
EDITED BY : André van Schaik and Bernabe Linares-Barranco

PUBLISHED IN : Frontiers in Neuroscience

NEUROMORPHIC ENGINEERING
EDITORS’ PICK 2021

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/21890/neuromorphic-engineering-editors-pick-2021#articles
https://www.frontiersin.org/research-topics/21890/neuromorphic-engineering-editors-pick-2021#articles
https://www.frontiersin.org/research-topics/21890/neuromorphic-engineering-editors-pick-2021#articles

Frontiers in Neuroscience 1 August 2021 | Neuromorphic Engineering Editors’ Pick 2021

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88971-161-1

DOI 10.3389/978-2-88971-161-1

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/21890/neuromorphic-engineering-editors-pick-2021#articles
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/

Frontiers in Neuroscience 2 August 2021 | Neuromorphic Engineering Editors’ Pick 2021

NEUROMORPHIC ENGINEERING
EDITORS’ PICK 2021

Topic Editors:
André van Schaik, Western Sydney University, Australia
Bernabe Linares-Barranco, Instituto de Microelectrónica de Sevilla, Spain

Citation: van Schaik, A., Linares-Barranco, B., eds. (2021). Neuromorphic
Engineering Editors’ Pick 2021. Lausanne: Frontiers Media
SA. doi: 10.3389/978-2-88971-161-1

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/21890/neuromorphic-engineering-editors-pick-2021#articles
http://doi.org/10.3389/978-2-88966-161-1

Frontiers in Neuroscience 3 August 2021 | Neuromorphic Engineering Editors’ Pick 2021

04 Information-Theoretic Intrinsic Plasticity for Online Unsupervised
Learning in Spiking Neural Networks

Wenrui Zhang and Peng Li

18 Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

Timo Wunderlich, Akos F. Kungl, Eric Müller, Andreas Hartel,
Yannik Stradmann, Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht,
Korbinian Schreiber, David Stöckel, Christian Pehle, Sebastian Billaudelle,
Gerd Kiene, Christian Mauch, Johannes Schemmel, Karlheinz Meier and
Mihai A. Petrovici

33 Analysis of Liquid Ensembles for Enhancing the Performance and
Accuracy of Liquid State Machines

Parami Wijesinghe, Gopalakrishnan Srinivasan, Priyadarshini Panda and
Kaushik Roy

57 A Theory for Sparse Event-Based Closed Loop Control

Pierre Daye, Sio-Hoi Ieng and Ryad Benosman

68 Accelerated Physical Emulation of Bayesian Inference in Spiking
Neural Networks

Akos F. Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller,
Andreas Baumbach, Dominik Dold, Alexander Kugele, Eric Müller,
Christoph Koke, Mitja Kleider, Christian Mauch, Oliver Breitwieser,
Luziwei Leng, Nico Gürtler, Maurice Güttler, Dan Husmann, Kai Husmann,
Andreas Hartel, Vitali Karasenko, Andreas Grübl, Johannes Schemmel,
Karlheinz Meier and Mihai A. Petrovici

83 A Digital Hardware System for Spiking Network of Tactile Afferents

Nima Salimi-Nezhad, Erfan Ilbeigi, Mahmood Amiri, Egidio Falotico and
Cecilia Laschi

101 An Efficient and Perceptually Motivated Auditory Neural Encoding and
Decoding Algorithm for Spiking Neural Networks

Zihan Pan, Yansong Chua, Jibin Wu, Malu Zhang, Haizhou Li and
Eliathamby Ambikairajah

118 Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity
Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks

Jason M. Allred and Kaushik Roy

134 Enabling Spike-Based Backpropagation for Training Deep Neural
Network Architectures

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda,
Gopalakrishnan Srinivasan and Kaushik Roy

156 A Spiking Neuron and Population Model Based on the Growth Transform
Dynamical System

Ahana Gangopadhyay, Darshit Mehta and Shantanu Chakrabartty

Table of Contents

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/21890/neuromorphic-engineering-editors-pick-2021#articles

ORIGINAL RESEARCH
published: 05 February 2019

doi: 10.3389/fnins.2019.00031

Frontiers in Neuroscience | www.frontiersin.org 1 February 2019 | Volume 13 | Article 31

Edited by:

André van Schaik,

Western Sydney University, Australia

Reviewed by:

Paul Miller,

Brandeis University, United States

Priyadarshini Panda,

Purdue University, United States

*Correspondence:

Peng Li

pli@tamu.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 20 August 2018

Accepted: 14 January 2019

Published: 05 February 2019

Citation:

Zhang W and Li P (2019)

Information-Theoretic Intrinsic

Plasticity for Online Unsupervised

Learning in Spiking Neural Networks.

Front. Neurosci. 13:31.

doi: 10.3389/fnins.2019.00031

Information-Theoretic Intrinsic
Plasticity for Online Unsupervised
Learning in Spiking Neural Networks
Wenrui Zhang and Peng Li*

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States

As a self-adaptive mechanism, intrinsic plasticity (IP) plays an essential role in maintaining

homeostasis and shaping the dynamics of neural circuits. From a computational point

of view, IP has the potential to enable promising non-Hebbian learning in artificial neural

networks. While IP based learning has been attempted for spiking neuron models, the

existing IP rules are ad hoc in nature, and the practical success of their application has not

been demonstrated particularly toward enabling real-life learning tasks. This work aims to

address the theoretical and practical limitations of the existing works by proposing a new

IP rule named SpiKL-IP. SpiKL-IP is developed based on a rigorous information-theoretic

approach where the target of IP tuning is to maximize the entropy of the output firing rate

distribution of each spiking neuron. This goal is achieved by tuning the output firing rate

distribution toward a targeted optimal exponential distribution. Operating on a proposed

firing-rate transfer function, SpiKL-IP adapts the intrinsic parameters of a spiking neuron

while minimizing the KL-divergence from the targeted exponential distribution to the

actual output firing rate distribution. SpiKL-IP can robustly operate in an online manner

under complex inputs and network settings. Simulation studies demonstrate that the

application of SpiKL-IP to individual neurons in isolation or as part of a larger spiking

neural network robustly produces the desired exponential distribution. The evaluation of

SpiKL-IP under real-world speech and image classification tasks shows that SpiKL-IP

noticeably outperforms two existing IP rules and can significantly boost recognition

accuracy by up to more than 16%.

Keywords: intrinsic plasticity, spiking neural networks, unsupervised learning, liquid state machine, speech

recognition, image classification

1. INTRODUCTION

Neural plasticity, the brain’s ability to adapt in response to stimuli from the environment, has
received increasing interest from both a biological and a computational perspective. As one such
main self-adaptive mechanism, intrinsic plasticity (IP) plays an important role in temporal coding
and maintenance of neuronal homeostasis. Behaviors of IP have been discovered in brain areas
of many species, and IP has been shown to be crucial in shaping the dynamics of neural circuits
(Marder et al., 1996). In particular, Baddeley et al. (1997) observed the exponentially distributed
neuron responses in visual cortical neurons. Such responses may aim at allowing neurons to
transmit the maximum amount of information, e.g., measured by the highest entropy, to their
outputs with a constrained level of firing activity. Discovered in individual biological neurons, IP
changes the excitability of neurons through modification of voltage-gated channels (Desai et al.,
1999).

4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00031
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00031&domain=pdf&date_stamp=2019-02-05
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pli@tamu.edu
https://doi.org/10.3389/fnins.2019.00031
https://www.frontiersin.org/articles/10.3389/fnins.2019.00031/full
http://loop.frontiersin.org/people/601652/overview

Zhang and Li SNN Intrinsic Plasticity

From a computational point of view, one of the early
biological IP models was explored on the Hodgkin-Huxley type
neurons where a number of voltage-gated conductances were
considered (Stemmler and Koch, 1999). Since then, much IP
mechanism research has been conducted for different kinds of
artificial neurons. On the one hand, Triesch (2005) first proposed
a mathematical approach to derive an IP rule based on the
sigmoid neuronmodel. This work used the Kullback Leibler (KL)
divergence from an exponential distribution to the actual output
firing rate distribution to derive an adaptation rule for the neuron
to generate responses following the exponential distribution.
Based on the same principle, an IP rule for hyperbolic tangent
neurons was also proposed (Schrauwen et al., 2008). On the other
hand, IP can control average firing activity and aid synapses to
undergo Hebbian modification via STDP depending upon their
history of use (Watt and Desai, 2010). Furthermore, it was shown
that an improvement in performance could be obtained when
the reservoir of an echo state network (ESN) is adapted using
IP such that the neurons in the network can autonomously tune
themselves to the desired output distribution (Schrauwen et al.,
2008).

As the third generation of artificial neural networks, it has
been shown that spiking neural networks (SNN) are more
computationally powerful than previous generations of neural
networks (Maass, 1997). However, developing effective intrinsic
plasticity (IP) mechanisms for SNNs is a challenging problem.
Several empirical IP rules were proposed for SNNs, however,
without a rigorous theoretical foundation. Lazar et al. (2007)
presented an IP rule by which a spiking neuron’s firing threshold
voltage changes by a fixed value per update based on whether
the neuron fired or not. However, this method cannot precisely
determine when and how much the firing threshold voltage
should be changed in different situations, and there is no clear
understanding of the optimality of the resulting IP behavior. Li
and Li (2013) presented an approach in which the parameters
of the IP rule derived for sigmoid neurons in Li (2011) were
empirically mapped to ones for spiking neurons. Since this rule is
derived based on the sigmoid neuronmodel which is significantly
different from the spiking neuron model, the property of this IP
rule remains elusive when it is applied to adapt the output firing
activity of spiking neurons. Recently, Li et al. (2018) proposed
an IP rule according to the inter-spike-interval (ISI). However,
similar to Lazar et al. (2007), this method only constraints the
ISI into a certain range but does not have a rigorous target for
adapting the output response. Moreover, Panda and Roy (2017)
proposed another homeostasis mechanism called Non-Hebbian
Plasticity which decays synaptic weights based on the activity
of postsynaptic neurons. It can control the reservoir neurons
responses to match the firing rate profile of the input and also
avoid weight crowding caused by STDP. This Non-Hebbian
Plasticity is based on synaptic plasticity which is different from IP,
the intrinsic neuronal plasticity. As discussed in Watt and Desai
(2010), both of them are homeostatic plasticity mechanisms and
observed in biological neurons. They can work together for
homeostatic regulation.

From an information theoretical perspective, it may
hypothesize that a nervous cell maximizes the mutual

information between its input and output. Neglecting the
intrinsic uncertainty of the output, i.e., the output uncertainty
after the input is known, the above target is equivalent to
maximizing the output entropy. To this end, it is instrumental
to note that the exponential distribution of the output firing
rate attains the maximum entropy under the constraint of a
fixed mean firing rate (Bell and Sejnowski, 1995). Thus, inspired
by the IP rule for sigmoid neurons of Triesch (2005), we aim
to derive an IP rule for spiking neurons while minimizing the
difference between the output firing rate distribution and the
targeted exponential distribution. However, there are several
significant challenges in deriving such a rule. Unlike artificial
neurons whose output is in the form of firing rate, spiking
neurons generate responses in the form of discrete spikes. As
a result, firing rate information, as well as its dependency on
the input, must be appropriately characterized from discrete
spike times, which has not been established before under the
context of intrinsic plasticity. Besides, it is not clear how a proper
expression of the entropy of the output firing rate distribution
(or its difference from the targeted exponential distribution) can
be derived and robustly maximized (minimized) in an online
fashion.

In this article, we approach the above challenges as follows.
First, we derive a differentiable transfer function bridging the
input current strength and output firing rate when the input
level is fixed based on the leaky integrate-and-fire(LIF) model.
This transfer function is referred to as the firing-rate transfer
function (FR-TF). It shall be noted that FR-TF can correlate
the dynamic evolution of the output firing activity measured
as averaged firing rate as a function of a received input over
a sufficiently long timescale. Next, with this transfer function,
we derive an information-theoretical intrinsic plasticity rule
for spiking neurons, dubbed SpiKL-IP, to minimize the KL-
divergence from the exponential distribution to the output
firing rate distribution. We further present an online version
of the SpiKL-IP rule for minimizing our KL-divergence based
loss function in a way analogous to the stochastic gradient
descent (SGD) method, which is widely adopted for training
deep learning neural networks. Finally, we address two practical
issues to ensure the proper operation and robustness of the
proposed online IP rule. Among the two issues, it is desirable
to apply the proposed IP tuning using the instantaneous input
current and the measured output firing rate, allowing seamless
consideration of the potentially dynamically changing current
input. However, this creates a mismatch to the underlying FR-
TF transfer function, which is addressed by making the online IP
rule dependent only on the output firing rate such that the LIF
model parameters are tuned based on the input/output activities
of long timescales. Under various settings, the outputs of targeted
spiking neurons converge robustly to the desirable exponential
distribution under the proposed SpiKL-IP rule.

We evaluate the learning performance of the proposed IP rule
for real-world classification tasks under the context of the liquid
state machine (LSM). When applied to the reservoir neurons
of LSM networks, our rule produces significant performance
boosts. Based on the TI46 Speech Corpus (Liberman et al., 1991),
the SpiKL-IP rule boosts the recognition accuracy by 6% for

Frontiers in Neuroscience | www.frontiersin.org 2 February 2019 | Volume 13 | Article 315

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

single-speaker English letter recognition and by up to more than
16% for the challenging task of multiple-speaker English letter
recognition. For image classification using the CityScape dataset
(Cordts et al., 2016), our proposed method can improve the
accuracy by more than 2%.

The rest of this article is organized as follows. Section 2
first introduces previous intrinsic plasticity working on spiking
neurons. Then, it presents the derivation of the proposed firing-
rate transfer function (FR-TF) and the complete online IP rule.
Section 3 demonstrates the application of the proposed IP under
various simulation settings. Finally, section 4 concludes this
work.

2. MATERIALS AND METHODS

2.1. Previous IP Rules for Spiking Neurons
Unlike other types of artificial neurons, instead of producing
continuous-valued firing rates, spiking neurons generate spike
trains, which are not differentiable at the times of spikes. Thus,
the relationship among the input, parameters of the neuron
model, and the output firing rate become obscure. This is perhaps
partially why intrinsic plasticity has not been deeply investigated
for spiking neurons. A few empirical IP rules were proposed for
spiking neuron model, which unfortunately lack rigor.

Lazar et al. (2007) proposed an IP rule to adjust the firing
threshold voltage as follows

Vth,i(t + 1) = Vth,i(t)+ η

(

xi(t)−
k

N

)

, (1)

Vth,i is the threshold of the neuron i, η the learning rate which is
chosen to be small, xi(t) the sum of Dirac delta functions and it is
1 if the neuron fires an output spike at time t and 0 otherwise,
k and N some chosen constants. This rule drives a neuron to
spike on average k out ofN times. It only targets setting the mean
firing rate to a chosen value by adapting the firing threshold but
does not attempt to generate the optimal output response, i.e., the
optimal firing rate distribution.

Li (2011) derived an IP rule that tunes sigmoid neurons to
follow the Weibull distribution in the same way as in Triesch
(2005). Li and Li (2013) adopted this rule for spiking neurons by
merely substituting the tuning parameters of the sigmoid neuron
model to the parameters for spiking neurons, namely rR and rC,
which are the reciprocals of the leaky resistance and membrane
capacitance, respectively. As analyzed by the authors, this rule can
make the firing activity of a spiking neuron at a "low but not too
low" level. However, since this rule results from a simple mapping
from the sigmoid neuron IP rule, it may not produce the optimal
firing rate distribution for spiking neurons.

Li et al. (2018) proposed an approach based on the Izhikevich
model (Izhikevich, 2003) to adjust the output firing activity such
that the inter-spike-interval (ISI) is set between some limits
specified by Tmin and Tmax. This basic idea is the same as the
one in Lazar et al. (2007) but using a different neuron model.
Again, this rule aims at helping the neuron to generate responses
at a desired firing rate level without optimizing the output
distribution to maximize the information content.

As discussed above, the existing IP rules for spiking neurons
are empirical in nature and are not derived with a rigorous
optimization objective in mind. Furthermore, no success in
real-world learning tasks has been demonstrated. We address
these limitations by rigorously deriving an IP rule that robustly
produces the targeted optimal exponential firing rate distribution
and leads to significant performance improvements by realistic
speech and image classification tasks.

2.2. Firing-Rate Transfer Function
The leaky integrated-and-fire (LIF) model is one of the most
prevalent choices for describing dynamics of spiking neurons.
This model is given by the following differential equation
(Gerstner and Kistler, 2002)

τm
dV

dt
= −V + Rx (2)

where V is the membrane potential, x the input current, τm the
time constant of membrane potential with value τm = RC, where
R and C are the effective leaky resistance and effective membrane
capacitance. Once the membrane potential V exceeds the firing
threshold Vth, the neuron generates a spike, and the membrane
potential is reset to the resting potential, which is 0mV in our
case. A refractory period of duration tr is also considered after a
spike is generated during which V is maintained at 0mV .

Before presenting the proposed SpiKL-IP rule for spiking
neurons, we shall first establish the relationship between the input
current and the resulting output firing rate. This relationship is
not evident since the response is in the form of spikes and it
depends on the cumulative effects of all the past input. As a result,
it is difficult to evaluate the output firing rate of spiking neurons
at each time point under a varying input. We deal with this
difficulty by deriving the proposed firing-rate transfer function
(FR-TF) where the input is assumed to be constant. In other
words, FR-TF correlates the dynamic evolution of the output
firing activity measured as averaged firing rate as a function of
a received input over a sufficiently long timescale.

Assuming that the input current x0 is constant and integrating

(2) with the initial condition that V
(

t(1)
)

= 0 gives the

interspike interval Tisi = t(2) − t(1) (Gerstner and Kistler, 2002)

Tisi = tr + τmln
Rx0

Rx0 − Vth
, Rx0 > Vth. (3)

where the constraint of Rx0 > Vth comes from the fact that only
when the constant input current is sufficiently large, the neuron
can generate spikes. Since both the input x0 and Tisi are constant,
the mean output firing rate of the spiking neuron is given by

y =
1

Tisi
=

1

tr + τmln
Rx0

Rx0−Vth

, Rx0 > Vth. (4)

In this way, we obtain the transfer function of spiking neurons
under the condition that it has constant input so that this relation
between input and output can be used in the deriving process.
Since this function can only represent spiking neurons with a

Frontiers in Neuroscience | www.frontiersin.org 3 February 2019 | Volume 13 | Article 316

Zhang and Li SNN Intrinsic Plasticity

fixed input, to distinguish the spiking neurons and this transfer
function, when referring to firing-rate model neurons, it means
the neurons with this firing-rate transfer function (4).

Figure 1 shows two tuning curves of the firing-rate transfer
function where the input current level is swept while either the
leaky resistance R or the membrane time constant τm is held
at a specific value. As shown in Figure 1A, changing R while
fixing τm modifies both the bias and curvature of the tuning
curve. Figure 1B illustrates that τm controls the curvature of the
tuning curve when R is fixed. In the following part, the proposed
SpiKL-IP Rule is based on tuning R and τm. Note that separately
adjusting R and τm requires a neuron to vary its capacitance in
response to its activity while changing capacitance is not observed
in biological neurons to date.

2.3. Proposed SpiKL-IP Rule
Based on the presented firing-rate transfer function (4), we now
take an information-theoretical approach to derive the SpiKL-
IP rule to minimize the KL-divergence from the exponential
distribution to the output firing rate distribution. We will show
how the SpiKL-IP rule can be cast into an online form to adapt R
and τm, and then address one practical issue to ensure the proper
operation and robustness of the proposed online IP rule.

2.3.1. The Basic SpiKL-IP Rule
We consider the information processing of a given spiking
neuron as it receives stimuli from external inputs or other
neurons in the same network over a dataset, mimicking part of
the lifespan of the biological counterpart. We define the input
and output firing rate probability distributions for each spiking
neuron in the following way. As shown in Figure 2, the input
current level X varies across different time points, it forms
an input probability distribution over the course of the entire
process denoted by fx(x). Accordingly, the output firing rate Y
varies over time and forms an output probability distribution
denoted by fy(y).

The goal of the SpiKL-IP rule is to obtain an approximately
exponential distribution of the output firing rate at a fixed
level of metabolic costs. In a biological perspective, exponential
distributions of the output firing rate have been observed in
mammalian visual cortical neurons responding to natural scenes
and allow the neuron to transmit the maximum amount of
information given a fixed level of metabolic costs (Baddeley et al.,
1997).

From an information-theoretic point of view, Bell and
Sejnowski (1995) argued that a neuron might self-adapt to
maximize the mutual information of the input X and the output
Y , a measure for the amount of information about the input
obtained from the output, or vice versa

I(Y ,X) = H(Y)−H(Y|X), (5)

whereH(Y) is the entropy of the output whileH(Y|X) represents
the amount of entropy (uncertainty) of the output which does
not come from the input. Under the assumption that the output
noise N is additive and there is no input noise, the conditional
entropy can be simplified to H(Y|X) = H(N) (Nadal and

Parga, 1994; Bell and Sejnowski, 1995) which does not depend
on the neural parameters. Thus, maximizing I(Y ,X) is equivalent
to maximizing H(Y) (Bell and Sejnowski, 1995). To this end,
it is instrumental to note when the mean of the distribution
is kept constant, the exponential distribution corresponds to
the largest entropy among all probability distributions of a
non-negative random variable. This leads to the conclusion
that the exponential distribution with a targeted mean shall be
the optimal distribution for the output firing rate, where the
mean specifies the practical constraint on energy expenditure. In
addition, in this work, all neurons are implemented using the LIF
model which is noiseless and no noise is added explicitly to the
neuronal dynamics, which means that H(N) = 0 (Gerstner and
Kistler, 2002). The exponential distribution is given by

f (x) = µexp(−µx), x >= 0, (6)

where µ is the mean of the distribution.
Inspired by the IP rule for sigmoid neurons in Triesch

(2005), we derive the SpiKL-IP rule for spiking neurons while
minimizing the KL-divergence from a targeted exponential
distribution to the actual output firing rate distribution, where
Kullback Leibler divergence (KL-divergence) is used as a
difference measure as follows

D = d
(

fy(y)||fexp
)

=

∫

fy(y)log

(

fy(y)

1
µ
exp(

−y
µ
)

)

dy

=

∫

fy(y)log(fy(y))dy+

∫

fy(y)

(

y

µ

)

dy

+

∫

fy(y)logµdy, (7)

where y and fy(y) denote the output, and the output firing rate
distribution, respectively, and µ is the mean value of the targeted
exponential distribution. The smaller the KL-divergence D is, the
closer the exponential distribution is to the output distribution.
In (7), since

∫

fy(y)dy = 1 the third integral evaluates to a fixed
value of logµ. Minimizing KL-Divergence D by adapting R and
τm reduces to minimize the first two integrals, giving rise to the
following loss function

L =

∫

fy(y)log(fy(y))dy+

∫

fy(y)

(

y

µ

)

dy

= E

[

log(fy(Y))+
Y

µ

]

. (8)

Note that (8) is in terms of an expectation over the entire
output distribution. Now, we convert (8) into an online form
that is analogous to the stochastic gradient descent method with
a batch size of one. To make SpiKL-IP amenable for online
training, using a proper stepsize we discretize the entire training
process into multiple small time intervals each in between two

Frontiers in Neuroscience | www.frontiersin.org 4 February 2019 | Volume 13 | Article 317

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 1 | The firing-rate transfer function (FR-TF). (A) As a function of the leaky resistance R, and (B) as a function of the membrane time constant τm.

FIGURE 2 | The mapping from the input current distribution to the output firing rate distributing of a neuron.

adjacent time points as shown in Figure 3. The input level to the
spiking neuron at each time point is considered as an individual
observation or training example. In this way, the adjustment
of the tunable parameters is not delayed until the output firing
rate distribution is collected after the entire dataset is applied
to the neuron (or neural network). Instead, these parameters
are adjusted as the neuron experiences a given input example at
each time point in an online manner. To do this, the following
loss function that corresponds to the received input example is
minimized at each time point t

L(t) = log(fy(y(t)))+
y(t)

µ
, (9)

where y(t) denotes the output firing rate Y observed at time
t. From now on, we drop the explicit dependency of y(t) and
x(t) (observed input level at t) on t for notational simplicity.
Recognizing that the output probability distribution relates to the
input counterpart by Papoulis and Pillai (2002)

fy(y) =
fx(x)

∂y
∂x

(10)

and substituting it into (9) leads to

L(t) = log(fx(x))− log

(

∂y

∂x

)

+
y

µ
, (11)

Frontiers in Neuroscience | www.frontiersin.org 5 February 2019 | Volume 13 | Article 318

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

which can be further simplified to

L̂(t) = −log

(

∂y

∂x

)

+
y

µ
, (12)

as log(fx(x)) is a function of the input probability distribution and
does not depend on R and τm.

The online SpiKL-PI rule is based upon the partial derivatives
of (9) with respect to x, R and τm. We first shall compute
the derivatives of the output firing rate y(t) with respect to x,
R, τm. We make use of the firing rate transfer function (4)
whose application at each time point t is justified if the input
x(t) changes slowly with respect to the chosen stepsize and the
averaged output firing rate measure is used, and obtain

∂y

∂x
=

y2τmVth

x(Rx− Vth)
(13)

∂y

∂R
=

y2τmVth

R(Rx− Vth)
(14)

∂y

∂τm
=

try
2 − y

τm
. (15)

Taking (13) into account, the partial derivatives of the loss
function (9) with respect to R and τm are found to be

∂L

∂R
=

∂

∂R

(

−log

(

∂y

∂x

)

+
y

µ

)

=
∂

∂R

(

−(2log(y)− log(Rx− Vth))+
y

µ

)

=

(

y2

µ
− 2y

)

τmVth + Rx

R(Rx− Vth)
(16)

and

∂L

∂τm
=

∂

∂τm

(

−log

(

∂y

∂x

)

+
y

µ

)

=
∂

∂τm

(

−(2log(y)+ logτm)+
y

µ

)

=
1+ 1

µ
(try

2 − y)− 2try

τm
, (17)

respectively, which gives the following online IP rule

R = R− η1
∂L

∂R

= R+ η1

(

2y−
y2

µ

)

τmVth − Rx

R(Rx− Vth)
, Rx > Vth

τm = τm − η2
∂L

∂τm

= τm + η2
2try− 1− 1

µ
(try

2 − y)

τm
, Rx > Vth. (18)

where η1 and η2 are learning rates, µ the constant value
depending on the desired mean of the output firing rate. The
condition that Rx > Vth comes from the transfer] function (4).

2.3.2. Practical Considerations
While (18) has the critical elements of the proposed online IP
rule, its direct implementation, however, has been experimentally
shown to be unsuccessful, i.e., it can neither train spiking
neurons to generate output firing rates following the exponential
distribution nor improve SNN learning performance for real-
world classification tasks. The problem has to do with the fact
that one underlying assumption behind the firing rate transfer
function (FR-TF) (4) and hence the IP rule (18) is that the
input current is constant or changes over a sufficiently slow
timescale. However, in a practical setting, the total postsynaptic
input received by a spiking neuron does vary in time, and the
rate of change depends on the frequency of firing activities
of its presynaptic neurons. With the internal dynamics, the
output firing level of a spiking neuron cannot immediately
follow the instantaneous current input, e.g., it is possible that
the output firing rate is still low while the input current has
increased to a high level. As a result, the assumption on the input
current is somewhat constraining, and its violation leads to the
ineffectiveness of IP tuning.

On the other hand, it is worth noting that the FR-TF captures
the correlation between the average input current and the output
firing rate over a long timescale. In the meantime, the proposed
IP rule aims to adapt spiking neurons to produce a desired
probability distribution of the output firing rate. In other words,
the objective is not to tune each instance of the output firing
rate. Instead, it is to achieve a desirable collective characteristic
of the output firing rate measured by an exponential distribution.
In some sense, the FR-TF correlates the input and output
correspondence in a way that is meaningful for the objective of
online IP tuning.

To find a solution to the above difficulty, we remove the
dependency on the instantaneous input current from the IP rule
of (18) by substituting the input x using the output firing rate y
using the transfer function (4). More specifically, a new variable
W is defined by W = Rx − Vth, which can be expressed using y
based on (4) as

W =
Vth

e

(

1
τm

(

1
y−tr

))

− 1

. (19)

Making use of (19), (18) is converted to a form which only
depends on y

R = R+ η1
2yτmVth −W − Vth −

1
µ
τmVthy

2

RW
, y > 0.

τm = τm + η2
2try− 1− 1

µ
(try

2 − y)

τm
. (20)

As can be seen, the rule in (20) adjusts the two parameters only
based on the output firing rate y. Substituting the instantaneous
value of x by the firing rate y based on the firing rate transfer
function effectively operates the IP rule based on the averaged
input/output characteristics over a longer timescale.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2019 | Volume 13 | Article 319

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 3 | Online SpiKL-IP learning: minimization of the KL divergence at each time point during the training process.

Note that the condition that Rx > Vth in (18) is changed
to an equivalent form of y > 0 in (20). A closer examination
of Figure 1 shows that the firing rate transfer functions are
not differentiable around y = 0 (Rx = Vth). Interpreting
differently, the proposed IP tuning can operate only when the
output firing rate is nonzero. To further improve the robustness
of the proposed IP rule, the tuning in (20) is only activated when
y > δ with δ being small such as 1 Hz. When y ≤ δ, R and τm are
increased and decreased respectively to bring up the output firing
activity.

Putting everything together, the final SpiKL-IP rule is

R = { R+ η1
2yτmVth−W−Vth−

1
µ

τmVthy
2

RW , y > δ

R+ η1α1, y ≤ δ

τm = { τm + η2
2try−1− 1

µ
(try

2−y)

τm
, y > δ

τm − η2α2, y ≤ δ

(21)

where α1 and α2 are chosen to be small.
To provide an intuitive understanding of the proposed SpiKL-

IP rule, Figure 4 shows how R and τm are altered by one-time
application of SpiKL-IP at different output firing rate levels
starting from a chosen combination of R and τm values.

3. RESULTS

To demonstrate the mechanisms and performances of the
proposed SpiKL-IP rule, we conduct three types of experiments
by applying SpiKL-IP to single neuron as well as a group of
spiking neurons as part of a neural network. First, we show that
when applied to a single neuron whose behavior is governed by
the firing-rate transfer function (4) the proposed rule can tune
the neuron to produce the targeted exponential distribution of
the output firing rate even under a time-varying input. Then,
we apply SpiKL-IP to a single spiking neuron as well as a group
of spiking neurons to demonstrate that our rule can robustly
produce the desired output firing distribution in all tested
situations even although it is derived from the FR-TF which
is based on the assumption that the input is constant. Finally,
we demonstrate the significant performance boosts achieved

by SpiKL-IP when applied to real-world speech and image
classification tasks. Furthermore, we compare SpiKL-IP with two
existing IP rules for spiking neurons (Lazar et al., 2007; Li and Li,
2013). In this article, we name the IP rule in Lazar et al. (2007) as
the Voltage-Threshold IP rule and one in Li and Li (2013) as the
RC IP rule.

The following simulation setups are adopted in each
experiment. We simulate the continuous-time LIF model in
section 2.2 using a fixed discretization time step of 1ms according
to which all neuronal activities are evaluated in lockstep. To
measure the firing rate of each spiking neuron as a continuous-
valued quantity over time under a constant of varying input,
we use the intracellular calcium concentration Ccal(t) as a good
indicator of the averaged firing activity over a chosen timescale

dCcal(t)

dt
= −

Ccal(t)

τcal
+
∑

i

δ(t − ti), (22)

where τcal is the time constant, and the output firing spikes
are presented by a series of Dirac delta functions. According to
(22), the calcium concentration increases by one unit when an
output spike is generated and decays with a time constant τcal
(Dayan and Abbott, 2001). The time-varying output firing rate is
measured using the normalized calcium concentration

y(t) =
Ccal(t)

τcal
. (23)

3.1. Single Neurons Modeled by FR-TF
We apply the proposed SpiKL-IP rule to a single neuronmodeled
based on the firing-rate transfer function (4). The parameters
of the neuron and SpiKL-IP are set as follows: Vth = 20mV ,
tr = 2ms, and µ = 0.2KHz. In addition, the tuning ranges for
R and τm are set to [1�, 1024�] and [1ms, 1, 024ms] with R and
τm initialized to 64� and 64ms, respectively. The input current
level at each time point is randomly generated according to a
Gaussian distribution with the mean of 7mA and variance of
1mA as well as a uniform distribution between [0.5mA, 5.5mA]
in a way that is similar to the setups in Triesch (2005); Li and
Li (2013). For both cases, a total of 10, 000 time points are
considered.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 3110

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 4 | Tuning characteristics of one-time application of SpiKL-IP at different output firing rate levels starting from a chosen combination of R and τm values R

and τm. (A) Tuning of the leaky resistance R, and (B) tuning of the membrane time constant τm.

In Figure 5, we compare the recorded output firing rate
distribution when no IP tuning is used with the one that is
produced by the proposed SpiKL-IP rule under two random
input distributions. In each plot of Figure 5, we fit the actual
firing histogram with to a closest exponential distribution (red
curve). It is evident from Figures 5A,C that without IP tuning
the output firing distribution is far from the targeted optimal
exponential distribution with the maximum entropy. With the
application of SpiKL-IP, however, the output distribution can
be trained to almost converge to the desirable exponential
distribution under two dramatically different input distributions.
Note that since the simulation time stepsize is 1ms, the output
firing rate is bound by 1KHz. This creates a subtle difference
between the actual and the exponential distribution at the tails
of the two distributions, which is negligible in practice. These
results indicate that the proposed IP rule can robustly maximize
the information contained in the output firing rate distribution
by tuning it toward the exponential distribution regardless of the
input distribution.

3.2. Leaky Integrate-and-Fire Spiking
Neurons
Since SpiKL-IP is based on the firing-rate transfer function which
only characterizes the behavior of LIF neurons over a large
timescale, it is interesting to test SpiKL-IP using LIF neurons.
The parameters for the spiking neurons and SpiKL-IP are set as
follow: Vth = 20mV , tr = 2ms, µ = 0.2KHz, τc = 64ms
with R and τm initialized to 64� and 64ms, respectively. The
tuning ranges for R and τm are again set to [1�, 1, 024�] and
[1ms, 1, 024ms], respectively.

First, we apply SpiKL-IP to a single LIF neuron whose input
is a spike (Dirac delta) train randomly generated according to a
Poisson process with a mean firing rate of 160 Hz for a duration
of 1,000 ms. The details of input generation are described in
Legenstein and Maass (2007). The output firing rate is evaluated
by the normalized intracellular calcium concentration in (23).
Figure 6 compares the output firing distributions generated with
no IP and with the three IP rules. Clearly, the proposed rule
produces an output distribution close to the desired exponential
distribution while without IP tuning the neuron is unable

to generate an exponentially distributed output. As shown in
Figure 6C, the Voltage Threshold IP rule (Lazar et al., 2007) can
only alter the average output firing rate rather than tuning the
shape of the output firing rate distribution toward that of an
exponential distribution. Figure 6D shows that it is also tricky for
the RC IP rule (Li and Li, 2013) to train the neuron to generate an
output whose distribution is close to the exponential distribution.

Next, more interestingly, we examine the behavior of IP
tuning in a spiking neural network. In this case, we set up a
fully connected recurrent network of 100 LIF neurons. There are
30 external inputs with each being a Poisson spike train with
a mean rate of 80Hz and a duration of 1, 000ms as shown in
Figure 7. Each input is connected to 30 neurons through synaptic
whose weights are set to -8 or 8 with equal probability. The
synaptic weights between the reservoir neurons in the network
are uniformly distributed between -1 and 1. This neural network
is similar to the reservoir network used in Schrauwen et al.
(2008).

We randomly choose one neuron and record its output firing
rate for a demonstration. As can be seen in Figure 8A, without
IP tuning the output distribution is quite different from any
exponential distributions. As shown in Figures 8C,D, neither the
Voltage Threshold IP rule nor the RC IP rule can produce an
output distribution that is reasonably close to an exponential
distribution. In contrast, Figure 8B shows that the proposed
SpiKL-IP rule leads to excellent results, generating an output
distribution that is very close to an exponential distribution.
These experiments demonstrate that SpiKL-IP maintains its
effectiveness in the more complex network setting where spiking
neurons interact with each other while receiving external spike
inputs.

3.3. Real World Classification Tasks For
LSM
Although intrinsic plasticity has been studied for a very long time
with many different IP rules proposed, rarely any rule is tested on
real-world learning tasks. As a result, it is not clear whether IP
tuning is capable of improving the performance for these more
meaningful tasks. In this paper, we realize several spiking neural
networks based on the bio-inspired Liquid State Machine (LSM)

Frontiers in Neuroscience | www.frontiersin.org 8 February 2019 | Volume 13 | Article 3111

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 5 | The output firing-rate distributions of a single neuron

characterized using the firing-rate transfer function and driven by randomly

generated current input following a Gaussian or Uniform distribution.

(A) Gaussian input without IP tuning, (B) Gaussian input with the SpiKL-IP

rule, (C) uniform input without IP tuning, and (D) uniform input with the

SpiKL-IP rule. The red curve in each plot represents the exponential

distribution that best fits the actual output firing rate data.

network model and evaluate the performance of IP tuning using
realistic speech and image recognition datasets.

LSM is a biologically plausible spiking neural network model
with embedded recurrent connections (Maass et al., 2002). As
shown in Figure 9, the LSM has an input layer, a recurrent
reservoir, and a readout layer. The reservoir has a recurrent
structure with a group of excitatory and inhibitory spiking
neurons randomly connected in a way approximating the spatial
distribution of biological neurons (Maass et al., 2002). Typically,
the synaptic weights between the reservoir neurons are fixed.
The input spike trains generate spatiotemporal firing patterns
in the reservoir, which are projected onto the readout layer

FIGURE 6 | Output firing rate distributions of a single spiking neuron:

(A) without IP tuning, (B) with proposed SpiKL-IP rule, (C) with the Voltage

Threshold IP rule, and (D) with the RC IP rule. The red curve in each plot

represents the exponential distribution that best fits the actual output firing rate

data.

through full connectivity. In this paper, the feedforward plastic
synapses between the reservoir neurons and readout are adjusted
according to a bio-inspired spike-based online learning rule
(Zhang et al., 2015). Several LSMs with different sizes are set up
to evaluate the potential impact of an IP rule on classification
performance.

For the networks evaluated using TI46, the input layer has
78 neurons. These networks have 135 (3*3*5), 270 (3*3*30),
540 (6*6*15) reservoir neurons, respectively, where each input
neuron is randomly connected to 16, 24, 32 reservoir neurons
with the weights set to 2 or -2 with equal probability, respectively.
Among the reservoir neurons, 80% are excitatory, and 20% are
inhibitory. The reservoir is composed of all types of synaptic

Frontiers in Neuroscience | www.frontiersin.org 9 February 2019 | Volume 13 | Article 3112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 7 | 30 Poisson spike trains as input to a fully connected spiking

neural network of 100 LIF neurons.

connections depending on the pre-neuron and post-neuron types
including EE, EI, IE, II, where the first letter indicates the type
of the pre-synaptic neuron, and the second letter the type of the
post-synaptic neuron, and E and Imean excitatory and inhibitory
neurons, respectively. The probability of a synaptic connection
from neuron a to neuron b in the reservoir is defined as C ·

e−(D(a,b)/λ)2 , where λ is 3, C is 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1
(II), and D (a, b) is the Euclidean distance between neurons a
and b (Maass et al., 2002). The synaptic weights in the reservoir
are fixed to 1(EE, EI) or -1(IE, II). For the readout layer, the
reservoir neurons are fully connected to 26 readout neurons
with the weights randomly generated from -8 to 8 following the
Gaussian distribution. All the readout synapses are plastic and
trained according to Zhang et al. (2015). When testing an IP rule,
it is only applied to the reservoir neurons. The parameters of each
neuron are: Vth = 20mV , tr = 2ms, µ = 0.2KHz, τc = 64ms,
η1 = η2 = 5, and α1 = α2 = 0.1. R and τm are initialized
to 64� and 64ms, respectively. The tuning ranges for R and τm
are again set to [32�, 512�] and [32ms, 512ms], respectively. A
5-fold cross-validation scheme is adopted to obtain classification
performances. Five hundred epochs are simulated, and the best
results are reported.

For the networks evaluated using CityScape, the input
layer has 225 neurons. These networks have 27 (3*3*3),
45 (3*3*5), 72 (3*3*8), 135 (3*3*15) reservoir neurons,
each input neuron is randomly connected to 1, 4, 4, 64
reservoir neurons with the weights set to 2 or -2 with equal
probability, respectively. Other settings of the networks are
the same as those used for the ones evaluated based on
TI46.

We also have made our implementation of SpiKL-IP rule for
LSM available online1.

1https://github.com/stonezwr/SpiKL-IP

FIGURE 8 | Output firing rate distributions of one spiking neuron in a fully

connected network. (A) without IP tuning, (B) with proposed SpiKL-IP rule,

(C) with the Voltage Threshold IP rule, and (D) with the RC IP rule. The red

curve in each plot represents the exponential distribution that best fits the

actual output firing rate data.

3.3.1. Speech Recognition Using the TI46 Speech

Corpus
The speech recognition task is evaluated on several subsets of
the TI46 speech corpus (Liberman et al., 1991). This corpus
contains spoken utterances from 16 speakers (eight males and
eight females), each speaking 10 utterances of English letters from
"A" to "Z". Before applying to the reservoir, each input sample
is first preprocessed by the Lyon ear model (Lyon, 1982), then
encoded into 78 spike trains with the BSA algorithm (Schrauwen
and Van Campenhout, 2003).

Table 1 demonstrates the classification accuracy for a number
of LSMs of different amounts of reservoir neurons with and
without the proposed SpiKL-IP rule based on different subsets

Frontiers in Neuroscience | www.frontiersin.org 10 February 2019 | Volume 13 | Article 3113

https://github.com/stonezwr/SpiKL-IP
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 9 | The structure of Liquid State Machine (LSM).

TABLE 1 | The performances of LSM-based speech recognition with and without

the proposed SpiKL-IP rule evaluated using the single and multi-speaker subsets

of the TI46 Speech Corpus.

Dataset size Reservoir size Without IP (%) With IP (%)

260 (1 Speaker) 90 88.46 97.31

135 92.30 98.46

520 (2 Speakers) 135 86.15 92.31

270 89.04 95.58

1,040 (4 Speakers) 135 79.04 87.69

270 84.62 93.37

2,080 (8 Speakers) 270 72.69 86.95

540 76.59 91.96

3,120 (12 Speakers) 270 72.17 84.25

540 77.49 90.64

4,160 (16 Speakers) 270 70.76 83.98

540 76.19 88.58

of the TI46 speech corpus. The 260-samples subset is a single
speaker subset while ones with 520, 1,040, 2,080, 3,120, 4,160
samples contain 2, 4, 8, 12, and 16 speakers, respectively. It
shall be noted that as the number of speakers increases, the
recognition task becomes increasingly challenging. To the best
knowledge of the authors, there exists no prior reported success
on recognizing multiple-speaker subsets using spiking neural
networks. As shown in Table 1, the recognition performs drops
rapidly as the number of speakers increases without SpiKL-IP.
In comparison, the use of SpiKL-IP can significantly boost the
recognition accuracy by up to more than 16%. Moreover, SpiKL-
IP leads to higher performance boosts as it is applied to smaller
networks or more challenging subsets of greater numbers of
speakers and samples.

From the LSM with 135 reservoir neurons, we randomly
choose six neurons and record their firing responses on one

of the speech samples after a few initial training iterations.
Figure 10 shows that most neurons’ responses can follow
the exponential distribution, demonstrating that the proposed
SpiKL-IP rule can tune neurons to generate outputs with
a distribution close to the exponential distribution in a
complicated network. Figure 11 shows the learning curves of
R and τm for a reservoir neuron when one speech sample is
repeatedly applied to the network for 15 iterations. Figure 11B
shows that the value of R monotonically increases over time
and finally converges under the proposed IP rule. However,
Figure 11A shows that the value of τm fluctuates in every
iteration without converging to a fixed value, but its trajectory
exhibits a stable periodic pattern toward later iterations. This
may be understood by the fact that to produce the desired
exponential firing rate distribution, at least one of the two
intrinsic neural parameters shall be dynamically adapted in
response to the received time-varying input. Figure 11C shows
the adaptation of the output firing rate y, which has also reached
to a stable periodic pattern toward the end of the training
process.

Figure 12 compares the recognition performances of several
LSMs all with 135 reservoir neurons reported in related
works. The performances are evaluated based upon the single-
speaker subset with 260 samples. We adopt the LSM in
Zhang et al. (2015) which makes use of a spike-based
supervised learning rule for training the readout synapses and
has no IP tuning as a baseline. The LSM in Jin and Li
(2016) adds spike-timing-dependent plasticity (STDP) rule to
the baseline to train the synaptic weights between reservoir
neurons. On top of the baseline, we further implement the
Voltage Threshold IP rule (Lazar et al., 2007), the RC IP
rule (Li and Li, 2013), or the SpiKL-IP rule to tune the
reservoir neurons. The proposed rule produces the highest
recognition accuracy improvement of more than 6% over the
baseline LSM.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2019 | Volume 13 | Article 3114

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 10 | The output firing distributions of six reservoir neurons in an LSM after the reservoir is trained by SpiKL-IP. The red curve in each plot represents the

exponential distribution the best fits the actual output firing rate data. (A) Firing rate distribution of Neuron #5, (B) Firing rate distribution of Neuron #7, (C) Firing rate

distribution of Neuron #16, (D) Firing rate distribution of Neuron #36, (E) Firing rate distribution of Neuron #65, and (F) Firing rate distribution of Neuron #101.

3.3.2. Image Classification Using the CityScape

Dataset
The image classification task is based on the CityScape dataset
(Cordts et al., 2016) which contains 18 classes of images of
semantic urban scenes taken in several European cities. Each
image is segmented and remapped into a size of 15×15, and then
encoded into 225 input Poisson spike trains with the mean firing
rate proportional to the corresponding pixel intensity. There are
1, 080 images in total.

Table 2 summarizes the classification accuracy of four LSMs
of different sizes with or without the SpiKL-IP rule. For each
comparison, an LSM which is set up according to Zhang
et al. (2015) and incorporates the same spike-based supervised
learning rule of Zhang et al. (2015) for training the readout
synapses without IP tuning is used as a baseline. It can be
observed that the application of SpiKL-IP leads to noticeable
performance improvements. For example, in the case of LSM

with 45 reservoir neurons, the performance is improved from
91.74% to 94.44%.

4. DISCUSSION

While intrinsic plasticity (IP) was attempted for spiking neurons
in the past, the prior IP rules lacked a rigorous treatment in
their development, and the efficacy of these rules was not verified
using practical learning tasks. This work aims to address the
theoretical and practical limitations of the existing works by
proposing the SpiKL-IP rule. SpiKL-IP is based upon a rigorous
information-theoretic perspective where the target of IP tuning is
to produce the maximum entropy in the resulting output firing
rate distribution of each spiking neuron. The maximization of
output entropy, or information transfer from the input to the
output, is realized by producing a targeted optimal exponential
distribution of the output firing rate.

Frontiers in Neuroscience | www.frontiersin.org 12 February 2019 | Volume 13 | Article 3115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

FIGURE 11 | The parameter tuning and firing rate adaption by SpiKL-IP for a

reservoir neuron in an LSM during 15 iterations of training over a single speech

example. (A) Tuning of the membrane time constant τm, (B) tuning of the leaky

resistance R, and (C) adaptation of the Output firing rate.

More specifically, SpiKL-IP aims to tune the intrinsic
parameters of a spiking neuron while minimizing the KL-
divergence from the targeted exponential distribution to the
actual output firing rate distribution. However, several challenges
must be addressed as we work toward achieving the above
goal. First, we rigorously relate the output firing rate with the
static input current by deriving the firing-rate transfer function
(FR-TF). FR-TF provides a basis for allowing the derivation of the
SpiKL-IP rule that minimizes the KL-divergence. Furthermore,
we cast SpiKL-IP in a suitable form to enable online application
of IP tuning. Finally, we address one major challenge associated
with applying SpiKL-IP under realistic contexts where the input
current to each spiking neuron may be time-varying, which leads
to the final IP rule that has no dependency on the instantaneous
input level and effectively tuning the neural model parameters
based upon averaged firing activities.

In the simulation studies, it is shown that SpiKL-IP can
produce excellent performances. Under various settings, the
application of SpiKL-IP to individual neurons in isolation or as
part of a larger network robustly creates the desired exponential
distribution for the output firing rate even when the input current
is time varying. The evaluation of the learning performance of

FIGURE 12 | Speech recognition performances of various learning rules when

applied to a LSM with 135 reservoir neurons. The performance evaluation is

based on the single-speaker subset of the TI46 Speech Corpus. (1) LSM

(Baseline): with the settings and supervised readout learning rule in Zhang

et al. (2015) and no reservoir tuning. All other compared networks add

additional mechanisms to the baseline. (2) LSM+Proposed IP Rule: with

additional reservoir neurons tuning using SpiKL-IP. (3) LSM+STDP: with

additional reservoir neurons tuning using the STDP rule in Jin and Li (2016); (4)

LSM+Voltage Threshold IP Rule: with additional reservoir neurons tuning using

the IP rule in Lazar et al. (2007). (5) LSM+RC IP Rule: with additional reservoir

neurons tuning using the IP rule in Li and Li (2013).

TABLE 2 | The performances of LSM-based image classification with and without

the proposed SpiKL-IP rule evaluated using the CityScape image dataset.

Reservoir size Without IP (%) With IP (%)

135 96.60 97.78

72 94.90 96.48

45 91.74 94.44

27 87.33 90.19

SpiKL-IP for real-world classification tasks also confirms the
potential of the proposed IP rule. When applied to the reservoir
neurons of LSM networks, SpiKL-IP produces significant
performance boosts based on the TI46 Speech Corpus (Liberman
et al., 1991) and the CityScape image dataset (Cordts et al., 2016).

Our future work will explore the potential of integrating
IP tuning with Hebbian unsupervised learning mechanisms,
particularly spike-timing-dependent plasticity (STDP). Jin and
Li (2017) and this work respectively demonstrate that STDP
and IP are effective in tuning recurrent spiking neural networks,
i.e., reservoirs, and boosting the overall learning performance.
Moreover, it has been suggested by Lazar et al. (2007) and Li et al.
(2018) that STDP and IP may be complementary to each other.
On the other hand, Watt and Desai (2010) and other related

Frontiers in Neuroscience | www.frontiersin.org 13 February 2019 | Volume 13 | Article 3116

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Zhang and Li SNN Intrinsic Plasticity

works reveal one limitation of STDP, i.e., the application of
STDP can lead to network instability due to the positive feedback
mechanisms created. Nevertheless, concerning the potential
instability caused by STDP, it may be argued that the joint
application of STDP and IP could be beneficial. This is because
IP is intrinsically self-stabilizing, which may contribute to the
prevention of runaway potentiation caused by STDP. We will
also implement the SpiKL-IP rule on noisy leaky-integrate and
fire neuron model (Brunel and Sergi, 1998) to evaluate the ability
of the SpiKL-IP rule standing against noise. Moreover, since
non-Hebbian plasticity and IP are supposed to work together
in biological neurons (Watt and Desai, 2010), we can further
explore the effects of combining Hebbian unsupervised plasticity,
non-Hebbian plasticity, and intrinsic plasticity to maintain the
homeostasis of networks.

AUTHOR CONTRIBUTIONS

WZ and PL developed the theoretical approach for IP tuning of
spiking neurons and the SpiKL-IP rule. WZ implemented SpiKL-
IP and related learning rules and performed the simulation
studies. WZ and PL wrote the paper.

FUNDING

This work supported by the National Science Foundation (NSF)
under Grant No.CCF-1639995 and the Semiconductor Research
Corporation (SRC) under Task 2692.001. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
NSF, SRC, Texas A&M University, and their contractors.

REFERENCES

Baddeley, R., Abbott, L. F., Booth, M. C., Sengpiel, F., Freeman, T., Wakeman,

E. A., et al. (1997). Responses of neurons in primary and inferior temporal

visual cortices to natural scenes. Proc. R. Soc. Lond. B Biol. Sci. 264, 1775–1783.

doi: 10.1098/rspb.1997.0246

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach

to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.

doi: 10.1162/neco.1995.7.6.1129

Brunel, N., and Sergi, S. (1998). Firing frequency of leaky intergrate-and-

fire neurons with synaptic current dynamics. J. Theor. Biol. 195, 87–95.

doi: 10.1006/jtbi.1998.0782

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,

et al. (2016). “The cityscapes dataset for semantic urban scene understanding,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 3213–3223.

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience, Vol. 806. Cambridge,

MA: MIT Press.

Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in

the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2:515.

doi: 10.1038/9165

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jin, Y., and Li, P. (2016). “Ap-stdp: a novel self-organizing mechanism for efficient

reservoir computing,” in Neural Networks (IJCNN), 2016 International Joint

Conference on (IEEE), 1158–1165.

Jin, Y., and Li, P. (2017). “Calcium-modulated supervised spike-timing-dependent

plasticity for readout training and sparsification of the liquid state machine,”

in Neural Networks (IJCNN), 2017 International Joint Conference on (IEEE),

2007–2014.

Lazar, A., Pipa, G., and Triesch, J. (2007). Fading memory and time series

prediction in recurrent networks with different forms of plasticity.Neural Netw.

20, 312–322. doi: 10.1016/j.neunet.2007.04.020

Legenstein, R., and Maass, W. (2007). Edge of chaos and prediction of

computational performance for neural circuit models. Neural Netw. 20, 323–

334. doi: 10.1016/j.neunet.2007.04.017

Li, C. (2011). A model of neuronal intrinsic plasticity. IEEE Trans. Auton. Ment.

Dev. 3, 277–284. doi: 10.1109/TAMD.2011.2159379

Li, C., and Li, Y. (2013). A spike-based model of neuronal intrinsic plasticity. IEEE

Trans. Auton. Ment. Dev. 5, 62–73. doi: 10.1109/TAMD.2012.2211101

Li, X., Wang, W., Xue, F., and Song, Y. (2018). Computational modeling of spiking

neural network with learning rules from stdp and intrinsic plasticity. Physica A

491, 716–728. doi: 10.1016/j.physa.2017.08.053

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1991).

TI 46-word LDC93S9.

Lyon, R. (1982). “A computational model of filtering, detection, and compression

in the cochlea,” in Acoustics, Speech, and Signal Processing, IEEE International

Conference on ICASSP’82, Vol. 7 (IEEE), 1282–1285.

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing

without stable states: a new framework for neural computation based on

perturbations. Neural Comput. 14, 2531–2560. doi: 10.1162/0899766027604

07955

Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z., and Golowasch, J. (1996).

Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad.

Sci. U.S.A. 93, 13481–13486. doi: 10.1073/pnas.93.24.13481

Nadal, J.-P., and Parga, N. (1994). Nonlinear neurons in the low-noise limit:

a factorial code maximizes information transfer. Network 5, 565–581.

doi: 10.1088/0954-898X_5_4_008

Panda, P., and Roy, K. (2017). Learning to generate sequences with

combination of hebbian and non-hebbian plasticity in recurrent spiking

neural networks. Front. Neurosci. 11:693. doi: 10.3389/fnins.2017

.00693

Papoulis, A., and Pillai, S. U. (2002). Probability, Random Variables, and Stochastic

Processes. Tata McGraw-Hill Education.

Schrauwen, B., and Van Campenhout, J. (2003). “Bsa, a fast and accurate spike train

encoding scheme,” in Neural Networks, 2003. Proceedings of the International

Joint Conference on, Vol. 4 (IEEE), 2825–2830.

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J. J., and Stroobandt,

D. (2008). Improving reservoirs using intrinsic plasticity. Neurocomputing 71,

1159–1171. doi: 10.1016/j.neucom.2007.12.020

Stemmler, M., and Koch, C. (1999). How voltage-dependent conductances can

adapt to maximize the information encoded by neuronal firing rate. Nat.

Neurosci. 2:521. doi: 10.1038/9173

Triesch, J. (2005). “A gradient rule for the plasticity of a neuron’s intrinsic

excitability,” in International Conference on Artificial Neural Networks

(Springer), 65–70.

Watt, A. J., and Desai, N. S. (2010). Homeostatic plasticity and stdp: keeping

a neuron’s cool in a fluctuating world. Front. Synaptic Neurosci. 2:5.

doi: 10.3389/fnsyn.2010.00005

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state

machine with biologically inspired learning and its application to speech

recognition. IEEE Trans. Neural Netw. Learn. Syst. 26, 2635–2649.

doi: 10.1109/TNNLS.2015.2388544

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Zhang and Li. This is an open-access article distributed under

the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 February 2019 | Volume 13 | Article 3117

https://doi.org/10.1098/rspb.1997.0246
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1006/jtbi.1998.0782
https://doi.org/10.1038/9165
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1016/j.neunet.2007.04.020
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1109/TAMD.2011.2159379
https://doi.org/10.1109/TAMD.2012.2211101
https://doi.org/10.1016/j.physa.2017.08.053
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1073/pnas.93.24.13481
https://doi.org/10.1088/0954-898X_5_4_008
https://doi.org/10.3389/fnins.2017.00693
https://doi.org/10.1016/j.neucom.2007.12.020
https://doi.org/10.1038/9173
https://doi.org/10.3389/fnsyn.2010.00005
https://doi.org/10.1109/TNNLS.2015.2388544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 26 March 2019

doi: 10.3389/fnins.2019.00260

Frontiers in Neuroscience | www.frontiersin.org 1 March 2019 | Volume 13 | Article 260

Edited by:

John V. Arthur,

IBM, United States

Reviewed by:

Timothée Masquelier,

Centre National de la Recherche

Scientifique (CNRS), France

Terrence C. Stewart,

University of Waterloo, Canada

*Correspondence:

Timo Wunderlich

timo.wunderlich@kip.uni-heidelberg.de

Akos F. Kungl

fkungl@kip.uni-heidelberg.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 09 November 2018

Accepted: 05 March 2019

Published: 26 March 2019

Citation:

Wunderlich T, Kungl AF, Müller E,

Hartel A, Stradmann Y, Aamir SA,

Grübl A, Heimbrecht A, Schreiber K,

Stöckel D, Pehle C, Billaudelle S,

Kiene G, Mauch C, Schemmel J,

Meier K and Petrovici MA (2019)

Demonstrating Advantages of

Neuromorphic Computation: A Pilot

Study. Front. Neurosci. 13:260.

doi: 10.3389/fnins.2019.00260

Demonstrating Advantages of
Neuromorphic Computation: A Pilot
Study
Timo Wunderlich 1*, Akos F. Kungl 1*, Eric Müller 1, Andreas Hartel 1, Yannik Stradmann 1,

Syed Ahmed Aamir 1, Andreas Grübl 1, Arthur Heimbrecht 1, Korbinian Schreiber 1,

David Stöckel 1, Christian Pehle 1, Sebastian Billaudelle 1, Gerd Kiene 1, Christian Mauch 1,

Johannes Schemmel 1, Karlheinz Meier 1 and Mihai A. Petrovici 1,2

1Department of Physics, Kirchhoff Institute for Physics, Heidelberg University, Heidelberg, Germany, 2Department of

Physiology, University of Bern, Bern, Switzerland

Neuromorphic devices represent an attempt to mimic aspects of the brain’s architecture

and dynamics with the aim of replicating its hallmark functional capabilities in terms of

computational power, robust learning and energy efficiency. We employ a single-chip

prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept

demonstration of reward-modulated spike-timing-dependent plasticity in a spiking

network that learns to play a simplified version of the Pong video game by smooth

pursuit. This system combines an electronic mixed-signal substrate for emulating neuron

and synapse dynamics with an embedded digital processor for on-chip learning, which

in this work also serves to simulate the virtual environment and learning agent. The

analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration

with respect to biological real-time, with the entire chip operating on a power budget

of 57mW. Compared to an equivalent simulation using state-of-the-art software, the

on-chip emulation is at least one order of magnitude faster and three orders of magnitude

more energy-efficient. We demonstrate how on-chip learning can mitigate the effects

of fixed-pattern noise, which is unavoidable in analog substrates, while making use of

temporal variability for action exploration. Learning compensates imperfections of the

physical substrate, as manifested in neuronal parameter variability, by adapting synaptic

weights to match respective excitability of individual neurons.

Keywords: BrainScaleS, mixed-signal, neuromorphic computing, spiking neural networks, reinforcement learning,

STDP, plasticity

1. INTRODUCTION

Neuromorphic computing represents a novel paradigm for non-Turing computation that aims to
reproduce aspects of the ongoing dynamics and computational functionality found in biological
brains. This endeavor entails an abstraction of the brain’s neural architecture that retains an amount
of biological fidelity sufficient to reproduce its functionality while disregarding unnecessary detail.
Models of neurons, which are considered the computational unit of the brain, can be emulated
using electronic circuits or simulated using specialized digital systems (Indiveri et al., 2011;
Furber, 2016).

BrainScaleS 2 (BSS2) is a neuromorphic architecture consisting of CMOS-based ASICs
(Friedmann et al., 2017; Aamir et al., 2018) which implement physical models of neurons and

18

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00260
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00260&domain=pdf&date_stamp=2019-03-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:timo.wunderlich@kip.uni-heidelberg.de
mailto:fkungl@kip.uni-heidelberg.de
https://doi.org/10.3389/fnins.2019.00260
https://www.frontiersin.org/articles/10.3389/fnins.2019.00260/full
http://loop.frontiersin.org/people/602224/overview
http://loop.frontiersin.org/people/640760/overview
http://loop.frontiersin.org/people/2480/overview
http://loop.frontiersin.org/people/665879/overview
http://loop.frontiersin.org/people/640732/overview
http://loop.frontiersin.org/people/683138/overview
http://loop.frontiersin.org/people/75042/overview
http://loop.frontiersin.org/people/677385/overview
http://loop.frontiersin.org/people/665901/overview
http://loop.frontiersin.org/people/1075/overview
http://loop.frontiersin.org/people/2505/overview
http://loop.frontiersin.org/people/75002/overview

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

synapses in analog electronic circuits while providing facilities
for user-defined learning rules. A number of features distinguish
BSS2 from other neuromorphic approaches, such as a speed-
up factor of 103 compared to biological neuronal dynamics,
correlation sensors for spike-timing-dependent plasticity in each
synapse circuit and an embedded processor (Friedmann et al.,
2017), which can use neural network observables to calculate
synaptic weight updates for a broad range of plasticity rules. The
flexibility enabled by the embedded processor is a particularly
useful feature given the increasing effort invested in synaptic
plasticity research, allowing future findings to be accommodated
easily. The study at hand uses a single-chip prototype version of
the full system, which allows the evaluation of the planned system
design on a smaller scale.

Reinforcement learning has been prominently used as the
learning paradigm of choice in machine learning systems which
reproduced, or even surpassed, human performance in video and
board games (Mnih et al., 2015; Silver et al., 2016, 2017). In
reinforcement learning, an agent interacts with its environment
and receives reward based on its behavior. This enables the agent
to adapt its internal parameters so as to increase the potential for
reward in the future (Sutton and Barto, 1998). In the last decades,
research has found a link between reinforcement learning
paradigms used in machine learning and reinforcement learning
in the brain (for a review, see Niv, 2009). The neuromodulator
dopamine was found to convey a reward prediction error,
akin to the temporal difference error used in reinforcement
learning methods (Schultz et al., 1997; Sutton and Barto, 1998).
Neuromodulated plasticity can be modeled using three-factor
learning rules (Frémaux et al., 2013; Frémaux and Gerstner,
2015), where the synaptic weight update depends not only on the
learning rate and the pre- and post-synaptic activity but also on a
third factor, representing the neuromodulatory signal, which can
be a function of reward, enabling reinforcement learning.

In this work, we demonstrate the advantages of neuromorphic
computation by showing how an agent controlled by a spiking
neural network (SNN) learns to solve a smooth pursuit task
via reinforcement learning in a fully embedded perception-
action loop that simulates the classic Pong video game on the
BSS2 prototype. Measurements of time-to-convergence, power
consumption, and sensitivity to parameter noise demonstrate the
advantages of our neuromorphic solution compared to classical
simulation on a modern CPU that runs the NEST simulator
(Peyser et al., 2017). The on-chip learning converges within
seconds, which is equivalent to hours in biological terms, while
the software simulation is at least an order of magnitude slower
and three orders of magnitude less energy-efficient. We find that
fixed-pattern noise on BSS2 can be compensated by the chosen
learning paradigm, reducing the required calibration precision,
and that the results of hyperparameter learning can be transferred
between different BSS2 chips. The experiment takes place on the
chip fully autonomously, i.e., both the environment and synaptic
weight changes are computed using the embedded processor.
As the number of neurons (32) and synapses (1,024) on the
prototype chip constrain the complexity of solvable learning
tasks, the agent’s task in this work is simple smooth pursuit
without anticipation. The full system is expected to enable

more sophisticated learning, akin to the learning of Pong from
pixels that was previously demonstrated using an artificial neural
network (Mnih et al., 2015).

2. MATERIALS AND METHODS

2.1. The BrainScaleS 2 Neuromorphic
Prototype Chip
The BSS2 prototype is a neuromorphic chip and the predecessor
of a large-scale accelerated network emulation platform
with flexible plasticity rules (Friedmann et al., 2017). It is
manufactured using a 65 nm CMOS process and is designed
for mixed-signal neuromorphic computation. All experiments
in this work were performed on the second prototype version.
Future chips will be integrated into a larger setup using wafer-
scale technology (Schemmel et al., 2010; Zoschke et al., 2017),
thereby enabling the emulation of large plastic neural networks.

2.1.1. Experimental Setup
The BSS2 prototype setup is shown in Figure 1A and contains the
neuromorphic chip mounted on a prototyping board. The chip
and all of its functional units can be accessed and configured from
either a Xilinx Spartan-6 FPGA or the embedded processor (see
section 2.1.4). The FPGA in turn can be accessed via a USB-2.0
connection between the prototype setup and the host computer.
In addition to performing chip configuration, the FPGA can
also provide hard real-time playback of input and recording of
output data.

Experiments are described by the user through a container-
based programming interface which provides access to all
functional units such as individual neuron circuits or groups
of synapses. The experiment configuration is transformed into
a bitstream and uploaded to DRAM attached to the FPGA.
Subsequently, the software starts the experiment and a sequencer
logic in the FPGA begins to play back the experiment data (e.g.,
input spike trains) stored in the DRAM. At the same time, output
from the chip is recorded to a different memory area in the
DRAM. Upon completion of the experiment, the host computer
downloads all recorded output from the FPGA memory.

2.1.2. Neurons and Synapses
Our approach to neuromorphic engineering follows the idea of
“physical modeling”: the analog neuronal circuits are designed to
have similar dynamics compared to their biological counterparts,
making use of the physical characteristics of the underlying
substrate. The BSS2 prototype chip contains 32 analog neurons
based on the Leaky Integrate-and-Fire (LIF) model (Aamir
et al., 2016, 2018). Additionally, each neuron has an 8-bit spike
counter, which can be accessed and reset by the embedded
processor (Friedmann et al., 2017, see section 2.1.4) for
plasticity-related calculations.

In contrast to other neuromorphic approaches (Benjamin
et al., 2014; Furber et al., 2014; Merolla et al., 2014; Qiao et al.,
2015; Davies et al., 2018), this implementation uses the fast supra-
threshold dynamics of CMOS transistors in circuits which mimic
neuronal membrane dynamics. In the case of BSS2, this approach
provides time constants that are smaller than their biological

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 26019

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

FIGURE 1 | Physical setup and neural network schematic. (A) In the foreground: BSS2 prototype chip with demarcation of different functional parts. In the

background: the development board on which the chip is mounted. Adapted from Aamir et al. (2018). (B) Schematic of the on-chip neural infrastructure. Each of the

32 implemented neurons is connected to one column of the synapse array, where each column comprises 32 synapses. Synapse drivers allow row-wise injection of

individually labeled (6-bit) spike events. Each synapse locally stores a 6-bit label and a 6-bit weight and converts spike events with a matching label to current pulses

traveling down toward the neuron. Each synapse also contains an analogue sensor measuring the temporal correlation of pre- and post-synaptic events (see section

2.1.5).

counterparts by three orders of magnitude, i.e., the hardware
operates with a speed-up factor of 103 compared to biology,
independent of the network size or plasticity model. Throughout
the manuscript, we provide the true (wall-clock time) values,
which are typically on the order of microseconds, compared to
the millisecond-scale values usually found in biology.

The 32-by-32 array of synapses is arranged such that each
neuron can receive input from a column of 32 synapses
(see Figure 1B). Each row consisting of 32 synapses can be
individually configured as excitatory or inhibitory and receives
input from a synapse driver that injects labeled digital pre-
synaptic spike packets. Every synapse compares its label (a locally
stored configurable address) with the label of a given spike packet
and if they match, generates a current pulse with an amplitude
proportional to its 6-bit weight that is sent down along the
column toward the post-synaptic neuron. There, the neuron
circuit converts it into an exponential post-synaptic current
(PSC), which is injected into the neuronal membrane capacitor.

Post-synaptic spikes emitted by a neuron are signaled (back-
propagated) to every synapse in its column, which allows
the correlation sensor in each synapse to record the time
elapsed between pre- and post-synaptic spikes. Thus, each
synapse accumulates correlation measurements that can be read
out by the embedded processor, to be used, among other
observables, for calculating weight updates (see section 2.1.5 for a
detailed description).

2.1.3. Calibration and Configuration of the Analog

Neurons
Neurons are configured using on-chip analog capacitive memory
cells (Hock et al., 2013). The ideal LIF model neuron with

one synapse type and exponential PSCs can be characterized
by six parameters: membrane time constant τmem, synaptic
time constant τsyn, refractory period τref, resting potential
vleak, threshold potential vthresh, reset potential vreset. The
neuromorphic implementation on the chip carries 18 tunable
parameters per neuron and one global parameter (Aamir et al.,
2018). Most of these hardware parameters are used to set the
circuits to the proper point of operation and therefore have
fixed values that are calibrated once for any given chip; for
the experiments described here, the six LIF model parameters
mentioned above are fully controlled by setting only six of the
hardware parameters per neuron.

Manufacturing variations cause fixed-pattern noise (see
section 2.2), therefore each neuron circuit behaves differently for
any given set of hardware parameters. In particular, the time
constants (τmem, τsyn, τref) display a high degree of variability.
Therefore, in order to accurately map user-defined LIF time
constants to hardware parameters, neuron circuits are calibrated
individually. Using this calibration data reduces deviations from
target values to < 5% (Aamir et al., 2018, see also Figure 2).

2.1.4. Plasticity Processing Unit
To allow for flexible implementation of plasticity algorithms, the
chip uses a Plasticity Processing Unit (PPU), which is a general-
purpose 32-bit processor implementing the PowerPC-ISA 2.06
instruction set and custom vector extensions (Friedmann et al.,
2017). In the used prototype chip, it is clocked at a frequency
of 98MHz and has access to 16KiB of main memory. Vector
registers are 128-bit wide and can be processed in slices of eight
16-bit or sixteen 8-bit units within one clock cycle. The vector
extension unit is loosely coupled to the general-purpose part.

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 26020

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

FIGURE 2 | BSS2 is subject to fixed-pattern noise and temporal variability. (A) Violin plot of the digitized output of the 1024 causal correlation sensors (a+, see

Equation 1) on a sample chip (chip #1) as a function of the time interval between a single pre-post spike pair. (B) Distribution of membrane time constants τm over all

32 neurons with and without calibration. The target value is 28.5 µs (vertical blue lines). (C) Effects of temporal variability. A regular input spike train containing twenty

spikes spaced by 10 µs, as used in the learning task, transmitted via one synapse, elicits different membrane responses in two trials. (D) Mean and variance of the

output spike count as a function of synaptic weight, averaged over 100 trials, for a single exemplary neuron receiving the input spike train from (C). The spiking

threshold weight (the smallest weight with a higher than 5% probability of eliciting an output spike under the given stimulation paradigm) is indicated by the dotted

blue line. Trial-to-trial variation of the number of output spikes at fixed synaptic weight is due to temporal variability and mediates action exploration.

When fetching vector instructions, the commands are inserted
into a dedicated command queue which is read by the vector unit.
Vector commands are decoded, distributed to the arithmetic
units and executed as fast as possible.

The PPU has dedicated fully-parallel access ports to synapse
rows, enabling row-wise readout and configuration of synaptic
weights and labels. This enables efficient row-wise vectorized
plasticity processing. Modifications of connectivity, neuron
and synapse parameters are supported during neural network
operation. The PPU can be programmed using assembly and
higher-level languages such as C or C++ to compute a wide range
of plasticity rules. Compiler support for the PPU is provided by a
customized gcc (Electronic Vision(s), 2017; Stallman and GCC
Developer Community, 2018). The software used in this work is
written in C, with vectorized plasticity processing implemented
using inline assembly instructions.

2.1.5. Correlation Measurement at the Synapses
Every synapse in the synapse array contains two analog units
that record the temporal correlation between nearest-neighbor

pairs of pre- and post-synaptic spikes. For each such pair, a
dedicated circuit measures the value of either the causal (pre
before post) or anti-causal (post before pre) correlation, which is
modeled as an exponentially decaying function of the spike time
difference (Friedmann et al., 2017). The values thus measured are
accumulated onto two separate storage capacitors per synapse. In
an idealized model, the voltages across the causal and anti-causal
storage capacitor are

a+ =
∑

pre−post

η+ exp

(

−
tpost − tpre

τ+

)

(1)

and

a− =
∑

post−pre

η− exp

(

−
tpre − tpost

τ−

)

, (2)

respectively, with decay time constants τ+ and τ− and scaling
factors η+ and η−. These accumulated voltages represent
non-decaying eligibility traces that can be read out by the

Frontiers in Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 26021

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

PPU using column-wise 8-bit Analog-to-Digital Converters
(ADCs), allowing row-wise parallel readout. Fixed-pattern noise
introduces variability among the correlation units of different
synapses, as visible in Figure 2A. The experiments described here
only use the causal traces a+ to calculate weight updates.

2.2. Types of Noise on BSS2
The BSS2 prototype has several sources of parameter variability
and noise, as does any analog hardware. We distinguish between
fixed-pattern noise and temporal variability.

Fixed-pattern noise refers to the systematic deviation of
parameters (e.g., transistor parameters) from the values targeted
during chip design. This type of noise is caused by the
inaccuracies of the manufacturing process and unavoidable
stochastic variations of process parameters. Fixed-pattern noise
is constant in time and induces heterogeneity between neurons
and synapses, but calibration can reduce it to some degree. The
effects of the calibration on the distribution of the membrane
time constant τmem are shown in Figure 2B.

Temporal variability continually influences circuits during
their operation, leading to fluctuations of important dynamical
variables such as membrane potentials. Typical sources of
temporal variability are crosstalk, thermal noise and the limited
stability of the analog parameter storage. These effects can cover
multiple timescales and lead to variable neuron spike responses,
even when the input spike train remains unchanged between
trials. A concrete example of trial-to-trial variability of a neuron’s
membrane potential evolution, output spike timing and firing
rate caused by temporal variability is shown in Figures 2C,D

for two trials of the same experiment, using the same input
spike train and parameters, with no chip reconfiguration
between trials.

2.3. Reinforcement Learning With
Reward-Modulated STDP
In reinforcement learning, a behaving agent interacts with its
environment and tries to maximize the expected future reward
it receives from the environment as a consequence of this
interaction (Sutton and Barto, 1998). The techniques developed
to solve problems of reinforcement learning generally do not
involve spiking neurons and are not designed to be biologically
plausible. Yet reinforcement learning evidently takes place in
biological SNNs, e.g., in basic operant conditioning (Guttman,
1953; Fetz and Baker, 1973; Moritz and Fetz, 2011). The
investigation of spike-based implementations with biologically
inspired plasticity rules is therefore an interesting subject of
research with evident applications for neuromorphic devices.
The learning rule used in this work, Reward-modulated Spike-
Timing Dependent Plasticity (R-STDP) (Farries and Fairhall,
2007; Izhikevich, 2007; Frémaux et al., 2010), represents one
possible implementation.

R-STDP is a three-factor learning rule that modulates the
effect of unsupervised STDP using a reward signal. Recent
work has used R-STDP to reproduce Pavlovian conditioning
as in Izhikevich (2007) on a specialized neuromorphic digital
simulator, achieving real-time simulation speed (Mikaitis et al.,
2018). While not yet directly applied to an analog neuromorphic

substrate, aspects of this learning paradigm have already been
studied in software simulations, under constraints imposed
by the BSS2 system, in particular concerning the effect of
discretized weights, with promising results (Friedmann et al.,
2013). Furthermore, it was previously suggested that trial-to-trial
variations of neuronal firing rates as observed in cortical neurons
can benefit learning in a reinforcement learning paradigm,
rather than being a nuisance (Xie and Seung, 2004; Legenstein
et al., 2008; Maass, 2014). Our experiments corroborate this
hypothesis by explicitly using trial-to-trial variations due to
temporal variability for action exploration.

The reward mechanism in R-STDP is biologically inspired:
the phasic activity of dopamine neurons in the brain was
found to encode expected reward (Schultz et al., 1997;
Hollerman and Schultz, 1998; Bayer and Glimcher, 2005) and
dopamine concentration modulates STDP (Pawlak and Kerr,
2008; Edelmann and Lessmann, 2011; Brzosko et al., 2015).
R-STDP and similar reward-modulated Hebbian learning rules
have been used to solve a variety of learning tasks in simulations,
such as reproducing temporal spike patterns and spatio-temporal
trajectories (Farries and Fairhall, 2007; Vasilaki et al., 2009;
Frémaux et al., 2010), reproducing the results of classical
conditioning (Izhikevich, 2007), making a recurrent neural
network exhibit specific periodic activity and working-memory
properties (Hoerzer et al., 2014) and reproducing the seminal
biofeedback experiment by Fetz and Baker (Fetz and Baker,
1973; Legenstein et al., 2008). Compared to classic unsupervised
STDP, using R-STDP was shown to improve the performance
of a spiking convolutional neural network tasked with visual
categorization (Mozafari et al., 2018a,b).

In contrast to other learning rules in reinforcement learning,
R-STDP is not derived using gradient descent on a loss function;
rather, it is motivated heuristically (Frémaux and Gerstner,
2015), the idea being to multiplicatively modulate STDP using a
reward term.

We employ the following form of discrete weight updates
using R-STDP:

1wij = β · (R− b) · eij , (3)

where β is the learning rate, R is the reward, b is a baseline
and eij is the STDP eligibility trace which is a function of the
pre- and post-synaptic spikes of the synapse connecting neurons
i and j. The choice of the baseline reward b is critical: a non-
zero offset introduces an admixture of unsupervised learning via
the unmodulated STDP term, and choosing b to be the task-
specific expected reward b = 〈R〉task leads to weight updates that
capture the covariance of reward and synaptic activity (Frémaux
and Gerstner, 2015):

〈1wij〉task = 〈R · eij〉task − 〈R〉task · 〈eij〉task = Cov(R, eij) . (4)

This setting, which we also employ in our experiments, makes
R-STDP a statistical learning rule in the sense that it captures
correlations of joint pre- and post-synaptic activity and reward;
this information is collected over many trials of any single
learning task. The expected reward may be estimated as a moving
average of the reward over the last trials of that specific task; task

Frontiers in Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 26022

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

specificity of the expected reward is required when multiple tasks
need to be learned in parallel (Frémaux et al., 2010).

2.4. Learning Task and Simulated
Environment
Using the PPU, we simulate a simple virtual environment
inspired by the Pong video game. The components of the game
are a two-dimensional square playing field, a ball and the player’s
paddle (see Figure 3A). The paddle is controlled by the chip and
the goal of the learning task is to trace the ball. Three of the four
playing field sides are solid walls, with the paddle moving along
the open side. The experiment proceeds iteratively and fully on-
chip (see Figure 3B). A single experiment iteration consists of
neural network emulation, weight modification and environment
simulation. We visualize one iteration as a flowchart in Figure 4

and provide a detailed account in the following.
The game dynamics consist of the ball starting in the middle

of the playing field in a random direction with velocity Ev and the
paddle which moves with velocity vp along its baseline. Surfaces
elastically reflect the ball. If the paddle misses the ball, the game is
reset, i.e., the ball starts from the middle of the field in a random
direction. Specific parameter values are given in Table 1.

The paddle is controlled by the neural network emulated
on the neuromorphic chip. The network receives the ball
position along the paddle’s baseline as input and determines the
movement of its paddle via the resulting network activity. The
neural network consists of two 32-unit layers which are initialized

with all-to-all feed-forward connections (see Table 1), where
the individual weights are drawn from a Gaussian distribution
and where the first layer represents input/state units ui and the
second layer represents output/action units vi. The first layer is
a virtual layer for providing input spikes and the second layer
consists of the chip’s LIF neurons. All synaptic connections are
excitatory. Discretizing the playing field into 32 columns along
the paddle baseline, we assign a state unit ui to each column i
where i ∈ [0, 31] and provide input to this unit if the ball is in
the corresponding column via a uniform spike train (see Table 1
for parameters).

The action neurons’ spike counts ρi are used to determine the
paddle movement: the unit with the highest number of output
spikes j = argmaxi(ρi) determines the paddle’s target column j,
toward which it moves with constant velocity vp (see Table 1). If
the target column and center position of the paddle match, no
movement is performed. Spike counts and in consequence, the
target row j are determined after the input spike train has been
delivered. If several output units have the same spike count, the
winner is chosen randomly among them. Afterwards, the reward
R is calculated based on the distance between the target column j
and the current column of the ball, k:

R =

{

1− |j− k| · 0.3 if |j− k| ≤ 3 ,

0 otherwise.
(5)

Learning success is therefore graded, i.e., the network obtains
reduced reward for less than optimal aiming. The size of the

FIGURE 3 | Overview of the experimental setup. (A) The components of the environment are the playing field with three reflective walls (top, left, right), the ball and the

paddle. In the depicted situation, the ball is in column 8 and therefore a uniform spike train is sent to output neurons via the synapses of input unit 8. Output unit 3 fires

the most spikes and the paddle therefore moves toward column 3. As the target column is too far away from the ball column, it lies outside of the graded reward

window and the reward received by the network is zero (see Equation 5). (B) The chip performs the experiment completely autonomously: the environment simulation,

spiking network emulation and synaptic plasticity via the PPU are all handled on-chip. The FPGA, which is only used for the initial configuration of the chip, is

controlled via USB from the host PC. (C) The plasticity rule calculated by the PPU. Pre-before-post spike pairs of input unit Xi and output unit Yj are exponentially

weighted with the corresponding temporal distance and added up. This correlation measure is then multiplied with the learning rate and the difference of

instantaneous and expected reward to yield the weight change for synapse (i, j).

Frontiers in Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 26023

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

FIGURE 4 | Flowchart of the experiment loop running autonomously on BSS2,

using both the analogue Spiking Neural Network (SNN) and the embedded

processor. The environment is reset by positioning the ball in the middle of the

playing field with a random direction of movement at the start of the

experiment or upon the agent’s failure to reflect the ball. In the main loop, the

(virtual) state unit corresponding to the current ball position transmits a spike

train to all neurons in the action layer (see Figure 3). Afterwards, the winning

action neuron, i.e., the action neuron that had the highest output spike count,

is determined. Then, the reward is determined based on the difference

between the ball position and the target paddle position as dictated by the

winning neuron (Equation 5). Using the reward, a stored running average of the

reward and the STDP correlation traces computed locally at each synapse

during SNN emulation, the weight updates of all synapses are computed

(Equation 7) and applied. The environment, i.e., the position of ball and paddle,

are then updated, and the loop starts over.

reward window defined by Equation (5) is chosen to match the
paddle length.

For every possible task (corresponding to a ball column k),
the PPU holds task-specific expected rewards R̄k, k ∈ [0, 31] in
its memory, which it subtracts from the instantaneous reward R
to yield the neuromodulating factor R − R̄k, which is also used
to update the task-specific expected reward as an exponentially
weighted moving average:

R̄k ← R̄k + γ
(

R− R̄k
)

, (6)

where γ controls the influence of previous iterations. The
expected reward of any state is initialized as the first reward
received in that state. All 1, 024 synapse weights wmn from input
unit m to output unit n are then updated according to the
three-factor rule (see Figure 3C)

1wmn = β ·
(

R− R̄k
)

· A+mn , (7)

where β is a learning rate and A+mn is a modified version of a+mn

(see Equation 1) which has been corrected for offset, digitized
to 8 bit and right-shifted by one bit in order to reduce noise.
After the weights have been modified, the Pong environment
is updated according to the described dynamics and the next
iteration begins.

Themean expected reward

〈R̄〉 =
1

32

31
∑

i=0

R̄i , (8)

i.e., the average of the expected rewards over all states, represents
a measure of the progress of learning in any given iteration. Due
to the paddle width and correspondingly graded reward scheme,
the agent is able to catch the ball even when it is not perfectly
centered below the ball. Therefore, the performance in playing
Pong can be quantified by

P =
1

32

31
∑

i=0

⌈Ri⌉ , (9)

where Ri is the last reward received in state i. This provides the
percentage of states in which the agent has aimed the paddle such
that it is able to catch the ball.

In order to find suitable hyperparameters for the chip
configuration, we used a Bayesian parameter optimization
based on sequential optimization using decision trees to
explore the neuronal and synaptic parameter space while
keeping parameters such as game dynamics, input spike train
and initial weight distribution fixed. The software package
used was scikit-optimize (Head et al., 2018). Initially, 30
random data points were taken, followed by 300 iterations
with the next evaluated parameter set being determined by
the optimization algorithm FOREST_MINIMIZE with default
parameters (maximizing expected improvement, extra trees
regressor model, 10,000 acquisition function samples, target
improvement of 0.01). All neuron and synapse parameters were
subject to the optimization, i.e., all neuronal time constants and
voltages as well as the time constant and amplitude of the synapse
correlation sensors. The results are a common set of parameters
for all neurons and synapses (see Table 1).

