipid transport (Prinz et al., 2020). Therefore, alterations in
lysosomal homeostasis and function due to lipid accumulation may
have far-reaching consequences in communication and cross-
regulation between organelles. Interestingly, inter-organelle
contacts are involved in the pathogenesis of diseases that present
alterations in cholesterol or triglyceride levels, as in obesity, NPC and
Gaucher diseases.

Liver: Inter-organelle Contacts and Lipid
Homeostasis in Obesity
Inside the cell, the nutritional context modulates mitochondria-ER
membrane contacts, and alterations in this status induce a
misbalance in lipid and glucose metabolism (Rieusset 2017).
Accordingly, obesity leads to an increase in ER-mitochondrial
interactions, resulting in mitochondrial calcium overload,
compromised mitochondrial oxidative capacity, and increased
oxidative stress, thus accelerating obesity-related pathologies, such
as hepatic steatosis and glucose intolerance (Arruda et al., 2014).

Additionally, a recent study showed that the contact between
mitochondria and the ER regulates the synthesis of VLDL in
response to changes in lipid flux (Anastasia et al., 2021). This was
evidenced after observing that hepatic depletion of the ER-
resident Microsomal Triglyceride Transfer Protein (MTP),
which plays a crucial role in VLDL biogenesis, promotes a
phenotype reminiscent of hepatic dyslipidemia, as well as
mitochondria wrapped by curved sheets of rough ER increasing
the contact regions between them. This alteration reduces VLDL
biogenesis and redirects hepatic free FAs flux towards LDs
(Kozlitina et al., 2014; Anastasia et al., 2021). This is consistent
with what has been described previously, where the accumulation
of LDs increases the risk of metabolic disorders such as obesity and
insulin resistance (Gross and Silver 2014; Wang et al., 2020b). In
this sense, the authors conclude that there is a connection between
intracellular and systemic control mechanisms to maintain lipid
homeostasis (Anastasia et al., 2021).

On the other hand, a relevant type of membrane contact in
lipid homeostasis is one formed by LD in tissues highly sensitive
to lipid levels such as liver tissue. Interestingly, Krahmer et al.
(2018) observed changes in the formation of MCSs in hepatocytes
derived from HFD-fed mice and in the proteome associated with
LDs. In this context, they found increased mitochondria-LDs
contacts and increased binding of proteins belonging to different
intracellular organelles (including those involved in MCSs
between other organelles) to the surface of LDs. This
highlights the tight modulation of metabolic processes by
MCSs (Krahmer et al., 2018) (Figure 3).

Overall, these observations reinforce the notion that at least part
of the intracellular mechanisms are altered during obesity in tissues
that are key to metabolism, resulting from alterations in the
communication of intracellular compartments. Considering that
MCSs constitute a communication system based on the dynamic,
efficient, and rapid transfer of lipids plus other metabolites, these
contacts may be part of a central mechanisms underlying
alterations in metabolic homeostasis.

Alterations of Inter-Organelle Contacts
Sites in Dysfunctional Lysosomes in NPC
and Gaucher Diseases
It is well known that MCSs between the ER and lysosomes are
necessary to mediate intracellular homeostasis of cholesterol.
Additionally, recent evidence in CHO and HeLa cells has
shown that LDL-c can be transferred through contact regions
established between the NPC1 transporter and the ER-localized
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Gramd1b sterol-transporter from late endosome/lysosomes
toward the ER (Höglinger et al., 2019). Thus, when large
amounts of LDL-c are internalized, a dynamic redistribution
of the ER protein Gramd1b contacts NPC1 at lysosomes,
promoting lysosomal cholesterol export. Moreover, the authors
show that in the absence of functional NPC1, as in NPC disease,
this inter-organelle contact is disrupted, contributing to
cholesterol accumulation in lysosomes. Interestingly, the
authors found that under these conditions, the lysosomes
augment contacts with mitochondria. This is relevant because
it might constitute a mechanism by which mitochondria raise
their cholesterol levels to a pathological state, which can
consequently trigger alterations in their function, thus
compromising the metabolic state of the cell (Höglinger et al.,
2019) (Figure 3).

On the other hand,MCSs between lysosomes andmitochondria
are mediated by the lysosomal steroidogenic acute regulatory
protein (StAR) D3 (STARD3) protein. This sterol transporter,
also located in the lysosomal membrane, has been studied in the
context of cholesterol transfer towards ER through MCSs
formation (Alpy et al., 2013). Interestingly, we have shown that
STARD3 protein levels in NPC were increased in hepatocytes,
correlating with elevated cholesterol levels in mitochondria
purified from livers of NPC mice, which might contribute to
mitochondrial dysfunction (Balboa et al., 2017, 2021).

As mitochondrial dysfunction is observed in NPC disease,
the expansion of MCSs between lysosomes and ER have been
proposed as a potential strategy for new therapies for this
disease (Yu et al., 2005; Kennedy et al., 2014). Interestingly,
the number of MCSs between the ER and lysosomes is induced
using agents that reduce cholesterol accumulation in NPC
disease. For example, the well-known hydroxypropyl-
c-cyclodextrin (HPγCD) and hydroxypropyl-β-cyclodextrin
(HPβCD) reduce the accumulation of cholesterol in

fibroblasts derived from NPC1 patients (Singhal et al., 2018)
and promote the association of lysosomes with the ER, without
affecting MCSs between lysosomes and mitochondria. As
mentioned initially, NPC1 deficiency disturbs autophagic
flux, evidenced by the accumulation of autophagic vacuoles
(Pacheco and Lieberman 2008). In fact, treatments with
cyclodextrin, which enhances autophagy through the
activation of TFEB and subsequent induction of lysosomal
biogenesis induction, alleviates the intracellular accumulation
of free cholesterol (Singhal et al., 2020). Added to this, it should
be noted that functional recovery of contact sites has been
successfully tested through their artificial expansion. In this
context (Hoglinger et al., 2019) used a sterol-insensitive ORP1L
mutant (ORP1L is a lysosome-anchored cholesterol sensor),
that constitutively binds the protein VAP in the ER membrane,
to act as an artificial tether while preventing the transportation
of sterols, to expand ER-lysosome MCS. Remarkably, MCSs
expansion by overexpression of this artificial tether rescued
lysosomal cholesterol accumulation in NPC1-deficient HeLa
cells (Höglinger et al., 2019). Similarly, Meneses-Salas et al.
(2020) observed a recovery in the percentage of the endosome/
lysosome surface in contact with the ER in CHO cells with
mutations in the Npc1 gene. This was observed after silencing
Annexin A6, a member of the annexin family implicated in the
regulation of endo- and exocytic pathways and cholesterol
homeostasis by binding to membranes in a calcium-
dependent manner (Meneses-Salas et al., 2020). Hence, this
evidence reinforces MCSs as functional therapeutic targets.

Concerning GD, there is no available information regarding
changes in MCSs formation in hepatocytes and other metabolic
tissues. The unique information related to these types of
alterations was provided by Kim et al. (2021), which observed
that human iPSC-derived dopaminergic neurons were treated
with an inhibitor of β-glucocerebrosidase activity (conduritol-b-

FIGURE 3 | Alterations in Membrane Contact Sites (MCSs) in lipid-related disorders. Under physiological conditions, the organelles are in close contact with each
other depending on cell requirements. It has been described that alteration in lipid homeostasis, such as in the case of obesity, dyslipidemias, or after the administration of
a high-fat diet induce an increase in MCSs between mitochondria and lipid droplets, and mitochondria and the endoplasmic reticulum. On the other hand, it has been
reported that in Niemann Pick type C disease, lysosome-mitochondria MCSs increase, whereas, in the case of Gaucher disease, the duration of these contacts is
higher. We speculate that there is an increase in the transfer of lipids between lysosome and mitochondria through MCSs that contributes to mitochondrial damage in
NPC and Gaucher cells. Lipids are accumulated inside endolysosomes, in membrane reservoirs (Multilamellar bodies) (Created with BioRender.com).
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epoxide) exhibited prolonged tethering between mitochondria-
lysosome MCSs (Kim et al., 2021) (Figure 3). Interestingly,
in Gaucher and NPC cells there is a secondary accumulation
of lipids besides glucosylceramide and cholesterol, respectively.
In addition, NPC cells show mitochondrial damage and
mitochondrial cholesterol accumulation (Balboa et al., 2017).
Hence, it is possible to speculate that there is an increase in
the transfer of lipids between lysosome and mitochondria,
through MCSs that contributes to mitochondrial damage in
NPC and Gaucher cells.

Therefore, the information obtained from the research in
LSDs is summarized in the fact that the communication
mediated by MCSs between compartments that are relevant for
the sensing and modulation of lipid homeostasis, can undergo
changes depending on key lysosomal proteins. Although the
evidence provided in this area comes from non-metabolic
cellular models, it is crucial to address whether similar
alterations in contact sites are occurring in cells from metabolic
tissues in the context of dyslipidemias. Hence, valuable information
can be rescued from the understanding of major networks that
regulate the intracellular metabolic state, and with it, of the
organism.

Conclusions and Outstanding Questions
One of the critical organelles that respond to lipids excess
are lysosomes. Several studies have conclusively shown
that the lysosome-autophagic axis is affected by lipid overload
in adipocytes and hepatocytes. Findings discussed in this
review show that in an obese state, autophagy is mostly
downregulated in adipose tissue and in the liver. Similarly,
NPC and Gaucher diseases have an impairment in the
clearance of autophagosomes along with proteolytic defects.

We also addressed commonly altered pathways in the
lysosome-autophagic axis. On one side, various studies
associate lysosomal dysfunction with altered levels of
cathepsins. The eventual permeability of lysosomes and the
release of cathepsins to the cytosol could lead to
mitochondrial damage and promote lysosome dysfunction and
cellular death in these tissues, where the overall evidence is not yet
conclusive and more studies are needed to clarify how
dysregulated cathepsins mediate lysosome defects in obesity,
NPC, and Gaucher diseases. On the other hand, studies
revealed that CD36 expression levels are increased in obese
adipose and liver tissues, which negatively regulates autophagic
function and leads to the failure of lysosomal homeostasis. In
adipocytes, CD36/Fyn/IP3R1-mediated lysosomal calcium
overload can also be associated with a failure in autophagic
flux. Additionally, lipid uptake is mediated by an increase in
CD36 expression in adipocytes and hepatocytes by PPAR-γ,
which promotes lipid accumulation and contributes to lysosome
dysfunction. Intriguingly, LPA is critical in lipid metabolism in
obesity, and it is possible to speculate that the hepatic PPAR-
γ-CD36 pathway is regulated by LPA. Even though upregulation of
CD36 expression in NPC liver has been observed, its role in NPC
and Gaucher hepatic diseases remains unclear. However, we
believe that galectin 3 and LPA may also promote the
expression of CD36 in NPC hepatocytes through the PPAR-γ

pathway, contributing to lysosome dysfunction probably by
analogous mechanisms observed in obesity.

Considering that B cells rely on lysosomes for the extraction and
processing of antigens, it is relevant to elucidate how lysosomes and
lysosomal hydrolases such as cathepsins, respond to an excess of
nutrients in obesity and LSDs, and how these signals crosstalk with
the activation of B cells during antigen recognition. Thus, we
speculate that homeostatic alterations in CD36 and cathepsins
described in obesity in adipocytes and hepatocytes could also be
altered in B cells infiltrated in metabolic tissues, promoting
functionals changes. Thus, it is essential to understand
dysfunctions at this level, given that B cells are mediators of
inflammation in adipose and liver tissues.

On the other hand, the studies of MCSs formed by
lysosomes have dramatically increased in recent years given
the relevance of its impact in lipid metabolism. The evidence
suggests that they play a crucial role in the pathogenic
mechanisms associated with obesity and its comorbidities,
as well as in NPC and Gaucher diseases. In this context, it
seems that an increase of MCSs between mitochondria- LDs
and mitochondria-ER are also part of the altered cellular
mechanisms, reflecting a misbalance in MCSs homeostasis.
Thereby, unraveling these potentially disturbed pathways,
including mechanisms that regulate MCSs involved in the
control of lipid homeostasis will allow us to understand
how responses of adipocytes, hepatocytes, and B cells are
affected in obesity, NPC and Gaucher diseases. These
findings will potentially unmask new key common targets in
the modulation of lysosome function for the treatment of
disorders related to lipids.

Outstanding Questions
From the perspective of lysosomal dysfunction observed in
obesity, some outstanding questions that remain to be
answered in future investigations are:

-How does CD36 coordinate autophagy in adipocytes and
hepatocytes? Is there a relationship between the function of CD36
and lysosomal cathepsin activity? What is the implication of
CD36 in the uptake of lipids and autophagy in the metabolic
tissues of NPC and Gaucher diseases?

-How do LPA and the CD36-PPAR-γ pathway regulate lipid
accumulation and lysosome dysfunction in adipocytes and
hepatocytes, in obesity? How do LPA and galectin 3
coordinate the activation of this pathway in obesity? How does
BMP promote lysosomal dysfunction in pathological states of
obesity, NPC and Gaucher?

-AreMCSs altered in a similar fashion by the overload of lipids in
adipose tissue and liver in obesity, NPC and Gaucher diseases? How
is the formation of MCSs regulated under these conditions? Is there
an increased lipid transfer in the transfer of lipids between lysosome
and mitochondria through MCSs in LSDs? Does the increased lipid
transfer in NPC and Gaucher diseases lead to mitochondrial
dysfunction?

-With respect to B cells: Does CD36 coordinate lysosomal
function in B cells and is it altered during obesity? How do
lysosomes in B cells respond to an excess of nutrients in obesity
and LSDs?
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Weibel Palade Bodies: Unique
Secretory Organelles of Endothelial
Cells that Control Blood Vessel
Homeostasis
Johannes Naß†, Julian Terglane† and Volker Gerke*

Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany

Vascular endothelial cells produce and release compounds regulating vascular tone, blood
vessel growth and differentiation, plasma composition, coagulation and fibrinolysis, and
also engage in interactions with blood cells thereby controlling hemostasis and acute
inflammatory reactions. These interactions have to be tightly regulated to guarantee
smooth blood flow in normal physiology, but also allow specific and often local
responses to blood vessel injury and infectious or inflammatory insults. To cope with
these challenges, endothelial cells have the remarkable capability of rapidly changing their
surface properties from non-adhesive (supporting unrestricted blood flow) to adhesive
(capturing circulating blood cells). This is brought about by the evoked secretion of major
adhesion receptors for platelets (von-Willebrand factor, VWF) and leukocytes (P-selectin)
which are stored in a ready-to-be-used form in specialized secretory granules, the Weibel-
Palade bodies (WPB). WPB are unique, lysosome related organelles that form at the trans-
Golgi network and further mature by receiving material from the endolysosomal system.
Failure to produce correctly matured VWF and release it through regulated WPB
exocytosis results in pathologies, most importantly von-Willebrand disease, the most
common inherited blood clotting disorder. The biogenesis of WPB, their intracellular
motility and their fusion with the plasma membrane are regulated by a complex
interplay of proteins and lipids, involving Rab proteins and their effectors, cytoskeletal
components as well as membrane tethering and fusion machineries. This review will
discuss aspects of WPB biogenesis, trafficking and exocytosis focussing on recent
findings describing factors contributing to WPB maturation, WPB-actin interactions
and WPB-plasma membrane tethering and fusion.

Keywords: calcium, exocytosis, lysosome-related organelle, secretory organelles, hemostasis

INTRODUCTION

Endothelial cells comprise the inner lining of blood vessels and thus the first cellular barrier
separating blood and tissue. They form single-layered epithelia that differ in morphology, molecular
characteristics, physiology and function depending on the type of vascular bed. As such they seal
blood vessels and control traffic of nutrients, hormones, growth and differentiation factors, particles
and cells (immune cells, metastasizing tumor cells and even pathogens) to and from the vasculature.
Moreover, through selective secretion and uptake as well as production and decoding of signaling
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molecules they regulate blood vessel homeostasis including
clotting and coagulation, fibrinolysis and thrombosis as well as
vascular tone and local inflammatory reactions.

One striking characteristic of endothelial cells relates to the
adhesive properties of their apical cell surface that faces the blood
vessel lumen. In the normal physiological state this surface does
not interact firmly with leukocytes, erythrocytes and platelets
thereby permitting an unrestricted blood flow and blood cell
circulation. However, upon insult and endothelial cell activation
surface properties change rapidly allowing leukocytes and
platelets to adhere to the vessel wall. These cell interactions
are vital to ensure proper responses to blood vessel injury
(platelet plug formation and initiation of coagulation) and
inflammatory or infectious insult (recruitment of leukocytes to
sites of tissue damage or infection). Endothelial cells can actively
control these surface properties by the regulated presentation of
specific adhesion molecules. To do so, vascular endothelial cells
are equipped with unique secretory organelles that store among
other things leukocyte and platelet adhesion receptors to be
released on demand. In honor of their initial discovery by
Ewald Weibel and George Palade in electron microscopic
analyses of rat and human pulmonary arteries these organelles
were termed Weibel-Palade bodies (WPB) (Weibel and Palade,
1964). Only later these peculiar membrane compartments were
shown to contain the major platelet adhesion molecule von-
Willebrand factor (VWF) and the leukocyte receptor P-selectin
(Wagner et al., 1982; Bonfanti et al., 1989). The physiological and
also pathophysiological importance of WPB and their principal
cargo VWF is emphasized by the fact that failure to produce and
release proper VWF results in von-Willebrand disease, the major
inherited bleeding disorder (for reviews see Schneppenheim and
Budde, 2011; Leebeek and Eikenboom, 2016). On the other hand,
vascular occlusion is a consequence of highly elevated vascular
VWF levels as for instance observed in thrombotic
thrombocytopenic purpura. (for review see Sadler, 2008).
Thus, WPB are pivotal components of the precisely tuned
machinery that orchestrates blood vessel homeostasis. This
mini review will highlight the unique features of WPB
particularly emphasizing recent developments in the
understanding of their maturation and secretion.

WPB Maturation
WPB are born at the trans-Golgi network (TGN) where they bud
off in the form of discernible structures. Their dimensions and
unique morphology are dictated by the main cargo VWF, a large
glycoprotein synthesized and first processed in the ER (for
references and recent crystal structure of the VWF D’D3
domains see Dong et al., 2019). VWF is then transported to
the Golgi where it is assembled into defined quanta. A copacking
of these quanta occurs in the TGN prior to or concomitant with
the actual budding of immature WPB which can maintain
connections to the Golgi for 2–4 h (Zenner et al., 2007;
Ferraro et al., 2014; Mourik et al., 2015). These connections
and the close proximity to the Golgi likely permit the further
addition of VWF and possibly other cargo to the immature WPB
(Mourik et al., 2015). The early WPB released from the TGN
further mature to finally yield the highly elongated cigar-shaped

organelles primarily found in the periphery of endothelial cells
(for reviews see van Mourik et al., 2002; Michaux and Cutler,
2004; McCormack et al., 2017; Karampini et al., 2020). This
maturation is driven on one hand by the continued
multimerization and tight packing of VWF into a quasi-
crystalline arrangement enwrapped by a membrane, which
requires luminal acidification and reflects itself in the
condensation of WPB from an electron lucent immature
organelle to an electron dense mature structure. On the other
hand, post-Golgi maturation is accompanied by acquisition of
additional cytosolic and also endosomal/lysosomal components.
They include the RabGTPase Rab27a and the tetraspanin CD63
identifying WPB as lysosome-related organelles (LRO) that share
molecular features with pigment-storing melanosomes (for
reviews see Raposo et al., 2007; Bowman et al., 2019). It is
worth noting here that the net size of WPB is primarily
determined at the level of the Golgi and that further
maturation mainly leads to condensation and tubular
elongation. Several aspects of WPB size control and
maturation have been addressed recently revealing novel and
exciting connections.

An interesting link between WPB size control and cell
metabolism was discovered recently following the identification of
the Arf guanine nucleotide exchange factor (GEF) GBF1 (a GEF for
Arf1 and 4) as a factor promoting ER/Golgi trafficking of VWF.
GBF1 can be activated by phosphorylation by AMP-activated
protein kinase (AMPK), a key enzyme coupling metabolic
changes to cellular signaling, and it was shown that low glucose
levels and subsequent AMPK activation lead to GBF1
phosphorylation and a resulting upregulation of anterograde
VWF trafficking. This in turn produces smaller WPB and
reduces VWF secretion (Lopes-da-Silva et al., 2019) (Figure 1).
Arf GTPase activating proteins (GAPs) that inactivate their cognate
Arf proteins also appear to regulate WPB size as depletion in
endothelial cells of the ArfGAP SMAP1 leads to a size reduction
in the WPB that form (Watanabe et al., 2021). The SNARE Sec22b
was recently identified as another factor controlling WPB
morphology presumably also by affecting the ER/Golgi transport
route of VWF. Depletion of Sec22b causes a loss of large, elongated
WPB along with a dilation of ER cisternae that accumulate non-
processed VWF (Karampini et al., 2020) (Figure 1). Thus, several
factors regulating VWF maturation and packing into WPB and
thereby affecting WPB size and morphology have been discovered
and approaches to exploit these also in pathophysiological settings
appear promising. Along these lines, Ferraro and coworkers
developed a microscopic screening approach measuring WPB size
that led to the identification of first candidate compounds that
reduce WPB length. As a consequence, this also reduces the pro-
thrombotic activity of secreted VWF as VWF secretion from shorter
WPB significantly dampens its platelet adhesion capability (Ferraro
et al., 2016, 2020).

Once early WPB have emerged from the Golgi they acquire
additional proteins (and presumably also lipids) in the process of
maturation that is accompanied by a microtubule-dependent
movement to the cell periphery (for review see McCormack
et al., 2017). Many of those additional WPB components have
been identified, among other things through proteomic screens
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(van Breevoort et al., 2012; Holthenrich et al., 2019); however,
their delivery to and association with the maturing organelle has
only recently been characterized in a few cases. In line with WPB
representing LRO, some proteins found on mature WPB are of
late endosome/lysosome (LEL) origin (e.g. the tetraspanin and P
selectin cofactor CD63) and most likely routed to the organelle by
direct transport possibly involving tubular carriers. Whereas
earlier studies had identified the Ca2+/phospholipid-binding
protein annexin A8 as a LEL-localized component of the
machinery facilitating LEL-to-WPB delivery of CD63 (Poeter
et al., 2014), Sharda and coworkers (Sharda et al., 2020) recently
reported the participation of biogenesis of lysosome related
organelle-2 (BLOC-2), a protein that can be mutated in the
recessive bleeding disorder Hermansky-Pudlak syndrome.
Among other things Hermansky-Pudlak syndrome is
associated with platelet aggregation and pigmentation defects,
the latter due to compromised maturation of melanosomes, LROs
that show several parallels to WPB (for reviews see Raposo et al.,
2007; Simons and Raposo, 2009). Depletion of BLOC-2 results in
both, compromised LEL-to-WPB transport of CD63 and general
WPB maturation defects with the WPB appearing round instead
of elongated and clustered in the perinuclear region (Figure 1).

As the immature organelles formed under these conditions failed
to process VWF into the highly multimeric forms these were
absent in the material secreted from BLOC-2 depleted endothelial
cells following thrombin stimulation (and intracellular Ca2+

mobilization). Moreover, the exocyst complex was identified as
a target of BLOC-2 in endothelial cells and exocyst depletion or
inhibition phenocopied the WPB maturation defects seen in
BLOC-2 deficient cells. In this study exocyst was also found to
serve a second function in impeding WPB exocytosis at the PM
(Sharda et al., 2020). The involvement of BLOC-2 in proper WPB
maturation was also shown in the respective mutant mice that are
characterized by impaired VWF tubulation (Ma et al., 2016).
Another gene that can be mutated in Hermansky-Pudlak
syndrome is AP3B1 encoding the adaptor complex three β1
subunit. Blood outgrowth endothelial cells from Hermansky-
Pudlak syndrome patients carrying the AP3B1 mutation also
lack CD63 in their WPB indicative of improper organelle
maturation. Moreover, these cells are compromised in their
evoked WPB exocytosis, most likely because they fail to recruit
the v-SNARE VAMP8 to maturing WPB (Karampini et al., 2019)
(Figure 1). While the above-mentioned studies identified
maturation factors/pathways involved in the delivery of

FIGURE 1 | Scheme depicting theWPB itinerary in endothelial cells. WPB formation is driven by VWF that is produced at the ER and trafficked to the Golgi (1). WPB
that bud from the TGN in an AP-1 and clathrin dependent process are then transported to the cell periphery alongmicrotubules. This is accompanied by the BLOC-2 and
annexin A8 dependent transfer of endosomal components such as CD63 and VAMP8 to WPB (2). Maturing WPB acquire certain RabGTPases, e.g. Rab27A and
Rab3B/D, the former required for linking WPB at the cortical actin cytoskeleton (via MyRIP/MyoVc) and supporting exocytosis (via Slp4-a) (3). Secretagogue
induced tethering at and fusion with the PM requires docking factors, such as the annexin A2/S100A10/Munc13-4 complex and a SNARE-based fusion machinery and
can also involve compound and cumulative events (3, 4 and 5). Finally, post fusion actin rings have been observed that support the full release of highly multimeric VWF
(6). Mainly factors identified in the recent years have been included.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 8139953

Naß et al. Weibel-Palade Body Biology

46

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


transmembrane proteins (CD63, VAMP8) to maturing WPB,
another hallmark of mature WPB are a specific subset of
cytosolically associated RabGTPases, in particular Rab27a and
the Rab3 isoforms b and d. Addressing this aspect of the
maturation, Kat and coworkers (Kat et al., 2021) could
recently identify MAP kinase-activating death domain
(MADD) as a crucial component involved. MADD serves as a
GEF for these Rabs and silencing of MADD through knockdown
approaches markedly reduced the recruitment of Rab27a, Rab3b
and Rab3d to maturing WPB (Figure 1). Finally, it should be
noted that WPB maturation is not only accompanied by
tubulation and tight packing of VWF and the acquisition of
additional protein contents, it also generates other morphological
characteristics typical for LRO. Specifically, vesicles inside the
lumen of the organelle, a hallmark of many LRO, were observed
recently in mature WPB of endothelial cells. Following WPB
exocytosis these intraluminal vesicles which are positive for CD63
could also be released and possibly function in intercellular
communication, again extending the similarity to other LROs
(Streetley et al., 2019).

Thus, WPB maturation is a highly complex process involving
de novo protein acquisition, LEL-to-WPB protein transport and
morphological alterations that eventually generate the unique
rod-shaped organelle containing the tubulated highly
multimeric VWF.

WPB-Plasma Membrane Tethering and
Secretion
The VWF stored in WPB can be released in different ways. Basal
secretion, typically of less multimeric VWF, provides the
circulation with low levels of these VWF species, and
constitutive secretion, preferentially occurring at the
basolateral membrane surface of endothelial cells, deposits
VWF in the subendothelial matrix. Specific components
regulating these secretory events have not been systematically
investigated with the exception of a recent screen that identified
the regulator of G protein signaling 4 (RGS4) as a negative
regulator of the constitutive pathway (Patella and Cutler,
2020). The majority of fully matured WPB, however, is
retained inside the cell to await secretagogue stimulation, for
example following blood vessel injury or local inflammatory
insults, to present highly multimeric VWF and P-selectin on
the endothelial cell surface by regulated exocytosis. Retention is
achieved by anchorage in the cortical actin cytoskeleton, which is
mediated with help of a complex consisting of Rab27a, the
Rab27a effector MyRIP and the actin binding myosin Va
(Nightingale et al., 2009; Rojo Pulido et al., 2011; Conte et al.,
2016) (Figure 1). Endothelial stimulation, which can be elicited
by a plethora of agonists (Lowenstein et al., 2005; Schillemans
et al., 2019b) and typically results in elevated intracellular Ca2+ or
cAMP levels functioning as second messengers, mobilizes the
cortically anchored WPB and initiates the tethering/docking at
and fusion with the plasma membrane (PM). The detailed
molecular mechanisms responsible for releasing WPB from the
cortical anchorage and enabling their PM contact are largely
unknown, but they are likely to involve WPB associated

RabGTPases. A central role for Rab27a in this event has been
shown by Bierings and coworkers (Bierings et al., 2012) who
reported that the evoked release of mature WPB is regulated by
the interaction of Rab27a with either MyRIP (supporting cortical
anchorage) or synaptotagmin-like protein 4-a (Slp4-a)
(promoting WPB exocytosis) (Figure 1). Rab46 was recently
identified as another Rab regulating selective WPB trafficking
in the cell cortex and thereby specific cargo release following
histamine evoked and Ca2+ mediated exocytosis of WPB. Rab46,
which harbors a Ca2+-binding EF hand, localizes to only a subset
of the peripheral WPB that are negative for the leukocyte receptor
P-selectin but contain angiopoietin-2. It senses the Ca2+ elevation
elicited by histamine stimulation and then triggers a retrograde,
dynein-dependent transport of the associated peripheral WPB to
the cell center. As the Rab46 negative, P-selectin containingWPB
exocytose under these conditions, only a fraction of the WPB
cargo, e.g. the proinflammatory P-selectin, is released (Miteva
et al., 2019) (Figure 1). How and when suchWPB diversification,
i.e. a sorting of P-selectin to only some organelles, occurs and how
Rab46 is recruited to only a subset ofWPB is not known but these
pose interesting and very central cell biological questions.

Following cortical release and in preparation of PM fusion,
WPB are most likely tethered or docked at the membrane. Here,
another Rab27a effector, the mammalian uncoordinated 13–4
(Munc13-4), has been shown to promote WPB exocytosis most
likely by providing a link or tether between the organelle surface
and a PM-bound complex consisting of annexin A2 (AnxA2) and
S100A10 (Zografou et al., 2012; Chehab et al., 2017) (Figure 1). In
this configuration the AnxA2/S100A10 complex most likely
functions as a module binding Ca2+-dependently to PM
phospholipids [e.g. phosphatidylinositol 4,5-bisphosphate,
PI(4,5)P2] via its AnxA2 subunit and to WPB-bound Munc13-
4 via its S100A10 subunit (Chehab et al., 2017). A special
enrichment of certain PM phospholipids is indeed observed at
WPB-PM fusion sites and inhibitor and depletion experiments
suggest that PI(4,5)P2 and the PI(4,5)P2 producing PI4P 5-kinase
are required for efficient histamine-evoked WPB exocytosis
(Nguyen et al., 2020). In the course of regulated exocytosis
tethered WPB are finally recognized by the membrane fusion
machinery consisting of SNAREs and associated proteins. Several
of the factors involved at this stage have been described over the
years, including a trans-SNARE complex consisting of WPB-
localized VAMP3 and PM-localized syntaxin-4 and SNAP23 as
well as syntaxin-binding Munc18 proteins (Matsushita et al.,
2003; Pulido et al., 2011; van Breevoort et al., 2014) (Figure 1).
However, the picture is probably more complex as recent studies
employing blood outgrowth endothelial cells which were isolated
from a patient suffering from variant microvillus inclusion
disease and shown to lack another SNARE, syntaxin-3,
showed markedly impaired agonist-evoked VWF secretion.
Syntaxin-3 interacts with VAMP8, another WPB-associated
v-SNARE, but interestingly, was shown to localize mainly to
WPB (Schillemans et al., 2018, 2019). This suggests that syntaxin-
3, most likely pairing with VAMP8 on another WPB, supports
homotypic fusions of WPB that could occur during compound or
cumulative exocytosis (Zupančič et al., 2002; Valentijn et al.,
2010; Kiskin et al., 2014; Stevenson et al., 2017) (Figure 1). Thus,
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several SNARE complexes are likely to support heterotypic and
homotypic WPB fusion events that characterize the final steps in
regulated exocytosis. Common to these events is their regulation
by signaling mediators, in the case of Ca2+-dependent exocytosis
the elevated Ca2+ concentrations. Several Ca2+ binding proteins
have been implicated in coupling these Ca2+ signals to regulated
WPB exocytosis, including the above-mentioned Slp4-a, AnxA2
and Munc13-4 as well as another Munc13 family member,
Munc13-2 (Zhou et al., 2016; Holthenrich et al., 2019);
however, the actual WPB-associated Ca2+ sensor that could
directly activate the SNARE machinery most likely is a
member of the synaptotagmin family. Synaptotagmin-5 has
recently emerged as an interesting candidate as it localizes to
WPB and is required for histamine evoked WPB exocytosis and
VWF secretion. Importantly, a mutant synaptotagmin-5 lacking
the Ca2+ coordinating asparagine residue in the C2A domain
negatively interferes with histamine evoked WPB exocytosis
directly showing the importance of synaptotagmin-5 Ca2+

binding (Lenzi et al., 2019). Thus, a complex interplay of
Ca2+-regulated proteins, also including the recently identified
Slp2-a (Francis et al., 2021), likely transmits the rise in
intracellular Ca2+ to WPB-PM docking and fusion in the
course of regulated exocytosis.

The Link to Actin
While cargo release in many exocytotic events occurs
automatically with completion of the granule-PM fusion, WPB
and some other secretory organelles carrying large cargo, e.g.
surfactant-loaded lamellar bodies of alveolar epithelial cells
(Miklavc et al., 2015), most likely require mechanical forces
for efficient cargo expulsion. This can be provided by
rearrangements of the cortical actin cytoskeleton that first has
to be weakened to allow granule penetration to the PM and then
site-specifically repolymerizes to support cargo release. In the case
of WPB, it was observed that rings of polymerized actin form at
the distal end of WPB several seconds after the actual PM fusion
event (Figure 1). Furthermore, it was shown that these structures,
in an active myosin motor-dependent process, are required for
the efficient release of highly multimeric VWF cargo from the
fused WPB (Nightingale et al., 2011). In later studies it was
observed that the formation of such actin rings at WPB-PM
fusion sites probably is not obligatory for VWF release, at least in
case of histamine stimulation and Ca2+-dependent WPB
exocytosis (Conte et al., 2015), and that the extent of actin
ring formation at these fusion sites appears to depend on the
type of stimulus (Nightingale et al., 2018; Mietkowska et al.,
2019). Interestingly, a different actomyosin network that is also
positive for the focal adhesion protein zyxin has been observed
around peripheral WPB of endothelial cells stimulated with
cAMP raising agonists. Here, actin framework formation

occurs prior to the actual fusion event facilitating WPB
exocytosis (Han et al., 2017; Li et al., 2018). Clearly, more
work is required to establish a potential link between this
zyxin/actomyosin network and the post-fusion actin rings, e.g.
by identifying the factor(s) promoting actin polymerisation into
the ring/coat-like structures at fused WPB. Moreover, the precise
function of the actin structures also needs further attention. They
could support exocytotic membrane fusion and VWF expulsion
but potentially could also prevent fused WPB from fully
collapsing into the PM, for example to permit rapid and
spatially restricted compensatory endocytosis that has been
shown to occur on the membrane of fused WPB (Stevenson
et al., 2017). Another unresolved issue concerns the regulation of
the spatially restricted changes in cortical actin architecture, in
particular the questions whether certain membrane lipids
enriched at WPB fusion sites such as PI(4,5)P2 are involved
and which molecular players organize the actin reorganization
precisely at the sites where WPB fuse or have fused.

Concluding Remarks
WPB are unique secretory organelles that allow vascular
endothelial cells to respond rapidly to environmental changes
by the secretion of factors that control hemostasis and
inflammation. Marked progress in understanding their
biogenesis, intracellular transport and secretion has been made
in the last decade revealing fascinating cell biological phenomena
that drive the formation of the organelle and its many modes of
exocytosis. However, our picture of the organelle is far from
complete and important questions, e.g. concerning unique
maturation steps, cargo selection and Rab recruitment and the
involvement of different actin structures in VWF release, remain
to be answered. Future research in this exciting topic of cell
biology has to tell and will likely also benefit pharmacological
interventions of the pathway that could help controlling vascular
VWF (and P-selectin) levels in pathophysiological scenarios
(Karampini et al., 2020; El-Mansi and Nightingale, 2021).
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A Role of Phosphatidylserine in the
Function of Recycling Endosomes
Junya Hasegawa†‡, Yasunori Uchida†‡, Kojiro Mukai†‡, Shoken Lee‡, Tatsuyuki Matsudaira‡

and Tomohiko Taguchi*†

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan

Cells internalize proteins and lipids in the plasma membrane (PM) and solutes in the
extracellular space by endocytosis. The removal of PM by endocytosis is constantly
balanced by the replenishment of proteins and lipids to PM through recycling pathway.
Recycling endosomes (REs) are specific subsets of endosomes. Besides the established
role of REs in recycling pathway, recent studies have revealed unanticipated roles of REs in
membrane traffic and cell signalling. In this review, we highlight these emerging issues, with
a particular focus on phosphatidylserine (PS), a phospholipid that is highly enriched in the
cytosolic leaflet of RE membranes. We also discuss the pathogenesis of Hermansky
Pudlak syndrome type 2 (HPS2) that arises from mutations in the AP3B1 gene, from the
point of view of dysregulated RE functions.

Keywords: phosphatidylserine, pleckstrin-homology domain, flippase, bioID proximity labeling, endosomes,
membrane traffic

INTRODUCTION

Cells internalize proteins and lipids in the PM and solutes in the extracellular space by endocytosis.
Internalized cargos are first transported to early endosomes (EEs). Cargos are further transported
either to lysosomes through late endosomes for their degradation, or to the PM for their reuse. A
direct route from EEs to the PM (the fast recycling pathway) and an indirect route through REs (the
slow recycling pathway) are involved in the latter transport (Sheff et al., 1999; Sönnichsen et al.,
2000). Alternatively, cargos can be transported to the Golgi by retrograde pathway (Bonifacino and
Rojas, 2006; Johannes and Popoff, 2008). Some cargos bound to retrograde pathway pass through
REs before reaching the Golgi (Mallet andMaxfield, 1999; Uchida et al., 2011; McKenzie et al., 2012).
Furthermore, there is accumulating evidence that some exocytic cargos pass through REs before
reaching the PM (Ang et al., 2004; Murray et al., 2005; Misaki et al., 2010). Thus, the classical view of
REs, i.e., the organelle for recycling traffic, has been challenged and revised to the one that REs
function as a hub for a variety of membrane traffic (Taguchi, 2013) (Figure 1).

PS represents up to 10% of the total phospholipids in cells and is the most abundant negatively
charged glycerophospholipids (Leventis and Grinstein, 2010; Kay and Fairn, 2019). PS has a
phosphoserine headgroup attached to the sn-3 position of the glycerol backbone. In mammals,
PS is synthesized by two distinct base-exchange enzymes, PS synthase-1 (PSS1) and PS synthase-2
(PSS2). PSS1 substitutes serine for choline of phosphatidylcholine, whereas PSS2 replaces
ethanolamine of phosphatidylethanolamine for serine (Kuge and Nishijima, 1997; Vance, 2018).
These enzymes localize in the mitochondria-associated membranes of the ER (Vance, 2018). PS is
highly enriched in the cytosolic leaflet of the PM and participates in various physiological events such
as the coagulation cascade, recruitment and activation of signalling molecules that include protein
kinase C, and clearance of apoptotic cells (Leventis and Grinstein, 2010). PS is also found in the
cytosolic leaflet of intracellular organelles including EEs and late endosomes (Yeung et al., 2008),
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where its function has not been fully elucidated. Both vesicular
membrane trafficking and non-vesicular transport by lipid
transfer proteins appear to contribute to maintaining the
subcellular PS distribution (Kay and Fairn, 2019).

Nearly a decade ago, we revealed that REs were enriched in PS.
The finding was followed by a series of studies that identified the
PS-specific protein domain, PS-effector RE proteins, and
unanticipated roles of PS in the Hippo-YAP signalling. In this
review, we summarize the role of PS in RE functions and discuss
the pathogenesis of Hermansky Pudlak syndrome type 2 (HPS2)
from the point of view of dysregulated PS/RE functions.

EVECTIN-2, A PS BINDING RE PROTEIN

Evectin-1 and -2 were identified as post-Golgi proteins of
unknown function (Krappa et al., 1999). Evectin-1 is expressed
specifically in the nervous system, whereas evectin-2 is
ubiquitously expressed. Both proteins are predicted to have a
type IV membrane topology, i.e., the N-terminal part of the
protein, which is anchored to the membrane by a C-terminal
transmembrane domain, is oriented towards the cytosol (Krappa
et al., 1999). They have a pleckstrin-homology (PH) domain at
the N-terminus, which typically binds phosphoinositides (PIPs)
(Lemmon, 2008). We showed that evectin-2 localized to REs and
that evectin-2 PH was required for the localization of evectin-2 to
REs (Uchida et al., 2011). Evectin-2 PH alone, expressed in the
cytosol, localized to REs, indicating the presence of an RE-specific
phospholipid.

The human proteome has about 300 proteins with PH
domains. About 10% of these proteins were shown to bind
specifically to PIPs through their PH domains (Lemmon,
2008). A number of PH domains did not bind lipids but
protein partners (Wang et al., 1994; Scheffzek and Welti,

2012). We measured the binding of several negatively charged
lipids on liposomes to recombinant evectin-2 PH. Contrary to
what we expected, PS bound evectin-2 PH, but phosphatidic acid,
phosphatidylinositol, sulfatide, and all PIPs did not (Uchida et al.,
2011) (Figure 2A). Lys20 is highly conserved in other PH
domains. evectin-2 PH (K20E) lost the ability to bind to PS.

A Saccharomyces cerevisiae mutant (cho1Δ) lacks de novo
PS synthesis and is devoid of PS (Atkinson et al., 1980; Hikiji
et al., 1988). We exploited this yeast strain to examine if
evectin-2 PH bound PS in vivo. Given that a tandem fusion
of lipid-binding domains, such as the FYVE domain of EEA1
and Hrs, increased the lipid-binding affinity of their FYVE
domain (Gillooly et al., 2000), a tandem fusion of evectin-2 PH
(2xPH, hereafter) was generated. 2xPH localized exclusively at
the PM of the wild-type yeast, whereas it was cytosolic in
cho1Δ, indicating that evectin-2 PH recognized PS in vivo
(Uchida et al., 2011). These results also indicated that 1) the
cytosolic leaflet of RE membranes was enriched in PS and 2)
evectin-2 localized to REs by the recognition of the PS at REs
with its PH domain.

EVECTIN-2 PH DOMAIN AS A PS PROBE

Since we reported that evectin-2 PH was highly specific to PS, this
domain or the tandem fusion of evectin-2 PH (2xPH) has been
widely used to examine the subcellular distribution of PS both in
live and fixed cells (Table 1). If 2xPH tagged with a fluorescent
protein, such as EGFP, is expressed in the cytosol, PS in the
cytosolic leaflet of the PM and organelle membranes can be
detected in live cells. If the recombinant 2xPH is used for fixed
and permeabilized cells, PS in membranes, regardless of its
transbilayer distribution, can be detected (Figure 3).

C2-domain of lactadherin (lact-C2, hereafter) has also been
used to detect PS in cells (Yeung et al., 2008; Kay and
Grinstein, 2011). Two papers used 2xPH and lact-C2 in the
same cellular system: Platre et al. (Platre et al., 2018) found that
the PM localization of lact-C2 was more pronounced than that
of 2xPH; Chung et al. (Chung et al., 2015) reported that (total
internal reflection fluorescence)/(epi fluorescence) with 2xPH
was 0.1, whereas that with lact-C2 was 0.4. These results
suggested that lact-C2 appeared more sensitive to detect PS
in the PM than 2xPH. Intriguingly, Wen et al. (Wen et al.,
2016) reported that 2xPH bound preferentially to PS in the
liquid-disordered (Ld) phase, compared to PS in the liquid-
ordered (Lo) phase using liposome reconstitution system.
2xPH, thus, may be susceptible to the lipid environment
where PS is placed.

The crystal structure of evectin-2 PH with phosphoserine, the
head group of PS, was solved (Uchida et al., 2011). By comparing
the crystal structure of the apo-form of evectin-2 PH (Okazaki
et al., 2012), Ile15 and Leu16 were found to be positioned closer to
the PS-binding pocket upon PS binding (Figures 2B,C). The
insertion of the hydrophobic side chains of Ile15 and Leu16 into
densely packed lipid domains is expected to be energetically
disfavored, which may account for the in vitro 2xPH
preference for PS in the Ld phase rather than PS in the Lo phase.

FIGURE 1 | PS is enriched in REs, an organelle that serves as a hub for a
variety of membrane traffic. slow recycling: PM→ EEs→REs→ PM; retrograde
transport: PM→ EEs→ REs→ the Golgi; exocytic transport: ER→ the Golgi→
REs→ PM. PS is concentrated in the cytosolic leaflet of RE membranes.
Chemical structure of PS is shown in the right. The headgroup of PS
(phosphoserine, shown in red) has one net negative charge.
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ATP8A1, AN RE-LOCALIZED PS FLIPPASE

Asymmetric distribution of phospholipids in the lipid bilayer is
generated, in part, by the selective translocation of phospholipids
across the membranes (Graham, 2004; Holthuis and Levine,

2005; Best et al., 2019). The P4 subfamily of P-type ATPases
(P4-ATPases) flips phospholipids from the luminal leaflet (or
extracellular leaflet) to the cytosolic leaflet of biomembranes
(Sebastian et al., 2012; Coleman et al., 2013). Fourteen P4-
ATPases are encoded in human genome, and mutations in

FIGURE 2 | evectin-2 PH specifically binds to PS (A) In vitro lipid-binding assays. His-tagged evectin-2 PH was mixed with liposomes composed of brain
phosphatidylcholine (PC), brain phosphatidylethanolamine (PE), and the indicated negatively charged lipid (20% mol/mol of total lipids). The mixture was then spun at
100,000 g, and the resultant supernatant (S) and pellet (P) were subjected to SDS-PAGE, followed by Coomassie blue staining (B) Overall structure of human evectin-2
PH in complex with phosphoserine, the headgroup of PS (C) Charge distribution surface model of evectin-2 PH in complex with phosphoserine (stick model). The
surface is colored according to the electrostatic potential of the residues (blue, positive; red, negative). Hydrophobic residues around the PS-binding pocket, which are
expected to be inserted into the membrane, are indicated. Data were reproduced and modified from (Uchida et al., 2011).

TABLE 1 | Representative studies using 2xPH.

Model system Purpose of using 2xPH References

Mammalian cell line Protein localization to PS-rich membranes Chiba et al. (2013)
Mammalian cell line PS transport to the PM Chung et al. (2015)
Yeast Change of PS distribution in genetic mutants Hatakeyama et al. (2017)
Mammalian cell line Identification of proteins in close proximity to PS Matsudaira et al. (2017)
Plant PS distribution in endosomal membrane Platre (2018)
Plant PS accumulation in nanodomains at the PM Platre et al. (2019)
Yeast, mammalian cell line Transbilayer PS distribution in organelle membranes Tsuji et al. (2019)
Yeast Change of PS distribution in genetic mutants Kishimoto et al. (2021)
Mammalian cell line PS levels in cellular membranes Li et al. (2021)
Yeast PS distribution in autophagosomes/autophagic bodies Orii et al. (2021)
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some P4-ATPases cause genetic diseases, such as intrahepatic
cholestasis (Bull et al., 1998), B-cell deficiency syndrome (Siggs
et al., 2011; Yabas et al., 2011), and neurodegenerative disorder
(Onat et al., 2013). We sought to identify the P4-ATPase that
concentrates PS in the cytosolic leaflet of RE membranes. Four
P4-ATPases (ATP8A1, ATP9A, ATP11A, and ATP11B) are
ubiquitously expressed and suggested to localize at endosomes
(Takatsu et al., 2011; Kato et al., 2013). We found that ATP8A1
localized at REs and its knockdown resulted in an increase in PS
levels in the luminal leaflet of RE membranes (Lee et al., 2015).
Knockdown of ATP8A1 also impaired the recycling of transferrin
(Tfn) and the retrograde traffic of cholera toxin B subunit (CTxB)
at REs. Importantly, the rescue experiments with siRNA-resistant
ATP8A1 E191Q (an ATPase-deficient variant) showed that
ATPase activity of ATP8A1 was required for the recycling of
Tfn from REs. These results suggested that PS in the cytosolic

leaflet of RE membranes was essential for membrane traffic that
passes through REs. Intriguingly, knockdown of ATP8A1
resulted in the generation of aberrant tubules that were
positive with Tfn receptor (TfnR). PS in the cytosolic leaflet of
RE membranes may function in the fission process of membrane
carriers (Figure 4).

The function of PS flippases in endosomal membrane traffic
appears to be evolutionally conserved. For example, a P4-ATPase
Drs2 in Saccharomyces cerevisiae, which flips PS, is essential for
membrane traffic between the late Golgi compartment and
endosomes (Best et al., 2019). Drs2 increases membrane
curvature and anionic phospholipid levels by providing an
excess of lipids in the cytosolic leaflet of the membrane, both
of which are sensed by the Arf GTPase-activating protein
(ArfGAP) Gcs1 through its +ALPS motif (Xu et al., 2013). By
analogy, ATP8A1 may also contribute to membrane traffic
through REs by creating positive membrane curvature, which
is essential for generating membrane carriers. A P4-ATPase TAT-
1 in Caenorhabditis elegans, is most closely related to mammalian
ATP8A1. The loss of tat-1 leads to the generation of abnormal
endo-lysosomal compartments, suggesting impaired endocytic
traffic (Ruaud et al., 2009; Chen et al., 2010). Of note, ATP9A,
another P4-ATPase that localizes at endosomes, is required for
the efficient recycling of Tfn from endosomes to the PM (Tanaka
et al., 2016). It is currently unclear whether ATP9A is involved in
the enrichment of PS in the cytosolic leaflet of endosomal
membranes.

ATP8A2, a paralogue of ATP8A1, is specifically expressed in
brain, testis, and retina (Zhu et al., 2012). An ATP8A2 variant
(I376M) is associated with a neurodegenerative disease
(CAMRQ) characterized by cerebellar ataxia, mental
retardation, and disequilibrium (Onat et al., 2013). We
hypothesized that ATP8A2, like ATP8A1, was essential for
endosomal traffic through REs. Thus, three human ATP8A2
variants [wild-type (WT), I376M, and E210Q deficient in
flippase-activity] were examined if the expression of these
could compensate for the loss of ATP8A1. All three ATP8A2
proteins localized at REs, however, only the expression of
ATP8A2 (WT), in cells depleted of ATP8A1, resulted in the
disappearance of aberrant TfnR-positive tubules and restored
EHD1 localization to REs (Lee et al., 2015) (please see the

FIGURE 3 | Two methods to examine intracellular PS distribution with 2xPH (Left) 2xPH tagged with a fluorescent protein, such as EGFP, is expressed in the
cytosol by plasmid transfection. In this case, 2xPH detects PS in the cytosolic leaflet of the PM and organelle membranes (Right) Recombinant 2xPH detects PS in both
leaflets when applied to fixed and permeabilized cells. 2xPH can be detected by immunocytochemistry using antibodies against the tag attached to 2xPH.

FIGURE 4 | ATP8A1 regulates membrane trafficking and signalling at
REs. ATP8A1 flips PS to the cytosolic leaflet of RE membranes. The PS then
recruits a membrane fission protein EHD1 from the cytosol to REs. The EHD1-
mediated fission of RE membranes generates membrane transport
carriers. PS in REs also facilitates the nuclear translocation of YAP, thereby
promoting the transcription of YAP-target proliferative genes, such as CTGF
(connective tissue growth factor).
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following section). These results suggested that ATP8A2
functioned in recycling endosomal traffic. The defect in
recycling endosomal traffic in neurons may underlie the
pathogenesis of CAMRQ.

EHD1, A PS-EFFECTOR RE PROTEIN

Eps15 homology domain-containing protein 1 (EHD1) is a
member of the EHD (EH-domain containing) family, which
contains four homologues in mammals designated EHD1,
EHD2, EHD3, and EHD4. These proteins are highly conserved
eukaryotic dynamin-like ATPases that mediate membrane
remodeling (Daumke et al., 2007; Grant and Caplan, 2008).
EHD1 facilitates tubulation or fission of liposomes containing
anionic phospholipids, suggesting that EHD1 functions in the
formation of membrane carriers in vivo (Pant et al., 2009).
Knockdown of EHD1 impaired the recycling of Tfn from REs
to the PM and the retrograde transport of CTxB from REs to the
Golgi (McKenzie et al., 2012; Lee et al., 2015). Intriguingly, EHD1
knockdown, like ATP8A1 knockdown, resulted in the emergence
of aberrant TfnR-positive tubules emanating from REs.

Given the similar phenotype of the distribution of TfnR
between ATP8A1-and EHD1-depleted cells, we hypothesized
that PS in the cytosolic leaflet of RE membranes regulated
EHD1 function. Indeed, we found that EHD1 localized
primarily at REs in WT cells, but not in ATP8A1-depleted
cells. Furthermore, the RE localization of EHD1 in ATP8A1-
depleted cells was restored by the expression of siRNA-resistant
WT ATP8A1, but not by the expression of siRNA-resistant
E191Q mutant deficient in ATPase activity (Lee et al., 2015).
Co-sedimentation assays with recombinant EHD1 mixed with
liposomes of increasing PS levels showed a sigmoidal increase in
the EHD1 binding, with an EC50 of 40–50 mol% PS. This PS
concentration matched well the concentration of PS in the
cytosolic leaflet of RE membranes estimated with a method
using recombinant 2xPH (Lee et al., 2015). Thus, PS in the
cytosolic leaflet of RE membranes by itself may recruit EHD1
from the cytosol, thereby facilitating its function to generate
membrane carriers for the PM and/or the Golgi (Figure 4).

REGULATION OF THE YAP SIGNALLING BY
PS IN REs

Given the presence of RE proteins, such as evectin-2 and EHD1,
the localization of which depends on the levels of PS in the
cytosolic leaflet of RE membranes, we hypothesized that there
were more PS-binding RE proteins. To identify these proteins, the
proximity-dependent biotin identification (BioID) method was
exploited. The BioID method is based on proximity-dependent
cellular biotinylation by a promiscuous bacterial biotin ligase
BirA* fused to a bait protein (Roux et al., 2012). Biotinylated
proteins can be purified by avidin-coated beads, and subsequently
identified using mass spectrometry analysis.

As the bait protein, we used 2xPH, expecting that RE proteins
in close proximity to PS could be biotinylated. Among 400

biotinylated proteins identified, 113 proteins were annotated to
“endosomes” in gene ontology in Uniprot. Several proteins that
function in membrane trafficking at REs were identified,
including EHD1, VAMP3 (McMahon et al., 1993), Rab11-
FIP1 (Hales et al., 2001), MICAL-L1 (Sharma et al., 2009),
and SMAP2 (Matsudaira et al., 2013; Matsudaira et al., 2015).
Intriguingly, we found that YAP, a critical growth-promoting
transcription coactivator, and a group of proteins associated with
the YAP signalling pathway (the Hippo pathway) were
biotinylated with BirA*-2xPH (Matsudaira et al., 2017). These
results suggested that PS in the RE membranes was involved in
the YAP signalling. Indeed, we found that YAP localized at REs in
low-density proliferating cells, in addition to its expected
localization of the nucleus, where YAP regulates target genes
that are essential for cell proliferation (Zhao et al., 2007; Zhao
et al., 2008). Knockdown of ATP8A1 reduced the nuclear/RE
localization of YAP and the mRNA expression of CTGF, a YAP-
regulated gene (Matsudaira et al., 2017). These results suggested
that PS in REs had a role in the YAP activation (Figure 4).
Whether YAP directly binds to PS at REs remains to be
elucidated. Knockdown of evectin-2 also reduced the nuclear/
RE localization of YAP and the mRNA expression of CTGF. The
regulation of YAP by evectin-2 was suggested to be mediated
through the direct activation of Nedd4 E3 ligases, such as Itch,
WWP1, and WWP2, by evectin-2. These E3 ligases ubiquitinated
Lats1 kinase, the critical negative regulator of YAP function,
leading to proteasome degradation of Lats1.

HERMANSKY PUDLAK SYNDROME TYPE 2

Hermansky-Pudlak syndrome (HPS) is a rare, hereditary
disorder characterized by decreased pigmentation (albinism)
with visual impairment, blood platelet dysfunction with
prolonged bleeding, and pulmonary fibrosis (Vicary et al.,
2016; Bowman et al., 2019). The most lethal complication in
HPS patients is pulmonary fibrosis. So far, human genetics
identify more than 10 separate forms of HPS with mutations
in different genes (Vicary et al., 2016). All HPS have defect in
membrane trafficking and the biogenesis of lysosome-related
organelles (LROs), including melanosomes and platelet dense
granules (Bowman et al., 2019). Hermansky Pudlak syndrome
type 2 (HPS2) is caused by mutations in AP3B1 gene, which
encodes β1 subunit of the adaptor protein 3 (AP-3) complex
(Dell’Angelica et al., 1999). AP-3 serves as a protein coat of
membrane vesicles and mediates the transport of transmembrane
proteins to lysosomes or LROs (Bowman et al., 2019). Although
dysregulation of alveolar epithelial cells appears critical to the
pathogenesis of HSP, the molecular mechanism by which the
fibrosis proceeds is largely unknown.

Lamellar bodies (LBs) are LROs of surfactant-producing
alveolar type 2 (AT2) cells of the distal lung epithelium
(Weaver et al., 2002). A recent study showed that ATP8A1 in
AT2 cells was constantly transported to LBs by AP-3 (Kook et al.,
2021). Interestingly, instead of being transported to LBs, ATP8A1
in AP-3-depleted cells re-localized to REs, enhancing the
cytosolic exposure of PS in REs, as we reported in other cell
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lines (Lee et al., 2015). This, in turn, promoted activation of YAP,
enhancing cell migration and AT2 cell numbers (Kook et al.,
2021) (Figure 5). Thus, the dysregulated PS exposure in REs may
in part contribute to the pathogenesis of HSP2.

CONCLUDING REMARKS

Nearly a decade ago when we investigated the mechanism by
which evectin-2 localized at REs, we serendipitously found that
the cytosolic leaflet of RE membranes were enriched in PS
(Uchida et al., 2011). The enrichment of PS at the cytosolic
leaflet of RE membranes highly contrasts with the specific
expression of PIPs at the cytosolic leaflet of other membrane
compartments, e.g., PI(3)P at EEs and PI(4,5)P2 at the PM
(Schink et al., 2016). Given a variety of PIP effectors that
regulate organelle function (Di Paolo and De Camilli, 2006),
we reason that more PS effectors, in addition to evectin-2 and
EHD1, exist and contribute to the function of REs. The BioID
methods should help identify these.

Besides the classical roles of REs in endocytic recycling, we and
others have shown that REs have a role in the exocytic and
retrograde membrane traffic. These results raise a fundamental
question how individual cargos are packaged into appropriate
membrane carriers. In vivo imaging system to visualize the
dynamics of multiple cargos for distinct destinations, and
in vitro reconstitution system, such as those developed for the

early secretory pathway (Kim et al., 2005; Kim et al., 2007), would
greatly benefit in our understanding of the nature and regulators
of membrane traffic at REs.
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Membrane contact sites (MCS) are specialized small areas of close apposition between
two different organelles that have led researchers to reconsider the dogma of intercellular
communication via vesicular trafficking. The latter is now being challenged by the discovery
of lipid and ion transfer across MCS connecting adjacent organelles. These findings gave
rise to a new concept that implicates cell compartments not to function as individual and
isolated entities, but as a dynamic and regulated ensemble facilitating the trafficking of
lipids, including cholesterol, and ions. Hence, MCS are now envisaged as metabolic
platforms, crucial for cellular homeostasis. In this context, well-known as well as novel
proteins were ascribed functions such as tethers, transporters, and scaffolds in MCS, or
transient MCS companions with yet unknown functions. Intriguingly, we and others
uncovered metabolic alterations in cell-based disease models that perturbed MCS size
and numbers between coupled organelles such as endolysosomes, the endoplasmic
reticulum, mitochondria, or lipid droplets. On the other hand, overexpression or deficiency
of certain proteins in this narrow 10–30 nm membrane contact zone can enable MCS
formation to either rescue compromised MCS function, or in certain disease settings
trigger undesired metabolite transport. In this “Mini Review” we summarize recent findings
regarding a subset of annexins and discuss their multiple roles to regulate MCS dynamics
and functioning. Their contribution to novel pathways related to MCS biology will provide
new insights relevant for a number of human diseases and offer opportunities to design
innovative treatments in the future.

Keywords: annexins, membrane contact sites, endolysosomes, mitochondria, endoplasmic reticulum, cholesterol,
calcium-binding proteins, lipid transport

INTRODUCTION

Despite the identification of membrane contacts between neighbouring organelles in the early times
of electron microscopy, these small microdomains only received greater attention in the last decade.
Two findings prompted further research on the structure and function of membrane contact sites
(MCS). Firstly, the endoplasmic reticulum (ER) representing a dynamic 3D network of cisternae and
tubules, it fills the cytoplasm and is in physical contact with other organelles (Nixon-Abell et al.,
2016). Secondly, the discovery of the physiological relevance of contacts between the ER and
mitochondria (mitochondria-associated membranes, MAMs) in the synthesis and exchange of lipids
and calcium (Ca2+) homeostasis (Vance, 1990). Since then, the MCS-related Universe expanded
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FIGURE 1 | Annexins and associated protein complexes at membrane contact sites. (A) Endolysosomes (LE/MVBs/Lys) establish multiple membrane contact
sites (MCS) with a variety of other organelles, in particular the ER and mitochondria, but also peroxisomes and lipid droplets. Here we only illustrate a subset of contacts
and contact site proteins. Lipid transfer, including cholesterol as well as Ca2+ mobilization and signalling are probably the most important MCS-associated functions.
Annexins have been found in MCS connecting the ER with either LE or mitochondria (MAMs), as well as in LE-mitochondria contacts. Other proteins or protein
complexes serve as tethers to ensure the formation of MCS, including several sorting nexins (Henne et al., 2015; Dong et al., 2016; Saric et al., 2021), VAP proteins,
PTPIP51, PDZD8 or protrudin (Shirane et al., 2020; Neefjes and Cabukusta, 2021). Furthermore, ORP5/8 and NPC1/Gramd1 also translocate lipids including PS and
cholesterol, across MCS between the ER and mitochondria and/or LE respectively (Galmes et al., 2016; Hoglinger et al., 2019). At the bottom of this endolysosome, we
contemplate the possible recruitment of cytosolic annexins into ILV (see text for details) via two autophagic pathways. While chaperone-mediated and Lamp2a-
dependent autophagy (CMA) may carry annexins into the lumen of MVBs or the outer membrane of ILVs, endosomal microautophagy (e-MI) may board annexins inside
ILV (both routes via KFERQ-motif) (Tekirdag and Cuervo, 2018). In any case, whatever the topology, these proteins have to escape from lysosomal degradation
(Meneses-Salas et al., 2020b). Then, ILV might undergo back fusion/retrofusion (Eden and Futter, 2021), delivering annexins and/or other cargo out of the MVB into the
cytosol in the vicinity of MCS, where a suitable local Ca2+ and lipid microenvironment could then favour retention in MCS. Alternatively, MVB diversion to exocytosis could
generate exosomes. This could be the destination of AnxA11, highly enriched in exosomes. Otherwise, cytosolic AnxA11 could be confined to PI(3,5)P2 at the
endolysosomal cytosolic membrane to tether RNA granules (Liao et al., 2019). (B) 1: AnxA1, together with S100-A11 as a tetrameric complex, tethers MCS to mediate
cholesterol transport from ER to LE/Lys via interaction of VAP-A with ORP1L (Eden et al., 2016). In this scenario, AnxA1 overexpression increases MCS between MVB
and ER (Wong L. H. et al., 2018). 2: AnxA6 overexpression decreased MCS numbers between ER and LE/Lys, whereas AnxA6 depletion in NPC1 mutant cells
stimulated MCS formation. The underlying mechanism involves the recruitment of AnxA6 and TBC1D15 to Rab7-positive organelles and was associated with increased
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rapidly and MCS are now considered metabolic platforms for the
transport of small molecules such as lipids and ions (Prinz et al.,
2020). In addition, MCS modulate various other functions,
including organelle trafficking, endosome maturation and
positioning, membrane dynamics, Ca2+ signalling, autophagy
and membrane/vesicle/organelle fusion and fission (Friedman
et al., 2013; van der Kant and Neefjes, 2014; Raiborg et al., 2015a;
Raiborg et al., 2015b; Eisenberg-Bord et al., 2016; Abrisch et al.,
2020; Silva et al., 2020). Membrane contacts also exist in
organelles with internal membranes, including mitochondria,
chloroplasts, and multivesicular bodies (MVBs) (Prinz et al.,
2020). As MCS formation can be manipulated experimentally
and is de-regulated in human disease models (Wu et al., 2018;
Henne, 2019; Scorrano et al., 2019; Ballabio and Bonifacino, 2020;
Martello et al., 2020; Petkovic et al., 2021), MCS have become
attractive therapeutic targets.

MCS appear as small contact zones between neighbouring
organelles, but contain a plethora of proteins and lipids. The
biogenesis, maintenance, dynamics, and function of MCS rely on
protein-protein interactions bridging apposed membranes to
establish their communication. These proteins in MCS include
numerous lipid and cholesterol transfer proteins, and a variety of
tethers, sorting nexins, membrane channels, SNAREs, small Rab-
GTPases and their regulators. In addition, as outlined in more
detail below, several annexins are also found in MCS. It would go
beyond the scope of this Mini Review to list all proteins and we
recommend excellent articles and reviews on this topic (Alpy and
Tomasetto, 2005; Eisenberg-Bord et al., 2016; Kentala et al., 2016;
Atakpa et al., 2018; Hoyer et al., 2018; Kumar et al., 2018; Quon
et al., 2018; Sandhu et al., 2018; Balla et al., 2019; Bohnert, 2019;
Liao et al., 2019; Patel, 2019; Cremer et al., 2020; Islinger et al.,
2020; Meneses-Salas et al., 2020b; Peng et al., 2020; Hewlett et al.,
2021; Reinisch and Prinz, 2021; Saric et al., 2021; Wu and Voeltz,
2021).

Annexins—Novel Players in Intracellular
Communication and Membrane Contact
Sites
Annexins are characterized by a high structural homology that
enables binding to acidic phospholipids in a Ca2+-dependent
manner. In fact, most annexin functions in cells are due to their
dynamic and reversible binding to membranes (Gerke et al., 2005;
Enrich et al., 2017). More recently, mouse models lacking
individual annexins validated proposed functions in complex
physiological processes in vivo (Alvarez-Guaita et al., 2020;

Grewal et al., 2021). Annexins are present in multiple cellular
compartments to regulate numerous functions, including
membrane trafficking, cytoskeleton dynamics, ion channels,
cell signalling, membrane repair and pro- or anti-
inflammatory activities. Most relevant for this review, annexins
(AnxA1, A6 and A11) are located in endolysosomes in the
vicinity of the ER (Figure 1A) with novel MCS-related roles
for these annexins in cell physiology (Pons et al., 2000; Eden et al.,
2016; Liao et al., 2019).

AnxA1 is ubiquitously expressed and found at the plasma
membrane, endo-/exocytic vesicles, the cytoskeleton and nucleus
(Grewal et al., 2021). Moreover, AnxA1 acts as a tether
connecting the ER and MVBs (Eden et al., 2010; Eden et al.,
2016). Tyrosine phosphorylated AnxA1 together with its binding
partner S100A11 provide a docking site for tyrosine phosphatase
1B (PTP1B), an enzyme localized in the ER, at MVB-ER contacts
to enable sorting of ligand-stimulated epidermal growth factor
receptor (EGFR) onto intraluminal vesicles (ILVs) (Figure 1B1).
EGF-induced AnxA1 phosphorylation is crucial for the
segregation of EGFR onto ILVs (White et al., 2006). It
remains to be clarified if AnxA1 acts in concert with the
ESCRT complex and associated proteins and lipids (Raiborg
and Stenmark, 2009) to facilitate this indispensable step
targeting EGFR to lysosomes for degradation. Thus, MVB-ER
contacts may provide localized sites where the phosphorylation
status of AnxA1 and MVB sorting machinery components could
be tightly controlled (Futter et al., 1993; White et al., 2006; Du
et al., 2012; Eden et al., 2016).

Importantly, the AnxA1 tethering function is also required for
ER-derived cholesterol transport to MVBs, a critical step for ILV
formation to spatially regulate EGFR signalling.When cholesterol
levels are low due to reduced endocytosis of Low-density
lipoproteins (LDL), AnxA1-regulated membrane contacts
facilitate cholesterol transfer from the ER to MVBs via the
interaction of ER-localized VAMP-associated proteins (VAPs)
and the endosomal oxysterol-binding protein related protein 1L
(ORP1L) (Eden et al., 2016).

Besides the AnxA1-S100A11 complex, other annexins also
interact with S100 proteins, and may interact with two
membranes simultaneously (Rescher and Gerke, 2004; Rintala-
Dempsey et al., 2008). Hence, the reversible membrane binding
capacity of annexins could establish initial protein-protein (or
protein-phospholipid) interactions between LE/MVB and ER
membranes to induce MCS formation and allow the exchange
of ions and lipids, including cholesterol in other physiological
settings (Miwa et al., 2008; Rintala-Dempsey et al., 2008).

FIGURE 1 | LE motility and LE-cholesterol release into the ER, through StARD3-VAP-A in MCS (Meneses-Salas et al., 2020b). 3: TBC1D15 and Rab7 in complex with
FIS1 between LE/Lys andmitochondria affects the fission of mitochondria (Wong Y. C. et al., 2018). 4: AnxA6 interacts with Drp1 and FIS1 between ER andmitochondria
to modulate Ca2+ dynamics and mitochondrial fission (Chlystun et al., 2013). In all settings shown in Insets 2-4 the presence of AnxA6 seems to cause MCS untethering.
Arrows indicate the following: translocation of EGFR-EGF into ILV (green, inset 1), cholesterol flux (pink, insets 1-2), Ca2+ flux (red, insets 3-4). (C) Schematic
representation of the domain structure of the three annexins found in MCS: Motifs that may be involved in the recruitment annexins to MCS are indicated and include the
homology to FFAT motifs (blue), S100-binding sites (green) (Rety et al., 2000; Chang et al., 2007; Rintala-Dempsey et al., 2008) and KFERQ-motifs (yellow and red)
(Cuervo et al., 2000). Abbreviations that do not appear in the text: ACAT, Acyl-CoA:cholesterol acyltransferase; MCU, mitochondrial calcium uniporter; FIS1,
mitochondrial fission 1; IP3R, inositol 1,4,5-triphosphate receptor; TRPML1, transient receptor potential mucolipin 1; Vps13, Vacuolar protein sorting-associated protein
13; MFN1/2, mitofusin1/2; Gramd1b, GRAM domain containing 1B; VAP proteins, VAP-A, VAP-B; monomer specific d-peptide 1 (MOSD1, 2 and 3) and PS,
phosphatidylserine.
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AnxA6 has recently also been associated with MCS formation
(Meneses-Salas et al., 2020b). Further to its association with the
plasma membrane, endo-/exocytic vesicles, mitochondria and
lipid droplets (Grewal et al., 2021), AnxA6 was additionally
detected in MAMs (Sala-Vila et al., 2016), specialized
membrane subdomains enriched in cholesterol and neutral
lipids that permit the communication between the ER and
mitochondria (Vance, 1990; Hayashi and Su, 2003).

Given the recently identified role of AnxA6 in cholesterol
transfer across MCS (Meneses-Salas et al., 2020b) and its
presence in MAMs (Sala-Vila et al., 2016), the control of
cholesterol transfer across MAMs and its alignment with
steroid, oxysterol and bile acid synthesis is decisive for
proper mitochondrial homeostasis. Emerging molecular
insights include the identification of the founder member of
the START [(Steroidogenic Acute Regulatory protein) related
lipid transfer] domain family, StAR, also known as StARD1, at
the outer mitochondrial membrane (OMM) as part of a multi-
protein complex, with the voltage-dependent anion-selective
channel protein (VDAC) and phosphate carrier protein (PCP),
involved in the import of cholesterol (Reitz et al., 2008; Alpy
and Tomasetto, 2014; Elustondo et al., 2017). StARD1 first
incorporates ER-derived cholesterol into OMM, and together
with VDAC and the translocator protein (TSPO), interacts
with ATPase family AAA domain containing 3A (ATAD3A)
and cytochrome P450 family 11 subfamily A member 1
(CYP11A1) in the inner mitochondrial membrane (Rone
et al., 2012), to move and then metabolize cholesterol
(Elustondo et al., 2017). Yet, how the feedback loop that
coordinates LDL-derived cholesterol uptake and de novo
cholesterol synthesis links to tethering and untethering
events between the ER or LE/Lys with mitochondria to
prevent excessive cholesterol transfer across MAMs remains
unclear. Despite regulatory roles for AnxA6 in cholesterol
transfer across LE/Lys-ER contacts (see below), similar
functions for AnxA6 in MAMs have yet to be identified.

This indicates that mechanisms are in place that keep
alternative and NPC1-independent cholesterol transport in an
inactive state and do not enable other transport machinery to
overcome cholesterol accumulation caused by NPC1 deficiency.
Therefore, the presence of yet unidentified inhibitory proteins
that act as “gatekeepers” may control activation of alternative
cholesterol transport routes exiting LE/Lys. Indeed, NPC1
deficiency was associated with downregulation of the GTPase
Rab7, the master regulator of LE/Lys function. Inhibition of Rab7
activity was mediated by AnxA6, which recruited the Rab7-
GTPase activating protein (Rab7-GAP) TBC1 domain family
member 15 (TBC1D15) to cholesterol-rich LE, thereby
lowering Rab7-GTP levels. Strikingly, AnxA6 depletion in
NPC1 mutant cells and the concomitant loss of TBC1D15
membrane targeting elevated Rab7-GTP levels, leading to
increased MCS formation between LE/Lys and the ER
(Figure 1B2). This MCS restoration enabled cholesterol
transfer across LE/Lys-ER contacts via the cholesterol
transporter StARD3 for storage in lipid droplets. Hence, the
AnxA6/TBC1D15 complex could become a potential
therapeutic target to slow down the progressive

neurodegeneration in NPC disease (Enrich et al., 2019;
Meneses-Salas et al., 2020b).

Interestingly, loss of TBC1D15-mediated Rab7-GTP
hydrolysis also inhibited the untethering of mitochondria-LE/
Lys contacts, disrupting mitochondrial distribution and function
in models mimicking Parkinson’s disease pathophysiology
(Wong Y. C. et al., 2018; Kim et al., 2021) (Figure 1B3).
Similarly, Rab7 mutations with reduced GTPase activity in
Charcot-Marie-Tooth type 2B (CMT2B) are linked to defective
mitochondria-lysosome contact dynamics (Bucci and De Luca,
2012; Wong et al., 2019). Of note, in mitochondria, AnxA6 also
interacts with dynamin-related protein 1 (Drp1) (Chlystun et al.,
2013), a GTPase interconnected with Rab7-dependent
mitochondrial-LE/Lys contact formation in CMT2B (Wong
et al., 2019). Hence, one can envisage a scaffolding role for
AnxA6 in Rab7/TBC1D15 and Drp1-dependent dynamics of
mitochondria-LE/Lys contacts in these neurological diseases
(Figure 1B4).

Studies described above suggest annexin levels to differentially
impact on MCS numbers, composition and function. Indeed,
AnxA1 depletion markedly reduced MCS connecting EGFR-
containing MVBs and the ER, while MCS between EGFR-
deficient MVBs and the ER remained unaffected (Eden et al.,
2016). Likewise, MCS exist in NPC mutant cells, in particular
between LE/Lys and mitochondria (Hoglinger et al., 2019), yet
AnxA6 depletion and consequently, loss of TBC1D15
recruitment to LE/Lys in these cells, increased MCS numbers
between LE/Lys and the ER for cholesterol transfer, requiring
Rab7, and the cholesterol transporter StARD3. Hence, high/low
annexin levels acting as tethers (AnxA1) or gatekeepers (AnxA6)
will differentially influence MCS protein composition and
functions, with consequences for cholesterol transport between
organelles. This may extend to other annexins, including AnxA2,
which together with S100A10, can bridge membranes (Illien et al.,
2012; Grill et al., 2018; Berg Klenow et al., 2021), and bind to
cholesterol-rich LE (Mayran et al., 2003). Similarly, AnxA8 is
recruited to cholesterol-laden LE, and AnxA8 depletion caused
LE/Lys cholesterol accumulation (Heitzig et al., 2018). Further
examples of up- or downregulated tethers, with consequences for
lipid- or ion-related MCS transfer, comprise phosphatase
interacting protein 51 (PTPIP51, also called RMDN3) (Galmes
et al., 2016), and PDZ domain-containing protein 8 (PDZD8)
(Hirabayashi et al., 2017). Thus, manipulating the levels of
tethers, untethers and lipid transporters (Galmes et al., 2016;
Pulli et al., 2018) can offer therapeutic opportunities to modulate
MCS formation in disease.

Protein Domains in Annexins That Could
Modulate MCS Assembly
The potential involvement of annexins in MCS formation by
means of interactions with FFAT motifs (two phenylalanines in
an acidic tract) in MCS-associated proteins should also be
considered. FFAT motifs were originally identified in late
endosomal/lysosomal proteins, interacting with ER-associated
VAPs. Several variations of the original FFAT motif exist
(Mikitova and Levine, 2012; Murphy and Levine, 2016;
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Cabukusta et al., 2020), including the Phospho-FFAT motif in
AnxA5 and A8 (Di Mattia et al., 2020). Homologies to FFAT
motifs were also located in AnxA1, A6 and A11 (Figure 1C)
(Rentero et al., 2018). Given their association with the LE/Lys
compartment and affinity for cholesterol (de Diego et al., 2002;
Hulce et al., 2013), one could envisage MCS formation between
the ER and LE/Lys being influenced by ER-associated VAPs or
motile sperm domain-containing proteins (MOSPDs)
recognizing FFAT-like motifs in these annexins.

Alternatively, post-translational modifications such as
palmitoylation, which enables the targeting of cytosolic
proteins to membranes, often modulating the activity of
multiprotein complexes in specialized microdomains
(Charollais and Van Der Goot, 2009). This is exemplified by
palmitoylated caveolin-1 and its ability to bind cholesterol,
thereby determining the cholesterol content of ER-
mitochondria subdomains, linking organelle communication
across MAMs with intracellular steroid and lipoprotein
metabolism (Sala-Vila et al., 2016).

Likewise, palmitoylated cytoskeleton-associated protein 4
(CKAP4) interacts with VDAC2 at ER-mitochondrial contacts
(Harada et al., 2020). This could impact on cholesterol transfer, as
StARD1, which transfers ER-derived cholesterol to mitochondria,
can form a complex with TOM22 and VDAC2 (see above)
(Torres et al., 2017; Gordaliza-Alaguero et al., 2019).

Another example is the transmembrane protein 55B
(TMEM55B), which interacts with the cytosolic scaffold
protein JIP4 and dynein/dynactin in MCS to modulate the
spatial distribution and positioning of lysosomes. TMEM55B
palmitoylation was decisive for lysosomal positioning,
implicating a critical role in determining the speed and
location of MCS being formed, (Ballabio and Bonifacino, 2020;
Rudnik et al., 2021; Saftig and Puertollano, 2021).

Interestingly, AnxA1 and AnxA6 were recently identified as
palmitoylated substrates in extracellular vesicle fractions,
including exosomes (Albacete-Albacete et al., 2020; Mariscal
et al., 2020). The mechanisms that regulate this post-
translational modification or whether this modification also
applies for other annexins remains unknown. Hence,
palmitoylated annexins may also contribute to MCS tethering.
Exploring whether annexins establish palmitoylated links with
perimeter LE/Lys membranes as well as mutational analysis of the
FFAT-like motif in annexins will address the relevance and
potential consequences of these proposed interactions.

AnxA11 is a Tether of Lysosomes and RNA
Granules
Recently, AnxA11 was detected in lysosomes that connect with
RNA granules (Liao et al., 2019). Alike AnxA1 and A6, AnxA11 is
widely expressed with diverse, often Ca2+- and S100A6
(calcyclin)-dependent functions in cytoplasmic and nuclear
membrane locations, relevant for growth, cell cycle
progression, differentiation, and exocytosis (Grewal et al., 2021).

Liao and coworkers identified AnxA11 as a tether mediating
RNA granule association with lysosomes during their transport to
distal regions of the axon (Liao et al., 2019). Strikingly, AnxA11

mutations associated with amyotrophic lateral sclerosis (ALS)
disrupted docking between RNA granules and lysosomes, thus
hampering neuronal RNA granule transport. Mutant analysis
mapped the AnxA11 N-terminus as necessary for Ca2+- and
phospholipid-dependent lysosome-RNA granule interactions,
which could be relevant for RNA granule microtubule-based
transport in polarized epithelial cells or neurons, facilitating
local protein translation at subcellular locations (Lee et al.,
2020; Das et al., 2021). Hence, AnxA11 represents a novel
mechanistic and structural link between lysosomes and a
membraneless compartment in ALS pathogenesis. This
observation might extend to other annexins, as the AnxA11
interactome included AnxA7 (Liao et al., 2019). Similarly,
using AnxA6 as bait, we identified AnxA11 and AnxA7 as
binding partners, indicating that interactions between multiple
annexins, as proposed previously (Li et al., 2016), may contribute
to the tethering of lysosomes to other organelles.

DISCUSSION

Since the discovery of the annexin domain structure (Geisow, 1986),
annexins have been identified inmany organisms, including humans
(Moss and Morgan, 2004). The Ca2+-inducible conformational
change and differential preference for negatively charged
phospholipids and other lipids, in particular cholesterol, can
enhance membrane association of several annexins (Enrich et al.,
2017). Furthermore, their promiscuous behaviour to differentially
interact with other proteins together with their innate properties to
“annex” membranes, make annexins suitable applicants for MCS
appointments.

Annexins: Regulators of Cholesterol
Trafficking, ILV Formation and MCS
Association
As outlined above, AnxA1 and AnxA6 control cholesterol
transport from the ER to LE/Lys and vice versa via MCS
(Eden et al., 2016; Meneses-Salas et al., 2020b). This
contribution to MCS functioning may assist to control
cholesterol levels in MVBs to participate, together with other
lipids and accessory proteins (Gruenberg, 2020), in ILV
biogenesis. This might even create transport specificity, as
AnxA1 only mediates MCS formation between the ER and
EGFR-containing MVBs (Wong L. H. et al., 2018).

However, annexin recruitment to MCS remains to be clarified.
Besides the potential contribution of FFAT motifs or palmitoylation
listed above, this could occur via translocation of cytosolic annexin
pools where local Ca2+, cholesterol or annexin-binding proteins
could contribute to their association with MCS. Alternatively,
annexin pools inside ILVs could be released via back fusion, a
constitutive process occurring in MVBs, where ILV fuse with the
perimeter LE membrane leaving the cargo at cytosolic interfaces
delimited by juxtaposed membranes of MVBs and other organelles
(i.e., ER) (Gruenberg, 2020; Perrin et al., 2021). In this scenario,
annexins could locally encounter a suitable Ca2+ and lipid
microenvironment that would enable them to act as
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interorganelle tethers. On the other hand, annexins on ILVs facing
the lumen of MVBs might be part of the fusion machinery
(including LBPA, cholesterol, Alix) for the back fusion process.
In fact, some of the complex protein networks that interact with
AnxA6 are also involved in ILV formation and may regulate back
fusion (Enrich et al., 2017). The well-documented presence of
annexins in exosomes provides credibility for mechanisms such
as chaperone-mediated autophagy (CMA) or endosome
microautophagy (e-MI) for annexin association with ILV, the
latter having the ability to keep proteins inside ILV. This is
supported by all annexins harbouring the KFERQ motif
(Figure 1C) (Cuervo et al., 2000; Kaushik and Cuervo, 2018),
which is considered responsible for the location of annexins
inside ILV (White et al., 2006; Meneses-Salas et al., 2020a).