2.5. Software Simulation With NEST
In order to compare the learning performance and speed of
the chip to a network of deterministic, perfectly identical LIF
neurons, we ran a software simulation of the experiment using
the NEST v2.14.0 SNN simulator (Peyser et al., 2017), using the
same target LIF parameters as in our experiments using the
chip, with time constants scaled by a factor of 103. We did
not include fixed-pattern noise of neuron parameters in the
simulation, i.e., all neurons had identical parameters.We used the
iaf_psc_exp integrate-and-fire neuron model available in NEST,
with exponential PSC kernels and current-based synapses. Using
NEST’s noise_generator, we are able to investigate the effect of
injecting Gaussian current noise into each neuron. The scaling
factors η+ and η−, as well as the time constants τ+ and τ− of

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 26024

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

TABLE 1 | Parameters used in the experiment.

Symbol Description Value

Neuromorphic hardware BrainScaleS 2 (2nd prototype version)

N Number of action/output neurons (LIF) 32

NS Number of state/input units 32

Nsyn Number of synapses 32 · 32 = 1024

Nspikes Number of spikes from input unit 20

TISI ISI of spikes from input unit 10 µs

w Mean of distribution of initial weights (digital value) 14

σw Standard deviation of distribution of initial weights 2

L Length and width of quadratic playing field 1

‖Ev‖1 L1-norm of ball velocity 0.025 per iteration

vp Velocity of paddle controlled by BSS2 0.05 per iteration

rb Radius of ball 0.02

rp Length of paddle 0.20

γ Decay constant of reward 0.5

β Learning rate 0.125

NEST version (software simulation) 2.14.0

NEST timestep 0.1ms

CPU (software simulation, one core used) Intel i7-4771

Set #1 Set #2 Set #3

(standard)

τmem LIF membrane time constant 28.5 µs 18.4 µs 24.8 µs

τref LIF refractory time constant 4 µs 14.3 µs 13.8 µs

τsyn LIF excitatory synaptic time constant 1.8 µs 2.4 µs 1.4 µs

vleak LIF leak voltage 0.62 V 0.56V 0.87V

vreset LIF reset voltage 0.36 V 0.36V 0.30V

vthresh LIF threshold voltage 1.28 V 1.31V 1.21V

η+ Amplitude of correlation function a+ (digital value) 72 114 70

τ+ Time constant of correlation function a+ 64 µs 80 µs 60 µs

The different parameter sets are the result of optimizing parameters on three different chips. If not mentioned otherwise, results were obtained using set #1. LIF, Leaky Integrate-and-Fire;

ISI, Inter-Spike Interval.

the correlation sensors were chosen to match the mean values on
BSS2. The correlation factor a+ was calculated within the Python
script controlling the experiment using Equation (1) and the
spike times provided by the NEST simulator. Hyperparameters
such as learning rate and game dynamics (e.g., the reward
window defined in Equation 5) were set to be equivalent to
BSS2 and weights were scaled to a dimensionless quantity and
discretized to match the neuromorphic emulation.

The synaptic weight updates in each iteration were restricted
to those synapses which transmitted spikes, i.e., the synapses
from the active input unit to all output units (32 out of the
1, 024 synapses), as the correlation a+ of all other synapses is
zero in a perfect simulation without fixed-pattern noise. This
has the effect of reducing the overall time required to simulate
one iteration and is in contrast to the implementation on BSS2,
where all synapses are updated in each iteration as there is no
guarantee that correlation traces are zero and we excluded this
kind of “expert knowledge” from the implementation.

The source code of the simulation is publicly
available (Wunderlich, 2019).

3. RESULTS

3.1. Learning Performance
The progress of learning over 105 iterations is shown in Figure 5

for both BSS2 (subplot A) and an ideal software simulation
with and without injected noise (subplot B). We use both

measures described above to quantify the agent’s success: the

mean expected reward (Equation 8) reflects the agent’s aiming

accuracy and the Pong performance (Equation 9) represents
the ability of the agent to catch the ball using its elongated

paddle. By repeating the procedure with ten randomly initialized

weight matrices, we show that learning is reproducible, with little
variation in the overall progress and outcome.

The optimal solution of the learning task is a one-to-one

mapping of states to actions that place the center of the paddle
directly below the ball at all times. In terms of the neural network,

this means that the randomly initialized weight matrix should
be dominated by its diagonal elements. We show the weight
matrix on BSS2 after 105 learning iterations, averaged over the
ten different trials depicted in Figures 5, 6A. As expected, the

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 26025

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

FIGURE 5 | Learning results for BSS2 and the software simulation using NEST, in terms of Mean expected reward (Equation 8) and Pong performance (Equation 9). In

both cases, we plot the mean and standard deviation (shaded area) of 10 experiments. (A) BSS2 uses its intrinsic noise as an action exploration mechanism that

drives learning. (B) The software simulation without noise is unable to learn and does not progress beyond chance level. Adding Gaussian zero-mean current noise

with σ = 100pA to each neuron allows the network to explore actions and enables learning. The simulation converges faster due to the idealized simulated scenario

where no fixed-pattern noise is present.

diagonals of the matrix are dominant. Note that also slightly off-
diagonal synapses are also strengthened, as dictated by the graded
reward scheme. The visibly distinguishable vertical lines stem
from neuronal fixed-pattern noise, as learning adapts weights
to compensate for neuronal variability and one column in the
weight matrix corresponds to one neuron.

A screen recording of a live demonstration of the
experiment is available at https://www.youtube.com/watch?
v=LW0Y5SSIQU4 and allows the viewer to follow the learning
progress in a single experiment.

3.1.1. Temporal Variability on BSS2 Causes

Exploration
On BSS2, action exploration and thereby learning is driven by
trial-to-trial variations of neuronal spike counts that are due to
temporal variability (see Figures 2C,D).

In contrast, we find that the software simulation without
injected noise (see section 2.5) is unable to progress beyond the
mean expected reward received by an agent choosing random
actions, which is around 〈R̄〉 = 0.1 (the randomness in the
weight matrix initialization leads to some variation in the mean
expected reward after learning). The only non-deterministic
mechanism in the software simulation without noise is due to
the fact that if several action neurons elicit the same number
of spikes, the winner is chosen randomly among them, but its
effects are negligible. Injecting Gaussian current noise with zero
mean and a standard deviation of σ = 100 pA into each neuron
independently enables enough action exploration to converge to
similar performance as BSS2. Compared to BSS2, the simulation
with injected noise converges faster and to a higher level of Pong
performance; this is due to the fact that the simulation contains
no fixed-pattern noise, the network starts from an unbiased,
perfectly balanced state and that Gaussian current noise is not
an exact model of the temporal variability found in BSS2.

We can therefore conclude that under an appropriate learning
paradigm, analog-hardware-specific temporal variability
that is generally regarded as a nuisance can become a
useful feature. Adding an action exploration mechanism
similar to ǫ-greedy action selection would enable the
software simulation to learn with guaranteed convergence
to optimal performance, but would come at the cost of
additional computational resources required for emulating such
a mechanism.

3.2. Learning Is Calibration
The learning process adjusts synaptic weights such that
individual differences in neuronal excitability on BSS2 are
compensated. We correlated learned weights to neuronal
properties and found that learning shapes a weight matrix that
is adapted to a specific pattern of neuronal variability.

Each neuron is the target of 32 synapses. A subset of these
are systematically potentiated, as they correspond to actions
yielding a reward higher than the current expected reward,
while the remainder is depressed, as these synapses correspond
to actions yielding less reward. This leads to the diagonally-
dominant matrix depicted in Figure 6A. At the same time,
neuronal variability leads to different spiking-threshold weights,
i.e., the smallest synaptic weight for which the neuron elicits one
spike with a probability higher than 5%, given the fixed input
spike train used in the experiment (see Figure 2D). The learning
process pushes the weights of unrewarded (R = 0) synapses
below the spiking threshold of the respective neuron, thereby
compensating variations of neuronal excitability, leading to a
correlation of both quantities. Using the weights depicted in (A)
and empirically determined spiking thresholds, we found that
for each neuron the weights of synapses which correspond to
unrewarded actions were correlated with the spiking-threshold
with a correlation coefficient of r = 0.76 (see Figure 6B).

Frontiers in Neuroscience | www.frontiersin.org 9 March 2019 | Volume 13 | Article 26026

https://www.youtube.com/watch?v=LW0Y5SSIQU4
https://www.youtube.com/watch?v=LW0Y5SSIQU4
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

FIGURE 6 | (A) Synaptic weight matrix after learning, averaged over the 10 trials depicted in Figure 5. Weights on and near the diagonal dominate, corresponding to

the goal of the learning task. The noticeable vertical stripes are a direct consequence of learning, which implicitly compensates neuronal variability (each column

represents all input synapses of an action neuron). (B) Learning compensates circuit variability. Weights corresponding to unrewarded actions (R = 0) are

systematically pushed below the threshold weight of the respective neuron, i.e., below the main diagonal. This leads to a correlation of learned weight and threshold

(Pearson’s r = 0.76). Weights are plotted with slight jitter along both axes for better visibility.

The learned adaptation of the synaptic weights to neuronal
variability can be disturbed by randomly shuffling the assignment
of logical action units to physical neurons. This is equivalent
to the thought experiment of physically shuffling neurons on
the chip and leads to synaptic weights which are maladapted
to their physical substrate, i.e., efferent neuronal properties.
In the following, we demonstrate the detrimental effects of
such neuronal permutations and that the system can recover
performance by subsequent learning.

We considered a weight matrix after 50, 000 learning
iterations and measured the resulting reward distribution over
100 experiments with learning turned off. Here, “reward
distribution” refers to the distribution of the most recent
reward over all 32 states. The top panel of Figure 7A shows
the reward distribution for this baseline measurement. Mean
expected reward and performance for this measurement are
〈R̄〉 = 0.73± 0.05 and P = 0.85± 0.06, respectively.

The same weight matrix was applied to 100 systems with
randomly shuffled physical neuron assignment and the reward
distribution measured as before with learning switched off,
yielding the distribution depicted in the middle panel of the
same plot, with mean expected reward and performance of
〈R̄〉 = 0.37± 0.09 and P = 0.47± 0.11. Each of the 100
randomly shuffled systems was then subjected to 50, 000 learning
iterations, starting from the maladapted weight matrix, leading
to the distribution shown in the bottom panel, with mean
expected reward and performance of 〈R̄〉 = 0.67± 0.07 and
P = 0.81± 0.09.

This demonstrates that our learning paradigm implicitly
adapts synaptic weights to a specific pattern of neuronal
variability and compensates for fixed-pattern noise. In a
more general context, these findings support the idea that for

neuromorphic systems endowed with synaptic plasticity,
time-consuming and resource-intensive calibration of
individual components can be, to a large extent, supplanted by
on-chip learning.

3.3. Learning Robustness
One of the major concerns when using analog electronics is
the control of fixed-pattern noise. We can partly compensate
for fixed-pattern noise using a calibration routine (Aamir
et al., 2018), but this procedure is subject to a trade-off
between accuracy and the time and computational resources
required for obtaining the calibration data. Highly precise
calibration is costly because it requires an exhaustive mapping
of a high-dimensional parameter space, which has to be done
for each chip individually. A faster calibration routine, on
the other hand, necessarily involves taking shortcuts, such as
assuming independence between the influence of hardware
parameters, thereby potentially leading to systematic deviations
from the target behavior. Furthermore, remaining variations
can affect the transfer of networks between chips and therefore
potentially impact learning success when using a given set of
(hyper-)parameters. We discuss these issues in the following. All
results in this section were obtained after using 50, 000 training
iterations, which take around 25 s of wall-clock time on our
BSS2 prototypes.

3.3.1. Impact of Time Constant Calibration
The neuronal calibration (see section 2.1.3) adjusts hardware
parameters controlling the LIF time constants (τmem, τref,
and τsyn) on a per-neuron basis to optimally match target
time constants (Table 1), compensating neuronal variability.
Depending on the target parameter value, it is possible to reduce

Frontiers in Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 26027

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

FIGURE 7 | Learning can largely supplant individual calibration of neuron parameters and adapts synaptic weights to compensate for neuronal variability. (A) Top:

Reward distribution over 100 experiments measured with a previously learned, fixed weight matrix. Middle: Same as above, with randomly permuted neurons in each

of the 100 experiments. The agent’s performance and therefore its received reward decline due to the weight matrix being adapted to a specific pattern of

fixed-pattern noise. Bottom: Allowing the agent to learn for 50, 000 additional iterations after having randomly shuffled its neurons leads to weight re-adaptation,

increasing its performance and received reward. In these experiments, LIF parameters were not calibrated individually per neuron. (B) Reward distribution after

50, 000 learning iterations in 100 experiments for a calibrated and an uncalibrated system, with learning being largely able to compensate for the difference.

(C) Results can be reproduced on different chips. Violin plot of mean expected reward after hyperparameter optimization on chips #1, #2, and #3. Results are shown

for the calibrated case. All other results in this manuscript were obtained using Chip #1.

the standard deviations of the LIF time constants across a chip by
up to an order of magnitude (Aamir et al., 2018).

We investigated the effect of uncalibrated neuronal time
constants on learning. The uncalibrated state is defined by using
the same value for a given hardware parameter for all neurons on
a chip. To set up a reasonable working point, we chose this to be
the average of the calibrated values of all neurons on the chip. A
histogram of the membrane time constants of all neurons on the
chip in the calibrated and uncalibrated state is given in Figure 2B.
In both cases, voltages (vleak, vthresh, vreset) were uncalibrated.

We measured the reward distribution after learning in
both the calibrated and the uncalibrated state, performing 100
experiments in both cases (Figure 7B). Even in the uncalibrated
state, learning was possible using only the inherent hardware
noise for action exploration, albeit with some loss (around
17%) in mean expected reward. The mean expected reward and
performance in the calibrated state are 〈R̄〉 = 0.79± 0.05 and
P = 0.93± 0.05, respectively. In the uncalibrated state, the values
are 〈R̄〉 = 0.65± 0.08 and P = 0.80± 0.09.

As a corollary, the reward distributions depicted in Figure 7B

suggest that narrowing the reward window (defined in Equation
5) to half the original size (i.e., removing the R ≤ 0.4 part) would
only have a small effect on converged Pong performance.

3.3.2. Transferability of Results Between Chips
All results presented thus far were obtained using one specific
chip (henceforth called chip #1) and parameter set (given in
Table 1 as set #1). These parameters were found using a hyper-
parameter optimization procedure (see section 2) that was
performed on this chip. In addition, we performed the same
optimization procedure on two other chips, using the original
optimization results as a starting point, which yielded three
parameter sets in total. The two additional parameter sets, sets
#2 and #3 corresponding to chips #2 and #3, are also given
in Table 1.

We then investigated the effects of transferring each parameter
set to the other chips, testing all six possible transitions
of learned parameters between the chips. To this end, we

Frontiers in Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 26028

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

conducted 200 trials consisting of 50, 000 learning iterations
on every chip for every parameter set and compare the
resulting mean expected reward in Figure 7C. Learning results
were similar across all nine experiments. As expected due
to process variations, there were small systematic deviations
between the chips, with chip #1 slightly outperforming the
other two for all three hyperparameter sets, but in all scenarios
the agent successfully learned to play the game. These results
suggest that chips can be used as drop-in replacements for
other chips and that the hyperparameter optimization does
not have to be specific to a particular substrate to yield
good results.

3.4. Speed and Power Consumption
3.4.1. Speed
An essential feature of BSS2 is its 103 speed-up factor compared
to biological real-time. To put this in perspective, we compared
the emulation on our BSS2 prototypes to a software simulation
with NEST running on a conventional CPU (see section 2.5).
We found that a single experiment iteration in the simulation
takes 50ms when running it on a single core of an Intel
i7-4771 CPU (utilizing more cores does not lead to a faster
simulation due to the small size of the network). For our
speed comparison, we differentiate the case of no injected
noise (where the network’s time evolution is fully deterministic)
and the case where we use NEST’s noise_generator module to
inject current noise into each neuron. When noise is injected,
the 200ms of neural network activity is simulated in 4.3ms;
without noise, the activity is simulated in 1.2ms. This is
the time that is spent in NEST’s state propagation routine
(the Simulate routine). The remainder is spent calculating
the plasticity rule and environment in the additional Python
script, which we consider separately as it was external
to NEST.

In contrast, BSS2 takes 0.4ms per iteration as measured using
the time stamp register of the PPU. This time is approximately
equally divided between neural network emulation and other
calculations, including the updates of the synaptic weights and
the environment. The total time duration of an experiment with
50, 000 learning iterations is 25 s for BSS2 and 40min for the
software simulation. A constant overhead of around 5 s when
using the chip is spent on calibration, connection setup and
configuring the chip.

The comparison between BSS2 and the software simulation
is visualized in Figure 8. Note that while the calculation of
eligibility traces in software was not optimized for speed, it incurs
a significant computational cost, especially as it scales linearly
with the number of synapses and therefore approximately
quadratically with the network size. This is in contrast to the
emulation on BSS2, where the eligibility trace is measured locally
with analog circuitry at each synapse during network emulation.

In both cases, the time taken for environment simulation is
negligible compared to plasticity calculation. We have confirmed
that these measurements are independent on learning progress
(i.e., measurements during the first iterations and with a diagonal
weight matrix are equal).

FIGURE 8 | A single experiment iteration on BSS2 takes around 400 µs, with

220 µs devoted to network emulation and 180 µs to plasticity calculation. The

spiking network activity corresponds to 200 biological ms. In the software

simulation, the neural network with and without noise is simulated in 4.3 and

1.2ms, respectively, while plasticity calculations take around 50ms.

3.4.2. Power Consumption
Wemeasured the current drawn by the CPU during the software
simulation of the neural network, i.e., during NEST’s numerical
simulation routine as well as when idling using the EPS 12V
power supply cable that supplies only the CPU. Again, we
differentiate the cases of no noise and injected current noise.
Based on these measurements, we determined a lower bound of
24W for the CPU power consumption during SNN simulation
without noise and a lower bound of 25W when injecting noise.
A single simulation iteration in software without noise, taking
1.2ms and excluding plasticity and environment simulation,
therefore consumes at least 29mJ. When we inject current noise,
the simulation takes 4.3ms which corresponds to an energy
consumption of 106mJ per iteration.

By measuring the current drawn by BSS2 during the
experiment, we calculated the power dissipated by it to be
57mW, consistent with the measurement of another network in
(Aamir et al., 2018) (this is not considering the power drawn
by the FPGA, which is only used for initial configuration, and
other prototype board components). This implies a per-iteration
energy consumption, including plasticity and environment
simulation, of around 23 µJ by the chip.

These measurements imply that, in a conservative
comparison, the emulation using BSS2 is at least three orders of
magnitude more energy-efficient than the software simulation.

4. DISCUSSION AND OUTLOOK

We demonstrated key advantages of our approach to
neuromorphic computing in terms of speed and energy
efficiency compared to a conventional approach using dedicated
software. The already observable order-of-magnitude speed-up
of our BSS2 prototypes compared to software for our small-scale
test case is expected to increase significantly for larger networks.

Frontiers in Neuroscience | www.frontiersin.org 12 March 2019 | Volume 13 | Article 26029

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

At the same time, this performance can be achieved with a three-
orders-of-magnitude advantage in terms of power consumption,
as our conservative estimate shows.

Furthermore, we showed how substrate imperfections, which
inevitably lead to parameter variations in analog neuro-synaptic
circuits, can be compensated using an implementation of
reinforcement learning via neuromodulated plasticity based on
R-STDP. Meta-learning can be done efficiently despite substrate
variability, as results of hyperparameter optimization can be
transferred across chips. We further find that learning is not only
robust against analog temporal variability, but that trial-to-trial
variations are in fact used as a computational resource for action
exploration.

In this context, it is important to mention that temporal
variability is generally undesirable due to its uncontrollable
nature and chips are designed with the intention of keeping it to
a minimum. Still, learning paradigms that handle such variability
gracefully are a natural fit for analogue neuromorphic hardware,
where noise inevitably plays a role.

Due to the limited size of the chips used in this pilot study,
the neural networks discussed here are constrained in size.
However, the final system will represent a significant scale-
up of this prototype. The next hardware revision will be the
first full-size BSS2 chip and will provide 512 neurons, 130k
synapses and two embedded processors with appropriately scaled
vector units. Neurons on the chip will emulate the Adaptive-
Exponential (AdEx) Integrate-and-Fire model with multiple
compartments, while synapses will contain additional features for
Short-Term Plasticity (STP). Poisson-like input stimuli with rates
in the order of MHz, i.e., biological kHz, will be realized using
pseudo-random number generators to provide the possibility
for stochastic spike input to neurons, yielding controllable noise
which can be used for emulation of in-vivo activity and large-
scale functional neural networks (Destexhe et al., 2003; Petrovici
et al., 2014, 2016). The full BSS2 neuromorphic system will
comprise hundreds of such chips on a single wafer which itself
will be interconnected to other wafers, similar to its predecessor
BrainScaleS 1 (Schemmel et al., 2010). The study at hand lays the
groundwork for future experiments with reinforcement learning
in neuromorphic SNNs, where an expanded hardware real-estate
will allow the emulation of more complex agents learning to
navigate more difficult environments.

The advantages in speed and energy consumption will become
even more significant when moving to large networks. In our
experiments, the relative speed of the software simulation was
due to the small size of the network. State-of-the-art software
simulations of large LIF neural networks takeminutes to simulate
a biological second (Jordan et al., 2018) and even digital
simulations on specialized neuromorphic hardware typically
achieve real-time operation (Mikaitis et al., 2018; van Albada
et al., 2018). On BSS2, the speed-up factor of 103 is independent
of network size, which, combined with the two embedded
processors per chip and the dedicated synapse circuits containing
local correlation sensors, enables the accelerated emulation of
large-scale plastic neural networks.

The speed-up factor of BSS2 is both an opportunity and a
challenge. In general, rate-based or sampling-based codes would

profit from longer integration times enabled by the acceleration.
On the other hand, interfacing BSS2 to the real world (e.g., using
robotics) requires fast sensors; the speed-up could enable fast
sensor-motor loops with possible applications in, for example,
radar beam shaping. In general, however, the main advantage
of an accelerated system becomes most evident when learning
is involved: long-term learning processes lasting several years in
biological spiking networks can be emulated in mere hours on
BSS2, whereas real-time simulations are unfeasible.

The implemented learning paradigm (R-STDP) and simulated
environment (Pong) were kept simple in order to focus our study
on the properties of the prototype hardware. R-STDP is a well-
studied model that lends itself well to hardware implementation,
while the simplified Pong game is a suitable learning task that
can be realized on the prototype chip and provides an accessible,
intuitive interpretation. Still, the PPU’s computational power
limits the complexity of environment simulations that can be
realized on-chip, especially when simulations have hard real-
time constraints. However, such simulations could take place
on a separate system that merely provides spike input, collects
spike output and provides reward to the neuromorphic system.
Alternatively, simulations could be horizontally distributed
across PPUs.

Solving more complex learning tasks demands more complex
network models. We expect that the future large-scale BSS2
system will be able to instantiate not only larger, but also more
complex network models, by offering more flexibility in the
choice of spiking neuron dynamics (e.g., AdEx, LIF), short-
term synaptic plasticity and enhanced PPU capabilities. However,
further theoretical work is required for mapping certain state-
of-the-art reinforcement learning models, such as DQN (Mnih
et al., 2015) and AlphaGo (Zero) (Silver et al., 2016, 2017)
to this substrate. On the other hand, learning paradigms like
TD-STDP (Frémaux et al., 2013), which implements actor-
critic reinforcement learning using a SNN, already match the
capabilities of a large-scale version of the BSS2 system and
therefore represent suitable candidates for learning in more
complex environments with sparse rewards and agent-dependent
state transitions.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

AnH, AK, TW, and MP designed the study. TW conducted the
experiments and the evaluations. TW and AK wrote the initial
manuscript. EM and CM supported experiment realization. EM
coordinated the software development for the neuromorphic
systems. YS contributed with characterization, calibration testing
and debugging of the prototype system. SA designed the
neuron circuits. AG was responsible for chip assembly and
did the digital front- and backend implementation. ArH
extended the GNU Compiler Collection backend support for the

Frontiers in Neuroscience | www.frontiersin.org 13 March 2019 | Volume 13 | Article 26030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

embedded processor. DS contributed to the host control software
development and supported chip commissioning. KS designed
and assembled the development board. CP provided FPGA
firmware and supported chip commissioning. GK contributed to
the verification of the synaptic input circuits. JS is the architect
and lead designer of the neuromorphic platform. MP, KM, JS, SB,
and EM provided conceptual and scientific advice. All authors
contributed to the final manuscript.

FUNDING

This research was supported by the EU 7th Framework
Program under grant agreements 269921 (BrainScaleS), 243914

(Brain-i-Nets), 604102 (Human Brain Project), the Horizon 2020
Framework Program under grant agreement 720270 (Human
Brain Project), the Manfred Stärk Foundation and the Deutsche
Forschungsgemeinschaft within the funding programme Open
Access Publishing, by the Baden-Württemberg Ministry of
Science, Research and the Arts and by Ruprecht-Karls-
Universität Heidelberg.

ACKNOWLEDGMENTS

The authors wish to thank Simon Friedmann, Matthias Hock,
and Paul Müller. They contributed to developing the hardware
and software that enabled this experiment.

REFERENCES

Electronic Vision(s) (2017). Available online at: https://github.com/

electronicvisions/gcc

Aamir, S. A., Müller, P., Hartel, A., Schemmel, J., and Meier, K. (2016). “A highly

tunable 65-nm CMOS LIF neuron for a large scale neuromorphic system,”

in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference

(Lausanne: IEEE), 71–74.

Aamir, S. A., Stradmann, Y., Müller, P., Pehle, C., Hartel, A., Grübl, A., Schemmel,

J., and Meier, K. (2018). “An accelerated LIF neuronal network array for a

large scale mixed-signal neuromorphic architecture,” in IEEE Transactions on

Circuits and Systems I: Regular Papers, 1–14.

Bayer, H. M., and Glimcher, P. W. (2005). Midbrain dopamine neurons

encode a quantitative reward prediction error signal. Neuron 47, 129–141.

doi: 10.1016/j.neuron.2005.05.020

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R.,

Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital multichip

system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Brzosko, Z., Schultz, W., and Paulsen, O. (2015). Retroactive modulation

of spike timing-dependent plasticity by dopamine. eLife 4:e09685.

doi: 10.7554/eLife.09685

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Destexhe, A., Rudolph, M., and Paré, D. (2003). The high-conductance

state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751.

doi: 10.1038/nrn1198

Edelmann, E. and Lessmann, V. (2011). Dopamine modulates spike timing-

dependent plasticity and action potential properties in CA1 pyramidal

neurons of acute rat hippocampal slices. Front. Synap. Neurosci. 3:6.

doi: 10.3389/fnsyn.2011.00006

Farries, M. A., and Fairhall, A. L. (2007). Reinforcement learning with modulated

spike timing-dependent synaptic plasticity. J. Neurophysiol. 98, 3648–3665.

doi: 10.1152/jn.00364.2007

Fetz, E. E., and Baker, M. A. (1973). Operantly conditioned patterns on precentral

unit activity and correlated responses in adjacent cells and contralateral

muscles. J. Neurophysiol. 36, 179–204. doi: 10.1152/jn.1973.36.2.179

Frémaux, N., and Gerstner, W. (2015). Neuromodulated spike-timing-dependent

plasticity, and theory of three-factor learning rules. Front. Neural Circ. 9:85.

doi: 10.3389/fncir.2015.00085

Frémaux, N., Sprekeler, H., and Gerstner, W. (2010). Functional requirements for

reward-modulated spike-timing-dependent plasticity. J. Neurosci. 30, 13326–

13337. doi: 10.1523/JNEUROSCI.6249-09.2010

Frémaux, N., Sprekeler, H., and Gerstner, W. (2013). Reinforcement learning using

a continuous time actor-critic framework with spiking neurons. PLoS Comput.

Biol. 9:e1003024. doi: 10.1371/journal.pcbi.1003024

Friedmann, S., Frémaux, N., Schemmel, J., Gerstner, W., and Meier, K.

(2013). Reward-based learning under hardware constraints - Using a RISC

processor embedded in a neuromorphic substrate. Front. Neurosci. 7:160.

doi: 10.3389/fnins.2013.00160

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier, K. (2017).

Demonstrating hybrid learning in a flexible neuromorphic hardware system.

IEEE Trans. Biomed. Circ. Syst. 11, 128–142. doi: 10.1109/TBCAS.2016.2579164

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.

13:051001. doi: 10.1088/1741-2560/13/5/051001

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Guttman, N. (1953). Operant conditioning, extinction, and periodic reinforcement

in relation to concentration of sucrose used as reinforcing agent. J. Exp. Psychol.

46, 213–224. doi: 10.1037/h0061893

Head, T., MechCoder, Louppe, G., Shcherbatyi, I., fcharras, Vinícius, Z., et al.

(2018). scikit-optimize/scikit-optimize: v0.5.2. Zenodo.

Hock, M., Hartel, A., Schemmel, J., and Meier, K. (2013). “An analog dynamic

memory array for neuromorphic hardware,” in 2013 European Conference on

Circuit Theory and Design (ECCTD) (Dresden: IEEE), 1–4.

Hoerzer, G. M., Legenstein, R., and Maass, W. (2014). Emergence of

complex computational structures from chaotic neural networks through

reward-modulated Hebbian learning. Cereb. Cortex 24, 677–690.

doi: 10.1093/cercor/bhs348

Hollerman, J. R., and Schultz, W. (1998). Dopamine neurons report an error in

the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309.

doi: 10.1038/1124

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Schaik, A. V., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Izhikevich, E. M. (2007). Solving the distal reward problem through

linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452.

doi: 10.1093/cercor/bhl152

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops

to exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.

00002

Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for reward-

modulated spike-timing-dependent plasticity with application to biofeedback.

PLoS Comput. Biol. 4:e1000180. doi: 10.1371/journal.pcbi.1000180

Maass, W. (2014). Noise as a resource for computation and learning in networks of

spiking neurons. Proc. IEEE 102, 860–880. doi: 10.1109/JPROC.2014.2310593

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit

with a scalable communication network and interface. Science 345:668.

doi: 10.1126/science.1254642

Mikaitis, M., Pineda García, G., Knight, J. C., and Furber, S. B. (2018).

Neuromodulated synaptic plasticity on the spinnaker neuromorphic system.

Front. Neurosci. 12:105. doi: 10.3389/fnins.2018.00105

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning. Nature 518,

529–533. doi: 10.1038/nature14236

Frontiers in Neuroscience | www.frontiersin.org 14 March 2019 | Volume 13 | Article 26031

https://github.com/electronicvisions/gcc
https://github.com/electronicvisions/gcc
https://doi.org/10.1016/j.neuron.2005.05.020
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.7554/eLife.09685
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/nrn1198
https://doi.org/10.3389/fnsyn.2011.00006
https://doi.org/10.1152/jn.00364.2007
https://doi.org/10.1152/jn.1973.36.2.179
https://doi.org/10.3389/fncir.2015.00085
https://doi.org/10.1523/JNEUROSCI.6249-09.2010
https://doi.org/10.1371/journal.pcbi.1003024
https://doi.org/10.3389/fnins.2013.00160
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1037/h0061893
https://doi.org/10.1093/cercor/bhs348
https://doi.org/10.1038/1124
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1371/journal.pcbi.1000180
https://doi.org/10.1109/JPROC.2014.2310593
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00105
https://doi.org/10.1038/nature14236
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation

Moritz, C. T., and Fetz, E. E. (2011). Volitional control of single cortical

neurons in a brain-machine interface. J Neural Eng. 8:025017.

doi: 10.1088/1741-2560/8/2/025017

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., andMasquelier, T.

(2018a). Combining STDP and reward-modulated STDP in deep convolutional

spiking neural networks for digit recognition. arXiv:1804.00227.

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2018b). “First-spike-based visual categorization using reward-

modulated STDP,” in IEEE Transactions on Neural Networks and Learning

Systems, 1–13.

Niv, Y. (2009). Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154.

doi: 10.1016/j.jmp.2008.12.005

Pawlak, V., and Kerr, J. N. D. (2008). Dopamine receptor activation is required for

corticostriatal spike-timing-dependent plasticity. J. Neurosci. 28, 2435–2446.

doi: 10.1523/JNEUROSCI.4402-07.2008

Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., andMeier, K. (2016). Stochastic

inference with spiking neurons in the high-conductance state. Phys. Rev. E

94:042312. doi: 10.1103/PhysRevE.94.042312

Petrovici, M. A., Vogginger, B., Müller, P., Breitwieser, O., Lundqvist, M., Muller,

L., et al. (2014). Characterization and compensation of network-level anomalies

in mixed-signal neuromorphic modeling platforms. PLoS ONE 9:e108590.

doi: 10.1371/journal.pone.0108590

Peyser, A., Sinha, A., Vennemo, S. B., Ippen, T., Jordan, J., Graber, S., et al.

(2017). NEST 2.14.0. Zenodo.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of the 2010 IEEE International Symposium on Circuits

and Systems (ISCAS"10), 1947–1950.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural

substrate of prediction and reward. Science 275, 1593–1599.

doi: 10.1126/science.275.5306.1593

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

et al. (2016). Mastering the game of Go with deep neural networks and tree

search. Nature 529, 484-489. doi: 10.1038/nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al

(2017). Mastering the game of Go without human knowledge. Nature 550:354.

doi: 10.1038/nature24270

Stallman, R. M., and GCCDeveloper Community (2018). GCC 8.0 GNU Compiler

Collection Internals. 12th Media Services.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,

A. B., et al. (2018). Performance Comparison of the digital neuromorphic

hardware SpiNNaker and the neural network simulation software nest

for a full-scale cortical microcircuit model. Front. Neurosci. 12:291.

doi: 10.3389/fnins.2018.00291

Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W., and Gerstner, W. (2009).

Spike-based reinforcement learning in continuous state and action space:

when policy gradient methods fail. PLoS Comput. Biol. 5:e1000586.

doi: 10.1371/journal.pcbi.1000586

Wunderlich, T. (2019). Neuromorphic R-STDP Experiment Simulation. Available

online at: https://github.com/electronicvisions/model-sw-pong

Xie, X., and Seung, H. S. (2004). Learning in neural networks by reinforcement

of irregular spiking. Phys. Rev. E 69:041909. doi: 10.1103/PhysRevE.69.

041909

Zoschke, K., Güttler, M., Böttcher, L., Grübl, A., Husmann, D., Schemmel,

J., et al. (2017). Full wafer redistribution and wafer embedding as key

Technologies for a multi-scale neuromorphic hardware cluster. arXiv:1801.

04734. doi: 10.1109/EPTC.2017.8277579

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Wunderlich, Kungl, Müller, Hartel, Stradmann, Aamir, Grübl,

Heimbrecht, Schreiber, Stöckel, Pehle, Billaudelle, Kiene, Mauch, Schemmel, Meier

and Petrovici. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 March 2019 | Volume 13 | Article 26032

https://doi.org/10.1088/1741-2560/8/2/025017
https://doi.org/10.1016/j.jmp.2008.12.005
https://doi.org/10.1523/JNEUROSCI.4402-07.2008
https://doi.org/10.1103/PhysRevE.94.042312
https://doi.org/10.1371/journal.pone.0108590
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1371/journal.pcbi.1000586
https://github.com/electronicvisions/model-sw-pong
https://doi.org/10.1103/PhysRevE.69.041909
https://doi.org/10.1109/EPTC.2017.8277579
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 28 May 2019

doi: 10.3389/fnins.2019.00504

Frontiers in Neuroscience | www.frontiersin.org 1 May 2019 | Volume 13 | Article 504

Edited by:

Arindam Basu,

Nanyang Technological University,

Singapore

Reviewed by:

Peng Li,

Texas A&M University, United States

Subhrajit Roy,

IBM Research, Australia

*Correspondence:

Parami Wijesinghe

pwijesin@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 15 February 2019

Accepted: 01 May 2019

Published: 28 May 2019

Citation:

Wijesinghe P, Srinivasan G, Panda P

and Roy K (2019) Analysis of Liquid

Ensembles for Enhancing the

Performance and Accuracy of Liquid

State Machines.

Front. Neurosci. 13:504.

doi: 10.3389/fnins.2019.00504

Analysis of Liquid Ensembles for
Enhancing the Performance and
Accuracy of Liquid State Machines
Parami Wijesinghe*, Gopalakrishnan Srinivasan, Priyadarshini Panda and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Liquid state machine (LSM), a bio-inspired computing model consisting of the input

sparsely connected to a randomly interlinked reservoir (or liquid) of spiking neurons

followed by a readout layer, finds utility in a range of applications varying from robot

control and sequence generation to action, speech, and image recognition. LSMs

stand out among other Recurrent Neural Network (RNN) architectures due to their

simplistic structure and lower training complexity. Plethora of recent efforts have been

focused toward mimicking certain characteristics of biological systems to enhance the

performance of modern artificial neural networks. It has been shown that biological

neurons are more likely to be connected to other neurons in the close proximity, and

tend to be disconnected as the neurons are spatially far apart. Inspired by this, we

propose a group of locally connected neuron reservoirs, or an ensemble of liquids

approach, for LSMs. We analyze how the segmentation of a single large liquid to

create an ensemble of multiple smaller liquids affects the latency and accuracy of an

LSM. In our analysis, we quantify the ability of the proposed ensemble approach to

provide an improved representation of the input using the Separation Property (SP) and

Approximation Property (AP). Our results illustrate that the ensemble approach enhances

class discrimination (quantified as the ratio between the SP and AP), leading to better

accuracy in speech and image recognition tasks, when compared to a single large liquid.

Furthermore, we obtain performance benefits in terms of improved inference time and

reduced memory requirements, due to lowered number of connections and the freedom

to parallelize the liquid evaluation process.

Keywords: liquid state machines, ensembles, spiking neural networks, separation property, approximation

property, discriminant ratio

1. INTRODUCTION

Over the past few decades, artificial neural algorithms have developed to an extent that they can
perform more human-like functions. Recurrent Neural Networks (RNNs) and their variants such
as Long Short Term Memory (LSTM) networks have become the state-of-the-art for processing
spatio-temporal data. The massive RNNs of today, can describe images in natural language (Xie,
2017), produce handwriting (Graves, 2013), and even make phone calls to book appointments
(Yaniv and Yossi, 2018). Such fascinating, human-like capabilities are obtained at the cost of
increased structural and training complexity, and thus significant power consumption, storage
requirements, and delay.

33

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00504
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00504&domain=pdf&date_stamp=2019-05-28
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pwijesin@purdue.edu
https://doi.org/10.3389/fnins.2019.00504
https://www.frontiersin.org/articles/10.3389/fnins.2019.00504/full
http://loop.frontiersin.org/people/687987/overview
http://loop.frontiersin.org/people/504600/overview
http://loop.frontiersin.org/people/474514/overview
http://loop.frontiersin.org/people/502975/overview

Wijesinghe et al. Ensemble of Liquids

In this work we focus on a particular type of spiking RNN;
the Liquid State Machine (LSM) (Maass et al., 2002). An LSM
consists of a set of inputs sparsely connected to a randomly
and recurrently interlinked pool of spiking neurons called the
“liquid”. The liquid is connected to an output classifier, which
can be trained using standard methods such as Spike Timing
Dependent Plasticity (STDP), backpropagation, delta rule etc.
(Kötter, 2012) and using enhanced learning rules (Roy et al.,
2013). LSMs have been used for a variety of applications
including robot control (Urbain et al., 2017), sequence generation
(Panda and Roy, 2017), decoding actual brain activity (Nikolić
et al., 2009), action recognition (Panda and Srinivasa, 2018),
speech recognition (Maass et al., 2002; Verstraeten et al., 2005;
Goodman and Ventura, 2006; Zhang et al., 2015; Wu et al., 2018;
Zhang and Li, 2019), and image recognition (Grzyb et al., 2009;
Wang and Li, 2016; Srinivasan et al., 2018; Zhang and Li, 2019).

LSMs gained their popularity due to two main reasons. First,
the LSM architecture is neuro-inspired. By conserving energy
via spike-based operation, the brain has evolved to achieve
its prodigious signal-processing capabilities using orders of
magnitude less energy than the state-of-the-art supercomputers
(Anastassiou et al., 2011; Cruz-Albrecht et al., 2012). Therefore,
with the intention to pave pathways to low power neuromorphic
computing, much consideration is given to realistic artificial
brain modeling (Waldrop, 2012; Neftci et al., 2016; Wijesinghe
et al., 2018). Furthermore, the gene regulation network (GRN)
of the Bacterium “Escherichia Coli” (E-Coli) was experimentally
assessed and shown to behave similar to an LSM (Jones et al.,
2007). The E. Coli has the capacity for perceptual categorization,
especially for discrimination between complex temporal patterns
of chemical inputs. Second, LSMs have simple structure and
lower training complexity among other RNNs. The claim is
that, sufficiently large and complex liquids inherently possess
large computational power for real-time computing. Therefore,
it is not necessary to “construct” circuits to achieve substantial
computational power. However, such simple structure of LSMs
comes with an accuracy trade-off. A plethora of work in the
literature suggests mechanisms for improving the accuracy of
LSMs including training the liquid connections (Wang and Li,
2016) and involving multiple layers of liquids to form deep
LSMs (Xue et al., 2016). Despite the accuracy improvement, these
mechanisms found in literature tend to alter the standard simple
structure of LSMs. Choosing an LSM for a particular application
and improving its accuracy at the cost of added complexity,
nonetheless questions the motivation behind choosing an LSM
in the first place.

Without deviating from the inherent simplicity of the LSM
structure, several basic approaches can be used to improve its
accuracy. One such fundamental approach is to increase the
number of neurons within the liquid. However, the number of
connections within the liquid also increases following a quadratic
relationship with the number of neurons. Furthermore, the
sensitivity of accuracy to the liquid neuron count decreases
with the number of neurons beyond a certain point. In other
words, enlarging the liquid introduces scalability challenges,
and the accompanied cost tends to veil the accuracy benefits.
The percentage connectivity also plays a role in improving

the accuracy. Either high or low percentage connectivity
results in accuracy degradation, signaling the existence of an
optimum connectivity.

Note, there are two key properties that measure the capacity
of an LSM: separation and approximation (Maass et al., 2002).
Aforementioned basic approaches; changing the number of
neurons and connectivity in the liquid, indeed has an impact
on the above measures. Based on separation and approximation,
we propose an “ensemble of liquids approach” that can improve
the classification accuracy (compared to a single large LSM) with
reduced connectivity. The approach is scalable and preserves the
simplicity of the network structure. In our ensemble of liquids
approach, we split a large liquid into multiple smaller liquids.
These resultant liquids can be evaluated in parallel since they are
independent of each other, which leads to performance benefits.
Furthermore, for a given percentage connectivity, the number
of connections available in the ensemble approach is less than
that of a single liquid with the same number of neurons. This
reduces the storage requirement of the LSM as well. We used
a variant of the Fisher’s linear discriminant ratio (Fisher, 1936;
Fukunaga and Mantock, 1983) (the ratio between the separation
and approximation) to quantify how well the ensemble of liquids
represents the spatio-temporal input data. We observed that
increasing the liquid count beyond a certain point reduces
the accuracy of the LSM. This signals the existence of an
optimum number of liquids, which is highly dependent upon the
application and the number of neurons in the liquid. We show
that dividing the liquid provides both accuracy and performance
benefits for spatial and temporal pattern recognition tasks, on
standard speech and image data sets.

The “ensemble” concept has been previously used (Yao
et al., 2013) for echo state networks or ESNs (Jaeger, 2007),
which are similar in architecture to LSMs but use artificial
rate-based neurons. Rather than using a single ESN predictor,
multiple predictors (component predictors) were used and
their predictions were combined together to obtain the final
outcome. This approach was proposed to avoid the instability
of the output of each individual predictor, since the input and
internal connection weights are assigned randomly. The final
ensemble outcome was obtained by averaging the predictions
of the component predictors. The approach in Yao et al. (2013)
is different from our work since we design the ensemble of
liquids by removing certain connections from a bigger reservoir.
Furthermore, only a single classifier is used at the output in
our work in contrast to Yao et al. (2013). The authors in Maass
et al. (2002) conducted a small experiment with two time-varying
signals, which shows that using four liquids is better than using
a single liquid in terms of enhancing the separation property.
However, in their experiments, the four liquids in total have four
times the number of neurons as the single liquid case. Therefore,
it is not obvious whether the improvement in separation is solely
due to having four “separate” liquids. The increased number
of neurons itself might have played a role in enhancing the
separation. In contrast, we analyze the effects of dividing a large
liquid into multiple smaller units, while leaving the total number
of neurons the same. Research (Srinivasan et al., 2018) also shows
that multiple liquids perform better than a single liquid, at higher

Frontiers in Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 50434

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

number of neurons. The input to liquid connections in Srinivasan
et al. (2018) were trained in an unsupervised manner. Also note
that each liquid was fed with distinct parts of an input, and hence
is different from this work.

2. MATERIALS AND METHODS

2.1. Liquid State Machine (baseline)
In this section, we explain the structure and training of the LSM
used in this work. The conventional structure of an LSM consists
of an input layer sparsely connected to a randomly interlinked
pool of spiking neurons called the liquid. The liquid is then
connected to a classifier which has synaptic weights that could
be learnt using supervised training algorithms for inference.

2.1.1. Liquid Neurons
The neurons within the liquid are leaky integrate-and-fire
neurons (Abbott, 1999) of two types; excitatory and inhibitory
neurons. The number of excitatory (E) neurons and inhibitory
(I) neurons were selected according to a 4 : 1 ratio, as
observed in the auditory cortex (Wehr and Zador, 2003). The
membrane potential (V) of a neuron increases/decreases as a
pre excitatory/inhibitory neuron connected to it spikes that is
described by

τ
dV

dt
= (Erest − V)+ ge(Eexc − V)+ gi(Einh − V) (1)

where Erest is the resting membrane potential, τ is the membrane
potential decay time constant, Eexc and Einh are the equilibrium
potentials of excitatory and inhibitory synapses, and ge and
gi are the conductance values of the excitatory and inhibitory
synapses, respectively. As the membrane potential reaches a
certain threshold, the neuron generates a spike. The membrane
potential drops to its reset potential upon generating a spike as
shown in Figure 1A, and then enters its refractory period trefrac
during which it produces no further spikes. The formulations
elaborated in Diehl and Cook (2015) were used for modeling the
dynamics of the spiking neurons.

2.1.2. Liquid Connections
The input is sparsely connected to the liquid (In→E
connections). The percentage input to liquid connectivity
(PIN→E) plays an important role in achieving good accuracy
as will be explained in section 3.4.2. The liquid is composed
of connections from excitatory to excitatory neurons (E→E),
excitatory to inhibitory neurons (E→I), inhibitory to excitatory
neurons (I→E), and inhibitory to inhibitory neurons (I→I).
In our notation, the first letter indicates the pre-neuron type
(PRE) and the second letter denotes the post-neuron type
(POST). The selected percentage connectivity (PIN→E , PE→E ,
PE→I , PI→E, PI→I) within the liquid are shown in Table 1.
These percentage connectivity values worked the best in
terms of accuracy, for the neuron parameter selections in this
work shown in Table 2. The strengths of all the connections
(W ∈ [0, 1]NPRE×NPOST) were selected randomly (Maass et al.,
2002) from a uniform distribution U(0, 1) (Toledo-Suárez et al.,
2014; Srinivasan et al., 2018). A randomly generated mask

(

M ∈ {0, 1}NPRE×NPOST ,mij ∈ M
)

decides which connections
exist to obtain the desired sparsity/percentage connectivity
(

PPRE→POST =

∑

(∀i,∀j) mij

(NPRE×NPOST)
× 100%

)

. Here NPRE and NPOST

are the number of PRE and POST neurons, respectively. The
dynamic conductance change model was used for synapses.
i.e., when a pre-synaptic neuron fires, the synaptic conductance
instantaneously changes according to their strengths and then
decays exponentially with a time constant (Diehl and Cook,
2015). Following equation shows the dynamics of a synapse
(ge) with an excitatory pre-neuron. τge is the decay time
constant. This is similar to the post-synaptic current model in
Maass et al. (2003).

τge
dge

dt
= −ge (2)

2.1.3. Output Classifier
The liquid is connected to a classifier which is trained in a
supervised manner. As suggested in Maass et al. (2002), a
memory-less readout (the readout is not required to retain any
memory of previous states) can be used to classify the states
of the liquid. The liquid state in this work is the normalized
spike count of the excitatory neurons (Kaiser et al., 2017)
within a duration of T, when the input is applied. There is
a liquid state vector (si ∈ [0, 1]NE , NE is the number of
excitatory neurons) per applied input (i). The collection of all
the state vectors were then used to train the classifier using
gradient descent error backpropagation algorithm (Rumelhart
et al., 1986), similar to Srinivasan et al. (2018). By doing this,
we do discard some temporal information. However, since we do
not use “anytime-speech-recognition” (a liquid with a classifier
which is capable of recognizing a speech input, before the entire
temporal signal is applied to the liquid) proposed in Maass et al.
(2004), the above classification method is sufficient to achieve
reasonable accuracy (as per the accuracy values reported in
other LSM works) for the applications we are considering in
this work.

2.2. Ensemble Approach for LSMs
In this section, we explain our proposed ensemble of liquids
approach, which improves the scalability of LSMs. The proposed
approach is different from the ensemble works available
in literature on a variety of network types (feed-forward
fully connected spiking and analog neural networks), where
multiple classified outputs of independently trained networks
are combined together to increase the probability of correct
classification (Jacobs et al., 1991; Shim et al., 2016). In this work,
we analyze the impact of dividing a reservoir, such that all the
resultant small reservoirs can potentially be evaluated in parallel,
for an applied input. As explained in the previous section, the
typical structure of an LSM has an input, a liquid where neurons
are sparsely interlinked, and a readout trained using supervised
learning methods (Figure 1B). In our ensemble approach, the
same number of liquid neurons (Ntot) is divided to create an
Nens number of smaller liquids, as shown in Figure 2. While
dividing the liquid, the number of excitatory neurons (Ni

E) to
inhibitory neurons (Ni

I) ratio in the ith (i = 0, 1, ...,Nens) liquid is

Frontiers in Neuroscience | www.frontiersin.org 3 May 2019 | Volume 13 | Article 50435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 1 | (A) The dynamics of the membrane potential (V) of a spiking neuron. Each spike shown below the graph will increase the membrane potential. When V

reaches the threshold Vthresh, the neuron will generate a spike and V will drop to the rest potential Vrest for a trefrac duration of time. This duration is called the

refractory period, and the neuron stays idle within this period. Reprinted with the permission from Liyanagedera et al. (2017). (B) The structure of the liquid state

machine. The input is connected to a reservoir with two types of neurons; inhibitory and excitatory. The reservoir is then connected to a classifier which is typically

trained using supervised learning methods. The percentage connectivity between different types of pre and post neurons (Ppre→post) are as indicated in the figure.

maintained at 4 : 1. The percentage connectivity is also adjusted
to suit the new reduced number of neurons (Ntot

Nens
) in a liquid.

This is done by first creating a standard LSM explained in the
previous section with Ntot

Nens
number of neurons and adjusting

all the percentage connectivity values till we get a reasonable
accuracy. Then the input to liquid percentage connectivity
(PIN→E) was exhaustively changed until the accuracy peaks for

a given application, which is then used for all the experiments
reported in this work.

Each small liquid has its own liquid state vector, which is
the normalized spike count of all the excitatory neurons in
the respective liquid within a duration of T, as explained in
the previous section. All the state vectors produced by each
individual liquid in the ensemble are concatenated to form

Frontiers in Neuroscience | www.frontiersin.org 4 May 2019 | Volume 13 | Article 50436

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

TABLE 1 | Percentage connectivity within the liquid.

Type of connectivity Percentage

connectivity (Speech

recognition)

Percentage

connectivity (Image

recognition)

TI-alpha(%) TI − 10(%) MNIST(%) E-MNIST(%)

Input–Excitatory 34 23 10 10

Input–Inhibitory 0 0 0 0

Excitatory–Excitatory 40 40 40 40

Excitatory–Inhibitory 40 40 40 40

Inhibitory–Excitatory 50 50 50 50

Inhibitory–Inhibitory 0 0 0 0

TABLE 2 | Spiking neuron parameters of the liquid state machine.

Parameter name Parameter value

Excitatory weight decay time constant, tge 1 ms

Inhibitory weight decay time constant, tgi 2 ms

Threshold inhibitory, threshi −40 mV

Threshold excitatory, threshe −52 mV

Inhibitory rest potential, vrest,i −60 mV

Excitatory rest potential, vrest,e −65 mV

one large state vector per input. Note that the length of the
concatenated state vectors are the same for both the single
liquid case (baseline) and for the ensemble of liquids, since
the total number of neurons are held constant for a fair
comparison. The concatenated state vector is used to train a
single readout using gradient descent backpropagation. This
division of one large liquid to form an ensemble of liquids
enhances class discrimination associated with LSMs as elaborated
in the next section.

2.3. Properties of LSMs
Two macroscopic properties of an LSM, namely, Separation
Property (SP) and Approximation Property (AP), can be used to
quantify a liquid’s ability to provide an improved projection of the
input data. With respect to classification applications, SP gives
a measure of the liquid’s ability to separate input instances that
belong to different classes. AP, on the other hand, gives a measure
of the closeness of the liquid’s representation of two inputs that
belong to the same class.

Several methods of quantifying the SP and AP as a measure
of the computational power (kernel quality) of an LSM are
suggested inMaass et al. (2002, 2005). Twomethods ofmeasuring
the SP are pairwise separation property and linear separation
property. The pairwise separation property is the distance
between two continuous time states of the liquid (xu(t) and xv(t)),
resulting from two different input spike trains (u(t) and v(t)).
Here the continuous time states x(t) are defined as the vector
of output values of linear filters with exponential decay (with
time constant 30ms Maass et al., 2002) at time t. The distance
can be calculated by the Euclidean norm between xu(tn) and
xv(tn) at sample point tn. The final pairwise separation property

can be evaluated by obtaining the average across all the sampled
instances (at tn), as explained in the following equation

SPpw =
1

Nsamples

Nsamples
∑

n=1(0<tn<T)

||xu(tn)− xv(tn)|| (3)

where Nsamples is the number of sample points. The pairwise
separation property (SPpw) can be used as a measure of the kernel
quality for two given inputs. However, most real life applications
deal with more than two input spike trains. To address this, linear
separation property is proposed as a more suitable quantitative
measure to evaluate the computational power of a liquid in an
LSM. The linear separation property (SPlin) is the rank of the
N × m matrix Ms, which contains the continuous time states
(xu1 (t0), ..., xum (t0)) of the liquid as its columns. The continuous
time state xui (t0) is the liquid response to the input ui (these
inputs are from the training set), sampled at t = t0. If the rank
of the matrix is m, it guarantees that any given assignment of
target outputs yi ∈ R at time t0 can be attained by means of a
linear readout (Maass et al., 2005). The rank of Ms is the degree
of freedom the linear readout has, when mapping xui to yi. Even
though the rank is < m, it can still be used as a measure of kernel
quality of the LSM (Maass et al., 2005).

Ms =
[

xu1 (t0), ..., xui (t0), ..., xum (t0)
]

(4)

SPlin = rank
(

Ms

)

The AP of the LSM can also be measured by the aforementioned
rank concept as shown in Maass et al. (2005); Roy and Basu
(2016). Instead of using significantly different examples in the
training set, now the continuous time states x

u
j
i
(t0) of the liquid

are measured by feeding jittered versions of ui (u
j
i) to the

liquid. The rank of the matrix Ma that has m such continuous
time states x

u
j
1
(t0), ..., xujm

(t0) sampled at t0 as its columns, is

evaluated as a measure of the generalization capability of the
liquid for unseen inputs. Unlike SPlin, lower rank ofMa suggests
better generalization.

Both AP and SP are important in measuring the
computational quality of a liquid. For example, very high
quantitative measure for SP and very low measure for AP is
ideal. If one liquid has very high SP and a mediocre AP, it is hard
to decide whether the particular liquid is better than another
liquid with mediocre SP and a very small AP. Therefore, in
order to compare the quality of different liquid configurations,
a combined measure that involves both SP and AP is required.
To address this, we use some insights from Fisher’s Linear
Discriminant Analysis (LDA) (Fisher, 1936; Fukunaga and
Mantock, 1983; Hourdakis and Trahanias, 2013). LDA is
utilized to find a linear combination (f (.)) of d features that
characterizes or separates two or more classes (ωi) of objects.
The linear combination as shown in the equation below can
be used as a classifier, or as a dimensionality reduction method
before classification.

yi = f (xi) = Wxi (5)

Frontiers in Neuroscience | www.frontiersin.org 5 May 2019 | Volume 13 | Article 50437

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 2 | The structure of the ensemble approach. The liquid in the standard LSM is split up to create an ensemble of smaller liquids. The input is sparsely

connected to all the liquids. The output of all the liquids are concatenated to form one large liquid state vector, and connected to a single readout that is trained using

supervised learning methods.

where yi is the output vector (Y = [y1, ..., yn] ∈ R
L×n), that

corresponds to the set of input features, xi (X = [x1, ..., xn] ∈

R
d×n, each feature xi is a column vector), W ∈ R

L×d is the
weight matrix that describes the linear relationship, L is the
number of classes, and n is the number of data samples. The
projection from LDA maximizes the separation of instances
from different classes, and minimizes the dispersion of data
from the same class, simultaneously, to achieve maximum class
discrimination. The approximation capability is quantified by
the matrix Sw called the “within class scatter matrix” that is
specified by

Sw =

L
∑

i=1

P(ωi)6̂i (6)

where P(ωi) is the probability of class ωi, 6̂i is the sample
covariance matrix (Park and Park, 2018) for class ωi. The
separation capability is given by the “between class scatter

matrix” (Sb) that is described by

Sb =

L
∑

i=1

P(ωi)(µi − µg)(µi − µg)
T (7)

where µi is the sample mean vector (centroid) of class ωi,
and µg is the global sample mean vector. In classical LDA,
the optimum weight matrix can be found by maximizing the
objective function called Fisher’s Discriminant Ratio (FDR)
(Fukunaga and Mantock, 1983) that is computed as

FDR = tr(S−1
w Sb) (8)

where tr(.) is the trace operation. For this work, the capability of
the liquid to produce a good representation of the input data is
quantified by a variant of the above ratio. The FDR is applied on
the states of the liquid. However, when the data dimensionality
(number of liquid neurons) is large in comparison to the sample
size (n), the aforementioned scatter matrices tend to become

Frontiers in Neuroscience | www.frontiersin.org 6 May 2019 | Volume 13 | Article 50438

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

singular (Ji and Ye, 2008) and the classical LDA cannot be
applied. Hence, we use a modified discriminant ratio (DR) given
by the following function:

DR = tr(Sb)tr(Sw)
−1 (9)

Note that the trace of Sw measures the closeness of each
liquid state to its corresponding class mean as illustrated
in Figure 3A, and the trace of Sb measures the distance
between each class centroid and the global centroid in
multidimensional space as depicted in Figure 3B. High
tr(Sb) suggests high SP (hence better) and smaller tr(Sw)
suggests better AP.

2.4. Experimental Setup
The performance of the ensemble of liquids approach is
compared against a single liquid baseline detailed in section
2.1, with the aid of two spatial image recognition applications
and two spatio-temporal speech recognition applications. The
liquid was modeled in BRIAN (Goodman and Brette, 2008), a
Python-based spiking neural network simulator, and the spiking
activities of the neurons were recorded to calculate the liquid
state vectors. The state vectors corresponding to the training
input instances of each data set were then used to train a single
fully-connected classification layer using the stochastic gradient
descent algorithm (Robbins and Monro, 1985; Mei et al., 2018).
The accuracy of the trained network was calculated on the testing
data sets.

2.4.1. Data Sets Used for Illustration
The two spatio-temporal (speech) data sets used in this
work are:

1. Digit sub-vocabulary of the TI46 speech corpus (Liberman
et al., 1993) (TI-10)

2. TI 26-word “alphabet set”; a sub-vocabulary in the TI46 speech
corpus (Liberman et al., 1993) (TI-alpha)

TI-10 consists of utterances of the words “zero” through “nine”
(10 classes) by 16 speakers. There are 1, 594 instances in the
training data set and 2, 542 instances in the testing data set.
TI-alpha, on the other hand, has utterances of the words “A”
through “Z” (26 classes). There are 4, 142 and 6, 628 instances
in the training and testing data sets, respectively. For the spatial
data sets (images), we used the handwritten digits from the
MNIST (Deng, 2012) data set containing 60, 000 images of digits
0 through 9 in the training set and 10, 000 images in the testing
set. In addition, we also created an extended MNIST data set
that contains all the images from the original MNIST data set,
and the same set of images transformed by rotation, shifting, and
noise injection. It has 240, 000 images in the training data set and
40, 000 images in the testing data set.

2.4.2. Input Spike Generation
The first step is converting the images or the analog speech signals
to spike trains to be applied as inputs to the liquid. For spatial
data (images), there are p number of input spike trains fed in
to the liquid, with p being the number of pixels in an image.

FIGURE 3 | The graphical representation of the components of the discriminant ratio (DR) for a set of two dimensional data points that belongs to three classes. (A)

tr(Sw) gives a measure of the addition of all the squared distances from the class means to each data point. This must be lower to have better approximation property.

Here li,j denotes the squared distance between the ith data point in class j to the class centroid, µj (B) tr{Sb} gives a measure of the addition of the squared distances

between the global mean and each class mean. High value for tr{Sb} signals higher separation property. Here li denotes the squared distance from the global mean

µg to the centroid of class i.

Frontiers in Neuroscience | www.frontiersin.org 7 May 2019 | Volume 13 | Article 50439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 4 | The effect of dividing a large liquid on SPpw, at different distances d
in
u,v between inputs. Two input spike trains u and v are illustrated at (A) dinu,v = 0.2 and

(B) dinu,v = 0.4. (C) The variation of pairwise separation with the distances between inputs, at different number of liquids (D) The variation of pairwise separation with

the number of liquids, at different input distances dinu,v.

FIGURE 5 | The average rank of state matrix Ms that indicates the inter-class

separability (in red) and the average rank of the matrix Ma which is an

indication of the intra-class generalization capability (in blue).

The mean firing rate of each spike train is modulated depending
upon the corresponding pixel intensity. Each input image pixel
(ith pixel) is mapped to a Poisson distributed spike train with the
mean firing rate (ri for the ith image pixel) proportional to the
corresponding pixel intensity (Ii) that is specified by

ri =
Scount,i

T
∝

(

Ii

255

)

(10)

where Scount,i is the number of spikes generated by the ith input
neuron within a time period of T. For example, mean firing rate
in this work for a white pixel (pixel intensity Ii = 255) is selected
as 63.75 Hz. For a black pixel (pixel intensity Ii = 0), the mean
firing rate is 0Hz. Each image is presented to the liquid for a
duration of 300 ms (= T).

For the speech data, the audio samples available in wave
format were preprocessed based on Lyon’s Passive Ear model
(Lyon, 1982) of the human cochlea, using Slaney’s MATLAB
auditory toolbox (Slaney, 1998). The model was used to convert
each audio sample to temporal variation in the intensity of 39

Frontiers in Neuroscience | www.frontiersin.org 8 May 2019 | Volume 13 | Article 50440

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 6 | The average (over five trials) discriminant ratio (DR) trends with different number of liquids in an ensemble for two speech recognition tasks; (A) TI-alpha

dataset, (B) TI-10 dataset, and two image recognition tasks; (C) standard MNIST dataset, (D) extended MNIST dataset. The total number of neurons in each ensemble

of liquids were kept the same. Note that all the DR trends increase with the number of liquids, and saturates after a certain point, that depends on the application.

frequency channels. These intensity values at each time step j
(Ii,j) were then normalized and used as the instantaneous firing
probability of an input neuron i (i = {1, 2, ..., 39}). The time step
in this work is 0.5ms.

3. RESULTS

3.1. The Kernel Quality Improvement Due
to the Ensemble Approach
In this section, we will explore the effects of dividing a large
liquid, bymeans of standardmeasures for SP and AP explained in
section 2.3.We involve the same general tasks suggested inMaass
et al. (2005); Roy and Basu (2016), to compare the SP and AP. In
order tomeasure the pointwise separation property, we generated
100 input spike trains u(t) and v(t) with different distances dinu,v
between them. The distance between two input spike trains is
evaluated according to the methodology explained in Maass et al.
(2005). The two spike trains were first filtered with a Gaussian

kernel e−(t/τin)
2
, and then the Euclidean distance between them

were measured. τin was selected as 5ms (Maass et al., 2002).

dinu,v =
||u(t) ∗ e−(t/τin)

2
− v(t) ∗ e−(t/τin)

2
||

T
(11)

The same 100 u(t) and v(t) signals were fed in to LSMs
with different number of liquids (Nens = 1, 2, 4, 8, 10), and

the pairwise separation property was calculated according to
Equation 3. The average SPpw was evaluated over 10 different
weight initialization trials and the results are shown in Figure 4.
As the figure illustrates, the SPpw improves with the distance
dinu,v between two inputs, and also with the number of liquids in
the LSM.

For the linear separation property, we applied 400 randomly
generated input signals ui(t) to LSMs with different number
of liquids (Nens = 1, 2, 4, 8, 10). The resultant states (xui (t0))
were used to create the matrix Ms explained in Equation
4. The average SPlin (= rank(Ms) = rs) was evaluated
among five different sets of inputs and five different weight
initializations (i.e., 25 trials altogether) and the results are
finalized in Figure 5. As the figure illustrates, the SPlin
increases with the number of liquids. However, the rate
of increment of SPlin reduces with the increasing number
of liquids.

For the generalization property, we conducted same above
experiment with a different state matrix Ma. To create this
matrix, we involved 400 jittered versions of the input signal ui(t),

(u
j
i(t)) as explained in 2.3. In order to create a jittered version of

ui(t), we shifted the spike times by a small delay 1t taken from
a Gaussian distribution as explained in Maass et al. (2002). The
average rank of the matrix Ma is shown in Figure 4. A lower
rank ofMa (ra) suggests better approximation of intra-class input
examples. According to the figure, ra increases with the number

Frontiers in Neuroscience | www.frontiersin.org 9 May 2019 | Volume 13 | Article 50441

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 7 | The average (over five trials) accuracy (percentage) trends with different number of liquids in an ensemble, for two speech recognition tasks; (A) TI-alpha

test dataset, (B) TI-10 test dataset, and two image recognition tasks; (C) standard MNIST test dataset, (D) extended MNIST test dataset. The total number of

neurons in each ensemble of liquids were kept the same. Note that all the accuracy trends peak at a certain point, that depends on the application.

of liquids. This signals the liquid losing its ability to generalize
intra-class inputs.

We observed that the SPpw improves by 3.06 in the 10-
liquid ensemble approach, when comparing with the single

liquid baseline. The SPlin improvement is 1.26×. For a similar

set of experiments (for Ntot = 135), the authors in Roy

and Basu (2016) explored the kernel quality of an LSM of
which the reservoir connections were trained using a structural

plasticity rule (Roy and Basu, 2017). The reported improvement
in SPpw is 1.36×, whereas the improvement in SPlin is 2.05×
when compared with a randomly generated traditional LSM.
It is noteworthy that when training using structural plasticity,
the inter-class separation capability can be improved, with
respect to a traditional liquid with random connections. Without
involving such complex learning techniques, one can obtain
improved separation by simply dividing a liquid as shown in
our work. However, note that such reservoir connection learning
methods can simultaneously preserve the ability of the LSM
to approximate intra-class examples, which is not attainable
by the ensemble approach, at higher number of liquids. As
explained in section 2.3, the ability of a liquid to produce a better
representation of an input is a measure of both SP and AP. In the
next section, we will explore this combinedmeasure of SP and AP
defined as DR in section 2.3, on real world spatio-temporal data
classification tasks.

3.2. Impact of the Ensemble Approach on
Accuracy of Different Applications
Using the experimental setup explained in the previous section
2.4, we initially simulated our baseline single liquid LSM (section
2.1) for the four data sets. We used 500, 2, 000, 1, 000, and
1, 000 neurons in total within the liquid for the TI-10, TI-alpha,
standard MNIST, and extended MNIST pattern recognition
tasks, respectively. We refined the percentage connectivity for
each task as shown in Table 1. The classifier was trained using
the liquid states corresponding to the training examples, and the
classification accuracy of the trained network was obtained for
unseen instances from the test data set. For each application, we
then created an ensemble of liquids with Ntot

Nens
number of neurons

in each small liquid. For all the four applications, we evaluated
the SP and AP for different number of liquids in the ensemble
(Nens = 1, 2, 4, 5, 8, 10) and quantified how good is the input
representation of the ensemble of liquids using DR (explained
in section 2.3). Figure 6 shows that the DR increases up to a
certain number of liquids in the ensemble and then saturates
for the four different applications we have considered. This
signals that the ensemble of liquids, in principle, gives a better
representation of the input with increasing number of liquids
until a certain point. In order to verify whether this improvement
in the DR actually implies an improvement in classification
accuracy, we evaluated the LSM accuracy for different number of

Frontiers in Neuroscience | www.frontiersin.org 10 May 2019 | Volume 13 | Article 50442

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 8 | The trends of different measures associated with LSMs, with the increasing number of liquids. (A) Accuracy, (B) Approximation property (AP), (C)

Separation property (SP) and (D) Discriminant ratio (DR). The LSM is trained for TI-alpha speech recognition application. Both AP and SP continuously increases with

the number of liquids. Note that the increment in AP is more significant than that of SP for larger number of liquids.

liquids (Nens = 1, 2, 4, 5, 8, 10) for the four different classification
applications. Figure 7 shows that the accuracy indeed improves
with the number of liquids until a certain point. Let us denote
this point as the “peak accuracy point” and the corresponding
number of liquids for that point as the “optimum number of
liquids” (Nens,opt). We noticed that the Nens,opt is a function of
the application, and that increasing Nens beyond Nens,opt actually
results in accuracy loss. When comparing Figures 4, 7, it is
evident that the point at which the DR saturates is the same as
Nens,opt . This explains that dividing a large liquid into multiple
smaller liquids enhances the class discrimination capability of
the liquid, leading to improved classification accuracy. However,
note that after the Nens,opt point, the DR saturates whereas the
accuracy degrades. The DR does not offer a direct mapping
of the accuracy of an LSM. However, it could still be utilized
as a measure of identifying the point at which the accuracy
starts to drop (Nens,opt). This is the same point at which the DR
stops improving.

Figure 8 plots the variation of the individual DR components;
separation

(

SP=tr(Sb)
)

and approximation
(

AP=tr(Sw)
)

with
the number of liquids for the TI-alpha speech recognition task.
Figure 8 shows that SP improves continuously with the number
of liquids. Improved separation suggests larger dispersion among
the centroids of the liquid states corresponding to instances
from different classes, which renders the input representations
provided by the liquid easier to classify. This is illustrated in

the cartoon in Figure 9A for a set of two-dimensional data
points from two classes, wherein higher SP while maintaining
the same AP results in enhanced class discrimination capability.
At the same time, Figure 8 indicates that AP also increases
with the number of liquids, implying that larger number of
liquids leads to higher dispersion between projected inputs from
the same class. Higher AP for a given SP is not desirable
since it could potentially lead to overlap among instances
belonging to different classes as depicted in Figure 9B, thereby
degrading the class discrimination capability. Since both SP
and AP increases, the ratio DR gives a better measure about
the overall effect of the proposed ensemble approach on the
classification accuracy of the LSM rather than the individual
components per se. As shown in Figure 8, the DR increases
until a certain number of liquids, signaling the dominance
of the improvement in SP over the degradation in AP as
graphically illustrated in Figure 9C. In contrast, as the number
of liquids is increased beyond Nens,opt , DR saturates since the
increment in SP is no longer sufficient to compensate for the
degradation in AP as shown in Figure 8. When the dispersion
between classes (due to increment in SP) is not sufficient to
compensate for the dispersion occurring for instances within
the same class (due to AP degradation), there can be overlaps
among class boundaries as depicted in Figure 9D, leading to
accuracy loss as experimentally validated in Figure 7 across
different applications.

Frontiers in Neuroscience | www.frontiersin.org 11 May 2019 | Volume 13 | Article 50443

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 9 | A cartoon that shows the distribution of two dimensional data

points that belong to two classes under different conditions. (A) A case with

increased SP while maintaining the same AP. (B) A case where the AP is

increased while maintaining the same SP. Note that the class boundaries can

get overlapped leading to classification errors. Hence, increased AP is not

desirable. (C,D) shows two scenarios where both SP and AP increased from

the baseline distribution of data points (figure in the middle). (C) The

improvement in SP is larger than the degradation in AP. (D) The improvement

in SP is not sufficient to compensate for the AP degradation, leading to

overlapped class boundaries.

In order to graphically view the variation in SP and AP
with the number of liquids for the applications considered in
this work, we used Principal Component Analysis (PCA) to
plot the high-dimensional liquid states in a low-dimensional
space. Generally, the first few principal components preserves
the most variance in a given high-dimensional data set.
Hence, the same object in multi-dimensional space can be
visualized in low-dimensional space with insignificant changes.
To create such a low-dimensional projection of the liquid
state vectors for different input patterns, we reduced their
dimension using PCA and plotted the two most significant
Principal Components (PCs) corresponding to the two largest
eigenvalues. Figure 10 plots the 800-dimensional liquid state
vectors, projected to the two-dimensional space using the
first two PCs, for 1, 000 randomly picked input patterns
from three classes in the MNIST data set. Figure 10 clearly
illustrates why the accuracy improves till the Nens,opt point
and degrades beyond that as explained below. The single
liquid case shows concentrated (low AP), but overlapped data
(low SP). This is where the AP is the lowest due to the
concentrated data points. As the number of liquids increases,
the classes become clearly separated. Note that the points
belonging to the same class also moves away from their
respective centroids due to the increased AP. This ultimately
results in the aforementioned overlapping between the classes
for number of liquids larger than Nens,opt , which gives rise to
more misclassifications.

3.3. Benefits of the Ensemble Approach
The ensemble of liquids approach creates smaller liquids where
the dynamics of one network does not affect another. When
evaluating the spike propagation within the liquids, these smaller
liquids can be run independently and in parallel. Since the
evaluation time is a higher order polynomial function of the
number of neurons, computing few smaller liquids in parallel
instead of computing one large liquid is beneficial in terms
of reducing the inference time. Note that the evaluation of a
large liquid can also be parallelized. The liquid dynamics vary
temporally, and for digital simulations, it can be divided in to
multiple time steps. Each evaluated neuron state in the liquid
at one time step is temporally correlated to that of the next
time step. Therefore, the liquid evaluation process cannot be
temporally divided for parallelizing the operation. Furthermore,
since all the neurons are connected to each other (with a given
sparsity), the dynamics of one neuron is dependent upon that
of other neurons connected to it. Therefore, “fully independent”
simulations are also not possible at the neuron level. However,
the matrix-vector manipulations involved in each time step can
be parallelized. Simply put, in finding the pre-synaptic currents
of the neurons, the matrix-vector multiplication between the
spiking activity and the weight matrix must be evaluated as
shown below (with respect to excitatory neurons for example).

1ge(ti) = WS(ti) (12)

where 1ge(ti) is the instantaneous jump of conductance at
time ti (refer to Equation 2), S(ti) is the spiking activity
vector of N number of neurons in the liquid at time ti,
and W ∈ R

N×N is the connection matrix that defines the
liquid. Consider dividing the above process in to multiple
processing cores. The division of the operation in to two
cores using row-wise striped matrix decomposition requires the
matrix W to be divided in to two parts (Figure 11A). During
each simulation time step (ti), each core evaluates membrane
potentials S1(ti+1) =

[

s1(ti+1), ..., sN/2(ti+1)
]

and S2(ti+1) =
[

sN/2+1(ti+1), ..., sN(ti+1)
]

. For the next time step, these S1 and
S2 must be concatenated and requires communication between
cores. In contrast, a concatenation is not required until the
end of the total simulation duration (T) in our ensemble
approach (Figure 11B). Due to the lack of communication
overhead between processors, the ensemble approach is faster
than a parallelized version of the single liquid baseline among
Nens number of processors. In fact, due to the aforementioned
communication overheads, efficient parallel processing can be
hindered even in Graphical processing units (GPUs)(Kasap and
van Opstal, 2018). However, in any method of evaluating the
liquid dynamics, note that the ensemble approach has less
number of connections than a single liquid baseline. Therefore,
the ensemble approach has reduced amount of computation
leading to lower evaluation time. Different studies have shown
designing hardware accelerators for spiking neural network
platforms (Wang et al., 2014, 2017; Du et al., 2017). In the
context of reducing the design complexity, above methods could
potentially benefit from the low connection complexity, and

Frontiers in Neuroscience | www.frontiersin.org 12 May 2019 | Volume 13 | Article 50444

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 10 | The distribution of the liquid state vectors, as a projection to the first two principal components PC1 and PC2, for different number of liquids. The liquid

state vectors (represented as dots) correspond to three classes in the MNIST image data set. Each class has randomly picked 1, 000 liquid state vectors. Distributions

related to point 3 and 4 show less overlapping between classes, and the data points are more concentrated at the class mean points in contrast to 6 ,

which has significant overlapping that caused the accuracy degradation.

“embarrassingly parallel” nature (Herlihy and Nir, 2011) of our

ensemble approach.
The inference time is the addition of the liquid evaluation time

and the classifier evaluation time. The liquid evaluation time was

calculated by giving 100 input instances to the LSMmodel solver
and estimating the average liquid computation time per input.
The classifier evaluation time is significantly lower than the liquid

computation time (∼ ×10). Note that the classifier training time

is similar in the baseline (single liquid LSM) and the ensemble
approach, since there are equal number of neurons in the liquid

and the number of trained weights are the same.
Once an LSM is trained, the connections within the liquid

and the classifier weights must be stored. LSMs with large liquids
require more space. In the ensemble approach, the number of
connections within the liquid are significantly lower than the
single liquid baseline. For example, assume dividing a liquid with

Ntot number of neurons in to Nens number of smaller liquids

with Ntot
Nens

amount of neurons in each of them. The number
of connections available within the liquid for the single liquid
baseline is ∼ N2

tot whereas the number of connections in the

multi-liquid case is ∼ (Ntot
Nens

)2Nens =
N2
tot

Nens
. This shows that the

number of connections reduces by a factor of Nens when dividing
a large liquid into Nens smaller liquids, given that the percentage
connectivity stays the same. Figures 12A,B illustrate how the
memory requirement varies for different number of liquids for
the MNIST image recognition and TI-alpha speech recognition
applications, respectively. When the optimum accuracy point
for the ensemble approach is considered, we witnessed 87%
reduction in the amount of memory, 55% reduction in inference
time, and a 7.3% improvement in accuracy simultaneously, for
the TI-alpha speech recognition application. For the MNIST
handwritten digit recognition application, we witnessed 78%
reduction in the amount of memory, 72% reduction in the
inference time, and 3.9% improvement in classification accuracy.

Frontiers in Neuroscience | www.frontiersin.org 13 May 2019 | Volume 13 | Article 50445

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 11 | (A) The division of matrix-vector multiplication using row-wise striped matrix decomposition, for the single liquid baseline LSM. Note that during each

time step, the generated S1 and S2 vectors need to be concatenated to form the S vector (represents the spiking activity of the liquid), which requires communication

between cores. (B) The “embarrassingly parallel” nature, and the reduced amount of operations in the ensemble approach allows two small liquids to run in parallel as

two independent tasks, until the end of the last simulation time step tn.

FIGURE 12 | The total memory reduction (%), inference time reduction (%) with respect to the baseline, and accuracy for different number of liquids in the ensemble.

Two applications were considered; (A) temporal data classification problem (TI-alpha) (B) spatial data classification problem (MNIST).

Frontiers in Neuroscience | www.frontiersin.org 14 May 2019 | Volume 13 | Article 50446

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 13 | (A) The accuracy of an LSM with a single liquid, measured at different number of neurons, for a speech recognition application (TI-alpha). (B) The

average liquid evaluation time of an LSM measured at different number of neurons.

3.4. Conventional Methods of Improving
the Accuracy vs. the Ensemble Approach
The simple structure and training of LSMs, come with an
accuracy trade-off, when compared with other non-reservoir
computing techniques such as LSTM networks (Bellec et al.,
2018). Different mechanisms have been studied in the literature
such as training the connections in the reservoir (Xue
et al., 2016), using expensive learning rules (for example,
backpropagation through time Bellec et al., 2018), and selecting
complex architectures (Wang and Li, 2016), in order to
improve the accuracy of liquid state machines. However, these
methods will increase the complexity of the LSM resulting in
poor performance with respect to latency, despite the higher
accuracy. Furthermore, a liquid can be considered as a universal
computational medium. A single liquid with multiple trained
readouts can be used for multiple applications(Wang et al., 2015).
Above methods such as training the connections within the
liquid will make the LSM restricted to one application. In this
section, we will explain two basicmethods of improving accuracy,
while leaving the structural and training simplicity of LSMs
intact, and compare the results with the ensemble approach.

3.4.1. Increasing the Number of Neurons in the Liquid
As explained inMaass et al. (2003), sufficiently large and complex
liquids possess large computational power. Increased number
of neurons in the liquid will result in increased number of
variables for the classifier. Based on “multiple linear regression”
methods of predicting a function, increased number of predictor
variables (in this case the number of neurons), will result in
better prediction (Krzywinski and Altman, 2015; Wijesinghe
et al., 2017). Therefore, increasing the number of neurons will
improve the prediction accuracy of the LSM. Note however
that using enormous number of predictor variables/neurons will
make the network suffer from overfitting. Figure 13A shows how
the accuracy of an LSM varies with the number of neurons
in the reservoir for the TI-alpha speech recognition task. As
Figure 13A illustrates, the accuracy initially increases with the

number of neurons and then saturates after a certain point.
Increased number of neurons implies increased connections
within the liquid, given that the percentage connectivity stays
the same. The number of connections within the liquid shows
a square relationship ∼ νN2

tot with the number of neurons
Ntot , where ν is the global percentage connectivity. Due to
this, evaluation time of the liquid increases exponentially
as shown in Figure 13B. Therefore, when the number of
neurons are already high, the accuracy improvement we obtain
by further increasing the number of neurons is not worth
the resultant performance and storage requirement penalty.
Furthermore, the accuracy saturates around ∼ 79.2% for the
TI-alpha application (for Ntot ≥ 800). Note that we have
also adjusted the percentage connectivity at each point in
the graph, to get the best accuracy for a given number of
neurons. However, the ensemble approach for Ntot = 1000
and Nens = 4 gives ∼ 83% accuracy, which is larger than the
accuracy achievable by increasing the number of neurons in a
single liquid.

3.4.2. Percentage Connectivity Within the Liquid
The percentage connectivity within the LSM is an important
measure of the spiking activity of a liquid. The spiking
activity of the liquid could show two negative behaviors
which could drastically reduce the accuracy of the network,
viz. pathological synchrony and over-stratification (Norton
and Ventura, 2006). Pathological synchrony occurs when
the neurons get caught in infinite positive feedback loops
resulting in heavy continuous spiking activity. Over-
stratification can be defined as the opposite extreme of
the above. Here, the neurons do not propagate an input
signal properly, resulting in reduced spiking activity. Both
the above behaviors result in similar outcomes for input
instances of different classes (hence poor separation between
classes), making classification tasks hard. We noticed that
lower connectivity (PIn→E) results in over-stratification
(Figure 14A) whereas higher connectivity results in pathological
synchrony (Figure 14B).

Frontiers in Neuroscience | www.frontiersin.org 15 May 2019 | Volume 13 | Article 50447

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 14 | Illustration of two negative behaviors of an LSM at different input to liquid percentage connectivity values. Each raster plot shows the spiking activity of

the liquid neurons over time. The application is a speech recognition task (TI-alpha). (A) Over-stratification at low percentage connectivity. (B) Pathological synchrony

at higher percentage connectivity. (C) An instance that shows clear differences between spiking activity of the liquid neurons in contrast to (A,B).

FIGURE 15 | (A) The accuracy trend with varying input–liquid percentage connectivity, for different number of liquid neurons. The experiment is done on a single liquid

LSM conducting a speech classification task (TI-alpha). (B) The percentage connectivity that gives the best accuracy at different number of neurons.

We changed the percentage connectivity between different
combinations of pre- and post-neuron types (E− E, I − E,E− I)
till we obtain good accuracy avoiding pathological synchrony
and over-stratification (Figure 14C). After that, we refined the
input-liquid connectivity for further accuracy improvement.
Figure 15A shows how the accuracy changes with the percentage
connectivity of the input to liquid connections. Liquids
with different number of neurons have different optimum
connectivity values as shown in Figure 15B. The application
is recognizing spoken letters in TI-alpha speech corpus. The
maximum accuracy achievable by changing the percentage
connectivity (PIN→E) for Ntot = 1, 000 is ∼ 79% (refer to the
green colored trend in Figure 15A). This is smaller than that
achievable (∼ 83%) by our ensemble approach withNtot = 1, 000
and Nens = 4.

Furthermore, we simultaneously changed the PE→E and
PIN→E percentage connectivity values of LSMs with different
number of liquids, and evaluated the accuracy. Four PIN→E

values (0.1, 0.2, 0.4, 0.6) and three PE→E values (0.2, 0.4, 0.6)
were selected for the experiment. The summarized results are

illustrated in the 3D plot in Figure 16. The color code of
the figure gives the accuracy of a particular combination of
connectivity values. Across all LSM configurations with different
number of liquids, we witnessed that higher PIN→E and higher
PE→E results in accuracy degradation. Sparser connectivity gives
better results. As the figure illustrates, at sparser connectivity
values, a single liquid LSM offers lower accuracy than an LSM
with Nens liquids (refer to the upper left corner of the 3D
plots). The “maximum capacity” of each LSM configuration
(for a given number of liquids) is plotted in Figure 17A. The
“maximum capacity” is the best accuracy attainable from a
particular liquid configuration, after optimizing the percentage
connectivity values (in the selected range). As Figure 17A

illustrates, maximum accuracy obtained from the single liquid
configuration is smaller than that of other configurations. We
also plotted the average accuracy of a given LSM configuration
across all percentage connectivity values (Figure 17B). The
average accuracy to some extent could be thought of as the
outcome one would witness in a given LSM configuration for an
arbitrarily selected connectivity value (within the specified sparse

Frontiers in Neuroscience | www.frontiersin.org 16 May 2019 | Volume 13 | Article 50448

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 16 | The accuracy of LSMs with Nens = 1, 2, 4, 5, 8, 10 at different percentage connectivity (PE→E and PIN→E) values, for the TI46-alpha classification task.

connectivity region of the experiment). The average accuracy
of the single liquid LSM configuration is lower than that of
multiple liquids.

In section 3.3, we explored the benefits of the ensemble
approach due to reduced number of connections in the liquid.
A single liquid LSM configuration has Nens times more number
of connections as the LSM with Nens number of liquids as
explained in section 3.3. In order to view if a single liquid
with sparser connectivity offers better accuracy than an LSM
with Nens number of liquids and higher percentage connectivity,
we conducted an experiment. In other words, the goal of the
experiment is to view the accuracy of two LSM configurations
with same number of connections. The dominant component of
the number of connections in an LSM is the connections between
the excitatory neurons. Therefore, we varied the PE→E for two
LSM configurations (Nens = 1 and Nens = 4) and observed the
accuracy for the TI46-alpha application. Figure 18 illustrates that
for PE→E < 0.57, the multiple liquid configuration (Nens = 4)
provides better accuracy, suggesting that the ensemble approach
gives better results even under same number of connections
in comparison to the single liquid baseline. For example, the
ensemble approach gives ∼ 83% accuracy at PE→E = 0.4 and
for the same number of connections, (i.e., at PE→E = 0.1), the
single liquid LSM configuration gives lower accuracy (∼ 76%).

However, for PE→E > 0.57, single liquid LSM seems to perform
better. Hence we conclude that at higher degrees of sparsity, the
ensemble approach performs better than a single liquid baseline
with the same number of connections.

Apart from the percentage connectivity, different connectivity
patterns within the liquid were also considered in literature.
For example, a probabilistic local connectivity within the liquid,
inspired by the connectivity in biological neurons is suggested in
Maass et al. (2003). We conducted an experiment with different
sets of parameters (refer to the Supplementary Material) for the
probabilistic local connectivity model. Our results indicate that,
the highest accuracy achieved (for the ranges of parameters we
have considered) with the probabilistic local connectivity model
(an LSM with 1, 008 neurons arranged in a liquid column 6 ×

6 × 28, gave a maximum accuracy of ∼ 78%, for the TI-alpha
speech recognition application) is lower than that attainable from
our proposed ensemble approach (4 ensembles with 250 neurons
in each, resulted in an accuracy of 83%, for the same TI-alpha
application). More information on our analysis is included in the
Supplementary Material.

3.5. Limitations of the Ensemble Approach
In this section, we analyze whether dividing a liquid with any
number of neurons (Ntot) would result in similar accuracy

Frontiers in Neuroscience | www.frontiersin.org 17 May 2019 | Volume 13 | Article 50449

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 17 | (A) The maximum accuracy among all the LSM configurations with different PIN→E and PE→E (B) The average accuracy across all the LSM

configurations with different PIN→E and PE→E .

FIGURE 18 | The accuracy variation of the single liquid LSM baseline and

ensemble approach (Nens = 4) at different percentage connectivity values

(PE→E). The accuracy of the ensemble approach at PE→E = 0.4 is higher

than the accuracy of the single liquid LSM at PE→E = 0.1. Note that the

number of connections in both the cases considered are the same. The

accuracy was evaluated on the TI46-alpha classification task.

improvements. To this effect, we created ensembles of liquids
with different total number of neurons (Ntot). As Figure 19

illustrates, liquids with large number of neurons show clear sign
of accuracy improvement when divided into smaller liquids.
However, when the number of neurons is smaller, dividing
the liquid may result in decreased accuracy. For example, note
that the accuracy reduces continuously when a liquid with 250
neurons is divided. This result is similar to the observation in
Srinivasan et al. (2018), where the authors have shown that the
input and liquid subdivision is beneficial for LSMs with large
number of neurons. Similarly, here the ensemble approachmakes
sense only for LSMs with large number of neurons in them. In
conclusion, we state the following with respect to the applicability

FIGURE 19 | The accuracy varying with the number of liquids in the ensemble

approach, for different total number of neurons (Ntot). The LSM classifies

speech data in the TI-alpha dataset.

of the ensemble approach for LSMs. In order to improve the
accuracy of an LSM, the number of neurons can be increased.
However, beyond a certain point, accuracy does not improve
further. In such a case, the ensemble approach can be utilized to
further increase the accuracy. Such accuracy improvements are
not attainable by means of other simple methods that preserve
the structural and training simplicity of the standard LSM, such
as changing the connectivity.

3.6. Multiple Liquid-Multiple Readouts
(MLMR) Approach
Whenmoving from the single liquid approach to the ensemble of
liquids approach, any benefit in terms of classifier training time
was not observed. This is due to the fact that the number of total
liquid neurons is the same, and we are using a single classifier.
In this section, we analyze, if including a readout at the end of
each small liquid is beneficial than having a single readout for all

Frontiers in Neuroscience | www.frontiersin.org 18 May 2019 | Volume 13 | Article 50450

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 20 | The structure of the multiple liquid-multiple readout (MLMR) approach. There are multiple small liquids, and individual classifiers at the end of each liquid.

These are defined as small LSMs or s-LSMs. Final outcome (global output) is calculated by considering the maximum vote among all the local classified outputs from

the s-LSMs (local outputs).

the liquids. The basic structure of this multiple liquid-multiple
readouts (MLMR) approach is shown in Figure 20.

In contrast to our previous approach, this structure could
be viewed as a collection of small LSMs (s-LSMs). Each s-LSM
is trained individually, and the final classification is done by
considering either the maximum outcome, or the majority vote
among all the local classifiers. During training, we do not use all
the training data points for each local s-LSM classifier. Instead, we
divide the training space among the ensemble of s-LSMs based on
the following two criteria:

1. Random training space division (RD)
2. Clustered training space division (CD)

In random training space division (RD) method, we randomly
divide the training data space among the ensemble of s-LSMs,
and feed them to obtain the corresponding liquid state vectors at
the output of each liquid. These state vectors were then used to
train the local classifiers attached to each s-LSM in the ensemble
using gradient descent error backpropagation. For example, if
there are Nens number of s-LSMs and Ntrain number of examples
in the training set, each s-LSM will be trained with Ntrain

Nens
number

of randomly picked training examples. On the other hand, in
the clustered input space division (CD) method, we divide the
training instances into certain clusters depending upon their
features, (for instance, we have selected “original,” “rotated,”
“shifted,” and “noisy” images from the extended MNIST dataset
as clusters) and used them to train each readout. Here, an s-LSM
has specific knowledge about the cluster of examples that it is

trained with, and zero knowledge about other clusters. Therefore,
an s-LSM may not correctly identify an input that belongs to a
different cluster, apart from what it was trained with, leading to
large accuracy degradation at the global classifier. For example,
if a rotated image of digit “1” is given as the input, the s-LSM
that was trained with rotated images will correctly recognize the
given image. i.e., the output neuron−1 gives the highest outcome
(there are 10 output neurons and they are indexed as neuron−0
through neuron−9 as shown in Figure 21). Other s-LSMs
may not recognize this input correctly, potentially leading to
another neuron apart from neuron−1 to give a high value at
the outputs of their corresponding classifiers. When getting the
final outcome using “maximum output” method, the neuron that
gives the highest value over all the s-LSMs may not be neuron−1.
Instead, it could be some different neuron from an s-LSM that
was not trained with rotated images. To address this issue, we
use an “inhibition” criterion to suppress the s-LSMs from giving
high outputs for cluster types that they are not trained with.
Initially we divide the training space into clusters along with their
standard target vectors (vectors of which the length is equal to the
number of classes L. If the input belongs to the ith class, then the
ith element in the vector will be “1” and the other elements will
be “0.” Refer to Figure 21). Then, we randomly select 10% of the
training instances from each cluster (foreign instances), and add
them to the training space of all other clusters. The target vectors
of the foreign instances are forced to have all their elements equal
to 1/L (L is the number of classes) and we name this target vector
as “inhibitory label vector”. This will force each s-LSM outcome

Frontiers in Neuroscience | www.frontiersin.org 19 May 2019 | Volume 13 | Article 50451

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 21 | (A) Target vectors that correspond to images in the extended - MNIST data set. (B) Examples from the clustered training data space of the extended

MNIST dataset. (C) The clustered training space division method. Each s-LSM is trained with a particular cluster of images, and an additional 10% of the images in

the other clusters (foreign data). The target vectors of the foreign data are modified to have each value equal to 0.1.

TABLE 3 | Accuracy of different ensemble approaches.

Approach (total number of neurons= 1, 000) Accuracy (%)

Single liquid, single readout (baseline) 86.9

4 ensembles, single readout (MLSR) 89.0

4 ensembles, 4 readouts, (MLMR) random training space

division (RD)

82.5

4 ensembles, 4 readouts, (MLMR) clustered training

space division (CD)

83.1

to be low, when the presented input does not belong to the cluster
with which the s-LSM was trained. This method is explained
graphically in Figure 21, by means of an example.

We used the handwritten digit recognition application
with the extended MNIST data set, to check the accuracy,
performance, and training time of the aforementioned methods.
The training data set was divided into 4 clusters; original MNIST
images, noisy images, rotated images and shifted images. Total
number of neurons were 1, 000 and each s-LSM has 250 neurons.
The connectivity is set as indicated in Table 1. Table 3 reports
the accuracy of the above explained two training space division
methods (RD and CD) along with the accuracy of the baseline
(single liquid with 1, 000 neurons). The accuracy of the two
methods (RD → 82.5% and CD → 83.1%) are inferior to that
of the baseline (86.9%).

When comparing with RD method, CD gives better accuracy
for the same number of neurons. The reason for this can
be explained as follows. The clusters in the training dataset
can have different overlapping/non-overlapping distributions.
For instance, three clusters (“noisy,” “shifted,” and “rotated”)

in the considered example in this work follow three different
distributions as shown in Figure 22A. The figure elaborates the
t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten
and Hinton, 2008) of the high dimensional images that belong to
the aforementioned three clusters, for better visualization in the
lower dimensional space (2D). Due to this separate distributions,
examples that belong to the same class but in different clusters
may not spatially stay together in the higher dimensional space.
For example, Figure 22B shows the data points that correspond
to digit “0” and digit “1” in different clusters, and neither the
data points of digit “0” nor “1” stay together. Let us consider
the RD method, and how it tries to classify the aforementioned
digit “0” and digit “1.” If there are Ntot amount of training
examples and L classes, the number of examples that belongs to
class i each classifier sees is Nex,i = Ntot

L×Nens
. The Nex,i number

of examples a classifier in RD method sees belongs to Nens

number of clusters and they are distributed all over as shown
in Figure 22B. According to the figure, the two classes are
not linearly separable. Therefore, the RD method leads to more
misclassifications as elaborated in Figure 22A. In contrast, a
classifier trained for “shifted” data cluster in CD method fits to
a decision boundary that classifies digit “0” and digit “1” that
onlybelongs to “shifted” data cluster. Owing to the proposed
inhibition criterion, the classifier trained for “shifted” examples
in CD tries to put the data points that belong to other clusters into
a single category. As the Figure 22B illustrates, the classes: “digit
0,” “digit 1,” and “foreign” are more linearly separable by CD
method than the RD method, and this leads to higher accuracy
in RD method.

Selecting more foreign examples would result in the classifier
to concentrate more on fitting the foreign data into “nhibitory
label vectors,” instead of classifying data in the corresponding

Frontiers in Neuroscience | www.frontiersin.org 20 May 2019 | Volume 13 | Article 50452

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 22 | (A) The t-Distributed Stochastic Neighbor Embedding (t-SNE) of the high dimensional input data points, in 2D space for better visualization. The

distribution of data points that belong to three clusters (“Noisy,” “Shifted,” and “Rotated”) stay spatially separated. (B) The distribution of data points of digit “1” and

digit “0” that belongs to three clusters.

FIGURE 23 | (A) The graphical representation of the RD method trying to classify digit “0” and digit “1” that belong to three clusters using a linear classifier. Note that

the digit “0” that belong to the shifted cluster is misclassified as digit “1”. (B) The graphical representation of the CD method trying to classify digit “0” and digit “1”.

The particular classifier shown has learned to correctly classify digit “0” and digit “1” that belong to “shifted” cluster. Furthermore, it recognizes the data points that

belong to foreign clusters due to the proposed inhibition criterion. The dashed lines show the classifier decision boundaries.

cluster. Consider adding an xf% of foreign instances per cluster.

This would result in adding
(Nens−1)xf%

(Nens−1)xf%+1
overall percentage of

extra data that does not belong to the cluster to which the
classifier must be trained. The training space of the classifier that
must be trained for “shifted” images consists of the following
“sets”: (1) shifted digit “0,” (2) shifted digit “1,”..., 10)shifted digit
“9,” randomly selected images from (11) “noisy” cluster, (12)
“original” cluster, (13) “rotated” cluster.We selected a percentage,
that will pick approximately equal number of data points from
each of the aforementioned 13 sets. In our particular example, to
make ∼ 7.7%(= 100/13) of the training space to be attached to
each of the above “sets”, xf%needs to be selected as 10%. The total

percentage of the foreign instances are 23%
(

=
(Nens−1)xf%

(Nens−1)xf%+1

)

per cluster.
In order to see if there is any benefit in the MLMR approach

when achieving a “given” accuracy, we reduced Ntot in the
baseline to match the accuracy of both the RD and CD methods.

The memory requirement, inference time, and training time
were calculated for two scenarios. First, Ntot in the baseline was
selected such that both the baseline and the RD method have the
same accuracy (82.5%). Second, Ntot in the baseline was selected
such that it matches the accuracy of the CD method (83.1%). In
each of the above scenarios, the obtained memory requirement,
inference time, and training time values were normalized with
respect to the baseline. These normalized values for the two cases
are shown in a single graph in Figure 24. The CD method is

better in terms of memory requirement and inference time, in

comparison to the single liquid baseline and RD method. We
calculated the total number of MAC (multiply and accumulate)

operations during training to estimate the training time (it is a
function of the number of neurons in a liquid, number of output

neurons, and number of training examples). Lowest training time

was achieved in the RD method. The CD method offers 56%
reduction in memory and 45% reduction in inference time, with
respect to the baseline. For a 1, 000 total number of neurons, the

Frontiers in Neuroscience | www.frontiersin.org 21 May 2019 | Volume 13 | Article 50453

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

FIGURE 24 | Normalized total memory requirement, inference time, and

training time of the clustered training space division method (CD), random

training space division method (RD), and the single liquid baseline. The results

are under iso-accuracy conditions.

4 ensemble case with a single classifier (studied in section 3.2.
Let us denote this method as multiple liquids, single readout or
MLSR approach) resulted in 78% reduction in memory usage
and 72% reduction in inference time along with 2.1% accuracy
improvement (hence better than both CD andRDmethods under
the memory usage and inference time metrics). However, in
terms of training time, the MLSR approach did not show any
improvement, whereas the MLMR showed 88% reduction with
respect to the baseline.

4. CONCLUSION

We have presented an ensemble approach for Liquid State
Machines (LSMs) that enhances separation and approximation
properties, leading to accuracy improvements. The separation
property in LSMs measures the dispersion between projected
liquid states from different classes, whereas the approximation
property indicates the concentration of the liquid states that
belong to the same class. The ratio between SP and AP (DR)
is a measure of the class discrimination. We witnessed that the
DR increases when a large liquid is divided into multiple smaller
independent liquids across four speech and image recognition
tasks. We observed the existence of an optimal number of
liquids (Nens,opt) until which the DR increases and saturates
thereafter. Owing to the improvement in the DR in our proposed
ensemble approach, we noticed an LSM accuracy enhancement
with increasing number of liquids. The accuracy peaked at the
same Nens,opt point at which each DR saturated, for different
recognition tasks. This validated the existence of an optimal
number of liquids which gives the best accuracy for the LSM, and
this point is highly dependent upon the application and the total
number of liquid neurons.

There is plethora of complex approaches that concentrate
on improving the accuracy of LSMs, including learning the
liquid connections (Wang and Li, 2016; Xue et al., 2016).
In contrast to such works, our proposed approach does not
change the simple structure and training methods of LSMs.
Furthermore, the ensemble approach gives better accuracy when

compared with other simple mechanisms of improving the LSM
accuracy such as increasing the number of neurons, changing
the percentage connectivity, and utilizing the probabilistic local
connectivity models. Apart from providing improved accuracy,
the proposed ensemble approach comes with other benefits
including lower memory requirement and lower inference time.
We have shown that creating an ensemble of liquids leads to
lower inter-connections in comparison to a single liquid with the
same number of neurons. Furthermore, the liquid evaluation can
potentially be parallelized in the ensemble approach due to the
existence of small independent liquids. This results in reduced
LSM inference time. The accuracy improvement with increasing
number of liquids in the ensemble becomes less evident when the
total number of neurons is small. In fact, creating an ensemble
of liquids with a small number of neurons will rather reduce the
accuracy. Hence the ensemble approach makes sense for LSMs
with large number of neurons (Srinivasan et al., 2018).

Since there is no benefit in terms of training time between a
single-liquid LSM and the proposed ensemble approach (MLSR),
we investigated the MLMR approach where a classifier is added
to each small liquid in the ensemble. By dividing the training
example space to train each small LSM, we were able to attain
significant benefits in terms of training time, when compared
with MLSR approach. There are multiple classifiers that were
trained independently in the MLMR approach, and the final
output is the maximum vote of all the local classifiers. The
set of multiple liquid-classifier units are in fact a collection of
small LSMs (noted as s-LSMs). Despite the performance benefits
during training, we noticed an accuracy degradation in the
MLMR approach, when compared with both theMLSR approach
and the single-liquid baseline LSM with equal number of liquid
neurons. The reason for this can be explained as follows. The
classifiers in each s-LSM are smaller than that of the baseline and
the MLSR approaches. A large classifier (as in the baseline and
MLSR approach) has more number of parameters and is capable
of fitting in to an unknown function better than a small classifier
(Krzywinski and Altman, 2015), leading to improved accuracy.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

PW performed the simulations. All the authors contributed in
developing the concepts, generating experiments, and writing
the manuscript.

ACKNOWLEDGMENTS

The authors would like to thank C. Liyanagedera of Purdue
University for carefully reading the manuscript and giving
feedback. This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored

Frontiers in Neuroscience | www.frontiersin.org 22 May 2019 | Volume 13 | Article 50454

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

by DARPA, by the Semiconductor Research Corporation, the
National Science Foundation, Intel Corporation, the DoD
Vannevar Bush Fellowship, and by the U.S. Army Research
Laboratory and the U.K. Ministry of Defense under Agreement
Number W911NF-16-3-0001.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00504/full#supplementary-material

REFERENCES

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-

and-fire model neuron (1907). Brain Res. Bull. 50, 303–304.

doi: 10.1016/S0361-9230(99)00161-6

Anastassiou, C. A., Perin, R., Markram, H., and Koch, C. (2011). Ephaptic coupling

of cortical neurons. Nat. Neurosci. 14, 217. doi: 10.1038/nn.2727

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long

short-term memory and learning-to-learn in networks of spiking neurons.

arXiv preprint arXiv:1803.09574. Available online at: http://papers.nips.cc/

paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-

of-spiking-neurons.pdf

Cruz-Albrecht, J. M., Yung, M. W., and Srinivasa, N. (2012). Energy-efficient

neuron, synapse and stdp integrated circuits. IEEE Trans. Biomed. Circ. Syst.

6, 246–256. doi: 10.1109/TBCAS.2011.2174152

Deng, L. (2012). The mnist database of handwritten digit images for machine

learning research [best of the web]. IEEE Signal Proc. Mag. 29, 141–142.

doi: 10.1109/MSP.2012.2211477

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Du, C., Cai, F., Zidan, M. A., Ma, W., Lee, S. H., and Lu, W. D. (2017). Reservoir

computing using dynamic memristors for temporal information processing.

Nat. Commun. 8:2204. doi: 10.1038/s41467-017-02337-y

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Ann. Eugen. 7, 179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x

Fukunaga, K., and Mantock, J. M. (1983). Nonparametric

discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intel. 6, 671–678.

doi: 10.1109/TPAMI.1983.4767461

Goodman, D. F., and Brette, R. (2008). Brian: a simulator for spiking neural

networks in python. Front. Neuroinf. 2:5. doi: 10.3389/neuro.11.005.2008

Goodman, E. and Ventura, D. (2006). “Spatiotemporal pattern recognition via

liquid state machines,” in Neural Networks, 2006. IJCNN’06. International Joint

Conference on (Vancouver, BC: IEEE), 3848–3853.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

Grzyb, B. J., Chinellato, E., Wojcik, G. M., and Kaminski, W. A. (2009). “Facial

expression recognition based on liquid state machines built of alternative

neuron models,” in 2009 International Joint Conference on Neural Networks

(Atlanta, GA).

Herlihy, M., and Nir, S. (2011). The Art of Multiprocessor Programming.

Burlington, MA: Morgan Kaufmann.

Hourdakis, E., and Trahanias, P. (2013). Use of the separation property

to derive liquid state machines with enhanced classification performance.

Neurocomputing 107, 40–48. doi: 10.1016/j.neucom.2012.07.032

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991).

Adaptive mixtures of local experts. Neural Comput. 3, 79–87.

doi: 10.1162/neco.1991.3.1.79

Jaeger, H. (2007). Echo state network. Scholarpedia 2:2330.

doi: 10.4249/scholarpedia.2330

Ji, S., and Ye, J. (2008). Generalized linear discriminant analysis: a unified

framework and efficient model selection. IEEE Trans. Neural Netw. 19, 1768–

1782. doi: 10.1109/TNN.2008.2002078

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). “Is there a liquid state

machine in the bacterium escherichia coli?” in Artificial Life, 2007. ALIFE’07.

IEEE Symposium on (Honolulu, HI: IEEE), 187–191.

Kaiser, J., Stal, R., Subramoney, A., Roennau, A., and Dillmann, R. (2017).

Scaling up liquid state machines to predict over address events from dynamic

vision sensors. Bioinspiration Biomimetics 12, 055001. doi: 10.1088/1748-3190/

aa7663

Kasap, B., and van Opstal, A. J. (2018). Dynamic parallelism for synaptic updating

in gpu-accelerated spiking neural network simulations. Neurocomputing 302,

55–65. doi: 10.1016/j.neucom.2018.04.007

Kötter, R. (2012). Neuroscience Databases: A Practical Guide. New York, NY:

Springer Science & Business Media.

Krzywinski, M., and Altman, N. (2015). Points of significance: multiple linear

regression. Nat. Methods 12, 1103–1104. doi: 10.1038/nmeth.3665

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1993).

Ti 46-Word. Philadelphia, (PA): Linguistic Data Consortium.

Liyanagedera, C. M., Wijesinghe, P., Jaiswal, A., and Roy, K. (2017). “Image

segmentation with stochastic magnetic tunnel junctions and spiking neurons,”

in 2017 International Joint Conference on Neural Networks (IJCNN)

(Anchorage, AK: IEEE), 2460–2468.

Lyon, R. (1982). “A computational model of filtering, detection, and compression

in the cochlea,” in Acoustics, Speech, and Signal Processing, IEEE International

Conference on ICASSP’82. Vol. 7, (Paris: IEEE), 1282–1285.

Maass, W., Legenstein, R. A., and Bertschinger, N. (2005). “Methods for estimating

the computational power and generalization capability of neural microcircuits,”

in Advances in Neural Information Processing Systems (Vancouver, BC),

865–872.

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without

stable states: a new framework for neural computation based on perturbations.

Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Maass, W., Natschläger, T., and Markram, H. (2003). “A model for real-

time computation in generic neural microcircuits,” in Advances in Neural

Information Processing Systems (Cambridge, MA), 229–236.

Maass, W., Natschläger, T., and Markram, H. (2004). Computational

models for generic cortical microcircuits. Comput. Neurosci. 18:575.

doi: 10.1201/9780203494462.ch18

Maaten, L. v. d., andHinton, G. (2008). Visualizing data using t-sne. J. Mach. Learn.

Res. 9, 2579–2605. Available online at: http://www.jmlr.org/papers/volume9/

vandermaaten08a/vandermaaten08a.pdf

Mei, S., Montanari, A., and Nguyen, P.-M. (2018). A mean field view of the

landscape of two-layers neural networks (Washington, DC). arXiv preprint

arXiv:1804.06561. doi: 10.1073/pnas.1806579115

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs, G.

(2016). Stochastic synapses enable efficient brain-inspired learning machines.

Front. Neurosci. 10:241. doi: 10.3389/fnins.2016.00241

Nikolić, D., Häusler, S., Singer, W., and Maass, W. (2009). Distributed fading

memory for stimulus properties in the primary visual cortex. PLoS Biol.

7:e1000260. doi: 10.1371/journal.pbio.1000260

Norton, D., and Ventura, D. (2006). “Preparing more effective liquid state

machines using hebbian learning,” in Neural Networks, 2006. IJCNN’06.

International Joint Conference on (Vancouver, BC: IEEE), 4243–4248.

Panda, P., and Roy, K. (2017). Learning to generate sequences with combination

of hebbian and non-hebbian plasticity in recurrent spiking neural networks.

Front. Neurosci. 11:693. doi: 10.3389/fnins.2017.00693

Panda, P., and Srinivasa, N. (2018). Learning to recognize actions from limited

training examples using a recurrent spiking neural model. Front. Neurosci.

12:126. doi: 10.3389/fnins.2018.00126

Park, K. I., and Park (2018). Fundamentals of Probability and Stochastic Processes

With Applications to Communications. Gewerbestrasse, Cham: Springer.

Robbins, H., and Monro, S. (1985). “A stochastic approximation method,” in

Herbert Robbins Selected Papers (Ann Arbor, MI: Springer), 102–109.

Roy, S., and Basu, A. (2016). An online structural plasticity rule for generating

better reservoirs. Neural Comput. 28, 2557–2584. doi: 10.1162/NECO_a_00886

Frontiers in Neuroscience | www.frontiersin.org 23 May 2019 | Volume 13 | Article 50455

https://www.frontiersin.org/articles/10.3389/fnins.2019.00504/full#supplementary-material
https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.1038/nn.2727
http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons.pdf
http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons.pdf
http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons.pdf
https://doi.org/10.1109/TBCAS.2011.2174152
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1038/s41467-017-02337-y
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1109/TPAMI.1983.4767461
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1016/j.neucom.2012.07.032
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.4249/scholarpedia.2330
https://doi.org/10.1109/TNN.2008.2002078
https://doi.org/10.1088/1748-3190/aa7663
https://doi.org/10.1016/j.neucom.2018.04.007
https://doi.org/10.1038/nmeth.3665
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1201/9780203494462.ch18
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1371/journal.pbio.1000260
https://doi.org/10.3389/fnins.2017.00693
https://doi.org/10.3389/fnins.2018.00126
https://doi.org/10.1162/NECO_a_00886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wijesinghe et al. Ensemble of Liquids

Roy, S., and Basu, A. (2017). An online unsupervised structural plasticity algorithm

for spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28, 900–910.

doi: 10.1109/TNNLS.2016.2582517

Roy, S., Basu, A., and Hussain, S. (2013). “Hardware efficient, neuromorphic

dendritically enhanced readout for liquid state machines,” in 2013 IEEE

Biomedical Circuits and Systems Conference (BioCAS) (Rotterdam: IEEE), 302–

305.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533.

doi: 10.1038/323533a0

Shim, Y., Philippides, A., Staras, K., and Husbands, P. (2016). Unsupervised

learning in an ensemble of spiking neural networks mediated by itdp. PLoS

Comput. Biol. 12:e1005137. doi: 10.1371/journal.pcbi.1005137

Slaney, M. (1998). Auditory Toolbox. Technical Repor, Interval Research

Corporation, Vol. 10, 1998.

Srinivasan, G., Panda, P., and Roy, K. (2018). Spilinc: spiking liquid-ensemble

computing for unsupervised speech and image recognition. Front. Neurosci.

12:524. doi: 10.3389/fnins.2018.00524

Toledo-Suárez, C., Duarte, R., and Morrison, A. (2014). Liquid computing on and

off the edge of chaos with a striatal microcircuit. Front. Comput. Neurosci. 8:130.

doi: 10.3389/fncom.2014.00130

Urbain, G., Degrave, J., Carette, B., Dambre, J., and Wyffels, F. (2017).

Morphological properties of mass–spring networks for optimal locomotion

learning. Front. Neurorob. 11:16. doi: 10.3389/fnbot.2017.00016

Verstraeten, D., Schrauwen, B., and Stroobandt, D. (2005). Isolated word

recognition using a liquid state machine. Inf. Proc. Lett. 95, 521–528.

doi: 10.1016/j.ipl.2005.05.019

Waldrop, M. M. (2012). Brain in a box: Henry markram wants 1 billion [euro] to

model the entire human brain. sceptics don’t think he should get it.Nature 482,

456–459. doi: 10.1038/482456a

Wang, Q., Jin, Y., and Li, P. (2015). “General-purpose lsm learning

processor architecture and theoretically guided design space exploration,”

in 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS)

(Atlanta, GA: IEEE), 1–4.

Wang, Q., Kim, Y., and Li, P. (2014). “Architectural design exploration

for neuromorphic processors with memristive synapses,” in 14th IEEE

International Conference on Nanotechnology (Toronto, ON: IEEE), 962–966.

Wang, Q., and Li, P. (2016). “D-lsm: Deep liquid state machine with unsupervised

recurrent reservoir tuning,” in Pattern Recognition (ICPR), 2016 23rd

International Conference on (Cancun: IEEE), 2652–2657.

Wang, Q., Li, Y., Shao, B., Dey, S., and Li, P. (2017). Energy efficient

parallel neuromorphic architectures with approximate arithmetic

on fpga. Neurocomputing 221, 146–158. doi: 10.1016/j.neucom.2016.

09.071

Wehr, M., and Zador, A. M. (2003). Balanced inhibition underlies

tuning and sharpens spike timing in auditory cortex. Nature 426, 442.

doi: 10.1038/nature02116

Wijesinghe, P., Ankit, A., Sengupta, A., and Roy, K. (2018). An all-memristor

deep spiking neural computing system: a step toward realizing the low-

power stochastic brain. IEEE Trans. Emerg. Top. Comput. Intel. 2, 345–358.

doi: 10.1109/TETCI.2018.2829924

Wijesinghe, P., Liyanagedera, C. M., and Roy, K. (2017). “Fast, low

power evaluation of elementary functions using radial basis function

networks,” in Proceedings of the Conference on Design, Automation & Test in

Europe (Lausanne: European Design and Automation Association), 208–213.

Wu, J., Chua, Y., Zhang, M., Li, H., and Tan, K. C. (2018). A spiking neural

network framework for robust sound classification. Front. Neurosci. 12:836.

doi: 10.3389/fnins.2018.00836

Xie, Z. (2017). Neural text generation: A practical guide. arXiv preprint

arXiv:1711.09534.

Xue, F., Guan, H., and Li, X. (2016). “Improving liquid state machine with hybrid

plasticity,” in Advanced Information Management, Communicates, Electronic

and Automation Control Conference (IMCEC), 2016 IEEE (Xi’an: IEEE), 1955–

1959.

Yaniv, L., and Yossi, M. (2018). Google duplex: an ai system for accomplishing

real-world tasks over the phone. Google AI Blog (2018).

Yao,W., Zeng, Z., Lian, C., and Tang, H. (2013). “Ensembles of echo state networks

for time series prediction,” in Advanced Computational Intelligence (ICACI),

2013 Sixth International Conference on (Hangzhou: IEEE), 299–304.

Zhang, W., and Li, P. (2019). Information-theoretic intrinsic plasticity for online

unsupervised learning in spiking neural networks. Front. Neurosci. 13:31.

doi: 10.3389/fnins.2019.00031

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state

machine with biologically inspired learning and its application to speech

recognition. IEEE Trans. Neural Netw. Learn. Syst. 26, 2635–2649.

doi: 10.1109/TNNLS.2015.2388544

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Wijesinghe, Srinivasan, Panda and Roy. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 24 May 2019 | Volume 13 | Article 50456

https://doi.org/10.1109/TNNLS.2016.2582517
https://doi.org/10.1038/323533a0
https://doi.org/10.1371/journal.pcbi.1005137
https://doi.org/10.3389/fnins.2018.00524
https://doi.org/10.3389/fncom.2014.00130
https://doi.org/10.3389/fnbot.2017.00016
https://doi.org/10.1016/j.ipl.2005.05.019
https://doi.org/10.1038/482456a
https://doi.org/10.1016/j.neucom.2016.09.071
https://doi.org/10.1038/nature02116
https://doi.org/10.1109/TETCI.2018.2829924
https://doi.org/10.3389/fnins.2018.00836
https://doi.org/10.3389/fnins.2019.00031
https://doi.org/10.1109/TNNLS.2015.2388544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 21 August 2019

doi: 10.3389/fnins.2019.00827

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 827

Edited by:

Gert Cauwenberghs,

University of California, San Diego,

United States

Reviewed by:

Yulia Sandamirskaya,

Institute of Neuroinformatics, ETH

Zürich, Switzerland

Nabil Imam,

Cornell University, United States

*Correspondence:

Pierre Daye

pierre.daye@gmail.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 15 February 2019

Accepted: 24 July 2019

Published: 21 August 2019

Citation:

Daye P, Ieng S-H and Benosman R

(2019) A Theory for Sparse

Event-Based Closed Loop Control.

Front. Neurosci. 13:827.

doi: 10.3389/fnins.2019.00827

A Theory for Sparse Event-Based
Closed Loop Control
Pierre Daye 1*, Sio-Hoi Ieng 2,3,4 and Ryad Benosman 2,3,4,5,6

1 StreetLab - Institut de la Vision, Paris, France, 2 INSERM UMRI S 968, Institut de la Vision, Paris, France, 3 Sorbonne

Universités, UPMC Univ Paris 06, UMR S 968, Institut de la Vision, Paris, France, 4CNRS, UMR 7210, Institut de la Vision,

Paris, France, 5University of Pittsburgh Medical Center, Biomedical Science Tower 3, Pittsburgh, PA, United States,
6 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States

Most dynamic systems are controlled by discrete time controllers. One of the main

challenges faced during the design of a digital control law is the selection of the

appropriate sampling time. A small sampling time will increase the accuracy of the

controlled output at the expense of heavy computations. In contrast, a large sampling

time will decrease the computational power needed to update the control law at the

expense of a smaller stability region. In addition, once the setpoint is reached, the

controlled input is still updated, making the overall controlled system not energetically

efficient. To be more efficient, one can update the control law based on a significant

fixed change of the controlled signal (send-on-delta or event-based controller). Like

for time-based discretization, the amplitude of the significant change must be chosen

carefully to avoid oscillations around the setpoint (e.g., if the setpoint is in between

two samples) or an unnecessary increase of the samples number needed to reach the

setpoint with a given accuracy. This paper proposes a novel non-linear event-based

discretization method based on inter-events duration. We demonstrate that our new

method reaches an arbitrary accuracy independently of the setpoint amplitude without

increasing the network data transmission bandwidth. The method decreases the overall

number of samples needed to estimate the states of a dynamical system and the update

rate of an actuator, making it more energetically efficient.

Keywords: dynamic systems, feedback control, control theory, event-based signal processing, level crossing

sampling

1. INTRODUCTION

With ever faster and ever cheaper digital computers, the control of dynamic systems has shifted
from analog to digital controllers. Critically, the majority of discrete-time control laws assume
that the sampling rate of the discretization process is constant. There is currently a discrete-time
equivalent for the vast majority of continuous-time control theory principles, from the continuous
proportional-integral mechanical “governors” of Maxwell (1867) to the more recent optimal
control theories based on Pontryagin’s maximum principle (Pontryagin et al., 1962).

The selection of the appropriate sampling rate depends both on the open-loop system dynamics
and on the desired dynamics of the controlled system. A system with fast dynamics needs a high
sampling rate to ensure the stability of the controlled system at the expense of higher computational
power. Moreover, the controlled input of a dynamical system is traditionally updated at each time
step independently of the error amplitude. When a controlled system is in a stable configuration at
the setpoint, there is obviously no need to sample the data, update the controller and the actuator.
Indeed, doing so is not energetically efficient.

57

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00827
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00827&domain=pdf&date_stamp=2019-08-21
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pierre.daye@gmail.com
https://doi.org/10.3389/fnins.2019.00827
https://www.frontiersin.org/articles/10.3389/fnins.2019.00827/full
http://loop.frontiersin.org/people/129434/overview
http://loop.frontiersin.org/people/32893/overview

Daye et al. Event-Based Control

In the early 60’s, this lack of efficiency combined with
lower computational power spurred the development of adaptive
discrete-time sampling methods (Dorf et al., 1962; Tomovic
and Bekey, 1966). In these methods, an event is sent once
the sampled signal increases or decreases by a certain delta
(send-on-delta/event-triggered discretization schemes). When
the signal doesn’t change, there are intrinsically no more updates.
More than three decades later, there was a resurgent gain of
interest for these discretization methods with aperiodic sampling
time leading to new control mechanisms (e.g., Arzén, 1999;
Bernhardsson and Aström, 1999; Heemels et al., 2012) for send-
on-delta, (Miskowicz, 2005, 2007) for area/integral thresholds,
and their analyses, e.g., the effect of noise on the send-on-
delta mechanism (Astrom and Bernhardsson, 2002; Cervin and
Astrom, 2007). In Hetel et al. (2017), a survey on stability studies
of aperiodic sampling systems is provided.

Event-based control mechanisms have also drawbacks. For
example, to the best of our knowledge, all current event-based
control schemes transmit the signal value within an event. This
limits the system dynamic range (ratio between the largest
and the smallest value that a signal within a control system
can assume) because the data transfer must have the same
representation as the system data. Therefore, if one wants to
control a system with a high accuracy on a wide range of value,
such a control system would need a high bandwidth network to
transmit the values of the signal.

In this paper, we propose a new framework and theory
for event-based control that are circumventing the problem
mentioned above while preserving the benefit of the event-based
approach. We formalize a generalized discretization method that
stems from the principle of neuromorphic event-based cameras
(Posch et al., 2008, 2011) for analog signals. In contrast to
traditional frame-based cameras where a clock synchronizes the
acquisition of each pixel and the pixels’ value is transmitted
directly in an image, in event-based cameras each pixel is
independent. When a pixel detects a light intensity change of
a certain magnitude, it signals the change emitting an event.
This event carries information about the time of the change,
the position of the pixel and if the light intensity increased or
decreased. The principal contribution of this work is to generalize
the level-crossing sampling representation in the context of
control. We focus on exploiting the benefit provided by a more
efficient information coding to reduce computation resources
through the use of the duration between two events rather than
the value of a signal to update the control law. Therefore, an event
can be represented with fewer bits than the input signal and this
increases the dynamic range of the control system.

First, we describe a general class of event-based discretization
functions and the associated reconstruction process in section
2.1. Then, in section 2.2 we show how uncertainties on the
event timing as well as on the initial value of the signal affect
the accuracy of the reconstructed signal. In section 2.3, we use
a logarithm as discretization function and we show how we
tackle the issue of the Zeno phenomenon (Heymann et al.,
2005; Lampersky and Ames, 2013). Section 3 presents control
results based on the logarithmic discretization. Finally, section 4
concludes the paper.

2. MATERIALS AND METHODS

2.1. Non-linear Event-Based Discretization
Figure 1 presents the general principle of a linear (Figure 1A)
and a non-linear (Figure 1B) event discretization applied to
an error signal ǫ(t). Using linear event-based discretization, if
the setpoint lies between two intervals then no event will be
generated (no event will be generated after t4 as the system is
stable between two samples). To overcome this problem, the
simplest method is to compute the step size such that the setpoint
is an integer multiple of the step size. It is worth noting that
when the setpoint lies between two samples, it corresponds to
a bias β in the linear function presented in Figure 1A. In the
non-linear case presented in Figure 1B, the step size needed to
generate events decreases as the controlled signal approaches the
setpoint. Therefore, one can stop the event generation when the
absolute error is smaller than a predefined threshold.

2.1.1. Event Generator Function
Given a generic finite dimension, non-linear continuous-time
system S to control, we assume that a control law C has been
designed to ensure that the output y of the system converge
toward a setpoint r, stabilizing (at least locally) the controlled
system. Both signals r and y can be multidimensional. Using
this representation, the error signal ǫ is equal to the difference
between the system output y and the setpoint r. Figure 2 is
a schematic summarizing this control configuration.Then, B, a
subset of R+ computed from the control law C, can be defined as
the basin of attraction around the equilibrium ǫ = 0 such that:

∀ǫ ∈ B ⊂ R
∗, lim

t→+∞
ǫ(t) = 0, (1)

lim
t→+∞

dǫ(t)

dt
= 0. (2)

Let h be the “event generator” continuous function that computes
the time of the next event ti+1 from the value of ǫ at ti.

h :B → R
+

ǫ(ti) 7→ h(ǫ(ti)) = ti+1
(3)

The key principle of our event-based discretization method is
that the duration between two events generated by h must tend
to zero when the error tends to zero. Mathematically, this can be
written has a limit:

lim
t→+∞

[(h ◦ ǫ)(t)− t] = 0. (4)

Equation (4) can be equivalently rewritten into:

lim
t→+∞

(h ◦ ǫ)(t) = lim
ǫ→0

h(ǫ) = lim
t→+∞

t (5)

⇒ lim
ǫ→0

h(ǫ) = ∞. (6)

Equation (6) is the first requirement that must be met by h if (4)
is true.

Frontiers in Neuroscience | www.frontiersin.org 2 August 2019 | Volume 13 | Article 82758

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

FIGURE 1 | Comparison of linear (A1) vs. non-linear (B1) event-based discretization. (A2,B2) Represent the time course of the controlled system (black lines) and the

setpoint (red lines) for the linear and the non-linear discretization. Gray lines represents the levels at which an event will be triggered. Starting from an initial condition

ǫ(t0) (step a), one can evaluate g(ǫ(t0)) (step b). Then remove 1 from the value (step c) to evaluate when the next event will be generated g(ǫ(t1)) = g(ǫ(t0))− 1. Finally,

compute the inverse of g for this value and extract the error ǫ(t1) at the next event (steps d and e). These steps can be repeated to extract ǫ(t2) from ǫ(t1), ǫ(t3) from

ǫ(t2) and so on. As clearly shown in the figure, the limit of this recursive process when the error approaches zero is zero in the non-linear discretization but not in the

linear one (because of the bias β in the function).

FIGURE 2 | Generic closed loop control system. r represents the setpoint, y

the system output, ǫ the error between the setpoint and the system output, C

the controller, and S the controlled system.

2.1.2. Events Generation
As the class of functions that satisfy (4) is very broad, this section
presents a method to build these functions. One can compute
a time series {ti} using a monotonically increasing function g
applied to ǫ(t) such that an event will be triggered when the
difference of g between two events is equal to one:

∀i ∈ N
+

g :R+ → R
{

ti
∣

∣ g(ǫ(ti−1))− g(ǫ(ti)) = 1
}

. (7)

For the rest of the paper, we postulate that g is monotonically
increasing. However, it must be noted that if g is monotonically

decreasing, the same reasoning can be applied and the time series
becomes:

{

ti
∣

∣ g(ǫ(ti))− g(ǫ(ti−1)) = 1
}

. (8)

As g−1 exists (it is monotonically increasing), one can predict the
value of the error at which the next event will be triggered:

ǫ(ti) = g−1
(

(g ◦ ǫ)(ti−1)− 1
)

. (9)

This discretization process is presented in Figure 1.
In addition, ǫ−1 exists by definition of Equation (9).

Therefore, one can write the function h defined in (4) as:

ti = ǫ−1(g−1
(

(g ◦ ǫ)(ti−1)− 1)
)

(10)

= h ◦ ǫ(ti−1). (11)

From this relationship, a supplementary condition on g can be
extracted from (6):

lim
t→+∞

(g ◦ ǫ)(t) = lim
t→+∞

(g ◦ ǫ)(t)− 1. (12)

As g is a function of reals, only±∞ is a solution of (12).

Frontiers in Neuroscience | www.frontiersin.org 3 August 2019 | Volume 13 | Article 82759

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

2.1.3. Signal Reconstruction
Using the proposed discretization, one can reconstruct the time
course of the original error signal using the events:

ǫ(tN) = ǫ(t0)+

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]H(t − ti) (13)

in which H(x) represents the Heaviside step function:

H(x) =
d

dx
max(x, 0). (14)

As the series (13) converges toward 0, then:

lim
N→+∞

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)] = −ǫ(t0). (15)

2.2. Uncertainty Analysis
Up to now, our formulation of the events generation assumes
that there is no measurement uncertainties on both the initial
value of the error (ǫ(t0)) and on the time interval estimation
(ti − ti−1). In this paragraph, the effect of uncertainties on these
values is analyzed.

2.2.1. Uncertainty on the Initial Value
First, we will analyze how an uncertainty on the initial estimate of
the error, ǫ(t0), influences the estimate of ǫ(tN) and thus affects
the convergence of the series. We will postulate that we have
an infinitely accurate measurement of the time interval between
two events.

Given an estimate of the initial error

ǫ̂(t0) = ǫ(t0)+ δǫ0 (16)

with ǫ(t0) representing the true initial value, δǫ0 representing an
uncertainty on the true initial value, one can rewrite (13):

ǫ̂(tN) = ǫ(t0)+ δǫ0

+

N
∑

i=1

[g−1
(

g(ǫ(ti−1)+ δǫi−1)− 1
)

− ǫ(ti−1)− δǫi−1]H(t − ti). (17)

The first terms of recursion (17) are:

ǫ̂(t0) = ǫ(t0)+ δǫ0 (18)

ǫ̂(t1) = ǫ(t1)+ δǫ1

= g−1
(

g(ǫ(t0)+ δǫ0)− 1
)

(19)

Because g is monotonically increasing, it follows that
ǫ̂(t1) < ǫ̂(t0). This leads to g−1

(

g(ǫ(ti−1)+ δǫi−1)− 1
)

<

ǫ(ti−1) + δǫi−1 for arbitrary i − 1. Then for i,
g−1

(

g(ǫ(ti)+ δǫi)− 1
)

< ǫ(ti) + δǫi is also verified. Therefore,
by induction:

lim
N→∞

g−1
(

g(ǫ(ti−1)+ δǫi−1)− 1
)

= 0, (20)

and

lim
N→∞

ǫ̂(tN) = 0. (21)

This result shows that, independently of the initial error on the
measurement, the estimate of the error converges toward zero.

2.2.2. Uncertainties on Time Interval Measurement
In this section, we will analyze the effect of an uncertainty on
the measurement of the time interval between two events. If one
assumes that the uncertainty σi on the time value ti is drawn from
a uniform random distribution U

ς
−ς between −ς and ς , one can

write Equation (13) as:

ǫ(t)+ δǫ(t) = ǫ(t0)+

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]H(t − ti + σi). (22)

Using (13) and (22), one can extract δǫ(t), using the rectangular
function 5:

5(X) = H(X)−H(0) (23)

δǫ(t) =

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]5(σi). (24)

From (24), one can evaluate the bounds of the error if one
supposes that all the uncertainties are equal to either ς or−ς :

δ∗ǫ (t) = ±ς

N
∑

i=1

[g−1
(

(g ◦ ǫ)(ti−1)− 1
)

− ǫ(ti−1)]. (25)

If ǫ(t0) = ǫ0, the limit of (25) representing the upper (lower)
bound of δǫ(t) can be computed using (15):

lim
t→+∞

δ∗ǫ (t) = ∓ςǫ0. (26)

Similarly, the other bound is equal to ςǫ0. Equation (26) shows
that the boundaries of the uncertainty on the error signal is only
a function of the clock accuracy. Therefore, the proposed non-
linear discretization can be used to reach an arbitrary precision
of the controlled state, provided that the user has access to an
infinitely accurate clock.

2.3. Logarithmic Event-Based
Discretization
As the goal of the paper is to demonstrate the usefulness of
the discretization method to control a system, we postulate in
the following sections of the paper that the user has designed
a control law such that the controlled system is globally
asymptotically stable.

In the rest of the paper, we use a logarithmic function
as event discretization function g(ǫ). We demonstrated in
section 2.1 that a candidate discretization function g must fulfill
three conditions:

Frontiers in Neuroscience | www.frontiersin.org 4 August 2019 | Volume 13 | Article 82760

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

1. g : R+,∗ → R

x 7→ g(x)

2. g must be continuous and strictly monotonic on R
+,∗ (and

thus invertible)

3. limx→0 g(x) =

{

−∞ if dg/dx > 0
+∞ if dg/dx < 0

Selecting a logarithmic function with a base b of ǫ(t) for g
such that:

∀b ∈ R
+, b 6= 1

g(ǫ) =
ln |ǫ|

ln b
= logb|ǫ|, (27)

it is straightforward to demonstrate that the logarithm satisfies
the three conditions on g on R

+. The effect of the base of the
logarithm on events generation will be presented in section 3
Using (27), one can compute a time series {ti}:

∀b ∈ R
+, b 6= 1, i ∈ N

+

{

ti

∣

∣

∣

∣

∣

∣

∣

∣

ln |ǫ(ti)|

ln b
−

ln |ǫ(ti−1)|

ln b

∣

∣

∣

∣

= 1

}

(28)

A polarity information, pi, is added to the time series (28) to
express if ǫ(t) has increased or decreased between two samples
of the series:

b > 1

(ti, pi = +1) |

∣

∣

∣

∣

ǫ(ti)

ǫ(ti−1)

∣

∣

∣

∣

= b (29)

(ti, pi = −1) |

∣

∣

∣

∣

ǫ(ti−1)

ǫ(ti)

∣

∣

∣

∣

= b (30)

For the sake of simplicity, we will use b > 1 in the rest of
the paper. But the same relationships used to generate an events
series for b > 1 can be derived if 0 < b < 1:

0 < b < 1

(ti, pi = +1) |

∣

∣

∣

∣

ǫ(ti−1)

ǫ(ti)

∣

∣

∣

∣

= b, (31)

(ti, pi = −1) |

∣

∣

∣

∣

ǫ(ti)

ǫ(ti−1)

∣

∣

∣

∣

= b. (32)

Finally, as ǫ(t) can change sign between two events, we added a
third piece of information to each event representing a change of
sign between the current event and the prior one: si.

Therefore, an event ei is defined as a triplet (ti, pi, si) in which
ti represents the event time, pi represents its polarity (either 1 or
–1, could be represented by a single bit) and a Boolean si (0/1)
representing the fact that the sign of the signal changed between
the ei−1 and ei.

Using these notations, one can construct the time course of the
original signal ǫ(t) using1:

ǫ(t) = ǫ(t0)+ (−1)sN
N

∑

i=1

(b−pi − 1) ǫ(ti−1)H(t − ti), b > 1

(33)

in which H(x) represents the Heaviside step function:

H(x) =
d

dx
max(x, 0). (34)

2.3.1. Arbitrary Accuracy
The goal of this section is to demonstrate that the proposed
logarithmic discretization can be used to reach a stable point with
an arbitrary accuracy. Using (29), the value of the error signal at
time ti can be written using a geometric recursion:

ǫ(ti) =
ǫ(t0)

bi
. (35)

From (35), it is clear that from any finite value ǫ(t0):

lim
n→+∞

ǫ(ti) = 0. (36)

Equation (36) shows that one can reach an arbitrary precision
using the logarithmic discretization proposed in this section.
The arbitrary precision at which the error is considered null
(therefore at which the system has reached the setpoint) is a
design parameter of the control law.

2.3.2. Refractory Period
Theoretically when ǫ reaches zero, the number of events goes
to infinity and the duration between two events reaches zero. In
addition, even if the accuracy of the clock is very high, practically
the computations needed to evaluate the ratios (29) and (30)
can take some time. Therefore, for practical implementations,
we define the refractory period as the minimum time between
two events that the system can generate. These limitations put
some constraints on the overall system as the ratio between the
past error and the current one could be crossed multiple times
during the refractory period. To counter this issue, we added a
last parameter to the event representing the number of times the
threshold has been crossed between two events rn:

ri =

⌊

ln
(

ǫ(ti−1)/ǫ(ti)
)

ln b

⌉

if pi = −1 (37)

=

⌊

ln
(

ǫ(ti)/ǫ(ti−1)
)

ln b

⌉

if pi = +1. (38)

Equation (33) can be written to include rn:

ǫ(t) = ǫ(t0)+ (−1)sN
N

∑

i=1

(b−piri − 1) ǫ(ti−1)H(t − ti), b > 1.

(39)

1If 0 < b < 1, ǫ(t) = ǫ(t0)+ (−1)sN
∑N

i=1(b
pi − 1) ǫ(ti−1)H(t − ti)

Frontiers in Neuroscience | www.frontiersin.org 5 August 2019 | Volume 13 | Article 82761

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

The presented discretization method allows us to benefit from
the event-based representation in the control context. In the
experiments section, we present its application to the control of a
second order dynamical system.

3. EXPERIMENTS

The proposed event-based non-linear discretization and the
resulting control laws are tested on two systems different systems.
The first one is a classical second order dynamical systemwhile in
the second example we stabilize an inverted pendulum on a cart.

3.1. Control of a Second Order Dynamical
System
This section presents the control of a second order dynamical
system with 0.1 and 0.01 s as time constants. The second-
order system is controlled by a proportional-integral-derivative
controller (see Appendix in Supplementary Material, section 3)
with a proportional gain equal to 1, an integral gain equal to
5, and a derivative gain equal to zero. This example is used as
an academic demonstrator of the new event-based discretization
method. Therefore, this second-order model doesn’t describe a
particular system and the units of the controlled signals, the
setpoint, the output or of any of the system internal signals
are arbitrary.

Figure 3A presents the results of the simulation when a
unitary step (the setpoint of the system goes from zero to one) is
applied to the controlled system 100ms after the beginning of the

simulation. The base of the logarithmic discretization function
was set to 1.05 and the refractory period was set to 1 millisecond.
The upper row represents the time course of the setpoint and the
output of the system. The second row represents the frequency of
the events generated. Positive (negative) frequencies correspond
to positive (negative) polarity events. The events frequency was
computed using the convolution of a 2.5 ms normal distribution
with the time of the events as it used in neuroscience to compute
the discharge frequency of neuronal activities (MacPherson and
Aldridge, 1979; Richmond et al., 1987). The last row represents
the control sent to the system to reach the setpoint. Importantly,
the control is updated only when an event is generated. Figure 3A
shows that the output of the system reaches the setpoint. In
addition, when the system output reaches the target (around
2 s, final error = 6.48e-4), no event is generated and the
control remains constant. 142 events were generated during
this simulation.

To test how a choice of base for the logarithmic discretization
function affects the control quality, we ran a series of simulations
for setpoint amplitude ranging from 1 to 1,000. Upper row in
Figure 3B shows the evolution of the mean squared error during
the last 250 ms as a function of the setpoint amplitude for three
different bases (1.01: black lines, 1.05: red lines, 1.1: blue lines).
The average mean squared error is statistically independent of
the setpoint amplitude (mean ± standard error of the mean
squared error. 1.01: 6.64e-5 ± 5.16e-6, 1.05: 6.56e-5 ± 8.92e-
6, 1.1: 6.41e-5 ± 1.52e-5). Lower row in Figure 3B shows that
the number of events generated during a simulation for the

FIGURE 3 | Control of a second-order system. Left column presents the simulation of a second order transfer function controlled by an event-based

proportional-integral controller when a step input is applied after 100 milliseconds. (A1) Represents the time course of the setpoint (red line) and the time course of the

output of the system (black line). (A2) Represents the frequency of events as a function of time. Positive frequencies correspond to the frequency of positive polarity

events representing an increase of the error signal (p+: black line). Negative frequencies correspond to the frequency of negative polarity events representing a

decrease of the error signal (p−: light blue line). (A3) Represents the time course of the control applied to the system to reach the setpoint. The right column

represents the sensitivity of the controlled system to a change of setpoint for different bases (represented by different colors). (B1) Represents the evolution of the

mean squared error as a function of the setpoint. (B2) Represents the evolution of the number of events triggered during a simulation as a function of the setpoint.

Frontiers in Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 82762

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

same conditions decreases when the base of the logarithmic
discretization function increases.

This first set of simulations demonstrated that the absolute
error remained constant over a wide range of setpoint amplitudes
(from 1 to 1,000) without changing either the discretization or the
PID parameters. As the absolute error at the end of the simulation
remained mostly constant with increasing amplitude, the relative
error is decreasing.

3.2. Stabilization of an Inverted Pendulum
We have implemented a numerical simulation of an inverted
pendulum put on a cart. When a perturbation (in the form of an
external force T) is applied to the cart, the pendulum is moved
out of its equilibrium position. An event-based proportional-
integral-derivative (PID) controller stabilizes the pendulum in an
inverted position through a control force F applied to the cart.
The model of this dynamical system is presented in the Appendix
in Supplementary Material.

In the first two simulations, we measure the angular
orientation of the pendulum. In the last two simulations, we
used two sensors to measure the cart position and the angular
orientation of the pendulum. In all the simulations, we control

the force applied to the cart to stabilize the pendulum in upright
position. In each of the following simulations, the pendulum
started in the upright inverted position and we injected a fifty
milliseconds perturbation one hundred milliseconds after the
beginning of the simulation.

3.2.1. Proportional-Integral-Derivative Control Law
In this section, the pendulum angle was controlled by
a proportional-integral-derivative (PID) controller with a
proportional gain of 100, an integration gain of 2 and a derivative
gain of 10. We compared a traditional discrete PID controller
with an event-based version of the PID controller. The base of the
logarithmic discretization function was set to 1.05 for the event-
based control law simulations and the refractory period of the
sensor was set to 1 ms.

Figure 4 compares the two control laws when the control
sampling rate of the discrete controller was set to 1 kHz. For
the event-based control law, the control was updated each time
an event arrives. Figure 4A shows the results of the simulation
with the event-based control law. Figure 4B represents the
results of the simulation with the discrete PID. The last row in
Figures 4A,B represents the angular error of the pendulum. In

FIGURE 4 | Inverted pendulum on a cart controlled by either an event-based controller (Left column) or a discrete PID with a one millisecond sampling time (Right

column). (A1,B1) Represent the time course of forces applied to the system. The red curve represents the 100 N perturbation applied to the cart during 50 ms. The

blue curve represents the time course of the input force applied to the cart to stabilize the pendulum. (A2) Represents the frequency of events generated during the

simulation. Positive frequencies correspond to positive polarity events representing an increase of the error signal (p+: black line). Negative frequencies correspond to

negative polarity event representing a decrease of the error signal (p−: light blue line). (A3,B2) Represent the time course of the cart position. (A4,B3) Represent the

angular error of system (orange line, angle with respect to the vertical) and the estimate of the error built from the received events (green line).

Frontiers in Neuroscience | www.frontiersin.org 7 August 2019 | Volume 13 | Article 82763

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

both control law conditions, the pendulum is stabilized by the
control law. The maximum error is smaller in the case of the
discrete PID controller. However, with the discrete PID, there
are peaks of desired force above 500 N. In addition, the discrete
version of the control law updated the force applied to the cart
2,500 times while the event-based version updated that force only
199 times, so the system is updated roughly 12.5 times less often
using the event-based control.

This simulation shows that the frequency of events generation
is sensitive to the amplitude of the error (the smaller the error,
the higher the number of events) and to the amplitude of the
time derivative of the error (the larger the amplitude of the
time derivative of the error, the higher the events frequency). In
Figure 4, the frequency of positive events increases during the
first part of the error increase (when the time derivative of the
error is important). Then, as the amplitude of the error time
derivative decreases and the amplitude of the error increases,
the frequency of events generation decreases as well. Afterwards,
there is a small plateau during which no positive nor negative
events are generated (corresponding to the peak of the error

signal, when there is no modification of the error amplitude
large enough to trigger an event). Finally, there is an increase
of the frequency of negative events as the error decreases due to
feedback control of the PID. It can be seen that, as the rate of
change of the error during the decrease of the error is smaller,
the overall frequency of the events is smaller. However, even if
the time derivative of the error decreases, the events generation
frequency increases toward the end of the stabilization period as
the error reaches zero. These observations show the sensitivity of
the events generation frequency to both the rate of change of the
error and the amplitude of the error.

Figure 5 compares a discrete PID control law and an event-
based control law when the discrete controller and the event-
based controller are set to update the control output at 20 Hz.
This experiment presents how the event-based controller can be
used to update regularly a control output. Therefore, contrarily
to all the other experiments, in this case, while the estimate of the
error and the integral of the error are updated each time an event
is generated, the control is updated every 50 ms. The striking
point in Figure 5 is that the event-based controller stabilizes the

FIGURE 5 | Inverted pendulum controlled with the event-based controller and the discrete controller set to update the control output at 20 Hz. The discrete controller

fails to stabilize the pendulum when the control frequency is reduced from 1KHz to 20 Hz. Each subfigures and the colors convention are defined as in Figure 4.

(A1,B1) Represent the time course of forces applied to the system. The red curve represents the 100 N perturbation applied to the cart during 50ms. The blue curve

represents the time course of the input force applied to the cart to stabilize the pendulum. (A2) Represents the frequency of events generated during the simulation.

Positive frequencies correspond to positive polarity events representing an increase of the error signal (p+: black line). Negative frequencies correspond to negative

polarity event representing a decrease of the error signal (p−: light blue line). (A3,B2) Represent the time course of the cart position. (A4,B3) Represent the angular

error of system (orange line, angle with respect to the vertical) and the estimate of the error built from the received events (green line).

Frontiers in Neuroscience | www.frontiersin.org 8 August 2019 | Volume 13 | Article 82764

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

FIGURE 6 | Inverted pendulum controlled by state-space feedback law. Left column represents an event-based state-space feedback law with the force applied to

the cart updated at each event. Right column represents the same control law but with the force applied to the cart updated every 50 ms. (A1,B1) Show the time

course of forces applied to the system. The red curve represents the 100 N perturbation applied to the system during 50 ms. The blue curve represents the time

course of the force applied to the cart to stabilize the pendulum. (A2,A3,B2,B3) Represent respectively the frequency of pendulum angle and cart position events as a

function of time. Positive frequencies correspond to the frequency of positive polarity events representing an increase of the error signal (p+: black lines). Negative

frequencies correspond to the frequency of negative polarity events representing a decrease of the error signal (p−: light blue lines). (A4,B4) Show the time course of

the cart position (orange line, deviation from the central position) and the estimate of the position built from the received position events (green line). Finally, (A5,B5)

Represent the angular error of system (orange line, angle with respect to the vertical) and the estimate of the error built from the received events (green line).

pendulum (the effect of the external force is negated and the
pendulum remains in an upright position) while the system is
unstable with the discrete controller. More events are generated
in this condition compared to the condition in Figure 4A (432
events here vs. 199 events in Figure 4A).

In this set of simulations, we showed that the system could
reject a perturbation applied to the cart and keep the pendulum
stable while decreasing the number of times the controlled input
is updated by a factor 12 compared to an equivalent time-discrete
PID with a 1 ms sample time. We also showed that we can keep
the pendulum stable with the same controller parameters while
updating the force applied to the cart every 50 ms instead of each
time an event is received, reducing drastically the burden put on
the actuator.

3.2.2. State-Space Feedback Control Law
After the controllers reject the perturbation and stabilize the
pendulum angle, the third row in Figures 4, 5 shows that the
cart keeps moving. This displacement is generated because the
stabilized angle is not the upright position. It is not possible
to build an observer of the cart position based on pendulum
angle measurements as the observability matrix in this condition
is not full-rank. Therefore, it is not possible to stabilize both
the pendulum angle and the cart position using a single PID
with a single sensor on the pendulum angle. In this section, we
present a state-space feedback control law that stabilizes both the
pendulum angle and the cart position. To that goal, we used two
sensors, one on the cart position and one on the pendulum angle.
The optimal gainK of the state-space feedback law was computed

Frontiers in Neuroscience | www.frontiersin.org 9 August 2019 | Volume 13 | Article 82765

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

using the linear-quadratic regulator2 updated each time an event
is emitted by one of the sensors. We used the estimate of the cart
position, the derivative of the estimate of the cart position, the
estimate of the angular error and the derivative of the estimate
of the angular error as states for the feedback. The estimate of
the derivatives was built like the derivative component in the
PID controller of the previous section. Figure 6A shows the
results of the simulation when the force applied to the cart is
updated every time one of the sensors emits an event. Figure 6B
shows the results of the simulation when the force applied to
the cart is updated only every 50 ms. The simulations show
that the designed state-space feedback control law rejects the
perturbation and that both the cart position and the pendulum
angle are stable by the end of the simulations. A total of 1049
events (451 position events, 598 angular events) were generated
during the simulation presented in Figure 6A, while a total of
1,679 events (1,113 position events, 566 angular events) were
generated during the simulation in Figure 6B.

In this final set of simulations, we stabilized both the inverted
pendulum angle and the cart position. The designed system
rejected the perturbation and stabilized both the pendulum angle
and the cart position. As for the PID simulations, the force
applied to cart was updated every 50 ms and we showed that we
could keep the system stable.

4. DISCUSSION

This work proposes a new non-linear event-based discretization
method and the associated proportional-integral-derivative and
state-space feedback control laws. The key novelty of the
new event generator function lies in the principle that the
time between two events must decrease when the discretized
signal (e.g., an error signal) tends to zero. Contrary to
current event-based discretization/control schemes (e.g., Arzén,
1999; Bernhardsson and Aström, 1999; Miskowicz, 2005, 2007;
Tabuada, 2007; Lunze and Lehmann, 2010; Donkers and
Heemels, 2012; Heemels et al., 2012), the generated events do
not contain the value of the signal. Instead, a transmitted event
contains four parts: the time of the change, a polarity (did the
signal increased or decreased), a sign changed bit (did the signal’s
sign changed) and a refractory gain (the number of times the
threshold set in the level-sampling mechanism has been crossed
during a refractory period) to account for multiple level crossings
during the shortest measurable duration between two events.

2A detailed description of the linear-quadratic regulator is outside the scope of

this paper. The interested reader can learn about it in various textbooks (e.g., in

Corriou, 2004).

Using the new event-triggering scheme, we showed that
all the uncertainties on the signal approximation emerge
from uncertainties on the measurement of the duration
between two events. Also, because the inter-event duration
is the key information to the signal reconstruction, the
components of the system do not require synchronized
clocks but all of them must measure a duration with the
same accuracy.

In addition, the precision of the representation of the error
signal stored in any active part of the control mechanism (e.g.,
128 bits to represent the state of the system) can be much
higher than the number of bits used to transmit an event
(e.g., an 32 bits unsigned integer to represent milliseconds).
As a result, the design of a control scheme based on the new
method of this paper can increase the controlled signal dynamic
range without increasing the network data bandwidth needed to
transmit the information between the different components of
the controlled system.

Our results demonstrate that the new method combines the
advantages of analog continuous time systems

• it can reach an arbitrary precision with a very high
dynamic range

• with the advantages of event-based control
• no events are generated when the error is null.

In addition, the amount of data transmitted between active parts
of the control system can be smaller than the memory needed
to store the signals value. This makes the overall system more
efficient energetically.

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and the Supplementary Files.

AUTHOR CONTRIBUTIONS

PD, S-HI, and RB conceived of the presented idea. PD
developed the theory and performed the computations.
All authors discussed the results and contributed to the
final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00827/full#supplementary-material

REFERENCES

Arzén, K.-E. (1999). “A simple event-based pid controller,” in Proceedings of 14th

IFACWorld Congress, Vol. 18 (Toulouse), 423–428.

Astrom, K. J., and Bernhardsson, B. M. (2002). “Comparison of riemann and

lebesgue sampling for first order stochastic systems,” in Decision and Control,

2002, Proceedings of the 41st IEEE Conference on, Vol. 2 (Las Vegas, NV: IEEE),

2011–2016.

Bernhardsson, B., and Aström, K. (1999). “Comparison of periodic and event based

sampling for first-order stochastic systems,” in Preprints of the 14th IFACWorld

Congress (Toulouse).

Cervin, A., and Astrom, K. J. (2007). “On limit cycles in event-based control

systems,” inDecision and Control, 2007 46th IEEE Conference on (New Orleans,

LA: IEEE), 3190–3195.

Corriou, J.-P. (2004). Process Control: Theory and Applications. London: Springer-

Verlag.

Frontiers in Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 82766

https://www.frontiersin.org/articles/10.3389/fnins.2019.00827/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Daye et al. Event-Based Control

Donkers, M., and Heemels, W. (2012). Output-based event-triggered control with

guaranteed L∞-gain and improved and decentralized event-triggering. IEEE

Trans. Autom. Control 57, 1362–1376. doi: 10.1109/TAC.2011.2174696

Dorf, R., Farren, M., and Phillips, C. (1962). Adaptive sampling frequency

for sampled-data control systems. IRE Trans. Autom. Control 7, 38–47.

doi: 10.1109/TAC.1962.1105415

Heemels, W., Johansson, K. H., and Tabuada, P. (2012). “An introduction to event-

triggered and self-triggered control,” inDecision and Control (CDC), 2012 IEEE

51st Annual Conference on (Maui, HI: IEEE), 3270–3285.

Hetel, L., Fiter, C., Omran, H., Seuret, A., Fridman, E., Richard, J.-P., et al. (2017).

Recent developments on the stability of systems with aperiodic sampling: an

overview. Automatica 76, 309–335. doi: 10.1016/j.automatica.2016.10.023

Heymann, M., Lin, F., Meyer, S., and Resmerita, S. (2005). Analysis of zeno

behaviors in hybrid systems. IEEE Trans. Autom. Control 50, 376–383.

doi: 10.1109/TAC.2005.843874

Lampersky, A. G., and Ames, A. D. (2013). Lyapunov theory for zeno

stability. IEEE Trans. Autom. Control 58, 110–112. doi: 10.1109/TAC.2012.22

08292

Lunze, J., and Lehmann, D. (2010). A state-feedback approach to event-

based control. Automatica 46, 211–215. doi: 10.1016/j.automatica.200

9.10.035

MacPherson, J. M., and Aldridge, J. W. (1979). A quantitative method of computer

analysis of spike train data collected from behaving animals. Brain Res. 175,

183–187. doi: 10.1016/0006-8993(79)90530-4

Maxwell, J. C. (1867). On governors. Proc. R. Soc. Lond. 16, 270–283.

doi: 10.1098/rspl.1867.0055

Miskowicz, M. (2005). “Sampling of signals in energy domain,” in

Emerging Technologies and Factory Automation, 2005. ETFA 2005. 10th

IEEE Conference on, Vol. 1 (Catania: IEEE), 4.

Miskowicz, M. (2007). Asymptotic effectiveness of the event-based sampling

according to the integral criterion. Sensors 7, 16–37. doi: 10.3390/s70

10016

Pontryagin, L. S., Mishchenko, E. F., Boltyanskii, V. G., and Gamkrelidze, R. V.

(1962). TheMathematical Theory of Optimal Processes. New York, NY; London:

Interscience Publishers John Wiley & Sons, Inc.

Posch, C., Matolin, D., andWohlgenannt, R. (2008). “An asynchronous time-based

image sensor,” in 2008 IEEE International Symposium on Circuits and Systems

(Seattle, WA), 2130–2133.

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Richmond, B. J., Optican, L. M., Podell, M., and Spitzer, H. (1987). Temporal

encoding of two-dimensional patterns by single units in primate inferior

temporal cortex. i. response characteristics. J. Neurophysiol. 57, 132–146.

doi: 10.1152/jn.1987.57.1.132

Tabuada, P. (2007). Event-triggered real-time scheduling of stabilizing

control tasks. IEEE Trans. Autom. Control 52, 1680–1685.

doi: 10.1109/TAC.2007.904277

Tomovic, R., and Bekey, G. (1966). Adaptive sampling based on

amplitude sensitivity. IEEE Trans. Autom. Control 11, 282–284.

doi: 10.1109/TAC.1966.1098308

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Daye, Ieng and Benosman. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2019 | Volume 13 | Article 82767

https://doi.org/10.1109/TAC.2011.2174696
https://doi.org/10.1109/TAC.1962.1105415
https://doi.org/10.1016/j.automatica.2016.10.023
https://doi.org/10.1109/TAC.2005.843874
https://doi.org/10.1109/TAC.2012.2208292
https://doi.org/10.1016/j.automatica.2009.10.035
https://doi.org/10.1016/0006-8993(79)90530-4
https://doi.org/10.1098/rspl.1867.0055
https://doi.org/10.3390/s7010016
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1152/jn.1987.57.1.132
https://doi.org/10.1109/TAC.2007.904277
https://doi.org/10.1109/TAC.1966.1098308
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 14 November 2019
doi: 10.3389/fnins.2019.01201

Frontiers in Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 1201

Edited by:

Themis Prodromakis,

University of Southampton,

United Kingdom

Reviewed by:

Alexantrou Serb,

University of Southampton,

United Kingdom

Adnan Mehonic,

University College London,

United Kingdom

*Correspondence:

Akos F. Kungl

fkungl@kip.uni-heidelberg.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 10 July 2019

Accepted: 23 October 2019

Published: 14 November 2019

Citation:

Kungl AF, Schmitt S, Klähn J, Müller P,

Baumbach A, Dold D, Kugele A,

Müller E, Koke C, Kleider M, Mauch C,

Breitwieser O, Leng L, Gürtler N,

Güttler M, Husmann D, Husmann K,

Hartel A, Karasenko V, Grübl A,

Schemmel J, Meier K and

Petrovici MA (2019) Accelerated

Physical Emulation of Bayesian

Inference in Spiking Neural Networks.

Front. Neurosci. 13:1201.

doi: 10.3389/fnins.2019.01201

Accelerated Physical Emulation of
Bayesian Inference in Spiking Neural
Networks
Akos F. Kungl 1*, Sebastian Schmitt 1, Johann Klähn 1, Paul Müller 1, Andreas Baumbach 1,

Dominik Dold 1, Alexander Kugele 1, Eric Müller 1, Christoph Koke 1, Mitja Kleider 1,

Christian Mauch 1, Oliver Breitwieser 1, Luziwei Leng 1, Nico Gürtler 1, Maurice Güttler 1,

Dan Husmann 1, Kai Husmann 1, Andreas Hartel 1, Vitali Karasenko 1, Andreas Grübl 1,

Johannes Schemmel 1, Karlheinz Meier 1 and Mihai A. Petrovici 1,2

1 Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany, 2Department of Physiology, University of Bern,

Bern, Switzerland

The massively parallel nature of biological information processing plays an important

role due to its superiority in comparison to human-engineered computing devices.

In particular, it may hold the key to overcoming the von Neumann bottleneck that

limits contemporary computer architectures. Physical-model neuromorphic devices seek

to replicate not only this inherent parallelism, but also aspects of its microscopic

dynamics in analog circuits emulating neurons and synapses. However, these machines

require network models that are not only adept at solving particular tasks, but that

can also cope with the inherent imperfections of analog substrates. We present a

spiking network model that performs Bayesian inference through sampling on the

BrainScaleS neuromorphic platform, where we use it for generative and discriminative

computations on visual data. By illustrating its functionality on this platform, we implicitly

demonstrate its robustness to various substrate-specific distortive effects, as well as

its accelerated capability for computation. These results showcase the advantages of

brain-inspired physical computation and provide important building blocks for large-scale

neuromorphic applications.

Keywords: physical models, neuromorphic engineering, massively parallel computing, spiking neurons, recurrent

neural networks, neural sampling, probabilistic inference

1. INTRODUCTION

The aggressive pursuit of Moore’s law in conventional computing architectures is slowly but
surely nearing its end (Waldrop, 2016), with difficult-to-overcome physical effects, such as heat
production and quantum uncertainty, representing the main limiting factors. The so-called von
Neumann bottleneck between processing and memory units represents the main cause, as it
effectively limits the speed of these largely serial computation devices. The most promising
solutions come in the form of massively parallel devices, many of which are based on
brain-inspired computing paradigms (Indiveri et al., 2011; Furber, 2016), each with its own
advantages and drawbacks.

Among the various approaches to such neuromorphic computing, one class of devices is
dedicated to the physical emulation of cortical circuits; not only do they instantiate neurons and
synapses that operate in parallel and independently of each other, but these units are actually

68

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01201
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01201&domain=pdf&date_stamp=2019-11-14
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fkungl@kip.uni-heidelberg.de
https://doi.org/10.3389/fnins.2019.01201
https://www.frontiersin.org/articles/10.3389/fnins.2019.01201/full
http://loop.frontiersin.org/people/640760/overview
http://loop.frontiersin.org/people/552467/overview
http://loop.frontiersin.org/people/772550/overview
http://loop.frontiersin.org/people/803623/overview
http://loop.frontiersin.org/people/770889/overview
http://loop.frontiersin.org/people/770694/overview
http://loop.frontiersin.org/people/2480/overview
http://loop.frontiersin.org/people/665879/overview
http://loop.frontiersin.org/people/75042/overview
http://loop.frontiersin.org/people/1075/overview
http://loop.frontiersin.org/people/2505/overview
http://loop.frontiersin.org/people/75002/overview

Kungl et al. Accelerated Inference With Spiking Neurons

represented by distinct circuits that emulate the dynamics of
their biological archetypes (Mead, 1990; Indiveri et al., 2006;
Jo et al., 2010; Schemmel et al., 2010; Pfeil et al., 2013; Qiao
et al., 2015; Chang et al., 2016; Wunderlich et al., 2019). Some
important advantages of this approach lie in their reduced power
consumption and enhanced speed compared to conventional
simulations of biological neuronal networks, which represent
direct payoffs of replacing the resource-intensive numerical
calculation of neuro-synaptic dynamics with the physics of the
devices themselves.

However, such computation with analog dynamics, without
the convenience of binarization, as used in digital devices,
has a downside of its own: variability in the manufacturing
process (fixed pattern noise) and temporal noise both lead to
reduced controllability of the circuit dynamics. Additionally, one
relinquishes much of the freedom permitted by conventional
algorithms and simulations, as one is confined by the dynamics
and parameter ranges cast into the silicon substrate. The main
challenge of exploiting these systems, therefore, lies in designing
performance network models using the available components
while maintaining a degree of robustness toward the substrate-
induced distortions. Just like for the devices themselves,
inspiration for such models often comes from neuroscience, as
the brain needs to meet similar demands.

With accumulating experimental evidence (Berkes et al.,
2011; Pouget et al., 2013; Haefner et al., 2016; Orbán
et al., 2016), the view of the brain itself as an analytical
computation device has shifted. The stochastic nature of neural
activity in vivo is being increasingly regarded as an explicit
computational resource rather than a nuisance that needs to
be dealt with by sophisticated error-correcting mechanisms
or by averaging over populations. Under the assumption
that stochastic brain dynamics reflect an ongoing process of
Bayesian inference in continuous time, the output variability
of single neurons can be interpreted as a representation of
uncertainty. Theories of neural sampling (Buesing et al., 2011;
Hennequin et al., 2014; Aitchison and Lengyel, 2016; Petrovici
et al., 2016; Kutschireiter et al., 2017) provide an analytical
framework for embedding this type of computation in spiking
neural networks.

In this paper we describe the realization of neural sampling
with networks of leaky integrate-and-fire neurons (Petrovici
et al., 2016) on the BrainScaleS accelerated neuromorphic
platform (Schemmel et al., 2010). With appropriate training,
the variability of the analog components can be naturally
compensated and incorporated into a functional network
structure, while the network’s ongoing dynamics make explicit
use of the analog substrate’s intrinsic acceleration for Bayesian
inference (section 2.3). We demonstrate sampling from low-
dimensional target probability distributions with randomly
chosen parameters (section 3.1) as well as inference in high-
dimensional spaces constrained by real-world data, by solving
associated classification and constraint satisfaction problems
(pattern completion, section 3.2). All network components are
fully contained on the neuromorphic substrate, with external
inputs only used for sensory evidence (visual data). Our work
thereby contributes to the search for novel paradigms of

information processing that can directly benefit from the features
of neuro-inspired physical model systems.

2. METHODS

2.1. The BrainScaleS System
BrainScaleS (Schemmel et al., 2010) is a mixed-signal
neuromorphic system, realized in 180 nm CMOS technology,
that emulates networks of spiking neurons. Each BrainScaleS
wafer module consists of a 20 cm silicon wafer with 384
HICANN (High Input Count Analog Neural Network) chips,
see Figure 1A. On each chip, 512 analog circuits emulate the
adaptive exponential integrate-and-fire (AdEx) model (Brette
and Gerstner, 2005; Millner et al., 2010) of spiking neurons
with conductance-based synapses. The dynamics evolve with an
acceleration factor of 104 with respect to biological time, i.e., all
specific time constants (synaptic, membrane, adaptation) are
∼ 104 times smaller than typical corresponding values found
in biology (Schemmel et al., 2010; Petrovici et al., 2014). To
preserve compatibility with related literature (Petrovici et al.,
2016; Schmitt et al., 2017; Leng et al., 2018; Dold et al., 2019),
we refer to system parameters in the biological domain unless
otherwise specified, e.g., a membrane time constant given as
10ms is actually accelerated to 1 µs on the chip.

The parameters of the neuron circuits are stored in analog
memory cells (floating gates) with 10 bit resolution, and the
synaptic weights are stored in 4 bit SRAM (Schemmel et al.,
2010). The analog memory cells are similar to the ones in
Lande et al. (1996), and they are described in Loock (2006) and
Millner (2012).

Spike events are transported digitally and can reach all other
neurons on the wafer with the help of an additional redistribution
layer that instantiates an on-wafer circuit-switched network
(Zoschke et al., 2017) (Figures 1B,C).

Because of mismatch effects (fixed-pattern noise) inherent
to the substrate, the response to incoming stimuli varies from
neuron to neuron (Figure 1D). In order to bring all neurons
into the desired regime and to reduce the neuron-to-neuron
response variability, we employ a standard calibration procedure
that is performed only once, during the commissioning of the
system (Petrovici et al., 2017b; Schmitt et al., 2017). Nevertheless,
even after calibration, a significant degree of diversity persists
(Figure 1E). The emulation of functional networks that do not
rely on population averaging therefore requires appropriate
training algorithms (section 3.2).

2.2. Sampling With Leaky
Integrate-and-Fire Neurons
The theory of sampling with leaky integrate-and-fire neurons
(Petrovici et al., 2016) describes a mapping between the dynamics
of a population of neurons with conductance-based synapses
(equations given in Table 1) and a Markov-chain Monte Carlo
sampling process from an underlying probability distribution
over binary random variables (RVs). Each neuron in such a
sampling network corresponds to one of these RVs: if the k-th
neuron has spiked in the recent past and is currently refractory,
then it is considered to be in the on-state zk = 1, otherwise it is in

Frontiers in Neuroscience | www.frontiersin.org 2 November 2019 | Volume 13 | Article 120169

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 1 | (A) Photograph of a fully assembled wafer module of the BrainScaleS system (dimensions: 50 × 50 × 15 cm). One module hosts 384 HICANN chips on

48 reticles, with 512 physical neurons per chip and 220 synapse circuits per neuron. The wafer itself lies at the center of the module and is itself not visible. 48 FPGAs

are responsible for I/O and experiment control. Support PCBs provide power supply for the on-wafer circuits as well as access to neuron membrane voltages. The

connectors for inter-wafer (sockets resembling USB-A) and off-wafer/host connectivity (Gigabit-Ethernet sockets) are distributed over all four edges of the main PCB.

Mechanical stability is provided by an aluminum frame. (B) The wafer itself is composed of 48 reticles (e.g., red rectangle), each containing 8 HICANN chips (e.g.,

black rectangle, enlarged in C). Inter-reticle connectivity is added in a post-processing step. (C) On a single HICANN chip, the largest area is occupied by the two

synapse matrices which instantiate connections to the neurons positioned in the neuron array. (D,E) Postsynaptic potentials (PSPs) measured on 100 different neuron

membranes using the same parameter settings before (D) and after (E) calibration. The insets show the height-normalized PSPs. The calibration serves two

purposes. First, it provides a translation rule between the desired neuron parameters and the technical parameters set on the hardware. In this case, it brings the time

constants τmem and τsyn close to the target of 8ms, as evidenced by the small spread of the normalized PSPs. Second, in the absence of such a translation rule, it

sets the circuits to their correct working points. Here, this happens for the synaptic weights: after calibration, PSP heights are, on average closer to the target working

point of 3mV, but they remain highly diverse due to the variability of the substrate. For more details see Schmitt et al. (2017). The PSPs are averaged over 375

presynaptic spikes and smoothed with a Savitzky-Golay filter (Savitzky and Golay, 1964) to eliminate readout noise. The time-constants are given in the biological

domain, but they are 104 faster on the system.

the off-state zk = 0 (Figures 2A,B). With appropriate synaptic
parameters, such a network can approximately sample from a
Boltzmann distribution defined by

p∗(z) =
1

Z
exp

(

1

2
z
T
Wz + z

T
b

)

, (1)

where Z is the partition sum, W a symmetric, zero-diagonal
effective weight matrix and bi the effective bias of the i-th neuron
(Figure 2D).

In the original model, each neuron receives excitatory and
inhibitory Poisson input. This plays two important roles: it
transforms a deterministic LIF neuron into a stochastic firing
unit and induces a high-conductance state, with an effective
membrane time constant that is much smaller than other time
constants in the system: τeff ≪ τsyn, τref (see e.g., Destexhe
et al., 2003; Petrovici, 2016), which symmetrizes the neural
activation function, as explained in the following. The activation
function of an LIF neuron without noise features a sharp onset,
but only a slow converge to its maximum value, hence being
highly asymmetric around the point of 50% activity. Background
Poisson noise smears out the onset of the activation function,
while the reduced membrane time constant accelerates the
convergence to the maximum, making the activation function
more symmetric and thus more similar to a logistic function,
which is a pre-requisite for this form of sampling. For the
explicit derivation see Petrovici (2016) and Petrovici et al. (2016).
A mapping of this activation function to the abovementioned

TABLE 1 | Description of the neuron and synapse model.