Overall, the evidence of annexins contributing to MCS
formation and function in LE/Lys is growing, with
consequences for membrane traffic, microdomain
organization, interactions with the cytoskeleton, cholesterol
homeostasis, tethering, Ca2+ signalling and positioning of
acidic compartments, and likely relevant for many biological
settings.
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Running ‘LAPS’ Around nLD: Nuclear
Lipid Droplet Form and Function
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The nucleus harbours numerous protein subdomains and condensates that regulate
chromatin organization, gene expression and genomic stress. A novel nuclear subdomain
that is formed following exposure of cells to excess fatty acids is the nuclear lipid droplet
(nLD), which is composed of a neutral lipid core surrounded by a phospholipid monolayer
and associated regulatory and lipid biosynthetic enzymes. While structurally resembling
cytoplasmic LDs, nLDs are formed by distinct but poorly understood mechanisms that
involve the emergence of lipid droplets from the lumen of the nucleoplasmic reticulum and
de novo lipid synthesis. Luminal lipid droplets that emerge into the nucleoplasm do so at
regions of the inner nuclear membrane that become enriched in promyelocytic leukemia
(PML) protein. The resulting nLDs that retain PML on their surface are termed lipid-
associated PML structures (LAPS), and are distinct from canonical PML nuclear bodies
(NB) as they lack key proteins and modifications associated with these NBs. PML is a key
regulator of nuclear signaling events and PML NBs are sites of gene regulation and post-
translational modification of transcription factors. Therefore, the subfraction of nLDs that
form LAPS could regulate lipid stress responses through their recruitment and retention of
the PML protein. Both nLDs and LAPS have lipid biosynthetic enzymes on their surface
suggesting they are active sites for nuclear phospholipid and triacylglycerol synthesis as
well as global lipid regulation. In this reviewwe have summarized the current understanding
of nLD and LAPS biogenesis in different cell types, their structure and composition relative
to other PML-associated cellular structures, and their role in coordinating a nuclear
response to cellular overload of fatty acids.
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INTRODUCTION

The lipid droplet (LD) is a unique cellular organelle composed of
a surface monolayer of phospholipids and proteins surrounding a
neutral lipid core containing triacylglycerides (TAG1) (Walther
et al., 2017), steryl esters (Shen et al., 2016) and/or retinyl esters
(Orban et al., 2011). Nutrient stress or excess fatty acids promote
the storage of neutral lipids in LDs, which can be subsequently
released by ester hydrolases to provide energy, lipid precursors for
membrane biogenesis and signalling molecules (Henne et al.,
2018). LDs therefore sequester essential biomaterials, while
protecting the cell from the lipotoxic effects of excess fatty
acids and cholesterol that can promote ER stress and
mitochondrial dysfunction, which promote cell death
(Olzmann and Carvalho, 2019). The defective storage of lipids
in LDs has profound pathophysiological consequences. In the
case of TAG, unilocular LDs in adipocytes are the primary storage
depot but hepatocytes and other cells are also capable of short-
term storage and release of fatty acids from LDs. However,
chronic exposure of hepatocytes to fatty acids causes non-
alcoholic fatty liver disease (NAFLD) (Diehl and Day, 2017), a
common form of hepatic steatosis caused by fatty acid-induced
ER and mitochondrial stress (Cazanave et al., 2010; Mantzaris
et al., 2011), defective lipophagy of LDs (Singh et al., 2009) and
lipid activation of pro-apoptotic transcriptional pathways
(Barreyro et al., 2007). When combined with an inflammatory
insult, NAFLD can progress to non-alcoholic steatohepatitis,
which is associated with hepatic fibrosis and cirrhosis. NAFLD
is a major risk factor for chronic liver disease and contributes to
rising rates of liver transplantation in developed countries (Pais
et al., 2016).

The lipid storage function of LDs relies on a complement of
core proteins on their surface that regulate the storage and release
of lipids in response to nutrient signaling. Proteomic analysis has
revealed an expanded repertoire of associated proteins that
suggest a wide-ranging role for LDs in cell physiology. These
include the MAX dimerization (MLX) protein and related
glucose-sensing transcription factors (Mejhert et al., 2020),
histone storage (Cermelli et al., 2006), nuclear pore protein
expression (Kumanski et al., 2021), clearance of misfolded and
ubiquitinated proteins (Ohsaki et al., 2008; Moldavski et al., 2015)
and immune responses to viral and bacterial infection (Bosch
et al., 2021). Consequently, our understanding of LD biology has
evolved from that of lipid storage depots to one of dynamic
organelles that functionally intersect with many cellular
metabolic and signalling activities. This has been further
challenged by the discovery and characterization of nuclear
lipid droplets (nLD) that share features with their cytosolic
counterparts but are unique in terms of biogenesis, their
associated proteins and lipids, and ultimately their cellular
activities (Sołtysik et al., 2019).

nLDs were first characterized in normal and transformed
hepatocytes (Layerenza et al., 2013; Uzbekov and Roingeard,
2013; Wang et al., 2013) and later Caco2 intestinal epithelial
cells (Yue et al., 2020), reflecting their biogenesis from lipoprotein
precursors (Soltysik et al., 2019). nLDs are rarely observed in
common laboratory cell lines and tissues that do not secrete

lipoproteins. An exception is U2OS osteosarcoma cells that
contain abundant nLDs when incubated with oleate (Ohsaki
et al., 2016). nLDs have been identified in yeast under nutrient
stress conditions and certain mutational backgrounds
(Romanauska and Kohler, 2018) and intestinal and germ cells
of Caenorhabditis elegans (Mosquera et al., 2021). As will be
discussed, the apparent restricted distribution of nLDs reflects
both their unique biosynthetic origins and limited investigation
in other cells and organisms.

Since cytoplasmic lipid droplets (cLD) are more abundant
than their nuclear counterparts, nLDs visualized by wide-field
microscopy could be cLDs trapped in invaginations of the nuclear
envelope (NE). However, serial sections of human liver revealed
that nLDs are not connected to the NE and associate with
heterochromatin (Uzbekov and Roingeard, 2013). nLDs
visualized by confocal microscopy of rat hepatocytes were not
associated with nuclear lamina, and could be isolated from
purified nuclei (Layerenza et al., 2013). A detailed lipidomic
analysis of isolated nLDs is not available; however, lipid class
analysis indicated they contain more cholesterol ester, cholesterol
and phospholipids, less TAG, and a higher protein-to-lipid ratio
relative to cLDs (Layerenza et al., 2013). These features reflect the
smaller size and larger surface-to-volume ratio of nLDs. A
proteomic analysis of purified nLDs from rat liver revealed a
variety of cytoskeletal proteins, transcription and translation
factors, histones and carboxyl esterase 1 (Lagrutta et al., 2021).
Interestingly, the proteome of purified nLDs did not contain any
nLD-associated proteins identified bymicroscopy-basedmethods
(Ohsaki et al., 2016; Soltysik et al., 2019; Lee et al., 2020; Soltysik
et al., 2021). These differences likely reflect the conditions used to
isolate the nLDs, which could strip loosely associated proteins. As
a result, to more fully assess the nLD proteome, gentler in situ
methods are required that do not involve cellular disruption and
biochemical purification, such as proximity labelling and mass
spectrometry of in vivo labelled protein complexes. In the
following sections, we will highlight our current understanding
of the proteins and lipids involved in the biogenesis of nLDs at the
inner nuclear membrane (INM) and potential functions in the
nucleoplasm, with a focus on the association of nLDs with
promyelocytic leukemia (PML) protein in lipid-associated
PML structures (LAPS).

MECHANISMS OF NUCLEAR LIPID
DROPLET BIOGENESIS
Nuclear Lipid Droplet Biogenesis on the
Inner Nuclear Membrane
The immiscibility of hydrophobic neutral lipids in the cytosol is
ultimately the key physical property driving nLD and cLD
formation, growth and stability. Eukaryotic cells coordinate
each of these processes through a dynamic, non-stochastic,
and tightly regulated mechanism, allowing cells to effectively
respond to changes in energy status, substrate availability and
cellular stress. nLD biogenesis occurs by at least two known
pathways: 1) in situ biogenesis at the INM and nLD budding into
the nucleoplasm and 2) ER luminal lipid droplets (eLD) that

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8374062

McPhee et al. nLD Formation and Function

69

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


migrate into type-1 nucleoplasmic reticulum (NR) invaginations
that rupture to release a nascent nLDs into the nucleoplasm
(Figure 1).

In situ nLD biogenesis is documented in Saccharomyces
cerevisiae (Romanauska and Kohler, 2018) as well as U2OS
cells (Lee et al., 2020; Soltysik et al., 2021). While nLDs are
particularly enriched in cholesterol esters (Layerenza et al., 2013),
nLD biogenesis in most studies in mammalian cells is induced
with exogenous oleate. The mechanism for formation of TAG-
enriched nLDs appears to have many features in common with
that for cLD formation in the ER (Thiam et al., 2013; Walther
et al., 2017) (Figure 2). TAG is synthesized de novo from glycerol-
3-phosphate and fatty acids by the concerted activity of glycerol
3-phosphate acyltransferases (GPAT) and 1-acylglycerol 3-
phosphate acyltransferases (AGPAT) to produce phosphatidic
acid (PA), which is dephosphorylated by Pah1 (S. cerevisiae) and
Lipins (mammals) to produce diacylglycerol (DAG). Finally,
DAG acyltransferases (DGAT) 1 and DGAT2 produce TAG
(Figure 2A). These TAG lipid synthetic enzymes concentrate
at specific sites of the endoplasmic reticulum (ER) membrane to
facilitate the nucleation of de novo synthesized neutral lipid
between leaflets of phospholipid bilayer (Figure 2B). These

lens-like structures accumulate lipids and bud into the
cytoplasm to produce nascent cytoplasmic LDs (cLD). cLDs
continue to mature or ‘ripen’ through three mechanisms: 1)
seipin-dependent membrane bridges that connect the cLD
monolayer with the cytosolic leaflet of the ER, allowing the
diffusion of proteins and lipids to the LD (Wang et al., 2016;
Salo et al., 2019), 2) targeting of GPAT4, AGPAT4, and DGAT2
to the LD to facilitate in situ TAG synthesis (Wilfling et al., 2013;
McFie et al., 2018; Olarte et al., 2022) and 3) coalescence of lipid
droplets (Thiam et al., 2013).

In the case of oleate-treated U2OS cells, nLD biogenesis
involves an in situ pathway. Similar to cLDs (Figure 2),
AGPAT2, GPAT3/4, Lipin-1 and DGAT1/2 are localized to
the INM of U2OS cells and required for nLD biogenesis (Lee
et al., 2020; Soltysik et al., 2021). Acyl-CoA synthetase long chain
family member 3 (ASCL3), lyso-phosphatidylcholine
acyltransferase 1 (LPCAT1), GPAT3/4, Lipin-1β, and DGAT2
also localize to the surface of the nLD and could provide TAG and
phosphatidylcholine (PC) for growth of the nLD after it buds into
the nucleoplasm (Soltysik et al., 2021). mTORC1 inhibition
promotes the nuclear translocation of Lipin-1β and increased
nLDs (Soltysik et al., 2021). Lipin-1α and -1β are enriched on the

FIGURE 1 | nLD biogenesis in mammalian cells. Twomechanisms have been identified for nLD formation. Mechanism 1: Much like cLD biogenesis, nLD biogenesis
in U2OS cells, S. cerevisiae, and C. elegans involves in situ TAG synthesis at the INM facilitated by lipid biosynthetic enzymes. nLD biogenesis is seipin-dependent in S.
cerevisiae, whereas the process is seipin-independent in U2OS cells. Mechanism 2: In specialized lipoprotein-exporting mammalian cells like hepatocytes and intestinal
epithelial cells, ApoB-free eLDs form in an MTP-dependent manner and subsequently migrate through the lumen of the ER into the lumen of the NE. Next, eLDs
enter into type-I NR invaginations of the INM that extend into the nucleoplasm. PML-II localizes to INM at lamin-deficient regions, possibly facilitating translocation of the
LD through ruptures of the INM into the nucleoplasm. In mammalian cells more generally, lipid biosynthetic enzymes DGAT2, Lipin-1 and CCTα, LD coat protein perilipin-
3, and PML are all present at the surface of nLDs. The binding of lipid biosynthetic enzymes and the formation of LAPS are two commonalities of nLDs irrespective of their
biogenesis in mammalian cells, suggesting a possible conserved function for these structures.
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surface of a significant fraction of nLDs containing DAG
suggesting they provide substrate for DGAT and TAG
biosynthesis (Lee et al., 2020). nLDs in oleate-treated U2OS
also serve as a platform for recruitment and activation of CTP:
phosphocholine cytidylyltransferase α (CCTα), the rate-limiting
enzyme in the CDP-choline pathway for PC synthesis (Figure 1)
(Lee et al., 2020). Similar to the activation of CCT1 on cLDs in
Drosophila melanogaster S2 cells (Krahmer et al., 2011), CCTα
activation on nLDs increases cellular PC synthesis to expand the
TAG storage capacity in cLDs, or to provide PC to reduce fatty
acid-induced ER stress (Soltysik et al., 2019).

In contrast to cLD biogenesis in the ER (Figure 2B), the
formation of nLDs in U2OS cells is seipin-independent (Soltysik
et al., 2021). Seipin has a well-recognized role in the nucleation of
cLD formation in the ER where it forms an oligomeric ring
complex with lipid droplet assembly factor 1 (LDAF1) that acts to
concentrate DAG and TAG, and facilitate protein and lipid
transfer from the ER to nascent cLDs (Figure 2B) (Wang
et al., 2016; Yan et al., 2018; Chung et al., 2019; Salo et al.,
2019). Seipin also interacts with GPAT3/4, AGPAT2, and Lipin1
to concentrate the production of TAG at specific sites in the ER
(Sim et al., 2012; Sim et al., 2020). Interestingly, RNAi-mediated
seipin knockdown in U2OS cells promoted increased nLD
formation by an ACSL3 and Lipin-1β-dependent mechanism
(Soltysik et al., 2021). This correlated with reduced expression
of the splicing factor TRA2B leading to increased expression and
translocation of Lipin-1β into the nucleus. The mechanism for
seipin induction of TRA2B is not clear but the resultant increase
in Lipin-1β activity provides an explanation for the observed
increase in nLDs. Since seipin establishes the site of cLD
biogenesis and membrane tethers required for expansion,
other factors at the INM must be responsible for nucleating

and tethering nLDs in U2OS cells. While there is evidence for
nLD biogenesis in the INM of U2OS cells, it is uncertain whether
this pathway is responsible for formation of nLDs in other
mammalian cells or works in conjunction with the eLD
pathway for nLD formation in hepatocytes (see below).

nLDs form in situ at the INM of S. cerevisiae by a seipin-
dependent mechanism that bares many of the features of cLD
biogenesis (Romanauska and Kohler, 2018). Increased
availability of PA resulting from genetic mutations of lipid
biosynthetic enzymes facilitates DAG formation and nLD
budding at the INM (Romanauska and Kohler, 2018). For
example, a temperature-sensitive CDP-diacylglycerol synthase
1 (Cds1) mutant grown at the non-permissive temperature had
a 6-fold increase in nLDs due to the shift toward TAG storage.
Cds1 synthesizes CDP-DAG, the common substrate for
synthesis of S. cerevisiae phospholipids, and is one of many
lipogenic enzymes upregulated by the Ino2-Ino4 transcription
factors (Carman and Han, 2011). INO2-INO4 deletion or
antagonism by its repressor Opi1 recapitulated a similar
nLD phenotype as Cds1 mutants (Romanauska and Kohler,
2018). Key enzymes in yeast TAG synthesis, Pah1, Dgk1 and
Cds1, were localized to the INM, as were the substrates for
TAG synthesis, PA and DAG. The TAG lipase Tgl5 was found
on the surface of nLDs providing a plausible mechanism for
nLD turnover. A recent study addressed how the lipid
synthesis and storage capacity of the INM maintains an
optimal lipid environment by overcoming unsaturated fatty
acid-induced stress (Romanauska and Kohler, 2021).
Membrane fluidity biosensors were used to identify a Mga1-
Ole1 transcriptional circuit for unsaturated fatty acid synthesis
that induced storage in cLDs and suppressed nLD formation
by reducing seipin and PA levels in the INM. This mechanism

FIGURE 2 | The Kennedy pathway for TAG synthesis and LD biogenesis in mammalian cells. (A) Biosynthetic enzymes of the Kennedy pathway act sequentially to
synthesize triacylglycerol (TAG) at the ERmembrane; GPAT3/4 synthesizes lysophosphatidic acid (LPA) from glycerol 3-phosphate (G-3-P) and fatty acids (FA), AGPAT2
synthesizes phosphatidic acid (PA) from LPA and FA, Lipin-1 hydrolyzes PA to diacylglycerol (DAG), and DGAT2 catalyzes the final acylation to form TAG. (B) TAG
nucleates between the two leaflets of the ER membrane bilayer, which is partly facilitated by a complex of LDAF and seipin at distinct domains throughout the ER.
These points of TAG nucleation develop into lens-like structures that proceed to bud into the cytoplasm as a budding LD coated with LDAF as it dissociates from seipin.
As seipin funnels TAG and DAG into nascent LDs, lipid biosynthetic enzymes (class I LD proteins) like GPAT3/4, AGPAT2, and DGAT2 transfer acrossmembrane bridges
to the surface monolayer, further facilitating the maturation of LDs. Once the mature LD separates from the ER, it recruits class II LD proteins like perilipin-2/3, which coat
the surface to regulate access of LDs to lipases and autophagy proteins. This graphic was created with Biorender.com.
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for unsaturated fatty acid detoxification would maintain the
optimal phospholipid fluidity and packing in the INM.

Unlike mammalian cells, seipin is required for nLD formation
in S. cerevisiae (Romanauska and Kohler, 2018). Seipin was found
to localize to the INM using bimolecular fluorescence
complementation with the nuclear pore protein Nup60, and
ultrastructural analysis confirmed the presence of seipin-
dependent bridges between the outer leaflet of the INM and
the nLD monolayer. nLD biogenesis occurs in seipin-deficient S.
cerevisiae but membrane bridges are notably absent and nLDs are
mostly embedded within inclusions within the INM.

Some clues as to the evolutionary emergence of nLDs in
eukaryotes are provided by comparing yeast and amoeba.
Dictyostelium discoideum expresses a seipin homologue but
nLDs have not been observed (Du et al., 2013). The
localization of D. discoideum seipin was restricted to a subset
of foci and rings co-localizing to the ER and cLDs at the edge of
the plasmamembrane (Kornke andManiak, 2017).While the loss
of seipin in amoebae resulted in fewer but larger cLDs, there was
no change in overall TAG production (Kornke and Maniak,
2017). The lack of nuclear membrane localization of D.
discoideum seipin may explain why the species lacks nLDs. A
transition in seipin localization from the ER to the ER-INM
during opisthokont evolution could contribute to the formation
of nLDs that are observed in yeast.

Different classes of nLDs were identified in hermaphrodite
intestinal and germ cell nuclei of C. elegans based on association
with chromatin and the lamina (Mosquera et al., 2021). The
frequency of nLDs in the nuclei of intestinal cells ranged from 5 to
20% and increased with developmental stage. Cells usually
contained a single nLD that could, on occasion, occupy one-
third the nuclear volume. Transmission electron microscopy
imaging of intestinal nuclei revealed nLDs that were; 1) free
within the nucleoplasm, 2) between the peripheral
heterochromatin and nuclear lamina, 3) coated by
heterochromatin, lamina and membrane, and 4) surrounded
by double membrane due to in-pocketing in type-1 NR
(Mosquera et al., 2021). Gonadal germ cells acquire lipid from
intestinal lipoproteins for storage in cLDs during development,
and a small population of these cells (<20%) also produced nLDs.
Unlike intestinal cells, nLDs in germ cells did not have associated
lamina, heterochromatin or surrounding membrane, and were
associated with rapid oogenesis. While the function(s) of nLDs in
C. elegans is unclear, it was observed that nLDs were frequently
associated with sites of nuclear rupture and repair in intestinal
cells, suggesting they may interfere with chromatin organization,
lamina integrity and/or repair pathways. In contrast, nLDs were
not associated with nuclear damage or cell survival in germ cells.
Aside from a single report showing association of the
hydroxysteroid reductase DHS-9 with intestinal nLDs by
immunofluorescence microscopy (Liu et al., 2018), the
proteome of C. elegans nLDs is unknown.

The close proximity of intestinal nLDs with the INM and type-
I NR suggests they could originate by an in situ mechanism
similar to that proposed for U2OS cells and yeast (Figure 1).
However, intestinal cells of C. elegans produce a lipoprotein-like
paralog of ApoB called vitellogenin, a yolk protein exported from

intestinal cells into the coelom where it is taken up by the
hermaphrodite gonads to support embryogenesis and fertility
(Perez and Lehner, 2019). C. elegans also expresses an orthologue
of MTP (Dsc4) that is targeted to the ER and supports lipoprotein
secretion (Rava and Hussain, 2007). These findings indicate that
nLD biogenesis could involve a TAG-rich lipoprotein precursor,
as reported in hepatocytes (see below) (Soltysik et al., 2019).

In an effort to determine if C. elegans nLDs affect germ cell
viability, a mutational screen was used to identify genes that
regulated nLD abundance and size (Mosquera et al., 2021).
Mutants of SEIP-1, NEMP-1 and the COPII coat proteins
COPA-1 and COPB-2 increased nLD size and number in
germ cells but did not affect viability. SEIP-1 encodes the C.
elegans homologue of seipin, the absence of which caused the
appearance of large nLDs in germ cells. This is similar to the effect
of seipin knockdown in U2OS cells (Soltysik et al., 2021) and
suggests an indirect role for SEIP-1 in nLD biogenesis in the
cytoplasm. NEMP-1 is a poorly characterized integral membrane
protein that localizes to the nuclear lamina and contains a
RanGTP binding domain (Shibano et al., 2015). The loss of
COPA-1 and COPB-2 coat proteins could increase nLD
formation indirectly by promoting unfolded protein stress in
the ER or by the delivery of enzymes that control TAG storage, as
proposed for COPII vesicle transport of adipose triglyceride
lipase and perilipin-2 to cLDs in mammalian cells (Soni et al.,
2009).

Finally, it should be noted that neither the yeast or C. elegans
genomes encode a PML ortholog. As such, these data indicate that
nLD formation in these species does not strictly require PML, as is
the case for mammalian cells (see below). However, it remains to
be determined if a paralogous PML-like protein, for example
containing the highly conserved tripartite motif (TRIM) domain
found in PML and many E3 ubiquitin ligases (Gushchina et al.,
2018), exists in these species in association with nLDs.

Nuclear Lipid Droplet Biogenesis From ER
Luminal Lipid Droplet
Another pathway for nLD formation occurs in cells that secrete
TAG-rich lipoproteins, such as hepatocytes (Ohsaki et al., 2016;
Soltysik et al., 2019) and intestinal epithelial Caco2 cells (Yue
et al., 2020) (Figure 1). Hepatocytes assemble TAG-rich ApoB-
containing very low-density lipoproteins (VLDL) in the ER
lumen from which they are exported to the cis-Golgi via
COPII transport vesicles for eventual secretion into
circulation. Microsomal triglyceride transfer protein (MTP) in
the ER lumen transfers TAG and phospholipids to newly
synthesized ApoB to form a VLDL precursor (Lehner et al.,
2012). MTP also transfers lipids to eLDs that are ApoB-
deficient and fuse with ApoB-containing precursors to
produce VLDL. Under conditions of ER stress and increased
TAG synthesis, a fraction of these eLDs traffic from the ER lumen
into type-I NR invaginations of the INM (Soltysik et al., 2019)
(Figure 1). eLDs containing ApoE and ApoCIII translocate into
the nucleoplasm through regions of the inner leaflet of the INM
enriched in PML-II but depleted of lamin A, lamin B receptor and
SUN1/2 (Ohsaki et al., 2016; Soltysik et al., 2019). PML-II is the
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only isoform involved in eLD egress into the nucleoplasm. Type-I
NR seems to be dispensable for nLD formation since stimulation
of NR formation by tunicamycin had no effect (Soltysik et al.,
2019). Once in the nucleoplasm, nLDs can expand or mature by
recruitment DGAT2 and CCTα to increase de novo synthesis of
TAG and PC synthesis, respectively (Ohsaki et al., 2016; Soltysik
et al., 2019).

FUNCTIONS OF NUCLEAR LIPID
DROPLETS AND LIPID-ASSOCIATED
PROMYELOCYTIC LEUKEMIA
STRUCTURES

Platforms for the Regulation of Lipid
Synthesis
nLDs represent <10% of the LD pool (Ohsaki et al., 2016; Lee
et al., 2020), are TAG-poor relative to cLDs (Layerenza et al.,
2013) and lack proximity to the mitochondria and ER, the
primary loci of lipid oxidation and synthesis, respectively.
Thus nLDs are unlikely to serve as energy storage reservoirs
but could have additional functions related to cell signalling,
protein storage and mitigation of ER stress. nLDs in hepatocytes
and intestinal epithelial cells have an origin and functions that are
linked to the absorption, repackaging and secretion of lipids in
lipoproteins (Soltysik et al., 2019). During ER stress, ApoB is
degraded co-translationally leading to accumulation of eLDs and
release into the nucleoplasm through type-1 NR invaginations to
form nLDs. The subsequent recruitment and activation of CCTα
on nLDs increases PC synthesis, which is negatively regulated by
displacement from nLDs by perilipin-3. Increased PC synthesis
could mitigate ER stress by; 1) expanding the ER network to
accommodate unfolded proteins and 2) providing surface
monolayer phospholipids for the packaging of fatty acids into
TAG for storage in cLDs and secretion in VLDL. It is notable that
nLD formation did not occur in hepatocytes treated with
tunacimycin alone; however, the unfolded protein response
induced by tunicamycin enhanced nLD formation in response
to oleate (Soltysik et al., 2019).

It is currently unknown why CCTα translocates to the surface
of nLDs rather than the INM, which is commonly observed in
oleate-treated cells that lack nLDs (Wang et al., 1995; Lagace and
Ridgway, 2005; Gehrig et al., 2008) and during 3T3-L1
preadipocyte differentiation (Aitchison et al., 2015). The
association of the domain M α-helix of CCTα with
membranes is enhanced by low PC content and the presence
of lipid activators, such as DAG, PA and fatty acids (Cornell and
Ridgway, 2015). LAPS appear to be a preferred substrate for
CCTα translocation as PML-knockout U2OS cells had a partial
shift of CCTα to the NE (Lee et al., 2020). The preferred
association of CCTα with nLDs could be driven by a unique
protein and/or lipid composition. However, the eLD precursors
of nLDs and LAPS have a similar lipid composition as cLDs
(Wang et al., 2007), and the composition of hepatic nLDs does
not indicate enrichment in CCTα activating lipids (Layerenza
et al., 2013). Interestingly, LAPS are enriched in DAG, a known

activator of CCTα; however, the DAG content of LAPS did not
correlate with enrichment in CCTα (Lee et al., 2020). PA was only
observed on nuclear puncta and infrequently on small nLD in
U2OS cells and is also unlikely to be a factor in CCTα activation
(Soltysik et al., 2021).

Nuclear CCTα controls the rate of PC synthesis by supplying
CDP-choline to choline/ethanolamine phosphotransferase
(CEPT) and choline phosphotransferase (CPT) in the ER and
ER/Golgi, respectively (Henneberry et al., 2002). This cellular
topology implies that CDP-choline synthesized by CCTα is
transported to the cytoplasm for PC synthesis. However, a
split-GFP reporter screen identified the yeast homologues of
CPT and CEPT, Cpt1p and Ept1p, in the INM (Smoyer et al.,
2016). In support of INM localization of CEPT, approximately
10% of the epitope-tagged enzyme was in the NE of CHO cells
(Gehrig and Ridgway, 2011) and deuterated choline-labelled
lipids were detected in the NE using nanoscale-secondary ion
mass spectrometry (Drozdz et al., 2017). The last two studies do
not preclude the possibility that CEPT is active on the outer
nuclear membrane and newly synthesized PC undergoes lateral
diffusion to the INM at nuclear pores (Barger et al., 2022).

Regulation of Chromatin Structure, Gene
Expression and Cell Signalling
There is indirect evidence that nLDs could perturb chromatin
structure and gene expression. nLD formation from eLDs occurs
at sites of lamin depletion in the INM (Ohsaki et al., 2016), which
could affect the interaction and organization of chromatin
(Dechat et al., 2008). nLDs isolated from rat liver have
associated histones, including variants of H2A, H2B, H3.3 and
H4 (Lagrutta et al., 2021). Similarly, cLDs in a variety of
eukaryotic species are high capacity storage sites for histones
(Welte, 2007), both buffering the genotoxic effects of histone
excess and increasing supply to match DNA replication, as
demonstrated during Drosophila embryogenesis (Li et al.,
2012). While the role of nLDs in histone regulation is less
clear, the PML NB-associated protein death domain-associated
protein 6 (DAXX) is a H3.3 chaperone (Drane et al., 2010), and
H3.3 localization to PML-NB regulates its association with
chromatin (Corpet et al., 2014). Whether this association with
H3.3 also occurs on LAPS is unknown but supports the notion
that nLDs and LAPS could modify chromatin and gene
expression (next section). Studies in C. elegans have shown
direct interaction between nLD and chromatin; however, it
was not determined whether these interactions are facilitated
by proteins or lipids, and if gene expression was altered
(Mosquera et al., 2021). While not fully investigated,
understanding the interplay between nLDs and LAPS with
chromatin appears to be a promising way to better understand
nLD function.

nLDs could also influence gene expression by providing the
ligands for the activation of nuclear transcription factors. For
example, nLDs could serve as a source of cholesterol, fatty acids
and PC ligands and precursors for liver X receptor (Janowski
et al., 1996), peroxisome proliferator-activated receptors (PPAR)
(Tanaka et al., 2017) and LRH-1 (Musille et al., 2012). More
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directly, the recruitment of the transcriptional co-activator Lipin-
1 to nLDs in U2OS and HuH7 cells (Lee et al., 2020; Soltysik et al.,
2021) could affect the expression of multiple genes involved in
fatty acid catabolism and storage. Lipin-1 is a co-activator of
PPARγ, which is also activated by fatty acid ligands (Tanaka et al.,
2017). Mechanistically, this involves Lipin-1 activation of PPARγ
co-activator 1A (PGC1A) to promote the transcription of fatty
acid oxidation genes (Finck et al., 2006). Lipin-1 also influences
expression of lipid catabolic genes through its direct interaction
with hepatic nuclear factor 4α (Chen et al., 2012). Nuclear Lipin-1
is also a repressor of the lipogenic transcription factor sterol
regulatory element binding protein (SREBP) 1c by a mechanism
involving mTORC1 phosphorylation (Peterson et al., 2011).
Lipin-1 phosphorylation by mTORC1 causes its retention in
the cytoplasm, while dephosphorylation by the NE complex of
C-terminal domain nuclear envelope protein (CTDNEP) and
nuclear envelope protein 1 regulatory subunit 1 (NEP1R1) leads
to nuclear import (Csaki et al., 2013). Treatment of U2OS cells
with an mTORC1 inhibitor and oleate increased nLD formation,
which was dependent on the catalytic and transcriptional co-
activation activity of Lipin-1 (Soltysik et al., 2021). The AAA+
ATPase Torsin A is another important regulator of lipid
metabolism via its inhibitory effects on Lipin activity in the
nucleus (Grillet et al., 2016; Jacquemyn et al., 2021). In
Drosophila, Torsin was shown to promote dissociation of the
NEP1R1-CTDNEP1 phosphatase complex from the NE, resulting
in Lipin exclusion from the nucleus (Jacquemyn et al., 2021).
Torsin dysregulation was associated with nuclear pore assembly

defects in Drosophila fat body cells. However, mice with an
hepatic knockout of lamina-associated polypeptide 1 (LAP1),
which is required for Torsin A activity, displayed impaired VLDL
secretion, hepatic steatosis and nLD accumulation (Shin et al.,
2019). This increased nLD phenotype could result from loss of
negative regulation of Lipin-1 via Torsin A/NEP1R1-CTDNEP1
and increase eLD translocation into the nucleus due to inhibition
of VLDL assembly. By virtue of its role as a key regulator of fatty
acid incorporation into TAG, Lipin-1 has the potential to connect
lipid metabolism on nLD to the transcriptional activation of
pathways that control fatty acid homeostasis.

STRUCTURE AND FUNCTION OF
PROMYELOCYTIC
LEUKEMIA-ASSOCIATED SUB-CELLULAR
DOMAINS AND LIPID-ASSOCIATED PML
STRUCTURES

The Structure and Function of Classical
Promyelocytic Leukemia Nuclear Bodies
As mentioned in previous sections, a defining feature of nLDs in
mammalian cells is their association with PML to form lipid-
associated PML structures called LAPS, one of numerous nuclear
substructures containing PML that are summarized in Table 1
and Figure 3. The PML gene contains 9 exons which are
subjected to alternative mRNA splicing, resulting in at least 6

TABLE 1 | Nuclear structures containing PML.

PML
structure

Description Conditions/
Stimuli

Localization Key components Diagnostic criteria References

PML NB PML nuclear bodies Normal cells 4–30 bodies per
cell

SUMO, SP100, DAXX SUMO, SP100, DAXX Song et al. (2004), Cheng and
Kao (2012), Banani et al.
(2016), Hoischen et al. (2018),
Corpet et al. (2020)

LAPS Lipid-associated PML
structures

Excess oleate nLD CCTα, Lipin1, DAG Visualized with lipid
dyes

Ohsaki et al. (2016), Lee et al.
(2020)

APB ALT-associated PML
bodies

ALT-positive cancer
cells

Telomere-
associated PML
bodies

SUMO, SP100, DAXX,
BTR complex, TRF2,
telomeric DNA

Co-localization
withTRF2 in tert-
negative cells

Chung et al. (2012), Loe et al.
(2020)

MAPP Mitotic accumulation
of PML proteinsl

Mitosis Endosome-
associated

PML protein
aggregates

Co-localization with
EEA1, TfR

Dellaire et al. (2006b); Palibrk
et al. (2014)

PML patches Nuclear lamin-
associated patches/
threads

Hutchinson-Gilford
progeria cells;
senescent cells

PML-II on nuclear
lamina, type-1 NR

SUMO Reduced associated
with DNA repair proteins
(yH2AX, RPA32,
MRE11)

Wang et al. (2020)
DAXX
Progerin

Nucleolar
caps

Senescence-
associated PML-I
caps

Senescent cells surrounding
nucleolar
fragments and
blebs

SUMO, DAXX,
SP100,B23,
DHX9,FBL

Co-localization with
nucleolus-fibrillar center

Condemine et al. (2007),
Imrichova et al. (2019)

PML
clastosomes

PolyQ-associated
PML rings at nuclear
protein inclusions

Misfolded polyQ
proteins, UV

Enlarged nuclear
ring

CRAG Co-localization with
ubiqutitin-positive
inclusions; SUMO

Qin et al. (2006), Guo et al.
(2014), Janer et al. (2006)RNF4

SUMO
PML
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nuclear isoforms containing a common N-terminal RING-B-
box-coiled-coiled (RBCC) motif (also referred to as the TRIM
domain) and variable C-terminal tails (Jensen et al., 2001; Nisole
et al., 2013; Gushchina et al., 2018) Collectively, the PML
isoforms form the molecular basis for the formation of PML
NBs (Figure 3). These PML NBs are dynamic, heterogeneous
sub-nuclear structures that serve as regulatory hubs for over 150
associated nuclear proteins, consisting primarily of transcription
factors and chromatin remodeling protein (Van Damme et al.,
2010). Thus PML NBs are implicated in a variety of key cell
survival pathways, including the DNA damage response,
senescence, gene expression regulation, apoptosis, nuclear
proteolysis and the antiviral response (Pearson and Pelicci,

2001; Bischof et al., 2002; Dellaire and Bazett-Jones, 2004;
Dellaire et al., 2006a; Villagra et al., 2006; Bernardi et al.,
2008; Attwood et al., 2020). In addition, many components of
the small-ubiquitin like modifier (SUMO) machinery, such as
SUMO proteases (i.e., SENPs) and SUMO ligases (i.e., UBC9,
PIAS), associate with PML NBs making these structures hubs for
SUMO biology within the cell (Van Damme et al., 2010;
Hattersley et al., 2011; Sahin et al., 2014; Brown et al., 2016;
Barroso-Gomila et al., 2021).

PML NBs range in diameter from 0.1 to 1 μm, with
mammalian cells hosting 4–30 bodies (Table 1) (Banani et al.,
2016; Hoischen et al., 2018). Electron microscopy and super-
resolution techniques revealed that PML NB typically form a
phase-separated spherical shell that tethers to chromatin
(Hoischen et al., 2018; Corpet et al., 2020). The PML NB shell
results from self-oligomerization that occurs through two steps;
1) the N-terminal RBCC domain of PML primarily facilitates self-
oligomerization between PML monomers (Sahin et al., 2014) and
2) further multimerization promoted by PML post-translational
modification by SUMO (Hoischen et al., 2018). The PML protein
contains at least seven validated SUMOylation sites and a
C-terminal SUMO-interacting motif (SIM). This allows
SUMO-modified PML proteins to homo-multimerize through
their SIM motifs (Song et al., 2004; Cheng and Kao, 2012).
Furthermore, many PML NB client proteins associate with
PML NBs in a SUMOylation- and/or SIM-dependent manner.
For example, two well established PML NB interactors that
consistently localize and comprise the “classical” PML NBs are
DAXX (via SIMs) and the SP100 (via SUMO) nuclear antigen
(Szostecki et al., 1990; Khelifi et al., 2005) (Figure 3). Such
SUMO-SIM interactions between partner proteins are
fundamental to how classical PML NBs interact with other
protein constituents, highlighting the importance of SUMO-
SIM interactions in PML biology.

Novel Promyelocytic Leukemia Containing
Nuclear Structures
Although the protein composition of PML NBs is dynamic, the
PML NBs themselves are stable structures. However, PML NBs are
more dynamic in stressed cells and can shift in morphology and
function in the context of cell cycle progression, stressful stimuli
and virus infection. There are several non-canonical PML
structures that only occur in abnormal cells (Table 1 and
Figure 3). For example, in ~15% of all cancers, cells circumvent
their rapid proliferation and eventual loss of telomeres through a
pathway known as the alternative lengthening of telomeres (ALT)
(Bryan et al., 1995). In ALT-positive cells, PML co-localizes with
the telomere marker TRF2 and promotes ALT processes at the
telomere (Loe et al., 2020). These novel PML structures, termed
ALT-associated PML bodies, are essential for facilitating telomere
lengthening by recruiting Bloom syndrome protein (BLM) via
SUMO-SIM interactions, and ultimately promoting BLM-
TOPO3a-RMI complex formation at telomeres (Zhu et al.,
2008; Chung et al., 2012). Therefore, while ALT-associated PML
bodies have novel functions, mechanistically their roles are driven
by SUMO-SIM interactions as with classical PML NB.

FIGURE 3 | Overview of nuclear PML structures and their interactors.
The formation of canonical phase-separated spherical PML NB is driven by
protein oligomerization and SUMO-SIM interactions, which also recruit other
proteins such as DAXX and SP100. However, other novel PML
structures form under specific stimuli. These include ALT-associated PML
bodies (APB), PML-I nucleolar caps and PML clastosomes. SUMO-
independent LAPS form on nLDs and host lipid biosynthetic enzymes such as
Lipin1 and CCTα. During mitosis, SUMO-independent structure known as
mitotic accumulations of PML protein (MAPP) form and are tethered to
endosomes. In certain disease states such as with Hutchinson-Gilford
progeria syndrome, PML-II lamin threads are formed. These aforementioned
PML structures uniquely interact with a number of proteins, such as RNF4,
CRAG, TRF2, and the BTR complex, to modulate normal cellular functions
and the cell’s response to stress states. This graphic was. created with
Biorender.com.
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Novel PML structures have also been linked to aging and
disease. In senescent cells, PML can appear to form thread-like
structures with the nuclear lamina and proteinaceous rings or
caps around the nucleoli (Figure 3) (Condemine et al., 2007; Jul-
Larsen et al., 2010; Stixova et al., 2012). These structures retain a
similar composition to classical PML NBs, harboring DAXX and
SP100 (Condemine et al., 2007; Jul-Larsen et al., 2010).
Senescence-associated PML-lamina threads occur in
Hutchinson-Gilford progeria syndrome (HGPS), a premature
aging syndrome resulting from disruption of nuclear lamina
integrity (Wang et al., 2020). PML-II is essential for the
formation of these PML-lamina threads, which then contribute
to the accelerated senescence in HGPS (Jul-Larsen et al., 2010).

While detrimental in HGPS, in other contexts, PML has been
shown to help prevent human disease. Neurodegenerative
polyglutamine (polyQ) diseases are caused by the expansion of
polyQ repeats that are deleterious to neurons (Sato et al., 1999;
Yoshizawa et al., 2000). A common pathological feature is the
appearance of ubiquitin-positive nuclear inclusions (Qin et al.,
2006). To prevent the occurrence of nuclear inclusions and
maintain nuclear protein quality, the cell has quality control
pathways which include the polyQ-associated PML bodies called
PML clastosomes (Figure 3) (Gartner and Muller, 2014). PML is
capable of selectively interacting with misfolded nuclear proteins
via CRMP-5-associated GTPase (CRAG) through distinct
conjugate sites (Guo et al., 2014). Once polyQ misfolded
proteins interact with PML NBs, they are conjugated to
SUMO, recognized by ring-finger protein 4 (RNF4) and
ubiquitinated for degradation through the ubiquitin-
proteasome system (Guo et al., 2014). Therefore, PML
dynamics in human disease is complex, with novel PML NB
structures both promoting and preventing pathologies.

During mitosis, PML proteins form a unique SUMO-negative
structure known as mitotic accumulations of PML protein
(MAPP) (Figure 3) (Dellaire et al., 2006b). MAPPs also lack
DAXX and SP100, which diffuse into the mitotic cytoplasm from
prophase to metaphase (Everett et al., 1999; Dellaire et al., 2006b;
Chen et al., 2008). MAPPs form once PML NBs are untethered
from chromatin during mitosis, and they appear to be bound to
early endosomes in dividing cells (Chen et al., 2008; Palibrk et al.,
2014). MAPPs remain in the cytoplasm until early G1 phase until
the PML protein within them is imported in the nucleus to re-
establish PML NBs after the NE reforms (Dellaire et al., 2006b;
Chen et al., 2008).

Lipid-Associated Promyelocytic Leukemia
Structures
The recently characterized LAPS represent a new PML
subnuclear compartment that associates with nLDs. Most
LAPS (~75%) share similarities to the MAPPs in the sense
that they lack SUMO, DAXX and SP100 (Lee et al., 2020).
However, LAPS appear to be sphere-like structures, much like
classical PML NBs, that form in the nucleus during interphase
in response to nLD accumulation. The sequence of events that
lead to PML association with nLDs and formation of LAPS has
not been fully elucidated. However, in the case of hepatocytes

it is mediated by PML-II, which has a unique C-terminal
nuclear periphery binding motif that facilitates association
with the INM (Figure 1). It is not understood if the
interaction of PML-II with the INM is direct, involves
adaptor proteins or post-translational modifications (Jul-
Larsen et al., 2010). In Huh7 cells, eLDs emerge into the
nucleoplasm from the lumen of type-1 NR by membrane
disruption at sites of PML-II enrichment and/or depletion
of the nuclear lamina, SUN1 and LBR (Figure 1) (Ohsaki
et al., 2016; Soltysik et al., 2019). Depletion of PML-II by
siRNA knockdown reduced total nLDs by 30–50%, while
knockdown of SUN1 and REEP3/4 increased nLDs. The
result suggested a model in which PML-II links nLDs to
chromatin and the INM that would be otherwise be
removed by SUN1 and REEP3/4 (Ohsaki et al., 2016).
However, it is unclear how eLDs break through the INM at
PML-II patches, and how and when PML-II and other PML
isoforms associate with the primordial nLD to form a LAPS.

RNA-mediated silencing of PML-II in U2OS cells did not
significantly affect total nLD abundance and size (Soltysik et al.,
2021) indicating that nLDs derive from the INM by a
mechanism that does not involve PML-II. However, ablation
of LAPS by CRISPR/Cas9-mediated PML knockout in U2OS
cells significantly reduced nLD abundance by 50% and
decreased nLD size (Lee et al., 2020). This discrepancy
suggests that a total PML knockout places more stringent
conditions on nLD formation and other PML isoforms are
involved in LAPS formation. The association of PML with
nLDs appears to be dynamic as well, with about 25% of the
LAPS resembling classical PML NB containing SP100, SUMO,
DAXX, with the remainder being devoid of these canonical
partners (Lee et al., 2020). One interpretation is that classical
PML NBs initially associate with newly forming nLDs and are
gradually remodelled into LAPS as the nLD matures and grows.
Most strikingly, this remodeling of PML NBs into LAPS
involves loss of SUMO in the structure (Lee et al., 2020).
Whether this loss of SUMOylation at LAPS is necessary for
the maturation and processing of nLDs is not known,
particularly as both yeast and worms form nLDs and lack a
PML ortholog (as discussed previously). Since SUMO-SIM
interactions play such an important role in PML NB-
mediated gene regulation, it would be surprising if such gross
reorganization of PML NBs into LAPS would not have some
impact on the cell beyond nLD metabolism.

High resolution imaging of immunostained LAPS in U2OS
cell revealed that CCTα and PML occupy different regions of the
LAPS and have minimal overlap. Clues as to how CCTα and PML
form this association with LAPS comes from HGPS fibroblasts in
which CCTα is associated with nuclear lamina threads like those
observed for PML (Gehrig and Ridgway, 2011). These thread-like
PML-II and CCTα structures are likely formed at the type-I NR
since CCTα forms foci at normal prelamin-A induced
nucleoplasmic reticulum (Goulbourne et al., 2011). In the
context of progeria where prelamin-A (progerin) accumulates,
this shifts normal foci formation to thread-like structures
containing CCTα and PML. Therefore, the prelamin-A type-I
NR appears to be a key nucleation center for CCTα and PML foci
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formation, which could contribute to how PML-coated nLDs are
formed. The cell type- and context-specific association of PML-II
with the INM supports the idea that additional lipid or protein
factors are involved in regulating its membrane association.

The association of PML and nLDs represents a novel
function for PML in regulating lipid metabolism through
direct structural association with a LD. However, PML and
PML NBs have been implicated in lipid metabolism through
their more well-established role as gene regulators. PML has
been implicated in SREBP signalling (Chen et al., 2018).
SREBP-1 and -2, transcription factors that control the
expression of genes involved in fatty acid and cholesterol
synthesis, are proteolytically processed to their mature
nuclear form in response to changes in ER lipid and
cholesterol composition (Horton et al., 2003; Brown et al.,
2018). In a mouse prostate cancer model, the deletion of Pml in
Pten-null tumours resulted in the hyperactivation of SREBP
and ultimately, in a SREBP-dependent aggressive metastatic
phenotype (Chen et al., 2018). Mechanistically, this could be
related to SREBP-2, which localized to classical PML NBs
unlike the diffusely nuclear SREBP-1 (Zoumi et al., 2005).
In contrast, PML has an uncharacteristic pro-tumor function
in triple negative breast cancers by promoting fatty acid
oxidation (Carracedo et al., 2012). Mechanistically, this is
accomplished through negative regulation of PGC1A
acetylation, likely at PML NBs, which in turn activates
PPAR signaling and fatty acid oxidation (Carracedo et al.,
2012). Given the ability of SREBP-2 and PGC1A to associate
with PML NBs and the presence of Lipin-1─ a SREBP repressor
found at PML-containing LAPS─ it seems plausible that LAPS
might affect SREBP activity. Despite this intriguing
hypothesis, to date SREBP-2 and PGC1A localization to
LAPS has not been evaluated. Taken together, the results
suggest that LAPS put PML as a physical interactor and
contributor to nLD formation, and therefore lipid
metabolism under conditions of fatty acid stress in
mammals. However, there are also roles for the canonical
PML structures in regulating lipid metabolism in other
contexts via SREBPs and fatty acid oxidation that most
likely contribute to lipid-stress responses.

CONCLUSION

nLDs are emerging as potentially important organelles in their
capacity to; 1) store and supply lipid precursors for membrane
biogenesis and signalling molecules in the nucleus, and 2)
regulate the cellular response to fatty acid stress. Although two
different pathways for nLD biogenesis have been identified,
both involve maturation by the de novo synthesis of TAG at the
INM or on nLDs. Regardless of the mechanism of biogenesis,
newly formed nLDs are an important regulatory site for PC
synthesis via recruitment and activation of CCTα to enhance
the TAG storage capacity or relieve ER stress. However, many
questions remain, such as why do nLDs only appear in certain
cell types and species, how are lipids in nLDs degraded and/or
redistributed in the nucleus, how are cytosolic lipid metabolic

enzymes imported into the nucleus to make nLDs and how are
these enzymes recruited to the INM and nLDs?

Studies of the nLD maturation process has also revealed an
important role for PML, and particularly PML-II, in the
formation of a discrete subset of nLDs called LAPS. LAPS
represent a novel PML-containing subnuclear structure that
adds to our understanding of how the PML protein responds
to various cellular stresses and disease states by altering the
structure, composition, and localization of PML NBs. In the
case of LAPS, there is much work to be in done to fully
elucidate what role(s) PML might play in LAPS biology
beyond LAPS formation and the recruitment of CCTα and
Lipin-1. The presence of these lipid enzymes and the
concurrent loss of SUMO, SP100 and DAXX from LAPS
indicates they are unique PML-containing structures
specialized in regulating lipid metabolism. It will be important
to identify the proteome of nLDs and the role that PML plays in
the association of client proteins with LAPS. In the absence of
SUMO-SIM interactions, which drive the majority of protein
associations with PML NBs, one might expect a more limited and
specific repertoire of LAPS-associated proteins that rely on
conventional protein-protein or protein-lipid interactions to be
recruited and retained at LAPS. In this situation it is possible that
specific PML isoforms, through their unique C-terminal regions,
could recruit LAPS-associated proteins in a more direct way.
Alternatively, or in addition to, PML-containing portion of LAPS
could retain the phase separation properties of PML NBs to
recruit and retain proteins in liquid condensates. In addition, it is
still unclear if LAPS are associated with chromatin regions or
specific gene promoters in the same way as PML NBs, although
we do know that nLDs can modify nuclear architecture and
chromatin dynamics. Therefore, PML association with nLDs
through LAPS formation might provide a mechanism for the
cell to effect transcriptional changes as part of the lipid stress
response in much the same way that PML NBs regulate gene
expression through chromatin contacts as well as recruitment and
modification of transcription factors and chromatin modifying
enzymes. The lack of key PML NB components at LAPS would,
however, indicate that the mechanism for gene regulation at
LAPS involves a different complement of PML-associated
proteins that do not interact with LAPS via SUMO-SIM
interactions. Collectively, these findings usher in new
paradigms for not only PML-based nuclear structures but also
for nLD biology.
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Biogenesis and Breakdown of Lipid
Droplets in Pathological Conditions
ClaudioM. Fader Kaiser1†, Patricia S. Romano1†, M. Cristina Vanrell 1, Cristian A. Pocognoni1,
Julieta Jacob1, Benjamín Caruso2* and Laura R. Delgui 1*

1CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina, 2Instituto de Investigaciones
Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba,
Argentina

Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately
been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which
they have awide range of key functions. Although incompletely understood, the biogenesis
of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the
endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into
nanometric nuclei which then grow into lenses between the ER leaflets as they are
further filled with NL. The lipid composition and interfacial tensions of both ER and the
lenses modulate their shape which, together with specific ER proteins, determine the
proneness of LD to bud from the ER toward the cytoplasm. The most important function of
LD is the buffering of energy. But far beyond this, LD are actively integrated into
physiological processes, such as lipid metabolism, control of protein homeostasis,
sequestration of toxic lipid metabolic intermediates, protection from stress, and
proliferation of tumours. Besides, LD may serve as platforms for pathogen replication
and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic
LD have developed mechanisms to travel within the cytoplasm and to establish contact
with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis),
which begins with the LD-associated members of the perilipins family PLIN2 and
PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of
autophagy that selectively degrades a subset of cytosolic proteins in lysosomes.
Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which
occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes
engulf portions of LD and target them to lysosomes. LD play a crucial role in several
pathophysiological processes. Increased accumulation of LD in non-adipose cells is
commonly observed in numerous infectious diseases caused by intracellular
pathogens including viral, bacterial, and parasite infections, and is gradually recognized
as a prominent characteristic in a variety of cancers. This review discusses current
evidence related to the modulation of LD biogenesis and breakdown caused by
intracellular pathogens and cancer.

Keywords: lipid droplet (LD), LD breakdown, LD biogenesis, protozoans, viral infection, cancer
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INTRODUCTION

Lipid droplets (LD) are multi-functional and highly connected
organelles with a central role in cellular metabolism and
homeostasis (Farese and Walther, 2009; Walther and Farese,
2012; Thiam et al., 2013b; Gao and Goodman, 2015; Welte
and Gould, 2017; Olzmann and Carvalho, 2019; Beller et al.,
2020). LD are ubiquitous in nature as regards cell and organism
types. They present a wide range of sizes (from the nanometer
order up to microns) and composition (Thiam and Beller, 2017),
and have a simple and conserved particular structure consisting
of a core of neutral lipids, primarily triacylglycerols (TAG), and
sterolesters (SE) and are stabilized by a coating monolayer of
phospholipids (PL) and specific proteins (Zhang and Liu, 2017).
The mobilization of fat stores from LD is regulated by the
metabolic and energy demands of the cell. When the energy
demand increases, TAGs are broken down into fatty acids (FA)
and the glycerol backbone, and the former enter cellular energy
production pathways in the mitochondria. LD are also highly
dynamic as their size, shape, and composition can vary under
stress conditions, such as viral and microbial infections
(Roingeard and Melo, 2017; Martins et al., 2018). Like other
cell organelles, LD follow a biogenesis and degradation cycle,
which contributes to LD homeostasis. In this review, we present
an overview of the LD biogenesis and degradation processes as
well as the mechanisms modulating their functioning in
pathological conditions such as viral and protozoan infections
and cancer.

Biogenesis
The mechanism of formation and growth of LD has been
considered a fundamental question in LD biology (Ohsaki
et al., 2014), and their biogenesis and modulating factors have
become a research special focus over the last years (Thiam and
Forêt, 2016; Walther et al., 2017; Chorlay and Thiam, 2018;
Chapman et al., 2019; Jackson, 2019; Zoni et al., 2019, Zoni
et al., 2021; Nettebrock and Bohnert, 2020; Santinho et al., 2020).
LD are closely associated to the endoplasmic reticulum (ER),
where the enzymes catalyzing the last step of TAG and SE
synthesis are located (Pol et al., 2014). Several LD biogenesis
models have been described, which differ from each other in the
way that the protuberance of non-polar molecules located inside
the bilayer is detached from the ER membrane (Brasaemle and
Wolins, 2012; Thiam et al., 2013b; Thiam and Forêt, 2016;
Jackson, 2019). In some models, the detachment process is
driven by proteins whereas in others, the PL demixing driven
by the membrane curvature plays a fundamental role (Zanghellini
et al., 2010). The first step of an initial protuberance formation
has been studied in depth by molecular dynamics (MD)
simulations, which demonstrated that triolein blisters form
inside PL bilayers (Khandelia et al., 2010; Zoni et al., 2019,
Zoni et al., 2020, Zoni et al., 2021), and by mathematical
models describing their shape using mechanical constraints
(i.e., parameters determining elastic free energies of the bilayer
and the monolayers coating the LD) (Zanghellini et al., 2010;
Deslandes et al., 2017; Choudhary et al., 2018). Some factors that
have been considered for the formation of an initial droplet are

the TAG lateral solubility in bilayers, the mechanical constraints
of the bilayer for deformation and the wettability of the bilayer
with TAG. Solubility is referred as the maximum amount of TAG
molecules that can be arranged in parallel to PL molecules (with
the glycerol backbone facing the water phase), which is known to
be 3–4% at most (Hamilton, 1989; Li et al., 2003). At higher
contents, TAG molecules, like other NL may segregate into the
intrabilayer space (Hauß et al., 2002; Corvalán and Perillo, 2020;
Zoni et al., 2021). However, the nucleation process is poorly
understood (Santinho et al., 2020) and there is a lack of
experimental approaches that can address this issue, as at this
stage LD are below optical resolution. Although some studies
(Hamilton, 1989; Li et al., 2003; Duelund et al., 2013) have clearly
demonstrated the presence of a segregated TAG phase somehow
incorporated inside multilamellar vesicles at a TAG content
slightly above 3%, the methods employed in those studies did
not allow to draw any conclusion about the distribution of the
TAG domains. Recently, Caruso et al. have used
phosphatidylcholine (PC)/TAG Langmuir films to describe the
segregation of TAG as a function of the packing and the
composition of the membrane. This approach supports the
assumption that TAG molecules segregate into discrete TAG
lenses, whose shape is determined by the interfacial tensions
through the contact angle between the lenses and their
surrounding membrane, that is, its wettability (Caruso et al.,
2021). Other authors have previously shown that the subsequent
steps in the biogenesis process (budding and protrusion) are
determined by physics of wetting. Thiam et al. have proposed and
examined how bilayers interfacial tensions (and PL composition)
affect the contact angles of apolar droplets introduced into the
intrabilayer space (Thiam and Forêt, 2016). It has been observed
that a system with a lower wettability (lower bilayer interfacial
tension) forms more marked protrusions and thus a higher
tendency to budding (Ben M’barek et al., 2017). Furthermore,
the authors described that the compositional asymmetry of the
bilayer determines the direction of budding in experimental
systems (Chorlay and Thiam, 2018). In the cell, budding is
expected to occur towards the cytoplasm, with this process
being determined by ER membrane asymmetry.

Considering this evidence, LD formation can be described as a
four-step process, comprising nucleation, growth, budding and
detachment. Besides, the modulation of this process by proteins is
currently being studied considering this differentiation. The first
two steps are strongly modulated by the ER membrane protein
seipin, which is more abundant in tubules than in the rest of the
ER. Furthermore, the initial stage of LD biogenesis is most
frequent in ER tubules. Seipin is known to stabilize TAG
clusters and promotes the recruitment of TAG into them,
whereas mutated forms give rise to aberrant LD shape and
number (Cartwright et al., 2015; Wang et al., 2016; Santinho
et al., 2020). However, the mechanism underlying TAG
recruitment and nascent LD stabilization remains unclear.
Similarly, the fat storage-inducing transmembrane protein 2
(FIT2) drives the LD biogenesis by interacting with ER tubule-
forming proteins and septins (Chen et al., 2021). The lipase
phosphatase activity of FIT2 has been recently described
suggesting a role in the maintenance of the phospholipid
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balance between the cytosol and the lumen facing the ER hemi-
layers (Becuwe et al., 2020). Another protein that participates in
the first stages of the synthesis of LD, ubiquitously distributed, is
perilipin 3 (PLIN3), which protects TAG aggregates from
lipolysis. This protein, present in the cytoplasm, accumulates
in nascent LD immediately after TAG nucleation (Pol et al.,
2014). This recruitment has been postulated to be controlled by a
hydrophobic pocket of the protein (Ohsaki et al., 2006). Finally,
not all LD detach from the ER (Mishra et al., 2016; Valm et al.,
2017) and although the detachment mechanism remains to be
elucidated, indirect evidences suggest a role of complex protein I,
COPI; i.e., detachment is reversible, with the re-attachment
requiring the COPI coatomer complex (Thiam et al., 2013a;
Wilfling et al., 2014).

The mechanisms for protein targeting to LD are currently the
focus of an expanding research field, although some underlying
mechanisms have already been elucidated (Dhiman et al., 2020).
Proteins that are targeted to LD are divided into class I and class
II, according to where they come from, i.e., the ER bilayer
surrounding the attached LD or the cytosol, respectively. Thus,

seipin and PLIN3 are examples of each class of proteins playing a
role in the initial instances of LD biogenesis. Targeting membrane
proteins from ER bilayer to LD surface is a logistical challenge for
cells (Dhiman et al., 2020). The biophysical properties of ER
(bilayer) and LD (monolayer + inner TG) membranes would be a
first selection barrier controlling what type of proteins will
partition between both structures (Thiam et al., 2013b; Kory
et al., 2016). In this sense, LD cannot accommodate proteins with
transmembrane regions that span the thickness of a bilayer.

The above considerations describe LD biogenesis mainly from
a biophysical perspective. However, to determine the factors
modulating this process, cell metabolism pathways must also
be considered. For instance, the de novo lipogenesis is regulated
by the intracellular concentrations of glucose and sterol via the
carbohydrate responsive element binding protein (ChREBP) and
the sterol regulatory element binding protein (SREBP). In the
latter, a decrease in cholesterol levels and polyunsaturated FA
(PUFA) facilitates the proteolysis of SREBP yielding transcription
factors that activate the expression of components of the lipogenic
pathway and cholesterol metabolism in a species-specific

FIGURE 1 | LD Biogenesis. From a biophysical perspective, LD biogenesis can be described as a four-step process. (A) Nucleation occurs when the ER bilayer
saturates with NL, reaching a concentration in the bilayer to form lenses of the size in the order of nanometers. The PL composition and seipin among other proteins
modulates this process through bilayer hydration, bending and curvature. (B) The individual lens growth takes place as newly synthesized NL are incorporated and by
ripening and fusion between lenses; seipin prevents NL from shedding. (C) Budding is a spontaneous process (dewetting) driven by the interfacial tensions that
come into play surrounding the droplet. The bilayer tension and the phospholipid asymmetry determine the sphericity and direction of budding, respectively. FIT has been
recently proposed to be involved in the maintenance of the appropriate PL composition in each ER hemi-layer. (D) Although detachment is not to be expected for all LD, it
is a reversible process. COPI has been proposed to be involved in the detachment/re-attachment process to the ER membrane. (E) Metabolic reactions more closely
affecting NL synthesis and its modulating pathway SREBP. Note: the scheme represents a simplification of the metabolic vias according to the available evidence
regarding the revised pathologies. For a more detailed description, see Pol et al. (2014).
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manner (Shimano and Sato, 2017). The de novo lipogenesis
generates FA, which subsequently esterify the glycerol backbone
in a series of steps shared by the phospholipid and neutral lipid
synthetic pathways. The branching-off point between these
pathways is the dephosphorylation of phosphatidic acid into
diacylglycerol (DAG) by phosphatidate phosphatases (Zhang
and Reue, 2017; Petan, 2020). Finally, other enzymes located in
the ER membrane, namely diacylglycerol acyltransferase (DGAT)
and acyl-CoA cholesterol transferases (ACAT) catalyze the last
steps of TAG and cholesterol esters synthesis, respectively. The
regulation of these pathways has been shown to bemodulated both
in infections and cancer. All these evidences have been
incorporated into Figure 1.

Breakdown
The catabolism of LD is regulated by the protein composition of the
organelle surface and occurs by two mechanisms: lipolysis and
lipophagy. As mentioned, LD have many different structural and
functional proteins on its surface. In mammalian LD, the
predominant proteins are the PLIN/adipose differentiation-
related protein (ADRP)/tail-interacting protein of 47 kDa
(TIP47) and their orthologs (grouped as the PAT family) (Miura
et al., 2002; Bickel et al., 2009; Thiam et al., 2013b; Kory et al., 2016).
In mammals, there are 5 different PLIN (PLIN1 to 5), among which
PLIN1 and PLIN2 are exclusively associated with LD. The
expression of PLIN1 is restricted to adipocytes and steroidogenic
cells, while the expression of PLIN2 and PLIN3 are ubiquitously
distributed (Sztalryd and Brasaemle, 2017). Among these proteins,
PLIN regulate lipase access to the LD core; increased lipolysis in
adipocytes was observed in their absence (Tansey et al., 2004). A
general idea is that PLIN are needed to be somehow removed from
the LD surface to “open a gate” for lipases to access the TAG
(Brasaemle, 2013; Schweiger and Zechner, 2015).

Several LD proteins are degraded by the ubiquitin-proteasome
system (UPS) under conditions of lipid starvation (e.g., cells
cultured in the absence of FA supplementation), among which
are PLIN1 (Xu et al., 2006) and PLIN2 (Xu et al., 2005; Takahashi
et al., 2016). Lipolysis begins with the phosphorylation of PLIN1
by cAMP-dependent protein kinase A (PKA). Phosphorylated
PLIN1 is then removed from the surface of LD for further
proteasomal degradation, leading to the direct activation of
LD-associated lipases: 1) patatin-like phospholipase domain
containing 2 (PNPLA2/ATGL), which catalyzes the hydrolysis
of TAG into DAG; 2) lipase E, hormone sensitive type (LIPE/
HSL), which mediates the breakdown of DAG intoMAG, and the
hydrolysis of the ester bonds of other lipids such as SE, and 3)
monoglyceride lipase (MGLL/MGL), which catalyzes the
hydrolysis of MAG into glycerol and FA, which together with
regulatory protein factors constitute the basis for this process
(Zechner et al., 2012). The sequential action of the three lipases
results in glycerol and FA generation. The products of lipolysis
secreted from the adipose tissue are transported to other tissues
and used for β-oxidation and ATP production. In non-adipose
tissues, FA can enter the mitochondria directly for ATP
production (D’Andrea, 2016).

Alternatively, PLIN2 and PLIN3, and more-recently described
PLIN5, are substrates of lysosomal-degradation through a
pathway named chaperone mediated autophagy (CMA)
(Kaushik and Cuervo, 2015; Ma et al., 2020). CMA mediates
the delivery of a subset of proteins exposing a pentapeptide motif
(KFERQ or a related sequence) to the lysosome for proteolysis. In
this process, heat shock cognate protein of 70 kDa (hsc70)
recognizes, binds and delivers the protein to the lysosome-
associated membrane protein 2A (LAMP-2A) within the
lysosomal membrane, which forms a multimeric complex that
translocates unfolded KFERQ-containing proteins into the

FIGURE 2 | LD Breakdown. (A)Given that PLINs are gatekeepers of LD breakdown and further lipolysis, they must be degraded for breakdown to proceed. PLIN1
and PLIN2 are substrates of the ubiquitin-proteasome system (UPS), and PLIN2, PLIN3 and PLIN5 are substrates of chaperone mediated autophagy (CMA) under
conditions of lipid demand. For PLIN2 and PLIN3, a KFERQ peptide has been demonstrated to mediate CMA. (B) The degradation of LD TAG and SE occurs by the
sequential action of PNPLA2, LIPE and MGLL to produce glycerol (G) and free FA for further β-oxidation. Concomitantly, PNPLA2 and LIPE located on the LD
surface can interact with LC3-II on phagophore membranes through their LC3 interacting regions (LIR) to promote lipophagy-mediated LD breakdown.
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lysosome lumen for degradation (Kaushik and Cuervo, 2018).
CMA related-pentapeptides were identified in PLIN-2 (LDRLQ)
and PLIN-3 (SLKVQ), and their degradation by CMA precedes
ATGL-dependent lipolysis and lipophagy. Therefore, CMA is a
crucial process in the degradation of LD (Schneider et al., 2014;
Kaushik and Cuervo, 2015; Ma et al., 2020).

Macroautophagy, another autophagy-related pathway,
constitutes an alternative route for the breaking-down of
intracellular LDs and mobilization of lipid storage. In general,
autophagy is one of the major degradation pathways that enables
the cell to survive under stress conditions by recycling metabolic
components with an especially relevant role in the degradation of
hepatocellular LD (Singh et al., 2009; Van Zutphen et al., 2014).
First described in mouse hepatocytes under starvation, a selective
form of LD-targeting macroautophagy known as lipophagy is
thought to involve the recognition of LD to promote the localized
assembly and extension of a sequestering phagophore around the
perimeter of the LD and their subsequent delivery to lysosomes
for turnover (Singh et al., 2009; Singh and Cuervo, 2012; Schulze
et al., 2017; Filali-Mouncef et al., 2021). How this phagophore is
targeted to (and extended around) the LD surface to facilitate
lipophagy remains unclear. However, it has been demonstrated
that both ATGL and HSL, localized on the phospholipid
monolayer limiting LD, contain several putative LC3-the
major autophagosome marker-interacting regions (LIR) motifs.
Co-immunoprecipitation experiments have revealed that these
proteins interact with the microtubule associated protein 1 light
chain 3 (MAP1LC3/LC3), and therefore could dock LD onto the
cytoplasmic surface of phagophores (Martinez-Lopez et al.,
2016). Once fully enclosed, the double-membrane vesicle
named autophagosome undergoes fusion with the lysosome to
form a degradative organelle known as an autolysosome.
Lysosomal lipases within the autolysosome are then ultimately
responsible for the acid hydrolysis of the LD-stored NL and
subsequent release of free FA (Warner et al., 1981; Liu and Czaja,
2013; Gatica et al., 2018). Degradation products are then released
back into the cytosol and can be reused by the cell for synthesis
processes. The two pathways of lipolysis and lipophagy likely
work in tandem as coordinated processes (Martinez-Lopez et al.,
2016). Indeed, a different possible scenario is that lipolysis can act
to rapidly reduce the size of large LD to diameters more
appropriate in size for engulfment by lipophagic vesicles
(Schott et al., 2019).

Among the vast repertoire of components that exquisitely
regulate the autophagy pathway, Rab proteins, a family of small
GTPases, act as important mediators of endosomal tracking
events. Cycling between active GTP- and inactive GDP-bound
states, Rab proteins regulate the vesicular tracking network within
the cell (Stenmark, 2009). Numerous Rab proteins have been
identified on LD, and changes in members of the Rab proteins
family have deleterious effects on LD turnover in response to
classical lipophagy-inducing stimuli (Kiss and Nilsson, 2014).
The most conspicuous case is the presence of Rab7 on the LD
surface. Rab7 is a well-characterized member involved in the
control of late endocytic membrane trafficking (Vitelli et al.,
1997), assisting the regulation of lysosome–autophagosome
interaction (Gutierrez et al., 2004; Jäger et al., 2004).

Moreover, Rab7 decorates the surface of LD and regulates
macrolipophagy in mammalian cells (Schroeder et al., 2015).
The Rab7 GTPase located on the surface of LD becomes activated
upon nutrient deprivation, resulting in its increased activity for
GTP over GDP. Such activated state promotes the recruitment of
lysosomes near LD and their target degradation via lipophagy
(Carmona-Gutierrez et al., 2015). All these evidences have been
incorporated into Figure 2.

LIPID DROPLETS AND PROTOZOANS

Protists are a heterogeneous group of ancient unicellular or
pluricellular eukaryotes that can be divided into free living
organisms and pathogenic parasites. The latter group
encompasses organisms of Apicomplexa (Toxoplasma gondii
and Plasmodium falciparum) and Kinetoplastida
(Trypanosoma cruzi, Trypanosoma brucei and species of
Leishmania) orders that infect humans causing the named
Neglected Tropical Diseases (NTD), which are highly spread
worldwide. These organisms possess the metabolic pathways for
the production and breakdown of LD, like other higher
eukaryotic cells. In the past, pathogen-derived LD were mostly
considered as lipid deposits with low turnover rates (Murphy,
2012). In recent years, there has been an increasing interest in the
study of these lipid-rich organelles present in pathogenic
prokaryotes and lower eukaryotes. In this context, evidence
begins to accumulate demonstrating that cytosolic LD of
parasitic protozoans bear more dynamic roles in both,
mammalian and non-mammalian stages of the parasite’s life
cycle. Furthermore, they can interact with the LD of
mammalian cells for their own benefit. In this section we
present recent data demonstrating the role of LD during the
biological cycle of protozoan pathogens (including the stages
living inside and outside the host cells) and suggest the relevance
of these compartments as targets of antiparasitic drugs.

Lipid Inclusions of Reservosomes and
Cytoplasmic LD are Key Components
During Trypanosoma cruzi Differentiation
and Host Cell Infection
T. cruzi, the etiological agent of Chagas disease, is one of the main
causes of morbidity and mortality in Latin America. The life cycle
of T. cruzi comprises three stages; epimastigotes and amastigotes
are the replicative forms found in the intestine of the insect vector
and in the cytoplasm of host cells, respectively; and the infective
forms, metacyclic trypomastigotes and blood-stream
trypomastigotes, which transmit the infection from the insect
to mammals and vice versa. Two main compartments for lipid
storage have been described in epimastigotes: the reservosome
lipid inclusions and the cytoplasmic LD. The accumulation of
cholesterol and SE within the reservosomes, the lysosome-like
organelle of this parasite, is directly related to the host’s serum
concentration of these metabolites (Pereira et al., 2011). Although
T. cruzi cannot synthesize cholesterol, this compound is acquired
through the uptake of low density lipoprotein (LDL) particles
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from the hematophagous insect diet (José Soares and de Souza,
1991). LDL are then transported in endocytic vesicles and
delivered to reservosomes (Pereira et al., 2018). Inside the
reservosome, LD are surrounded by a PL monolayer and
display disk or rod-like shapes. Crystals of cholesterol were
observed when cholesterol and SE masses reach a critical
point, in a process that resembles the formation of foam cells
in mammals (Varsano et al., 2018). In contrast, serum
deprivation results in the consumption of the cholesterol
storage of reservosomes (Pereira et al., 2015). Interestingly, it
has been observed that as in higher eukaryotes, autophagy in T.
cruzi is induced in response to nutrient starvation, leading to
metacyclogenesis, the process of differentiation of epimastigotes
to metacyclic trypomastigotes (Vanrell et al., 2017). This process

is characterized by a dramatic reduction in the number of
reservosomes, indicating that degradation of the reservosome
content is a key step during differentiation, probably as an energy
source (Cunha-e-Silva et al., 2002). Furthermore, it has been
demonstrated that the induction of autophagy during
metacyclogenesis increases the proteolytic activity of
reservosomes, mainly due to cruzipain, which is the major
cysteine-protease of T. cruzi and also an important virulence
and immune evasion factor (Losinno et al., 2021). Therefore, it is
reasonable to hypothesize that the degradation of LD in
reservosomes could also be important during metacyclogenesis
as an energy, cholesterol and other precursors source to generate
the membranes of metacyclic trypomastigotes. T. cruzi also
presents many uncharacterized LD distributed throughout its

FIGURE 3 | LD in the biological cycles of protozoan parasites. Trypanosoma cruzi displays reservosomes (R) in epimastigotes and cytoplasmic LD in metacyclic
trypomastigotes (MT) that mainly store cholesterol and SE, respectively. While degradation of R occurs during metacyclogenesis, the contact with the host cell induces
the production of LD and PGE2 in MT and in the host cell favoring T. cruzi infection and replication. Toxoplasma gondii expresses TgDGAT1, TgACAT1 and TgACAT2,
which are the enzymes responsible for the LD synthesis in the parasite. An increased number of host LDwas observed in cells containing vacuoles with tachyzoites,
which is the characteristic parasite stage of the acute infection. These LD are also observed in the vacuole lumen and inside the parasite cytoplasm, thus evidencing the
transport of host lipids to the parasite. Leishmania spp. increases the LD number during the evolution from procyclic to metacyclic promastigotes, which also contain
PGF2α, suggesting a role of this eicosanoid as a parasite virulence factor. Host’s LD are also increased in macrophages infected with Leishmania. Like T. gondii, these
host LD have been observed inside the Leishmania vacuole and even in the parasite’s cytoplasm. Plasmodium was found to store NL in the food vacuole. NL are
important to prevent heme toxicity by production of the malaria pigment hemozoin. Infected red-blood cells increase the number and size of LD when they evolve from
the trophozoite to squizont form, whereas LD breakdown characterizes merozoite maturation and release together with FA.
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cytoplasm. During lipid starvation, cholesterol of reservosomes is
mobilized and inserted into the membranes to maintain parasite
proliferation, whereas under normal conditions, esterification
reactions predominate, most likely to remove the excess of
free cholesterol, leading to the formation of cytoplasmic LD
(Pereira et al., 2015). The finding of enzymes involved in lipid
metabolism, methyltransferases, reductases, lipases, and proteins
like Rab18, and the ATP-binding cassette transporter 1,
associated with the cholesterol efflux in humans, in
reservosomes supports this hypothesis (Torres et al., 2004;
Sant’Anna et al., 2009). The activity of an ACAT sensitive to
avasimibe was also found in T. cruzi (Pereira et al., 2015). ACAT
most likely function is to remove the excess of free cholesterol of
reservosomes, leading to the formation of LD in T. cruzi.
Aspartyl-like peptidases and cruzipain are also involved in
cholesterol mobilization as shown by the accumulation of rod-
shaped and droplet-shaped LD in reservosomes when the
parasites are incubated with pepstatin-A, a typical aspartyl-
peptidase inhibitor (Sangenito et al., 2021). Interestingly, this
effect is imitated by lopinavir and nelfinavir, two Human
Immunodeficiency Virus peptidase inhibitors with a high
impact in T. cruzi viability (Sangenito et al., 2021). Although
the connection between these peptidases and lipid accumulation
is poorly understood, some authors have postulated that aspartyl-
like peptidases present in the reservosomes could be directly and/
or indirectly linked to the process of cholesterol mobilization by
the endocytic pathway in the protozoan (Lechuga et al., 2020). T.
cruzi trypomastigotes and amastigotes also have LD. In
trypomastigotes, LD increase after both host interaction and
exogenous arachidonic acid (AA) stimulation. Notably, AA-
stimulated trypomastigotes release high amounts of
prostaglandin E2 (PGE2) and show PGE2 synthase expression
(Toledo et al., 2016). Although PGE2 actions are mainly
proinflammatory, different authors propose an
immunomodulatory effect that could contribute to the
immunosuppression observed during T. cruzi infection, thus
risking the survival of the parasite within its host. On the
other hand, it is known that the T. cruzi trypomastigotes
release extracellular vesicles with different functions, favoring
the biosynthesis of LD and PGE2 in the host cell and reducing the
production of inflammatory cytokines and trypanocide molecules
such as nitric oxide, thus making the environment more favorable
for the infection (Lovo-Martins et al., 2018). There is evidence
showing that the infection of macrophages with trypomastigotes
causes an increase in LD biogenesis in a Toll-like receptor (TLR)
2-dependent mechanism, since this process is not observed in
bone marrow macrophages derived from C57BL/6 TLR2 knock
out mice (TLR2−/−). D’Avila et al. (2011) have demonstrated that
Toll-like receptor 4 does not participate in this process. It is
known that TLR2, TLR3, TLR4 and TLR7 agonists increase the
levels of proteins that are crucial for LD biogenesis (PLIN2 or
DGAT2); however, in T. cruzi infected macrophages this effect is
elicited only by TLR2, which, together with TLR9, plays a role in
the immune recognition of this parasite (Tarleton, 2007).
Interestingly, in contrast to LD from other host cells, LD from
macrophages contain AA which is used to produce eicosanoids
that are used in T. cruzimetabolism (den Brok et al., 2018). Thus,

the treatment of macrophages with C75 (a FA synthase inhibitor)
inhibits LD biogenesis and also induces a downregulation of
eicosanoid production and replication of the parasite (de Almeida
et al., 2018).

Trypanosoma brucei Replication Requires
the Rapid Turnover of Parasite LD
T. brucei is the causative agent of sleeping sickness or African
trypanosomiasis, a disease characterized by behavioral
abnormalities such as somnolence during daytime. Unlike all
other pathogenic trypanosomatids which have an intracellular
life-stage, T. brucei infection takes place in the bloodstream of
mammalian hosts. After a blood feed of the tse-tse vector fly,
metacyclic trypomastigotes reach the bloodstream of mammals
and differentiate into long-slender trypomastigotes with high
replicative capacity, followed by a second differentiation step
into non-replicative short-stumpy forms when parasite density
increases. The cycle is completed when blood trypomastigotes

FIGURE 4 | Flaviviridae effects in LD metabolism: (A) HCV, ZIKV/DENV
stimulate the SREBP pathway through the transcription of genes involved in
LD and lipids biosynthesis in order to cover the extra membrane requirement
that virus replication generates. (B) DENV/ZIKV stimulates lipophagy by
recruitment of deubiquitinated AUP1 from LD membrane to the LC3-positive
autophagosome; this process generates FA that after catabolism inside the
mitochondria (β-oxidation) produce energy (ATP) to accomplish viral
replication. Data on the HCV effect on lipophagy are controversial: some
authors report a stimulation of this process while other suggest that inhibition
of lipophagy may occur. (C) Some authors hypothesize that there is a putative
secretion of HCV or DENV/ZIKV virions, viral proteins or infectious viral RNA
mediated by autophagy of LC3-positive LD vesicles (eLD) to spread the
infection. This phenomenon may support the bystander effect proposed for
DENV/ZIKV infections. (D) Apoptosis is inhibited (HCV) or stimulated (DENV/
ZIKV) by viral and nLD interaction with PML nuclear bodies.
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ingested by flies transform into procyclic trypomastigotes which
migrate from the midgut to the salivary gland of the insect where
they undergo differentiation to infective metacyclic
trypomastigotes. The biogenesis of LD in T. brucei depends on
the activity of a novel LD Kinase (LDK). The association of LDK
with LD is apparently mediated by its hydrophobic domain that
allows the insertion into the membrane monolayer of the
organelles. The loss of this enzyme dramatically decreases the
abundance of LD and affects the growth of parasites in delipidated
serum (Flaspohler et al., 2010). It has been postulated that the
function of FA storage in LD is to enable the adaptation of
procyclic trypomastigotes to nutritional challenges during the
development and migration inside the tse-tse fly. Under
physiological conditions, FA (oleate) are taken from the
medium and incorporated to TAG in the LD of procyclic
trypomastigotes (Allmann et al., 2014). Plasma membrane PL
provide the precursor DAG for esterification. Nejad et al. have
shown that the T. brucei lipin homolog TbLpn is essential for
parasite survival in culture. Lipins are a family of phosphatidic acid
phosphatases that catalyze the dephosphorylation of PA toDAG. It
has been demonstrated that the inducible downregulation of
TbLpn decreases the number of LD and reduces TAG steady-
state levels (Dawoody Nejad et al., 2018). These authors
hypothesized that the rapid lipid turnover observed in their
experiments could be required for the synthesis or remodeling
of membrane lipids during cell proliferation, or for energy supply
under limited nutrient availability. Apart from TAG, T. brucei also
produces SE. Although a putative gene for the ACAT enzyme has
not been found in T. brucei, its presence was evidenced by the
production of SE from host LDL particles and subsequent
accumulation in parasite LD, as it occurs in T. cruzi (Coppens
et al., 1995).