Type Leaky integrate-and-fire (LIF),

conductance-based synapse,

exponential kernel

Subthreshold dynamics Subthreshold dynamics [t /∈ [tsp, tsp + τref)] :

Cm(d/dt)u(t) =

−gl[u(t)−Eleak]−ginhsyn(t)[u(t)−Einh]−gexcsyn (t)[u(t)−Eexc]

Reset and refractoriness [t ∈ [tsp, tsp + τref)] :

u(t) = Vreset

This model was emulated on the BrainScaleS

system (Schemmel et al., 2010)

Spiking If u(t) crosses Vthresh from below at t = tsp,

neuron emits a spike with timestamp tsp

Synapse dynamics For each presynaptic spike at tsp :

gsyn(t) = J exp[−(t− tsp − d)/(τsyn)]θ (t− tsp − d)

where J is the synaptic weight, d the synaptic delay

and θ the Heaviside function

This model was emulated on the BrainScaleS

system (Schemmel et al., 2010)

The variables are described including their numerical values in the experiment in Table 2.

logistic function 1/[1 + exp(−x)] provides the translation from
the dimensionless weights and biases of the target distribution to
the corresponding biological parameters of the spiking network
(Petrovici, 2016).

Frontiers in Neuroscience | www.frontiersin.org 3 November 2019 | Volume 13 | Article 120170

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 2 | Sampling with leaky integrate-and-fire (LIF) neurons. (A) Schematic of a spiking sampling network (SSN) with 5 neurons. Each line represents two

reciprocal synaptic connections with equal weights. (B) Example membrane potentials of three neurons in the network. Following a spike, the refractory mechanism

effectively clamps the membrane potential to the reset value for a duration τref. During this time, the RV corresponding to that neuron is in the state z = 1 (marked in

green). At any point in time, the state sampled by the network can therefore be constructed directly from its output spikes and the refractory time τref of the neurons.

(C) Probability distribution sampled by an SSN with three neurons as compared to the target distribution. (D) Based on this framework (Petrovici et al., 2016),

hierarchical sampling networks can be built, which can be trained on real-world data. Each line represents a reciprocal connection (two synapses) between the

connected neurons.

Although different in their dynamics, such sampling
spiking networks (SSNs, Figure 2D) function similar to (deep)
Boltzmann machines (Hinton et al., 1984), which makes them
applicable to the same class of machine learning problems (Leng
et al., 2018). Training can be done using an approximation of
wake-sleep algorithm (Hinton et al., 1995; Hinton, 2012), which
implements maximum-likelihood learning on the training set:

1bi = η(〈zi〉
∗ − 〈zi〉) , (2)

1Wij = η(〈zizj〉
∗ − 〈zizj〉) , (3)

where 〈·〉 and 〈·〉∗ represent averages over the sampled (model
or sleep phase) and target (data or wake phase) distribution,
respectively, and η is the learning rate.

In order to enable a fully-contained neuromorphic emulation
on the BrainScaleS system, the original model had to be
modified. The changes in the network structure, noise generation
mechanism, and learning algorithm are described in section 2.3.

For low-dimensional, fully specified target distributions,
we used the Kullback-Leibler divergence (DKL, Kullback and
Leibler, 1951) as a measure of discrepancy between the sampled

(p) and the target (p∗) distributions:

DKL(p ‖ p∗) = −
∑

zi∈�

p(zi) ln

(

p(zi)

p∗(zi)

)

(4)

This was done in part to preserve comparability with previous
studies (Buesing et al., 2011; Petrovici et al., 2015, 2016), but
also because the DKL is the natural loss function for maximum
likelihood learning. For visual datasets, we used the error rate
(ratio of misclassified images in the test set) for discriminative
tasks and the mean squared error (MSE) between reconstruction
and original image for pattern completion tasks. The MSE is
defined as

MSE =
1

Npixels

Npixels
∑

k =1

(

zdatak − zreconk

)2
, (5)

where zdata
k

is the reference data value, zrecon
k

is the model
reconstruction and the sum goes over the Npixels pixels to be
reconstructed by the SSN.

2.3. Experimental Setup
The physical emulation of a network model on an analog
neuromorphic substrate is not as straightforward as a

Frontiers in Neuroscience | www.frontiersin.org 4 November 2019 | Volume 13 | Article 120171

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 3 | Experimental setup. Each sampling unit is instantiated by a pair of neurons on the hardware. The bias neuron is configured with a suprathreshold leak

potential and generates a regular spike train that impinges on the sampling neuron , thereby serving as a bias, controlled by wb. (A) As a benchmark, we provided

each sampling neuron with private, off-substrate Poisson spike sources. (B) Alternatively, in order to reduce the I/O load, the noise was generated by a random

network (RN). The RN consisted of randomly connected inhibitory neurons with Eleak > Vthresh. Connections were randomly assigned, such that each sampling neuron

received a fixed number of excitatory and inhibitory pre-synaptic partners (Table 1). (C) Exemplary activation function (mean firing frequency) of a single sampling

neuron with Poisson noise and with an RN as a function of the bias weight. The standard deviation of the trial-to-trial variability is on the order of 0.1Hz for both

activation functions, hence the error bars are too small to be shown. The inset shows the membrane trace of the corresponding bias neuron. (D,E) The figures show

histograms over all neurons in a sampling network on a calibrated BrainScaleS system. The width s and the midpoint w0
b of the activation functions with Poisson noise

and with an RN are calculated by fitting the logistic function 〈ν〉 = ν0/{1+ exp[−(wb −w0
b)/s]} to the data.

software simulation, as it needs to comply with the
constraints imposed by the emulating device. Often, it
may be tempting to fine-tune the hardware to a specific
configuration that fits one particular network, e.g., by
selecting specific neuron and synapse circuits that operate
optimally given a particular set of network parameters, or
by manually tweaking individual hardware parameters after
the network has been mapped and trained on the substrate.
Here, we explicitly refrained from any such interventions
in order to guarantee the robustness and scalability of
our results.

All experiments were carried out on a single module of the
BrainScaleS system using a subset of the available HICANN
chips. The network setupwas specified in the BrainScaleS-specific
implementation of PyNN (Davison et al., 2009) and the standard
calibration (Schmitt et al., 2017) was used to set the analog
parameters. The full setup consisted of two main parts: the SSN
and the source of stochasticity.

In the original samplingmodel (Petrovici et al., 2016), in order
to affect biases, the wake-sleep algorithm (Equation 1) requires
access to at least one reversal potential (El, Eexc, or Einh), which
are all controlled by analog memory cells. Given that rewriting
analogmemory cells is both less precise and slower than rewriting
the SRAM cells controlling the synaptic weights, we modified
our SSNs to implement biases by means of synaptic weights. To
this end, we replaced individual sampling neurons by sampling
units, each realized using two hardware neurons (Figures 3A,B).
Like in the original model, a sampling neuron was set up to

encode the corresponding binary RV. Each sampling neuron was
accompanied by a bias neuron set up with a suprathreshold leak
potential that ensured regular firing (Figure 3C, inset). Each bias
neuron projected to its target sampling neuron with both an
excitatory and an inhibitory synapse (with independent weights),
thus inducing a controllable offset of the sampling neuron’s
average membrane potential. Because excitatory and inhibitory
inputs are routed through different circuits for each neuron,
two types of synapses were required to allow the sign of the
effective bias to change during training. For larger networks,
in order to optimize the allocation of hardware resources, we
shared the use of bias neurons among multiple sampling neurons
(connected via distinct synapses). Similarly, in order to allow sign
switches during training, connections between sampling neurons
were implemented by pairs of synapses (one excitatory and one
inhibitory) as well.

The dynamics of the sampling neurons were rendered
stochastic in two different ways. The first setup served as a
benchmark and represented a straightforward implementation
of the theoretical model from (Petrovici et al., 2016), with
Poisson noise generated on the host computer and fed in
during the experiment (Figure 3A). In the second setup, we
used the spiking activity of a sparse recurrent random network
(RN) of inhibitory neurons, instantiated on the same wafer,
as a source of noise (Figure 3B). For a more detailed study
of sampling-based Bayesian inference with noise generated by
deterministic networks, we refer to (Jordan et al., 2017). The
mutual inhibition ensured a relatively constant (sub)population

Frontiers in Neuroscience | www.frontiersin.org 5 November 2019 | Volume 13 | Article 120172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

firing rate with suitable random statistics that can replace
the ideal Poisson noise in our application. Projections from
the RN to the SSN were chosen as random and sparse;
this resulted in weak, but non-zero shared-input correlations.
The remaining correlations are compensated by appropriate
training; the Hebbian learning rule (Equation 1) changes the
weights and biases in the network such that they cancel
the input correlations induced by the RN activity (Bytschok
et al., 2017; Dold et al., 2019). Hence, the same plasticity rule
simultaneously addresses three issues: the learning procedure
itself, the compensation of analog variability in neuronal
excitability, and the compensation of cross-correlations in the
input coming from the background network. This allowed the
hardware-emulated RN to replace the Poisson noise required by
the theoretical model.

With these noise-generating mechanisms, the activation
function of the neurons, defined by the firing rate as a function
of the bias weight wb, took on an approximately logistic shape,
as required by the sampling model (Figure 3C). Due mainly to
the variability of the hardware circuits and the precision of the
analog parameters, the exact shape of this activation function
varied significantly between neurons (Figures 3D,E). Effectively,
this means that initial weights and biases were set randomly,
but also that the effective learning rates were different for each
neuron. However, as we show below, this did not prevent the
training procedure from converging to a good solution. This
robustness, with respect to substrate variability, represents an
important result of this work. The used neuron parameters are
shown in Table 2 and a summary of the used networks is given
in Table 3. Our largest experiment, a network of 609 neurons
with 208 sampling neurons, one bias neuron and 400 neurons
in the RN (Table 3C) used hardware resources on 28 HICANN
chips distributed over seven reticles. Each of these functional
neurons was realized by combining four of the 512 neuronal
compartments (“denmems”) available on each HICANN, in
order to reduce variability in their leak potentials and membrane
time constants; for details see (Schemmel et al., 2010).

To train the networks on a neuromorphic substrate without
embedded plasticity, we used a training concept often referred
to as in-the-loop training (Schmuker et al., 2014; Esser et al.,
2016; Schmitt et al., 2017). With the setup discussed above, the
only parameters changed during training were digital, namely
the synaptic weights between sampling neurons and the weights
between bias and sampling neurons. This allowed us to work with
a fixed set of analog parameters, which significantly amplified
the precision and speed of reconfiguration during learning, as
compared to having used the analog storage instead. The updates
of the digital parameters (synaptic weights) were calculated on
the host computer based on the wake-sleep algorithm (Equation
1) but using the spiking activity measured on the hardware.
During the iterative procedure, the values of the weights were
saved and updated as a double precision floating point variable,
followed by (deterministic) discretization in order to comply
with the single-synapse weight resolution of 4 bits. The learning
parameters are given in Table 4. Clamping (i.e., forcing neurons
into state 1 or 0 with strong excitatory or inhibitory input) was
done by injecting regular spike trains with a 100Hz frequency

TABLE 2 | Neuron parameters.

(A) Sampling neuron

Name Value Description

Vreset −35mV Reset potential

Eleak −20mV Resting potential

Vthresh −20mV Threshold potential

Einh −100mV Inhibitory reversal potential

Eexc 60mV Excitatory reversal potential

τref 4ms Refractory time

τmem ca. 7ms Membrane time constant∗

Cmem 0.2 nF Membrane capacity

τ exc
syn 8ms Excitatory synaptic time constant

τ inh
syn 8ms Inhibitory synaptic time constant

(B) Bias neuron

Name Value Description

Vreset −30mV Reset potential

Eleak 60mV Resting potential

Vthresh −20mV Threshold potential

Einh −100mV Inhibitory reversal potential

Eexc 60mV Excitatory reversal potential

τref 1.5ms Refractory time

τmem ca. 7ms Membrane time constant∗

Cmem 0.2 nF Membrane capacity

τ exc
syn 5ms Excitatory synaptic time constant

τ inh
syn 5ms Inhibitory synaptic time constant

(C) Neurons of the random network

Name Value Description (all analog)

Vreset −60mV Reset potential

Eleak −10mV Resting potential

Vthresh −20mV Threshold potential

Einh −100mV Inhibitory reversal potential

Eexc 60mV Excitatory reversal potential

τref 4ms Refractory time

τmem ca. 7ms Membrane time constant∗

Cmem 0.2 nF Membrane capacity

τ exc
syn 8ms Excitatory synaptic time constant

τ inh
syn 8ms Inhibitory synaptic time constant

(D) Synapse

Name Value Description

wbias [0,15] Synaptic bias weight in hardware values (digital)

wnetwork [0,15] Synaptic network weight in hardware values (digital)

d On the order of

1ms (uncalibrated)

Synaptic delay, estimated in Schemmel et al. (2010)

Parameters of the network setup specified in Table 1. The analog parameters are shown

as specified in the software setup and not as realized on the hardware. For details on the

calibration procedure see e.g., Schmitt et al. (2017). ∗The calibration of the membrane

time constant was not available at the time of this work, and the corresponding technical

parameter was set to the smallest available value instead (fastest possible membrane

dynamics for each neuron).

from the host through five synapses simultaneously, excitatory
for zk = 1 and inhibitory for zk = 0. These multapses
(multiple synapses connecting two neurons) were needed to

Frontiers in Neuroscience | www.frontiersin.org 6 November 2019 | Volume 13 | Article 120173

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

TABLE 3 | Network parameters.

(A) Probability distribution with poisson noise

Name Value Description

Ns 5 Number of sampling neurons

Nb 1 Number of bias neurons

Nr 0 Number of random neurons

KRN – Within-population in-degree of neurons in the random network

Knoise – In-degree of sampling neurons from the random network

wRN – Synaptic weights in the random network

in hardware units

ν
e/i
Poisson 300Hz Poisson frequency to sampling neurons per synapse type

(B) Probability distribution with random network

Name Value Description

Ns 5 Number of sampling neurons

Nb 1 Number of bias neurons

Nr 200 Number of random neurons

KRN 20 Within-population in-degree of neurons in the random network

Knoise 15 In-degree of sampling neurons from the random network

wRN 10 Synaptic weights in the random network

in hardware units

ν
e/i
Poisson – Poisson frequency to sampling neurons per synapse type

(C) High-dimensional dataset

Name Value Description

Ns {207, 208} Number of sampling neurons, { rFMNIST, rMNIST }

Nb 1 Number of bias neurons

Nr 400 Number of random neurons

KRN 20 Within-population in-degree of neurons in the random network

Knoise 15 In-degree of sampling neurons from the random network

wRN 10 Synaptic weights in the random network

in hardware units

ν
e/i
Poisson – Poisson frequency to sampling neurons per synapse type

Parameters are shown for the three different cases described in the manuscript: (A) Target

Boltzmann distribution, Poisson noise. (B) Target Boltzmann distribution, random network

for stochasticity. (C) Learning from data, random network for stochasticity. Note that the

in-degree, sometimes also referred to as a fan-in factor, represents a neuron’s number of

pre-synaptic partners coming from some specific population.

exceed the upper limit of single synaptic weights and thus ensure
proper clamping.

3. RESULTS

3.1. Learning to Approximate a Target
Distribution
The experiments described in this section serve as a general
benchmark for the ability of our hardware-emulated SSNs and
the associated training algorithm to approximate fully specified
target Boltzmann distributions. The viability of our proposal to
simultaneously embed deterministic RNs as sources of pseudo-
stochasticity is tested by comparing the sampling accuracy of
RN-driven SSNs to the case where noise is injected from the host
as perfectly uncorrelated Poisson spike trains.

TABLE 4 | Parameters for learning.

Experiment Learning

rate

Momentum

factor

Minibatch-size Initial (W, b)

Target distribution,

Poisson

1.0 0.6 – U(−15, 15)

Target distribution,

random network

0.5 0.6 – U(−15, 15)

rMNIST 0.4 0.6 7/class Pre-trained

rFMNIST 0.4 0.6 7/class Pre-trained

We did not carry any systematic hyper-parameter optimization. Note that the used learning

parameters in the experiments in section 3.1 are not directly comparable because the

different statistics of the background noise (Poisson or random network) correspond to

different effective learning rates.

Target distributions p∗ over 5 RVs were chosen by sampling
weights and biases from a Beta distribution centered around
zero: bi,wji ∼ 2[Beta(0.5, 0.5) − 0.5]. Similar to previous studies
(Petrovici et al., 2016; Jordan et al., 2017), by giving preference to
larger absolute values of the target distribution’s parameters, we
thereby increased the probability of instantiating rougher, more
interesting energy landscapes. The initial weights and biases of
the network were sampled from a uniform distribution over the
possible hardware weights. Due to the small size of the state
space, the “wake” component of the wake-sleep updates could
be calculated analytically as 〈zizj〉 = p∗(zi = 1, zj = 1) and
〈zi〉 = p∗(zi = 1) by explicit marginalization of the target
distribution over non-relevant RVs.

For training, we used 500 iterations with 1× 105ms sampling
time per iteration. Afterwards, the parameter configuration
that produced the lowest DKL(p ‖ p∗) was tested in a longer
(5× 105ms) experiment. To study the ability of the trained
networks to perform Bayesian inference, we clamped two of the
five neurons to fixed values (z1, z2) = (0, 1) and compared
the sampled conditional distribution to the target conditional
distribution. Results for one of these target distributions are
shown in Figure 4.

On average, with Poisson noise, the training showed fast
convergence during the first 20 iterations, followed by fine-
tuning and full convergence within 200 iterations. As expected,
the convergence of the setups using RNs was significantly
slower due to the need to overcome the additional background
correlations, but they were still able to achieve similar
performance (Figure 4A).

In both setups, during the test run, the trained SSNs converged
to the target distribution following an almost identical power
law, which indicates similar mixing properties (Figure 4B).
For longer sampling durations (≫10× 103ms), the systematic
deviations from the target distributions become visible and
the DKL(p ‖ p∗) reaches the same plateau at approximately
DKL(p ‖ p∗) ≈ 2× 10−2 as observed during training.
Figures 4C,D, respectively show the sampled joint and marginal
distributions after convergence (Supplementary Video 1). These
observations remained consistent across a set of 20 different
target distributions (see Figure 4E for a representative selection).

Similar observations weremade for the inference experiments.
Due to the smaller state space, convergence happened faster

Frontiers in Neuroscience | www.frontiersin.org 7 November 2019 | Volume 13 | Article 120174

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 4 | Emulated SSNs sampling from target Boltzmann distributions. Sampled distributions are depicted in blue for setups with Poisson noise and in orange for

setups using RNs. Target distributions shown in dark yellow. Data was gathered from 150 runs with random initializations. Median values are shown as dark colors

and interquartile ranges as either light colors or error bars. (A) Improvement of sampled distributions during training. The observed variability after convergence (during

the plateau) is not due to noise in the system, but rather a consequence of the weight discretization: when the ideal (target) weights lie approximately mid-way

between two consecutive integer values on the hardware, training leads to oscillations between these values. The parameter configuration showing the best

performance during a training run—which, due to the abovementioned oscillations, was not necessarily the one in the final iteration—was chosen as the end result of

the training phase. Averages of these results are shown as dashed lines. (B) Convergence of sampled distributions for the trained SSNs. (C,D) Sampled joint and

marginal distributions of the trained SSNs after 5× 105 ms, respectively. (E) Consistency of training results for different target distributions using Poisson noise. Here,

we show a representative selection of 6 distributions with 10 independent runs per distribution. The box highlighted in blue corresponds to the target distribution used

in the other panels of Figure 4. The data is plotted following the traditional box-and-whiskers scheme: the orange line represents the median, the box represents the

interquartile range, the whiskers represent the full data range and the × represent the far outliers. (F) Target distributions corresponding to the last five

box-and-whiskers plots in (E). (G) Convergence of conditional distributions for the trained SSNs. (H) and (I) Sampled conditional joint and marginal distributions of the

trained SSNs after 5× 105 ms, respectively.

(Figure 4G). The corresponding joint and marginal distributions
are shown in Figures 4H,I, respectively. The lower accuracy of
these distributions is mainly due to the asymmetry of the effective
synaptic weights caused by the variability of the substrate,
toward which the learning algorithm is agnostic. The training
took 5× 102 s wall-clock time, including the pure experiment
runtime, the initialization of the hardware and the calculation
of the updates on the host computer (total turn-over time of the

training). This corresponds to a speed-up factor of 100 compared
to the equivalent 5× 104 s of biological real time. While the
nominal 104 speed-up remained intact for the emulation of
network dynamics, the total speed-up factor was reduced due
to the overhead imposed by network (re)configuration and I/O
between the host and the neuromorphic substrate.

We carried out the same experiments as described previously
with 20 different samples for the weights and the biases of the

Frontiers in Neuroscience | www.frontiersin.org 8 November 2019 | Volume 13 | Article 120175

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 5 | Emulated SSNs sampling from different target Boltzmann distributions. This figure shows the results of experiments identical to the ones in section 3.1 for

20 different target distributions with 10 repetitions for each sample. We show the DKL(p ‖ p∗) of the test-run after training for (A) the joint distributions with Poisson

noise, (B) the inference experiment with Poisson noise, (C) the joint distributions with a random background network and (D) the inference experiment with a random

background network. The data is plotted following the traditional box-and-whiskers scheme: the orange line represents the median, the box represents the

interquartile range, the whiskers represent the full data range and the × represent the far outliers. In each subplot the leftmost data (highlighted in red) corresponds to

the distribution shown in Figure 4.

target distribution. In Figure 5 we show the final DKLs after
training to represent a target distribution both with Poisson noise
and with the activity of a random network. The experiments
were repeated 10 times for each sample. Median learning
results remained consistent across target distributions, with the
variability reflecting the difficulty of the problem (discrepancies
between LIF and Glauber dynamics become more pronounced
for larger weights and biases). Variability across trials for the
same target distribution is due to the trial-to-trial variability of
the analog parameter storage (floating gates), due to the inherent
stochasticity in the learning procedure (sampling accuracy in an
update step), as well as due to systematic discrepancies between
the effective pre-post and post-pre interaction strengths between
sampling units, which are themselves a consequence of the
aforementioned floating gate variability.

3.2. Learning From Data
In order to obtain models of labeled data, we trained hierarchical
SSNs analogously to restricted Boltzmann machines (RBMs).
Here, we used two different datasets: a reduced version of the
MNIST (LeCun et al., 1998) and the fashion MNIST (Xiao et al.,
2017) datasets, which we abbreviate as rMNIST and rFMNIST

in the following. The images were first reduced with nearest-
neighbor resampling [misc.imresize function in the SciPy
library (Jones et al., 2001)] and then binarized around the median
gray value over each image. We used all images from the original
datasets (∼6,000 per class) from four classes (0, 1, 4, 7) for
rMNIST and three classes (T-shirts, Trousers, Sneakers) for
rFMNIST (Figures 6A,B). The emulated SSNs consisted of three
layers, with 144 visible, 60 hidden, and either four label units for
rMNIST or three for rFMNIST.

Pre-training was done on simulated classical RBMs using
the CAST algorithm (Salakhutdinov, 2010). The pre-training
provided a starting point for training on the hardware in
order to accelerate the convergence of the in-the-loop training
procedure. We use the performance of these RBMs in software
simulations using Gibbs sampling as a reference for the results
obtained with the hardware-emulated SSNs. After pre-training,
we mapped these RBMs to approximately equivalent SSNs on
the hardware, using an empirical translation factor based on an
average activation function (Figure 3C) to calculate the initial
hardware synaptic weights from weights and biases of the RBMs.
Especially for rMNIST, this resulted in a significant deterioration
of the classification performance (Figure 6C). After mapping,
we continued training using the wake-sleep algorithm, with the

Frontiers in Neuroscience | www.frontiersin.org 9 November 2019 | Volume 13 | Article 120176

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 6 | Behavior of hierarchical SSNs trained on data. Top row: rMNIST; middle row: rFMNIST; bottom row: exemplary setups for the partial occlusion scenarios.

(A,B) Exemplary images from the rMNIST (A) and rFMNIST (B) datasets used for training and comparison to their MNIST and FMNIST originals. (C,D) Training with

the hardware in the loop after translation of pre-trained parameters. Confusion matrices after training shown as insets. Performance of the reference RBMs shown as

dashed brown lines. Results are given as median and interquartile values over 10 test runs. (E,F) Pattern completion and (G,H) error ratio of the inferred label for

partially occluded images (blue: patch; red: salt&pepper). Solid lines represent median values and shaded areas show interquartile ranges over 250 test images per

class. Performance of the reference RBMs shown as dashed lines. As a reference, we also show the error ratio of the SNNs on unconcluded images in (G) and (H).

(I) Snapshots of the pattern completion experiments: O—original image, C—clamped image (red and blue pixels are occluded), R—response of the visible layer,

L—response of the label layer. (J) Exemplary temporal evolution of a pattern completion experiment with patch occlusion. For better visualization of the activity in the

visible layer in (I,J), we smoothed out its discretized response to obtain grayscale pixel values, by convolving its state vector with a box filter of 10ms width.

hardware in the loop. While in the previous task it was possible
to calculate the data term explicitly, it now had to be sampled as
well. In order to ensure proper clamping, the synapses from the
hidden to the label layer and from the hidden layer to the visible
layer were turned off during the wake phase.

The SSNs were tested for both their discriminative and their
generative properties. For classification, the visible layer was
clamped to images from the test set (black pixels correspond
to zk = 1 and white pixels to zk = 0). Each image was
presented for 500 biological milliseconds, which corresponds
to 50µs wall-clock time. The neuron in the label layer with
the highest firing rate was interpreted as the label predicted by
the model. The spiking activity of the neurons was read out
directly from the hardware, without additional off-chip post-
processing. For both datasets, training was able to restore the
performance lost in the translation of the abstract RBM to

the hardware-emulated SSN. The emulated SSNs achieved error
rates of 4.45+0.12

−0.36% on rMNIST and 3.32+0.27
−0.04% on rFMNIST.

These values are close to the ones obtained by the reference
RBMs: 3.89+0.10

−0.02% on rMNIST and 2.645+0.002
−0.010% on rFMNIST

(Figures 6C,D, confusion matrices shown as insets).
The gross wall-clock time needed to classify the 4125 images

in the rMNIST test set was 10 s (2.4ms per image, 210×
speed-up). For the 3,000 images in the rFMNIST test set, the
emulation ran for 9.4 s (3.1ms per image; 160× speed-up).
This subsumes the runtime of the BrainScaleS software stack,
hardware configuration and the network emulation. The runtime
of the software-stack includes the translation from a PyNN-based
network description to a corresponding hardware configuration.
As before, the difference between the nominal acceleration factor
and the effective speed-up stems from the I/O and initialization
overhead of the hardware system.

Frontiers in Neuroscience | www.frontiersin.org 10 November 2019 | Volume 13 | Article 120177

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 7 | Generated images during guided dreaming. The visible state space, along with the position of the generated images within it, was projected to two

dimensions using t-SNE (Maaten and Hinton, 2008). The thin lines connect consecutive samples. (A) rMNIST; (B) rFMNIST.

To test the generative properties of our emulated SSNs, we set
up two scenarios requiring them to perform pattern completion
(Supplementary Video 2). For each class, 250 incomplete images
were presented as inputs to the visible layer. For each image, 25%
of visible neurons received no input, with the occlusion following
two different schemes: salt&pepper (upper row in Figure 6I) and
patch (lower row in Figure 6I). Each image was presented for
500ms. In order to remove any initialization bias resulting from
preceding images, random input was applied to the visible layer
between consecutive images.

Reconstruction accuracy was measured using the mean
squared error (MSE) between the reconstructed and original
occluded pixels. For binary images, as in our case, the
MSE reflects the average ratio of mis-reconstructed to total
reconstructed pixels. Simultaneously, we also recorded the
classification accuracy on the partially occluded images. After
stimulus onset, the MSE converged from chance level (≈ 50%)
to its minimum (≈ 10%) within 50ms (Figures 6E,F). Given
an average refractory period of ≈ 10ms (Figure 3C), this
suggests that the network was able to react to the input with
no more than 5 spikes per neuron. For all studied scenarios,
the reconstruction performance of the emulated SSNs closely
matched the one achieved by the reference RBMs. Examples
of image reconstruction are shown in Figures 6I,J for both
datasets and occlusion scenarios. The classification performance
deteriorated only slightly compared to non-occluded images and
also remained close to the performance of the reference RBMs
(Figures 6G,H). The temporal evolution of the classification
error closely followed that of the MSE.

As a further test of the generative abilities of our hardware-
emulated SSNs, we recorded the images produced by the visible

layer during guided dreaming. In this task, the visible and hidden
layers of the SSN evolved freely without external input, while the
label layer was periodically clamped with external input such that
exactly one of the label neurons was active at any time (enforced
one-hot coding). In a perfect model, this would cause the visible
layer to sample only from configurations compatible with the
hidden layer, i.e., from images corresponding to that particular
class. Between the clamping of consecutive labels, we injected 100
ms random input to visible layer to facilitate the changing of the
image. The SSNs were able to generate varied and recognizable
pictures, within the limits imposed by the low resolution of the
visible layer (Figure 7). For rMNIST, all used classes appeared
in correct correspondence to the clamped label. For rFMNIST,
images from the class “Sneakers” were not always triggered by the
corresponding guidance from the label layer, suggesting that the
learnedmodes in the energy landscape are too deep, and sneakers
too dissimilar to T-shirts and Trousers, to allow good mixing
during guided dreaming.

4. DISCUSSION

This article presents the first scalable demonstration of
sampling-based probabilistic inference with spiking networks
on a highly accelerated analog neuromorphic substrate. We
trained fully connected spiking networks to sample from target
distributions and hierarchical spiking networks as discriminative
and generative models of higher-dimensional input data. Despite
the inherent variability of the analog substrate, we were able
to achieve performance levels comparable to those of software
simulations in several benchmark tasks, while maintaining a

Frontiers in Neuroscience | www.frontiersin.org 11 November 2019 | Volume 13 | Article 120178

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

significant overall acceleration factor compared to systems that
operate in biological real time. Importantly, by co-embedding
the generation of stochasticity within the same substrate, we
demonstrated the viability of a fully embedded neural sampling
model with significantly reduced demands on off-substrate I/O
bandwidth. Having a fully embedded implementation allows the
runtime of the experiments to scale as O(1) with the size of
the emulated network; this is inherent to the nature of physical
emulation, for which wall-clock runtime only depends on the
emulated time in the biological reference frame. In the following
sections, we address the limitations of our study, point out links
to related work and discuss its implications within the greater
context of computational neuroscience and bio-inspired AI.

4.1. Limitations and Constraints
The most notable limitation imposed by the current
commissioning state of the BrainScaleS system was on the
size of the emulated SSNs. At the time of writing, due to
limited software flexibility, system assembly and substrate yield,
the usable hardware real-estate was reduced to a patchy and
non-contiguous area, thereby strongly limiting the maximum
connectivity between different locations within this area. In
order to limit synapse loss to small values (below 2%), we
restricted ourselves to using a small but contiguous functioning
area of the wafer, which in turn limited the maximum size of our
SSNs and noise-generating RNs. Ongoing improvements in post-
production and assembly, as well as in the mapping and routing
software, are expected to enhance on-wafer connectivity and
thereby automatically increase the size of emulable networks, as
the architecture of our SSNs scales naturally to such an increase
in hardware resources.

To a lesser extent, the sampling accuracy was also affected by
the limited precision of hardware parameter control. The writing
of analog parameters exhibits significant trial-to-trial variability;
in any given trial, this leads to a heterogeneous substrate, which
is known to reduce the sampling accuracy (Probst et al., 2015).
Most of this variability is compensated during learning, but
the 4 bit resolution of the synaptic weights and the imperfect
symmetry in the effective weight matrix due to analog variability
of the synaptic circuits ultimately limit the ability of the SSN
to approximate target distributions. This leads to the “jumping”
behavior of the DKL(p ‖ p∗) in the final stages of learning
(Figure 4A). In smaller networks, synaptic weight resolution is a
critical performance modifier (Petrovici et al., 2017b). However,
the penalty imposed by a limited synaptic weight resolution is
known to decrease for larger deep networks with more and larger
hidden layers, both spiking and non-spiking (Courbariaux et al.,
2015; Petrovici et al., 2017a). Furthermore, the successor system
(BrainScaleS-2, Aamir et al., 2016) is designed with a 6-bit
weight resolution.

In the setup we used shared bias neurons for several
neurons in the sampling network. This helped us save hardware
resources, thus allowing the emulation of larger functional
networks. Such bias neuron sharing is expected to introduce
some small amount of temporal correlations between the
sampling neurons. However, this effect was too small to observe
in our experiments for several reasons. First, the high firing

rate of the bias neurons helped smooth out the bias voltage
induced into the sampling neurons. Second, the different delays
and spike timing jitter on the hardware reduces such cross-
correlations. Third, other dominant limitations overshadow
the effect of shared bias neurons. In any case, the used
training procedure inherently compensates for excess cross-
correlations, thus effectively removing any distortions to the
target distribution that this effect might introduce (Bytschok
et al., 2017; Dold et al., 2019).

In the current setup, our SSNs displayed limited mixing
abilities. During guided dreaming, images from one of the
learned classes were more difficult to generate (Figure 7).
Restricted mixing due to deep modes in the energy landscape
carved out by contrastive learning is a well-known problem
for classical Boltzmann machines, which is usually alleviated by
computationally costly annealing techniques (Desjardins et al.,
2010; Salakhutdinov, 2010; Bengio et al., 2013). However, the
fully-commissioned BrainScaleS system will feature embedded
short-term synaptic plasticity (Schemmel et al., 2010), which
has been shown to promote mixing in spiking networks (Leng
et al., 2018) while operating purely locally, at the level of
individual synapses.

Currently, the execution speed of emulation runs is dominated
by the I/O overhead, which in turn is mostly spent on setting up
the experiment. This leads to the classification (section 3.2) of one
image taking 2.4 to 3.9 ms, whereas the pure network runtime is
merely 50µs. A streamlining of the software layer that performs
this setup is expected to significantly reduce this discrepancy.

The synaptic learning rule was local and Hebbian, but updates
were calculated on a host computer using an iterative in-
the-loop training procedure, which required repeated stopping,
evaluation and restart of the emulation, thereby reducing the
nominal acceleration factor of 104 by two orders of magnitude.
By utilizing on-chip plasticity, as available, for example, on
the BrainScaleS-2 successor system (Friedmann et al., 2017;
Wunderlich et al., 2019), this laborious procedure becomes
obsolete and the accelerated nature of the substrate can be
exploited to its fullest extent.

4.2. Relation to Other Work
This study builds upon a series of theoretical and experimental
studies of sampling-based probabilistic inference using the
dynamics of biological neurons. The inclusion of refractory times
was first considered in Buesing et al. (2011). An extension to
networks of leaky integrate-and-fire neurons and a theoretical
framework for their dynamics and statistics followed in Petrovici
et al. (2013) and Petrovici et al. (2016). The compensation
of shared-input correlations through inhibitory feedback and
learning was discussed in Bytschok et al. (2017), Jordan et al.
(2017), and Dold et al. (2019), inspired by the early study of
asynchronous irregular firing in Brunel (2000) and by preceding
correlation studies in theoretical (Tetzlaff et al., 2012) and
experimental (Pfeil et al., 2016) work.

Previous small-scale studies of sampling on accelerated
mixed-signal neuromorphic hardware include (Petrovici et al.,
2015, 2017a,b). An implementation of sampling with spiking
neurons and its application to the MNIST dataset was shown in

Frontiers in Neuroscience | www.frontiersin.org 12 November 2019 | Volume 13 | Article 120179

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

Pedroni et al. (2016) using the fully digital, real-time TrueNorth
neuromorphic chip (Merolla et al., 2014).

We stress two important differences between (Pedroni et al.,
2016) and this work. First, the nature of the neuromorphic
substrate: the TrueNorth system is fully digital and calculates
neuronal state updates numerically, in contrast to the physical-
model paradigm instantiated by BrainScaleS. In this sense,
TrueNorth emulations are significantly closer to classical
computer simulations on parallel machines: updates of
dynamical variables are precise and robustness to variability is
not an issue; however TrueNorth typically runs in biological real
time (Merolla et al., 2014; Akopyan et al., 2015), which is 10,000
times slower than BrainScaleS. Second, the nature of neuron
dynamics: the neuron model used in (Pedroni et al., 2016) is an
intrinsically stochastic unit that sums its weighted inputs, thus
remaining very close to classical Gibbs sampling and Boltzmann
machines, while our approach considers multiple additional
aspects of its biological archetype (exponential synaptic kernels,
leaky membranes, deterministic firing, stochasticity through
synaptic background, shared-input correlations etc.). Moreover,
our approach uses fewer hardware neuron units to represent a
sampling unit, enabling a more parsimonious utilization of the
neuromorphic substrate.

4.3. Conclusion
In this work we showed how sampling-based Bayesian
inference using hierarchical spiking networks can be
robustly implemented on a physical model system despite
inherent variability and imperfections. Underlying neuron
and synapse dynamics are deterministic and close to their
biological archetypes, but with much shorter time constants,
hence the intrinsic acceleration factor of 104 with respect
to biology. The entire architecture—sampling network
plus background random network—was fully deterministic
and entirely contained on the neuromorphic substrate,
with external communication used only to represent input
patterns and labels. Considering the deterministic nature
of neurons in vitro (Mainen and Sejnowski, 1995; Reinagel
and Reid, 2002; Toups et al., 2012), such an architecture also
represents a plausible model for neural sampling in cortex
(Jordan et al., 2017; Dold et al., 2019).

We demonstrated sampling from arbitrary Boltzmann
distributions over binary random variables, as well as generative
and discriminative properties of networks trained with visual
data. The framework can be extended to sampling from arbitrary
probability distributions over binary random variables, as it
was shown in software simulations (Probst et al., 2015). For
such networks, the two abovementioned computational tasks
(pattern completion and classification) happen simultaneously,
as they both require the calculation of conditional distributions,
which is carried out implicitly by the network dynamics.
Both during learning and for the subsequent inference tasks,
the setup benefitted significantly from the fast-intrinsic
dynamics of the substrate, achieving a net speedup of 100–210
compared to biology.

We view these results as a contribution to the nascent
but expanding field of applications for biologically inspired

physical-model systems. They demonstrate the feasibility
of such devices to solve problems in machine learning,
as well as studying biological phenomena. Importantly,
they explicitly address the search for robust computational
models that are able to harness the strengths of these
systems, most importantly their speed and energy efficiency.
The proposed architecture scales naturally to substrates
with more neuronal real-estate and can be used for a
wide array of tasks that can be mapped to a Bayesian
formulation, such as constraint satisfaction problems
(Jonke et al., 2016; Fonseca Guerra and Furber, 2017),
prediction of temporal sequences (Sutskever and Hinton,
2007), movement planning (Taylor and Hinton, 2009; Alemi
et al., 2015), simulation of solid-state systems (Edwards
and Anderson, 1975), and quantum many-body problems
(Carleo and Troyer, 2017; Czischek et al., 2018).

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

AFK, AB, DD, LL, SS, PM, and MP designed the study.
AFK conducted the experiments and the evaluations.
NG contributed to the evaluations and provided software
support for the evaluation. AFK wrote the initial manuscript.
EM, CM, JK, SS, KH, and OB supported the experiment
realization. EM coordinated the software development for the
neuromorphic systems. AK, CK, and MK contributed with
the characterization, calibration testing, and debugging of the
system. AG, DH, and MG were responsible for system assembly.
AG did the digital front- and back-end implementation.
VK provided the FPGA firmware and supported system
commissioning. JS is the architect and lead designer of the
neuromorphic platform. MP, KM, JS, SS, and EM provided the
conceptual and scientific advice. All authors contributed to the
final manuscript.

FUNDING

The work leading to these results received funding from
the European Union Seventh Framework Programme
(FP7) under grant agreement No. #604102, the EU’s
Horizon 2020 research and innovation programme
under grant agreements No. #720270 and #785907
(Human Brain Project, HBP), the EU’s research project
BrainScaleS #269921 and the Heidelberg Graduate School of
Fundamental Physics.

ACKNOWLEDGMENTS

We thank Johannes Bill for many fruitful discussions.
We acknowledge financial support by Deutsche
Forschungsgemeinschaft within the funding programme

Frontiers in Neuroscience | www.frontiersin.org 13 November 2019 | Volume 13 | Article 120180

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

Open Access Publishing, by the Baden-Württemberg Ministry
of Science, Research and the Arts and by Ruprecht-Karls-
Universität Heidelberg. We owe particular gratitude to
the sustained support of our research by the Manfred
Stärk Foundation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.01201/full#supplementary-material

REFERENCES

Aamir, S. A., Müller, P., Hartel, A., Schemmel, J., and Meier, K. (2016). “A highly

tunable 65-nm cmos lif neuron for a large scale neuromorphic system,” in 42nd

European Solid-State Circuits Conference, ESSCIRC Conference 2016 (Lausanne:

IEEE), 71–74.

Aitchison, L., and Lengyel, M. (2016). The hamiltonian brain: efficient probabilistic

inference with excitatory-inhibitory neural circuit dynamics. PLoS Comput.

Biol. 12:e1005186. doi: 10.1371/journal.pcbi.1005186

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Alemi, O., Li, W., and Pasquier, P. (2015). “Affect-expressive movement

generation with factored conditional restricted Boltzmann machines,” in 2015

International Conference on Affective Computing and Intelligent Interaction

(ACII) (Xian: IEEE), 442–448.

Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013). “Better mixing via deep

representations,” in International Conference on Machine Learning (Atlanta,

GA), 552–560.

Berkes, P., Orbán, G., Lengyel, M., and Fiser, J. (2011). Spontaneous cortical

activity reveals hallmarks of an optimal internal model of the environment.

Science 331, 83–87. doi: 10.1126/science.1195870

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.

doi: 10.1023/A:1008925309027

Buesing, L., Bill, J., Nessler, B., andMaass,W. (2011). Neural dynamics as sampling:

a model for stochastic computation in recurrent networks of spiking neurons.

PLoS Comput. Biol. 7:e1002211. doi: 10.1371/journal.pcbi.1002211

Bytschok, I., Dold, D., Schemmel, J., Meier, K., and Petrovici, M. A. (2017). Spike-

based probabilistic inference with correlated noise. BMC Neurosci. 18:200.

doi: 10.1186/s12868-017-0372-1

Carleo, G., and Troyer, M. (2017). Solving the quantum many-body problem with

artificial neural networks. Science 355, 602–606. doi: 10.1126/science.aag2302

Chang, Y. F., Fowler, B., Chen, Y. C., Zhou, F., Pan, C. H., Chang, T. C.,

et al. (2016). Demonstration of synaptic behaviors and resistive switching

characterizations by proton exchange reactions in silicon oxide. Sci. Rep.

6:21268. doi: 10.1038/srep21268

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: training

deep neural networks with binary weights during propagations,” in Advances

in Neural Information Processing Systems, eds C. Cortes, N. D. Lawrence, D.

D. Lee, M. Sugiyama, and R. Garnett (Montreal, QC: Neural Information

Processing Systems Foundation, Inc.), 3123–3131.

Czischek, S., Gärttner, M., and Gasenzer, T. (2018). Quenches near ising quantum

criticality as a challenge for artificial neural networks. Phys. Rev. B 98:024311.

doi: 10.1103/PhysRevB.98.024311

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009). Pynn: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/neuro.11.011.2008

Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O. (2010).

“Parallel tempering for training of restricted boltzmann machines,” in

Proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics (Cambridge, MA: MIT Press), 145–152.

Destexhe, A., Rudolph, M., and Paré, D. (2003). The high-conductance state of

neocortical neurons in vivo. Nat. Rev. Neurosci. 4:739. doi: 10.1038/nrn1198

Dold, D., Bytschok, I., Kungl, A. F., Baumbach, A., Breitwieser, O., Senn, W.,

et al. (2019). Stochasticity from function—why the bayesian brain may need

no noise. Neural Netw. 119, 200–213. doi: 10.1016/j.neunet.2019.08.002

Edwards, S. F., and Anderson, P. W. (1975). Theory of spin glasses. J. Phys. F Metal

Phys. 5:965.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). From the cover: convolutional networks for

fast, energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A.

113:11441. doi: 10.1073/pnas.1604850113

Fonseca Guerra, G. A., and Furber, S. B. (2017). Using stochastic spiking

neural networks on spinnaker to solve constraint satisfaction problems. Front.

Neurosci. 11:714. doi: 10.3389/fnins.2017.00714

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier,

K. (2017). Demonstrating hybrid learning in a flexible neuromorphic

hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142.

doi: 10.1109/TBCAS.2016.2579164

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.

13:051001. doi: 10.1088/1741-2560/13/5/051001

Haefner, R. M., Berkes, P., and Fiser, J. (2016). Perceptual decision-making

as probabilistic inference by neural sampling. Neuron 90, 649–660.

doi: 10.1016/j.neuron.2016.03.020

Hennequin, G., Aitchison, L., and Lengyel, M. (2014). Fast sampling for bayesian

inference in neural circuits. arXiv 1404.3521.

Hinton, G. E. (2012). “A practical guide to training restricted boltzmann

machines,” in Neural Networks: Tricks of the Trade, eds G. Montavon,

G. B. Orr, and K.-R. Müller (Berlin; Heidelberg: Springer), 599–619.

doi: 10.1007/978-3-642-35289-8

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The “wake-sleep”

algorithm for unsupervised neural networks. Science 268, 1158–1161.

Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984). Boltzmann Machines:

Constraint Satisfaction Networks That Learn. Pittsburgh, PA: Carnegie-Mellon

University, Department of Computer Science.

Indiveri, G., Chicca, E., and Douglas, R. J. (2006). A VLSI array of low-power

spiking neurons and bistable synapses with spike-timing dependent plasticity.

IEEE Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.

10, 1297–1301. doi: 10.1021/nl904092h

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open Source Scientific Tools

for Python.

Jonke, Z., Habenschuss, S., and Maass, W. (2016). Solving constraint satisfaction

problems with networks of spiking neurons. Front. Neurosci. 10:118.

doi: 10.3389/fnins.2016.00118

Jordan, J., Petrovici, M. A., Breitwieser, O., Schemmel, J., Meier, K., Diesmann, M.,

et al. (2017). Stochastic neural computation without noise. arXiv 1710.04931.

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.

Stat. 22, 79–86.

Kutschireiter, A., Surace, S. C., Sprekeler, H., and Pfister, J.-P. (2017). Nonlinear

bayesian filtering and learning: a neuronal dynamics for perception. Sci. Rep.

7:8722. doi: 10.1038/s41598-017-17246-9

Lande, T. S., Ranjbar, H., Ismail, M., and Berg, Y. (1996). “An analog floating-gate

memory in a standard digital technology,” in Proceedings of Fifth International

Conference onMicroelectronics for Neural Networks (Lausanne: IEEE), 271–276.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.

Frontiers in Neuroscience | www.frontiersin.org 14 November 2019 | Volume 13 | Article 120181

https://www.frontiersin.org/articles/10.3389/fnins.2019.01201/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.1005186
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1126/science.1195870
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1186/s12868-017-0372-1
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/srep21268
https://doi.org/10.1103/PhysRevB.98.024311
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1038/nrn1198
https://doi.org/10.1016/j.neunet.2019.08.002
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1016/j.neuron.2016.03.020
https://doi.org/10.1007/978-3-642-35289-8
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1021/nl904092h
https://doi.org/10.3389/fnins.2016.00118
https://doi.org/10.1038/s41598-017-17246-9
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kungl et al. Accelerated Inference With Spiking Neurons

Leng, L., Martel, R., Breitwieser, O., Bytschok, I., Senn, W., Schemmel, J., et al.

(2018). Spiking neurons with short-term synaptic plasticity form superior

generative networks. Sci. Rep. 8:10651. doi: 10.1038/s41598-018-28999-2

Loock, J.-P. (2006). Evaluierung eines floating gate analogspeichers für neuronale

netze in single-poly umc 180nm cmos-prozess (Diploma thesis), University of

Heidelberg, Heidelberg, Germany.

Maaten, L. V. D., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.

Learn. Res. 9, 2579–2605. Available online at: http://www.jmlr.org/papers/v9/

vandermaaten08a.html

Mainen, Z. F., and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical

neurons. Science 268, 1503–1506.

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Millner, S. (2012). Development of a multi-compartment neuron model emulation

(PhD thesis) (Heidelberg: Heidelberg University, Faculty of Physics and

Astronomy). doi: 10.11588/heidok.00013979

Millner, S., Grübl, A., Meier, K., Schemmel, J., and Schwartz, M.-O. (2010). A

VLSI implementation of the adaptive exponential integrate-and-fire neuron

model. Adv. Neural Inform. Process. Syst. (Vancouver, QC) 23, 1642–1650.

Available online at: https://papers.nips.cc/paper/3995-a-vlsi-implementation-

of-the-adaptive-exponential-integrate-and-fire-neuron-model

Orbán, G., Berkes, P., Fiser, J., and Lengyel, M. (2016). Neural variability and

sampling-based probabilistic representations in the visual cortex. Neuron 92,

530–543. doi: 10.1016/j.neuron.2016.09.038

Pedroni, B. U., Das, S., Arthur, J. V., Merolla, P. A., Jackson, B. L., Modha,

D. S., et al. (2016). Mapping generative models onto a network of

digital spiking neurons. IEEE Trans. Biomed. Circuits Syst. 10, 837–854.

doi: 10.1109/TBCAS.2016.2539352

Petrovici, M. A. (2016). Form Versus Function: Theory and Models for Neuronal

Substrates. Springer International Publishing Switzerland. Available online at:

https://www.springer.com/gp/book/9783319395517

Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., andMeier, K. (2013). Stochastic

inference with deterministic spiking neurons. arXiv 1311.3211.

Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., andMeier, K. (2016). Stochastic

inference with spiking neurons in the high-conductance state. Phys. Rev. E

94:042312. doi: 10.1103/PhysRevE.94.042312

Petrovici, M. A., Schmitt, S., Klähn, J., Stöckel, D., Schroeder, A., Bellec, G.,

et al. (2017a). “Pattern representation and recognition with accelerated analog

neuromorphic systems,” in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS) (Baltimore, MD: IEEE), 1–4.

Petrovici, M. A., Schroeder, A., Breitwieser, O., Grübl, A., Schemmel, J., and Meier,

K. (2017b). “Robustness from structure: inference with hierarchical spiking

networks on analog neuromorphic hardware,” in 2017 International Joint

Conference on Neural Networks (IJCNN) (Anchorage, AL: IEEE), 2209–2216.

Petrovici, M. A., Stöckel, D., Bytschok, I., Bill, J., Pfeil, T., Schemmel, J., et al.

(2015). “Fast sampling with neuromorphic hardware,” in Advances in Neural

Information Processing Systems (NIPS), eds C. Cortes, N. D. Lawrence, D.

D. Lee, M. Sugiyama, and R. Garnett, (Montreal, QC: Neural Information

Processing Systems Foundation, Inc.) Vol. 28.

Petrovici, M. A., Vogginger, B., Müller, P., Breitwieser, O., Lundqvist, M., Muller,

L., et al. (2014). Characterization and compensation of network-level anomalies

in mixed-signal neuromorphic modeling platforms. PLoS ONE 9:e108590.

doi: 10.1371/journal.pone.0108590

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al.

(2013). Six networks on a universal neuromorphic computing substrate. Front.

Neurosci. 7:11. doi: 10.3389/fnins.2013.00011

Pfeil, T., Jordan, J., Tetzlaff, T., Grübl, A., Schemmel, J., Diesmann, M., et al.

(2016). Effect of heterogeneity on decorrelation mechanisms in spiking

neural networks: a neuromorphic-hardware study. Phys. Rev. X 6:021023.

doi: 10.1103/PhysRevX.6.021023

Pouget, A., Beck, J. M., Ma, W. J., and Latham, P. E. (2013). Probabilistic brains:

knowns and unknowns. Nat. Neurosci. 16:1170. doi: 10.1038/nn.3495

Probst, D., Petrovici, M. A., Bytschok, I., Bill, J., Pecevski, D., Schemmel,

J., et al. (2015). Probabilistic inference in discrete spaces can be

implemented into networks of LIF neurons. Front. Comput. Neurosci.

9:13. doi: 10.3389/fncom.2015.00013

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Reinagel, P., and Reid, R. C. (2002). Precise firing events

are conserved across neurons. J. Neurosci. 22, 6837–6841.

doi: 10.1523/JNEUROSCI.22-16-06837.2002

Salakhutdinov, R. (2010). “Learning deep boltzmann machines using adaptive

MCMC,” in Proceedings of the 27th International Conference on Machine

Learning (ICML-10), (Haifa), 943–950.

Savitzky, A., and Golay, M. J. (1964). Smoothing and differentiation of data by

simplified least squares procedures. Anal. Chem. 36, 1627–1639.

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems (ISCAS) (IEEE), 1947–1950.

Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Guettler, M., Hartel, A., et al. (2017).

“Neuromorphic hardware in the loop: training a deep spiking network on

the brainscales wafer-scale system,” in 2017 International Joint Conference on

Neural Networks (IJCNN) (Anchorage, AL: IEEE), 2227–2234.

Schmuker, M., Pfeil, T., and Nawrot, M. P. (2014). A neuromorphic network

for generic multivariate data classification. Proc. Natl. Acad. Sci. U.S.A. 111,

2081–2086. doi: 10.1073/pnas.1303053111

Sutskever, I., and Hinton, G. (2007). “Learning multilevel distributed

representations for high-dimensional sequences,” in Artificial Intelligence

and Statistics, eds M. Meila and X. Shen (San Juan), 548–555.

Taylor, G. W., and Hinton, G. E. (2009). “Factored conditional restricted

boltzmann machines for modeling motion style,” in Proceedings of the 26th

Annual International Conference on Machine Learning (ACM), 1025–1032.

Tetzlaff, T., Helias, M., Einevoll, G. T., and Diesmann, M. (2012). Decorrelation of

neural-network activity by inhibitory feedback. PLoS Comput. Biol. 8:e1002596.

doi: 10.1371/journal.pcbi.1002596

Toups, J. V., Fellous, J. M., Thomas, P. J., Sejnowski, T. J., and Tiesinga,

P. H. (2012). Multiple spike time patterns occur at bifurcation points

of membrane potential dynamics. PLoS Comput. Biol. 8:e1002615.

doi: 10.1371/journal.pcbi.1002615

Waldrop, M. M. (2016). The chips are down for Moore’s law. Nat. News 530:144.

doi: 10.1038/530144a

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A.,

et al. (2019). Demonstrating advantages of neuromorphic computation: a pilot

study. Front. Neurosci. 13:260. doi: 10.3389/fnins.2019.00260

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A Novel Image Dataset

for Benchmarking Machine Learning Algorithms (Zalando SE).

Zoschke, K., Güttler, M., Böttcher, L., Grübl, A., Husmann, D., Schemmel, J., et al.

(2017). “Full wafer redistribution and wafer embedding as key technologies for

a multi-scale neuromorphic hardware cluster,” in 2017 IEEE 19th Electronics

Packaging Technology Conference (Singapore).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Kungl, Schmitt, Klähn, Müller, Baumbach, Dold, Kugele, Müller,

Koke, Kleider, Mauch, Breitwieser, Leng, Gürtler, Güttler, Husmann, Husmann,

Hartel, Karasenko, Grübl, Schemmel, Meier and Petrovici. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 15 November 2019 | Volume 13 | Article 120182

https://doi.org/10.1038/s41598-018-28999-2
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1126/science.1254642
https://doi.org/10.11588/heidok.00013979
https://papers.nips.cc/paper/3995-a-vlsi-implementation-of-the-adaptive-exponential-integrate-and-fire-neuron-model
https://papers.nips.cc/paper/3995-a-vlsi-implementation-of-the-adaptive-exponential-integrate-and-fire-neuron-model
https://doi.org/10.1016/j.neuron.2016.09.038
https://doi.org/10.1109/TBCAS.2016.2539352
https://www.springer.com/gp/book/9783319395517
https://doi.org/10.1103/PhysRevE.94.042312
https://doi.org/10.1371/journal.pone.0108590
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.1103/PhysRevX.6.021023
https://doi.org/10.1038/nn.3495
https://doi.org/10.3389/fncom.2015.00013
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1523/JNEUROSCI.22-16-06837.2002
https://doi.org/10.1073/pnas.1303053111
https://doi.org/10.1371/journal.pcbi.1002596
https://doi.org/10.1371/journal.pcbi.1002615
https://doi.org/10.1038/530144a
https://doi.org/10.3389/fnins.2019.00260
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 1

ORIGINAL RESEARCH
published: 14 January 2020

doi: 10.3389/fnins.2019.01330

Edited by:
Michael Pfeiffer,

Bosch Center for Artificial Intelligence,
Germany

Reviewed by:
Benjamin Ward-Cherrier,

University of Bristol, United Kingdom
Jim Harkin,

Ulster University, United Kingdom

*Correspondence:
Mahmood Amiri

ma_amiri_bme@yahoo.com

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 31 July 2019
Accepted: 26 November 2019

Published: 14 January 2020

Citation:
Salimi-Nezhad N, Ilbeigi E,

Amiri M, Falotico E and Laschi C
(2020) A Digital Hardware System

for Spiking Network of Tactile
Afferents. Front. Neurosci. 13:1330.

doi: 10.3389/fnins.2019.01330

A Digital Hardware System for
Spiking Network of Tactile Afferents
Nima Salimi-Nezhad1, Erfan Ilbeigi1, Mahmood Amiri2* , Egidio Falotico3 and
Cecilia Laschi3

1 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran, 2 Medical Technology
Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran, 3 The BioRobotics Institute, Scuola
Superiore Sant’Anna, Pontedera, Italy

In the present research, we explore the possibility of utilizing a hardware-based
neuromorphic approach to develop a tactile sensory system at the level of first-order
afferents, which are slowly adapting type 1 (SA-I) and fast adapting type 1 (FA-I)
afferents. Four spiking models are used to mimic neural signals of both SA-I and FA-
I primary afferents. Next, a digital circuit is designed for each spiking model for both
afferents to be implemented on the field-programmable gate array (FPGA). The four
different digital circuits are then compared from source utilization point of view to find
the minimum cost circuit for creating a population of digital afferents. In this way, the firing
responses of both SA-I and FA-I afferents are physically measured in hardware. Finally,
a population of 243 afferents consisting of 90 SA-I and 153 FA-I digital neuromorphic
circuits are implemented on the FPGA. The FPGA also receives nine inputs from the
force sensors through an interfacing board. Therefore, the data of multiple inputs are
processed by the spiking network of tactile afferents, simultaneously. Benefiting from
parallel processing capabilities of FPGA, the proposed architecture offers a low-cost
neuromorphic structure for tactile information processing. Applying machine learning
algorithms on the artificial spiking patterns collected from FPGA, we successfully
classified three different objects based on the firing rate paradigm. Consequently, the
proposed neuromorphic system provides the opportunity for development of new tactile
processing component for robotic and prosthetic applications.

Keywords: tactile sensing, spiking network, digital circuit, mechanoreceptor, primary afferents

INTRODUCTION

The sense of touch covers the whole body using a variety of receptors in different depth of skin.
Information coming from muscles and tendons (kinesthetic sensing) and rich signals from touch
receptors embedded in the skin (cutaneous sensing) play a crucial role in our sensory experience,
and thus, we are able to actively communicate with our surrounding world. Specifically, when we
interact with an object, information about that object characteristics such as its shape and texture is
carried in the spatiotemporal pattern of action potentials evoked in a variety of tactile afferents.
These action potentials or spikes are transmitted by the primary afferents to the spinal cord,
cuneate nucleus, thalamus, and finally somatosensory cortex for decoding and decision making.
Consequently, we are able to recognize objects based on tactile exploration (Dahiya et al., 2010,
2013). The specialized mechanoreceptors in the human glabrous skin are composed of two main
types, based on their functionality and their receptive field, (1) slowly adapting (SA) afferent and

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 133083

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01330
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01330
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01330&domain=pdf&date_stamp=2020-01-14
https://www.frontiersin.org/articles/10.3389/fnins.2019.01330/full
http://loop.frontiersin.org/people/455215/overview
http://loop.frontiersin.org/people/680942/overview
http://loop.frontiersin.org/people/454963/overview
http://loop.frontiersin.org/people/213104/overview
http://loop.frontiersin.org/people/87469/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 2

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

(2) the fast adapting (FA) afferent (Dahiya and Valle, 2012;
Tiwana et al., 2012). The SA type 1 (SA-I) and type II (SA-
II) afferents innervate Merkel and Ruffini cylinder, respectively,
and are mostly sensitive to static stimuli. The FA type 1
(FA-I) and type II (FA-II) afferents, which are sensitive to
transient events such as vibration, innervate the Meissner
corpuscle and Pacinian corpuscle, respectively (Lucarotti et al.,
2013). In this study, we focus on the SA-I and FA-I tactile
afferents, which are necessary elements for object manipulation
(Johansson and Flanagan, 2009).

Recent approaches aim to mimic the behavior of the biological
tactile receptors using advanced skin dynamics (Saal et al.,
2017) and neuromorphic models (Oddo et al., 2016) to progress
the efficiency and performance over traditional techniques.
Application of spiking neural networks and neuromorphic
approaches in tactile systems are increasing in the past few
years (Kim et al., 2009; Friedl et al., 2016; Oddo et al.,
2016; Yi and Zhang, 2016). Pearson et al. (2006, 2007, 2011)
developed a biomimetic vibrotactile sensory system using leaky
integrate-and-fire neuron models, which replicates rat whiskers
for enabling a robot to navigate its environment. To discriminate
local curvature of an object, Lee et al. (2013) used a fabric-based
binary tactile sensor array. The tactile signals were converted
into spikes using the Izhikevich model (Lee et al., 2014). For
decoding Braille letters, a closed perception-action loop was
made by converting force sensor data to spike trains using the
leaky integrate-and-fire model (Bologna et al., 2011, 2013). An
Izhikevich neuron model was used by Spigler et al. (2012) for
characterizing surface properties. Zhengkun and Yilei (2017)
transformed the outputs of polyvinylidene difluoride tactile
sensors to spike trains using the Izhikevich model and then
applied machine learning algorithm for classification of surface
roughness. Rongala et al. (2017) classified 10 naturalistic textures
by converting the outputs of an array of four piezoresistive
sensors into spike trains. They used the Izhikevich model and
analyzed the obtained spiking patterns (Rongala et al., 2017).
Using the same sensor, Oddo et al. transduced haptic stimulus
into a spatiotemporal pattern of spikes and then applied them
to the rat skin afferents using stimulation electrodes. In this
way, they showed a potential for neuro-prosthetic approach to
communicate with the rat brain (Oddo et al., 2017). Moreover,
neuromorphic techniques have been used to induce tactile
sensation for differentiating textures using SA-like dynamics
through nerve stimulation of an amputee (Oddo et al., 2016) and
to enhance grip functionality of the prosthesis (Osborn et al.,
2017). In Osborn et al. (2018), it was focused on pain detection
through a neuromorphic interface and initiated an automated
pain reflex in the prosthesis.

One of the most common methods to realize the neural
computational models is developing digital circuit due to its
high efficiency for practical applications (Cassidy et al., 2011).
Digital execution with field-programmable gate array (FPGA)
affords flexibility necessary for algorithm exploration while
filling time and performance constraints. Therefore, FPGAs
have increasing applications in the neural computing area
(Nanami and Kohno, 2016). Furthermore, with the advancement
in HDL (high-level hardware description language) synthesis

tools, FPGA can also be operated as the effective hardware
accelerators (Misra and Saha, 2010; Arthur et al., 2012). Some
researchers have worked on efficient hardware implementations
(Wang et al., 2018; Zjajo et al., 2018). Grassia et al. (2016)
simulated a stochastic neuron in FPGA. An approximate
circuit technique was used for FPGA implementation of real-
time processing of tactile data to be utilized in the e-skin
applications (Franceschi et al., 2017). Ambroise et al. (2017)
proposed a biomimetic neural network implemented on FPGA
for bi-directional communication with living neurons cultured
in microelectrode array. A digital hardware realization was
proposed for spiking model of cutaneous mechanoreceptor in
order to identify the applied pressure stimulus (Salimi-Nezhad
et al., 2018). They used the Izhikevich neuron model for
simulation and then digital execution of the SA-I and FA-I
afferents on the FPGA. Indeed, their approach is the proof of
concept that digital circuit implementation of tactile afferents
has great potential. However, it is necessary to extend previous
work that considers one SA-I or FA-I digital circuit with
single input. Actually, tactile information is conveyed not only
using multiple sub-modalities but also through ensembles of
different afferent types. Consequently, developing a hardware-
based neuromorphic system to run a population of various
afferents and receive multiple inputs is necessary for modeling
study and fabrication of novel tactile sensory system for robotic
and prosthetic applications. Accordingly, in this paper, we
report that designing of a neuromorphic tactile system using a
population of 243 digital afferents includes SA-I and FA-I. To this
purpose, first, four spiking models including Izhikevich model
(Izh), linearized Izhikevich model (L-Izh), Quadratic Integrated
and Fire model (QIF), and linearized QIF model (L-QIF) are
considered for simulating the neural afferents. Next, for all of
these spiking models, an appropriate digital circuit is presented
and simulated in VIVADO. The performance comparison is
done to find which of the designed circuit is efficient from
area and power consumption viewpoint while maintaining the
characteristics of their original mathematical model. Then, the
superior circuit is further improved by replacing multipliers
with logical shifter. Consequently, the improved L-QIF was
hired for each afferent to create a neuromorphic network of
artificial SA-I/FA-I afferents. Employing an experimental setup,
the performance of the digital spiking network, which is executed
on the FPGA, is explored. In this case, the indentation data of
a 3 × 3 pressure sensor grid are sent to the FPGA through
an interface board. FPGA runs the digital circuits of the 243
spiking model of afferents and processes the incoming data of
nine pressure sensors in parallel to deliver tactile spike patterns
for the next level of processing. To the best our knowledge,
the proposed neuromorphic system is the first digital system
implementing a population of tactile afferents (both SA-I and FA-
I) while receiving multiple inputs. Finally, by applying machine
learning algorithm, the artificial spike responses are analyzed
based on the firing rate paradigm, and thus, we classify three
objects to show a real application of the proposed neuromorphic
tactile system in a haptic experiment.

The rest of the paper are prepared in this way: the spiking
models and their digital circuits are described in sections

Frontiers in Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 133084

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 3

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

“Materials and Methods” and “Digital Circuits,” respectively.
The hardware implementation results are discussed in section
“Hardware Implementation.” Finally, the section “Conclusion”
concludes the paper.

MATERIALS AND METHODS

The mathematical description of four spiking models used in this
research has been explained in Appendix. Based on these spiking
models, we present an appropriate digital circuit for each model.
The designed digital circuits are compared to obtain the circuit
with minimum area and power consumption characteristics to
be used for developing a neuromorphic tactile system.

Spiking Model of Tactile Afferent
The primary afferents in the glabrous skin that convey tactile
information are SA-I, II and FA-I, II. In human hand, there are
approximately 43% FA-I afferents end with Meissner corpuscles,
13% FA-II units with Pacinian endings, 25% SA-I units innervate
Merkel cells, and 19% SA-II units with Ruffini endings (McGlone
and Reilly, 2010). Merkel receptors, located superficially in the
skin (Roudaut et al., 2012), are triggered by lower-frequency
skin deformations and are essential for texture discrimination
and fine tactile perception. The SA-I afferents, which branch and
innervate the Merkel discs, are active throughout the physical
stimulation. Meissner receptors have particularly high density on
the fingertips and respond whenever a change in the stimuli is
detected (i.e., when the stimuli is applied or when it is removed)
(Roudaut et al., 2012). The FA-I afferents, which branch and
innervate the Meissner corpuscles, have small receptive fields and
detect dynamic skin deformations (Johansson and Vallbo, 1979).
They are responsible for detection of low-frequency vibration,
slip, and motion.

Figure 1 shows the afferent model used in this study. It was
shown that this model reproduces the spike trains generated in
the FA-I and SA-I biological counterpart for various stimuli (Saal
and Bensmaia, 2015; Friedl et al., 2016; Rongala et al., 2017, 2018;
Salimi-Nezhad et al., 2018). In this model, the amount of force
value is measured by the sensor, f (t) and its variations ḟ (t) (in
mN), are weighted separately (Cx1, Cx2) to make the current I(t)
(in mA) for spike generation. Four neural models including Izh,
L-Izh, QIF, and L-QIF are used for spiking part of the afferent
model, independently. The mathematical descriptions of these
four spiking models are explained in Appendix.

DIGITAL CIRCUITS

For designing neuromorphic systems, FPGAs are frequently used
in recent years, and several successful cases were reported in the
literature. Indeed, its parallel and high-speed computation ability
afford real-time implementation of spiking neural networks.
In this section, spiking models are first discretized using
Euler method, and then the digital circuits to be executed
on FPGA are presented. For the designed digital circuits, the
resource utilization is compared to find the circuit, which has

fewer logic blocks. In this way, we can implement a large
population of afferents. The discretizing step for all equations is
h = 0.0078125 ms. In the following equations, we consider that
Cm and τ are equal to 1 F and 1 s, respectively.

The Izh Digital Circuit
Equations 21–23 describing the spiking behavior of the SA-I
model can be discretized as:

v [n+ 1] = v [n]+ h× (0.04× v [n]× v[n] + 5×

v[n] + 140− u[n] + C11 × I[n]) (1)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(2)

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(3)

The scheduling diagram for this model is illustrated in
Figure 2A. Similarly, for the FA-I model, the discretized
equations are as follows:

v [n+ 1] = v [n]+ h× (0.04× v [n]× v [n]+ 5×

v [n]+ 140− u [n])+ C12 × (I [n+ 1]− I[n]) (4)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(5)

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(6)

The scheduling diagram for the FA-I model is shown in
Figure 2B. It illustrates how membrane potential (v) and recovery
variable (u) of the afferent model in each iteration are generated.
There are also memory registers to store the outputs for use in the
subsequent steps. The register length, N, to solve individual state
variables is N = 32 (1 bit for sign, 13 bits for integer part, and
18 bits for fractional part) to obtain a low-error and high-speed
circuit (Salimi-Nezhad et al., 2018). It should be pointed out
that “N” directly affects the computational time and the required
precision for implementation.

The L-Izh Digital Circuit
To design the digital circuit for the L-Izh model of the SA-I
afferent, Eqs 27–29 are discretized as follows:

v [n+ 1] = v [n]+ h× (k1 × |v [n]+

62.5| − k2 − u[n] + C21 × I[n]) (7)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(8)

Frontiers in Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 133085

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 4

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 1 | The slowly adapting type 1 (SA-I) and fast adapting type 1 (FA-I) afferents model. The SA-I responds to the absolute value of the stimulus and is active all
over the interval of the stimulus contact. The FA-I delivers spikes when stimulus has dynamic, i.e., during onset and offset phases of indentation profile. Four neural
models including the Izhikevich model (Izh), linearized Izhikevich model (L-Izh), Quadratic Integrated and Fire model (QIF), and linearized QIF model (L-QIF) are used
for spike generation of the afferent model, independently.

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(9)

Accordingly, the scheduling diagram is depicted in Figure 3A.
For FA-I afferent, the discrete equations of L-Izh model are
as follows:

v [n+ 1] = v [n]+ h× (k1 × |v [n]+ 62.5|

−k2 − u [n])+ C22 × (I [n+ 1]− I[n]) (10)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(11)

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(12)

and the scheduling diagram is presented in Figure 3B. It shows
how membrane potential (v) and recovery variable (u) of the
afferent model in each iteration are produced.

The QIF Digital Circuit
Equations (33)–(34), which are responsible for producing spiking
patterns in the SA-I model, are discretized as follows:

v [n+ 1] = v [n]+ h× (M1 × v [n]× v[n] + C31 × I[n]) (13)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (14)

and the scheduling diagram for this model is presented in
Figure 4A. Also, the discretized equations for FA-I model are:

v [n+ 1] = v [n]+ h× (M1 × v [n]× v [n])+

C32 × (I [n+ 1]− I[n]) (15)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (16)

The scheduling diagram for this model is shown in Figure 4B.

The L-QIF Digital Circuit
Parallel to the method used in the previous subsections, Eqs 37
and 38 for SA-I model are discretized as follows:

v [n+ 1] = v [n]+ h× (M2 × |v [n]| + C41 × I [n]) (17)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (18)

and the scheduling diagram for this model is demonstrated in
Figure 5A. Finally, the discretized equations for FA-I model are:

v [n+ 1] = v [n]+ h× (M2 × |v [n]|)+

C42 × (I [n+ 1]− I [n]) (19)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (20)

and the scheduling diagram is illustrated in Figure 5B.
The digital circuits, Figures 2–5, based on spiking model

of afferents, are the neuromorphic conversion of sensor
output to spiking patterns conveying tactile information.
Table 1 compares the resources utilized by the different
digital circuits for both SA-I and FA-I models. As it is
observed, the digital circuits for the linearized models (L-
Izh and L-QIF) are more area efficient compared with their
original counterparts (the Izh and QIF models). Also, it is
apparent that the L-QIF digital circuit uses the minimum
resources. Considering Table 1, the hardware resource
utilization even for the Izh digital circuits compared to
the circuits reported in Salimi-Nezhad et al. (2018) is
decreased. Specifically, in the present research, for the

Frontiers in Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 133086

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 5

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 2 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the Izh spiking model. In these diagrams, there are two state
variables, v and u, so two digital circuits are designed for each variable, distinctly.

Izh digital circuits, we have used less number of DSP
for SA-I and FA-I afferents compared to the circuits
reported in Salimi-Nezhad et al. (2018).

Simulation Results
In this section, we present the results of MATLAB simulation of
four types of spiking models for both afferents (SA-I, FA-I) and
VIVADO simulations of their digital circuits. Figure 6 shows the
time responses of the SA-I spiking model with trapezoidal input.
Increasing input current causes decreasing inter-spike interval.
Figure 7 demonstrates the time responses of the FA-I spiking
model with trapezoidal input. Higher value of slope motivates the
model to produce spike patterns with higher rate. In Figures 6,
7, the first panels display the trapezoidal pulse as the input
signal, the second panels present the MATLAB simulations of the
afferent model, and the third panels demonstrate the VIVADO
simulation of the digital circuit.

Considering Figures 6, 7, the SA-I afferent fires throughout
a sustained phase of stimulus and the FA-I afferent responds
at the onset and offset phases of that stimulus. This result
is functionally in agreement with the response measured by
the observations reported in Jörntell et al. (2014). In other
words, the spiking model and their digital circuit have similar
responses and functionally are compatible with spiking activity
of biological afferent.

Population of Digital Afferents
Although in previous sections, we found that the L-QIF model
has the least area consumption in comparison with the other
three models, we can also use other techniques for further
reduction in the hardware utilization. Indeed, multipliers are
costly blocks, which consume more power and use more area
compared to the simple blocks such as adders or shifters. For this
reason, by replacing multipliers with logical shifter, the improved

Frontiers in Neuroscience | www.frontiersin.org 5 January 2020 | Volume 13 | Article 133087

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 6

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 3 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the L-Izh model. In these diagrams, there are two state
variables, v and u, so two digital circuits are designed for each variable, separately. Compared to Figure 2, due to linearization, this model consumes less hardware
area and has less power consumption.

L-QIF is obtained with the coefficients described in Table 2.
Consequently, we expect an increase in operational frequency,
due to the lack of high-cost operation (multipliers) to slow down
the important paths. Furthermore, this approach reimburses the
limited number of available multipliers on the chip and supports
the implementation of larger spiking networks on the FPGA.
Parameter values in Table 2 are chosen to show a better and a
clear view of the spiking responses in the raster plot of population
of afferents. In this way, we modified and tuned the experimental
parameters from the simulation parameters.

Table 3 compares the improved L-QIF digital circuit with
the L-QIF circuit. It is apparent that replacing multipliers with
shift registers leads to the decrease in DSP and Slice LUTs
count, while the number of LUT Flip Flop increases. In this
way, more resources can be saved if one uses the improved
L-QIF model for spiking model of afferents. This can be quite
important when a population of afferents is implemented on the
FPGA. It should be pointed out that, although modern FPGAs

have a significant number of DSP slices, equipping prosthesis
and robotic hands with human-like skin needs implementation
of thousands of mechanoreceptors and afferents to enable
simultaneous transmission of tactile information. Therefore,
saving energy and area utilization is quite important for
practical applications. Here, we demonstrate a prototype for 243
artificial afferents that transmit spikes asynchronously conveying
spatiotemporal features necessary for tactile perception.

HARDWARE IMPLEMENTATION

The neuromorphic implementation of tactile afferents can speed
up the development of novel artificial tactile sensory systems
in the field of telerobotics and teleoperation. Consequently,
in the current research, the hardware-based neuromorphic
implementation is performed. To show the performance of
the designed circuit and to illustrate the spiking patterns of

Frontiers in Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 133088

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 7

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 4 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the QIF model. In these diagrams, there is only one state
variable, v, the membrane potential. Compared to Figures 2, 3, the digital circuit of the QIF model is simpler, consumes less hardware area, and has less power
consumption.

FIGURE 5 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the L-QIF model. In these diagrams, there is only one state
variable, v, the membrane potential. Compared to Figures 2–4, the digital circuit for the linearized version of the QIF model is much simpler, consumes less
hardware area, and has less power consumption.

TABLE 1 | Device utilization summary for the four designed digital circuits for both afferents.

Izh L-Izh QIF L-QIF

SA-I FA-I SA-I FA-I SA-I FA-I SA-I FA-I Available

Slice LUTs 1341 1436 1098 1192 839 882 250 308 53,200

Slice registers 97 129 97 129 65 97 65 97 106,400

Slice 726 750 558 582 380 396 223 246 13,300

LUT flip flop pairs 34 34 34 34 18 18 18 18 53,200

DSP48E1 8 8 6 6 4 4 3 3 220

Izh, Izhikevich model; L-Izh, linearized Izhikevich model; QIF, Quadratic Integrated and Fire model; L-QIF, linearized QIF model; SA-I, slowly adapting type 1; FA-I, fast
adapting type 1.

a population of digital afferents, an experimental setup was
developed as demonstrated in Figure 8. It consists of nine sensing
units (a matrix of 3 × 3) connected to a ZedBoard through a
custom interfacing board. The applied force to the individual

Force-Sensitive Resistors (FSRs) provides an analog signal for
the 10-bit ADC (analog to digital convertor), which is fed to
the ZYNQ (in this case, ZedBoard). The ZedBoard (a particular
ZYNQ evaluation board) is one of the low-cost and high-speed

Frontiers in Neuroscience | www.frontiersin.org 7 January 2020 | Volume 13 | Article 133089

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 8

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 6 | The time response of the spiking model of the SA-I afferent in 100 ms for Izh (A), L-Izh (B), QIF (C), and L-QIF (D). In these simulations, the first panels
show the input signal, the second panels display the MATLAB simulation of the mathematical model, and the third panels illustrate the VIVADO simulation of the
digital circuit. Average frequencies in 100-ms simulation for Izh, L-Izh, QIF, and L-QIF are 760, 840, 880, and 780 Hz, respectively.

devices for digital realizations of spiking neurons. It is composed
of two major sections: Programmable Logic (PL) and Processing
System (PS). The PL section is a platform that can be configured
using VHDL language and the PS section is a dual-core ARM
cortex-A9 processor that can be programmed by C language.
The output of ZedBoard is illustrated in two ways. One way
is to show on oscilloscope, and the other is to display on the
screen. Oscilloscope is used to show the spiking responses of the
individual SA-I or FA-I digital circuit, and screen is employed to
illustrate the activities of the whole population or subpopulation
of digital afferents, simultaneously.

Due to resources available in the ZedBoard evaluation kit,
we have implemented 243 digital circuits of the improved
L-QIF models in the PL section including 90 SA-I and 153
FA-I. This ratio is chosen to consider that the number of
SA-I and FA-I afferents exists in the fingertip (McGlone and
Reilly, 2010; Pasluosta et al., 2017). In our design, for each
FSR sensor, 27 digital afferents are run on the ZedBoard (10
SA-I and 17 FA-I). The hardware utilization for realization
of 243 digital afferents is presented in Table 4. It should

be mentioned that the operating frequency of ZYNQ is
100 MHz. Accordingly, in this experimental setup, the delay
from the onset of applying force to the FSRs to the appearance
of spiking responses on the ZYNQ output pins is in the
range of nanoseconds.

Considering final applications, simplicity of hardware
implementation is an important factor. This feature is
essential for development of sensory modules, which tries
to integrate sensory and processing circuits. Indeed, spike-based
representation of information has a significant potential to
improve performance and efficiency of artificial tactile sensing
systems. In this way, the proposed digital circuit enabled us to
design a hardware architecture for executing a population of
afferents on the PL. This new approach for fabricating sensory
systems artificially replicates the firing patterns of the SA-I and
FA-I afferents. The compartmentalized structure of the proposed
approach and the ability to control parameters facilitate for easy
scalability without extensive circuit redesign.

Next, using the prepared experimental setup, we touch one,
two, or three randomly selected FSR sensors simultaneously from

Frontiers in Neuroscience | www.frontiersin.org 8 January 2020 | Volume 13 | Article 133090

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 9

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 7 | The time response of the spiking model of the FA-I afferent in 100 ms for Izh (A), L-Izh (B), QIF (C), and L-QIF (D). In these simulations, the first panels
show the input signal, the second panels display the MATLAB simulation of the mathematical model, and the third panels illustrate the VIVADO simulation of the
digital circuit.

TABLE 2 | Parameter values of the improved L-QIF digital circuit.

M2 0.25

C41 0.5

C42 16

the 3 × 3 pressure sensor matrix as illustrated in Figure 9. In
this figure, the activated sensors are shown by the red boxes.
For instance, in Figure 9D, three sensors are simultaneously
touched, while in Figures 9B,F,H, two randomly selected sensors
are touched at the same time.

The spiking responses of the touched sensors in Figure 9 are
shown in Figure 10. Figure 10A shows the spiking activity of
the all 90 SA-I digital circuits, and Figure 10B demonstrates
the spiking patterns of the all 153 FA-I digital circuits. Indeed,
we used the FPGA parallel processing capability for realizing
population of digital afferents. In Figure 10, for the first 4 s, no
sensor has been touched and only the background activity of
the population of artificial afferents is observed. Next, regarding
Figure 9A, the first sensor, S1, is touched. In this case, from

TABLE 3 | Comparison of the hardware utilization for the L-QIF and the improved
L-QIF digital circuits for both afferents.

L-QIF Improved L-QIF

SA-I FA-I SA-I FA-I Available

Slice LUTs 250 308 108 167 53,200

Slice registers 65 97 32 64 106,400

Slice 223 246 30 56 13,300

LUT flip flop pairs 18 18 29 32 53,200

DSP48E1 3 3 0 0 220

t = 4 to t = 6 s, the applied force to S1 sensor increases from
zero to a desired level. From t = 6 to t = 9.5 s, the force value
is maintained in this level. From t = 9.5 to 10.5 s, the applied
force is reduced to its initial value, which is zero. Figures 10A,B
show the firing activities of the population of artificial afferents,
which are running on the ZedBoard. The digital SA-I afferents
remain active during the period of stimulus contact, while the
digital FA-I afferents react whenever a change in the stimuli is

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 133091

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 10

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 8 | The experimental setup for evaluating the neuromorphic tactile system. A population of 90 digital SA-I afferents and 153 digital FA-I afferents are
implemented on the field-programmable gate array (FPGA). In addition to the ZYNQ evaluation board, the system is composed of two other components: a matrix of
3 × 3 sensing units and an interface circuit (equipped with a 10-bit ADC unit) between the sensing unit and the ZedBoard. The sensing unit is composed of nine
Force-Sensitive Resistors (FSRs) to deliver the detected pressure as an analog voltage signal to the interface unit. This unit filters, rectifies, and scales its input signal
and then converts it to the digital signal to be sent to the ZedBoard. Resistance of the FSRs changes by applying an external force. Depending on the amount of
pressure applied to the individual FSR sensor, digital afferents send spike trains to the screen or to the output pin of the ZedBoard to be displayed on the
oscilloscope (after analog conversion).

TABLE 4 | Hardware operation for realization of 243 afferents (SA-I/FA-I) in the
ZedBoard using the improved L-QIF digital circuit.

Used Available

Slice LUTs 33, 249 (62%) 53,200

Slice registers 15, 111 (14%) 106,400

Slice 10, 202 (77%) 13,300

LUT as logic 33, 187 (62%) 53,200

LUT as memory 62 (1%) 17,400

LUT flip flop pairs 8723 (16%) 53,200

DSP48E1 180 (82%) 220

Bonded IO 21 (10%) 200

detected. Similarly, considering Figure 9B, both sensors S3 and
S5 are touched concurrently. In this way, from t = 14 to 17 s,
the applied forces to S3 and S5 increase from zero to another
chosen level. From t = 17 to 19 s, the force value is maintained in
this selected level. From t = 19 to 20 s, the applied force is again
reduced to its initial value, which is zero. It should be pointed
out that the amount of applied force to S3 is higher than S5, and
thus, firing rate is increased, accordingly. Regarding Figure 10,
the firing rate of the artificial SA-I is proportional to the intensity
of stimulus, while firing patterns of the artificial FA-I appear when
there is a changes in the stimulus intensity. Indeed, the different

spiking sequences are evoked by applying different force profiles
to the FSR sensors.

To obtain more insights, we select four cases from Figure 10,
the colored regions, and then explore the behavior of the SA-I
and FA-I digital circuits in more detail as shown in Figures 11,
12, respectively. In other words, not only the firing patterns
of the whole population are illustrated in Figure 10, but also
we show the spiking responses of the selected afferent on the
oscilloscope screen (Figures 11, 12). Yellow, magenta, cyan, and
green illustrate the spiking patterns arising from touching S1, S2,
S4, and S8, respectively (see Figure 9). In Figures 11, 12, from
each subpopulation, one (the first) implemented artificial afferent
is chosen (the red rectangle in the colored regions) to be displayed
on the oscilloscope. In this case, the output of the selected digital
afferent after converting to analog signal is demonstrated on the
oscilloscope. In these figures, the output of the ZedBoard was
shown in yellow color (membrane voltage). As it is observed, as
the force magnitude increases, the firing frequency of the spiking
patterns for digital SA-I is also increased. This approach makes
possible to decode stimuli, while the tactile data are collected.
Moreover, it is observed from Figure 12 that the rate of spiking
responses in the offset phase is less than the onset phase for digital
FA-I, due to the smaller slope for the offset phase. Indeed, the SA-I
afferents provide encoding of pressure and FA-I afferents encode
transient performance of the signal.

FIGURE 9 | Randomly touching one (A,C,E,G), two (B,F,H), or three FSR sensors (D) from the 3 × 3 grid in the experimental setup shown in Figure 8. The
activated sensors are shown by the red boxes. Different amounts of forces with dissimilar time profiles are applied to the FSR sensors. (A) to (H) show the sequence
of touched sensors in eight stages, respectively.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2020 | Volume 13 | Article 133092

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 11

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 10 | The raster plot for firing patterns of population of 243 digital
afferents executed on the ZedBoard. The spiking patterns for 90 SA-I afferents
(A) and 153 FA-I afferents (B) are shown for 60 s. Not only the touched
sensors are selected randomly, but also the time duration and the onset and
offset velocities are different. The spiking responses of four cases were
highlighted by the colored regions to be further investigated in Figures 11, 12.

In addition, in order to show a practical application of the
proposed neuromorphic setup, we attached five FSR sensors
on a glove (each FSR sensor was allocated to a finger) and
performed some haptic experiments while sending FSR outputs
to the spiking network of tactile afferents implemented on the
ZedBoard. The subject wears the glove to pick up, hold, and put
in the place three different objects (a glass, a tape dispenser, and a
book) while the firing activity of population of afferents is being
measured. As shown in Figure 13, these objects have various size
and weights. Object A, the glass, has the lowest weight, and object
C, the book, is the heaviest one. Each experiment takes 4 s, and the
hold phase is 3 s fixed. The subject accomplished the experiment
for three cases: first by three fingers (thumb, index, and middle),
then four fingers (thumb, index, middle, and ring), and finally
with all five fingers. Each three-, four-, and five-finger experiment
was done 20 times for individual objects. Consequently, 60 trials
were collected for each object, and for every trial, firing responses
of 50 digital SA-I and 85 FA-I afferents were recorded for 4 s from
the ZedBoard. Indeed, the spiking patterns of the 135 artificial
tactile afferents were recorded for 180 trials (3 objects, 3 cases, 20
repetitions) to be analyzed by the machine learning algorithms.

Next, the machine learning approaches to interpret the
recorded firing patterns are employed. In this way, first, feature
extraction from spiking responses is accomplished using one
of the fundamental coding paradigm for neural information
processing, rate coding. The firing rate (FR) is defined by the
number of spikes occurring at the time interval 1t, FR =
(spikes) / 1t. Change of firing rate as the stimulus changes
called rate coding. It is typically pointed out that sensory
neurons transmit information by their firing rate. In this study,
the decoding algorithm is based on the spike count; that is,
different stimuli elicit a different number of spikes (Vreeken,
2003). Principal components analysis is exploited for dimension
reduction. The first, three principal components are considered.

FIGURE 11 | The firing activity of 10 digital SA-I afferents implemented on the ZedBoard. The sustained firing to the input is clear. Considering Figures 9, 10, yellow,
magenta, cyan, and green illustrate the spiking activity arising from touching S1 (A), S2 (B), S4 (C) and S8 (D) respectively (upper panels). We use a 16-bit DAC to
convert the digital outputs of the ZedBoard to analog signals to be displayed on the oscilloscope screen (lower panels). From each subpopulation, the first artificial
afferent is chosen (the red rectangle in the upper panels) to be shown on the oscilloscope screen (lower panels). The volt division was set on 5 mV.

Frontiers in Neuroscience | www.frontiersin.org 11 January 2020 | Volume 13 | Article 133093

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 12

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 12 | The firing activity of 17 digital FA-I afferents implemented on the ZedBoard. Considering Figures 9, 10, yellow, magenta, cyan, and green illustrate the
spiking activity by touching S1 (A), S2 (B), S4 (C) and S8 (D), respectively (upper panels). Individual digital FA-I afferent fires during stimulus onset and offset and
changes in input. We use a 16-bit DAC to convert the digital outputs of the ZedBoard to analog signals to be shown on the oscilloscope screen (lower panels).
From each subpopulation, the first artificial afferent is chosen (the red rectangle in the upper panels) to be displayed on the oscilloscope (lower panels). The volt
division was set on 5 mV.

FIGURE 13 | The haptic experiment. (A) Five FSR sensors are attached to a glove. (B) Three objects: a glass, a tape dispenser, and a book. (C) The subject wears
the glove and picks up every object and holds it for 3 s and then puts in the place. The subject repeats this experiment for 20 times with three fingers, four fingers,
and five fingers, independently. The FSRs send their signal to the ZedBoard where it runs a population of 50 SA-I and 85 FA-I digital afferents. The firing patterns of
the 135 artificial tactile afferents are recorded for 180 trials (3 objects, 3 cases, 20 repetitions) to be analyzed by the machine learning algorithms. (D) Sample of
spike trains with five fingers. Green spikes show the response of the artificial SA-I afferents and blue spikes illustrate the response of artificial FA-I afferents.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2020 | Volume 13 | Article 133094

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 13

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 14 | Decoding based on the firing rate paradigm, in which different stimuli elicit a different number of spikes for the same time interval. Upper panels and
lower panels indicate spike count for SA-I and FA-I afferents, respectively. Each point indicates one trial. Twenty trials were performed for individual object, which is
indicated by a different color.

FIGURE 15 | The first three principal components (PCs) obtained from three haptic experiments. Upper panels show feature space for SA-I afferents, and lower
panels illustrate feature space for FA-I afferents.

Figure 14 shows the spike count of the population of SA-I
and FA-I afferents for three objects and three cases. Each point
indicates one trial. Feature space of the first three principle
components for all three experiments is illustrated in Figure 15.

Next, we report the classification performance of the k-Nearest
Neighbor classifier using the obtained artificial spike trains. The
classifier has three outputs: objects A, B, and C. The classifier
input is the three principal components computed forming the

Frontiers in Neuroscience | www.frontiersin.org 13 January 2020 | Volume 13 | Article 133095

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 14

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 16 | The classification accuracy for k-Nearest Neighbor (kNN)
classifier. Classification accuracy for digital SA-I (top panel), for digital FA-I
(middle panel), and for both afferents, SA-I and FA-I (bottom panel).

total number of spikes obtained for that stimulus. Different k
values from 2 to 8 were tried. However, the results for k = 5
were reported in Figure 16. The value of k is important as a
small k might result to a classifier sensitive to noise samples,
and a large k can lead to less distinct boundaries among classes.
The k-Nearest Neighbor is a non-parametric classifier that
measures the difference between every spike train (ST) and other
spike trains. The object was properly classified when the mean
difference between the ST and spike trains from the same class
was smaller than the mean difference between the ST and spike
trains of other classes. This procedure was repeated for every ST
obtained from digital afferents.

For classification, 80% of samples were randomly grouped as
training set, and the remaining 20% samples were considered as
the test set. K-fold cross-validation was also used. Indeed, the
data samples are divided into K subsets. Each time, one of these
K subsets is used as the validation set and the remaining (K -
1) subsets form a training set. Then, the average error across
all K trials for each subset is computed (Hosseini et al., 2007).
We used K = 5 for cross-validation. The feature vectors must be
normalized in order to avoid distortions between features and
numerical problems. Finally, the mean and SD of classification
accuracy for this haptic experiment (Figure 13C) is reported in
Table 5.

The developed system makes it possible to encode force
information by a sequence of spikes, mimicking the neural
dynamics of SA-I and FA-I afferents. Indeed, the recorded
artificial spike trains from ZedBoard, which runs the SA-I/FA-
I digital circuits, carry sufficient information. In this way,
the input stimulus is discriminated even using a commercial
FSR sensor. This technical approach is an innovative one for
manufacturing sensory systems that artificially replicate the SA-
I and FA-I firing activities to be employed in the bio-robotic

TABLE 5 | Mean and SD of classification accuracy for different experiment.

3-Finger 4-Finger 5-Finger

SA-I 85% ± 3% 87% ± 8% 93% ± 6%

FA-I 83% ± 5% 92% ± 7% 92% ± 7%

Both (SA-I and FA-I) 85% ± 6% 92% ± 7% 92% ± 7%

TABLE 6 | Parameter values for the spiking models of the tactile afferents used
for simulations.

Parameter Value Parameter Value

a 0.02 s−1 b 0.2 s−1

c −65 mV d 8 mV

k1 0.75 s−1 k2 20 mV s−1

M1 1 mV−1 s−1 M2 0.0625 s−1

vpeak 30 mV vreset 0 mV

Cm 1 F τ 1 s

C11 20 C12 960

C21 24 C22 960

C31 0.015625 C32 0.5

C41 1 C42 40

and prosthetic application. The obtained spike trains are diverse
and reliable enough to be able to decode the presented stimuli
with high accuracy.

CONCLUSION

To obtain better performance and efficacy over traditional
methods, recently, there is a tendency toward creating
neuromorphic devices to mimic the biological systems. Software
simulation and hardware realization of the SA-I and FA-I
afferents might be considered as the neuromorphic approaches
for restoring tactile feedback in upper limb prostheses. This
methodology transmits tactile information more efficient, very
similar to the healthy peripheral nervous system, to the next
level, which can be the prosthesis controller. In this research,
to digitally realize a population of 243 tactile afferents (90
SA-I and 153 FA-I) on FPGA, with emphasis on real-time
functionality, a digital circuit was designed using an improved
version of the L-QIF neural model. This model has been selected
for the highest simplicity and lowest resource consumption
of hardware implementation compared to the other model
reported in this research. Using an experimental setup, we
investigated the performance of the neuromorphic tactile system
(comprising the SA-I and FA-I afferents) when it received
multiple inputs simultaneously. Using a glove equipped with
FSRs, we performed some haptic experiments and then we
analyzed the spiking responses measured from the ZedBoard.
Applying machine learning algorithm and considering firing
rate coding, the picked up object was recognized with high
accuracy from the recorded spike trains produced by the artificial
tactile afferents.

Although we did not discuss the biological plausibility of the
designed digital circuits, it was shown that they functionally

Frontiers in Neuroscience | www.frontiersin.org 14 January 2020 | Volume 13 | Article 133096

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 15

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

follow the physiological observation, which is a basic step
for moving forward. It should be mentioned that, whereas
FSR transducers are integrated relatively easily with peripheral
hardware and software, their application for mimicking
mechanoreceptor response is not precise. In addition, a
compliant skin-like layer should cover the FSR sensors. Finally,
implementing a population of digital afferents might support
the possibility for future development of new generation of
tactile modules for prosthetic hands to reestablish sensory
feedback for amputee. Moreover, the obtained spike trains
from digital afferents may be further processed by the next
level, which also can be done in hardware. This will make a
neuromorphic sensory system for a mobile robot to accomplish
various real-world tasks such as texture discrimination and
object recognition.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

NS-N, EI, MA, EF, and CL did conception, design and
interpretation of the data, and drafting and revising the
manuscript. NS, EI, and MA performed the experiments,
acquired the data, and analyzed the data.

FUNDING

This work has received funding from the European Union’s
Horizon 2020 Research and Innovation Program under Grant
Agreement No. 785907 (HBP SGA2). MA was supported by the
Kermanshah University of Medical Sciences, Kermanshah, Iran.

ACKNOWLEDGMENTS

The authors would like to thank the esteemed reviewers for their
insightful comments. NS-N and MA would like to thank Mr. Adel
Parvizi-Fard for his valuable assistance with data analysis.

REFERENCES
Ambroise, M., Buccelli, S., Grassia, F., Pirog, A., Bornat, Y., Chiappalone, M., et al.

(2017). Biomimetic neural network for modifying biological dynamics during
hybrid experiments. Artif. Life Robot. 22, 398–403. doi: 10.1007/s10015-017-
0366-1

Arthur, J. V., Merolla, P., Akopyan, F., Alvarez-Icaza, R., Cassidy, A., Chandra,
S., et al. (2012). “Building block of a programmable neuromorphic substrate:
A digital neurosynaptic core,” in Proceedings of the 2012 International Joint
Conference on Neural Networks (IJCNN), (Brisbane), 1–8.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., and Chandrasekaran,
A. R. (2014). Neurogrid: a mixed-analog-digital multichip system for large-scale
neural simulations. Proc. IEEE 102, 699–716. doi: 10.1109/jproc.2014.2313565

Bologna, L., Pinoteau, J., Passot, J., Garrido, J., Vogel, J., Vidal, E. R., et al. (2013). A
closed-loop neurobotic system for fine touch sensing. J. Neural Eng. 10:046019.
doi: 10.1088/1741-2560/10/4/046019

Bologna, L. L., Pinoteau, J., Brasselet, R., Maggiali, M., and Arleo, A. (2011).
Encoding/decoding of first and second order tactile afferents in a neurorobotic
application. J. Physiol. Paris. 105, 25–35. doi: 10.1016/j.jphysparis.2011.08.002

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Cassidy, A., Andreou, A. G., and Georgiou, J. (2011). “Design of a one million
neuron single FPGA neuromorphic system for real-time multimodal scene
analysis,” in Information Sciences and Systems (CISS), 2011 45th Annual
Conference on, (Baltimore, MD), 1–6.

Dahiya, R. S., Metta, G., Valle, M., and Sandini, G. (2010). Tactile sensing—from
humans to humanoids. IEEE Trans. Robot. 26, 1–20. doi: 10.1109/tro.2009.
2033627

Dahiya, R. S., Mittendorfer, P., Valle, M., Cheng, G., and Lumelsky, V. J. (2013).
Directions toward effective utilization of tactile skin: a review. IEEE Sens. J. 13,
4121–4138. doi: 10.1109/jsen.2013.2279056

Dahiya, R. S., and Valle, M. (2012).Robotic Tactile Sensing: Technologies and System.
Springer: Science & Business Media.

Franceschi, M., Camus, V., Ibrahim, A., Enz, C., and Valle, M. (2017).
“Approximate FPGA implementation of CORDIC for tactile data processing
using speculative adders,” in 2017 IEEE New Generation of Circuits and Systems
Conference (NGCAS), (Genoa).

Friedl, K. E., Voelker, A. R., Peer, A., and Eliasmith, C. (2016). Human-inspired
neurorobotic system for classifying surface textures by touch. IEEE Robot.
Autom. Let. 1, 516–523. doi: 10.1109/lra.2016.2517213

Grassia, F., Kohno, T., and Levi, T. (2016). Digital hardware implementation of
a stochastic two-dimensional neuron model. J. Physiol. -Paris. 110, 409–416.
doi: 10.1016/j.jphysparis.2017.02.002

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500-544.

Hosseini, S. M., Amiri, M., Najarian, S., and Dargahi, J. (2007). Application
of artificial neural networks for the estimation of tumour characteristics in
biological tissues. Int. J. Med. Robot. Comput. Assist. Surg. 3, 235–244. doi:
10.1002/rcs.138

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Johansson, R. S., and Flanagan, J. R. (2009). Coding and use of tactile signals from
the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359.
doi: 10.1038/nrn2621

Johansson, R. S., and Vallbo, A. (1979). Tactile sensibility in the human hand:
relative and absolute densities of four types of mechanoreceptive units in
glabrous skin. J. Physiol. 286, 283–300. doi: 10.1113/jphysiol.1979.sp012619

Jörntell, H., Bengtsson, F., Geborek, P., Spanne, A., Terekhov, A. V., and Hayward,
V. (2014). Segregation of tactile input features in neurons of the cuneate
nucleus. Neuron 83, 1444–1452. doi: 10.1016/j.neuron.2014.07.038

Kim, S. S., Sripati, A. P., Vogelstein, R. J., Armiger, R. S., Russell, A. F.,
and Bensmaia, S. J. (2009). Conveying tactile feedback in sensorized hand
neuroprostheses using a biofidelic model of mechanotransduction. IEEE
Trans. Biomed. Circuits Syst. 3, 398–404. doi: 10.1109/TBCAS.2009.203
2396

Lee, D., Lee, G., Kwon, D., Lee, S., Kim, Y., and Kim, J. (2018). “Flexon:
a flexible digital neuron for efficient spiking neural network simulations,”
in Proceedings - 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture, ISCA 2018, (Los Angeles, CA).

Lee, W., Cabibihan, J., and Thakor, N. (2013). Bio-mimetic strategies for tactile
sensing.in SENSORS. IEEE 2013, 1–4.

Lee, W. W., Yu, H., and Thakor, N. V. (2014). “Gait event detection
through neuromorphic spike sequence learning,” in Biomedical Robotics and
Biomechatronics 2014 5th IEEE RAS & EMBS International Conference on,
899-904, (Atlanta, GA: IEEE).

Lucarotti, C., Oddo, C. M., Vitiello, N., and Carrozza, M. C. (2013). Synthetic
and bio-artificial tactile sensing: a review. Sensors 13, 1435–1466. doi: 10.3390/
s130201435

McGlone, F., and Reilly, D. (2010). The cutaneous sensory system. Neurosci.
Biobehav. Rev. 34, 148–159. doi: 10.1016/j.neubiorev.2009.08.004

Frontiers in Neuroscience | www.frontiersin.org 15 January 2020 | Volume 13 | Article 133097

https://doi.org/10.1007/s10015-017-0366-1
https://doi.org/10.1007/s10015-017-0366-1
https://doi.org/10.1109/jproc.2014.2313565
https://doi.org/10.1088/1741-2560/10/4/046019
https://doi.org/10.1016/j.jphysparis.2011.08.002
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1109/tro.2009.2033627
https://doi.org/10.1109/tro.2009.2033627
https://doi.org/10.1109/jsen.2013.2279056
https://doi.org/10.1109/lra.2016.2517213
https://doi.org/10.1016/j.jphysparis.2017.02.002
https://doi.org/10.1002/rcs.138
https://doi.org/10.1002/rcs.138
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1038/nrn2621
https://doi.org/10.1113/jphysiol.1979.sp012619
https://doi.org/10.1016/j.neuron.2014.07.038
https://doi.org/10.1109/TBCAS.2009.2032396
https://doi.org/10.1109/TBCAS.2009.2032396
https://doi.org/10.3390/s130201435
https://doi.org/10.3390/s130201435
https://doi.org/10.1016/j.neubiorev.2009.08.004
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 16

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

Misra, J., and Saha, I. (2010). Artificial neural networks in hardware: a survey of
two decades of progress. Neurocomputing 74, 239–255. doi: 10.1016/j.neucom.
2010.03.021

Nanami, T., and Kohno, T. (2016). Simple cortical and thalamic neuron models for
digital arithmetic circuit implementation. Front. Neurosci. 10:181. doi: 10.3389/
fnins.2016.00181

Oddo, C. M., Mazzoni, A., Spanne, A., Enander, J. M., Mogensen, H., Bengtsson,
F., et al. (2017). Artificial spatiotemporal touch inputs reveal complementary
decoding in neocortical neurons. Sci. Rep. 7:45898. doi: 10.1038/srep
45898

Oddo, C. M., Raspopovic, S., Artoni, F., Mazzoni, A., Spigler, G., Petrini, F., et al.
(2016). Intraneural stimulation elicits discrimination of textural features by
artificial fingertip in intact and amputee humans. Elife 5:e09148. doi: 10.7554/
eLife.09148

Osborn, L., Nguyen, H., Kaliki, R., and Thakor, N. (2017). Prosthesis grip
force modulation using neuromorphic tactile sensing. in Myoelectric Controls
Symposium University of New Brunswic (Baltimore), 188–191.

Osborn, L. E., Dragomir, A., Betthauser, J. L., Hunt, C. L., Nguyen, H. H.,
Kaliki, R. R., et al. (2018). Prosthesis with neuromorphic multilayered e-dermis
perceives touch and pain. Sci. Robot. 3:eaat3818. doi: 10.1126/scirobotics.
aat3818

Pasluosta, C., Kiele, P., and Stieglitz, T. (2017). Paradigms for restoration of
somatosensory feedback via stimulation of the peripheral nervous system. Clin.
Neurophysiol. 129, 851–862. doi: 10.1016/j.clinph.2017.12.027

Pearson, M., Nibouche, M., Gilhespy, I., Gurney, K., Melhuish, C., Mitchinson,
B., et al. (2006). “A hardware based implementation of a tactile sensory system
for neuromorphic signal rocessing applications,” in Acoustics, Speech and Signal
Processing,. ICASSP 2006 Proceedings. 2006 IEEE International Conference on,
2006, IV-IV, (Toulouse).

Pearson, M. J., Mitchinson, B., Sullivan, J. C., Pipe, A. G., and Prescott, T. J. (2011).
Biomimetic vibrissal sensing for robots. Philos. Trans. R. Soc. B Biol. Sci. 366,
3085–3096. doi: 10.1098/rstb.2011.0164

Pearson, M. J., Pipe, A. G., Mitchinson, B., Gurney, K., Melhuish, C., Gilhespy,
I., et al. (2007). Implementing spiking neural networks for real-time signal-
processing and control applications: a model-validated FPGA approach. IEEE
Trans. Neural Netwo. 18, 1472–1487. doi: 10.1109/tnn.2007.891203

Rongala, U. B., Mazzoni, A., Camboni, D., Carrozza, M. C., and Oddo,
C. M. (2018). “Neuromorphic artificial sense of touch: bridging robotics and
neuroscience,” in Robotics Research, eds A. Bicchi, and W. Burgard, (Cham:
Springer International Publishing), 617–630. doi: 10.1007/978-3-319-6091
6-4_35

Rongala, U. B., Mazzoni, A., and Oddo, C. M. (2017). Neuromorphic artificial
touch for categorization of naturalistic textures. IEEE Trans. Neural Netw.
Learn. Syst. 28, 819–829. doi: 10.1109/TNNLS.2015.2472477

Roudaut, Y., Lonigro, A., Coste, B., Hao, J., Delmas, P., and Crest, M. (2012). Touch
sense: functional organization and molecular determinants of mechanosensitive
receptors. Channels 6, 234–245. doi: 10.4161/chan.22213

Saal, H. P., and Bensmaia, S. J. (2015). Biomimetic approaches to bionic touch
through a peripheral nerve interface. Neuropsychologia 79, 344–353. doi: 10.
1016/j.neuropsychologia.2015.06.010

Saal, H. P., Delhaye, B. P., Rayhaun, B. C., and Bensmaia, S. J. (2017). Simulating
tactile signals from the whole hand with millisecond precision. Proc. Natl. Acad.
Sci. U.S.A. 114, E5693–E5702. doi: 10.1073/pnas.1704856114

Salimi-Nezhad, N., Amiri, M., Falotico, E., and Laschi, C. (2018). A digital
hardware realization for spiking model of cutaneous mechanoreceptor. Front.
Neurosci. 12:322. doi: 10.3389/fnins.2018.00322

Shlizerman, E., and Holmes, P. (2012). Neural dynamics, bifurcations, and firing
rates in a quadratic integrate-and-fire model with a recovery variable. I:
deterministic behavio. Neural Comput. 24, 2078–2118. doi: 10.1162/NECO_a_
00308

Soleimani, H., Ahmadi, A., and Bavandpour, M. (2012). Biologically inspired
spiking neurons: piecewise linear models and digital implementation. IEEE
Trans. Circuits Syst. I Regul. Pap. 59, 2991–3004. doi: 10.1109/tcsi.2012.2206463

Spigler, G., Oddo, C. M., and Carrozza, M. C. (2012). “Soft-neuromorphic
artificial touch for applications in neuro-robotics,” in Biomedical Robotics
and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International
Conference on, 1913-1918, (Piscataway, NJ).

Tiwana, M. I., Redmond, S. J., and Lovell, N. H. (2012). A review of tactile sensing
technologies with applications in biomedical engineering. Sensors and Actuators
A physical. 179, 17–31. doi: 10.1016/j.sna.2012.02.051

Van Pottelbergh, T., Drion, G., and Sepulchre, R. (2018). Robust modulation of
integrate-and-fire models. Neural Comput. 30, 987–1011. doi: 10.1162/neco_a_
01065

Vreeken, J. (2003). Spiking Neural Networks, an Introduction. Utrecht: Utrecht
University.

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An FPGA-Based massively
parallel neuromorphic cortex simulator. Front. Neurosci. 12:213. doi: 10.3389/
fnins.2018.00213

Yi, Z., and Zhang, Y. (2016). Bio-inspired tactile FA-I spiking generation under
sinusoidal stimuli. J. Bionic Eng. 13, 612–621. doi: 10.1016/s1672-6529(16)
60332-3

Zhengkun, Y., and Yilei, Z. (2017). Recognizing tactile surface roughness with
a biomimetic fingertip: a soft neuromorphic approach. Neurocomputing 244,
102–111. doi: 10.1016/j.neucom.2017.03.025

Zjajo, A., Hofmann, J., Christiaanse, G. J., van Eijk, M., Smaragdos, G., Strydis, C.,
et al. (2018). A real-time reconfigurable multichip architecture for large-scale
biophysically accurate neuron simulation. IEEE Trans. Biomed. Circuits Syst.
12, 326–337. doi: 10.1109/TBCAS.2017.2780287

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Salimi-Nezhad, Ilbeigi, Amiri, Falotico and Laschi. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 January 2020 | Volume 13 | Article 133098

https://doi.org/10.1016/j.neucom.2010.03.021
https://doi.org/10.1016/j.neucom.2010.03.021
https://doi.org/10.3389/fnins.2016.00181
https://doi.org/10.3389/fnins.2016.00181
https://doi.org/10.1038/srep45898
https://doi.org/10.1038/srep45898
https://doi.org/10.7554/eLife.09148
https://doi.org/10.7554/eLife.09148
https://doi.org/10.1126/scirobotics.aat3818
https://doi.org/10.1126/scirobotics.aat3818
https://doi.org/10.1016/j.clinph.2017.12.027
https://doi.org/10.1098/rstb.2011.0164
https://doi.org/10.1109/tnn.2007.891203
https://doi.org/10.1007/978-3-319-60916-4_35
https://doi.org/10.1007/978-3-319-60916-4_35
https://doi.org/10.1109/TNNLS.2015.2472477
https://doi.org/10.4161/chan.22213
https://doi.org/10.1016/j.neuropsychologia.2015.06.010
https://doi.org/10.1016/j.neuropsychologia.2015.06.010
https://doi.org/10.1073/pnas.1704856114
https://doi.org/10.3389/fnins.2018.00322
https://doi.org/10.1162/NECO_a_00308
https://doi.org/10.1162/NECO_a_00308
https://doi.org/10.1109/tcsi.2012.2206463
https://doi.org/10.1016/j.sna.2012.02.051
https://doi.org/10.1162/neco_a_01065
https://doi.org/10.1162/neco_a_01065
https://doi.org/10.3389/fnins.2018.00213
https://doi.org/10.3389/fnins.2018.00213
https://doi.org/10.1016/s1672-6529(16)60332-3
https://doi.org/10.1016/s1672-6529(16)60332-3
https://doi.org/10.1016/j.neucom.2017.03.025
https://doi.org/10.1109/TBCAS.2017.2780287
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 17

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

APPENDIX

Izhikevich Neuron Model (Izh)
Integrate-and-fire (IF) neuron models are popular and simple to simulate, which help to be used in large network computational
studies; however, they lack physiological interpretability. In contrast, conductance-based models with high biophysical realism are
expensive to simulate since they often have high-dimensional non-linear differential equations. They require the tuning of many
parameters and thus preventing their use in large networks.

Izhikevich proposed a model for spiking neuron that combines the response diversity of conductance-based models and the
computational efficiency of IF neurons. The Izhikevich model (Izh) is described as follows (Izhikevich, 2003):

v′ = 0.04v2
+ 5v+ 140− u+ C11

I
Cm

(21)

u′ = a
(
bv− u

)
(22)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(23)

v is the membrane potential of the neuron, I is the input current, and u is the membrane recovery variable. Constants a, b, c, and d are
the neuron parameters. C11 scales the input current. Cm is capacitance value for dimensionality consistency. The parameters values of
the Izh model, which were used in this research, are listed in Table 6.

Equations 21–23 are used to describe the spiking part of the SA-I model. Similarly, for FA-I model, the following mathematical
model is used to obtain the output spike train.

v′ = 0.04v2
+ 5v+ 140− u+ C12

τ

Cm
I′ (24)

u′ = a
(
bv− u

)
(25)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(26)

C12 is a constant factor that scales the input and τ is the time constant, and their values were reported in Table 6.

Linearized Izhikevich Neuron Model (L-Izh)
One solution to reduce high-cost mathematical operations is linearization. We use a piecewise-linear approximation of the Izh, which
was presented in Soleimani et al. (2012). This L-Izh is described as follows:

v′ = k1 |v+ 62.5| − k2 − u+ C21
I
Cm

(27)

u′ = a
(
bv− u

)
(28)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(29)

k1 and k2 are the constant values of the linearized model. C21 scales the neuron input. For the FA-I model, the L-Izh model can be
used as follows:

v′ = k1 |v+ 62.5| − k2 − u+ C22
τ

Cm
I′ (30)

u′ = a(bv− u) (31)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(32)

C22 is the constant coefficient for scaling the input current. The parameter values are listed in Table 6.

Frontiers in Neuroscience | www.frontiersin.org 17 January 2020 | Volume 13 | Article 133099

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01330 December 31, 2019 Time: 13:30 # 18

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

Quadratic Integrated & Fire Neuron Model (QIF)
Considerable research has been devoted to combine the economy of IF models with the physiological interpretability of conductance-
based models. An example is the Quadratic Integrated and Fire (QIF) model that has the interpretation of a mathematical reduction of
the conductance-based model of Hodgkin and Huxley (1952) (Van Pottelbergh et al., 2018). Several generalizations of the QIF model
have been studied in the literature. Shlizerman and Holmes (2012) presented the QIF model with minimum computations as follows:

v′ = M1v2
+ C31

I
Cm

(33)

if v ≥ vpeak → then v = vreset (34)

M1 and C31 are the constant coefficients. vpeak is the maximum value of membrane voltage, and vreset is the rest membrane potential.
All these parameters are reported in Table 6. Similarly, for FA-I model, we have:

v′ = M1v2
+ C32

τ

Cm
I′ (35)

if v ≥ vpeak → then v = vreset (36)

C32 scales the model input. Some neuron models such as the QIF model (Benjamin et al., 2014) and adaptive exponential integrate
and fire model (AdEx model) (Brette and Gerstner, 2005) do not instantly produce a spike. These neuron models hire alternative
non-instant functions, which control the membrane potential once it reaches the threshold voltage (Lee et al., 2018).

Linearized QIF Neuron Model (L-QIF)
Although the QIF model is a simple model, it is possible to use the linear approximation method to obtain a simpler model. Similar
to the method used in Soleimani et al. (2012), the QIF model is linearized as follows for SA-I model:

v′ = M2 |v| + C41
I
Cm

(37)

if v ≥ vpeak → then v = vreset (38)

M2 and C41 are the constant coefficients. The linearized version of the QIF model for FA-I afferent is as follows:

v′ = M2 |v| + C42
τ

Cm
I′ (39)

if v ≥ vpeak → then v = vreset (40)

C42 is the constant parameter. The parameter values reported in Table 6 are taken from Izhikevich (2003); Shlizerman and Holmes
(2012), Soleimani et al. (2012), and Rongala et al. (2018). The M2 value is selected to have minimum mean square error between the
QIF spiking model and its linearized version. The parameters in last four rows adjusted by testing various values to obtain appropriate
firing rate. Overall, high gain value causes a strong firing rate independent from the stimulus strength, and thus, the temporal structure
of spikes is less informative. Conversely, low gain factors initiate low firing rate and accordingly a long latency in spike responses (Oddo
et al., 2017). So, it is necessary to have a proper tradeoff.

Frontiers in Neuroscience | www.frontiersin.org 18 January 2020 | Volume 13 | Article 1330100

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 1

ORIGINAL RESEARCH
published: 22 January 2020

doi: 10.3389/fnins.2019.01420

Edited by:
Huajin Tang,

Zhejiang University, China

Reviewed by:
Sadique Sheik,

aiCTX AG, Switzerland
Rui Yan,

Sichuan University, China

*Correspondence:
Yansong Chua

James4424@gmail.com

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 23 August 2019
Accepted: 16 December 2019

Published: 22 January 2020

Citation:
Pan Z, Chua Y, Wu J, Zhang M,

Li H and Ambikairajah E (2020) An
Efficient and Perceptually Motivated

Auditory Neural Encoding
and Decoding Algorithm for Spiking

Neural Networks.
Front. Neurosci. 13:1420.

doi: 10.3389/fnins.2019.01420

An Efficient and Perceptually
Motivated Auditory Neural Encoding
and Decoding Algorithm for Spiking
Neural Networks
Zihan Pan1, Yansong Chua2* , Jibin Wu1, Malu Zhang1, Haizhou Li1 and
Eliathamby Ambikairajah3

1 Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, 2 Institute
for Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore, 3 School of Electrical
Engineering and Telecommunications, University of New South Wales, Sydney, NSW, Australia

The auditory front-end is an integral part of a spiking neural network (SNN) when
performing auditory cognitive tasks. It encodes the temporal dynamic stimulus, such
as speech and audio, into an efficient, effective and reconstructable spike pattern
to facilitate the subsequent processing. However, most of the auditory front-ends in
current studies have not made use of recent findings in psychoacoustics and physiology
concerning human listening. In this paper, we propose a neural encoding and decoding
scheme that is optimized for audio processing. The neural encoding scheme, that
we call Biologically plausible Auditory Encoding (BAE), emulates the functions of the
perceptual components of the human auditory system, that include the cochlear filter
bank, the inner hair cells, auditory masking effects from psychoacoustic models, and the
spike neural encoding by the auditory nerve. We evaluate the perceptual quality of the
BAE scheme using PESQ; the performance of the BAE based on sound classification
and speech recognition experiments. Finally, we also built and published two spike-
version of speech datasets: the Spike-TIDIGITS and the Spike-TIMIT, for researchers to
use and benchmarking of future SNN research.

Keywords: spiking neural network, neural encoding, auditory perception, spike database, auditory masking
effects

INTRODUCTION

The temporal or rate based Spiking Neural Networks (SNN), supported by stronger biological
evidence than the conventional artificial neural networks (ANN), represents a promising research
direction. Neurons in a SNN communicate using spiking trains that are temporal signals in
nature, therefore, making SNN a natural choice for dealing with dynamic signals such as audio,
speech, and music.

In the domain of rate-coding, we studied the computational efficiency of SNN (Pan et al.,
2019). Recently, further evidence has supported the theory of temporal coding with spike times.
To learn a temporal spike pattern, a number of learning rules have been proposed, which include
the single-spike Tempotron (Gütig and Sompolinsky, 2006), conductance-based Tempotron (Gütig
and Sompolinsky, 2009), the multi-spike learning rule ReSuMe (Ponulak and Kasiński, 2010;

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 1420101

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01420
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01420
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01420&domain=pdf&date_stamp=2020-01-22
https://www.frontiersin.org/articles/10.3389/fnins.2019.01420/full
http://loop.frontiersin.org/people/621776/overview
http://loop.frontiersin.org/people/36075/overview
http://loop.frontiersin.org/people/537537/overview
http://loop.frontiersin.org/people/764648/overview
http://loop.frontiersin.org/people/582745/overview
http://loop.frontiersin.org/people/877851/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 2

Pan et al. An Efficient Auditory Neural Encoding

Taherkhani et al., 2015), the multi-layer spike learning rule
SpikeProp (Bohte et al., 2002), and the Multi-spike Tempotron
(Gütig, 2016), etc. The more recent studies are aggregate-label
learning (Gütig, 2016), and a novel probability-based multi-layer
SNN learning rule (SLAYER) (Shrestha and Orchard, 2018).

In our research, a question is constantly asked: what are the
advantages of SNN over ANN? From the viewpoint of neural
encoding, we expect to encode a dynamic stimulus into spike
patterns, which was shown to be possible (Maass, 1997; Ghosh-
Dastidar and Adeli, 2009). Deep ANNs have benefited from the
datasets created in recent years. In the field of image classification,
there is ImageNet (Russakovsky et al., 2015); in the field of
image detection, there is COCO dataset (Veit et al., 2016); while
in the field of Automated Speech Recognition (ASR), there is
TIMIT for phonemically and lexically transcribed speech of
American English speakers (Garofolo, 1993). With the advent
of these datasets, better and faster deep ANNs inevitably follow
(Hochreiter and Schmidhuber, 1997; Simonyan and Zisserman,
2014; Redmon et al., 2016). The publicly available datasets
become the common platform for technology benchmarking. In
the study of neuromorphic computing, there are some datasets
such as N-MNIST (Orchard et al., 2015), DVS Gestures (Amir
et al., 2017), and N-TIDIGITS (Anumula et al., 2018). They are
designed for SNN benchmarking. However, these datasets are
relatively small compared with the deep learning datasets.

One may argue that the benchmarking datasets for deep
learning may not be suitable for SNN studies. Let us consider
image classification as an example. Humans process static images
in a similar way as they would process live visual inputs. We
note that live visual inputs contain much richer information
than 2-D images. When we map (Rueckauer et al., 2017) or
quantize (Zhou et al., 2016) static images into spike trains, and
compare the performance of an ANN on static images, and a
SNN on spike trains, we observe an accuracy drop. One should,
however, not hastily conclude that SNNs are inherently poor in
image classification as a consequence of event-based activations
in SNNs. Rather, the question seems to be: how can one better
encode images into spikes that are useful for SNNs, and how can
one better use these spikes in an image classification task? For
some of the recent image-based neuromorphic datasets, Laxmi
et al. (Iyer et al., 2018) has argued that no additional information
is encoded in the time domain that is useful for pattern
classification. This prompts us to look into the development
of event-based datasets that inherently contain spatio-temporal
information. On the other hand, a dataset has to be complex
enough such that it simulates a real-world problem. There are
some datasets that support the learning of temporal patterns
(Zhang et al., 2017, 2018, 2019; Wu et al., 2018a), whereby each
pattern contains only a single label, such as a sound event or
an isolated word. Such datasets are much simpler than those in
deep learning studies (Graves et al., 2006), whereby a temporal
pattern involves a sequence of labels, such as continuous speech.
For SNN study to progress from isolated word recognition
toward continuous speech recognition, a continuous speech
database is required. In this paper, we would describe how
we convert the TIMIT dataset to its event-based equivalent:
Spike-TIMIT.

A typical pattern classification task consists of three
stages: encoding, feature representation, and classification. The
boundaries between each stage are getting less clear in an
end-to-end classification neural network. Even then, a good
encoding scheme can significantly ease the workload of the
subsequent stages in a classification task, for instance, the Mel-
Frequency Cepstral Coefficients (MFCC) (Mermelstein, 1976)
is still very much in use for automatic speech recognition
(ASR). Hence the design of a spiking dataset should consider
how the encoding scheme could help reduce the workload of
the SNN in a classification task. This cannot be misconstrued
as giving the SNN an unfair advantage so long as all SNNs
are measured using the same benchmark. The human cochlea
performs frequency filtering (Tobias, 2012) while human vision
performs orientation discrimination (Appelle, 1972). These all
involve encoding schemes to help us better understand our
environment. In our earlier work (Pan et al., 2019), on a simple
dataset TIDIGITS (Leonard and Doddington, 1993) that contains
only single spoken digits, we used a population threshold coding
scheme to encode the dataset into events, which we refer to as
Spike-TIDIGITS. Using such an encoding scheme, we go on to
show that the dataset becomes linearly separable, i.e., the input
can be classified based on spike counts alone. This demonstrates
that when information is encoded in both the temporal (spike
timing) and spatial (which neuron to spike) domain, the encoding
scheme is able to project the inputs to a higher dimension, that
takes some of the workload off the subsequent feature extraction
and classification stages. In the case of Spike-TIDIGITS, the
spikes encoded can be directly counted and then classified using
a Support Vector Machine (SVM). Using this neural encoding
scheme, We further enhance it and then apply it to the TIMIT
dataset in this work.

The motivation of this paper is two-fold. Firstly, we believe
that we need well-designed spike-encoded datasets that represent
the state-of-the-art encoding methodology. With these datasets,
one can focus the research on SNN feature representation
and classification tasks. Secondly, the datasets should present
a challenge in pattern classification, that become the reference
benchmark in future SNN studies.

As speech is the most common way of human communication,
we are looking into the neural encoding of speech signals in
this work. The first question is how best possible to convert
speech signals into spikes. There have been many related studies
in speech and audio encoding, each of which is optimized
for a specific objective, for example, the minimum signal
reconstruction error (Loiselle et al., 2005; Dennis et al., 2013;
Xiao et al., 2016). However, the speech and audio encoding
methods have not taken into consideration the combination
of psychoacoustic effects, computational efficiency, and pattern
classification performance for neuromorphic implementation. In
the SNN applications for speech recognition (Xiao et al., 2016;
Darabkh et al., 2018), MFCC (Mermelstein, 1976) are commonly
used as the spectral representation in speech recognition. Others
have tried to use the biologically plausible cochlear filter bank,
but they are either analog filters which are prone to changes in
the external environment (Liu and Delbruck, 2010), or yet to
be studied in a spike-driven SNN system (Loiselle et al., 2005).

Frontiers in Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 1420102

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 3

Pan et al. An Efficient Auditory Neural Encoding

Yang et al. (2016) successfully implements a silicon cochlear
for event-driven audio sensing, which has not considered the
psychoacoustics of the auditory system.

Considering spectral representation, an important step in
neural encoding is to then convert the spectral energy in a
perceptual frequency band into a spike train. The most common
way is to treat the two-dimensional time-frequency spectrogram
as a static image, then converting each “pixel” value into a spike
latency time within the framing window size (Wu et al., 2018a),
or into the phase of the sub-threshold membrane potential
oscillation (Nadasdy, 2009). Such “pixel-conversion” methods
do not represent the spatio-temporal dynamics of the auditory
signals in the same way as the spike trains in a SNN, therefore,
another feature representation step is required, such as the
self-organizing map (Wu et al., 2018b), or local spectrogram
features (Dennis et al., 2013; Xiao et al., 2016). If the audio
encoding is able to capture the spatio-temporal dynamics that are
discriminative for classification (Gütig and Sompolinsky, 2009),
it is not necessary to encode every speech frame in the front-
end, therefore, the spiking rate can be reduced. Finally, it has
not been given enough attention as to how to reconstruct a
neural encoded speech signal back into its auditory signals for
perceptual evaluation. Speech signal reconstruction is a critical
task in speech information processing, such as speech synthesis,
singing synthesis, and dialogue technology.

To address the need for neuromorphic computing for
speech information processing, we propose three criteria for a
biologically plausible auditory encoding (BAE) front-end:

(1) Biologically plausible spectral features.
(2) Sparse and energy-efficient spike neural coding scheme.
(3) Friendly for temporal learning algorithms on cognitive

tasks.

The fundamental research problem in neural encoding is
how to encode the dynamic and continuous speech signals into
discrete spike patterns. Spike rate code is thought to be less likely
in an auditory system since much evidence suggests otherwise,
for example, how bats rely highly on the precise spike timing
of their auditory system to locate sound sources by detecting a
time difference as short as 5 µs. Latency code and phase code
are well supported by neuro-biological observations. However,
on its own, they cannot provide an invariant representation of
the patterns for a classification task.

To facilitate the processing of an SNN in a cognitive task,
neural temporal encoding should not only consider how to
encode the stimulus into spikes, but also care about how to
represent the invariant features. Just like the auditory and visual
sensory representations in the human prefrontal cortex, such
representations in the proposed BAE front-end are required
in an SNN framework, that can then be implemented with
a low-cost neuromorphic solution, that can effectively reduce
the processing workload in the subsequent SNN pipeline.
A large number of observations in neuroscience support the
observation that our auditory sensory neurons encode the
input stimulus using threshold crossing events in a population
of sensory neurons (Ehret, 1997; Hopfield, 2004). Inspired

by these observations, a simple version of threshold coding
has been proposed (Gütig and Sompolinsky, 2009), in which
a population of encoding neurons with a set of uniformly
distributed thresholds encode the spectral energy of different
frequency channels into spikes. Such a cross-and-fire mechanism
is reminiscent of quantization from the point of view of
information coding. In our proposed BAE encoding front-
end, such a neural coding scheme is also being incorporated.
Further investigation is presented in the “Experiment and
Results” section.

Besides effective neural coding representation, an efficient
auditory front-end aims to encode acoustic signals into
sparse spike patterns, while maintaining sufficient perceptual
information. To achieve such a goal, our biological auditory
system has provided us a solution best understood as masking
effects (Harris and Dallos, 1979; Shinn-Cunningham, 2008). The
auditory masking is a complex and yet to be fully understood
psychoacoustic phenomenon as some components of the acoustic
events are not perceptible in both frequency and time domain
(Ambikairajah et al., 1997). From the viewpoint of perceptual
coding, these components are regarded as redundancies since
they are inaudible. Implementing the masking effects, those
inaudible components will be coded with larger quantization
noise or not coded at all. Although the mechanism and
function of masking are not yet fully understood, its effects
have already been successfully exploited in auditory signal
compression and coding (Ambikairajah et al., 2001), for efficient
information storage, communication, and retrieval. In this paper,
we propose a novel idea to apply the auditory masking effects
in both frequency and time domain, which we refer to as
simultaneous masking and temporal masking, respectively, in
our auditory neural encoding front-end so as to reduce the
number of encoding spikes. This improves the sparsity and
efficiency of our encoding scheme. Given how we address
the three optimization criteria of neural encoding, we refer
to it as BAE scheme or BAE. Such an auditory encoding
front-end also provides an engineering platform to bridge
the study of masking effects between psychoacoustics and
speech processing.

Our main contributions in this paper are: (1) we emphasize
the importance of spike acoustic datasets for SNN research. (2)
we propose an integrated auditory neural encoding front-end
to further research in SNN-based learning algorithms. With the
proposed BAE encoding front-end, the speech or audio datasets
can be converted into energy-efficient, information-compact, and
well-representative spike patterns for subsequent SNN tasks.

The rest of this paper is organized as follows: in section
“Materials and Methods” we discuss the auditory masking
effects, and how simultaneous masking in the frequency
domain and temporal masking in the time domain for neural
encoding of acoustic stimulus is being implemented; the BAE
encoding scheme is applied in conjunction with masking to
RWCP, TIDIGITS, and TIMIT datasets. In section “Experiment
and Results,” we describe the details of the resulting spike
datasets and evaluate them against their original datasets. We
discuss our findings in section “Discussion” and conclude in
section “Conclusion.”

Frontiers in Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 1420103

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 4

Pan et al. An Efficient Auditory Neural Encoding

MATERIALS AND METHODS

Auditory Masking Effects
Most of our speech processing front-ends employ a fixed
feature extraction mechanism, such as MFCC, to encode the
input signals, whereas the human auditory sensory system
ignores some while strongly emphasizes others, commonly
referred to as the attention mechanism in psychoacoustics.
The auditory masking effects closely emulate this phenomenon
(Shinn-Cunningham, 2008).

Auditory masking is a known perceptual property of the
human auditory system that occurs whenever the presence
of a strong audio signal makes its neighborhood of weaker
signals inaudible, both in the frequency and time domain.
One of the most notable applications of auditory masking
is the MPEG/audio international standard for audio signal
compression (Ambikairajah et al., 2001; Fogg et al., 2007). It
compresses the audio data by removing the acoustically inaudible
elements, or by encoding those parts with less number of bits,
due to more tolerance to quantization noise (Ambikairajah
et al., 1997). To achieve such a goal, the algorithm is supported
by two different kinds of auditory maskings according to the
psychoacoustic model (Lagerstrom, 2001):

1. In the frequency domain, two kinds of masking effects
are used. Firstly, by allocating the quantization noise in
the least sensitive regions of the spectrum, the perceptual
distortion caused by quantization is minimized. Secondly,
an absolute hearing threshold is exploited, below which
the spectral components are entirely removed.

2. In the time domain, the masking effect is applied such that
the local peaks of the temporal signals in each frequency
band will make their ensuing audio signals inaudible.

Motivated by the above signal compression theory, we propose
an auditory masking approach to spike neural encoding, which
greatly increases the coding efficiency of the spike patterns,
by eliminating those perceptually insignificant spike events.
The approach is conceptually consistent with the MPEG-1
layer III signal compression standard (Fogg et al., 2007), with
modifications according to the characteristics of spiking neurons.

Simultaneous Masking
The masking effect presented in the frequency domain is
referred to as simultaneous masking. According to the MPEG-1
standards, there are two sorts of masking strategies in the
frequency domain: the absolute hearing threshold and the
frequency masking. The simultaneous masking effects are
common in our daily life. For instance, the sensible sound levels
of our auditory systems vary in different frequencies, therefore,
we can be more sensitive to the sounds in our living environment.
This is an evolutionary advantage for survival, in both human
beings and animals. Besides the absolute hearing threshold, every
acoustic event in the spectrum will also influence the perception
of the neighboring frequency components, that is, different levels
of tones could contribute to masking effects of other frequency
tones. For instance, in a symphony show, the sounds from

102 103 104

Frequency (Hz)

-20

0

20

40

60

80

Th
re

sh
ol

d
va

lu
e

(d
B

)

Absolute hearing threshold

FIGURE 1 | Absolute hearing threshold Ta for the simultaneous masking. Our
hearing is more sensitive to the acoustic stimulus around several thousand
Hz, which covers the majority of the sounds in our daily life. The sounds below
the thresholds are completely inaudible.

different musical instruments can be fully or partially masked
by each other. As a result, we can enjoy the compositions
of various frequency components with rich diversities. Such a
psychoacoustic phenomenon is called frequency masking.

Figure 1 illustrates the absolute hearing threshold, Ta, as
a function of frequency in Hz. The function is derived from
psychoacoustic experiments, in which pure tones continuous in
the frequency domain are presented to the test subjects and the
minimal audible sound pressure levels (SPL) in dB are recorded.
The commonly used function to approximate the threshold is
(Ambikairajah et al., 1997):

Ta
(
f
)
= 3.64 ×

(
f

1000

)−0.8
− 6.5× e−0.6

(
f

1000−3.3
)2

+ 0.001 ×
(

f
1000

)4
(1)

For the frequency masking, in the MPEG-1 standard, some
sample pulses under masking thresholds might be partially
masked, thus they are encoded by a lower number of bits.
However, in the event-based scenario, spike patterns carry
no amplitude information, similar to on-off binary values,
which means that partial masking can hardly be realized.
As such, we have modified the approach such that all
components under the frequency masking are fully masked
(discarded). Further reconstruction and pattern recognition
experiments are necessary to evaluate such an approach. Figure 2
shows the overall masking thresholds with both masking
strategies in the frequency domain. This figure illustrates the
simultaneous masking thresholds added to the acoustic events in
a spectrogram. The sound signals with different spectral power
in different cochlear filter channels will suffer from various
masking thresholds.

Frontiers in Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 1420104

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 5

Pan et al. An Efficient Auditory Neural Encoding

FIGURE 2 | The frequency masking thresholds acting on a maskee (the
acoustic events being masked), generated by the acoustic events from the
neighboring critical bands, are shown as a surface in a 3-D plot. The acoustic
events are referred to as the spectral power of the frames in a spectrogram.
The spectral energy axis is the sound level of a maskee; the critical band axis
is the frequency bins of the cochlear filter bank, as introduced in section
“Spike-TIDIGITS and Spike-TIMIT Databases”; the masking thresholds axis
indicates the overall masking levels on the maskees of different sound levels
from various critical bands. For example, an acoustic event of 20dB level on
the 10th critical band is masked off by the masking threshold of nearly 23dB,
which is introduced by the other auditory components of its neighboring
frequency channels.

FIGURE 3 | The overall simultaneous masking effects on a speech utterance
of “one,” in a 3-D spectrogram. Combining the two kinds of masking effects in
the frequency domain (refer to Figures 1, 2), the gray surface shows the
overall masking thresholds on a speech utterance (the colorful surface). All the
spectral energy under the thresholds will be imperceptible.

Figure 3 provides a real-world example of the simultaneous
masking. The spectrogram of a speech utterance of “one”
from the TIDIGITS dataset is demonstrated in a 3-D plot.
The gray surface illustrates the simultaneous masking threshold
acting on the spectrogram (colorful surface). By the masking
strategy, the acoustic events with spectral energy lower than the
threshold surface will be removed. Section “Biologically Plausible
Auditory Encoding With Masking Effects” will introduce how
to convert the masked spectrogram into a sparse and well-
represented spike pattern.

Temporal Masking
Another auditory masking effect is temporal masking in the time
domain. Conceptually similar to the frequency masking, a louder
sound will mask the perception of the other acoustic components

Time

Si
gn

al
 in

te
ns

ity

FIGURE 4 | The illustration of temporal masking: each bar represents the
acoustic event received by the auditory system. In this paper, acoustic events
generally referred to framing spectral power, which are the elements to be
parsed to an auditory neural encoding scheme. A local peak event (red bar)
forms a masking threshold represented by an exponentially decaying curve.
The subsequent events that are weaker than the leading local peak will not be
audible until another local peak event exceeds the masking threshold.

in the time domain. As illustrated in Figure 4, the vertical bars
represent the signal intensity of short-time frames, that is called
acoustic events, along the time axis. A local peak (the first red
bar) forms a masking threshold that makes the following events
inaudible until the next local peak (the second red bar) exceeds
the masking threshold. According to the psychoacoustic studies,
the temporal masking threshold is modeled as an exponentially
decaying curve (Ambikairajah et al., 2001):

y (n) = cn × p1 (2)

where y (n) denotes the masking threshold level on the nth
following an acoustic event; c is the exponential index and p1
represents the sound level of the local peak as the beginning of
the masking. The decaying parameter c is tuned according to the
hearing quality.

Auditory Masking Effects in Both Domains
By applying both the simultaneous masking and temporal
masking illustrated above, we can remove those imperceptible
acoustic events (frames) from the overall spectrogram. Since our
goal is to apply the masking effects in the precise timing neural
code, we propose the strategy as follows:

1. The spike pattern PK×N
(
pij
)

is generated from the raw
spectrogram SK×N

(
sij
)

without masking effects, by some
temporal neural coding methods, which will be discussed
in section “Neural Spike Encoding” Here the index i, j
refers to the time-frequency bin in the spectrogram, with
i referring to the frequency bin, and j referring to the time
frame index. The spike pattern PK×N is defined as a matrix
that:

pij =

tf , if a spike is emitted within the duration of the

time-frequency bin i, j.
0, otherwise

(3)

Frontiers in Neuroscience | www.frontiersin.org 5 January 2020 | Volume 13 | Article 1420105

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 6

Pan et al. An Efficient Auditory Neural Encoding

where tf is the encoded precise spike timing. As such the
spike pattern PK×N

(
pij
)

is a sparse matrix that records
the spike timing.

2. According to the spectrogram SK×N
(
sij
)

and the auditory
perceptual model, the simultaneous masking threshold
matrix Msimultaneous

(
msimultaneous

ij

)
and the temporal

masking threshold matrix Mtemporal

(
mtemporal

ij

)
are

obtained. The overall masking threshold MK×N
(
mij
)

is
defined as follows. It provides a 2-D masking threshold
surface that has the same dimensions as the spectrogram.

mij = max
{
msimultaneous

ij ,mtemporal
ij

}
(4)

3. A masking map 8K×N
(
φij
)

is generated, whose
dimensions are the same as the spectrogram. The element
of the matrix8K×N

(
φij
)

is defined as:

φij =

{
1, if sij ≥ mij
0, if sij < mij

(5)

where the time-frequency bin i,j is masked with φi,j =

0 when the frame energy si,j is less than the masking
threshold mij, otherwise, φ i,j = 1.

4. Apply the masking map matrix8K×N
(
φij
)

to the encoded
pattern PK×N

(
pij
)

to generate a masked spike pattern
Pmask(pmask

ij) :

Pmask
= PK×N ◦8K×N (6)

where ◦ denotes the Hadamard product. By doing so,
those perceptually insignificant spikes are eliminated, thus
forming a more compact and sparse spike pattern.

Figure 5 demonstrates the auditory masking effects acting in
both the frequency and time domains, on a speech utterance of
“one” in the TIDIGITS dataset. The colored surface represents
the original spectrogram while the gray areas represent the
spectral energy values that are being masked. For TIDIGITS
datasets, nearly half of the acoustic events (frames) are
removed according to our auditory masking strategy, which
corresponds to the 55% removal of PCM pulses in speech coding
(Ambikairajah et al., 2001).

Cochlear Filters and Spike Coding
The human auditory system is primarily a frequency analyzer
(Tobias, 2012). Many studies have confirmed the existence of
the perceptual centre frequencies and equivalent bandwidths.
To emulate the working of the human cochlea, several artificial
cochlear filter banks have been well studied: GammaTone filter
bank (Patterson et al., 1987; Hohmann, 2002), Constant Q
Transform-based filter bank (CQT) (Brown, 1991; Brown and
Puckette, 1992), Bark-scale filter bank (Smith and Abel, 1999),
etc. They share the same idea of logarithm distributed centre
frequencies and constant Q factors but slightly differ in the exact
parameters. To build the auditory encoding system, we adopt an
event-based CQT-based filter bank in the time domain, following
our previous work (Pan et al., 2018).

Time-Domain Cochlear Filter Bank
Adopting an event-based approach to emulate the human
auditory system, we propose a neuronal implementation of the
event-driven cochlear filter bank, of which the computation can
be parallelized as follows,

• As illustrated in Figure 6, a speech waveform
(Figure 6A) is filtered by K neurons (Figure 6B) where
each neuron represents one cochlear filter from a
particular frequency bin.
• The weights of each neuron in Figure 6B are set as the time-

domain impulse response of the corresponding cochlear
filter. The computing of a neuron with its input is inherently
a time-domain convolution process.
• The output of the filter bank neurons is a K-length vector

(Figure 6C), where K is the number of filters, for each time
step. Since the signal (Figure 6A) shifts sample by sample,
the width of the output matrix is the same as the length of
the input signal. As such, the auditory signal is decomposed
into multiple channels in parallel, forming a spectrogram.

Suppose a speech signal x with M samples
x = [x1, x2,, xM] sampled at 16 kHz. For the kthcochlear
filter, the impulse response (wavelet) is a Mk-length vector
Fk = [Fk(1), Fk(2),, Fk(Mk)]. We note the impulse response
Fk has an infinite window size, however, numerically its
amplitude decreases to small values outside an effective window,
thus having little influence on the convolution results. As
investigated in Pan et al. (2018), we empirically set Mk to an
optimal value. So the mth output of the kth cochlear filter neuron
is modeled as yk (m):

yk(m) =
Mk∑
i=1

φm(i)Fk(i), k = 1, 2, ...,K, m = 1, 2, ...,M (7)

φm = [xm, xm+1, xm+2, ..., xm+Mk−1], m ∈ 1, ...,M (8)

φm is a subset of the input samples within the mth window, whose
length is the same as that of the Mk-length wavelet, indicated
as the samples between the two arrows in Figures 6A,B. The
window φm will move sample by sample, naturally along with the
flow of the input signal samples. At each time step, a vector of
length K, which is the number of filters, is generated as shown in
Figure 6C. After M such samples, the final output time-frequency
map of the filter bank is a K×M matrix YK × M .

After time-domain cochlear filtering, the K × M time-
frequency map YK × M should be framed, which emulates the
signal processing of hair cells in the auditory pathway. For the
output waveform from each channel, we apply a framing window
of length l (samples) with a step size of l/2 and calculate the
logarithmic frame energy e of one framing window:

e = 10 log

 l∑
q=1

x2
q

 (9)

where xq denotes the samples within the l-length window;
e is the spectral energy of one frame, hence obtaining the

Frontiers in Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 1420106

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 7

Pan et al. An Efficient Auditory Neural Encoding

FIGURE 5 | Both the simultaneous and temporal masking effects acting on the 3-D plot spectrogram of a speech utterance of “one.” The gray-color shaded parts of
the spectrogram are masked.

A

B

C

FIGURE 6 | (A) A speech signal of M samples; (B) Time-domain filter bank with K neurons that act as filters; (C) The output spectrogram that has K × M dimension.

time-frequency spectrum SK × N (sij) as indicated in section
“Auditory Masking Effects in Both Domains” which will be
further encoded into spikes.

Neural Spike Encoding
In the inner ear, the motion of the stereocilia in the inner hair
cells is converted into a chemical signal that excites adjacent nerve
fibers, generating neural impulses that are then transmitted along
the auditory pathway. Similarly, we would like to convert the sub-
band framing energy into electrical impulses, or so-called spikes,
for the purpose of information encoding and transmission. In
the prior work, the temporal dynamic sequences are encoded
using several different methods: latency coding (Wu et al., 2018a),
phase coding (Arnal and Giraud, 2012; Giraud and Poeppel,

2012), latency population coding (Dean et al., 2005), that are
adopted for specific applications. These encoding schemes are not
optimized for neuromorphic implementation.

We would like to propose a biologically plausible neural
encoding scheme by taking into account the three criteria as
defined in section “Introduction.” In this section, the particular
neural temporal coding scheme, which converts perceptual
spectral power to precise spike times, is designed to meet the
need of synaptic learning rules in SNNs (Gütig and Sompolinsky,
2006; Ponulak and Kasiński, 2010). As such, the resulting
temporal spike patterns are supposed to be friendly toward
temporal learning rules.

In our previous work (Pan et al., 2019), two mainstream neural
encoding schemes, the single neuron temporal codes (latency

Frontiers in Neuroscience | www.frontiersin.org 7 January 2020 | Volume 13 | Article 1420107

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 8

Pan et al. An Efficient Auditory Neural Encoding

coding, phase coding) and the population codes (population
latency/phase coding, threshold coding) are compared. It is
found that the threshold coding outperforms the other coding
schemes in SNN-based pattern recognition tasks. Next are some
observations made while comparing threshold coding, and the
single neuron temporal coding.

First of all, the single temporal coding scheme, such as
latency or phase coding, encodes the spectral power using
spike delaying time, or phase-locking time. Suppose a frame of
normalized spectral power is e, the nth latency spike timing tfn is
defined as:

tfn = (1− e) ∗ T + (n− 1) ∗ T = (n− e) ∗ T (10)

where T denotes the time duration of the encoding window.
For the phase coding, tfn is phase-locked to the nearest peak
of the sub-threshold membrane oscillation. The spectral power,
that represents the amplitude information, e is represented as
the relative spike timing (1− e) ∗ T within each window and the
number of spikes embedded are in the order n. Unfortunately,
the SNN can hardly decode such an encoding scheme without
the knowledge of the encoding window boundaries, implicitly
provided by the spike order n and window length T. The
spatio-temporal spike patterns could not provide such knowledge
explicitly to the SNN. On the other hand, in the population
code, such as threshold coding, the multiple encoding neurons
naturally represent the amplitudes of the spectral power frames,
and we only need to represent the temporal information in the
spike timing. For example, the spike timing of the nth onset
encoding neuron of the threshold code tnf is:

tnf = tcrossing (11)

tcrossing records the time when the spectral tuning curve
from one sub-band crosses the onset threshold θn of the nth
encoding neuron. In this way, both the temporal and amplitude
information is encoded and made known to the SNN, which
meets the third criterion mentioned above.

Secondly, coding efficiency, which refers to the average
encoding spike rates (number of spikes per second), is also
studied in Pan et al. (2019). The threshold code has the least
average spike rates among all investigated neural codes. As the
threshold code encodes only threshold-crossing events, it is
supposed to be the most efficient coding method.

Thirdly, the threshold code promises to be more robust against
noise, such as spike jitter. As it encodes the trajectory of the
dynamics of the sub-band spectral power, the perturbation of
precise spike timing will have less impact on the sequence of
encoding neurons.

As such, the threshold code is a promising encoding scheme
for temporal sequence recognition tasks (Pan et al., 2019).
Further evaluation will be provided later in the experiments.
While we note that each neural coding scheme has its own
advantages, we focus on how the encoding scheme may help
subsequent SNN learning algorithms in a cognitive task in
this paper. As such, we adopt the threshold code for all
experiments in this paper.

Biologically Plausible Auditory Encoding
(BAE) With Masking Effects
We propose a BAE front-end with masking effects as illustrated
in Figure 7.

Firstly the auditory stimuli are sensed and amplified
by the microphone and some peripheral circuits, leading
to a digital signal (a). This process corresponds to the
pathway of the pinna, external auditory meatus, tympanic
membrane, and auditory tube. Then the physically sensed
stimuli are filtered by the cochlear filter bank (b), that
emulates the cochlear function of frequency analysis. The
outputs of the cochlear filter bank are parallel streams of
time-domain sub-band (or so-called critical band) signals
with psychoacoustic centre frequencies and bandwidths.
For the purpose of further neural coding and cognitive
tasks, the sub-band signals should be framed as the
logarithm-scale energy as per Eq. 9. The output of (c), the
raw spectrogram, is then converted into a precise spike
pattern. The spectrogram is also being used to calculate
the simultaneous and temporal masking thresholds, as
in (d) and (e), under which the spikes will be omitted.
Finally a sparse, perceptually related, and learnable
temporal spike pattern for a learning SNN is generated
as shown in (g).

Figure 8 gives an example of the intermediate results
at different stages in Figure 7 for a speech data waveform.
Figures 8A,B show the raw waveform and the spectrogram
of a speech utterance “three” spoken by a male speaker.
The spectrogram is further encoded into a raw spike
pattern by threshold neural coding. Figure 8D is the
masking thresholds as formulated in section “Auditory
Masking Effects,” according to which the raw spike pattern
Figure 8C is masked and results in a masked spike pattern
Figure 8E. 50.48% of all spikes are discarded, given
by the results in the later experiment section. Figure 9
further demonstrates the comparison between auditory
masked/unmasked spike patterns.

EXPERIMENT AND RESULTS

Spike-TIDIGITS and Spike-TIMIT
Databases
The TIDIGITS (Leonard and Doddington, 1993) (LDC
Catalog No. LDC93S10) is a speech corpus of spoken
digits for speaker-independent speech recognition (Cooke
et al., 2001; Tamazin et al., 2019). The speakers are from
different genders (male and female), age ranges (adults and
children), dialect districts (Boston, Richmond, Lubbock, etc.).
As such, the corpus provides sufficiently speaker diversity
and becomes one of the common benchmarking datasets.
The TIDIGITS has a vocabulary of 11 spoken words of
digits. The original database contains both isolated digits
and digits sequences. In this work, we only use the isolated
digits: each utterance contains one individual spoken digit.
In this first attempt, we would like to build a spike-version

Frontiers in Neuroscience | www.frontiersin.org 8 January 2020 | Volume 13 | Article 1420108

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 9

Pan et al. An Efficient Auditory Neural Encoding

Auditory
signals

Cochlear
filter bank

Framing
log energy

Threshold
coding

Simultaneous
masking

Temporal
masking

Spike
pattern

A B C F

D

E

G

FIGURE 7 | The BAE scheme for temporal learning algorithms in auditory cognitive tasks. The raw auditory signals (a) are filtered by the CQT-based event-driven
cochlear filter bank, resulting in a parallel stream of sub-band signals. For each sub-band, the signal is logarithmically framed, which corresponds to the processing
in auditory hair cells. The framed spectral signals are then further masked in simultaneous and temporal masking.

A B C

D

E

FIGURE 8 | An illustration of the intermediate results in a BAE process. Raw speech signal (A) of a speech utterance “three” is filtered and framed into a
spectrogram (B), corresponding to the process in Figure 7 (a) and (c). By applying the neural threshold code, a precise spike pattern (C) is generated from the
spectrogram. The masking map as described in Eq. 5 is illustrated in (D), where yellow and dark blue color blocks represent the values 1 and 0, respectively. The
masking (D) is applied to the spike pattern (C) and the auditory masked spike pattern is obtained in (E).

speech dataset that contains sufficient diversity and can be
immediately used to train an SNN classifier (Pan et al., 2018;
Wu et al., 2018a). As each digit is repeated 224 and 226
times, the Spike-TIDIGITS has 224 × 11 = 2464 and
226 × 11 = 2486 isolated digit utterances for the training
and testing set, respectively.

The BAE encoder proposed in section “Biologically Plausible
Auditory Encoding With Masking Effects” and Figure 7 is applied
as the standard encoding scheme to generate this spike dataset.
Tables 1, 2 describe the parameters in the encoding process
of Spike-TIDIGITS.

Next, we encode one of the most popular speech dataset
TIMIT (Garofolo, 1993) into a spike-version, Spike-TIMIT.
TIMIT dataset consists of richer acoustic-phonetic content
than TIDIGITS (Messaoud and Hamida, 2011). It consists of
continuous speech utterances, that are useful for the evaluation
of speech coding schemes (Besacier et al., 2000), speech
enhancement El-Solh et al. (2007) or ASR systems (Mohamed
et al., 2011; Graves et al., 2013). Similar to TIDIGITS, the speakers
of TIMIT corpus are from eight different dialect regions in the
United States, 438 males and 192 females. There are 4621 and
1679 speech sequences in the training and testing sets. This

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 1420109

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 10

Pan et al. An Efficient Auditory Neural Encoding

FIGURE 9 | Encoded spike patterns by threshold coding with/without masking. The two spike patterns are encoded from a speech utterance of “five” in the
TIDIGITS dataset. The x-axis and y-axis represent the time and encoding neuron index. The positions of the colorful dots indicate the spike timings of the
corresponding encoding neurons. The colors distinguish the centre frequencies of the cochlear filter bank. With auditory masking, the number of spikes reduces by
nearly 50%, which are close to the 55% reducing rate of coding pulses as reported in Ambikairajah et al. (1997).

TABLE 1 | Parameters of neural threshold encoding for the speech and
audio databases.

Parameter Value

Window size 30 ms

Stride size 15 ms

Frequency range [200 Hz, 8000 Hz]

Sampling rate 20 kHz

TABLE 2 | Cochlear filter parameters: we use a total of 20 cochlear filters in the
BAE front-end.

Cochlear filter index Centre frequency (Hz) Bandwidth (Hz)

1 200.2 69.3

2 238.3 83.0

3 283.2 98.6

4 336.4 117.2

5 400.4 139.6

6 476.1 166.0

7 565.9 197.3

8 672.3 234.4

9 800.8 278.3

10 952.1 331.1

11 1131.3 394.5

12 1345.2 468.8

13 1600.6 557.6

14 1903.3 663.1

15 2263.7 788.1

16 2690.9 937.5

17 3200.2 1114.3

18 3805.7 1325.2

19 4525.9 1576.2

20 8000.5 6949.2

The center frequency and bandwidth of each filter are listed.

corpus has a vocabulary of 6224 words, which is larger than
that of TIDIGITS.

Our proposed BAE scheme is next evaluated in the
following sections, using both reconstruction and speech pattern
recognition experiments.

Audio Reconstruction From Masked
Patterns
According to Eq. 5, we adopt the binary auditory mask8K×N(φij)
which either fully encodes or ignores an acoustic event. It is
suggested in auditory theory (Ambikairajah et al., 1997) that
partial masking may exist in the frequency domain, especially
in the presence of rich frequency tones. We would like to
evaluate the masking effect in the BAE front-end both objectively
and subjectively.

We begin by reconstructing the spike trains into speech
signals, and then evaluate the speech quality using several
objective speech quality measures: Perceptual Evaluation of
Speech Quality (PESQ), Root Mean Square Error (RMSE),
and Signal to Distortion Ratio (SDR). The PESQ, defined in
Beerends et al. (2002) and Rix et al. (2002), is standardized
as ITU-T recommendation P.862 for speech quality test
methodology (Recommendation P.862, 2001). The core
principle of PESQ is the use of the human auditory perception
model (Rix et al., 2001) for speech quality assessment.
For speech coding, especially the perceptual masking
proposed in this paper, the PESQ measure could correctly
distinguish between audible and inaudible distortions and
thus assess the impact of perceptually masked coding noise.
Besides, the PESQ is also used in the assessment of MPEG
audio coding where auditory masking is involved. In this
paper, the PESQ scores are further converted to MOS-
LQO (Mean Opinion Score-Listening Quality Objective)
scores ranging from 1 to 5, which are more intuitive
for assessing speech quality. The mapping function is
obtained from ITU-T Recommendation P.862.1 (ITU-T
Recommendation, 2003). Table 3 defines the MOS scales and
their corresponding speech quality subjective descriptions
(Recommendation P.800, 1996).

TABLE 3 | Perceptual evaluation of speech quality (MOS) scores and their
corresponding perceptual speech quality subjective assessments.

PESQ (MOS) scores 5 4 3 2 1

Speech quality Excellent Good Fair Poor Bad

Frontiers in Neuroscience | www.frontiersin.org 10 January 2020 | Volume 13 | Article 1420110

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 11

Pan et al. An Efficient Auditory Neural Encoding

sub-band
waveform K

Decoded
sub-band waveform K

Spike
decoder

spike train K

Spike
encoder

 speech signal

sub-band
waveform 1

Decoded
sub-band waveform 1spike train 1

Cochlear
filter 1

Cochlear
filter K

Reconstructed
speech signal

Encoding Decoding

FIGURE 10 | The reconstruction from a spike pattern into a speech signal. Parallel streams of threshold- encoded spike trains that represent the dynamics of
multiple frequency channels are first decoded into sub-band digital signals. The sub-band signals are further fed into a series of synthesis filters, which are built
inversely from the corresponding analysis cochlear filters as in Figure 6. The synthesis filters compensate for the gains from the analysis filters for each frequency
bin. Finally, the outputs from the synthesis filter banks sum up to generate the reconstructed speech signal.

TABLE 4 | The objective audio quality measures of the reconstructed audio
signals for environmental sounds dataset RWCP.

Reconstructed
signal

PESQ RMSE SDR (dB) Reduced
rate (%)

ŝraw 4.53 2.79 × 10−4 38.96 0

ŝmask 4.15 5.67 × 10−4 33.13 39.38

ŝrandom 2.81 1.85 × 10−2 4.95 40.07

The reduced rates refer to the ratio of masked spikes.

TABLE 5 | The objective speech quality measures of the reconstructed speech
signals for the spoken digits dataset TIDIGITS.

Reconstructed
signal

PESQ RMSE SDR (dB) Reduced
rate (%)

ŝraw 4.54 4.78 × 10−4 34.60 0

ŝmask 4.43 7.49 × 10−4 29.94 50.48

ŝ2×threshold 3.80 8.50 × 10−3 5.65 50.80

ŝrandom 2.92 1.05 × 10−2 4.76 49.91

The reduced rates refer to the ratio of masked spikes.

Besides PESQ, the RMSE (Eq. 12) and Expand SDR (Eq. 13)
measures are also reported, where xi and x̂i denote the ith time-
domain sample of the original and reconstructed speech signals
x1×M and x̂1×M , respectively.

RMSE =

√√√√ 1
M

M∑
i=1

(xi − x̂i)2 (12)

SDR = 10 log10

(∑M
i=1(xi)

2∑M
i=1(xi − x̂i)2

)
(13)

For comparison, we compare three groups of reconstructed
speech signals: (1) the reconstructed signal ŝmask from spike trains

TABLE 6 | The objective speech quality measures of the reconstructed speech
signals for the continuous and large-vocabulary speech dataset TIMIT.

Reconstructed
signal

PESQ RMSE SDR (dB) Reduced
rate (%)

ŝraw 4.54 1.23 × 10−4 42.28 0

ŝmask 4.44 3.10 × 10−4 34.02 29.33

ŝrandom 2.35 9.20 × 10−3 4.83 30.8

The reduced rates refer to the ratio of masked spikes.

with auditory masking; (2) the reconstructed signal ŝraw from raw
spike trains without auditory masking; and (3) the reconstructed
signal ŝrandom from randomly masked spike trains.

Figure 10 depicts the flowchart of the reconstruction process.
The left and right panels represent the spike encoding and
decoding processes. The raw speech signals are first decomposed
by a series of cochlear analysis filters, generating parallel
streams of sub-band signals as in Figure 7 (b). The 20 sub-
band waveforms are encoded into spike times with masking
strategies and then decoded back to sub-band speech signals.
The reproduced sub-band waveforms 1 to K (20 in this work)
are gain-weighted and summed to form the reconstructed
speech signal for perceptual quality evaluation. Since the
cochlear filters decompose the input signal by various weighting
gains in different frequency bands, the weighting gains in
the decoding part represent the inverse processing of the
cochlear filters.

The audio quality of the three groups of reconstructed signals
is compared, as reported in Tables 4–6. For a fair comparison,
we first simulate a random masking effect by randomly dropping
the same amount of spikes as that of the auditory masking.
We further simulate a masking effect by doubling the firing
thresholds that are used in Figure 7 (f) purely according to energy
level. The reconstructed signals from such elevated thresholds

Frontiers in Neuroscience | www.frontiersin.org 11 January 2020 | Volume 13 | Article 1420111

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 12

Pan et al. An Efficient Auditory Neural Encoding

TABLE 7 | Spiking neural network architectures for RWCP sound classification and TIDIGITS speech recognition tasks.

Dataset and task Input layer Output layer Learning rule

RWCP sound classification 1 × 620 encoding neurons 1 × 10 LIF neurons Tempotron

TIDIGITS speech recognition 1 × 620 encoding neurons 1 × 11 LIF neurons MPD-AL

LIF refers to the Leaky-Integrate and Fire spiking neuron.

TABLE 8 | The RWCP classification accuracy for different neural encoding
schemes and the average spike rates.

Neural encodings-classifier model Classification
accuracy (%)

Spikes/
second

BAE-tempotron 99.5 245

Latency coding-tempotron 10.1 1, 598

Phase coding-tempotron 10.1 1, 598

Population coding-tempotron 99.0 4, 627

Threshold coding-tempotron 99.5 557

MFCC-HMM Dennis et al., 2013 90.0 –

LSF-SNN Dennis et al., 2013 98.5 –

LTF-SNN Xiao et al., 2016 97.5 –

DKP-SNN Yao et al., 2019 99.1 –

The average spike rates refer to the average number of spikes per second when
the same audio samples are encoded.

are denoted as ŝ2 × threshold. The raw spike patterns without any
masking are used as a reference.

The perceptual quality scores of the ŝmask and ŝraw are rather
close at a high level of approximately 4.5, which suggests a
satisfying subjective quality between “Excellent” and “Good”
according to Table 3. It is noted that the speech signals with
random masking are perceived as “Poor” in quality. Besides the
PESQ, the other two measures also lead to the same conclusion.
The RMSE of ŝraw and ŝmask are approximately two orders
of magnitude larger than that of the ŝrandom; the SDRs also
show a great gap.

Sound Classification by SNN for RWCP
Dataset
Firstly, the BAE encoding is evaluated by a sound classification
task on the RWCP sound scene database (Nakamura et al.,
2000), which records the non-speech environmental sounds
with rich and diverse frequency components. There are 10
sound categories in this database: bells, bottle, buzzer, cymbals,
horn, kara, metal, phone, ring, and whistle. The sound
recordings, each clip lasting for several seconds, are encoded
into sparse spatio-temporal spike patterns and classified by a
supervised learning SNN. We adopt a network structure that
is shown in Table 7 with Tempotron synaptic learning rule
(Gütig and Sompolinsky, 2006).

Besides the BAE scheme, we also implement several other
neural encoding schemes for the threshold coding (Figure 7)
(f), such as latency coding (Gollisch and Meister, 2008), phase
coding (Giraud and Poeppel, 2012), population coding (Dean
et al., 2005), etc. The detailed implementation can be found

at (Pan et al., 2019). The classification accuracy, as well as the
average spike rates are summarized in Table 8.

The results in Table 8 show that our BAE scheme achieves
the best classification accuracy (99.5%) with a spiking rate of
245 spikes per second, across the other commonly used neural
encoding schemes. The results suggest that the proposed BAE
encoding scheme is both effective in pattern classification, and
energy-efficient.

Speech Recognition by SNN for TIDIGITS
Dataset
In this section, we evaluate the BAE scheme in a speech
recognition task, which also aims to evaluate the coding fidelity
of our proposed methodology. The spike patterns encoded
from TIDIGITS speech dataset are fed into an SNN, and the
outputs correspond to the labels of which spoken digits the
patterns are encoded from. The spike learning rule is Membrane
Potential Driven Aggregate-Label Learning (MPD-AL) (Zhang
et al., 2019). The network structure is given in Table 7.

To evaluate the effectiveness and robustness of the BAE
front-end, we compare the classification performances between
spike patterns with and without auditory masking. Gaussian
noise, measured by Signal-to-Noise Ratio (SNR) in dB, is
added to the original speech waveforms before the encoding
process. Figure 11 shows the classification accuracy under noisy
conditions and in the clean condition. Besides, we also compare
our scheme with the other benchmarking results in Table 9.

The results show that the pattern classification accuracy for
masked patterns is slightly higher than those of the unmasked
patterns, under different test conditions. Above all, referring to
Table 5, our proposed BAE scheme helps to reduce nearly half of
the spikes, which is a dramatic improvement in coding efficiency.

Large Vocabulary Speech Recognition
for TIMIT Dataset
In section “Biologically Plausible Auditory Encoding With
Masking Effects,” we present how the TIMIT dataset has been
encoded into spike trains, which we henceforth refer to as
Spike-TIMIT. We next train a recurrent neural network, the
LSTM (Hochreiter and Schmidhuber, 1997) on both the original
TIMIT and Spike-TIMIT datasets, with the CTC loss function
(Graves et al., 2006). The LSTM architectures and the system
performances on various TIMIT datasets are summarized in
Table 10. The LSTM networks are adopted from Tensorpack1.
We obtained a PER of 27% and 30%, respectively, for the TIMIT
and Spike-TIMIT datasets. For comparison, we also report the
accuracy for Spike-TIMIT without masking that shows 28% PER.

1Wu Y. et al. (2016). Tensorpack. Available at: https://github.com/tensorpack/.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2020 | Volume 13 | Article 1420112

https://github.com/tensorpack/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 13

Pan et al. An Efficient Auditory Neural Encoding

FIGURE 11 | The classification accuracy for the Spike-TIDIGITS dataset
under different signal-to-noise ratios, with or without masking effects. The
accuracy for the Spike-TIDIGITS with masking effects is slightly higher than
that for the Spike-TIDIGITS without masking effects.

TABLE 9 | The TIDIGITS speech recognition accuracy for different neural
encoding schemes.

Models of TIDIGITS speech recognition Classification
accuracy (%)

Biologically plausible auditory encoding (BAE)-MPDAL 97.4

Liquid state machine Zhang et al., 2015 92.3

SNN-SVM Tavanaei and Maida, 2017b 91.0

Spiking CNN-HMM Tavanaei and Maida, 2017a 96.0

AER silicon cochlea-SVM Abdollahi and Liu, 2011 95.6

Auditory spectrogram-SVM Abdollahi and Liu, 2011 78.7

We also notice some improvement in accuracy when dropout
is introduced for Spike-TIMIT but not for TIMIT. Although
the phone error rates are quite close across these datasets, we
observe that the Spike-TIMIT derived from our proposed BAE
scheme shows the highest spike efficiency (30% spike reduction
in Table 6), which further improves the energy efficiency.

DISCUSSION

In this paper, we propose a BAE scheme, especially for speech
signals. The encoding scheme is inspired by the modeling of the
human auditory sensory system, which is composed of spectral
analysis, neural spike coding, as well as the psychoacoustic
perception model. We adopt three criteria for formulating the
auditory encoding scheme.

For the spectral analysis part, a time-domain event-based
cochlear filter bank is applied, with the perceptual scale of
centre frequencies and bandwidths. The key feature of the
spectral analysis is the parallel implementation of time-domain
convolution. One of the most important properties of SNN
is its asynchronous processing. The parallel implementation
makes the neural encoding scheme a friendly frontend for any
SNN processing. The neural encoding scheme, the threshold
code in our case, helps to generate a sparse and representative
spike patterns for efficient computing in the SNN classifier. The

threshold code helps in two aspects: firstly it tracks the trajectory
of the spectral power tuning curves, which represents the features
in the acoustic dynamics; secondly, the threshold code, as a
form of population neural code, is able to project the dynamics
in the time domain onto the spatial domain, which facilitates
the parallel processing of spiking neurons on cognitive tasks
(Pan et al., 2019). Another key component of the BAE front-
end is the implementation of auditory masking that benefits
from findings in human psychoacoustic experiments. The
integrated auditory encoding scheme fulfills the three proposed
design criteria. We have evaluated our BAE scheme through
signal reconstruction and speech recognition experiments giving
very promising results. To share our study with the research
community, the spike-version of TIDIGITS and TIMIT speech
corpus, namely, Spike-TIDIGITS, and Spike-TIMIT, will be made
available as benchmarking datasets.

Figure 12 illustrates some interesting findings in our proposed
auditory masking strategy. The upper, middle and lower panels of
Figure 12 represent three speech utterances from the TIDIGITS
dataset. The first and second column illustrates the encoded spike
patterns with and without auditory masking effects. It is apparent
that a large number of spikes are removed. The graphs in the
third column demonstrate the membrane potential of the output
neuron in the trained SNN classifier after being fed with both
patterns during the testing phase. For example, the LIF neuron
in (Figure 12C) responds to the speech utterance of “six.” As
such, the encoded pattern of spoken “six,” as in (Figures 12A,B)
will trigger the corresponding neuron to fire a spike in the
testing phase. The sub-figure (c) demonstrates that though
the sub-threshold membrane potentials of masking/unmasking
patterns have different trajectories, the two membrane potential
curves will exceed the firing threshold (which is 1 in this
example) at close timing. Similar results are observed in
Figures 12F,I. The spike patterns with or without auditory
masking lead to similar neuronal responses, either in spiking
activities (firing or not) or in membrane potential dynamics,
as observed in Figures 12C,F,I. It is interesting to observe that
auditory masking has little impact on the neuronal dynamics.
As a psychoacoustic phenomenon, the auditory masking is
always studied using listening tests. It remains unclear how
the human auditory system responds to auditory masking.
Figure 12 provides an answer to the same question from an
SNN perspective.

The parameters of auditory masking effects in this work,
such as the exponential decaying parameter c in Eq. 2,
or the cross-channel simultaneous masking thresholds in
Figure 2, are all derived in the acoustic model of MPEG-1
Layer III standard (Fogg et al., 2007) and tuned according to
the particular tasks. However, from a neuroscience point of
view, our brain is adaptive to different environments. This
suggests that the parameters could be optimized by machine
learning methodology, for different tasks and datasets. Also,
the threshold neural code, which encodes the dynamics of
the spectrum using threshold-crossing events, relies heavily
on the choice of thresholds. We use 15 uniformly distributed
thresholds for simplicity. We note that the recording of
threshold-crossing events is analogous to quantization in

Frontiers in Neuroscience | www.frontiersin.org 13 January 2020 | Volume 13 | Article 1420113

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 14

Pan et al. An Efficient Auditory Neural Encoding

TABLE 10 | Phone error rates (PER) for TIMIT and Spike-TIMIT datasets, using different LSTM structures.