LD Biogenesis Increases During
Leishmania Metacyclogenesis and
Contributes to the Infection Process
Leishmaniasis is a disease caused by more than twenty species
of the Leishmania genus. Distributed worldwide, this disease
can be found in three clinical forms: visceral leishmaniasis, the
most severe illness, is highly endemic in the Indian subcontinent
and East Africa; cutaneous leishmaniasis, which occurs in the
Americas, the Mediterranean basin, the Middle East and Central
Asia; and mucocutaneous leishmaniasis, mainly occurring in
Brazil, Bolivia, Ethiopia and Peru. The infection is transmitted
to mammals bymetacyclic promastigotes present in the proboscis
of sandflies, which are the vectors of the disease. Metacyclic
promastigotes are phagocytized by macrophages and differentiate
into amastigotes that replicate in phagolysosomal compartments,
releasing the parasite after macrophage lysis, a process that
causes tissue damage (Pace, 2014). After a blood feed,
amastigotes are taken by the vector and differentiate in
procyclic promastigotes which proliferate in the insect gut and
then migrate to the proboscis where they differentiate into
metacyclic promastigotes. It has been demonstrated that LD
numbers increase during Leishmania metacyclogenesis, i.e., the
transformation of procyclic to metacyclic promastigotes. LD

from metacyclic forms contain PGF2α synthase (PGFS) and
release PGF2α in higher quantities than in other procyclic or
amastigote forms, suggesting a role of PGF2α in parasite
virulence (Araújo-Santos et al., 2014). On the other hand, the
cholesterol supply is assured by the uptake and retention
of LDL particles in L. amazonensis lipid membrane
microdomains. BODIPY-labeled LDL is distributed in large
compartments along the parasite body. These compartments
also contain SE, suggesting the presence of an ACAT enzyme
similar to T. cruzi and T. brucei (De Cicco et al., 2012).
Furthermore, when metacyclic promastigotes of Leishmania
major infect the bone marrow-derived macrophages (BMM),
an increase in the LD biogenesis in these host cells is observed
as a function of time. This increase is due to an induction
of the expression of genes involved in cholesterol uptake
and de novo synthesis of TAG in BMM infected with L.
major. By a microarray assay, the authors demonstrated the
transcriptional activation of several genes of BMM such as
DGAT2. This host cell response occurs regardless of the
viability of the parasites, as it occurs in either living or
dead parasites and even in uninfected neighboring cells,
although at a lesser extent than in infected cells, which
would indicate that the phagocytosis of this parasite further
increases the biogenesis of LD (Rabhi et al., 2016).

FIGURE 5 | The regulatory mechanism of LD in cancer progression.
Different signaling pathways of lipid acquisition may drive LD biogenesis in
stressed cancer cells. Increased LD contents could expand the source of lipid
substrates and energy to meet the metabolic needs of proliferating
cancer cells. In the tumor microenvironment, LD could act as an energy
reservoir for an aggressive cancer to trigger metastatic cloning. LD
accumulation extensively mediates proliferation, invasion, metastasis, and
oxidative stress and chemotherapy resistance in multiple types of cancers.
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Toxoplasma gondii Incorporates Host LD in
its Parasitophorous Vacuole Favoring
Parasite Replication
T. gondii is the etiological agent of toxoplasmosis, a severe disease
in individuals with an impaired immune system, mainly producing
neurological complications, and in the fetus that becomes infected
by vertical transmission during pregnancy. In the latter case, T.
gondii can cause severe neurological, ocular and cardiac disorders
(Paquet et al., 2013; Laboudi, 2017; Fard et al., 2020). T. gondii is an
obligate intracellular parasite with a complex life cycle involving
one feline host, where the parasite sexual phase occurs, and
intermediate hosts including humans. In humans, parasite
transmission occurs through the ingestion of either raw or
undercooked meat containing tissue cysts with bradyzoites; the
ingestion of water and food contaminated with feline feces
containing oocysts with sporozoites; and through transplacental
transmission of tachyzoites during pregnancy. After ingestion,
bradyzoites and sporozoites invade intestinal epithelial cells and
differentiate into the fast-replicating tachyzoites inside a
parasitophorous vacuole. In the acute infection, tachyzoites exit
the cells, reach the bloodstream, and disseminate throughout the
body. In healthy adults, cysts containing slow-replicating
bradyzoites are located in the eyes, brain and muscles in the
chronic phase of the disease, while in immunocompromised
patients, the infection becomes severe and even fatal, as
mentioned above (Attias et al., 2020). A DGAT1-like enzyme,
required for the synthesis of NL, was characterized in T. gondii
(TgDGAT1). This enzyme, localized in the parasite cortical and
perinuclear ER, synthesizes TAG and generates cytosolic LD
(Quittnat et al., 2004). As in other pathogenic protozoans,
cholesterol is incorporated in T. gondii from the host
environment. In this sense, two ACAT-related enzymes were
identified and characterized in this parasite, TgACAT1α and
TgACAT1β (also named TgACAT1 and TgACAT2). These
enzymes localize to the ER and participate in the SE and LD
synthesis (Nishikawa et al., 2005; Lige et al., 2013). Genetic ablation
of each individual ACAT results in impairment of parasite growth,
whereas dual ablation is not tolerated by T. gondii, thus
highlighting the key role of cholesterol storages and LD in this
organism and the possibility to consider this system as a target for
new antitoxoplasmosis drugs (Lige et al., 2013). As for host cell
stages, an increase was observed in the synthesis and accumulation
of TAG when skeletal muscle cells (SkMC) are infected with T.
gondii tachyzoites (Hu et al., 2017; Nolan et al., 2017), which is
related to an increase in the number and size of LD in the host cells
(Gomes et al., 2014; Nolan et al., 2017). There is evidence indicating
that effectors synthesized by the parasites and exported from the
PV to the host cell cytosol are responsible for the increase in the
number of LD, since the knockout of the MYR1 protein (involved
in the export of other PV effectors to the cytosol) is necessary for
the accumulation of LD induced by this parasite. Other authors
have demonstrated a role of the c-Jun kinase and the mammalian
target of rapamycin (mTOR) signaling pathways in themodulation
of parasite-induced generation of LD, which were supposed to
provide nutrients to the parasite, since the pharmacological
inhibition of these pathways did not produce an accumulation

of LD during infection (Hu et al., 2017). Accordingly, it has been
shown that the replication of T. gondii decreases when host cell LD
are scarce, for example when the enzyme DGAT is inhibited
(Nolan et al., 2017). It has also been observed that these LD
were in contact with the ER and with the PV containing the
parasite (Gomes et al., 2014). Other authors have described the
presence of host LD within the PV and even in the parasite’s
cytoplasm, suggesting that T. gondii can access and incorporate
host lipids to its own membranes and LD (Nolan et al., 2017).
Interestingly, although the increase in LD numbers is beneficial for
the parasite as a nutrient source, LD serve as substrate for the
production of PGE2, which is a crucial metabolite for the synthesis
of interleukin-12 and interferons that participate in the repair and
homeostasis of SkMC after the injury caused by the parasite, and
contributing to the establishment of the chronic phase of infection
(Gomes et al., 2014). Other parasites of the same family
(Sarcoystidae) also induce the formation of host LD, like
Neospora caninum, an Apicomplexa parasite of livestock and
domestic animals, which is known to increase the levels of TAG
and LD in human fibroblasts after infection (Hu et al., 2017).

Biogenesis and Breakdown of Host LD are
Required During the Intraerythrocytic
Development of Plasmodium
Plasmodium species are the causative agents of malaria, the illness
with the highest morbidity rates among human parasitic diseases.
Currently, five identified species of Plasmodium infect humans,
with P. falciparum being the most lethal. Anopheles spp.
mosquitoes are the host that transmit the infection to humans
(intermediary hosts) through the inoculation of sporozoites
which migrate and develop in the liver. After invasion of
hepatocytes, infective elongated sporozoites start the asexual
multiplication and form the squizont. Sporozoites inside the
squizont then form daughter cells called merozoites which,
after maturation, are released from hepatocytes enclosed in a
membrane (merosome). After merosome lysis, free merozoites
invade red blood cells and transform into round proliferative
trophozoites that mature into an erythrocytic schizont, which in
turn rupture and release merozoites (Maier et al., 2019). A
proportion of parasites differentiate into gametocytes (sexual
forms) which are taken up by a mosquito when it feeds on
human blood. Gametocytes undergo sexual reproduction in the
midgut of the mosquito and develop into sporozoites, which
migrate to the salivary glands to start a new cycle. Themetabolism
and trafficking of TAG and host LD in infected erythrocytes
varies in a specific way during the intraerythrocytic cycle of this
parasite. Increased DGAT activity and accumulation of TAG was
observed during the development of Plasmodium from the
trophozoite to squizont form, whereas TAG degradation was
induced during the fragmentation of the squizont, with FA being
released to the medium together with merozoites (Palacpac et al.,
2004). In line with these observations, LD within red blood cells
increase in size and number during the intraerythrocytic
development, reaching a maximum number in the segmented
schizonts stage. Interestingly, in the intraerythrocytic stage of P.
falciparum, a population of Nile Red-positive particles was
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observed within the digestive vacuole of the parasite. These
particles are composed of NL. These NL-rich particles, which
may have originated from the digestion of previously
internalized PL by the food vacuole (Jackson et al., 2004), have
a key role in heme detoxification through the formation of the
insoluble malaria pigment hemozoin (Hoang et al., 2010). These
findings support the hypothesis that the storage and degradation of
TAG are important processes during merozoite maturation and
that NL present in the parasite food vacuole prevent heme toxicity.
In contrast to the described role of LD in the erythrocytic cycle of
Plasmodium, there is no evidence supporting the existence of a
metabolism and trafficking of LD in the intrahepatic infection that
occurs before intraerythrocytic phase.

In summary, pathogenic protozoans can produce and degrade
their own LD and interact with the host’s LD throughout their
biological cycle. While parasite LD favor stage differentiation and
infection stages, host LD are nutritional sources during their
intracellular replication. Like in mammalian cells, parasite LD are
distributed in the cell cytoplasm, although in some cases they are
present inside other organelles such as lipid inclusions inside
reservosomes of T. cruzi or NL particles in the Plasmodium food
vacuole. LD biogenesis is induced after the acquisition of lipids
(e.g., cholesterol and FA) from the external environment, blood of
mammalian hosts or insect vectors mainly by endocytosis. DGAT
and ACAT present in protozoans then lead to DAG and
cholesterol esterification for final storage in LD. A few studies
have addressed the catabolism of LD in these parasites; however,
this process is known to be induced at specific developmental
stages during the differentiation from a parasitic form to another,
suggesting a role of LD in the energy supply required for the
process. Interestingly, many of the enzymes involved in LD
metabolism in protozoan parasites are vital for the organism,
for they are unique, unlike their mammalian counterparts (Lige
et al., 2013; Dawoody Nejad et al., 2018). Therefore, specific
inhibitors of these enzymes could be interesting targets of drugs
to interrupt the biological cycle of pathogenic protozoa, mainly in
the mammalian stages. On the other hand, T. cruzi, Leishmania
spp., T. gondii and Plasmodium spp., have intracellular stages that
generate changes in the number and size of the LD of the host cell.
It has been shown that LD increase in number and size when
these intracellular parasites interact with the host cell. There is
increasing evidence that protozoan parasites may target these
host-derived LD to obtain nutrients for growth. However, host
cells use the lipids stored in LD to produce inflammatory
mediators against these parasites (Melo et al., 2003; D’Avila
et al., 2012; Gomes et al., 2014; de Almeida et al., 2018). Due
to the modulation of LD number by intracellular forms of
protozoans that can determine the success or failure of the
infection, the parasite/host LD interplay might be an attractive
target to exploit in the future. All these evidences have been
incorporated into Figure 3.

FLAVIVIRIDAE AND LIPID DROPLETS

Flaviviridae is a large group of enveloped viruses, with a positive
sense single strand RNA genome. The Flaviviridae family includes

several viruses that cause high clinical impact diseases in humans:
hepatitis C virus (HCV) of the Hepacivirus genus, yellow fever
virus (YFV), West Nile virus (WNV), dengue virus (DENV) and
Zika virus (ZIKV) belonging to the Flavivirus genus (Wu et al.,
2015). Several studies have shown that members of the Flaviviridae
virus family hijack the LD machinery for the replication and
production of new mature viral particles. So far, the Hepacivirus
HCV, and the Flavivirus DENV and ZIKV, are the most studied
viruses as regard as LD usurpation (Filipe and McLauchlan, 2015;
Sun et al., 2017; Cloherty et al., 2020).

Hepacivirus and Flavivirus genera share almost the same
number and structural distribution of their proteins: a capsid
protein (Core for HCV and C for Flavivirus), two envelope
proteins (E1 and E2 for HCV, and prM and E for Flavivirus)
and several non-structural proteins (NS) (Neufeldt et al., 2018).
On the other hand, their replication cycle are quite similar: they
first interact and enter the target cell by receptor mediated
endocytosis, and after fusion with the lysosomes and
acidification they uncoat and release their genome for
translation of the viral polyprotein. At this point, the LD and
ER play a key role as a scaffold for the newly synthetized virus
assembly. Afterwards, the virion moves into the ER-Golgi lumen
for proper assembly and maturation, and the final mature viruses
are released through the secretory pathway to the extracellular
space to start a new infective cycle (Zeisel et al., 2013; Guzman
and Harris, 2015; Musso and Gubler, 2016).

HCV and DENV/ZIKV Hijack the SREBP
Pathway to Accomplish Viral Replication
The SREBP pathway is a key regulator of cholesterol/lipid levels,
and therefore a key pathway for LD homeostasis (Eberle et al.,
2004; Moon, 2017). Several studies have shown that some
members of the Flaviviridae family hijack SREBP for their
own benefit. Particularly, it has been shown that HCV and
DENV/ZIKV trigger SREBP activation in order to fulfil the
extra-membrane requirements during the cellular infection,
replication and production of new virions (Randall, 2018;
Meng et al., 2019; Yuan et al., 2019; Cloherty et al., 2020;
Raini et al., 2021).

HCV is the most studied flavivirus hijacking the SREBP
pathway. In this regard, HCV usurps and stimulates SREBP by
disruption of the lipid homeostasis, generating a membranous
web and activating the transcription of SREBP target genes for the
final release of lipid-coated lipoviroparticles (LVPs) (Waris et al.,
2007). In fact, clinical studies have shown that patients with
chronic HCV infection resulted in a reduction of their circulating
lipid levels (lower LDL and total cholesterol levels) as compared
to patients developing a sustained virologic response (SVR)
(patients with non-detectable HCV RNA after the completion
of the antiviral therapy). This phenomenonmight be explained by
the extra lipid consumption that the HCV infection generates, re-
routing the circulating lipids for the formation of LVPs (Corey
et al., 2009). LVPs are hybrid particles composed of viral
components (E1, E2, core protein and HCV RNA) and
apolipoproteins (ApoE, ApoB, ApoCI, ApoCII and ApoCIII)
(Scholtes et al., 2012). The presence of these apolipoproteins
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on the HCV surface has been proposed as a viral strategy to hijack
neutralizing antibodies (Vercauteren et al., 2014). Particularly,
the HCV core protein, the non-structural proteins NS4B, NS5A and
the 3′ untranslated region (UTR) increase the activation of both
SREBP-1 and SREBP-2, stimulating the synthesis of cholesterol and
membrane lipids. In addition, it has been reported that HCV
infection induces SREBPs cleavage and phosphorylation. In this
regard, HCV core and NS4B proteins can induce the proteolytic
cleavage of SREBP and oxidative stress by activating the
phosphatidylinositol 3-kinase (PI3-K)-protein kinase B (PKB,
also known as AKT) pathway, increasing phosphorylation and
transactivation of SREBPs (Waris et al., 2007).

As mentioned, AMPK is an important sensor for cellular
energy levels and has been demonstrated to be involved in
lipid metabolism regulation. In a recent publication, HCV
NS5A was shown to inhibit AMPK phosphorylation in vivo
and in vitro, resulting in an increase of SREBP-1c expression
levels, acetyl-coenzyme A carboxylase 1 (ACC1) and FA synthase
(FASN) via the AMPK/SREBP-1c pathway, generating at the
same time, higher numbers of LD (Meng et al., 2019).

The ATP-dependent RNA helicase DEAD-box helicase 3 X
(DDX3X) is involved in cellular processes that are different from
those involved in innate immunity. DDX3X is required for the
replication ofmany viruses includingHCV (He et al., 2021;Winnard
et al., 2021). DDX3X has been shown to colocalize with LD, HCV
core and NS proteins. However, DDX3X specifically recognizes the
HCV 3′ untranslated region (UTR) in the cytosol and after cross-
activation of IκB kinase-α (IKKα), it translocates to the nucleus and
activates SREBPs. Thus, the LD biogenesis and HCV viral assembly
are stimulated (Li et al., 2013; Pene et al., 2015). In summary, these
findings highlight that LD are necessary and that their synthesis is
stimulated during the HCV infection lifecycle.

The role of the SREBP pathway in Flaviviridae infection has
been determined in several studies, in which different inhibitors
of this pathway were used. In the case of the HCV infection, the
SK1-1/S1P pathway was blocked with PF-429242 (a small, site-
directed, competitive inhibitor of SKI-1/S1P). The treatment with
PF-429242 led to a reduction of LD formation and an impairment
in the early steps of HCV lifecycle was shown at all the inhibitor
concentrations employed (Olmstead et al., 2012; Blanchet et al.,
2015). PF-429242 showed a similar inhibitory profile for DENV
and ZIKV, causing a marked reduction in the number of LD and
LD-positive areas and a significant reduction in the viral titer in
all the treated cell lines (Hyrina et al., 2017; Raini et al., 2021). In
accordance, the AM580 (a retinoic acid receptor α selective
agonist) binds SREBP1/2, showing an antiviral effect against a
wide range of viruses including ZIKV. AM580 would then block
the interaction between SREBP and the sterol regulatory elements
(SREs) of the genes involved in lipid biosynthesis. Therefore, gene
transcription is inhibited, with the consequent inhibition of ZIKV
replication (Yuan et al., 2019). In a follow-up study, a link
between the SREBP pathway and the antiviral protein STING
(stimulator of interferon (IFN) genes) was proposed in DENV
infection (Liu et al., 2017). In that work, the protein SCAP
(SREBP member) was shown to bind and block the DENV
protease NS2B3, thus inhibiting the cleavage of STING and
impairing DENV infection. Interestingly, the authors also

found that the ectopic expression of SCAP inhibited DENV
infection, whereas the knockdown of this protein did not
cause any effect on DENV lifecycle (Liu et al., 2017).

In conclusion, these facts highlight the importance of SREBP
upregulation in HCV and DENV/ZIKV replication. During these
infections an extramembrane and LD requirement appears to be
crucial for the viral lifecycle. However, a better understanding of
this pathway is necessary to provide a more detailed description
of the molecular interactions between LD and some Flaviviridae
members.

Nuclear Lipid Droplets and HCV or the
DENV/ZIKV Interaction May Contribute to
the Viral Hijacking Process
Although initially LD were proposed to localize only to the
cytoplasm of eukaryotic cells, later reports confirmed that
these structures can also be found in the nucleus (nuclear lipid
droplets, nLD). Nuclear LD are dynamic organelles storing
neutral lipids originated from the inner nuclear membrane
(INM). Nuclear LD have been proposed to act as an
endonuclear buffer system, either providing or accepting lipids
and proteins in different signaling pathways (Lagrutta et al.,
2021). However, they can also be found attached to the INM
in some processes by the transmembrane protein seipin
(Romanauska and Kohler, 2018). Because nLDs have been
described recently, very little is known about their role in the
Flaviviridae replication cycle. Several studies indicate that HCV
and DENV/ZIKV capsid and NS proteins may localize to the
nucleus in infected cells (Majumder et al., 2001; Falcon et al.,
2005; Netsawang et al., 2010; Garcia et al., 2020). It has been
suggested that these viral proteins might interact with nLD, thus
prolonging the interaction time and permanency with different
host nuclear proteins. In turn, this phenomenon may allow an
extended viral hijacking time of cellular metabolic pathways
(Cloherty et al., 2020). In fact, recent publications suggest that
the co-localization of nLD with Flaviviridae core proteins and the
non-structural proteins NS5A (HCV) or NS5 (DENV/ZIKV)
may represent a novel way to either induce (DENV/ZIKV) or
inhibit (HCV) host cell apoptosis, as well as to create a link with
viral release, carcinogenesis induction or impairment of the
cellular interferon response (Ng et al., 2003; Herzer et al.,
2005, Herzer et al., 2012; Heaton and Randall, 2010; Zhang
and Wang, 2012; Liang et al., 2016; Wu et al., 2021).

Summarizing, the targeting of some Flaviviridae components
to nLD may represent a novel understudied viral hijacking
mechanism, in which apoptosis might also be involved.
However, further studies assessing the interaction of nLD with
Flaviviridae proteins may contribute to the understanding of the
mechanisms by which viral infections progress to apoptosis,
cancer or even steatosis in different cell types.

Role of Lipophagy During HCV and DENV/
ZIKV Infection
According to many authors, lipophagy refers to the catabolic
process by which internal cell lipids stored in LD can be directed
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to lysosomes for final degradation by autophagy to release FA,
and subsequently be processed via β-oxidation to provide energy
for viral infection and replication processes (Singh et al., 2009). In
fact, it has been reported that some of the Flaviviridae members
may alter the autophagy degradative process to their advantage
(Liang et al., 2016; Chan and Ou, 2017; Zhang et al., 2018). For
instance, HCV, hijacks autophagy in order to promote the
translation of its RNA and allow viral replication (Dreux et al.,
2009). In addition, the proteins Beclin1and ATG7, involved in the
autophagosome biogenesis, have been shown to be crucial for the
release of mature HCV particles in Huh-7 infected cells, since the
knocking down of Beclin1 or ATG7 causes a marked
accumulation of HCV viral particles inside infected cells
(Shrivastava et al., 2016). In a follow-up study, it was
demonstrated that HCV infection upregulated autophagy at
early steps of the infection cycle (Chan and Ou, 2017).

However, there are few studies showing contradictory results
regarding how HCVmaymodulate lipophagy. On one hand, it has
been reported that HCV core and NS5A proteins would generate
LD aggregation (lipophagy inhibition), contributing to liver
steatosis (fat accumulation) by a mechanism not fully
understood (Mancone et al., 2011). Another study reported that
the HCV core protein downregulates lipophagy in a model
requiring DGAT1 for access to LD. Furthermore, the LD-
localized core is consequently able to impair lipophagy, allowing
LD accumulation and facilitating HCV assembly and steatosis
(Harris et al., 2011). On the other hand, increased lipophagy was
observed in HCV-infected HuH7 cells, suggesting a protective role
for autophagy, as an inverse correlation between liver steatosis and
lipophagy rates was found (Vescovo et al., 2012). Moreover, an
induction of lipophagy duringHCV infection is necessary andmay
contribute to the high ATP levels required for viral replication
(Bose and Ray, 2014; Meyers et al., 2016).

Taken together, these findings allow hypothesizing the
existence of an additional mechanism contributing to the
release of HCV virions. This mechanism proposes the
generation of extracellular LD (eLD) (positive for LC3) as a
result of autophagy-mediated secretion. These eLD have been
described to carry HCV infective RNA and HCV core and NS5A
viral proteins. In fact, this mechanism may represent way to
facilitate the spread of infectious HCV material from the host
infected cell (Cloherty et al., 2020).

Several studies have confirmed that autophagy plays an
important role in DENV/ZIKV infection; in fact, the blocking
the autophagy pathway leads to a significant reduction in the viral
replication rate (Heaton and Randall, 2010; Mateo et al., 2013;
Jordan and Randall, 2017). In addition, an initial LD biogenesis
upregulation has also been proposed, followed by an increase in
lipophagy to drive virus production (Heaton and Randall, 2010;
Cloherty et al., 2020). In this sense, a reduction in LD size was
observed in DENV infected Huh-7.5 cells by electron microscopy
(Heaton and Randall, 2010). Similar findings were reported in
Huh-7 ZIKV infected cells in which a reduction in the LD
numbers and total volume were observed, confirming an
overall consumption of these organelles (Garcia et al., 2020).
AUP1(ancient ubiquitous protein 1) is a multifunctional type III
membrane protein that localizes predominantly to the ER and LD

surface. AUP1 is involved in the LD accumulation and ER protein
quality control, and has been proposed to act as a lipophagy-
specific factor (Klemm et al., 2011). Specifically, DENV infection
induces AUP1 deubiquitylation through a not fully understood
mechanism. DENV NS4A and NS4B proteins bind and
translocate AUP1 from the LD membrane to the LC3-
decorated autophagosome surface, consequently upregulating
lipophagy possibly through the AMPK/mTOR pathway
(Randall, 2018; Wu et al., 2021). In this sense, the ZIKV
proteins NS4A and NS4B have been found to bind and inhibit
the Akt-mTOR pathway leading to lipophagy induction and
defective neurogenesis in human neural stem cells (Liang
et al., 2016). In addition, the knockout of AUP1 in HeLa and
HepG2 cells leads to a decreased generation of infective DENV
particles (Zhang et al., 2018).

It is suggested that eLD are also generated during DENV/
ZIKV infection. In fact, it has been shown that cells infected by
DENV/ZIKV were able to release LD inside secretory LC3-
positive autophagosome structures, suggesting the existence of
eLD originated from LD. Notably, DENV antigens, infective
DENV RNA and LD have been found in secreted
autophagosomes by Huh-7 infected cells (Wu et al., 2016).
Besides, it has been hypothesized that for placental
transmission. ZIKV would use a mechanism involving eLD
through secretory autophagy (Zhang et al., 2016). Similarly,
the bystander effect refers as a number of different not fully
understood mechanisms allowing many viruses to establish
intercellular communication in order to promote viral
spreading (Palmer et al., 2005; Kofahi et al., 2016). In a recent
study, an increase in the LD number and size in uninfected
neighboring placental cells was found, suggesting a putative role
for eLD bystander effect in the transmission of ZIKV infective
components (Chen et al., 2020).

In summary, it is now clear that HCV and DENV/ZIKV take
advantage of lipophagy as a source of energy for replication and
for a possible extracellular spreading of the infective viral content
through the generation of eLD. The detailed understanding of the
molecular mechanism of lipophagy and its relationship with
different Flaviviridae still needs further study and may set the
scene for the development of novel antiviral treatments. All these
evidences have been incorporated into Figure 4.

LIPID DROPLETS IN CANCER

In general, tumor cells are nutritionally challenged due to poor
vascularization (Wellen and Thompson, 2010). Under deficient
nutrient conditions, cells display a remarkable adaptability that is
critical for survival, migration and invasion of other tissues
(Pavlova and Thompson, 2016). In this context, tumor cells
require energy suppliers to adapt to oxidative and nutritional
stress conditions, allowing a rapid proliferation and progression
of cancer. Lipids are an important energy reservoir that cancer
cells can acquire from both exogenous and endogenous pools.
Exogenous lipids are obtained from blood or from the tumoral
microenvironment. On the other hand, the endogenous lipid
availability depends on biosynthetic pathways, hydrolysis of
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membrane PL, autophagy, and LD (Petan et al., 2018). In addition
to the capacity to obtain extracellular lipids, cancer cells have an
efficient machinery to recycle intracellular lipids, which gives
them a significantly higher probability of survival during hypoxia
and starvation (Petan et al., 2018). Actually, some aggressive types
of tumors have an increased capacity to accumulate FA in LD to
resist nutrient and oxidative stress (Kamphorst et al., 2013;
Padanad et al., 2016; Jarc et al., 2018; Kim et al., 2018). LD
accumulation has been observed in many cancer cells such as
colorectal, breast, prostate, hepatocellular carcinoma, renal
carcinoma, and glioblastoma, suggesting that this organelle
serves as a substrate for cell survival when the glucose levels
decrease [recently reviewed in (Li et al., 2020)].

Several works have suggested that the accumulation of LD has a
pro-tumoral role acting as sites of PGE2 synthesis (a suppressant of
the immune system), in the polarization of tumor-associated
macrophages in myeloid-derived cells, and on the dysfunctional
antigen presentation by dendritic cells [recently reviewed in (Cruz
et al., 2020)]. Recent studies suggest that these organelles suppress
nutrient and oxidative stress and contribute to cancer cell survival
and growth, metastasis, and resistance to chemotherapeutic and
pharmacological treatments (Przybytkowski et al., 2007; Pucer
et al., 2013; Bensaad et al., 2014; Welte and Gould, 2017; Cotte
et al., 2018; Henne et al., 2018; Jarc et al., 2018; Pizato et al., 2019),
suggesting that an in-depth study of LD metabolism could be an
attractive target for reducing cancer cell resistance to stress. For this
reason, LD accumulation in non-adipose tissues has been proposed
as a new hallmark of cancer (Cotte et al., 2018).

Lipid Droplet Biogenesis is Highly
Regulated in Tumor Cells
Through tumorigenesis, cancer cells acquire different metabolic
alterations to overcome the energetic requirement related to the
accelerated proliferation under unfavorable conditions. Several
studies have shown that some of these changes include the
reprogramming of lipid metabolism such as de novo lipogenesis
(Menendez and Lupu, 2007; Carracedo et al., 2013; Currie et al.,
2013; Röhrig and Schulze, 2016). In contrast to normal cells, which
preferentially use extracellular lipids for the synthesis of new
structural lipids, cancer cells stimulate de novo FA synthesis to
satisfy their requirements for lipids (Menendez and Lupu, 2007;
Röhrig and Schulze, 2016). During de novo lipogenesis, saturated
and monounsaturated FA are synthesized; nonetheless mammalian
cells lack an enzyme capable of converting monounsaturated to
polyunsaturated FA. Thismakes cancer cells more resistant to death
from oxidative stress as well as drug therapy (Ameer et al., 2014).
Even lipid-rich tumors have been associated with a high aggressive
potential and an unfavorable clinical outcome (de Gonzalo-Calvo
et al., 2015; Guillaumond et al., 2015).

As mentioned, SREBPs belong to a family of transcription
factors bound to the ERmembrane and, together with the mTOR,
they act as key positive regulators of lipogenesis (Cruz et al.,
2020). SREBPs have been shown to promote tumor growth as well
as the accumulation of LD and the overexpression of the enzymes
involved in lipogenesis. In addition, the SREBP cleavage-
activating protein acts as a sensor for available glucose levels.

It has been observed that the dysregulation of SREBPs occurs in
several metabolic syndromes and cancers (Cheng et al., 2018).
Moreover, SREBP as well as ATP Citrate Lyase (ACLY), a
downstream target of SREBP, have been found to be
upregulated in glioblastoma, colorectal cancer, breast cancer,
non-small cell lung cancer, and hepatocellular carcinoma (de
Gonzalo-Calvo et al., 2015; Guillaumond et al., 2015).

In mice with lung, prostate, or ovarian cancer xenografts,
either the genetic or the pharmacological inhibition of SREBP and
ACLY has been shown to significantly suppress tumor growth
and induce cancer cell death (Hatzivassiliou et al., 2005; Hanai
et al., 2013; Cheng et al., 2018), making SREBP and/or ACLY
promising therapeutic targets (Infantino et al., 2007; Guo et al.,
2009; Williams et al., 2013; Li et al., 2014; Geng et al., 2016).
Interestingly, pre-clinical studies have demonstrated that some
SREBP inhibitors such as fatostatin, botulin, and PF-429242 have
promising anti-tumor effects (Kamisuki et al., 2009; Li et al., 2014,
Li et al., 2015; Król et al., 2015; Gholkar et al., 2016; Shao et al.,
2016). In addition, through the quantification of the mRNA
expression levels, it has been demonstrated that LD coat
proteins (PLIN) (Wang et al., 2018) and FA-binding proteins
(FABP) are also involved in the regulation of LD formation and
trafficking in cancer cells (Senga et al., 2018).

On the other hand, mTOR acts as a detector for the availability
of extracellular nutrients, stimulating the activation of anabolic
pathways such as protein translation and nucleotide synthesis.
The PI3K/AKT/mTOR pathway regulates SREBP levels by
promoting the synthesis of FA, cholesterol, and glycerolipids
and is associated with an increase in the density of LD in tumor
cells (Petan et al., 2018; Li et al., 2020).

Moreover, during starvation, themTORpathway is inhibited and
the cell resorts to autophagy as a mechanism for the degradation of
cytosolic components and membranous organelles to obtain FA
available for LD biogenesis (Petan et al., 2018).

Under excess conditions, intracellular lipids are converted to
TAG and SE in the ER, leading to the formation of LD (Fei et al.,
2011; Walther and Farese, 2012). These structures have been
visualized in several types of tumors including glioblastoma, renal
clear cell carcinoma, and prostate, colon, or pancreas cancer
(Accioly et al., 2008; Yue et al., 2014; Geng et al., 2016; Koizume
and Miyagi, 2016). While in normal tissues SE are usually
undetectable, they are abundant in the tumor tissue (Bemlih
et al., 2010). Sterol O-acyltransferase 1 (SOAT1), also known as
acyl-CoA acyltransferase 1 (ACAT1), converts cholesterol to SE
for storage in LD. Interestingly, glioblastomas and prostate and
pancreas cancers express high levels of this enzyme, being its
expression level inversely correlated with patient survival (Bemlih
et al., 2010; Saraon et al., 2014; Ohmoto et al., 2015; Geng et al.,
2016, Geng et al., 2020; LaPensee et al., 2016; Li et al., 2016). The
genetic silencing of SOAT1/ACAT1 or the pharmacologic
blocking of its activity suppresses tumor growth in several
cancer xenograft models (Bemlih et al., 2010; Ohmoto et al.,
2015; Geng et al., 2016; LaPensee et al., 2016). These results
suggest that SOAT1 and the synthesis of SE are two possible
targets in the development of antitumor strategies.

Colorectal cancer (CRC) is one of the most common forms of
cancer, in which the accumulation of LD appears to be a common
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feature (Tirinato et al., 2015; Kawasaki et al., 2017). The binding
of the epidermal growth factor (EGF) to its receptor induces its
activation, enabling downstream signaling pathways, including
the PI3K/mTOR pathway, to induce cell proliferation and
tumorigenesis, promoting the synthesis and accumulation of
LD (Guri et al., 2017). Some authors postulate the existence of
a negative regulatory loop between LD, the forkhead box
transcription factor O-3 (FOXO3), and sirtuin 6 (a negative
regulator of lipid biosynthesis) since the silencing of FOXO3
would promote the down-regulation of sirtuin 6 to increase LD
levels (Penrose et al., 2016).

Breast cancer (BC) is the leading cause of cancer-associated
death in women and the most common cancer worldwide (Bray
et al., 2015). Several epidemiological studies have revealed that
adipose tissue dysfunction appears to be one of the risk factors
that contributes to the development and progression of BC. Given
that aggressive BC cells have been shown to have a higher number
of LD, and that obesity is a risk factor for breast cancer, some
authors suggested an association between the alteration of LD
homeostasis of the cancer cells and obesity (Wölwer et al., 2016;
Blücher and Stadler, 2017).

Prostate cancer (PC) is the second leading cause of cancer-
related death in men (Boettcher et al., 2019). PC cells can
incorporate either circulating lipids or lipids from the adipose
microenvironment to promote PC invasiveness through oxidative
stress and the secretion of the hypoxia-inducible factor 1α (HIF-
1α) (Diedrich et al., 2016; Victor, 2019). On the other hand, the de
novo lipogenesis is also upregulated in PC cells and its inhibition
suppresses PC growth both in vitro and in vivo (Yoshii et al.,
2013). Cancer aggressiveness is positively correlated with LD
density and LD movement speed during the transport of cargo
proteins along microtubules (Yue et al., 2014). In addition, it has
recently been described that autophagy and lipophagy are also
associated with the aggressiveness and progression of PC,
possibly through a mechanism that leads to the exploitation of
a lipid-rich microenvironment by tumor cells (Panda et al., 2020).

Hepatocellular carcinoma (HCC) is the most common and
aggressive liver cancer. One of the main pathological features of
HCC is steatosis, which generally leads to an increase in the
number of LD. PTEN (the phosphatase and tensin homologue on
chromosome ten) has also been shown to be a negative regulator
of the PI3K/AKT pathway and a classic tumor gene suppressor
due to its lipid and protein phosphatase activity. The deletion of
PTEN along with the overexpression of the NRAS proto-
oncogene (RAS neuroblastoma) synergistically leads to a
metabolic disorder that increases the LD content and
promotes the appearance of HCC (Gao and Liu, 2017).
Therefore, the accumulation of LD induced by the activation
of oncogenic pathways could contribute to the development and
progression of HCC. On the other hand, it is well known that
SREBP1 plays a fundamental role in the progression of HCC as it
promotes cancer cell growth and metastasis. It has recently been
shown that Acyl-CoA Synthetase Long Chain 4 (ACSL4)
enhances the expression of lipogenic enzymes through the
c-Myc/SREBP1 oncogene signaling; however more studies are
needed to determine the association between ACSL4, metabolism
and tumor lipid abnormalities (Chen et al., 2021).

Renal cell carcinoma (RCC) is one of the most common
malignant tumors of the urinary system (Dutta et al., 2016).
Among them, clear cell RCC (ccRCC) is the most common RCC
subtype featured by an accumulation of LD. This carcinoma has a
high risk of metastasis and a poor response to radiotherapy and
chemotherapy (Gong et al., 2016). Patients with ccRCC display a
high expression of PLIN3, and this phenomenon is closely correlated
with clinicopathological features. Furthermore, the high expression
of PLIN3 suggests a poor clinical prognosis (Wang et al., 2018). On
the other hand, HIF2α promotes lipid storage, ER homeostasis, and
cell viability in ccRCC through upregulation of the LD PLIN2
envelope protein. In conclusion, the study of the members of the
perilipins family and the possible suppression of HIF2α/PLIN2
could be a useful tool for the development of therapeutic
strategies in this common renal malignant neoplasm.

Glioblastoma (GBM) is amalignant tumor with lipidmetabolism
dysfunction (Guo et al., 2013; Cheng et al., 2015). Large amounts of
LD are observed in tumor tissues of GBM patients that are not
detectable in low-grade gliomas (Geng et al., 2016). Therefore, LD
could be used as a diagnostic biomarker for GBM. When glucose
supply decreases in GBM cells, LD are hydrolyzed by autophagy,
thus explaining the survival of GBM cells in situations of energy
stress (Geng et al., 2020). In addition, SREBP-1 has a high activity in
GBM (Guo et al., 2011). The inhibition of SOAT1 down-regulates
SREBP-1, resulting in a decrease in SE synthesis.Meanwhile, SOAT1
suppression reduces LD formation and consequently blocks GBM
growth (Geng et al., 2016). Therefore, blocking the degradation of
LD or the SREBP1/SOAT1 pathway would be a suitable therapeutic
strategy to increase the sensitivity of GBM to treatments and
overcome resistance.

To summarize, the accumulation of LD in cancer cells depends on
the activation of SREBP and mTOR pathways, suggesting that both
pathways are important in cancer development and progression.

Lipolysis and Lipophagy in Cancer
As mentioned above, the energy demand can drive the
degradation of accumulated LD in the cell, mainly by two
mechanisms, lipolysis or lipophagy. Although several authors
have shown that lipophagy has pro-tumoral effects (Kaini
et al., 2012; Assumpção et al., 2017), most studies
performed so far suggest that lipophagy restricts
tumorigenesis (Xu et al., 2016; Mukhopadhyay et al., 2017).
Moreover, it has been shown that the overexpression of
ATG14, a member of the ATG proteins, induces LD
breakdown in Hela cells (a cervical cancer cell line) and
stimulates free FA accumulation. This process leads to ER
stress and reactive oxygen species-mediated apoptosis,
whereas the inhibition of lipophagy or the inhibition of
lysosomal acid lipases (LAL) reverts these effects
(Mukhopadhyay et al., 2017). LAL plays a tumor suppressor
role and its deficiency in mice has been linked with
spontaneous tumorigenesis. In contrast, the re-expression of
LAL prevents liver metastases (Du et al., 2015) and reduces
inflammation and metastasis in lung cancer (Zhao et al., 2016).
On the other hand, it has been shown that when autophagy is
inhibited in adipocytes, LD clearance is slowed down and
consequently the effects that promote adipocyte growth are
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attenuated. In other words, in this cell type, lipophagy is
activated in order to promote the production of energy and
the survival of cancer cells (Petan et al., 2018). It has been
demonstrated that abhydrolase domain-containing protein 5,
a cellular lipolytic activator, which functions as a tumor
suppressor in CRC, binds and prevents the cleavage of the
essential autophagy regulator beclin 1, thus stimulating
autophagy, reducing colon cancer tumorigenesis (Peng
et al., 2016). Additionally, it has been demonstrated that
ATGL promotes the autophagic flux and the interactions
between LC3 and LD (Drizyte-Miller et al., 2020). In turn,
LC3 depletion results in reduced LD accumulation in various
cancer cell lines such as HeLa, HepG2, and PC12 (Shibata
et al., 2010). Together, these results suggest an important role
for LC3 in the formation of LD. Interestingly, rapamycin-
induced autophagy leads to TAG synthesis in yeast (Madeira
et al., 2015), and autophagy is necessary for TAG accumulation
under nitrogen-deprived conditions in this microorganism. In
conclusion, autophagy-driven LD synthesis is helpful for the
progression of a variety of cancer cells. Further studies should
confirm whether LD biogenesis is a protective response to high
levels of autophagy. All these evidences have been
incorporated into Figure 5.

CONCLUDING REMARKS

As mentioned, the biology of LD has recently received the
attention of multiple research fields, opening a wide window of
knowledge in science. Given that LD are conserved structures
in prokaryotic and eukaryotic cells (Walther et al., 2017; Zhang
and Liu, 2017; Lupette and Maréchal, 2020), a role in every
studied biological process should not be surprising. Pathogen
invasion, as well as the unlimited proliferation of cancer cells,
are processes that impose a huge cellular remodeling, with a
consequent energy demand satisfied by LD metabolism.

In general, studies describing LD changes during infections
and cancer focus on metabolic aspects and organelle patterns at
the cellular level (LD size and number) associated with
different disease stages. The bridge between these
approaches is currently being disentangled as considerable
advances have been done in the study of the LD biogenesis
and degradation processes. Some of these metabolic aspects
are: 1) the increase in TAG levels, which leads to an increase of
DGAT activity (parasitic protozoans), de novo FA synthesis,
(e.g., SREBP upregulation in HCV and DENV/ZIKV
replication and cancer cells), and increase in FA uptake
(cancer cells), and 2) the free cholesterol/SE balance, which
is modulated by SREBP (cancer) or aspartyl-like peptidase
(e.g., T. cruzi) and the enzyme ACAT, which might display
a key role in the parasite’s survival (e.g., T. gondii).

In cancer cells, de novo lipogenesis enhancement leads to the
generation of cell membranes that are enriched in saturated and/
or mono-unsaturated FA (as polyunsaturated FAs cannot be
synthesized by this pathway) (Ameer et al., 2014). In turn, NL
saturation has been observed to respond to demands of
unsaturated species in the cell (providing a homeostasis

mechanism of membrane saturation by “buffering” specific
FA). For instance, the TAG saturation index increases as a
consequence of the liberation of unsaturated FA to counteract
their esterification and transformation into phospholipids when
cancer cells are subjected to nutrient stress (Lisec et al., 2019) or
inhibition of the de novo desaturation pathway through hypoxia
(Ackerman et al., 2018).

Tumor tissues contain abnormal levels of SE (Nygren et al.,
2009; Bemlih et al., 2010). In T. cruzi, the cholesterol content
variation leads to morphological changes (on both reservosomes
and cytosolic LD) arising from NL crystallization in the core of
these structures. This suggests that significant biophysical
differences between the stages of LD biogenesis as well as on
protein targeting to LD surface could be taking place. The latter
findings deserve further exploration. The requirement of sterols
for the coordinated assembly of LD seems to be universal. Recently,
this aspect has been studied inArabidopsis developing seeds to find
that the mutations of proteins of the sterol pathway account for the
different LD number, size and oil content phenotypes (Yu et al.,
2021) and some interesting comparisons with cholesterol effects
arise. For instance, cholesterol generates lipid packing defects and
increases the surface tension of membranes synergistically with
DAG (Coorssen and Rand, 2011; Alwarawrah et al., 2012;
Subczynski et al., 2017), which has been suggested to be critical
for neutral lipid nucleation and LD budding (Adeyo et al., 2011;
Choudhary et al., 2018). In this sense, in a study that combined
molecular simulations, yeast genetics, and fluorescencemicroscopy
(Zoni et al., 2021), it has been recently demonstrated that
cholesterol promotes LD nucleation and the packaging of TG
into LD.

Taking into account the above considerations, current
experimental models using biophysical approaches may help
address the following questions that arise from metabolic
observations: how NL composition (cholesterol:cholesterol-
esters:triglyceride proportions) affect the biogenesis process?
How do properties (unsaturation and carbon length) of FA
constituting neutral lipids affect biogenesis?

Regarding protein targeting to LD, a putative effect of the LD
core composition has also been considered. The interaction of
amphipatic helices (AH) to LD model surface was sensitive to
the core composition (Dhiman et al., 2020). Surprisingly, this
effect was independent of the phospholipid monolayer packing.
On the other hand, cholesterol has been demonstrated to affect
the physical properties of the LD surface and hence the targeting
of TG-synthesizing enzymes to LD (Wilfling et al., 2014). In this
sense, PLIN4 has served as an interesting model protein due to
its exceptional length and repetitiveness that confers it
versatility to compensate between those properties (AH
length, hydrophobicity, and charge) targeting it to the LD
surface, although with a loss of specificity (Čopič et al.,
2018). How changes in the NL composition of LD, promoted
in infections and cancer, can impact on their interaction with
AH containing proteins remains to be assessed.

Finally, LD degradation helps cells coping with the high energy
demands in pathological processes; therefore, this process could
serve as a target for the development of novel therapeutic
approaches.
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HPS6 Regulates the Biogenesis of
Weibel–Palade Body in Endothelial
Cells Through Trafficking v-ATPase to
Its Limiting Membrane
Jiran Lu†, Jing Ma†, Zhenhua Hao and Wei Li*

Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center,
National Center for Children’s Health, Beijing Children’s Hospital, Beijing Pediatric Research Institute, Capital Medical University,
Beijing, China

The Weibel–Palade body (WPB) is one of the lysosome-related organelles (LROs) in
endothelial cells, whose main content is von Willebrand factor (vWF). The biogenesis of
LROs is regulated by the Hermansky–Pudlak syndrome (HPS) protein-associated
complexes through transporting cargo proteins to WPBs. Our previous studies have
shown that HPS6, a subunit of BLOC-2 complex, is likely involved in the maturation of
WPBs. However, the underlyingmechanism remains unknown. In this study, we found that
the knockdown of HPS6 in human umbilical vein endothelial cells (HUVECs) resulted in
misshaped WPBs, decreased WPB number, and impaired vWF tubulation, which are
similar to the characteristics of HPS6-deficient mouse endothelial cells. We observed
similar morphological changes of WPBs in HUVECs after the knockdown of ATP6V0D1 (a
subunit of v-ATPase). Furthermore, we found that HPS6 interacted with ATP6V0D1,
suggesting that HPS6 transports ATP6V0D1 to the WPB limiting membrane for the
assembly of the v-ATPase complex to maintain its acidic luminal pH, which is critical
for the formation of vWF tubules during WPB maturation. In conclusion, HPS6 likely
regulates the biogenesis ofWPBs by participating in the trafficking of v-ATPase to theWPB
membrane.

Keywords: Weibel–Palade body, von Willebrand factor, lysosome-related organelle, Hermansky–Pudlak syndrome,
HPS6, v-ATPase

INTRODUCTION

Endothelial cells (ECs) form a layer of flat and polygonal cells that line the vascular wall, which is the
biological barrier between the circulating blood and the blood vessel wall and is of great significance
to maintain vascular homeostasis (Aird, 2007). The Weibel–Palade body (WPB) is a type of
lysosome-related organelles (LROs) (Marks et al., 2013), which was discovered in 1964 by Ewald
Weibel and George Palade in rat and human ECs (Weibel and Palade, 1964; Warhol and Sweet,
1984). As a morphological marker of ECs, WPBs are rod-shaped granules with a diameter of
0.1–0.3 μm and a length of 1–5 μm (Arribas and Cutler, 2000; Michaux and Cutler, 2004; Valentijn
et al., 2008). WPBs contain various bioactive molecules, such as von Willebrand factor (vWF),
angiopoietin-2, interleukin-6 and -8, monocyte chemoattractant protein-1, and P-selectin, which are
released in response to the activation of ECs (Schillemans et al., 2019). ECs play an important role in
numerous physiological activities that include hemostasis, inflammation, angiogenesis, and wound
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healing. The main luminal content of WPB is vWF. vWF forms a
highly multimerized tubular structure that is closely related to the
shape and size of WPBs (Wagner et al., 1982; Karampini et al.,
2020). Upon release into the plasma, the vWF tubules will unfurl
into long strings that recruit platelets to prevent bleeding (Savage
et al., 2002).

As a member of LROs, WPB biogenesis is likely regulated by
Hermansky–Pudlak syndrome (HPS) protein-associated
complexes (HPACs), which includes the biogenesis of
lysosome-related organelles complex (BLOC)-1, -2, and -3,
adaptor protein complex-3 (AP-3), and homotypic fusion and
protein sorting complex (Wei and Li, 2013). It has been shown
that AP-1/clathrin coat plays an essential role in forming WPBs
in endothelial cells (Lui-Roberts et al., 2005) and that the
recruitment of CD63 is dependent on AP-3 complex during
the biogenesis of WPBs (Harrison-Lavoie et al., 2006).
However, the functions of other HPACs in WPB biogenesis
are unknown yet.

In our previous study (Ma et al., 2016), we compared the
phenotypes of WPBs and the secretion of vWF multimers in
various HPAC mutant mice, including pa (HPS9 deficiency in
BLOC-1), ru (HPS6 deficiency in BLOC-2), and ep (HPS1
deficiency in BLOC-3). We found that the regulated secretion
of vWF in ru mice was the most significantly reduced, and the
maturation of WPBs in ru mice was impaired significantly
compared with that in wild-type (WT) mice. Therefore, we
hypothesized that HPS6 may be required to deliver cargo
proteins necessary for the biogenesis of WPBs.

In this study using ru ECs and human umbilical vein
endothelial cells (HUVECs), we firstly confirmed the
impairments of WPB biogenesis and maturation due to HPS6
deficiency. Considering that neutralization treatment does not
alter the elongated shape of WPBs in ru ECs and vacuolar-type
H+-ATPase (v-ATPase) is the primary proton pump for H+

homeostasis in organelles, we further found that HPS6 is
required for the trafficking of subunit d1 in the V0 domain
(ATP6V0D1) to WPBs to maintain the acidic luminal
environment. Thus, HPS6 likely regulates the biogenesis of
WPBs by transporting ATP6V0D1 to the WPB membrane to
form highly ordered vWF tubules in the acidic lumen.

RESULTS

Mutation of the Hps6 Gene in Mice Impairs
WPB Biogenesis and Maturation
Our previous study showed that WPBs in ru/Hps6 mutant mice
lose their classical “cigar” shape and do not release enough vWF
multimers into the plasma after desmopressin stimulation (Ma
et al., 2016). It is unknown whether these abnormities occur in
the biogenesis stage or in the release stage. Therefore, we
compared the shape and number of WPBs at various time
points during their biogenesis between the primary ECs of
WT and ru mice. The cells were treated with phorbol-12-
myristate-13-acetate (PMA) to release existing mature WPBs.
After washing out, the newly generated WPBs were examined at
various time points (0, 2, 4, and 8 h). Immunofluorescence

staining and statistical analysis showed that the average
number of WPBs per cell in ru mice was higher than that in
WT mice at 0-h time point after PMA treatment (Figures 1A,E)
because there may be more immature WPBs that have not been
released completely in ru mice compared with WT mice. When
treated for a longer time, more WPBs that represented nascent
WPBs were seen in WT cells than in ru cells. At 2 h, the number
of WPBs in WT and ru ECs reached almost the same amount
(p > 0.05). However, the number of WPBs in ru ECs was
significantly reduced at 8-h time point compared with WT
ECs (Figures 1B–E). The results of Feret’s diameter of WPBs
in WT and ru mice showed a large cluster of WPBs in ru mice
whose Feret’s diameter was concentrated at 0.5 μm and then
reached the highest percentage (nearly 30%) at 2 h after PMA
treatment. However, with the prolongation of time, WPBs in ru
cells with Feret’s diameter of ≥1.3 μm were rarely seen and
WPBs with Feret’s diameter of ≥1.8 μm were only seen in
WT cells (Figure 1F), which indicated less mature WPBs in
ru cells. Taken together, HPS6 deficiency may affect WPB
biogenesis and maturation, which is consistent with our
previous report (Ma et al., 2016).

Biogenesis and Maturation of WPBs Are
Compromised in HPS6 Knockdown
HUVECs
We further investigated the effects of HPS6 deficiency by siRNA
knockdown of HPS6 (KD-HPS6) in HUVECs (Figure 2C).
Immunofluorescence staining of vWF revealed more round-
shaped WPBs in KD-HPS6 cells compared with negative
control (NC) cells (Figures 2A,B). Moreover, the number of
WPBs was significantly reduced in KD-HPS6 cells compared with
NC cells (Figure 2D). These features resembled the changes in ru
mouse ECs as we reported previously (Ma et al., 2016).

Similarly, we observed the newly formed WPBs in HUVECs
at various time points (2, 4, 8, and 16 h) after PMA treatment
(Figure 2E). Immunofluorescence staining and statistical
analysis showed that the average number of WPBs per cell
was significantly reduced in KD-HPS6 HUVECs at 4, 8, and
16 h after PMA treatment compared with the NC HUVECs
(Figures 2E,F). In terms of the Feret’s diameter of WPBs in
these two groups, the statistical results showed that the
distribution of Feret’s diameter of WPBs in KD-HPS6 cells
began to shift to small values from 4 h onward. At 16 h, there
were significantly more WPBs with a Feret’s diameter of
≤1.5 μm in KD-HPS6 cells, while many rod-shaped WPBs of
≥2.5 μm were seen in NC cells (Figure 2G). These results
confirmed that HPS6 deficiency affected the de novo
production and maturation of WPBs.

Regulated Secretion and Tubulation of vWF
Are Compromised in HPS6 Knockdown
HUVECs
The existence of regular tubules of ultra-large vWF is an indicator
of WPB maturation that is a driving force to form rod-shaped
WPBs (McCormack et al., 2017; Tiemeier et al., 2020). Studies
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FIGURE 1 | The number and the elongated shape of newly formedWeibel–Palade bodies (WPBs) are affected in ru endothelial cells (ECs). Primary endothelial cells
were isolated from 4-week-old male WT and rumice and cultured for 10 days, then 80 nM PMA was added to each dish to stimulate WPB secretion for 30 min, and the
cells were fixed at 0, 2, 4, and 8 h after washing out. (A–D) (A9–D9) Immunofluorescence images of primary endothelial cells at different time points labeled against vWF
(green) and nucleus (DAPI, blue). Scale bar, 20 μm. The boxed square in (A–D) and (A9–D9) was magnified as (a–d) and (a′-d′), respectively. Scale bar, 5 μm. (E)
Quantitative analysis of the number of WPBs in each cell of WT and ru mice at different time points (n = 20, *p < 0.05, ***p < 0.001). (F) Feret’s diameter distribution of
WPBs at each time point in WT and rumice was analyzed quantitatively (WT0h: 428WPBs, ru0h: 616WPBs, WT2h: 545WPBs, ru2h: 612WPBs, WT4h: 921 WPBs, ru4h:
903 WPBs, WT8h: 1,412 WPBs, and ru8h: 692 WPBs). All the images were analyzed by the NIH ImageJ software. Data were expressed as mean ± SEM. Two
independent experiments were performed.
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FIGURE 2 | The number and the elongated shape of newly formed Weibel–Palade bodies (WPBs) are affected in KD-HPS6 human umbilical vein endothelial cells
(HUVECs). (A,B) Immunofluorescence images of negative control (NC;A) and HPS6 (KD-HPS6;B) siRNA-mediated knockdown in HUVECs labeled against vWF (green)
and nucleus (DAPI, blue). Moreover, 80 nM PMA was added to each dish to stimulate WPB secretion for 30 min, and the cells were fixed at 2, 4, 8, and 16 h after
washing out. Scale bar, 20 μm. The boxed square in (A, B) was magnified as (a, b) respectively. Scale bar, 5 μm. (C) Western blotting analysis of the detection of
HPS6 knockdown. (D) Quantitative analysis of the number of WPBs per cell of NC and KD-HS6 HUVECs (n = 30, ***p < 0.001). (E) Both NC and KD-HPS6 HUVECswere
exposed to 80 nM PMA for 30 min to stimulateWPB secretion, and the cells were fixed at 2, 4, 8, and 16 h, respectively, after washing out. Immunofluorescence images

(Continued )
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have shown that vWF is released by regulated secretion and
unfurls into long strings that are highly efficient in recruiting
platelets under flow in neutral plasma (Michaux et al., 2006;
Ferraro et al., 2014; El-Mansi and Nightingale, 2021). However,
string formation is also dependent on the initial coiling of vWF
into tubules. Disruption of coiling impairs orderly unfurling and
generates tangles of multimers, which fail to be released into the
plasma. WPBs lose their classical rod shapes after the knockdown
of HPS6. We speculated that this might result in failure of vWF
multimerization.

We used PMA as a stimulus to compare the regulated
secretion of vWF multimers between NC and KD-HPS6
HUVECs. The deficiency of HPS6 was confirmed by Western
blotting analysis in KD-HPS6 HUVECs (Figure 3A). Western
blotting with an anti-vWF antibody was used to analyze the
culture supernatant that was subjected to SDS-agarose gel
electrophoresis. The results showed apparently regulated
secretion in NC cells after PMA stimulation, but not in KD-
HPS6 cells (Figures 3B,E). These results suggested that HPS6
deficiency may lead to the failure of stimulated secretion
of WPBs.

In general, VWF is secreted via three pathways. Regulated and
basal secretion both occur from WPBs to transport highly
multimerized VWF. Regulated secretion is triggered by
agonist-mediated activation of the endothelium. In contrast,
basal secretion occurs constitutively. The third pathway occurs
by the constitutive release of VWF that has not been sorted into
WPBs which is not subject to highmultimerization. In Figure 3B,
there was no difference between lane 1 (NC) and lane 3 (KD-
HPS6), which can be explained by the fact that the constitutive
release and the basal secretion of vWF did not seem affected after
KD-HPS6. However, the comparison of lanes 1 and 2 vs. lanes 3
and 4 showed that the regulated secretion of vWF was
compromised. Decreased vWF secretion is also one of the
reasons why HPS6 deficiency leads to coagulation disorders.

To analyze the tubulation of vWF, the ability to form vWF
strings in NC and KD-HPS6 HUVECs was assessed after
treatment with Triton X-100. Triton X-100 destroys cell
membranes and WPB membranes, which exposed vWF to
neutral pH in situ (Michaux et al., 2006), thereby causing in
situ diffusion to form vWF strings. Immunofluorescence staining
showed vWF strings in NC cells, but very rarely in KD-HPS6 cells
(Figures 3C,D). In addition, we measured the length of vWF
strings in each group of HUVECs and found that the vWF strings
were much shorter in KD-HPS6 cells than in WT cells
(Figure 3F). This suggests that vWF multimers failed to
unfurl into the plasma from KD-HPS6 HUVECs after
stimulation, indicating failure of tubule formation in these
cells. Thus, HPS6 plays an important role in the tubulation
and secretion of vWF multimers in WPBs.

Steady-State Levels of Several Subunits of
v-ATPase Complex Are Decreased in HPS6
Knockdown Cells
As vWF tubulation requires an appropriate acidic environment,
we reason that the misshaped WPBs and abnormal release of
WPBs in KD-HPS6 HUVECs might be due to a change of the pH
value in the lumen of WPBs. It is well known that v-ATPase is the
primary proton pump for H+ homeostasis in organelles, which
consists of two multi-subunit domains, V1 and V0. The V1
domain consists of A, B, C, D, E, F, G, and H subunits, while
the V0 domain consists of a, d, c, cʺ, e, and Ac45 subunits. It binds
and hydrolyzes ATP for active intermembrane transport of
protons (Futai et al., 2019). Therefore, we treated HUVECs
with bafilomycin A1 (Baf A1), a v-ATPase inhibitor (Tang
et al., 2019), to observe whether the WPB shape and Feret’s
diameter changed accordingly. Our results showed that most
WPBs in the Baf A1 group lost their elongated phenotype
(Figure 4B), which was consistent with the phenotype of the
KD-HPS6 group (Figure 2B), whereas no obvious abnormality
was found in the DMSO control group (Figure 4A). The Feret’s
diameter distribution of WPBs in these two groups showed that
more WPBs in the Baf A1 group had a Feret’s diameter of
≤0.8 μm (Figure 4C), which indicated that v-ATPase
inhibition significantly compromised the size of WPBs.

To further explore the effect of HPS6 on v-ATPase, the steady-
state levels of several subunits of v-ATPase were examined in KD-
HPS6 HUVECs by Western blotting. We found that the
expression levels of ATP6V0D1, ATP6V1H, and ATP6V1B2
in the KD-HPS6 group were significantly lower than those in
the NC group (Figures 4D–I). Similarly, these changes were
observed in HPS3 (another BLOC-2 subunit) knockdown
HUVECs (data not shown). These results suggest that HPS6
deficiency may destabilize the v-ATPase complex in KD-HPS6
HUVECs, which likely results in a higher pH in the lumen of
WPBs and disrupts vWF tubule formation.

HPS6 Interacts With ATP6V0D1 for Its
Trafficking to WPBs
We next investigated whether v-ATPase subunits localized to
WPBs. We observed a partial co-localization of the WPB marker
vWF with Myc-tagged ATP6V0D1 (Figure 5A). To verify the
subcellular localization, an Optiprep continuous density gradient
was applied to examine the distribution of ATP6V0D1 and vWF
in each fraction. The results showed that the main peak of vWF
distribution was in the fractions 10–12, whichmay be the position
of the mature WPBs, while the low-density fraction may
represent the vWF in the ER, Golgi, and immature WPB. A
proportion of ATP6V0D1 existed in the fractions 10–12,

FIGURE 2 | showed the HUVECs at different time points labeled against vWF (green) and nucleus (DAPI, blue). Scale bar, 20 μm. The boxed square was magnified,
respectively. Scale bar, 5 μm. (F) Quantitative analysis of the number of WPBs per cell of NC and KD-HPS6 HUVECs (n = 20, ***p < 0.001). (G) Feret’s diameter
distribution of WPBs at each time point in NC and KD-HPS6 HUVECs was analyzed quantitatively (NC2h: 700 WPBs, KD-HPS62h: 427 WPBs, NC4h: 831 WPBs, KD-
HPS64h: 410 WPBs, NC8h: 812 WPBs, KD-HPS68h: 352 WPBs, NC16h: 2,816 WPBs, and KD-HPS616h: 1,862 WPBs). Data were expressed as mean ± SEM. Two
independent experiments were performed.
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FIGURE 3 | von Willebrand factor (vWF) secretion and the ability to generate surface strings are compromised in KD-HPS6 human umbilical vein endothelial cells
(HUVECs). The negative control (NC) and HPS6 siRNAwere transfected into two groups of HUVECs, respectively. At 72 h later, one group of NC and KD-HPS6 cells was
exposed to 80 nMPMA for 30 min to stimulateWPB secretion, and the other groups were exposed to 0.1%DMSO instead. (A) Western blotting analysis of the detection
of HPS6 knockdown in cell lysate collection. (B, E) Western blotting analysis of vWF multimer secretion in supernatant. The multimer gels were analyzed using the
NIH ImageJ software. The quantification of supernatant vWF multimers was carried out based on the normalization of the β-actin protein level of the cells in each well.
n = 5, *p < 0.05,**p < 0.01. (C, D) Moreover, 1% Triton X-100 was added into the culture medium of NC and KD-HPS6 HUVECs and cultured at 37°C for 1 h.
Immunofluorescence images of two groups of HUVECs labeled against vWF (green) and nucleus (DAPI, blue) were shown. Scale bar, 10 μm. (F) The length of vWF
strings at each group of HUVECs was measured by the NIH ImageJ software (n = 30 per group, ***p < 0.001). Data were expressed as mean ± SEM. Three independent
experiments were performed.
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indicating that ATP6V0D1 is partially co-localized with mature
WPBs. Part of ATP6V0D1 (fractions 5–8) was co-localized with
late endosome/lysosome marker LAMP1 (Figure 5B).
Furthermore, a co-immunoprecipitation analysis verified the
interaction between Myc-tagged ATP6V0D1 and Flag-tagged
HPS6 in 293 T cells (Figure 5C). Our endogenous
immunoprecipitation (IP) also showed that HPS6
immunoprecipitated ATP6V0D1 (data not shown). These data
suggest that ATP6V0D1 is likely transported to WPBs as a cargo
of HPS6 or BLOC-2.

In order to compare the v-ATPase subunits on WPB after the
knockdown of HPS6, we performed the Optiprep continuous

density gradient experiment and took the same amount of
fractions 10–12 that mainly represented the mature WPBs in
NC and KD-HPS6 cells for Western blotting. The results showed
that the protein levels of ATP6V0D1, ATP6V1H, and ATP6V1B2
were decreased in fractions 10–12 (Figure 5D). These results
suggested that ATP6V0D1 could not be transported to the WPB
membrane correctly after HPS6 deficiency, which likely affects
the assembly of the v-ATPase complex and results in disrupted
WPB acidification.

To explore whether the decrease in the protein level of
ATP6V0D1 after HPS6 knockdown is due to the degradation
of the mis-localized protein, we treated NC and KD-HPS6

FIGURE 4 | v-ATPase is compromised in KD-HPS6 human umbilical vein endothelial cells (HUVECs). Pharmacological inhibition of the v-ATPase caused the
Weibel–Palade bodies (WPBs) to lose their elongated shapes. DMSO or v-ATPase inhibitor, Baf A1 (200 nM), was administered 1 h before cell fixation by 4%PFA (n = 20
per group). (A, B) Immunofluorescence images of DMSO-treated (A) and Baf A1-treated cells labeled against vWF (red) and nucleus (DAPI, blue). Scale bar, 10 μm. (C)
Feret’s diameter of WPBs at each group of HUVECs was analyzed quantitatively (DMSO: 502WPBs, gray; Baf A1: 300 WPBs, black). (D–I) siRNA-mediated HPS6
knockdown suppressed the expression of ATP6V0D1, ATP6V1H, and ATP6V1B2, three subunits of v-ATPase (n = 8 per group, **p < 0.01,***p < 0.001). Data were
expressed as mean ± SEM. Three independent experiments were performed.
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FIGURE 5 | HPS6 interacts with ATP6V0D1 and mediates its trafficking to the Weibel–Palade body (WPB). (A) Immunofluorescence images of Myc-ATP6V0D1
plasmid-transfected human umbilical vein endothelial cells (HUVECs) labeled against Myc (green), vWF (red), and nucleus (DAPI, blue). Scale bar, 10 μm. (B) Separation
of organelles and proteins by Optiprep density gradient. The final organelles and protein pellets were placed onto 50–5% sucrose gradient layers and then centrifuged for
30,000 rpm for 16 h at 4°C. A total of 13 fractions were collected from the top to the bottom of the gradient for further Western blotting experiments to test the
distribution of vWF and ATP6V0D1. (C) A total of 293 T cells were transfected with Flag-HPS6 and Myc-ATP6V0D1 plasmids, and the cell lysates were co-
immunoprecipitated by anti-Flag M2 affinity gel. Western blotting analysis of detection of Flag and Myc bands. (D) NC and HPS6 siRNAwere transfected into two groups

(Continued )
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HUVECs with a proteasome inhibitor MG132 (M) (Mazzotta
et al., 2020; Olmedo et al., 2020) and a lysosome inhibitor
leupeptin (L) (Mazzotta et al., 2020), respectively. We
optimized the concentration of 0.25 μM MG132 and 20 μM
leupeptin as the experimental conditions. Our results showed
that, although ATP6V0D1 was increased significantly in the
NC + M and NC + L groups compared with that in the NC + D
(DMSO) group (Figures 5E–H), a significant increase of
ATP6V0D1 was found only in the KD + L group and not in
the KD + M group compared with the KD + D group (Figures
5E–H). These results suggest that, although a portion of

ATP6V0D1 may be degraded by the proteosome,
ATP6V0D1 is mainly subjected to lysosomal degradation,
indicating that mis-targeted ATP6V0D1 is likely degraded
via the lysosomal pathway that results in a decrease of the
steady-state level of ATP6V0D1.

ATP6V0D1 Knockdown Phenocopies the
Abnormalities of WPBs in ru Mouse Cells
and in KD-HPS6 HUVECs
We next investigated the changes of WPBs in HUVECs after
the knockdown of the ATP6V0D1 gene (KD-ATP6V0D1). We
found that the changes in shape, number, and size of WPBs in
KD-ATP6V0D1 HUVECs were similar to those in ru mouse
ECs and KD-HPS6 HUVECs (Figures 6A–D). The off-target
effects of both siHPS6 and siATP6V0D1 were excluded by three
different target siRNAs (data not shown). Additionally, the
regulated secretion and ability to unfurl into the plasma of
vWF multimers were impaired in KD-ATP6V0D1 HUVECs
(Figure 7). These results further confirmed that HPS6 is likely
involved in the trafficking of ATP6V0D1 to the WPB
membrane for the assembly of v-ATPase to maintain the
acidic pH in its lumen. This highlights the importance of
H+ homeostasis in the lumen of WPBs during their
biogenesis and release.

DISCUSSION

The BLOC-2 complex functions in transporting cargos from
endosomes to lysosomes or lysosome-related organelles in
cells. Many studies have shown that the BLOC-2 complex
plays an important role in the biogenesis of melanosomes
(Dennis et al., 2015). As one of the subunits of the BLOC-2
complex, HPS6 has been reported to be involved in lysosome
positioning and maturation in HeLa cells (Li et al., 2014). In this
study, we found that HPS6 is involved in the trafficking of
ATP6V0D1, a subunit of v-ATPase complex, to the WPB
membrane for its assembly into v-ATPase complex to
maintain the acidic state of the WPB lumen, which is essential
for vWF tubulation and the formation of elongated mature
WPBs. When HPS6 is deficient, ATP6V0D1 is missorted and
likely subjected to lysosomal degradation, which increases the pH
in the lumen of WPBs and ultimately disrupts WPB biogenesis
and secretion. This result explains one of the molecular
mechanisms by which HPS6 participates in the biogenesis and
maturation of WPBs.

Additionally, we revealed that the protein level of ATP6V1H
and ATP6V1B2, two other subunits of v-ATPase, was
significantly reduced in KD-HPS6 cells. v-ATPase is a macro-

FIGURE 5 | of HUVECs, respectively. At 72 h later, the organelles and proteins were separated by Optiprep density gradient. The input and fractions 10–12 of each
group were analyzed byWestern blotting. (E–H) The negative control (NC) and HPS6 siRNAwere transfected into two groups of HUVECs, respectively. At 72 h later, one
group of NC and KD-HPS6 cells was exposed to 0.25 μM MG132 (M) or 20 μM Leupeptin (L), and the other groups were exposed to 0.1% DMSO (D) instead. (E, G)
Western blotting analysis of detection of ATP6V0D1 in KD +M cells. (F,H) Western blotting analysis of detection of ATP6V0D1 in KD + L cells. n = 7, *p < 0.05,**p < 0.01.
Data were expressed as mean ± SEM. Two independent experiments were performed.

FIGURE 6 | Knockdown of ATP6V0D1 in human umbilical vein
endothelial cells (HUVECs) phenocopies the abnormalities of Weibel–Palade
bodies (WPBs) KD-HPS6 HUVECs. (A) Immunofluorescence images of
negative control (NC) and ATP6V0D1 siRNA (KD-ATP6V0D1)-mediated
knockdown in HUVECs labeled against vWF (green) and nucleus (DAPI, blue).
Scale bar, 20 μm. The boxed squares were magnified, respectively. Scale bar,
5 μm. (B) Western blotting analysis of the detection of ATP6V0D1
knockdown. (C) Quantitative analysis of the number of WPBs per cell of NC
and KD-ATP6V0D1 HUVECs (n = 30, **p < 0.01). (D) Feret’s diameter
distribution of WPBs at each group of HUVECs was analyzed quantitatively
(NC: 3,608 WPBs, black; KD-ATP6V0D1: 2,852 WPBs, gray). Data were
expressed as mean ± SEM. Three independent experiments were performed.
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FIGURE 7 | vWF secretion and the ability to generate surface strings are also compromised in KD-ATP6V0D1 human umbilical vein endothelial cells (HUVECs).
Negative control (NC) and ATP6V0D1 siRNA were transfected into two groups of HUVECs, respectively. At 72 h later, one group of NC and KD-ATP6V0D1 cells was
exposed to 80 nM PMA for 30 min to stimulate Weibel–Palade body secretion, and the other groups were exposed to DMSO (0.1%) instead. (A) Western blotting
analysis of the detection of ATP6V0D1 knockdown in cell lysate collection. (B, E) Western blotting analysis of the detection of vWF multimer secretion in
supernatant. Multimer gels were analyzed using the NIH ImageJ software. The quantification of supernatant vWFmultimers was carried out based on the normalization of
the β-actin protein level of the cells in eachwell. n = 5, *p < 0.05,**p < 0.01. (C,D) 1% Triton X-100 was added into the culturemedium of NC and KD-ATP6V0D1HUVECs
and cultured at 37°C for 1 h. Immunofluorescence images of two groups of HUVECs labeled against vWF (green) and nucleus (DAPI, blue) were shown. Scale bar,
10 μm. (F) The length of vWF strings at each group of HUVECs was measured by the NIH ImageJ software (n = 30 per group, ***p < 0.001). Data were expressed as
mean ± SEM. Three independent experiments were performed.
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complex that consists of two domains with 14 subunits. Except
for the ATP6V0D1 subunit, HPS6 or BLOC-2 complex may be
similarly involved in the trafficking of other v-ATPase subunits to
WPBs. Because of the lack of available antibodies, the interactions
between HPS6 and other v-ATPase subunits require further
investigation. Another explanation is that the lack of one
subunit destabilizes the other subunits in a heterogeneous
complex. This is evident in the HPS mutants of BLOC-1/-2/-3,
i.e., one subunit deficiency destabilizes the other subunits (Wei
and Li, 2013).

During WPB maturation, the luminal pH value is not constant,
but it decreases gradually as the WPB matures. The direct
correlation between this pH change and the shape of WPBs is
evident by vWF multimerization and the assembly of the tubular
structures. Mayadas et al. found that vWF dimers form multimers
when the pH value is between 4.0 and 6.2, and the highest efficiency
of multimerization occurs at 5.8 (Mayadas and Wagner, 1989).
However, vWF multimers are no longer detectable when pH >6.2.
Using compounds such as monensin, NH4Cl, and chloroquine to
increase the pH in the medium, obvious phenotypic changes are
visible under an electron microscope, and WPBs showed a
significantly round shape (Michaux et al., 2006), which are
consistent with the phenotypic changes of WPBs in KD-HPS6
HUVECs. This agrees with the notion that the luminal pH of
WPBs is important for their maturation. Unfortunately, we have
tested several dyes or tools to monitor the luminal pH changes but
failed. A sensitive tool for this measurement needs to be developed.

It is known that the highly polymerized vWF polymers are
stored in mature WPBs, which dock near the plasma membrane
and release their contents into the blood after stimulation. Both in
the endothelial cells of ru mice and HUVEC cells, HPS6
deficiency not only changed the classic long rod shape of
WPB but also led to a significant reduction in the number of
newly generated WPBs. One possible explanation is that HPS6
may also participate in the process of WPB budding from TGN,
which awaits further investigation.

In summary, we have revealed that HPS6 or BLOC-2 is
involved in the trafficking of v-ATPase subunits to maintain
the acidic lumen of LROs. This provides more insights into the
underlying mechanism of LRO defects and the pathogenesis
of HPS.

MATERIALS AND METHODS

Antibodies
Antibodies Used in Immunofluorescence

The mouse monoclonal antibodies anti-vWF antibodies (1:
500, ab201336) were purchased from Abcam
(United Kingdom). The rabbit polyclonal anti-human vWF
antibodies (1:2,000, A0082) were purchased from Dako
(Denmark). The rabbit polyclonal anti-c-Myc antibodies (1:
500, C3956) were purchased from Sigma-Aldrich
(United States). The goat anti-rabbit IgG (H + L) Highly
Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (1:
2,000, CA11008s) or Alexa Fluor 594 (1:2,000, CA11012s)
and goat anti-mouse IgG (H + L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor Plus 488 (1:2,000,
CA11001s) were purchased from Invitrogen (United States).

Antibodies used in Western blotting
The rabbit polyclonal anti-human vWF antibodies (1:10,000,

A0082) were purchased from Dako (Denmark). The rabbit
polyclonal antibodies against human HPS6 (1:1,000, NBP2-
14,100) were from Novus Biologicals (United States). The
rabbit polyclonal antibodies against human ATP6V1B2 (1:500,
ab73404), ATP6V1H (1:500, ab187706), and ATP6V0D1 (1:
1,000, ab202899) were all from Abcam (United Kingdom).
The mouse monoclonal antibodies anti-human β-actin (1:
100,000, A5441), rabbit polyclonal anti-c-Myc antibodies (1:
1,000, C3956), and rabbit polyclonal anti-LAMP1 antibodies
(1:2,000, L1418) were purchased from Sigma-Aldrich
(United States). The mouse monoclonal anti-Flag tag (1:1,000,
MA1-91878) were purchased from Invitrogen (United States).
The peroxidase-conjugated secondary anti-rabbit antibodies and
anti-mouse antibodies (both 1:5,000, ZB2301 and ZB2305) were
all purchased from ZSGB-bio (China).

Animals
Male WT or ruby-eye (ru) mutant (HPS6 deficiency in BLOC-2)
mice (4 weeks of age) were used for the experiments. They were
originally obtained from The Jackson Laboratory (Maine,
United States) and maintained in the laboratory of Dr.
Richard T. Swank. All these mutant mice arose from
spontaneous mutations in C57BL/6J background. The
mutation of the Hps6 gene was confirmed by PCR analysis of
tail DNA (data not shown). The animal experiments were carried
out in accordance with institutional guidelines for animal
experimentation, and the procedures were approved by the
Institutional Animal Care and Use Committee of the Institute
of Genetics and Developmental Biology, Chinese Academy of
Sciences (mouse protocol # AP2021028).

Cell Culture
Primary mouse heart endothelial cells were isolated by magnetic
activated cell sorting method as previously described (Ma et al.,
2016). The human umbilical vein endothelial cells were obtained
fromDr. QiangWang’s Laboratory (Institute of Zoology, Chinese
Academy of Sciences) and maintained in EGM-2 medium
(Lonza, cc-3162) at 37°C and 5% CO2.

ru EC Treatments
Phorbol-12-myristate-13-acetate (Sigma, P1585) in DMSO was
added into the EGM-2 medium with 80 nmol/L final
concentration. The cells were washed with the growth medium
twice after 30 min, changing to fresh growth medium, and then
fixed with 4% paraformaldehyde at 0, 2, 4, and 8 h later,
respectively.

HUVEC Treatments
PMA in 80 nM final concentration or 0.1% DMSO was added
into the EGM-2 medium (respectively) after 30 min. The cells
were washed with growth medium twice, changing to fresh
growth medium, and then fixed with 4% PFA after 2, 4, 8,
and 16 h, respectively, or the supernatant was collected
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directly. Triton X-100 (Sigma-Aldrich, T8787) was used at 1% in
phosphate-buffered saline (PBS) after pH adjustment. The Triton
X-100-treated cells were applied at 37°C for 1 h. All the
procedures were followed as described (Michaux et al., 2006).
The v-ATPase inhibitor, bafilomycin A1 (Abcam, ab120497), in
200 nM final concentration or 0.1% DMSO was added into the
growth medium, respectively, washing the cells with growth
medium twice after 1 h and then fixing them with 4% PFA
immediately.

RNA Interference
HPS6 expression was suppressed with a siRNA (5′-GCUGGA
GAGGAAGGUCCUATT-3′). ATP6V0D1 expression was
suppressed with a siRNA (5′-GCA CUG AUU AUG GUA
ACU UTT-3′). The results were compared with a non-
targeting NC siRNA (5′-UUCUCCGAACGUGUCACGUTT-
3′). A total of 120 nM siRNAs were introduced into HUVECs
using Lipofectamine RNAiMAX transfection reagent (Thermo
Fisher Scientific, 2103411) according to the protocol of the
manufacturer. After transfection (72 h), the cells were treated
as needed.

Western Blotting
Cells were lysed with cell lysis buffer for Western and IP
[Beyotime, P0013, 20 mM Tris (pH 7.5), 150 mM NaCl, 1%
Triton X-100] supplemented with protease inhibitor mixture
(Solarbio Life Science, P6730) on ice for 1 h. The lysates were
separated in sodium dodecyl sulfate (SDS)-PAGE gels [30%
acrylamide, 1.5 M Tris-HCl (pH 8.8), 1.0 M Tris-HCl (pH 6.8),
10% SDS, 10% ammonium persulfate, and TEMED] and then
transferred to a polyvinylidene difluoride membrane
(Millipore, IPVH00010), which was blocked with 5% non-
fat milk in Tris-buffered saline and 0.2% Tween-20 (TBST) for
1 h at room temperature, followed by overnight incubation at
4°C with primary antibodies. After three washes with TBST,
the membrane was incubated with appropriate horseradish
peroxidase-conjugated secondary antibodies for 1 h at room
temperature. The antigen was detected with Mini
Chemiluminescent Imaging and Analysis System
(MiniChemi) according to the instructions of the
manufacturer. The procedures were repeated with the same
samples more than twice to react with each primary antibody.

Immunochemistry
Cultured cells were washed once with PBS and fixed in 4% PFA.
The cells were permeabilized with 0.4% Triton X-100 in PBS for
20 min and then blocked with 1% bovine serum albumin (BSA) in
PBS for 2 h at room temperature. After blocking, the cells were
incubated overnight at 4°C with primary antibodies against vWF
(diluted 1:2,000 in 3% BSA) and Myc tag (diluted 1:1,000 in 3%
BSA). Alexa red- or green-labeled secondary antibodies (1:2,000)
were used for signal detection. To stain the nucleus, the cells were
incubated with DAPI (ZSGB-BIO, ZLI-9557) before mounting.
The labeled cells were observed with a confocal laser scanning
microscope (ZEISS, LSM880) equipped with 405-, 488-, and 561-
nm excitation laser. Images were taken with ×100 oil objective
lens (Zeiss) using ZEN-Black (Zeiss).

vWF Multimer Analysis
Samples were gained from the supernatant after PMA
stimulation as described above. In this experiment, the same
amount of cells was seeded into each well of the 24-well plate,
and the same volume of medium (200 μl) was used during the
PMA stimulation. After treating with 80 nM PMA in each well
for 1 h, the supernatant samples (150 μl) were loaded in
50 mmol/L Tris, pH 8.0, 1% SDS, 5% glycerol, and 0.002%
bromophenol blue. The vWF multimer analysis was as
previously described (Ma et al., 2016). Then, 1.2% agarose
gels were prepared by dissolving Seakem high-gelling-
temperature agarose (Lonza, 50,041) in 0.375 mol/L Tris
(pH 8.8), with SDS added to a final concentration of 0.1%.
The gels were run at 30 V for 16 h (Tanon, EPS600) before
transferring to a nitrocellulose membrane labeled with rabbit
anti-vWF antibody (1:10,000), followed by horseradish
peroxidase-conjugated anti-rabbit secondary antibody (1:
5,000), and developed by chemiluminescence (Meilunbio,
MA0186). The multimers of each lane on the same gel were
arranged according to their molecular weight. The multimer
gels were analyzed using the NIH ImageJ software. The
quantification of supernatant vWF multimers was carried
out based on the normalization of the β-actin protein level
of the cells in each well.

Plasmid Transfection
The coding sequence of ATP6V0D1 was amplified by PCR from
human cDNA and cloned into the pCDNA3.1 Myc HisB vector,
generating ATP6V0D1 constructs tagged with Myc at the
C-terminus. The Flag-HPS6 was obtained from the lab of
Jiajia Liu (Li et al., 2014). The plasmids were transfected into
293 T cells with Lipofectamine 2000 (Invitrogen, 11,668)
according to the protocol of the manufacturer. The plasmids
were transfected into HUVECs with Lipofectamine 3000
(Invitrogen, L3000-015) according to the protocol of the
manufacturer.

Co-immunoprecipitation Assay
Co-IP assays were performed as described by Zhang et al. (2014).
The transfected 293 T cells were harvested and lysed with lysis
buffer (1 M Tris-HCl, pH 7.4, 5 M NaCl, 0.5 M EDTA, 1% Triton
X-100, and protease inhibitors). The cell lysates were centrifuged
at 12,000 rpm for 5 min, and the supernatant was collected and
incubated overnight with anti-FLAG M2 affinity antibody
(Sigma-Aldrich, A2220) at 4°C and washed 4 times with ice-
cold lysis buffer. The samples were eluted with protein loading
buffer (Solarbio, P1040) and subjected to SDS-PAGE and
Western blotting with anti-Myc antibody (1:1,000) or anti-Flag
tag antibody (1:1,000).

OptiPrep Continuous Density Gradient
Centrifugation
The fractionation assay was performed using the OptiPrep
gradient method as described by Zhang et al. (2014). The
HUVECs were washed once with PBS and transferred to a 15-
ml centrifuge tube after digestion with trypsin. The supernatant
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was discarded after centrifugation at 1,000 rpm for 3 min. The
sample was resuspended and transferred to a 1.5-ml Eppendorf
tube. The supernatant was discarded again after centrifugation.
The sample was immediately homogenized with 250 μl HB lysis
buffer (250 mM sucrose, 20 mM Tris-HCl, pH 7.4, and 1 mM
EDTA) and ground. The sample was placed onto the top of a
12.4-ml continuous 5–50% OptiPrep (Axis-Shield, 1,114,542)
gradient in HB buffer. The gradient was centrifuged at
30,000 g for 16 h in a Beckman SW41 rotor at 4°C. Thirteen
fractions (900 μl each) were collected from the top. Equal aliquots
from each fraction were analyzed for Western blotting.

Statistical Analysis
The NIH ImageJ software was used for the quantitative analysis of
Western blotting, determining the number of WPBs in a single
cell, and the measurement of Feret’s diameter. All results were
independently repeated at least three times. All the histograms
were plotted using GraphPad Prism software. Student’s t-test was
used as the statistical method, and mean ± standard error (SEM)
was used to represent the data. *p < 0.05 indicated that there were
significant differences in the data. **p < 0.01 and ***p < 0.001
indicated that there was a very significant difference in the data,
while NS indicates that there is no significant difference in
the data.
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Pathways and Mechanisms of Cellular
Cholesterol Efflux—Insight From
Imaging
Alice Dupont Juhl and Daniel Wüstner*

Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense,
Denmark

Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can
be toxic. Therefore, mammalian cells have developed complex mechanisms to remove
excess cholesterol. In this review article, we discuss what is known about such efflux
pathways including a discussion of reverse cholesterol transport and formation of high-
density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and
we highlight their role in human diseases. Attention is paid to the biophysical principles
governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux
by the release of exosomes, microvesicles, and migrasomes. The role of the endo-
lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann
Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are
important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion
are described briefly. In addition to discussing results obtained with traditional biochemical
methods, focus is on studies that use established and novel bioimaging approaches to
obtain insight into cholesterol efflux pathways, including fluorescence and electron
microscopy, atomic force microscopy, X-ray tomography as well as mass
spectrometry imaging.

Keywords: cholesterol, oxysterol, HDL, LDL, ABC transporter, extracellular vesicles, niemann pick disease,
apoprotein A1 (Apo A1)

1 CHOLESTEROL–AN IMPORT LIPID CONSTITUENT OF
CELLULAR MEMBRANES

Cholesterol is a small lipid molecule consisting of a steroid ring system, a short alkyl-chain and a
hydroxy group at position 3 as the only polar constituent. These properties, together with the
asymmetric orientation of its methyl groups, give cholesterol a unique ability to interact with
phospholipids in cellular membranes. Cholesterol reduces the propensity of gauche configurations in
carbon chains, thereby ordering the fatty acid acyl chains, decreasing the distance between
phospholipid head groups and condensing the lipid bilayer (Mouritsen and Zuckermann, 2004).
This ability critically depends on both, the steroid back bone and the aliphatic side chain of
cholesterol (Ipsen et al., 1990; Henriksen et al., 2006; Scheidt et al., 2013). As a result of this
interaction, membrane permeability and bending flexibility are reduced, while lateral lipid diffusion
is largely preserved (Ipsen et al., 1990). Thus, cholesterol has the ability to maintain lipid and protein
mobility in a membrane, while controlling membrane thickness and flexibility as well as the
membrane barrier function to metabolites, ions, and signaling molecules. Its presence creates free
energy penalties for conformational transitions of proteins in cholesterol-containing membranes,
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e.g., due to hydrophobic mismatch or bending resistance in
curved membrane regions and during vesicle formation
(Lundbæck and Andersen, 2012). Energy barriers to be
overcome by proteins during their catalytic cycle in
membranes containing cholesterol compared to cholesterol-
free membranes can be as high as 45 kJ/mol. This corresponds
to 18 times the thermal energy and almost as much as hydrolysis
of one ATP molecule (54 kJ/mol) (Lundbæck and Andersen,
2012). In addition, cholesterol can specifically interact with
membrane proteins, thereby regulating their function.
Prominent examples for regulation of protein function by
cholesterol as allosteric ligand are G-protein coupled receptors
or ligand-gated ion channels (de Almeida et al., 2004;
Chattopadhyay et al., 2005). Cholesterol can also directly
control signaling cascades, as shown by its specific binding
to components of the Hedgehog pathway, such as Smoothened
or Patched (Huang et al., 2016; Gong et al., 2018). Finally,
cholesterol can be covalently attached to signaling proteins of
the Hedgehog pathway, i.e., as a membrane anchor for
Hedgehog and as a sensor to locate Smoothened to primary
cilia (Garcia et al., 2001; Xiao et al., 2017). These diverse
functions of cholesterol necessitate a tight control of its
abundance in cellular membranes. We will start this review
by introducing, how cholesterol synthesis and uptake are
regulated before discussing mechanisms of cellular efflux of
excess cholesterol.

2 CHOLESTEROL HOMEOSTASIS BY
FEEDBACK-REGULATED DE NOVO
SYNTHESIS AND CELLULAR UPTAKE

2.1 A Short Detour Into Cholesterol
Synthesis
All carbon atoms in cholesterol originate from acetate, and
cholesterol-specific biosynthesis starts with the reduction of
the activated ketone body hydroxymethylglutaryl-Coenzyme A
into mevalonate by the cytoplasmic enzyme
hydroxymethylglutaryl-Coenzyme A reductase (HMG-CoA
reductase) (Bloch, 1965). This is followed by a sequential
synthesis of five-carbon isoprene units, which can condense to
form geranyl- and from there farnesyl-pyrophosphate (a 15-
carbon isoprene), which condenses in a head-to-tail-manner to
form squalene. Upon oxygen-dependent epoxide formation to
activate squalene, cyclization into the steroid backbone to form
lanosterol is catalyzed by oxidosqualene cyclase. From lanosterol
to cholesterol, either the Bloch or the Kandutsch-Russel pathway
are used, which involve an additional 8-9 reaction steps to finally
form cholesterol (Cerqueira et al., 2016). Thus, the biosynthesis of
cholesterol is very complex, leading also to other important
biomolecules, which are either needed in oxidative
phosphorylation, such as ubiquinone, for glycosylation
reactions, for example, dolichol, or for hydrophobic anchoring
of peripheral membrane proteins (e.g. via farnesylations)
(Cerqueira et al., 2016). Statins, which are used to lower blood
cholesterol levels for the prevention of atherosclerosis, are

competitive inhibitors of HMG-CoA reductase, resulting not
only in inhibition of synthesis of cholesterol but also of such
important isoprene derivatives (Cerqueira et al., 2016).

2.2 Cellular Uptake and Intracellular Fate of
Low Density Lipoprotein
Low density lipoprotein (LDL) provides cholesterol for uptake into
cells. Upon binding to the LDL-receptor at the plasma membrane
(PM), the LDL/LDL receptor complex can be internalized by
clathrin-dependent endocytosis (Iaea and Maxfield, 2015;
Pfisterer et al., 2016). Adaptor proteins, such as autosomal
recessive hypercholesterolemia (ARH) protein are essential for
endocytosis of the LDL/LDL receptor complex, and mutations
in ARH or the LDL receptor can lead to inherited forms of
hypercholesterolemia (Garcia et al., 2001). Upon endocytosis,
newly formed endosomes, containing both LDL and its
receptor, will release the clathrin coat and start to fuse with pre-
existing sorting/early endosomes located in the cellular periphery.
Due to a slight drop in pH in the sorting endosomes compared to
the cell surface, the LDL-receptor undergoes a conformational
change and releases the LDL particle. The free LDL-receptor will
subsequently recycle back to the cell surface, either directly from
sorting endosomes or via the endocytic recycling compartment
(ERC) (Maxfield andMcgraw, 2004). Exit of the LDL receptor from
the sorting endosomes takes place primarily by narrow diameter
tubules ensuring a high surface-to-volume ratio for efficient
membrane recycling. The released LDL is retained in the lumen
of sorting endosomes, which slowly mature into late endosomes,
thereby losing their fusion capacity for incoming vesicles and
acquiring acid hydrolases from the trans-Golgi network (TGN)
for degradation of luminal cargo (Maxfield and Mcgraw, 2004).
The LDL particles will be degraded in late endosome and lysosomes
(LE/LYSs) where LDL-associated cholesteryl esters (CEs) will be
hydrolyzed by acid lipase to unesterified (free) cholesterol and free
fatty acids (Chao et al., 1992; Ameis et al., 1994). Some of the
liberated cholesterol can be re-esterified by acyl-Coenzyme A acyl
transferase (ACAT) in the endoplasmic reticulum (ER) and stored
as CEs in lipid droplets (LDs).

2.3 Regulation of Cholesterol Synthesis and
Uptake
Since several important regulators of cholesterol homeostasis
reside in the ER and the sterol concentration in this organelle is
low under physiological conditions, the ER is an excellent control
center for cholesterol homeostasis. Cells respond to a drop in
cholesterol levels with increased expression of HMG-CoA
reductase and other biosynthetic enzymes, which is an
important feedback mechanism. (Istvan and Deisenhofer, 2001).
This feedback is based on the ER-resident sterol regulatory binding
protein (SREBP). SREBP is retained in the ER together with the
cholesterol-sensing protein (SCAP), and the two ER retention
proteins Insig-1 or -2, during cholesterol replete conditions
(Iaea and Maxfield, 2015). Under such condition, cholesterol
will bind to SCAP, causing it to bind to Insig (Adams et al.,
2004), while oxysterols will bind to Insig promoting it to bind and
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retain SCAP in the ER (Radhakrishnan et al., 2007; Luo et al.,
2020). Once the ER cholesterol level drops below 5mol% SCAP
will undergo a conformational change that will cause the SCAP-
SREBP complex to be released from Insig (Radhakrishnan et al.,
2008). The SCAP-SREBP complex can then be transferred in
COPII coated vesicles to the Golgi apparatus, where SREBP will
be activated by cleavage and release of its N-terminal transcription
factor (nSREBP). In the nucleus, nSREBP can activate the
transcription of genes involved in cholesterol metabolism,
synthesis, and uptake such as the HMG-CoA reductase and the
LDL-receptor (Horton et al., 2003; Yang et al., 2020). Remarkably,
nSREBP controls both LDL endocytosis, by activating the
transcription of LDL-receptor, and at the same time down-
regulation of the same receptor by inducing the transcription of
the Proprotein convertase subtilisin/kexin type 9 (PCSK9;
Figure 1). PCSK9 is a secreted protein, which binds to the
extracellular site of LDL-receptor on the PM and becomes
internalized together with the LDL-receptor. Once inside early
endosomes, PCSK9 prevents the pH-dependent conformational
change of the LDL-receptor, which is necessary for its recycling,
promoting receptor degradation in the LE/LYSs (McNutt et al.,
2007; Mousavi et al., 2009; Zhang et al., 2012). Upon nSREBP-
stimulated synthesis, LDL receptor can also be escorted by PCSK

on the secretory pathway from the TGN directly to LE/LYSs for
degradation (Schilling et al., 2004). This complex control
mechanism of LDL receptor synthesis and degradation by
sterol-induced regulation of nSREBP activity shows the
importance of tight surveillance of LDL uptake into cells for
overall cholesterol homeostasis.

In addition to the SREBP/SCAP/Insig system, nuclear
receptors play a major role in cholesterol regulation. For
example, the liver X receptors (LXRs) function as
complementary and independent sterols sensors, which are
particularly important for the control of cellular cholesterol
efflux. LXRs are activated by oxysterols, which are generated
when cellular cholesterol levels are high (Luu et al., 2016). Upon
activation LXRs together with isomers of retinoid X receptors
(RXRs) will bind as heterodimers to their DNA response element
(Figure 1) (Zhao and Dahlman-Wright, 2010). This will induce
the transcription of genes that are involved in protecting the cell
from becoming overloaded with cholesterol, including the ATP-
binding cassette transporter A1 (ABCA1) which mediates the
egress of phospholipids and cholesterol to acceptor proteins, such
as apolipoprotein A-1 (apoA1) (Venkateswaran et al., 2000). To
prevent a futile cycle of cellular cholesterol uptake via endocytosis
of LDL and cholesterol efflux by ABC transporters, the inducible

FIGURE 1 | Regulation of cholesterol synthesis and uptake - an overview. LDL binds to the LDL receptor (LDLR) at the cell surface and becomes internalized by
clathrin-mediated endocytosis. Upon arrival in the sorting endosomes (SE), LDL dissociates from the LDLR and is retained in the lumen of SE which gradually mature into
late endosomes (LE). The LDLR recycles back to the cell surface, either directly from the SE or by passing through the endocytic recycling compartment (ERC). The
maturation process of SE into LE, and the further conversion of LE into lysosomes (LYS), involves the formation of internal vesicles in LE, acquisition of LBPA, a drop
in pH, and import of proteases, lipases, and other lysosomal enzymes from the Golgi. When the cell is rich in cholesterol, SREBP will be retained in the ER by SCAP and
Insig. Cholesterol will bind to SCAP, whereas oxysterol will bind to Insig (green arrows). LXR will be activated by oxysterols, which together with RXR can induce the
transcription of genes involved in protecting the cells from becoming overloaded with cholesterol. During low cholesterol conditions, the SCAP-SREBP complex will be
released from Insig in the ER and move to the Golgi for cleavage and activation (nSREBP). In the nucleus, nSREBP can activate the transcription of genes involved in
cholesterol biosynthesis and uptake. The expression of PCSK9, which promotes the degradation of the LDL-receptor by interfering with its recycling, is also under the
control of the nSREBP system. Intracellular degradation of LDLR is promoted by the E3 ubiquitin ligase IDOL, whose expression is stimulated by LXR under conditions of
high cellular cholesterol. See the text for more details. ABAC1 (ATP-binding cassette A1), Chol (cholesterol), ER (endoplasmic reticulum), ERC (endocytic recycling
compartment), HMG-CoA (3-hydroxy-3-methylglutaryl-Coenzyme A), IDOL (inducible degrader of the LDL receptor), LDL (low-density lipoprotein), LDLR (LDL-
receptor), LXR (liver-X receptor), PCSK9 (proprotein convertase substilisin/kexin type 9), RXR (retinoid X receptor) SCAP (SREBP-Cleavage-Activating protein), SE
(sorting endosomes), SREBP (sterol regulatory element-binding protein), Ub (ubiquitin).
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degrader of LDL-receptor (IDOL), an E3 ubiquitin ligase, is also
regulated by the LXR pathway (Zhang et al., 2012; Scotti et al.,
2013). The function of IDOL is to ubiquitinate the LDL-receptor,
which leads to its association with components of the endosomal
sorting complex required for transport (ESCRT) (Scotti et al.,
2013). As a consequence, the LDL-receptor is retained in LE/LYSs
and degraded. ESCRT is not only essential for the degradation of
endosomal cargo but also for the formation of cholesterol-rich
intraluminal vesicles (ILVs), which accumulate in late
endosomes, as they mature (Gruenberg, 2020). By
ubiquitinating the LDL receptor and thereby stimulating its
lysosomal degradation, IDOL limits the uptake of cholesterol
when cellular cholesterol levels are high (Zelcer et al., 2009; Scotti
et al., 2011; Zhang et al., 2012) (Figure 1). How precisely IDOL
mediates degradation of the LDL receptor is not known, but it
seems to be unaffected by proteasome blockers, suggesting that it
takes place in endo-lysosomes (Zelcer et al., 2009). Additional
regulatory mechanisms for LDL-receptor recycling versus
degradation have been discovered and are discussed in a
recent dedicated review (Vos and van de Sluis, 2021).
Ubiquitination followed by proteasomal degradation is another
important regulatory mechanism, which controls the abundance
of SREBPs, LXRs, the LDL-receptor, and ATP-binding cassette
(ABC) transporters, such as ABCA1 (Sharpe et al., 2014). The
ubiquitin proteasome system (UPS) also limits the abundance of
enzymes for cholesterol biosynthesis, thereby controlling the
overall flux through this pathway (Heinrich and Schuster,
1996; Sharpe et al., 2014).

3 CHOLESTEROL DISTRIBUTION IN CELLS
AND THE CHEMICAL POTENTIAL OF
CHOLESTEROL IN CELLULAR
MEMBRANES

3.1 Cholesterol Distribution Between
Subcellular Membranes
Cholesterol is most abundant in the PM, the endocytic pathway,
and the TGN with lower concentrations in the ER, mitochondria,
and other organelles. Since cholesterol can exchange between
organelle membranes by non-vesicular transport without
apparent free energy consumption, a homogeneous
distribution would be expected, if the chemical potential of
cholesterol in all membranes would be equal (Maxfield and
Menon, 2006; Wüstner and Solanko, 2015). To prevent that,
cells seem to use the free energy gained from ATP-hydrolysis to
generate different phospho- and sphingolipid compositions of
subcellular organelles. This creates characteristic conditions for
the specific interaction of cholesterol in each organelle, which, in
turn, indirectly affects the distribution of cholesterol between
cellular membranes. Lipid gradients could be maintained by
active phospholipid transport, for example via ABC
transporters or by enzyme-catalyzed phospholipid
modifications, e.g., phosphorylation and dephosphorylation of
phosphatidyl inositol species at the ER-Golgi interface (Mesmin
and Antonny, 2016). As a consequence, the chemical potential of

cholesterol between different organelle membranes could be the
same, despite quite different concentrations.

3.2 Active Cholesterol as a Useful
Thermodynamic Concept to Rationalize
Non-vesicular Transport
Biophysical studies in binary and ternary model membranes have
shown that cholesterol can cause the formation of a liquid-ordered
phase coexisting with a fluid lipid phase at physiologically relevant
temperatures (Ipsen et al., 1987). Above a critical sterol mole fraction,
cholesterol can also precipitate from membranes as aggregates and
even form cholesterol monohydrate crystals. This pure cholesterol
phase forms when the capacity of phospholipids to interact with and
thereby solubilize cholesterol in the bilayer is exceeded (Huang. et al.,
1999; Bach and Wachtel, 2003). Thus, the chemical potential of
cholesterol is assumed to rise abruptly beyond this threshold
concentration, leading to free cholesterol, which is not bound to
phospholipids (Radhakrishnan and McConnell, 2000). This pool is
often popularized as “active cholesterol” and assumed to play an
important role in determining inter-organelle sterol fluxes for
feedback regulation (Steck and Lange, 2010). For example, if the
cholesterol concentration in the PM is raised beyond its physiological
set point, non-vesicular transport of this excess cholesterol termed
“active cholesterol” back to the ER could reestablish a steady state by
shutting off cholesterol synthesis and LDL-mediated uptake via
inhibition of the aforementioned SREBP/SCAP/Insig receptor
system (Radhakrishnan et al., 2008; Sokolov and Radhakrishnan,
2010; Das et al., 2014). Since membrane cholesterol beyond a critical
concentration is often detected using fluorescence labeled bacterial
toxin derivatives, such as perifringolysinO (PFO), “active” cholesterol
is sometimes also termed “accessible cholesterol” (Das et al., 2013).
Concentration-dependent non-vesicular cholesterol transport from
the PM to the ER and other organelles, such as LDs, could be
mediated by the recently discoveredGramD1/Aster proteins (Sandhu
et al., 2018; Ferrari et al., 2020; Ercan et al., 2021), by oxysterol binding
protein related protein 2 (ORP2) (Wang et al., 2019) or the steroid
acute regulatory protein D4 (StARD4) (Mesmin et al., 2011; Iaea
et al., 2020). Most of such lipid transfer proteins function at
membrane contact sites, where membranes are tethered in close
proximity, usually in the range of 5–50 nm, but never fully fuse
(Scorrano et al., 2019). The reason for that could be to ensure
increased efficiency of cholesterol flux between membranes when
cholesterol’s chemical potential changes abruptly, since for large
changes of the chemical potential, the flux-force relationship
between the inter-membrane cholesterol flux and the chemical
potential difference can become non-linear (Wüstner and Solanko,
2015). Thus, membrane contact sites might be necessary to enable
rapid non-vesicular sterol fluxes when the cholesterol gradient
between organelles increases beyond a critical set point.

3.3 Specific Interactions of Cholesterol With
Phospholipids Might Determine Its
Distribution in Cells
A variety of mechanisms including the formation of
stoichiometric complexes, specific hydrogen bonding and
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lipid-specific shielding of cholesterol underneath phospholipid
headgroups have been invoked to explain specific interactions of
cholesterol with other lipids in cellular membranes (Huang. and
Feigenson, 1999; Ohvo-Rekila et al., 2002; McConnell and
Radhakrishnan, 2003). Notably, fluorescent analogues of
cholesterol which have been added to cells in trace amounts
or in exchange for some cholesterol have a homogeneous lateral
distribution in the PM at least down to an accessible scale of
80 nm and diffuse faster than comparable phospholipid
analogues (Wüstner et al., 2016; Pinkwart et al., 2019). These
observations indicate that stoichiometric complexes of
cholesterol with phospholipids would form only transiently in
the PM. On the other hand, phospholipid-specific affinity of
cholesterol could not only determine its distribution between
cellular membranes at steady state (Wüstner and Solanko, 2015),
but also dictate the transbilayer orientation and dynamics of
cholesterol in the PM and other membranes. Both, preferred
interactions of cholesterol with sphingolipids, like sphingomyelin
(SM) and with phosphatidylserine (PS) compared to
phosphatidylcholine (PC) or phosphatidylethanolamine (PE)
have been described (Niu and Litman, 2002; Ohvo-Rekila
et al., 2002; Nyholm et al., 2019). Recent studies in yeast and
mammalian cells indicate that the majority of ergosterol and
cholesterol reside in the cytoplasmic leaflet of the PM, which is
rich in PS but not sphingolipids (Mondal et al., 2009; Maekawa
and Fairn, 2015; Courtney et al., 2017; Solanko et al., 2018). Still,
in both yeast and mammalian cells, sphingolipids, and PS
asymmetry control sterol enrichment in the inner leaflet
(Maekawa and Fairn, 2015; Courtney K. C. et al., 2018;
Solanko et al., 2018). We will discuss the implications of these
observations in the context of cholesterol effluxmechanisms from
the PM below.

4 CELLULAR EFFLUX OF CHOLESTEROL
AND FORMATION OF HIGH-DENSITY
LIPOPROTEINS

4.1 Cell-type Dependent Efflux of
Cholesterol and Formation of High-Density
Lipoprotein
Early observations made more than 50 years ago showed that
cholesterol can be partly removed from mammalian cells by
incubation with serum and particularly the high-density
lipoprotein (HDL) fraction of serum (Bailey, 1965; Rothblat
et al., 1999). Later studies showed that the half-time of
cholesterol efflux is cell-type dependent, being about 4 h in rat
hepatoma cells but more than 1 day in human fibroblasts
(reviewed in Rothblat et al. (1999)). Cells can efflux
cholesterol to the HDL apoprotein apoA1, to lipid vesicles,
and to serum albumin (Rothblat et al., 1999;
Sankaranarayanan et al., 2013). Additionally, cyclodextrins
have been shown to be efficient efflux acceptors, often
employed as research tools to study kinetic pools of cellular
cholesterol efflux (Kilsdonk E. P. C. et al., 1995; Yancey et al.,
1996; Haynes et al., 2000). While the kinetics of cholesterol efflux

differs between sterol acceptors, the overall rank order of efflux
between cell types does not, and only the abundance of
phospholipids in acceptor particles seem to dictate the net
efflux capacity (Rothblat et al., 1999). To a large extent, the
formation of nascent HDL takes place at the cell surface.
However, HDL can also receive cholesterol upon endocytosis
of the lipoprotein, its passage through early endosomes, and
recycling back to the cell surface, as shown for mature HDL and
apoprotein E (Heeren et al., 2003; Heeren et al., 2004). This so-
called retroendocytosis can also deliver cholesterol from HDL to
cells as shown in fibroblasts and hepatocytes by biochemical
methods and quantitative imaging, respectively (Webb et al.,
2004; Wüstner et al., 2004; Wüstner, 2005; Sun et al., 2006;
Röhrl et al., 2012). It appears that net cholesterol efflux is only
possible if the chemical potential of cholesterol in the acceptor

FIGURE 2 | Passive and active protein-mediated cholesterol efflux from
mammalian cells. (A) passive efflux does not require hydrolysis of ATP but
depends on the difference of chemical potentials of cholesterol in the
acceptor, here HDL (μHDLChol) and PM (μPMChol). Cholesterol efflux requires,
that μHDLChol < μPMChol , and is shown here for scavenger receptor BI (SR-BI). (B)
Active efflux, illustrated here for the ABC transporter ABCG1, depends on the
binding of two ATP molecules, which stabilize an outward-open conformation
for efflux of cholesterol and phospholipids to e.g., HDL. ATP-hydrolysis
causes the transition of the protein two an outward-closed conformation,
allowing for entrance of new substrate on the cytosolic side of the PM. The full
cycle is more complex and involves at least four steps; see (Skarda et al.,
2021).
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particles, for example HDL, μHDL
Chol , is lower than in the donor

membrane, which could be the PM, μPMChol, (Yancey et al., 1996;
Rothblat et al., 1999). In the opposite case, cholesterol will be
delivered to cells, and if the chemical potentials are equal,
i.e., μHDL

Chol = μPMChol, cholesterol will passively exchange between
donor and acceptor without net efflux from or net influx into cells
(Figure 2).

4.2 Cells Regulate Cholesterol Efflux by
Setting its Chemical Potential in
Membranes and Lipoproteins
How can cells regulate the efflux of cholesterol based on this
physicochemical principle? There are primarily two mechanisms
mammalian cells use to ensure efflux of cholesterol by lowering
its chemical potential in the acceptor particles; 1) the fraction of
phospholipids in acceptor particles is increased, providing interaction
partners for cholesterol, thereby lowering its chemical potential, and
2) by preventing cholesterol from being recaptured by cells via its
esterification in the acceptor particle (Fielding, 2009). Both processes
are widely implemented and—in fact—tightly regulated, as will be
discussed in more detail below. First, the efflux efficiency of sera is
strongly correlated with HDL phospholipid levels and many efflux
transporters, such as ABC transporters either co-transport
phospholipids with cholesterol or even have certain phospholipid
species as primary substrate (Rothblat et al., 1999; Coleman et al.,
2013). Second, Lecithin:cholesterol acyltransferase (LCAT) catalyzes
the transfer of an acyl chain from PC, the main phospholipid in cell
membranes and lipoproteins, to the released cholesterol, thereby
creating CEs and lysolecithin in the acceptor particle (Fielding and
Fielding, 1971; Fielding, 1985). Conversion of cholesterol into CEs in
HDL lowers its chemical potential, μHDL

Chol , ensuring that the condition
for efflux of cholesterol from cells along its chemical potential
gradient (i.e., μHDL

Chol < μPMChol) is maintained (Figure 2). Electron
microscopy (EM) combined with cross-linking and deuterium
exchange mass spectrometry has been used to show that LCAT
directly binds to nascent, discoidal HDL particles via interaction with
the protein belt formed by helix 5 and 6 of apoA1 (Nakamura et al.,
2004; Manthei et al., 2020). Importantly, the activity of the enzyme is
highest for lipid-poor apoA1 containing 2–3 PC and cholesterol
molecules compared to mature HDL and ceases, as HDL particles
mature (Nakamura et al., 2004; Fielding, 2009). This is likely, because
a lid at the LCAT surface, which is necessary to allow for substrate
entrance and activation by lipid-free apoA1, is prevented from
opening in mature HDL particles but not in nascent HDL
(Manthei et al., 2017; Manthei et al., 2020). Thus, biochemical
feedback ensures that lipoprotein-associated cholesterol
esterification ceases, when HDL has matured, and efflux stops (i.e.
μHDL
Chol ≈ μPMChol). Subsequently, the sterol-loaded HDL particle can

return to the liver for transfer of CEs into hepatocytes followed by
cholesterol secretion into bile or incorporation of cholesterol into very
low density lipoproteins (VLDL) (Robins and Fasulo, 1997; Wanon
et al., 1998; Robins and Fasulo, 1999). A third possible mechanism to
maintain a chemical gradient of non-esterified cholesterol between
cells and efflux acceptors, such as HDL is to remove some of the
generated CEs in exchange for PC with other lipoproteins. This
process is catalyzed by cholesteryl ester transfer protein (CETP),

which exchanges CEs for PCmolecules in a 1:1 fashion betweenHDL
and apoprotein B containing lipoproteins, such as VLDL and LDL
(Tall, 1993; Barter et al., 2003). Unfortunately, enrichment of these
lipoproteins with CEs has a proatherogenic effect, which made
inhibitors of CETP an attractive target for drug development
(Ferri et al., 2018). However, despite several promising drug
candidates as CETP inhibitors, none have been approved
(Sheridan, 2016). Anacetrapib, developed by Merck, showed
particularly promising results but was in the end not submitted
for regulatory approval, as the drug had a very long half-life (Nissen,
2017). Other drugs, such as torcetrapib developed by Pfizer and
Dalcetrapib developed by Roche, also raised plasma HDL levels but
did not show any benefit in preventing cardiovascular disease
(Sheridan, 2016). Based on these outcomes, it is unlikely that
developing CETP inhibitors is a useful strategy for treatment of
arteriosclerosis and cardiovascular disease in the near future (Swain,
2017). In some cases, HDL might also directly receive cholesterol
from other lipoproteins, for example from aggregated LDL during
contact with activated macrophages in the intima of the vessel wall
(Singh et al., 2019).

5 STRUCTURE, MEMBRANE DYNAMICS,
AND MOLECULAR FUNCTION OF
CHOLESTEROL EFFLUX TRANSPORTERS

5.1 Transporters for Active Versus Passive
Efflux of Cholesterol From Cells
Since cholesterol is very hydrophobic its water solubility is very low
(i.e., below 30 nM), and there is a high free energy cost of moving it
between membranes through the water phase (Rothblat et al., 1999;
Wüstner and Solanko, 2015). Consequently, cholesterol exchange
between membranes is very slow in the absence of proteins, and
mammalian cells use a variety of transporters to facilitate cholesterol
efflux to lipoproteins. Energy-dependent efflux of cholesterol from
cells is mediated by ABC transporters, primarily ABCA1, ABCG1,
and ABCG4 (Tall et al., 2002; Phillips, 2014). Passive cholesterol
exchange between cells and mature HDL is facilitated by scavenger
receptors, especially scavenger receptor BI (SR-BI; Figure 2), but
results concerning the quantitative contribution of each of these
transporters are not without contradiction (Wang et al., 2001;
Thuahnai et al., 2003; Peng et al., 2004; Wang et al., 2004; Yancey
et al., 2004a; Yancey et al., 2004b; Vedhachalam et al., 2007; Wang
et al., 2007b; Pagler et al., 2011). Cell-type specific differences reflected
in different tissue expression of these transporters contribute to
disparate findings concerning their precise role in cholesterol
efflux. In addition, they might have a varying affinity to nascent
versus mature HDL. For example, while ABCG1/4 and SR-BI
preferentially transfer cholesterol to mature HDL, ABCA1 plays a
major role in the initial lipidation of ApoA1 to form nascent HDL
particles (Liu et al., 2003; Thuahnai et al., 2003; Wang et al., 2004;
Vaughan andOram, 2006; Adorni et al., 2007). Also, ATP-dependent
efflux by ABC transporters, such as ABCA1 and exchangers, like SR-
BI seems to be inversely regulated (Chen et al., 2000). Based on these
and other findings, a model has been proposed according to which
the specific interaction between ApoA1 and ABCA1 creates nascent
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HDL particles which become transformed into mature HDL,
increasingly receiving cholesterol from efflux by ABCG1 and
ABCG4 (Vaughan and Oram, 2006; Wang et al., 2008). SR-BI is
a bi-directional transporter with regulated and cell-type dependent
endocytosis and recycling (Silver et al., 2001; Eckhardt et al., 2004;
Webb et al., 2004; Wüstner, 2005; Shetty et al., 2006; Sun et al., 2006;
Marques et al., 2019). Most cholesterol transfer between HDL and
SR-BI seems to take place at the cell surface, but some cholesterol
exchange can also happen in endosomes (Wüstner et al., 2004;
Wüstner, 2005; Sun et al., 2006; Marques et al., 2019). The
direction of net cholesterol flux between subcellular membranes is
also dictated by the sterol gradient, such that cholesterol moves from
membraneswhere its chemical potential is high tomembranes, where
its chemical potential is low (see above and Figure 2). Therefore,
efflux of cholesterol to an acceptor lowers the chemical potential of
cholesterol in the donating membrane (e.g., the PM), which, in turn,
stimulates replenishment of cholesterol from intracellular sites. Vice
versa, selective uptake of cholesterol from HDL will increase the
chemical potential of cholesterol in the PM, thereby stimulating non-
vesicular sterol transfer to intracellular sites. SR-BI also mediates
selective uptake of cholesterol and CEs from HDL into hepatocytes,
which plays an important role in cholesterol clearance into bile during
reverse cholesterol transport (Kozarsky et al., 1997; Robins and
Fasulo, 1997; Robins and Fasulo, 1999). Similarly, SR-BI mediates
selective uptake of CEs into steroid hormone-producing cells. Based
on the crystal structure of LIMP-2, which is a related member of the
CD36 superfamily of scavenger receptors, a large hydrophobic cavity
acting as a tunnel for transfer of CEs has been proposed for SR-BI
(Neculai et al., 2013). Bidirectional lipid transfer betweenmembranes
and HDL or other lipoproteins can also be induced as a passive
process upon contact, as shown by combined fluorescence correlation
spectroscopy and high-speed atomic force microscopy (AFM)
(Plochberger et al., 2017). Thus, the function of SR-BI and other
scavenger receptors might be primarily to bring lipoprotein and PM
into close enough contact, such that hydrophobic lipid transfer can
take place. Alternatively, the hydrophobic channel formed by SR-BI is
needed for sterol exchange. Future studies are needed to clarify
this issue.

5.2 ATP-Binding Cassette Transporter A1 is
a Prototype Efflux Transporter for
Cholesterol
Mutations in ABCA1 have been associated with Tangier disease, a
rare genetic disorder characterized by very low levels of HDL and
apoA1 and high accumulation of CEs, primarily in blood-derived
macrophages but also in tissue macrophages in various organs,
such as tonsils, liver, spleen, and lymph nodes (Tall and Wang,
2000; Quazi and Molday, 2011). Additionally, patients have lipid
deposits in other cell types, such as fibroblasts, Schwann cells, or
smooth muscle cells (Oram, 2000). Symptoms of Tangier disease
include coronary artery disease, neuropathies, splenomegaly, and
hepatomegaly (i.e., enlargement of spleen and liver) (Oram, 2000).
A recently reported cryo-electron microscopy structure of ABCA1
with 4.1 Å resolution revealed the symmetric nature of the protein,
in which the two transmembrane domains with the connected
nucleotide-binding domains and the two large extracellular

domains form a hydrophobic tunnel for lipid translocation
(Qian et al., 2017). A lateral access model for lipid substrates
has been proprosed and Tangier disease mutations could be
mapped to the structure of the protein (Qian et al., 2017).
Interestingly, monomeric ABCA1 has significant sequence
identity and similarity with ABCG5/8, a heterodimer of ABC
transporters, which is responsible for the excretion of
cholesterol from the apical canalicular membrane of hepatocytes
into bile (Yu et al., 2002; Qian et al., 2017). BothABC structures can
be superimposed revealing close structural similarity despite the
fact, that they belong to different ABC transporter subfamilies
(Qian et al., 2017). ABCA1 might act in concert with other ABC
transporters, such as ABCG transporters, but also with ABCA8 and
ABCA12, as shown in macrophages during reverse cholesterol
transport (Fu et al., 2013; Trigueros-Motos et al., 2017). More
information about the structure, regulatory sequences, such as
phosphorylation and ubiquitination sites, as well as substrate
specificity of ABCA1 and other ABC transporters involved in
cholesterol transport can be found in comprehensive recent
reviews (Phillips, 2018; Kerr et al., 2021).

5.3 Quantitative Imaging of Membrane
Transporters for Cholesterol Efflux
Live-cell imaging and correlative microscopy have contributed
greatly to our current understanding of proteins involved in
cholesterol export from cells. For example, by combining EM
with light microscopy using diaminobenzidine induced
photooxidation, Stangl and co-workers studied subcellular
trafficking of SR-BI and its lipid substrates with high
resolution (Röhrl et al., 2012). Recent single-molecule tracking
and Förster resonance energy transfer (FRET) imaging
experiments in living cells revealed that SR-BI is primarily
organized in dimers and fails to enter clathrin-coated pits for
endocytosis (Sahoo et al., 2007; Marques et al., 2019). This
underlines its importance in exchange of cholesterol and CEs
at the cell surface. Green fluorescent protein-tagged ABCA1
(GFP-ABCA1) traffics very dynamically between PM, endo-
lysosomes, and the Golgi apparatus in cells (Neufeld et al.,
2001; Neufeld et al., 2004). GFP-ABCA1 diffuses apparently
freely in the PM, but its lateral dynamics depends on its
ATPase activity and binding to apoA1, as shown by spot
variation fluorescence correlation spectroscopy (Raducka-Jaszul
et al., 2021). Similarly, the ATPase activity of ABCA1 affects the
diffusion of other membrane proteins, such as the transferrin
receptor and fluorescent lipid analogues, as shown in fluorescence
recovery after photobleaching experiments (Zarubica et al., 2009).
GFP-ABCA1 resides in liquid-disordered domains in
formaldehyde-induced giant plasma membrane vesicles
(GPMVs), suggesting that it prefers a fluid lipid environment
(Zarubica et al., 2009). Single-molecule tracking found GFP-
ABCA1 in largely immobile spots at the PM, and its
confinement depended on its ATPase activity, somehow
contradicting the findings made by fluorescence correlation
spectroscopy (Nagata et al., 2013; Raducka-Jaszul et al., 2021).
Photobleaching of GFP-ABCA1 occurred primarily in two
discrete steps, indicating that the protein forms dimers in the
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PM, supporting an earlier study based on FRET imaging and
native PAGE analysis (Trompier et al., 2006; Nagata et al., 2013).
Both studies found that apoA1 stabilizes dimers or oligomers,
suggesting that ABCA1 is not able to transfer lipids to
apoproteins in its monomeric state. These and similar studies
show the power of sensitive fluorescence imaging to reveal the
molecular function and dynamics of ABC transporters in
cholesterol efflux from cells (Wong et al., 2016). But it
remains an important challenge to validate results of
membrane receptor dynamics with different imaging approaches.

6 MECHANISMS OF LIPID EFFLUX TO
APOA1—WHICH STRUCTURES ARE
FORMED AT THE CELL SURFACE?

6.1 ATP-Binding Cassette Transporter A1
Transports a Variety of Phospholipids
Across Lipid Membranes
Several hypotheses have been put forward to explain the
molecular mechanisms underlying ABCA1’s function: 1)
ABCA1 acts as a receptor for apoA1 on the cell surface
thereby catalyzing the direct transfer of lipids onto apoA1
(Wang et al., 2001; Fitzgerald et al., 2004). 2) ABCA1, which
follows a complex intracellular trafficking scheme (Neufeld et al.,
2002; Zha et al., 2003; Neufeld et al., 2004), mediates lipidation of
apoA1 during its passage through the cell, likely by a
retroendocytic pathway (Denis et al., 2008). 3) ABCA1 acts as
a pump for lipids, like the aminophospholipid PS, or other
hydrophobic substances at the cell surface, which is supported
by its intrinsic ATPase activity and substrate specificity (Wang
et al., 2001; Tall et al., 2002; Alder-Baerens et al., 2005; Linsel-
Nitschke and Tall, 2005; Quazi and Molday, 2013), 4) ABCA1
acts as cholesterol floppase, i.e. actively moving cholesterol from
the inner to the outer PM leaflet for pick up by apoA1 (Ogasawara
et al., 2019; Okamoto et al., 2020). In fact, ABCA1 translocates
analogues of PC, SM, and PS across membranes in a reconstituted
system and PE and PS to the outer leaflet of mammalian cells, and
it seems to bind and transport even phosphatidylinositol-
bisphosphate (Alder-Baerens et al., 2005; Quazi and Molday,
2013; Gulshan et al., 2016). Whether ABCA1 directly binds
cholesterol, a precondition for its translocation by this ABC
transporter, is debated (Reboul et al., 2013; Dergunov et al., 2019).

6.2 ATP-Binding Cassette Transporter A1
Controls the Transbilayer Distribution of
Lipids in the Plasma Membrane
Phospholipid asymmetry in the PM has a regulatory function in
cholesterol efflux, and there is a large body of evidence that
ABCA1 affects the transverse distribution of phospholipids and
cholesterol in the PM, thereby increasing the propensity of these
lipids to efflux from cells. Translocation of negatively charged
phospholipids to the outer PM leaflet by ABCA1 causes altered
surface membrane potential and reduced rate of endocytosis (Zha
et al., 2001; Alder-Baerens et al., 2005; Zarubica et al., 2009).

Exposing more PS to the outer leaflet by other mechanisms, for
example by inhibiting the synthesis of sphingolipids with
myriocin, causes increased ABCA1-independent cholesterol
efflux in RAW macrophages (Gulshan et al., 2013). The same
treatment increased the ergosterol content in the outer PM leaflet
of yeast cells and long-chain sphingolipids in the outer leaflet
regulate cholesterol asymmetry in the PM of mammalian cells
(Courtney K. C. et al., 2018; Solanko et al., 2018). Thus, it is likely
that altering the transbilayer distribution of PS and abundance of
sphingolipids can indirectly cause an increased availability of
cholesterol for efflux from the outer PM leaflet. Interestingly, the
expression of ABCA1 shifts the steady state distribution of not
only PS but also of fluorescent cholesterol analogues towards the
outer leaflet, from which apoA1 can directly access the sterols for
efflux (Alder-Baerens et al., 2005; Pagler et al., 2011; Gulshan
et al., 2013). Since the transbilayer dynamics of cholesterol in
model membranes and likely the PM of living cells is very high,
with flip-flop time constants in the msec-sec range, any actively
generated cholesterol gradient across the PM bilayer would
equilibrate rapidly (John et al., 2002; Steck et al., 2002;
Bennett et al., 2009). Measured hydrolytic activity of ABCA1
and other ABC transporters for ATP is too slow to maintain a
transbilayer cholesterol asymmetry by directly pumping sterol to
the outer leaflet in the presence of such high rates for passive
sterol flip-flop (Quazi andMolday, 2013; Skarda et al., 2021). This
is in contrast to the much slower passive flip-flop of
phospholipids across membranes (Coleman et al., 2013). Thus,
instead of directly transporting cholesterol, it is more likely that
active translocation of PS by ABCA1 indirectly increases
cholesterol availability in the outer half of the bilayer for efflux
to acceptor proteins. Supporting that notion are observations in
yeast and mammalian cells, which found that loss of PS
asymmetry or abundance in the inner leaflet increases
cholesterol availability in the outer leaflet of the PM (Maekawa
and Fairn, 2015; Solanko et al., 2018). Together, these results
suggest that ABCA1 alters the lipid composition and transbilayer
orientation of lipids in the PM, which can facilitate phospholipid
and cholesterol efflux from cells to apoA1.

6.3 Does ATP-Binding Cassette Transporter
A1 Facilitate Protrusion of Cholesterol From
the Bilayer or Bending of the Plasma
Membrane?
Binding experiments with fluorescence-labeled PFO, which
detects membrane cholesterol above a characteristic threshold
concentration, found strong binding in cells expressing ABCA1
(Ogasawara et al., 2019; Okamoto et al., 2020). The cholesterol
pool detectable by PFO domain D4 and similar reporters, such as
the cholesterol-binding domain 4 of anthrolysin O (ALO-D4),
has often been associated with “accessible” or “active” cholesterol
(see Section 3, above) (Courtney K. C. et al., 2018). The increased
chemical potential of “active cholesterol” implies, that it might
have an elevated propensity to protrude from the membrane, but
whether this sterol pool is entirely available for efflux from cells
remains to be shown. It also remains an open question whether
the ATPase activity of ABCA1 is only used to translocate PS and
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other phospholipids to the outer PM leaflet, or also to decrease
the energy barrier for partial cholesterol protrusion from the
bilayer, which could facilitate sterol transfer to an acceptor
particle, such as apoA1 (Small, 2003; Van Meer et al., 2006;
Phillips, 2014; Plummer et al., 2021). Zha and co-workers have
shown that expression of ABCA1 without any addition of apoA1
changes the organization of proteins and lipids in the PM and
causes the release of apoA1-free microparticles with a size of
>20 nm (Landry et al., 2006; Nandi et al., 2009). RAW
macrophages express ABCA1 only when preincubated in the
presence of cAMP to activate protein kinase A, and expression of
functional ABCA1 in the absence of apoA1 triggers cellular
excretion of apoA1-free microparticles (Liu et al., 2003; Nandi
et al., 2009). Vice versa, deletion of ABCA1 and ABCG1 resulted
in increased cholesterol content of the PM and impaired
migration of macrophages due to increased Rac signaling
(Pagler et al., 2011). Morphological analysis of EM images of
baby hamster kidney (BHK) cells with inducible expression of
ABCA1 revealed disc-like HDL particles with a diameter < 20 nm
and additionally larger vesicular structures secreted from cells
with a diameter of 50–150 nm and up to 500 nm (Hafiane and
Genest, 2017). Such microparticles were also secreted by THP1
macrophages in an ABCA1 and ApoA1 dependent manner
(Hafiane and Genest, 2017). Could such particles be vesicles
which form at the PM and if so, how do they form? When
apoA1 inserts into the lipid bilayer, formation of an “activated
lipid domain” has been proposed, which can lead to outward-
directed vesiculation of the PM (Vedhachalam et al., 2007;
Phillips, 2014). Such a mechanism could be supported by
ABCA1-mediated translocation of phospholipids to the outer
PM leaflet, creating increased lateral pressure in this monolayer
thereby facilitating membrane bending (Coleman et al., 2013;
Phillips, 2014). Active lipid flipping has been proposed as a
mechanism for the regulation of endocytosis by
aminophopholipid translocases, which catalyze ATP-dependent
flipping of PS and PE to the inner PM leaflet (Pomorski et al.,
2003; Hirama et al., 2017). Since ABC transporters, such as
ABCA1 transport phospholipids in the opposite direction, they
can create an excess area in the outer PM monolayer, and this
asymmetric membrane stress can be relieved by bending the
bilayer outwards, eventually leading to the formation of
exovesicles and/or nanodiscs (Coleman et al., 2013). Such a
monolayer pleating effect of phospholipid flopping to the
outer leaflet is supported by molecular dynamics simulations
(Segrest et al., 2015). This study suggests that ABCA1 forms an
extracellular reservoir containing an isolated squeezed
monolayer, which triggers the release of membrane particles
from the PM. In the presence of apoA1, such particles are
primarily membrane discs, with a majority of lipids
originating from the outer PM leaflet, while in the absence of
ApoA1, the disks transform into unilamellar vesicles (Segrest
et al., 2015). In this model, tight packing of membrane helices of
ABCA1 in dimers could control access of cholesterol to prevent it
from counterbalancing the outward bending of the bilayer. The
latter is needed since fast passive flipping of cholesterol to the
inner leaflet was found to relax bending energies of membranes,
both in experiments and simulations (Bruckner et al., 2009;

Choubey et al., 2013; Segrest et al., 2015). Whether ABCA1
controls access of cholesterol to the forming membrane
protrusions, as suggested in simulations (Segrest et al., 2015),
or eventually reduces its flipping to the inner leaflet during
membrane bending by a cholesterol floppase activity remains
to be determined (Okamoto et al., 2020). In our view, the latter is
unlikely due to the high passive flip-flop rates of cholesterol and
the comparably slow ATPase activity of ABC transporters (see
above).

6.4 Biliary Lipid Secretion as a Model for
Exo-vesiculation of the Plasma Membrane
by ATP-Binding Cassette Transporters
Interestingly, a very similar vesiculation mechanism to that
described above has been proposed to mediate biliary secretion
of cholesterol and PC. This process depends on the ABCG5/8
heterodimer and the PC-translocating ABC transporter ABCB4,
also named multidrug resistance protein 2 (MDR2), which are
both expressed in the canalicular membrane of hepatocytes (Yu
et al., 2002). ABCG5/8 mediate the secretion of cholesterol and
plant sterols, such as sitosterol, into bile and intestine, and
mutations in these transporters lead to sitosterolemia, an
inherited accumulation of plant sterols in various tissues
(Plummer et al., 2021). Loss of functional ABCG5/8 or
ABCB4 leads to defective lipid secretion into the bile, which is
the major pathway for cholesterol clearance from the human
body (Small, 2003). In mice, about 55% of cholesterol is excreted
as fecal neutral sterols, with the remainder being secreted as bile
acids (Dietschy and Turley, 2002). However, these values can
change dramatically in animals with defective sterol transporters.
EM of rapidly frozen liver sections, has provided evidence that the
initial event of biliary secretion of PC and cholesterol takes place
as small vesicles, shed directly from the canalicular membrane
(Crawford et al., 1995). This process is facilitated by the
aforementioned ABC transporters and by bile acids,
cholesterol-derived detergents, which contribute to lipid
solubilization in the bile fluid (Crawford, 1996; Crawford
et al., 1997; Small, 2003). Bile acids intercalate into the outer
leaflet of the PM, from which they can solubilize phospholipids,
either as mixed micelles or as microvesicles, and independent of
phospholipid head group composition (Kuipers et al., 1997;
Wüstner et al., 1998; Wüstner et al., 2000). Thus, a preferred
vesiculation of the outer leaflet of the canalicular membrane was
proposed to result in specific enrichment of PC and cholesterol in
the bile fluid (Crawford et al., 1995; Small, 2003). Monomeric bile
acids can also directly stimulate the ATPase activity of ABCB4/
MDR2 (Kroll et al., 2021). Active translocation of PC to the outer
leaflet by ABCA4 as well as of aminophospholipids to the inner
leaflet of the canalicular membrane by the P-type ATPase ATP8B
are required to prevent membrane damage and to ensure specific
enrichment of PC, bile acids, and cholesterol in the bile (Tannert
et al., 2003; Cai et al., 2009; Groen et al., 2011). This conclusion is
supported by clinical manifestations of cholestasis and liver
damage when either ABC4 or ATP8B are mutated and
dysfunctional, as observed in progressive familial intrahepatic
cholestasis (Cai et al., 2009; Groen et al., 2011). Another example
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for cooperation between ABC transporters in lipid secretion is
that of ABC4 and ABCG5/8, which are both required for release
of cholesterol into the bile (Langheim et al., 2005). Interestingly,
while apoA1 secreted into bile can assist in solubilizing
cholesterol and preventing gallstone formation (Secknus et al.,
1999), the ABCA1/apoA1 system is not directly involved in
cholesterol secretion from hepatocytes into bile. In fact,
ABCA1 resides in the basolateral but not in the canalicular
membrane in cultured polarized hepatocytes (Neufeld et al.,
2002). ABCA1 is also enriched in a subapical endocytic
compartment in such hepatocytes, an organelle which is
known to be rich in free cholesterol and accessible to HDL
from the basolateral cell surface during endocytic recycling
(Silver et al., 2001; Neufeld et al., 2002; Wüstner et al., 2002;
Wüstner et al., 2004). Consequently, ABCA1 is likely involved in
regulating intracellular hepatic cholesterol and plasma HDL
levels (Neufeld et al., 2002).

7 ORIGIN, STRUCTURE, AND FUNCTION
OF CHOLESTEROL-CONTAINING
EXTRACELLULAR VESICLES AND
PARTICLES

7.1 The Diversity of Extracellular Vesicles
and the Challenge of Their Classification
Extracellular vesicles formed independently of the HDL/ABC
transporter system have started to be recognized as cholesterol
efflux routes, eventually complementing the classical efflux
pathways (Pfrieger and Vitale, 2018). Based on their size and
origins, extracellular vesicles have roughly been divided into
exosomes and microvesicles. Exosomes originate from ILVs inside
multivesicular bodies which can fuse with the PM during lysosomal
exocytosis (Gruenberg, 2020). They are typically in the size range of
30–150 nm, and their secretion contributes to the efflux of excess
cholesterol in lysosomal storage disorders (see below, 8.) (Strauss
et al., 2010; Vacca et al., 2019; Ilnytska et al., 2021a). Microvesicles,
also called ectosomes, are generated by outward budding of the PM
and tend to be more heterogeneous in their morphology and content
compared to exosomes (Cocucci et al., 2009).Microvesicles tend to be
larger, normally around 100–1,000 nm in size, but have been reported
to be up to 8–10 µm in size (Falchi et al., 2013). However, the
classification of extracellular vesicles should be taken with some
caution, as no standard approaches for their characterization have
yet been defined (Cocucci et al., 2009; Van Niel et al., 2018). Several
methods and approaches are being used to examine extracellular
vesicles. One way is to first isolate the vesicles, and subsequently
analyze them. The isolation of cell-derived vesicles can be done by
severalmethods including centrifugation,filtration, and aqueous two-
phase systems, and the analysis can be carried out with techniques
such as immunoblotting, dynamic light scattering, and microscopy
(Kim et al., 2015; Shin et al., 2015; Pollet et al., 2018; Hartjes et al.,
2019; Kırbaş et al., 2019; Mondal et al., 2019). Another approach is to
study the biology of extracellular vesicles directly by microscopy as
discussed below and recently reviewed by Verweij et al. (2021). He
et al. (2018) used a combination of scanning electron microscopy

(SEM) and nanoscale secondary ion mass spectrometry (nanoSIMS)
to study PM-derived particles secreted from macrophages upon
loading with acetylated LDL (He et al., 2018). Their findings
confirm and extend earlier observations made by EM and particle
size analysis (Hafiane andGenest, 2017). SEMallowedHe et al., 2018)
to visualize the formation and release of the particles, whereas
nanoSIMS enabled them to obtain high-resolution images of the
particle’s cholesterol content (Figure 3). With this approach, the
authors found that the cholesterol content of such released particles
varies depending on the cholesterol loading condition (He et al.,
2018). By growing the macrophages in the presence of fetal bovine
serum and by activating cholesterol efflux via stimulation of LXRs
and RXR complexes with agonists, He et al. found that the particles
became enriched with cholesterol accessible to ALO-D4, and that this
cholesterol pool could be transferred to HDL (He et al., 2018).

7.2 Does Cholesterol Aggregate During its
Efflux From Cells?
Using an antibody named mAb 58B1, which is supposed to bind
specifically to two-dimensional arrays of 10–20 cholesterol
molecules, Jin et al. (2018) reported that macrophages remove
excess cholesterol by shedding of cholesterol microdomains
(Figure 3A) (Jin et al., 2018). This “type” of shedded
cholesterol, was different from the one described by He et al.
(2018), as particles tended to be larger, up to several hundred nm,
and irregularly shaped rather than spherical, like vesicles. The
authors of this study found that the cholesterol-binding polyene
filipin does not label the cholesterol microdomains detected with
mAb 58B1, and they speculated that filipin cannot intercalate into
the supposed two-dimensional arrays of cholesterol in the PM of
cholesterol-loaded macrophages (Jin et al., 2018). An alternative
explanation would be that the primary IgM antibody used in this
study cross-links membrane-dispersed cholesterol due to its
multivalency, which could be further enhanced by the use of
secondary antibodies, employed for detection. Thus, lateral
cholesterol clustering could be induced by the antibody
treatment, and there is no evidence for naturally occurring
cholesterol microdomains. Ample evidence obtained by
fluorescence imaging of fluorescent cholesterol analogues
shows that sterols move rapidly and freely in the PM of living
cells and do not form clusters detectable by light microscopy and
super-resolution microscopy (Wüstner et al., 2016; Pinkwart
et al., 2019). Even in cholesterol-loaded cells, such as
macrophage foam cells, in which ACAT was inhibited,
fluorescent cholesterol analogues did not cluster in the PM
(Wüstner, 2008). On the other hand, Kruth, Addadi and co-
workers found by super-resolution fluorescence microscopy of
antibody-treated cells and by X-ray microscopy that
microcrystals can form in macrophages under prolonged
excess cholesterol loading conditions in the absence of sterol
acceptors (Addadi et al., 2003; Varsano et al., 2016). Formation of
cholesterol crystals in macrophages after extended incubation
with excess cholesterol or atherogenic lipoproteins has been
shown previously by EM, and this might be related to the
occurrence of cholesterol crystals in the intima of the vessel
wall in patients suffering from myocardial infarction
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(Tangirala et al., 1994; Kellner-Weibel et al., 1999; Janoudi et al.,
2016). It is possible, that excess cholesterol precipitates from the
membrane to form cell-adhered crystals, if cholesterol efflux
mechanisms fail. Release of cholesterol in microparticles, as
reported by Kruth and co-workers depended on ABCA1, as
the authors found no, or very few, microparticles released
from macrophages treated with the ABCA1 inhibitor, probucol
(Jin et al., 2018). Future studies are needed to clarify the nature of
different microparticles released from macrophages during
cholesterol efflux.

7.3 Is Shedding of Cholesterol-Rich
Microvesicles Coupled to Cell Migration?
Using a combination of proteomics, tracer experiments, super-
resolution microscopy, SEM, live cells imaging, and nanoSIMS,

Young and co-workers showed that the membrane-derived
particles, they described earlier, were released from the
macrophages during cell migration (He et al., 2018; Hu et al.,
2019). The authors also showed that the released particles were
enriched with ALO-D4 accessible cholesterol, but not sphingolipid-
sequestered cholesterol (Figure 3) (Hu et al., 2019). Interestingly, Das
et al. showed that the cholesterol content of the plasma membrane
can be divided into three distinct pools: a pool accessible to bacterial
toxins, a pool sequestered by sphingomyelin, and an essential pool
(Das et al., 2014). The accessible pool was found to be connected with
the cholesterol levels in the ER and thus is involved in cellular
cholesterol homeostasis (Das et al., 2014; Infante and Radhakrishnan,
2017). Hu et al. suggested that the sphingolipid-sequestered
cholesterol, located in the outer leaflet of the PM, is more likely to
remain in the membrane during movement as it is indirectly
associated with the actin cytoskeleton (Raghupathy et al., 2015;

FIGURE 3 | Visualization of extracellular vesicles and particles during cholesterol efflux. (A) Spinning disk microscopy image of extracellular vesicles from a NPC2-
deficient fibroblasts treated with NPC2 protein, taggedwith a red Alexa546 fluorophore (red), and labeled additionally with TopFluor-cholesterol (green) (Juhl et al., 2021).
(B)Confocal microscopy image of migrasomes from L929 cell transfected with TSPAN4-GFP (Chen et al., 2018). Scalebar 10 µm. (C) SEM of nanoSIMS of macrophage
after incubation with [15N]ALO-D4. Scalebar 2 µm (He et al., 2018). (D,D9,D99) examples of extracellular vesicles from NPC2 deficient and healthy fibroblasts
imaged with cryo-SXT. Scalebar 0.5 µm for (D) and 0.15 µm in (D9,D99) (Juhl et al., 2021). Red arrows point to microvesicles.
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Hu et al., 2019). The toxin-accessible cholesterol pool of the PMcould
bemore prone to be released from cells duringmigration (Infante and
Radhakrishnan, 2017; Hu et al., 2019). Thus, it is likely that the
movement of cells, and thereby the release of cholesterol-rich particles
contributes to cellular cholesterol efflux. Supporting that notion, the
release of membrane fragments in the form of vesicles and nanotubes
during cell migration has been known for decades (Huttenlocher
et al., 1995; Fuhr et al., 1998). Such cell traces have been visualized by
a variety of imaging techniques, including confocal, interference
reflection, and total internal reflection microscopy as well as by
AFM and EM (Fuhr et al., 1998). Support for cholesterol efflux from
cells in surface-shed vesicles during migration comes from other
recent imaging studies; using an elegant mixture of live-cell imaging,
EM, and mass spectrometry, Ma et al. described a migration-
dependent mechanism of vesicle release from cells, named
migracytosis (Ma et al., 2015). During migration, the cell will
leave retraction fibers behind on which vesicles up to 3 µm in size
can grow, either at the fiber tips or at fiber intersections (Figure 3B).
These vesicles, named migrasomes, will eventually detach from the
fibers and be released. The migrasomes contain a varying number of
smaller vesicles and during their growth, they are actively receiving
content from the main cell body (Huang et al., 2019). They contain
increased amounts of the protein tetraspanin 4 (TSPAN4) and more
cholesterol than the retraction fibers, and both, cholesterol and
TSPAN4, were necessary and sufficient for migrasome formation
(Huang et al., 2019). The primary function of migrasomes has been
suggested to be in cell-cell communication (Ma et al., 2015). But due
to their relatively high content of cholesterol, their detachment from
the cell could be another indirect way for the cell to release cholesterol.
Excess cholesterol can also be transferred to co-cultured smooth
muscle cells in the absence of HDL or serum (He et al., 2020). Using
nanoSIMS, Young and co-workers showed that this pathway is
substantially contributing to cholesterol efflux from macrophages
and does not depend onABCA1 (He et al., 2020).Whether it relies on
shedding of microvesicles from the donor cells, remains to be
determined in future studies. Another recent study reported
shedding of large GPMVs containing the cholesterol markers
TopFluor-cholesterol or filipin, in human fibroblasts upon
induction of membrane vesiculation using dithiotreitol (Sedgwick
et al., 2018). Formation of such GPMVs was enhanced upon
cyclodextrin treatment to remove cholesterol and upon
microtubule stabilization and required actin polymerization
(Sedgwick et al., 2018). However, GPMVs are often employed as
a model system for the PM, and their chemical-induced formation
does not resemble natural vesiculation processes taking place in intact
and healthy cells (Sezgin et al., 2012). Table 1 gives an overview of
described extracellular cholesterol-rich particles, their size, cellular
origin, and method of detection with focus on various imaging
studies.

7.4 Ultrastructure of Released Vesicles–do
Cells Shed Entire Endo-Lysosomes
Containing Cholesterol?
Using a combination of fluorescence and cryo-soft X-ray
tomography (cryo-SXT), we have recently shown that human
fibroblasts can shed cholesterol-rich microvesicles from the cell

surface without chemical pretreatment (Juhl et al., 2021). These
vesicles contained several fluorescent cholesterol markers, such as
TopFluor-cholesterol or dehydroergosterol, and they could be
labeled with filipin. Additionally, some of the microvesicles did
contain lysosomal content including NPC2 protein tagged with a
red fluorophore and Lysotracker, a content marker for lysosomes
(Figure 3A) (Juhl et al., 2021). NPC2 has been shown to be
secreted from primary astrocytes independently of secreted
cholesterol-rich exosomes, suggesting that the NPC2
containing vesicles we observed in fibroblasts are not
exosomes (Mutka et al., 2004; Juhl et al., 2021). Cryo-SXT is a
comparably fast 3D ultrastructural microscopy technique, that
allows imaging of fully hydrated cryo-fixed cells in less than
1 hour. As an energy source, it typically relies on synchrotron
radiation in the energy range between the K-edge absorption of
carbon (284 eV) and oxygen (543 eV), also known as the water
window (Schneider et al., 2010). Additional staining is not
required when imaging biological samples within this water
window, since a natural absorption contrast will emerge from
the carbon-rich structures. The resolution is down to a few tens of
nanometers, and due to the relatively high penetration depth of
up to several microns, sectioning of cells is not needed. To obtain
3D tomograms, the sample is tilted around a rotation axis while
acquiring single images, that can be aligned and reconstructed
(McDermott et al., 2009; Harkiolaki et al., 2018). With cryo-SXT,
we were able to resolve the delicate ultrastructure of the shed
microvesicles, which revealed internal vesicles in some of them
(Figure 3D). Based on these observations of extracellular vesicles
containing lysosomal cargo and internal vesicles, we suggest the
release of entire LE/LYSs as a new mechanism for cholesterol
release (Juhl et al., 2021). This process might be reminiscent of
cellular release of melanosomes, which are lysosome-related
organelles containing melanin for skin pigmentation (Wu and
Hammer, 2014). Transfer of melanosomes from melanocytes to
skin keratinocytes involves surface shedding of melanosomes
and/or melanosome exocytosis, similar to our observed
lysosomal efflux of cholesterol (Wu and Hammer, 2014).
Shedding of melanosomes takes place preferentially at sites of
surface protrusions, such as filopodia and dendrites, to which
melanosomes are reallocated in a Myosin-V and actin-dependent
process (Wu and Hammer, 2014). Membrane shedding of entire
organelles is likely not related to the formation of apoptotic
bodies since it has been observed in other cell types under
various conditions, including astrocytes, which were found to
release lipid droplets and mitochondria together with ATP
(Falchi et al., 2013). Extracellular release of mitochondria
could be triggered by CD38-mediated synthesis of the calcium
messenger cyclic ADP-ribose in astrocytes and serves a role in
protecting neurons after stroke (Hayakawa et al., 2016). Vesicular
shedding of lysosome-related organelles has also been identified
as a mechanism of drug disposal in brain endothelial cells (Noack
et al., 2018). Future studies should be directed towards
determining the molecular mechanisms, cells use to shed
vesicles containing endo-lysosomes and other organelles, and
how such mechanisms could be utilized to secrete lipids, such as
cholesterol. A summary of the discussed mechanisms for efflux of
cellular cholesterol is shown in Figure 4, below.
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8 EFFLUX OF CHOLESTEROL DERIVED
FROM LATE ENDOSOMES AND
LYSOSOMES

8.1 The Role of Niemann Pick Type C
Proteins in Export of Cholesterol From
Endo-lysosomes
Several organelles can provide cholesterol for efflux, including the
cholesterol-rich recycling endosomes, LE/LYSs, the Golgi
apparatus, and LDs (Neufeld et al., 2001; Neufeld et al., 2004;
Denis et al., 2008; Ouimet et al., 2011; Phillips, 2014). Since most
cells receive the majority of their cholesterol from endocytosis of
LDL, the export of LDL-cholesterol from endo-lysosomes is
closely linked to cholesterol efflux, for example to ABCA1,
which resides to some extent in LE/LYSs at steady state

(Neufeld et al., 2001). For cholesterol to leave LE/LYSs, the
tandem action of the two Niemann Pick type C proteins,
NPC1 and NPC2, is crucial. NPC1 is located in the lysosomal
membrane and consists of 13 transmembrane helices, containing
a sterol-sensing domain, and three luminal domains, a sterol-
binding N-terminal domain, a middle luminal domain, and a
C-terminal domain (Peake and Vance, 2010; Qian et al., 2020).
NPC2 functions in the lumen of the LE/LYSs and is relatively
small, consisting of 132 amino acids in its active form, and an
additional 19 amino acids signal peptide (Storch and Xu, 2009;
Qian et al., 2020). NPC2 binds to and buries the hydrocarbon
chain of cholesterol deep into its hydrophobic pocket, in an
orientation opposite to that of NPC1 (Infante et al., 2008; Kwon
et al., 2009). In 2008, the group of Goldstein and Brown showed
that NPC2 was required for the transfer of cholesterol fromNPC1
to liposomes, although the transfer mechanism between the two

TABLE 1 | Overview of reported extracellular non-lipoprotein particles rich in cholesterol.

Particle type Size Method Cell type Reference

Membrane-derived
particles

30–250 nm SEM, TEM, nanoSIMS Macrophages Vedhachalam et al. (2007), Nandi et al. (2009),
Hafiane and Genest (2017), He et al. (2018)

Migrasomes 0.5–3 µm SEM, TEM, confocal
fluorescence microscopy

NRK cells, MEF, NIH3T3, HaCaT, MGC803,
SKOV-3, B16, MDA-MB231, HCT116, SW480

Ma et al. (2015), Huang et al. (2019)

Irregular shaped, crystal-
like deposits

<<0.5 µm STED, AFM, SEM Macrophages Jin et al. (2018)

Membrane-derived small
vesicles

30–700 nm SXT, confocal
fluorescence microscopy

Primary human fibroblasts Juhl et al. (2021)

Membrane-derived
multivesicular structures

0.5–2.0 µm SXT, confocal
fluorescence microscopy

Primary human fibroblasts Juhl et al. (2021)

Exosomes 30–150 nm TEM Oligondendrocytes, Astrocytes, Primary human
fibroblasts

Mutka et al. (2004), Strauss et al. (2010),
Ilnytska et al. (2021a)

FIGURE 4 | Summary of discussed cholesterol efflux mechanisms. ABCA1 can efflux cholesterol to ApoA1 as the main sterol acceptor. Passive cholesterol
exchange between the cell and HDL is mediated by SR-BI. HDL can also gain cholesterol upon endocytosis, passage through endosomes and recycling back to the PM.
Additionally, cholesterol might leave the cell by the release of exosomes, upon LE/LYSs fusion with the plasma membrane, or by shedding as microvesicles and/or as
migrasomes during cell migration. The LE/LYSs are drawn in different sizes to show the proteins and intraluminal organelles and not to illustrate different
populations. ABAC1 (ATP-binding cassette A1), ApoA1 (apolipoprotein A1), EE (early endosomes), HDL (high density lipoprotein), ILV (intraluminal vesicle), LBPA
(lysobisphosphatidic acid), LE/LYS (late endosome/lysosome), SR-BI (scavenger receptor BI).
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proteins could not be determined from these experiments
(Infante et al., 2008). Based on biochemical assays, structural
data, and mutagenesis experiments, a model was suggested in
which unesterified cholesterol is first bound by NPC2 that hands
it over to NPC1 (Infante et al., 2009). Deffieu and Pfeffer, 2011)
found that at low pH, NPC2 binds to the second luminal domain
of NPC1 and that the strength of the interaction increases in the
presence of cholesterol (Deffieu and Pfeffer, 2011). From this
study, it was suggested that NPC2 carrying cholesterol would
bind to the second luminal loop of NPC1, which would bring the
proteins in proximity andmediate the transfer of cholesterol from
NPC2 to the N-terminal domain of NPC1. NPC2 would be
released from the NPC1, once the latter has accepted the
cholesterol, and finally, the cholesterol would be inserted into
the membrane of LE/LYSs (Deffieu and Pfeffer, 2011). In support
of this model, the crystal structure of an NPC1-NPC2 complex
showed that the middle luminal domain of NPC1 binds to the top
of NPC2, and revealed a putative cholesterol transfer tunnel
between the binding pockets of the two proteins (Li et al.,
2016). Moreover, recent studies found an internal tunnel in
the structure of yeast and mammalian NPC1 homologs,
through which sterols can be transferred to the lysosomal
membrane (Winkler et al., 2019; Long et al., 2020). The
importance of the NPC proteins is evident from the rare
neurogenerative disorder (~1:120.000 birth) Niemann Pick
Type C disease that is caused by lack of functional NPC1 or
NPC2 protein. In NPC disease, unesterified cholesterol
accumulates in the LE/LYSs together with other lipids such as
gangliosides, sphingomyelin, and sphingosine. About 95% of the
clinical cases are due to dysfunctional NPC1, however,
independent of which protein is disabled, the clinical
phenotypes appear similar (Peake and Vance, 2010).

8.2 Lipids, NPC Proteins, and ATP-Binding
Cassette Transporters Control Cholesterol
Efflux From Endo-lysosomes
Vesicles inside the LE/LYSs, known as ILVs, are enriched with
cholesterol and lysobisohosphatidic acid (LBPA) (Kobayashi
et al., 1999; Möbius et al., 2003; Gruenberg, 2020). LBPA is
important for forming themembranes of ILVs and for controlling
the cholesterol capacity of LE/LYSs. By treating cells lacking
functional NPC1 with LBPA, or treating with its biosynthetic
precursor phophatidylglycerol (PG), lysosomal cholesterol
clearance was enhanced (McCauliff et al., 2019). Such LBPA/
PG mediated cholesterol egress occurrs through increased
exosomal secretion (Ilnytska et al., 2021a) and by enhancing
the autophagic flux in cells lacking functional NPC1 (Ilnytska
et al., 2021b). Interestingly, LBPA is not able to reduce cholesterol
levels in cells expressing NPC2 protein mutated in the
hydrophobic knob domain, which has been shown to directly
interact with LBPA (McCauliff et al., 2019). Additionally, the
efficiency of NPC2 to transfer cholesterol between membranes
was found to be enhanced in the presence of LBPA, and inhibited
by anti-LBPA antibodies (Xu et al., 2008). It is likely that NPC2
shuttles cholesterol from ILV membranes to the limiting LE/LYS
membrane, making it available for other sterol transfer proteins

(Storch and Xu, 2009). Dysfunction of NPC1, the cholesterol
export protein in the endo-lysosomal limiting membrane, but not
the absence of NPC2, can be rescued by overexpression of ABCA1
(Choi et al., 2003; Boadu et al., 2012). These important
observations suggest that NPC2 is needed to solubilize
cholesterol inside of the lysosome and donate it to different
transporters including NPC1 and ABCA1 for export from this
compartment. In line with this conclusion is our recent
observation that treating NPC2-deficient human fibroblasts
with purified NPC2 mobilized cholesterol from endo-
lysosomes towards the PM, which was paralleled by
reallocation of endo-lysosomes to the periphery and direct
sterol transfer to the PM (Juhl et al., 2021). The latter could
be shown by bleaching TopFluor-cholesterol in a portion of the
PM and measuring a decrease in fluorescence of this sterol probe
in nearby LE/LYSs underneath the PM (Juhl et al., 2021). Using
kinetic modeling of such a fluorescence loss in photobleaching
(FLIP) experiment, we inferred a dynamic pool of sterol in endo-
lysosomes in exchange with the PM, which has a residence time in
LE/LYSs of about 40 s (Juhl et al., 2021). Subsequent cholesterol
efflux from the PM was independent of NPC2 but stimulated by
LXR agonists and apoA1, suggesting that both pathways work in
tandem (Juhl et al., 2021). Reallocation of endo-lysosomes to the
cell periphery and reduction of the cholesterol storage phenotype
was also found in fibroblasts lacking functional NPC1 upon
treatment with PG (Ilnytska et al., 2021a). Some of those LE/
LYSs might release their cholesterol content as exosomes, i.e., by
lysosomal exocytosis, while vesicular shedding of lysosomal cargo
from the PM could contribute as well. Interestingly, macrophages
from NPC1 knockout (NPC1−/−) mice have reduced cholesterol
efflux capacity, which could be overcome by stimulating ABCA1
transporters with LXR agonists. Heterozygous NPC1+/− mice
show less apoptosis and lesional necrosis, likely because
cholesterol transport from lysosomes to the ER is impaired, as
this pathway is essential for inflammosome activation and the
UPR stress response (Feng et al., 2003; De la Roche et al., 2018).
Similarly, incorporation of fatty acids derived from atherogenic
LDL into phospholipids is impaired in NPC1-deficient
macrophages (Leventhal et al., 2004). Together, these studies
suggest that NPC1 and NPC2 provide cholesterol and
phospholipids from LE/LYSs for efflux from cells.

8.3 The Connection Between
Endo-lysosomes and Lipid Droplets in
Cellular Cholesterol Efflux
To understand the role of lysosomes in the trafficking of
lipoprotein-derived cholesterol, it is important to realize that
cellular efflux of LDL-derived cholesterol differs between native
LDL and oxidized, acetylated, or aggregated LDL, as such
atherogenic LDL is differently processed in endo-lysosomes
(Dhaliwal and Steinbrecher, 2000; Wang M.-D. et al., 2007;
Haka et al., 2009). For example, aggregated and matrix-
retained LDL in the intima of the vessel wall gets attacked by
macrophages, which attempt to engulf the aggregated LDL,
thereby triggering secretion of hydrolytic enzymes including
acid lipase from lysosomes (Haka et al., 2009). This, in turn,
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hydrolyzes CEs residing in aggregated LDL. To prevent a collapse
of the pH gradient needed for optimal function of these enzymes,
macrophages secrete lysosomal acid lipase into the contact area,
thereby forming a tightly sealed so-called “lysosomal synapse”
allowing for extracellular degradation of LDL’s sterol esters
(Singh et al., 2016). Upon uptake into the cells, the excess
cholesterol is re-esterified and stored in LDs, whose abundant
appearance converts those macrophages into foam cells. Thus,
stored CEs in LDs represent another major intracellular source of
cholesterol for efflux (Ouimet et al., 2011). CEs can be re-
hydrolyzed for sterol mobilization via cytoplasmic cholesteryl
ester hydrolase (Brown et al., 1979). Ingestion of LDs into
lysosomes, so-called lipophagy, and hydrolysis of stored CEs
by acid lipase provides significant amounts of cholesterol for
efflux from macrophage foam cells (Ouimet et al., 2011;
Robichaud et al., 2021). Lipophagy and likely other forms of
autophagy are impaired in mammalian cells, lacking functional
NPC1 or NPC2, suggesting that these sterol transporters play an
important role in the efflux of droplet-derived sterols from
lysosomes (Sarkar et al., 2013; Guo et al., 2016; Robichaud
et al., 2021). This is likely an evolutionary ancient function of
these proteins since impaired lipophagy is also observed in yeast
Saccharomyces cerevisiae lacking functional NPC homologs,
NCR1 or Npc2 (Tsuji et al., 2017; Winkler et al., 2019). Since
these cells lack a lipoprotein pathway, yeast relies on sterol
mobilization from LDs in the vacuole during starvation.

9 FORMATION AND EFFLUX OF
OXYSTEROLS

9.1 Oxysterols as Polar Derivatives of
Cholesterol Which Regulate Sterol
Homeostasis and Efflux
Oxysterols are oxidized derivatives of cholesterol bearing
additional hydroxy-, keto- or epoxy groups which significantly
increase their water solubility compared to the parent cholesterol
molecule (Luu et al., 2016). Since increased polarity results in
lower membrane retention and higher inter-membrane transfer,
oxysterols move very fast through cells and are more efficiently
removed from cells compared to cholesterol (Sinensky, 1981;
Lange et al., 1995; Morel et al., 1996). For example, the transfer
from red blood cells to plasma lipoproteins is about 2000-fold
faster for 25-hydroxycholesterol than for cholesterol (Lange et al.,
1995). Sidechain oxidized cholesterol derivatives, such as 25-or
27-hydroxycholesterol, can form from LDL-derived cholesterol
upon export from endo-lysosomes and transport to the ER or
mitochondria, respectively (Axelson and Larsson, 1995; Frolov
et al., 2003). Export of these oxysterols from endo-lysosomes
depends on NPC1, and to a lower extent on NPC2 (Frolov et al.,
2003; Abi-Mosleh et al., 2009; Petersen et al., 2020). 25-
hydroxycholesterol can activate LXRs to stimulate ABCA1
mediated cholesterol efflux, and this oxysterol is itself
efficiently removed from cells by ABCA1 (Venkateswaran
et al., 2000; Tam et al., 2006). Therefore, impaired oxysterol
formation in NPC1-deficient cells will likely contribute to the

reduced efflux capacity and reduced HDL formation in NPC1
disease (Choi et al., 2003). The same is probably the case for
Wolman disease and cholesteryl ester hydrolase deficiency, which
both lead to accumulation of CEs in endo-lysosomes due to
defective or absent acid lipase and thereby impaired ABCA1
mediated cholesterol efflux (Bowden et al., 2011). NPC2 binds 25-
hydroxycholesterol with a much lower affinity than cholesterol
and is probably less important for the export of oxysterols from
endo-lysosomes because the water solubility of 25- and 27-
hydroxycholesterol is sufficient for spontaneous transfer
(Frolov et al., 2003; Petersen et al., 2020). Sidechain oxidized
cholesterol derivatives move rapidly across membranes and can
increase the permeability of lipid membranes to small molecules
and ions, which could contribute to lysosome destabilization by
oxysterols (Yuan et al., 2000; Kulig et al., 2018). In parallel, these
oxysterols cannot order membranes as much as cholesterol does,
and they might increase the propensity of cholesterol to partially
protrude from the bilayer, thereby increasing the pool size of
“accessible” cholesterol for efflux to acceptors (Bielska et al.,
2014). However, there is also evidence that oxysterols, such as
25-hydroxycholesterol, actually lower cellular cholesterol efflux
capacity (Kilsdonk E. P. et al., 1995; Luu et al., 2016). This could
be due to stimulation of ACAT resulting in cholesterol
esterification and storage in LDs.

9.2 Analysis of Oxysterol Trafficking and
Efflux by Fluorescence Microscopy
The lack of appropriate tools to follow oxysterol transport in
living cells has limited our knowledge about intracellular
trafficking of oxysterols. Given that oxysterols, such as 25- or
27-hydroxycholesterol, differ from cholesterol only by having one
additional hydroxy group, additional modifications to introduce
fluorescent moieties for live-cell imaging must be kept to an
absolute minimum. One approach is two add an alkyne group to
the oxysterol, load this analogue into cells and covalently link it to
a fluorescent group by click chemistry (Nedelcu et al., 2013;
Peyrot et al., 2014). This approach allows for high-resolution
imaging of oxysterol distribution, but it cannot be ruled out that
either the click reaction or the attached dye molecule have an
impact on this distribution. Also, imaging of the fluorescent
construct is not possible in living cells. In a pioneering study,
Iaea et al. (2015) presented a novel intrinsically fluorescent
analogue of 25-hydroxycholesterol, which contains only two
additional double bonds in the ring system compared to the
parent oxysterol (Iaea et al., 2015). This analogue named 25-
hydroxycholestatrienol can suppress cholesterol synthesis,
activate ACAT for sterol esterification, be esterified in cells
and stimulate expression of ABCA1 via activation of LXRs
(Iaea et al., 2015). Its export from lysosomes depends on
NPC1 and to a lower extent on NPC2 (Iaea et al., 2015;
Petersen et al., 2020). Based on the same design strategy, we
have recently developed a novel derivative of 27-
hydroxycholesterol, 27-hydroxycholestatrienol (27-OH-CTL),
which differs from 27-hydroxycholesterol only by two
additional double bonds in the steroid ring system (Figure 5),
allowing for spectroscopic analysis and live-cell imaging by
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ultraviolet-sensitive microscopy, similar to 25-
hydroxycholestatrienol (Szomek et al., 2020). We compared
the intracellular trafficking of 27-OH-CTL with that of
cholestatrienol (CTL), which has identical photophysical
properties and just two additional double bonds compared to
cholesterol (Figure 5). Thus, the difference between 27-OH-CTL
and CTL is only one extra hydroxy group at carbon 27, exactly as
the difference between 27-hydroxycholesterol and cholesterol
(Figure 5). This enabled us to study the effect of one
additional hydroxy group in the steroid side chain on
intracellular sterol trafficking and efflux. We found that 27-
OH-CTL and CTL show a similar extent of non-vesicular
transport, as measured by fluorescence recovery after
photobleaching (not shown but see Szomek et al. (2020)).
However, 27-OH-CTL was much more efficiently effluxed
from cells than CTL (Figure 5A) and 27-OH-CTL but not
CTL accumulated a lot in LDs in human fibroblasts (Szomek
et al., 2020). Comparable intracellular transport kinetics but more
rapid and extensive efflux, as well as the metabolic conversion,
was also found for 25-hydroxycholesterol compared to
cholesterol in macrophages using radioactive sterol probes
(Morel et al., 1996). Thus, cells can sensitively adapt transport
and efflux to even minor structural changes of sterol molecules,
and these processes can be studied using radioactive tracers but
also directly observed in cells using intrinsically fluorescent
analogues.