Dataset Network architecture PER (%)

TIMIT 1 × 39 − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 27

TIMIT 1 × 39 − 1 × 1024 LSTM − 1 × 1024 LSTM − 1 × 62 27

Spike-TIMIT 1 × 620 − Dropout (0.2) − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 30

Spike-TIMIT 1 × 620 − Dropout (0.2) − 1 × 1024 LSTM − 1 × 1024 LSTM − 1 × 62 35

Spike-TIMIT-w/o mask 1 × 620 − Dropout (0.2) − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 28

Spike-TIMIT-w/o mask 1 × 620 − Dropout (0.2) − 1 × 1024 LSTM − 1 × 1024 LSTM − 1 × 62 30

TIMIT1 1 × 39 − 1 × 512 LSTM − 1 × 512 LSTM − 1 × 62 28

1Wu Y. et al. (2016). Tensorpack. Available at: https://github.com/tensorpack/.

FIGURE 12 | Free membrane potential of trained Leaky-Integrate and Fire neurons, by feeding patterns with and without masking. The upper (A–C), middle (D–F),
and lower (G–I) panels are for three different speech utterances “six,” “seven,” and “eight.” The spike patterns with or without masking are apparently different, but
the output neuron follows similar membrane potential trajectories.

digital coding, that the maximal coding efficiency (maximal
information being conveyed constrained by the numbers of
neurons or spikes) may be derived using an information-
theoretic approach. The Efficient Coding Hypothesis (ECH)
(Barlow, 1961; Srinivasan et al., 1982) that describes the
link between neural encoding and information theory
could provide us the theoretical framework to determine
the optimal threshold distribution in the neural threshold

code. It may also otherwise be learned using machine
learning techniques.

CONCLUSION

Our proposed BAE scheme, motivated by the human auditory
sensory system, could encode temporal audio data into spike

Frontiers in Neuroscience | www.frontiersin.org 14 January 2020 | Volume 13 | Article 1420114

https://github.com/tensorpack/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 15

Pan et al. An Efficient Auditory Neural Encoding

patterns that are sparse, efficient, and friendly to SNN learning
rules. It is both efficient and effective. We use the BAE scheme to
encode popular speech datasets, namely, TIDIGITS and TIMIT
into their spike versions: Spike-TIDIGITS and Spike-TIMIT. The
two spike datasets are to be published as benchmarking datasets,
in the hope of improving SNN-based classifiers.

DATA AVAILABILITY STATEMENT

The datasets Spike-TIDIGITS and Spike-TIMIT for this study
can be found at https://github.com/pandarialTJU/Biologically-
plausible-Auditory-Encoding/tree/master.

AUTHOR CONTRIBUTIONS

ZP performed the experiments and wrote the manuscript.
All authors contributed to the experiments design, result
interpretation, and writing.

FUNDING

This work was supported by in part by the Programmatic Grant
No. A1687b0033 from the Singapore Government’s Research,
Innovation and Enterprise 2020 plan (Advanced Manufacturing
and Engineering domain).

REFERENCES
Abdollahi, M. and Liu, S.-C. (2011). Speaker-independent isolated digit

recognition using an aer silicon cochlea. Proceeding of the 2011 IEEE
Biomedical Circuits and Systems Conference (BioCAS) (Piscataway, NJ: IEEE),
269–272

Ambikairajah, E., Davis, A., and Wong, W. (1997). Auditory masking and mpeg-
1 audio compression. Electron. Commun. Eng. J. 9, 165–175 doi: 10.1049/ecej:
19970403

Ambikairajah, E., Epps, J., and Lin, L. (2001). Wideband speech and audio coding
using gammatone filter banks. Proceeding of the 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. (Piscataway, NJ: IEEE)
2, 773–776

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., et al. (2017). A
low power, fully event-based gesture recognition system. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. (Piscataway, NJ:
IEEE) 7243–7252

Anumula, J., Neil, D., Delbruck, T., and Liu, S.-C. (2018). Feature representations
for neuromorphic audio spike streams. Front. Neurosci. 12:23 doi: 10.3389/
fnins.2018.00023

Appelle, S. (1972). Perception and discrimination as a function of stimulus
orientation: the” oblique effect” in man and animals. Psychol. Bull. 78, 266–278
doi: 10.1037/h0033117

Arnal, L. H. and Giraud, A.-L. (2012). Cortical oscillations and sensory predictions.
Trends Cogn. Sci. 16, 390–398 doi: 10.1016/j.tics.2012.05.003

Barlow, H. B. (1961). Possible principles underlying the transformation of sensory
messages. Sens. Commun. 1, 217–234

Beerends, J. G., Hekstra, A. P., Rix, A. W., and Hollier, M. P. (2002). Perceptual
evaluation of speech quality (pesq) the new itu standard for end-to-end
speech quality assessment part ii: psychoacoustic model. J. Audio Eng. Soc. 50,
765–778

Besacier, L., Grassi, S., Dufaux, A., Ansorge, M., and Pellandini, F. (2000).
Gsm speech coding and speaker recognition. In Proceeding of the 2000
IEEE International Conference on Acoustics, Speech, and Signal Processing,
(Piscataway, NJ: IEEE) 2, II1085-II1088

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37
doi: 10.1016/s0925-2312(01)00658-0

Brown, J. C. (1991). Calculation of a constant q spectral transform. J. Acoust. Soc.
Am. 89, 425–434 doi: 10.1121/1.400476

Brown, J. C. and Puckette, M. S. (1992). An efficient algorithm for the calculation
of a constant q transform. J. Acoust. Soc. Am. 92, 2698–2701 doi: 10.1121/1.40
4385

Cooke, M., Green, P., Josifovski, L., and Vizinho, A. (2001). Robust automatic
speech recognition with missing and unreliable acoustic data. Speech Commun.
34, 267–285 doi: 10.1016/s0167-6393(00)00034-0

Darabkh, K. A., Haddad, L., Sweidan, S. Z., Hawa, M., Saifan, R., and Alnabelsi,
S. H. (2018). An efficient speech recognition system for arm-disabled students
based on isolated words. Comput. Appl. Eng. Edu. 26, 285–301 doi: 10.1002/cae.
21884

Dean, I., Harper, N. S., and McAlpine, D. (2005). Neural population coding of
sound level adapts to stimulus statistics. Nature Neurosci. 8, 1684–1689 doi:
10.1038/nn1541

Dennis, J., Yu, Q., Tang, H., Tran, H. D., and Li, H. (2013). Temporal coding of
local spectrogram features for robust sound recognition. In Proceeding of the
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(IEEE), (Piscataway, NJ: IEEE) 803–807

Ehret, G. (1997). The auditory cortex. J. Comp. Physiol. A 181, 547–557
El-Solh, A., Cuhadar, A., and Goubran, R. A. (2007). Evaluation of

speech enhancement techniques for speaker identification in noisy
environments. In Proceeding of the 9th IEEE International Symposium
on Multimedia Workshops (ISMW 2007) (IEEE), (Piscataway, NJ: IEEE)
235–239

Fogg, C., LeGall, D. J., Mitchell, J. L., and Pennebaker, W. B. (2007). MPEG Video
Compression Standard (Berlin: Springer Science & Business Media)

Garofolo, J. S. (1993). Timit Acoustic Phonetic Continuous Speech Corpus.
Philadelphia, PA: Linguistic Data Consortium.

Ghosh-Dastidar, S. and Adeli, H. (2009). Spiking neural networks. Intl. J. Neural
Sys. 19, 295–308

Giraud, A.-L. and Poeppel, D. (2012). Cortical oscillations and speech processing:
emerging computational principles and operations. Nat. Neurosci. 15, 511–5187
doi: 10.1038/nn.3063

Gollisch, T. and Meister, M. (2008). Rapid neural coding in the retina with
relative spike latencies. science 319, 1108–1111 doi: 10.1126/science.114
9639

Graves, A., Fernàndez, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist
temporal classification: labelling unsegmented sequence data with recurrent
neural networks. In Proceedings of the 23rd international conference on Machine
learning (New York,NY: ACM), 369–376

Graves, A., Mohamed, A.-R., and Hinton, G. (2013). Speech recognition with
deep recurrent neural networks. In Proceeding of the 2013 IEEE international
conference on acoustics, speech and signal processing (Piscataway, NJ: IEEE),
6645–6649

Gütig, R. (2016). Spiking neurons can discover predictive features by
aggregate-label learning. Science 351:aab4113 doi: 10.1126/science.aab
4113

Gütig, R. and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike
timing–based decisions. Nat. Neurosci. 9, 420–428 doi: 10.1038/nn1643

Gütig, R. and Sompolinsky, H. (2009). Time-warp–invariant neuronal processing.
PLoS Biol. 7:e1000141 doi: 10.1371/journal.pbio.1000141

Harris, D. M. and Dallos, P. (1979). Forward masking of auditory nerve
fiber responses. J. Neurophysiol. 42, 1083–1107 doi: 10.1152/jn.1979.42.4.
1083

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation 9, 1735–1780

Hohmann, V. (2002). Frequency analysis and synthesis using a gammatone
filterbank. Acta Acust. United Acust. 88, 433–442

Hopfield, J. (2004). Encoding for computation: recognizing brief dynamical
patterns by exploiting effects of weak rhythms on action-potential timing. Proc.
Natl. Acad Sci. 101, 6255–6260 doi: 10.1073/pnas.0401125101

Frontiers in Neuroscience | www.frontiersin.org 15 January 2020 | Volume 13 | Article 1420115

https://github.com/pandarialTJU/Biologically-plausible-Auditory-Encoding/tree/master
https://github.com/pandarialTJU/Biologically-plausible-Auditory-Encoding/tree/master
https://doi.org/10.1049/ecej:19970403
https://doi.org/10.1049/ecej:19970403
https://doi.org/10.3389/fnins.2018.00023
https://doi.org/10.3389/fnins.2018.00023
https://doi.org/10.1037/h0033117
https://doi.org/10.1016/j.tics.2012.05.003
https://doi.org/10.1016/s0925-2312(01)00658-0
https://doi.org/10.1121/1.400476
https://doi.org/10.1121/1.404385
https://doi.org/10.1121/1.404385
https://doi.org/10.1016/s0167-6393(00)00034-0
https://doi.org/10.1002/cae.21884
https://doi.org/10.1002/cae.21884
https://doi.org/10.1038/nn1541
https://doi.org/10.1038/nn1541
https://doi.org/10.1038/nn.3063
https://doi.org/10.1126/science.1149639
https://doi.org/10.1126/science.1149639
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1038/nn1643
https://doi.org/10.1371/journal.pbio.1000141
https://doi.org/10.1152/jn.1979.42.4.1083
https://doi.org/10.1152/jn.1979.42.4.1083
https://doi.org/10.1073/pnas.0401125101
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 16

Pan et al. An Efficient Auditory Neural Encoding

ITU-T Recommendation, (2003). 862.1: Mapping Function for Transforming p. 862
Raw Result Scores to Mos-Lqo. Geneva: International Telecommunication
Union.

Iyer, L. R., Chua, Y., and Li, H. (2018). Is neuromorphic mnist neuromorphic?
analyzing the discriminative power of neuromorphic datasets in the time
domain. arXiv [Preprint] 1807.01013

Lagerstrom, K. (2001). Design and Implementation of An Mpeg-1 Layer iii Audio
Decoder. Gothenburg: Chalmers University of Technology.

Leonard, R. G. and Doddington, G. (1993). Tidigits ldc93s10. Philadelphia, PA:
Linguistic Data Consortium.

Liu, S.-C. and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.
Neurobiol. 20, 288–295 doi: 10.1016/j.conb.2010.03.007

Loiselle, S., Rouat, J., Pressnitzer, D., and Thorpe, S. (2005). Exploration of
rank order coding with spiking neural networks for speech recognition.
In Proceeding of the Neural Networks, 2005. IJCNN’05. Proceedings. 2005
IEEE International Joint Conference on (IEEE), (Piscataway, NJ: IEEE) 4,
2076–2080

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Netw. 10, 1659–1671 doi: 10.1016/s0893-6080(97)
00011-7

Mermelstein, P. (1976). Distance measures for speech recognition, psychological
and instrumental. Pattern Recognit. Artif. Intell. 116, 374–388

Messaoud, Z. B. and Hamida, A. B. (2011). Combining formant frequency based
on variable order lpc coding with acoustic features for timit phone recognition.
Int. J. Speech Technol. 14:393 doi: 10.1007/s10772-011-9119-z

Mohamed, A.-R., Dahl, G. E., and Hinton, G. (2011). Acoustic modeling using
deep belief networks. Proceeding of the IEEE transactions on audio, speech, and
language processing (Piscataway, NJ: IEEE) 20, 14–22 doi: 10.1109/tasl.2011.
2109382

Nadasdy, Z. (2009). Information encoding and reconstruction from the phase of
action potentials. Front. Sys. Neurosci. 3:6 doi: 10.3389/neuro.06.006.2009

Nakamura, S., Hiyane, K., Asano, F., Nishiura, T., and Yamada, T. (2000).
Acoustical sound database in real environments for sound scene understanding
and hands-free speech recognition. In Proceedings of the Second International
Conference on Language Resources and Evaluation France: LREC

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting
static image datasets to spiking neuromorphic datasets using saccades. Front.
Neurosci. 9:437 doi: 10.3389/fnins.2015.00437

Pan, Z., Li, H., Wu, J., and Chua, Y. (2018). An event-based cochlear filter temporal
encoding scheme for speech signals. In Proceeding of the 2018 International
Joint Conference on Neural Networks (IJCNN) (Piscataway, NJ: IEEE), 1–8

Pan, Z., Wu, J., Chua, Y., Zhang, M., and Li, H. (2019). Neural population coding
for effective temporal classification. In Proceeding of the 2019 International Joint
Conference on Neural Networks (IJCNN) (Piscataway, NJ: IEEE), 1–8

Patterson, R., Nimmo-Smith, I., Holdsworth, J., and Rice, P. (1987). An efficient
auditory filterbank based on the gammatone function. In Proceeding of the a
meeting of the IOC Speech Group on Auditory Modelling at RSRE. (Malvern:
RSRE).

Ponulak, F. and Kasiński, A. (2010). Supervised learning in spiking neural networks
with resume: sequence learning, classification, and spike shifting. Neural
Comput. 22, 467–510 doi: 10.1162/neco.2009.11-08-901

Recommendation P.800 (1996). P. 800: Methods for subjective determination of
transmission quality. Geneva: International Telecommunication Union 22.

Recommendation P.862 (2001). Perceptual evaluation of speech quality
(pesq): An objective method for end-to-end speech quality assessment of
narrow-band telephone networks and speech codecs. Geneva: International
Telecommunication Union.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition. (Piscataway, NJ: IEEE). 779–788

Rix, A. W., Beerends, J. G., Hollier, M. P., and Hekstra, A. P. (2001). Perceptual
evaluation of speech quality (pesq)-a new method for speech quality assessment
of telephone networks and codecs. In Proceeding of the 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.
01CH37221) (Piscataway, NJ: IEEE) 2, 749–752

Rix, A. W., Hollier, M. P., Hekstra, A. P., and Beerends, J. G. (2002). Perceptual
evaluation of speech quality (pesq) the new itu standard for end-to-end speech

quality assessment part i–time-delay compensation. J. Audio Eng. Soc. 50,
755–764

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks
for image classification. Front. Neurosci. 11:682 doi: 10.3389/fnins.2017.
00682

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115,
211–252. doi: 10.1007/s11263-015-0816-y

Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention.
Trends Cogn. Sci. 12, 182–186 doi: 10.1016/j.tics.2008.02.003

Shrestha, S. B. and Orchard, G. (2018). Slayer: spike layer error reassignment in
time. In Proceeding of the Advances in Neural Information Processing Systems,
Montreal, 1412–1421

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv [Preprint] 1409.
1556

Smith, J. O. and Abel, J. S. (1999). Bark and erb bilinear transforms.
IEEE Trans. Speech Audio Process. 7, 697–708 doi: 10.1109/89.79
9695

Srinivasan, M. V., Laughlin, S. B., and Dubs, A. (1982). Predictive coding: a fresh
view of inhibition in the retina. Proc. R. Soc. Lond. Series B. Biol. Sci. 216,
427–459 doi: 10.1098/rspb.1982.0085

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015). Dl-resume: A
delay learning-based remote supervised method for spiking neurons. IEEE
Trans. Neural Netw. and Learn. Syst. 26, 3137–3149 doi: 10.1109/TNNLS.2015.
2404938

Tamazin, M., Gouda, A., and Khedr, M. (2019). Enhanced automatic speech
recognition system based on enhancing power-normalized cepstral coefficients.
Appl. Sci. 9, 2166 doi: 10.3390/app9102166

Tavanaei, A. and Maida, A. (2017a). Bio-inspired multi-layer spiking neural
network extracts discriminative features from speech signals. In International
Conference on Neural Information Processing (Berlin: Springer), 899–908 doi:
10.1007/978-3-319-70136-3_95

Tavanaei, A. and Maida, A. S. (2017b). A spiking network that learns to extract
spike signatures from speech signals. Neurocomputing 240, 191–199 doi: 10.
1016/j.neucom.2017.01.088

Tobias, J. (2012). Foundations of Modern Auditory Theory, Amsterdam: Elsevier.
Veit, A., Matera, T., Neumann, L., Matas, J., and Belongie, S. (2016). Coco-text:

Dataset and benchmark for text detection and recognition in natural images.
arXiv [Preprint] 1601.07140

Wu, J., Chua, Y., and Li, H. (2018a). A biologically plausible speech recognition
framework based on spiking neural networks. In Proceeding of the 2018
International Joint Conference on Neural Networks (IJCNN), (Piscataway, NJ:
IEEE), 1–8

Wu, J., Chua, Y., Zhang, M., Li, H., and Tan, K. C. (2018b). A spiking neural
network framework for robust sound classification. Front. Neurosci. 12:836.
doi: 10.3389/fnins.2018.00836

Xiao, R., Yan, R., Tang, H., and Tan, K. C. (2016). A spiking neural network
model for sound recognition. In Proceeding of the International Conference
on Cognitive Systems and Signal Processing (Berlin: Springer), 584–594 doi:
10.1007/978-981-10-5230-9_57

Yang, M., Chien, C.-H., Delbruck, T., and Liu, S.-C. (2016). A 0.5 v 55µw 64×2
channel binaural silicon cochlea for event-driven stereo-audio sensing. IEEE J.
Solid State Circuits 51, 2554–2569 doi: 10.1109/jssc.2016.2604285

Yao, Y., Yu, Q., Wang, L., and Dang, J. (2019). A spiking neural network with
distributed keypoint encoding for robust sound recognition. In Proceeding
of the 2019 International Joint Conference on Neural Networks (IJCNN)
(Piscataway, NJ: IEEE), 1–8

Zhang, M., Qu, H., Belatreche, A., Chen, Y., and Yi, Z. (2018). A highly
effective and robust membrane potential-driven supervised learning method for
spiking neurons. IEEE Transactions on Neural Networks and Learning Systems
(Piscataway, NJ: IEEE) 1–15

Zhang, M., Qu, H., Belatreche, A., and Xie, X. (2017). Empd: An efficient
membrane potential driven supervised learning algorithm for spiking neurons.
IEEE Trans. Cogn. Dev. Sys. 10, 151–162 doi: 10.1109/tcds.2017.265
1943

Frontiers in Neuroscience | www.frontiersin.org 16 January 2020 | Volume 13 | Article 1420116

https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1007/s10772-011-9119-z
https://doi.org/10.1109/tasl.2011.2109382
https://doi.org/10.1109/tasl.2011.2109382
https://doi.org/10.3389/neuro.06.006.2009
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.tics.2008.02.003
https://doi.org/10.1109/89.799695
https://doi.org/10.1109/89.799695
https://doi.org/10.1098/rspb.1982.0085
https://doi.org/10.1109/TNNLS.2015.2404938
https://doi.org/10.1109/TNNLS.2015.2404938
https://doi.org/10.3390/app9102166
https://doi.org/10.1007/978-3-319-70136-3_95
https://doi.org/10.1007/978-3-319-70136-3_95
https://doi.org/10.1016/j.neucom.2017.01.088
https://doi.org/10.1016/j.neucom.2017.01.088
https://doi.org/10.3389/fnins.2018.00836
https://doi.org/10.1007/978-981-10-5230-9_57
https://doi.org/10.1007/978-981-10-5230-9_57
https://doi.org/10.1109/jssc.2016.2604285
https://doi.org/10.1109/tcds.2017.2651943
https://doi.org/10.1109/tcds.2017.2651943
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-13-01420 January 14, 2020 Time: 15:32 # 17

Pan et al. An Efficient Auditory Neural Encoding

Zhang, M., Wu, J., Chua, Y., Luo, X., Pan, Z., Liu, D., et al. (2019). Mpd-al:
an efficient membrane potential driven aggregate-label learning algorithm for
spiking neurons. Proc. AAAI Conf. Artif. Intell. 33, 1327–1334 doi: 10.1609/
aaai.v33i01.33011327

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state machine
with biologically inspired learning and its application to speech recognition.
IEEE Trans. Neural Netw. Learn. Sys. 26, 2635–2649 doi: 10.1109/TNNLS.2015.
2388544

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016). Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth
gradients. arXiv[Preprint] 1606.06160

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Pan, Chua, Wu, Zhang, Li and Ambikairajah. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 January 2020 | Volume 13 | Article 1420117

https://doi.org/10.1609/aaai.v33i01.33011327
https://doi.org/10.1609/aaai.v33i01.33011327
https://doi.org/10.1109/TNNLS.2015.2388544
https://doi.org/10.1109/TNNLS.2015.2388544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 28 January 2020

doi: 10.3389/fnins.2020.00007

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 14 | Article 7

Edited by:

Michael Pfeiffer,

Bosch Center for Artificial Intelligence,

Germany

Reviewed by:

David Kappel,

Dresden University of Technology,

Germany

Saeed Reza Kheradpisheh,

Shahid Beheshti University, Iran

*Correspondence:

Jason M. Allred

allredj@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 20 August 2019

Accepted: 07 January 2020

Published: 28 January 2020

Citation:

Allred JM and Roy K (2020) Controlled

Forgetting: Targeted Stimulation and

Dopaminergic Plasticity Modulation for

Unsupervised Lifelong Learning in

Spiking Neural Networks.

Front. Neurosci. 14:7.

doi: 10.3389/fnins.2020.00007

Controlled Forgetting: Targeted
Stimulation and Dopaminergic
Plasticity Modulation for
Unsupervised Lifelong Learning in
Spiking Neural Networks
Jason M. Allred* and Kaushik Roy

Nanoelectronics Research Laboratory, Electrical and Computer Engineering Department, Purdue University, West Lafayette,

IN, United States

Stochastic gradient descent requires that training samples be drawn from a uniformly

random distribution of the data. For a deployed system that must learn online from

an uncontrolled and unknown environment, the ordering of input samples often fails to

meet this criterion, making lifelong learning a difficult challenge. We exploit the locality of

the unsupervised Spike Timing Dependent Plasticity (STDP) learning rule to target local

representations in a Spiking Neural Network (SNN) to adapt to novel information while

protecting essential information in the remainder of the SNN from catastrophic forgetting.

In our Controlled Forgetting Networks (CFNs), novel information triggers stimulated firing

and heterogeneously modulated plasticity, inspired by biological dopamine signals, to

cause rapid and isolated adaptation in the synapses of neurons associated with outlier

information. This targeting controls the forgetting process in a way that reduces the

degradation of accuracy for older tasks while learning new tasks. Our experimental

results on the MNIST dataset validate the capability of CFNs to learn successfully over

time from an unknown, changing environment, achieving 95.24% accuracy, which we

believe is the best unsupervised accuracy ever achieved by a fixed-size, single-layer

SNN on a completely disjoint MNIST dataset.

Keywords: lifelong learning, continual learning, catastrophic forgetting, controlled forgetting, dopaminergic

learning, Spiking Neural Networks, Spike Timing Dependent Plasticity, stability-plasticity dilemma

1. INTRODUCTION

Artificial neural networks have enabled computing systems to successfully perform tasks previously
out of reach for traditional computing, such as image and audio classification. These networks,
however, are typically trained offline and do not update during deployed inference. One of the
current obstacles preventing fully autonomous, unsupervised learning in dynamic environments
while maintaining efficiency is the stability-plasticity dilemma, or the challenge of ensuring
that the system can continue to quickly and successfully learn from and adapt to its current
environment while simultaneously retaining and applying essential knowledge from previous
environments (Grossberg, 1987).

118

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00007
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00007&domain=pdf&date_stamp=2020-01-28
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:allredj@purdue.edu
https://doi.org/10.3389/fnins.2020.00007
https://www.frontiersin.org/articles/10.3389/fnins.2020.00007/full
http://loop.frontiersin.org/people/779753/overview
http://loop.frontiersin.org/people/502975/overview

Allred and Roy Controlled Forgetting

There have been a handful of terms used in literature to
describe the process of learning from data that is temporally
distributed inhomogeneously, such as the terms incremental
learning, sequential learning, continual learning, and lifelong
learning. In this work, we will use the term “lifelong learning.”
Lifelong learning is the process of successfully learning from
new data while retaining useful knowledge from previously
encountered data that is statistically different, often with the
goal of sequentially learning differing tasks while retaining
the capability to perform previously learned tasks without
requiring retraining on data for older tasks. When traditional
artificial neural networks are presented with changing data
distributions, more rigid parameters interfere with adaption,
while more flexibility causes the system to fail to retain important
older information, a problem called catastrophic interference or
catastrophic forgetting. Biological neuronal systems dont seem to
suffer from this dilemma. We take inspiration from the brain to
help overcome this obstacle.

To avoid catastrophic forgetting, important information from
older data must be protected while new information is learned
from novel data. Non-local learning rules may not provide such
isolation. Localized learning, on the other hand, may provide
the desired segmentation while also being able to perform
unsupervised learning, which is critical for lifelong learning
in unknown environments. Spike Timing Dependent Plasticity
(STDP) is a localized biological Hebbian learning process where
a synaptic weight’s adjustment is a function of the timing of
the spikes, or firing events, of its locally connected pre- and
post-synaptic neurons. Spiking Neural Networks (SNNs), which
have been explored for their potential energy advantages due to
sparse computing (Han et al., 2018), have been shown to perform
successful unsupervised clustering tasks with STDP (Diehl and
Cook, 2015).

However, even though STDP learning is localized, it is still
susceptible to catastrophic forgetting because the algorithms
that employ STDP are traditionally designed for randomized
input ordering. Certain features, such as homeostasis, attempt
to distribute the effect of input groupings globally in order to
benefit from the full network. Without a temporally uniform
distribution of classes, traditional STDP algorithms still lose
important older information, which is either replaced by or
corrupted with information from newer samples (Allred and Roy,
2016).

We present a new learning paradigm, inspired by the
dopamine signals in mammalian brains that non-uniformly,
or heterogeneously modulate synaptic plasticity. We create
Controlled Forgetting Networks (CFNs) that address the
stability-plasticity dilemma with rapid/local learning from new
information, rather than the traditional gradual/global approach
to learning. Our approach allows fixed-size CFNs to successfully
perform unsupervised learning of sequentially presented tasks
without catastrophically forgetting older tasks.

Many recent papers have tackled the challenge of lifelong
learning without catastrophic forgetting, but they are not
designed to target the goal of this paper, which is autonomous
learning on a deployed neuromorphic system. This goal requires
real-time unsupervised learning, energy efficiency, and fixed

network resources. Wysoski et al. (2006), Srivastava et al. (2013),
Wang et al. (2014), Wang et al. (2015), Rusu et al. (2016),
Fernando et al. (2017), Kirkpatrick et al. (2017), Lee et al. (2017),
Aljundi et al. (2018), Li and Hoiem (2018), Bashivan et al. (2019)
and Du et al. (2019) all employ supervised or reinforcement
learning methods, in some way provide the network with the
knowledge of when a task change occurs, or provide access
to previous samples for retraining. For example, the work
by Aljundi et al. (2018) requires that the system be allowed
a parameter-“importance update” period on the older task(s)
before proceeding to a new task. Similarly, Panda et al. (2018)
requires that samples from earlier distributions be presented in
disproportionately larger quantities than later distributions to
avoid catastrophic forgetting, which would require knowledge of
a task change. Additionally, Srivastava et al. (2013), Rusu et al.
(2016), Fernando et al. (2017), Kirkpatrick et al. (2017), Lee et al.
(2017), Li and Hoiem (2018) and Rios and Itti (2018) are also
not applicable to localized learning rules that may be employed
on spiking networks. And Wysoski et al. (2006), Dhoble et al.
(2012), andWang et al. (2017) are morphological systems that do
not work with static-sized networks, which would exclude them
from direct mapping onto physical hardware implementations.

2. MATERIALS AND METHODS

2.1. The Challenge of Lifelong Learning
Backpropagation has proven a successful learning algorithm for
deep neural networks. The accuracy of this approach depends
on proper stochastic gradient descent or SGD, also known
as incremental gradient descent, in which many small, global
adjustments to network weights are performed while iterating
over samples from a training dataset. These samples, however,
must be drawn from a random distribution of the dataset—hence
the name “stochastic” gradient descent—intermixing the classes
so that each class can affect the direction of descent for correct
error minimization throughout the entire training process.

The need to draw training samples from a random
distribution is an obstacle for on-line learning, especially when
the system encounters novel data. Backpropagation in an on-line
system for real-time learning proves difficult when the input from
the environment is uncontrolled and unknown. With traditional
SGD, the system typically has three choices to attempt learning
from novel data: (1) train normally on inputs in the order seen;
(2) periodically go offline and retrain from an updated dataset;
(3) maintain an online storage of previous samples to intermix
with the new samples, providing a simulated random sampling.
The latter two choices are costly and inhibit real-time learning,
while the first catastrophically violates SGD.

2.1.1. Catastrophic Forgetting Due to Global

Interference
If a uniformly randomized order is not provided, e.g., samples
are grouped by class and classes are presented sequentially to the
network, then the gradient descent followed by latter samples will
likely disagree with the direction from previous samples. This
conflict causes the network to fail to reach an error minimum
that respects older tasks, as at each period of time in the training

Frontiers in Neuroscience | www.frontiersin.org 2 January 2020 | Volume 14 | Article 7119

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

process the network essentially attempts to globally optimize
for only the current tasks, agnostic as to whether or not that
particular direction increases the error for older tasks. Latter
samples erase or corrupt the information learned from previous
samples, causing catastrophic forgetting.

One of the largest underlying causes of catastrophic forgetting
in backpropagation algorithms is the reliance on a global error.
Calculating weight updates from the current sample’s global
error means that the current sample may globally affect network
weights. Biological neuronal learning, on the other hand, appears
to be significantly localized, with synaptic weight updates being
a function of local activity, causing different regions to be
responsible for different tasks. While distributed representations
promote generalization in neural networks, rapid learning of
novel information may not require significant modifications
to low-level distributed representations in a sufficiently trained
network. It has been shown that the IT cortex contains a
large-scale spatial organization, or “shape map,” that remains
significantly stable over time (Op de Beeck et al., 2007), even
while learning novel information. Lee and DiCarlo (2019) have
shown that the stable earlier levels of the visual cortex are capable
of representing the generic structure and composition of never-
before-seen inputs with an already-learned understanding of the
physical world that remains constant through the remainder of
life–for example, an understanding of lines, edges, curves, and
colors at the lowest levels and an understanding of rotations,
shading, and physical properties at subsequent levels. Thus, it
is likely that lifelong learning need only occur in the last one
or two layers of a neural network, where local learning may
sufficiently classify from a read-out of the higher-dimensional
generalizations that have been learned previously.

2.1.2. Catastrophic Forgetting in Localized Learning

Due to Homeostasis
Many leading STDP-trained SNNs employ adaptive thresholding,
in which a neuron’s firing threshold increases each time it
fires and otherwise decays, preventing specific neurons from
dominating the receptive field. Adaptive thresholding helps
achieve homeostasis by distributing the firing activity between
neurons. However, adaptive thresholding assumes a temporally
random distribution of input samples and often causes
catastrophic interference when the environment changes (Allred
and Roy, 2016). For lifelong learning, adaptive thresholding
must be modified to account for long-term variations in spiking
activity that would occur when processing temporally variant
input distributions.

2.1.3. The Need for Forgetting
For successful lifelong learning, there must be network resources
available to learn new information. In a deployed system with
finite resources, some forgetting of older knowledge is required to
make room for information from new data. As mentioned earlier,
there are morphological systems that logically grow the network
to accommodate new information, even employing pruning
techniques when necessary if the network grows too large.
However, for our goal of deployed learning on neuromorphic
hardware, inserting and removing physical components of the

network is not an option, and existing network components must
be re-purposed to learn a new task when network capacity is
reached, requiring some forgetting.

Additionally, in some cases, forgetting may actually be
beneficial. Forgetting outlier data can improve generalizations,
and forgetting stale data can allow the system to adapt to a
changing environment if new information directly contradicts
older information. Because some forgetting must occur, we
seek to control the forgetting process to protect the most vital
information, minimizing accuracy loss.

2.2. Controlled Forgetting With
Dopaminergic Learning
The stability-plasticity dilemma can be addressed by allowing
for dynamic, heterogeneously modulated plasticity. Consider
the example of unsupervised clustering where neurons are
trained to center on input clusters (see Figure 1). Temporarily
making the synaptic weights of some neurons more plastic while
keeping the weights of other neurons more rigid can allow for
isolated adaptation by the plastic parameters while protecting the
information associated with the rigid parameters. The challenge
then becomes how to dynamically control the plasticity and for
which parameters.

STDP embeds local, generalized representations of correlated
inputs within the synaptic weights of individual neurons. Lateral
inhibition between neurons, similar to the architecture in Diehl
and Cook (2015), creates competition that prevents multiple

FIGURE 1 | The stability-plasticity dilemma in unsupervised clustering.

Lifelong learning is achieved with a strategic heterogeneous modulation of

synaptic plasticity.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2020 | Volume 14 | Article 7120

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

neurons from learning the same information. We seek to
control the forgetting process by harnessing the segmentation
of localized and distinct representations that are created by
STDP with competition. Interference from novel information
may be isolated by stimulating specific network elements to adapt
to that information, protecting the remainder of the network
from change. The forgetting caused by this interference may
be minimized and controlled by targeting network elements
associated with less useful information. We draw on inspiration
from biology to heterogeneously modulate STDP learning to
perform such isolated adaptation, creating Controlled Forgetting
Networks (CFNs).

2.2.1. Biologically Inspired Dopaminergic Plasticity

Modulation
Dopamine acts as a neuromodulator which gates synaptic
plasticity. Dopamine signals are most commonly thought of as
reward signals. In addition, though, dopamine releases are also
associated with encountering novel data, which allows the brain
to quickly adapt to new information (Frémaux and Gerstner,
2016). We adopt this concept of novelty-induced plasticity
modulation for our goal of local, rapid adaptation. We mimic a
novelty-induced dopamine release by including a dopaminergic
neuron at a given layer of a CFN (see Figure 2). We discuss how
to identify novel information in an STDP-trained SNN, how the
dopaminergic neuron is designed to fire under those conditions,
and how the dopaminergic neuron modulates plasticity.

In STDP-trained SNNs, the weight vectors stabilize on the
radial center of seen input clusters and are more likely to fire
for inputs to which they are angularly closer–meaning inputs
where the angle between the input vector and the weight vector
are smaller for a given vector magnitude (see sections 2.3.4.1,
2.4.2.4). In other words, a sample from an unseen distribution

FIGURE 2 | Single-layer CFN architecture. The dopaminergic neuron fires

when the other neurons on its layer are not firing, often a sign of novel

information. The firing of the dopaminergic neuron stimulates firing in the other

neurons while temporarily enhancing plasticity. The stimulation signals from the

dopaminergic neuron are weighted to provide heterogeneous, targeted

stimulation. The other neurons within a layer each have additional laterally

inhibitory connections for competition (not shown here).

will be less likely to induce firing than a sample from a learned
distribution. Thus, when an input sample results in little-to-no
firing activity at a given layer of neurons, we may assume that it
contains information novel to that layer. (Data in Figure S3 in the
Supplementary Material validate this assumption, showing that
a dopaminergic neuron designed to fire under these conditions is
indeed triggered more frequently whenever the system switches
to an unseen class and otherwise sees a reduction in triggered
dopaminergic activity as the new class is learned over time. See
Supplementary Section S3 for more details).

We design the dopaminergic neuron with a resting potential
higher than its firing potential, giving it a self-firing property. It
is additionally suppressed via inhibitory connections from the
other neurons in its layer so that it only spikes when they do
not. This setup allows the dopaminergic neuron to fire only when
novel information is detected.

When it fires, the dopaminergic neuron enhances plasticity by
temporarily boosting the learning rate of the other neurons in its
layer all the way to one while simultaneously stimulating firing in
those other neurons via excitatory synaptic connections that we
are calling dopaminergic weights. Because of the lateral inhibition
discussed previously, once one of the stimulated neurons fires,
it prevents or reduces the probability of the other neighboring
neurons from firing. A neuron with a boosted learning rate
then resets its learning rate the next time it fires or receives an
inhibitory signal from a neighboring neuron, indicating that one
of its neighbors has fired. Thus, while the dopamine signal is
sent to many neurons, only the first neuron(s) to fire undergo
the enhanced plasticity, creating heterogeneous plasticity and
allowing the dopamine signal to perform an isolated targeting
for local, rapid adaptation rather than global interference.
Temporarily modulating the learning rate to the full value allows
the first neuron that responds during a dopamine release to
undergo a one-shot rapid learning of the current, novel sample
and be “reassigned” without corruption from its old weight
values. Then the learning rate is reset, allowing the representation
to generalize with traditional, gradual weight changes. Figure 3
presents an example of the dopaminergic neuron in operation.
The dopaminergic neuron fires for novel representations and
does not fire if an input is similar to one already seen.

Due to the rapid learning that occurs in the presence of
dopamine and the lack of traditional homeostatic threshold
dynamics, we also modify the STDP learning rule for improved
stability, discussed later in more detail in section 2.4.2.2.

2.2.2. Targeted Stimulation for Controlled Forgetting

via Trained Dopaminergic Weights
We have addressed how to make the forgetting process rapid
and local in order to reduce interference between old and new
information. However, we must also control the specific locality
of the forgetting so as to maintain high accuracy for previous
tasks. A uniform stimulation would cause the neuron that is
angularly closest to the input to fire first and adapt to the
novel information, independent of how useful that neuron is
for previous tasks. When the network is refining representations
that have already been seen, adjusting the closest weight vector
is appropriate to promote generalization. However, when novel

Frontiers in Neuroscience | www.frontiersin.org 4 January 2020 | Volume 14 | Article 7121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

FIGURE 3 | Example spiking activity (top) showing the interaction between the dopaminergic neuron and the other neurons during training for the first several

samples (bottom) for a CFN of 400 neurons. Only neurons that fired during this small time interval are shown. The membrane potential of the dopaminergic neuron is

shown (middle), demonstrating its self-firing property unless inhibited, with a firing threshold at 1 (A break is shown in the graph at zero indicating a different scale for

the positive and negative values).

data in presented in high-dimensional space, the closest neuron is
more likely to be one that has already learned a distribution from
a previous class rather than an unused neuron that is completely
uncorrelated. Thus the stimulation must be controlled to avoid
overwriting the most essential information from previous tasks.
We provide this control by heterogeneously stimulating the other
neurons to fire during the release of dopamine via the excitatory
dopaminergic weights. Training these weights allows specific
neurons to be targeted to undergo forgetting and re-learning.

To minimize accuracy degradation caused by forgetting, we
would ideally like to forget outlier or stale information rather
than commonly-used or recent information that may be essential
for returning to previous tasks, applying knowledge from old
tasks to new tasks, or generalizing the rapidly learned novel
information. As a proxy for this categorization, we target neurons
with low overall firing frequency (outliers) or less recent firing
activity (stale). Considering firing age over firing frequency is
a tunable parameter that controls how much if any preference
should be given to more recent tasks. For the experiments in this
paper, we consider all tasks as equally important no matter how
recently seen, so we target neurons with low firing frequency.

For these purposes, we enact a simple local learning rule:
a dopaminergic weight depresses each time its post-synaptic
neuron fires. This rule causes a dopaminergic weight to be
smaller when the post-synaptic neuron it is targeting has a
higher firing rate, and vice versa. To maintain positive values,
the depressions are proportional to the current value, causing

an exponential decay. Otherwise, the dopaminergic weights
experience a gradual potentiation. Potentiation must occur to
prevent the weights from tending toward zero with differences
between weights too small to distinguish on implementations
with finite precision. The rate of potentiation is irrelevant in our
setup as long as it is the same for all dopaminergic weights in the
layer, maintaining their relative values, because the dopaminergic
neuron continues to send the dopaminergic signal until one of the
other neurons in the layer fires. For the experiments in this work,
we effect this potentiation by L2-normalizing the fan-out vector
of dopaminergic weights after a depression.

2.3. Models
In this subsection, we describe the input, synapse, and neuron
models and associated probability distributions that are useful
in selecting the appropriate hyperparameters for unsupervised
lifelong learning.

2.3.1. Input Encoding
Input samples are encoded as Poisson spike trains, following
the mathematical model of a Poisson point process (PPP),
where the spike rate λi of an input neuron is proportional
to the pixel intensity of input i. Thus, the number of spikes
in a given time window follows the distribution of a Poisson
random variable with an expectation proportional to the input
value. For perception tasks on static images, there is no
temporal information in a single sample, and thus rate encoding

Frontiers in Neuroscience | www.frontiersin.org 5 January 2020 | Volume 14 | Article 7122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

is one of the most common encoding methods for SNN
image perception implementations as it maintains statistical
independence between individual input spikes, which is useful
for the computationally less expensive one-sided STDP curve,
discussed later in section 2.4.21.

Each spike is modeled as a time-shifted delta function. The
precise time of the kth most recent spike from input i is
represented as tik. Being a PPP, the timing between two sequential
spikes on a given input channel are drawn from an exponential
random distribution, also with rate λi. The time passed since the
kth most recent spike from i at time t is represented as t|ik| =

t − tik and follows the distribution of a gamma random variable
T|ik| ∼ gamma(α = k;β = λi). The vector of all input rates for

each dimension of the given sample is represented as Eλ.

2.3.2. Synapse Model
We model the synaptic connections between neurons as a
multiplicative weight which is applied to the delta spike from
its pre-synaptic neuron and then added to the membrane
potential of its post-synaptic neuron, creating a exponential
kernel response2. We represent the weight of the synapse
connecting input i to neuron j as wij and the vector of all inputs
to neuron j as Ewj.

2.3.3. Spiking Neuron Model
We use the common Leaky-Integrate-and-Fire (LIF) neuron
model, in which a neuron’s membrane potential vmem undergoes
a continuous decay according to the differential equation in (1),
where τmem is the membrane decay constant and vrest is the
resting potential. The membrane potential is also potentiated
or depressed by incoming excitatory or inhibitory signals,
respectively. If the membrane potential reaches or surpasses the
neuron’s firing threshold vth then the neuron fires, producing an
output spike and resetting its potential to vreset . Without loss of
generality, we set vrest to zero as a reference voltage. For model
and evaluation simplicity, we also set vreset to zero and have no
refractory periods.

v̇mem =
−(vmem − vrest)

τmem
(1)

2.3.4. Membrane Potential Distribution
To estimate the relative firing distributions of competing LIF
neurons, it is useful to understand the distribution of their
membrane potentials. Assuming a firing event has yet to occur,
the effect of a Poisson spike train on a neuron’s membrane
potential with exponential leakage may be viewed as a shot-
noise process (Hohn and Burkitt, 2001). A Poisson spike train
from input i is the summation of many spikes represented as
delta functions:

Ni =
∑

k

δT|ik| (2)

1Other input encodings that use time-encoding such as rank-order may provide

energy efficiency improvements but at the moment provide no obvious benefit in

addressing catastrophic forgetting and are thus beyond the scope of this work.
2Non-instantaneous potentiation kernels, such as the alpha response, are beyond

the scope of this work due to the added difficulty to event-driven simulation.

This stochastic process produces the following pre-firing
membrane potential induced on neuron j by the spike train from
input i:

Vij(t) =

∫

fij (t) N(dt) =
∑

k

fij (t − Tk), (3)

where fij(t) = wije
−t/τmem . The Laplace transform of this shot-

noise process is:

L(θ) = E[e−θVij(t)] = eg(θ) (4)

where g(θ) = λi
∫ t
0 (e

−θ fij(v) − 1)dv.

2.3.4.1. Mean pre-firing membrane potential
The 1st moment, which is the mean pre-firing potential caused by
input channel i, is given by:

E[Vij(t)] = −
[dL(θ)

dθ

]

θ=0
= −

[

deg(θ)

dθ

]

θ=0

= −
[

eg(θ)
]

θ=0

[dg(θ)

dθ

]

θ=0

= −λi

[∫ t

0
(−fij(v)e

−θ fij(v))dv

]

θ=0

= λi

∫ t

0
fij(v)dv = λiwijτmem(1− e−t/τmem) (5)

For all inputs, represented as the rate vector Eλ, the mean
combined pre-firing potential of neuron j is:

E[Vj(t)] = τmem

∑

i

λiwij(1− e−t/τmem)

= τmem(Ewj • Eλ)(1− e−t/τmem) (6)

In steady-state this converges to: τmem(Ewj•Eλ), which is important
for discussions later in sections 2.4.2, 2.4.3.1.

2.3.4.2. Variance of pre-firing membrane potential
Continuing to the second moment, we can calculate the variance
of the pre-firing membrane potential that is induced on neuron j
by incoming spikes received from input i:

Var(Vij(t)) = E[Vij(t)
2]− E[Vij(t)]

2

=
[d2L(θ)

dθ2

]

θ=0
− E[Vij(t)]

2

= [eg(θ)(g′(θ)2 + g′′(θ))]θ=0 − E[Vij(t)]
2

= E[Vij(t)]
2 + λi

∫ t

0
fij(v)

2dv− E[Vij(t)]
2

=
1

2
λiτmemw

2
ij(1− e−2tτmem) (7)

The combined variance of the potential induced by all inputs is:

Var(Vj(t)) =
1

2
τmem

∑

i

λiw
2
ij(1− e−2tτmem)

=
1

2
τmem(Eλ • Ewj

◦2)(1− e−2tτmem) (8)

Frontiers in Neuroscience | www.frontiersin.org 6 January 2020 | Volume 14 | Article 7123

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

where Ewj
◦2 represents the Hadamard square of the weight

vector. This equation is important for discussions later
in section 2.4.2.2.

2.4. Experimental Methodology
To evaluate the effectiveness of our proposed lifelong learning
approach, we simulated CFNs on the MNIST dataset (Lecun
et al., 1998) on network sizes of 400, 900, 1,600, 2,500, 3,600,
4,900, and 6,400 excitatory neurons, each for five different seeds.
We compare the CFNs that have dopaminergic neurons to
the same setups without dopaminergic neurons, both with and
without homeostasis from adaptive thresholding. This section
details the experimental methodology of the simulations for the
CFNs and the comparison networks.

2.4.1. Simulation Setup
Each network was evaluated on the MNIST dataset for two
different scenarios: (1) interleaved classes where classes are
distributed uniform randomly, providing the network with
samples from each class throughout the entire training process;
and (2) disjoint classes where all samples from one digit are
presented before moving to the next digit and never returning
to previous digits after changing classes. The first scenario
is meant to represent traditional offline training in which all
training data is already available. The second scenario is meant
to test lifelong learning by representing a changing environment
with samples presented in the worst-case possible ordering–
entirely sequential. In both scenarios, class labels are not provided
during training. This means that the network receives no
external indication of when a task/digit change occurs in the
disjoint scenario.

Other than sequentializing the MNIST dataset in the disjoint
scenario, our training and testing procedure follows closely with
that of Diehl and Cook (2015), who demonstrated competitive
unsupervised STDP training on MNIST in the traditional
interleaved scenario.

2.4.1.1. Training process
In both training scenarios, samples are presented one-by-one
to the network. For the current sample, input neurons fire at
the sample rate until the system registers at least five output
spikes, as followed by Diehl and Cook, which is generally enough
to confidently identify the input in view of the stochasticity in
the SNN.

In contrast to Diehl and Cook, if a given sample does not
produce enough output spikes we do not continue to increase
the input firing rate during training on the CFNs, since the
dopaminergic neuron takes care of stimulating neurons in the
absence of a good match. After five output spikes are registered,
all membrane potentials are reset to avoid one sample interfering
with the next, and then the next sample is presented. Details
of the STDP learning rule implementation are provided in
section 2.4.2.

2.4.1.2. Testing process
In the disjoint scenario, we measure effective lifelong learning
over time by evaluating each network after each task change to

determine its current accuracy for all classes seen up to that point.
Networks in the interleaved scenario are only evaluated at the end
of the training process. During evaluation we pause learning and
freeze network parameters to prevent samples from older classes
or samples from the testing set from affecting the network.

As training is performed entirely without supervision and
without knowledge of a task change, the final network outputs
must be assigned class labels for evaluation. While the network
is frozen, label assignment is done by inference on the training
set, followed by evaluation on the testing set. The MNIST dataset
is already highly clustered in its input space, and therefore
a supervised linear classifier is already capable of competitive
accuracy. Because of this, no final linear readout classification
layer is added to avoid the label assignment process acting
as a traditional supervised linear classifier. Instead, following
the unsupervised evaluation method of Diehl and Cook, each
trained neuron is directly assigned a class label and no linear
combination of these neuron outputs is performed. Rather, the
class decision is winner-take-all, choosing the class of the neuron
that spiked the most for that sample. As a control, we also
perform this same label assignment and evaluation process on
networks with randomized weights, also averaged over five seeds,
to compare with the accuracy achievable solely by this label
assignment process.

With frozen parameters, dopaminergic adaptation does not
occur during label assignment and testing set evaluation. Instead,
for inference a poorly-recognized input is assigned the class of
the closest trained neuron by continuing to increase input firing
rates until a sufficient response is recorded as is done in the
other networks.

2.4.1.3. Event-driving computation
Using exponential kernels, we treat spikes as inducing
instantaneous voltage potentiations in the respective post-
synaptic neuron membranes with exponential decay. As such,
neurons only fire upon receiving an incoming spike and will
not fire between incoming spikes, with the exception of the
dopaminergic neurons which are handled separately. This
allows us to emulate the networks using purely event-driven
computation rather than breaking time into discrete time
steps and updating neurons states at each time step. Because
we encoded input spike trains as Poisson point processes, the
time between spikes is an exponential random variable with
λi = inputi. Therefore, rather than incrementing time in fixed
intervals, we calculate the time until the next input spike arrival
and decay all the traces and membrane potentials according to
that time interval before processing that input spike.

The dopaminergic neurons are an exception, as they fire in
the absence of input spikes. Therefore, before processing an input
spike, we first check to see if the dopaminergic neuronwould have
fired earlier, in which case, it is processed at its respective time
interval first.

2.4.2. STDP Learning
STDP’s Hebbian learning rule involves potentiation or depression
of a synaptic weight based on the timing of firing events.

Frontiers in Neuroscience | www.frontiersin.org 7 January 2020 | Volume 14 | Article 7124

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

This section details how it is implemented and modified for
these experiments.

2.4.2.1. One-sided STDP
As the input information in our system is encoded only in the
spike rate, we can employ the computationally less-expensive
one-sided version of STDP, evaluated at the post-synaptic
firing event:

1w = α(pre− offset) (9)

where α is the learning rate, pre is a trace of pre-synaptic
firing events, and offset is the value to which the pre-
synaptic traces are compared, determining potentiation
or depression.

The pre trace follows a similar distribution as the membrane
potential (see section 2.3.4), only with a different time constant
and without being weighted by the synapse, and so its expected
value is also proportional to the input spike rate (e.g., E[prei] =
λiτpre). Correlated potentiations in the direction of Epre therefore
provide Hebbian learning by angularly migrating Ew toward
the angle of the input vector Eλ. Anti-Hebbian depression
reduces weights from uncorrelated inputs and is provided
by subtracting the offset term for one-sided STPD rather
than performing additional weight processing at pre-synaptic
firing events.

2.4.2.2. Stabilizing STDP
Typically, offset is a constant value identical across all dimensions
and can be thought of as a scaled ones vector, applying
uniform anti-Hebbian depression. Such uniform depression
does not, however, create a weight change in exactly the
direction desired (see Figure 4) and causes instability in the
STDP learning rule. This instability is usually controlled by
adaptive thresholding and weight capping via exponential
weight-dependence.

However, our CFNs with rapid one-shot dopaminergic
learning of novel inputs cannot use such gradual approaches
to stabilize. We provide the required stability to this STDP
learning rule by correcting the direction of the weight change.
Rather than a constant offset, we dynamically tie offset to the
current weight value, which is an adaptation based on Oja’s rule
(Oja, 1982). To place pre and the weight on the same scale, we
scale the pre-synaptic trace by the inverse of its decay rate τpre,
changing (9) to:

1w = α

(pre

τpre
− w

)

(10)

This corrected weight change allows our CFNs to rapidly
and accurately capture information from novel inputs during
dopaminergic learning and otherwise gradually stabilize on the
center of the cluster of input samples for which it has fired.
Additionally, the stochasticity of the presynaptic trace can allow
the values of some dimensions to significantly overshoot or
undershoot their mean. Because of the rapid learning in the
presence of dopamine, we capped each individual weight between
0 and 0.2 before normalization to prevent the outliers from
distorting the normalization.

2.4.2.3. Modulating STDP
Dopaminergic modulation of plasticity is implemented by
dynamically changing the learning rate α. During normal
operation, α is set to 0.01 for gradual generalizing refinement
of the synaptic weights. When the dopaminergic neuron fires,
α is temporarily set to one for the reasons discussed in
section 2.2.1.

2.4.2.4. Normalization
The MNIST dataset is a magnitude insensitive dataset, meaning
that increasing or decreasing the intensity of a sample does not
alter its class and that angular distance is more important than
Euclidean distance. As given in (6), the mean pre-firing potential
of a spiking neuron is proportional to the L2-norm of its weight
vector and also to the L2-norm of the input rate vector. Although
a larger mean pre-firing potential does not always correspond
to a larger firing rate due to differing variances caused by the
Hadamard square of the weight vector as shown in (8), the
correlation between E[V] and the firing rate sufficiently holds for
datasets like MNIST with inputs of large enough dimensions and
fairly comparable input sparsity between samples.

As such, for a given input and assuming equal weight vector
magnitudes, the neuron that is angularly closest to the input
will be more likely to fire, allowing for unsupervised Hebbian
learning by training neurons on correlated inputs. Therefore,
we L2-normalize each neuron’s weight vector, and for the same
reason the input rate vectors are also L2-normalized. Weight
normalization has recently been shown to occur in biology (El-
Boustani et al., 2018) and may still be considered a localized
function, as the processing can occur at the post-synaptic
neuron to which all the weights in a given weight vector are
directly connected.

2.4.3. Timing and Time Constants
As our evaluations and simulations are purely event-driven, the
concept of discrete computational time steps is not applicable.
Timing parameters are thus purely relative. Therefore, without
loss of generality, the L2 normalized input rate vectors were
defined as having an L2 ratemagnitude of one spike per time unit,
and all other timing values are relative to that. This subsection
discusses the timing values used in the simulations.

2.4.3.1. Membrane decay time constant
According to Equation (6), the expected value of the membrane
potential saturates in time according to (1 − e−t/τ). A smaller τ

results in a faster convergence to the steady state, or, equivalently,
fewer input spikes to converge. E.g., in five time constants, the
expected potential reaches over 99% of is steady-state value.
However, using (8), the steady state standard deviation of the
potential in proportion to the mean decreases as the decay
rate increases:

√
Var(V)

E[V]
∝

1
√

τ
(11)

Thus, a larger membrane decay constant is better for proper
discrimination between two differing inputs, but increases
the number of computations. For the L2-normalized MNIST

Frontiers in Neuroscience | www.frontiersin.org 8 January 2020 | Volume 14 | Article 7125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

FIGURE 4 | Instability of one-sided STDP. (A) Example vectors showing how a static offset does not result in a correct weight change. The goal is to migrate Ew toward

the Epre trace, which is proportional to the input Eλ. The Eoffset vector that is subtracted from Epre must be dynamically tied in each dimension to Ew, rather than being the

same in every dimension. (B) Weight change results for various starting positions where the target vector is equal to the current weight vector, which would ideally

result in no weight change. With a static offset in each dimension, even scaled to the appropriate magnitude, the weight vectors do not stabilize on the target and

instead migrate toward the axes, creating binarized weights when capped at zero.

dataset with 784 input dimensions, the angular distances
between samples of differing classes are close enough to
require at least 10 to 15 normalized time units for τmem

in order to successfully establish a firing threshold that can
discriminate between classes, and so τmem was set to 15
time units.

2.4.3.2. Time to recognize
A τmem of 15 still produces enough variance according to
(8) that two to three time constants (between 30 and 45
time units) is on average sufficient time for the potential
to rise above its steady-state mean. As mentioned earlier,
we identify successful recognition of an input sample after
registering five output spikes. Therefore, a total of 150–225
time units was generally sufficient to produce five sequential
firing events in a reference vector neuron with a center close to
the input.

In our simulations, we found little accuracy change by
adjusting this hyperparameter within this range as long as the
threshold voltage was appropriately tuned, so we fixed the time
to recognize at 200 normalized time units for each simulation.
We tuned the dopaminergic neuron to fire after those 200 time
units unless it has been otherwise inhibited as discussed in section
2.2. Specifically, with vreset set to zero as a reference voltage,
the dopaminergic neuron’s firing threshold vth was set to one
with a resting voltage set higher at two, causing the membrane
potential to rise until it fires. Setting its rising time constant to
200

ln(2/1)
then meets this objective. Figure 3 shows the membrane

potential of the dopaminergic neuron during simulation for
the first several samples as an example of its operation
over time.

We also set τpre to the same timing value of 200 time units to
capture as much of the input train as possible because of the rapid
one-shot dopaminergic learning of novel samples.

2.4.4. Determining vth Without Adaptive Thresholding
As discussed in section 2.1.2, adaptive thresholding for
homeostasis can interfere with lifelong learning on changing
input distributions by temporally and spatially distributing
the firing activity. Long-term adaptive thresholding may still
be used with controlled forgetting if properly tuned, but
our proposed method of enhanced plasticity and stimulated
firing of infrequently-firing neurons is itself a form of
deliberate, controlled homeostasis. Therefore, for a more
accurate evaluation of the CFNs, we do not have the CFNs
employ any adaptive thresholding–having static thresholds
instead. With normalized weight vectors and input vectors, the
larger the ratio vth :E[V(t)] the closer the input rate vector
must be angularly to the weight vector to produce a given
firing probability. Determining the proper vth without dynamic
adaptation, therefore, depends on the tightness of the clustering
in the dataset. With this context, we included vth in our hyper-
parameter search, discussed next.

2.4.5. Hyper-Parameter Sweep
SNNs are known to be highly sensitive to hyper-parameters,
especially during unsupervised learning without error signals
to provide dynamic corrections. We perform a small search
in the hyper-parameter space, adjusting vth and the number
of training epochs. Results from this search are shown in
Table 1, with hyperparameters resulting in the best accuracy
highlighted for each size. Good machine learning practice
requires that we choose the system parameters based only on
the training set, so only training set accuracy results are shown
here. Testing accuracy results are discussed later in the section
3. A similar hyper-parameter sweep was performed for the
non-dopaminergic SNNs that also do not have homeostatic
adaptive thresholding, as well as for the SNNs with randomized
weight vectors.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 14 | Article 7126

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

TABLE 1 | Training accuracy results of hyper-parameter sweep for each network

size across both vth and number of training epochs per task.

of training epochs per task

Neurons vth 1 (%) 5 (%) 10 (%) 20 (%)

400 13.50 87.63 83.82 79.23 74.15

13.75 87.63 84.07 78.34 75.18

14.00 86.64 82.49 77.11 75.20

14.25 85.50 83.59 75.75 75.06

900 13.50 89.78 91.07 89.36 85.31

13.75 89.11 90.91 89.81 86.24

14.00 87.83 91.47 89.71 84.75

14.25 86.82 91.46 89.94 84.14

1,600 13.50 91.54 92.42 92.21 91.35

13.75 91.24 92.87 92.48 91.40

14.00 90.08 93.34 92.20 91.30

14.25 88.48 93.06 92.85 91.74

2,500 13.50 93.15 93.62 93.46 93.13

13.75 92.82 93.65 94.06 93.20

14.00 91.80 93.37 94.28 93.53

14.25 90.06 93.18 94.04 93.49

3,600 13.50 93.88 94.09 94.04 93.80

13.75 93.90 94.12 94.48 94.52

14.00 93.31 94.02 94.53 94.52

14.25 92.33 93.27 94.40 94.27

4,900 13.50 94.51 94.91 94.67 94.77

13.75 95.00 94.92 94.82 95.09

14.00 94.61 94.85 94.97 95.21

14.25 93.59 93.82 94.54 95.29

6,400 13.50 95.39 95.25 95.28 95.25

13.75 95.42 95.55 95.39 95.68

14.00 95.33 95.59 95.42 95.79

14.25 94.79 94.99 95.21 95.88

Highlighted cells are best configuration for each size.

2.4.5.1. Neuron firing thresholds, vth
Based on the discussion above, vth should be close to but slightly
less than τmem in voltage units, which is set to 15 time units. For
MNIST, we initially found that if vth is much less than 13.5, a
neuron may too likely fire for samples from other classes, while if
vth is much higher than 14.25, a neuronmay not fire for very close
samples, even different stochastic instances of the same sample.
We therefore tested each setup with four different threshold
values in this range: 13.5, 13.75, 14.0, and 14.25. Smaller networks
require each individual neuron to capture a larger subset of input
samples, generally requiring slightly lower thresholds than those
in larger networks.

2.4.5.2. Number of training epochs
Larger networks can capture representations that are less
common but still useful. As such, for larger networks
more epochs within a class are required before proceeding
to subsequent tasks in order to refine the less common
representations. For smaller networks, on the other hand, more

FIGURE 5 | Comparison of the static vth selected in the hyperparameter

sweep with the corresponding dot product of the nearest training error in a

kmeans network of the same size. The kmeans error bars represent two

standard deviations over 100 trials each.

epochs may reinforce less useful outliers, making it more difficult
to make room for subsequent tasks.

2.4.6. Comparison of E[V(t)] at vth With K-Means

Clustering Angular Error
We can compare the vth values selected in the hyper-parameter
search with the mean angular distance to a neuron’s weight
vector that would on average result in a membrane potential
equal to that threshold. Performing a simple k-means clustering
on the L2-normalized MNIST dataset yields information on
the relative desired scope of each reference vector, depending
on the number of reference vector neurons. Figure 5 shows
the dot product associated with the angular distance of the
closest training sample/reference vector pair from differing
classes for each network size after k-means clustering. The
figure also shows the average membrane potential of a spiking
neuron corresponding to these angles. For SNNs, neurons
that are able to fire for samples that are further away than
these angles are thus more likely to fire for samples of
the wrong class. As the number of reference vector neurons
increases, the portion of the input space per neuron decreases,
improving accuracy by allowing each individual neuron to
be more restrictive in its angular scope, which is relatively
similar to those associated with the vth values selected in the
hyper-parameter sweep.

3. RESULTS

In this section, we present the results of simulating the CFNs
and the non-dopamine comparison networks for the various
sizes in both the interleaved classes scenario and the fully
disjoint classes scenario. We present both the combined accuracy
and the per digit accuracy, with final results and (in the
disjoint scenario) results throughout the attempted lifelong
learning process.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2020 | Volume 14 | Article 7127

Allred and Roy Controlled Forgetting

3.1. Combined, Across-Task Accuracy
Results
Figure 6 shows the final combined, across-task classification
accuracy of the CFNs and comparison networks for both the
interleaved scenario and the disjoint scenario for all network
sizes. The comparison with Diehl and Cook (2015) is provided
for the network sizes for which results were published (400,
1,600, and 6,400). In the fully disjoint scenario, the 6,400
CFN achieves on average 95.24% classification accuracy across
all digits, compared to 32.97% for a non-dopamine SNN
without homeostasis, 61.95% accuracy for a non-dopamine
SNN with homeostasis, and 53.30% accuracy for an SNN with
random weights (Per-neuron activity statistics are available in
the Supplementary Material).

Figure 7 shows the combined, across-task accuracy over time
for the CFNs and comparison networks for network sizes of 1,600
and 6,400 neurons. (CFN results for the other sizes are available
in the Supplementary Material). The combined, across-task
accuracy over time is defined as classification accuracy on the
portion of the testing set consisting of all previously-seen classes,
up to and including the current task. For the 6,400 size, the
CFN incurs its largest accuracy drop at the last stage, adding
digit ‘9,’ dropping 1.06 percentage points. In comparison, at that
size the non-dopamine SNN without homeostasis incurs a 34.41
percentage point drop when adding digit ‘2,’ the non-dopamine
SNN with homeostasis incurs a 10.41 percentage point drop
adding digit ‘9,’ and the SNN with random weights incurs an
11.82 percentage point drop adding digit ‘2.’

3.2. Per-Digit Accuracy Results
Figure 8 shows the final accuracy of each individual task/digit
by the end of the training process for 6400 neurons, comparing
the distribution of accuracy across tasks for the CFNs in
both the interleaved and disjoint scenarios, as well as with
both the non-dopamine SNNs in the disjoint scenario and the
randomized weights. In the disjoint scenario, the CFN’s final
worst performing class is digit ‘9’ at 91.18% accuracy, which is
also the worst performing class in the interleaved scenario at
93.60% accuracy. In comparison, for the other networks in the
disjoint scenario, the final worst performing class is digit ‘8’ at
38.81% accuracy for the non-dopamine SNN with homeostasis;
digits ‘5,’ ‘7,’ and ‘8’ tied at 0.00% accuracy for the non-dopamine
SNN without homeostasis; and digit ‘8’ at 33.37% accuracy for
the SNN with random weights.

Figure 9 shows the per-digit accuracy over time for each
network of 6,400 neurons. (Per-digit false positives over time are
provided in the Supplementary Material). The CFN incurred
its largest per-digit accuracy drop for digit ‘4’ after adding
digit ‘9,’ decreasing 3.89 percentage points for digit ‘4’ during
that task change. In comparison, the non-dopamine SNN with
homeostasis incurred a 23.07 percentage point drop for digit
‘4’ at that same transition; the non-dopamine SNN without
homeostasis incurred a 69.52 percentage point drop for digit ‘1’
after adding digit ‘7,’ and the SNN with random weights incurred
a 10.98 percentage point drop in accuracy for digit ‘4’ when
adding digit ‘9.’

4. DISCUSSION

In this section, using a qualitative analysis we discuss reasons why
the non-dopamine SNNs failed at lifelong learning in the disjoint
scenario and how the CFNs avoided those failures. We also
discuss the expected sequential penalty and graceful degradation
of accuracy.

4.1. A Qualitative Analysis
In these fully-connected one-layer SNNs, each neurons weight
vector can be viewed as a reference vector that captures a
specific input representation, ideally successfully generalized. As
such, we may qualitatively observe the success of dopaminergic
learning over time by viewing these representations. For
a better visual demonstration of the disjoint scenario, we
show the weights of the networks for the first four digits
‘0’ through ‘3’ in Figure 10, with 100 neurons arranged
in a 10x10 grid.

Note that in the CFN case (Figure 10A) there are two very
distinct categories of representations. The digit representations
that appear to have a more consistent pixel intensity and a
more consistent line width and curvature are generalized
representations refined by many similar samples in a cluster.
On the other hand, the digit representations that appear
less defined and with more irregularity in pixel intensity
are outlier representations from only one or a few samples.
Notice that the digit representations that are preserved from
one task to another are the useful generalizations rather
than the outliers, which on the other hand are the first to be
overwritten when space for a new task is required. In addition,
the representations that are preserved from previous tasks
experience very little and infrequent corruption during later
learning stages. The dopamine signals are able to successfully
replace old information with new information without
interference and while maintaining accuracy because of the
targeted localization.

In contrast, we can visually see the failure of the non-
dopamine SNNs in the disjoint scenario. In the network
without homeostasis (Figure 10B) we see that only a few
neurons experienced any learning. Without homeostasis
the neurons that fired first migrated closer to the input
distributions and dominated the firing activity. Even when the
input distribution changed between tasks, the already used
neurons were closer to the new distributions than the unused
neurons with random weight vectors. Continuing the reuse
the same neurons caused the SNN to overwrite and forget
previous tasks.

Next, in the network with homeostatic adaptive thresholding
(Figure 10C), we see a better use of network resources from
the distributed firing activity. But without targeted dopaminergic
modulation homeostasis distributes the learning for a new task
over all the neurons previously used in earlier tasks. Even
when the learning per-digit is reduced (Figure 10D), the activity
for the new tasks are still globally distributed by the adaptive
thresholding, causing corruption between tasks.

The CFNs with dopaminergic learning avoid globally
distributing firing activity during a single task by not having

Frontiers in Neuroscience | www.frontiersin.org 11 January 2020 | Volume 14 | Article 7128

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

FIGURE 6 | Final classification accuracy at various sizes of the CFNs compared to SNNs without dopamine. Accuracy is shown for both the interleaved class

scenario and the disjoint class scenario, showing the resulting accuracy reduction by sequentializing the classes. CFNs show average over five seeds.

FIGURE 7 | Classification accuracy over time at each stage of the learning process (i.e., after each new task/digit) in the disjoint scenario, comparing the proposed

CFNs to SNNs without dopamine and to the randomized weight control. Accuracy is for all previous tasks, up to and including the current task. CFN results are

averaged over five seeds.

FIGURE 8 | Final per-digit accuracy (size 6,400), comparing interleaved CFN accuracy to the disjoint CFN accuracy. Also showing failure for individual digits in the

disjoint scenario for SNNs without dopamine.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2020 | Volume 14 | Article 7129

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

FIGURE 9 | Per-task/digit classification accuracy as new tasks/digits are added over time for the following networks, all of size 6,400: (A) the proposed CFN (B) no

dopamine SNN with homeostasis (C) no dopamine SNN without homeostasis, (D) SNN with random weights.

traditional homeostatic adaptive thresholding. In addition,
the CFNs avoid continuing to reuse the same neurons by
proactively identifying novel data and targeting specific neurons
to learn the novel data, preserving essential information from
previous tasks.

We note that for the failed networks where older classes are
entirely overwritten by new classes, the networks still report
some, albeit poor, accuracy for the forgotten tasks. This is because
the varied intra-class distributions can still be somewhat useful
at differentiating inter-class distributions. For this purpose, the
accuracy comparisons to the SNNs with random weights are
essential at identifying catastrophic forgetting, indicating that
around 40–50% is a failure baseline for unsupervised learning
using SNNs of these sizes on the MNIST dataset.

4.2. The Expected “Sequential Penalty”
We see that the CFNs in the disjoint scenario perform on
par with the interleaved scenario, averaging only a 1.04%
accuracy reduction across all sizes. This penalty is expected
due to sequentializing the tasks. In fact, such a penalty may
be impossible to completely avoid, as the interleaved scenario
provides more information to the network throughout training
by providing all distributions up front, whereas the disjoint
scenario never provides an opportunity to temporally overlap
learning of different distributions. Even so, the sequential penalty
for the CFNs is minimal, andmay be acceptable given the systems
avoidance of catastrophic failure in the disjoint scenario. In
fact, even with this penalty, the 6400 neuron CFN achieves a
respectable 95.24% test accuracy after lifelong learning, which we
believe is the best unsupervised accuracy ever achieved by a fixed-
size, single-layer SNN on a completely disjoint MNIST dataset.

The CFNs in the disjoint scenario even outperform (Diehl and
Cook, 2015) in all cases for which they provide results, even
though that work is in the interleaved scenario.

4.3. Graceful Degradation Instead of
Catastrophic Forgetting
Controlled forgetting allows the network to gracefully degrade
its accuracy in exchange for the ability to learn new tasks
with limited resources, rather than failing. The true success
of a lifelong learning system is shown not just by the
final accuracy, but also by its performance throughout the
training process and across training tasks. Notice how in
Figure 8 while the system expectedly performs better for
some tasks rather than others, there is no single task for
which the system fails; i.e., the sequential penalty is spread
between tasks. In fact, the lifelong system performs best at
the same tasks (digits ‘0,’ ‘1,’ and ‘6’) and worst at the
same tasks (digits ‘8’ and ‘9’) that the offline/non-lifelong
system does.

We believe that this type of approach with modulated
plasticity and targeted stimulation can be useful for
allowing deployed systems to gracefully adapt to changing
environments rather than failing to adapt or requiring frequent
offline retraining.

4.4. Future Work
We expect that a deeper network will improve accuracy
beyond that of these results and allow for learning of more
complicated datasets. As mentioned earlier, in a deeper network,
it may be that only the last few layers would require
lifelong learning, performing a readout from a liquid state

Frontiers in Neuroscience | www.frontiersin.org 13 January 2020 | Volume 14 | Article 7130

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

FIGURE 10 | Grid view of the weight vectors of reference neurons over time, showing the first four digits, learning ‘0’ through ‘3’ for (A) the proposed CFN, (B) a

non-dopamine SNN without homeostasis, and (C) a non-dopamine SNN with homeostasis, each with 400 neurons, although only the 100 top-firing neurons are

shown for space. For the CFN, digits highlighted in dashed green are examples of successfully learned generalized representations. Digits highlighted in dotted orange

are examples of outlier representations. Digits highlighted in solid blue are examples of representations preserved from previous tasks. Also shown is (D) another

non-dopamine SNN with homeostasis, but with reduced learning on each digit, showing catastrophic interference between classes causing corruption.

machine or a fixed feed forward network sufficiently pre-
trained on low-level representations. We also plan to evaluate
this method on time-encoded signals to improve sparsity
and energy efficiency. Further, we hope to explore other
dopaminergic weight adjustment policies that have a higher
time-dependence or weight policies with habituation, such as
in Panda et al. (2018), in order to allow for operation in an
environment of changing priorities, and not just temporally
separated tasks.

4.5. Conclusion
We presented a biologically-inspired dopaminergic modulation
of synaptic plasticity to exploit STDP locality. Trained
stimulation during the presentation of novel inputs allows
the system to quickly perform isolated adaptation to new
information while preserving useful information from previous
tasks. This method of controlled forgetting successfully achieves
lifelong learning. Our Controlled Forgetting Networks show only
a slight reduction in accuracy when given the worst possible class

Frontiers in Neuroscience | www.frontiersin.org 14 January 2020 | Volume 14 | Article 7131

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

ordering, i.e., completely sequential without revisiting previous
classes, while successfully avoiding catastrophic forgetting.

DATA AVAILABILITY STATEMENT

The MNIST dataset used in this study can be found at
http://yann.lecun.com/exdb/mnist.

AUTHOR CONTRIBUTIONS

JA wrote the paper and performed the simulations. Both JA
and KR helped with developing the concepts, conceiving the
experiments, and writing the paper.

FUNDING

This work was supported in part by C-BRIC, a JUMP
center sponsored by the Semiconductor Research Corporation
and DARPA, and by the National Science Foundation, Intel

Corporation, and the Vannevar Bush Fellowship. The authors
declare that this study received funding from Intel and the
Semiconductor Research Corporation. The funders were not
involved in the study design, collection, analysis, interpretation
of data, the writing of this article or the decision to submit it
for publication.

ACKNOWLEDGMENTS

The authors would also like to thank Professor Jonathon
Peterson and Dr. Gerard (Rod) Rinkus of Purdue University for
helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00007/full#supplementary-material

REFERENCES

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018).

“Memory aware synapses: Learning what (not) to forget,” in Computer Vision –

ECCV 2018, eds V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (Cham:

Springer International Publishing), 144–161.

Allred, J. M., and Roy, K. (2016). “Unsupervised incremental stdp learning

using forced firing of dormant or idle neurons,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, BC), 2492–2499.

doi: 10.1109/IJCNN.2016.7727509

Bashivan, P., Schrimpf, M., Ajemian, R., Rish, I., Riemer, M., and Tu, Y. (2019).

Continual learning with self-organizing maps. arXiv:1904.09330 [Preprint].

Available online at: https://arxiv.org/abs/1904.09330

Dhoble, K., Nuntalid, N., Indiveri, G., and Kasabov, N. (2012). “Online spatio-

temporal pattern recognition with evolving spiking neural networks utilising

address event representation, rank order, and temporal spike learning,” in The

2012 International Joint Conference on Neural Networks (IJCNN) (Brisbane,

QLD), 1–7. doi: 10.1109/IJCNN.2012.6252439

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Du, X., Charan, G., Liu, F., and Cao, Y. (2019). Single-net continual learning with

progressive segmented training (PST). arXiv:1905.11550 [Preprint]. Available

online at: https://arxiv.org/abs/1905.11550

El-Boustani, S., Ip, J. P. K., Breton-Provencher, V., Knott, G. W., Okuno,

H., Bito, H., et al. (2018). Locally coordinated synaptic plasticity of

visual cortex neurons in vivo. Science 360, 1349–1354. doi: 10.1126/science.

aao0862

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., et al.

(2017). PathNet: evolution channels gradient descent in super neural networks.

arXiv:1701.08734 [Preprint]. Available online at: https://arxiv.org/abs/1701.

08734

Frmaux, N., and Gerstner, W. (2016). Neuromodulated spike-timing-dependent

plasticity, and theory of three-factor learning rules. Front. Neural Circ. 9:85.

doi: 10.3389/fncir.2015.00085

Grossberg, S. (1987). Competitive learning: from interactive activation to adaptive

resonance. Cogn. Sci. 11, 23–63. doi: 10.1111/j.1551-6708.1987.tb00862.x

Han, B., Ankit, A., Sengupta, A., and Roy, K. (2018). Cross-layer design

exploration for energy-quality tradeoffs in spiking and non-spiking deep

artificial neural networks. IEEE Trans. Multi Scale Comput. Syst. 4, 613–623.

doi: 10.1109/TMSCS.2017.2737625

Hohn, N., and Burkitt, A. (2001). Shot noise in the leaky integrate-and-

fire neuron. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 63:031902.

doi: 10.1103/PhysRevE.63.031902

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,

A. A., et al. (2017). Overcoming catastrophic forgetting in neural networks.

Proc. Natl. Acad. Sci. U.S.A. 114, 3521–3526. doi: 10.1073/pnas.1611

835114

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, M. J., and DiCarlo, J. J. (2019). Comparing novel object learning in humans,

models, and monkeys. J. Vis. 19:114b. doi: 10.1167/19.10.114b

Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-T. (2017). “Overcoming

catastrophic forgetting by incremental moment matching,” in Advances in

Neural Information Processing Systems 30, eds I. Guyon, U. V. Luxburg, S.

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Long Beach,

CA: Curran Associates, Inc.), 4652–4662.

Li, Z., and Hoiem, D. (2018). Learning without forgetting. IEEE Trans.

Pattern Anal. Mach. Intell. 40, 2935–2947. doi: 10.1109/TPAMI.2017.27

73081

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Op de Beeck, H. P., Deutsch, J. A., Vanduffel, W., Kanwisher, N. G., and

DiCarlo, J. J. (2007). A stable topography of selectivity for unfamiliar shape

classes in monkey inferior temporal cortex. Cereb. Cortex 18, 1676–1694.

doi: 10.1093/cercor/bhm196

Panda, P., Allred, J. M., Ramanathan, S., and Roy, K. (2018). Asp: learning to forget

with adaptive synaptic plasticity in spiking neural networks. IEEE J. Emerg.

Select. Top. Circ. Syst. 8, 51–64. doi: 10.1109/JETCAS.2017.2769684

Rios, A., and Itti, L. (2018). Closed-loop memory GAN for continual learning.

arXiv:1811.01146 [Preprint]. Available online at: https://arxiv.org/abs/1811.

01146

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,

Kavukcuoglu, K., et al. (2016). Progressive neural networks. arXiv:1606.04671

[Preprint]. Available online at: https://arxiv.org/abs/1606.04671

Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., and Schmidhuber, J. (2013).

“Compete to compute,” in Advances in Neural Information Processing Systems

26, eds C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.

Weinberger (Lake Tahoe, NV: Curran Associates, Inc.), 2310–2318.

Wang, J., Belatreche, A., Maguire, L., and McGinnity, T. M. (2014). An

online supervised learning method for spiking neural networks with

Frontiers in Neuroscience | www.frontiersin.org 15 January 2020 | Volume 14 | Article 7132

http://yann.lecun.com/exdb/mnist
https://www.frontiersin.org/articles/10.3389/fnins.2020.00007/full#supplementary-material
https://doi.org/10.1109/IJCNN.2016.7727509
https://arxiv.org/abs/1904.09330
https://doi.org/10.1109/IJCNN.2012.6252439
https://doi.org/10.3389/fncom.2015.00099
https://arxiv.org/abs/1905.11550
https://doi.org/10.1126/science.aao0862
https://arxiv.org/abs/1701.08734
https://arxiv.org/abs/1701.08734
https://doi.org/10.3389/fncir.2015.00085
https://doi.org/10.1111/j.1551-6708.1987.tb00862.x
https://doi.org/10.1109/TMSCS.2017.2737625
https://doi.org/10.1103/PhysRevE.63.031902
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/5.726791
https://doi.org/10.1167/19.10.114b
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1007/BF00275687
https://doi.org/10.1093/cercor/bhm196
https://doi.org/10.1109/JETCAS.2017.2769684
https://arxiv.org/abs/1811.01146
https://arxiv.org/abs/1811.01146
https://arxiv.org/abs/1606.04671
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Allred and Roy Controlled Forgetting

adaptive structure.Neurocomputing 144, 526–536. doi: 10.1016/j.neucom.2014.

04.017

Wang, J., Belatreche, A., Maguire, L., and McGinnity, T. M.

(2015). “Dynamically evolving spiking neural network for pattern

recognition,” in 2015 International Joint Conference on Neural

Networks (IJCNN) (Killarney), 1–8. doi: 10.1109/IJCNN.2015.72

80649

Wang, J., Belatreche, A., Maguire, L. P., and McGinnity, T. M. (2017).

Spiketemp: an enhanced rank-order-based learning approach for

spiking neural networks with adaptive structure. IEEE Trans.

Neural Netw. Learn. Syst. 28, 30–43. doi: 10.1109/TNNLS.2015.

2501322

Wysoski, S. G., Benuskova, L., and Kasabov, N. (2006). “On-line learning with

structural adaptation in a network of spiking neurons for visual pattern

recognition,” in Proceedings of the 16th International Conference on Artificial

Neural Networks - Volume Part I, ICANN’06 (Berlin; Heidelberg. Springer-

Verlag), 61–70.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Allred and Roy. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 January 2020 | Volume 14 | Article 7133

https://doi.org/10.1016/j.neucom.2014.04.017
https://doi.org/10.1109/IJCNN.2015.7280649
https://doi.org/10.1109/TNNLS.2015.2501322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 28 February 2020

doi: 10.3389/fnins.2020.00119

Frontiers in Neuroscience | www.frontiersin.org 1 February 2020 | Volume 14 | Article 119

Edited by:

Hesham Mostafa,

University of California, San Diego,

United States

Reviewed by:

Bodo Rückauer,

ETH Zürich, Switzerland

Eric Hunsberger,

University of Waterloo, Canada

David Kappel,

Dresden University of Technology,

Germany

*Correspondence:

Chankyu Lee

lee2216@purdue.edu

Syed Shakib Sarwar

sarwar@purdue.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 11 September 2019

Accepted: 30 January 2020

Published: 28 February 2020

Citation:

Lee C, Sarwar SS, Panda P,

Srinivasan G and Roy K (2020)

Enabling Spike-Based

Backpropagation for Training Deep

Neural Network Architectures.

Front. Neurosci. 14:119.

doi: 10.3389/fnins.2020.00119

Enabling Spike-Based
Backpropagation for Training Deep
Neural Network Architectures
Chankyu Lee*†, Syed Shakib Sarwar*†, Priyadarshini Panda, Gopalakrishnan Srinivasan

and Kaushik Roy

Nanoelectronics Research Laboratory, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN,

United States

Spiking Neural Networks (SNNs) have recently emerged as a prominent neural computing

paradigm. However, the typical shallow SNN architectures have limited capacity for

expressing complex representations while training deep SNNs using input spikes has

not been successful so far. Diverse methods have been proposed to get around this

issue such as converting off-the-shelf trained deep Artificial Neural Networks (ANNs)

to SNNs. However, the ANN-SNN conversion scheme fails to capture the temporal

dynamics of a spiking system. On the other hand, it is still a difficult problem to directly

train deep SNNs using input spike events due to the discontinuous, non-differentiable

nature of the spike generation function. To overcome this problem, we propose an

approximate derivative method that accounts for the leaky behavior of LIF neurons.

This method enables training deep convolutional SNNs directly (with input spike events)

using spike-based backpropagation. Our experiments show the effectiveness of the

proposed spike-based learning on deep networks (VGG and Residual architectures) by

achieving the best classification accuracies in MNIST, SVHN, and CIFAR-10 datasets

compared to other SNNs trained with a spike-based learning. Moreover, we analyze

sparse event-based computations to demonstrate the efficacy of the proposed SNN

training method for inference operation in the spiking domain.

Keywords: spiking neural network, convolutional neural network, spike-based learning rule, gradient descent

backpropagation, leaky integrate and fire neuron

1. INTRODUCTION

Over the last few years, deep learning has made tremendous progress and has become a prevalent
tool for performing various cognitive tasks such as object detection, speech recognition, and
reasoning. Various deep learning techniques (LeCun et al., 1998; Srivastava et al., 2014; Ioffe and
Szegedy, 2015) enable the effective optimization of deep ANNs by constructing multiple levels
of feature hierarchies and show remarkable results, which occasionally outperform human-level
performance (Krizhevsky et al., 2012; He et al., 2016; Silver et al., 2016). To harness the deep
learning capabilities in ubiquitous environments, it is necessary to deploy deep learning not only
on large-scale computers, but also on edge devices (e.g., phone, tablet, smartwatch, robot, etc.).
However, the ever-growing complexity of deep neural networks together with the explosion in the
amount of data to be processed, place significant energy demands on current computing platforms.

134

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00119
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00119&domain=pdf&date_stamp=2020-02-28
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lee2216@purdue.edu
mailto:sarwar@purdue.edu
https://doi.org/10.3389/fnins.2020.00119
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119/full
http://loop.frontiersin.org/people/517271/overview
http://loop.frontiersin.org/people/661269/overview
http://loop.frontiersin.org/people/474514/overview
http://loop.frontiersin.org/people/504600/overview
http://loop.frontiersin.org/people/502975/overview

Lee et al. Enabling Spike-Based Learning

Spiking Neural Network (SNN) is one of the leading
candidates for overcoming the constraints of neural computing
and to efficiently harness the machine learning algorithm in real-
life (or mobile) applications. The concepts of SNN, which is often
regarded as the 3rd generation neural network (Maass, 1997),
are inspired by the biological neuronal mechanisms (Hodgkin
and Huxley, 1952; Dayan and Abbott, 2001; Izhikevich, 2003;
Brette and Gerstner, 2005) that can efficiently process discrete
spatio-temporal events (spikes). The Leaky Integrate and Fire
(LIF) neuron is the simple first-order phenomenological spiking
neuron model, which can be characterized by the internal
state, called membrane potential. The membrane potential
integrates the inputs over time and generates an output spike
whenever it overcomes the neuronal firing threshold. Recently,
specialized hardwares (Merolla et al., 2014; Ankit et al., 2017;
Davies et al., 2018) have been developed to exploit this event-
based, asynchronous signaling/processing scheme. They are
promising for achieving ultra-low power intelligent processing
of streaming spatiotemporal data, and especially in deep
hierarchical networks, as it has been observed in SNN models
that the number of spikes, and thus the amount of computation,
decreases significantly at deeper layers (Rueckauer et al., 2017;
Sengupta et al., 2019).

We can divide SNNs into two broad classes: (a) converted
SNNs and (b) SNNs derived by direct spike-based training.
The former one is SNNs converted from the trained ANN for
the efficient event-based inference (ANN-SNN conversion) (Cao
et al., 2015; Hunsberger and Eliasmith, 2015; Diehl et al., 2016;
Rueckauer et al., 2017; Sengupta et al., 2019). Themain advantage
is that it uses state-of-the-art (SOTA), optimization-based, ANN
training methods and therefore achieves SOTA classification
performance. For instance, the specialized SNN hardwares [such
as SpiNNaker (Furber et al., 2013), IBM TrueNorth (Merolla
et al., 2014) have exhibited greatly improved power efficiency as
well as the state-of-the-art performance for the inference. The
signals used in such training are real-valued and are naturally
viewable as representing spike rate (frequency). The problem is
that reliably estimating frequencies requires non-trivial passage
of time. On the other hand, SNNs derived by direct spike-based
training also involves some hurdles. Direct spike-based training
methods can be divided into two classes: (i) non-optimization-
based, mostly unsupervised, approaches involving only signals
local to the synapse, e.g., the times of pre- and post-synaptic
spikes, as in Spike-Timing-Dependent-Plasticity (STDP); and
(ii) optimization-based, mostly supervised, approaches involving
a global objective, e.g., loss, function. STDP-trained two-layer
network (consisting of 6,400 output neurons) has been shown
to achieve 95% classification accuracy on MNIST dataset (Diehl
and Cook, 2015). However, a shallow network structure limits the
expressive power (Brader et al., 2007; Zhao et al., 2015; Srinivasan
et al., 2018a,b) and may not scale well to larger problem
sizes. While efficient feature extraction has been demonstrated
using layer-wise STDP learning in deep convolutional SNNs
(Kheradpisheh et al., 2016; Lee et al., 2019b), ANN models
trained with standard backpropagation (BP) (Rumelhart et al.,
1985) still achieve significantly better classification performance.
These considerations have inspired the search for spike-based

versions of BP, which requires finding a differentiable surrogate
of the spiking unit’s activation function. Bohte et al. (2002) and
Lee et al. (2016) defined such a surrogate in terms of a unit’s
membrane potential. Besides, Panda and Roy (2016) applies
BP-based supervised training for the classifier after layer-by-
layer autoencoder-based training of the feature extractor. By
combining layer-wise STDP-based unsupervised and supervised
spike-based BP, Lee et al. (2018) showed improved robustness,
generalization ability, and faster convergence. In this paper, we
take these prior works forward to effectively train very deep SNNs
using end-to-end spike-based BP learning.

The main contributions of our work are as follows. First,
we develop a spike-based supervised gradient descent BP
algorithm that employs an approximate (pseudo) derivative for
LIF neuronal function. In addition, we leverage the key idea
of the successful deep ANN models such as LeNet5 (LeCun
et al., 1998), VGG (Simonyan and Zisserman, 2014), and ResNet
(He et al., 2016) for efficiently constructing deep convolutional
SNN architectures. We also adapt the dropout (Srivastava et al.,
2014) technique to better regularize deep SNN training. Next,
we demonstrate the effectiveness of our methodology for visual
recognition tasks on standard character and object datasets
(MNIST, SVHN, CIFAR-10) and a neuromorphic dataset (N-
MNIST). To the best of our knowledge, this work achieves the
best classification accuracy in MNIST, SVHN, and CIFAR-10
datasets among other spike-based learning methodologies. Last,
we expand our efforts to quantify and analyze the advantages of
a spike-based BP algorithm compared to ANN-SNN conversion
techniques in terms of inference time and energy consumption.

The rest of the paper is organized as follows. In section 2.1,
we provide the background on fundamental components and
architectures of deep convolutional SNNs. In section 2.2.1, we
detail the spike-based gradient descent BP learning algorithm.
In section 2.2.2, we describe our spiking version of the dropout
technique. In section 3.1–3.2, we describe the experiments and
report the simulation results, which validate the efficacy of spike-
based BP training for MNIST, SVHN, CIFAR-10, and N-MNIST
datasets. In section 4.1, we discuss the proposed algorithm in
comparison to relevant works. In section 4.2–4.4, we analyze
the spike activity, inference speedup and complexity reduction
of directly trained SNNs and ANN-SNN converted networks.
Finally, we summarize and conclude the paper in section 5.

2. MATERIALS AND METHODS

2.1. The Components and Architecture of
Spiking Neural Network
2.1.1. Spiking Neural Network Components
Leaky-Integrate-and-Fire (LIF) neurons (Dayan and Abbott,
2001) and plastic synapses are fundamental and biologically
plausible computational elements for emulating the dynamics of
SNNs. The sub-threshold dynamics of a LIF spiking neuron can
be formulated as

τm
dVmem

dt
= −Vmem + I(t) (1)

Frontiers in Neuroscience | www.frontiersin.org 2 February 2020 | Volume 14 | Article 119135

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 1 | The illustration of Leaky Integrate and Fire (LIF) neuron dynamics. The pre-spikes are modulated by the synaptic weight to be integrated as the current

influx in the membrane potential that decays exponentially. Whenever the membrane potential crosses the firing threshold, the post-neuron fires a post-spike and

resets the membrane potential.

where Vmem is the post-neuronal membrane potential and τm
is the time constant for membrane potential decay. The input
current, I(t), is defined as the weighted summation of pre-spikes
at each time step as given below.

I(t) =

nl
∑

i=1

(wi

∑

k

θi(t − tk)) (2)

where nl indicates the number of pre-synaptic weights, wi is
the synaptic weight connecting ith pre-neuron to post-neuron.
θi(t − tk) is a spike event from ith pre-neuron at time tk, which
can be formulated as a Kronecker delta function as follows,

θ(t − tk) =

{

1, if t = tk

0, otherwise
(3)

where tk is the time instant that kth spike occurred. Figure 1
illustrates LIF neuronal dynamics. The impact of each pre-spike,
θi(t− tk), is modulated by the corresponding synaptic weight (wi)
to generate a current influx to the post-neuron. Note, the units do
not have bias term. The input current is integrated into the post-
neuronal membrane potential (Vmem) that leaks exponentially
over timewith time constant (τm).When themembrane potential
exceeds a threshold (Vth), the neuron generates a spike and resets
its membrane potential to initial value. The Table 1 lists the
annotations used in Equations (1–27).

2.1.2. Deep Convolutional Spiking Neural Network

2.1.2.1. Building blocks
In this work, we develop a training methodology for
convolutional SNN models that consist of an input layer
followed by intermediate hidden layers and a final classification
layer. In the input layer, the pixel images are encoded as
Poisson-distributed spike trains where the probability of spike
generation is proportional to the pixel intensity. The hidden
layers consist of multiple convolutional (C) and spatial-pooling
(P) layers, which are often arranged in an alternating manner.
These convolutional (C) and spatial-pooling (P) layers represent

TABLE 1 | List of notations.

Notations Meaning

θ Spike event

x The sum of pre-spike events over time

w Synaptic weight

Vmem Membrane potential

Vth Neuronal firing threshold

I Input current at each time step

net Total current influx over time

a Activation of spiking neuron

E Loss function

δ Error gradient

the intermediate stages of feature extractor. The spikes from the
feature extractor are combined to generate a one-dimensional
vector input for the fully-connected (FC) layers to produce the
final classification. The convolutional and fully-connected layers
contain trainable parameters (i.e., synaptic weights) while the
spatial-pooling layers are fixed a priori. Through the training
procedure, weight kernels in the convolutional layers can encode
the feature representations of the input patterns at multiple
hierarchical levels. Figure 2A shows the simplified operational
example of a convolutional layer consisting of LIF neurons over
three time steps (assuming 2-D input and 2-D weight kernel).
On each time step, each neuron convolves its input spikes
with the weight kernel to compute its input current, which is
integrated into its membrane potential, Vmem. If Vmem > Vth,
the neuron spikes and its Vmem is set to 0. Otherwise, Vmem

is considered as residue in the next time step while leaking
in the current time step. Figure 2B shows the simplified
operation of a pooling layer, which reduces the dimensionality
from the previous convolutional layer while retaining spatial
(topological) information.

The two major operations used for pooling are max and
average. Both have been used for SNNs, e.g., max-pooling
(Rueckauer et al., 2017) and average-pooling (Cao et al., 2015;

Frontiers in Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 119136

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 2 | Illustration of the simplified operational example of (A) convolutional, (B) spatial-pooling layers (assuming 2-D input and 2-D weight kernel) over three time

steps. At each time step, the input spikes are convolved with the weight kernel to generate the current influx, which is accumulated in the post-neuron’s membrane

potential, Vmem. Whenever the membrane potential exceeds the firing threshold (Vth), the post-neuron in the output feature map spikes and Vmem resets. Otherwise,

Vmem is considered as residue in the next time step while leaking in the current time step. For spatial-pooling, the kernel weights are fixed, and there is no membrane

potential leak.

Diehl et al., 2015). We use average-pooling due to its simplicity.
In the case of SNNs, an additional thresholding is used after
averaging to generate output spikes. For instance, a fixed
2×2 kernel (each having a weight of 0.25) strides through a
convolutional feature map without overlapping and fires an
output spike at the corresponding location in the pooled feature
map only if the sum of the weighted spikes of the 4 inputs within
the kernel window exceeds a designated firing threshold (set to
0.75 in this work). Otherwise, the membrane potential remains
as a residue in the next time step. Figure 2B shows an example
spatial-pooling operation over three time steps (assuming 2-D
input and 2-D weight kernel). The average-pooling threshold
need to be carefully set so that spike propagation is not disrupted
due to the pooling. If the threshold is too low, there will be too
many spikes, which can cause loss of spatial location of the feature
that was extracted from the previous layer. If the threshold is
too high, there will not be enough spike propagation to the
deeper layers.

2.1.2.2. Deep convolutional SNN architecture: VGG and

residual SNNs
Deep networks are essential for recognizing intricate input
patterns so that they can effectively learn hierarchical
representations. To that effect, we investigate popular deep
neural network architectures such as VGG (Simonyan and
Zisserman, 2014) and ResNet (He et al., 2016) in order to build
deep SNN architectures. VGG (Simonyan and Zisserman, 2014)
was one of the first neural networks, which used the idea of
using small (3×3) convolutional kernels uniformly throughout
the network. Using small kernels enables effective stacking of
convolutional layers while minimizing the number of parameters

in deep networks. In this work, we build deep convolutional
SNNs (containing more than 5 trainable layers) using “Spiking
VGG Block’s,” which contain stacks of convolutional layers using
small (3×3) kernels. Figure 3A shows a “Spiking VGG block”
containing two stacked convolutional layers, each followed by
a LIF neuronal layer. The convolutional layer box contains
the synaptic connectivity, and the LIF neuronal box contains the
activation units. Next, ResNet (He et al., 2016) introduced the
skip connections throughout the network that had considerable
successes in enabling successful training of significantly deeper
networks. In particular, ResNet addresses the degradation (of
training accuracy) problem (He et al., 2016) that occurs while
increasing the number of layers in the standard feedforward
neural network. We employ the concept of skip connection
to construct deep residual SNNs with 7–11 trainable layers.
Figure 3B shows a “Spiking Residual Block” containing non-
residual and residual paths. The non-residual path consists of
two convolutional layers with an intermediate LIF neuronal
layer. The residual path (skip connection) is composed of the
identity mapping when the number of input and output feature
maps are the same, and 1×1 convolutional kernels when the
number of input and output feature maps differ. The outputs of
both the non-residual and residual paths are integrated to the
membrane potential in the last LIF neuronal activation layer
(LIF Neuron 2 in Figure 3B) to generate output spikes from the
“Spiking Residual Block.”Within the feature extractor, a “Spiking
VGG Block” or “Spiking Residual Block” is often followed by
an average-pooling layer. Note, in some “Spiking Residual
Blocks,” the last convolutional and residual connections employ
convolution with a stride of 2 to incorporate the functionality
of the spatial-pooling layers. At the end of the feature extractor,

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 119137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 3 | The basic building blocks of the described convolutional SNN architectures. (A) Spiking VGG Block. (B) Spiking ResNet Block.

extracted features from the last average-pooling layer are fed to a
fully-connected layer as a 1-D vector input for inference.

2.2. Supervised Training of Deep Spiking
Neural Network
2.2.1. Spike-Based Gradient Descent

Backpropagation Algorithm
The spike-based BP algorithm in SNN is adapted from standard
BP (Rumelhart et al., 1985) in the ANN domain. In standard BP,
the network parameters are iteratively updated in a direction to
minimize the difference between the final outputs of the network
and target labels. The standard BP algorithm achieves this goal
by back-propagating the output error through the hidden layers
using gradient descent. However, the major difference between
ANNs and SNNs is the dynamics of neuronal output. An artificial
neuron (such as sigmoid, tanh, or ReLU) communicates via
continuous values whereas a spiking neuron generates binary
spike outputs over time. In SNNs, spatiotemporal spike trains
are fed to the network as inputs. Accordingly, the outputs of
spiking neuron are spike events, which are also discrete over
time. Hence, the standard BP algorithm is incompatible with
training SNNs, as it can not back-propagate the gradient through
a non-differentiable spike generation function. In this work, we
formulate an approximate derivative for LIF neuron activation,
making gradient descent possible. We derive a spike-based BP
algorithm that is capable of learning spatiotemporal patterns in
spike-trains. The spike-based BP can be divided into three phases,
forward propagation, backward propagation and weight update,
which we describe in the following sections.

2.2.1.1. Forward propagation
In forward propagation, spike trains representing input patterns
are presented to the network for estimating the network outputs.
To generate the spike inputs, the input pixel values are converted

to Poisson-distributed spike trains and delivered to the network.
The input spikes are multiplied with synaptic weights to produce
an input current that accumulates in the membrane potential
of post neurons as in Equation (1). Whenever its membrane
potential exceeds a neuronal firing threshold, the post-neuron
generates an output spike and resets. Otherwise, the membrane
potential decays exponentially over time. The neurons of every
layer (excluding output layer) carry out this process successively
based on the weighted spikes received from the preceding layer.
Over time, the total weighted summation of the pre-spike trains
(i.e., net) is described as follows,

netlj(t) =

nl−1
∑

i=1

(wl−1
ij xl−1i (t)), where xl−1i (t) =

∑

t

∑

k

θ l−1i (t − tk)

(4)
where netlj(t) represents the total current influx integrated to the

membrane potential of jth post-neuron in layer l over the time t,

nl−1 is the number of pre-neurons in layer l-1 and xl−1i (t) denotes
the sum of spike train (tk ≤ t) from ith pre-neuron over time t.
The sum of post-spike trains (tk ≤ t) is represented by alj(t) for

the jth post-neuron.

alj(t) =
∑

t

∑

k

θ lj (t − tk) (5)

Clearly, the sum of post-spike train (al(t)) is equivalent to the
sum of pre-spike train (xl(t)) for the next layer. On the other
hand, the neuronal firing threshold of the final classification layer
is set to a very high value so that final output neurons do not
spike. In the final layer, the weighted pre-spikes are accumulated
in the membrane potential while decaying over time. At the last
time step, the accumulated membrane potential is divided by the

Frontiers in Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 119138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

number of total time steps (T) in order to quantify the output
distribution (output) as presented by Equation (6).

output =
VL
mem(T)

number of timesteps
(6)

2.2.1.2. Backward propagation and weight update
Next, we describe the backward propagation for the proposed
spike-based backpropagation algorithm. After the forward
propagation, the loss function is measured as a difference
between target labels and outputs predicted by the network.
Then, the gradients of the loss function are estimated at the final
layer. The gradients are propagated backward all the way down
to the input layer through the hidden layers using recursive chain
rule, as formulated in Equation (7). The following Equations
(7–27) and Figure 4 describe the detailed steps for obtaining
the partial derivatives of (final) output error with respect to
weight parameters.

The prediction error of each output neuron is evaluated by
comparing the output distribution (output) with the desired
target label (label) of the presented input spike trains, as shown in
Equation (8). The corresponding loss function (E in Equation, 9)
is defined as the sum of squared (final prediction) error over
all output neurons. To calculate the ∂E

∂aLIF
and ∂aLIF

∂net terms in
Equation (7), we need a defined activation function and amethod
to differentiate the activation function of a LIF neuron.

∂E

∂wl
=

∂E

∂aLIF

∂aLIF

∂net

∂net

∂wl
(7)

Final output error, ej = outputj − labelj (8)

Loss function, E =
1

2

nL
∑

j=1

ej
2 (9)

In SNN, the “activation function” indicates the relationship
between the weighted summation of pre-spike inputs and post-
neuronal outputs over time. In forward propagation, we have
different types of neuronal activation for the final layer and
hidden layers. Hence, the estimation of neuronal activations
and their derivatives are different for the final layer and hidden
layers. For the final layer, the value of output in Equation (6)
is used as the neuronal activation (aLIF) while considering the
discontinuities at spike time instant as noise. Hence, ∂E

∂output is

equal to the final output error, as calculated in Equation (10).

∂E

∂output
=

∂

∂output

1

2
(output − label)2 = output − label = e

(10)
During back-propagating phase, we consider the leak statistics
of membrane potential in the final layer neurons as noise. This
allows us to approximate the accumulated membrane potential
value for a given neuron as equivalent to the total input current
(i.e., net) received by the neuron over the forward time duration

(T) (VL
mem,j(T) ≈

∑nL−1

i=1 (wijxi(T)) = netLj (T)). Therefore, the

derivative of post-neuronal activation with respect to net for final

layer (
∂output

∂net ≡
∂VL

mem(T)/T
∂net =

∂netL(T)/T
∂net = 1

T) is calculated as 1
T

for the final layer.
For the hidden layers, we have post-spike trains as the

neuronal outputs. The spike generation function is non-
differentiable since it creates a discontinuity (because of step
jump) at the time instance of firing. Hence, we introduce a pseudo
derivative method for LIF neuronal activation (a′LIF(net)) for
the hidden layers, for back-propagating the output error via the
chain rule. The purpose of deriving a′LIF(net) is to approximately

estimate the ∂aLIF
∂net term in Equation (7) for the hidden layers

only. To obtain this pseudo derivative of LIF neuronal activation
with respect to total input current (i.e., net), we make the
following approximations. We first estimate the derivative of
an “Integrate and Fire” (IF) neuron’s activation. Next, with
the derivative of IF neuron’s activation, we estimate a leak
correctional term to compensate for the leaky effect of membrane
potential in LIF activation. Finally, we obtain an approximate
derivative for LIF neuronal activation as a combination of two
estimations (i.e., derivative for IF neuron and approximated leak
compensation derivative). If a hidden neuron does not fire any
spike, the derivative of corresponding neuronal activation is set
to zero.

The spike generation function of IF neuron is a hard threshold
function that generates the output signal as either +1 or 0.
The IF neuron fires a post-spike whenever the input currents
accumulated in membrane potential exceed the firing threshold
(note, in case of IF neuron, there is no leak in the membrane
potential). Hence, the membrane potential of a post-neuron at
time instant t can be written as,

Vmem(t) ≈

n
∑

i=1

(wixi(t))− VthaIF(t) (11)

where n denotes the number of pre-neurons, xi(t) is the sum
of spike events from ith pre-neuron over time t (defined
in Equation, 4) and aIF(t) represents the sum of post-spike
trains over time t (defined in Equation 5). In Equation (11),
∑n

i=1(wixi(t)) accounts for the integration behavior andVthaIF(t)
accounts for the fire/reset behavior of the membrane potential
dynamics. If we assume Vmem as zero (using small signal
approximation), the activation of IF neuron (aIF(t)) can be
formulated as the Equation (12). Then, by differentiating it with
respect to net (in Equation, 13), the derivative of IF neuronal
activation can be approximated as a linear function with slope
of 1

Vth
as the straight-through estimation (Bengio et al., 2013).

aIF(t) ≈
1

Vth

n
∑

i=1

(wixi(t)) =
1

Vth
net(t) (12)

∂aIF

∂net
≈

1

Vth
1 =

1

Vth
(13)

The spike generation function of both the IF and LIF neuron
models are the same, namely the hard threshold function.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 119139

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 4 | Illustration of the forward and backward propagation phase of the proposed spike-based BP algorithm in a multi-layer SNN comprised of LIF neurons. In

the forward phase, the LIF neurons (in all layers) accumulate the weighted sum of the pre-spikes in the membrane potential, which decays exponentially over time. In

addition, the LIF neurons in hidden layers generate post-spikes if the membrane potential exceeds a threshold and reset the membrane potential. However, the LIF

neurons in the final layer, do not generate any spike, but rather accumulate the weighted sum of pre-spikes till the last time step to quantify the final outputs. Then, the

final errors are evaluated by comparing the final outputs to the label data. In the backward phase, the final errors are propagated backward through the hidden layers

using the chain rule to obtain the partial derivatives of final error with respect to weights. Finally, the synaptic weights are modified in a direction to reduce the

final errors.

However, the effective neuronal thresholds are considered to be
different for the two cases, as shown in Figures 5A,B. In the
LIF neuron model, due to the leaky effect in the membrane
potential, larger input current (as compared to IF neuron) needs
to be accumulated in order to cross the neuronal threshold and
generate a post-spike. Hence, the effective neuronal threshold
becomes Vth + ǫ where ǫ is a positive value that reflects the leaky
effect of membrane potential dynamics. Now, the derivative of
LIF neuronal activation (∂aLIF

∂net) can be approximated as a hard
threshold function [similar to IF and Equation (13)] and written
as 1

Vth+ǫ
. Clearly, the output of a LIF neuron depends on the

firing threshold and leaky characteristics (embodied in ǫ) of the
membrane potential whereas the output of an IF neuron depends
only on the firing threshold. Next, we explain the detailed steps to
estimate the ǫ and in turn calculate the derivative of LIF neuronal
activation (∂aLIF

∂net).
To compute ǫ, the ratio (β) between the total membrane

potential (V total
mem(t)) of IF and LIF neurons is estimated at the end

of forward propagation time (T) as shown in Figure 5C. Here,
V total
mem(t) represents the hypothetical total membrane potential

with accumulated input current without reset mechanism

until time step (t). Suppose both the IF and LIF neurons
received the same amount of total input current (i.e., net(T)),
the total membrane potential of LIF neuron is expected to
be lower than the total membrane potential of IF neuron
(V total,LIF

mem (T) :V total,IF
mem (T) = 1 :β where β > 1). Hence, by

comparing the total membrane potential values of IF and LIF
neurons in Figure 5C, the relation of ǫ and β can be obtained
as follows,

Vth + ǫ = βVth (14)

where Vth + ǫ represents the total membrane potential of IF
neuron (point A in Figure 5C) and Vth indicates the total
membrane potential of LIF neuron (point B in Figure 5C)
when both neurons received the same amount of net inputs.
Based on this assumption, we now estimate the ratio (β) by

using the relation of the spike output evolution (∂a(t)
∂t) and

the total membrane potential evolution (
∂V total

mem(t)
∂t) over time as

described in Equations (16–20). As mentioned previously, the
total input current (i.e., net(t)) and total membrane potential
(V total

mem(t)) are estimated similar to that of IF neuron (because

Frontiers in Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 119140

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 5 | (A,B) The illustration of the spike generation function of (A) IF and (B) LIF neuron models, respectively. The x-axis represents the total summation of input

currents over time, and y-axis indicates the membrane potential (black) and output (red). The IF neuron generates a post-spike when the input currents accumulated

in membrane potential overcome the firing threshold (because of no leaky effect in the membrane potential). However, LIF neuron needs more input currents to cross

the firing threshold (because of leaky effect in the membrane potential). Hence, the effective threshold of LIF neurons is considered to be larger compared to the case

of IF neurons. (C) The illustration of the estimation of the ratio (β) between the total membrane potential (V total
mem) of LIF and IF neurons. If the LIF and IF neuron received

the same amount of total input current, the ratio of the total membrane potential of LIF and IF neuron would be estimated as 1:β where β is greater than 1.

of no leaky effect) so that Equation (15) can be derived from
Equation (12). By differentiating Equation (15) with respect to

time, we get the relation of the spike output evolution (∂aIF(t)
∂t)

and the membrane potential evolution (∂V total,IF
mem (t)

∂t) over time for
IF neuron as described in Equation (16).

aIF(t) ≈
1

Vth
net(t) ≈

1

Vth
V total,IF
mem (t) (15)

∂aIF(t)

∂t
≈

1

Vth

∂V total,IF
mem (t)

∂t
(16)

Hence, in IF neuron case, the evolution of membrane potential

over time (∂V total,IF
mem (t)

∂t) can be represented by the multiplication

of firing threshold (Vth) and the spike output evolution (∂aIF(t)
∂t)

in Equation (17). Note, the evolution of membrane potential

over time (∂V total,IF
mem (t)

∂t) indicates the integration component due
to the average input current over time. We consider aIF(t) as
homogeneous spike trains where spike firing rates are constant,

so that the ∂aIF(t)
∂t can be replaced with the post-neuronal firing

rate (rate(t)). The homogeneous post-neuronal firing rate, rate(t),

can be represented by a(t)
t where a(t) is the number of post-spikes

and t means the given forward time window. In LIF neuron

case, however, the evolution of membrane potential (∂V total,LIF
mem (t)

∂t)
can be expressed as the combination of average input current
(integration component) and leaky (exponential decay) effect as
shown in Equation (18). To measure the leaky effect in Equation
(18), we estimate the low-pass filtered output spikes (tk ≤
t) that leak over time using the function Vthf (t) (depicted in
Equation, 19), and differentiate it with respect to time at t →
t+
k

(from the right-sided limit). The Vthf (t), as a post-synaptic
potential, contains the total membrane potential history over
time. The time constant (τm) in Equation (19) determines the
decay rate of post-synaptic potential. Essentially, the main idea is
to approximately estimate the leaky effect by comparing the total

membrane potential and obtain the ratio (β) between both cases
(i.e., IF and LIF neurons).

∂V total,IF
mem (t)

∂t
≈ Vth

∂aIF(t)

∂t
≈ Vthrate(t) (17)

∂V total,LIF
mem (t)

∂t
≈ Vthrate(t)+ Vth

∂f (t)

∂t
(18)

f (t) =
∑

k

exp(−
t − tk

τm
) (19)

∂aIF(t)

∂t
≈

1

Vth

∂V total,IF
mem (t)

∂t
= β

1

Vth

∂V total,LIF
mem (t)

∂t
(20)

By solving the Equations (17, 18, 20), the inverse ratio (1
β
) is

derived as follows in Equation (21),

1

β
= 1+

1

rate(t)

∂f (t)

∂t
(21)

where the first term (unity) indicates the effect of average input
currents (that is observed from the approximate derivative of IF
neuron activation, namely the straight-through estimation) and

the second term (1
rate(t)

∂f (t)
∂t) represents the leaky (exponential

decay) effect of LIF neuron for the forward propagation time
window. Then, by using the relations of ǫ and β in Equation
(14), the derivative of LIF neuronal activation can be obtained
as ∂aLIF

∂net =
1

Vth+ǫ
= 1

βVth
. In this work, to avoid the vanishing

gradient phenomena during the error back-propagation, the

leaky effect term (1
rate(t)

∂f (t)
∂t) is divided by the size of the forward

propagation time window (T). Hence, the scaled time derivative
of this function, 1

γ
f ′(t), is used as the leak correctional term

where γ denotes the number of output spike events for a
particular neuron over the total forward propagation time. As
a result, we obtain an approximate derivative for LIF neuronal

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 119141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

activation (in hidden layers) as a combination of the straight-
through estimation (i.e., approximate derivative of IF neuron
activation) and the leak correctional term that compensates leaky
effect in the membrane potential as described in Equation (22).
Please note that, in our work, input and output spikes are not
exponentially decaying, the leak only happens according to the
mechanism of membrane potential. Moreover, f (t) is not a part
of the forward propagation phase, and rather it is only defined
to approximately measure the leaky effect during the backward
propagation phase by differentiating it with respect to time. The
function f (t) is a time-dependent function that simply integrates
the output spikes (tk ≤ t) temporally, and the resultant sum is
decayed over time. It is evident that f (t) is continuous except
where spikes occur and the activities jump up (Lee et al., 2016).
Therefore, f (t) is differentiable at t → t+

k
(from the right-sided

limit). Note that, to capture the leaky effect (exponential decay),
it is necessary to compute the derivative of f (t) at the points in
between the spiking activities, not at the time instant of spiking.

∂aLIF

∂net
=

1

Vth + ǫ
=

1

βVth
≈

1

Vth
(1+

1

γ
f ′(t))

=
1

Vth
(1+

1

γ

∑

k

−
1

τm
e−

t−tk
τm) (22)

In summary, the approximations applied to implement a spike-
based BP algorithm in SNN are as follows:

• During the back-propagating phase, we consider the leaks in
the membrane potential of final layer neurons as noises so
that the accumulated membrane potential is approximated as
equivalent to the total input current (VL

mem ≈ net). Therefore,
the derivative of post-neuronal activation with respect to net

(
∂output

∂net) is calculated as 1
T for the final layer.

• For hidden layers, we first approximate the activation of
an IF neuron as a linear function (i.e., straight-through
estimation). Hence, we are able to estimate its derivative of IF
neuron’s activation (Bengio et al., 2013) with respect to total
input current.

• To capture the leaky effect of a LIF neuron (in hidden layers),
we estimate the scaled time derivative of the low-pass filtered
output spikes that leak over time, using the function f (t).
This function is continuous except for the time points where
spikes occur (Lee et al., 2016). Hence, it is differentiable in the
sections between the spiking activities.

• We obtain an approximate derivative for LIF neuronal
activation (in hidden layers) as a combination of two
derivatives. The first one is the straight-through estimation
(i.e., approximate derivative of IF neuron activation). The
second one is the leak correctional term that compensates
the leaky effect in the membrane potential of LIF neurons.
The combination of straight-through estimation and the leak
correctional term is expected to be less than 1.

Based on these approximations, we can train SNNs with direct
spike inputs using a spike-based BP algorithm.

At the final layer, the error gradient, δL, represents the gradient
of the output loss with respect to total input current (i.e., net)
received by the post-neurons. It can be calculated by multiplying

the final output error (e) with the derivative of the corresponding

post-neuronal activation (
∂output

∂netL
) as shown in Equation (23).

At any hidden layer, the local error gradient, δl, is recursively
estimated by multiplying the back-propagated gradient from the
following layer ((wl)Tr ∗ δl+1) with derivative of the neuronal
activation, a′LIF(net

l), as presented in Equation (24). Note that
element-wise multiplication is indicated by “.” while matrix
multiplication is represented by “∗” in the respective equations.

δL =
∂E

∂output

∂output

∂netL
= e

1

T
=

e

T
(23)

δl = ((wl)Tr ∗ δl+1).a′LIF(net
l) (24)

The derivative of net with respect to weight is simply the
total incoming spikes over time as derived in Equation (25).
The derivative of the output loss with respect to the weights
interconnecting the layers l and l + 1 (△wl in Equation, 26)
is determined by multiplying the transposed error gradient
at l + 1 (δl+1) with the input spikes from layer l. Finally,
the calculated partial derivatives of loss function are used to
update the respective weights using a learning rate (ηBP) as
illustrated in Equation (27). As a result, iterative updating
of the weights over mini-batches of input patterns leads
the network state to a local minimum, thereby enabling the
network to capture multiple-levels of internal representations of
the data.

∂net

∂wl
=

∂

∂wl
(wl ∗ xl(t)) = xl(t) (25)

△wl =
∂E

∂wl
= xl(t) ∗ (δl+1)Tr (26)

wl
updated = wl − ηBP△w

l (27)

2.2.2. Dropout in Spiking Neural Network
Dropout (Srivastava et al., 2014) is one of the popular
regularization techniques while training deep ANNs. This
technique randomly disconnects certain units with a given
probability (p) to avoid units being overfitted and co-adapted too
much to given training data. There are prior works (Kappel et al.,
2015, 2018; Neftci et al., 2015) that investigated the biological
insights on how synaptic stochasticity can provide dropout-
like functional benefits in SNNs. In this work, we employ
the concept of dropout technique in order to regularize deep
SNNs effectively. Note, dropout technique is only applied during
training and is not used when evaluating the performance of the
network during inference. There is a subtle difference in the way
dropout is applied in SNNs compared to ANNs. In ANNs, each
epoch of training has several iterations of mini-batches. In each
iteration, randomly selected units (with dropout ratio of p) are
disconnected from the network while weighting by its posterior
probability (1

1−p). However, in SNNs, each iteration has more

than one forward propagation depending on the time length of

Frontiers in Neuroscience | www.frontiersin.org 9 February 2020 | Volume 14 | Article 119142

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

Algorithm 1: Forward propagation with dropout at each iteration
in SNN
1: Input : Poisson-distributed input spike train (inputs),

Dropout ratio (p), Total number of time steps (#timesteps),
Membrane potential (Vmem), Time constant of membrane
potential (τm), Firing threshold (Vth)

2: Initialize SNN l.Vmem ← 0

A

l = 2, ..., #SNN.layer
3: // Define the random subset of units (with a probability 1−p)

at each iteration
4: for l← 1 to #SNN.layer − 1 do
5: maskl ← generate_random_subset(probability = 1− p)

6: for t← 1 to #timesteps do
7: // Set input of first layer equal to spike train of a mini-

batch data
8: SNN1.spike[t]← inputs[t];
9: for l← 2 to #SNN.layer do
10: // Integrate weighted sum of input spikes to

membrane potential
11: SNN l.Vmem[t] ← SNN l.Vmem[t − 1] +

SNN l−1forward(SNN l−1.spike[t]). ∗ (maskl−1/(1-p));
12: // If Vmem is greater than Vth, post-neuron generate a

spike
13: if SNN l.Vmem[t] > SNN l.Vth then

14: // Membrane potential resets if the corresponding
neuron fires a spike

15: SNN l.spike[t]← 1
16: SNN l.Vmem[t]← 0
17: else

18: // Else, membrane potential decays over time
19: SNN l.spike[t]← 0

20: SNN l.Vmem[t]← e−
1

τm ∗ SNN l.Vmem[t]

the spike train. We back-propagate the output error and modify
the network parameters only at the last time step. For dropout to
be effective in our training method, it has to be ensured that the
set of connected units within an iteration of mini-batch data is
not changed, such that the neural network is constituted by the
same random subset of units during each forward propagation
within a single iteration. On the other hand, if the units are
randomly connected at each time-step, the effect of dropout will
be averaged out over the entire forward propagation time within
an iteration. Then, the dropout effect would fade-out once the
output error is propagated backward and the parameters are
updated at the last time step. Therefore, we need to keep the set of
randomly connected units for the entire time window within an
iteration. In the experiment, we use the SNN version of dropout
technique with the probability (p) of omitting units equal to 0.2–
0.25. Note that the activations are much sparser in SNN forward
propagations compared to ANNs, hence the optimal p for SNNs
needs to be less than a typical ANN dropout ratio (p = 0.5). The
details of SNN forward propagation with dropout are specified
in Algorithm 1.

TABLE 2 | Parameters used in the experiments.

Parameter Value

Time Constant of Membrane Potential (τm) 100 time-steps

BP Training Time Duration 50–100 time-steps

Inference Time Duration Same as training

Mini-batch Size 16–32

Spatial-pooling Non-overlapping Region/Stride 2×2, 2

Neuronal Firing Threshold 1 (hidden layer),∞ (final layer)

Weight Initialization Constant (κ) 2 (non-residual network), 1

(residual network)

Learning rate (ηBP) 0.002–0.003

Dropout Ratio (p) 0.2–0.25

3. RESULTS

3.1. Experimental Setup
The primary goal of our experiments is to demonstrate
the effectiveness of the proposed spike-based BP training
methodology in a variety of deep network architectures. We
first describe our experimental setup and baselines. For the
experiments, we developed a custom simulation framework using
the Pytorch (Paszke et al., 2017) deep learning package for
evaluating our proposed SNN training algorithm. Our deep
convolutional SNNs are populated with biologically plausible LIF
neurons (with neuronal firing thresholds of unity) in which a
pair of pre- and post- neurons are interconnected by plastic
synapses. At the beginning, the synaptic weights are initialized
with Gaussian random distribution of zero-mean and standard
deviation of

√

κ

nl
(nl: number of fan-in synapses) as introduced in

He et al. (2015). Note, the initialization constant κ differs by the
type of network architecture. For instance, we have used κ = 2
for non-residual network and κ = 1 for residual network. For
training, the synaptic weights are trained with amini-batch spike-
based BP algorithm in an end-to-end manner, as explained in
section 2.2.1. For static datasets, we train our network models for
150 epochs using mini-batch stochastic gradient descent BP that
reduces its learning rate at 70, 100, and 125th training epochs.
For the neuromorphic dataset, we use Adam (Kingma and Ba,
2014) learning method and reduce its learning rate at 40, 80,
and 120th training epochs. Please, refer to Table 2 for more
implementation details. The datasets and network topologies
used for benchmarking, the input spike generation scheme for
event-based operation and determination of the number of time-
steps required for training and inference are described in the
following sub-sections.

3.1.1. Benchmarking Datasets
We demonstrate the efficacy of our proposed training
methodology for deep convolutional SNNs on three standard
vision datasets and one neuromorphic vision dataset, namely the
MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), CIFAR-
10 (Krizhevsky and Hinton, 2009), and N-MNIST (Orchard
et al., 2015). The MNIST dataset is composed of gray-scale

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 119143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

TABLE 3 | Benchmark datasets.

Dataset Image #Training

samples

#Testing

samples

#Category

MNIST 28× 28, gray 60,000 10,000 10

SVHN 32× 32, color 73,000 26,000 10

CIFAR-10 32× 32, color 50,000 10,000 10

N-MNIST 34× 34× 2 ON

and OFF spikes

60,000 10,000 10

(one-dimensional) images of handwritten digits whose sizes are
28 by 28. The SVHN and CIFAR-10 datasets are composed of
color (three-dimensional) images whose sizes are 32 by 32. The
N-MNIST dataset is a neuromorphic (spiking) dataset that is
converted from static MNIST dataset using Dynamic Vision
Sensor (DVS) (Lichtsteiner et al., 2008). The N-MNIST dataset
contains two-dimensional images that include ON and OFF
event stream data whose sizes are 34 by 34. The ON (OFF)
event represents the increase (decrease) in pixel bright changes.
The details of the benchmark datasets are listed in Table 3.
For evaluation, we report the top-1 classification accuracy by
classifying the test samples (training samples and test samples
are mutually exclusive).

3.1.2. Network Topologies
We use various SNN architectures depending on the complexity
of the benchmark datasets. For MNIST and N-MNIST datasets,
we used a network consisting of two sets of alternating
convolutional and spatial-pooling layers followed by two fully-
connected layers. This network architecture is derived from
LeNet5model (LeCun et al., 1998). Note thatTable 4 summarizes
the layer type, kernel size, the number of output feature maps,
and stride of SNN model for MNIST dataset. The kernel
size shown in the table is for 3-D convolution where the 1st
dimension is for number of input feature-maps and 2nd–3rd
dimensions are for convolutional kernels. For SVHN and CIFAR-
10 datasets, we used deeper network models consisting of 7 to
11 trainable layers including convolutional, spatial-pooling and
fully-connected layers. In particular, these networks consisting
of beyond 5 trainable layers are constructed using small (3 × 3)
convolutional kernels. We term the deep convolutional SNN
architecture that includes 3 × 3 convolutional kernel (Simonyan
and Zisserman, 2014) without residual connections as “VGG
SNN” and with skip (residual) connections (He et al., 2016)
as “Residual SNN.” In Residual SNNs, some convolutional
layers convolve kernel with the stride of 2 in both x and y
directions, to incorporate the functionality of spatial-pooling
layers. Please, refer to Tables 4, 5 that summarize the details of
deep convolutional SNN architectures. In the results section, we
will discuss the benefit of deep SNNs in terms of classification
performance as well as inference speedup and energy efficiency.

3.1.3. ANN-SNN Conversion Scheme
As mentioned previously, off-the-shelf trained ANNs can be
successfully converted to SNNs by replacing ANN (ReLU)

neurons with Integrate and Fire (IF) spiking neurons and
adjusting the neuronal thresholds with respect to synaptic
weights. In the literature, several methods have been proposed
(Cao et al., 2015; Hunsberger and Eliasmith, 2015; Diehl et al.,
2016; Rueckauer et al., 2017; Sengupta et al., 2019) for balancing
appropriate ratios between neuronal thresholds and synaptic
weights of spiking neuron in the case of ANN-SNN conversion.
In this paper, we compare various aspects of our direct-spike
trained models with two prior ANN-SNN conversion works
(Sengupta et al. 2019; Diehl et al. 2016), which proposed
near-lossless ANN-SNN conversion schemes for deep network
architectures. The first scheme (Sengupta et al. 2019) balanced
the neuronal firing thresholds with respect to corresponding
synaptic weights layer-by-layer depending on the actual spiking
activities of each layer using a subset of training samples. The
second scheme (Diehl et al. 2016) balanced the neuronal firing
thresholds with the consideration of ReLU activations in the
corresponding ANN layer. Basically, we compare our direct-
spike trained model with converted SNNs on the same network
architecture in terms of accuracy, inference speed and energy-
efficiency. Please note that there are a couple of differences
on the network architecture between the conversion networks
(Sengupta et al. 2019; Diehl et al. 2016) and our scheme. First, the
conversion networks always use average-pooling to reduce the
size of previous convolutional output feature-map, whereas our
models interchangeably use average pooling or convolve kernels
with a stride of 2 in the convolutional layer. Next, the conversion
networks only consider identity skip connections for residual
SNNs. However, we implement skip connections using either
identity mapping or 1× 1 convolutional kernel.

3.1.4. Spike Generation Scheme
For the static vision datasets (MNIST, SVHN, and CIFAR-
10), each input pixel intensity is converted to a stream of
Poisson-distributed spike events that have equivalent firing rates.
Specifically, at each time step, the pixel intensity is compared with
a uniformly distributed random number (in the range between
0 and 1). If pixel intensity is greater than the random number
at the corresponding time step, a spike is generated. This rate-
based spike encoding is used to feed the input spikes to the
network for a given period of time during both training and
inference. For color image datasets, we use the pre-processing
technique of horizontal flip before generating input spikes. These
input pixels are normalized to represent zero mean and unit
standard deviation. Thereafter, we scale the pixel intensities to
bound them in the range [–1,1] to represent the whole spectrum
of input pixel representations. The normalized pixel intensities
are converted to Poisson-distributed spike events such that the
generated input signals are bipolar spikes. For the neuromorphic
version of the dataset (N-MNIST), we use the original (unfiltered
and uncentered) version of spike streams to directly train and test
the network in the time domain.

3.1.5. Time-Steps
As mentioned in section 3.1.4, we generate a stochastic Poisson-
distributed spike train for each input pixel intensity for event-
based operation. The duration of the spike train is very important

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 119144

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

TABLE 4 | The deep convolutional spiking neural network architectures for MNIST, N-MNIST, and SVHN dataset.

4 layer network VGG7 ResNet7

Layer type Kernel

size

#o/p

feature-maps

Stride Layer type Kernel

size

#o/p

feature-maps

Stride Layer type Kernel

size

#o/p

feature-maps

Stride

Convolution 1×5×5 20 1 Convolution 3×3×3 64 1 Convolution 3×3×3 64 1

Average-pooling 2×2 2 Convolution 64×3×3 64 2 Average-pooling 2×2 2

Average-pooling 2×2 2

Convolution 20×5×5 50 1 Convolution 64×3×3 128 1 Convolution 64×3×3 128 1

Average-pooling 2×2 2 Convolution 128×3×3 128 2 Convolution 128×3×3 128 2

Convolution 128×3×3 128 2 Skip convolution 64×1×1 128 2

Average-pooling 2×2 2

Convolution 128×3×3 256 1

Convolution 256×3×3 256 2

Skip convolution 128×1×1 256 2

Fully-connected 200 Fully-connected 1024 Fully-connected 1024

Output 10 Output 10 Output 10

TABLE 5 | The deep convolutional spiking neural network architectures for a CIFAR-10 dataset.

VGG9 ResNet9 ResNet11

Layer type Kernel

size

#o/p

feature-maps

Stride Layer type Kernel

size

#o/p

feature-maps

Stride Layer type Kernel

size

#o/p

feature-maps

Stride

Convolution 3×3×3 64 1 Convolution 3×3×3 64 1 Convolution 3×3×3 64 1

Convolution 64×3×3 64 1 Average-pooling 2×2 2 Average-pooling 2×2 2

Average-pooling 2×2 2

Convolution 64×3×3 128 1 Convolution 64×3×3 128 1 Convolution 64×3×3 128 1

Convolution 128×3×3 128 1 Convolution 128×3×3 128 1 Convolution 128×3×3 128 1

Average-pooling 2×2 2 Skip convolution 64×1×1 128 1 Skip convolution 64×1×1 128 1

Convolution 128×3×3 256 1 Convolution 128×3×3 256 1 Convolution 128×3×3 256 1

Convolution 256×3×3 256 1 Convolution 256×3×3 256 2 Convolution 256×3×3 256 2

Convolution 256×3×3 256 1 Skip connection 128×1×1 256 2 Skip convolution 128×1×1 256 2

Average-pooling 2×2 2

Convolution 256×3×3 512 1 Convolution 256×3×3 512 1

Convolution 512×3×3 512 2 Convolution 512×3×3 512 1

Skip convolution 256×1×1 512 2 Skip convolution 512×1×1 512 1

Convolution 512×3×3 512 1

Convolution 512×3×3 512 2

Skip convolution 512×1×1 512 2

Fully-connected 1024 Fully-connected 1024 Fully-connected 1024

Output 10 Output 10 Output 10

for SNNs. We measure the length of the spike train (spike time
window) in time-steps. For example, a 100 time-step spike train
will have approximately 50 random spikes if the corresponding
pixel intensity is half in a range of [0,1]. If the number of
time-steps (spike time window) is too less, then the SNN will
not receive enough information for training or inference. On
the other hand, a large number of time-steps will destroy the
stochastic property of SNNs and get rid of noise and imprecision
at the cost of high latency and power consumption. Hence,
the network will not have much energy efficiency over ANN
implementations. For these reasons, we experimented with the
different number of time-steps to empirically obtain the optimal

number of time-steps required for both training and inference.
The experimental process and results are explained in the
following subsections.

3.1.5.1. Optimal #time-steps for Training
A spike event can only represent 0 or 1 in each time step,
therefore usually its bit precision is considered 1. However, the
spike train provides temporal data, which is an additional source
of information. Therefore, the spike train length (number of
time-steps) in SNN can be considered as its actual precision of
neuronal activation. To obtain the optimal #time-steps required
for our proposed trainingmethod, we trained VGG9 networks on

Frontiers in Neuroscience | www.frontiersin.org 12 February 2020 | Volume 14 | Article 119145

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 6 | Inference performance variation due to (A) #Training-Timesteps and (B) #Inference-Timesteps. T# in (A) indicates number of time-steps used for training.

(A) shows that inference accuracy starts to saturate as #training-timesteps increase. In (B), the zoomed version on the inset shows that the SNN trained with the

proposed scheme performs very well even with only 30 time-steps while the peak performance occurs around 100 time-steps.

CIFAR-10 dataset using different time-steps ranging from 10 to
120 (shown in Figure 6A). We found that for only 10 time-steps,
the network is unable to learn anything as there is not enough
information (input precision too low) for the network to be able
to learn. This phenomenon is explained by the lack of spikes in
the final output. With the initial weights, the accumulated sum
of the LIF neuron is not enough to generate output spikes in
the later layers. Hence, none of the input spikes propagates to
the final output neurons and the output distributions remain 0.
Therefore, the computed gradients are always 0 and the network
is not updated. For 35–50 time-steps, the network learns well
and converges to a reasonable point. From 70 time-steps, the
network accuracy starts to saturate. At about 100 time-steps,
the network training improvement completely saturates. This
is consistent with the bit precision of the inputs. It has been
shown in Sarwar et al. (2018) that 8 bit inputs and activations are
sufficient to achieve optimal network performance for standard
image recognition tasks. Ideally, we need 128 time-steps to
represent 8 bit inputs using bipolar spikes. However, 100 time-
steps proved to be sufficient as more time-steps provide marginal
improvement. We observe a similar trend in VGG7, ResNet7,
ResNet9, and ResNet11 SNNs as well while training for SVHN
and CIFAR-10 datasets. Therefore, we considered 100 time-
steps as the optimal #time-steps for training in our proposed
methodology. Moreover, for MNIST dataset, we used 50 time-
steps since the required bit precision is only 4 bits (Sarwar et al.,
2018).

3.1.5.2. Optimal #time-steps for inference
To obtain the optimal #time-steps required for inferring an
image utilizing a network trained with our proposed method,
we conducted similar experiments as described in section 3.1.5.
We first trained a VGG9 network for CIFAR-10 dataset using
100 time-steps (optimal according to experiments in section
3.1.5). Then, we tested the network performances with different
time-steps ranging from 10 to 4,000 (shown in Figure 6B). We
observed that the network performs very well even with only
30 time-steps while the peak performance occurs around 100

time-steps. For more than 100 time-steps, the accuracy degrades
slightly from the peak. This behavior is very different from
ANN-SNN converted networks where the accuracy keeps on
improving as #time-steps is increased (shown in Figure 6B).
This can be attributed to the fact that our proposed spike-based
training method incorporates the temporal information well into
the network training procedure so that the trained network is
tailored to perform best at a specific spike time window for
the inference. On the other hand, the ANN-SNN conversion
schemes are unable to incorporate the temporal information
of the input in the trained network. Hence, the ANN-SNN
conversion schemes require much higher #time-steps (compared
to SNN trained using the proposed method) for the inference in
order to resemble input-output mappings similar to ANNs.

3.2. Results
In this section, we analyze the classification performance
and efficiency achieved by the proposed spike-based training
methodology for deep convolutional SNNs compared to
the performance of the transformed SNN using ANN-SNN
conversion scheme.

3.2.1. The Classification Performance
Most of the classification performances available in the literature
for SNNs are for MNIST and CIFAR-10 datasets. The popular
methods for SNN training are “Spike Time Dependent Plasticity
(STDP)” based unsupervised learning (Brader et al., 2007; Diehl
and Cook, 2015; Srinivasan et al., 2018a,b) and “spike-based
backpropagation” based supervised learning (Lee et al., 2016;
Neftci et al., 2017; Jin et al., 2018;Mostafa, 2018;Wu et al., 2018b).
There are a few works (Kheradpisheh et al., 2016; Tavanaei and
Maida, 2016, 2017; Lee et al., 2018) which tried to combine
the two approaches to get the best of both worlds. However,
these training methods were able to neither train deep SNNs
nor achieve good inference performance compared to ANN
implementations. Hence, ANN-SNN conversion schemes have
been explored by researchers (Cao et al., 2015; Hunsberger
and Eliasmith, 2015; Diehl et al., 2016; Rueckauer et al., 2017;

Frontiers in Neuroscience | www.frontiersin.org 13 February 2020 | Volume 14 | Article 119146

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

TABLE 6 | Comparison of the SNNs classification accuracies on MNIST, N-MNIST, and CIFAR-10 datasets.

Model Learning method
Accuracy

(MNIST)

Accuracy

(N-MNIST)

Accuracy

(CIFAR-10)

Hunsberger and Eliasmith (2015) Offline learning, conversion 98.37% – 82.95%

Esser et al. (2016) Offline learning, conversion – – 89.32%

Diehl et al. (2016) Offline learning, conversion 99.10% – –

Rueckauer et al. (2017) Offline learning, conversion 99.44% – 88.82%

Sengupta et al. (2019) Offline learning, conversion – – 91.55%

Kheradpisheh et al. (2016) Layerwise STDP + offline SVM classifier 98.40% – –

Panda and Roy (2016) Spike-based autoencoder 99.08% – 70.16%

Lee et al. (2016) Spike-based BP 99.31% 98.74% –

Wu et al. (2018b) Spike-based BP 99.42% 98.78% 50.70%

Lee et al. (2018) STDP-based pretraining + spike-based BP 99.28% – –

Jin et al. (2018) Spike-based BP 99.49% 98.88% –

Wu et al. (2018a) Spike-based BP – 99.53% 90.53%

This work Spike-based BP 99.59% 99.09% 90.95%

Sengupta et al., 2019). Till date, ANN-SNN conversion schemes
achieved the best inference performance for CIFAR-10 dataset
using deep networks (Rueckauer et al., 2017; Sengupta et al.,
2019). Classification performances of all these works are listed
in Table 6 along with ours. To the best of our knowledge,
we achieved the best inference accuracy for MNIST using
LeNet structured network compared to our spike based training
approaches. We also achieved accuracy performance comparable
with ANN-SNN converted network (Diehl et al., 2015; Sengupta
et al., 2019) for CIFAR-10 dataset while beating all other spike-
based training methods.

For a more extensive comparison, we compare the inference
performances of trained networks using our proposed
methodology with the ANNs and ANN-SNN conversion
scheme for same network configuration (depth and structure)
side by side in Table 7. We also compare with the previous
best SNN training results found in the literature that may or
may not have the same network depth and structure as ours.
The ANN-SNN conversion scheme is a modified and improved
version of Sengupta et al. (2019). We are using this modified
scheme since it achieves better conversion performance than
(Sengupta et al. 2019) as explained in section 3.1.3. Note that
all reported classification accuracies are the average of the
maximum inference accuracies for 3 independent runs with
different seeds.

After initializing the weights, we train the SNNs using a spike-
based BP algorithm in an end-to-end manner with Poisson-
distributed spike train inputs. Our evaluation of MNIST dataset
yields a classification accuracy of 99.59%, which is the best
compared to any other SNN training scheme and also identical
to other ANN-SNN conversion schemes. We achieve ~96%
inference accuracy on SVHN dataset for both trained non-
residual and residual SNN. Inference performance for SNNs
trained on SVHN dataset has not been reported previously
in the literature. We implemented three different networks,
as shown in Table 5, for classifying CIFAR-10 dataset using a
proposed spike-based BP algorithm. For the VGG9 network,

the ANN-SNN conversion schemes provides a near lossless
converted network compared to baseline ANN implementation
while our proposed training method yields a classification
accuracy of 90.45%. For ResNet9 network, the ANN-SNN
conversion schemes provide inference accuracy within 0.5–1%
of baseline ANN implementation. However, our proposed spike-
based training method achieves inference accuracy that is within
~1.5% of baseline ANN implementation. In the case of ResNet11,
we observe that the inference accuracy improvement is marginal
compared to ResNet9 for baseline ANN implementation and
ANN-SNN conversion schemes. However, our proposed SNN
training shows improvement of ~0.5% for ResNet11 compared
to ResNet9. Overall, our proposed training method achieves
comparable inference accuracies for both ResNet and VGG
networks compared to baseline ANN implementation and ANN-
SNN conversion schemes.

3.2.2. Accuracy Improvement With Network Depth
In order to analyze the effect of network depth for SNNs, we
experimented with networks of different depths while training
for SVHN and CIFAR-10 datasets. For SVHN dataset, we started
with a shallow network derived from LeNet5 model (LeCun et al.,
1998) with 2 convolutional and 2 fully-connected layers. This
network was able to achieve inference accuracy of only 92.38%.
Then, we increased the network depth by adding 1 convolutional
layer before the 2 fully-connected layers and we termed this
network as VGG5. VGG5 network was able to achieve significant
improvement over its predecessor. Similarly, we tried VGG6
followed by VGG7, and the improvement started to become very
small. We have also trained ResNet7 to understand how residual
networks perform compared to non-residual networks of similar
depth. The results of these experiments are shown in Figure 7A.
We carried out similar experiments for CIFAR-10 dataset as
well. The results show a similar trend as described in Figure 7B.
These results ensure that network depth improves the learning
capacity of direct-spike trained SNNs similar to ANNs. The non-
residual networks saturate at a certain depth and start to degrade

Frontiers in Neuroscience | www.frontiersin.org 14 February 2020 | Volume 14 | Article 119147

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

TABLE 7 | Comparison of classification performance.

Inference Accuracy

Dataset Model ANN
ANN-SNN ANN-SNN SNN SNN

(Diehl et al., 2015) (Sengupta et al., 2019) (Previous Best) This Work)

MNIST LeNet 99.57% 99.55% 99.59% 99.49% (Jin et al., 2018) 99.59%

N-MNIST LeNet – – – 99.53% (Wu et al., 2018a) 99.09%

SVHN
VGG7 96.36% 96.33% 96.30% – 96.06%

ResNet7 96.43% 96.33% 96.40% – 96.21%

CIFAR-10 VGG9 91.98% 91.89% 92.01%

90.53% (Wu et al., 2018a)

90.45%

ResNet9 91.85% 90.78% 91.59% 90.35%

ResNet11 91.87% 90.98% 91.65% 90.95%

FIGURE 7 | Accuracy improvement with network depth for (A) SVHN dataset and (B) CIFAR-10 dataset. In (A), inference accuracy improves with an increase in

network depth. In (B), the non-residual networks saturate at a certain depth and start to degrade if network depth increases further. However, the residual blocks in

deep residual ANNs allow the network to maintain peak classification accuracy (ResNet9 and ResNet11).

if network depth is further increased (VGG11 in Figure 7B) due
to the degradation problemmentioned inHe et al. (2016). In such
a scenario, the residual connections in deep residual ANNs allow
the network to maintain peak classification accuracy utilizing the
skip connections (He et al., 2016), as seen in Figure 7B (ResNet9
and ResNet11).

4. DISCUSSION

4.1. Comparison With Relevant Works
In this section, we compare our proposed supervised learning

algorithm with other recent spike-based BP algorithms. The
spike-based learning rules primarily focus on directly training

and testing SNNs with spike-trains, and no conversion is
necessary for applying in real-world spiking scenario. In recent

years, there are an increasing number of supervised gradient
descent method in spike-based learning. The Panda and Roy

(2016) developed a spike-based auto-encoder mechanism to
train deep convolutional SNNs. They dealt with membrane

potential as a differentiable signal and showed recognition
capabilities in standard vision tasks (MNIST and CIFAR-10

datasets). Meanwhile, Lee et al. (2016) followed the approach

using differentiable membrane potential to explore a spike-

based BP algorithm in an end-to-end manner. In addition,
Lee et al. (2016) presented the error normalization scheme
to prevent exploding gradient phenomena while training deep
SNNs. Researchers in Jin et al. (2018) proposed hybrid
macro/micro level backpropagation (HM2-BP). HM2-BP is
developed to capture the temporal effect of the individual spike
(in micro-level) and rate-encoded error (at macro-level). The
reference Shrestha and Orchard (2018) employed exponential
function for the approximate derivative of neuronal function
and developed a credit assignment scheme to calculate the
temporal dependencies of error throughout the layers. Huh
and Sejnowski (2018) has trained recurrent spiking networks
by replacing the threshold with a gate function and employing
BPTT technique (Werbos, 1990). While BPTT technique has
been a popular method to train recurrent artificial and spiking
recurrent networks, Lillicrap and Santoro (2019) points out the
storing and retrieving past variables and differentiation them
through time in biological neurons seems to be impossible.
Recently, e-prop Bellec et al. (2019) presented an approximation
method to bypass neuronal state savings for enhancing the
computational efficiency of BPTT. In temporal spike encoding
domain, Mostafa (2018) proposed an interesting temporal

Frontiers in Neuroscience | www.frontiersin.org 15 February 2020 | Volume 14 | Article 119148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

spike-based BP algorithm by treating the spike-time as the
differential activation of neuron. Temporal encoding based SNN
has the potential to process the tasks with the small number of
spikes. All of these works demonstrated spike-based learning in
simple network architectures and has a large gap in classification
accuracy compared to deep ANNs. More recently, Wu et al.
(2018a) presented a neuron normalization technique (called
NeuNorm) that calculates the average input firing rates to adjust
neuron selectivity. NeuNorm enables spike-based training within
a relatively short time-window while achieving competitive
performances. In addition, they presented an input encoding
scheme that receives both spike and non-spike signals for
preserving the precision of input data.

There are several points that distinguish our work from others.
First, we use a pseudo derivative method that accounts for leaky
effect in membrane potential of LIF neurons. We approximately
estimate the leaky effect by comparing total membrane potential
value and obtain the ratio between IF and LIF neurons.
During the back-propagating phase, the pseudo derivative of LIF
neuronal function is estimated by combining the straight through
estimation and leak correctional term as described in Equation
(22). Next, we construct our networks by leveraging frequently
used architectures such as VGG (Simonyan and Zisserman, 2014)
and ResNet (He et al., 2016). To the best of our knowledge,
this is the first work that demonstrates spike-based supervised
BP learning for SNNs containing more than 10 trainable layers.
Our deep SNNs obtain the superior classification accuracies
in MNIST, SVHN, and CIFAR-10 datasets in comparison to
the other networks trained with the spike-based algorithm. In
addition, as opposed to complex error or neuron normalization
method adopted by Lee et al. (2016) and Wu et al. (2018a),
respectively, we demonstrate that deep SNNs can be naturally
trained by only accounting for spiking activities of the network.
As a result, our work paves the effective way for training deep
SNNs with a spike-based BP algorithm.

4.2. Spike Activity Analysis
The most important advantage of event-based operation of
neural networks is that the events are very sparse in nature. To
verify this claim, we analyzed the spiking activities of the direct-
spike trained SNNs and ANN-SNN converted networks in the
following subsections.

4.2.1. Spike Activity per Layer
The layer-wise spike activities of both SNN trained using
our proposed methodology, and ANN-SNN converted network
(using scheme 1) for VGG9 and ResNet9 are shown in
Figures 8A,B, respectively. In the case of ResNet9, only the
first average pooling layer’s output spike activity is shown
in the figure as for the direct-spike trained SNN, the
other spatial-poolings are done by stride 2 convolutions. In
Figure 8, it can be seen that the input layer has the highest
spike activity that is significantly higher than any other
layer. The spike activity reduces significantly as the network
depth increases.

We can observe from Figures 8A,B that the average spike
activity in a direct-spike trained SNN is much higher than ANN-
SNN converted network. The ANN-SNN converted network uses

a higher threshold compared to 1 (in case of direct-spike trained
SNN) since the conversion scheme applies layer-wise neuronal
threshold modulation. This higher threshold reduces spike
activity in ANN-SNN converted networks. However, in both
cases, the spike activity decreases with increasing network depth.

4.2.2. #Spikes/Inference
From Figure 8, it is evident that average spike activity in ANN-
SNN converted networks is much less than in the direct-spike
trained SNN. However, for inference, the network has to be
evaluated over many time-steps. Therefore, to quantify the actual
spike activity for an inference operation, wemeasured the average
number of spikes required for inferring one image. For this
purpose, we counted the number of spikes generated (including
input spikes) for classifying the test set of a particular dataset
for a specific number of time-steps and averaged the count
for generating the quantity “#spikes per image inference.” We
have used two different time-steps for ANN-SNN converted
networks; one for iso-accuracy comparison and the other for
maximum accuracy comparison with the direct-spike trained
SNNs. Iso-accuracy inference requires less #time-steps than
maximum accuracy inference, hence has a lower number of
spikes per image inference. For few networks, the ANN-SNN
conversion scheme always provides accuracy less than or equal
to the direct-spike trained SNN. Hence, we only compare spikes
per image inference in maximum accuracy condition for those
ANN-SNN converted networks while comparing with direct-
spike trained SNNs. For the analysis, we quantify the spike-
efficiency (amount reduction in #spikes) from the #spikes/image
inference. The results are listed in Table 8, where the 1st
row corresponds to iso-accuracy and the 2nd row corresponds
to maximum-accuracy condition for each network. As shown
in Table 8, the direct-spike trained SNNs are more efficient
in terms of #spikes/inference compared to the ANN-SNN
converted networks for the maximum accuracy condition. For
an iso-accuracy condition, only deep SNNs (such as VGG9
and ResNet11) are more efficient in terms of #spikes/inference
compared to the ANN-SNN converted networks.

The Figure 9 shows the relationship between inference
accuracy, latency and #spikes/inference for ResNet11
networks trained on CIFAR-10 dataset. We can observe
that #spikes/inference is higher for direct-spike trained SNN
compared to ANN-SNN converted networks at any particular
latency. However, SNN trained with spike-based BP requires
only 100 time-steps for maximum inference accuracy, whereas
ANN-SNN converted networks require 3,000–3,500 time-steps
to reach maximum inference accuracy. Hence, under maximum
accuracy condition, direct-spike trained ResNet11 requires much
fewer #spikes/inference compared to ANN-SNN converted
networks, while achieving comparable accuracy. Even under iso-
accuracy condition, the direct-spike trained ResNet11 requires
fewer #spikes/inference compared to the ANN-SNN converted
networks (Table 8).

4.3. Inference Speedup
The time required for inference is linearly proportional to the
#time-steps (Figure 9). Hence, we can also quantify the inference
speedup for direct-spike trained SNNs compared to ANN-SNN

Frontiers in Neuroscience | www.frontiersin.org 16 February 2020 | Volume 14 | Article 119149

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 8 | Layer-wise spike activity in direct-spike trained SNN and ANN-SNN converted network for CIFAR-10 dataset: (A) VGG9 (B) ResNet9 network. The spike

activity is normalized with respect to the input layer spike activity, which is the same for both networks. The spike activity reduces significantly for both SNN and

ANN-SNN converted network toward the later layers. We have used scheme 1 for ANN-SNN conversion.

TABLE 8 | #Spikes/Image inference and spike efficiency comparison between SNN and ANN-SNN converted networks for benchmark datasets trained on different

network models.

Dataset Model

Spike/Image Spike efficiency compared to

SNN
ANN-SNN ANN-SNN ANN-SNN ANN-SNN

(Diehl et al., 2015) (Sengupta et al., 2019) (Diehl et al., 2015) (Sengupta et al., 2019)

MNIST LeNet 5.52E+04 3.4E+04
2.9E+04

0.62x
0.53x

7.3E+04 1.32x

SVHN

VGG7 5.56E+06
3.7E+06 1.0E+07 0.67x 1.84x

1.9E+07 1.7E+07 3.40x 2.99x

ResNet7 4.66E+06
3.9E+06 3.1E+06 0.85x 0.67x

2.4E+07 2.0E+07 5.19x 4.30x

CIFAR-10

VGG9 1.24E+06
1.6E+06 2.2E+06 1.32x 1.80x

8.3E+06 9.6E+06 6.68x 7.78x

ResNet9 4.32E+06
2.7E+06 1.5E+06 0.63x 0.35x

1.0E+07 7.8E+06 2.39x 1.80x

ResNet11 1.53E+06 9.7E+06
1.8E+06

6.33x
1.17x

9.2E+06 5.99x

(For each network, the 1st row corresponds to iso-accuracy and the 2nd row corresponds to maximum-accuracy condition).

converted networks from the #time-steps required for inference,
as shown in Table 9. For example, for VGG9 network, the
proposed training method can achieve 8x (5x) speedup for iso-
accuracy and up to 36x (25x) speedup for maximum accuracy in
inference compared to respective ANN-SNN converted networks
[i.e., scheme 1 (Sengupta et al., 2019) and scheme 2 (Diehl et al.,
2016)]. Similarly, for ResNet networks, the proposed training
method can achieve 6x speedup for iso-accuracy and up to 35x
speedup for maximum accuracy condition in inference. It is
interesting to note that direct-spike trained SNN is always more
efficient in terms of time-steps compared to the equivalent ANN-
SNN conversion network, but not in terms of the number of
spikes, in some cases. It will require a detailed investigation
to determine if ANN-SNN methods used higher firing rates,
whether they would be able to classify quickly as well, while
incurring a lower number of spike/inference.

4.4. Complexity Reduction
Deep ANNs struggle to meet the demand of extraordinary
computational requirements. SNNs can mitigate this effort by

enabling efficient event-based computations. To compare the
computational complexity of these two cases, we first need to
understand the operation principle of both. An ANN operation
for inferring the category of a particular input requires a single
feed-forward pass per image. For the same task, the networkmust
be evaluated over a number of time-steps in the spiking domain.
If regular hardware is used for both ANN and SNN, then it is
evident that SNN will have computation complexity in the order
of hundreds or thousands more compared to an ANN. However,
there are specialized hardwares that account for the event-
based neural operation and “computes only when required”
for inference. SNNs can potentially exploit such alternative
mechanisms of network operation and carry out an inference
operation in the spiking domain much more efficiently than an
ANN. Also, for deep SNNs, we have observed the increase in
sparsity as the network depth increases. Hence, the benefits from
event-based neuromorphic hardware are expected to increase as
the network depth increases.

An estimate of the actual energy consumption of SNNs
and comparison with ANNs is outside the scope of this

Frontiers in Neuroscience | www.frontiersin.org 17 February 2020 | Volume 14 | Article 119150

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 9 | The comparison of “accuracy vs. latency vs. #spikes/inference” for ResNet11 architecture. In this figure, the solid lines are representing inference

accuracy while the dashed lines are representing #spikes/inference. The slope of #spikes/inference curve of the proposed SNN is larger than ANN-SNN converted

networks. However, since proposed SNN requires much less time-steps for inference, the number of spikes required for one image inference is significantly lower

compared to ANN-SNN. The required #time-steps and corresponding #spikes/inference are shown using highlighted points connected by arrows. Log scale is used

for x-axis for easier viewing of the accuracy changes for lower number of time-steps.

TABLE 9 | Inference #time-steps and corresponding speedup comparison between SNN and ANN-SNN converted networks for benchmark datasets trained on different

network models.

Dataset Model

Timesteps SNN Inference Speedup Compared to

SNN
ANN-SNN ANN-SNN ANN-SNN ANN-SNN

(Diehl et al., 2015) (Sengupta et al., 2019) (Diehl et al., 2015) (Sengupta et al., 2019)

MNIST LeNet 50 180
200

3.6x
4x

500 10x

SVHN

VGG7 100
500 1,600 5x 16x

2,500 2,600 25x 26x

ResNet7 100
500 400 5x 4x

3,000 2,500 30x 25x

CIFAR-10

VGG9 100
500 800 5x 8x

2,500 3,600 25x 36x

ResNet9 100
800 600 8x 6x

3,000 3,000 30x 30x

ResNet11 100 3500
600

35x
6x

3,000 30x

(For each network, the 1st row corresponds to iso-accuracy and the 2nd row corresponds to maximum-accuracy condition).

work. However, we can gain some insight by quantifying the
computational energy consumption for a synaptic operation and
comparing the number of synaptic operations being performed
in the ANN vs. the SNN trained with our proposed algorithm
and ANN-SNN converted network. We can estimate the number
of synaptic operations per layer of a neural network from the
structure for the convolutional and linear layers. In an ANN,
a multiply-accumulate (MAC) computation is performed per
synaptic operation. While a specialized SNN hardware would
perform simply an accumulate computation (AC) per synaptic
operation only if an incoming spike is received. Hence, the total
number of AC operations in a SNN can be estimated by the

layer-wise product and summation of the average neural spike
count for a particular layer and the corresponding number of
synaptic connections. We also have to multiply the #time-steps
with the #AC operations to get total #AC operation for one
inference. For example, assume that there are L layers each
with Nl neurons, Sl synaptic connections and al average spiking
activity where l is the layer number. Then, the total number
of synaptic operations in a layer is Nl × Sl × al. The Nl × Sl
is equal to the ANN (#MAC) operations of a particular layer.
Therefore, the total number of synaptic operations in a layer
of an SNN becomes #MACl × al. The total number of #AC
operations required for an image inference is the sum of synaptic

Frontiers in Neuroscience | www.frontiersin.org 18 February 2020 | Volume 14 | Article 119151

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

FIGURE 10 | Inference computation complexity comparison between ANN, ANN-SNN conversion and SNN trained with spike-based backpropagation. ANN

computational complexity is considered as a baseline for normalization.

TABLE 10 | Iso-spike comparison for optimal condition.

Dataset Model

Time-steps Accuracy (%)

SNN
ANN-SNN ANN-SNN

SNN
ANN-SNN ANN-SNN

(Diehl et al., 2015) (Sengupta et al., 2019) (Diehl et al., 2015) (Sengupta et al., 2019)

MNIST LeNet 20 62 75 99.36 99.19 88.62

SVHN
VGG7 30 235 235 95.00 95.34 88.13

ResNet7 30 200 200 95.06 95.63 95.48

CIFAR-10

VGG9 50 228 260 89.33 69.53 61.08

ResNet9 50 390 490 89.52 89.51 90.06

ResNet11 50 307 280 90.24 82.75 73.82

SNN time-steps corresponds to the latency to reach accuracy within ∼1% of maximum accuracy. ANN-SNN time-steps corresponds to the latency required for same number of

spike/inference as SNN to occur. SNN and ANN-SNN accuracies are accuracies corresponding to respective latency.

operations in all layers during the inference time-window.
Hence, #AC/inference=(

∑

l(#MACl × al)) × #timesteps. This
formula is used for estimating both ANN-SNN AC operations
and SNN AC operations per image inference. On the other
hand, the number of ANN (MAC) operation per inference
becomes simply, #MAC/inference=

∑L
1(#MACl). Based on this

concept, we estimated the total number of MAC operations for
ANN, and the total number of AC operations for direct-spike
trained SNN and ANN-SNN converted network, for VGG9,
ResNet9 and ResNet11. The ratio of ANN-SNN converted
networks’ (scheme1-scheme2) AC operations to direct-spike
trained SNN AC operations to ANN MAC operations is (28.18–
25.60):3.61:1 for VGG9 while the ratio is (11.67–18.42):5.06:1 for
the ResNet9 and (9.6–10.16):2.09:1 for ResNet11 (for maximum
accuracy condition).

However, a MAC operation usually consumes an order of
magnitude more energy than an AC operation. For instance,
according to Han et al. (2015), a 32-bit floating point MAC
operation consumes 4.6 pJ and a 32-bit floating point AC
operation consumes 0.9 pJ in 45 nm technology node. Hence,
one synaptic operation in an ANN is equivalent to ~5
synaptic operations in a SNN. Moreover, 32-bit floating point

computation can be replaced by fixed point computation using
integer MAC and AC units without losing accuracy since the
conversion is reported to be almost loss-less Lin et al. (2016).
A 32-bit integer MAC consumes roughly 3.2 pJ while a 32-bit
AC operation consumes only 0.1 pJ in 45nm process technology.
Considering this fact, our calculations demonstrate that the
SNNs trained using the proposed method will be 7.81x~7.10x
and 8.87x more computationally energy-efficient for inference
compared to the ANN-SNN converted networks and an ANN,
respectively, for the VGG9 network architecture. We also gain
4.6x~4.87x(2.31x~3.64x) and 15.32x(6.32x) energy-efficiency, for
the ResNet11(ResNet9) network, compared to the ANN-SNN
converted networks and an ANN, respectively. The Figure 10

shows the reduction in computation complexity for ANN-SNN
conversions and SNN trained with the proposed methodology
compared to ANNs.

It is worth noting here that as the sparsity of the spike signals
increases with an increase in network depth in SNNs. Hence,
the energy-efficiency is expected to increase almost exponentially
in both ANN-SNN conversion network (Sengupta et al., 2019)
and SNN trained with proposed methodology compared to an
ANN implementation. The depth of network is the key factor

Frontiers in Neuroscience | www.frontiersin.org 19 February 2020 | Volume 14 | Article 119152

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

for achieving a significant increase in the energy efficiency for
SNNs in neuromorphic hardware. However, the computational
efficiency does not perfectly align with the overall efficiency
since the dominant energy consumption can be the memory
traffic on von-Neumann computing hardware. The dataflows in
asynchronous SNNs are less predictable and more complicated.
Hence, a detailed study is required to estimate the overall
efficiency of SNNs accurately.

4.5. Iso-Spike Comparison for Optimal
Condition
In section 4.3, we observe that SNNs trained with proposed
method achieve significant speed-up in both max-accuracy and
iso-accuracy condition. However, in section 4.2.2, we found
that the proposed method is in some cases (in an iso-accuracy
condition) not more efficient than ANN-SNN conversions in
terms of #spike/inference. The reason behind it is that an
iso-accuracy condition may not be optimal for the SNNs
trained with proposed method. In an iso-accuracy case, we
have used max-accuracy latency (50 time-steps for MNIST
and 100 time-steps for other networks) for direct-spike trained
SNN, whereas most of the conversion networks used much
less latency than the max-accuracy condition. In view of this,
there is a need to determine the circumstances where our
proposed method performs as well as or better than the SNN-
ANN conversion methods on spike count, time steps, and
accuracy. Consequently, in this section we analyze another
interesting comparison.

In this analysis, we compare our proposed method and
ANN-SNN conversion methods (Diehl et al., 2015; Sengupta
et al., 2019) under the optimal condition at equal number of
spikes. We define the “optimal #time-steps” for SNNs trained
with our proposed method as the #time-steps required to reach
within ~1% of peak accuracy (when the accuracy starts to
saturate). Based on this definition, we observed that the optimal
#time-steps for MNIST, SVHN, CIFAR10 networks are 20, 30,
and 50, respectively. For this comparison, we recorded the
achieved accuracy and #spike/inference of the SNNs trained
with our proposed method for the corresponding optimal
#time-steps. Then, we ran ANN-SNN networks for a length
of time such that they use the similar number of spikes.
In this iso-spike condition, we recorded the accuracy of the
ANN-SNN networks (for both conversion methods) and the
number of time-steps they require. The results are summarized
in Table 10.

For comparatively shallower networks such as LeNet, VGG7
(VGG type) and ResNet7, ResNet9 (Residual type), the ANN-
SNN conversion networks achieve as good as or slightly
better accuracy at iso-spike condition compared to the SNNs
trained with our proposed method. However, these ANN-
SNN conversion networks require 3x-10x higher latency for
inference. On the other hand, for deeper networks such as VGG9
and ResNet11, the ANN-SNN conversion networks achieve
significantly lower accuracy compared to SNNs trained with
our proposed method even with much higher latency. This
trend indicates that for deeper networks, SNNs trained with

our proposed method will be more energy-efficient than the
conversion networks under an iso-spike condition.

5. CONCLUSION

In this work, we propose a spike-based backpropagation
training methodology for popular deep SNN architectures.
This methodology enables deep SNNs to achieve comparable
classification accuracies on standard image recognition tasks.
Our experiments show the effectiveness of the proposed
learning strategy on deeper SNNs (7–11 layer VGG and
ResNet network architectures) by achieving the best classification
accuracies in MNIST, SVHN, and CIFAR-10 datasets among
other networks trained with spike-based learning till date.
The performance gap in terms of quality between ANN
and SNN is substantially reduced by the application of our
proposed methodology. Moreover, significant computational
energy savings are expected when deep SNNs (trained with
the proposed method) are employed on suitable neuromorphic
hardware for the inference.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: MNIST, N-MNIST, SVHN, CIFAR-
10 datasets. The source code is publicly released at “https://
github.com/chan8972/Enabling_Spikebased_Backpropagation”.

AUTHOR CONTRIBUTIONS

CL and SS implemented the algorithm and conducted the
experiments. CL, SS, PP, GS, and KR discussed about the results
and analysis, and wrote the manuscript.

FUNDING

This work was supported in part by C-BRIC, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA, the National Science Foundation, Intel
Corporation, the DoD Vannevar Bush Fellowship and the
U.S. Army Research Laboratory and the U.K. Ministry of
Defence under Agreement Number W911NF-16-3-0001. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

ACKNOWLEDGMENTS

This manuscript has been released as a Pre-Print at Lee et al.
(2019a). We would like to thank Dr. Gerard (Rod) Rinkus for
helpful comments.

Frontiers in Neuroscience | www.frontiersin.org 20 February 2020 | Volume 14 | Article 119153

https://github.com/chan8972/Enabling_Spikebased_Backpropagation
https://github.com/chan8972/Enabling_Spikebased_Backpropagation
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

REFERENCES

Ankit, A., Sengupta, A., Panda, P., and Roy, K. (2017). “Resparc: a reconfigurable

and energy-efficient architecture with memristive crossbars for deep spiking

neural networks,” in Proceedings of the 54th Annual Design Automation

Conference 2017 (New York, NY), 1–6.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.

(2019). A solution to the learning dilemma for recurrent networks of spiking

neurons. bioRxiv [Preprint]. doi: 10.1101/738385

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating

gradients through stochastic neurons for conditional computation. arXiv

[Preprint]. arXiv:1308.3432.

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.

doi: 10.1016/S0925-2312(01)00658-0

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vision 113,

54–66. doi: 10.1007/s11263-014-0788-3

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience, Vol. 806. Cambridge,

MA: MIT Press.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8.

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016).

“Conversion of artificial recurrent neural networks to spiking neural networks

for low-power neuromorphic hardware,” in 2016 IEEE International Conference

on Rebooting Computing (ICRC) (San Diego, CA: IEEE), 1–8.

Esser, S., Merolla, P., Arthur, J., Cassidy, A., Appuswamy, R., Andreopoulos, A.,

et al. (2016). Convolutional networks for fast, energy-efficient neuromorphic

computing. arXiv [Preprint]. Available online at: http://arxiv.org/abs/1603.

08270

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the spinnaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems (Montréal, QC), 1135–1143.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in Proceedings

of the IEEE International Conference on Computer Vision (Santiago), 1026–

1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778.

Hodgkin, A. L., and Huxley, A. F. (1952). Currents carried by sodium and

potassium ions through the membrane of the giant axon of loligo. J. Physiol.

116, 449–472. doi: 10.1113/jphysiol.1952.sp004717

Huh, D., and Sejnowski, T. J. (2018). “Gradient descent for spiking neural

networks,” in Advances in Neural Information Processing Systems (Montréal,

QC), 1440–1450.

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with lif neurons.

arXiv [Preprint]. arXiv:1510.08829.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep

network training by reducing internal covariate shift. arXiv [Preprint].

arXiv:1502.03167.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jin, Y., Li, P., and Zhang, W. (2018). Hybrid macro/micro level backpropagation

for training deep spiking neural networks. arXiv [Preprint]. arXiv:1805.07866.

Kappel, D., Habenschuss, S., Legenstein, R., and Maass, W. (2015). Network

plasticity as bayesian inference. PLoS Comput. Biol. 11:e1004485.

doi: 10.1371/journal.pcbi.1004485

Kappel, D., Legenstein, R., Habenschuss, S., Hsieh, M., and Maass, W. (2018). A

dynamic connectome supports the emergence of stable computational function

of neural circuits through reward-based learning. Eneuro 5:ENEURO.0301-

17.2018. doi: 10.1523/ENEURO.0301-17.2018

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., andMasquelier, T. (2016). Stdp-

based spiking deep neural networks for object recognition. arXiv [Preprint].

arXiv:1611.01421.

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv [Preprint]. arXiv:1412.6980.

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features From

Tiny Images. Technical report, Citeseer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. Adv. Neural. Inform. Process. Syst.

25, 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep

spiking convolutional neural networks with stdp-based unsupervised

pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Lee, C., Sarwar, S. S., and Roy, K. (2019a). Enabling spike-based backpropagation

in state-of-the-art deep neural network architectures. arXiv [Preprint].

arXiv:1903.06379.

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2019b). Deep spiking convolutional

neural network trained with unsupervised spike-timing-dependent plasticity.

IEEE Trans. Cogn. Dev. Syst. 11, 384–394. doi: 10.1109/TCDS.2018.28

33071

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., andDelbruck, T. (2008). A 128×128 120 db 15µs latency

asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43,

566–576. doi: 10.1109/JSSC.2007.914337

Lillicrap, T. P., and Santoro, A. (2019). Backpropagation through time and the

brain. Curr. Opin. Neurobiol. 55, 82–89. doi: 10.1016/j.conb.2019.01.011

Lin, D., Talathi, S., and Annapureddy, S. (2016). “Fixed point quantization of

deep convolutional networks,” in International Conference onMachine Learning

(New York, NY), 2849–2858.

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking

neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

doi: 10.1109/TNNLS.2017.2726060

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven

random back-propagation: enabling neuromorphic deep learning machines.

Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs, G.

(2015). Unsupervised learning in synaptic samplingmachines. arXiv [Preprint].

arXiv:1511.04484.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011).

“Reading digits in natural images with unsupervised feature learning,” in NIPS

Workshop on Deep Learning and Unsupervised Feature Learning, Vol. 2011, 5.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Frontiers in Neuroscience | www.frontiersin.org 21 February 2020 | Volume 14 | Article 119154

https://doi.org/10.1101/738385
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
http://arxiv.org/abs/1603.08270
http://arxiv.org/abs/1603.08270
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1113/jphysiol.1952.sp004717
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1371/journal.pcbi.1004485
https://doi.org/10.1523/ENEURO.0301-17.2018
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1016/j.conb.2019.01.011
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2015.00437
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. Enabling Spike-Based Learning

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE), 299–306.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in pytorch,” in NIPS 2017 Autodiff Workshop: The

Future of Gradient-based Machine Learning Software and Techniques (Long

Beach, CA).