10 CONCLUSION AND OUTLOOK

Since mammalian cells cannot degrade cholesterol, they have
developed intricate mechanisms for its disposal. Here, we have
summarized our current understanding of the cellular
mechanisms of cholesterol efflux. A particular challenge is the
extremely low water solubility of cholesterol, which cells
overcome by employing several mechanisms. In this review we
discussed in detail; 1) how cells use a variety of transporters to
shuttle cholesterol between membrane and lipoproteins; 2) how
cells generate close protein-mediated membrane contacts to
accelerate sterol exchange and 3) how they couple cholesterol
export to the formation of extracellular carrier vesicles and
lipoproteins. In addition to the classical pathways of reverse
cholesterol transport and formation of HDL, we highlighted
novel findings of the concerted action and molecular function
of a variety of ABC transporters. We also provided an overview of
recently described vesicular secretion pathways for cholesterol,
ranging from the secretion of exosomes over shedding of
ectosomes from the PM to the formation of migrasomes, and
we explained, how those mechanisms might contribute to net
cholesterol efflux from cells. A particular focus was set on human
diseases related to disturbed cholesterol efflux, either at the cell
surface or due to defective mobilization from intracellular sites,
such as endo-lysosomes and LDs. Finally, we explained the
important link between cholesterol efflux and the formation

FIGURE 5 | Uptake and efflux of fluorescent oxysterols in human fibroblasts. (A) uptake and efflux of cholestatrienol (CTL) and 27-hydroxycholestatrienol (27-OH-
CTL) in human fibroblasts studied by UV-sensitive fluorescence microscopy. (B) structures of cholesterol and its fluorescent analogue CTL. (C) 27-hydroxycholesterol
and its fluorescent analogue 27-OH-CTL. Extra double bonds in the fluorescent analogs are the only modifications compared to the natural sterols and are shown in blue.
Figure adapted and reproduced from (Szomek et al., 2020) with permission.
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and export of oxysterols from cells. However, many questions
remain and future studies could focus on the following:

• What is the nature of active cholesterol, and how is the
cholesterol pool accessible to bacterial toxins related to
cholesterol efflux and precipitation from membranes?
While being a powerful concept, the molecular picture of
“active cholesterol” is very vague at the moment. New
techniques, including novel biophysical and imaging
approaches, are required to substantiate this concept in
living cells. Also, a better understanding of the molecular
mechanisms underlying the binding of bacterial toxins to
cellular membranes is needed to ensure that the observed
threshold phenomena indeed solely reflect different
cholesterol pools in the membrane.

• Are there other mechanisms of controlling the chemical
potential of cholesterol and thereby its fugacity in cellular
membranes and lipoproteins? Our current understanding of
the mechanisms regulating cholesterol’s chemical potential
in cellular membranes and lipoproteins are based on a large
body of physico-chemical data about specific phospholipid-
cholesterol interactions in model membrane systems. Such
systems are necessarily much simpler than cellular
membranes, and we might miss an important piece of
the puzzle by relying too much on model membrane
studies. Thus, more biophysical studies in living cells and
development of more realistic model systems are needed to
answer this question.

• How important are membrane contact sites for cellular
efflux of cholesterol? It is well known that close, protein-
mediated contact between organelles are involved in
intracellular cholesterol transport, but it is little
understood about whether the organelle interactome also
regulates cellular cholesterol efflux and how sterol
transporters, such as GramD1/Aster or oxysterol binding
proteins function at those sites during export of excess
cholesterol from cells.

• What are the molecular mechanisms underlying shedding
of cholesterol-rich vesicles from the PM? Secretion of
micro-vesicles as an export mode for cholesterol from
cells is an exciting new field that will complement and
expand our understanding of cholesterol efflux in the future.
Understanding the underlying mechanisms of vesicle
secretion and their regulation will be possible by
combining live-cell and correlative super-resolution
microscopy with genetic knockdown techniques in
different cell types and under various cholesterol loading
conditions.

• How is the recruitment of endo-lysosomes to the PM for
cholesterol efflux regulated at a molecular level? Exciting
new findings have revealed the importance of intracellular
location and dynamics for lysosome function, and
lysosomal cholesterol appears to be an important
regulating factor in this context. Reallocation of LE/LYSs
to the PM has been found to be linked to cholesterol efflux,

and determining the underlying molecular mechanisms will
enable us to understand, how intracellular cholesterol is
mobilized for efflux from cells.

• Is there a quantitative contribution of the release of
entire LE/LYSs to net cholesterol efflux, and if so,
what are the underlying mechanisms? Shedding of
vesicles containing entire endo-lysosomes and other
organelles has been observed during cholesterol efflux,
but also in other cellular processes and various cell types.
Whether this indeed plays a physiological role or is
exaggerated under cell culture conditions needs to be
explored in the future.

• What are the molecular mechanisms and biophysical
principles of oxysterol transport and efflux from cells and
how can oxysterols control cholesterol efflux at the cellular
and molecular level? Oxysterols play an important role in
cholesterol efflux; they are efficiently exported from cells
due to their higher water solubility compared to cholesterol,
and they regulate cellular cholesterol efflux as ligands of
sterol-metabolizing enzymes and transcription factors.
Future studies could combine novel imaging technologies
with analytical approaches, such as mass spectrometry to
study trafficking and metabolism of oxysterols at a cellular
and tissue level.

In the past, mechanisms of cellular cholesterol efflux were
explored primarily by biochemical approaches, and this has
generated a large amount of data on the formation and
clearance of HDL. With the increasing use of quantitative live-
cell imaging, super-resolution microscopy and correlative
imaging, elucidation of the spatiotemporal orchestration of
cholesterol efflux at a subcellular level becomes possible. We
expect this trend to continue in the future with novel imaging
technologies further contributing to our understanding of this
important process.
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Negative Modulation of
Macroautophagy by Stabilized
HERPUD1 is Counteracted by an
Increased ER-Lysosomal Network
With Impact in Drug-Induced Stress
Cell Survival
Gabriela Vargas1‡, Omar Cortés1‡, Eloisa Arias-Muñoz1,2, Sergio Hernández1,
Cristobal Cerda-Troncoso1, Laura Hernández1, Alexis E. González3†, Michael H. Tatham4,
Hianara A. Bustamante5, Claudio Retamal1, Jorge Cancino1, Manuel Varas-Godoy1,
Ronald T. Hay4, Alejandro Rojas-Fernández4,6, Viviana A. Cavieres1,2* and
Patricia V. Burgos1,2,7*

1Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago,
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Vida, Santiago, Chile

Macroautophagy and the ubiquitin proteasome system work as an interconnected
network in the maintenance of cellular homeostasis. Indeed, efficient activation of
macroautophagy upon nutritional deprivation is sustained by degradation of preexisting
proteins by the proteasome. However, the specific substrates that are degraded by the
proteasome in order to activate macroautophagy are currently unknown. By quantitative
proteomic analysis we identified several proteins downregulated in response to starvation
independently of ATG5 expression. Among them, the most significant was HERPUD1, an
ER membrane protein with low expression and known to be degraded by the proteasome
under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly
due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1
stability could work as a negative regulator of autophagy. In this work, we expressed a
version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be
crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the
UBL-deleted version caused a negative role on basal and induced macroautophagy.
Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of
unfolded protein response activation observing an increase in stacked-tubular structures
resembling previously described tubular ER rearrangements. Importantly, a
phosphomimetic S59D mutation within the UBL mimics the phenotype observed with
the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling
together with a negative role on autophagy. Moreover, we found UBL-deleted version and
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HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes
an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and
the phosphomimetic S59D version led to an increase in the number and function of
lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version
established a tight ER-lysosomal network with the presence of extended patches of
ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival
under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates
macroautophagy favoring instead a closed interplay between the ER and lysosomes with
consequences in drug-cell stress survival.

Keywords: HERPUD1, ubiquitin-like (UBL) domain, organelle network, lysosomal function, proteostais, MCSs, ERAD
(ER associated protein degradation)

INTRODUCTION

Macroautophagy (from here referred to as autophagy) is a
catabolic pathway that mediates the engulfment of aberrant or
damaged cytoplasmic constituents into double-membrane
autophagosomes that subsequently fuse with lysosomes to
form a hybrid organelle called the autolysosome that mediates
the degradation of the cargo by acid hydrolases (Mizushima et al.,
2008; Khaminets et al., 2016). Autophagy is also implicated in the
degradation of cellular constituents under basal conditions,
playing an essential role in the maintenance of cellular
homeostasis upon a variety of environmental conditions such
as nutrient restriction or other stressors (Murrow and Debnath,
2013). Autophagy is highly inducible by environmental changes
being a very dynamic process that resolves a variety of cellular
demands (Murrow and Debnath, 2013). In fact, increased
autophagy is protective in different cells and organisms,
playing a crucial role in cell maintenance and survival under
different insults (Moreau et al., 2010). On the other hand, defects
in autophagy enhance cell vulnerability under harmful conditions
such as those present in the tumormicroenvironment (Camuzard
et al., 2020).

Although initially autophagy was thought to work
independently of the ubiquitin proteasome system (UPS),
increasing evidence shows many layers of both negative and
positive regulation (Bustamante et al., 2018), revealing an
interconnected network with important roles in cellular
homeostasis and maintenance (Korolchuk et al., 2010).
Inhibitors of the proteasome 20S catalytic core with the use of
β-subunits blockers triggers an enhancement in the biogenesis of
autophagosomes (Zhu et al., 2010). In contrast, impairment of the
proteasome 19S regulatory particle with an inhibitor of PSMD14,
a proteasomal deubiquitinating enzyme, blocks the biogenesis of
autophagosomes (Demishtein et al., 2017; Bustamante et al.,
2020). To date a limited number of substrates of the UPS
system are known to play a regulatory role in autophagy (Jia
and Bonifacino, 2019; Thayer et al., 2020) and many aspects
about the functional role of this interconnected network between
autophagy and UPS remain elusive.

To identify UPS substrates that could act as negative regulators
of autophagy, we conducted a quantitative SILAC proteomic
analysis in cells stably depleted of ATG5 by shRNA-mediated

knockdown. ATG5 protein is part of a complex with ATG12 and
ATG16L that controls an essential step in the autophagosome
formation (Walczak and Martens, 2013). We focused on proteins
downregulated in response to nutrient deprivation, but not
because of autophagy activation. The protein with the most
significant downregulation, in wild type and ATG5 depleted
cells was the Homocysteine-responsive endoplasmic reticulum-
resident ubiquitin-like domain (UBL) member 1 protein named
as HERPUD1. This protein is a transmembrane ER-resident
protein with low levels of expression due to its short half-life
by rapid proteasomal degradation (Kokame et al., 2000; Sai et al.,
2003).

Here, we found that stabilized HERPUD1 through the deletion
of its UBL domain causes a decrease in basal and induced
autophagy. Additionally, it promotes an ER remodeling
independent of the unfolded protein response activation into
stacked tubular structures resembling previously described
tubular ER rearrangements. Furthermore, we uncovered that
higher HERPUD1 stability has a positive impact in lysosomal
function, promoting an expanded ER-lysosomal network.
Further, combining bioinformatics and site-directed
mutagenesis we found the phosphomimetic S59D mutant
within the UBL domain of HERPUD1 mimics the effect of the
UBL deletion. In fact, we observed the phosphomimetic S59D
mutant reduces basal and induced autophagy and remodeling of
the ER-lysosomal network with the presence of ER-lysosomal
membrane-contact sites, together promoting drug-stress cell
survival. These findings thus identify HERPUD1 as a hotspot
platform to promote stress cell survival by inducing the
remodeling of the ER-lysosomal network when autophagy
slows down.

MATERIALS AND METHODS

Reagents
Bafilomycin A1 (BafA1, cat#B1793), tunicamycin (Tun,
cat#T7765), thapsigargin (Tg, cat#T9033), cisplatin (CDDP,
cat#479306), Sulforhodamine B (SRB, cat#230162), Earle’s
balanced salt solution (EBSS, Cat#E2888), puromycin dihydro-
chloride (cat#P8833), and protease inhibitors cocktail
(cat#P8340) were purchased from Sigma-Aldrich (St. Louis,
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MO, United States). MG132 (cat#474790) was purchased from
Merck Millipore (Burlington, MA, United States). LysoTracker™
Red DND-99 (cat#L7528), 4′,6-diamidino-2-phenylindole
(DAPI) (cat#D-1306) and TRIzol™ (cat#15596018) were
purchased from ThermoFisher Scientific (Waltham, MA,
United States), Magic Red® (cat#6133) was purchased from
Immunochemistry Technologies, LLC (Bloomington, IN,
United States). The QuikChange II XL direct-mutagenesis kit
was obtained from Stratagene (cat#200522, La Jolla, CA, United
States) and the Vybrant Apoptosis Pacific Blue-annexin V kit and
7AAD from Invitrogen (cat#A35122). The siRNA against human
HERPUD1 (cat#SASI_Hs01_00185592) was purchased from
Sigma Aldrich. The siRNA control corresponded to a custom
non-target sequence UUCUCCGAACGUGUCACGUUU
purchased from Dharmacon.

Antibodies
The following monoclonal antibodies were used: mouse anti-β-
ACTIN clone BA3R (cat# MA5-15739, Thermo Fisher Scientific),
mouse anti-XBP-1S clone E7M5C (cat#47134S, Cell Signaling
Technology, Danvers, MA, United States), mouse anti-FLAG
clone M2 (cat#F1804, Sigma Aldrich), mouse anti-VAP-A
clone 4C12 (cat#sc-293278, Santa Cruz Biotechnology, INC),
mouse anti-GRP78/BiP clone 40/BiP (cat# 610978, BD
Biosciences, San Jose, CA, United States), mouse anti-LAMP1
clone H4A3 (cat# 610978, Developmental Studies Hybridoma
Bank, Iowa City, IA, United States), rabbit monoclonal anti-
CALNEXIN clone C5C9 (cat#2679S, Cell Signaling
Technologies), rabbit monoclonal anti-ATF4 clone D4B8
(cat#11815S, Cell Signaling Technologies), rabbit monoclonal
anti-HERPUD1 clone EPR9649 (cat#ab150424, Abcam), rat
monoclonal anti-GRP94 clone SPM249 (cat#ab233979, Abcam,
Cambridge, United Kingdom). We used the following polyclonal
antibodies: rabbit anti-LC3 (cat#2775S, Cell Signaling
Technology), rabbit anti-PERK (cat#P0074, Sigma-Aldrich),
rabbit anti-STARD3 (cat#ab3478, Abcam, Cambridge,
United Kingdom), goat anti-CATHEPSIN-D (cat#AF1014,
R&D Systems, Minneapolis, MN, United States), rabbit anti-
TFEB (cat#4240, Cell Signaling Technologies), rabbit anti-
HERPUD1 (cat#BML-PW9705, ENZO Life Sciences,
Farmingdale, NY, United States). Horseradish peroxidase-
conjugated secondary antibodies were purchased from Jackson
ImmunoResearch Laboratories (West Grove, PA, United States),
Alexa fluorophore-conjugated secondary antibodies were
purchased from Thermo Fisher Scientific.

Mass Spectrometry Based Proteomics and
Statistical Analysis
Human H4 neuroglioma cells stably expressing shLuc and
shATG5 were grown in Dulbecco’s modified Eagle’s medium
lacking all amino acids except L-lysine and L-arginine, which
were replaced with either unlabelled amino-acids (Lys0 and Arg0)
or stable isotopic forms 13C6 15N2-lysine (Lys8) and
13C6 15N4-arginine (Arg10) (Cambridge Isotope
Laboratories). The medium was supplemented with 10%
dialyzed FBS using previous published methods (Golebiowski

et al., 2009; Yin et al., 2012). Two separate cultures of each shLuc
and shATG5 cells were grown in light amino acids (Lys0 + Arg0)
or heavy amino acids (Lys8 + Arg10) over nine replication cycles
to achieve over 96% incorporation and similar cell counts per
culture. Both cell cultures were divided in two, and cells were
grown under control conditions in DMEM + 10% FBS or
starvation in EBSS media for 4 h so that each cell type grown
with each label were treated with both conditions (8 cultures in
total). Cells were washed and lysed in 1.2 × LDS sample buffer
with reducing agent, obtaining crude cell extracts at
approximately 1 mg/ml. To allow all experimental conditions
to be compared with one another a light reference mix was
obtained by combining all four light amino acid conditions in a 1:
1:1:1 ratio by volume. This was then mixed 1:1 ratio (v:v) with
each heavy amino acid extract. The same comparisons were made
in reverse by combining all heavy amino acid samples into a
reference mix and combining this 1:1 (v:v) with each of the four
individual light amino acid conditions. All eight mixes were
fractionated by SDS-PAGE and stained gels were cut into
three slices per lane before tryptic peptides were extracted.
The resultant 24 samples of dried down peptides were
resuspended in 35 µl 0.1% TFA 0.5% acetic acid. Peptide
samples were analyzed by LC-MS/MS twice; the first using 9 µl
peptide sample run over a 90 min peptide fractionation gradient,
and the second using 18 µl peptide sample run over a 240 min
fractionation gradient. Peptides were analyzed using a Q exactive
mass spectrometer (Thermo Scientific) coupled to an EASY-nLC
1,000 liquid chromatography system (Thermo Scientific), using
an EASY-Spray ion source (Thermo Scientific), running a 75 μm
× 500 mm EASY-Spray column at 45°C. A top 10 data-dependent
method was applied. Full scan spectra (m/z 300–1,800) were
acquired with resolution R = 70,000 at m/z 200 (after
accumulation to a target value of 1,000,000 with maximum
injection time of 20 ms). The most intense ions were
fragmented by HCD and measured with a resolution of R =
17,500 at m/z 200 (target value of 500,000 maximum injection
time of 60 ms) and intensity threshold of 2.1 × 104. Peptide match
was set to “preferred”, a 40 s dynamic exclusion list was applied,
and ions were ignored if they had an assigned charge state of 1, 8
or >8. All 48 data files were analyzed simultaneously in
MaxQuant (v1.5.2.8) using default parameters excepting the
selection of SILAC labels, activation of ‘requantify’ and ‘match
between runs’, using a uniport ‘HUMAN’ proteome database
(downloaded 24/02/2015- 73920 entries) as search space. Raw
files derived from the same mix were grouped under the
‘Experiment’ heading as Mix01-Mix08. Raw files were given
MaxQuant experimental design ‘fraction’ numbers such that
spectra derived from the same HPLC gradient and from the
equivalent gel slices across different lanes would be matched, as
well as one sliced either side. 4,395 protein groups were listed as
informed in the Suppplementary File S1, proteinGroups.txt
sheet. This list was edited to leave 3,911 protein groups by
removing decoy proteins, protein listed as potential
contaminants, proteins identified only by modified peptides,
and proteins without a H/L ratio reported for any comparison
(see Suppplementary File S1, accepted sheet). The average of
normalized forward and reverse ratios of starvation/control were
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carried forward for statistical analysis, but only for those with H/L
ratios reported for both. These values along with average log10
protein intensities were used in Perseus to calculate Significance B

values to identify statistical outliers (SigB < 0.001) for the three
ratios. Data for these shortlisted proteins are summarized in
Suppplementary File S1, shortlisted sheet. Data is available via

FIGURE 1 | SILAC-based proteomic study reveals HERPUD1 as a possible modulator of autophagy. (A). Design of the SILAC experiment to monitor changes of
the cellular proteome of H4 cells during starvation and shRNA-mediated knockdown of ATG5 (shATG5) or shRNA against the luciferase gene (shLuc). ‘Reference’mixes
of all cell extracts were prepared for light and heavy conditions for ‘forward’ and ‘reverse’ SILAC experiments and were mixed 1:1 with individual cell extracts, giving a
total of eight mixes. (B,C) Scatter plot comparing ‘Forward’ and ‘Reverse’ Log2 Starvation/Normal ratio data for cells shLuc (B) and shATG5 (C). (D) Comparison
of average Log2 Starvation/Normal ratios in shLuc (x-axis) and shATG5 (y-axis). Protein outliers under either or both knockdown conditions are colored as indicated.
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ProteomeXchange with identifier PXD024486. Reviewer account
details: Username: reviewer pxd024486@ebi.ac.uk Password:
ibjQUyjo.

Plasmids and Site-Directed Mutagenesis
For all HERPUD1 constructs generated in this study,
previously described cDNAs encoding either the full-length
or the ΔUBL deletion mutant human HERPUD1, both with a
C-terminal FLAG-tag, were used as templates (Sai et al., 2003).
pCI-HERPUD1-FLAG and pCI-ΔUBL-FLAG were digested
with EcoRI and NotI restriction enzymes to obtain an insert,
which was sub-cloned to a lentiviral pLVX-IRES-Puro vector
(Takara Bio Inc., CA, United States) containing a puromycin
resistance gene. The substitution S59D and S59A were
introduced into the pLVX-IRES-FLAG-tagged HERPUD1
vector using the QuikChange II XL direct-mutagenesis kit
(Stratagene, cat#200522) and the mutagenesis service of
GenScript (Hong Kong, China).

Cell Culture and Generation of Stable Cell
Lines
Maintenance of H4 human neuroglioma cells stably expressing
either shRNAs against ATG5 or luciferase genes was performed
as previously described (González et al., 2017). HeLa cells were
obtained from the American Type Culture Collection (Manassas,
VA, United States). HeLa-derived cell lines were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher
Scientific) supplemented with 10% (vol/vol) heat-inactivated fetal
bovine serum (FBS; Thermo Fisher Scientific), and 100 U/ml
penicillin/100 mg/ml streptomycin (Thermo Fisher Scientific), in
a 5% CO2 atmosphere at 37°C. The generation of HeLa stable cell
lines expressing all different variants of FLAG-tagged HERPUD1
cloned in the pLVX-IRES-Puro vector were generated by
transfection with Lipofectamine 2000 (Invitrogen) according to
manufacturer’s instructions. After 24 h the cells were selected and
maintained with 2 μg/ml of puromycin.

Preparation of Protein Extracts,
Electrophoresis, SDS-PAGE and Western
Blot Analysis
Cells were washed with ice-cold phosphate buffered saline (PBS)
and lysed in Radioimmunoprecipitation assay buffer (RIPA lysis
buffer) [50 mM Tris-HCl , 150 mM NaCl, 5 mM EDTA, 1% NP-
40, 1% sodium deoxycholate, 0.1% SDS, pH 7.4], supplemented
with a cocktail of protease inhibitors [416 μM 4-(2-Aminoethyl)
benzenesulfonyl fluoride, 0.32 μM Aprotinin, 16 μM Bestatin,
5.6 μM E-64, 8 μM Leupeptin and 6 μM Pepstatin A; Sigma-
Aldrich] and phosphatase inhibitors (1 mM NaF, 0,3 mM
Na2P2O7 and 1 mM Na3VO4; Sigma-Aldrich). Cell lysates were
collected and lysed for 30 min at 4°C in rotation. Then, extracts
were sonicated with ultrasonic power three times on ice with
pulses of 2–3 s at 40 mA using a tip sonicator system. Extracts
were further centrifuged for 20 min at 13.000×g at 4°C. The
supernatants were collected, and protein concentration was
quantified using the BCA assay (ThermoFisher Scientific). The

protein extracts were denatured at 65°C for 5 min and analyzed
using our previous described methods (González et al., 2017;
Bustamante et al., 2020).

Transmission Electron Microscopy
HeLa cells were fixed for 16 h by immersion in 2.5%
glutaraldehyde in 0.1 M cacodylate buffer (pH 7.0) at room
temperature, and then washed three times with a cacodylate
buffer for 2 h. Cells were post-fixed with 1% osmium tetroxide
(OsO4) for 2 h and washed three times with double distilled
water. Then, the cells were treated with 1% aqueous uranyl for
90 min, and sequentially dehydrated through an acetone battery
50, 70, 95, and 100% for 20 min each. Cells were pre-embedded in
epon/acetone 1:1 overnight and then in pure epon for 4 h. Finally,
cells were embedded in fresh resin and polymerized in an oven at
60°C for 48 h. Ultrafine sections (80 nm) were obtained using an
ultramicrotome Leica Ultracut R. The sections were incubated
with 4% uranyl acetate in methanol for 2 min and lead citrate for
5 min. The grids were visualized using a Philips Tecnai 12
electron microscope (Eindhoven, Netherlands) at 80 kV. This
work was performed in the Advanced Microscopy Facility of the
Faculty of Biological Sciences at Pontificia Universidad Católica
de Chile.

Fluorescence Microscopy, Data
Acquisition, Quantification and
High-Resolution Analysis
Cells grown on glass coverslips were washed with PBS-Ca2+/Mg2+

and then fixed, permeabilized and stained using our published
protocols (Bustamante et al., 2020; Cavieres et al., 2020). The
images were acquired using a TCS SP8 laser-scanning confocal
microscope (Leica Microsystems, Wetzlar, Germany) equipped
with a ×63 oil immersion objective (1.4 NA), photomultipliers
(PMT), hybrid detectors (HyD) system using 405 nm, 488 nm,
561 nm and 643 nm laser lines for excitation running the LASX
Leica software. For image quantification, 16-bit (1024 × 1024)
images were acquired under identical settings avoiding signal
saturation. Cell and nucleus area measurements were performed
by using ICY software (Quantitative Image Analysis Unit, Institut
Pasteur, http://icy.bioimageanalysis.org/). A pipeline was created
to completely automate image analysis by using the following
sequential plugins: active contours (cell segmentation), hk-means
(threshold detection), wavelet spot detector (spot detection) and
studio (colocalization). Total Fluorescence Integrated intensity
measurement was performed by using ImageJ (FIJI) (Schindelin
et al., 2012). The number of dots (lysosomes) was performed by
using the LOG detector algorithm available on the TrackMate
plugin (FIJI). For live cell imaging assays, HeLa cells were grown
in glass bottom culture dishes (MatTek Corporation, Ashland,
MA, United States) and labeled with the following Invitrogen
probes: ER-Tracker™ Blue-White DPX (E12353), LysoTracker™
Red DND-99 (L7528, Invitrogen) and Magic-red
(Immunochemistry Technologies, LLC) according to the
manufacturer’s protocol. Before image acquisition, culture
medium was replaced with phenol red-free DMEM
supplemented with HEPES (10 mM, pH 7.4), and images were
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acquired with the ×63 oil immersion objective (1.4 NA) of the
TCS SP8 laser-scanning confocal microscope, running the Leica
Application Suite LAS X software, coupled to a controlled
temperature chamber (UNO-temp controller, OKOLAB)
acquiring 16-bit images at 37°C (488 laser for excitation; HyD:
510–550 nm; 1,024 × 1,024 pixels; frame average 2). For volume
analysis, z-stack (0.3 μm z-interval, 1024 × 1024, 180 μm pixel
size) images were quantified using 3D analysis plugin by using
ICY software. Total fluorescence integrated intensity and dots
number were measured using ImageJ. High Resolution Analysis:
Colocalization analysis of ER/lysosomes contacts was performed
using Huygens software (SVI, Netherlands). Briefly, images were
acquired as described above but oversampling upon Nyquist
parameters (Nyquist Calculator). Images were then
deconvolved (CMLE blind deconvolution) and 3D rendered
with Surface Render plugin. Colocalization volumes were
quantified using the advanced particle analyzer and
colocalization plugin. Only colocalization patches bigger than
0,5 mm3 and smaller than 10 mm3 were counted.

RNA Isolation and RT-PCR Analysis
Total RNA extraction from HeLa cells, oligo-dT and MMLV
reverse transcriptase and quantitative reverse transcription PCR
of the cDNA template (RT-PCR) was carried out as previously
described (Bustamante et al., 2020). The specific primer pairs
used for CYCLOPHILIN-A, CYCA (NM_001300981.2) and
XBP1 (NM_001079539.2) were the following: CYCA-F TCG
AGTTGTCCACAGTCAGC, CYCA-R TTCATCTGCACTGCC
AAGAC, XBP1-F CGCTTGGGGATGGATGCCCTG and XBP1-
R CCTGCACCTGCTGCGGACT.

Cell Viability Assays
Exponentially growing cells stably expressing either FLAG-tagged
HERPUD1-WT or HERPUD1-S59Dwere trypsinized and seeded
at 20,000 cells per well in 96-well microplates and allowed to
attach for 6 h at 37°C and 5% CO2. Then, cells were incubated
with CDDP in serial dilutions from 1 mM to 1 µM in 2% FBS
medium and were incubated for 24 h at 37°C and 5% CO2. After
drug incubation, the IC50 was obtained using the
Sulforhodamine B (SRB) cell cytotoxicity assay (Blois et al.,
2011). Briefly, cells were fixed (10% trichloroacetic acid, 4°C,
1 h), water washed, dried and stained (0.4% SRB v/v in 0.1% acetic
acid, 1 h at RT), and then washed four times (1% acetic acid).
Dissolved SRB (10 mM Tris-base, pH 10) was quantified
(564 nm, Synergy HT BioTek reader). CDDP treatments were
done in quadruplicate in at least three independent experiments.
The IC50 values associated with the cytotoxic effects of CDDP
were calculated using GraphPad Prism software (version 8.2;
GraphPad Software, San Diego, CA, United States) using non-
linear regression model and dose-response equations
(log(inhibitor) vs. normalized response). After drug
incubation, apoptotic cells were analyzed with the commercial
kit Vybrant Apoptosis Pacific Blue-annexin V (cat#A35122,
Invitrogen) using the protocol provided by the
manufacturer. Briefly, cells stably expressing either FLAG-
tagged HERPUD1-WT or HERPUD1-S59D were treated
with 10 µM CDDP for 24 h. Cells were harvested and

centrifuged at 800 × g for 5 min at room temperature and
washed with cold PBS 1X. Cells were re-centrifuged, and the
pellet resuspended in 100 µl annexin-binding buffer. Then, 5 μl
of the annexin V conjugate was added to the cell suspension
and incubated for 15 min at room temperature. After, 400 µl of
annexin-binding buffer was added, gently mixed, and
maintained on ice for later analysis in a BD FACSCanto II
flow cytometer (Flow Cytometer Facility of Cell 4 Cell,
Santiago, Chile), with a previous incubation with 3 μl of 7-
Amino-Actinomycin D (7AAD) to exclude non-viable cells
(included in the kit).

Densitometric Quantification and Statistical
Analysis
The amount of immunoblot signal was estimated using Image J
software version 1.48v (Wayne Rasband, NIH, http://imagej.nih.
gov). For each condition, protein bands were quantified from at
least three independent experiments in order to ensure adequate
statistical power. Data analysis was performed using Microsoft
Excel 2013 for Windows (Redmond, WA, United States) or
GraphPad Prism 6. Results are represented in graphs depicting
the mean ± standard deviation. Statistical significance of data
comparisons from two groups comparisons was determined with
two-tailed unpaired Student’s t-test for parametric data. Values of
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) were regarded as
statistically significant and are indicated in the figures.

RESULTS

HERPUD1 is a Regulator of Autophagy
Under the Control of its UBL Domain
Previous reports have demonstrated a close interplay between
autophagy and the Ubiquitin-Proteasome System (Bustamante
et al., 2018), however, to date, few proteasomal substrates are
known as modulators of autophagy (Jia and Bonifacino, 2019;
Guarascio et al., 2020; Thayer et al., 2020). To search for potential
novel candidates that could be downregulated by the proteasome
in order to activate autophagy, we performed a SILAC-based
proteomic study to quantitatively determine the proteome of H4
neuroglioma cells under basal and induced autophagy by EBSS
starvation conditions. To eliminate all proteins downregulated
because of autophagy activation, we compared the proteome of
H4 cells where autophagy is inhibited by stable depletion of
ATG5 by shRNA-mediated knockdown (shATG5) respect to
control H4 cells expressing an shRNA against the luciferase
gene (shLuc), both cell lines previously characterized
(González et al., 2017; Tapia et al., 2019; Figure 1A). ATG5
protein is part of a complex with ATG12 and ATG16L that
controls an essential step in the autophagosome formation
(Walczak and Martens 2013). Silencing of ATG5 causes a
strong inhibition in LC3B-positive autophagosomes, a
phenotype also previously confirmed in our H4 cell lines
(González et al., 2017). Among all the proteins downregulated
by EBSS starvation, we found that in both H4 cell lines, shLuc
(Figure 1B) and shATG5 (Figure 1C) the most significantly
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downregulated protein was HERPUD1, a protein originally
identified as a homocysteine-inducible gene, that is also
upregulated by endoplasmic reticulum (ER) stress (Kokame
et al., 2000; Kokame et al., 2001). Importantly, HERPUD1 is
an ER-stress membrane protein whose levels under non-stressful
conditions are low due to proteasome degradation (Kokame et al.,
2000; Sai et al., 2003). Indeed, pharmacological inhibition of the
proteasome leads to a rapid increase of HERPUD1 levels (Sai
et al., 2003; Miura et al., 2010). In addition to HERPUD1, we
found several other proteins significantly down- or up-regulated
by EBSS treatment (Figure 1D). However, while some proteins
were down- or up-regulated by EBSS treatment in both, shLuc
and shATG5 stable expressing cell lines (Figure 1D, red dots),
many other hits were only down or up-regulated dependent on
ATG5 protein expression (Figure 1D, purple dots). The complete
list of proteins that responded significantly to EBSS treatment in
both cell lines is shown in Supplementary Figure S1. Here, we
focus on the characterization of HERPUD1, the hit with the
highest score of downregulation in both cell lines, working with
the hypothesis that its reduction by EBSS treatment could be
indicative of its role as negative regulator of autophagy activity.
Previous studies had shown that silencing HERPUD1 triggers the

autophagic flux (Quiroga et al., 2013). Therefore, in this study,
and considering that HERPUD1 levels are increased under ER
stress, we study the cellular consequences of HERPUD1 stability
on autophagy function. HERPUD1 is an integral membrane
protein with both termini facing the cytoplasm, with the
ubiquitin-like domain (UBL) located in its N-terminus
(Figure 2A; UBL: purple color, left side). Here, we cloned full-
length HERPUD1 into the pLVX-IRES-Puro vector with a FLAG-
tagged in its C-terminal end (Figure 2A; FLAG: green color)
designed as HERPUD1-WT. In addition, we cloned a FLAG-
tagged HERPUD1 version lacking the residues between Val10-
Cys86 designed as HERPUD1-ΔUBL (Figure 2A; right side), as
previously reported (Sai et al., 2003). Further, we generated
puromycin-resistant HeLa cells stably expressing either
HERPUD1-WT or HERPUD1-ΔUBL, considering that
previous characterization of HERPUD1 in HeLa cells was
done only by transient transfection (Sai et al., 2003). Western
blot analysis using either anti-HERPUD1and anti-FLAG
antibodies showed higher levels of HERPUD1-ΔUBL
compared to HERPUD1-WT (Figure 2B, lane 1 and lane 3).
In fact, we found a significant increase in the levels of HERPUD1-
ΔUBL (22.83 ± 2.90) compared to HERPUD1-WT (1.00 ± 0.49)

FIGURE 2 | Deletion of UBL domain increases HERPUD1 protein levels. (A) Schematic representation HERPUD1-WT (left image) and ΔUBL (right image) at the ER
membrane, both FLAG-tagged at the carboxyl-terminus (shown in green). The Ubiquitin-Like domain (UBL, amino acids 10–86) are represented in purple. (B)HeLa cells
stably expressing the WT or ΔUBL versions of HERPUD1 were not treated (lanes 1 and 3) or treated with 20 µM of MG132 for 4 h (lanes 2 and 4). Detergent-soluble
protein extracts were analyzed by western blot with anti-HERPUD1 and anti-FLAG antibodies. β-ACTIN was used as loading control. Image is representative of
three independent experiments. Position of molecular mass markers is indicated on the left. (C) Densitometry quantification of HERPUD1 protein levels from images as
those shown in B. Bars represent the mean ± standard deviation of western blot signal normalized with β-ACTIN. Statistical analysis was performed using two-tailed
unpaired Student’s t-test (n = 3 n.s not statistically significant, **p < 0.01 and ***p < 0.001.
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under basal conditions (Figure 2C). The UBL is a domain that
resembles ubiquitin in terms of their primary sequence and three-
dimensional structure, considered a general interaction motif
with the proteasome particularly with the 19S regulatory
particle of the 26S proteasome (Hartmann-Petersen and
Gordon, 2004a). Interestingly, it has been previously shown
that deletion of UBL in HERPUD1 abolishes its proteasomal
degradation (Sai et al., 2003). To confirm this, we treated the cells
during 4 h with 20 µM MG132, a potent blocker of the
proteasome activity (Tsubuki et al., 1996; Lee, 1998). As
expected, we observed that this treatment caused an increase
in the levels of overexpressed HERPUD1-WT (9.00 ± 2.90) in
comparisson to untreated cells (1.00 ± 0.49) (Figure 2B, lane 1
and 2) and Figure 2C. In contrast, HERPUD1-ΔUBL did not
respond to this treatment, observing similar levels in the absence
or presence of MG132 (22.83 ± 2.90 vs. 23.24 ± 4.89) (Figure 2B,
lane 3 and 4) and Figure 2C, confirming previous findings (Sai
et al., 2003). Together, these results confirmed HERPUD1-

ΔUBL is a tool to explore the effect of HERPUD1 stability
on autophagy.

Therefore, we investigated the effect of HERPUD1-ΔUBL
stable expression by analyzing the subcellular distribution of
the microtubule-associated protein 1 light chain 3B (LC3B), a
classical marker of autophagy, from here referred for simplicity as
LC3 (Tanida et al., 2008). Immunofluorescence analysis of LC3 in
cells expressing HERPUD1-WT and HERPUD1-ΔUBL showed
basal autophagy represented by LC3-positive membrane dots that
correspond to autophagosomes decorated with lipidated LC3
(LC3-II) observing no significant differences between cell lines
(Figures 3A,B). Because autophagosomes are constantly forming
autolysosomes through the fusion with acidic lysosomes for
degradation, we tested the effect of BafA1, a drug that raises
the lysosomal pH resulting in the perturbation of the autophagic
flux (González et al., 2017). Upon BafA1 treatment we found
HERPUD1-WT cells showed a significant increase in the
interated density of LC3 dots fluorescence (7046.4 ± 3223.2)

FIGURE 3 | The stabilization of HERPUD1 by its UBL deletion negatively regulates autophagy. (A) HeLa cells stably expressing HERPUD1-WT-FLAG or
HERPUD1-ΔUBL-FLAG were grown in glass coverslips and were treated or not with 100 nM BafA1 for 4 h. Cells were fixed and incubated with an antibody to LC3
followed by incubation with Alexa-488-conjugated donkey anti-rabbit IgG. Stained cells were examined by confocal microscopy. Scale bar 10 µm. (B) Quantification of
integrated density of LC3 puncta per cell under treatment with 100 nM BafA1 for 4 h. Bars represent the mean ± standard deviation (n = 30). (C) HeLa cells stably
expressing HERPUD1-WT-FLAG or HERPUD1-ΔUBL-FLAG untreated (lanes 1 and 2) or treated with 100 nM BafA1 for 4 h (lanes 3 and 4). Detergent-soluble protein
extracts were analyzed by western blot with a rabbit polyclonal antibody against LC3. Monoclonal antibody against β-ACTIN (clone BA3R) was used as loading control.
Position of molecular mass markers is indicated on the left. (D) Densitometry quantification of LC3-II protein levels normalized with β-ACTIN. Bars represent the mean ±
standard deviation. Statistical analysis was performed using two-tailed unpaired Student’s t-test (n = 3 *p < 0.05, **p < 0.01). (E)Densitometry quantification of LC3-I and
LC3-II protein levels from images as those shown in C. Relative levels are expressed as the ratio of LC3-II to LC3-I. Bars represent the mean ± standard deviation.
Statistical analysis was performed using two-tailed unpaired Student’s t-test (n = 3 **p < 0.01, ***p < 0.001).
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compared to HERPUD1-ΔUBL cells (2409.6 ± 1517.5)
(Figure 3A, left, BafA1) and Figure 3B. Next, by western blot
analysis we found that HERPUD1-ΔUBL caused a decrease in
LC3-II levels under basal conditions (0.56 ± 0.21), in comparison
to HERPUD1-WT expressing cells (1.00 ± 0.03) (Figure 3C, lane
1 and 2) and Figure 3D. Similar results in HERPUD1-ΔUBLwere

observed regarding the LC3-II/LC3-I ratio (0.47 ± 0.22), respect
to control cells (1.00 ± 0.05) (Figure 3E) and in the presence of
BafA1 treatment, observing in HERPUD1-ΔUBL cells a
significant decrease in LC3-II levels (1.63 ± 0.85), respect to
control cells (4.03 ± 1.61) (Figure 3C, lane 3 and 4) and
Figure 3D. Same differences were observed analyzing the

FIGURE 4 | HERPUD1-ΔUBL stabilization alters the ER morphology. (A) HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-ΔUBL-FLAG grown in
glass coverslips were fixed, permeabilized and triple-labeled with amousemonoclonal antibody against FLAG, with a rabbit monoclonal antibody against CALNEXIN and
with a rat monoclonal antibody against GRP94 followed by incubation with Alexa-488-conjugated donkey anti-rabbit IgG (green channel), Alexa-594-conjugated donkey
anti-rat IgG (red channel) and Alexa-647-conjugated donkey anti-mouse IgG (blue channel). Images were acquired using a TCS SP8 laser-scanning confocal
microscope. The fourth image on each row is the merge of blue, green and red channels; yellow indicates colocalization of the red and green channels, cyan indicates
colocalization of the green and blue channels, magenta indicates colocalization of the red and blue channels, and white indicates colocalization of all three channels.
Scale bar, 10 µm. (B) HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-ΔUBL-FLAG grown in glass coverslips were fixed, permeabilized and labeled
with rat monoclonal antibody against GRP94 followed by incubation with Alexa-594-conjugated donkey anti-rat IgG. Stained cells were examined by fluorescence
microscopy. Images were acquired using a TCS SP8 laser-scanning confocal microscope. Pseudocolor image was created using all the serial confocal sections of HeLa
HERPUD1-WT-FLAG (left image) and HERPUD1-ΔUBL-FLAG (right image). The scale on the right represents the maximum (red) to minimum (black) intensity measured
for GPR94. (C)Quantification of ER-volume obtained from serial image reconstruction (z-stack 0.3 µm z-interval, 1024 × 1024, 180 µm pixel size). Volume is depicted in
a scatter plot; open circles represent HeLa HERPUD1-WT-FLAG (n = 79) and open squares HERPUD1-ΔUBL-FLAG (n = 72). Statistical analysis was performed using
two-tailed unpaired Student’s t-test (***p < 0.001). (D) TEM micrograph shows HeLa HERPUD1-WT-FLAG or HERPUD1-ΔUBL-FLAG (left and center images,
respectively) at a lower magnification. Crystalloid ER structure is visible as a honeycomb in HERPUD1-ΔUBL (central image). An ER crystalloid structure from HERPUD1-
ΔUBL-FLAG at a higher magnification is shown (right image from dashed square in the center image, ER, endoplasmic reticulum; M, mitochondria). Scale bar 500 nm.
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LC3-II/LC3-I ratio in HERPUD1-ΔUBL cells treated with BafA1
(0.94 ± 0.37), respect control cells (3.01 ± 0.78) (Figure 3E).
Importantly, similar findings were obtained under induced
autophagy by EBSS starvation medium (Supplementary
Figure S2). We observed that the LC3-II/LC3-I ratio in
HERPUD1-ΔUBL cells in the presence of EBSS plus BafA1
was diminished with respect HERPUD1-WT cells
(Supplementary Figure S2A, line 5 and 6 and Supplementary
Figure S2B). Altogether, these findings strongly indicate that
increased stability of HERPUD1 plays a negative effect on
autophagy.

Increased Stability of HERPUD1 by the
Deletion of its UBL Domain Triggers
Remodeling of the ER in Stacked Tubular
Structures Resembling Crystalloid ER-Like
Structures in the Absence of ER Stress
Because previous reports have shown that defective autophagy
leads to ER expansion (Ou et al., 1995; Jung et al., 2008) we
investigated whether HERPUD1 stability could be linked with ER
remodeling. In contrast to previous studies where only transient
expression of HERPUD1-ΔUBL was characterized (Sai et al.,
2003), we investigated the subcellular distribution of FLAG-
tagged HERPUD1-ΔUBL but in stable HeLa cell lines, in
comparison with its wild type version. Immunofluorescence
analysis with an anti-FLAG antibody showed a stronger signal
for HERPUD1 in the absence of its UBL domain (Figure 4A,
FLAG, lower left panel) in comparison to HERPUD1-WT
(Figure 4A, upper left panel). A similar result was also
observed with an anti-HERPUD1 antibody (Supplementary
Figure S3A). To unveil if this phenotype was affecting the ER
in general, we analyzed by immunofluorescence the distribution of
endogenous ER proteins markers. First, we tested endogenous
CALNEXIN, an ER membrane resident protein that acts as a
molecular chaperone of glycoproteins (Ou et al., 1995) and GRP94,
an ER resident membrane protein of the Heat-Shock Protein
(HSP) 90 family (Marzec et al., 2012). We found profound
changes in the distribution of both proteins showing a similar
pattern to anti-FLAG in HERPUD1-ΔUBL cells (Figure 4A,
CALNEXIN and GRP94, lower panel), compared to
HERPUD1-WT where a characteristic ER pattern is observed.
Indeed, HERPUD1-ΔUBL shows a nice colocalization with
CALNEXIN and GRP94 (Figure 4A, lower merge). In addition,
and to exclude the possibility that this phenotype was specific to
CALNEXIN and GRP94, we analyzed the ER pattern using an ER-
tracker probe in live cells, observing clear changes in the
morphology of the ER respect to HERPUD1-WT
(Supplementary Figure S3B). We noticed that in comparison
to HERPUD1-ΔUBL, HERPUD1-WT did not show a high
colocalization with CALNEXIN and GRP94 (Figure 4A, upper
merge), which can be explained by the low levels of HERPUD1-
WT expression due to its constant degradation by the proteasome
under basal conditions (Sai et al., 2003). In this regard, localization
of HERPUD1 at the ER has been well documented (Kokame et al.,
2000). Whereas HERPUD1-ΔUBL did not cause an increase in the
levels of CALNEXIN and GRP94 measured by Western blot

analysis (Supplementary Figure S3C y 3D), we concluded that
HERPUD1 stability by the deletion of its UBL domain causes an
ER-like expansion phenomena that does not involve the increase in
the levels of CALNEXIN and GRP94. HERPUD1 is known to be
upregulated under ER stress, a condition reported to cause ER
membrane expansion and remodeling to alleviate this condition
(Schuck et al., 2009). Therefore, we studied whether HERPUD1-
ΔUBL could be causing ER proliferation. To assess this, we
performed immunofluorescence analysis with an anti-GRP94
antibody. Interestingly, we observed that HERPUD1-ΔUBL
expressing cells present a large and dense ER network extending
throughout the entire cytoplasm including the periphery of the cell,
compared to the less extended ERnetwork observed inHERPUD1-
WT cells (Figure 4B, left and right panel). To gain a more
comprehensive understanding of the ER differences between
HERPUD1-WT and HERPUD1-ΔUBL expressing cells, we
measured the ER volume using 3D images at high
magnification taken with a z-interval of 0.3 µm followed by a
z-stack maximum intensity projection. For visualization, we
analyzed the distribution of GRP94 in the whole cell using a
heat map gradient ranging from non-intensity (black color) to
the higher intensity (red color) (Figure 4B, left and right panel).
This analysis confirmed HERPUD1-ΔUBL increases the volume of
the ER and the ER remodeling, compared to the expression of
HERPUD1-WT. Indeed, quantitative analysis showed a significant
increase in the ER volume with the expression of HERPUD1-
ΔUBL (2361 ± 967), compared to HERPUD1-WT (1700 ± 689)
(Figure 4C). The ER morphological changes observed by confocal
microscopy prompted us to perform ultra-structural analysis by
transmission electron microscopy (TEM). While cells expressing
HERPUD1-WT showed the common ER cytoplasmic structures
(Figure 4D left panel [ER]), unexpectedly HERPUD1-ΔUBL
showed a high number of stacked tubular structures that
resemble tubular ER structures that were oriented in a
hexagonal spatial distribution (Figure 4D center panel [ER]).
Others have referred to these structures as energetically stable
structures formed by a remarkable proliferation of smooth ER,
resembling crystalloid structures of ER (Chin et al., 1982; Anderson
et al., 1983; Pathak et al., 1986; Borgese et al., 2006), which in
appearance can be compared with “honeycomb like-structures”
(Figure 4D center panel [ER]). Additionally, a higher
magnification (Figure 4D, right panel), strongly indicates these
structures resemble crystalloid structures with the absence of
attached ribosome structures.

To gain insights whether the ER proliferation triggered by
the expression of HERPUD1-ΔUBL was the result of an ER
stress response, we studied X-box binding protein 1 (XBP1) as
a reporter of ER stress and the unfolded protein response
(UPR). First, we analyzed by RT-PCR the XBP1 mRNA
processing, from the unspliced inactive XBP1 mRNA
(uXBP1) form to the spliced active XBP1 mRNA (sXBP1)
form (Figure 5A), which is considered a hallmark of the UPR
response (Yoshida et al., 2001). RT-PCR analysis of mRNA
from HeLa WT untreated cells showed a single band as
expected (Figure 5A, lane 1). The same analysis including
tunicamycin (Tun) (inhibitor of N-linked glycosylation
(Heifetz et al., 1979) and thapsigargin (Tg) (blocker of ER
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Ca2+ import (Thastrup et al., 1990)) as positive inducers of
ER stress, produced the appearance of two bands in HeLa-WT
cells, indicating the sXBP1 form in response to ER stress
(Figure 5A, lane 2 and 3). In contrast, a stable expression
of either HERPUD1-WT or HERPUD1-ΔUBL showed no
detection of sXBP1, observing only the expression of the
uXBP1 form (Figure 5A, lane 4 and 5), similar to
untreated control HeLa WT untreated cells (Figure 5A,
lane 1). Analysis of PCR bands relative to CYCLOPHILIN
A (CYC-A) as a housekeeping control showed no difference
between cells expressing either HERPUD1-WT or
HERPUD1-ΔUBL proteins (Figure 5A, lane 4 and 5).
Similar findings were observed by western blot analysis
(Figure 5B). sXBP1 is rapidly translated to a highly active
transcription factor, known as XBP1, responsible for the
upregulation of a variety of UPR genes (Yoshida et al.,
2001). To examine the significance of the UBL domain of
HERPUD1 in the response to ER stress induction, HERPUD1-
WT cells and HERPUD1-ΔUBL cells were treated with
2 μM Tg for 2, 4, and 6 h and we performed western blot

analysis for XBP1 detection. We observed XBP1 protein was
almost undetectable in both cell lines in the absence of a
stressor (Figure 5B, lane 1 and 5). In contrast, we observed a
robust induction of XBP1 in both cell lines upon treatment for
2, 4, and 6 h with 2 μM Tg, observing similar XBP1 expression
levels after 6 h of treatment in both cell lines (Figure 5B, lane
4 and 8). Quantitative analysis confirmed this conclusion,
observing no significant differences between HERPUD1 WT
(58.99 ± 9.18) and HERPUD1-ΔUBL (59.59 ± 17.49)
expressing cells (Figure 5C). In addition to XBP1, we
tested by western blot analysis the ER resident
transmembrane protein PERK, a kinase that undergoes
hyperphosphorylation in response to ER stress shown as a
shift in its mobility during SDS-polyacrylamide gel
electrophoresis (Bertolotti et al., 2000). This kinase
mediates the attenuation of the global translation by the
phosphorylation of eIF2ɑ (Bertolotti et al., 2000; Harding
and Zhang, 2000). In contrast to its differential
electrophoretic migration with Tun and Tg
(Supplementary Figure S4, lane 2 and 3), no changes in

FIGURE 5 | The stability of HERPUD1 by the deletion of its UBL domain does not trigger endoplasmic reticulum stress. (A) Splicing of XBP1 was analyzed by RT-
PCR. Total RNAs were obtained from HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-ΔUBL-FLAG, additionally, total RNA was obtained from HeLa
WT cells untreated or treated with 2 µM Thapsigargin (Tg) or 5 μg/ml Tunicamycin (Tun) for 4 h as a control of XBP1 splicing. Then, cDNA was synthesized and mRNA
expression of XBP1was analyzed using specific primers. (uXBP1: unspliced form, sXBP1: spliced form). CYCLOPHILIN-A (CYC-A) was used as an internal control.
(B) HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-ΔUBL-FLAG were treated with 2 µM Thapsigargin (Tg) for different timepoints (0, 2, 4, and 6 h).
Detergent-soluble protein extracts were analyzed by western blot with a monoclonal antibody against XBP1. Monoclonal antibody against β-ACTIN was used as loading
control. Position of molecular mass markers is indicated on the left. (C) Densitometry quantification of XBP1 protein levels from images as those shown in B. Bars
represent the mean ± standard deviation. Statistical analysis was performed using two-tailed unpaired Student’s t-test (n = 3 n.s not statistically significant, **p < 0.01,
***p < 0.001).
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PERK migration were observed in HERPUD1-WT or
HERPUD1-ΔUBL cells (Supplementary Figure S4, lane 4
and 5). Analysis of the activating transcription factor 4
(ATF4), a protein highly expressed upon UPR response

(Harding and Novoa, 2000) showed again no changes in
ATF4 levels in either cell line (Supplementary Figure S4,
lane 4 and 5). In contrast, a robust detection of ATF4 was
found upon the addition of Tun and Tg (Supplementary

FIGURE 6 | Expression of HERPUD1-ΔUBL increases lysosomal number and function. (A) HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-
ΔUBL-FLAG grown in glass coverslips were fixed, permeabilized and labeled with a mouse monoclonal antibody against LAMP1 followed by incubation with Alexa-594-
conjugated donkey anti-mouse IgG, and DAPI for nuclei staining. Stained cells were examined by fluorescence microscopy. Images were acquired using a TCS
SP8 laser-scanning confocal microscope. Scale bar 10 µm. (B) Quantification of LAMP1 positive structures per cell. In the scatter plot each circle and square
represents the average of positive LAMP1 dots per cell from a frame of HeLa HERPUD1-WT (n = 559) or HERPUD1-ΔUBL (n = 700) respectively. The quantified cells
were from three independent experiments. (C,E) HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-ΔUBL-FLAG were grown in glass bottom culture
dishes and labeled with (C) LysoTracker™ Red DND-99 or (E) Magic Red

®
. For live cell imaging analysis, culture medium was replaced with phenol red-free DMEM

supplemented with HEPES (10 mM, pH 7.4) and images were acquired with TCS SP8 laser-scanning confocal microscope at 37°C. Scale bar 10 µm. (D)Quantification
of LysoTracker™ dots per cell. Open circles and open squares represent the average of fluorescence signals for each cell of HeLa HERPUD1-WT-FLAG (n = 139) or
HERPUD1-ΔUBL-FLAG (n = 138) respectively. (F) Quantification of Magic Red

®
positive structures. In the scatter plot each circle and square represents the average of

positive dots for Magic Red per cell from a frame of HeLa HERPUD1-WT-FLAG (n = 1,279) or HERPUD1-ΔUBL-FLAG (n = 984) respectively. The quantified cells were
from three independent experiments. Statistical analysis was performed using two-tailed unpaired Student’s t-test (***p < 0.001).
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Figure S4, lane 2 and 3). Altogether, our findings strongly
indicate that ER remodeling triggered by HERPUD1 stability
is not the consequence of ER stress.

Increased HERPUD1 Stability by the
Deletion of its UBL Domain Leads to a
Remarkable Increase in Lysosomal Number
and Function
ER proliferation that excludes ribosomes is able to regulate ER
contacts with lysosomes (Friedman et al., 2013; Lee and Craig,
2020). Lysosomes are an important catabolic organelle of
eukaryotic cells, containing a diverse repertoire of acidic
hydrolases (luminal pH of 4.5–5.0) that can digest
macromolecules such as sugars, lipids and proteins and even
entire organelles (Xu and Ren, 2015). We asked whether
expanded ER by increased HERPUD1 stability could have an
impact on endolysosomal organelles. To visualize these
compartments, HERPUD1-WT and HERPUD1-ΔUBL
expressing HeLa cells were stained with an antibody against
the endogenous lysosomal-associated membrane protein 1
(LAMP1), a membrane protein found on late endosomes and
lysosomes (Griffiths et al., 1988). Unexpectedly, we observed a
robust increase in LAMP1 positive structures located around the
entire cytoplasm (Figure 6A). In agreement with this finding,
quantification analysis showed a significant increase in the
number of LAMP1 positive structures in HERPUD1-ΔUBL
(88.72 ± 16.77) respect to control cells (69.03 ± 13.79)
(Figure 6B). To determine if the increase in LAMP1
structures corresponded to lysosome organelles, we performed
co-staining of LAMP1 with CATHEPSIN-D (CAT-D), a luminal
hydrolytic lysosomal enzyme (Benes et al., 2008), observing
several LAMP1 positive structures positive to CAT-D
(Supplementary Figure S5A, lower merge). In addition, we
noticed a significant increase in the integrated fluorescence
intensity of CAT-D in HERPUD1-ΔUBL (1.47 ± 0.88),
compared to HERPUD1-WT expressing cells (1.00 ± 0.20)
(Supplementary Figure S5B). Considering this increase in
CAT-D fluorescence we evaluated if HERPUD1-ΔUBL also
impacts lysosomal activity, as assessed by measuring lysosomal
acidity and activity in live cells. We first measured if HERPUD1
stability affects the range of lysosomal pH, using the pH-sensitive
lysosomal dye LysoTracker Red, which accumulates and emits
red fluorescence in acidic compartments with pH < 6.5 (De Duve
and Christian, 1974; Chou et al., 2001). Then, we measured
CATHEPSIN-B activity using the Magic Red assay (Boonacker
et al., 2003). As shown in Figure 6C, expression of HERPUD1-
ΔUBL causes a significant increase in the number of LysoTracker
positive structures (211.95 ± 78.90), compared to control cells
(117.85 ± 48.97) (Figures 6C,D). Similarly, we found an increase
in the number of structures positive to Magic Red fluorescence
(Figure 6E). This was confirmed by measuring the integrated
fluorescence intensity, which revealed a significant increase of this
parameter in HERPUD1-ΔUBL cells (1.56 ± 0.43), compared to
control cells (1.00 ± 0.19) (Figure 6F). Altogether, these findings
show that ER remodeling triggered by HERPUD1 increased
stability is a potent strategy to promote lysosomal function.

The Phosphomimetic Mutant S59D in the
UBL Domain Promotes HERPUD1 Stability
Mimicking the Effects of UBL Deletion on
the ER and Autophagy
Further, we searched for a mechanism that could mimic the
phenotype observed by the deletion of UBL on HERPUD1. As
shown by the analysis with PyMOL molecular graphics system
(Supplementary Figure S6A), the UBL domain of HERPUD1
(PDB 1WGD; green color) resembles UBIQUITIN (PDB 2MSG;
purple color) in terms of their three-dimensional structure.
UBIQUITIN as well as UBL domains are known targets of
phosphorylation under cellular stress (Kondapalli et al., 2012;
Swaney et al., 2015; Sauvé et al., 2018). In fact, oxidative stress
promotes phosphorylation of UBIQUITIN at Ser65 causing the
accumulation of ubiquitylated proteins due to a reduction in
global protein turnover rates (Koyano et al., 2014; Swaney et al.,
2015). In the same line, it is known that theUBL domain on PARKIN
is phosphorylated by PINK1 and is responsible for the activation of its
E3 ubiquitin-ligase activity (Sauvé et al., 2018), both essential players
of mitochondria quality control by mitophagy (Jin and Youle 2012).
Thereby, we searched for Ser residues as possible candidates of
phosphorylation in the UBL domain of HERPUD1 using the
KinasePhos2.0 web tool. Five residues were predicted in position
Ser16, Ser27, Ser33, Ser59, and Ser90 (Supplementary Figure S6B,
Ser residues in red color). For all these five Ser residues, we generated
phosphoinert (substitutions to alanine) and phosphomimetic
(substitutions to aspartic acid) mutant versions. Stably transfected
HeLa cells were generated for each mutant. Among all mutations
tested, the substitution S59D, but not the S59A, showed the strongest
increase in HERPUD1 signal, as is shown by immunofluorescence
with an anti-FLAG antibody (Figures 7A,B). Importantly, we found
that the phosphomimetic S59D mutant presents an ER pattern very
similar to HERPUD1-ΔUBL cells, confirmed by co-staining with
GRP94 (Figure 7A, right panel merge). Moreover, to evaluate the
specificity of the ER remodeling phenotype in HERPUD1-ΔUBL and
HERPUD1-S59D expressing cells, we performed silencing of
HERPUD1 with a specific siRNA. In both cell lines we observed a
robust rescue of the ER pattern positive to CALNEXIN, compared to
the siControl (Supplementary Figure S7A). Silencing of HERPUD1-
ΔUBL and HERPUD1-S59D with the siRNA was confirmed by
western blot (Supplementary Figure S7B). Also, no changes with the
phosphoinert S59A mutant were observed, showing a similar
phenotype than HERPUD1-WT (Figures 7A,B). Thus, further
characterization included the comparison between HERPUD1-WT
andHERPUD1-S59D. In this regard, under basal conditions western
blot analysis using anti-HERPUD1 and anti-FLAG antibodies
showed higher levels of HERPUD1-S59D (40.09 ± 5.31)
compared to either HERPUD1-WT (1.00 ± 0.53) or HERPUD1-
S59A (2.88 ± 1.76) (Figure 7C, lane 5 compared to lane 1 and 3 and
Figure 7D). We also measured the levels of these versions upon
treatment for 4 h with 20mM MG132, which is a proteasomal
inhibitor, known to abolish HERPUD1 proteasomal degradation
(Yan et al., 2014). As expected, MG132 treatment caused a significant
increase in HERPUD1-WT (16.55 ± 7.13) (Figure 7C, lane 1
compared to lane 2 and Figure 7D). A similar result was
obtained with HERPUD1-S59A (20.36 ± 9.65) (Figure 7C, lane 3
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FIGURE 7 | Stabilization of HERPUD1 by S59D mutation alters the ER morphology and decreases autophagy. (A) HeLa cells stably expressing HERPUD1-WT-
FLAG, HERPUD1-S59A-FLAG or HERPUD1-S59D-FLAG were grown in glass coverslips, fixed, permeabilized, and double-labeled with mouse monoclonal antibody
against FLAG and with a rat monoclonal antibody against GRP94 followed by incubation with Alexa-488-conjugated donkey anti-rabbit IgG (green channel) and Alexa-
594-conjugated donkey anti-rat IgG (red channel). Images were acquired using a TCS SP8 laser-scanning confocal microscope. The third image on each column is
the merge of green and red channels; yellow indicates colocalization of red and green channels. Scale bar: 10 µm. (B) Quantification of fluorescence FLAG signal from
indicated cells. (C) HeLa cells stably expressing HERPUD1-WT-FLAG, HERPUD1-S59A-FLAG or HERPUD1-S59D-FLAG were treated or not with 10 µM of MG132 for
4 h. Detergent-soluble protein extracts were analyzed by western blot with anti-HERPUD1 and anti-FLAG antibodies. β-ACTIN was used as a loading control. Position of
molecular mass markers is indicated on the left. (D) Densitometry quantification of HERPUD1 western blot signal from images as those shown in C. Bars represent the
mean ± standard deviation. (E)HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-S59D-FLAG untreated (lanes 1 and 3) or treated with 100 nM BafA1 for
4 h (lanes 2 and 4). Detergent-soluble protein extracts were analyzed by western blot with a rabbit polyclonal antibody to LC3B. Monoclonal antibody against β-ACTIN
was used as a loading control. Position of molecular mass markers is indicated on the left. (F) Densitometry quantification of LC3-I and LC3-II protein levels from images
as those shown in E. Relative levels are expressed as the ratio of LC3-II to LC3-I from images as those shown in E. Bars represent the mean ± standard deviation.
Statistical analysis was performed using two-tailed unpaired Student’s t-test (n = 3 n.s. not statistically significant, *p < 0.05, **p < 0.01, ***p < 0.001).
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compared to lane 4 and Figure 7D). In contrast, we observed non-
significant differences in the levels of HERPUD1-S59D in the absence
(40.09 ± 5.31) or presence ofMG132 (47.17 ± 11.74) (Figure 7C, lane
5 and 6 and Figure 7D). Further, and based on the negative impact of
HERPUD1 stability on autophagy by the deletion of its UBL domain,
we next investigated if the stability of HERPUD1-S59D could have a
similar outcome. Biochemically, we found thatHERPUD1-S59D cells
have a significant reduction in the LC3-II/LC3-I ratio (0.66 ± 0.02), in
comparison to HERPUD1-WT (1.00 ± 0.18) (Figures 7E,F). This
result was corroborated by immunofluorescence analysis of LC3 in
the absence or presence of BafA1 showing thatHERPUD1-S59D cells
present a lesser number of autophagosomes, compared to
HERPUD1-WT (Supplementary Figure S8). Moreover, in
agreement with previous reports indicating that a reduction in
autophagy enhances ER expansion and cell size (Khaminets et al.,
2015;Miettinen andMikael, 2015), we noticed that HERPUD1-S59D
cells were significantly larger in size (2.52 ± 0.98), compared to
HERPUD1-WT (1.00 ± 0.4) and HERPUD1-S59A cells (0.88 ± 0.29)
(Figure 7A and Supplementary Figure S9A). Importantly, cell size
quantification showed HERPUD1-ΔUBL were also larger in size
(1.36 ± 0.64) than HERPUD1-WT (1.00 ± 0.4), but smaller than
HERPUD1-S59D (2.52 ± 0.98) (Supplementary Figure S9A). In
addition, because nuclei size remains proportional to the cell size in a

wide range of genetic backgrounds and growth conditions (Huber
and Gerace, 2007), we studied the nuclei size in all cell lines.
Surprisingly, nuclei size in HERPUD1-S59D cells were
significantly larger (1.74 ± 0.72) in comparison to all tested cell
lines; HERPUD1-WT (1.00 ± 0.49), HERPUD1-S59A (1.12 ± 0.47)
and HERPUD1-ΔUBL (1.11 ± 0.52) (Supplementary Figure S9B).
Altogether, our findings support the idea that HERPUD1 increased
stability might play an important function in cellular plasticity by
commanding a program that controls ER remodeling with impact in
cell and nuclei size. The results with the phosphomimetic version of
HERPUD1 opens the alternative of a program activated under the
control of phosphorylation.

The Phosphomimetic HERPUD1-S59D
Mutant Promotes ER-Lysosomal Network
With Impact in Stress Cell Survival
Because of the increase in the number of functional lysosomes
under the expression of HERPUD1-ΔUBL, we investigated if
HERPUD1-S59D expressing cells could have a similar output.
First, we performed immunofluorescence of LAMP1, observing a
significant increase in the number of LAMP1 positive structures
in HERPUD1-S59D cells (135.28 ± 21.32), in comparison to

FIGURE 8 | Stabilization of HERPUD1 causes expansion of the ER-lysosomal network and an increase in size of ER-lysosomal contact sites. (A) HeLa cells stably
expressing HERPUD1-WT-FLAG, HERPUD1-ΔUBL-FLAG or HERPUD1-S59D-FLAG were grown in glass coverslips and then fixed, permeabilized and double-labeled
with a rabbit polyclonal antibody against STARD3 and a mouse monoclonal antibody against VAP-A followed by incubation with Alexa-488-conjugated donkey anti-
rabbit IgG (green channel), Alexa-594-conjugated donkey anti-mouse IgG (red channel) and DAPI for nuclei staining. All images were acquired using a Leica TCS
SP8 laser-scanning confocal microscope in z-series at nyquist rate oversampling parameters. Left panel shows 3D surface rendered images of STARD3 (green channel)
and VAP-A (red channel) after deconvolution and chromatic aberration correction with Huygens software. Scale bar, 10 µm. Right panel shows a higher magnification of
the 3D reconstructions. Box 5 × 5 µm. (B) Representative scheme of the interaction between the STARD3/VAP-A proteins. (C)Quantification of colocalization STARD3/
VAP-A patches per cell. Open circle, square and rhombus represent the number of >0.5 µm3 in HeLa HERPUD1-WT-FLAG (n = 15), HERPUD1-ΔUBL-FLAG (n = 15)
and HERPUD1-S59D-FLAG (n = 15), respectively.
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HERPUD1-WT (69.03 ± 13.79) and HERPUD1-S59A (58.42 ±
14.55) (Supplementary Figures S10A,B). Next, analysis with
LysoTracker in HERPUD1-S59D cells (183.35 ± 60.05), in
comparison to HERPUD1-WT (118.18 ± 51.00) and
HERPUD1-S59A (86.13 ± 41.46) confirmed HERPUD1-S59D
cells have a significant increase in the number of lysosomes per
cell (Supplementary Figures S10C,D). Similar results were
obtained with Magic Red where the quantification showed an
increase of almost twice the integrated intensity of Magic Red in

HERPUD1-S59D cells (2.25 ± 0.32) in comparison with
HERPUD1-WT (1.00 ± 0.15) and HERPUD1-S59A (1.02 ±
0.24) (Supplementary Figures S10E,F). The integrated
intensity analysis demonstrated the increase in lysosomal
function is not a result of larger cell size suggesting the
activation of an alternative mechanism that needs to be
further investigated.

One important aspect of cellular plasticity is the establishment
of a network between the ER and the lysosomes that helps in the

FIGURE 9 | Stabilization of HERPUD1 by S59D mutation decreases cell death mediated by CDDP. (A) HeLa cells stably expressing HERPUD1-WT-FLAG or
HERPUD1-S59D-FLAGwere treated with different concentrations of cisplatin (CDDP) and then a SRB assay was performed. The absorbance values of each point were
normalized to control cells (without treatment) and transformed to a percentage. Experiments were performed at least three times, and the results are expressed as
mean ± standard deviation. Statistical analysis was performed using two-tailed unpaired Student’s t-test (n = 4 n.s. not statistically significant and *p < 0.05) (B)
HeLa cells stably expressing HERPUD1-WT-FLAG or HERPUD1-S59D-FLAG were treated or not with CDDP 10 µM for 24 h. Afterwards, cells were collected by
trypsinization and stained with Annexin V-Pacific Blue and 7AAD. Scatter plots representing the different quadrants are labeled as Q1 (necrotic cells), Q2 (viable cells), Q3
(dead cells) and Q4 (apoptotic cells). The graph shows the percentage of cells present in each quadrant.
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constant adaptation to particular cellular needs. In this regard, it
is known that the ER forms membrane-contact sites (MCSs) with
lysosomes (Valm and Alex, 2017), acting as a potent
spatiotemporal organizer of endolysosomal biology (Neefjes
et al., 2017). We hypothesized that ER-lysosomal network
remodeling should be accompanied by the appearance of
MCSs between these two organelles. Therefore, we studied in
HERPUD1-WT, HERPUD1-ΔUBL and HERPUD1-S59D cells
the spatial distribution of the STARD3 endo-lysosomal
cholesterol-binding protein (Alpy et al., 2001) with VAP-A, an
ERmembrane protein (Skehel et al., 2000), known to form a novel
molecular tether between endo-lysosomes and the ER referred as
MCSs (Alpy et al., 2013), in a high-resolution scale. By three-
dimensional (3D) reconstruction imaging we observed that
expression of HERPUD1-ΔUBL and HERPUD1-S59D caused
larger patches of colocalization between STARD3/VAP-A
(Figure 8A, left panel white boxes). A higher zoom 3D
magnification of these white boxes is indicated in Figure 8A,
right panel. A representative scheme of the interaction between
the STARD3/VAP-A proteins is indicated in Figure 8B.
Quantification analysis confirmed a significant increase in the
number of colocalization patches >0.5 µm3 per cell in
HERPUD1-ΔUBL and HERPUD1-S59D expressing cells,
compared to HERPUD1-WT (Figure 8C). Altogether, our
findings strongly suggest that HERPUD1 stability at the ER
compartment not only promotes the remodeling of the
lysosomal network but also the size area of MCSs between
these two organelles.

ER expansion has been known for decades as a trigger for
crystalloid ER (Chin et al., 1982) and ER whorls (Feldman et al.,
1981; Schuck et al., 2009), however only recent studies have
proposed this phenomenon could be part of a program necessary
to overcome ER stress with impact in stress cell survival (Schuck
et al., 2009; Xu et al., 2021). Moreover, taking in consideration
that HERPUD1 stability triggers ER expansion, ER-lysosomal
network and MCSs between these two organelles, a protein
known to be upregulated under ER stress, we studied the
effect of HERPUD1 stability in the cell viability of HeLa cells
in response to cisplatin (CDDP). CDDP is the most frequently
used chemotherapeutic agent for the treatment of some types of
cancers, including cervical cancer in accordance with the model
of HeLa cells (Dasari and Bernard Tchounwou, 2014). In
addition, it is known that alleviation of ER stress attenuates
CDDP-induced apoptosis (Wu et al., 2018). Thus, we
investigated the resistance to drug-induced cytotoxicity of
HERPUD-WT and HERPUD1-S59D cells in response to
varying doses of CDDP for 24 h with the Sulforhodamine B
(SRB) assay. We found a significant increase in the resistance of
HERPUD1-S59D cells in comparison with HERPUD1-WT at 2,
4, 8, and 16 μM of CDDP (Figure 9A). We corroborated this
result measuring apoptosis of these cells in the absence or
presence of 10 μM CDDP for 24 h by flow cytometry using
Annexin-V staining method. In agreement with the SRB assay,
we observed HERPUD1-S59D cells showed less apoptosis
compared to HERPUD1-WT cells in response to CDDP
treatment (Figure 9B). These results strongly indicate
HERPUD1 stability helps to overcome cisplatin-induced

cytotoxicity. In this regard, we propose that this differential
response could be mediated by the expansion of the ER/
lysosomal network, an aspect that should be investigated in
other cancer cell models.

DISCUSSION

Post-translational events allow cells to respond swiftly to stress
conditions with consequences in their proteome composition.
Autophagy and the UPS are two closely related pathways that
adjust their functions in response to cellular demands in order to
maintain cellular homeostasis (Korolchuk et al., 2010). During
starvation overall protein degradation rises by activation of both
autophagy and the UPS (Mizushima et al., 2011; VerPlank et al.,
2019). Indeed, before up-regulation of autophagy, efficient
synthesis of new proteins is sustained by degradation of
preexisting proteins by the proteasome, which shows that the
proteasome also plays a crucial role in cell survival after
nutritional stress (Vabulas and Ulrich Hartl, 2005). In
agreement with this, it is known that the proteasome activity
transits from a latent to an activated state (Asano et al., 2015;
Collins and Goldberg, 2020). However, if UPS activation upon
starvationmediates the degradation of specific proteins that could
slow-down autophagy is unknown. Downregulation of
HERPUD1 upon nutrient starvation in ATG5-depleted cells
opens that alternative. In this regard, it has been previously
proposed that HERPUD1 depletion up-regulates autophagy
(Quiroga et al., 2013) and the degradation of cytosolic protein
aggregates (Miura et al., 2010). These findings support the idea
that basal levels of HERPUD1 could act as a break in the
activation of basal autophagy.

Interestingly, another protein that was also robustly
downregulated upon starvation in Atg5 KD cells was p62/
SQSTM1. Been an autophagy receptor this protein could be
also participating in endosomal microautophagy (Mejlvang
et al., 2018), pathway that could be more activate with the
lack of Atg5. Atg5−/− mice remain healthy until the perinatal
period, therefore it is accepted that cells activate alternative
mechanisms to compensate the lack of Atg5 (Yoshii et al.,
2016). In agreement with this hypothesis, p62/SQSTM1 KO
mice show an increase in the ER content in the liver (Yang
et al., 2016), Further studies will help to clarify unconventional
roles of p62/SQSTM1.

Under ER stress, HERPUD1 is upregulated even faster than
ER chaperones (Kokame et al., 2000; Bergmann et al., 2018),
where it participates in Endoplasmic Reticulum-Associated
Degradation (ERAD) (Schulze et al., 2005). HERPUD1
facilitates the assembly of the HRD1 complex, also known as
the retrotranslocon, key in the retrotranslocation of unfolded
proteins from the ER to the cytosol for proteasomal degradation
upon demand (Leitman et al., 2014; Schulz et al., 2017). However,
the function of HERPUD1 in the absence of ER stress is less
understood. Here, we propose HERPUD1 acts as a negative
regulator of autophagy controlled by its proteasome dependent
stability, a mechanism that could operate in the absence of ER
stress under the control of phosphorylation of its UBL domain.
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One interesting aspect of HERPUD1 is the UBL domain
present in its N-terminus region. In general, UBL-containing
proteins share the ability to interact with the 19S regulatory
particle of the 26S proteasome promoting its activation
(Hartmann-Petersen and Gordon, 2004b; Yu and Matouschek,
2017; Collins and Goldberg, 2020). The UBL domain itself can
stimulate multiple proteasome activities in a similar fashion to
ubiquitin chains (Kim et al., 2018; Collins and Goldberg, 2020).
However, unlike ubiquitin and its homologous (e.g., SUMO and
Nedd8), UBL-containing proteins cannot be conjugated to other
proteins. The human genome encodes over 60 UBL-containing
proteins, where 15 of them have been studied in their ability to
bind and regulate proteasome activity (Collins and Goldberg,
2020). HERPUD1 is one member of this group, however its role
as a positive modulator of the proteasomal activity remains
uncharacterized. Moreover, because UBL-containing proteins
can stimulate proteasome activity (Kim et al., 2018; Collins
and Goldberg, 2020), it would be interesting to explore the
effect of HERPUD1-ΔUBL and HERPUD1-S59D on the
activity of the proteasome under normal and starvation
conditions.

In addition, recent findings show UBL-containing proteins
can also play a regulatory role in autophagy, such as USP14 (Kim
et al., 2018), NUB1 (Guarascio et al., 2020), Elongin B (Antonioli
et al., 2016), UHRF1 (Shi et al., 2020), OASL (Toledo Pinto et al.,
2018), BAT3 (Sebti et al., 2014) and UBQLN (Rothenberg et al.,
2010; Şentürk et al., 2019; Yang and Klionsky 2020). Our findings
show that the stabilization of HERPUD1 by removing its UBL
domain causes a reduction in LC3-II/LC3-I ratio, which positions
HERPUD1 as a member of this growing list of UBL-containing
proteins that function as regulators of autophagy. However, how
HERPUD1 stability mediates the reduction in LC3-II/LC3-I ratio
needs further studies. One aspect to be explored is the finding that
HERPUD1 interacts with UBQLN (Kim et al., 2008). UBQLN is a
cytosolic protein, that in addition to HERPUD1, interacts with
LC3 and ubiquitinated cargos in autophagosomes (Rothenberg
et al., 2010). Furthermore, it is known that silencing UBQLN
leads to a reduction in the lipidation of LC3-I to LC3-II that
correlates with a diminished number of autophagosomes
(Rothenberg et al., 2010). Because UBQLN binds HERPUD1
independently of its UBL domain (Kim et al., 2008), it is possible
that an increase in HERPUD1 stability at the ER could mediate
the sequestration of UBQLN in this compartment affecting its
function in other membranes such as autophagosomes
(Rothenberg et al., 2010). In this regard, it has been previously
proposed that recruitment of UBQLN to the ER by HERPUD1
could bring the proteasome and the ubiquitinated substrates to
specific microdomains of the ER, which could hypothetically be
the step that promotes the ERAD pathway (Kim et al., 2008).
Because our results show that HERPUD1 stability maintain the
ER-lysosomal network, additional work is needed to determine if
HERPUD1:UBQLN interaction could play a role in the delivery
of substrates to the ER-to-lysosomes-associated degradation
(ERLAD) (Fregno et al., 2018; Fregno and Molinari 2019),
considering the increase in the lysosomal degradation
function. As HERPUD1-S59D mimics the effect on HERPUD1

stability we propose that recruitment of UBQLN at the ER is
controlled by phosphorylation of HERPUD1.

Ubiquitin and UBL domains are targets of phosphorylation
(Kondapalli et al., 2012; Koyano et al., 2014; Wauer et al., 2015).
The best-known example is the phosphorylation of the UBL
domain of the ubiquitin ligase PARKIN by the Ser/Thr kinase
PINK1 on Ser65 (Kondapalli et al., 2012; Koyano et al., 2014).
This post-translational modification orchestrates its enzymatic
E3 ligase activity (Aguirre et al., 2017), participating in the
ubiquitination of mitochondrial proteins during mitophagy.
Here, we propose that phosphorylation of the UBL domain in
HERPUD1must affect its noncovalent binding to the proteasome
explaining its stability increase, as occurs with HERPUD1-ΔUBL.
Further studies are needed to define the physiological triggers of
HERPUD1 phosphorylation, and the kinase involved.

This study is the first report indicating HERPUD1 stability
mediates ER expansion but not as a consequence of ER stress. In
this regard, it is well known that the ER expands to alleviate ER stress
(Schuck et al., 2009). However, the ER expansion phenomenon is not
always homeostatic. ER expansion requires an adequate supply of
membrane lipids although the mechanisms that govern ER
biogenesis are yet unclear. For example, the ER expands several
folds when B lymphocytes differentiate into antibody-secreting
plasma cells (Wiest et al., 1990), when hepatocytes increase its
P450 detoxification system (Feldman et al., 1981), in response to
Epidermal Growth Factor (EGF) (Caldieri et al., 2017) and statins
(Chin et al., 1982). Interestingly, lipid synthesis activation causes
expansion of the ER and resistance to ER stress even in cells lacking
the UPR, highlighting the physiological importance of ER
membrane biogenesis in homeostasis. Because ER adjust its size
and shape according to need interacting with several other organelles
(Schuck et al., 2009), it has been proposed ER size can impact other
organelles allowing rapid transfer of ions and newly synthesized
lipids, associated to the shape and distribution of the ER (Chan and
Marshall, 2010). However, how cells control cell size is still an
enigma. Nevertheless, because cell size controls flux across
membranes, metabolism, biosynthetic capacity, and nutrient
exchange, among others, (Chan and Marshall, 2010), our findings
open the possibility that stabilized HERPUD1 could play an
important role in cell physiology, a mechanism that could be
related with mTOR pathway and its downstream targets (Fingar
et al., 2022).

A future challenge will be to sort out the connection between
HERPUD1 and lipid synthesis, a link recently suggested by
genomics (Van Der Laan and Sander, 2018).

In this regard, an interesting observation to be considered is
that HERPUD1 increased stability mimics the effect of statins in
reference to the appearance of a crystalloid ER (Chin et al., 1982).
Statins are cholesterol reducing agents acting as blockers of the
cholesterol biosynthesis by the inhibition of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase.
Interestingly, statins possess beneficial effects in a variety of
human diseases. Importantly, a growing number of studies
refer to statins as ER stress reducing agents (Mollazadeh et al.,
2018; Zhang et al., 2018), modulators of autophagy (Ashrafizadeh
et al., 2020) and inducers of lysosomal biogenesis (Zhang et al.,
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2020). However, if statins promote those effects by a mechanism
related with HERPUD1 stability is unknown.

ER expansion by HERPUD1 stability is correlated with a
slow-down in autophagy. In agreement with this, it is known
that the knockdown of the two major autophagy regulators,
ATG5 and BECN1, likewise trigger ER expansion (Khaminets
et al., 2015). Moreover, a similar ER expansion is also
observed by ER-phagy inhibition, a selective form of
autophagy responsible for the degradation of excess ER
(Khaminets et al., 2015; Grumati et al., 2018). However,
studies investigating if the UPR is activated or not in
response to inhibition of autophagosomal biogenesis or ER-
Phagy dysfunction are still lacking. While the opposite effect
has been reported, observing that excessive ER-Phagy results
in activation of the UPR response (Liao et al., 2019).

Our findings also indicate that ER expansion by HERPUD1
stability is accompanied by an increase in the number of
functional lysosomes. Because several studies have indicated
that UBL-containing proteins cause a positive modulation of
the UPS system we can speculate that HERPUD1-ΔUBL and
HERPUD1-S59D could have a negative impact in the proteasome
activity. Disturbances in the UPS and autophagy function are
known to be compensated by lysosome biogenesis (Jackson and
Hewitt 2016). In addition, we have already discussed the
possibility that HERPUD1 stability could trigger the
recruitment of UBQLN to the ER. Interestingly, it has been
recently discovered that UBQLN plays a crucial role in the
maintenance of the acidic pH of lysosomes and in a closed
interplay with the ER (Şentürk et al., 2019; Yang and
Klionsky, 2020). Further work is needed to determine if
HERPUD1:UBQLN interaction could play a role at this level.
Furthermore, based on recent findings (Toulmay and Prinz, 2011;
Henne, 2017), it is necessary to explore if MCSs between ER and
lysosomes could play a role in the transfer of lipids to lysosomes
to compensate for the massive expansion of the ER under
HERPUD1 stability by degradation.

Together, our findings highlight novel insights into the
possible role of HERPUD1 as a regulator of autophagy and its
participation in the maintenance of the ER structure. Moreover,
our results suggest that HERPUD1 stabilization promotes the
lysosomal function which could promote ER-lysosome
intercommunication even in conditions where the UPR is not
activated. The mechanism behind this regulation remains to be
elucidated, specially the UBL phosphorylation-dependent
stabilization of HERPUD1 and its effect on the pathways
discussed above. Furthermore, if this regulation has a role in
cell pathological conditions it should be analyzed in future studies.
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Efficient Cholesterol Transport in
Dendritic Cells Defines Optimal
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Dendritic cells are the most powerful antigen-presenting cells of the immune system. They
present exogenous antigens associated with Major Histocompatibility Complex (MHC)
Class II molecules through the classical pathway to stimulate CD4+ T cells, or with MHC-I
to activate CD8+ T lymphocytes through the cross-presentation pathway. DCs represent
one of the main cellular targets during infection by Toxoplasma gondii. This intracellular
parasite incorporates essential nutrients, such as cholesterol, to grow and proliferate inside
a highly specialized organelle, the parasitophorous vacuole (PV). While doing so, T. gondii
modulates the host immune response through multiple interactions with proteins and
lipids. Cholesterol is an important cellular component that regulates cellular physiology at
the structural and functional levels. Although different studies describe the relevance of
cholesterol transport for exogenous antigen presentation, the molecular mechanism
underlying this process is not defined. Here, we focus our study on the inhibitor
U18666A, a drug widely used to arrest multivesicular bodies biogenesis that interrupts
cholesterol trafficking and changes the lipid composition of intracellular membranes. Upon
bone marrow-derived DC (BMDC) treatment with U18666A, we evidenced a drastic
disruption in the ability to present exogenous soluble and particulate antigens to CD4+ and
CD8+ T cells. Strikingly, the presentation of T. gondii-associated antigens and parasite
proliferation were hampered in treated cells. However, neither antigen uptake nor BMDC
viability was significantly affected by the U18666A treatment. By contrast, this drug altered
the transport of MHC-I and MHC-II molecules to the plasma membrane. Since U18666A
impairs the formation of MVBs, we analyzed in T. gondii infected BMDCs the ESCRT
machinery responsible for the generation of intraluminal vesicles. We observed that
different MVBs markers, including ESCRT proteins, were recruited to the PV.
Surprisingly, the main ESCRT-III component CHMP4b was massively recruited to the
PV, and its expression level was upregulated upon BMDC infection by T. gondii. Finally, we
demonstrated that BMDC treatment with U18666A interrupted cholesterol delivery and
CHMP4b recruitment to the PV, which interfered with an efficient parasite replication.
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Altogether, our results highlight the importance of cholesterol trafficking and MVBs
formation in DCs for optimal antigen presentation and T. gondii proliferation.

Keywords: dendritic cells, cholesterol, intraluminal vesicles, multivesicular bodies, CHMP4b, Toxoplasma gondii,
antigen presentation, U18666A inhibitor

INTRODUCTION

Dendritic cells (DCs) are considered the most potent antigen
presenting cells of the immune system. They present exogenous
antigens on Major Histocompatibility Complex (MHC) class II
molecules through the classical pathway to stimulate CD4+ T
lymphocytes, or on MHC-I to activate CD8+ T cells through the
cross-presentation pathway (Nutt and Chopin, 2020). On the one
hand, newly synthesized MHC-II molecules associate with the
invariant chain (Ii) in the ER, stabilizing the complex and
preventing premature peptide binding. The cytoplasmic
domain of Ii allows the translocation of the MHC-II/Ii
complex from the Golgi to the endocytic network (Jurewicz
and Stern, 2019). In this way, it reaches the MIIC
compartment, where the requested proteins for efficient
peptide loading are present (Rocha and Neefjes, 2008). MIIC
compartments exhibit late endosomes characteristics (CD63+
and Lamp1+; Calafat et al., 1994), and there Ii is partially
degraded, leaving a residual peptide attached to the peptide-
binding site (CLIP) (Romagnoli and Germain, 1994). Moreover,
MIIC compartments associate to other vesicles of the endocytic
system, promoting the encounter with peptides derived from
internalized antigens. The MIIC resident chaperone HLA-DM
mediates the exchange of CLIP for the antigenic peptide (Jurewicz
and Stern, 2019). Finally, MHC-II/peptide complexes reach the
plasma membrane localizing at cholesterol-enriched domains
(Bosch et al., 2013b).

On the other hand, during cross-presentation exogenous
antigens uptaken by DCs are first partially degraded in the
endocytic network, and then translocated to the cytosol, where
they are further degraded by the proteasome (Kotsias et al., 2019).
The generated peptides enter cross-presenting compartments to
meet and be loaded onto MHC-I molecules. The intracellular
source of MHC-I molecules for cross-presentation is still matter
of debate, but different studies highlight the importance of the
MHC-I pool present in the endocytic recycling compartment
(ERC) (Nair-Gupta et al., 2014; Cebrian et al., 2016). There is also
evidence about the interaction between MHC-I and Ii that
impacts on cross-presentation, which is suggested to mediate
the arrival of newly synthesized MHC-I to the endocytic network
without affecting recycling (Basha et al., 2012). The specific
location and intracellular compartment required for MHC-I/
peptide complex formation is not fully defined (Blander,
2018), and this represents a key question in the field.

Cholesterol is an important component of biological
membranes, being crucial both for maintaining their structure
and for signaling events. Most of the cellular cholesterol is found
in microdomains of the plasma membrane, called lipid rafts
(Fessler, 2015). Lipid rafts serve as platforms where certain
receptors and membrane proteins, such as MHC molecules,

are grouped. An important role for lipid rafts grouping MHC-
II/peptide complexes in order to activate immune responses was
shown (Bosch et al., 2013b). Moreover, there is a cholesterol-
binding site in the transmembrane domain of MHC-II, which
allosterically modulates the loading of antigenic peptides, and
contributes to the stabilization of MHC-II/peptide complexes at
the plasma membrane (Roy et al., 2013). However, the role of
cholesterol trafficking during MHC-II antigen presentation is not
clearly defined yet. Regarding cross-presentation, it was reported
that cationic lipids contribute to regulate antigen degradation by
increasing the phagosomal pH (Gao et al., 2017). Furthermore,
cholesterol depletion with lovastatin reduces macropinocytosis,
and affects the cross-presentation ability of DCs (Albrecht et al.,
2006). Increase in lipid bodies in IFNγ-activated DCs was found
to correlate with improved cross-presentation efficacy
(Bougnères et al., 2009; den Brok et al., 2016), although the
underlying mechanism has not been identified.

Toxoplasma gondii is an obligate intracellular parasite that
efficiently infects DCs, which are then instrumental in presenting
parasite antigens to prime T. gondii-specific T cell responses
(Mashayekhi et al., 2011; Dupont et al., 2014). After infection, the
parasite remains confined inside a parasitophorous vacuole (PV),
which is actively remodeled. From this niche, the parasite
establishes several interactions with the host cell in order to
optimally replicate (Coppens and Romano, 2018). In this sense,
T. gondii is capable of incorporating cholesterol and fatty acids
from endolysosomes and lipid droplets (LDs). Indeed, T. gondii
replication is inhibited by disrupting cholesterol transport
(Coppens et al., 2000). Other studies show that the cholesterol
level in the host cell impacts on T. gondii replication (Bottova
et al., 2009; Hu et al., 2017; Nolan et al., 2017; Sanfelice et al.,
2017). Moreover, the complexity of parasite-host interactions and
their impact on the modulation of antigen presentation (Poncet
et al., 2019), make T. gondii an interesting model of study. For
example, the relevance of Sec22b in driving retrotranslocation of
T. gondii-derived antigens from the PV lumen to the host cytosol,
mediating the ER-associated degradation machinery recruitment,
has been demonstrated (Cebrian et al., 2011). However,
membrane-associated antigen cross-presentation has been
shown to be independent of Sec22b, suggesting that the
biochemical nature of the antigens and their disposition in the
PV determines their processing pathway (Buaillon et al., 2017).
Furthermore, the interaction with recycling endosomes, mediated
by Rab22a, has also been shown to be necessary for efficient cross-
presentation (Cebrian et al., 2016). Regarding the presentation of
antigens in MHC-II, this pathway seems important to keep
parasite proliferation under control and develop the chronic
phase of infection (Leroux et al., 2015), but the mechanism by
which T. gondii-derived antigens reach degradative
compartments to be presented by MHC-II, it has not been
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completely defined (Poncet et al., 2019). The complexity of host-
parasite interactions demands new approaches to understand
how T. gondii modulates the functions of DCs.

In this work, we studied the impact of cholesterol trafficking
on MHC-I and MHC-II antigen presentation. For this, we used
the inhibitor U18666A, which interrupts the intracellular
traffic of cholesterol by blocking the function of the NPC1
protein, leading to cholesterol accumulation in the
endolysosomal compartments (Lu et al., 2015). We show
that both MHC-II presentation and MHC-I cross-
presentation were strongly disrupted in the presence of the
inhibitor. Strikingly, the inhibitor not only blocks the
presentation of T. gondii-associated antigens but also
parasite proliferation. By EM analyzes, we observed
intraluminal vesicles in the PVs. Since MVB biogenesis is
inhibited by U18666A (Cenedella, 2009), we analyzed in T.
gondii infected BMDCs the ESCRT machinery responsible for
the generation of intraluminal vesicles. We observed that the
main ESCRT-III component CHMP4b was massively recruited
to the PV, and its expression level was upregulated upon T.
gondii infection. U18666A treatment disrupted both the
delivery of cholesterol and the recruitment of CHMP4b to
the PV. Taken together, these results suggest an important role
of cholesterol trafficking in antigen presentation, and on the
proliferation of T. gondii within a functional PV.

MATERIALS AND METHODS

Cells
C57BL/6 mice from 6 to 10 weeks of age were used to obtain
bone marrow stem cells from the femur and tibia. Animals
were maintained in specific pathogen-free conditions (SPF),
housed in temperature-controlled rooms (22–25°C), and
received water and food ad libitum. All animal procedures
were performed according to the bioethics rules of the “Comité
Institucional para el Cuidado y Uso de Animales de
Laboratorio (CICUAL), Facultad de Ciencias Médicas,
Universidad Nacional de Cuyo”. Cells were maintained in
IMDM medium supplemented with 10% FBS and GM-CSF-
containing supernatant to stimulate bone marrow-derived
dendritic cell (BMDC) differentiation. After 9–14 days,
immature BMDCs were used for experimental work. The
GM-CSF-producing cell line J558 was kindly provided by
Dr. Sebastian Amigorena (INSERM U932, Institute Curie,
France). OT-IIZ, B3Z and BTg01Z (Grover et al., 2012)
hybrid T cells were cultured with RPMI medium with 10%
FBS. The different T. gondii strains were grown and
maintained by infecting monolayers of HFF cells in DMEM
complete medium. Intracellular parasites were recovered after
HFF disruption by the use of a 23-G needle.

Reagents
The following reagents were used in this study: Ovalbumin
(OVA), lyophilized powder (Worthington Biochemical
Corporation); Bovine Serum Albumin (BSA), lyophilized
powder (Santa Cruz); 3 µm latex beads and 3 µm blue latex

beads (Polysciences Inc.); OVA conjugated to Alexa Fluor 488,
Fluoromount-G with DAPI (Invitrogen); Dako Omnis without
DAPI (Agilent); IMDM, DMEM and RPMI media (Gibco); poly-
L-lysine, saponin, sucrose, protease inhibitor cocktail, filipin, and
DMSO (Sigma-Aldrich); Tricine, Tris Base, TEMED, and
U18666A (Calbiochem); glycine (Bio-Rad); acrylamide
(Promega); Ponceau S solution (Abcam); Imidazole and NP-40
(ICN Biomedicals Inc.); Fetal Bovine Serum (FBS) was purchased
in Natocor-Industria Biológica (Argentina); CPRG (Roche
Diagnostic GmbH); ToPro3 (Molecular Probes). Synthetic
peptides: OVA(257–264) SIINFEKL and OVA(323–339)

ISQAVHAAHAEINEAGR (Polypeptide Group); and
CD4Ag28m(605–619) AVEIHRPVPGTAPPS (Genecust).

Antibodies
The following antibodies were used in this study: purified rabbit
polyclonal anti-OVA (Sigma-Aldrich), purified FITCmouse anti-
H-2Kb and PE mouse anti-IAb (BD Pharmingen), rabbit
polyclonal anti-Syntaxin 4 (Synaptic Systems), rabbit
polyclonal anti-Rab11a (Aviva Systems Biology), rabbit
polyclonal anti-CHMP4b and mouse monoclonal anti-TSG101
(Abcam), mouse monoclonal anti-SAG1 and rabbit polyclonal
anti-CD63 (Santa Cruz). Purified rabbit anti-HPERVNVFDY
(type I GRA6) and anti-GRA2 (Biotem). Anti-species
conjugated to Alexa 488, 568, or 647 (Molecular Probes) or
peroxidase (Jackson Laboratories) were used as secondary
antibodies.

Antigen Presentation Assays
For all antigens tested, BMDCs were treated with 7.5 μg/ml of
U18666A (or same volume of DMSO) for a total period of 8 h at
37°C. In the case of experiments involving T. gondii, BMDCs were
incubated with the U18666A inhibitor during the whole infection
period (8 h). The parasite strains TgRH YFP SAG1-OVA or TgRH
GRA6-OVA were used at the indicated MOI. For soluble OVA
(specific concentrations indicated in Figures 1A, 2A) or 3 µm
latex beads coated with different ratios of OVA and BSA (10 mg/
ml of OVA alone, 3 mg/ml of OVA and 7 mg/ml of BSA or
10 mg/ml of BSA alone), BMDCs were first pre-treated with
U18666A for 3 h and then incubated 5 h more with the
mentioned antigens. For the short control peptides
ISQAVHAAHAEINEAGR (OVA 323–339 for OT-IIZ cells),
AVEIHRPVPGTAPPS (AS15 for BTg01Z cells) or SIINFEKL
(OVA 257-264 for B3Z cells), BMDCs were pre-treated for 6 h
with U18666A plus 2 h with the corresponding peptide. After
incubation, cells were washed three times with 0.5% BSA/PBS,
fixed with 0.008% glutaraldehyde during 2 min at 4°C and
quenched with 0.2M glycine. Finally, one final wash with PBS
was performed, and the corresponding T cell hybridoma was
added during 16 h at 37°C. T cell activation was colorimetrically
determined detecting ß-galactosidase activity by optical density
(absorbance at 595–655 nm) using CPRG as substrate for the
reaction. When indicated, relative T cell response corresponds to
the ratio between optical density of each experimental condition
and the mean of optical densities of the highest antigen
concentration of untreated cells, and it was expressed as
arbitrary units (AU).
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FACS Experiments
Cell Viability
To test cell viability after treatment, cells were incubated during
24 h in complete medium with 7.5 μg/ml of U18666A (or the
same volume of DMSO) at 37°C. Then, cells were washed twice in
PBS and stained with ToPro3 (1:3000) and immediately analyzed
by flow cytometry. The population was selected and the doublets
eliminated, using the gating strategy show in Supplementary
Figure S2A, to determine the percentage of viable BMDCs
(ToPro3 negative cells).

MHC-I and MHC-II Staining
BMDCs were incubated for 24 h in complete mediumwith 7.5 μg/
ml of U18666A, or the same volume of DMSO. Then, cells were
fixed with 2% PFA for 10 min at 4°C and quenched with 0.2M
glycine. After this, cells were permeabilized with permeabilization
buffer (0.05% saponin/0.2% BSA/PBS) for 20 min at RT, washed
and incubated with FITC mouse anti-H-2Kb (MHC-I) or PE
mouse anti-IAb (MHC-II) for 40 min at 4°C. To measure the cell
surface expression of MHC molecules, intact cells were used

(without fixing or permeabilizing). Finished staining, cells were
washed three times with permeabilization buffer (or with PBS/
0.5% BSA for intact cells), twice with PBS and mean fluorescent
intensity (MFI) was obtained by flow cytometry analysis. MFI
values were normalized to themean of each control and expressed
as AU.

Antigen Uptake and T. gondii Infection Assay
To determine the endocytic capacity of BMDCs in presence of the
inhibitor, cells were pre-treated with 7.5 μg/ml of U18666A (or
the same DMSO volume) during 7 h and incubated for 1 h more
at 37°C with 0.1 or 0.3 mg/ml of OVA coupled to FITC in
complete medium. To control unspecific binding of OVA-
FITC, cells were incubated with the highest concentration of
this fluorescent antigen at 4°C. Then, BMDCs were washed three
times with 0.5% BSA/PBS and the MFI of FITC was determined
by flow cytometry analysis.

To evaluate the phagocytic capacity of BMDCs, 3 μm blue
latex beads were previously coated with 10 mg/ml of OVA. Cells
were treated with 7.5 μg/ml of U18666A, or the same DMSO

FIGURE 1 | MHC-II antigen presentation is hampered in U18666A-treated BMDCs. MHC-II antigen presentation ability of treated and untreated BMDCs was
evaluated by OT-IIZ cell activation after the incubation with (A) soluble OVA, (B)OVA/BSA coated latex beads, and (C) the ISQAVHAAHAEINEAGR control peptide at the
indicated concentrations. (D) The presentation of a natural antigen derived from the parasite TgRH YFP SAG1-OVA after 8 h of infection at the indicated MOI and (E) the
AVEIHRPVPGTAPPS control peptide at the indicated concentrations, was evaluated by BTg01Z cell activation. In (A–D), data represent mean ± SEM of triplicate
values from three independent experiments. In panel (E), data show mean ± SEM of triplicate values of a single experiment. The P-value for each experimental condition
is indicted in figure. p > 0.05 (ns). The one-tailed Student’s paired t-test was performed.
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volume, during 8 h and incubated for 1, 3 or 5 h at 37°C with the
OVA-coated particles in complete medium. Control and treated
BMDCs were also incubated for 5 h at 4°C with OVA-coated
beads as negative control of phagocytosis. After each
internalization period, cells were washed three times with 0.5%
BSA/PBS, incubated 40 min at 4°C with a rabbit polyclonal anti-
OVA antibody, then washed and labeled with a secondary anti-
rabbit antibody coupled to Alexa 488 also 40 min at 4°C. After
three final washes with 0.5% BSA/PBS, cells were analyzed by flow
cytometry, as shown in Figure 3C. The percentage of internalized
beads was normalized to the mean of 5 h phagocytosis of
untreated cells and expressed as AU.

To test T. gondii infection upon U18666A treatment, BMDCs
were incubated during 8 h at 37°C with the fluorescent strain
TgRH YFP SAG1-OVA at MOI 1, 3 or 9 in complete medium
with 7.5 μg/ml of inhibitor, or the equivalent DMSO volume.
Then, cells were extensively washed with 0.5% BSA/PBS, fixed
with 2% PFA during 10 min at 4°C, washed twice with 0.2M
glycine, and one final wash with 0.5% BSA/PBS. The infection
rate of BMDCs was determined by FACS analysis, as shown in
Figure 3E. The percentage of infected cells was normalized to

the mean of the condition “MOI 9” of untreated cells and
expressed as AU.

Confocal Microscopy
BMDCs were cultured on poly-L-lysine-coated glass coverslips
during 24 h in complete medium with 7.5 μg/ml of U18666A (or
the same volume of DMSO). After extensive washing with PBS,
BMDCswere first fixedwith 2%PFAduring 15min at 37°C and then
quenched with 0.2M glycine. After this, cells were permeabilized with
0.05% saponin/0.2% BSA/PBS for 20min at RT, washed and
incubated with mouse anti-H-2Kb (MHC-I) or mouse anti-I-Ab

(MHC-II), combined with rabbit anti-Syn4, overnight at 4°C. The
combinations of mouse anti-H-2Kb (MHC-I) plus rabbit anti-
Rab11a, and mouse anti-I-Ab (MHC-II) plus filipin were also
used. The next day, cells were washed with permeabilization
buffer and incubated with a secondary antibody coupled to Alexa
488 or Alexa 555 for 60min at 4°C. Cells were washed again three
times with permeabilization buffer and twice with PBS. Finally,
coverslips were mounted with Fluoromount-G (with DAPI).

To observe T. gondii infection, BMDCs were incubated at 37°C
with TgRH YFP SAG1-OVA at MOI 1 on poly-L-lysine-coated

FIGURE 2 | U18666A treatment inhibits antigen cross-presentation by BMDCs. The cross-presentation of (A) soluble OVA, (B)OVA/BSA coated latex beads, and
(C) the SIINFEKL control peptide at the indicated concentrations by treated and untreated BMDCs was evaluated with the B3Z hybridoma. (D) MHC-I presentation of
OVA secreted by TgRH YFP SAG1-OVA and (E) the SIINFEKL peptide appended at the C-terminus of the GRA6 antigen expressed by TgRH GRA6-OVA, after 8 h of
treated/untreated BMDCs infection at the indicated MOI was evaluated by B3Z activation. In (A–D), data represent mean ± SEM of triplicate values from three
independent experiments. In panel E, data showmean ± SEM of triplicate values of a single experiment. The P-value for each experimental condition is indicted in figure.
p > 0.05 (ns). The one-tailed Student’s paired t-test was performed.
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glass coverslip for the indicated time in each section.
Subsequently, cells were fixed and permeabilized the same way
as for non-infected BMDCs. To detect endogenous MVBs

component recruited to the PV, cells were incubated with
rabbit anti-CD63, mouse anti-TSG101 or rabbit anti-CHMP4b,
combined with mouse anti-SAG1, rabbit anti-GRA6 or mouse

FIGURE 3 | BMDC treatment with U18666A does not affect their antigen internalization capacity. (A–D) Evaluation of endocytosis and phagocytosis in untreated
and treated BMDCs. Fluid-phase endocytosis of fluorescent OVA after 1 h of internalization, and phagocytosis of 3 µm fluorescent latex beads at different times of
internalization were assessed by FACS analysis. Antigen internalization was performed at 37°C for effective uptake, and at 4°C as negative control. (A) Representative
FACS profiles of OVA-FITC fluorescent intensity corresponding to the endocytosis of 0.3 mg/ml (black lines), 0.1 mg/ml (red lines) or endocytosis of 0.3 mg/ml at
4°C (gray lines). (B) Histogram showing the mean fluorescence intensity of FITC in untreated and treated BMDCs. Data represent mean ± SEM of triplicate values from
three independent experiments. (C) Representative FACS profiles of untreated and treated BMDCs after 5 h of phagocytosis with 3 µm fluorescent latex beads coated
with OVA. Red numbers indicate the percentage of cells that have completely internalized particles (APC+/OVA−). (D) Histogram showing the normalized percentage
(arbitrary units, AU) of efficient phagocytosis after 1, 3, and 5 h of latex beads internalization at 37°C, and 5 h at 4°C. Data represent mean ± SEM of triplicate values from
three independent experiments. (E,F) The efficiency of untreated and treated BMDCs infection for 8 h with TgRH YFP SAG1-OVAwasmeasured by FACS analysis at the
indicated MOI. (E) Representative FACS profiles of infected BMDC at MOI 3. (F) Histograms showing the normalized percentage of infected cells as arbitrary units (AU).
Data represent mean ± SEM of triplicate values from three independent experiments. The one-tailed Student’s paired t-test was performed. p > 0.05 (ns).
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anti-GRA2, respectively, overnight at 4°C. Next, cells were
washed with permeabilization buffer and incubated with
secondary antibodies coupled to Alexa 555 or Alexa 647 for
60 min at 4°C. Finally, cells were washed and mounted as
described before for non-infected cells.

For cholesterol labeling, T. gondii infected (TgRH YFP SAG1-
OVA at MOI 1) or non-infected BMDCs were incubated with
1 mg/ml of filipin for 1 h at RT, prior to fixing, and mounted with
Dako Omnis mounting medium without DAPI.

Image acquisition was performed on an Olympus FV-1000
confocal microscope with a 63×/1.4 NA oil immersion objective.
One z-stack plane is shown from the acquired images and they
were processed with the ImageJ software (Wayne Rasband,
National Institutes of Health). Image deconvolution was
performed with the Parallel Spectral Deconvolution plugin
(Piotr Wendykier) using a theoretical PSF generated by the
Diffraction PSF 3D plugin (Robert Dougherty).

Immunoblotting
BMDCs were incubated with TgRH YFP SAG1-OVA at MOI 2
and 6 in complete medium, during 2, 8 or 24 h at 37°C. Then, 105

cells were washed three times with PBS and resuspended in 20 μl
of sample buffer (50 mM Tris, 4% SDS, 9.5% glycerol and 2% β-
mercaptoethanol). Total cell lysates were subjected to SDS-PAGE
on 12% gel. After transferring, the membrane was stained with
Ponceau S and washed with distilled water until all the dye was
removed. Next, the membrane was blocked in 10% Milk/PBS
during 1 h at RT and incubated with anti-CHMP4b, anti-SAG1
and then with peroxidase-conjugated antibodies. Bound
antibodies were revealed using the kit Chemiluminescent
Peroxidase Substrate-3 (Sigma-Aldrich), according to the
manufacturers’ instructions. The intensity of the bands was
quantified by densitometry using Quantity One 4.6.6 software
(Bio-Rad) and was expressed as arbitrary units.

Transmission Electron Microscopy
BMDCs were infected with TgRH YFP SAG1-OVA at MOI 1
during 24 h at 37°C. Then, cells were washed with ultrapure PBS
three times, and fixed with 2.5% glutaraldehyde during 1 h at 4°C.
Cells were washed again three times with ultrapure PBS (5 min at
4°C each), and incubated in 1% osmium tetroxide/PBS for 2 h at
RT. Then they were dehydrated sequentially with increasing
concentrations of ice-cold acetone and three times with 100%
acetone for 15 min at RT. Cells were infiltrated in 1:1 acetone:
EPON overnight at RT and finally embedded in fresh pure resin
overnight at RT. Thin sections (60–80 nm) were cut with a
diamond knife (Diatome, Washington, DC) on a Leica
Ultracut R ultramicrotome and collected on 200-mesh copper
grids. Grids were observed and photographed in a Zeiss 902
electron microscope at 50 kV.

Focused Ion Beam and Scanning Electron
Microscopy (FIB-SEM)
HFF were brought to confluence on a plate with grid coverslip,
infected for 24 h with TgRH YFP SAG1-OVA and fixed overnight
at 4°C in 2.5% glutaraldehyde in 100 mM Hepes pH 7.4. Cells

were incubated with 1% osmic acid, 1.5% potassium ferrocyanide
in Hepes for 1 h at RT, then with 1% tannic acid in Hepes for
30 min at RT followed by 1% osmic acid in H2O for 1 h at RT.
Samples were dehydrated using ethanol gradient of 25, 50, 75,
95% for 10 min each, then 100% three times for 15 min. Cells
were infiltrated in EPON overnight at RT and embedded in fresh
pure resin for 2 h at RT, left to polymerize for 48 h at 60°C.
Consecutive face-block imaging and milling was performed on a
Zeiss Crossbeam 540. Voxel size of the xy-binned images is 10 ×
10 × 5 nm (xyz).

Statistical Analysis
The one-tailed Student’s paired t-test was performed at the
indicated Figures by using the GraphPad Prism 5 software.
The ImageJ software was used for imaging processing.

RESULTS

U18666A Treatment Impairs Exogenous
Antigen Presentation by BMDCs
To confirm the critical importance of cholesterol transport for
MHC-II antigen presentation by DCs (Anderson et al., 2000;
Bosch et al., 2013b; Roy et al., 2013), we tested the impact of the
inhibitor U18666A on this immune process. Therefore, we
evaluated MHC-II antigen presentation by the use of OT-IIZ
CD4+ T cells, which specifically recognizes the 17 amino acids
sequence (ISQAVHAAHAEINEAGR) derived from ovalbumin
(OVA), commonly known as 323–339 peptide, loaded onto I-Ab

MHC-II molecules. We treated BMDCs with 7.5 μg/ml of
U18666A, or the equivalent DMSO volume for the control
condition, and incubated these cells with soluble OVA or
OVA coupled to 3 μm latex beads for 5 h at 37°C. As shown
in Figures 1A,B, U18666A treatment induced a strong reduction
of CD4+ T cell activation in the context of endocytosis and
phagocytosis, respectively. Also, the presentation of the short
control 323–339 peptide, which does not require further
processing to associate with MHC-II molecules, was
significantly decreased in U18666A-treated BMDCs
(Figure 1C). Consistent with previous reports, this result may
reflect a reduced stability ofMHC-II/peptide complexes at the cell
surface due to cholesterol depletion (Bosch et al., 2013b). We next
addressed the impact of U18666A treatment on the presentation
of T. gondii-derived antigens. For this, we used a different CD4+
T hybridoma called BTg01Z, which recognizes a natural antigen
of the parasite. BTg01Z cells are activated in response of
recognizing the AS15 peptide (AVEIHRPVPGTAPPS) of the
CD4Ag28m T. gondii protein loaded onto I-Ab MHC-II
molecules at the plasma membrane of antigen-presenting cells
(Grover et al., 2012). As shown in Figure 1D, BTg01Z CD4+
T cell activation was strikingly affected in the presence of
U18666A after 8 h of T. gondii infection. Also in this
experimental setup, the presentation of the corresponding
short peptide was significantly inhibited after U18666A
treatment (Figure 1E). These results indicate that correct
cholesterol transport is necessary for adequate MHC-II antigen
presentation.
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DCs are highly adapted to process and present exogenous
antigens in MHC-I molecules through the cross-presentation
pathway. Although these cells require cholesterol in the
plasma membrane to facilitate antigen internalization by
macropinocytosis (Albrecht et al., 2006), the role of cholesterol
trafficking in the context of cross-presentation remains unknown.
To address this question, we treated BMDCs with U18666A and
we used B3Z CD8+ T cells, which specifically recognizes the
OVA-derived SIINFEKL peptide in association with H-2Kb

MHC-I molecules. As shown in Figures 2A,B, U18666A-
treated BMDCs fail to cross-present both soluble and
particulate antigens, respectively. However, in this case no
significant differences of CD8+ T activation were observed
between control and treated cells after incubation with the
short SIINFEKL peptide (Figure 2C). Similar to MHC-II
presentation, the cross-presentation of T. gondii-derived
antigens was impaired in U18666A-treated BMDCs after
infection with TgRH YFP SAG1-OVA parasites, which secrete
the model antigen OVA as a soluble protein into the vacuolar
space (Figure 2D). Given that the distribution of T. gondii
antigens inside the PV also determines the pathway followed
by MHC-I molecules to activate CD8+ T lymphocytes (Buaillon
et al., 2017; Poncet et al., 2019), we decided to analyze the
presentation of a transmembrane antigen. Thus, we used the
strain TgRH GRA6-OVA, which expresses a portion of OVA
fused with the parasite membrane and immunodominant antigen
GRA6 (Blanchard et al., 2008). Here again, MHC-I presentation
of the GRA6-OVA antigen was significantly impaired in
U18666A-treated BMDCs, as compared to control cells
(Figure 2E). Altogether, these data show that cholesterol
transport represents a key aspect of DC intracellular
trafficking in order to carry out optimal MHC-II presentation
and MHC-I cross-presentation of exogenous antigens.

U18666A Treatment Does Not Affect Cell
Viability or Antigen Internalization by
BMDCs
The drug U18666A inhibits cholesterol intracellular transport
leading to an accumulation of this lipid within lysosomes
(Cenedella, 2009; Lu et al., 2015). Since cholesterol is a key
component of cell membranes, vital functions could be altered
in treated DCs, thereby generating the defective phenotype of
exogenous antigen presentation that we observe in our system.
Therefore, we controlled the viability of U18666A-treated and
untreated BMDCs. We used the fluorescent nuclear probe
ToPro3 that binds to dead cell nucleus, but cannot access the
DNA of viable cells. Cells were treated with the U18666A
inhibitor (or the equivalent volume of DMSO) at 37°C for
24 h, a longer incubation period compared to the one used in
the antigen presentation assays. In Supplementary Figures
S1A,B is depicted the flow cytometry gating strategy for this
experimental approach. Our results show that no significant
differences of cell viability were found between control and
U18666A-treated BMDCs (Supplementary Figure S1C).

Next, we decided to analyze the uptake capacity of exogenous
antigens after U18666A treatment, since a defect at this level

would determine the efficiency of CD4+/CD8+ T cell activation.
After 7 h of U18666A treatment, BMDCs were incubated with
different concentrations of OVA coupled to FITC for 1 h at 37°C,
or the highest concentration of this antigen at 4°C, and the mean
fluorescent intensity (MFI) of FITC was analyzed by flow
cytometry. As shown in Figures 3A,B, no significant
differences in fluid-phase endocytosis were found between
control and U18666A-treated BMDCs.

Next, the phagocytic capacity of U18666A-treated BMDCs
was evaluated by incubating these cells with 3 µm OVA-coated
fluorescent latex beads for 1, 3, and 5 h. Again, the total period of
U18666A treatment was 8 h. After each uptake time point,
BMDCs were labeled with an anti-OVA antibody in order to
discriminate between fluorescent particles attached to the cell
surface (APC+/Alexa 488+) from those that were fully
internalized (APC+/Alexa 488−), as shown in Figure 3C. As a
control, we also incubated BMDCs with OVA-coated fluorescent
beads for 5 h at 4°C to inhibit phagocytosis. We quantified the
percentage of cells that fully internalized the particulate antigen in
all experimental conditions, and did not find significant
differences between control and U18666A-treated BMDCs
(Figure 3D).

Finally, we investigated the infection rate by T. gondii in the
presence or absence of the inhibitor. BMDCs were treated with
U18666A or DMSO for 8 h and co-incubated with the fluorescent
parasite strain TgRH YFP SAG1-OVA at different multiplicity of
infection (MOI). Figure 3E shows representative flow cytometry
profiles exhibiting uninfected cells (populations on the left), and
BMDCs with one or two fluorescent parasites inside (populations
on the right). As shown in Figure 3F, we quantified the
percentage of infected cells by T. gondii, and no significant
differences were observed between control and U18666A-
treated BMDCs.

This set of experiments indicates that U18666A treatment
does not affect fluid-phase endocytosis, phagocytosis, T gondii
infection or cell viability, suggesting that another important
intracellular trafficking step is perturbed upon BMDC
incubation with this inhibitor and that it cripples exogenous
antigen presentation.

U18666A Treatment Disrupts MHC-I and
MHC-II Molecules Transport to the Plasma
Membrane
We next decided to explore if U18666A treatment may be
interfering with normal intracellular transport and distribution
of MHC-I and MHC-II molecules in BMDCs, a key feature of
antigen presentation. First, we analyzed cholesterol distribution
in control and treated BMDCs by using filipin labeling and
confocal microscopy. As shown in Figure 4A, control cells
exhibited a uniform membrane distribution of cholesterol
throughout the cytoplasm, whilst in U18666A-treated BMDCs,
cholesterol was accumulated in a more marked patchy vesicular
pattern, as described before in other cell types (Shoemaker et al.,
2013; Elgner et al., 2016).

Since U18666A treatment interrupts cholesterol trafficking
from lysosomes to the plasma membrane, we thought that the
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FIGURE 4 | U18666A treatment disrupt the arrival of MHC-I and MHC-II molecules to the cell surface. (A–C) Immunofluorescence labeling and confocal
microscopy analysis showing the distribution of cholesterol, MHCmolecules and a surfacemarker, in untreated and treated BMDCs for 24 h. (A)Cholesterol stained with
filipin (fire). (B) H-2Kb MHC-I (green) and Syn4 (red). (C) I-Ab MHC-II (green) and Syn4 (red). Nuclei stained with DAPI. DIC images are shown on the left. Overlay of all
fluorescent channels is shown in the right panels. Scale bars: 5 µm. Data are representative of 10 images analyzed for each experimental condition from three
independent experiments. (D,E) FACS analysis of MHC-I and MHC-II molecules of untreated or treated BMDCs. Intact cells corresponding to surface expression (left)
and permeabilized cells corresponding to total expression of MHC molecules (right). Histograms showing arbitrary units (AU) corresponding to values normalized to the
mean of each control. Data represent mean ± SEM of triplicates values from three independent experiments. The P-value for each experimental condition is indicted in
figure. p > 0.05 (ns). The one-tailed Student’s paired t-test was performed.
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regular transport of MHC molecules may be also altered.
Therefore, we labeled BMDCs after 24 h of U18666A
treatment with specific fluorescent tagged antibodies that
detect endogenous H-2Kb MHC-I and I-Ab MHC-II
molecules. We also included the detection of endogenous
Syntaxin 4 (Syn4), a plasma membrane SNARE protein that
can be present in DC endosomes and phagosomes (Cebrian et al.,
2011). As shown in Figures 4B,C, MHC-I andMHC-II molecules
seem to be more accumulated at the intracellular level and less in
the periphery of U18666A-treated BMDCs, as compared to
control BMDCs, suggesting a defect of transport to the plasma
membrane. A perinuclear structure positive for Syn4 was more
evident upon U18666A treatment than in control cells, suggesting
an intracellular accumulation of MHC-I molecules in this region.
Therefore, we performed a double staining to detect H-2Kb and
Rab11a, a classical marker of recycling endosomes that highly co-
localizes with the intracellular pool of MHC-I molecules (Nair-
Gupta et al., 2014). As shown in Supplementary Figure S2A,
U18666A-treated BMDCs exhibit higher accumulation ofMHC-I
molecules in Rab11a-positive endosomes and a weaker staining at
the cell surface, as compared to untreated cells. Moreover, we
decided to label I-Ab and filipin given that MHC-II molecules and
cholesterol are present within acidic compartments of the
endocytic network. Indeed, Supplementary Figure S2B shows
that U18666A treatment induces stronger co-localization of
MHC-II molecules with filipin than in control BMDCs,
indicating higher intracellular accumulation of these molecules
in endolysosomes. Conversely, the cell surface staining of I-Ab

MHC-II molecules is weaker in treated than in untreated
BMDCs.

To confirm this observation, we quantified intracellular and
cell surface-associated MHC-I and MHC-II molecules in treated
and untreated BMDCs by flow cytometry analysis. For the cell
surface staining, we performed experiments with intact BMDCs,
while the intracellular stainings were done with cells previously
fixed and permeabilized with saponin. This experimental setup
confirms that indeed, the cell surface expression levels of both
MHC-I and MHC-II molecules, were significantly decreased in
U18666A-treated BMDCs, as compared to control BMDCs
(Figures 4D,E, respectively). By contrast, no major changes of
intracellular staining were observed between control and treated
cells. Although a tendency of lower amounts of intracellular
MHC-II molecules was observed in U18666A-treated cells, this
difference was not statistically significant (Figure 4E).
Representative FACS histograms are shown in Supplementary
Figure S3.

These results suggest that BMDC treatment with U18666A
impacts on exogenous antigen presentation, at least partially, by
arresting cholesterol intracellular trafficking and optimal
transport of MHC-I and MHC-II molecules to the cell surface.

Intraluminal Vesicle Formation in the
Vacuolar Space of T. gondiiPV andCHMP4b
Recruitment to the PV
Beyond its clear influence on MHC molecule trafficking and
antigen presentation, intracellular transport of cholesterol is

likely to also impact the host-parasite membrane interface,
and in turn regulate T. gondii fitness within the host cell. The
host-parasite membrane interface comprises not only the PV
limiting membrane but also an intravacuolar network (IVN) of
membrane tubules that is involved in sequestration of T. gondii
membrane-bound antigens (Lopez et al., 2015), and in ingestion
of host-derived proteins (Dou et al., 2014) and vesicles (Romano
et al., 2017). Beside the tubules, by analyzing PVs at the
ultrastructural level, we noticed the presence of numerous
round-shaped vesicles in the lumen of T. gondii vacuoles.
Figure 5A shows transmission electron microscopy (TEM)
images depicting these intravacuolar vesicles. Although they
exhibit some similarity with the intraluminal vesicles present
in multivesicular bodies (MVBs), they are larger and more
heterogeneous in size. Indeed, we frequently found big-size
vesicles that are shown with higher magnification in the insets.
To enhance the visualization of such intraluminal vesicles over
the entire vacuolar space, we took advantage of an EM
tomography approach called Focused Ion Beam-Scanning
Electron Microscopy (FIB-SEM). Acting as a ‘slicing nano-
scalpel’, the ion beam mills a bulk sample, progressively
exposing the deeper regions of the material. The exposed
block face is then imaged at high resolution with the electron
beam, resulting in a stack of hundreds of serial images that
encompass the entire PV (Supplementary Figure S4 Movie).
As illustrated on planes extracted from the stack (Figures 5B,C),
this approach confirmed the presence of tubules and vesicles in
the lumen of the PV.

The molecular machinery responsible of generating
intraluminal vesicles in MVBs is composed of the endosomal
sorting complexes required for transport (ESCRT) proteins.
This family of proteins, in association with other accessory
molecules, form cytosolic complexes that sequentially interact
to induce membrane deformation, invagination and inward
endosomal budding (Henne et al., 2011). We hypothesized
that the host cell ESCRT machinery required for MVB
biogenesis could be involved also in the formation of such T.
gondii intravacuolar vesicles. To test this idea, we first studied
the recruitment of different MVBs markers to the PV, such as
the tetraspanin CD63, the ESCRT-I member TSG101, and the
ESCRT-III protein CHMP4b. We infected BMDCs with the
fluorescent T. gondii strain TgRH YFP-SAG1/OVA for 8h, and
we labeled the parasite proteins SAG1, GRA6 and GRA2 in
combination with endogenous CD63, TSG101 and CHMP4b,
respectively. As shown in Figure 6A, all three markers visibly
localized to the PV membrane, indicating that T. gondii
efficiently intercepts MVB components during DC infection.
For CD63 and TSG101 labeling, the vesicular pattern displayed
in BMDCs at steady state (Supplementary Figures S5A,B,
respectively) was maintained after T. gondii infection
(Figure 6A, top and middle panels). However, CHMP4b
recruitment to the PV was striking and this protein re-
localized almost completely to the parasite vacuole upon T.
gondii infection (Figure 6A, lower panel). Moreover, the
vesicular distribution of CHMP4b throughout the cytoplasm
was lost upon T. gondii infection (Supplementary Figures
S5C,D). A total redistribution of CHMP4b was accompanied
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by an increase of the fluorescence intensity, suggesting that T.
gondii infection induces an upregulation of CHMP4b
expression.

To directly test if T. gondii infection promotes the
accumulation of CHMP4b, BMDCs incubated with two MOI
were homogenized after different times of infection. The extracts
were analyzed by SDS-PAGE and probed with anti-CHMP4b and
anti-SAG1 antibodies. Figures 6B,C confirms that CHMP4b is
strongly induced upon infection, correlating with the
accumulation of the T. gondii SAG1 protein over time.
Therefore, there is a clear positive correlation between the
amount of parasites inside BMDCs and the expression level of
CHMP4b along the active infection. Accordingly, CHMP4b
expression was not augmented when BMDCs were incubated
with heat-shock killed parasites, and importantly, the anti-
CHMP4b antibody used does not cross-react with a potential
T. gondii CHMP4b ortholog (Supplementary Figure S5E).

U18666A Treatment Inhibits CHMP4b
Recruitment to the PV and T. gondii
Replication
Previous work has shown a strong dependence of T. gondii
replication on host-derived cholesterol supply (Coppens et al.,
2000; Bottova et al., 2009; Sanfelice et al., 2017). However, these

studies were not carried out in DCs, one of the preferred cellular
targets of T. gondii. Given the singular interaction between T.
gondii and DCs, we proposed to evaluate this scenario. For this,
BMDCs were treated with 7.5 μg/ml U18666A (or with the
equivalent volume of DMSO) during infection with TgRH
YFP SAG1-OVA at MOI 1, and cholesterol was stained with
filipin after 24 h. As shown in Figure 7A, a clear accumulation of
cholesterol inside the PV of untreated cells was evidenced.
Conversely, in the presence of the inhibitor, cholesterol was
accumulated in large granules throughout the host cytosol, but
not particularly at the PV.

In order to address if U18666A treatment of BMDCs impacts
on T. gondii fitness, we followed parasite proliferation by flow
cytometry analysis taking advantage of the fluorescence expressed
by the TgRH YFP SAG1-OVA strain. The fluorescence profiles
show that during the first 24 h pi T. gondii replicates similarly
inside treated and untreated BMDCs. However, a significant
delay of fluorescence incremental was observed in the treated
condition from 48 h pi onwards, indicating an inhibition of
parasite proliferation in these cells (Figure 7C, quantified in
Figure 7B). Although a strong recruitment of CHMP4b to the
replicating vacuoles was evident for both conditions at 48 h pi, the
PVs observed were smaller, in size and number of parasites, in
treated BMDCs than those present in untreated cells (Figure 7D).
Moreover, CHMP4b was not recruited to small single parasite-

FIGURE 5 | TEM and FIB-SEM showing intravacuolar vesicles in infected BMDCs. (A) Transmission EM of T. gondii-infected BMDCs at MOI 1 for 24 h. Black
arrowheads indicate intraluminal vesicles inside PVs. Magnification denote double-membrane surrounded vesicles. Data are representative of 30 images acquired and
analyzed from three independent experiments. (B,C) Representative FIB-SEM images of a 24 h-infected human fibroblast, extracted from the stack that is shown as
Supplementary Figure S4Movie. The number at the bottom left indicates the position of the section in the stack. Black arrowheads point to intraluminal vesicles,
white arrows point to tubules. (C) Inset of magnified area taken from slice #852. m: host mitochondria closely apposed to PV limitingmembrane, p: parasite. A total of four
movies (stacks) from different infected cells were analyzed. Intraluminal vesicles were observed in all the stacks.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 83757411

Croce et al. Cholesterol Transport and Antigen Presentation

174

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


containing vacuoles in U18666A-treated BMDCs at 48 h pi,
whilst in untreated cells, similar size PVs were strongly
decorated with CHMP4b (Figure 7E). To further visualize
these differences, the fluorescence intensity of CHMP4b, SAG1
and TgRH YFP SAG1-OVA was quantified in multiple and single
parasite-containing vacuoles in control and treated cells
(Supplementary Figures S6A,B, respectively). This result
suggest that after the initial T. gondii infection and replication,
CHMP4b cannot be efficiently recruited to the PV in successive
replication rounds upon BMDC treatment with the drug.

Altogether, our data indicate an important participation of
cholesterol in the T. gondii – DCs relationship, being necessary
for both growth and proliferation, as well as for the optimal
transport of MHC-I and MHC-II molecules to the cell surface
required for efficient exogenous antigen presentation.

DISCUSSION

Cholesterol is a highly hydrophobic lipid that requires very tightly
regulated molecular mechanisms to be transported along the cell.
By and large, the efficacy of intracellular cholesterol transport
depends on a proper subcellular distribution among organelles
and the plasma membrane. This represents an essential feature of
healthy cells that allows them to perform critical functions
(Soccio and Breslow, 2004). In this study, we were interested
to investigate the relevance of intracellular cholesterol transport
during exogenous antigen presentation by DCs, which represent
the most potent antigen presenting cells of the immune system.
As general strategy, we altered cholesterol transport by the use of
the drug U18666A, which has been widely characterized as a
powerful inhibitor of NPC1 function and thereby retains

FIGURE 6 | MVBs components recruitment to the PV and CHMP4b over-expression in infected BMDCs. (A) Immunofluorescence labeling and confocal
microscopy analysis showing the parasite proteins (SAG1, GRA6 or GRA2) in red and MVBs markers (CD63, TSG101 or CHMP4b) in magenta, in BMDCs infected with
TgRH YFP SAG1-OVA (green) for 8 h. DIC images are shown on the left. Overlay of all fluorescent channels is shown in the right panels. Scale bars: 5 µm. Data are
representative of 30 images analyzed for each experimental condition from three independent experiments. (B) Immunoblotting showing CHMP4b and SAG1
expression of BMDCs infected by TgRH YFP SAG1-OVA atMOI 2 andMOI 6, for 2, 8, and 24 h pi. (C)Densitometry quantification of Ponceau S andCHMP4b of BMDCs
infected by TgRH YFP SAG1-OVA, at MOI 2 and MOI 6, at 2, 8, and 24 h pi. Data are representative of three independent experiments.
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FIGURE 7 | U18666A treatment inhibits T. gondii replication. (A) Filipin labeling and confocal microscopy analysis showing the distribution of cholesterol in
untreated (up) and treated (down) BMDCs infected with TgRH YFP SAG1-OVA (green) for 24 h. DIC images are shown on the left and overlay of all fluorescent channels is
shown in the right panels. Scale bars: 5 µm. Data are representative of 15 images analyzed for each experimental condition from three independent experiments. (B) T.
gondii proliferation curve in the presence of the inhibitor. Histograms showing the percentage of infected cells. Data represent mean ± SEM of triplicates values from
three independent experiments. The P-value for each condition is indicted in figure. p > 0.05 (ns). The one-tailed Student’s paired t-test was performed. (C)

(Continued )
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cholesterol inside endolysosomes (Lu et al., 2015). We decided to
address this study by generating primary cultures of DCs
differentiated from bone marrow of C57BL/6 mice. Hence, we
set up a working concentration of U18666A that was not toxic for
BMDCs, but clearly modified the intracellular distribution of
cholesterol, as evidenced by filipin labeling and confocal
microscopy. Although this experimental system was
convenient to address our study, it also represents a limitation
since we did not use other methods to change cholesterol levels or
its transport. Besides, pharmacological intervention is not always
a very specific approach because it may affect other important
intracellular parameters.

A marked defect of MHC-I and MHC-II antigen presentation
was evidenced in U18666A-treated BMDCs when we tested
soluble, particulate and T. gondii-associated antigens. For the
case of MHC-II antigen presentation, we also found a significant
inhibition of CD4+ T lymphocyte activation by treated DCs when
they were incubated with the corresponding short control
peptides (OVA(323–339) for OT-IIZ and CD4Ag28m(605–619) for
BTg01Z cells). However, the activation of B3Z CD8+ T cells upon
BMDC incubation with the short control peptide OVA(257–264)

was not diminished in treated cells. Accordingly, the deficiency of
MHC-II molecule transport to the cell surface in treated BMDCs
was stronger than for MHC-I, as analyzed by flow cytometry. A
lack of flaw in the skill of U18666A-treated BMDCs to internalize
exogenous antigens, make us consider that the inhibition of
MHC-I and MHC-II transport to the cell surface is
responsible, at least in part, of the defective antigen
presentation phenotype that these cells exhibit. This
conclusion is supported by the observation that the
presentation defect observed in BMDCs from NPC1−/− mice is
corrected when a subpopulation of cells with normal levels of
MHC-II at the plasma membrane is selected (Bosch et al., 2013a).

In line with our results, previous studies have reported a loss of
MHC-II expression at the cell surface when cholesterol transport
is hampered (Kuipers et al., 2005; Vrljic et al., 2005) or a stability
inhibition of MHC-II/peptide complexes accumulated at the
plasma membrane in microclusters when cholesterol is
depleted (Bosch et al., 2013b; Roy et al., 2013). An interesting
experimental setup involving Leishmania infected macrophages
demonstrate the relevance of cholesterol supply for efficient
MHC-II antigen presentation (Roy et al., 2016). Regarding
MHC-I expression, there is not much information available
about the potential effect of cholesterol depletion, or
cholesterol transport inhibition, during MHC-I trafficking to
the cell surface. However, it was shown that cholesterol
depletion with lovastatin impairs macropinocytosis and
consequently, the MHC-I cross-presentation capacity of
treated DCs was reduced (Albrecht et al., 2006). The use of
U18666A in our experiments interrupts cholesterol transport

without affecting fluid-phase endocytosis. Therefore, our study
brings novel data about the relevance of cholesterol trafficking
during MHC-I cross-presentation independently of the
exogenous antigen uptake.

The striking defect observed for both MHC-I and MHC-II
presentation of T. gondii-associated antigens, motivated us to
investigate deeper into other aspects of the parasite fitness. The
protozoan T. gondii is an obligate intracellular parasite that
cannot synthesize sterols and must scavenge lipids from the
host cell in order to grow and replicate inside the PV. This
lipid acquisition includes cholesterol endocytosis by the parasite
via the lysosomal low-density lipoprotein pathway (Coppens
et al., 2000). Moreover, T. gondii also sequesters LDs, which
represent a major intracellular source of cholesterol, and
internalizes these organelles into the vacuole to achieve
efficient proliferation (Hu et al., 2017; Nolan et al., 2017). In
summary, different publications highlight the importance of host
cholesterol supply for optimal T. gondii replication (Bottova et al.,
2009; Sanfelice et al., 2017). In this sense, we provide further
evidence to support this concept by showing that U18666A
treatment of BMDCs inhibited cholesterol recruitment to the
PV. As consequence, correct PV development and parasite
growth were strongly blocked in our system. More
importantly, our study is pioneer in addressing the relevance
of cholesterol transport during T. gondii antigen presentation
since this had not been tested before.

Probably one of the most remarkable findings of this study is the
massive recruitment of CHMP4b to the PV and the subsequent
over-expression of this ESCRT-III member in BMDCs infected byT.
gondii. In accordance with our results, a very recent study shows that
T. gondii drives the recruitment of the host ESCRT machinery
through the parasite effector transmembrane dense granule protein
TgGRA14. The interaction between TgGRA14 and host ESCRT
components allows the efficient uptake of cytosolic proteins from the
host cell important for parasite survival (Rivera-Cuevas et al., 2021).
Another recent work from a different group that used a proximity-
labeling strategy in combination with quantitative proteomics
demonstrated that three components of the host ESCRT
machinery are present at the host-parasite membrane interface in
infected fibroblasts (Cygan et al., 2021). Interestingly, the vacuolar
space of T. gondii PV comprises a sophisticated membranous IVN
formed of tubules and vesicles. In this study, we also found round
intraluminal vesicles in the vacuolar space of the parasite by
performing both TEM and FIB-SEM experiments. The question
of how these vesicles are generated inside the PV and if the host
ESCRT machinery plays a relevant role in this process during the
recruitment to the T. gondii vacuole remains open. Ongoing and
future studies involving CHMP4b silencing in DCs will allow us to
formally test this idea and define a more precise role for the ESCRT
machinery during T. gondii infection.

FIGURE 7 | Representative FACS profile of T. gondii fluorescence in untreated (black lines) and treated (red lines) BMDCs. (D,E) Immunofluorescence labeling and
confocal microscopy analysis showing CHMP4b and SAG1 in untreated and treated BMDCs infected with TgRH YFP SAG1-OVA for 48 h. (D) Shows big T. gondii PVs
and (E) small T. gondii PVs (probably corresponding to a second round of replication). Nuclei stained with DAPI. DIC images are shown on the left, TgRH YFP SAG1-OVA
(green), CHMP4b (red), SAG1 (magenta), and the overlay of all fluorescent channels is shown in the right panels. Scale bars: 5 µm. Data are representative of 15 images
analyzed for each experimental condition from three independent experiments.
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Supplementary Figure 1 | U18666A treatment does not affect the viability of
BMDCs. (A) Getting strategy used to determine the cell population to analyze. (B)
Representative FACS profiles of ToPro3 fluorescent intensity corresponding to
apoptotic cells. (C) Percentage of ToPro3 negative cells in control condition
(black bar) and treated condition (white bar), after 24 h of treatment.

Supplementary Figure 2 | MHC-I and MHC-II molecules are accumulated in
different intracellular endocytic compartments upon U18666A treatment.
Immunofluorescence labeling and confocal microscopy analysis of U18666A-
treated and untreated BMDCs showing (A) H-2Kb MHC-I (green) and Rab11a
(red), and (B) filipin (green) and I-Ab MHC-II (red). Nuclei stained with DAPI. DIC
images are shown on the left and the overlay of all fluorescent channels is shown in
the right panels. Scale bars: 5 µm. Data are representative of 10 images analyzed for
each labeling.

Supplementary Figure 3 | MHC-I and MHC-II molecules expression by FACS
analysis. Representative FACS profiles of untreated and U18666A-treated BMDCs
in intact (surface staining) and permeabilized (intracellular staining) cells showing the
fluorescence intensity of H-2Kb-FITC (upper panels) and I-Ab-PE(lower panels)
antibody labeling.

Supplementary Figure 4 | 3D imaging of an entire PV by FIB-SEM. HFF infected for
24 h with TgRH YFP SAG1-OVAwere fixed and prepared for FIB-SEM imaging. This
movie shows a stack of 1731 images binned in xy and cropped around the vacuolar
space that contains four tachyzoites. Voxel size is 10 × 10 × 5 nm (xyz). Movie
related to Figure 5B which shows an excerpt of three slices from the stack: #347,
#519, and #852.

Supplementary Figure 5 | MVBs markers distribution in not infected BMDCs.
Immunofluorescence labeling and confocal microscopy analysis of non-infected
BMDCs showing (A) CD63, (B) TSG101 and (C) CHMP4b in red, and (D) BMDCs
infected with TgRH YFP SAG1-OVA for 48 h showing the parasites in green,
CHMP4b in red and SAG1 in magenta. Nuclei stained with DAPI. DIC images
are shown on the left and the overlay of all fluorescent channels is shown in the right
panels. Scale bars: 5 µm. Data are representative of 10 images analyzed for each
labeling. (E) Immunoblotting of CHMP4b and SAG1 in BMDCs infected for 48 h with
TgRH YFP SAG1-OVA at MOI 6 (1); in BMDCs that phagocytosed the heat killed and
opsonized T. gondii strain TgRH YFP SAG1-OVA during 24 h (2) or 48 h (3), and in
total lysates of the T. gondii strains TgRH YFP SAG1-OVA (4) or TgPru Tomato
SAG1-OVA (5).

Supplementary Figure 6 | Fluorescence intensity profiles of CHMP4b in T. gondii
PVs. Immunofluorescence labeling and confocal microscopy analysis related to
Figures 7D,E showing the fluorescence intensity profiles of TgRH YFP SAG1-OVA
(green), CHMP4b (red) and SAG1 (magenta) in (A) multiple and (B) single parasite-
containing vacuoles of infected BMDCs. Straight lines were drawn delimiting the
analyzed area.
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Niemann-Pick type A (NPA) disease is a fatal lysosomal neurodegenerative disorder caused by
the deficiency in acid sphingomyelinase (ASM) activity. NPA patients present severe and
progressive neurodegeneration starting at an early age. Currently, there is no effective treatment
for this disease andNPA patients die between 2 and 3 years of age. NPA is characterized by an
accumulation of sphingomyelin in lysosomes and dysfunction in the autophagy-lysosomal
pathway. Recent studies show that c-Abl tyrosine kinase activity downregulates autophagy and
the lysosomal pathway. Interestingly, this kinase is also activated in other lysosomal
neurodegenerative disorders. Here, we describe that c-Abl activation contributes to the
mechanisms of neuronal damage and death in NPA disease. Our data demonstrate that:
1) c-Abl is activated in-vitro as well as in-vivo NPA models; 2) imatinib, a clinical c-Abl inhibitor,
reduces autophagy-lysosomal pathway alterations, restores autophagy flux, and lowers
sphingomyelin accumulation in NPA patient fibroblasts and NPA neuronal models and 3)
chronic treatment with nilotinib and neurotinib, two c-Abl inhibitors with differences in blood-
brain barrier penetrance and target binding mode, show further benefits. While nilotinib
treatment reduces neuronal death in the cerebellum and improves locomotor functions,
neurotinib decreases glial activation, neuronal disorganization, and loss in hippocampus and
cortex, as well as the cognitive decline of NPA mice. Our results support the participation of
c-Abl signaling in NPA neurodegeneration and autophagy-lysosomal alterations, supporting the
potential use of c-Abl inhibitors for the clinical treatment of NPA patients.

Keywords: Niemann-Pick disease, neurodegeneration, c-Abl kinase, autophay-lysosomal pathway, lysosomal
storage disorder (LSD)
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INTRODUCTION

Mutations in the SMPD1 gene that encodes for acid
sphingomyelinase (ASM), a key lysosomal enzyme that
hydrolyzes sphingomyelin to ceramide and phosphocholine,
lead to Niemann Pick type A (NPA) disease (Schuchman,
2007). NPA disease is a fatal lysosomal neurodegenerative
disorder characterized by sphingomyelin accumulation in
lysosomes leading to lysosomal dysfunction and autophagy
alterations (Yanez et al., 2020). NPA patients present with
developmental delay, hepatosplenomegaly, and progressive
neurodegeneration that initially affects Purkinje neurons in the
cerebellum (Otterbach and Stoffel, 1995). Additionally, the brain
shows astrogliosis, and the astrocytes in the NPA hippocampus
and cortex present altered morphology (Perez-Canamas et al.,
2017). Unfortunately, NPA patients typically die between 2 and
3 years of age (Schuchman and Desnick, 2017).

The mechanisms that lead to neuronal death in NPA disease
are not fully understood. Previous work recognized the role of
calcium imbalance (Perez-Canamas et al., 2017), neuronal
endocannabinoid system alterations (Bartoll et al., 2020), and
autophagy alterations (Gabande-Rodriguez et al., 2014; Li et al.,
2014). Many neurodegenerative disorders are associated with
autophagy alterations, reflecting the contribution of this
process to neuronal physiology as it is involved in quality
control of cytosolic components, such as damaged proteins
and organelles, survival, and differentiation (Nixon, 2013; Lee
et al., 2016; Menzies et al., 2017). Recent studies have shown
autophagy-lysosomal pathway (ALP) alterations in NPA disease
at different levels, including autophagosome-lysosome fusion (Li
et al., 2014) and lysosomal membrane permeabilization
(Gabande-Rodriguez et al., 2014). Therefore, pharmacological
and genetic manipulations to promote better functioning of the
ALP in clearing accumulated materials may be therapeutic in
neurodegenerative disorders, including NPA disease.

c-Abl is a non-receptor tyrosine kinase that has different
biological functions depending on the cell type and regulates
several pathways including apoptosis and ALP, in response to
different signals. c-Abl has been reported as a central signaling
kinase in different neurodegenerative disorders including
Alzheimer’s (Alvarez et al., 2004; Cancino et al., 2008),
Parkinson’s (Ko et al., 2010), Amyotrophic lateral sclerosis
(ALS) (Imamura et al., 2017) and Niemann Pick type C
(NPC) disease (Klein et al., 2011; Contreras et al., 2020),
among others (Yanez et al., 2020). Recently, c-Abl has been
shown to be involved in autophagy. Chronic treatment with
nilotinib, a clinically validated c-Abl inhibitor, improves
autophagy, reduces Aβ levels, and prevents neurodegeneration
in an Alzheimer’s mouse model (La Barbera et al., 2021). In
Parkinson’s, nilotinib induces cellular clearance of α-synuclein,
via autophagic degradation, and protects the dopaminergic
neurons, improving locomotor function in mouse models of
this disease (Hebron et al., 2013). In addition, c-Abl inhibition
using a classic inhibitor, imatinib, induces autophagy through the
overexpression of genes involved in this process (Can et al., 2011).
Interestingly, c-Abl kinase regulates ALP through transcription
factor EB (TFEB) modulation (Contreras et al., 2020), the master

transcriptional factor that drives the expression of genes related to
autophagy and lysosomal biogenesis, and exocytosis.

The relation between c-Abl kinase activation,
neurodegeneration, and the ALP in NPA disease has not been
explored yet. In this work, we show that c-Abl signaling
participates in the pathogenic mechanisms leading to
neurodegeneration in NPA disease. We found that c-Abl is
activated in several NPA models and its inhibition promotes
the improvement in the ALP inducing autophagy flux and
reducing sphingomyelin accumulation in vitro NPA models.
Moreover, c-Abl inhibition decreases neuronal death,
astrogliosis, inflammation markers, neuronal disorganization,
and improves locomotor and cognitive functions in NPA mice.

MATERIAL AND METHODS

NPA Models
NPA cellular models: i) Primary skin fibroblasts from an NPA
patient (GM13205) carrying one mutation at the SMPD1 gene
were purchased from the Coriell Institute for Medical Research.
These NPA fibroblasts have no detectable sphingomyelinase
activity; donor subject (female Ashkenazi, 2 years old) had one
allele with a deletion of a single cytosine in exon 2 at codon 330 of
the SMPD1 gene [990delC] resulting in a frameshift leading to the
formation of a premature stop (TGA) at codon 382 [P330fsX382].
Fibroblasts from an unaffected individual (HC; healthy control)
(GM05659) were used as control; ii) Primary cultures of neurons
were prepared from the hippocampus of wild-type (WT) and
NPA mouse embryos age E18 and kept in culture for 7 days as
described by Kaech et al. (2006). iii) NPA Neural Stem cells (NPA
NSC) derived from NPA fibroblasts (GM16195) which were
previously described (Long et al., 2016) and iv) SH-SY5Y cells
were treated with desipramine 5, 10, 20 μM by 24 h to mimic the
NPA phenotype.

NPA mice (ASMKO; Smpd1−/−): They were created by gene
targeting, as described previously (Horinouchi et al., 1995) and
were kindly donated by Dr. Fernández-Checa (University of
Southern California Research Center for Alcoholic Liver and
Pancreatic Diseases and Cirrhosis, Keck School of Medicine,
University of Southern California, Los Angeles, CA,
United States and Cell Death and Proliferation, Institute of
Biomedical Research of Barcelona (IIBB), CSIC, Barcelona,
España). Smpd1-/- mice were obtained using heterozygous
C57BL/6 breeding pairs and the littermates were used as
controls. Animals were maintained in the Animal Care Facility
of Pontificia Universidad Católica de Chile. Genotypes were
identified using a PCR-based screening as described previously
(Horinouchi et al., 1995). All procedures were approved by the ad
hoc committee of Chile (ANID) and the Institutional Animal
Care and Bioethical and Biosafety Committee of the UC (Protocol
#170912002).

Cellular and Animal Treatments
Human fibroblasts and NSC were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplied with 15% fetal
bovine serum (FBS). Primary neurons were maintained in
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Neurobasal supplemented with 2% B27, 2 mM glutamine, 100 U/
ml penicillin, and 100 μg/ml streptomycin. The proliferation of
non-neuronal cells was limited using cytosine arabinoside 1 µM.
Cells were treated with imatinib for 24 h, the concentration used
was dependent on each cellular type; fibroblasts were treated with
10 μM, primary neurons with 5 μM, and NSCs with 100 nM of
imatinib.

Acute treatment with a c-Abl inhibitor: Male/female WT and
NPA mice received daily intraperitoneal injections (i.p.) of
imatinib mesylate (Novartis, Basel, Switzerland) 12.5 mg/kg in
0.9% NaCl from postnatal day 21 (P21) to P49. Control groups
(WT and NPA) received daily intraperitoneal injections of 0.9%
NaCl. Bodyweight was measured twice a week during the full
period of treatment, as well as locomotors tests were realized once
a week.

Chronic treatment with c-Abl inhibitors: Male/femaleWT and
NPA mice received diets supplemented with the c-Abl inhibitor
nilotinib or neurotinib ad libitum from P21 until 5, 7, and 11
months of age. Control groups received a control diet.The rodent
chow diet was manufactured by Envigo/Teklad by incorporation
of neurotinib 67 ppm (10 mg/kg) or nilotinib at 200 ppm
(30 mg/kg) into the NIH-31 Open Formula Mouse/Rat
Sterilizable Diet (7017), followed by irradiation handling of the
final product. Animal bodyweight was measured twice a week
during the full period of treatment. The distribution of male/
females in the control and treatment groups was 60/40%. No
gender-dependent differences were observed in any of the results.

Immunofluorescence Analysis of Cultured
Cells
Fibroblasts and primary neurons were seeded on poly-lysine-
coated coverslips (30,000 cells/cover). After treatment, cells were
fixed in 4% paraformaldehyde/4% sucrose in PBS and
permeabilized with 0.02% Triton X-100. Then, cells were
blocked with 3% bovine serum albumin in PBS.
Immunostaining was carried out using anti-tyrosine 412
phosphorylated of c-Abl (Y412) (anti-p-c-Abl) (C5240, Sigma
Chemical co), anti-p62 (ab56416; Abcam), anti-LAMP1 (1D4B,
sc-19992; Santa Cruz Biotechnology). Anti-rabbit IgG conjugated
with Alexa Fluor-488 and anti-mouse IgG conjugated to Alexa
Fluor-555 and Hoechst 33342 (H3570) were obtained from
Invitrogen Detection Technologies. Fluorescent images were
captured with an Olympus BX51 microscope (Olympus,
Tokyo, Japan) and analyzed with the Image-Pro Express
program (Media Cybernetics). We examined at least five
images by cover and three covers by condition were stained by
experiment in at least three independent experiments.

BODIPY-SM and Filipin Staining in Cells
Briefly, 20,000 cells/well were seeded on coverslips on 24-well
plates after 4 h incubation at 37°C with 5% CO2, 0.2 mg/ml
BODIPY-FL C122 sphingomyelin (BODIPY-SM; catalog no.
D7711, Thermo Fisher Scientific) was added to cells, and
incubated overnight. Then, cells were fixed with 4%
paraformaldehyde solution. Later, cells were incubated with
1 mg/ml Hoechst 33342 (H3570; Invitrogen) in PBS with

incubation at room temperature for 10 min. After washing,
covers were mounted with Fluoromount-G, and cells were
imaged in the Olympus BX51 microscope (Olympus).

For Filipin staining, cells were fixed in 4% paraformaldehyde/
4% sucrose in PBS for 30 min. After, cells were washed with PBS
and treated with 1.5 mg/ml glycine for 20 min. Finally, cells were
treated with 25 μg/mL Filipin (F-8765, Sigma Chemical Co.) for
30 min, washed with PBS and covered with Fluoromount-G.
Images were captured with an Olympus BX51 microscope.

mRFP-GFP Tandem Fluorescent-Tagged
LC3 Expression
Neural StemCells were transduced with 30 particles per cell of the
mRFP-GFP tandem fluorescent-tagged LC3 (Premo™
Autophagy Tandem Sensor RFP-GFP-LC3B, P36239, Thermo
Fisher Scientific), as described in the manufacturer’s instructions.
After 24 h, cells were rinsed in 1 × PBS, nuclei were stained with
Hoechst 33342 (H3570; Invitrogen) and processed for analysis in
an LSM510METAmicroscope (Carl Zeiss AG). Quantification of
only RFP-positive dots or dots positive for GFP and RFP was
performed with ImageJ software.

Western Blot Analysis
Proteins were prepared as described previously (Cancino et al.,
2008). Tissue protein samples (30 μg) and cellular protein
samples (50 μg) were resolved by SDS–PAGE. The
immunoblot was carried out using anti-c-Abl (A5844, Sigma-
Aldrich, USA), p-c-Abl (Tyr412) (07–788; Millipore), anti-LC3
(NB100-2220), anti-p62 (ab56416), and anti-GAPDH (0411;
sc47724; Santa Cruz Biotechnology) antibodies. The secondary
antibodies against rabbit or mouse IgGs conjugated with
horseradish peroxidase were obtained from Upstate
Biotechnology, Lake Placid, NY, United States.

Hanging and Memory Flexibility Test
During the treatments, locomotor coordination was evaluated
through the Hanging test. The mouse was placed at the center of
a horizontal bar (3 mm diameter; 35 mm long) hanging with its
forepaws. The body position of the animal was observed for 30 s and
scored as previously described (Voikar et al., 2002)

Spatial memory acquisition and learning of animals was assessed
using the modified Morris water maze test called Memory flexibility
test (Chen et al., 2000; Toledo and Inestrosa, 2010) which consisted
of a dark blue plastic pool 100 cm in diameter and 40 cm in depth,
located in a 2.5 × 2.5-m roomwith numerous extra-maze visual cues
that remained constant throughout the experiment. The pool was
filled with water (a depth of 28 cm) and a clear acrylic glass platform
(10 cm in diameter and 26 cm high) was positioned in the pool and
its location was changed every day during the test. Testing was
performed for four consecutive days. Each day the animal completed
15 swim trials to find the platform, each trial for 40 s. The animal
reaches the acceptable memory criteria when it reaches the platform
in three consecutive trials in less than 20 s per attempt. A minimum
of 5min is expected between trials per animal. Amean of 15 trials to
reach the platform for each mouse were used in the statistical
analyses.
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Tissue Immunohistochemical and
Immunofluorescence Procedures
Mice were anesthetized with xylazine 0.12 mg/10 g and ketamine
0.8 mg/10 g and intracardially perfused with 0.9% NaCl. Then,
the cerebellum and brain were removed and postfixed with 4%
paraformaldehyde in PBS overnight, followed by 30% sucrose in
PBS at 4°C overnight. Cerebella were cut in 30 μm sagittal
sections, and brains were cut 20 μm coronal sections with a
cryostat (Leica CM 1850) at −20°C. 2–3 slices by animal were
stained by experiment. We examined at least three animals per
condition for quantitative analysis. For immunohistochemistry,
slices were treated with H2O2 0.3% for 30 min, washed four times
with PBS, treated with NaBH4 10 mg/ml for 15 min, washed with
PBS three times by 10 min, and blocked with BSA 0.5% triton x-
100 0.2% for 1 h. Anti-calbindin D-28K antibody (AB1778,
Chemicon International), anti-NeuN (ab177487, Abcam) were
used with the avidin-biotin-horseradish peroxidase complex
method (Vector Laboratories, Burlingame, CA, United States).
Entellan was used as mounting medium.

For immunofluorescence, slices were treated with 0.4% triton x-
100 for 30 min, glycine 0.15M for 15min, NaBH4 10mg/ml for
15 min, washed with PBS three times by 10min, and blocked with
BSA 3% triton x-100 0.4% for 1 h. We used anti-GFAP (#3670, Cell
signaling technology), anti-Iba-1 (NB100-1028, NovusBio), anti-
CD68 (MCA1957GA; Bio-Rad), and Hoechst 33,342 (H3570,
Invitrogen). Secondary antibodies anti-rabbit IgG conjugated with
Alexa Fluor-488, anti-mouse IgG conjugated to Alexa Fluor-555,
and anti-rat IgG conjugated with FITC were obtained from
Invitrogen Detection Technologies. Fluoromount-G was used as
mounting medium. Images were captured with an Olympus BX51
microscope (Olympus) and analyzed with the Image-Pro Express
program (Media Cybernetics, Bethesda, MD, United States).

Analysis of astrocyte and microglia size and shape were
performed in Fiji ImageJ from fluorescent images acquired in
a DMi8 Leica microscope, with a PL FLUOTAR 40 × with a
numerical aperture of 0.80. Then, images were analyzed by using
a custom-made macro based on the principles previously
described in other cellular systems (Saez et al., 2018). Briefly,
after background subtraction, the maximal z-projection was
obtained from the planes that contained the cells. Then, semi-
automatic segmentation was performed by using Li’s threshold
method and manual post-correction of the region of interest.
Shape descriptors, such as area and solidity [defined as: (Area/
Convex area)], were calculated from segmented images.

Filipin Staining in Tissue
Slices were treated with NaBH4 10 mg/ml for 10 min. Then, slices
were incubated with Filipin (F-8765, Sigma Chemical Co.)
overnight. The next day, slices were washed with 1 × PBS and
mounted with gelatin 0.1%. Fluoromount-G was used as
mounting medium.

Statistical Analysis
Mean and standard error with the corresponding number of
experiments are indicated in each figure legend. Probability
values of the data for Student t-tests and ANOVA followed by

Tukey post-hoc test were calculated using GraphPad Prism 8
(Graph Pad Software, Inc., San Diego, USA).

In the box-and-whisker plots, the center line denotes the
median value, edges are upper and lower quartiles, whiskers
show minimum and maximum values and points are
individual experiments or number of animals or cells.

RESULTS

c-Abl Is Active and its Inhibition Decreases
Autophagy and Lysosomal Alterations in
NPA Patient Fibroblasts
c-Abl contributes to other neurodegenerative disorders linked to
ALP alterations (Ren et al., 2018; Contreras et al., 2020). When
this kinase is activated, it is phosphorylated at tyrosine 412 (p-c-
Abl) and also partially changes its location from the cytosol to the
nucleus. To evaluate if c-Abl is active in NPA disease, we analyzed
the levels of p-c-Abl by Western blot in GM13205 NPA patient
fibroblasts (NPA fibroblasts), which harbor one of the most
common mutations in NPA disease (see material and methods
section). Interestingly, we found that the p-c-Abl levels are
increased in comparison to fibroblasts from a healthy subject
(HC fibroblasts; GM05659) (Figure 1A). Moreover, we observed
that p-c-Abl kinase is translocated to the nucleus in NPA
fibroblasts (Figure 1B; Supplementary Figure S1A). These
results show that c-Abl kinase is activated in fibroblasts from
an NPA patient.

In order to test the involvement of c-Abl in NPA disease ALP
alterations, we characterized NPA fibroblasts. In agreement with
previous reports, NPA fibroblasts showed sphingomyelin
accumulation (Figure 1C). We found that the autophagy and
lysosomal markers, p62 and LC3II levels, were increased in NPA
fibroblasts (Figure 1D), confirming autophagy alterations.
Furthermore, immunofluorescence analysis showed an
accumulation of p62 positive-autophagic vesicles around the
nucleus (Figure 1E; Supplementary Figure S1B). Also, we
found that Lamp1 levels were increased, confirming that NPA
fibroblasts contain more acid vesicles and lysosomes than HC
fibroblasts (Figure 1F; Supplementary Figure S1C).

Interestingly, when we treated NPA fibroblasts with imatinib, a
classic c-Abl inhibitor, we found a significant decrease in the number
of p62-positive vesicles. Moreover, imatinib treatment restored the
p62-positive vesicles distribution (Figure 1E; Supplementary Figure
S1B). A similar trend was observed for the Lamp1 signal, which
decreased when NPA fibroblasts were treated with imatinib
(Figure 1F; Supplementary Figure S1C). These results show that
NPA fibroblasts present autophagy and lysosomal alterations and
suggest that c-Abl activation is regulating them.

c-Abl Inhibition Improves Autophagy Flux
and Decreases Sphingomyelin
Accumulation in NPA Neuronal Models
Next, we explored the activation of c-Abl in a neuronal NPA
model using NPA Neural Stem cells (NPA NSC) derived from
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NPA fibroblasts (GM13205). The NPA NSCs exhibit a disease
phenotype of lysosomal sphingomyelin accumulation and
enlarged lysosomes and can be used as a cell-based disease
model for studying the disease pathophysiology (Long et al.,
2016). Interestingly, in this human neuronal NPA model, we also
found that the levels of activated c-Abl are increased compared to

NSCs derived from healthy individual fibroblasts (HC NSCs)
(Figure 2A). We also confirmed c-Abl activation in another
neuronal pharmacological NPA model, treating SH-SY5Y
neuronal cells with the ASM inhibitor desipramine
(Kornhuber et al., 2010). We confirmed the NPA phenotype
through lipid accumulation using Filipin staining indicating the

FIGURE 1 | c-Abl activation regulates autophagy and lysosomal alterations in NPA fibroblasts. (A) Human fibroblasts homogenates from NPA patient and healthy
control (HC) subjects (50 μg protein/lane) were used to measure p-c-Abl levels. The graph shows quantifications of p-c-Abl levels normalized by GAPDH and c-Abl
expression. The data shown are from three independent experiments. Student’s t-test: *p < 0.05. (B) HC and NPA fibroblasts were fixed and immunostained using an
anti-p-c-Abl Tyr412 antibody (green) and Hoechst staining for nucleus (blue). For each condition, n = 15 cells were measured by experiment; three independent
experiments were performed. Student’s t-test: ****p < 0.0001. (C) HC and NPA fibroblasts were incubated with BODIPY-SM to confirm sphingomyelin accumulation.
The images were taken with a × 40 objective lens. (D)Homogenates from fibroblasts from NPA patient and healthy control (HC) subject (50 μg protein/lane) were used to
measure p62 and LC3II levels. The graph shows quantifications of protein levels normalized by GAPDH and LC3I expression, respectively. The image is representative of
five independent experiments. Student’s t-test: **p < 0.01; ***p < 0.001; (E) HC and NPA fibroblasts were treated with imatinib (10 μM) for 24 h, fixed, and
immunostained using an anti-p62 antibody (green) and (F) anti-Lamp1 (green). Hoechst staining for the nucleus (blue). For each condition, n = 10–18 cells were
measured by experiment; three independent experiments were performed. ANOVA, Tukey post-hoc: ***p < 0.001; ****p < 0.0001. In the box-and-whisker plots, the
center line denotes the median value, edges are upper and lower quartiles and whiskers show minimum and maximum values.
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secondary accumulation of cholesterol (Supplementary Figure
S2A) and a significant reduction in ASM activity in desipramine
treated cells compared to control cells (Supplementary Figure
S2B). Interestingly, we found an increase of p-c-Abl levels in SH-
SY5Y cells treated with desipramine (Supplementary Figure
S3A) and p-c-Abl nuclear localization in desipramine-treated
cells (Supplementary Figure S3B).

To assess the contribution of c-Abl activity to the autophagy flux
and cellular clearance dysfunction, we treated NPA NSCs with
imatinib for 24 h and we evaluated sphingomyelin accumulation
using BODIPY-SM. We found that imatinib treatment induces a
decrease in sphingomyelin accumulation in NPANSCs (Figure 2B).

We further analyzed the effect of c-Abl inhibition on
autophagy flux using the Premo™ Autophagy Tandem Sensor
RFP-GFP-LC3B in NPA NSCs. Cells incubated with this sensor
express an LC3 fusion protein fused to an acid-sensitive GFP and
an acid-insensitive RFP. The expression of this LC3 fusion
protein allows visualizing the progression from
autophagosome (neutral pH) to autolysosome (with an acidic
pH) through the specific loss of the GFP fluorescence.
Interestingly, HC NSCs mainly showed a diffuse green signal
while NPA NSCs showed both punctuate GFP and RFP
fluorescence (yellow colocalization), suggesting
autophagosomes accumulation due to a decrease in

FIGURE 2 | c-Abl inhibition improves autophagy flux and decreases sphingomyelin accumulation in NPA neuronal models. (A) p-c-Abl levels were measured in
Neural Stem Cells (NSCs) extracts by Western blot. Images representative from four independent experiments are shown. Student’s t-test: *p < 0.05. (B) BODIPY-SM
staining indicates sphingomyelin accumulation. Fluorescent microscopic images of NPA NSCs treated imatinib 0.001 µM by 24 h. For each condition, n = 150 cells were
measured by experiment; three independent experiments were performed. Student’s t-test: **p < 0.01. (C) NPA NSCs expressing mRFP-GFP-LC3 were treated
with imatinib 0.001 µM by 24 h or vehicle. Graph shows the rate between RFP intensity and GFP intensity corresponding to autolysosomes. For each condition, n = 50
cells were measured by experiment; three different experiments were performed. Student’s t-test: *p < 0.05. (D) Primary neurons were 7 days in vitro, fixed, and
immunostained using anti-p-c-Abl Tyr412 antibody (red) and Hoechst staining for nucleus (blue). For each condition, n = 10–20 neurons were measured by experiment;
three independent experiments were performed. Student’s t-test: *p < 0.05. (E) Primary hippocampal neurons were treated with imatinib 5 µM by 24 h. Sphingomyelin
accumulation was analyzed by BODIPY-SM. For each condition, n = 10–20 neurons were measured by experiment; three independent experiments were performed.
ANOVA, Tukey post-hoc: ****p < 0.0001. In the box-and-whisker plots, the center line denotes the median value, edges are upper and lower quartiles and whiskers show
minimum and maximum values.
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autophagosome-lysosome fusion in NPA (Figure 2C).
Furthermore, the ratio between red intensity/green intensity
was significantly increased with imatinib treatment in
comparison to untreated NPA NSCs, suggesting that imatinib
increases autolysosome formation (Figure 2C) thereby inducing
autophagosome-lysosome fusion and increasing autophagy flux.

In addition, we analyzed c-Abl activation in primary cultures
of hippocampal neurons obtained from the NPA mouse model,
which was developed by the targeted deletion of the gene that
codifies ASM (Horinouchi et al., 1995). The NPA mouse model
(ASMKO; Smpd1−/−) does not have residual ASM activity and
exhibits progressive lipid storage in the reticuloendothelial (RES)
organs, as well as in the brain (McGovern et al., 2017). First, we
analyzed p-c-Abl levels by immunofluorescence from primary
neurons fromWT and NPA mouse embryos. We found that p-c-
Abl levels and nuclear localization were increased in NPA
primary neurons compared to WT neurons (Figure 2D;
Supplementary Figure S1D). Moreover, we also found that
imatinib treatment decreased sphingomyelin accumulation in
NPA primary neurons (Figure 2E; Supplementary Figure
S1E). These results show that c-Abl inhibition lowers

sphingomyelin accumulation and suggests that c-Abl
inhibition improves cellular clearance and autophagy flux in
neuronal NPA models.

Acute c-Abl Inhibition Decreases the
Neuronal Death in Cerebellum and
Improves Locomotor Function in NPA Mice
To evaluate the relevance of c-Abl activity in neurodegeneration,
we used the NPA mouse model described above, which exhibits
progressive degeneration of Purkinje neurons in the cerebellum,
gliosis, and demyelination (Otterbach and Stoffel, 1995). After we
confirmed that c-Abl is active throughWestern blot in the central
nervous system (CNS) in NPA mice (Figure 3A), we used an
acute and short treatment scheme to evaluate the neuronal
progression of NPA pathology. WT and NPA mice were
injected intraperitoneally (i.p.) daily with imatinib
(12.5 mg/kg) or vehicle from three until 7 weeks of age. The
Purkinje cells loss was followed by immunohistochemistry
analysis against calbindin. We found that the cerebellum of
NPA mice showed less calbindin staining than WT mice at

FIGURE 3 | Acute imatinib treatment decreases neuronal death in the cerebellum and improves locomotor function in NPA mice. (A) WT and NPA brain
homogenates (50 μg protein/lane) from mice at 4 weeks old were analyzed by Western blot. The graph shows quantifications of p-c-Abl levels normalized by GAPDH
and c-Abl levels. The number of animals was: WT = 3; NPA = 4; Student’s t-test: *p < 0.05. (B)WT and NPAmice were i.p. injected with imatinib (12.5 mg/kg) or vehicle
from 3 weeks of age until 7 weeks of age. The Purkinje neuron marker calbindin was analyzed by immunohistochemistry. A quantification of calbindin-
immunoreactive Purkinje cell bodies in cerebellar sections is shown. (C) CD68 marker was evaluated by immunofluorescence analysis in the cerebellum from WT and
NPAmice. For (B,C), the number of animals wasWT control = 3; NPA control = 5; NPA imatinib = 4. Images were taken with × 4 objective. ANOVA, Tukey post-hoc: *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 (D) Mice were treated for 4 weeks and motor coordination was assessed weekly by the hanging test. Data are shown as
mean ± SEM. ANOVA, Tukey post-hoc: *p < 0.05, NPA control is statistically different fromWT control and NPAwith imatinib. The following number of animals was used:
WT control = 11;WT imatinib = 10; NPA control = 8; NPA imatinib = 9. In the box-and-whisker plots, the center line denotes the median value, edges are upper and lower
quartiles, whiskers show minimum and maximum values and points are individual experiments.
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anterior lobules, specifically 4–5, indicating Purkinje neurons loss
(Figure 3B). This result is supported by previous studies that
show that the loss of Purkinje neurons starts from the anterior
lobes of the cerebellum and at older ages loss occurs in the
posterior lobes (Macauley et al., 2008). Interestingly, the NPA
mice treated with imatinib showed an increased calbindin
staining, suggesting an improvement in the survival of the
Purkinje neurons. A significant effect was found at lobules 4–5
(Figure 3B). Also, we evaluated the levels of the microglia marker
CD68 by immunofluorescence. The cerebellum of NPA mice
showed higher CD68 levels than the cerebellum of WT mice at
anterior lobes and imatinib treatment significantly decreased
CD68 positive cells specifically in lobules 4–5 compared to
NPA mice cerebellum (Figure 3C).

Furthermore, we evaluated coordination and locomotor skills
using the Hanging test (Voikar et al., 2002). We found that NPA
mice showed impairment of the locomotor function compared to
WT mice, whereas NPA mice treated with imatinib improved
locomotor function in comparison to control NPA mice
(Figure 3D). We did not find any difference in mice’s gain of
weight with the imatinib treatment (Supplementary Figure S4).

Chronic c-Abl Inhibition Treatment Delays
Locomotor Impairment in NPA Mice
Our data above show that c-Abl inhibition decreases neuronal death
in NPAmice at early ages. However, considering that NPAmice live
for approximately 11months, we decided to employ a longer,
chronic, and less invasive treatment approach. We treated the
animals with nilotinib and neurotinib-supplemented diets starting
at 3 weeks of age. Both neurotinib and nilotinib are c-Abl inhibitors
but these inhibitors have different mechanisms and brain
penetration. Nilotinib binds to the ATP binding cleft between the
N-terminal and C-terminal lobes, while neurotinib binds to an
allosteric pocket for myristate at the C-terminal lobe of the
kinase domain (Greuber et al., 2013; Wang, 2014). Nilotinib has
been used in clinical trials for different neurodegenerative
pathologies such as Parkinson’s disease (Abushouk et al., 2018;
Pagan et al., 2019) and Alzheimer’s disease (Turner et al., 2020).
Neurotinib is a new drug developed by our group in collaboration
with theNational Center for Advancing Translational Sciences at the
National Institutes of Health (NCATS-NIH) which has favorable
potency, selectivity, pharmacokinetics, and vastly improved central
nervous system permeability that reaches higher concentration in
the brain than nilotinib (Supplementary Figure S5B). The
pharmacokinetic characterization of neurotinib is shown in
Supplementary Figure S5. Animals were fed with a control diet
or diets supplemented with neurotinib (67 ppm; 10 mg/kg) and
nilotinib (200 ppm; 30mg/kg) from 3 weeks of age to 11months of
age. We observed that p-c-Abl protein levels are increased in the
cerebellum of control diet-treated NPA mice in comparison to WT
mice with the same diet, indicating c-Abl activation at 5 months of
age (Figure 4A). As we expected, diets supplemented with the c-Abl
inhibitors nilotinib and neurotinib decreased p-c-Abl levels,
suggesting that both treatments decreased c-Abl activation in the
central nervous system (Figure 4A). To address if c-Abl inhibition is
associated with an improvement in the locomotor function we

evaluated the locomotor skills of mice through the Hanging test
performed once a week from 4 weeks old until 11months of age
(Figure 4B). As expected, NPAmice fedwith a control diet showed a
significant and progressive impairment in locomotor function
compared to WT mice (Figure 4B). Mice treated with neurotinib
showed a modest delay in NPA-induced locomotor function
impairment until 20 weeks of age. After that, the deterioration
rate increased, similar to NPA mice treated with the control diet,
until the end of treatment (Figure 4B). Surprisingly, we found that
the NPA mice fed with the nilotinib supplemented diet maintained
the locomotor function until the end of the treatment, showing very
similar behaviour to WT mice.

The results were also analyzed by generating a deterioration
curve with Hanging test data, which shows the percent of mice
that score equal to or above three during treatment (a score less
than three indicates locomotor impairment) (Figure 4C). As we
expected, 100% of WT mice treated with the control diet had
equal or above score 3 until the end of the treatment.
Interestingly, 50% of NPA mice treated with the control diet
had a score of three or higher at 10 weeks of treatment, while in
the NPA mice treated with the neurotinib diet was at 21 weeks of
treatment. Altogether, these results show a shift in the curve to the
right for treatments with neurotinib and nilotinib, indeed the
effect was bigger with the latter c-Abl inhibitor. At the end of
treatment (46 weeks of treatment), 72% of NPAmice treated with
the nilotinib diet and 30% of NPA mice treated with the
neurotinib diet had a score 3 or higher. All of these analyses
suggest that c-Abl inhibitors supplemented diets improved
locomotor function and delayed deterioration, where nilotinib
showed a significant and stable effect throughout the entire
treatment (Figure 4C). NPA mice fed with control diet as well
as NPA mice treated with diets supplemented with the c-Abl
inhibitors showed similar loss of weight, starting around
5 months of age (150 days) (Supplementary Figure S6).

We next analyzed the histology of the cerebellum in mice at
5 months of age, after 4 months of treatment. We observed that the
NPA cerebellum is smaller than the WT cerebellum at this age,
indicating structural alterations in NPA mice. Furthermore, we
found an impressive and significant loss of Purkinje neurons,
followed by calbindin immunohistochemistry, at anterior and
posterior lobules in the NPA mice cerebellum (Figure 4D).
Interestingly, in accordance with our results using imatinib (acute
treatment), we found that NPA mice treated with the nilotinib
supplemented diet showed a significant increase in neuronal survival
at posterior lobules 7 and 8, whereas mice treated with a neurotinib
supplemented diet showed a trend for an increase in neuron survival
that was not significant. Interestingly, this correlates with a better
improvement in locomotor function with the nilotinib treatment
compared with the neurotinib treatment (Figure 4D).

Chronic c-Abl Inhibition Treatment
Improves Cognitive Decline and Decreases
Brain Neuronal Disorganization and Gliosis
in NPA Mouse Brains
Cerebellum damage in NPA disease has been well described,
however, less is known about the pathological changes in other
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CNS regions. A previous report shows that cortex and
hippocampus are affected in NPA pathology and associated
with impairment in learning and memory (Arroyo et al.,
2014). To asses the contribution of c-Abl in the cognitive
impairment, we performed the Memory flexibility test, which

is a modified Morris water maze test (Chen et al., 2000; Vorhees
and Williams, 2006; Toledo and Inestrosa, 2010) in NPA mice at
7 months of age. The number of trials to reach the platform was
used to evaluate cognitive function. As we expected, we found
that NPA mice treated with control diet took significantly more

FIGURE 4 |Chronic c-Abl inhibition treatment delays locomotor impairment in NPAmice. WT and NPAmice received nilotinib (200 ppm; 30 mg/kg) and neurotinib
(67 ppm; 10 mg/kg) supplemented diets or control diet starting at p21 until 11 months of age. (A) p-c-Abl protein levels were evaluated in cerebellum homogenates from
WT and NPA mice of 5 months of age by Western blot. The number of animals was three by condition. ANOVA, Tukey post-hoc:*p < 0.05. (B)Motor coordination was
assessed weekly by the Hanging test. Data are shown as mean ± SEM. ANOVA, Tukey post-hoc: ****p < 0.0001; NPA control is statistically different from WT
control and nilotinib NPA. (C) Deterioration curve of mice was performed using percent of mice with a score equal to or above 3. For (B,C), the following number of
animals was used: WT control (Ctrl) = 10; NPA control (Ctrl) = 10; NPA nilotinib (Nilo) = 11; NPA neurotinib (Neuro) = 10. (D) Purkinje neuron marker Calbindin was
analyzed by immunohistochemistry. Calbindin intensity was quantified. A representative image by condition is shown (n = 3 mice/group). Images were taken with × 2
objective. ANOVA, Tukey post-hoc: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. In the box-and-whisker plots, the center line denotes the median value, edges are
upper and lower quartiles, whiskers show minimum and maximum values and points are the number of animals used.
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FIGURE 5 | Chronic c-Abl inhibition treatment improves cognitive decline and decreases brain neuronal disorganization in NPA mice. WT and NPA mice received
nilotinib (200 ppm) and neurotinib (67 ppm) supplemented diets or control diet starting at p21 until 7 months of age. (A) Memory flexibility test was used to evaluate
cognitive functions. Graphs show the number of trials every day during the test (A) and the average among 4 days of test (B). The number of animals was: WT control
(Ctrl) diet = 4; WT nilotinib (Nilo) diet = 5; WT neurotinib (Neuro) diet = 6; NPA control diet = 6; NPA nilotinib (Nilo) diet = 5; NPA neurotinib (Neuro) diet = 5. ANOVA,
Tukey post-hoc: *p < 0.05; **p < 0.01; ***p < 0.001 (C) Coronal sections of WT and NPA brain were stained with anti-NeuN antibody and 3,39-diaminobenzidine as
chromogen. The rectangles in the first photo indicate where the magnification shown in the following photos comes from. Arrows point to actual discontinuities. Graph
bars indicating discontinuity differences between WT and NPA mice with treatment in hippocampal subfields CA1, CA2, and CA3. Data are shown as the number of

(Continued )
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trials to learn where the platform is, in comparison to WT mice
during each day of testing (Figure 5A) or as an average of all days
(Figure 5B), confirming a cognitive impairment in NPA mice at
this age. Interestingly, NPA mice treated with a nilotinib
supplemented diet showed a tendency toward improved
cognitive function while the NPA mice treated with neurotinib
supplemented diet showed a significant improvement in
cognitive function in comparison to NPA mice treated with
control diet, producing results similar to WT mice. Therefore,
c-Abl inhibition improves cognitive functions of NPA mice and
these results suggest that neurotinib is a better treatment than
nilotinib for the cognitive alterations in NPA disease (Figure 5B).

After the memory flexibility test, mice were sacrificed and
examined for neuronal damage and changes in the neuronal
organization in the brain cortex and hippocampus. We stained
tissues for neuronal-specific markers, the DNA-binding protein
NeuN and the calcium-binding protein calbindin, which show
well-defined layers in the cortex and hippocampus structure.
NPA mice exhibited discontinuities in hippocampus zones CA1,
CA2, and CA3 using NeuN immunostaining. Quantitation of the
effect showed more discontinuities in the dorsal hippocampus of
NPA mice (Figure 5C). Moreover, calbindin staining of the
hippocampus from NPA mice also showed an increase of the
zone area with a decrease in calbindin staining, suggesting
structural disorganization and a decrease in number of
calbindin positive neurons in the CA1 zone (Figure 5D). In
addition, in the NPA mice cortex, the cell body of neurons was
significantly bigger than the cell body of neurons from WT mice
(Figure 5E). This correlated with a significant increase in Filipin
staining levels in the cortex from NPA mice, confirming
cholesterol accumulation in the NPA brain (Figure 5F).
Interestingly, discontinuities and disorganization decreased in
NPA mice treated with neurotinib and nilotinib supplemented
diets, suggesting that c-Abl inhibition restores proper structuring
and organization of the brain (Figures 5C,D). Additionally, c-Abl
inhibition using only neurotinib diet treatment decreased
neuronal cell body surface area and lipid accumulation,
supporting the participation of c-Abl activation in ALP
alterations (Figures 5E,F).

Previous studies have shown microglial activation in NPA
disease (Gabande-Rodriguez et al., 2019). As expected, we found
astrocyte and microglial activation in the cortex of NPA mice
(Figure 6A). Interestingly, we found that the treatment with
neurotinib reduced astrocyte activation, decreasing the size of
astrocytes in the brains of NPA mice treated with neurotinib

(Figure 6B; Supplementary Figure S1F). Moreover, we analyzed
the cell shape of microglia as an index of activation, as resting-
state microglia are ramified whereas activated microglia have an
amoeboid form. Treatment with neurotinib restored the
microglial shape in NPA brains, and the morphology of those
cells is similar to that observed in WT brains (Figure 6C;
Supplementary Figure S1G). These data show that c-Abl
inhibition using neurotinib reduces both astrogliosis and
microgliosis.

Altogether these results show that c-Abl inhibition decreases
Purkinje cell death in the cerebellum correlating with an
improvement in autophagy flux and locomotor function.
Furthermore, our results show that there is glial activation and
neuronal disorganization in NPA mice brains, which correlate
with impairment of the cognitive function. Treatment with c-Abl
inhibitors supplemented diets reduced these alterations
improving memory and locomotor function in NPA mice.
Our results strongly support the potential use of c-Abl
inhibitors for clinical treatment of NPA patients.

DISCUSSION

Our work represents the first demonstration that c-Abl kinase
plays an important role in neurodegeneration that is a hallmark of
NPA pathology and that c-Abl inhibition can improve
neurological decline of NPA mice. The major findings of this
work are the following: 1) c-Abl kinase is activated in several NPA
models; 2) In vitro NPA models show autophagy and lysosomal
alterations; 3) c-Abl inhibition induces autophagy flux and lowers
sphingomyelin accumulation in in vitro NPA models and 4)
c-Abl inhibition associates with a decrease in neuronal death,
brain neuronal disorganization, glial markers and with an
improvement in locomotor and cognitive functions in NPAmice.

We found an increase of p-c-Abl protein levels and an increase in
its nuclear localization in human NPA fibroblasts and NPA mouse
primary neurons. Interestingly, c-Abl nuclear localization has been
related to its pro-apoptotic functions, leading to cellular death (Wen
et al., 1996). c-Abl is a non-receptor tyrosine kinase that has different
biological functions depending on the cell type and can regulate
several pathways in response to different signals (Wang, 2014). It has
one nuclear export signal (NES) and three nuclear localization signal
(NLS) motifs in its C-terminus consistent with its cytoplasmic and
nuclear localization and its capacity to regulate gene expression
through c-Abl substrates such as the transcription factors p73 (Klein

FIGURE 5 | discontinuities/animal. The following number of animals was used: WT control = 4; NPA control = 4; NPA nilotinib = 3; NPA neurotinib = 4. ANOVA, Tukey
post-hoc: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (D) Coronal sections were stained with calbindin which is a member of the large EF-hand family of calcium-
binding proteins. These staining methods evidenced well-defined layers in the cortex and hippocampus structure. Neuronal disorganization with a decreased number of
neurons is evident. The rectangles in the first photo indicate where the magnification shown in the following photos comes from. Image representative is shown. The
following number of animals was used: WT control = 3; NPA control = 3; NPA nilotinib = 3; NPA neurotinib = 3. ANOVA, Tukey post-hoc: *p < 0.05; **p < 0.01; ****p <
0.0001. (E) Cortex neurons of the brains fromWT and NPA mice were stained with NeuN antibody and 3,39-diaminobenzidine as chromogen. The area of the neuronal
body was measured. 50 cells were measured by each mouse. The following number of animals was used: WT control (Ctrl) = 4; NPA control (Ctrl) = 3; NPA nilotinib = 3;
NPA neurotinib = 4. ANOVA, Tukey post-hoc: *p < 0.05; **p < 0.01. (F) Slices were stained with Filipin staining to evaluate lipid accumulation. The following number of
animals was used: WT control (Ctrl) = 3; NPA control (Ctrl) = 3; NPA nilotinib = 3; NPA neurotinib = 3. Image representative. ANOVA, Tukey post-hoc: *p < 0.05; ****p <
0.0001. Scale bar = 50 μm. In the box-and-whisker plots, the center line denotes the median value, edges are upper and lower quartiles, whiskers show minimum and
maximum values and points are individual experiments.
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et al., 2011), TFEB (Contreras et al., 2020) and histone deacetylase
HDAC2 (Gonzalez-Zuniga et al., 2014). Therefore, it is possible that
in the NPA pathology the c-Abl kinase activation affects the
expression of different genes. This possibility deserves further
investigation.

c-Abl has been reported to be activated in other lysosomal
and/or neurodegenerative diseases, including NPC disease,
Gaucher disease (Yanez et al., 2021), Alzheimer’s, and
Parkinson’s disease (Alvarez et al., 2004; Alvarez et al., 2008;
Imam et al., 2011; La Barbera et al., 2021). Interestingly, NPC
disease is a lysosomal storage and neurodegenerative disorder
that shares several characteristics with NPA disease despite they

are caused by mutations in different genes (Yanez et al., 2020). In
NPC disease, the c-Abl signaling pathway impacts several of its
downstream targets, including the p73 transcription factor
(Alvarez et al., 2008), HDAC2 (Gonzalez-Zuniga et al., 2014;
Contreras et al., 2016), APP (Yanez et al., 2016) and TFEB
(Contreras et al., 2020). It would be interesting to study if
these signaling pathways are also activated and participate in
NPA pathological mechanisms. Thus, these diseases, which are
different in their etiology, could share a common mechanism for
neuronal death that involves activation of the c-Abl kinase.

It has been described that c-Abl kinase can be activated in
response to distinct types of cellular stress (Sun et al., 2000; Shaul

FIGURE 6 | Chronic c-Abl inhibition decreases glial activation in NPA mice. WT and NPA mice received nilotinib (200 ppm; 30 mg/kg) and neurotinib (67 ppm;
10 mg/kg) supplemented diets or control diet starting at p21 until 7 months of age. (A) Markers of astrocyte (GFAP) and microglia (Iba-1) were analyzed by
immunofluorescence in slices of brain from WT and NPA mice. Confocal images were obtained of the cortex for each condition. A representative image of the cortex is
shown in the first row; astrocytes (cyan hot), microglia (orange hot), and nucleus (grays). Representative images to visualize astrocyte and microglial shape are
shown in the second and third row, respectively. (B) Astrocyte area was measured from GFAP positive cells. For each condition, n = 10 cells were measured by animal;
three mice/group. ANOVA, Tukey post-hoc: **p < 0.01, ***p < 0.001. (C) Microglia shape was determined from Iba-1 fluorescence. For each condition, n = 5–10 cells
were measured by animal; three mice/group. ANOVA, Tukey post-hoc: **p < 0.01, ****p < 0.0001. In the box-and-whisker plots, the center line denotes the median
value, edges are upper and lower quartiles and whiskers show minimum and maximum values.
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and Ben-Yehoyada, 2005; Hopkins et al., 2012). However, the
upstream stimulus and mechanism that activates c-Abl kinase in
NPA disease remain unclear. The c-Abl kinase signaling activation
inNPCneurons has been linked to increments in ROS levels (Klein
et al., 2011). Interestingly, increased oxidative stress has also been
described in NPA disease (Perez-Canamas et al., 2017). On the
other hand, some studies suggest that c-Abl may be regulated in
different cellular contexts by lipids (Van Etten, 2003). Therefore,
there is a possibility that sphingomyelin or other lipids
accumulation could activate c-Abl kinase in NPA pathology.
Clearly, we have more to learn about the regulation of this
kinase. This is an interesting topic that remains to be elucidated.

As previously mentioned, we utilized several NPA models
including a pharmacological NPA model using desipramine
which induces functional inhibition of ASM. The ASM
enzyme is attached by electrostatic forces to the inner
lysosomal membrane, thereby being protected against
proteolysis. High concentrations of the protonated bases, such
as desipramine, disturb the binding of ASM to the inner
lysosomal membrane and result in detachment of ASM and
subsequent inactivation possibly involving proteolysis
(Kornhuber et al., 2010). However, considering desipramine is
a promiscuous tricyclic antidepressant (TCA), we cannot rule out
that part of the observed effect of c-Abl activation is produced
through other targets of desipramine. Nevertheless, it is
interesting that the ASM inhibition leads to c-Abl activation
indicating that lipids homeostasis alterations are related to c-Abl
regulation.

Autophagy is an important cellular process that eliminates
damaged proteins, dysfunctional organelles, and protein
aggregates, where lysosomes have a central role (Menzies
et al., 2017). Neurons are particularly affected by disruptions
of autophagy which are associated with many neurodegenerative
disorders (Nixon, 2013; Lee et al., 2016; Menzies et al., 2017). It
has been published that autophagy can be regulated by c-Abl
kinase (Hebron et al., 2013; Contreras et al., 2020; Karim et al.,
2020; La Barbera et al., 2021). Interestingly, we found that
activated c-Abl levels and autophagy markers are increased in
NPA cellular models. Furthermore, we found a high number of
autophagy p62 positive vesicles around the nucleus. Our results
are in accordance with what has been published before,
fibroblasts from NPA patients accumulate elongated and
unclosed autophagic membranes, as well as abnormally
swollen autophagosomes (Corcelle-Termeau et al., 2016).
Moreover, it has been described that autophagosome clearance
is delayed leading to the accumulation of vesicles in other similar
pathologies. For example, alterations in lysosomal function and
autophagy are tightly associated with neurodegeneration in NPC
disease (Liao et al., 2007) and other neurodegenerative disorders
such as Parkinson's disease (Garcia-Sanz et al., 2018), Gaucher
disease (Aflaki et al., 2016), and Alzheimer's disease (Cermak
et al., 2016), among others (Lee et al., 2016; Menzies et al., 2017).
In this sense, it has been described that lipid accumulation in
NPA could contribute to autophagosomes accumulation because
of autophagosome-lysosome fusion impairment (Li et al., 2014;
Corcelle-Termeau et al., 2016). Moreover, lysosomal membrane
permeabilization leading to the cytosolic release of lysosomal

enzymes, such as Cathepsin B, has been described in NPA
fibroblasts (Gabande-Rodriguez et al., 2014) and also in NPC
models by our group (unpublished results).

We found that NPA cells exhibit alterations in lysosomal
function and autophagy as well as c-Abl activation. Our
results suggest that both mechanisms are connected. We
observed that when c-Abl is inhibited, there is a decrease in
sphingomyelin accumulation, autophagy markers, and cellular
death. Also, we found that c-Abl inhibition increases
autophagosome-lysosome fusion suggesting the induction of
the autophagy flux. However, we can not rule out that c-Abl
inhibition could be affecting different processes and
characteristics related to lysosomes, such as membrane
permeability and function, among others. The mechanism and
how and what stage of autophagy flux could be regulated by c-Abl
is not fully understood. One option is that c-Abl could be
regulating gene expression through the transcription factor
TFEB (Contreras et al., 2020). Thus, it could be regulating
autophagy, lysosomal biogenesis, clearance, and exocytosis
(Can et al., 2011; Ren et al., 2018). Accordingly, we propose
that c-Abl inhibition is regulating different processes related to
lysosomes at the same time. This could explain the decrease in
sphingomyelin accumulation after 24 h of treatment with c-Abl
inhibitors observed in this work. This effect is similar to the effect
observed in NPC cells where c-Abl inhibition reduced cholesterol
accumulation (Contreras et al., 2020). Another option is that
c-Abl could phosphorylate some proteins related to the actin
cytoskeleton (Mitsushima et al., 2006) and autophagy proteins
such as beclin (Yu et al., 2020). This could directly affect the
formation of autophagy vesicles and/or their movement. As
mentioned, neurons are particularly affected by disruptions of
autophagy (Nixon, 2013). Therefore, an improvement in
autophagy could decrease neuronal death. This could
positively affect Purkinje neurons in the cerebellum,
hippocampal and cortical neurons in the brain, leading to a
decrease in neuronal death and an improvement in locomotor
and cognitive functions, respectively, in the NPA mouse.
Actually, we found that mice treated with injections of
imatinib show an increase in Purkinje neuron survival and a
decrease in CD68 signal associated with cerebellar inflammation
when c-Abl is inhibited. These results are similar to those
published in NPC mice with an imatinib treatment (Alvarez
et al., 2008). Here we also demonstrate a decrease in glial
activation in NPA mice treated with c-Abl inhibitors.
However, more studies are necessary to evaluate the effect of
c-Abl inhibition on autophagy flux and its connection with
neuronal death.

NPA mice live approximately 11 months, allowing us an
opportunity to study the effects of a prolonged, chronic
treatment using c-Abl inhibitors supplemented diets. This
strategy is less invasive and is closer to an oral treatment such
as that an NPA patient might receive. Also, a longer treatment
allowed us the opportunity to explore different brain areas that
could be involved in the impairment of other functions, such as
learning and memory in the NPA pathology. It has been well
described that the cortex and hippocampus in the brain are
involved in learning and memory (Miller, 2000; Preston and
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Eichenbaum, 2013; Opitz, 2014). Indeed, both areas before
mentioned are affected in NPA pathology consistent with the
impairment of the cognitive functions (Arroyo et al., 2014).
Chronic treatment was performed using nilotinib and
neurotinib supplemented diets. Imatinib was not considered
for chronic treatment because it has a low Blood-Brain Barrier
permeability (Wolff et al., 2003). Interestingly, we obtained
differential results with the supplemented diets. On the one
hand, our results show an outstanding improvement in the
locomotor function in NPA mice treated with the nilotinib
supplemented diet which correlates with an increase in
Purkinje neuron survival in the cerebellum. And on the other
side, we found a significant improvement in cognitive functions
in NPA mice treated with neurotinib that correlated with a
decrease in brain neuronal disorganization and gliosis in NPA
mouse brain. Considering these results, it would be interesting to
evaluate if a combined therapy has a synergistic effect.

The reasons that account for these differences between the
treatments with these two c-Abl inhibitors neurotinib and
nilotinib are not clear yet. Nilotinib is a classical c-Abl inhibitor
that has been used in other neurodegenerative pathologies such as
Parkinson’s disease (Pagan et al., 2019) and Alzheimer’s disease
(Turner et al., 2020). Neurotinib is a new c-Abl inhibitor that was
designed by our laboratory and the NCATS-NIH group. Nilotinib
and neurotinib present different c-Abl inhibition mechanisms.
Nilotinib binds to the ATP binding cleft between the N-terminal
and C-terminal lobes, while neurotinib binds to an allosteric pocket
for myristate at the C-terminal lobe of the kinase domain. In
contrast to nilotinib which targets multiple kinases, the allosteric
inhibitor neurotinib is highly selective for the c-Abl kinase. In
addition, it is important to mention that the diets supplemented
with the inhibitors were used with different concentrations: 67 ppm
(10mg/kg) for neurotinib, while 200 ppm (30mg/kg) was used for
nilotinib. Also, it is relevant that neurotinib has a better brain
penetration and remains more time than nilotinib in the brain
(Supplementary Figure S5B). Thus the concentrations of
neurotinib and nilotinib for efficacy experiments were chosen to
provide proper brain levels of the drug, where 200 ppm allows a
reasonable concentration of nilotinib in the brain. A possible
explanation for the differences in the observed results between
these two compounds is that 200 ppm of nilotinib would provide
better exposure toward the peripheral nervous system and muscle,
which has been described showing functional defects in NPA mice
(Michailowsky et al., 2019), while neurotinib distribute with better
efficacy toward the CNS. More experiments are required to better
understand pharmacokinetic to pharmacodynamic aspects of c-Abl
inhibition. Although we obtained promising results, we did not
observe an increase in the survival of NPA mice using a small
number of animals, unlike a recent paper published where the
authors found an increase in survival modulating the
endocannabinoid signaling (Bartoll et al., 2020). It is possible that
we need to increase the number of animals to obtain better results
but also it could be that an increase in survival requires an integral
effect including brain and peripheral organs.

Recent reports show that c-Abl inhibitors are being used in
clinical trials for different neurodegenerative pathologies, including
Parkinson’s disease (Abushouk et al., 2018; Pagan et al., 2019) and

other Dementias (Pagan et al., 2016), Huntington’s disease (Clinical
trial gov identifier NCT03764215) and Alzheimer’s disease
(NCT02947893) (Turner et al., 2020). Results in Parkinson’s
patients are promising because they show improvement in
locomotor function and decreased synuclein accumulation,
stimulating a new phase of this study (Pagan et al., 2019).

Considering these antecedents and our results, c-Abl is a
promising therapeutic target for NPA. Moreover, c-Abl
inhibitors are safe drugs that are well tolerated, with mild
secondary effects already approved by the FDA for the
treatment of chronic myeloid leukemia and another kind of
cancers. Altogether, our work opens new perspectives for
therapeutic interventions supporting the potential use of c-Abl
inhibitors for the clinical treatment of NPA patients.
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Erg25 Controls Host-Cholesterol
Uptake Mediated by
Aus1p-Associated Sterol-Rich
Membrane Domains in Candida
glabrata
Michiyo Okamoto1, Azusa Takahashi-Nakaguchi 1, Kengo Tejima2, Kaname Sasamoto1,
Masashi Yamaguchi 1, Toshihiro Aoyama3, Minoru Nagi4, Kohichi Tanabe5,
Yoshitsugu Miyazaki4, Hironobu Nakayama6, Chihiro Sasakawa1,7, Susumu Kajiwara2,
Alistair J. P. Brown8, Miguel C. Teixeira9 and Hiroji Chibana1*

1Medical Mycology Research Center, Chiba University, Chiba, Japan, 2School of Life Science and Technology, Tokyo Institute of
Technology, Yokohama, Japan, 3Department of Electronic and Information Engineering, Suzuka National College of Technology,
Suzuka, Japan, 4National Institute of Infectious Diseases, Tokyo, Japan, 5Department of Food Science and Human Nutrition,
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The uptake of cholesterol from the host is closely linked to the proliferation of pathogenic
fungi and protozoa during infection. For some pathogenic fungi, cholesterol uptake is an
important strategy for decreasing susceptibility to antifungals that inhibit ergosterol
biosynthesis. In this study, we show that Candida glabrata ERG25, which encodes an
enzyme that demethylates 4,4-dimethylzymosterol, is required for cholesterol uptake from
host serum. Based on the screening ofC. glabrata conditional knockdownmutants for each
gene involved in ergosterol biosynthesis, ERG25 knockdownwas found to decrease lethality
of infectedmice. ERG25 knockdown impairs the plasmamembrane localization of the sterol
importer Aus1p, suggesting that the accumulated 4,4-dimethylzymosterol destabilizes the
lipid domain with which Aus1p functionally associates. ERG25 knockdown further influences
the structure of the membrane compartment of Can1p (MCC)/eisosomes (ergosterol-rich
lipid domains), but not the localization of the membrane proteins Pma1p and Hxt1p, which
localize to sterol-poor domains. In the sterol-rich lipid domain, Aus1p-contining domain was
mostly independent of MCC/eisosomes, and the nature of these domains was also different:
Ausp1-contining domain was a dynamic network-like domain, whereas the MCC/
eisosomes was a static dot-like domain. However, deletion of MCC/eisosomes was
observed to influence the localization of Aus1p after Aus1p was transported from the
endoplasmic reticulum (ER) through the Golgi apparatus to the plasma membrane. These
findings suggest that ERG25 plays a key role in stabilizing sterol-rich lipid domains,
constituting a promising candidate target for antifungal therapy.

Keywords: pathogenicity, plasma membrane, C4-sterol methyl oxidase (SMO), virulence factor, opportunistic
pathogen, non-albicans, membrane compartment, micro domain
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INTRODUCTION

Ergosterol is a significant component of the plasma membrane
in fungi and protozoa, and its biosynthetic pathway has been
successfully used as target in antifungal therapy. However,
some pathogenic fungi and protozoa, such as Candida
glabrata, Aspergillus fumigatus, and Trypanosoma brucei,
have the ability to scavenge cholesterol from host-serum
and utilize it as a surrogate for ergosterol (Coppens and
Courtoy, 2000; Bard et al., 2005; Xiong et al., 2005;
Nakayama et al., 2007; Nagi et al., 2013). Therefore, there is
concern that the uptake of host cholesterol may decrease the
susceptibility of these pathogens to antifungal drugs that target
ergosterol biosynthesis. Elucidating the molecular
mechanisms of cholesterol uptake will facilitate the
development of more effective treatments for these fungal
and protozoa infections.

Among pathogenic yeast, C. glabrata constitutes one of the
organisms in which host-cholesterol uptake has been identified.
C. glabrata also has been the focus of research as an
opportunistic pathogen, since this fungus causes severe
invasive infections associated to high mortality rates
(Kullberg and Arendrup, 2015). C. glabrata is evolutionarily
much closer to the non-pathogenic yeast Saccharomyces
cerevisiae than is Candida albicans, the other well-
characterized and common candida species. Almost 90% of
C. glabrata genes demonstrate inferred orthology to S. cerevisiae
genes (Lelandais et al., 2008), suggesting a strong conservation
of physiology between these two species. S. cerevisiae can take
up external cholesterol, but this process occurs only under
anaerobic conditions or in cells with defects in heme
biosynthesis, a situation that can mimic anaerobic conditions
(Lorenz et al., 1986; Lorenz and Parks, 1991; Shianna et al.,
2001; Vik and Rine, 2001). On the other hand, C. glabrata can
take up cholesterol from serum even under aerobic conditions
(Nagi et al., 2013). Therefore, C. glabrata appears to be an
appropriate tool for investigating the molecular mechanism of
host-cholesterol uptake.

C. glabrata displays intrinsically low susceptibility to azole
drugs, like fluconazole, that target ergosterol biosynthesis,
specifically inhibiting lanosterol 14-demethylase (Erg11p)
activity. The expression of ERG11, of the transcription
factor encoding gene PDR1 and of its targets CDR1, CDR2
and SNQ2, encoding multidrug transporters, is increased upon
treatment with fluconazole (Henry et al., 2000; Sanglard et al.,
2009; Vu et al., 2019), resulting in decreased susceptibility to
azoles. In addition, the expression of some Drug:H+

Antiporters of the Major Facilitator Superfamily, MFS, has
also been associated with decreased azole susceptibility (Costa
et al., 2014; Cannon and Holmes, 2015). In C. glabrata, the
ATP-binding cassette transporter Aus1p has been shown to
mediate cholesterol uptake, its expression being activated by
Upc2A, a transcriptional activator of ergosterol biosynthesis
genes (Nakayama et al., 2007). Interestingly, the expression of
PDR1 and CDR1 is also dependent on Upc2A (Vu et al., 2019).
The expression of AUS1 is upregulated in the presence of

fluconazole and aus1Δ cells are highly susceptible to
fluconazole even in the presence of serum (Nagi et al.,
2013). Furthermore, deletion of AUS1 leads to reduced
proliferation in mice (Nakayama et al., 2007; Nagi et al.,
2013) and its expression is upregulated in response to
serum or iron-poor environments, as would occur in the
bloodstream of hosts (Nagi et al., 2013). Thus, Aus1p-
mediated cholesterol uptake may play an important role in
fungal infections, especially in bloodstream infections by C.
glabrata. The detergent resistant membrane domains (DRMs)
are resistant to extraction with low-temperature nonionic
detergents, and sterol and sphingolipid-enriched. DRMs
were used to explain protein-lipid interactions (Shogomori
and Brown, 2003; Lichtenberg et al., 2005). Recently, DRMs
have been used less as an experimental material to reflect the
Lipid raft concept in cell membranes (Lingwood and Simons,
2010), however they can be easily tailored to examine the
lateral association between the plasma membrane proteins
and lipids. In S. cerevisiae, Aus1p has been reported to
associate with DRMs (Gulati et al., 2015), but in C.
glabrata, the association of CgAus1p with DRMs remains
speculative.

Can1p (arginine permease) and Pma1p (H+-ATPase) have
been shown to be compartmentalized into distinct types of
domains within the plasma membrane of S. cerevisiae:
membrane compartment of Can1p (MCC) and membrane
compartment of Pma1p (MCP), respectively. They appear
microscopically to have a non-overlapping distribution with
distinct patterns; the MCP domains have a network-like
pattern, while the MCC domains have a punctate pattern
(Malínská et al., 2003). Thus, the distribution of these
proteins shows that the plasma membrane is not composed
of a uniform arrangement of proteins and lipids, but rather a
patchwork of domains with different compositions of proteins
and lipids (Spira et al., 2012). TheMCC has been suggested to be
enriched in ergosterol (Grossmann and Malinsky, 2007), while
the MCP has been suggested to be enriched in sphingolipids
(van ’t Klooster et al., 2020). The MCC corresponds to specific
membrane invaginations that have been termed eisosomes
(Strádalová et al., 2009). In pathogenic fungi, MCC/
eisosomes appear to be functionally important, given that the
deletion of eisosome-associated protein encoding genes leads to
defects in cell wall synthesis, in the formation of invasive hyphal
filaments, and in virulence in a murine model of C. albicans
infection (Douglas et al., 2012, 2013; Li et al., 2015; Wang et al.,
2016).

In this study, we screened a set of knockdown mutants in
ergosterol biosynthetic genes (ERG1, ERG7, ERG11, ERG25,
ERG26, and ERG27) to identify new players in cholesterol
uptake in vitro and in vivo. Based on the observation that
growth defects imposed by ERG25 or ERG26 knockdown are
not rescued by the presence of serum, new insights into
cholesterol uptake in C. glabrata were obtained. The role of
the demethylation of 4,4-dimethylzymosterol by Erg25p in
host-cholesterol uptake, mediated by Aus1p-associated
membrane domains is scrutinized.
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MATERIALS AND METHODS

Strains and Media
Yeast strains used in this study are listed in Table 1. Yeast cells
were grown in rich medium (YPD; 2% peptone, 1% yeast extract,
2% glucose) or minimal medium (SD; 0.17% yeast nitrogen base
without amino acids and ammonium sulfate, 2% glucose, 5%
ammonium sulfate, and appropriate amino acids) at 30 or 37°C.
Bovine serum (Sigma-Aldrich, MO, United States) was added to
the medium to a final concentration of 10%. Media
supplementation with 20 μg/ml doxycycline (Dox) was used to
repress gene expression in Tet-off strains.

Strain Construction
To construct Tet-off strains, ERG11, ERG25 or PIL1 deletion
strain, each DNA cassette was amplified by polymerase chain
reaction (PCR) using the primers listed in Supplementary Table
S1 and plasmid pTK916-97t (Ueno et al., 2010), pTK916-99t
(Niimi et al., 2012), pCgHIS906 containing CgHIS3, or pBM16.1
containing NAT1 gene (Zordan et al., 2013) as a template. The
resulting products were transformed into HETS202 cells,
KUE100, or CBS138. Bovine serum was added to the selection
medium for the construction of Δerg11 cells to maintain the
growth of cells, and bovine serum and fluconazole were added for
the construction of Δerg25 cells. Transformed cells were screened
by colony PCR to verify that the tetracycline-dependent down-
regulatable promoter had been inserted upstream of each target
gene in the parent strain. Transformation and colony PCR
methods were described in our previous report (Ueno et al.,
2011). Strains expressing Aus1p-GFP, Hxt1p-mCherry, or Pil1p-
mCherry were constructed using a PCR-based method with an
integrative cassette. The cassette for tagging Aus1p with GFP was
amplified using primers pAUS1F′ and pAUS1R’ (Supplementary
Table S1) and genomic DNA derived from the UTHaus1Δ/
AUS1-GFP strain (Nagi et al., 2013) as template. GFP-ScURA3
was inserted into the downstream end of AUS1 via homologous

recombination. To tag Hxt1p with mCherry, Fragment 1
(encoding mCherry-natNT2) was amplified using primers
pFA6aF and pFA6aR and plasmid pFA6a-mCherry-natNT2
(Okamoto et al., 2012) as template. Fragment 2, containing
the downstream end of the HXT1 open reading frame (ORF),
was amplified using primers HXT1F1 and HXT1R and C.
glabrata genomic DNA of HETS202 as template. Fragment 3,
containing sequences downstream of the HXT1 ORF, was
amplified using primers HXT1F2 and HXT1R2 and C.
glabrata genomic DNA as template. Fusion PCR was carried
out using primers HXT1F1 and HXT1R2 and Fragments 1, 2, and
3 as templates, and then sequences encoding mCherry-natNT2
were inserted into the downstream end of the HXT1 ORF by
homologous recombination. The strains expressing Pil1p-
mCherry or Pma1p-mCherry were constructed using the
aforementioned cassette, derived from each of following
primers (pFA6aF, pFA6aR, PIL1F1, PIL1R1, PIL1F2, and
PIL1R2) or (pFA6aF, pFA6aR, PMA1F1, PMA1R1, PMA1F2,
and PMA1R2), and using the same PCR method as employed for
the mCherry-tagging of Hxt1p. Insertion of these cassettes into
transformed cells was verified by colony PCR.

qRT-PCR
Cells were grown in minimal medium at 37°C overnight. This
overnight pre-culture was used to inoculate a fresh culture at a
density of 1 × 107 cells/ml in minimal medium in the presence or
absence of 20 μg/ml Dox; the resulting culture was incubated at
37°C for 4 h with shaking. Cells then were collected by
centrifugation and washed twice with sterile distilled water at
4°C. Total RNA was extracted using the RNeasy Mini extraction
kit (Qiagen, Hilden, Germany). cDNA was synthesized from the
total RNA using ReverTra Ace and random primers (Toyobo,
Osaka, Japan). The amount of RNA for each gene was determined
by quantitative real-time PCR (qRT-PCR) on a LightCycler® 96
System (Roche Diagnostics, Mannheim, Germany) with SYBR
Green detection using the Thunderbird SYBR qPCR mix

TABLE 1 | List of strains used in this study.

Strain Parent: Modified genotype References

ACG4 2001HT: his3 trpl PScHOPZ-tetR-GAL4AD::TRP1 (Nakayama et al., 1998)
HETS202 ACG4: FRT-YKU80 (Ueno et al., 2007)
KUE100 his3 yku80::SAT1 flipper (Ueno et al., 2007)
Tet-ERG1 HETS202: tet97p-ERG1::CgHIS3 This study
Tet-ERG7 ACG4: tet97p-ERG7::CgHIS3 This study
Tet-ERG11 ACG4: tet99p-ERG11::CgHIS3 This study
Tet-ERG25 HETS202: tet99p-ERG25::CgHIS3 This study
Tet-ERG26 HETS202: tet97p-ERG26::CgHIS3 This study
Tet-ERG27 ACG4: tet97p-ERG27::CgHIS3 This study
Δerg11 KUE100: ERG11::CgHIS3 This study
Δerg25 CBS138: ERG25::NATR This study
Tet-ERG25 Aus1G Tet-ERG25: AUS1-GFP ScURA3 This study
WT_Aus1G HETS202: AUS1-GFP::ScURA3 This study
WT_Aus1G/Pma1R HETS202: AUS1-GFP::ScURA3, PMA1-mCherry::natNT2 This study
Tet-ERG25_ Aus1G/Hxt1R Tet-ERG25: AUS1-GFP::ScURA3, HXT1-mCherry:: natNT2 This study
WT_Aus1G/Pil1R HETS202: AUS1-GFP::ScURA3, PIL1-mCherry::natNT2 This study
Tet-ERG25_Aus1G/Pil1R Tet-ERG25: AUS1-GFP:ScURA3, PIL1-mCherry::natNT2 This study
Tet-ERG25 pil1Δ_Aus1G Tet-ERG25: ΔC::NATR AUS1-GFP::ScURA3 This study
Tet-ERG26_ Aus1G/Hxt1R Tet-ERG26: AUS1-GFP::ScURA3, HXT1-mCherry:: natNT2 This study
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(Toyobo). Transcript levels were normalized to that of TEF1, a
housekeeping gene that encodes elongation factor 1. PCR
conditions were as follows: pre-denaturation at 95°C for 1 min,
followed by 40 cycles of denaturation at 95°C for 15 s and
annealing/extension at 60°C for 1 min.

Assay of NBD-Cholesterol Uptake
Cells were grown to early exponential phase in minimal medium
and then subcultured for 17 h in minimal medium containing
10% (v/v) bovine serum, 0.1% (w/v) Tween 80, and 5 μg/ml
NBD-cholesterol (25-[N-[(7-nitro-2-1,3-benzoxadiazol-4-yl)
methyl]amino]-27-norcholesterol; Avanti Polar Lipids, AL,
United States) with or without Dox (20 μg/ml). Following
culturing, the cells were washed twice with ice-cold
phosphate-buffered saline (PBS) containing 0.5% (w/v)
Nonidet P-40 and then once with PBS; the resulting pellet
was resuspended in PBS. The cells were observed using a
fluorescence microscope equipped with an NIBA filter (BX53;
Olympus, Tokyo, Japan), and fluorescence intensity was
quantified by flow cytometry (FACSVerse; Becton Dickinson,
NJ, United States). Cells (1 ml volume of cells suspended in PBS)
were pre-stained by the addition of propidium iodide (1 µl of a
1-mg/ml solution) to exclude dead cells from the analysis. Flow
cytometry was performed as described previously (Marek et al.,
2014). Cells cultured without NBD-cholesterol were analyzed as
a control.

DRM Isolation and Immunoblotting
Cells were grown to logarithmic phase at 37°C in minimal
medium containing 10% serum and 0.05% Tween 80 and
incubated for 5.5 h after addition of 20 μg/ml Dox. Upon
reaching an optical density at 600 nm (OD600) of 20, the
cells were treated with 10 mM NaN3 and resuspended in
TNE buffer (25 mM Tris-HCl [pH 7.5], 150 mM NaCl, and
5 mM EDTA) containing complete protease inhibitor cocktail
(Sigma-Aldrich) and 1 mM PMSF. Cells were disrupted with
glass beads using a Multi-beads Shocker (Yasui Kikai, Osaka,
Japan). Debris and unbroken cells were removed by
centrifugation for 5 min at 500× g. After incubation with
1% Triton X-100 (Sigma-Aldrich) for 30 min on ice, 840 µl
of Optiprep solution (Alere Technologies AS, Oslo, Norway)
was added to the lysate (420 µl) for a final Optiprep
concentration of 40%, and the lysate was placed in a
centrifuge tube. The sample was sequentially overlaid with
2.0 ml of 30% Optiprep (in TNE plus 0.1% Triton X-100) and
330 µl of TNE buffer containing 0.1% Triton X-100. The tube
then was subjected to Optiprep density gradient flotation by
centrifugation for 3.5 h at 35,000 rpm (168,000 g) in a P40ST
rotor with a 4S13 adapter (Eppendorf Himac Technologies,
Ibaraki, Japan) at 4°C. After centrifugation, 7 fractions of
equal volume were collected starting from the top. Proteins
in each fraction were precipitated with trichloroacetic acid
(TCA) and resuspended in sample buffer. After incubation at
37°C for 10 min, the samples were resolved by 7.5% SDS-
PAGE, transferred to a PVDF membrane (Immobilon-P,
Merck Millipore, MA, United States), and subjected to
western blotting. Western blotting was carried out using

JL-8 anti-GFP monoclonal antibody (Clontech Laboratories,
CA, United States) or anti-Pma1p polyclonal antibody (sc-
33735, Santa Cruz Biotechnology, TX, United States).

Fluorescence Microscopy Analyses
The fluorescence microscopic images were observed with a BZ-9000
(Keyence, Osaka, Japan) equipped with a 100x oil-immersion
objective lens or an Axio Observer Z.1 (Carl Zeiss, Jena,
Germany) equipped with a 100x oil-immersion objective and a
CMOS camera (Touptec photonics, Hangzhou, China). Basically,
images were acquired with 1 s exposure. Confocal microscopy
images were detected with a Stellaris 5 (Leica Microsystems,
Wetzlar, Germany) equipped with a 100x objective lens and
processed by lightning deconvolution on LAS X software. FM4-
64 (FUJIFILMWako Pure Chemical corporation, Osaka, Japan) was
used to stain the vacuolar membrane. The cells expressing Aus1p-
GFP were grown exponentially at 37°C in serum-containing SD
medium and further incubated with or without Dox for 1 h. The
FM4-64 stock solution (1.6 µM in DMSO) was added at a final
concentration of 10 µM. After 30min of incubation, cells were
washed and further incubated with or without Dox for 1.5 h. To
examine sterol localization, cells co-expressing Aus1p-GFP and
Pma1p-mCherry were incubated with 5 μg/ml filipin
(Polysciences, PA, United States) for 5 min at 30°C. After three
rinses with PBS, the stained cells were observed by confocal
fluorescence microscopy using excitation wavelengths of 405 nm
for filipin, 488 nm for GFP, and 568 nm for mCherry. The
brightness and contrast of images were adjusted with Fiji/ImageJ
software (Schindelin et al., 2012). The EzColocalization plug-in was
used for colocalization analysis and the assessment of Pearson’s
correlation coefficient.

Sterol Analysis
Cells were incubated under the conditions described above for the
isolation of DRMs. After quantification of total protein using the
Bradford method, DRMs were isolated by Optiprep density
gradient flotation. Sterols were analyzed using GC. After
cultivation, cells were harvested and freeze-dried to determine
dry weight, and dried cells were resuspended in 4 ml of methanol.
Following addition of an internal standard, 5-α-cholestane was
added at 2 μg/g cell dry weight, and the cells were homogenized
on ice for 10 min using a Hom-100 subsonic homogenizer (AGC
Techno Glass, Shizuoka, Japan). The cell homogenate was
transferred to a new tube, and 20% (w/w) solid KOH was
added. The mixture then was vortexed until the KOH was
completely dissolved. Lipids in DRMs were saponified at 85°C
for 2 h. After the saponified mixture was cooled to room
temperature, 4 ml of hexane and 1 ml of distilled water were
added to extract alkali-stable lipids. After washing with 4 ml of
distilled water, the extract was dried and then trimethylsilylated
in pyridine at 70°C for 1 h using N,O-bis (trimethylsilyl)
trifluoroacetamide (Tokyo Chemical Industry, Tokyo, Japan).
After cooling to room temperature, the trimethylsilylated
sterols were analyzed by GC (GC-18A, Shimadzu, Kyoto,
Japan) using a 0.25 mm × 30 m Rtx-35MS column (Restek
Corp., PA, United States) under the following conditions: the
initial column temperature of 300°C was maintained for 1 min,
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increased to 310°C at a rate of 10°C/min, and then maintained at
310°C for an additional 10 min. Trimethylsilylated sterols were
detected by reference to pure substances; otherwise, sterols were
identified by Shimadzu Corporation using GC-MS analysis.

Electron Microscopy
Tet-ERG25 cells were pre-grown to exponential phase in minimal
medium, and then inoculated to minimal medium containing serum
with or without Dox. After 17 h, cells were collected by brief
centrifugation and snap-frozen with melting propane in liquid
nitrogen. Samples were freeze-substituted in OsO4-acetone at
−80°C for 4 days and embedded in epoxy resin. Ultrathin sections
were cut to a thickness of 70 nm, stained with uranyl acetate and lead
citrate, covered with Super support film (Nisshin EM, Tokyo, Japan),
and observed using a JEM-1400 electron microscope (JEOL, Tokyo,
Japan). The surface density of furrow-like invaginations was
calculated from electron micrographs using the Fiji/ImageJ software.

Animal Infections
Male mice (6 weeks old, 19–24 g each, BALB/c; purchased
from Oriental Yeast, Japan) were immunosuppressed by
intraperitoneal injection of cyclophosphamide in saline (at
150 mg/kg body weight) 5 days before and 3 days before the
infection, and every 3 days post-infection (dpi) until 27 dpi.
Each group consisted of 14 mice. Mice were provided 5% (w/v)
sucrose solution with or without Dox (10 mg/ml) as drinking
water from 4 days prior to the injection until the end of the in-
life interval. In the Dox-treated group, mice were injected
intraperitoneally with Dox in PBS at a dose of 300 mg/kg body
weight every 3 dpi. Mice were infected with 2 × 107 C. glabrata
yeast cells in 200 µl of saline via tail vein injection. The mice
experiments were performed strictly according to the
guidelines of the Animal Care and Use Committee of Chiba
University, Japan, which follows the NIH “Guide for the Care
and Use of Laboratory Animals”.

FIGURE 1 | ERG genes and the effects of knockdown. (A) Biosynthetic pathway from squalene to ergosterol, including genes, enzymes, and metabolic
intermediates. Twelve genes encode enzymes of the ergosterol biosynthetic pathway in S. cerevisiae; the six genes in red are essential for growth in S. cerevisiae, in the
absence of exogenous ergosterol. The chemical structures of ergosterol and 4, 4-dimethylzymosterol are indicated in the boxes to the right. (B) Effect of serum
supplementation in cells subjected to gene repression.Wild-type (HETS202) and Tet-ERG cells in which the indicated ERG genes are knocked down by Dox diluted
to OD600 (an optical density at 600 nm) of 0.5 in water. The diluted cells were spotted in 4-fold serial dilutions as indicated by triangles on agar plates of minimal medium
(SD), SD containing 20 μg/ml Dox (SD + Dox), or SD containing 20 μg/ml Dox and 10% serum (SD + Dox + Serum), and incubated for 24 h at 37°C. The experiment was
conducted three times. (C) Survival rate of mice after infection with Tet-ERG25 cells. As shown in the flowchart (upper panel), mice were dosed with 150 mg/kg body
weight of cyclophosphamide (CPA) 3 and 5 days before the infection, and every 3 days after infection until the end of the experiment. The mice also were injected
intraperitoneally with Dox in PBS (300 mg/kg body weight) every 3 days starting 1 day before the infection and also provided with drinking water containing Dox (10 mg/
L) from starting from 4 days before infection. Log-phase Tet-ERG25 cells (2 × 107 yeast cells/animal) were administered to mice by tail vein injection. Red and blue lines
indicate the survival rates of mice for the Dox-treated and Dox-untreated groups, respectively (n = 14 each). Vertical and horizontal axes indicate percentage of mice still
alive and days after infection, respectively. p values were calculated using the log-rank (Mantel-Cox) test.
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RESULTS

ERG25 is Required for Candida glabrata
Serum-Dependent Growth In Vitro and for
Lethality in Infected Mice
Among the ergosterol biosynthetic (ERG) genes, encoding
enzymes for the conversion of squalene to ergosterol, six are
essential for the growth in Saccharomyces cerevisiae in the
absence of exogenous ergosterol (Figure 1A) (Giaever et al.,
2002). The orthologous genes in C. glabrata include: CgERG1
(CAGL0D05940g), CgERG7 (CAGL0J10824g), CgERG11
(CAGL0E04334g), CgERG25 (CAGL0K04477g), CgERG26
(CAGL0G00594g), and CgERG27 (CAGL0G00594g). The
deletion of each ERG gene results in the accumulation of
individual sterol intermediates that are structurally distinct
from ergosterol. To investigate whether these various
intermediates may cause differences in the effects of
cholesterol uptake on growth defects, we constructed
conditional knockdown mutants (Tet-ERG) by replacing each
promoter with a tetracycline-repressible (Tet-off) promoter
(Supplementary Figure S1A). This Tet-off system is a useful
tool for functional analysis of essential genes, since gene
expression can be knocked down by the addition of
tetracycline both in vitro and in vivo (Nakayama et al., 1998;
Nakayama et al., 2000). We then checked the resulting Tet-ERG1,
Tet-ERG7, Tet-ERG11, Tet-ERG25, Tet-ERG26, and Tet-ERG27
strains for their ability to grow in serum-supplemented medium.
In each strain, the transcription of the corresponding gene was
markedly knocked down in the presence of doxycycline (Dox)
(Supplementary Figure S1B). Although Tet-ERG11 and Tet-
ERG27 cells grew slightly in minimal (SD) medium containing
Dox, these Tet-off strains exhibited a clear growth defect
compared to the wild type cells (Figure 1B). Supplementation
with serum permitted the Tet-ERG1, Tet-ERG7, Tet-ERG11, and
Tet-ERG27 cells to grow in the presence of Dox. In contrast, Tet-
ERG25 and Tet-ERG26 cells grown in the presence of Dox were
not rescued by the addition of serum. Furthermore, to confirm
whether the effect of knockdown by the Tet-off system on growth
strictly reflects the effect of gene disruption, we performed the
deletion of ERG11 and ERG25. Similar to the knockdown of
ERG11, Δerg11 cells displayed growth defect in minimal medium,
and its growth defect was recovered by the addition of serum
(Supplementary Figure S2). On the other hand, Δerg25 cells
could grow in minimal medium containing serum when Erg11p,
which is an upstream enzyme of Erg25p, was inhibited by
fluconazole, but not in serum-free medium. ERG25 encodes C-
4 methyl sterol oxidase and ERG26 encodes C-3 sterol
dehydrogenase; together, the two enzymes catalyze a sequence
of reactions that convert 4,4-dimethylzymosterol to zymosterone
(Figure 1A). To clarify why cholesterol uptake did not rescue the
growth defect caused by the inhibition of these demethylation
steps, further analysis was performed using Tet-ERG25 cells. We
investigated the requirement of Erg25p in blood-stream infection
by examining the survival rate of mice administered Tet-ERG25
cells by tail vein injection. Because Candida causes an
opportunistic infection, the infected host mice were

immunosuppressed with cyclophosphamide prior to infection.
The mice were infected with Tet-ERG25 cells and fed Dox to
repress ERG25 expression, as described in the Materials and
Methods. In the group of mice not receiving Dox, survival
decreased rapidly after the 11th day post-infection (dpi). In
contrast, all mice receiving Dox survived until, at least, the
30th dpi (Figure 1C). The apparent difference in survival rates
between the two groups was statistically significant (p < 0.001),
revealing that ERG25 knockdown reduces the lethality of mice
infected with C. glabrata.

ERG25 Knockdown Leads to Decreased
Cholesterol Uptake and Mis-Targeting of
the Cholesterol Transporter Aus1p
To examine whether cholesterol uptake was functional in ERG25
knockdown cells, we assessed the uptake of NBD-cholesterol,
which is a fluorescently tagged analog of cholesterol, by
fluorescence microscopy (Figure 2A). In wild-type and Tet-
ERG11 cells grown in the absence of Dox, NBD-cholesterol is
detected as clear intracellular punctate structures. Previously,
these punctate structures have been described as lipid particles
or droplets (Marek et al., 2014).The addition of Dox to wild-type
cells did not affected the distribution of NBD-fluorescence. In
Tet-ERG11 cells, although the NBD fluorescence was weaker,
punctate signals were also observed under Dox conditions
(i.e., conditions under which growth is maintained by the
addition of serum.). On the other hand, in Tet-ERG25 and
Tet-ERG26 cells, NBD-stained punctate structures no longer
were observed in the presence of Dox and serum (Figure 2A;
Supplementary Figure S3A). Additionally, we quantified NBD-
cholesterol import in the cells using flow cytometry (Figure 2B).
We pre-stained the cells with propidium iodide (PI), and
excluded PI-staining cells from the analysis as dead cells. In
wild-type cells, the fluorescence intensity of NBD was high
regardless of the presence or absence of Dox. In Tet-ERG11
cells, the fluorescence intensity of NBD in the presence of Dox
was lower than that in its absence, but higher than that of the non-
stained cells. In Tet-ERG25 cells, the fluorescence intensity in the
presence of Dox was clearly lower than that in its absence and was
comparable to that of the non-stained cells. These results suggest
that ERG11 knockdown cells can partially take up NBD-
cholesterol, while ERG25 knockdown cells cannot take up
NBD-cholesterol at all.

In C. glabrata, host-cholesterol uptake is mediated by the
ATP-binding cassette transporter Aus1p, the expression of which
is upregulated upon addition of serum (Nagi et al., 2013). To
determine why ERG25 knockdown cells are unable to take up
cholesterol from serum, we focused on the expression of the
AUS1 gene and localization of Aus1p. We performed quantitative
RT-PCR to examine the effect of ERG25 knockdown on AUS1
expression in the presence of serum (Figure 2C). The level of
AUS1 mRNA in Tet-ERG25 cells treated with Dox was
comparable to those of Dox-treated wild-type and Tet-ERG11
cells. This result suggests that the transcription of AUS1 is not
affected by ERG25 knockdown.
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FIGURE 2 | ERG25 knockdown causes defects in cholesterol uptake and the localization of Aus1p. (A) Uptake of fluorescent cholesterol analogues, NBD-cholesterol.
Wild-type (HETS202), Tet-ERG11 and Tet-ERG25 cells were incubated with NBD-cholesterol in the presence (+Dox) or absence (–Dox) of Dox for 17 h in minimal medium
containing 10% (v/v) serum. After washing, the fluorescence of NBD-cholesterol taken up into each cell was observed under a fluorescence microscope. (B)Wild-type, Tet-
ERG11 and Tet-ERG25 cells were incubatedas described in (A), and then treatedwith propidium iodide (PI). Cells not stainedwithPIwere defined as living cells, and the
fluorescent intensity of NBD-cholesterol taken up into the cells was analyzed by flow cytometry. Cells incubated without NBD-cholesterol served as unstained controls. Cell

(Continued )
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Next, we investigated the effects of ERG25 knockdown on
Aus1p localization in a Tet-ERG25 strain using an Aus1p-Green
Fluorescent Protein (GFP) fusion expressed from the endogenous
AUS1 locus. Since the Δaus1 strain is sensitive to fluconazole even
in medium containing serum, the fact that the wild-type strain
with GFP tagging on AUS1 is not sensitive to fluconazole in
medium containing serum suggests that Aus1p-GFP is
functional. In the absence of Dox, the fluorescence of Aus1-
GFP was detected on the cell surface in Tet-ERG11 and Tet-
ERG25 cells (Figure 2D). In the presence of Dox, Aus1p-GFP
localization to the plasma membrane was partially retained in
Tet-ERG11 cells. In contrast, in Tet-ERG25 cells, the fluorescence
of Aus1p-GFP disappeared from the cell surface; instead, atypical
fluorescent clumps were observed (Figure 2D, white arrowhead).
The fluorescence intensity profile also indicated that the
fluorescence peak indicating localization to the cell membrane
disappeared in the presence of Dox in Tet-ERG25 (Figure 2D,
black arrowhead). The localization of Aus1p-GFP in Dox treated
Tet-ERG25 cells appears to be vacuolar, its signal being
surrounded by FM4-64, which stains vacuolar membranes
(Figure 2E). These observations suggested that the inability of
ERG25 knockdown cells to uptake exogenous cholesterol is due to
mislocalization of Aus1p, which may be unable to sort properly
into the plasma membrane.

ERG25 Knockdown Leads to Loss of
Aus1p-DRMs Association and Altered
DRMs Sterol Composition
In S. cerevisiae, plasma membrane proteins have been suggested
to associate with DRMs, which are enriched in ergosterol and
sphingolipids. DRMs are proposed to be involved in the
trafficking of proteins to the plasma membrane. Therefore, we
evaluated whether the inability of Aus1p to localize to the plasma
membrane in ERG25 knockdown cells reflected the inability of
Aus1p to associate with DRMs. Specifically, we isolated DRMs
from Tet-ERG25 cells by the classical method, wherein a cell
lysate is treated with Triton X-100 at 4°C and then fractionated by
Optiprep density gradient centrifugation. Each fraction was
analyzed by immunoblotting with antibodies against GFP to
detect Aus1p-GFP or against Pma1p, a representative DRM-
associated protein in S. cerevisiae (Gulati et al., 2015). When
DRMs were isolated from cells grown in the absence of Dox,
Pma1p was detected in Fraction 2, indicating that Fraction 2 was
enriched in DRMs (Figure 3A). Aus1p-GFP also was detected in
Fraction 2, similar to Pma1p. When DRMs were isolated from

cells grown in the presence of Dox, Aus1p-GFP was no longer
seen in Fraction 2. Instead, we observed an increase in low-
molecular-weight proteins, presumably corresponding to free
GFP, in the detergent-soluble fraction (Fractions 5-7)
compared to cells grown in the absence of Dox. Because GFP
tends to be resistant to vacuolar proteases (Conibear and Stevens,
2002), we speculated that the free GFP was derived from vacuolar
degradation of Aus1p-GFP. This hypothesis is supported by the
localization of the GFP fluorescence to the vacuole in ERG25
knockdown cells (Figure 2E). In contrast, bands corresponding
to Pma1p still were present in Fraction 2. Together, these results
suggested that Aus1p associates with DRMs in C. glabrata, and
that this association is disrupted in the ERG25 knockdown cells.

To clarify why the association of Aus1p with DRMs is
disrupted in the ERG25 knockdown cells, we focused on 4,4-
dimethylzymosterol, the precursor that is expected to accumulate
in the ERG25 knockdown cells. The formation of DRMs depends
on specific interactions between sterols and sphingolipids (Klose
et al., 2010) and a structural change of sterols affect the
association of the plasma membrane with DRMs (Eisenkolb
et al., 2002; Umebayashi and Nakano, 2003). We hypothesized
that in cells knocked down for ERG25 expression, the sterol in
DRMs would change from ergosterol and cholesterol to 4,4-
dimethylzymosterol, thereby affecting the association of Aus1p
with DRMs. To test this hypothesis, we performed quantitative
gas chromatography analysis (GC) of DRMs derived from Tet-
ERG25 cells to investigate whether 4,4-dimethylzymosterol is
contained primarily in the DRM fractions (Figure 3B). In the
DRMs derived from Tet-ERG25 cells cultured with serum in the
absence of Dox, the main sterol components were ergosterol and
cholesterol, while 4,4-dimethylzymosterol was a minor sterol. In
contrast, in DRMs derived from Tet-ERG25 cells cultured in the
presence of Dox, the main sterol component was 4,4-
dimethylzymosterol instead of ergosterol and cholesterol.
Given that ERG25 knockdown resulted in replacement of the
ergosterol and cholesterol with 4,4-dimethylzymosterol as the
DRM-forming sterol, it suggests that 4,4-dimethylzymosterol
influences the association of Aus1p with DRMs.

ERG25 Knockdown Has Little Effect on the
Plasma Membrane Localization of the
DRM-Associated Proteins Pma1p and
Hxt1p
Because the association of Pma1p with DRMs was not affected by
ERG25 knockdown (Figure 3A), we investigated whether ERG25

FIGURE 2 | count was normalized to the peak height at its mode of the distribution by FlowJo software. The maximum value of each peak was converted as 100%. Median
fluorescence intensity was quantified from the result of each flow cytometry and represented as a graph. Values are presented as mean ± SD of three independent
experiments. (C) AUS1 transcript levels in wild-type (WT; KUE100), Tet-ERG11 and Tet-ERG25 cells. Cells were incubated at 37°C for 4 h in minimal medium with 20 μg/ml
Dox in the presence of 10% bovine serum. AUS1 mRNA was quantified by qRT-PCR, and the data were normalized against the corresponding levels of a housekeeping
transcript (TEF1). Values are presented as mean ± standard deviation (SD) of three independent experiments. (D) Effect of ERG25 knockdown on the localization of Aus1p.
Wild-type, Tet-ERG11 or Tet-ERG25 cells that express Aus1p-GFP (WT_Aus1G, Tet-ERG11_Aus1G or Tet-ERG25_Aus1G) were incubated in minimal medium containing
10% (v/v) serum at 37°C with or without 20 μg/ml Dox. After 3.5 h, fluorescence associated with Aus1-GFP was observed using a microscope. DIC, Differential Interference
Contrast. (E) ERG25 knockdown causes the mislocalization of Aus1p to the vacuole. Tet-ERG25 cells that express Aus1p-GFP (Tet-ERG25_Aus1G) were incubated in
minimal medium containing 10% (v/v) serum at 37°C with or without 20 μg/ml Dox for 3 h. Vacuole membrane was stained with FM4-64. All scale bars represent 5 µm.
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knockdown influenced the localization of Pma1p to the plasma
membrane. We constructed a Tet-ERG25 strain that co-
expressed Aus1p-GFP and Pma1p-mCherry by inserting

sequences encoding the indicated fluorescent tag in-frame and
downstream of the respective genes. The resulting strain encoded
C-terminally tagged fusion proteins from the endogenous loci.
We then observed cells of this strain using fluorescence
microscopy to assess the intracellular localization of Pma1p.
The fluorescence of Pma1p-mCherry was detected on the
plasma membrane and in the vacuole in the absence of Dox.
In the presence of Dox, the fluorescence of Aus1p-GFP on the cell
surface disappeared, while that of Pma1p was maintained on the
cell surface, although the fluorescence signal detected in the
vacuole increased (Figure 4A). These results indicate that the
localization of Pma1p to the plasma membrane was largely
unaffected by ERG25 knockdown.

Most plasma membrane proteins are compartmentalized in
distinct domains on the plasma membrane, and their distribution
is influenced by the lipid composition of the plasma membrane
(Spira et al., 2012). Therefore, we speculated that Aus1p and
Pma1p could be normally located in distinct domains of the
plasmamembrane, that have distinct lipid compositions, and that
ergosterol is an important element in the distribution of Aus1p-
associated domains. To confirm this hypothesis, we compared the
distribution pattern of Aus1p and Pma1p on the plasma
membrane by real-time observation of cells co-expressing
AUS1-GFP and PMA1-mCherry, using high-resolution
confocal microscopy. The fluorescence of Aus1p-GFP and
Pma1p-mCherry were detected in the different region on the
plasma membrane (Figure 4B). Further high-resolution
observation clearly showed the difference in the distribution of
Aus1p and Pma1p. In non-budding cells, the fluorescence of
Aus1p-GFP exhibited a network-like localization pattern similar
to that seen for Pma1p. Notably, however, most of the Aus1p-
GFP fluorescence did not overlap with that of Pma1p-mCherry in
the images that focused on the top and middle of the cell
(Figure 4C). The fluorescence intensity profile and scatterplot
of green (Aus1p-GFP) and magenta (Pma1p-mCherry) pixel
intensities also clearly indicated a difference in the localization
patterns of the two proteins. When daughter cells were smaller
than mother cells, the fluorescence intensity of Aus1p-GFP was
higher at the cell surface of daughter cells than in that of the
mother cells, whereas that of Pma1p-mCherry was higher at the
cell surface of mother cells (Figure 4D). These results indicated
that Aus1p and Pma1p are compartmentalized to distinct
domains on the plasma membrane under normal
circumstances. Furthermore, to determine whether the
differences in the localization patterns of Aus1p and Pma1p
correlated with sterol distribution, we observed sterol by
staining with filipin. In budding cells, filipin stained the cell
surface of daughter cells more strongly than that of mother cells,
and the filipin staining pattern was similar to the fluorescence
pattern of Aus1p (Figure 4D, bottom panel). Furthermore, in the
magnified image of budding cells, the fluorescence intensity
profile indicated that the fluorescence of Pma1p-mCherry did
not overlap with the distribution of sterol, while that of Aus1p-
GFP showed partial overlap with the filipin-stained region
(Figure 4E). To quantify the extent to which Aus1p and
Pma1p are in close proximity to sterol-rich regions on the
plasma membrane, we calculated Pearson’s correlation

FIGURE 3 | ERG25 knockdown causes the dissociation of Aus1p from
detergent-resistant membranes (DRMs) and a component change of DRMs.
(A)Biochemical analysis of the effect of ERG25 knockdown on the association
of Aus1p with DRMs. Tet-ERG25 cells that express Aus1p-GFP (Tet-
ERG25_Aus1G) were grown to exponential phase at 37°C in minimal medium
containing 10% (v/v) bovine serum and then incubated with or without 20 μg/
ml Dox for 5.5 h. The cells were disrupted with glass beads, extracted with 1%
Triton X-100, and subjected to Optiprep density gradient centrifugation.
Seven fractions were collected and analyzed by western blotting with
antibodies against GFP and Pma1p. Pma1p was used as a marker for DRM-
associated proteins. Raw data was displayed in Supplementary Figure S4. (B)
Sterol analysis of DRMs in Tet-ERG25 cells. The DRM fraction was analyzed
by gas chromatography. Before the centrifugation, the quantity of total protein
was determined by protein assay. 5-α-Cholestane was used as an internal
standard. Individual sterols are quantified and indicated in a lower panel.
Individual sterols were identified by comparison to standards or GC-MS.
Values are presented as mean ± SD of three independent experiments. p;
Triton-100.
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FIGURE 4 | ERG25 knockdown has no effect on the localization of Pma1p. (A) Effect of ERG25 knockdown on the localization of Pma1p. Tet-ERG25 cells that
expresses Aus1p-GFP and Pma1p-mCherry (Tet-ERG25_Aus1G/Pma1R) were grown to exponential phase at 30°C in minimal medium containing 10% (v/v) bovine
serum and observed using fluorescence microscopy after incubation with or without 20 μg/ml Dox for 3.5 h. (B) Distribution of Aus1p and Pma1p on the plasma
membrane. Wild-type cells co-expressing Aus1p-GFP and Pma1p-mCherry (WT_Aus1G/Pma1R cells) were grown to exponential phase at 30°C in minimal
medium containing 10% (v/v) bovine serum. Scatterplots of green and magenta pixel intensities of Aus1p-GFP and Pma1p-mCherry were performed using the Fiji/

(Continued )
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coefficients (PCC) between fluorescene of Aus1p-GFP and
Filipin, or that of Pma1p-mCherry and Filipin. The value of
PCC between Aus1p-GFP and Filipin was higher than that of
PCC between Pma1p-mCherry and Filipin (Figure 4F). These
results suggested that the Aus1p-containing domains are
enriched with sterol compared to the Pma1p-containing
domains.

To further confirm that ERG25 knockdown does not influence
protein targeting in sterol-poor regions of the plasma membrane,
we investigated the localization of the hexose transporter Hxt1p,
which (like Pma1p) has been reported to be localized
preferentially on mother cells in S. cerevisiae (Malínská et al.,
2003). Using confocal microscopy, detailed observation of wild-
type cells endogenously co-expressing Aus1p-GFP and Hxt1p-
mCherry revealed that the fluorescence of Hxt1p-mCherry was
detected primarily on the mother cells, unlike the filipin staining
pattern in Figure 4D and the distribution of Hxt1p-mCherry was
distinct from that of Aus1p (Figure 5A). High-resolution
observation also clarified the difference in the distribution
between Aus1p and Hxt1p (Figure 5B). When focusing on the
middle of the cell, the fluorescence of Hxt1p-mCherry was
observed primarily in the region from which Aus1p-GFP was
excluded (Figure 5C). This distinction is apparent in the
corresponding fluorescence intensity profile, which showed
that the peaks of Aus1p-GFP and Hxt1p-mCherry
fluorescence do not align. These results suggested that Aus1p
and Hxt1p are compartmentalized to distinct domains on the
plasma membrane. We then investigated the effect of ERG25
knockdown on the localization of Hxt1p. While the fluorescence
of Aus1p-GFP on the cell surface disappeared in Tet-ERG25 cells
grown in the presence of Dox, the fluorescence of Hxt1p-
mCherry still was detected on the cell surface regardless of the
presence of Dox (Figure 5D). Taken together, our results
suggested that the effect of ERG25 knockdown was specific to
Aus1p-containing domains, and not to Pma1p- or Hxt1p-
containing domains.

MCC/Eisosome Structures Are Disrupted in
ERG25 Knockdown Cells
In S. cerevisiae, the MCC/eisosomes, which correspond to
characteristic furrow-like invaginations in the plasma
membrane (Strádalová et al., 2009), have been reported to be
enriched in ergosterol (Grossmann and Malinsky, 2007).
Therefore, to investigate whether ERG25 knockdown affects
the structure of the MCC/eisosomes, we observed the cell

surface of Tet-ERG25 cells using transmission electron
microscopy (TEM). In control cells untreated with Dox,
furrow-like invaginations appeared as a bundle of lines with
lengths of 130–200 nm, which are indicated by white
arrowheads in tangential sections (Figure 6A); these
invaginations exhibited depths of about 50 nm when viewed in
transverse sections (Figure 6B). These structures were similar to
the furrow-like invaginations corresponding to MCC/eisosomes
of S. cerevisiae (Walther et al., 2006). By counting the number of
invaginations in 13 C. glabrata cells, we quantified these
structures at 3.2 ± 1.1/µm2 (mean ± standard deviation) in the
absence of Dox and 0.3 ± 0.5/µm2 in the presence of Dox. In the
presence of Dox, globular structures of 50–80 nm in diameter
appeared on the cell surface, instead of furrow-like invaginations
(black arrowheads in Figures 6A,B). The shape of these globular
structures was similar to the shape of the remnants seen in S.
cerevisiae with deletion of PIL1, which encodes a main organizer
of MCC/eisosomes assembly (Moreira et al., 2012). These
observations indicated that the influence of ERG25 knockdown
extended to the formation of furrow-like invaginations on the cell
surface.

To further ascertain the effect of ERG25 knockdown onMCC/
eisosomes, we used fluorescence microscopy to observe the
distribution of Pil1p in Tet-ERG25 cells. PIL1 was
endogenously tagged with sequences encoding mCherry so as
to encode a C-terminally tagged protein. In wild-type cells, the
fluorescence of Pil1-mCherry was detected in punctate
compartments located on the cell surface in the presence or
absence of Dox, suggesting that the localization of pil1p could not
be affected by the addition of Dox (Supplementary Figure S5).
On the other hand, in Tet-ERG25 cells, Pil1p-mCherry showed a
punctate localization similar to wild-type cells (Figure 6C). In the
absence of Dox, the fluorescence of Pil1p-mCherry was detected
in punctate compartments located on the cell surface (Figure 6C).
However, following ERG25 knockdown with Dox, the punctate
Pil1p fluorescence on the cell surface decreased, and fluorescence
instead was observed in the cytoplasm. This result implied that
ERG25 knockdown causes diffusion of Pil1p from the plasma
membrane to the cytoplasm.

Aus1p Associates With Dynamic Domains
That Occasionally Overlap With MCC/
Eisosomes
Because the structure of MCC/eisosomes diffused in the cells in
which ERG25 was knocked down, the relationship between the

FIGURE 4 | ImageJ software (right panel). (C) WT_Aus1G/Pma1R cells were observed at the cell surface (Top) and transverse region (Middle) using a high-resolution
confocal fluorescence microscope in real time. Each area enclosed by the dashed lines also is provided as a magnified image. In the magnified image of the transverse
region, intensity profiling of GFP (green) and mCherry (magenta) on the plasma membrane was carried out in the direction shown by the arrow. Scatterplots of green and
magenta pixel intensities in each panel were indicated. (D) Comparison of distribution between Aus1p, Pma1p, and ergosterol in non-budding or budding cells.
WT_Aus1G/Pma1R cells were stained with filipin and then observed by focusing on the middle of the cells using a confocal fluorescence microscope. In non-budding or
budding cells, Person’s correlation coefficient (PCC) between the fluorescent signals obtained with Aus1p-GFP and Pma1p-mCherry were indicated on the right side of
the image. (E)Magnified image of each area enclosed by the dashed lines in (D). Sterol was colored red or blue to facilitate comparison to the fluorescence of GFP (green)
and mCherry (magenta). Intensity profiling of each fluorescence pattern was carried out along the dashed arrows and indicated in the corresponding light panel,
respectively. (F) Scatterplots of green and cyan, or magenta and cyan pixel intensities in budding cells of (D). PCC between Aus1p-GFP and Filipin, or Pma1p-mCherry
and Filipin were graphically showed. All scale bars represent 2.5 µm.
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FIGURE 5 | The plasma membrane distributions of Aus1p and Hxt1p are different, and ERG25 knockdown has no effect on the localization of Hxt1p. (A)
Distribution of Aus1p and Hxt1p on the plasma membrane. Wild-type cells co-expressing Aus1p-GFP and Hxt1p-mCherry (WT_Aus1G/Hxt1R) cells were grown to
exponential phase at 30°C in minimal medium containing bovine serum. Scatterplot of green and magenta pixel intensities of Aus1p-GFP and Hxt1p-mCherry was
shown in the right panel. Scale bar represents 2.5 µm. (B)WT_Aus1G/Hxt1R cells were observed at high resolution by focusing on the top and middle of the cells
using a confocal fluorescence microscope. Scatterplots in each cell were represented in the right panel. PCC between the fluorescent signals obtained with Aus1p-GFP
and Hxt1p-mCherry in budding or non-budding cells were indicated. Scale bars represent 1 µm. D, daughter cell; M, mother cell. (C) Magnified image of the area
enclosed by the dashed lines in (B). Intensity profiling of GFP (green) and mCherry (magenta) on the plasma membrane was carried out along the dashed arrows. (D)
Effect of ERG25 knockdown on the localization of Hxt1p. Tet-ERG25 cells that expresses Aus1p-GFP and Hxt1p-mCherry (Tet-ERG25_Aus1G/Hxt1R) were grown to
exponential phase at 30°C in minimal medium containing 10% (v/v) bovine serum and observed using fluorescence microscopy after incubation with or without 20 μg/ml
Dox for 3.5 h. Scale bar represents 2.5 µm.
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diffusion and the mislocalization of Aus1p was investigated. We
constructed Tet-ERG25Δpil1, a double-mutant strain (with
downregulation of ERG25 and knockout of PIL1) that
expresses Aus1p-GFP, and compared the localization of Aus1p
when this strain was grown with and without Dox. In the absence
of Dox, Aus1p was observed to be localized on the cell surface, but

fluorescent aggregates were observed as indicated by the white
arrowhead (Figure 7A). When Tet-ERG25Δpil1was grown in the
presence of Dox, Aus1p-GFP no longer localized to the plasma
membrane, instead accumulating in the vacuole, as was seen
previously in the case of ERG25 knockdown. These observations
show that the mislocalization of Aus1p by the knockdown of
ERG25 occurred independently of the aggregation of Aus1p on
the plasma membrane, caused by the deletion of PIL1.

Given that the deletion of PIL1 altered the inherent
localization of Aus1p on the plasma membrane (as shown in
Figure 7A), we investigated whether Aus1p associates withMCC/
eisosomes on the plasma membrane. To compare the
distributions of Aus1p and MCC/eisosomes, we performed
dual-color imaging of Aus1p-GFP and Pil1-mCherry (a
marker for MCC/eisosomes) in living cells. High-resolution
imaging revealed that Aus1p fluorescence was detected
primarily in the plasma membrane regions that did not
contain Pil1p-mCherry (Figures 7B,D). Furthermore, we
followed the behavior of Aus1p and Pil1p in detail by time-
lapse observations. MCC/eisosomes (as indicated by Pil1p-
mCherry) was static as reported in S. cerevisiae (Malínská
et al., 2003), whereas Aus1p-GFP fluorescence migrated
dynamically across the plasma membrane (Figure 7C)
Supplemental Movie. Kymographs of the light panels also
clearly highlight the dynamic differences between these
domains, suggesting that Aus1p is dynamically localized to a
domain that is distinct from MCC/eisosomes. However, the real-
time imaging also showed some overlap between the fluorescence
of Aus1p-GFP and that of Pil1-mCherry, as indicated by the
white arrowheads in Figure 7C. Therefore, we performed time-
lapse imaging of Aus1p-GFP, focusing on single MCC/eisosomes.
We observed that some Aus1p-GFP was present in MCC/
eisosomes for a short time, at intervals of about 1.5–4.5 s
(frames surrounded by red lines in Figure 7E). These results
suggested that Aus1p is mostly localized outside MCC/eisosomes,
however, some Aus1p may access MCC/eisosomes occasionally.

DISCUSSION

Host-cholesterol uptake is one of the key survival strategies for
successful infection, especially for Candida glabrata, which uses it
to proliferate despite the presence of azole antifungal agents that
inhibit ergosterol biosynthesis. In this study, among the screened
ergosterol biosynthetic genes in C. glabrata (ERG1, ERG7, ERG11,
ERG25, ERG26, and ERG27), we found that only the growth
defects imposed by ERG25 or ERG26 knockdown were not
rescued by the presence of serum (Figure 1B). Because the
two genes are involved in a sequence of catalytic events, we
concentrated our investigation on ERG25. In cells with little or no
ERG25 transcription, four observations were made: 4,4-
dimethylzymosterol accumulates (Figure 3B); Aus1p-GFP
delocalizes to the plasma membrane (Figure 2D); extracellular
NBD-cholesterol is not uptaken (Figures 2A,B); the addition of
serum cannot suppress their growth defects (Figure 1B). Based
on these results, the effect of ERG25 knockdown on Aus1p lipid
domains was analyzed.

FIGURE 6 | ERG25 knockdown has effect on the structure of MCC/
eisosomes. (A) Observation of furrow-like invaginations in Tet-ERG25 cells
using transmission electron microscopy (TEM). Cells were incubated at 37°C
in minimal medium containing 10% (v/v) bovine serum with or without
Dox for 17 h, and then fixed. Ultrathin sections (70-nm thicknesses) of the cell
surface were observed. The furrow-like invaginations in Dox-untreated cells
are indicated by white arrowheads, and abnormal invaginations in Dox-treated
cells are indicated by black arrowheads. The dashed lines surround areas
shown at higher magnifications in the lower right. Scale bars represent
100 nm. CW; cell wall. (B) TEM images of the cells sectioned through the
middle of the cells. (C) Effect of ERG25 knockdown on the localization of
Pil1p-mCherry. Tet-ERG25 cells expressing Pil1p-mCherry (Tet-
ERG25_Aus1G/Pil1R) were grown to exponential phase at 37°C in minimal
medium containing bovine serum and further incubated for 17 h in the
absence or presence of Dox. Intensity profiling of Pil1p-mCherry was carried
out along the dashed arrows. Scale bar represents 5 µm.
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FIGURE 7 | Aus1p is compartmentalized into plasma membrane domains distinct from MCC/eisosomes. (A) Effect of PIL1 deletion on the localization of Aus1p.
Tet-ERG25 pil1Δ cells expressing Aus1p-GFP (Tet-ERG25 pil1Δ_Aus1G) were grown to exponential phase at 30°C in minimal medium containing bovine serum and
observed using fluorescence microscopy after incubation with or without Dox for 3.5 h. Scale bar represents 5 µm. (B) Distribution of Aus1p and Pil1p on the plasma
membrane. Wild-type cells co-expressing Aus1p-GFP and Pil1p-mCherry (WT_Aus1G/Pil1R) were incubated in the presence of serum and observed at the cell
surface (Top) by high-resolution confocal microscopy. (C) Time-lapse imaging of the boxed region of (A). Right panel shows the kymograph obtained by recording
across the dashed line of the middle panels in a time-lapse image taken every 0.5 s. Co-localization of Aus1 and Pil1p appears in white, as indicated by arrowheads. (D)
Distribution of Aus1p and Pil1p on the plasmamembrane in the traverse region. (E) Time-lapse imaging of the boxed region of (D). Images were taken at 0.75-s intervals.
The images surrounded with red lines represent the co-localization of Aus1p-GFP and Pil1p-mCherry. All scale bars represent 2 µm.
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The selective interaction between ergosterol and sphingolipids
has been reported to lead to phase separation into membrane
domains with Liquid-ordered and Liquid-disordered like
properties (Klose et al., 2010). The changes in sterol structure
are known to destabilize or prevent the formation of liquid-
ordered state domains (Xu et al., 2001; Megha et al., 2006). Since
the liquid-ordered state conveys detergent resistance, we used
DRMs to evaluate the liquid order state of membrane domains. In
Tet-ERG25 cells under the Dox presence, Aus1p-GFP was
scarcely detected in DRMs, whereas Pma1p had little or no
effect on its distribution (Figure 3A). In addition, in Dox
exposed Tet-ERG11 cells Aus1p-GFP was detected in the
DRMs (Supplementary Data S6A). Furthermore, lipid
analysis of DRMs showed that the abnormal sterol 4,4-
dimethylzymosterol was detected as the major lipid
component in Dox exposed Tet-ERG25 cells, whereas in Tet-
ERG11 cells in the presence of Dox, the abnormal sterol, 4,14α-
dimethylzymosterol was hardly or not detected in DRMs
(Supplementary Data S6B). These results suggest that the loss
of membrane localization of Aus1p-GFP was due to the presence
of 4,4-dimethylzymosterol in the cell membrane, while in Tet-
ERG11 cells in the presence of Dox, 4,14α-dimethylzymosterol
hardly detected in the cell membrane, caused little effect in it and
the localization of Aus1p-GFP was maintained.

The expression of Aus1p is regulated by Upc2A and Upc2B
(Nagi et al., 2013), but the mechanism whereby Aus1p is

transported to the plasma membrane remains unclear. The
present study revealed that DRMs are required for the proper
transport of Aus1p to the plasma membrane, as demonstrated by
our analysis of cells knocked down for ERG25 expression. We
summarize ourmodel for the transport of Aus1p in Figure 8. In S.
cerevisiae, the association of membrane proteins with DRMs
occurs in the ER or Golgi during intracellular transport
(Bagnat et al., 2000; Okamoto et al., 2006), and some plasma
membrane proteins are excluded from DRMs and are missorted
to the vacuole from the late Golgi in the cells deleted for ERG6,
which encodes an enzyme catalyzing a late step in ergosterol
biosynthesis (Bagnat and Simons, 2002; Umebayashi and
Nakano, 2003). Similar to Δerg6 cells, we showed, using C.
glabrata ERG25 knockdown cells, that Aus1p is mislocalized
to the vacuole instead of the plasma membrane (Figure 2E).
Therefore, in ERG25-knockdown cells, the association of Aus1p
with DRMs in the ER and Golgi is prevented, and Aus1p appears
to migrate from the late Golgi to the vacuole. Another experiment
using C. glabrata supports this model. Specifically, while in the
Tet-ERG25 cells absence of Dox, the deletion of PIL1 affects the
distribution of Aus1p in the plasma membrane after intracellular
transport, the deletion of PIL1 in combination with ERG25
knockdown causes the mislocalization of Aus1p to the vacuole,
similarly to the knockdown of ERG25 alone (Figure 7A). These
results suggest that Erg25p is a factor that transports newly
synthesized Aus1p from the ER to the plasma membrane, and

FIGURE 8 | Schematic diagram showing the proposed effects of ERG25 knockdown on host-cholesterol uptake. (A) Ergosterol and cholesterol interact with
sphingolipid to form lipid domains (liquid-ordered state domain). Host-cholesterol is incorporated from serum via Aus1p, which is normally localized on the plasma
membrane (1) and then transported to the endoplasmic reticulum (ER), although the transport route is unknown. In S. cerevisiae, the association of proteins with lipid
domain occurs during trafficking from the ER to the plasma membrane via the Golgi. Therefore, newly synthesized Aus1p is inferred to be transported from the ER
to the Golgi while being incorporated into lipid domains containing endogenous ergosterol (2, 3). Pil1p localizes to the membrane compartment of Can1p (MCC)/
eisosomes that are enriched in ergosterol, generating furrow-like plasma membrane invaginations (4). Aus1p-associated domains are distinct from membrane
compartment of Pma1p (MCP), membrane domains containing Hxt1p, and MCC/eisosomes. (B) In ERG25 knockdown cells, 4,4-dimethylzymosterol is contained in
lipid domains in place of ergosterol (5), but the domains are not allowed to fit the Aus1p due to 4,4-dimethylzymosterol. Therefore, newly synthesized Aus1p is unable to
associate with lipid domain, and is missorted to the vacuole, resulting in the degradation (6). 4,4-Dimethylzymosterol, which is transported to the plasma membrane (7)
and the release of Pil1p from the MCC/eisosomes (8). However, there is no effect on the localization of membrane proteins Pma1 and Hxt1.
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that Pil1p is not associated with this process. However Pil1p may
be involved in the localization of Aus1p after it reaches the plasma
membrane.

In S. cerevisiae, ergosterol has been reported to be required for
the proper localization of the MCC-associated proteins Can1p and
Sur7p, as demonstrated using strains deleted for non-essential
ergosterol biosynthesis genes such as ERG6 and ERG24
(Malínská et al., 2003; Grossmann et al., 2008). However, it is
not yet clear whether ergosterol is required for the formation of
eisosomes, because the deletion of these non-essential genes in S.
cerevisiae did not result in an obvious defect in MCC/eisosomes
formation or in the localization of Pil1p on the plasma membrane.
ERG25 knockdown in C. glabrata inhibited the normal formation
of furrow-like invaginations (Figures 6A,B) and the retention of
the MCC/eisosomes organizer Pil1p on the plasma membrane
(Figure 6C), suggesting clearly the need for ergosterol in the
formation and/or stability of eisosomes. The recruitment of
Pil1p to the MCC/eisosomes is regulated by the
phosphorylation of Pil1p via the Pkh1/2p kinases (Walther
et al., 2007), which respond to the sphingolipid long-chain base
(LCB) (Zhang et al., 2004). In S. cerevisiae, the erg26 mutant cells,
which are defective in the demethylation step of 4,4-
dimethylzymosterol, exhibit a decrease in phytosphingosine-
derived ceramide levels (Swain et al., 2002). Both ergosterol and
cholesterol do not have a methyl group on the α-face, while 4,4-
dimethyldysterol has a methyl group on the α-face
(Supplementary Figure S7). Whether that clear structural
difference interferes with the synthesis and association to
sphingolipid is an important subject for further investigation.

Plasma membrane proteins are compartmentalized into
distinct non-overlapping membrane domains. In addition to
MCP and MCC/eisosomes, three non-overlapping plasma
membrane domains have been identified in S. cerevisiae:
membrane compartments containing the Target of Rapamycin
kinase Complex 2 (TORC2; MCT) (Berchtold, 2009), the sterol
transporters Ltc3/4 (MCL) (Murley et al., 2017), and the cell wall
stress sensorWsc1 (MCW) (Kock et al., 2016). These domains are
characterized by their morphology and dynamics; the MCP
shows a network-like distribution, while others show punctate
distributions. Moreover, MCC/eisosomes, MCP, and MCL are
static (Malínská et al., 2003; Murley et al., 2017), while the others
are dynamic (Berchtold et al., 2012; Kock et al., 2016). Our
observations indicate that the Aus1p-associated domain has a
network-like distribution and is dynamic (Figures 4C, 7C).
Therefore, we propose that the Aus1p-associated domain
constitutes a novel lipid domain.

It is not clear what mechanism is used to form and maintain
the heterogeneous distribution of membrane proteins. Notably,
ERG25 knockdown in C. glabrata influences the localization of
Aus1p, but not that of Pma1p or Hxt1p (Figures 4A, 5D). These
results support that ergosterol does not affect the localization of
all membrane proteins. Additionally, ERG26 knockdown also
does not affect the localization of Hxt1p (Supplementary
Figure S3B).

The Aus1p-related domain was shown to be preferentially
concentrated in smaller daughter cells (Figure 4D). As reported
about Pma1p in S. cerevisiae, the asymmetric localization of

proteins in mother versus daughter cells is involved in
promoting mother cell aging by affecting cellular homeostasis
(Henderson et al., 2014; Yang et al., 2015), and sphingolipids
contribute to maintain this asymmetric localization (Singh et al.,
2017). On the other hand, ergosterol has been reported to be
enriched in actively growing areas of the plasma membrane in
various fungi, including S. cerevisiae, C. albicans, Aspergillus
nidulans, and Cryptococcus neoformans (Bagnat and Simons,
2002; Martin and Konopka, 2004; Nichols et al., 2004; Pearson
et al., 2004). Furthermore, many proteins identified to be
enriched in daughter cells are needed for the emergence,
construction, and division of the bud in S. cerevisiae (Yang
et al., 2015). The Aus1p-associated domain is richer in
ergosterol than the MCP in C. glabrata (Figures 4E,F).
Therefore, the distribution of Aus1p in the cells appear to be
correlated to the distribution of ergosterol. Although further
studies are needed to clarify the mechanism by which Aus1p
is distributed preferentially in daughter cells, we suggest that this
Aus1p distribution bias to growing cells may allow cholesterol
taken up from the host to be efficiently used for cell membrane
synthesis in C. glabrata.

Recent studies also suggest that MCC/eisosomes act as reservoir
domains for nutrient transporters, protecting them from endocytosis
in response to nutrient starvation. The distribution of nutrient
transporters to MCC/eisosomes has been suggested to be
dependent on their conformational changes occurring upon
substrate binding (Bianchi et al., 2018; Busto et al., 2018;
Gournas et al., 2018; Moharir et al., 2018). For example, in S.
cerevisiae, methionine permease Mup1p has been shown to be
relocated from the MCC/eisosomes to a unique network-like
domain at the plasma membrane in the presence of methionine
(Busto et al., 2018). In recent years, MCC/eisosomes have been
clarified to interact withMCTdomains in the control of sphingolipid
biosynthesis under conditions of membrane stress (Bartlett et al.,
2015). Some MCT-associated proteins are spatially overlapped with
MCC/eisosomes, and accumulate in a few large clusters reminiscent
of eisosome remnants in Δpil1 cells (Bartlett et al., 2015). In our
experiments with C. glabrata, some Aus1p was occasionally co-
localized to MCC/eisosomes (Figure 7E) and accumulated in
eisosome remnants-like structures in Δpil1 cells (arrowheads in
Figure 7A). Therefore, Aus1p-associated domains may
functionally be associated with MCC/eisosomes in C. glabrata. In
S. cerevisiae, the transcription factors Upc2p and Sut1p, which
regulate the expression of AUS1 and of ergosterol biosynthesis
genes in response to intracellular ergosterol abundance, regulate
the expression of the genes encoding MCC/eisosome organizers,
NPC102 and FHN2 (Wilcox et al., 2002; Foster et al., 2013),
suggesting the involvement of the MCC/eisosomes in ergosterol
homeostasis. We have observed that C. glabrata Aus1p localizes to
novel network-like domains in the presence of serum. Although the
specific role played by MCC/eisosomes to Aus1p localization
requires further scrutiny, here, it is suggested that this role
extends to sterol homeostasis mediated by the localization of Aus1p.

Clinical isolates of azole-resistant C. glabrata grow well in
medium containing host serum even though they have lost the
ability to synthesize endogenous ergosterol (Hanauer, 1992; Bard
et al., 2005; Khan et al., 2014). Because such sterol-requiring strains
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are not able to grow in the medium commonly used for diagnostic
examination (Hanauer, 1992; Khan et al., 2014), consequently, the
sterol-requiring strains are likely to be overlooked in the culture
examinations of patients with candidemia. Therefore, the real
incidence of C. glabrata infection must be higher than what can
be deduced from the published detection rate. The key players
underlying cholesterol uptake, once identified and characterized, are
thus likely to constitute promising newdrug targets, especially for the
drug resistant strains against to ergosterol associates. Similarity
analyses suggested that the amino acid sequence of Erg25p is
more highly conserved than Erg11p and Erg26p (for example, in
Aspergillus fumigatus, Coccidioides immitis and Cryptococcus
neoformans) and is less similar to its human orthologue
(CNBC4830) (Supplementary Figure S8; Supplementary Table
S2). Additionally, ERG25 is the most highly conserved of the ERG
genes examined among the fungi, and the least closely related to its
human orthologue. Based upon these results, Erg25p has potential as
a target for the development of new allosteric antifungal agents.
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Participation of OCRL1, and
APPL1, in the expression,
proteolysis, phosphorylation and
endosomal trafficking of
megalin: Implications for Lowe
Syndrome
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Megalin/LRP2 is the primary multiligand receptor for the re-absorption of

low molecular weight proteins in the proximal renal tubule. Its function is

significantly dependent on its endosomal trafficking. Megalin recycling from

endosomal compartments is altered in an X-linked disease called Lowe

Syndrome (LS), caused by mutations in the gene encoding for the

phosphatidylinositol 5-phosphatase OCRL1. LS patients show increased

low-molecular-weight proteins with reduced levels of megalin

ectodomain in the urine and accumulation of the receptor in endosomal

compartments of the proximal tubule cells. To gain insight into the

deregulation of megalin in the LS condition, we silenced OCRL1 in

different cell lines to evaluate megalin expression finding that it is post-

transcriptionally regulated. As an indication of megalin proteolysis, we

detect the ectodomain of the receptor in the culture media. Remarkably,

in OCRL1 silenced cells, megalin ectodomain secretion appeared

significantly reduced, according to the observation in the urine of LS

patients. Besides, the silencing of APPL1, a Rab5 effector associated with

OCRL1 in endocytic vesicles, also reduced the presence of megalin’s

ectodomain in the culture media. In both silencing conditions, megalin

cell surface levels were significantly decreased. Considering that GSK3ß-

mediated megalin phosphorylation reduces receptor recycling, we

determined that the endosomal distribution of megalin depends on its

phosphorylation status and OCRL1 function. As a physiologic regulator of

GSK3ß, we focused on insulin signaling that reduces kinase activity.

Accordingly, megalin phosphorylation was significantly reduced by insulin

in wild-type cells. Moreover, even though in cells with low activity of

OCRL1 the insulin response was reduced, the phosphorylation of megalin

was significantly decreased and the receptor at the cell surface increased,

suggesting a protective role of insulin in a LS cellular model.
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Introduction

Megalin is an endocytic receptor belonging to the low-

density lipoprotein receptors family (Saito et al., 1994;

Marzolo and Farfán, 2011). This receptor is found in the

apical surface of several epithelia and is highly expressed in

the kidney, specifically in the proximal tubular epithelium (PT)

(Saito et al., 1994; Farquhar et al., 1995). The function of megalin

in epithelial kidney cells is related to the recapture of low

molecular weight proteins (LMW) from the glomerular filtrate

(Leheste et al., 1999). Megalin ligands, including calcium,

albumin, insulin, leptin, parathyroid hormone (PTH),

angiotensin II, retinol-binding protein (RBP), and vitamin D

binding protein (DBP), are involved in pathological kidney

conditions (Marzolo and Farfán, 2011). Renal defects of

megalin knockout (KO) mice (Leheste et al., 2003, 1999)

include phosphaturia, hypercalciuria, and proteinuria, due to

loss of megalin ligands such as RBP, DBP and albumin

(Bockenhauer et al., 2008; Bothwell et al., 2011). These defects

are explained in terms of inefficient endocytosis of megalin

ligands and, importantly, to additional megalin trafficking

functions related to the regulation of inorganic sodium

phosphate cotransporter (NaPi-IIa) (Bachmann et al., 2004)

and sodium-proton exchanger 3 (NHE3) (Alexander and

Grinstein, 2009). Also, the lack of megalin is associated to

significant ultrastructural changes in the endosomal

compartments of PT epithelial cells, including the absence of

dense apical tubules, which correspond to the apical recycling

endosomes, and other endocytic structures, such as clathrin-

coated pits and vesicles (Leheste et al., 1999). On the other hand,

under physiological conditions, it is possible to find megalin

fragments in the urine (Pisitkun et al., 2004; Thrailkill et al., 2009;

Suruda et al., 2017). The predominant species is megalin

ectodomain (A-megalin), probably released by shedding, a

process that would take place at the cell surface through a

mechanism involving the activity of protein kinase C (PKC)

and matrix metalloproteases (Zou et al., 2004). Besides, it is also

possible to detect, but at low levels, the full-length receptor

(C-megalin) present in exosomes (Suruda et al., 2017).

C-megalin levels are increased in diabetes patients (Kurita

et al., 2022) and negatively correlated with serum 1,25(OH)2D

and 24,25(OH)2D (Toi et al., 2019). However, there are still open

questions regarding the mechanisms explaining the presence and

the change in the levels of megalin in the urine, especially in

different pathologies affecting the kidney.

The cytoplasmic domain of megalin has an essential role in

determining its apical distribution and recycling (Marzolo et al.,

2003; Yuseff et al., 2007; Farfán et al., 2013; Perez Bay et al., 2016).

In polarized epithelial cells, internalized megalin follows an

endosomal itinerary including the apical sorting endosome

(ASE), the common recycling endosome (CRE) (where it

meets with basolateral internalized cargoes such as TfR), and

the Rab11 positive apical recycling endosome (ARE), from which

it recycles to the cell surface (Mattila et al., 2014; Perez Bay et al.,

2016; Eshbach and Weisz, 2017). Also, the already mentioned

ectodomain shedding can modify megalin surface levels. Besides,

it is known that glycogen synthase kinase-3 ß (GSK3ß) binds

directly to the megalin cytoplasmic domain (Marzolo and Farfán,

2011) and phosphorylates the PPPSP motif within the

intracellular domain of the receptor, decreasing the efficiency

of megalin recycling and therefore reducing its cell surface

expression (Yuseff et al., 2007).

Lowe Syndrome (LS) is a human pathological and lethal

condition caused by mutations in the OCRL gene, encoding a

phosphatidylinositol 5-phosphatase OCRL1, affecting the brain,

eye, and kidney (Lowe et al., 1952; Attree et al., 1992). The disease

is characterized by congenital cataracts, central hypotonia, and

renal proximal tubular dysfunction (Preston et al., 2020). There

are different mutations in OCRL causing LS, which decrease the

function or expression of the enzyme (Lichter-Konecki et al.,

2006; De Matteis et al., 2017). LS patients also exhibit high

concentrations of proteins in their urine, including megalin

ligands. Besides, the secretion of megalin itself, as A-megalin,

seems to be specifically decreased, contrasting with the normal

secretion of cubilin, a megalin co-receptor (Norden et al., 2002;

Suruda et al., 2017). The mechanism that explains the A-megalin

decrease is not known.

OCRL1 modulates the endocytic trafficking of several cargo

receptors (Choudhury et al., 2005; Erdmann et al., 2007; Noakes

et al., 2011; Vicinanza et al., 2011). We have described significant

alterations in endocytic trafficking of various receptors, including

megalin, in OCRL1 silenced cells (Vicinanza et al., 2011). This

last study showed defects in early endosomal compartments

characterized by the abnormal presence of

phosphatidylinositol 4,5-P2, a preferential substrate of OCRL1

(Zhang et al., 1998), and by the ectopic accumulation of actin

filaments (Dambournet et al., 2011; Vicinanza et al., 2011;

Kühbacher et al., 2012) that impede efficient recycling of

cargoes. As a consequence of these defects, cells deficient in

OCRL1 exhibit a reduction in the cell surface expression of

megalin. Besides, data obtained from humanized Lowe

Syndrome animals (Festa et al., 2019) and zebrafish

(Oltrabella et al., 2015) indicate that cell surface and total

megalin are decreased in proximal tubule cells. On the other

hand, APPL1 is an endocytic protein that associates with OCRL1

(Erdmann et al., 2007). In some LS OCRL1 mutants, the

interaction with APPL1 is disrupted (McCrea et al., 2008;

Noakes et al., 2011). The presence of megalin in

APPL1 endosomes is also reduced in OCRL1 knock-down

cells (Vicinanza et al., 2011).
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Here we explored the expression of megalin in a “cellular

Lowe condition”, finding a post-transcriptional regulation of

megalin levels in OCRL1 silenced cells. We also evaluated

megalin proteolysis and ectodomain secretion. When

OCRL1 levels were low, the secretion of the receptor

ectodomain was decreased. These results indicate that

OCRL1 knock-down (KD) cells show a phenotype that

mimics the situation found in the urine of LS patients

(Norden et al., 2002; Suruda et al., 2017). In addition, we

found that silencing of APPL1 also reduced cell surface

expression and secretion of the megalin ectodomain to cell

culture.

The reported reduction and surface expression of megalin in

LS could be partly explained by defects in endosomal recycling

due to ectopic actin polymerization in the endosomes as

described (Vicinanza et al., 2011) but also can be the result of

changes in intracellular signaling processes that increases GSK3ß

activity. Our results showed that the basal megalin

phosphorylation was rather decreased in LS conditions and

that the endosomal distribution of the receptor depended on

its phosphorylation status as well as on the activity of OCRL1.

Interestingly, we uncovered a role of insulin in megalin

phosphorylation and cell surface expression, finding that the

stimulation of cells with the hormone reduces megalin

phosphorylation, consistent with a decreased activity of

GSK3ß, and increases its surface expression. Finally, although

insulin signaling was decreased in cells with reduced function of

OCRL1, megalin was still less phosphorylated and more present

at the plasma membrane, indicating that although less efficient,

insulin could promote megalin recycling in LS conditions.

Materials and methods

Antibodies and reagents

The monoclonal anti-HA and the polyclonal anti-human

cytoplasmic domain of megalin antibodies have been described

before (Marzolo et al., 2003; Yuseff et al., 2007). Polyclonal

antibody against human OCRL was described before

(Vicinanza et al., 2011). Two rabbit anti-APPL1 human

antibodies were used, one kindly provided by Dr. David

Kaplan (Lin et al., 2006), and the other was from Cell

signaling (D83H4; XP® Rabbit mAb #3858). Anti-tubulin

monoclonal antibody (MAB3408)was purchased from

Chemicon (Temecula, CA, USA). Antibodies against

E-cadherin and GSK3ß (610202) were from BD Bioscience-

Pharmingen (San Jose, CA, USA). The antibodies for

phospho-GSK3ß (Ser-9) (D85E12), phospho-AKT S473 (D9E)

4060, AKT 9272, EEA1 (C45B10), Rab7 (D95F2) were purchased

from Cell signaling. Alexa Fluor-594 goat anti-rabbit IgG, Alexa

Fluor-488 goat anti-mouse IgG, and anti-HA-Alexa-488 were

purchased from Molecular Probes (Europe BV, Leiden, the

Netherlands). LiCl and Coomassie blue were obtained from

Winkler (Santiago, Chile). Protein A-agarose and G-agarose

were from Pierce (Rockford, IL, USA) [35S] methionine/

cysteine was obtained from ICN (Costa Mesa, CA, USA) [32P]

orthophosphate was purchased from the Chilean Commission of

Nuclear Energy (CCHEN, Chile). All tissue culture media, serum

and plastics, were from Life Technologies, Inc. (Rockville, MI,

USA). Matrix metalloproteinase inhibitor (GM6001) was from

Calbiochem (San Diego, CA, USA). YU142670 was obtained

from Merck & Co., Inc. (Kenilworth, NJ, USA). Sulfo-NHS-LC-

biotin and Immunopure Streptavidin-agarose were from Pierce

(Rockford, IL, USA).

Plasmids and primers sequences

Megalin mini receptor (mMeg) was generated from a human

kidney cDNA library (Marzolo et al., 2003; Farfán et al., 2013).

Plasmids for phosphomimetic mMeg (mMeg S170D), non-

phosphorylatable mMeg (mMeg S170A) and mMeg lacking the

ectodomain (Meg0) were described previously (Yuseff et al., 2007;

Marzolo and Farfán, 2011). mCherry-Rab11 was kindly provided by

Dr. Alexis Gautreau (Derivery et al., 2009). Human OCRL1-EGFP

was described before (Vicinanza et al., 2011). Plasmids for short

hairpin RNAs were MISSION® pLKO.1-puro Non-Target shRNA

Control Plasmid DNA (Sigma-Aldrich), pLKO vectors purchased

from Open Biosystems (shOCRL1 5′- GCCAAGTATAAGAAA

GTTCAA -3′ and shAPPL1 5′- GCATTGTTAGAACCTCTACTT-
3′). The primers used in quantitative PCR reactions were as follows:

megalin forward, 5′- CTGCTCTTGTAGACCTGGGTTC -’ 3;

megalin reverse, 5′- TCGGCACAGCTACACTCATAAC -3;

glyceraldehyde-3-phosphate dehydrogenase forward, 5′- TCA

AGGCTGAGAATGGGAAG -`3; glyceraldehyde-3-phosphate

dehydrogenase reverse, 5′- AGCAGAAGGGGCAGAGATG -`3.

Cell lines and culture conditions

LLC-PK1 epithelial cells, derived from porcine kidney were

cultured in alpha-MEM supplemented with 7.5% FBS containing

100 U/ml penicillin and 100 mg/ml streptomycin) and 2 mM

glutamine (Invitrogen). These cells have been previously used in

studies on proximal tubule function and megalin expression

(Marzolo et al., 2003; Yuseff et al., 2007; Cabezas et al., 2019,

2011). MDCK epithelial cells are derived from dog kidneys and

correspond to the distal tubule. These cells have been used

previously to study megalin and LRP1 trafficking (Marzolo

et al., 2003; Yuseff et al., 2007; Farfán et al., 2013) and were

obtained from ATCC. HEK 293T cells were used to produce

lentivirus as described (Sotelo et al., 2014). HeLa cells were

maintained in DMEM with 10% FBS, 2 mM glutamine, and

antibiotics. All the cells were grown at 37°C in humidified air

containing 5% CO2.
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Lentivirus production and cell transfection

Plasmids encoding shRNA, pCMVR8.91, and VSVg were

transfected in HEK293 cells using calcium method phosphate

(Chen and Okayama, 1987). The supernatant with lentivirus was

collected after 48 h and used to infect cells in the presence of 8 μg/

ml of polybrene. Stably silenced clones were selected with 2 μg/ml

puromycin in growing media for 3 days after infection. Cells were

transfected with Lipofectamine 2,000 (Invitrogen), according to

the manufacturer’s instructions. For the generation of stably-

expressing minireceptors, mMeg or Meg0 (Marzolo et al., 2003),

cells lines were transfected and selected using 0.8 mg/ml of

G418 for 2 weeks and then maintained with 0.4 mg/ml of G418.

Western blot

Cells were lysed with lysis buffer (PBS containing 1% Triton

X-100, 1 mM glycerophosphate, 1 mM sodium orthovanadate,

5 mM sodium fluoride, and the protease inhibitors 2 mM PMSF,

1 mM pepstatin, 2 μM antipain, 1 μM leupeptin, and 0.3 μM

aprotinin). Extracts were centrifuged at 12.000 rpm for 10 min,

and the pellet was discarded. Protein from lysates and the

immune complexes (for immunoprecipitation samples) were

boiled in Laemmli sample buffer (62.5 mM Tris-HCl, pH 6.8;

2% w/v SDS, 10% v/v glycerol, and 5% ß-mercaptoethanol) and

then analyzed by SDS-PAGE or tris-tricine under reducing

conditions. Gels were transferred to an Immobilon-P

membrane (Millipore, Billerica, MA). The membranes were

blocked in TBS containing 1% Triton X-100 and 3% BSA and

subjected to incubation overnight with primary antibodies and

for 2 h with secondary antibodies. Blots were developed with the

ECL system from Amersham Life Science (Arlington Heights, IL,

USA) and analyzed with ImageJ.

Quantitative PCR

Total RNA was isolated using RNA-Solv (Omega Bio-Tek,

Norcross, GA, USA) following the manufacturer’s instructions

and treated with DNAse I. Then, the reverse transcription was

performed with random primers and RevertAidTM MMuLV

Reverse Transcriptase in the presence of RNAseOUT (Fermentas

Glen Burnie, MD, USA). PCR reactions were performed using a

7,500 Real-Time PCR System (Applied Biosystems, Carlsbad,

CA, USA) and Brilliant SybrGreen I (Stratagene). Results were

analyzed with the 7,500 System Software.

Metabolic labeling

To measure megalin biosynthesis, the cells were incubated

with 200 uCi/ml of [35S]-methionine/cysteine at 37°C for 4 h,

followed by a wash with ice-cold PBS and lysing procedure.

Radiolabeled mMeg was immunoprecipitated with rabbit

polyclonal anti-megalin antibody (Marzolo et al., 2003) and

protein A–agarose beads (Pierce). Samples were separated by

SDS-PAGE and visualized by autoradiography.

Megalin half-life and intracellular
proteolytic products accumulation

For mMeg half-life measurement, 5 × 106 cells/cm2

(shControl and shOCRL LLC-PK1) were plated on 6-well

plates and treated with cycloheximide (100 μM) for

indicated times in culture media (DMEM) without serum,

up to 12 h. At the end of the incubation, cells were lysed using

lysis buffer (PBS containing 1% Triton X-100, 1 mM

glycerophosphate, 1 mM sodium orthovanadate, 5 mM

sodium fluoride, and the protease inhibitors 2 mM PMSF,

1 mM pepstatin, 2 μM antipain, 1 μM leupeptin, and 0.3 μM

aprotinin). The samples were separated by SDS-PAGE and

analyzed by western blot.

Immunofluorescence staining and
colocalization analysis

LLC-PK1 cells were grown in glass coverslips for 24 h,

then, co-transfected with plasmids encoding the chaperone

RAP and mMeg using Lipofectamin 2000. For the

colocalization experiments wild-type mMeg, mMeg S/D or

mMeg S/A were used. To visualize Rab11 the receptor was co-

transfected with mCherry -Rab11. After 24 h of expression,

cells were treated with 50 μM YU142670 or vehicle for 4 h.

Cells were fixed with 4% paraformaldehyde in PBS and then

permeabilized with 0.2% Triton X-100 in PBS. Next, the cells

were blocked with 5% BSA in PBS and incubated successively

with the primary antibodies (anti-HA and anti-EEA1 or anti-

Rab7) and the corresponding secondary antibodies. Images

were captured by Inverted Nikon Ti2-E and deconvolved with

DeconvolutionLab (Sage et al., 2017) Manders coefficient was

calculated with JaCoP (Bolte and Cordelières, 2006), a plugin

for ImageJ (NIH). Briefly, images of cells with the two stains

were selected and separated. Cells were analyzed with the

JaCoP function of Manders’ Coefficient and data was stored

for analysis.

Determination of megalin ectodomain
secretion

Silenced or control cells were seeded at a density of 8 × 105

and grown in DMEM plus 10% SBF for 48 h to accumulate the

proteolytic fragment of mMeg in the culture media. For matrix
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metalloproteinases inhibition (MMPi) treatment, cells were

treated with or without 10 μM GM6001 for 48 h, replenishing

every 12 h. The medium was collected, and the cells were lysed.

The media were clarified by centrifugation at 10,000 g for 10 min

and then concentrated with Centricon® 100. Proteins from the

concentrated medium were immunoprecipitated with anti-HA

antibody coupled with protein G–agarose beads (Pierce).

Samples were separated by SDS-PAGE and analyzed by

Western blot.

Flow cytometry

For measurements of total mMeg, cells expressing the

mini receptor were grown on 100-mm dishes until 80%

confluency. Cells were detached with PBS containing 5 mM

EDTA and permeabilized with 0.75% saponin in PBS before

incubation with Alexa488-conjugated anti-HA antibody. The

results were displayed as mean fluorescence per cell. For

measurements of surface mMeg, non-permeabilized cells

were detached with PBS containing 5 mM EDTA and

incubated with monoclonal Alexa488-conjugated anti-HA

antibody. Cells from another set were permeabilized with

0.75% saponin in PBS and incubated with anti-HA-488 to

measure the total amount of receptors. Results were plotted as

surface (non-permeabilized cells) mean fluorescence versus

total (permeabilized cells) mean fluorescence. Background

fluorescence intensity was assessed without the primary

antibody and subtracted from mean fluorescence. Mean

fluorescence values were obtained in triplicate with a

FACScalibur (BD Biosciences-Pharmingen, Sweden), and

the data were analyzed with the Weasel software.

Phosphorylation assay and insulin
treatment

The strategy to measure phosphorylation was described

before (Li et al., 2000; Yuseff et al., 2007). Briefly, seeded cells

were washed and incubated twice with phosphate-free

minimal essential medium (Gibco) for 20 min, followed by

the addition of 200 uCi/ml of [32P]-orthophosphate at 37°C for

2 h. Then, cells were washed and lysed in a PBS buffer

containing 1% Triton X-100, 1 mM glycerophosphate,

1 mM sodium orthovanadate, 5 mM sodium fluoride, and

protease inhibitors. For insulin treatment, the protein was

included at a final concentration of 100 nM in all steps of the

phosphorylation assay. Following immunoprecipitation with

anti-megalin antibody, samples were examined via

SDS–PAGE and autoradiography. The percentage of

megalin phosphorylation was calculated by densitometry

using ImageJ and normalized to the levels of mMeg

detected by western blot from an aliquot of cell lysate.

Cell-surface biotinylation

To determine cell surface mMeg localization, the cells were

biotinylated as described (Marzolo et al., 2003). Briefly, control or

OCRL1 silenced cells were serum-starved for 2 h and incubated

with 100 nM insulin for 2 or 4 h. The cells were washed in ice-

cold PBS and biotinylated at 4°C with 0.5 mg/ml sulfo-NHS-LC-

biotin for 1 h. Then, the cells were washed with PBS and the

biotin was quenched with 50 mM NH4Cl for 10 min. Cells were

lysed and biotinylated cell-surface proteins were adsorbed to

streptavidin agarose beads for 2 h at 4°C in rotation. Beads were

washed, boiled in Laemmli sample buffer and the proteins of

interest were separated by SDS-PAGE and analyzed by

western blot.

Insulin signaling

Cells were serum-starved for 4 h with or without 50 μM

YU142670 (Pirruccello et al., 2014). Next, cells were incubated

with 100 nM insulin (with or without 50 μM YU142670), to

promote AKT and GSK3β phosphorylation due to insulin

signaling. Cells were washed twice with PBS, lysed, and

analyzed by western blot.

Statistical analysis

The blots were quantified with the ImageJ software, and

qPCR analyses were performed using a relative quantification

mathematical model, as previously described (Pfaffl, 2001). Data

were expressed as the mean ± SEM (standard error of the mean)

from at least three independent experiments. Comparisons of

two conditions were performed using Student’s t-test or Mann-

Whitney. For multiple comparisons data was analyzed using

ANOVA with Bonferroni and Dunnett´s correction. The

statistical analyses and graphs were performed using

GraphPad Prism 5.

Results

Megalin is post-transcriptionally regulated
in a cellular model of Lowe Syndrome

It has been proposed that the defect in re-absorption function

and secretion of megalin in LS result from receptor trafficking

deregulation (Norden et al., 2002; Vicinanza et al., 2011). As was

reported, the lack of OCRL1 does not affect megalin apical

distribution or its internalization, but the recycling of the

receptor is significantly reduced in both proximal and distal

epithelial tubular cells (Vicinanza et al., 2011). To study megalin

expression and trafficking, we silenced OCRL1 in the porcine

Frontiers in Cell and Developmental Biology frontiersin.org05

Sandoval et al. 10.3389/fcell.2022.911664

220

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.911664


FIGURE 1
Megalin is down-regulated in OCRL1 and APPL1 KD proximal tubule cells. (A) Schematic representation of the full-length megalin with its four
ligand-binding domains and the mini receptor with the fourth ligand-binding domain tagged with HA-epitope (mMeg). (B–H) LLC-PK1 cells stably
expressingmMeg (mMeg-LLC-PK1) were infected with non-target shRNA (shControl), shRNA directed against OCRL1 (shOCRL1) or APPL1 (shAPPL1)
lentiviruses. (B) Endogenous megalin and mMeg were analyzed in whole-cell lysates of control and OCRL1 silenced cells by western blot. (C)
Quantification of mMeg protein levels corrected with tubulin levels in control and OCRL1 KD cells. Data are expressed as the means ± SEM of N =
5 independent experiments (t-test, **p < 0.01). (D) Quantitative PCR was used to analyze mRNA levels of megalin. Three independent assays were
performed, and the average ±SD was plotted on the graph. (E)Metabolic labeling of control or OCRL1 silenced cells with [35S]-methionine/cysteine
for 4 hmMegwas immunoprecipitated (IP) and analyzed by autoradiography. Additionally, an aliquot of thewhole-cell lysate was used to total mMeg
bywestern blot (WB). (F) Endogenousmegalin andmMegwere analyzed in whole-cell lysates of control and APPL1 silenced cells by western blot. (G)
Quantification of mMeg protein levels corrected with tubulin levels in control and APPL1 KD cells. Data are expressed as the means ± SEM of five
independent experiments (t-test, **p < 0.01). (H) Control or silenced cells were treated with CHX (100 μM), and the expression of mMeg, Precursor-
mMeg, and actin were determined by western blot at indicated times. (I) Graph corresponds to mMeg protein levels corrected with actin levels in
control and silenced cells.
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kidney proximal tubule cells LLC-PK1. In this model, we

evaluated the protein levels of the receptor, both endogenous

megalin and the megalin mini receptor, mMeg, an accepted

model to study trafficking and phosphorylation of the full-

length receptor (Yuseff et al., 2007; Farfán et al., 2013)

(Figure 1A). Interestingly we observed a significant decrease

in megalin expression, at the protein level, in OCRL1 silenced

cells (Figures 1B,C). On the other hand, and in line with findings

in zebrafish (Oltrabella et al., 2015), the reduction of megalin

protein levels in OCRL KD cells was not a result of a

transcriptional regulation because megalin mRNA expression,

evaluated by quantitative PCR, did not change (Figure 1D).

Besides, the amount of mMeg found after a pulse of
35S-methionine was similar in control and OCRL1 KD cells

(Figure 1E), confirming that the decreased total levels of the

receptor were not due to a reduction in its biosynthesis. These

results suggest that OCRL1 regulates megalin at a post-

transcriptional level in the proximal kidney cell line.

OCRL1 and the endosomal protein APPL1 are present in

endocytic vesicles (Erdmann et al., 2007). The recruitment of

OCRL1 to the phagosomes and endosomes is regulated by Rab

proteins, including Rab5, Rab22a, and Rab35 (Hyvola et al., 2006;

Fukuda et al., 2008; Noakes et al., 2011). Besides, the association

of OCRL1 to endosomes is indirectly regulated by APPL1 by its

interaction with Rab5 (McCrea et al., 2008; Bohdanowicz et al.,

2012) and APPL1 interacts with megalin (Erdmann et al., 2007).

Previous results showed that in OCRL KD cells, the presence of

megalin in APPL1-positive endosomes is reduced, whereas its

presence in EEA1-positive endosomes is increased (Vicinanza

et al., 2011; Festa et al., 2019). However, the role of APPL1 in

megalin expression has not been evaluated. Therefore, we

determined whether silencing APPL1 modifies megalin levels.

Our findings indicate that this was the case; as is shown in Figures

1F,G, megalin protein levels were significantly reduced in

APPL1 KD cells. To explore if the reduction of OCRL1 and

APPL1 decreases megalin by promoting its degradation, the

receptor half-life was evaluated by measuring its

disappearance over time in control and OCRL1 or APPL1 KD

cells. Cells were treated with cycloheximide (CHX) for up to 12 h.

The disappearance of megalin in OCRL1 and APPL1 silenced

cells was faster than in control cells (Figures 1H,I). These results

underscored the roles of OCRL1 and APPL1 in megalin protein

stability.

In control cells treated with CHX, the inhibition of

proteasome by epoxomycin partially recovered megalin levels

but the inhibition of lysosome, with NH4Cl, had no effect

(Supplementary Figure S1A,B). In OCRL1 silenced cells the

recovery of megalin levels was significant upon proteasome

inhibition. Compared with the control cells, the inhibition of

lysosome in shOCRL1 cells had a slight but not significant effect.

These results suggest that the lack of OCRL1 induces megalin

degradation by the proteasome and possibly in less extension by

the lysosome. APPL1 silenced cells also show a more

predominant role of proteasome than lysosome in megalin

degradation.

Megalin proteolytic processing,
ectodomain secretion and surface levels
are decreased in OCRL1 and APPL1 knock-
down cells

LS patients have reduced megalin levels in the urine (Norden

et al., 2002; Suruda et al., 2017). Besides the reduction in total

megalin levels, explained by increased receptor degradation, a

possible mechanism involved in the decrease of megalin in the

urine of LS patients is related to alterations in the proteolysis of

the receptor ectodomain. Endogenous megalin is first

proteolyzed by matrix metalloproteinases (MMPs), stimulated

by PKC; this process is followed by a γ-secretase mediated

intramembrane processing of the resulting megalin C-terminal

fragment; this sequential proteolytic processing has been

documented in opossum renal cell line (OK) (Zou et al.,

2004) as well in LLC-PK1 cells (Cabezas et al., 2019) among

others. To evaluate the proteolytic processing in our system, we

first characterized and compared the processing of mMeg,

expressed in LLC-PK1 and MDCK renal epithelial cells. We

determined the distribution of the extracellular and intracellular

fragments of mMeg since a differential localization of these

domains originated from endogenous megalin in rat proximal

tubule epithelium was previously reported (Bachinsky et al.,

1993; Zou et al., 2004). In MDCK cells mMeg extracellular

and cytoplasmic domains were not always colocalizing within

the cell (Supplementary Figure S2A,B), consistent with

constitutive processing of the receptor as occurs with other

members of the family (Larios and Marzolo, 2012). Moreover,

it was also possible to observe that, in addition to the detection of

N- and C-terminal megalin in the same structure, amino and

carboxy-terminal fragments were also found separated

(Supplementary Figure S2B), corroborating the observations in

renal tissues analyzed by electron microscopy (Bachinsky et al.,

1993; Zou et al., 2004).

Furthermore, by immunofluorescence, we found an

interesting distribution pattern of the receptor in LLC-PK1

cells overexpressing mMeg (in which minimegalin levels are

several times higher than endogenous megalin, see Figure 1B);

some cells exhibited the label corresponding to both domains

while in others, only the label corresponding to the ectodomain

(N-terminal, containing HA epitope) was detected (Figure 2A).

Besides, this dual pattern was not observed in cells expressing

mMeg0, a mini receptor lacking the extracellular domain but

including an amino-terminal HA-epitope (Figure 2B). This result

suggests that the cells exclusively positive for the ectodomain

staining (Figure 2A) could capture the N-terminal part of the

receptor from the media. Accordingly, western blot evaluation of

the cellular proteins showed a band recognized by the anti-
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FIGURE 2
Characterization of megalin intracellular and secreted fragments. Immunofluorescence of LLC-PK1 cells stably expressing (A) mMeg or (B)
Meg0 to detect amino-terminal (N-term) or carboxy-terminal (C-term) domains of the receptor with anti-HA (green) and anti-Megalin (red)
antibodies, respectively. The images were acquired by epifluorescence microscopy. Scale bar, 10 µm. (C) Whole-cell lysates of wt LLC-PK1 and
mMeg-LLC-PK1 cells were analyzed by western blot using anti-HA to detect mMeg or its N-term fragments. Symbols correspond to a non-
specific band (&) and the lowmolecular weight band exclusive to themMeg expressing cell lysate (*). (D)Whole-cell lysates of wt LLC-PK1 cells were
incubated with conditioned media of either wt or mMeg -LLC-PK1 cells, analyzed by western blot using an anti-HA antibody, which recognizes the
N-terminal portion ofmMeg. Symbols correspond to the non-specific band (&) and lowmolecular weight band found in the cell lysate of wt LLC-PK1
cells incubated with conditioned media frommMeg-expressing LLC-PK1 cells (*). (E)mMeg-LLC-PK1 cells were grown to confluence for 48 h. The
conditioned medium was concentrated and then immunoprecipitated with an anti-HA antibody. Protein samples, immunoprecipitated media, and
cell lysates were analyzedwith an anti-HA antibody to detectmegalin ectodomain (N-term) andwith an anti-megalin cytoplasmic domain polyclonal
antibody to detect megalin carboxy-terminal fragment (C-term). Tubulin was used as a loading control. (F) mMeg expressing cells were incubated
with vehicle (Control) or 10 μM MMPi (GM6001, general matrix metalloprotease inhibitor) for 48 h and replenished every 12 h. The
immunoprecipitated media and cell lysates were analyzed by western blot to detect mMeg and tubulin as load control.
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ectodomain antibody (anti-HA), of around 40 kDa, only present

in lysates from mMeg transfected cells (Figure 2C). To test if this

band corresponds to an endocytosed minimegalin N-terminal

fragment, we incubated non-transfected cells with the

conditioned media obtained either from wild-type or mMeg

expressing cells. The result shows a band, 40 kDa, only

detected in lysates of the cells exposed to the conditioned

media of mMeg expressing cells (Figure 2D). Overall, these

FIGURE 3
Cell surface megalin distribution and extracellular domain release decrease under OCRL1 and APPL1 silencing. (A)mMeg-LLC-PK1 cells, non-
permeabilized or permeabilized, control, or OCRL1-silenced were incubated with an anti-HA-488-conjugated antibody and analyzed by flow
cytometry. The results are plotted as the ratio of expression levels observed in non-permeabilized (surface) versus permeabilized cells (total). Data
are expressed as the means ± SEM of N = 3 independent experiments (t-test, *p < 0.05). (B) Conditioned media of control or OCRL1 silenced
mMeg-LLC-PK1 cells were processed by anti-HA immunoprecipitation (Media IP). Samples of IP and cell lysates were analyzed by western blot with
an anti-HA antibody to detect themegalin ectodomain (N-term). (C–H)MDCK cells stably expressingmMeg (mMeg-MDCK) were infectedwith non-
target shRNA (shControl), shRNA directed against OCRL1 (shOCRL1) or APPL1 (shAPPL1) lentiviruses. (C) Protein levels of OCRL1 were analyzed in
whole-cell lysates of control and OCRL1 silenced cells by western blot. (D) Flow cytometry analyzes mMeg surface localization in control and
OCRL1 silenced cells. The plot shows the surface vs. total ratio of expression levels. Data are expressed as the means ± SEM of N = 3 independent
experiments (t-test, *p < 0.05). (E) Analysis of immunoprecipitated conditioned medium and cell lysates of control or OCRL1 silenced cells by
western blot with an anti-HA antibody. The plot shows the levels ofmMeg in the immunoprecipitatedmedia corrected by total. Data are expressed as
the means ± SEM N = 3 independent experiments (t-test, *p < 0.05). (F) Protein levels of APPL1 were analyzed in whole-cell lysates of control and
APPL1 silenced cells by western blot. (G) Flow cytometry analyzes mMeg surface localization in control and APPL1 silenced cells. The plot shows the
surface vs. total ratio of expression levels. Data are expressed as themeans ± SEM of N= 3 independent experiments (t-test, *p < 0.05). (H) Analysis of
immunoprecipitated conditioned medium and cell lysates of control or APPL1 silenced cells by western blot with an anti-HA antibody. The plot
shows the levels of mMeg in media IP corrected by total. Data are expressed as the means ± SEM N = 3 independent experiments (t-test, **p < 0.01).
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observations suggest that megalin ectodomain secretion would be

followed by the internalization of this domain, or a fragment of it,

in our cellular model.

Then, we evaluated the conditioned media of LLC-PK1

mMeg cells. We detected a fragment of mMeg recognized

only by anti-HA but not by an anti-C terminal antibody,

indicating that this soluble N-terminal fragment of the protein

probably results from a shedding process. This band is slightly

smaller than the one present in cell lysates, corresponding to the

full-length mMeg (Figure 2E). Similar results were found in

mMeg expressing MDCK cells (Supplementary Figure S3),

indicating that megalin is secreted to the culture media as a

proteolytic product. Similar to the endogenous receptor, matrix

metalloproteinases (MMPs) and a disintegrin and

metalloproteinase domain-containing (ADAM) proteins would

be involved in the shedding of mMeg because the inhibition of

these enzymes with the general inhibitor GM6001 reduced the

secretion of the receptor ectodomain (Figure 2F).

To determine if megalin processing is altered in LS cellular

models, we evaluated the cell surface expression and secretion of

mMeg, to the culture media, in OCRL1 and APPL1 KD cells. As

previously found in HK2 cells (Vicinanza et al., 2011), the

reduction of OCRL1 in LLC-PK1 cells induced a significant

decrease in mMeg levels at the cell surface (Figure 3A). The

ectodomain of megalin in the media was also evidently reduced

in this proximal tubule cell (Figure 3B). Similar results were

observed in OCRL1 KD MDCK cells (Figures 3C–E). These

results highlight a role for OCRL1 in regulating megalin surface

expression, proteolysis, and ectodomain secretion.

Additionally, we evaluated whether the previous relationship

between OCRL and APPL1 exists in our model, specifically if the

effects on mMeg trafficking observed in OCRL1 silenced cells

replicate under APPL1 silencing conditions (Figure 3F). Our

results show a significant reduction in megalin cell surface

expression in APPL1 silenced cells (Figure 3G). Interestingly,

APPL1 silencing also significantly reducedmMeg secretion to the

culture media (Figure 3H). The similarity of the effects of

APPL1 KD with OCRL1 KD again suggests a link between

these two endosomal proteins in regulating mMeg trafficking

and processing.

OCRL1 regulates the phosphorylation and
the endosomal distribution of megalin

Megalin trafficking is particularly affected at the early

endosomes in OCRL1 silenced cells due to inefficient

recycling back to the plasma membrane, partly due to an

accumulation of actin filaments around the endosomes

(Vicinanza et al., 2011). On the other hand, we have

described that megalin’s recycling and cell surface levels are

inhibited by GSK3-mediated phosphorylation of its

cytoplasmic domain (Yuseff et al., 2007). Thus, we wondered

whether GSK3β-mediated megalin phosphorylation could be

increased in OCRL1 KD cells as an additional explanation for

its reduction at the cell surface. To address this possibility, we

evaluated megalin phosphorylation in mMeg-MDCK silenced

for OCRL1 (Vicinanza et al., 2011). In OCRL1 KD cells, protein

levels and the basal activation of GSK3ß, analyzed by

phosphorylation of its inhibitory residue Ser9, were not

changed (Figure 4A). Then, we evaluated the phosphorylation

of mMeg by metabolic labeling with 32P-orthophosphate, as

described (Yuseff et al., 2007). Contrarily to our initial idea, in

OCRL1 KD cells megalin phosphorylation was reduced to 59% of

the control cells (Figures 4B,C), something unexpected

considering that the basal inhibition GSK3ß (phosphorylated

in Ser 9) was similar in both wild-type and OCRL1 KD cells. Part

of the remaining phosphorylated megalin was GSK3-dependent

as LiCl, a GSK3 inhibitor (Serretti et al., 2009), diminished even

more the phosphorylation of the receptor (Figures 4B,C).

Overall, these results indicate that in our LS cellular model,

the reduced surface expression of megalin is not explained by an

increase in its GSK3ß-mediated phosphorylation. In contrast

with the effect due to the lack of OCRL1, silencing APPL1 did not

significantly affect the basal levels of megalin phosphorylation,

although there was a reduction trend (Figures 4D,E).

One possibility to explain a lower megalin phosphorylation

in LS cells is that GSK3ß has less access to its substrate. To test

this possibility, we determined the colocalization of endogenous

megalin and transfected GSK3-HA in LLC-PK1 cells. Cells were

treated with YU142670, an inhibitor of OCRL1 (Pirruccello et al.,

2014), or vehicle, and the colocalization of megalin with GSK3ß

was analyzed after the immunodetection of both proteins. The

blocking effect of the inhibitor was assessed by determining the

size of the EEA1 positive endosomes (Supplementary Figure

S4A,B). The results show megalin and GSK3ß colocalize

similarly in control and inhibitor-treated cells (Supplementary

Figure S4C,D), a result that does not support the option of

decreased substrate-kinase encounter in LS conditions.

Then, we asked if megalin is differentially distributed in the

endosomal compartments dependent on phosphorylation status and

how this localization could be changed if OCRL1 activity is decreased.

To have insights into the endosomal distribution of megalin in its

phosphorylated and non-phosphorylated forms, the wild-type

having the cytoplasmic PPPSP motif recognized by GSK3ß, the

phosphomimetic PPPDP (S/D) and the non-phosphorylated PPPAP

(S/A) forms ofmMegs (Yuseff et al., 2007;Marzolo and Farfán, 2011)

were expressed in LLC-PK1 treated or not with YU142670. The

steady-state distribution of mMeg was determined by colocalization

with EEA1, Rab11 and Rab7 under control conditions (Figures

5A–F). Due to the lack of specific staining of the Rab11 antibody

in LLC-PK1 cells, the distribution of the megalin in the recycling

compartment was assessed upon transfection of mCherry-Rab11. In

YU142670 treated cells, the wild-type and S/D mutant mMegs were

significantly increased in EEA1 positive early endosomes (Figures

5A,B) and in Rab11 recycling endosomes (Figures 5 C, D). In
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contrast, upon the inhibition of OCRL1 only the mMeg S/D mutant

was increased in Rab7 positive endosomes, even though thewild-type

mMeg was more present in this compartment under control

conditions (10.8% wt vs. 3.1% S/D) (Figures 5 E, F). Interestingly,

the mMegS/A that is not a substrate of GSK3ß was rather refractory

to the reduction of OCRL1 activity. This mutant has a fast-cycling

behavior (Yuseff et al., 2007), something evident when its presence in

the different endosomal compartments is analyzed under control

conditions; compared with the wild-type mMeg, the mMeg S/A

mutant was more present in early/recycling endosomes (18.5% wt;

41.05% S/A) and less in late Rab7 positive endosomes (10.4 wt% vs.

3.1% S/A). Overall, these pieces of evidence suggest that the

endosomal trafficking of megalin is differentially affected by the

reduction in the activity of OCRL1 and the phosphorylation status of

the receptor.

It is important to consider that the increased presence of

megalin in the Rab11-endosomal compartments in

YU142670 treated cells probably reflects that the inhibition of

megalin recycling also takes place from a more mature recycling

compartment and not only from an EEA1-sorting endosome.

Moreover, our data also show that the inhibition of OCRL

activity affects the identity of the endosomal compartments; cells

treated with YU142670 showed a significant increase in the

colocalization of EEA1 with Rab11 (Supplementary Figure S4E,F).

FIGURE 4
Reduced mMeg phosphorylation in mMeg-MDCK OCRL1 silenced cells. (A) Control or OCRL1 silenced cells were lysed and analyzed by
western blot with antibodies against phosphorylated GSK3ß (Ser9) and total GSK3ß. (B) Control or silenced for OCRL were treated with LiCl (50 mM)
or NaCl (50 mM) as control. For phosphorylation assays, the cells were incubated with [32P]-orthophosphate for 2 h at 37°C, followed by
immunoprecipitation of megalin from cell lysates using an anti-megalin cytoplasmic domain. The immune complexes were analyzed by SDS-
PAGE and visualized by autoradiography. Aliquots of whole-cell lysates were used to detect mMeg by western blot. (C)Graph shows the percentage
of phosphorylated mMeg related to the total. Data are expressed as the means ± SEM of N = 3 independent experiments (ANOVA, ****p < 0.0001,
**p < 0.01). (D) Control or silenced for APPL1 were treated with LiCl (50 mM) or NaCl (50 mM) as control. For phosphorylation assays, the cells were
incubated with [32P]-orthophosphate for 2 h at 37°C, followed by immunoprecipitation of megalin from cell lysates using an anti-megalin
cytoplasmic domain. The immune complexes were analyzed by SDS-PAGE and visualized by autoradiography. Aliquots of whole-cell lysates were
used to detect mMeg by western blot (E) Graph corresponds to the percentage of phosphorylated mMeg related to the total of control or
APPL1 silenced cells. Data are expressed as the means ± SEM of N = 3 independent experiments (ANOVA, *p < 0.05).
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Insulin treatment decreases megalin
phosphorylation and increases megalin at
the cell surface despite a reduction in the
signaling pathway in OCRL1-and APPL1-
silenced cells

Insulin increases megalin levels in cell culture under

conditions resembling hypertension and type-2 diabetes, both

associated with chronic kidney disease (Hosojima et al., 2009;

Bryniarski et al., 2018). Besides, insulin inhibits GSK3 (Cross

et al., 1995). As mentioned before, megalin’s recycling from

endosomes to the cell surface is reduced by GSK3-mediated

phosphorylation of its cytoplasmic domain, decreasing the

amount of megalin available for ligand binding (Yuseff et al.,

2007). Therefore, insulin could mediate a physiological way to

inhibit megalin phosphorylation and, eventually, increase the

receptor surface levels. First, we tested the effect of 100 nM

insulin on megalin phosphorylation in LLC-PK1 cells

(Figure 6). Interestingly, 4 h of insulin treatment significantly

reduced megalin phosphorylation up to 60% of the control

FIGURE 5
Endosomal distribution of megalin and its phosphorylated and non-phosphorylated forms in control and OCRL inhibition conditions. LLC-PK1
were transfected with HA-tagged minimegalins (mMeg) wt, phosphomimetic (mMeg S/D) or non-phosphorylatable mMeg S/A. Then, cells were
treated with 50 μM YU142670 or vehicle for 4 h, fixed and processed for fluorescence microscopy. Preparations were imaged with Confocal Nikon
Timelapse. Scale Bars 10 μM. (A) Cells were stained with anti-EEA1 (green) and anti-HA (red). (B) At least 34 separated cells were analyzed with
ImageJ tomeasure the Manders percentage between EEA1 endosomes and HA-taggedmMeg structures. ANOVA, ****p < 0.0001. (C) LLC-PK1 cells
were co-transfected with mCherry-Rab11 and HA-tagged mMeg. Then, cells were treated with 50 μM YU142670 for 4 h, fixed and processed to
detect mMeg (HA, red) and Rab11 (green). The color was changed for consistency with the other panels. (D) At least 12 separated cells were analyzed
with ImageJ to measure the Manders percentage between Rab11-positive endosomes and mMeg structures. ANOVA, ***p < 0.001, *p < 0.05. (E)
LLC-PK1 transfected with HA-tagged mMeg. Then, cells were treated with 50 μM YU142670 for 4 h, fixed and processed to detect mMeg (HA, red)
and Rab7 (green). (F) At least 18 separated cells were analyzed with ImageJ to measure the Manders percentage between Rab7-positive endosomes
and mMeg structures. ANOVA, **p < 0.01.
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FIGURE 6
Insulin decreasesmegalin phosphorylation and increasesmegalin surface expression in control and LS cellular models. (A)mMeg-LLC-PK1 cells
treated with NaCl (50 mM), LiCl (50 mM) or insulin (100 nM) were labeled [32P]-orthophosphate for 2 h at 37°C, followed by immunoprecipitation of
megalin with an anti-megalin cytoplasmic domain. The immune complexeswere analyzed by SDS-PAGE and visualized by autoradiography. Aliquots
of whole-cell lysates were used to detect mMeg by western blot. (B)Graph corresponds to the percentage of phosphorylated mMeg related to
the total of NaCl, LiCl or insulin-treated cells. Data are expressed as the means ± SEM of N = 3 independent experiments (ANOVA, ****p < 0.0001,
***p < 0.001). Phosphorylation assays were performed in OCRL1 (C) or APPL1 (D) silenced cells in the presence or the absence of 100 nM insulin.
Immunoprecipitated radiolabeledmMegwas evaluated by autoradiography. Total mMeg andGSK3ß (total and phosphorylated forms) were detected
by western blot. (E,F) Control or (G,H) OCRL1 silenced cells were serum-starved for 2 h before the incubation with 100 nM insulin by the indicated
period of time. Cells were biotinylated to determine the surface levels of mMeg. The whole lysates were used for total receptor levels. Samples were
analyzed by western blot. The graphs shows surface vs. total ratio of mMeg expression levels relative to control time 0. N = 4; ANOVA, *p < 0.05,
**p < 0.01.
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(Figures 6A,B). Moreover, in OCRL1 and APPL1 KD cells,

insulin was still able to reduce megalin phosphorylation as

well as GSK3ß activity, measured by the PKB/AKT-mediated

phosphorylation in Ser9 (Figures 6C,D).

Accordingly, insulin treatment of both wild-type and LS cells

(OCRL KD) significantly increased megalin surface expression

after 4 h of treatment (Figures 6E–H). These results suggest that

insulin, via inhibition of GSK3ß -mediated megalin

FIGURE 7
Insulin signaling is decreased in LS cellular models. mMeg-LLC-PK1 (A–B) or HeLa (C–D) cells were serum starved for 4 h ± 50 μM
YU1426670 and then incubated with 100 nM insulin ± 50 μM YU1426670 for indicated periods of time. (A,C) Cell lysates were analyzed by western
blot to detect total and phosphorylated forms of AKT. (B). Graph corresponds to the protein levels of phosphorylated AKT corrected by total levels of
AKT relative to time 0. N = 3; ANOVA, *p < 0.05.(D) Graph corresponds to the protein levels of phosphorylated protein corrected by total levels
relative to control, time 0, AKT (upper) or GSK3β (lower). N = 3, ANOVA, ***p < 0.001, **p < 0.01, *p <0.05. (E–F)HeLa control orOCRL1 silenced cells
were serum starved for 4 h and then incubated with 100 nM insulin ± 50 μM YU1426670 for indicated periods of time. (E)Cell lysates were analyzed
by western blot to detect total and phosphorylated forms of AKT and GSK3β. (F) Graph corresponds to the protein levels of phosphorylated protein
corrected by total levels relative to control, time 0, AKT (upper) or GSK3β (lower). N = 3 ANOVA, ***p < 0.001, **p < 0.01, *p < 0.05.
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phosphorylation, could promote more efficient recycling of the

receptor in normal and in OCRL1 dysfunction conditions.

Considering this insulin effect on megalin phosphorylation

and cell surface expression, we were interested to know if LS

cellular models respond differently to insulin (Figure 7). We

measured insulin signaling up to 2 h in LLC-PK1 cells treated

with 50uM of YU142670 to inhibit OCRL1. Cells showed a

decreased insulin response, evaluated by a lower activation of

AKT at 15 min of activation (Figures 7A,B). In order to test if the

absence of OCRL1 affects insulin signaling in a different cell type,

we tested Hela cells, a human cell line that does not express

megalin. Hela cells were treated with YU142670 or vehicle

(Figures 7C,D) or silenced for OCRL1 (Figures 7E,F). There

was an evident difference in the time of response to insulin in

Hela cells compared to LLC-PK1. In Hela cells, the

phosphorylation peak of AKT was at 5 min of insulin

stimulation. In both models (cells treated with YU142670 and

OCRL KD), the response to the hormone was significantly

decreased compared to the control cells, specifically by

reducing AKT phosphorylation. Similar results were observed

regarding pGSK3ß. Therefore, cells with decreased function of

OCRL1 are less responsive to insulin. Similarly, we tested insulin

response in APPL1 KD Hela cells, finding that both AKT and its

downstream substrate GSK3 show a reduction in

phosphorylation (Supplementary Figure S5).

Overall, these results indicate that insulin signaling operates

under cellular LS conditions, although with significantly reduced

efficiency. Potentially, insulin could be considered a tool to

reduce the constitutive GSK3ß-mediated megalin

phosphorylation, which decreases the receptor cell surface

levels (Yuseff et al., 2007).

Discussion

The elucidation of the molecular mechanisms underlying the

regulation of megalin function and trafficking is a central issue in

understanding the receptor’s role in human pathologies. In the

present paper, we focused on the regulation of megalin by the

phosphatidylinositol 5-phosphatase OCRL1 in a cellular model

that simulates the LS condition specifically at the level of the

proximal tubule of the kidney. First, we show evidence of megalin

down-regulation protein and a reduction of the receptor

shedding under the OCRL1 silencing condition reinforcing the

proposed trafficking defects of megalin in LS renal phenotype

(Pisitkun et al., 2004; Erdmann et al., 2007; Alexander and

Grinstein, 2009; Suruda et al., 2017). Megalin proteolysis

could be of physiological importance in regulating its own

expression due to the transcriptional role proposed for its

intracellular domain in the nucleus (Li et al., 2008; Marzolo

and Farfán, 2011). The mechanisms underlying the shedding

process include ligand binding, different metalloproteinases, and

PKC-dependent regulation (Zou et al., 2004; Marzolo and Farfán,

2011; Mazzocchi et al., 2017). In the present study, we

complement these observations by showing the importance of

OCRL1 and its interacting endosomal protein APPL1 in

regulating total and cell surface levels of megalin and the

secretion of the receptor ectodomain. Besides, we described

how OCRL1 regulates the megalin phosphorylation and the

endosomal distribution of the receptor depending on its

phosphorylation status. Finally, and physiologically relevant,

we showed that megalin phosphorylation and cell surface

expression is regulated by insulin.

In our proximal tubule cells model for the Lowe condition,

endogenous megalin was reduced without changes in the

receptor’s mRNA, similar to what was found in the

humanized Lowe Syndrome mouse model (Festa et al., 2019).

The reduction in megalin protein, observed in OCRL1 silenced

LLC-PK1 cells, is similar to what was reported in a mouse model

of Dent1 disease, another pathology with a related renal

phenotype as LS (Christensen et al., 2003). Dent1 disease

occurs due to gene mutations of the chloride channel CLC-5

(Fisher et al., 1995), a protein that interacts with megalin and

regulates its trafficking in renal proximal tubule cells

(Christensen et al., 2003). Moreover, the evaluation of

megalin, secreted in the urine of Dent patients, also shows a

reduction in the presence of the receptor (Norden et al., 2002).

Thus, our results corroborate the evidence indicating a

correlation between renal defects that affect megalin function

in LS and Dent1 disease (Norden et al., 2002; Shrimpton et al.,

2009; Vicinanza et al., 2011).

In revealing megalin degradation in cells with reduced

OCRL1 protein, we found that protein stability, but not its

synthesis, was decreased upon OCRL1 silencing. In the

absence of OCRL1, cargoes accumulate in EEA1-positive

early/sorting endosomes and cannot recycle from tubular

structures to the plasma membrane (Vicinanza et al., 2011).

Therefore, we initially speculated that in LLC-PK1 cells deficient

in OCRL1 the receptor could be favored to get into the

degradative lysosomal pathway, explaining the significant

reduction in megalin protein. Our results in cells with

inhibition of lysosomal activity (Supplementary Figure S1)

added to the similar presence of megalin in Rab7-late

endosomes in control and inhibited OCRL1 cells (Figure 5),

did not support this possibility. In contrast, our data favor the

role of the proteasomal degradation pathway in megalin half-life.

Another possibility to explain the decrease of megalin in

OCRL1 silenced LLC-PK1 cells relates to the role of the

enzyme dipeptidyl-peptidase 4 (DPP4) (Aroor et al., 2016).

This enzyme plays a relevant role in the proximal tubule (Lee

et al., 2015). DPP4 is activated by EGFR stimulation and is

associated with a reduction of megalin in mice (Aroor et al.,

2016). In this regard, it is worth mentioning that in OCRL1 KD

cells, the activation level of EGFR is significantly increased due to

its accumulation in endosomes, where it persists in its signaling

mode, activating ERK (Vicinanza et al., 2011). The total protein
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levels and the half-life of megalin were reduced in

APPL1 silenced cells, similar to what was found in

OCRL1 KD cells.

To study the role of OCRL1 and APPL1 in megalin

ectodomain secretion, we first validated mMeg as a proper

model to study the proteolysis (shedding) and trafficking of

megalin. It has been reported that the overexpression of the

expected product of γ-secretase activity over the MCTF, to the

so-called megalin intracellular carboxy-terminal domain

(MICD), down-regulates megalin and also a Na+/H+

exchanger 3 at a transcriptional level in a proximal tubule cell

lines (Li et al., 2008). However, we were unable to detect this

proteolytic product in our system. The expected MICD has been

challenging to identify at the moment in tissue and cell cultures.

Using inhibitors of proteasomal degradation, we have tried

unsuccessfully to detect MICD (data not shown). Despite

these results, our cellular models allow us to establish a role

of OCRL1 as well as APPL1 in megalin regulation; the silencing

of these proteins reduced both cell surface levels and megalin

secretion to the extracellular media (corrected by the total levels

of the receptor), compared to the control cells in kidney epithelial

cells, LLC-PK1 andMDCK. The reduction of megalin cell surface

levels in OCRL1 knock-down is also explained by an impairment

of the receptor recycling from the sorting endosome, as was

already described (Vicinanza et al., 2011).

Among the possible mechanisms underlying the reduction in

megalin shedding observed in OCRL1 and APPL1 knock-down

cells is the reduced presence of megalin at the cell surface. In

general, the events triggered by MMPs and ADAM proteins

metalloproteinases occur at the plasma membrane (Edwards

et al., 2008; Larios and Marzolo, 2012; Zakiyanov et al., 2019).

In lung epithelial cells, the metalloproteinases directly associated

with megalin proteolytic processing are MMP-2 and MMP-14

(Mazzocchi et al., 2017) (also known as MT1-MMP). MMP-2 is

secreted as a pro-enzyme, activated by other metalloproteinases,

including MMP-14, and binds to the megalin ectodomain

(Mazzocchi et al., 2017). MMP-14 directly interacts with and

processes megalin (Mazzocchi et al., 2017) and is also present in

the proximal tubule (Zakiyanov et al., 2019). Like megalin,

MMP-14 localizes at the apical surface and is found in apical

vesicles in epithelial cells from the prostate and uterus (Thathiah

and Carson, 2004; Sroka et al., 2008). Besides, MMP-14 can be

released in exosomes in an active form (Hakulinen et al., 2008)

and potentially could process exosomal megalin present in the

urine (Marzolo and Farfán, 2011; De et al., 2017). Besides the

reduction of surface megalin, it is also conceivable that the

trafficking of these metalloproteinases could be affected in the

LS condition, either its presence at the cell surface or its

intracellular activity. MMP-14 traffics through the endosomal

pathway and in this could be affected by an OCRL1 deficiency;

MMP14 is endocytosed and localized first to early endosomes

and later gets recycled through either early endosomes and the

trans-Golgi network (TGN) (Wang et al., 2004) or late

endosomes (Hakulinen et al., 2008; Williams and Coppolino,

2011; Macpherson et al., 2014). Megalin could also be a substrate

of the ADAMs family (Zou et al., 2004; Larios and Marzolo,

2012). These membrane proteins locate in perinuclear regions,

but they are also found in lesser amounts at the cell surface

(Edwards et al., 2008), where they process many of their

substrates, such as adhesion proteins and surface receptors

(Reiss et al., 2006; Murphy, 2009). However, active forms of

ADAMs are also found in intracellular compartments (Shirakabe

et al., 2001); for example, ADAM10 and 17/TACE induce the

shedding of APP in the TGN (Skovronsky et al., 2000). In the

same direction, ADAM10 efficiently processes CD23 and

possibly other substrates at the endosome (Mathews et al.,

2010), and therefore, its activity could be directly affected in

an LS condition.

The similar results obtained upon APPL1 silencing are

probably due to the role that this adaptor protein has in the

recruitment of OCRL1 to early endosomes (McCrea et al., 2008;

Noakes et al., 2011; Bohdanowicz et al., 2012), besides the

functions of the small endosomal GTPases Rab5 and

Rab35 have in the recruitment of the phosphatase (Hyvola

et al., 2006; Kanno et al., 2008; Dambournet et al., 2011). On the

other hand, the internalization pathway of megalin includes its

trafficking through APPL1 positive early endosomes; however,

in cells lacking OCRL1, the presence of internalized megalin in

APPL1 endosomes is reduced, contrasting with its increase in

early endosomes positive for EEA1 (Vicinanza et al., 2011; Festa

et al., 2019). These observations imply that even when megalin

interacts with APPL1 (Erdmann et al., 2007), its presence in

endosomes positive for this adaptor protein requires the

presence of OCRL1.

Considering the negative role that the GSK3ß-mediated

phosphorylation of the cytoplasmic domain of megalin has in

receptor surface expression (Yuseff et al., 2007), we evaluated this

modification in our cellular models. Our first hypothesis was that

a defect in the phosphorylation of megalin, reflected by higher

levels of this modification, could explain the lower surface levels

of megalin in OCRL1 silenced cells. Cells with decreased levels of

OCRL1 showed no change in basal GSK3ß activity, but, in

contrast to our prediction, they exhibited lower levels of

megalin phosphorylation. There is no information concerning

where GSK3ß phosphorylates megalin and how this

phosphorylation is controlled by the action of phosphatases or

other kinases. However, it is known that AKT controls GSK3ß

activity when both proteins are in PI (3,4) P2-enriched

endosomal membranes and recruited by APPL1 (Schenck

et al., 2008) suggesting that megalin phosphorylation would

occur in the endosomal pathway. Then, we hypothesized that

inhibition of OCRL1 could decrease the colocalization of GSK3ß

with megalin. However, our results did not support this option, at

least using our experimental strategy. On the other hand, megalin

is also phosphorylated by PKC, PKA and CKII, although to a

much smaller extent than by GSK3ß (Yuseff et al., 2007), but the
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physiological significance of these modifications is still unknown.

We could speculate that under LS conditions, the non-GSK3ß

dependent phosphorylation of megalin and mediated by any of

the kinases mentioned, could be inhibited explaining part of the

reduction in megalin phosphorylation observed in OCRL KD

cells. If any of these phosphorylation sites would have a positive

role in the expression of megalin at the plasma membrane, their

inhibition could result in a reduction of cell surface megalin. This

effect would add to the recycling impairment caused by the

accumulation of actin cytoskeleton at the endosomal membrane

(Vicinanza et al., 2011). Future experiments would be required to

address this possibility.

Of note, there was residual but still significant

phosphorylation of megalin in our LS cellular model

susceptible to inhibition of GSK3ß with LiCl. Considering

this finding, we tested a physiological stimulus that activates

PI3K and AKT as insulin, to reduce GSK3ß activity and

megalin phosphorylation. For the first time, our results

showed that insulin significantly reduced megalin

phosphorylation and increases its expression at the plasma

membrane under normal conditions. Moreover, in LLC-PK1

cells with reduced levels of OCRL1 and APPL1, the treatment

with insulin significantly decreased GSK3ß activity and

megalin phosphorylation, suggesting that this signaling

pathway is still functional under these conditions.

Accordingly, insulin treatment also increased megalin cell

surface expression in cells with reduced OCRL1 activity.

Potentially, the insulin pathway could be considered a tool

to reduce the constitutive GSK3ß-mediated megalin

phosphorylation and increase the receptor cell surface

levels (Yuseff et al., 2007).

LS patients exhibit a urinary waste of several growth

factors, including insulin (Norden et al., 2001; Bökenkamp

and Ludwig, 2016). From this point of view, it is expected that

insulin signaling could be affected in LS as we found in our

study. Moreover, the reduction in insulin signaling evidenced

in our experiments at the cellular level, specifically in

conditions of reduction of OCRL1 function, not only would

reduce megalin recycling but also would potentially decrease

megalin endocytosis as pAKT is required for the efficient

megalin-mediated endocytosis of albumin, a physiologically

relevant ligand of the receptor present in the proximal tubule

(Silva-Aguiar et al., 2022). Regarding AKT activity, it has been

recently found that the mTORC1 complex is inactivated in

OCRL1 deficient cells (Madhivanan et al., 2020), a defect that

triggers a lack of nutrient-sensing (Wang et al., 2021) due to

mTORC1 is required for proper insulin signaling (Saltiel and

Kahn, 2001). Insulin signaling is also highly dependent on the

cell type, something we observed in our experiments, and is

associated with insulin receptor trafficking (Iraburu et al.,

2021). For instance, the activation of PI3K and pAKT takes

place at the plasma membrane as well as in endosomes, with

higher activation at the endosome (Ceresa et al., 1998; Iraburu

et al., 2021), being possible that under LS conditions at least the

endosomal signaling, would be affected. Therefore, it is

expected that the response to insulin and megalin

phosphorylation mediated by GSK3ß are affected in LS

cellular models and, in general, cells with decreased

function of OCRL1 would be less responsive to insulin.

Moreover, in LS patients’ insulin signaling could be partially

inhibited, affecting other processes including the stimulation

of megalin expression under chronic kidney disease (Hosojima

et al., 2009; Bryniarski et al., 2018) and the insulin-mediated

surface expression of GLUT4, a trafficking response that is

inhibited by GSK3ß (Duan X et al., 2021).

Endosomal compartments are part of the trafficking route

of cargo proteins. They also have roles in membrane turnover

and intracellular communication being a platform

characterized by endosomal adaptor proteins, where

components of signaling pathways are recruited (Vicinanza

et al., 2011). Regarding insulin, APPL1 has been identified as

an AKT-interacting endosomal adaptor (Mitsuuchi et al.,

1999; Schenck et al., 2008) required for insulin signaling

(Sato et al., 2007; Ryu et al., 2014). Here, we present

insulin signaling kinetics showing a similar disruption of

AKT and GSK3ß phosphorylation upon APPL1 KD and

OCRL1 KD cells.

As mentioned before, in LS and Dent disease there are

significant decreases in A-megalin in the urine (Suruda et al.,

2017). Furthermore, other pathologies leading to chronic

kidney diseases, such as diabetes (Ogasawara et al., 2012;

De et al., 2017) and IgA nephropathy (Seki et al., 2014),

exhibit an increase in the presence of C-megalin, probably

secreted into the urine as exosomes. With the evidence

described in this work, we highlight the importance of

establishing cellular models for studying proteolysis,

trafficking and phosphorylation of megalin in pathologies

in which this receptor is affected to find potential

therapeutic tools for these diseases.
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