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning Internal

Representations by Error Propagation. Technical report, California Univ San

Diego La Jolla Inst for Cognitive Science.

Sarwar, S. S., Srinivasan, G., Han, B., Wijesinghe, P., Jaiswal, A., Panda,

P., et al. (2018). Energy efficient neural computing: a study of cross-

layer approximations. IEEE J. Emerg. Sel. Top. Circuits Syst. 8, 796–809.

doi: 10.1109/JETCAS.2018.2835809

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: Vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems (Montréal, QC),

1412–1421.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

et al. (2016). Mastering the game of go with deep neural networks and tree

search. Nature 529:484. doi: 10.1038/nature16961

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv [Preprint]. arXiv:1409.1556.

Srinivasan, G., Panda, P., and Roy, K. (2018a). Spilinc: Spiking liquid-ensemble

computing for unsupervised speech and image recognition. Front. Neurosci.

12:524. doi: 10.3389/fnins.2018.00524

Srinivasan, G., Panda, P., and Roy, K. (2018b). Stdp-based unsupervised feature

learning using convolution-over-time in spiking neural networks for energy-

efficient neuromorphic computing. ACM J. Emerg. Technol. Comput. Syst.

14:44. doi: 10.1145/3266229

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958. doi: 10.5555/2627435.2670313

Tavanaei, A., and Maida, A. S. (2016). Bio-inspired spiking convolutional neural

network using layer-wise sparse coding and stdp learning. arXiv [Preprint].

arXiv:1611.03000.

Tavanaei, A., and Maida, A. S. (2017). “Multi-layer unsupervised learning in a

spiking convolutional neural network,” in 2017 International Joint Conference

on Neural Networks (IJCNN) (Anchorage, AK: IEEE), 2023–2030.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proc. IEEE 78, 1550–1560.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018a). Direct training for spiking

neural networks: faster, larger, better. arXiv [Preprint]. arXiv:1809.05793.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018b). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2015).

Feedforward categorization on aer motion events using cortex-like features in

a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26, 1963–1978.

doi: 10.1109/TNNLS.2014.2362542

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lee, Sarwar, Panda, Srinivasan and Roy. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 22 February 2020 | Volume 14 | Article 119155

https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/JETCAS.2018.2835809
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1038/nature16961
https://doi.org/10.3389/fnins.2018.00524
https://doi.org/10.1145/3266229
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/TNNLS.2014.2362542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 12 May 2020

doi: 10.3389/fnins.2020.00425

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 425

Edited by:

Runchun Mark Wang,

Western Sydney University, Australia

Reviewed by:

Hesham Mostafa,

Intel, United States

André van Schaik,

Western Sydney University, Australia

*Correspondence:

Shantanu Chakrabartty

shantanu@wustl.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 February 2020

Accepted: 07 April 2020

Published: 12 May 2020

Citation:

Gangopadhyay A, Mehta D and

Chakrabartty S (2020) A Spiking

Neuron and Population Model Based

on the Growth Transform Dynamical

System. Front. Neurosci. 14:425.

doi: 10.3389/fnins.2020.00425

A Spiking Neuron and Population
Model Based on the Growth
Transform Dynamical System
Ahana Gangopadhyay 1, Darshit Mehta 2 and Shantanu Chakrabartty 1*

1Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, United States,
2Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States

In neuromorphic engineering, neural populations are generally modeled in a bottom-up

manner, where individual neuron models are connected through synapses to form

large-scale spiking networks. Alternatively, a top-down approach treats the process of

spike generation and neural representation of excitation in the context of minimizing

some measure of network energy. However, these approaches usually define the energy

functional in terms of some statistical measure of spiking activity (ex. firing rates), which

does not allow independent control and optimization of neurodynamical parameters. In

this paper, we introduce a new spiking neuron and populationmodel where the dynamical

and spiking responses of neurons can be derived directly from a network objective or

energy functional of continuous-valued neural variables like the membrane potential.

The key advantage of the model is that it allows for independent control over three

neuro-dynamical properties: (a) control over the steady-state population dynamics that

encodes the minimum of an exact network energy functional; (b) control over the shape

of the action potentials generated by individual neurons in the network without affecting

the network minimum; and (c) control over spiking statistics and transient population

dynamics without affecting the network minimum or the shape of action potentials. At

the core of the proposed model are different variants of Growth Transform dynamical

systems that produce stable and interpretable population dynamics, irrespective of the

network size and the type of neuronal connectivity (inhibitory or excitatory). In this paper,

we present several examples where the proposedmodel has been configured to produce

different types of single-neuron dynamics as well as population dynamics. In one such

example, the network is shown to adapt such that it encodes the steady-state solution

using a reduced number of spikes upon convergence to the optimal solution. In this

paper, we use this network to construct a spiking associative memory that uses fewer

spikes compared to conventional architectures, while maintaining high recall accuracy at

high memory loads.

Keywords: spiking neuron model, growth transforms, energy-minimization, dynamical system, network model,

neural dynamics, associative memory, adaptation

156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00425
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00425&domain=pdf&date_stamp=2020-05-12
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shantanu@wustl.edu
https://doi.org/10.3389/fnins.2020.00425
https://www.frontiersin.org/articles/10.3389/fnins.2020.00425/full
http://loop.frontiersin.org/people/500737/overview
http://loop.frontiersin.org/people/842312/overview
http://loop.frontiersin.org/people/14427/overview

Gangopadhyay et al. GT Neuron and Population Model

1. INTRODUCTION

Spiking neural networks that emulate neural ensembles have
been studied extensively within the context of dynamical systems
(Izhikevich, 2007), and modeled as a set of differential equations
that govern the temporal evolution of its state variables. For
a single neuron, the state variables are usually its membrane
potential and the conductances of ion channels that mediate
changes in the membrane potential via flux of ions across the cell
membrane. A vast body of literature, ranging from the classical
Hodgkin-Huxley model (Hodgkin and Huxley, 1952), FitzHugh-
Nagumo model (FitzHugh, 1961), Izhikevich model (Izhikevich,
2003) to simpler integrate-and-fire models (Abbott, 1999), treats
the problem of single-cell excitability at various levels of detail
and biophysical plausibility. Individual neuron models are then
connected through synapses, bottom-up, to form large-scale
spiking neural networks.

An alternative to this bottom-up approach is a top-
down approach that treats the process of spike generation
and neural representation of excitation in the context of
minimizing some measure of network energy. The rationale
for this approach is that physical processes occurring in nature
have a tendency to self-optimize toward a minimum-energy
state. This principle has been used to design neuromorphic
systems where the state of a neuron in the network is
assumed to be either binary in nature (spiking or not spiking)
(Jonke et al., 2016), or replaced by its average firing rate
(Nakano et al., 2015). However, in all of these approaches,
the energy functionals have been defined with respect to
some statistical measure of neural activity, for example spike
rates, instead of continuous-valued neuronal variables like
the membrane potential. As a result in these models, it is
difficult to independently control different neuro-dynamical
parameters, for example the shape of the action-potential,
bursting activity or adaptation in neural activity, without
affecting the network solution.

In Gangopadhyay and Chakrabartty (2018), we proposed a
model of a Growth Transform (GT) neuron which reconciled
the bottom-up and top-down approaches such that the
dynamical and spiking responses were derived directly from
a network objective or an energy functional. Each neuron
in the network implements an asynchronous mapping
based on polynomial Growth Transforms, which is a fixed-
point algorithm for optimizing polynomial functions under
linear and/or bound constraints (Baum and Sell, 1968;
Gangopadhyay et al., 2017). It was shown in Gangopadhyay
and Chakrabartty (2018) that a network of GT neurons can
solve binary classification tasks while producing stable and
unique neural dynamics (for example, noise-shaping, spiking
and bursting) that could be interpreted using a classification
margin. However, in the previous formulation, all of these
neuro-dynamical properties were directly encoded into the
network energy function. As a result, the formulation did
not allow independent control and optimization of different
neuro-dynamics. In this paper, we address these limitations
by proposing a novel GT spiking neuron and population

model, along with a neuromorphic framework, according to the
following steps:

• We first remap the synaptic interactions in a standard spiking
neural network in a manner that the solution (steady-state
attractor) could be encoded as a first-order condition of an
optimization problem. We show that this network objective
function or energy functional can be interpreted as the total
extrinsic power required by the remapped network to operate,
and hence a metric to be minimized.
• We then introduce a dynamical system model based on

Growth Transforms that evolves the network toward this
steady-state attractor under the specified constraints. The
use of Growth Transforms ensures that the neuronal states
(membrane potentials) involved in the optimization are always
bounded and that each step in the evolution is guaranteed to
reduce the network energy.
• We then show how gradient discontinuity in the network

energy functional can be used to modulate the shape of the
action potential while maintaining the local convexity and the
location of the steady-state attractor.
• Finally, we use the properties of Growth Transforms to

generalize the model to a continuous-time dynamical
system. The formulation will then allow for modulating
the spiking and the population dynamics across the
network without affecting network convergence toward the
steady-state attractor.

We show that the proposed framework can be used to implement
a network of coupled neurons that can exhibit memory, global
adaptation, and other interesting population dynamics under
different initial conditions and based on different network
states. We also illustrate how decoupling transient spiking
dynamics from the network solution and spike-shapes could be
beneficial by using the model to design a spiking associative
memory network that can recall a large number of patterns
with high accuracy while using fewer spikes than traditional
associative memory networks. This paper is also accompanied by
a publicly available software implementing the proposed model
(Mehta et al., 2019) using MATLAB©. Users can experiment
with different inputs and network parameters to explore and
create other unique dynamics than what has been reported
in this paper. In the future, we envision that the model
could be extended to incorporate spike-based learning within
an energy-minimization framework similar to the framework
used in traditional machine learning models (LeCun et al.,
2006). This could be instrumental in bridging the gap between
neuromorphic algorithms and traditional energy-based machine
learning models.

2. METHODS

In this section, we present the network energy functional by
remapping the synaptic interactions of a standard spiking neural
network and then propose a Growth Transform based dynamical

Frontiers in Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 425157

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

system for minimizing this objective. For the rest of the paper, we
will follow the mathematical notations as summarized below.

Notations

x Real scalar variable

x Real-valued vector with xi as its i-th element

X Real-valued matrix with Xij as the element at the i-th row and the

j-th column

xi,n i-th element of real-valued vector x where n = 1, 2, .. denotes a

discrete time step

xi (t) i-th element of real-valued vector x at time t

xi [n] a sequence of scalar variables xi,p where p = n, n− 1, ..

EN

(

xi [n]
)

Empirical expectation of a sequence xi [n] estimated over a window

of size N,

i.e., 1
N

n
∑

p=n−N+1

xi,p

x̄i [n] Empirical expectation estimated over an asymptotically infinite

window,

i.e., lim
N→∞

EN

(

xi [n]
)

x̄[n] Real-valued vector with x̄i [n] as its i-th element

ET [xi (t)] Empirical expectation of xi (t) over a time-interval [t− T, t], i.e.,
1
T

∫ t

t−T
xi (t
′)dt′

R
M Vector space spanned by M-dimensional real vectors

|x| Absolute value of a scalar

||x||p lp-norm of an M-dimensional vector, defined as (
M
∑

i=1

|xi |
p)1/p

xT Transpose of the vector x

x.y Inner product between the vectors x and y

∂H
∂x

Gradient vector [∂H
∂x1

, ∂H
∂x2

, ..., ∂H
∂xM

]T

2.1. Remapping Synaptic Interactions in a
Standard Spiking Network
In generalized threshold models like the Spike Response Model
(Gerstner and Kistler, 2002), the membrane voltage is given
using response kernels that accurately model the post-synaptic
responses due to pre-synaptic input spikes, external driving
currents and the shape of the spike - the latter term being also
used to model refractoriness. However, in simpler adaptations
of spiking neuron models, the spike shape is often disregarded,
and the membrane potentials are written as simple linear post-
synaptic integrations of input spikes and external currents
(Cassidy et al., 2013; Davies et al., 2018). We consider a similar
model where vi ∈ R represents an inter-cellular membrane
potential corresponding to neuron i in a network of M neurons.
The i-th neuron receives spikes from the j-th neuron that are
modulated by a synapse whose strength or weight is denoted by
Wij ∈ R. Assuming that the synaptic weights are constant, the
following discrete-time temporal equation governs the dynamics
when the membrane potential increases (Soula et al., 2006;
Cessac, 2011)

vi,n+1 = γ vi,n +

M
∑

j=1

Wij9(vj,n)+ yi,n, ∀i = 1, ...,M, (1)

where vi,n ≡ vi(n1t) and vi,n+1 ≡ vi
(

(n + 1)1t
)

, 1t being
the time increment between two time-steps. yi,n represents the
depolarization due to an external stimulus that can be viewed as
yi,n = RmiIi,n, where Ii,n ∈ R is the current stimulus at the n-th
time-step and Rmi ∈ R is the membrane resistance of the i-th
neuron. Here, 0 ≤ γ ≤ 1 denotes the leakage factor and 9(.)
denotes a simple spiking function that is positive only when the
voltage vj,n exceeds a threshold and 0 otherwise. Note that in (1),
the filter 9(.) implicitly depends on the pre-synaptic spike-times
through the pre-synaptic membrane voltage vj,n. Such a spiking
neural network model is shown in Figure 1A.

We further enforce that the membrane potentials are bounded
by vc as

|vi,n| ≤ vc, ∀i = 1, ...,M, ∀n. (2)

Note that in biological neural networks, the membrane potentials
are also bounded (Wright, 2004).

If 9(.) was a smooth function of the membrane potential, vi,n
would track the net input at every instant. For a non-smooth9(.),
however, we make the additional assumption that the temporal
expectation of vi,n encodes the net input over a sufficiently large
time-window. Considering ȳi[n] to be the empirical expectation
of the external input estimated at the n-th time-window, and
under the bound constraints outlined in (2), we can get the
following relation (justification in Appendix A)

(1− γ)v̄i[n] =

M
∑

j=1

Wij9̄j[n]+ ȳi[n], (3)

where 9̄j[n] = lim
N→∞

n
∑

p=n−N+1
9(vj,p). To reduce notational

clutter, we will re-write (3) in a matrix form as

(1− γ)v̄[n] =W9̄[n]+ ȳ[n], (4)

where v̄[n] ∈ R
M is the vector of mean membrane potentials

for a network of M neurons, W ∈ R
M × R

M is the synaptic
weight matrix for the network, ȳ[n] ∈ R

M is the vector of
mean external inputs for the n-th time-window and 9̄[n] =
[

9̄1[n], 9̄2[n], ..., 9̄M[n]
]T

is the vector of mean spike currents.
As 9(.) is a non-linear function of the membrane potential,
it is difficult to derive an exact network energy functional
corresponding to (4). However, if we assume that the synaptic
weight matrixW is invertible, we can re-write Equation (4) as

9̄[n] = (1− γ)W−1v̄[n]−W−1ȳ[n], or (5)

9̄[n] = −Qv̄[n]+ b̄[n], (6)

whereQ = −(1−γ)W−1, and b̄[n] = −W−1ȳ[n] is the effective
external current stimulus. Note that in case W is not invertible,
W−1 could represent a pseudo-inverse. For the i-th neuron, (6) is
equivalent to

9̄i[n] = −

M
∑

j=1

Qijv̄j[n]+ b̄i[n], (7)

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 425158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

FIGURE 1 | (A) Simple but general model of a spiking neural network; (B) Compartmental network model obtained after remapping synaptic interactions.

subject to the bound constraint |vi,n| ≤ vc ∀i, n. In the
subsequent sections, we show that (7) can be viewed as the first-
order condition of the following network objective function or
energy functional

min
|vi|≤vc ∀i

H
(

{vi}
)

= min
|vi|≤vc ∀i

1

2

M
∑

i=1

M
∑

j=1

Qijvjvi −

M
∑

i=1

bivi

+

M
∑

i=1

vi
∫

−∞

9(v)dv. (8)

The network energy functional H(.) in (8) also admits a physical
interpretation, as shown in Figure 1B. Each neuron i receives
a voltage input from the neuron j through a synapse that
can be modeled by a transconductance Qij. The neuron i also
receives an electrical current stimulus bi and exchanges a voltage-
dependent ionic-current with its medium, denoted by 9(vi).
Then, the function H(.) in Equation (8) represents the extrinsic
(or metabolic) power supplied to the network, comprising
the following three components: (a) Power dissipation due to
coupling between neurons; (b) Power injected to or extracted
from the system as a result of external stimulation; and (c) Power
dissipated due to neural responses.

2.2. Neuron Model Using the Growth
Transform Dynamical System
In order to solve the energy minimization problem given in (8)
under the constraints given in (2), we first propose a dynamical
system based on polynomial Growth Transforms. We also show
how the dynamical system evolves over time to satisfy (7) as a
first-order condition.

Growth Transforms are multiplicative updates derived from
the well-known Baum-Eagon inequality (Baum and Sell, 1968;
Chatterjee and Chakrabartty, 2018) that optimize a Lipschitz
continuous cost function under linear and/or bound constraints
on the optimization variables. Each neuron in the network
implements a continuousmapping based onGrowth Transforms,
ensuring that the network evolves over time to reach an optimal
solution of the energy functional within the constraint manifold.
The summary of a discrete-time Growth Transform dynamical
system is presented in Table 1 and the detailed derivation is
provided in Appendix B.

TABLE 1 | Discrete-time Growth Transform dynamical system (Proof in

Appendix B).

Proposition I. Let H
(

{vi}
)

:RM → R be a function of vi , i = 1, ...,M with

bounded partial derivatives, and let λ > | ∂H
∂vi,n
| ∀i, n, be a parameter. Then for

|vi,0| ≤ vc ∀i, the discrete-time dynamical system

vi,n+1 ← vc
− ∂H

∂vi,n
vc+λvi,n

− ∂H
∂vi,n

vi,n+λvc
, i = 1, ...,M (9)

satisfies the following criteria for all time-indices n:

(a) |vi,n| ≤ vc ∀i; (10)

(b) H
(

{vi,n+1}
)

≤H
(

{vi,n}
)

in domains where ∂H
∂vi,n

is continuous; and (11)

(c) lim
N→∞

(

EN

(

zi [n]
)

)

→ 0 ∀i, n; where zi,n = (v2c − vi,nvi,n+1)
∂H
∂vi,n

. (12)

2.2.1. Growth Transform Spiking Neuron Model
Considering the n-th iteration of the update equation in (9) as
the n-th time-step for the neuron i, we can rewrite (9) in terms of
the objective function for the neuron model presented in (8), as
given below

vi,n+1 ← vc
− ∂H

∂vi,n
vc + λvi,n

− ∂H
∂vi,n

vi,n + λvc
, i = 1, ...,M, (13)

where

∂H

∂vi,n
=

M
∑

j=1

Qijvj,n − bi,n +9(vi,n). (14)

Then asymptotically from (1), and as shown in Appendix B,
we have

lim
N→∞

(

EN

(

zi[n]
)

)

→ 0 ∀i, n, (15)

where zi,n = (v2c − vi,nvi,n+1)
∂H
∂vi,n

. We first show the dynamics

resulting from (13) for a trivial barrier function 9(.) = 0. Since
H(.) is a smooth function in this case, the neural variables vi,n
converge to a local minimum, such that

lim
n→∞

vi,n = v∗i . (16)

Therefore, (15) can be written as

(v2c − v∗2i)
∂H

∂vi,n

∣

∣

∣

v∗i

→ 0. (17)

Frontiers in Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 425159

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

Thus as long as |v∗i | < vc, the gradient term goes to zero, ensuring
that the dynamical system converges to the optimal solution
within the domain defined by the bound constraints.

The dynamical system presented in (9) ensures that the
steady-state neural responses |v∗i | ≤ vc ∀i. In the absence of the
barrier term, the membrane potentials can converge to any value
between −vc and +vc based on the effective inputs to individual
neurons. Figure 2A illustrates this for 2 different neurons where
Q is an identity matrix. For the sake of simplicity, we have
considered the membrane potentials to be normalized in all the
experiments in this paper (i.e., vc = 1 V), and 0 V as the
threshold voltage. Here v∗1 is hyperpolarized due to a negative
stimulus, and v∗2 is depolarized beyond the threshold. Figure 2B
shows the corresponding energy contours, where the steady-
state neural responses encode the optimal solution of the energy
function. We next show how this framework can be extended to
a spiking neuron model when the trans-membrane current in
the compartmental model described in (8) is approximated by
a discontinuous 9(.). In general, the penalty function R(vi) =
vi
∫

−∞

9(v)dv is chosen to be convex, where R(vi > 0 V) > 0 W

and R(vi ≤ 0V) = 0W. Figure 2C shows one such form that has
a gradient discontinuity at a threshold (vi = 0 V) at which the
neuron generates an action potential. The corresponding 9(.),
also shown in Figure 2C, is given by

9(vi,n) =

{

I9 A ; vi,n > 0 V
0 A ; vi,n ≤ 0 V .

(18)

When there is no external stimulus bi, the neuron response
converges to v∗i = 0 V as in the non-spiking case, as illustrated in
Figure 2D for a single neuron without any synaptic connections.
When a positive stimulus bi is applied, the optimal solution for
vi, indicated by v∗i , shifts upward to a level that is a function
of the stimulus magnitude, also shown in Figure 2D. However,
a penalty term R(vi) of the form as described above works as
a barrier function, penalizing the energy functional whenever
vi exceeds the threshold, thereby forcing vi to reset below
the threshold. The stimulus and the barrier function therefore
introduce opposing tendencies, making vi oscillate back and forth
around the discontinuity (which, in our case, coincides with
the threshold) as long as the stimulus is present. Thus when
9(.) is introduced, the potential vi,n switches when 9(vi,n) >

0 A or only when vi,n > 0 V . However, the dynamics of vi,n
remains unaffected for vi,n < 0 V . During the brief period when
vi,n > 0 V , we assume that the neuron enters into a runaway
state leading to a voltage spike. The composite spike signal si,n,
shown in Figure 2E, is then treated as a combination of the
sub-threshold and supra-threshold responses and is given by

si,n = vi,n + C9(vi,n), (19)

where the trans-impedance parameter C > 0 � determines the
magnitude of the spike. Note that in the current version, the
proposed model does not explicitly model the runaway process
that leads to the spike, unlike other neuron models (Hodgkin
and Huxley, 1952; FitzHugh, 1961; Izhikevich, 2003). However,

it does incorporate the hyperpolarization part of the spike as a
result of vi oscillating around the gradient discontinuity. Thus
a refractory period is automatically incorporated in between
two spikes.

In order to show the effect of 9(.) on the nature of the
solution, we plot in Figures 2F,G the neural responses and
contour plots for the 2-neuron network in Figures 2A,B, for the
same set of inputs, this time considering the case when the barrier
function is present. The penalty function produces a barrier at the
thresholds, which are indicated by red dashed lines, transforming
the time-evolution of s2 into a digital, spiking mode, where the
firing rate is determined by the extent to which the neuron
is depolarized. It can be seen from the neural trajectories in
Figure 2G and from (8) that 9(.) > 0 behaves as a Lagrange
parameter corresponding to the spiking threshold constraint
vi,n < 0.

In Appendix C, we outline how, for non-pathological cases, it
can be shown from (12) that for spiking neurons or for neurons
whose membrane potentials vi,n > −vc ∀n,

lim
N→∞

(

EN

(

∂H

∂vi

[

n
]

))

= 0, (20)

This implies that asymptotically the network exhibits limit-cycles
about a single attractor or a fixed-point such that the time-
expectations of its state variables encode this optimal solution.
A similar stochastic first-order framework was used in Gore and
Chakrabartty (2010) to derive a dynamical system corresponding
to 61 modulation for tracking low-dimensional manifolds
embedded in high-dimensional analog signal spaces. Combining
(14) and (20), we have

M
∑

j=1

Qijv̄j[n]− b̄i[n]+ 9̄i[n] = 0, (21)

where 9̄i[n] = lim
N→∞

1
N

n
∑

p=n−N+1
9(vi,p). Rearranging the terms

in (21), we obtain (7).

The penalty function R(vi) =
vi
∫

−∞

9(v)dv in the network

energy functional in effect models the power dissipation due to
spiking activity. For the form of R(.) chosen in this paper, the
power dissipation due to spiking is taken to be zero below the
threshold, and increases linearly above threshold. A plot of the
composite spike signal for a ramp input for the spiking neuron
model is presented in Figure 2H. As vi,n exceeds the threshold
for a positive stimulus, the neuron enters a spiking regime and
the firing rate increases with the input, whereas the sub-threshold
response is similar to the non-spiking case. Figure 2I shows the
tuning curve for the neuron as the input stimulus is increased. It
is nearly sigmoidal in shape and shows how the firing rate reaches
a saturation level for relatively high inputs. The proposed spiking
neuron model based on the discrete-time Growth Transform
dynamical system is summarized in Table 2.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 425160

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

FIGURE 2 | (A) Bounded dynamics in a 2-neuron network in absence of the barrier function; (B) Corresponding contour plot showing convergence of the membrane

potentials in the presence of external stimulus; (C) The function
∫

9(.)dv and its derivative 9(.) used in this paper for the spiking neuron model; (D) Time-evolution of

the membrane potential vi of a single neuron in the spiking model in the absence and presence of external stimulus; (E) The composite signal upon addition of spikes

when vi crosses the threshold; (F) Bounded and spiking dynamics in the same 2-neuron network in presence of barrier function; (G) Corresponding contour plot

showing steady-state dynamics of the membrane potentials in the presence of external stimulus; (H) Plot of composite spike signal si of the spiking neuron model

when the external current stimulus is increased; (I) Input-output characteristics for the spiking neuron model.

2.2.2. Encoding Stimuli as a Combination of

Sub-threshold and Supra-Threshold Dynamics
As explained previously, the penalty term R(vi) of the form
presented above works analogous to a barrier function,
penalizing the energy functional whenever vi,n exceeds the

threshold. This transforms the time-evolution of vi,n into a
spiking mode above the threshold, while keeping the sub-
threshold dynamics similar to the non-spiking case. The
Growth Transform dynamical system ensures that themembrane
potentials are bounded, thereby implementing a squashing

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 425161

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

TABLE 2 | Discrete-time GT spiking neuron model.

For a network of M neurons with state variables v = {vi} ∈ R
M, where the trans-

conductance coupling matrix is denoted byQ = {Qij} ∈ R
M×RM and the external

stimulus vector is denoted by b = {bi} ∈ R
M, the time-evolution of the network

under bound constraints on the state variables |vi,n| ≤ vc for all time-indices n, is

governed by the following discrete-time updates:

vi,n+1 ← vc
− ∂H

∂vi,n
vc+λvi,n

− ∂H
∂vi,n

vi,n+λvc
, i = 1, ...,M, (22)

where

∂H
∂vi,n
=

M
∑

j=1

Qijvj,n − bi,n +9(vi,n);

9(vi,n) =

I9 A ; vi,n > 0 V

0 A ; vi,n ≤ 0 V

;

λ is a fixed current parameter such that λ > | ∂H
∂vi,n
| ∀i, n.

The composite spike response of the i-th neuron at time-step n is given by

si,n = vi,n + C9(vi,n),

where the trans-impedance parameter C > 0 � determines the magnitude of

each spike.

(compressive) function on the neural responses. We now
show how the proposed model encodes external stimulus as a
combination of spiking and bounded dynamics. In the steady-
state, from (21) we can write

9̄i[n] = b̄i[n]−

M
∑

j=1

Qijv̄j[n]. (23)

Thus the average spiking activity of the i-th neuron encodes
the error between the average input and the weighted sum of
membrane potentials. For a single, uncoupled neuron where

Qij =

{

Q0 �−1 ; ∀i = j

0 �−1 ; ∀i 6= j
, (24)

we have

9̄i[n]+ Q0v̄i[n] = b̄i[n]. (25)

Multiplying (25) on both sides by C �, where we have chosen
C = 1

Q0
, we have

C9̄i[n]+ v̄i[n] = Cb̄i[n] (26)

or, si[n] = Cb̄i[n], (27)

where we have used the relation (19). Equation (27) indicates that
through a suitable choice of the trans-impedance parameter C,
the sum of sub-threshold and supra-threshold responses encodes
the external input to the neuron. This is also the rationale behind
adding a spike to the sub-threshold response vi,n, as illustrated in
Figure 2E, to yield the composite neural response. IfQ0 = 0�−1,
we similarly have

9̄i[n] = b̄i[n], (28)

where the average spiking activity tracks the stimulus. Thus, by
defining the coupling matrix in various ways, we can obtain
different encoding schemes for the network.

2.3. From Neuron to Network: Geometric
Interpretation of Network Dynamics
The remapping from standard coupled conditions of a spiking
neural network to the proposed formulation admits a geometric
interpretation of neural dynamics. Similar to the network
coding framework presented in Gangopadhyay and Chakrabartty
(2018), we show in this section how the activity of individual
neurons in a network can be visualized with respect to a network
hyper-plane. This geometric interpretation can then be used to
understand network dynamics in response to different stimuli.

Like a Hessian, if we assume that the matrix Q is positive-
definite about a local attractor, there exists a set of vectors xi ∈
R
D, i = 1, ...,M such that each of the elementsQij can be written

as an inner product between two vectors as Qij = xi.xj, 1 ≤
i, j ≤ M. This is similar to kernelmethods that compute similarity
functions between pairs of vectors in the context of support
vector machines (Chakrabartty and Cauwenberghs, 2007). This
associates the i-th neuron in the network with a vector xi,
mapping it onto an abstract metric space R

D and essentially
providing an alternate geometric representation of the neural
network. From (21), the spiking activity of the i-th neuron for
the n-th time-window can then be represented as

9̄i[n] = −

M
∑

j=1

Qijv̄j[n]+ b̄i[n]

=

M
∑

j=1

−(xi.xj)v̄j[n]+ b̄i[n]

= wn.xi + b̄i[n], (29)

where

wn = −

M
∑

j=1

xjv̄j[n]. (30)

9̄ therefore represents the distance of the vector xi from a
network hyperplane in the D-dimensional vector space, which is
parameterized by the weight vector wn and offset b̄i[n]. When
a stimulus b̄i[n] is applied, the hyperplane shifts, leading to a
stimulus-specific value of this distance for each neuron that is
also dependent on the network configuration Q. Hence, 9̄(.) is
denoted as a “network variable,” that signifies how the response
of each neuron is connected to the rest of the network. Note
that we can also write the elements of the coupling matrix in a
kernelized form as Qij = K(xi).K(xj), where K(.) is a non-linear
transformation function, defining a non-linear boundary for each
neuron. This idea of a dynamic and stimulus-specific hyperplane
can offer intuitive interpretations about several population
dynamics reported in literature and have been elaborated on in
section 3.

2.4. Complete Continuous-Time Model of
the Growth Transform Neuron
Single neurons show a vast repertoire of response characteristics
and dynamical properties that lend richness to their
computational properties at the network level. Izhikevich

Frontiers in Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 425162

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

(2004) provides an extensive review of different spiking neuron
models and their ability to produce the different dynamics
observed in biology. In this section, we extend the proposed
model into a continuous-time dynamical system, which enables
us to reproduce a vast majority of such dynamics and also
allows us to explore interesting properties in coupled networks.
In Appendix D, we derive the continuous-time version of
the dynamical system using a special property of Growth
Transforms. The complete neuron model is summarized in
Table 3.

The operation of the proposed neuron model is therefore
governed by two sets of dynamics: (a) minimization of the
network energy functional H; (b) modulation of the trajectory
using a time-constant τi(t), also referred to as modulation
function in this paper. Fortunately, the evolution of τi(t)
can be made as complex as possible without affecting the
asymptotic fixed-point solution of the optimization process.
It can be a made a function of local variables like vi and
v̇i or a function of global/network variables like H and Ḣ.
Different choices of the modulation function can lead to different
trajectories followed by the neural variables under the same
energy contour, as illustrated in Figure 3. In section 3, we show
how different forms of τi(t) produce different sets of neuronal
dynamics consistent with the dynamics that have been reported
in neurobiology.

3. RESULTS

The proposed approach enables us to decouple the three
following aspects of the spiking neural network:

TABLE 3 | Complete continuous-time GT spiking neural network (Proof in

Appendix D).

For a network of M neurons with state variables v = {vi} ∈ R
M, where the

trans-conductance coupling matrix is denoted by Q = {Qij} ∈ R
M × R

M and the

external stimulus vector is denoted by b = {bi} ∈ R
M, the time-evolution of the

network under bound constraints on the state variables vi (t) ≤ vc ∀t, is governed

by the following continuous-time dynamical system:

τi (t)
dvi (t)
dt
+ vi (t) = vc

− ∂H
∂vi (t)

vc+λvi (t)

− ∂H
∂vi (t)

vi (t)+λvc
, (31)

where

∂H
∂vi (t)
=

M
∑

j=1

Qijvj (t)− bi (t)+9(vi (t));

9(vi (t)) =

I9 A ; vi (t) > 0 V

0 A ; vi (t) ≤ 0 V

;

λ is a fixed current parameter such that λ > | ∂H
∂vi (t)
| ∀i, t;

0 ≤ τi (t, vi , v̇i ,H, Ḣ) <∞ is a modulation function that can be tuned

individually for each neuron to encode different trajectories and different

steady-state spiking dynamics corresponding to the optimal solution.

The composite spike response of the i-th neuron at time t is given by

si (t) = vi (t)+ C9(vi (t)), (32)

where the trans-impedance parameter C > 0 � determines the magnitude of

each spike.

(a) Fixed points of the network energy functional, which depend
on the network configuration and external inputs;

(b) Nature and shape of neural responses, without affecting the
network minimum; and

(c) Spiking statistics and transient neural dynamics at the
cellular level, without affecting the network minimum or
spike shapes.

This makes it possible to independently control and optimize
each of these neuro-dynamical properties without affecting the
others. The first two aspects arise directly from an appropriate
selection of the energy functional and were demonstrated in
section 2.2.1. In this section, we show how the modulation
function, in essence, loosely models cell excitability, and can
be varied to tune transient firing statistics based on local
and/or global variables. This allows us to encode the same
optimal solution using widely different firing patterns across the
network, and have unique potential benefits for neuromorphic
applications. Codes for the representative examples given in this
section are available at Mehta et al. (2019).

3.1. Single-Neuron Dynamics
We first show how we can reproduce a number of single-neuron
response characteristics by changing the modulation function
τi(t) in the neuron model. For this, we consider an uncoupled
network, where

Qij =

{

Q0 �−1 , ∀i = j
0 �−1 , ∀i 6= j

(33)

We will subsequently extend these dynamics to build coupled
networks with interesting properties like memory and global
adaptation for energy-efficient neural representation. The results
reported here are representative of the types of dynamical
properties the proposed model can exhibit, but are by no means
exhaustive. Readers are encouraged to experiment with different
inputs and network parameters in the software (MATLAB©)
implementation of the Growth Transform neuron model (Mehta
et al., 2019). The tool enables users to visualize the effects of
different modulation functions and other parameters on the
neural dynamics, as well as the time-evolution of population
trajectories and the network energy function with different inputs
and under different initial conditions.

3.1.1. Standard Tonic-Spiking Response
When stimulated with a constant current stimulus bi, a vast
majority of neurons fire single, repetitive action potentials
for the duration of the stimulus, with or without adaptation
(McCormick et al., 1985; Agmon and Connors, 1989; Gibson
et al., 1999). The proposed model shows tonic spiking without
adaptation when the modulation function τi(t) = τ , where τ > 0
s. A simulation of tonic spiking response using the neuron model
is given in Figure 4A.

3.1.2. Bursting Response
Bursting neurons fire discrete groups of spikes interspersed with
periods of silence in response to a constant stimulus (McCormick
et al., 1985; Agmon and Connors, 1989; Gray and McCormick,

Frontiers in Neuroscience | www.frontiersin.org 8 May 2020 | Volume 14 | Article 425163

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

FIGURE 3 | Decoupling of network solution, spike shape and response trajectory using the proposed model. Different modulation functions lead to different

steady-state spiking dynamics under the same energy contour.

FIGURE 4 | (A–D) Simulations demonstrating different single-neuron responses obtained using the GT neuron model.

1996; Brumberg et al., 2000). Bursting arises from an interplay
of fast ionic currents responsible for spiking, and slower intrinsic
membrane currents that modulate the spiking activity, causing
the neuron to alternate between activity and quiescence. Bursting
response can be simulated in the proposed model by modulating
τi(t) at a slower rate compared to the generation of action
potentials, in the following way

τi(t) =

{

τ1 s , ci(t) < B
τ2 s , ci(t) ≥ B

(34)

where τ1 > τ2 > 0 s, B is a parameter and the count variable ci(t)
is updated according to

ci(t) =

{

lim
1t→0

ci(t −1t)+ I[vi(t) > 0]) , lim
1t→0

ci(t −1t) < B

0 , lim
1t→0

ci(t −1t) ≥ B
,

(35)
I[.] being an indicator function. Simulation of a bursting neuron
in response to a step input is given in Figure 4B.

3.1.3. Spike-Frequency Adaptation
When presented with a prolonged stimulus of constant
amplitude, many cortical cells initially respond with a high-
frequency spiking that decays to a lower steady-state frequency
(Connors and Gutnick, 1990). This adaptation in the firing rate
is caused by a negative feedback to the cell excitability due to the
gradual inactivation of depolarizing currents or activation of slow

hyperpolarizing currents upon depolarization, and occur at a
time-scale slower than the rate of action potential generation.We
modeled spike-frequency adaptation by varying the modulation
function according to

τi(t) = τ − 2φ
(

h(t) ∗9(vi(t))
)

(36)

where h(t) ∗ 9(vi)(t) is a convolution operation between a
continuous-time first-order smoothing filter h(t) and the spiking
function 9(vi(t)), and

φ(x) = τ

(1

1+ exp(x)

)

(37)

is a compressive function that ensures 0 ≤ τi(t) ≤ τ s.
The parameter τ determines the steady-state firing rate for
a particular stimulus. A tonic-spiking response with spike-
frequency adaptation is shown in Figure 4C.

3.1.4. Integrator Response
When the baseline input is set slightly negative so that the fixed
point is below the threshold, the neuron works like a leaky
integrator as shown in Figure 4D, preferentially spiking to high-
frequency or closely-spaced input pulses that are more likely to
make vi cross the threshold.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 425164

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

3.2. Coupled Spiking Network With
Pre-synaptic Adaptation
We can extend the proposed framework to a network model
where the neurons, apart from external stimuli, receive inputs
from other neurons in the network.We begin by consideringQ to
be a positive-definite matrix, which gives a unique solution of (8).
Although elements of the coupling matrix Q already capture the
interactions among neurons in a coupled network, we can further
define the modulation function as follows to make the proposed
model behave as a standard spiking network

τi(t) = φ

(

h(t) ∗

M
∑

j=1

Qij9(vj(t))

)

(38)

with the compressive-function φ(.) given by (37). Equation (38)
ensures that Qij > 0 corresponds to an excitatory coupling
from the pre-synaptic neuron j, and Qij < 0 corresponds
to an inhibitory coupling, as demonstrated in Figure 5A. Note
that irrespective of whether such a pre-synaptic adaptation
is implemented or not, the neurons under the same energy
landscape would converge to the same sub-domain, albeit with
different response trajectories and steady-state limit-cycles. This
is illustrated in Figure 5B which plots the energy contours
for a two-neuron network corresponding to a Q matrix with
excitatory and inhibitory connections and a fixed stimulus vector
b. Figure 5B also shows the responses of the two neurons starting
from the same initial conditions, with and without pre-synaptic

adaptation (where the latter corresponds to the case where the
only coupling between the two neurons is through the coupling
matrix Q, but there is no pre-synaptic spike-time dependent
adaptation). Because the energy landscape is the same in both
cases, the neurons converge to the same sub-domain, but with
widely varying trajectories and steady-state response patterns.

3.3. Coupled Network With Pre-synaptic
and Global Adaptation
Apart from the pre-synaptic adaptation that changes individual
firing rates based on the input spikes received by each neuron,
neurons in the coupled network can be made to adapt according
to the global dynamics by changing the modulation function
as follows

τi(t) = φ

(

h(t) ∗
(

M
∑

j=1

Qij9(vj(t))− F(H, Ḣ)
)

)

(39)

with the compressive-function φ(.) given by (37). The new
function F(.) is used to capture the dynamics of the network
cost-function. As the network starts to stabilize and converge
to a fixed-point, the function τi(.) adapts to reduce the spiking
rate of the neuron without affecting the steady-state solution.
Figures 5C,D show the time-evolution of the spiking energy
∫

9(.)dv and the spike-trains for a two-neuron network without
global adaptation and with global adaptation, respectively, using

FIGURE 5 | (A) Results from a 2-neuron network with excitatory and inhibitory couplings; (B) Energy optimization process under different conditions lead to different

limit cycles within the same energy landscape. (C,D) Mean spiking energy
∫

9(.)dv and firing patterns in response to two stimuli in the absence and presence of global

adaptation, respectively.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 425165

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

the following form for the adaptation term

F(H, Ḣ) =

{

F0 , ET(Ḣ) ≈ 0
0 , otherwise.

(40)

whereF0 > 0 is a tunable parameter. This feature is important in
designing energy-efficient spiking networks where energy is only
dissipated during transients.

3.4. Network Response and Network
Trajectories
In order to outline the premises of the next few experiments on
population dynamics using the geometric interpretation outlined
in section 2.3, we consider a small network of neurons on a two-
dimensional co-ordinate space, and assign arbitrary inputs to the
neurons. A Gaussian kernel is chosen for the coupling matrix Q

as follows

Qij = exp(−γ ||xi − xj||
2
2). (41)

This essentially clusters neurons with stronger couplings between
them closer to each other on the co-ordinate space, while placing
neurons with weaker couplings far away from each other. A
network consisting of 20 neurons is shown in Figure 6A, which
also shows how the spiking activity changes as a function of
the location of the neuron w.r.t. the hyperplane corresponding
to 9̄ = 0, indicated by the white dashed line. Each neuron
is color coded based on the mean firing rate (normalized
w.r.t. the maximum mean firing rate) with which it responds
when the stimulus is on. Figure 6B shows the spike raster
for the entire network. We see that the responsiveness of the
neurons to a particular stimulus increases with the distance
at which it is located from the hypothetical hyperplane in

FIGURE 6 | (A) Contour plot of spiking activity corresponding to a particular stimulus vector. Neurons are colored according to their mean firing rate (normalized w.r.t.

the maximum firing rate) during the stimulus period. The white dashed line is the hyperplane corresponding to 9̄ = 0. (B) Spike raster for all neurons for the input in

(A). (C) The mean firing rate and (D) time-to-first spike as a function of the distance d for each neuron in the network.

Frontiers in Neuroscience | www.frontiersin.org 11 May 2020 | Volume 14 | Article 425166

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

the high-dimensional space to which the neurons are mapped
through kernel transformation. We show below how this
geometric representation can provide insights on population-
level dynamics in the network considered.

3.4.1. Rate and Temporal Coding
The Growth Transform neural network inherently shows a
number of encoding properties that are commonly observed
in biological neural networks (Rieke et al., 1999; Gerstner and
Kistler, 2002). For example, the firing rate averaged over a time
window is a popular rate coding technique that claims that
the spiking frequency or rate increases with stimulus intensity
(Adrian and Zotterman, 1926). A temporal code like the time-
to-first-spike posits that a stronger stimulus brings a neuron to
the spiking threshold faster, generating a spike, and hence relative
spike arrival times contain critical information about the stimulus
(Thorpe, 1990).

These coding schemes can be interpreted under the umbrella
of network coding using the same geometric representation as
considered above. Here, the responsiveness of a neuron is closely
related to its proximity to the hyperplane. The neurons which
exhibit more spiking are located at a greater distance from
the hyperplane. We see from Figures 6C,D that as this value
increases, the average firing rate of a neuron (number of spikes
in a fixed number of time-steps or iterations) increases, and the
time-to-first spike becomes progressively smaller. Neurons with
a distance value below a certain threshold do not spike at all
during the stimulus period, and therefore have a mean firing
rate of zero and time-to-spike at infinity. Therefore, based on
how the network is configured in terms of synaptic inputs and
connection strengths, the spiking pattern of individual neurons
conveys critical information about the network hyperplane and
their placement with respect to it.

3.4.2. Network Coding and Neural Population

Trajectories
The encoding of a stimulus in the spatiotemporal evolution of
activity in a large population of neurons is often represented

in neurobiological literature by a unique trajectory in a high-
dimensional space, where each dimension accounts for the time-
binned spiking activity of a single neuron. Projection of the high-
dimensional activity to two or three critical dimensions using
dimensionality reduction techniques like Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) have
been widely used across organisms and brain regions to shed
light on how neural population response evolves when a stimulus
is delivered (Friedrich and Laurent, 2001; Stopfer et al., 2003).
For example in identity coding, trajectories corresponding to
different stimuli evolve toward different regions in the reduced
neural subspace, that often becomemore discriminable with time
and are stable over repeated presentations of a particular stimulus
(Friedrich and Laurent, 2001; Stopfer et al., 2003; Galán et al.,
2004). We show how this can be explained in the context of the
geometric interpretation.

For the same network as above, we start with the simplest
possible experiment, starting from the same baseline, and
perturbing the stimulus vector in two different directions. This
pushes the network hyperplane in two different directions,
exciting different subsets of neurons, as illustrated in
Figures 7A,B. A similar dimensionality reduction to three
principal components in Figure 7C shows the neural activity
unfolding in distinct stimulus-specific areas of the neural
subspace. The two contour plots also show that some neurons
may spike for both the inputs, while some spike selectively for
one of them. Yet others may not show any spiking for either
stimulus, but may spike for some other stimulus vector and the
corresponding stimulus-specific hyperplane.

3.5. Coupled Spiking Network With
Non-positive Definite Q
As illustrated in Figure 8, a coupled spiking network can
function as a memory element, whenQ is a non-positive definite
matrix and

τi(t) = φ

(

h(t) ∗

M
∑

j=1

Qij9(vj(t))

)

, (42)

FIGURE 7 | (A,B) Perturbation of the stimulus vector in different directions for the same network produces two different contours. (C) Corresponding population

activities trace different trajectories in the neural subspace, similar to what has been reported in (Stopfer et al., 2003).

Frontiers in Neuroscience | www.frontiersin.org 12 May 2020 | Volume 14 | Article 425167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

FIGURE 8 | Stimulus response for a 4-neuron network with different stimulus histories for: (A,B) an uncoupled network; (C,D) a coupled network with a positive

definite coupling matrix Q; (E,F) a coupled network with a non-positive definite coupling matrix Q.

due to the presence of more than one attractor state. We
demonstrate this by considering two different stimulus histories
in a network of four neurons, where a stimulus “Stim 1a” precedes
another stimulus “Stim 2” in Figures 8A,C,E, and a different
stimulus ‘Stim 1b’ precedes “Stim 2” in Figures 8B,D,F. Here,
each “stimulus” essentially corresponds to a different input vector
b. For an uncoupled network, where neurons do not receive any
inputs from other neurons, the network energy increases when
the first stimulus is applied and returns to zero afterwards, and
the network begins from the same state again for the second
stimulus as for the first, leading to the same firing pattern for the
second stimulus, as shown in Figures 8A,B, independent of the
history. For a coupled network with a positive definite coupling
matrixQ, reinforcing loops of spiking activity in the networkmay
not allow the network energy to go to zero after the first stimulus
is removed, and the residual energy may cause the network to
exhibit a baseline activity that depends on stimulus history, as
long as there is no dissipation. When the second stimulus is
applied, the initial conditions for the network are different for
the two stimulus histories, leading to two different transients

until the network settles down into the same steady-state firing
patterns, as shown in Figures 8C,D. For a non-positive definite
coupling matrix Q however, depending on the initial condition,
the network may settle down to different solutions for the same
second stimulus, due to the possible presence of more than one
local minimum. This leads to completely different transients as
well as steady-state responses for the second stimulus, as shown
in Figures 8E,F. This history-dependent stimulus response could
serve as a short-term memory, where residual network energy
from a previous external input subserves synaptic interactions
among a population of neurons to set specific initial conditions
for a future stimulus based on the stimulus history, forcing the
network to settle down in a particular attractor state.

3.6. Associative Memory Network Using
Growth Transform Neuron Models
Associative memories are neural networks which can store
memory patterns in the activity of neurons in a network through
a Hebbian modification of their synaptic weights; and recall a
stored pattern when stimulated with a partial fragment or a

Frontiers in Neuroscience | www.frontiersin.org 13 May 2020 | Volume 14 | Article 425168

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

noisy version of the pattern (Cutsuridis et al., 2010). Various
works have studied associative memories using networks of
spiking neuron models having different degrees of abstraction
and architectural complexities (Lansner, 2009; Palm, 2013). Here,
we demonstrate using an associative memory network of Growth
Transform neurons how we can use network trajectories to recall
stored patterns, and moreover, use global adaptation to do so
using very few spikes and high recall accuracy.

Our network comprises M = 100 neurons, out of which
a randomly selected subset m = 10 are active for any stored
memory pattern. The elements of the transconductance coupling
matrix are set according to the following standard Hebbian
learning rule

Qij =
1

k

S
∑

s=1

tsi t
s
j , (43)

where k is a scaling factor and ts ∈ [0, 1]M , s = 1, ..., S, are the
binary patterns stored in the network. During the recall phase,
only half of the cells active in the original memory are stimulated
with a steady depolarizing input, and the spiking pattern

across the network is recorded. Instead of determining the
active neurons during recall through thresholding and directly
comparing with the stored binary pattern, we quantitatively
measure the recall performance of the network by computing
the mean distance between each pair of original-recall spiking
dynamics as they unfold over time. This ensures that we not only
take into account the firing of the neurons that belong to the
pattern albeit are not directly stimulated, but also enables us to
exploit any contributions from the rest of the neurons in making
the spiking dynamics more dissimilar in comparison to recalls for
other patterns.

When the network is made to globally adapt according to the
system dynamics, the steady-state trajectories can be encoded
using very few spikes. Figures 9A,B show the raster plots for the
stored patterns without and with global adaptation, respectively,
when S = 10; and Figures 9C,D are the corresponding plots
during recall. For each recall pattern, spike patterns for the
directly stimulated neurons are plotted first, followed by the other
5 neurons that are not directly stimulated but belong to the
pattern; and finally the rest of the neurons in random order. The
ordering of neurons is kept the same for plotting spike rasters for

FIGURE 9 | (A,B) Spike rasters for the 10 stored patterns in the absence and presence of global adaptation, respectively; (C,D) Spike rasters for the 10 recall cases

in the absence and presence of global adaptation, respectively.

Frontiers in Neuroscience | www.frontiersin.org 14 May 2020 | Volume 14 | Article 425169

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

the stored patterns. During decoding, a straightforward metric
using the average distance between time-binned mean firing
rates for the original and recall trajectories produces similarity
matrices presented in Figures 10A,B, where we see that global
adaptation does not perform as well. However, the information in
this case also lies in the spike-times and changes in firing rate over
time for each neuron. Including these features in the decoding
vectors for stored and recalled patterns, we get clean recalls in
both cases as shown in Figures 10C,D. The decoding vector for
the n-th time-bin in this case is given by

dn =

rn
1t9n

1rn

 , (44)

where rn, 1t9n and 1rn are the vectors of mean firing rates,
mean inter-spike intervals and changes in the mean firing rates
for the n-th bin for the entire network, respectively. The mean
inter-spike interval is set equal to the bin length if there is a single
spike over the entire bin length, and equal to twice the bin length
if there are none. Note that the inter-spike interval computed for
one time-bin may be different from (1/r), particularly for low
firing rates, and hence encodes useful information. The similarity
metric between the u-th stored pattern and the v-th recall pattern

is given by

su,v = 1− distu,v, (45)

where distu,v is the mean Euclidean distance between the two
decoding vectors over the total number of time-bins, normalized
between [0, 1].

To estimate the capacity of the network, we calculate the
mean recall accuracy over 10 trials for varying number of stored
patterns, both with and without global adaptation. Figure 11A
plots the mean recall accuracy for different number of patterns
stored for the two cases, and Figure 11B plots the mean number
of spikes for each storage. For each plot, the shaded region
indicates the range of values across trials. As expected, the
accuracy is 100% for lesser storage,but degrades with higher
loading. However with global adaptation, the degradation is
seen to be more graceful for a large range of storage with
the decoding used in Figures 10C,D, allowing the network to
recall patterns more accurately using much fewer spikes. Hence
by exploiting suitable decoding techniques, we can implement
highly energy-efficient spiking associativememory networks with
high storage capacity.

Note that the recall accuracy using global adaptation
deteriorates faster for > 175 patterns. The proposed decoding
algorithm, which determines the recall accuracy, takes into

FIGURE 10 | (A,B) Similarity matrices between storage and recall with a rate-based decoding metric; (C,D) Similarity matrices with a decoding metric that also

includes spike-times and changes in mean firing rates.

Frontiers in Neuroscience | www.frontiersin.org 15 May 2020 | Volume 14 | Article 425170

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

FIGURE 11 | Ensemble plots showing (A) mean recall accuracy and (B) mean number of spikes as memory load increases for the network, in the absence as well as

presence of global adaptation. The range of values across the ensemble is shown by the shaded area.

account the mean spiking rates, inter-spike intervals and changes
in spike rates. It is possible that as the number of spikes is reduced
through the use of global adaptation, the information encoded in
first-order differences (inter-spike intervals or spike rates) may
not be sufficient to encode information at high fidelity, resulting
in the degradation in recall accuracy when the number of patterns
increased. However, augmenting the decoding features with
higher-order differences in inter-spike intervals or spike rates
may lead to an improved performance for higher storage.

3.6.1. Classification of Noisy MNIST Images
Aside from pattern completion, associative networks are also
commonly used for identifying patterns from their noisy
counterparts. We use a similar associative memory network as
above to classify images from the MNIST dataset which were
corrupted with additive white Gaussian noise at different signal-
to-noise ratios (SNRs), and which were, unlike in the previous
case, unseen by the network before the recall phase. The network
size in this case was M = 784, the number of pixels in each
image, and the connectivity matrix was set using a separate,
randomly selected subset of 5,000 binary, thresholded images
from the training dataset according to (43). Unseen images
from the test dataset were corrupted at different SNRs and
fed to the network after binary thresholding. Figures 12A–C
show instances of the same test image at different SNRs after
binary thresholding. As before, the non-zero pixels got a steady
depolarizing input. A noisy test image was assigned to the class
corresponding to the closest training image according to the
similarity metric in (45).

The test accuracies and mean spike counts for a test image are
plotted in Figures 12D,E, respectively, for different noise levels.
We see that even for relatively high noise levels, the network has a
robust classification performance. As before, a global adaptation
based on the state of convergence of the network produces a
slightly better performance with fewer spikes per test image.

4. CONCLUSIONS

This paper introduces the theory behind a new spiking
neuron and population model based on the Growth Transform
dynamical system. The system minimizes an appropriate energy
functional under realistic physical constraints to produce
emergent spiking activity in a population of neurons. The
proposed work is the first of its kind to treat the spike
generation and transmission processes in a spiking network as
an energy-minimization problem involving continuous-valued
neural state variables like the membrane potential. The neuron
model and its response are tightly coupled to the network
objective, and are flexible enough to incorporate different neural
dynamics that have been observed at the cellular level in
electrophysiological recordings.

The paper is accompanied by a software tool (Mehta et al.,
2019) that enables readers to visualize the effects of different
model parameters on the neural dynamics. Many more neural
dynamics can be simulated using the model and readers are
encouraged to experiment with different network parameters.
The paper and the tool illustrate how dynamical and spiking
responses of neurons can be derived directly from a network
objective or energy functional of continuous-valued neural
variables. The general approach offers an elegant way to design
neuromorphic machine learning algorithms by bridging the
gap that currently exists between bottom-up models that can
simulate biologically realistic neural dynamics but do not have
a network-level representation, and top-down machine learning
models that start with a network loss function, but reduce
the problem to the model of a non-spiking neuron with
static non-linearities.

In this regard, machine learning models are primarily
developed with the objective of minimizing the error in inference
by designing a loss function that captures dependencies among
variables, for example, features and class labels. Learning in

Frontiers in Neuroscience | www.frontiersin.org 16 May 2020 | Volume 14 | Article 425171

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

FIGURE 12 | (A–C) An example of a test image corrupted with additive white Gaussian noise at 20, 10, and 0 dB SNR, respectively; (D,E) Test accuracy and mean

spike count/test image for different noise levels.

this case, as pointed out in LeCun et al. (2006), consists of
adapting weights in order to associate low energies (losses) to
observed configurations of variables, and high energies (losses)
to unobserved ones. The non-differentiable nature of spiking
dynamics makes it difficult to formulate loss functions involving
neural variables. Neuromorphic algorithms currently work
around this problem in different ways, including mapping deep
neural nets to spiking networks through rate-based techniques
(O’Connor et al., 2013; Rueckauer et al., 2017), formulating loss
functions that penalize the difference between actual and desired
spike-times (Xin and Embrechts, 2001; Bohte et al., 2002), or
approximating the derivatives of spike signals through various
means (Lee et al., 2016; Shrestha and Orchard, 2018; Zenke and
Ganguli, 2018). Formulating the spiking dynamics of the entire
network using an energy function involving neural state variables
across the network would enable us to directly use the energy
function itself for learning weight parameters; and forms the
basis for our future work. Since the proposed energy function
encompasses all the neurons in the network, and not just the
“visible neurons” as in most neuromorphic machine learning
algorithms, it can potentially enable easier and more effective
training of hidden neurons in deep networks. Moreover, it would

allow us to incorporate and experiment with biologically relevant
neural dynamics that could have significant performance and
energy benefits.

4.1. Relation With Other Neural Networks
and Spiking Neuron Models
The network energy functional bears similarity with the Ising
Hamiltonians used in Hopfield networks (Hopfield, 1982),
Boltzmann machines (Hinton et al., 1986) or spin-glass models
(Gardner and Derrida, 1988), but contains an additional integral
term

∫

9(.)dv as in continuous-time Hopfield networks
with graded neurons (Šíma and Orponen, 2003). However,
unlike in continuous-time Hopfield networks where 9−1(.) is
assumed to be a saturation/squashing function of a rate-based
representation, the role of 9(.) in the proposed model is to
implement a barrier or a penalty, such that the neural responses
can produce spiking dynamics. This enables us to obtain neural
responses at the level of individual spikes instead of average
rate-based responses; and allows for a more fine-grained control
over the spiking responses of the network. The saturation
(squashing) function, on the other hand, is implemented by
the bound constraints on the Growth Transform updates, and

Frontiers in Neuroscience | www.frontiersin.org 17 May 2020 | Volume 14 | Article 425172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

hence the network is not limited to choosing a specific form of
saturation non-linearity (e.g., sigmoid).

The energy-based formulation described in section 2.1 could
also admit other novel interpretations. For instance, for the form
of 9(.) considered in (18), the barrier function can be rewritten

as
vi
∫

−∞

9(v)dv = 9ivi, where9i = 0 A if vi ≤ 0 V and9i = I9 A

if vi > 0 V . For a continuous-time implementation (discrete-
time step that is sufficiently small), vi(t) will be reset as soon as it
reaches the threshold (0 V), and will not exceed the threshold. In
this case, we can write 9i(t) ≥ 0 and 9i(t)vi(t) = 0 ∀t. This
is equivalent to Karush-Kuhn-Tucker (KKT) conditions. Thus
the spike events 9i(t), i = 1, ...,M, act as the KKT multipliers
corresponding to the M inequality constraints vi(t) ≤ 0, i =
1, ...,M (Tucker and Kuhn, 1951), encoding the sensitivity of the
i-th neuron to the constraint.

Also, if we consider the spike response as a displacement
current, we can write

oi = Cout
dvi

dt
, (46)

where Cout is the membrane capacitance. Note that oi is the
analog spike response current output and is different from 9(vi),
which is the binary spike event. Then the membrane potential for
the continuous-timeGrowth Transform neuronmodel inTable 3
can be rewritten as

vi(t) =
1

Cout

t
∫

−∞

oi(t
′)dt′. (47)

Thus according to this interpretation, the communication
between neurons takes place using current waveforms, similar
to integrate-and-fire models, and the current waveforms can be
integrated at the post-synaptic neuron to recover the membrane
potential. Note that the remapping betweenW and Q (described
in section 2.1) would still hold, since we are transmitting
analog spike current waveforms, and not post-synaptic current
waveforms such as exponentially decaying functions, α-functions
or simplified current pulses (digital bits) used in integrate-and-
fire models (Traub and Miles, 1991; Mar et al., 1999).

4.2. Implication of Remapping on
Neuromorphic Architectures
In the proposed neuron model, we abstracted out the essential
aspects of spike generation and transmission that can replicate
neural dynamics, and remapped synaptic interactions to an
energy-based framework. As a result of the remapping procedure,
the coupling matrix Q in our proposed model is proportional
to the inverse of the synaptic weight matrix W. This paves the
way for developing novel neuromorphic learning algorithms in
the Q-domain that involves sparse local analog connectivity, but
which actually translates to fully-connected non-sparse global
connectivity in the W-domain. Thus, adapting one synaptic
connection in the Q-domain, in this case, will be equivalent to
adapting multiple synapses in the W-domain. Learning in the
Q-domain will be a topic for future research.

4.3. Benefits of Decoupling
Neurodynamical Parameters
A key advantage of the proposed framework is that it enables the
decoupling of the three neurodynamical parameters - network
solution, spike shapes and transient dynamics. Thus while
the solution to the energy functional is determined by the
coupling matrix Q and the stimulus vector b, independent
control of the modulation function allows users to program
the trajectory to the solution, which could be determined by
an optimization process that is different from optimizing the
energy functional. Some examples of these alternate objectives
could be:

• A hybrid spiking network comprising neurons of different
types (tonic spiking, bursting, non-spiking, etc.), as illustrated
in section 3.1. The network would still converge to the same
solution, but the spiking dynamics across the network could be
exploited to influence factors such as speed, energy efficiency
and noise-sensitivity of information processing.
• Optimization of some auxiliary network parameter, e.g.,

the total spiking activity. A related example (although not
optimized w.r.t. any objective function) was illustrated in
section 3.6 for a simple associative network. In this example,
the network recalled the same set of patterns and classified
MNIST images using two different time-evolutions of the
modulation function corresponding to the presence and
absence of global adaptation. In this case, it had the benefit
of using fewer spikes to achieve better recall when a modified
decoding metric was used.
• Modeling the effect of neurotransmitters and metabolic

factors that have been known to affect the properties,
activity and functional connectivity of populations of
neurons. These factors endow the same network with
the flexibility to generate different output patterns
and produce different behaviors for the same stimulus
(Hasselmo, 2002; McCormick and Nusbaum, 2014).
• Modeling the effect of diffusion processes or glial processes,

that have been known to modulate response properties
and synaptic transmission in neurons, influencing
information processing and learning in the brain
(Clarke and Barres, 2013; Fields et al., 2014).

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

AG and SC contributed to the conception and design of
the study and wrote the first draft of the manuscript. AG
and DM conducted the simulations. AG, DM, and SC
designed the MATLAB interface. All authors contributed
to the manuscript revision, read and approved the
submitted version.

Frontiers in Neuroscience | www.frontiersin.org 18 May 2020 | Volume 14 | Article 425173

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

FUNDING

This work was supported in part by a research grant from
the National Science Foundation (ECCS: 1935073). DM was
supported by a research grant from the National Institutes of
Health (5R21EY02836202).

ACKNOWLEDGMENTS

The authors would like to thank Dr. Kenji Aono at the Electrical
and Systems Engineering department, Washington University,

for developing a GPU version of the GT neural network model
which is also included with the accompanying software toolbox
(Mehta et al., 2019).

This manuscript has been released as a pre-print at
Gangopadhyay et al. (2019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00425/full#supplementary-material

REFERENCES

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-

and-fire model neuron (1907). Brain Res. Bull. 50, 303–304.

doi: 10.1016/S0361-9230(99)00161-6

Adrian, E. D., and Zotterman, Y. (1926). The impulses produced by sensory nerve-

endings: Part II. The response of a single end-organ. J. Physiol. 61, 151–171.

doi: 10.1113/jphysiol.1926.sp002281

Agmon, A., and Connors, B. (1989). Repetitive burst-firing neurons in the

deep layers of mouse somatosensory cortex. Neurosci. Lett. 99, 137–141.

doi: 10.1016/0304-3940(89)90278-4

Baum, L. E., and Sell, G. (1968). Growth transformations for functions on

manifolds. Pac. J. Math. 27, 211–227. doi: 10.2140/pjm.1968.27.211

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.

doi: 10.1016/S0925-2312(01)00658-0

Brumberg, J. C., Nowak, L. G., and McCormick, D. A. (2000). Ionic

mechanisms underlying repetitive high-frequency burst firing

in supragranular cortical neurons. J. Neurosci. 20, 4829–4843.

doi: 10.1523/JNEUROSCI.20-13-04829.2000

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-

Icaza, R., et al. (2013). “Cognitive computing building block: a versatile and

efficient digital neuron model for neurosynaptic cores,” in 2013 International

Joint Conference on Neural Networks (IJCNN) (Dallas, TX: IEEE), 1–10.

doi: 10.1109/IJCNN.2013.6707077

Cessac, B. (2011). A discrete time neural network model with spiking

neurons: II: dynamics with noise. J. Math. Biol. 62, 863–900.

doi: 10.1007/s00285-010-0358-4

Chakrabartty, S., and Cauwenberghs, G. (2007). Gini support vector machine:

quadratic entropy based robust multi-class probability regression. J. Mach.

Learn. Res. 8, 813–839.

Chatterjee, O., and Chakrabartty, S. (2018). Decentralized global optimization

based on a growth transform dynamical system model. IEEE Trans. Neural

Netw. Learn. Syst. 29, 6052–6061. doi: 10.1109/TNNLS.2018.2817367

Clarke, L. E., and Barres, B. A. (2013). Emerging roles of astrocytes in neural circuit

development. Nat. Rev. Neurosci. 14, 311–321. doi: 10.1038/nrn3484

Connors, B. W., and Gutnick, M. J. (1990). Intrinsic firing patterns

of diverse neocortical neurons. Trends Neurosci. 13, 99–104.

doi: 10.1016/0166-2236(90)90185-D

Cutsuridis, V., Cobb, S., and Graham, B. P. (2010). Encoding and retrieval in

a model of the hippocampal ca1 microcircuit. Hippocampus 20, 423–446.

doi: 10.1007/978-1-4419-0996-1

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S.

H., et al. (2018). Loihi: a neuromorphic manycore processor with

on-chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112

130359

Fields, R. D., Araque, A., Johansen-Berg, H., Lim, S.-S., Lynch, G., Nave, K.-A.,

et al. (2014). Glial biology in learning and cognition.Neuroscientist 20, 426–431.

doi: 10.1177/1073858413504465

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of

nerve membrane. Biophys. J. 1, 445–466. doi: 10.1016/S0006-3495(61)86902-6

Friedrich, R. W., and Laurent, G. (2001). Dynamic optimization of odor

representations by slow temporal patterning of mitral cell activity. Science 291,

889–894. doi: 10.1126/science.291.5505.889

Galán, R. F., Sachse, S., Galizia, C. G., andHerz, A. V. (2004). Odor-driven attractor

dynamics in the antennal lobe allow for simple and rapid olfactory pattern

classification.Neural Comput. 16, 999–1012. doi: 10.1162/089976604773135078

Gangopadhyay, A., and Chakrabartty, S. (2018). Spiking, bursting, and population

dynamics in a network of growth transform neurons. IEEE Trans. Neural Netw.

Learn. Syst. 29, 2379–2391. doi: 10.1109/TNNLS.2017.2695171

Gangopadhyay, A., Chatterjee, O., and Chakrabartty, S. (2017). Extended

polynomial growth transforms for design and training of generalized support

vector machines. IEEE Trans. Neural Netw. Learn. Syst. 29, 1961–1974.

doi: 10.1109/TNNLS.2017.2690434

Gangopadhyay, A., Mehta, D., and Chakrabartty, S. (2019). A spiking neuron and

population model based on the growth transform dynamical system. bioRxiv

523944. doi: 10.1101/523944

Gardner, E., and Derrida, B. (1988). Optimal storage properties of neural network

models. J. Phys. A Math. Gen. 21:271. doi: 10.1088/0305-4470/21/1/031

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models:

Single Neurons, Populations, Plasticity. Cambridge University Press.

doi: 10.1017/CBO9780511815706

Gibson, J. R., Beierlein, M., and Connors, B. W. (1999). Two networks

of electrically coupled inhibitory neurons in neocortex. Nature 402:75.

doi: 10.1038/47035

Gore, A., and Chakrabartty, S. (2010). A min-max optimization framework for

designing sigma-delta learners: theory and hardware. IEEE Trans. Circuits Syst.

I 57, 604–617. doi: 10.1109/TCSI.2009.2025002

Gray, C. M., and McCormick, D. A. (1996). Chattering cells: superficial pyramidal

neurons contributing to the generation of synchronous oscillations in the visual

cortex. Science 274, 109–113. doi: 10.1126/science.274.5284.109

Hasselmo, M. (2002). “Neuromodulation in mammalian nervous systems,” in

Handbook of Brain Theory and Neural Networks, ed M. A. Arbib (MIT Press).

Hinton, G. E., Sejnowski, T. J., et al. (1986). “Learning and relearning in Boltzmann

machines,” in Parallel Distributed Processing: Explorations in the Microstructure

of Cognition, Vol 1 (MIT Press), 282–317.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.

doi: 10.1073/pnas.79.8.2554

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Izhikevich, E. M. (2007). Dynamical Systems in

Neuroscience. MIT Press. doi: 10.7551/mitpress/2526.001.

0001

Jonke, Z., Habenschuss, S., and Maass, W. (2016). Solving constraint satisfaction

problems with networks of spiking neurons. Front. Neurosci. 10:118.

doi: 10.3389/fnins.2016.00118

Frontiers in Neuroscience | www.frontiersin.org 19 May 2020 | Volume 14 | Article 425174

https://www.frontiersin.org/articles/10.3389/fnins.2020.00425/full#supplementary-material
https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.1113/jphysiol.1926.sp002281
https://doi.org/10.1016/0304-3940(89)90278-4
https://doi.org/10.2140/pjm.1968.27.211
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1523/JNEUROSCI.20-13-04829.2000
https://doi.org/10.1109/IJCNN.2013.6707077
https://doi.org/10.1007/s00285-010-0358-4
https://doi.org/10.1109/TNNLS.2018.2817367
https://doi.org/10.1038/nrn3484
https://doi.org/10.1016/0166-2236(90)90185-D
https://doi.org/10.1007/978-1-4419-0996-1
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1177/1073858413504465
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1126/science.291.5505.889
https://doi.org/10.1162/089976604773135078
https://doi.org/10.1109/TNNLS.2017.2695171
https://doi.org/10.1109/TNNLS.2017.2690434
https://doi.org/10.1101/523944
https://doi.org/10.1088/0305-4470/21/1/031
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1038/47035
https://doi.org/10.1109/TCSI.2009.2025002
https://doi.org/10.1126/science.274.5284.109
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.7551/mitpress/2526.001.0001
https://doi.org/10.3389/fnins.2016.00118
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gangopadhyay et al. GT Neuron and Population Model

Lansner, A. (2009). Associative memory models: from the cell-assembly theory

to biophysically detailed cortex simulations. Trends Neurosci. 32, 178–186.

doi: 10.1016/j.tins.2008.12.002

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F.-J. (2006). “A

tutorial on energy-based learning,” in Predicting Structured Data, eds G. Bakir,

T. Hofman, B. Schölkopf, A. Smola, and B. Taskar (MIT Press).

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Mar, D., Chow, C., Gerstner, W., Adams, R., and Collins, J. (1999). Noise shaping

in populations of coupled model neurons. Proc. Natl. Acad. Sci. U.S.A. 96,

10450–10455. doi: 10.1073/pnas.96.18.10450

McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D.

A. (1985). Comparative electrophysiology of pyramidal and sparsely

spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806.

doi: 10.1152/jn.1985.54.4.782

McCormick, D. A., and Nusbaum, M. P. (2014). Editorial overview:

neuromodulation: tuning the properties of neurons, networks and behavior.

Curr. Opin. Neurobiol. 29:4. doi: 10.1016/j.conb.2014.10.010

Mehta, D., Gangopadhyay, A., Aono, K., and Chakrabartty, S. (2019). Growth

Transform Neuron Model Matlab GUI. Available online at: https://github.com/

aimlab-wustl/growth-transform-NN

Nakano, T., Otsuka, M., Yoshimoto, J., and Doya, K. (2015). A spiking

neural network model of model-free reinforcement learning with high-

dimensional sensory input and perceptual ambiguity. PLoS ONE 10:e0115620.

doi: 10.1371/journal.pone.0115620

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-

time classification and sensor fusion with a spiking deep belief network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Palm, G. (2013). Neural associative memories and sparse coding. Neural Netw.

37:165–171. doi: 10.1016/j.neunet.2012.08.013

Rieke, F., Warland, D., Van Steveninck, R. D. R., and Bialek, W. S. (1999). Spikes:

Exploring the Neural Code, Vol. 7. Cambridge: MIT Press.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” inAdvances in Neural Information Processing Systems, Vol. 31, eds Bengio

S. et al. (Montreal, QC: Curran Associates, Inc.) 1412–1421.

Sima, J., and Orponen, P. (2003). Continuous-time symmetric hopfield

nets are computationally universal. Neural Comput. 15, 693–733.

doi: 10.1162/089976603321192130

Soula, H., Beslon, G., and Mazet, O. (2006). Spontaneous dynamics of asymmetric

random recurrent spiking neural networks. Neural Comput. 18, 60–79.

doi: 10.1162/089976606774841567

Stopfer, M., Jayaraman, V., and Laurent, G. (2003). Intensity versus identity coding

in an olfactory system. Neuron 39, 991–1004. doi: 10.1016/j.neuron.2003.

08.011

Thorpe, S. J. (1990). “Spike arrival times: a highly efficient coding scheme for

neural networks,” in Parallel Processing in Neural Systems, eds R. Eckmiller, G.

Hartmann, and G. Hauske (North-Holland: Elsevier), 91–94.

Traub, R. D., and Miles, R. (1991). Neuronal Networks of the Hippocampus,

Vol. 777. Cambridge University Press. doi: 10.1017/CBO97805118

95401

Tucker, A. W., and Kuhn, H. (1951). “Nonlinear programming,” in Proceedings

of the Second Berkeley Symposium on Mathematical Statistics and Probability

(Berkeley, CA: Univ. of California Press), 481–492.

Wright, S. H. (2004). Generation of resting membrane potential. Adv. Physiol.

Educ. 28, 139–142. doi: 10.1152/advan.00029.2004

Xin, J., and Embrechts, M. J. (2001). “Supervised learning with spiking

neural networks,” in International Joint Conference on Neural Networks.

Proceedings (Cat. No. 01CH37222) IJCNN’01, Vol. 3 (Washington, DC: IEEE),

1772–1777.

Zenke, F., and Ganguli, S. (2018). Superspike: Supervised learning in

multilayer spiking neural networks. Neural Comput. 30, 1514–1541.

doi: 10.1162/neco_a_01086

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Gangopadhyay, Mehta and Chakrabartty. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 20 May 2020 | Volume 14 | Article 425175

https://doi.org/10.1016/j.tins.2008.12.002
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1073/pnas.96.18.10450
https://doi.org/10.1152/jn.1985.54.4.782
https://doi.org/10.1016/j.conb.2014.10.010
https://github.com/aimlab-wustl/growth-transform-NN
https://github.com/aimlab-wustl/growth-transform-NN
https://doi.org/10.1371/journal.pone.0115620
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1016/j.neunet.2012.08.013
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1162/089976603321192130
https://doi.org/10.1162/089976606774841567
https://doi.org/10.1016/j.neuron.2003.08.011
https://doi.org/10.1017/CBO9780511895401
https://doi.org/10.1152/advan.00029.2004
https://doi.org/10.1162/neco_a_01086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	Neuromorphic Engineering Editors’ Pick 2021
	Table of Contents
	Information-Theoretic Intrinsic Plasticity for Online Unsupervised Learning in Spiking Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. Previous IP Rules for Spiking Neurons
	2.2. Firing-Rate Transfer Function
	2.3. Proposed SpiKL-IP Rule
	2.3.1. The Basic SpiKL-IP Rule
	2.3.2. Practical Considerations

	3. Results
	3.1. Single Neurons Modeled by FR-TF
	3.2. Leaky Integrate-and-Fire Spiking Neurons
	3.3. Real World Classification Tasks For LSM
	3.3.1. Speech Recognition Using the TI46 Speech Corpus
	3.3.2. Image Classification Using the CityScape Dataset

	4. Discussion
	Author Contributions
	Funding
	References

	Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
	1. Introduction
	2. Materials and Methods
	2.1. The BrainScaleS 2 Neuromorphic Prototype Chip
	2.1.1. Experimental Setup
	2.1.2. Neurons and Synapses
	2.1.3. Calibration and Configuration of the Analog Neurons
	2.1.4. Plasticity Processing Unit
	2.1.5. Correlation Measurement at the Synapses

	2.2. Types of Noise on BSS2
	2.3. Reinforcement Learning With Reward-Modulated STDP
	2.4. Learning Task and Simulated Environment
	2.5. Software Simulation With NEST

	3. Results
	3.1. Learning Performance
	3.1.1. Temporal Variability on BSS2 Causes Exploration

	3.2. Learning Is Calibration
	3.3. Learning Robustness
	3.3.1. Impact of Time Constant Calibration
	3.3.2. Transferability of Results Between Chips

	3.4. Speed and Power Consumption
	3.4.1. Speed
	3.4.2. Power Consumption

	4. Discussion and Outlook
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	References

	Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
	1. Introduction
	2. Materials and Methods
	2.1. Liquid State Machine (baseline)
	2.1.1. Liquid Neurons
	2.1.2. Liquid Connections
	2.1.3. Output Classifier

	2.2. Ensemble Approach for LSMs
	2.3. Properties of LSMs
	2.4. Experimental Setup
	2.4.1. Data Sets Used for Illustration
	2.4.2. Input Spike Generation

	3. Results
	3.1. The Kernel Quality Improvement Due to the Ensemble Approach
	3.2. Impact of the Ensemble Approach on Accuracy of Different Applications
	3.3. Benefits of the Ensemble Approach
	3.4. Conventional Methods of Improving the Accuracy vs. the Ensemble Approach
	3.4.1. Increasing the Number of Neurons in the Liquid
	3.4.2. Percentage Connectivity Within the Liquid

	3.5. Limitations of the Ensemble Approach
	3.6. Multiple Liquid-Multiple Readouts (MLMR) Approach

	4. Conclusion
	Data Availability
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	A Theory for Sparse Event-Based Closed Loop Control
	1. Introduction
	2. Materials and Methods
	2.1. Non-linear Event-Based Discretization
	2.1.1. Event Generator Function
	2.1.2. Events Generation
	2.1.3. Signal Reconstruction

	2.2. Uncertainty Analysis
	2.2.1. Uncertainty on the Initial Value
	2.2.2. Uncertainties on Time Interval Measurement

	2.3. Logarithmic Event-Based Discretization
	2.3.1. Arbitrary Accuracy
	2.3.2. Refractory Period

	3. Experiments
	3.1. Control of a Second Order Dynamical System
	3.2. Stabilization of an Inverted Pendulum
	3.2.1. Proportional-Integral-Derivative Control Law
	3.2.2. State-Space Feedback Control Law

	4. Discussion
	Data Availability
	Author Contributions
	Supplementary Material
	References

	Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
	1. Introduction
	2. Methods
	2.1. The BrainScaleS System
	2.2. Sampling With Leaky Integrate-and-Fire Neurons
	2.3. Experimental Setup

	3. Results
	3.1. Learning to Approximate a Target Distribution
	3.2. Learning From Data

	4. Discussion
	4.1. Limitations and Constraints
	4.2. Relation to Other Work
	4.3. Conclusion

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Digital Hardware System for Spiking Network of Tactile Afferents
	Introduction
	Materials and Methods
	Spiking Model of Tactile Afferent

	Digital Circuits
	The Izh Digital Circuit
	The L-Izh Digital Circuit
	The QIF Digital Circuit
	The L-QIF Digital Circuit
	Simulation Results
	Population of Digital Afferents

	Hardware Implementation
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix
	Izhikevich Neuron Model (Izh)
	Linearized Izhikevich Neuron Model (L-Izh)
	Quadratic Integrated & Fire Neuron Model (QIF)
	Linearized QIF Neuron Model (L-QIF)

	An Efficient and Perceptually Motivated Auditory Neural Encoding and Decoding Algorithm for Spiking Neural Networks
	Introduction
	Materials and Methods
	Auditory Masking Effects
	Simultaneous Masking

	Temporal Masking
	Auditory Masking Effects in Both Domains

	Cochlear Filters and Spike Coding
	Time-Domain Cochlear Filter Bank
	Neural Spike Encoding

	Biologically Plausible Auditory Encoding (BAE) With Masking Effects

	Experiment and Results
	Spike-TIDIGITS and Spike-TIMIT Databases
	Audio Reconstruction From Masked Patterns
	Sound Classification by SNN for RWCP Dataset
	Speech Recognition by SNN for TIDIGITS Dataset
	Large Vocabulary Speech Recognition for TIMIT Dataset

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. The Challenge of Lifelong Learning
	2.1.1. Catastrophic Forgetting Due to Global Interference
	2.1.2. Catastrophic Forgetting in Localized Learning Due to Homeostasis
	2.1.3. The Need for Forgetting

	2.2. Controlled Forgetting With Dopaminergic Learning
	2.2.1. Biologically Inspired Dopaminergic Plasticity Modulation
	2.2.2. Targeted Stimulation for Controlled Forgetting via Trained Dopaminergic Weights

	2.3. Models
	2.3.1. Input Encoding
	2.3.2. Synapse Model
	2.3.3. Spiking Neuron Model
	2.3.4. Membrane Potential Distribution
	2.3.4.1. Mean pre-firing membrane potential
	2.3.4.2. Variance of pre-firing membrane potential

	2.4. Experimental Methodology
	2.4.1. Simulation Setup
	2.4.1.1. Training process
	2.4.1.2. Testing process
	2.4.1.3. Event-driving computation

	2.4.2. STDP Learning
	2.4.2.1. One-sided STDP
	2.4.2.2. Stabilizing STDP
	2.4.2.3. Modulating STDP
	2.4.2.4. Normalization

	2.4.3. Timing and Time Constants
	2.4.3.1. Membrane decay time constant
	2.4.3.2. Time to recognize

	2.4.4. Determining vth Without Adaptive Thresholding
	2.4.5. Hyper-Parameter Sweep
	2.4.5.1. Neuron firing thresholds, vth
	2.4.5.2. Number of training epochs

	2.4.6. Comparison of E[V(t)] at vth With K-Means Clustering Angular Error

	3. Results
	3.1. Combined, Across-Task Accuracy Results
	3.2. Per-Digit Accuracy Results

	4. Discussion
	4.1. A Qualitative Analysis
	4.2. The Expected ``Sequential Penalty''
	4.3. Graceful Degradation Instead of Catastrophic Forgetting
	4.4. Future Work
	4.5. Conclusion

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
	1. Introduction
	2. Materials and Methods
	2.1. The Components and Architecture of Spiking Neural Network
	2.1.1. Spiking Neural Network Components
	2.1.2. Deep Convolutional Spiking Neural Network
	2.1.2.1. Building blocks
	2.1.2.2. Deep convolutional SNN architecture: VGG and residual SNNs

	2.2. Supervised Training of Deep Spiking Neural Network
	2.2.1. Spike-Based Gradient Descent Backpropagation Algorithm
	2.2.1.1. Forward propagation
	2.2.1.2. Backward propagation and weight update

	2.2.2. Dropout in Spiking Neural Network

	3. Results
	3.1. Experimental Setup
	3.1.1. Benchmarking Datasets
	3.1.2. Network Topologies
	3.1.3. ANN-SNN Conversion Scheme
	3.1.4. Spike Generation Scheme
	3.1.5. Time-Steps
	3.1.5.1. Optimal #time-steps for Training
	3.1.5.2. Optimal #time-steps for inference

	3.2. Results
	3.2.1. The Classification Performance
	3.2.2. Accuracy Improvement With Network Depth

	4. Discussion
	4.1. Comparison With Relevant Works
	4.2. Spike Activity Analysis
	4.2.1. Spike Activity per Layer
	4.2.2. #Spikes/Inference

	4.3. Inference Speedup
	4.4. Complexity Reduction
	4.5. Iso-Spike Comparison for Optimal Condition

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A Spiking Neuron and Population Model Based on the Growth Transform Dynamical System
	1. Introduction
	2. Methods
	2.1. Remapping Synaptic Interactions in a Standard Spiking Network
	2.2. Neuron Model Using the Growth Transform Dynamical System
	2.2.1. Growth Transform Spiking Neuron Model
	2.2.2. Encoding Stimuli as a Combination of Sub-threshold and Supra-Threshold Dynamics

	2.3. From Neuron to Network: Geometric Interpretation of Network Dynamics
	2.4. Complete Continuous-Time Model of the Growth Transform Neuron

	3. Results
	3.1. Single-Neuron Dynamics
	3.1.1. Standard Tonic-Spiking Response
	3.1.2. Bursting Response
	3.1.3. Spike-Frequency Adaptation
	3.1.4. Integrator Response

	3.2. Coupled Spiking Network With Pre-synaptic Adaptation
	3.3. Coupled Network With Pre-synaptic and Global Adaptation
	3.4. Network Response and Network Trajectories
	3.4.1. Rate and Temporal Coding
	3.4.2. Network Coding and Neural Population Trajectories

	3.5. Coupled Spiking Network With Non-positive Definite Q
	3.6. Associative Memory Network Using Growth Transform Neuron Models
	3.6.1. Classification of Noisy MNIST Images

	4. Conclusions
	4.1. Relation With Other Neural Networks and Spiking Neuron Models
	4.2. Implication of Remapping on Neuromorphic Architectures
	4.3. Benefits of Decoupling Neurodynamical Parameters

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover

