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Editorial on the Research Topic

Single cell intelligence and tissue engineering

Single-cell sequencing has emerged as a powerful technology to dissect the

heterogeneity of complex biological tissues at genomic, epigenomic, and

transcriptomic levels, and has been extensively applied in various biological researches

particularly in disease mechanisms and developmental biology (Paik et al., 2020; Gohil

et al., 2021; Lei et al., 2021). Since the first single-cell RNA-sequencing (scRNA-seq)

publication in 2009 (Tang et al., 2009), single-cell-based technologies have generated

massive datasets, offering great opportunities to fully address biomedical problems as well

as posing a challenge to computational analysis. At the same time, machine learning

methods have been successfully used in processing many kinds of big data, including

scRNA-seq data analysis (Petegrosso et al., 2020; Flores et al., 2022).

Nevertheless, more in-depth studies by using elegant methods and strategies to

analyze the massive data obtained from the sequencing are still in need to improve our

understanding of complex disorders. To make the best use of the single-cell-based data,

researchers would first demand efficient and accurate computational pipelines to cluster,

annotate cell types, uncover the marker genes and perform functional analysis. Besides,

proper study design, including dataset selection and cross-validation, should be

conducted to ensure that the evidence is convincing. In this context, this research

topic included nine research articles focusing on methods development and clinical

application of single-cell technology, giving more examples of data analysis and

application in biomedical research.

One of the most common applications of single-cell approaches is to identify and

distinguish cell types, and more related computational methods are demanded. Li et al.

trained several classifiers and obtained optimal models from in vitro cultured human
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hepatocyte single-cell RNA data, and identified biomarkers for

distinct differentiated hepatic cell types. By uncovering

qualitative features for different stages of differentiation of

liver cells, this study aimed to provide potential targets for cell

transplantation to treat liver diseases. Similarly, Li et al. applied

several different machine learning methods to expression

profiling data of human pancreatic islet cells at single-cell

resolution from both type 2 diabetes (T2D) patients and non-

diabetic donors and discovered several T2D-associated genes.

These two studies showed the promising applications of machine

learning using single-cell expression profiling datasets to

understand complex diseases.

Clustering is a critical step in single-cell data analysis to

reveal heterogeneities and recognize cell types, requiring

efficient and accurate computational algorithms. Tian et al.

utilized an enhanced consensus-based clustering model and

developed a novel computation method scMelody to cluster

cells with single-cell DNA methylation data, such as scME-

seq, scBS-seq, scWGBS, scTrio-seq, scNOMe-seq and snmC-

seq. By using seven real single-cell methylation datasets and a

variety of simulated datasets with different initial settings,

scMelody showed better clustering performance and

scalability when compared to other existing methods. In

the two case studies, scMelody was able to uncover novel

cell clusters from human hematopoietic cells and mouse

neuron datasets.

Another two studies focused on developing prediction

models for diagnosis using machine learning methods.

Wang et al. explored mutation signatures with pan-cancer

whole exome sequencing data, and constructed a logistic

regression model to distinguish cancer types. The proposed

model was able to trace the tumor origin for metastatic

cancers, and predict cancer types using plasma ctDNA. Wu

et al. investigated the microbiota in lung tissue and

bronchoalveolar lavage fluid from lung ground-glass

opacity (GGO) patients, and constructed a model using

10 genera-based biomarkers to predict GGO.

In addition to the biomarker identification for disease

diagnosis, it has been widely recognized that the cellular

heterogeneity is prevalent in either tissue or cultured cancer

cells. Li et al. first identified a shared sub-cluster cancer stem

cells (CSC) using 4 scRNA-seq datasets from upper

gastrointestinal cancer (UGIC) patients including head and

neck squamous cell carcinoma (HNSCC), esophageal cancer

(EC), and gastric cancer (GC), and then compared the specific

cells to scRNA-seq datasets from other 6 cancers including

glioma, melanoma, osteosarcoma, breast cancer, ovarian cancer

and stellate cell cancer to validate the specificity. The UGIC-

specific CSC upregulated 33 genes while downregulated

141 genes compared to other tumors analyzed in this study,

involving in inflammatory and Wnt pathways. Smit et al.

applied FUNseq to spatially profile human breast epithelial

cell line MCF10A which is a widely used in vitro model for

breast cell transformation at single-cell resolution to decipher

intratumor heterogeneity. By comparing the gene expression

profiles and cell-cell communication among the cell

populations at outer, middle and inner regions in 2D

culture, the researchers found that cells at the outermost

edge are most invasive, with epithelial-to-mesenchymal

transition strongly activated.

While the advent of scRNA-seq technology has enabled

profiling gene expression for each cell, analyses of large

sample cohorts are still limited. The integration of existing

bulk transcriptomic datasets is one of the issues that deserve

attention and discussion in data mining. By taking advantage

of the power of single-cell approaches and the sample size of

bulk methods, two studies provided novel insights for

diseases. Shi et al. collected a series of single-cell

transcriptome datasets from non-failure hearts, dilated

cardiomyopathy and ischemic cardiomyopathy hearts,

followed by a comprehensive analysis to find out key genes

involved in heart failure. Furthermore, the researchers

obtained bulk gene expression datasets to validate the

findings from single-cell datasets. On the other hand, Yao

et al. developed a practical deconvolution pipeline by

constructing a signature gene matrix which was then used

to estimate cell proportion from bulk data with CIBERSORTx.

Using preeclampsia microarray data, the researchers found

that the proportion of trophoblast cells might contribute to

the pathogenesis of the disorder.

As discussed above, articles in this special issue covered the

fields of single-cell intelligence analysis methods development

and computational model construction, providing more

options for utilizing clinical datasets. By employing single-

cell transcriptome data from patients, the researchers

demonstrated the power of single-cell technology in

important cell type recognition and key gene identification,

broadening the clinical application of the technology. We

envision that the use of advanced computational analysis

approaches in single-cell datasets will reveal more useful and

accurate biomarkers, and greatly benefit the diagnosis and

treatments of complex diseases.
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Integrative Analysis of Bulk and
Single-Cell RNA Sequencing Data
Reveals Cell Types Involved in Heart
Failure
Xin Shi1†, Li Zhang2†, Yi Li 1†, Jieyuan Xue1, Feng Liang1, Han-wen Ni1, Xia Wang1,
Zhaohua Cai1, Ling-hong Shen1*, Tao Huang3* and Ben He1*
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Owing to the high mortality rates of heart failure (HF), a more detailed description of the HF
becomes extremely urgent. Since the pathogenesis of HF remain elusive, a thorough
identification of the genetic factors will provide novel insights into the molecular basis of this
cardiac dysfunction. In our research, we performed publicly available transcriptome
profiling datasets, including non-failure (NF), dilated cardiomyopathy (DCM) and
ischemic cardiomyopathy (ICM) hearts tissues. Through principal component analysis
(PCA), gene differential expression analysis, gene set enrichment analysis (GSEA), and
gene Set Variation Analysis (GSVA), we figured out the candidate genes noticeably altered
in HF, the specific biomarkers of endothelial cell (EC) and cardiac fibrosis, then validated
the differences of the inflammation-related cell adhesion molecules (CAMs), extracellular
matrix (ECM) genes, and immune responses. Taken together, our results suggested the
EC and fibroblast could be activated in response to HF. DCM and ICM had both
commonality and specificity in the pathogenesis of HF. Higher inflammation in ICM
might related to autocrine CCL3/CCL4-CCR5 interaction induced chemokine signaling
activation. Furthermore, the activities of neutrophil and macrophage were higher in ICM
than DCM. These findings identified features of the landscape of previously
underestimated cellular, transcriptomic heterogeneity between ICM and DCM.

Keywords: single-cell RNA sequencing, transcriptome, heart failure, dilated cardiomyopathy, ischemic
cardiomyopathy

INTRODUCTION

Heart failure (HF) is a chronic, progressive syndrome with high mortality and mobility, and affects
approximately over 37.7 million patients worldwide (Ziaeian and Fonarow, 2016). HF is a serious
process of cardiac dysfunction, characterized by impairment of ejection of blood or ventricular filling
or both. HF brings a considerable burden to the health-care system, and leads to high rates of
hospitalizations, readmissions, and outpatient visits (Bui, Horwich, and Fonarow, 2011; Jones,
Roalfe, Adoki, Hobbs, and Taylor, 2019). The rising incidence of HF is associated with multiple
factors (Triposkiadis, Xanthopoulos, and Butler, 2019), including age, obesity, hypertension, diabetes
mellitus, ischemic heart disease, comorbidities, heredity, and environment, making it difficult to
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blame it on one specific issue (Oneglia, Nelson, and Merz, 2020;
Triposkiadis, Xanthopoulos, Parissis, Butler, and Farmakis,
2020). Since HF is associated with high and unpredictable
mortality, there is an emerging interest in potential HF
biomarkers, and this exploration benefits the strategies of
scientific prevention and advanced therapy.

Complex biological processes are involved in the pathogenesis
of HF, and cardiac abnormalities often lead to heart dysfunction.
Liu et al.(Liu et al., 2015) collected and analyzed left ventricle
issues from six individuals including one ISCH patient, two
dilated cardiomyopathy (DCM) patients and three controls as
training sets to reveal genetic signatures of HF using RNA-seq
and microarray data, which were further validated by a larger
cohort with 313 individuals with HF or non-failing (NF). (Sweet
et al., 2018) utilized RNA-seq and pathway analysis to reveal the
heterogeneous gene signatures and disease-specific mechanisms
in 64 explanted human hearts, which consisted of 37 DCM
patients, 13 ICM patients, and 14 NF controls. (Vigil-Garcia
et al., 2020) applied cardiomyocyte-specific transcriptomic
analysis to detect a specific gene set involved in the process of
pathological cardiac remodeling related to HF, and they
explained the alternations precisely, which occurred during the
transition from hypertrophic towards failing cardiomyocytes.

The advances in single-cell RNA sequencing (scRNA-seq)
technology offers us an alternative method to characterize cell
types involved in HF at the molecular level, which enables its
broad application in HF research. (Yamaguchi et al., 2020)
manifested that D1R signaling played a pathogenic effect on the
process of HF, and explained the association between the activation
of D1R and increased risk of patients with HF, using a mouse model
of pressure overload-induced HF and single-cell resolution analysis,
which aimed to uncover gene expression changes in murine models
and human patients at the early and the late stages of HF. (Martini
et al., 2019). used single-cell RNA sequencing data to describe the
cardiac immune microenvironment in the heart of mouse models
with the pressure-overload transverse aortic constriction (TAC) at
early and late time points, providing novel diagnostic or therapeutic
targets strategies for HF. However, as the sample size of scRNA-seq
data is relatively small, and the mechanistic investigation in the
variations of some cell types and cell type specific genes involved in
HF required the integrative analysis of scRNA-seq and bulk RNA-
seq data. In this study, we tried to identify some novel cell types, cell
type specific genes and key components in HF by integrating bulk
and single-cell RNA sequencing data, and anticipated to reveal cell
types involved in DCM and ICM, which will offer a clearer
demonstration of the immune inflammation response of HF.

MATERIALS AND METHODS

Data Collection
The single-cell RNA-seq data of two normal left ventricle samples
were collected from Gene Expression Omnibus (GEO) with
accession number GSE134355 (Han et al., 2020). To identify cell
types and key genes related to heart failure, we downloaded the
single-cell RNA-seq data of two normal, four dilated
cardiomyopathy (DCM), and two ischemic cardiomyopathy

(ICM) hearts samples (accession number: GSE121893 (Wang
et al., 2020)), one scRNA-seq data of one normal, two DCM and
two ICM hearts (accession number: GSE145154 (Rao et al., 2021))
for validation, and bulk RNA-seq data of 14 non-failure (NF), 37
DCM, and 13 ICM samples fromGEO database (accession number:
GSE116250 (Sweet et al., 2018)). The RNA-seq data of fibroblasts
induced by TGFβ1 and control samples, and the microarray-based
gene expression data for validation were downloaded from GEO
with accession numbers GSE97358 (Schafer et al., 2017) and
GSE5406 (Hannenhalli et al., 2006), respectively.

Cell Clustering Analysis
The unique molecular identifiers (UMIs) count-based scRNA-seq
data of the two normal left ventricle samples were used for the cell
clustering analysis, which was implemented in R Seurat v3.2.3
package. Cells with less than 500 UMIs were eliminated and
features detected in less than 3 cells were filtered. The two hearts
were integrated using the anchors by Reciprocal PCA. The
expression data was normalized by LogNormalize method with
scale factor � 1000,000, and top 2000 highly variable features were
selected by FindVariableFeatures with dispersion method. The
clusters were found at a resolution of four by FindClusters, and
T-distributed Stochastic Neighbor Embedding (t-SNE) was
applied to reduce the dimensionality. The cell-type marker
genes were detected by FindAllMarkers function at adjusted
p-value < 0.05, minimal percentage >0.25, and log2 fold
change >0.25. All the marker genes of the cell clusters were
collected from the earlier study (Han et al., 2020). This analysis
was implemented by R Seurat v3.2.3 package (Stuart et al., 2019).

Principal Component Analysis for the Bulk
RNA-Seq Data
The bulk RNA-seq data was downloaded fromGEOdatabase (GEO
accession number: GSE116250 (Sweet et al., 2018)). The FPKM-
based gene expression data were used for PCA analysis. Specifically,
gene expressions higher than 1 FPKM in more than five samples
were transformed to log2 (FPKM + 1), and the principal
components were calculated by R FactoMineR package (Le,
Josse, and Husson, 2008) and visualized by R factoextra package.

Gene Differential Expression Analysis
The pre-normalized microarray data and the RNA-seq data
normalized to log2 (FPKM or RPKM +1) were tested by
student t test and fold change. The count-based RNA-seq data
was processed in R/Bioconductor DESeq2 package (Love, Huber,
and Anders, 2014). All p-values were adjusted using the Benjamini
and Hochberg approach. Genes with an adjusted p-value less than
0.05 and a fold changemore than two were deemed as differentially
expressed genes. Those genes could be ranked by the student t
statistic to measure the differential expression levels.

Identification of Cell-types Involved in Heart
Failure
The upregulated or downregulated genes in DCM/ICM samples
were used for the identification of cell types significantly altered in
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HF. The gene set overrepresentation enrichment analysis
(Fisher’s exact test) was employed to evaluate the significance
of the differentially expressed genes (DEGs) against the cell type
specific marker genes, which was implemented in R
clusterProfiler (Yu, Wang, Han, and He, 2012) package.

Identification of Endothelial Cell Specific
Marker Genes andCardiac Fibrosis-Related
Genes in HF
The gene set enrichment analysis (GSEA) was used to calculate
the enrichment degree of those upregulated genes involved in HF
or cardiac fibrosis in endothelial cells. Specifically, all the genes
were pre-ranked by the t statistic, which represented the
differential expression levels. The GSEA analysis was
implemented in R clusterProfiler (Yu et al., 2012), and the
genes identified as core enrichment in this analysis were
considered as key components.

Gene Set Enrichment Analysis
The gene set overrepresentation enrichment analysis (ORA) was
employed to identify the Reactome pathways enriched by
previously detected endothelial cell specific marker genes and
cardiac fibrosis-related genes in HF. This analysis was
implemented in R ReactomePA package and visualized by R
clusterProfiler (Yu et al., 2012) package.

The Cell Activity Estimation
The cell activity was estimated using single-sample Gene Set
Variation Analysis (Hanzelmann, Castelo, and Guinney, 2013)
(GSVA). Specifically, gene expression profiles and cell type
specific marker genes were used as the input for GSVA to
estimate the relative activities for each cell type and each sample.

Statistical Analyses
The two-sample comparison was conducted by student t test, and
the multiple-sample comparison was implemented by analysis of
variance (ANOVA). The p-values for multiple-sample
comparisons were adjusted to q-values by the Benjamini and
Hochberg method. Any p-values or q-values less than 0.05 were
considered as statistically significant.

RESULTS

Identification and Characterization of Cell
Types in Human Left Ventricle
To identify and characterize the cell types in the human left
ventricle (LV), we collected two single-cell RNA sequencing
datasets (scRNA-seq) of left ventricle provided by earlier study
(Han et al., 2020). Subsequently, we eliminated the cells with low
quality and retained 1,324 and 1,480 cells for further analysis
(Materials and methods). As shown in Figure 1A, the cells from
the two hearts were clustered into 18 clusters by the T-distributed
Stochastic Neighbor Embedding (t-SNE) analysis, respectively.
Using scHCL method, we successfully annotated 11 cell types for
the two hearts (Figure 1A). Notably, the marker genes were

specifically expressed in the cell types (Figure 1B). These results
indicated that the cell types in the human left ventricle tissues
could be identified and well-characterized by the scRNA-seq data.

The Cell Type Marker Genes Significantly
Altered in Heart Failure
With the cell types and marker genes in the left ventricles, we
aimed to identify the cell types altered in the left ventricles of
heart failure. We analyzed the gene expression profiles of 14 NF,
37 DCM, and 13 ICM samples from previous study (Sweet et al.,
2018). The PCA and differential expression analysis revealed that
the samples from the three groups exhibited significantly different
expression patterns (Figures 2A,B). Furthermore, we also
conducted GSEA on the marker genes of cell types to test
whether those marker genes were clustered within the
upregulated or downregulated genes of ICM or DCM.
Specifically, the marker genes of fibroblast and endothelial cell
were significantly enriched within the upregulated genes in both
DCM and ICM (Figure 2C, adjusted p-value < 0.05), suggesting
that the dysfunction of the two cell types might be associated with
both DCM and ICM. Moreover, marker genes of dendritic cell,
M1/2macrophage, neutrophil, and smoothmuscle cell were more
specifically enriched within the upregulated genes in ICM
(Figure 2C, adjusted p-value < 0.05). These results indicated
that DCM and ICM had both similarity and specificity in the
pathogenesis of heart failure based on these disease-related
cell types.

Key Regulators in the Endothelial Cells and
Fibroblasts of Heart Failure
As the endothelial cell and fibroblast could be activated in
response to HF (Colombo et al., 2005), we then investigated
the key regulators in the ECs and fibroblasts of HF, and collected
scRNA-seq data of 1,082 endothelial cells from the left ventricles
of NF, DCM, and ICM samples (Wang et al., 2020). The
comparison of DCM and ICM samples with NF samples
revealed that the endothelial cell specific marker genes were
highly enriched in the upregulated genes of HF endothelial
cells (Figure 3A, FDR <0.05). Specifically, a total of 24 EC
marker genes were found to be upregulated in both HF tissues
(bulk RNA-seq) and the endothelial cells of HF samples (scRNA-
seq) (Figure 3B, p-value < 0.05). The pathway enrichment
analysis identified inflammation-related cell adhesion
molecules (CAMs) as key regulators, including CD74, HLA-B,
HLA-E, HLA-DRB1, HLA-DQA1, HES1 and CLDN5, involved in
the pathogenesis of HF (Figure 3C, FDR <0.05).

Furthermore, as transforming growth factor β1 (TGFβ1) is the
principal pro-fibrotic factor in fibroblast activation (Akhurst &
Hata, 2012), (Davis & Molkentin, 2014), which played vital roles
in cardiac fibrosis (Ma, Iyer, Jung, Czubryt, & Lindsey, 2017), we
examined whether the upregulated fibroblast marker genes in HF
were involved in cardiac fibrosis. Consistently, we identified a
large proportion of fibroblast marker genes upregulated in TGFβ1
induced cardiac fibroblast by differential expression analysis and
GSEA (Figure 4A, FDR <0.05). Among these fibroblast marker
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genes, 29 were also upregulated in both HF tissues and fibroblast
with TGFβ1 treatment (Figure 4B, FDR <0.05). The functional
characterization of these genes revealed that LTBP2, LTBP1,
COL3A1, MFAP4, COL12A1, COL1A1, COL1A2, MMP2,
TIMP2, and PCOLCE2 were primarily involved in extracellular
matrix (ECM) organization and collagen biogenesis/formation/
degradation (Figure 4C, FDR <0.05). Collectively, these results
indicated that inflammation-related CAMs and ECM proteins
such as collagens were specifically secreted by endothelial cell and
fibroblast, respectively, and might induce cardiac inflammation
and fibrosis during heart failure.

Chemokine Signaling Activation is
Associated with Higher Inflammation in ICM
As ICM had more specific immune cell types, such as
macrophage and dendritic cell (DC), than DCM, we then
estimated the activities of immune cells including macrophage,
DC, and neutrophil. Neutrophil and macrophage appeared to
have higher activities in ICM than DCM and NF (Figure 5A,
p-value < 0.05). Consistently, the marker genes of neutrophil and
macrophage were also observed to be specifically upregulated in
ICM (Figure 5B, p-value < 0.05). The cell-cell communication

FIGURE 1 | Classification and molecular characterization of the cell types in two human left ventricles. (A) The T-distributed Stochastic Neighbor Embedding
(t-SNE) analysis for the two left ventricles. Each point represents one cell, and the point colors represent the cell types. (B) The expression patterns of the cell type specific
maker genes across the cell types in the two hearts (left ventricles).
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analysis revealed that the autocrine ligand-receptor interaction
induced chemokine signaling activation in neutrophil and
macrophage might be responsible for the immune response in
ICM (Figure 5C). Particularly, the ligands, CCL3, and CCL4, and
the receptor CCR5 were specifically upregulated in ICM as
compared with DCM and normal controls (Figure 5D). These
results indicated that higher inflammation in ICM might be
associated with autocrine CCL3/CCL4–CCR5 interaction
induced chemokine signaling activation.

Validation of the Inflammation-Related
CAMs, ECM Genes, and Immune
Responses in an Independent Dataset
We collected an independent gene expression dataset from
previous study (Hannenhalli et al., 2006) for validation. The
inflammation-related CAMs such as HLA-E, HLA−DQA1,
HLA−DRB1, and CD74, and all the ECM genes were
upregulated in the HF samples of bulk RNA-seq dataset
(GSE121893, Figure 6A, p-value < 0.05). Notably, the ECM
genes were also upregulated in the fibroblasts of HF from an
independent scRNA-seq dataset (Figure 6B). Furthermore,

neutrophil and macrophage activities also appeared to be higher
in ICM compared with NF and DCM, and the upregulation of
autocrine ligand-receptor pairs in ICM, CCL3/CCL4 –CCR5, was
also observed in the validation dataset (Figures 6C,D, p-value <
0.05). Consistently, the CCL3 and CCL4 were expressed higher in
the macrophages of ICM than the DCM and normal hearts
(Figure 6E). These results further indicated that inflammation-
related CAMs and ECM proteins, which were specifically secreted
by endothelial cell and fibroblast, respectively, and chemokine
signaling activation in neutrophil and macrophage might induce
cardiac inflammation and fibrosis during heart failure.

DISCUSSION

HF is a major consequence of various cardiovascular diseases with
poor prognosis and high mortality (Shantsila, Wrigley, Blann, Gill,
& Lip, 2012). In the present study, in order to clarify the cell
heterogeneity between ischemic HF and non-ischemic HF, we
integrated two scRNA-seq datasets of 1,324 and 1,480 cells from
the left ventricles and gene expression profiles of 14 NF, 37 DCM,
and 13 ICM samples to identify HF-related cell types and key

FIGURE 2 | The differentially expressed genes in dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM). (A) The scatterplot of principal component
analysis for the samples. (B) The expression profiles of the differentially expressed genes (DEGs) in DCM and ICM. (C) The marker genes of cell types enriched within the
upregulated genes of DCM or ICM.
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FIGURE 3 | The expression patterns of endothelial cell (EC)-related key regulators involved in HF. (A) The genes specifically upregulated in ECs of HF, which are
identified by the gene set enrichment analysis (GSEA). (B) The expression patterns of genes in bulk RNA-seq and scRNA-seq data of ECs. (C) The key regulators in ECs
by gene set enrichment analysis (GSEA).
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regulators. Specifically, the marker genes of ECs were significantly
upregulated in DCM and ICM proposing that the endothelial
dysfunction might be associated with both DCM and ICM.
In contrast, DC, M1/2 macrophage, neutrophil, and smooth
muscle cell, were specifically upregulated in ICM based on the
biomarkers of cell subpopulations. ECs are the most abundant
non-myocytes in the healthy heart (Bacmeister et al., 2019). The
patterns of endothelial dysfunction inHF patients differed from the
etiologies (Oatmen, Cull, and Spinale, 2020). In patients with
ischemic HF, endothelial dysfunction is systemic and involves
both arteries and veins, conductance vessels and microvascular
beds, coronary, pulmonary, and peripheral vessels, however, the
patterns of endothelial dysfunction in non-ischemic HF are
heterogeneous with fewer features of systemic abnormalities
which have a functionally preserved endothelium in peripheral
arteries (Berezin, Kremzer, Martovitskaya, Berezina, & Gromenko,
2016).

Fibroblasts as the main effector cells of cardiac fibrosis will
be activated after injury associated with HF and participate the
process of repair and remodel the infarcted heart (Davis &
Molkentin, 2014). Cardiac fibrosis is characterized by an
increased amount and a disrupted composition of
inflammation-related CAMs and ECM proteins which might
be potential targets for heart repair and function (Humeres &
Frangogiannis, 2019; Moore-Morris, Guimaraes-Camboa,
Yutzey, Puceat, & Evans, 2015). TGF-β1 as a cytokine could
induce the transformation of cardiac fibroblasts to
myofibroblasts (Akhurst & Hata, 2012). We examined
whether the upregulated fibroblast marker genes in HF were
involved in cardiac fibrosis through GSEA and differential
expression analysis. Among these fibroblast marker genes,
29 were also upregulated in both HF tissues and fibroblast
with TGFβ1 treatment. The functional characterization of
these genes revealed that they were primarily involved in

FIGURE 4 | The expression patterns of fibroblast-related key regulators involved in HF. (A) The genes specifically upregulated in TGF-beta-induced fibroblast by
gene set enrichment analysis (GSEA). (B) The expression patterns of cardiac fibrosis-related genes in bulk RNA-seq and scRNA-seq data. (C) The key regulators
involved in cardiac fibrosis by gene set enrichment analysis (GSEA).
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ECM organization. ECM plays a vital role in cardiac
homeostasis, which provides structural support for cardiac
cells and maintains integrity and function by transducing

important signals among different cells (Frangogiannis,
2019). The transformation of ECM patterns in biochemical
in failing hearts hinged on the type of underlying injury

FIGURE 5 | The specific expression patterns of immune cell marker genes in ICM. (A) The relative abundances of immune cells including neutrophil and
macrophage across the groups. (B) The expression patterns of immune cell-specific marker genes in NF, DCM, and ICM samples. (C) The autocrine ligand-receptor
interactions in neutrophil and macrophage. (D) The expression levels of ligands (CCL3/4) and the receptor (CCR5) in NF, DCM, and ICM.
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(Travers, Kamal, Robbins, Yutzey, & Blaxall, 2016). Collectively,
our analysis confirmed that inflammation-related CAMs
and ECM proteins such as collagens were specifically secreted
by EC and fibroblast, respectively, and might induce
cardiac inflammation and fibrosis during the progression of HF.

Previous studies have suggested that inflammation is a key
factor of cardiovascular disease, with immune cell types such as
macrophages and T lymphocytes mediating essential crosstalk
in the progression to HF(Abplanalp et al., 2020). Since we
found ICM had more specific immune cell types, such as
macrophage and DC, we then focused on the activities of

immune cells including macrophage and neutrophil. The
cell-cell communication analysis revealed that the autocrine
ligand-receptor interaction induced chemokine signaling
activation in neutrophil and macrophage might be
responsible for the immune response in ICM. During the
process of cardiac inflammation, immune cells invade the
cardiac tissue and coordinate the responses of damaging.
Due to the length limitation of this article, we cannot
describe all genes in detail. Taken together, our results
suggested that higher inflammation in ICM might be
associated with autocrine CCL3/CCL4-CCR5 interaction

FIGURE 6 | Validation of the cell adhesion molecules (CAMs), extracellular matrix (ECM) genes, and immune responses. (A) The upregulation of CAMs and ECM
genes in HF samples. (B) The differential expression levels of ECM genes between the fibroblasts of NF and HF (scRNA-seq dataset: GSE145154). (C) The higher
abundance of neutrophil and macrophage in ICM. (D) The higher expression levels of CCR5, CCL3, and CCL4 in ICM. (E) The differential expression levels of CCL3 and
CCL4 between the macrophages of NF, DCM and ICM (scRNA-seq dataset: GSE145154).
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induced chemokine signaling activation. Furthermore,
neutrophil and macrophage also appeared to be higher in
ICM compared with DCM.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

BH, TH, and L-hS conceived and designed the project and are
responsible for the overall content. LZ, YL, H-wN, FL, and JX
analyzed and interpreted the data. XS, LZ, and BH prepared the

manuscript. XW, ZC, and L-hS contributed to revising the
manuscript. All authors contributed to and discussed the
results and critically reviewed the manuscript. All authors read
and approved the final manuscript.

ACKNOWLEDGMENTS

Wewould like to acknowledge funding from the National Natural
Science Foundation of China (81900280, 81830010, 81330006,
and 31701151), Shanghai Sailing Program (19YF1431600),
Science and Technology Commission of Shanghai
Municipality (18411950400), National Key R&D Program of
China (2018YFC0910403), Shanghai Municipal Science and
Technology Major Project (2017SHZDZX01), and Strategic
Priority Research Program of Chinese Academy of Sciences
(XDB38050200, XDA26040304).

REFERENCES

Abplanalp, W. T., John, D., Cremer, S., Assmus, B., Dorsheimer, L., Hoffmann, J.,
et al. (2020). Single-cell RNA-Sequencing Reveals Profound Changes in
Circulating Immune Cells in Patients with Heart Failure. Cardiovasc. Res.
117, 484–494. doi:10.1093/cvr/cvaa101

Akhurst, R. J., and Hata, A. (2012). Targeting the TGFβ Signalling Pathway in
Disease. Nat. Rev. Drug Discov. 11 (10), 790–811. doi:10.1038/nrd3810

Bacmeister, L., Schwarzl, M.,Warnke, S., Stoffers, B., Blankenberg, S., Westermann,
D., et al. (2019). Inflammation and Fibrosis in Murine Models of Heart Failure.
Basic Res. Cardiol. 114 (3), 19. doi:10.1007/s00395-019-0722-5

Berezin, A. E., Kremzer, A. A., Martovitskaya, Y. V., Berezina, T. A., and
Gromenko, E. A. (2016). Pattern of Endothelial Progenitor Cells and
Apoptotic Endothelial Cell-Derived Microparticles in Chronic Heart Failure
Patients with Preserved and Reduced Left Ventricular Ejection Fraction.
EBioMedicine 4, 86–94. doi:10.1016/j.ebiom.2016.01.018

Bui, A. L., Horwich, T. B., and Fonarow, G. C. (2011). Epidemiology and Risk
Profile of Heart Failure. Nat. Rev. Cardiol. 8 (1), 30–41. doi:10.1038/
nrcardio.2010.165

Colombo, P. C., Banchs, J. E., Celaj, S., Talreja, A., Lachmann, J., Malla, S., et al.
(2005). Endothelial Cell Activation in Patients with Decompensated Heart
Failure. Circulation 111 (1), 58–62. doi:10.1161/01.CIR.0000151611.89232.3B

Davis, J., and Molkentin, J. D. (2014). Myofibroblasts: Trust Your Heart and Let
Fate Decide. J. Mol. Cell Cardiol. 70, 9–18. doi:10.1016/j.yjmcc.2013.10.019

Frangogiannis, N. G. (2019). The Extracellular Matrix in Ischemic and
Nonischemic Heart Failure. Circ. Res. 125 (1), 117–146. doi:10.1161/
CIRCRESAHA.119.311148

Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y., et al. (2020). Construction of
a Human Cell Landscape at Single-Cell Level. Nature 581 (7808), 303–309.
doi:10.1038/s41586-020-2157-4

Hannenhalli, S., Putt, M. E., Gilmore, J. M., Wang, J., Parmacek, M. S., Epstein,
J. A., et al. (2006). Transcriptional Genomics Associates FOX Transcription
Factors with Human Heart Failure. Circulation 114 (12), 1269–1276.
doi:10.1161/CIRCULATIONAHA.106.632430

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: Gene Set Variation
Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics 14, 7.
doi:10.1186/1471-2105-14-7

Humeres, C., and Frangogiannis, N. G. (2019). Fibroblasts in the Infarcted,
Remodeling, and Failing Heart. JACC: Basic Translational Sci. 4 (3),
449–467. doi:10.1016/j.jacbts.2019.02.006

Jones, N. R., Roalfe, A. K., Adoki, I., Hobbs, F. D. R., and Taylor, C. J. (2019).
Survival of Patients with Chronic Heart Failure in the Community: a Systematic
Review and Meta-analysis. Eur. J. Heart Fail. 21 (11), 1306–1325. doi:10.1002/
ejhf.1594

Lê, S., Josse, J., and Husson, F. (2008). FactoMineR: AnRPackage for Multivariate
Analysis. J. Stat. Soft. 25 (1), 1–18. doi:10.18637/jss.v025.i01

Liu, Y., Morley, M., Brandimarto, J., Hannenhalli, S., Hu, Y., Ashley, E. A., et al.
(2015). RNA-seq Identifies Novel Myocardial Gene Expression Signatures of
Heart Failure. Genomics 105 (2), 83–89. doi:10.1016/j.ygeno.2014.12.002

Love, M. I., Huber, W., and Anders, S. (2014). Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 15 (12),
550. doi:10.1186/s13059-014-0550-8

Ma, Y., Iyer, R. P., Jung, M., Czubryt, M. P., and Lindsey, M. L. (2017). Cardiac
Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps.
Trends Pharmacol. Sci. 38 (5), 448–458. doi:10.1016/j.tips.2017.03.001

Martini, E., Kunderfranco, P., Peano, C., Carullo, P., Cremonesi, M., Schorn, T., et al.
(2019). Single-Cell Sequencing of Mouse Heart Immune Infiltrate in Pressure
Overload-Driven Heart Failure Reveals Extent of Immune Activation.Circulation
140 (25), 2089–2107. doi:10.1161/CIRCULATIONAHA.119.041694

Moore-Morris, T., Guimarães-Camboa, N., Yutzey, K. E., Pucéat, M., and Evans, S.
M. (2015). Cardiac Fibroblasts: from Development to Heart Failure. J. Mol.
Med. 93 (8), 823–830. doi:10.1007/s00109-015-1314-y

Oatmen, K. E., Cull, E., and Spinale, F. G. (2020). Heart Failure as Interstitial
Cancer: Emergence of a Malignant Fibroblast Phenotype. Nat. Rev. Cardiol. 17
(8), 523–531. doi:10.1038/s41569-019-0286-y

Oneglia, A., Nelson, M. D., and Merz, C. N. B. (2020). Sex Differences in
Cardiovascular Aging and Heart Failure. Curr. Heart Fail. Rep. 17, 409–423.
doi:10.1007/s11897-020-00487-7

Rao, M., Wang, X., Guo, G., Wang, L., Chen, S., Yin, P., et al. (2021). Resolving the
Intertwining of Inflammation and Fibrosis in Human Heart Failure at Single-
Cell Level. Basic Res. Cardiol. 116 (1), 55. doi:10.1007/s00395-021-00897-1

Schafer, S., Viswanathan, S., Widjaja, A. A., Lim, W.-W., Moreno-Moral, A.,
DeLaughter, D. M., et al. (2017). IL-11 Is a Crucial Determinant of
Cardiovascular Fibrosis. Nature 552 (7683), 110–115. doi:10.1038/nature24676

Shantsila, E., Wrigley, B. J., Blann, A. D., Gill, P. S., and Lip, G. Y. H. (2012). A
Contemporary View on Endothelial Function in Heart Failure. Eur. J. Heart
Fail. 14 (8), 873–881. doi:10.1093/eurjhf/hfs066

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M.,
et al. 2019). Comprehensive Integration of Single-Cell Data. Cell, 177(7),
1888–1902. doi:10.1016/j.cell.2019.05.031

Sweet, M. E., Cocciolo, A., Slavov, D., Jones, K. L., Sweet, J. R., Graw, S. L., et al.
(2018). Transcriptome Analysis of Human Heart Failure Reveals Dysregulated
Cell Adhesion in Dilated Cardiomyopathy and Activated Immune Pathways in
Ischemic Heart Failure. BMC Genomics 19 (1), 812. doi:10.1186/s12864-018-
5213-9

Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E., and Blaxall, B. C. (2016). Cardiac
Fibrosis. Circ. Res. 118 (6), 1021–1040. doi:10.1161/CIRCRESAHA.115.306565

Triposkiadis, F., Xanthopoulos, A., and Butler, J. (2019). Cardiovascular Aging and
Heart Failure. J. Am. Coll. Cardiol. 74 (6), 804–813. doi:10.1016/j.jacc.2019.06.053

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 77922510

Shi et al. Integrative Analysis of Heart Failure

16

https://doi.org/10.1093/cvr/cvaa101
https://doi.org/10.1038/nrd3810
https://doi.org/10.1007/s00395-019-0722-5
https://doi.org/10.1016/j.ebiom.2016.01.018
https://doi.org/10.1038/nrcardio.2010.165
https://doi.org/10.1038/nrcardio.2010.165
https://doi.org/10.1161/01.CIR.0000151611.89232.3B
https://doi.org/10.1016/j.yjmcc.2013.10.019
https://doi.org/10.1161/CIRCRESAHA.119.311148
https://doi.org/10.1161/CIRCRESAHA.119.311148
https://doi.org/10.1038/s41586-020-2157-4
https://doi.org/10.1161/CIRCULATIONAHA.106.632430
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.jacbts.2019.02.006
https://doi.org/10.1002/ejhf.1594
https://doi.org/10.1002/ejhf.1594
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.1016/j.ygeno.2014.12.002
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.tips.2017.03.001
https://doi.org/10.1161/CIRCULATIONAHA.119.041694
https://doi.org/10.1007/s00109-015-1314-y
https://doi.org/10.1038/s41569-019-0286-y
https://doi.org/10.1007/s11897-020-00487-7
https://doi.org/10.1007/s00395-021-00897-1
https://doi.org/10.1038/nature24676
https://doi.org/10.1093/eurjhf/hfs066
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1186/s12864-018-5213-9
https://doi.org/10.1186/s12864-018-5213-9
https://doi.org/10.1161/CIRCRESAHA.115.306565
https://doi.org/10.1016/j.jacc.2019.06.053
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Triposkiadis, F., Xanthopoulos, A., Parissis, J., Butler, J., and Farmakis, D. (2020).
Pathogenesis of Chronic Heart Failure: Cardiovascular Aging, Risk Factors,
Comorbidities, and Disease Modifiers. Heart Fail. Rev. 1, 1. doi:10.1007/
s10741-020-09987-z

Vigil-Garcia, M., Demkes, C. J., Eding, J. E. C., Versteeg, D., de Ruiter, H., Perini, I.,
et al. (2020). Gene Expression Profiling of Hypertrophic Cardiomyocytes
Identifies New Players in Pathological Remodelling. Cardiovasc. Res. 117,
1532–1545. doi:10.1093/cvr/cvaa233

Wang, L., Yu, P., Zhou, B., Song, J., Li, Z., Zhang, M., et al. (2020). Single-
cell Reconstruction of the Adult Human Heart during Heart
Failure and Recovery Reveals the Cellular Landscape Underlying
Cardiac Function. Nat. Cel Biol 22 (1), 108–119. doi:10.1038/s41556-
019-0446-7

Yamaguchi, T., Sumida, T. S., Nomura, S., Satoh, M., Higo, T., Ito, M., et al.
(2020). Cardiac Dopamine D1 Receptor Triggers Ventricular Arrhythmia
in Chronic Heart Failure. Nat. Commun. 11 (1), 4364. doi:10.1038/s41467-
020-18128-x

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr.
Biol. 16 (5), 284–287. doi:10.1089/omi.2011.0118

Ziaeian, B., and Fonarow, G. C. (2016). Epidemiology and Aetiology of Heart
Failure. Nat. Rev. Cardiol. 13 (6), 368–378. doi:10.1038/nrcardio.2016.25

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shi, Zhang, Li, Xue, Liang, Ni, Wang, Cai, Shen, Huang and He.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 77922511

Shi et al. Integrative Analysis of Heart Failure

17

https://doi.org/10.1007/s10741-020-09987-z
https://doi.org/10.1007/s10741-020-09987-z
https://doi.org/10.1093/cvr/cvaa233
https://doi.org/10.1038/s41556-019-0446-7
https://doi.org/10.1038/s41556-019-0446-7
https://doi.org/10.1038/s41467-020-18128-x
https://doi.org/10.1038/s41467-020-18128-x
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/nrcardio.2016.25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Spatially Annotated Single Cell
Sequencing for Unraveling Intratumor
Heterogeneity
Myrthe M. Smit 1,2, Kate J. Feller1,2, Li You1,2, Jelle Storteboom1,2, Yasin Begce1,2,
Cecile Beerens1,2 and Miao-Ping Chien1,2,3*†

1Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands, 2ErasmusMCCancer Institute,
Rotterdam, Netherlands, 3Oncode Institute, Utrecht, Netherlands

Intratumor heterogeneity is a major obstacle to effective cancer treatment. Current
methods to study intratumor heterogeneity using single-cell RNA sequencing (scRNA-
seq) lack information on the spatial organization of cells. While state-of-the art spatial
transcriptomics methods capture the spatial distribution, they either lack single cell
resolution or have relatively low transcript counts. Here, we introduce spatially
annotated single cell sequencing, based on the previously developed functional single
cell sequencing (FUNseq) technique, to spatially profile tumor cells with deep scRNA-seq
and single cell resolution. Using our approach, we profiled cells located at different
distances from the center of a 2D epithelial cell mass. By profiling the cell patch in
concentric bands of varying width, we showed that cells at the outermost edge of the
patch responded strongest to their local microenvironment, behaved most invasively, and
activated the process of epithelial-to-mesenchymal transition (EMT) to migrate to low-
confluence areas. We inferred cell-cell communication networks and demonstrated that
cells in the outermost ~10 cell wide band, which we termed the invasive edge, induced
similar phenotypic plasticity in neighboring regions. Applying FUNseq to spatially annotate
and profile tumor cells enables deep characterization of tumor subpopulations, thereby
unraveling the mechanistic basis for intratumor heterogeneity.

Keywords: spatial transcriptomics, single cell sequencing, functional single cell sequencing, intratumoral
heterogeneity, epithelial-to-mesenchym transition (EMT)

INTRODUCTION

Intratumor heterogeneity, both at the genetic and transcriptomic level, is commonly observed in
various cancer types and complicates diagnosis and treatment (Gerlinger et al., 2012; Patel et al.,
2014; Morrissy et al., 2017; Puram et al., 2017; Berglund et al., 2018). Rare populations of cells can
contribute to increased tumor progression (Burrell et al., 2013; Patel et al., 2014), metastatic potential
(Yachida et al., 2010; Navin et al., 2011) and therapy resistance (Sottoriva et al., 2013; Patel et al.,
2014; Tirosh et al., 2016). Single-cell sequencing is key to characterizing the complexity of intratumor
heterogeneity, but lacks information about functional properties and spatial organization of cells
(Lawson et al., 2018). We have recently developed a functionally annotated transcriptomic profiling
technique, called functional single cell sequencing (FUNseq), to study heterogeneous populations of
tumor cells based on functional features (You et al., 2021). This technology uses live-cell imaging to
identify cells with a phenotype of interest (e.g., cell migration or morphology), which can then be
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phototagged (via a photopatterned device) with a
photoactivatable dye, isolated and subjected to single-cell RNA
sequencing (scRNA-seq). Hence, FUNseq links phenotypic traits
to gene expression profiles of rare subpopulations of tumor cells,
thereby identifying the underlying mechanisms of intratumor
heterogeneity. However, cells are currently labeled using a single
dye, making it impossible to discern cells based on their spatial
organization.

Here, we applied FUNseq to characterize intratumor
heterogeneity in tumor subpopulations that are spatially
located differently in an untransformed, mammary epithelial
tumor model. We specifically focused on the epithelial-to-
mesenchymal transition (EMT), as this is an important source
for intratumor heterogeneity (Nieto et al., 2016). During EMT,
epithelial cells gradually acquire a mesenchymal phenotype,
thereby losing their cell-cell adhesion and cell polarity while
gaining the ability to migrate and invade (Nieto et al., 2016;
Pastushenko et al., 2018; Revenco et al., 2019). EMT can be
induced by multiple stimuli, including various growth factors and
a cell’s local microenvironment (Cook and Vanderhyden 2020).

To illustrate, cells at the migrating front of tumors express higher
levels of EMT marker genes than cells in the center (Puram et al.,
2017). Recently, McFaline-Figueroa et al. (2019) made a similar
observation using an in vitro tumor model, showing that
untransformed MCF10A cells in the outer layer of a high-
confluence patch of cells undergo EMT. However, the exact
transcriptomic changes that cause this EMT are currently
unknown. To identify the genes that drive the outward
migration, one needs to profile the cells in the outermost layer
of the cell patch (i.e., the invasive edge). This could be done by
spatially annotating bands of cells before subjecting them to
scRNA-seq, which enables specific characterization of the
invasive edge.

Using a similar tumor model as McFaline-Figueroa et al., we
applied FUNseq to profile MCF10A epithelial cells that were
spatially located in the outer layer (~1,000–1,500 μm bandwidth,
~50 cell wide band) or the outermost layer (250 μm bandwidth,
~10 cell wide band) of the cell mass. We demonstrated that cells
in the outermost layer were progressing through EMT and
induced similar phenotypic plasticity in neighboring regions.

FIGURE 1 | Spatially profiling an in vitro tumor model using the FUNseq technology. (A) Schematic depiction of the assay, cell labeling and scRNA-seq analysis. For
the cell labeling (middle panel), we either phototagged concentric rings of equal width (top; 1,000–1,500 μm bandwidth) or 250 μm wide bands at the invasive edge
(bottom). In both approaches, the outer population was labeled with JF646 phototagging dye (red) and the middle population was labeled with both JF549 and JF646
(yellow). (B) Patch of MCF10A cells expressing a GFP marker that was phototagged with the larger bandwidth. Green: GFP, yellow: JF549, red: JF646. (C)
Phototagging the invasive edge of a MCF10A cell patch yields well-demarcated bands of cells.
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Using cell-cell communication network analysis, we also showed
that the Ephrin, EGF and VEGF signaling pathways were
involved in driving this invasive behavior. Our data indicates
that FUNseq can spatially profile intratumor heterogeneity,
thereby unraveling the underlying mechanisms for the
observed phenotypic variations.

RESULTS

FUNseq Can Spatially Annotate and Profile
Cells With Desired Spatial Bandwidths
We applied FUNseq to profile spatial heterogeneity in an in vitro
tumor model: untransformed, mammary epithelial MCF10A cells
(Figure 1A). MCF10A cells expressing a GFPmarker were seeded
in a high-confluence, circular patch. After growing the cells for
6 days, cells at the leading edge of the patch acquired a spindle-
like morphology and migrated to unoccupied areas of the dish
(Supplementary Figure S1), indicating that they might have
undergone EMT (Vuoriluoto et al., 2011).

Next, we imaged the cells using our custom-built Ultrawide
Field-of-view Optical (UFO) microscope (You et al., 2021) and
identified the outer, middle and inner regions (with a bandwidth
of 1,000–1,500 μm) of the patch. Cells were first incubated with
photoactivatable Janelia Fluor 646 (JF646) dye, after which we
phototagged the outer one-third of the patch (Figure 1B; cells
emit red fluorescence (λex: ~650 nm, λem: ~665 nm) after
photoactivation). Subsequently, we incubated cells with
photoactivatable Janelia Fluor 549 dye (JF549) and
phototagged the middle one-third of the patch (cells emit
green fluorescence (λex: ~550 nm, λem: ~570 nm) after
photoactivation). Hence, cells in the middle ring were labeled
with both dyes, as the cytoplasmic JF646 dye is retained within
cells. Labeled populations were isolated by flow cytometry and
sequenced using SORTseq, a plate-based, modified CEL-seq2
scRNA-seq technology (Hashimshony et al., 2016; Muraro
et al., 2016).

A similar labeling strategy can be used to profile the invasive
edge at a higher resolution. For this, we phototagged cells in the
outermost layer (250 μm bandwidth, ~10 cell wide band) of the
patch with JF646 and we phototagged cells in the next 250 μm
with both JF549 and JF646. Live-cell imaging of the labeled
patches showed well-demarcated bands of cells (Figure 1C),
validating that FUNseq can be used to annotate and isolate
confined tumor regions with desired spatial bandwidth.

FUNseq Identified Subtle Variations in Gene
Expression Profiles Between Tumor
Regions
To couple the observed phenotypic plasticity in the outer layer to
underlying transcriptomic changes, tumor subpopulations were
subjected to scRNA-seq. We sequenced two biological replicates
of patches phototagged with the larger bandwidth, yielding a total of
743 analyzed single cell transcriptomes (Supplementary Figure
S2). Dimensionality reduction using Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018)

indicated a modest separation of the populations but did not form
coherent clusters (Figure 2A), suggesting that there is substantial
similarity of the gene expression profiles between the tumor regions.

To quantity the level of EMT in each subpopulation, we
calculated EMT scores using Gene Set Variation Analysis
(GSVA) (Hänzelmann et al., 2013). For each cell, an epithelial
(E) and mesenchymal (M) score was calculated using two gene
sets containing 65 epithelial and 115 mesenchymal genes (Cesano
2015). Following the approach of Sacchetti et al. (2021), we
subtracted the E score from the M score to define a single
EMT score for each cell (EMT = M – E). Cells in the outer
layer had significantly higher EMT scores than cells in the center
(Kruskal-Wallis test, p = .0017; Figure 2B). However, no
significant changes between adjacent populations were
observed, presumably because the relatively large number of
cells per region led to substantial heterogeneity within each
population (Supplementary Figure S3). This solidified our
notion that one needs to specifically profile the invasive edge
to reliably identify the transcriptomic drivers for migration and
invasion. Hence, we next sought to profile the migrating front at a
higher resolution.

Cells at the Invasive Edge Strongly
Activated the Epithelial-to-Mesenchymal
Transition
We phototagged the migrating front (~10 cell wide bands) and
separated the outermost cells from the inner tumor mass
(Figure 1C). Using this high-resolution phototagging
approach, we analyzed 696 single cell transcriptomes from two
biological replicates. Dimensionality reduction now revealed
coherent clusters of cells that segregate based on the spatial
populations (Figure 2C). The middle and outermost layer
clustered together in the UMAP embedding, presumably since
cells in both layers are progressing through EMT. Classically,
EMT has been viewed as a discrete process in which cells pass
through distinct transition stages before acquiring a fully
mesenchymal morphology (Pastushenko and Blanpain 2019).
Our UMAP embedding (Figure 2D) indicated that EMT
scores vary continuously across the embedded cells, further
solidifying recent findings that EMT is a continuous process
(McFaline-Figueroa et al., 2019; Cook and Vanderhyden 2020).
Expression of the classic epithelial markers E-cadherin (CDH1)
and EPCAM gradually decreased from the center to the edge of
the patch, while the mesenchymal markers VIM and FN1 showed
a reciprocal pattern, suggesting that cells are exhibiting epithelial-
mesenchymal plasticity (Zhao et al., 2015; Yang et al., 2020)
(Figure 2E; Supplementary Figure S4). These changes in CDH1
expression were not detected by McFaline-Figueroa et al. (2019),
underscoring the value of deep sequencing using FUNseq to
resolve subtle transcriptomic changes. Moreover, we found that
adjacent populations have significantly varying EMT scores (p <
.0001; Figure 2F), further increasing our confidence that profiling
the invasive edge of the tumor model could identify drivers of
migration and invasion.

Next, we identified differentially expressed genes (DEGs)
between the subpopulations and found that classic
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mesenchymal markers such as VIM and the EMT transcription
factor SNAI2 were upregulated in the outermost population,
while the epithelial markers CDH1 and EPCAM were
upregulated in the center of the patch (Figure 2G;
Supplementary Figure S4). Genes upregulated in the

outermost (n = 165 DEGs) or center (n = 142 DEGs)
population were used for overrepresentation analysis using the
MSigDB Hallmarks gene set collection (Liberzon et al., 2015) and
theWikipathways database (Martens et al., 2021) (Figure 2H). As
expected, genes involved in EMT and extracellular matrix

FIGURE 2 | scRNA-seq indicated that cells at the invasive edge were progressing through EMT. (A) UMAP embedding of cells labeled with the larger bandwidth
showed a modest separation of tumor regions, but no coherent clusters were formed. (B) EMT scores between inner and outer populations vary significantly (p = .0017;
Kruskal-Wallis test). (C) Inner and outermost tumor regions labeled with the smaller bandwidth separate clearly in UMAP space. (D) EMT scores gradually increase
across the UMAP embedding. (E) Expression of classic epithelial markers decreases radially outwards while expression of classic mesenchymal markers
increases. (F) EMT scores are significantly varying between adjacent populations (p < .0001; Kruskal-Wallis test). (G) Volcano plot indicating genes overexpressed in the
outermost population (log2(FC) > .5) and in the inner population (log2(FC) < −.5). (H) Overrepresentation analysis using the MSigDB Hallmarks (red) and Wikipathways
(black) databases.
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interactions were overrepresented in the outermost population.
Additionally, cells at the invasive edge were enriched for the
vascular endothelial growth factor (VEGF) signaling pathway,
which can induce cell migration and EMT (Anthony D. Yang
et al., 2006; Gonzalez-Moreno et al., 2010; Bhattacharya et al.,
2017). VEGF can activate the neuropilin-1 receptor (NRP1),
which is upregulated in the outermost population (Figure 2G;
Supplementary Figure S5) and promotes proliferation,
migration and invasion of tumor cells (Goel and Mercurio
2013; Luo et al., 2016).

Cell-Cell Communication Network Analysis
Identified Multiple
Epithelial-to-Mesenchymal Transition
Inducers
Since a wide range of transcription factors and extracellular
stimuli are involved in stimulating EMT (Nieto et al., 2016),
we next set out to map the cell-cell communication networks that
regulate the EMT in our in vitro tumor model. We re-analyzed
scRNA-seq data from the high-resolution labeling experiment to
identify interactions between the different populations using
CellPhoneDB, a repository of ligand-receptor complexes that
can predict enriched cellular interactions based on the
expression of ligands and receptors in cell populations

(Efremova et al., 2020). The outermost population was highly
enriched for fibronectin (FN1), laminin (LAMA3 and LAMC1)
and collagen (COL8A1 and COL4A1) expression, extracellular
matrix (ECM) proteins that can interact with the integrins
expressed in the middle and inner populations (Figure 3).
Specifically, interactions of fibronectin and laminin with the
α3β1 integrin modulate cell adhesion to the ECM and cell
motility (Meng et al., 2009; Hamill et al., 2010; Jia et al., 2010;
Zhang et al., 2017). Interestingly, this analysis predicted multiple
interactions in the Ephrin-signaling pathway, in which ligands
and receptors activate bidirectional signals that can lead to
somewhat paradoxical downstream effects (Pasquale 2008). To
illustrate, cells in the outermost and middle populations
expressed the EphB4 receptor and its ligand EphrinB2
(EFNB2) (Supplementary Figure S6). Activation of EphB4
induces cell migration and invasion in cancer cells (Steinle
et al., 2002; Kumar et al., 2006; Nai-Ying Yang et al., 2006),
although the exact opposite effect has also been reported (Noren
et al., 2006). Additionally, reverse signaling through EphrinB2
can stimulate cell migration through the PI3K pathway (Steinle
et al., 2002; Kumar et al., 2006).

Finally, CellPhoneDB inferred enrichment of multiple EMT
inducers and their receptors in the outermost population, such as
tumor necrosis factor (TNFA) and genes involved in the EGF
pathway (CD44, EGFR, EPGN, HBEGF) (Cheng et al., 2012;
Revenco et al., 2019; Cook and Vanderhyden 2020). Conversely,

FIGURE 3 | Cell-cell interactions between cells in various patch regions labeled with the smaller bandwidth. Interactions were inferred based on the expression of
ligands and receptors in the different cell populations. The first molecule in each interaction pair (rows) corresponds to the first region in each population pair (columns).
Circles scaled by the significance of the interaction and colored by the average expression level of ligand and receptor.
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cells in the center of the patch were enriched for DSC2 and DSG2,
genes that encode components of desmosome cell-cell junctions
(Garrod and Chidgey 2008; Nekrasova and Green 2013),
hallmarks of an epithelial phenotype. Taken together, the
identified cell-cell interactions indicated that cells at the
migrating front responded to their local microenvironment
and stimulated similar invasive behavior in neighboring regions.

DISCUSSION

Intratumor heterogeneity is a major challenge for effective cancer
treatment. Single-cell genomics and transcriptomics proved
themselves valuable methods to study this heterogeneity, but
lack information about the spatial organization of cells. Recently,
various spatial transcriptomics methods have been developed to
add positional information from tissue sections to the single-cell
transcriptomes (Ståhl et al., 2016; Vickovic et al., 2019; Stickels
et al., 2021), providing numerous insights in cancer biology and
other fields (Longo et al., 2021). However, these methods either
lack single cell resolution or have substantially lower transcript
counts per cell than conventional scRNA-seq. Here, we applied
our recently developed FUNseq technology to spatially profile
confined tumor regions. The strength of this method lies in the
combination of labeling tumor regions guided by live-cell
imaging and deep sequencing of single cells. This allowed us
to profile gene expression in isolated tumor regions using 34,000
transcripts per cell (Supplementary Figure S2), compared to the
494 and 11.5 transcripts per 10 μm bead for Slide-seq V2 and
HDST, respectively (Stickels et al., 2021). The increased
sensitivity of FUNseq allows us to study low abundance
transcripts, enabling deep characterization of tumor cells.

We profiled tumor heterogeneity in an in vitro tumor model
(McFaline-Figueroa et al., 2019) by annotating cells located at
different distances from the center of a 2D epithelial cell mass.
Cells in the outermost layer or invasive edge (~10 cell wide band)
of this patch were progressing through EMT, suggesting that
these cells sense their local microenvironment and acquire a
mesenchymal phenotype to migrate to unoccupied areas of the
dish. Taking advantage of the FUNseq’s deep sequencing, we
characterized cell-cell interaction networks between the different
tumor regions. We identified various interactions between
outermost cells and ECM components that can stimulate cell
migration and we showed that outermost cells are enriched for
ligands and receptors that can stimulate EMT, such as
components of the Ephrin, EGF and VEGF signaling pathways.

By combining phototagging of confined tumor regions and
deep sequencing of single cells, we characterized the
transcriptomic heterogeneity in a population of untransformed
epithelial cells. To fully explore the potential of FUNseq, the next
step would be to profile tumor sections, which have much higher
complexity than relatively homogeneous cell lines. We envision
that FUNseq might address important questions about
intratumor heterogeneity, such as how tumor cells interact
with the tumor microenvironment and how tumor
composition affects treatment outcome.

In summary, we demonstrated that FUNseq can spatially
annotate and profile subpopulations of an in vitro tumor
model. We showed that cells at the invasive edge (~10 cells
wide band) of a high-confluence patch of cells underwent EMT,
migrated to low-confluence areas and induced similar phenotypic
plasticity in neighboring cells. Spatially profiling tumor cells using
FUNseq enables deep characterization of intratumor
heterogeneity, thereby laying the foundation for a more
complete understanding of tumor biology.

MATERIALS AND METHODS

Cell Culture
MCF10A_H2B_GFP human breast epithelial cells were a kind
gift of Reuven Agami (Netherlands Cancer Institute). Cells
were cultured at 37°C and 5% CO2 in DMEM/F12 medium
without phenol red (Gibco), supplemented with 5% Donor
Equine Serum, 1% penicillin/streptomycin, 20 ng/ml EGF,
500 ng/ml hydrocortisone, 100 ng/ml cholera toxin and
10 μg/ml insulin.

Before conducting experiments, cells were seeded on 20 mm
glass bottom dishes (Cellvis), coated with 0.1 mg/ml fibronectin
(EMD Millipore). 10,000 cells were seeded in a droplet in the
center of the dish, such that a circular patch of cells was formed in
the center of the dish. After 4.5 h, dishes were washed with
Dulbecco’s PBS (Sigma) to remove non-adherent cells. The
patch of cells was then cultured in MCF10A medium at 37°C
and 5% CO2 for 6 days.

Imaging and Cell Labeling
Cell labeling was performed on the Ultrawide Field-of-view
Optical (UFO) microscope developed previously (You et al.,
2021). Cells were incubated with 40 µM photoactivatable
Janelia Fluor 646 (JF646) dye (Tocris) for 20 min and
washed with MCF10A culture medium. Bright-field images
were used to localize the patch of cells, after which we
identified the cells to be labeled using a low-resolution or
high-resolution approach. In the low-resolution tagging
approach, we fit three concentric rings with equal
bandwidth (1,000–1,500 µm bandwidth) in the area of the
patch. In the high-resolution approach, we divide the patch
of cells in three layers: the outermost 250 µm of cells (~10 cell
wide band), the next 250 μm, and the inside of the patch.

In both approaches, the outer population of cells was then
selectively illuminated for 2 min with 405 nm light using a digital
micromirror device (DMD), thereby phototagging these cells
with JF646. Next, cells were incubated with 40 µM
photoactivatable Janelia Fluor 549 (JF549) dye (Grimm et al.,
2016) (Tocris) for 20 min and washed with MCF10A culture
medium. The imaging and labeling process was repeated, but now
illuminating the middle population of cells. These cells are thus
phototagged with JF549 and JF646, as both dyes are present in the
cytoplasm and become activated upon illumination. For
visualization purposes, image background was subtracted and
image contrast was adjusted using ImageJ.
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Cell Isolation and Single-Cell RNA
Sequencing
Cells were harvested using trypsin-EDTA without phenol red
(Sigma), centrifuged and resuspended in HBSS buffer (Gibco).
Live single cells (validated by Draq7 viability staining) were
sorted into 384-well plates using the BD FACSMelody Cell
Sorter (BD Biosciences), spun-down and stored at −80°C.
Library preparation and single-cell RNA sequencing was
performed by Single Cell Discoveries (Utrecht, Netherlands)
using their custom SORT-seq protocol (Muraro et al., 2016).
cDNA libraries were sequenced at 150 k reads/cell on the
Illumina NextSeq 500 platform.

scRNA-Seq Analysis
scRNA-seq data was aligned and preprocessed by Single Cell
Discoveries as described by Muraro et al. (2016). Gene expression
matrices were processed using Seurat v4 (Hao et al., 2021). Cells
containing 2,000–9,000 features and less than 40% mitochondrial
genes were selected. Gene expression was either normalized using
the SCTransform (Hafemeister and Satija 2019) function for
dimensionality reduction, or log-normalized for all other
downstream analysis. Cell cycle scoring and regression was
performed using a set of G2/M and S phase markers (Tirosh
et al., 2016). We performed a Principal Component Analysis
(PCA) on the normalized gene expression data and used the first
40 principal components for dimensionality reduction
using UMAP.

Differentially expressed genes between the inner and outer
populations were identified with Seurat’s findMarkers function
using a Wilcoxon rank-sum test and filtering for genes with a
Bonferroni corrected p-value < 1 × 10−5. Genes with log2 fold
change >0.5 were marked as upregulated and genes with log2
fold change <−0.5 were marked as downregulated. Next,
overrepresentation analysis (ORA) was performed with the
ClusterProfiler v4 package (Wu et al., 2021). The enricher
function was used with default settings (one-sided Fisher’s
exact test with Benjamini-Hochberg adjusted p-values) and the
most significantly enriched processes were visualized.

To calculate the level of EMT in each cell, we followed the
approach of Sacchetti et al. (2021) Gene Set Variation analysis
was performed using the GSVA package (Hänzelmann et al.,
2013), where we used a set of EMT markers that is publicly
available from the Nanostring nCounter PanCancer
Progression Panel (Cesano 2015). This gene set contained
65 epithelial (E) and 115 mesenchymal (M) genes
(Supplementary Table S1). For each cell we calculated its
GSVA enrichment scores for the epithelial and mesenchymal
genes, after which we subtracted the E score from the M score
to define the cell’s EMT score.

Enriched ligand-receptor interactions between the different
populations of cells were inferred using the CellphoneDB
package (Efremova et al., 2020). This analysis uses empirical
shuffling to identify enriched ligand-receptor interactions based

on the expression levels in the different populations, while
requiring that all subunits from heteromeric ligand-receptor
complexes are expressed. Log-normalized gene expression
matrices were used as input files and the statistical analysis
(without subsampling) was performed using a p-value threshold
of .01 and requiring that at least 20% of the cells in a population
expresses a specific ligand-receptor interaction. To identify
highly specific interactions between populations, we filtered
for interactions with rank ≤.444. In this way, we filtered for
ligand-receptor interactions that were significantly enriched in
≤4 population pairs (out of 9 population pairs in our setup).
After this initial prioritization of the predicted interactions, we
manually selected biologically relevant interactions for
visualization.
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scMelody: An Enhanced
Consensus-Based Clustering Model
for Single-Cell Methylation Data by
Reconstructing Cell-to-Cell Similarity
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Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,
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Single-cell DNA methylation sequencing technology has brought new perspectives to
investigate epigenetic heterogeneity, supporting a need for computational methods to
cluster cells based on single-cell methylation profiles. Although several methods have been
developed, most of them cluster cells based on single (dis)similarity measures, failing to
capture complete cell heterogeneity and resulting in locally optimal solutions. Here, we
present scMelody, which utilizes an enhanced consensus-based clustering model to
reconstruct cell-to-cell methylation similarity patterns and identifies cell subpopulations
with the leveraged information from multiple basic similarity measures. Besides, benefitted
from the reconstructed cell-to-cell similarity measure, scMelody could conveniently
leverage the clustering validation criteria to determine the optimal number of clusters.
Assessments on distinct real datasets showed that scMelody accurately recapitulated
methylation subpopulations and outperformed existing methods in terms of both cluster
partitions and the number of clusters. Moreover, when benchmarking the clustering
stability of scMelody on a variety of synthetic datasets, it achieved significant clustering
performance gains over existing methods and robustly maintained its clustering accuracy
over a wide range of number of cells, number of clusters and CpG dropout proportions.
Finally, the real case studies demonstrated the capability of scMelody to assess known cell
types and uncover novel cell clusters.

Keywords: single-cell, DNA methylation, epigenetic heterogeneity, consensus-based clustering, cell-to-cell
similarity

1 INTRODUCTION

As a heritable covalent chemical modification, DNA methylation is closely correlated with cell
growth, differentiation, and transformation, which plays decisive roles in diseases and tumorigenesis
(Aran and Hellman, 2013; Oakes et al., 2016; Koch et al., 2018). Technological advances have enabled
DNAmethylation assay at single-nucleotide resolution through high-throughput sequencing (Cokus
et al., 2008; Sandoval et al., 2011; Krueger et al., 2012), thus paving the way for quantifying the
methylation landscapes across different tissues and individuals. However, bulk protocols typically
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require thousands to millions of cells per experiment, making it
difficult to study rare cell populations or explore the intercellular
epigenetic heterogeneity (Schwartzman and Tanay, 2015). With
increasing evidence of epigenetic heterogeneity in phenotypically
similar cells (Angermueller et al., 2016; Hui et al., 2018), the
single-cell methylation sequencing (scME-seq) protocols have
demonstrated their capability for the deconvolution of mixed cell
populations, such as scBS (Smallwood et al., 2014), scRRBS (Guo
et al., 2013), and scWGBS (Farlik et al., 2015). Besides, the parallel
single-cell sequencing protocols, like scM&T-seq (Angermueller
et al., 2016), scTrio-seq (Hou et al., 2016), and scNOMe-seq (Pott,
2017), have brought new sights into understanding the regulatory
mechanisms of epigenetic modifications on transcriptional
variation. Although single-cell RNA sequencing (scRNA-Seq)
has been widely used for investigating cell heterogeneity, it
mainly informs about highly expressed transcripts while
scME-seq enables detecting the methylation status of CpGs
across gene and non-gene regions (Luo et al., 2017).
Moreover, DNA methylation landscapes are not affected by
the environment and can be more stable over the lifespan
(Lister et al., 2013; Mo et al., 2015). Therefore, how to
uncover cellular heterogeneity based on single-cell methylation
data is gaining more attention.

To our knowledge, most existing methods incorporated
different (dis)similarity relationships between cells into the
distance-based clustering algorithms, such as hierarchical
clustering (HC), to generate cell partitions. For instance, Farlik
et al. clustered cells based on the average methylation over
putative regulatory regions using HC with Euclidean distance
and complete linkage (Farlik et al., 2016). Besides, a sliding
window approach (Smallwood et al., 2014) was proposed to
estimate CpG methylation rates and then cells were clustered
based on the estimated methylation levels of most variable CpGs
(Smallwood et al., 2014) or gene bodies (Angermueller et al.,
2016) using Euclidean distance and HC. In addition to the
Euclidean distance, the Pearson correlation coefficient was also
used to measure cell-to-cell methylation distance and has been
combined with the HC algorithm to generate cell partitions based
on the site-level (Hou et al., 2016) or region-level (Pott, 2017)
methylation. Hui et al. developed PDclust to identify cell types
using a pairwise dissimilarity (PD) measure and HC, where the
PD value was defined as the average of the absolute difference in
methylation status at overlapping CpGs between cell pairs (Hui
et al., 2018). Despite the considerable diversity in these clustering
methods, different (dis)similarity measures could have a
significant effect on the quality of the clustering results in
distance-based clustering algorithms and no single measure
was appropriate for all situations (Yona et al., 2006; Khalifa
et al., 2009; Shirkhorshidi et al., 2015). Moreover, only
PDclust was verified across different datasets while the
clustering performances of other distance measures on
different datasets have not been fully evaluated. Recently, a
probabilistic hierarchical mixture model Epiclomal was
proposed to cluster cells through pooling information across
cells and neighboring CpGs (de Souza et al., 2020). But
Epiclomal required several non-probabilistic methods for
clustering initialization and failed to consistently achieve

clustering performance gains than single-distance-based
methods on some real datasets. Additionally, Kapourani et al.
(2021) proposed the Bayesian models for single-cell methylation
data analysis but focused on their evaluation on missing data
imputation (Kapourani and Sanguinetti, 2019) and identifying
variable features. In summary, additional clustering
methodologies that are universal to different kinds of single-
cell methylation datasets are still urgently needed.

Recent advancements in ensemble clustering (Ghaemi et al.,
2009; Vega-Pons and Ruiz-Shulcloper, 2011; Boongoen and Iam-
On, 2018) have demonstrated that integrating various basic cell
partitions in a consensus matrix is effective to generate improved
clustering solutions (Kiselev et al., 2017; Zhu et al., 2020; Cui et al.,
2021; Wang et al., 2021). The rationale for this idea is to construct
a cell-to-cell pairwise similarity matrix based on the diverse basic
clustering results through a cluster-based similarity partitioning
algorithm (CSPA) (Strehl and Ghosh, 2002), with each value in
the matrix representing the probability of the occurrence of cell
pairs in the same cluster. Then the resulting ensemble cell clusters
can be yielded according to the consensus matrix with typical
clustering algorithms, such as HC. Since how to accurately
capture intercellular methylation (dis)similarity relationships is
significant for clustering cells, combining information from
multiple (dis)similarity measures to reconstruct the cell-to-cell
similarity with the consensus-based clustering strategy becomes a
promising alternative. However, the traditional consensus
strategy only integrated the information of basic clustering
assignments (Golalipour et al., 2021; Zhang, 2021), which
might be not sufficiently informative to reconstruct the cell-to-
cell similarity as the inherent distance relationships within the
subpopulation were ignored. Moreover, when calculating the
consensus matrix, the basic clustering partitions could be
highly correlated or differ significantly and their ability to
distinguish cells was different, requiring an extra strategy to
balance the diversity and separability of the basic clustering
partitions. Although many weighting strategies based on
various clustering validation indices have been proposed to
construct a more accurate consensus matrix (Vega-Pons et al.,
2008; Vega-Pons et al., 2011; Ünlü and Xanthopoulos, 2019; Zhu
et al., 2020), they did not take into account the diversity and
separability of basic cluster partitions simultaneously.

Here, we propose scMelody, an enhanced consensus-based
clustering model for single-cell methylation data analysis by
reconstructing cell-to-cell pairwise similarity. By introducing a
regularization process and a dual weighting strategy, scMelody
improves the construction of the consensus matrix which
contributes to a novel cell-to-cell similarity measure for
clustering cells. Compared to the single (dis)similarity
measures, the reconstructed cell-to-cell similarity measure
combines the multiple inherent distance relationships of cells
and the clustering information of basic cell clusters, so as to
improve the accuracy of identifying cell subpopulations. As an
additional benefit, scMelody can conveniently leverage the
internal clustering validation criterion to determine the
optimal number of clusters based on the reconstructed
pairwise similarity patterns. Extensive assessments on both real
datasets and synthetic datasets showed that scMelody achieved
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the most advanced performance over previous methods in
clustering single-cell methylation data.

2 MATERIALS AND METHODS

2.1 Datasets and Pre-Processing
We first retrieved seven real single-cell methylation datasets in
which cell types were known a priori or were validated in the
respective study to benchmark the performance of the clustering
algorithms. These distinct single-cell methylation datasets were
generated by various sequencing techniques and came from
Smallwood et al. (2014), Farlik et al. (2015), Hou et al. (2016),
Pott (2017), Farlik et al. (2016) and Luo et al. (2017). The
Smallwood dataset was made up of mouse embryonic stem
cells (ESCs), where the cells were cultured in a regular serum
medium and 2i medium to introduce differential methylation.
Note that there were two outlier cells from the serum condition
that were demonstrated to be more similar to the 2i ESCs. The
Falik2015 dataset consisted of K562 cells and HL60 cells, which
were either treated with extra drugs or not, leading to 4 different
cell subpopulations. The Hou dataset consisted of the cells were
from a human hepatocellular carcinoma (HCC) tissue sample
and a human hepatoblastoma-derived cell line (HepG2). There
were two subpopulations in HCC cells, where the authors
integrated gene expression, copy number changes and DNA
methylation to support their findings. The Pott dataset
consisted of GM12878 cells and K562 cells, which were grown
in different culture mediums. The Farlik2016 dataset contained
several different types of human hematopoietic cells, including
hematopoietic stem cells (HSC), multipotent progenitors (MPP),
common lymphoid progenitor (CLP), common myeloid
progenitor (CMP), immature multi-lymphoid progenitor
(MLP0), and granulocyte-macrophage progenitor (GMP). The
Luo dataset was relatively large, which consisted of two different
parts, including 2740 human neurons (Luo-human) and 3,377
mouse neurons (Luo-mouse). According to the original
experiment, both the human and mouse neurons were very
heterogeneous, where there were 21 subclusters identified in
human neurons and 16 subclusters identified in mouse
neurons. The overview of these real datasets is summarized in
Table 1, including the number of cells and the number of clusters
for each dataset. Moreover, in addition to the aforementioned
datasets for the standard validation, we also retrieved one of the
largest publicly available datasets, which assayed 28077 inhibitory
neurons from different regions of the mouse brain and presented

strong cellular heterogeneity (Liu et al., 2021). We focused on the
evaluation of the ability of scMelody to identify novel cell clusters
under complex cell composition contexts on this large dataset.

To faithfully simulate methylation data that resemble scME-
seq for evaluating the clustering stability and scalability of
scMelody, we also generated synthetic datasets with various
initial settings using the sub-sampling strategy proposed by
Kapourani and Sanguinetti (2019). To retain the structure of
missing data observed in sequencing experiments, this strategy
generated the pseudo-single cells by sampling the raw FASTQ
files of the bulk data. We collected the bulk RRBS data (GEO
accession: GSE27584) of 10 cell lines (Supplementary Table S1)
from the ENCODE dataset (Wang et al., 2012) and the pseudo-
single cells were produced by randomly keeping 10% of the
mapped reads from the bulk experiment. Then, we generated
the synthetic datasets with different initial settings: (1) the
number of pseudo-single cells
(N � 50, 100, 200, 300, 400, 500, 600, 800, 1000); (2) the number
of predefined clusters (C � 2, 3, 4, 5, 6, 7, 8, 9, 10); (3) the
dropout CpG proportions
(η � 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Note that the
number of predefined clusters was achieved by combining the
cells sampled from different cell lines and we sampled the equal
numbers of cells in each cell line. The dropout CpG proportion
simulated the data with different sparsity by randomly
eliminating a certain proportion of CpG sites in pseudo-single
cells, where the higher the dropout proportions represented the
higher the degree of data sparsity and the greater difficulty of
clustering. In comparative studies, we varied one parameter and
kept the others fixed. Unless otherwise specified, the fixed
parameters were: number of pseudo-single cells 400, number
of predefined clusters 6 and the CpG dropout proportion 0.5. For
each setting, we generated 50 input datasets to evaluate the
clustering performance.

For the retrieved real single-cell methylation datasets, most of
the CpG loci assayed exhibited binary methylation status
(methylated or unmethylated). Specifically, the CpGs detected
by snmC-seq only hadmethylated or unmethylated status and the
CpGs detected by other sequencing techniques predominantly
presented either hypermethylation or hypomethylation
(Supplementary Figure S1). Considering the bimodal
distribution of methylation levels, the CpGs exhibiting
partially methylated calls (≥.5) were assigned a value of 1
(methylation) or a value of 0 (unmethylation) otherwise (<.5).
Similarly, for the synthetic datasets generated from the RRBS bulk
data, the binary methylation status could be obtained by using a
threshold of .5 (values no less than .5 were binarized to 1
otherwise to 0).

2.2 scMelody Clustering Algorithm
Considering the sparse coverage of scME-seq technology,
scMelody leverages all overlapping CpGs between cell pairs to
evaluate cell-to-cell similarity patterns. Specifically, scMelody
takes files with binary CpG methylation calls across the
genome from individual cells as input. To capture different
methylation similarity patterns between cell pairs, scMelody
utilizes three correlation-based measures, including Cosine,

TABLE 1 | Overview of the seven real single-cell methylation datasets.

Datasets Sequencing # GEO accession # Cells # Clusters

Smallwood ScBS GSE56879 32 2
Farlik2015 scWGBS GSE65196 69 4
Hou scTrio-seq GSE65364 31 3
Pott scNOMe-seq GSE83882 23 2
Farlik2016 scWGBS GSE87197 122 6
Luo-human snmC-seq GSE97179 2740 21
Luo-mouse snmC-seq GSE97179 3377 16
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Hamming and Pearson correlation coefficient, which have been
reported to be effective for quantifying the similarity relationships
of binary data (Haranczyk and Holliday, 2008). Given a series of
single-cell methylation data files Xi (i = 1,2 . . ., n; n denotes the
number of target cells), the Cosine similarity of cell pairs (Xi,Xj)
can be calculated as follows:

S1(Xi, Xj) � ∑m
t�1XitXjt�����������������∑m

t�1(Xit)2∑m
t�1(Xjt)2√

where m represents the number of overlapping CpGs shared by
cell pairs (Xi,Xj) and t denotes t -th overlapping CpG between
each cell pair (Xi,Xj). For any two cells, the more similar the
global methylation landscape is, the larger the Cosine correlation
coefficient is; and S1(Xi,Xj) ranges from 0 to 1. Next, scMelody
calculates the Hamming similarity for each cell pair (Xi,Xj):

S2(Xi, Xj) � ∑m
t�1I(Xit � Xjt)

m

where the indicator function I(.) returns 1 if its argument is true.
This can be described as calculating the proportion of CpGs with
concordant methylation status between cell pairs, which ranges
from 0 to 1. Finally, the Pearson similarity is calculated as follows:

S3(Xi, Xj) � ∑m
t�1(Xit −Xi)(Xjt − �Xj)�������������∑m

t�1(Xit −Xi)2
√ ��������������∑m

t�1(Xjt −Xj)2
√

where Xi , Xj is the mean of Xi, Xj respectively and the Pearson
similarity measures the linear correlation according to the
methylation status between the cell pair (Xi,Xj), varying from
0 to 1. With the three basic similarity measures, the inherent
methylation similarity relationships of cells can be quantified and
the cell-to-cell methylation similarity patterns are captured in the
corresponding similarity matrices {Sμ|μ � 1, 2, 3}.

To reconstruct the cell-to-cell methylation similarity with the
consensus-based clustering strategy, scMelody implements
spectral clustering (von Luxburg, 2007) to generate basic cell
partitions according to the methylation similarity matrices.
Spectral clustering does not make strong assumptions on the
form of the cluster and is effective for clustering sparse data with
only similarity relationships between data points. Given a
similarity matrix S � (sij) ∈ Rn×n, where sij ≥ 0 represents the
linkage weights between cell i and cell j, spectral clustering
partitions the cells into C clusters through solving the
following optimization problem:

min
L ∈ Rn×C < LLT, In − ~S >, s.t. LTL � IC

where ~S � D−1/2SD−1/2 and D � diag(d11, d22, . . . , dnn) is a
diagonal matrix with dii � ∑n

j�1sij. Finally, each row of
obtained L is treated as a data point in RC, and is clustered
into C groups by k-means. Note that In − ~S is called a normalized
graph Laplacian. By implementing spectral clustering on the three
similarity matrices {S1, S2, S3}, we can generate a set of basic cell

partitions Π � {πμ|μ � 1, 2, 3}, which can be used as a clustering
prior for reconstructing cell-to-cell similarity.

To convert the information of each basic cell partition into the
respective cell-to-cell similarity matrix, scMelody constructs a co-
occurrence matrix for each basic cluster. In traditional consensus
clustering strategy, for each basic clustering assignment πμ in Π,
an n × n binary co-occurrence matrix is constructed, which can
be denoted as Iμ:

Iμ(Xi, Xj) � { 1 ifC(Xi) � C(Xj)
0 otherwise

where C(Xi) denotes the clustering label of cell Xi, and if the cell
pairs (Xi,Xj) are assigned into the same cluster in the μ -th
member πμ, the value of Iμ(Xi,Xj) is equal to 1, otherwise is 0.
The general consensus matrix is obtained by averaging the binary
co-occurrence matrices Iμ. However, this may not be sufficiently
informative to reconstruct cell-to-cell similarity as the inherent
similarity relationships of cells are ignored and the resulting
consensus matrix is heavily dependent on the basic cell partitions.

To reconstruct the cell-to-cell similarity patterns that faithfully
reflects themethylation difference between cells, scMelody adopts
a two-stage strategy to improve the construction of the consensus
matrix and the resulting consensus matrix can be used to measure
the cell-to-cell pairwise similarity in higher resolution. In the first
stage, scMelody redefines the construction of the binary co-
occurrence matrix Iμ to produce a more fine-grained co-
occurrence matrix Ipμ. Specifically, scMelody utilizes the basic
similarity matrix to regularize the binary co-occurrence matrix Iμ
and the new co-occurrence matrix Ipμ can be expressed as:

Ipμ � Iμ ⊙ Sμ

where ⊙ denotes the Hadamard product and each value in Ipμ can
be calculated as Ipμ(Xi,Xj) � Iμ(Xi,Xj) × Sμ(Xi,Xj). In this
way, the new matrix Ipμ measures the co-occurrence of cell
pairs belonging to the same cluster in higher resolution.
Compared to Iμ, Ipμ refines the similarity of cells within the
clusters, while preserving the differences between cells
belonging to different clusters. In the second stage, scMelody
adaptively assigns weights to different Ipμ based on the diversity
and separability of the basic cell partitions with a dual weighting
strategy. Firstly, existing studies have underlined the importance
of diversity in basic clustering partitions to enhance the
performance of ensemble solutions (Kuncheva and
Hadjitodorov, 2004; Hadjitodorov et al., 2006; Fern et al.,
2008), thus scMelody proposes a weighting criterion to assess
the diversity of basic cell partitions based on NMI (Vinh et al.,
2010), where NMI utilizes mutual information to measure the
agreement of the two clustering assignments. Suppose each basic
cell partition πμ � {Cμ

1 , C
μ
2 , . . .C

μ
k, . . . , C

μ
Kμ}, Cμ

k is a cluster of πμ

and Kμ denotes the number of the clusters of πμ. To punish the
basic cell partition that contributes little to the diversity, the
weight for basic cell partition πμ can be formularized as follows:

wdiv
μ � exp( − 1

r−1∑r
]�1,] ≠ μNMI(πμ, π]))∑r

μ�1exp( − 1
r−1∑r

]�1,] ≠ μNMI(πμ, π]))
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NMI(πμ, π]) � 2 × ∑k,lpkllog
pkl

pk × pl

−∑kpklogpk − ∑lpllogpl

where r � 3 represents the number of basic cell partitions.
Besides, pk � nk/n, pl � nl/n and pkl � nkl/n, where nk, nl
represents the number of cells in the k -th and l -th cluster of
the basic cell partition πμ, π] respectively, and nkl is the number of
cells shared by cluster k and cluster l. NMI score ranges from 0 to
1, with higher NMI score representing more consistent basic cell
partitions and 1

r−1∑r
]�1,] ≠ μNMI(πμ, π]) measures the overall

consistency between the basic cell partition πμ and others,
with higher values representing less contribution to the
diversity. Note that 0<wdiv

μ < 1 and ∑
μ
wdiv

μ � 1. Then, to assess

the separability of basic cell partitions, scMelody considers the
silhouette coefficient (Rousseeuw, 1987), which combines the
cohesion and separation of clusters to assess the clustering
performance when the ground truth labels are not known.
Given a basic cell clustering assignment
πμ � {Cμ

1 , C
μ
2 , . . .C

μ
k, . . . , C

μ
Kμ}, the weight defined by the

separability can be obtained as follows:

wsep
μ � exp(SI(πμ))∑r

μ�1exp(SI(πμ))
SI(πμ) � 1

Kμ
∑

k

⎧⎪⎨⎪⎩ 1
nk

∑
Xi∈C

μ
k

b(Xi) − a(Xi)
max[b(Xi), a(Xi)]

⎫⎪⎬⎪⎭
a(Xi) � 1

nk − 1
∑

Xj∈C
μ
k
, Xj≠Xi

K(Sμ(Xi, Xj))
b(Xi) � minl,l≠k

⎧⎪⎨⎪⎩ 1
nl

∑
Xj∈C

μ
l

K(Sμ(Xi, Xj))⎫⎪⎬⎪⎭
where a(Xi) denotes the average distance between cell Xi and all
other cells in the same cluster Cμ

k while b(Xi) denotes the average
distance between cell Xi and all other cells in the next nearest
cluster Cμ

l . Here, K(.) is a kernel function that converts the
similarity measure Sμ(Xi,Xj) to the respective distance measure
1 − Sμ(Xi,Xj) as the original value of the basic cell-to-cell
similarity measure varies from 0 to 1. SI(πμ) ranges from -1
to 1, with a higher value indicating that the intra-class distance is
small while the inter-class distance is large thus the cells are well-
clustered. Note that we also have 0<wsep

μ < 1 and∑
μ
wsep

μ � 1, with

higher wsep
μ indicating higher separability for basic cell partition

πμ. In this way, scMelody achieves the assessment of weights
based on the diversity and separability of the basic cell partitions.
Combining with the regularized co-occurrence matrix Ipμ, the
resulting weighted consensus matrix CO can be constructed
through a linear aggregation function, which can be expressed as:

CO(Xi, Xj) � f (w, Ip) � 0.5p⎛⎝∑
μ
wdiv

μ Ipμ +∑
μ
wsep

μ Ipμ⎞⎠
where 0.5 is used as a scaling coefficient, restricting the value of
cell-to-cell pairwise similarity in the weighted consensus matrix
CO varying from 0~1. Each value CO(Xi,Xj) in the resulting

weighted consensus matrix is a reconstructed similarity measure
of each cell pair (Xi,Xj), which measures the methylation
similarity relationships between cells in higher resolution.

Finally, the weighted consensus matrix CO is clustered using
the complete-linkage HC algorithm to yield the resulting cell
partitions. The overall scMelody clustering framework is shown
in Figure 1, and the pseudo code flow is available inAlgorithm 1.

Algorithm 1: scMelody

2.3 Determine the Optimal Number of
Clusters
Both the spectral clustering and HC algorithms need to specify the
number of clusters in advance to generate the cluster assignments.
Here, we integrate basic similarity measures of cells to propose a
robust strategy to determine the optimal number of clusters based
on the silhouette coefficient criterion. Let k � {2, . . . , Kmax}, where
Kmax denotes the possible maximum number of clusters, we first
run the spectral clustering varying k (k denotes the input number
of clusters for spectral clustering) from 2 toKmax. Let πk represents
the corresponding cell partition when the input number of clusters
equaling k. For the three different similarity measures, we can get
three different cell partitions at each value of k. Then, we calculate
the silhouette coefficient for each similarity measure at each k and
select the best ksp as the optimal number of spectral clustering
which is given by:

ksp � argmax∑r

μ�1(SI(πk)|k)

where r � 3 represents the number of spectral clustering
partitions and (SI(πk)|k) represents silhouette coefficient of
the corresponding spectral clustering partition based on
similarity measure μ at each k. ksp is selected as the optimal
number for spectral clustering when the sum of the
corresponding silhouette coefficients generated from the three
basic similarity measures reaches maximum. Then, to generate
the final cell partitions, the reconstructed similarity matrix CO is
clustered using the complete-linkage HC algorithm. We cut the
hierarchical tree at kopt clusters which can be expressed as:

kopt � argmax(SI(πk)|k)
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where kopt is the optimal number of the resulting cell partitions
and can be obtained when the silhouette coefficient generated
from the reconstructed similarity measures reaches maximum.

2.4 Model Comparison
To evaluate the clustering performance of scMelody, we
performed intensive comparative studies with previously
published methods, which were described as follows:

SW + HC (Smallwood et al., 2014): The sliding window (SW)
approach first estimated the sample-specificmethylation rates of the
genome-wide CpGs in a single cell based on a binomial distribution.
To increase the coverage across cells, a sliding window of 3 kb in size
and 600 bp in step size was used to subdivide the genome. Then the
cell-to-cell methylation variances were evaluated using the
estimated sample-specific methylation rates. The cell partitions
were generated by the complete-linkage hierarchical clustering.

PearsonHC (Hou et al., 2016): This approach utilized the
Pearson correlation coefficient to measure cell-to-cell
methylation similarity based on the genome-wide overlapping
CpGs of cell pairs. This measure was identical to the Pearson
similarity metric used in scMelody. The complete-linkage HCwas
implemented to generate the cell clusters.

PDclust (Hui et al., 2018): PDclust depended on a measure of
CpG methylation pairwise dissimilarity (PD), which was defined
as the proportion of the overlapping CpGs with discordant
methylation status between each pair of cells. The cell
partitions were generated by calculating Euclidean distances
between each pair of cells based on their PD values using the
Ward-linkage HC. Note that the PD value used in PDclust is
different from the Hamming similarity measure in scMelody, as
the Hamming similarity measure quantified the methylation
similarity of cell pairs and the basic cell partitions were
obtained based entirely on Hamming similarity without
calculating the Euclidean distances of the measure.

Epiclomal (de Souza et al., 2020): Epiclomal was a probabilistic
clustering method arising from a hierarchical mixture model
which performed better than single-distance-based methods on
several datasets. There were two major variants for Epiclomal,
including EpiclomalBasic (EpiclomalB) and EpiclomalRegion
(EpiclomalR). EpiclomalB considered the methylation status of

all CpGs while EpiclomalR focused on the methylation levels
across genomic functional regions such as CGIs, leading to better
interpretation of the expected cellular heterogeneity on real
datasets. Thus, the author mainly focused on the clustering
performance of EpiclomalR on real datasets. To be fair, we
applied the two versions of Epiclomal on the synthetic
datasets; while on the real datasets, only EpiclomalR was
considered. For EpiclomalR, the clustering assignments were
generated from the filtered inputs of 10,000 CpGs, which
were based on the functional genomic regions from CGI
and TFBS.

2.5 Clustering Performance Metrics
To evaluate the performance of different clustering algorithms,
we utilize two popular clustering validation indices, including the
Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) and
V-measure (Rosenberg and Hirschberg, 2007). Both the two
clustering validation indices measure the agreement between
the inferred cell clusters and the true or predefined ones from
different perspectives. ARI measures clustering performance by
the similarity or matching degree between the prediction target
cluster vector and the real cluster vector. Given a set of m cells, the
quantitative relationship between the clustering results and the
reference labels can be reflected in a contingency table, where
each entry indicates the number of objects in common between
the prediction and the reference.

ARI �
∑ij(mij

2
) − [∑i( αi

2
)∑j( βj

2
)]/(m

2
)

1
2[∑i( αi

2
) +∑i( βj

2
)] − [∑i( αi

2
)∑j( βj

2
)]/(m

2
)

Wheremij comes from the contingency table, αi is the sum of the
ith row of the contingency table, βj is the sum of the jth column of
the contingency table and the (.) function denotes a binomial
coefficient. The V-measure captures the homogeneity and
completeness of a clustering result. To satisfy the homogeneity
criterion, each cluster contains only members of a single class.
Completeness is satisfied if all those cells that are members of a
single group are assigned to a single cluster. The V-measure can

FIGURE 1 | Illustrative flowchart of scMelody. scMelody first utilizes three correlation-based measures to capture cell-to-cell methylation similarity patterns,
including Cosine, Hamming and Pearson. The basic cell clusters are generated by spectral clustering according to the similarity patterns. Then, scMelody leverages an
enhanced consensus-based clustering model to reconstruct the cell-to-cell similarity by integrating the basic cell clusters and similarity patterns. The resulting cell cluster
is generated by performing the complete-linkage hierarchical clustering according to the reconstructed cell-to-cell similarity matrix.
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be calculated as the harmonic mean of homogeneity (h) and
completeness (c):

V � 2hc
h + c

where the homogeneity h � 1 −H(C|K)/H(C), H(C|K) is the
conditional entropy of the classes given the cluster assignments
and is given by H(C|K) � −∑|C|

c�1 ∑|K|
k�1

nc,k
n log(nc,kn ), H(C) is the

entropy of the classes and is given by H(C) � −∑|C|
c�1

nc
n log(ncn ),

with n the number of cells, nc and nk the number of cells
respectively belonging to true class c and cluster k, and nc,k
the number of cells from true class c assigned to cluster k.
The completeness c � 1 −H(K|C)/H(K), which has the
analogous formulation as the homogeneity h.

3 RESULTS

3.1 scMelody Outperforms the Existing
Methods
We first benchmarked scMelody together with the other
published methods on 7 real single-cell methylation datasets,
reflecting a wide spectrum of sequencing techniques, data
sparsity, number and heterogeneity of single cells examined.
Figure 2 showed the clustering performance of these methods
across the datasets, which clearly indicated that scMelody
outperformed other methods by achieving the same or higher
ARI and V-measures scores. Specifically, on the three datasets
with fewer cells or clusters, including Smallwood, Hou and Pott,
scMelody accurately clustered all cells while other methods
misclassified one or several cells. On the Farlik2015 dataset,
the heterogeneity between the different cell subpopulations
(treated or untreated) was subtle, however, scMelody
performed better than the competing methods by achieving
less misclassification for both K562 and HL60 treated cells. On
the Farlik2016 dataset, scMelody achieved significant clustering
performance gains than other methods, where the inferred
assignments of scMelody showed much higher consistency

with the true cell clusters (Supplementary Figure S2). On the
two relatively large datasets, scMelody was superior to the
competing methods by recapitulating the major cell types
more accurately and achieved higher ARI and V-measure
scores. Moreover, EpiclomalR accurately identified the cell
heterogeneity on both Hou and Pott datasets and was slightly
inferior to scMelody on Smallwood and Farlik2015 datasets while
was significantly inferior to scMelody on Farlik 2016, Luo-human
and Luo-mouse datasets. The clustering performances of the three
single-distance-based methods varied a lot across different datasets.
On the simple datasets with fewer numbers of cells or clusters (like
Smallwood and Pott), they could accurately identify the cell
heterogeneity and achieved close ARI or V-measure scores
compared to scMeldoy and EpiclomalR; however, their clustering
performance decayed rapidly on complex datasets with increasing
numbers of cells or clusters (like Farlik2016 and Luo-human).
Additionally, we also observed that even the three single-distance-
based methods achieved different clustering performances on
different datasets and no single measure could always be better
than others. Supplementary Figure S3 summarized the ARI
scores and V-measure scores of the benchmarked methods across
the real datasets and scMelody showed the highest average ARI and
V-measure scores, indicating that our model was universal to
different kinds of single-cell methylation datasets.

We further investigated the performance of the benchmarked
methods in terms of estimating the number of clusters. Since only
EpiclomalR and scMelody provided built-in functions for
predicting the number of clusters, we utilized the silhouette
coefficient criterion to specify the optimal number of clusters
for the three single-distance-based methods. The result showed
that all methods accurately estimated the optimal number of
clusters on the datasets with the fewer true numbers of clusters,
including the Smallwood and Pott datasets (Table 2). While on
the datasets with stronger cellular heterogeneity, scMelody
achieved improved estimations that were closer to the
numbers of true clusters, such as accurately predicting the
number of clusters on the Farlik2016 and Luo-mouse datasets
and achieving smaller prediction errors on the Luo-human

FIGURE 2 | Clustering performance comparison between scMelody and other major published methods on the real datasets. Both ARI and V-measure are
employed to assess the similarity between inferred and true cluster labels.
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dataset. EpiclomalR provided better prediction performance than
the three single-distance-based methods while the three single-
distance-based methods generally underestimated the number of
clusters. Of note, although scMelody and the three single-
distance-based methods all predicted the number of clusters
based on the silhouette coefficient criterion, the better
prediction performance of scMelody suggested that the
reconstructed cell-to-cell similarity enabled a more accurate
reflection of the differences between cell subpopulations.

3.2 scMelody Defines a Better Similarity
Measure With Improved Clustering
Performance
To further illustrate that scMelody could improve the clustering
performance by reconstructing cell-to-cell similarity with the
proposed enhanced consensus clustering strategy, we further
investigated the clustering results generated by different
similarity measures. Using the HC as the benchmarked
clustering algorithm, the cell partitions were generated from
different similarity matrices: 1) The three basic similarity
matrices, including Cosine, Hamming and Pearson. 2)
Consensus-I, the similarity matrix was the traditional
consensus matrix generated by averaging the binary co-
occurrence matrices without the regularization process and the
weighting process. 3) Consensus-II, the similarity matrix was the
consensus matrix generated by averaging the regularized co-
occurrence matrices without the weighting process. 4)
Consensus-III, the similarity matrix was the consensus matrix
generated by weighting the binary co-occurrence matrices
without the regularization process. 5) The similarity matrix
was the resulting consensus matrix of scMelody. The
differences between these similarity measures are summarized
in Table 3.

The results showed that the clustering performance varied
considerably between different similarity measures (Figure 3).
Firstly, we observed that the reconstructed cell-to-cell similarity
by scMelody could dissect cellular heterogeneity more accurately
and robustly, as it achieved better or the same clustering
performance than other similarity measures across all the
datasets. Secondly, we also observed that the clustering
performances of the basic similarity measures varied
considerably on different datasets, indicating that they
captured methylation differences between cells from different
aspects. Thirdly, generally speaking, integrating the information
from basic similarity measures could more accurately reflect the

true methylation heterogeneity between cells, which was reflected
in the improved clustering accuracy of the consensus-based
similarity measures than the basic similarity measures on most
datasets. However, we also observed that Consensus-I did not
consistently improve the clustering performance on all datasets
(like the Smallwood, Farlik2015 and Hou datasets) compared to
the basic similarity measures, indicating the limitation of the
traditional consensus strategy. Moreover, the overall performance
of Consensus-I was not as good as Consensus-II or Consensus-III
and this suggested that both the regularization and weighting
strategy contributed to boosting the clustering performance. In
conclusion, the reconstructed similarity measure by scMelody
could achieve more significant clustering performance gains than
the basic similarity measures across different real datasets.

3.3 Clustering Stability and Scalability of
scMelody
After verifying the clustering performance of scMelody on the
real datasets, we generated a variety of synthetic datasets to
further evaluate its clustering stability, where the clustering
complexity could be controlled with different initialization
settings. Firstly, we compared the clustering performance of
scMelody and other published methods when the number of
cells varied over a wide range. The results showed that when we
fixed the number of clusters (C � 6) and the CpG dropout
proportion (η � 0.5), the clustering performance of all
methods improved with the increase of the cell numbers,
while scMelody performed better than other methods across
all settings of cell numbers (Figure 4A). Compared with
EpclomalB, EpiclomalR had better average clustering
performance when the numbers of cells were small (N≤ 600),
but EpiclomalB outperformed EpiclomalR when the numbers of
cells were relatively large, indicating that using the information

TABLE 2 | The estimated number of clusters on each real dataset.

Datasets True clusters SW + HC PearsonHC PDclust EpiclomalR scMelody

Smallwood 2 2 2 2 2 2
Farlik2015 4 2 2 2 2 2
Hou 3 2 3 3 3 3
Pott 2 2 2 2 2 2
Farlik2016 6 2 3 2 7 6
Luo-human 21 13 14 15 25 18
Luo-mouse 16 10 12 12 15 16

TABLE 3 | The differences between the benchmarked similarity measures.

Similarity Consensus Regularization Weighting

Cosine No — —

Hamming No — —

Pearson No — —

Consensus-I Yes No No
Consensus-II Yes Yes No
Consensus-III Yes No Yes
ScMelody Yes Yes Yes
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from genome-wide CpGs might better capture cellular
heterogeneity than local functional regions when clustering a
large number of cells. We also observed that the two correlation-
based methods (PearsonHC and PDclust) were better than the
method (SW + HC) based on the Euclidean distance. Figure 4B
showed the clustering performance of the benchmarked methods
when varying numbers of clusters (with N � 600 and η � 0.5).
When the predefined numbers of clusters were small, the
differences in clustering performance among the methods were
not significant due to the lower complexity of the clustering task;
however, with the increase of the number of clusters, the
clustering performance of all methods began to drop while
scMelody achieved higher average ARI and V-measure scores

than the competing methods. Epiclomal performed better than
other single-distance-based clustering methods, while PDclust
and PearsonHC were better than SW +HC. Finally, when varying
the sparsity of the synthetic datasets by CpG dropout
proportions, scMelody achieved better clustering performance
under all CpG dropout proportions than the competing methods
and could maintain the clustering accuracy across a wide range of
dropout proportions (η≤ 0.7), demonstrating its capability and
sensitivity in robustly identifying cell subpopulations
(Figure 4C).

Furthermore, considering that current single-cell methylation
sequencing techniques have already assayed tens to thousands of
cells, we also evaluated the runtime of these methods at different

FIGURE 3 | Clustering performance comparison of different similarity measures on the real datasets. These similarity measures include the three basic correlation-
based measures and the consensus-based similarity measures. The complete-linkage hierarchical clustering is used as the benchmarked clustering algorithm.

FIGURE 4 | Benchmarking the clustering stability of scMelody and other major publishedmethods on a variety of synthetic datasets. The clustering performance is
measured by ARI and V-measure when we vary by: (A) number of cells; (B) number of clusters; (C) CpG dropout proportions. Each setting covers 50 input datasets to
evaluate the average clustering performance.
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cell numbers. Note that all calculation was performed on a
Windows server with an Intel Xeon Platinum 8160 CPU
(2.1 GHz) and 32G RAM. Figure 5 summarized the average
time consumption of the benchmarked methods on the synthetic
datasets at different numbers of cells. It was obvious that the three
single-distance-based methods had lower time consumption than
Epiclomal and scMelody, in which SW + HC required more
running time than PearsonHC and PDclust. Moreover, scMelody
was more computationally efficient compared to EpiclomalB and
EpiclomalR while EpiclomalR was more computationally
expensive than EpiclomalB. Of note, we found that
scMelody spent more than 99% of the running time on
calculating the basic cell-to-cell similarity matrices for the
input single-cell methylation profiles (Supplementary Figure
S4) and this was also true for single-distance-based methods,
such as PearsonHC and PDclust. Since scMelody was
demonstrated to be stable over a wide range of CpG
dropout proportions, researchers were recommended to
select CpGs from genomic regions of interest to speed up
the calculation of the basic similarity matrices in real
application scenarios. Besides, considering the varying
number of CpGs assayed in real single-cell methylation
datasets, Supplementary Table S2 also showed the runtime
of the benchmarked methods on the real datasets and the
runtime of scMelody varied within several hours which was
practical. To sum up, scMelody could accurately cluster
thousands of cells within hours, reaching a balance between
the clustering accuracy and the computation efficiency.

3.4 The Reconstructed Similarity Facilitates
to the Interpretation of Cell Heterogeneity
To further demonstrate the ability of scMelody to uncover known
cell types, we presented two real case studies for the Smallwood
and Luo-mouse datasets. Firstly, we investigated whether the cell-
to-cell similarity values could visually assess the structures of cell
subpopulations, including the reconstructed similarity measure
and the three basic similarity measures. Supplementary Figure
S5 showed the heatmaps based on the cell-to-cell pairwise
similarity values for the Smallwood dataset. It could be
observed that cells with the reconstructed similarity values by
scMelody presented a grouping tendency in the diagonal

(Supplementary Figure S5A), indicating two significant
heterogeneous cell populations on this dataset. Combined with
the true cell labels, we found that the two major subpopulations
were precisely representative of 2i ESCs and serum ESCs.
However, even the basic similarity measures also provided
accurate clustering results, like Hamming similarity measure,
they could not provide the same aggregation tendency in the
diagonal as scMelody did (Supplementary Figures S5B–S5D).
This indicated that the reconstructed cell-to-cell similarity could
contribute to the characterization of methylation heterogeneity
between cells, which could help researchers intuitively assess the
potential cell subpopulations. Secondly, we further investigated
the clustering results of the consensus-based similarity measures
and focused on the effects of the regularization process and the
dual weighting strategy on the output cell clusters. Based on the
methylation levels in 100 kb bins across the genome, Figure 6
showed the t-SNE(van der Maaten and Hinton, 2008)
visualization results of the Luo-mouse dataset according to the
original cell types and inferred clusters, where the inferred
clusters were generated by different consensus clustering
strategies, including scMelody, Consensus-II and Consensus-
III (Table 3). The results indicated that scMelody generated
more accurate cell clusters which showed a better agreement
with the original cell types. Compared to Consensus-II and
Consensus-III, scMelody could more accurately identify the
major differences between cell subpopulations and avoid
overestimating cellular heterogeneity within the
subpopulations. This demonstrated the capability of the
enhanced consensus-based clustering model to uncover the
cell subpopulations, which could boost the clustering
performance by integrating the regularization process and the
dual weighting strategy.

3.5 scMelody Uncovers Novel Cell Clusters
To demonstrate the capability of scMelody in identifying novel
cell clusters, we presented two case studies. Firstly, according to
the annotations from the original experiment of the Farlik2016
dataset, the clustering result of scMelody showed that six cells
(denoted as HSC-sub) annotated as HSC were clustered as MPP
(Supplementary Table S3) while the remaining HSCs (denoted
as HSC-raw) were independently grouped together
(Supplementary Figure S6). To explore the cause of the
deviation, we first examined the pairwise methylation
similarity of all cells which were annotated as HSC according
to their genome-wide methylation status (Figure 7A). The result
showed that cells denoted as HSC-sub or HSC-raw showed high
internal correlations and was much higher than assembling them
together (HSC-all), indicating potential heterogeneity among the
two subpopulations (HSC-sub and HSC-raw). Then, to provide a
biologically meaningful basis for analyzing DNA methylation
differences between the HSCs and MPPs, we further aggregated
the DNA methylation profiles at the functional genomic region
level according to the BLUEPRINT version of the Ensembl
Regulatory Build (Zerbino et al., 2015; Adams et al., 2012),
including six types of putative regulatory regions. Figure 7B
showed the t-SNE visualization result of all cells in the Farlik2016
dataset according to their annotated cell labels. We observed that

FIGURE 5 | The average runtime of the benchmarked methods on the
synthetic datasets with different numbers of cells.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 84201910

Tian et al. Single-Cell Methylome Clustering

36

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


the HSC population was more heterogeneous and a few HSCs
presented a closer distance to MPPs. Moreover, Figure 7C
showed the average methylation levels of the three groups of
cells in the 500 most variable regions (Chi-square, FDR <.05)
for each type of the regulatory region. According to Tukey’s
multiple comparisons test (Dunn, 1961), the average
methylation level of the HSC-sub population was
significantly different from that of the HSC-raw population
in all six functional regions while was significantly different
from that of the MPP population in four of six functional
regions. The specific statistic information of the average
methylation levels of the three groups of cells could be
obtained in Supplementary Tables S4–S9. Moreover, we
utilized the GREAT tool (McLean et al., 2010) to evaluate
the functional significance of the identified variable genomic
regions and the result indicated several enriched biological
process (BP) Gene Ontology (GO) terms that were associated
with HSC-raw and HSC-sub (Figure 7D; Supplementary Table
S10). For instance, the two GO terms mitotic cytokinesis and
positive regulation of mitotic nuclear division that were
associated with hypomethylation in HSC-raw demonstrated
that HSC-raw might have stronger differentiation potency
than HSC-sub as DNA methylation could be associated with
transcriptional repression (Luo et al., 2018). Finally, combined
with the human hematopoietic lineage (Doulatov et al., 2012;
Farlik et al., 2016), we knew that all blood cells originated from

HSCs and the transition from HSC to MPP was always in the
first stage of the differentiation lineage. These findings
suggested that the six cells, which were annotated as HSC
from the original publication, were different from the typical
HSCs and presented an intermediate methylation status of two
kinds of continuously differentiated cells (HSC and MPP) that
warranted further investigation.

As an additional validation, we also evaluated the ability of
scMelody to identify the novel cell clusters on a large dataset
with complex cell composition contexts. This dataset was
generated by Liu et al. (2021), in which there were 28077
inhibitory neurons derived from different regions of the
mouse brain tissue, presenting high intercellular
heterogeneity. We first aggregated the methylation profiles of
100 kb bins and these cells could be divided into 14 major types
according to the annotations of the original experiment
(Figure 8A). Besides, each major type was comprised of
multiple heterogeneous subtypes, which were identified in
the original experiment. When applying scMelody to this
dataset, the clustering results showed that one major type
PAL-Inh (inhibitory neurons derived from mouse pallidum)
with the largest number of cells (4307 cells) among the 14 major
types could be further divided into 11 subtypes, while only 10
subtypes were annotated for the PAL-Inh cells in the original
experiment (Figures 8B,C). After comparison, we found that
the novel subpopulation (PAL-Inh novel) identified by

FIGURE 6 | t-SNE visualization results of the Luo-mouse dataset according to the different cell labels. (A) True cell labels; (B) The inferred clusters of scMeldoy; (C)
The inferred clusters of Consensus-II. (D) The inferred clusters of Consensus-III.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 84201911

Tian et al. Single-Cell Methylome Clustering

37

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


scMelody mainly came from the subtype PAL-Inh Meis2. Since
the methylation levels on gene bodies negatively correlated with
the gene expression in mouse neurons (Lister et al., 2013; Mo
et al., 2015; Stroud et al., 2017; Liu et al., 2021), we profiled the
methylation levels along the gene bodies with Chi-square (FDR
<0.05) and the GO analysis revealed enriched BP terms for the
differentially methylated genes between the PAL-Inh novel
subpopulation and PAL-Inh Meis2 subpopulation
(Supplementary Figure S7; Supplementary Table S11). For
instance, several most significantly enriched GO terms, such as
nervous system development and neurogenesis, clearly showed

major biological processes of mouse neuron development.
Moreover, we also noticed that the GO term “cell
morphogenesis involved in neuron differentiation” was
associated with hypermethylation in PAL-Inh novel
subpopulation and the GO term “negative regulation of protein
modification process” was associated with hypomethylation in
PAL-Inh novel subpopulation. This result showed that the PAL-
Inh Meis2 subpopulation might have a stronger differentiation
ability than the PAL-Inh novel subpopulation (Menon and
Gupton, 2018; Badimon et al., 2020). Besides, the GREAT
analysis uncovered the term “abnormal neuron morphology” of

FIGURE 7 | Case study of scMelody in identifying novel cell clusters on the Farlik2016 dataset. (A) The concordance of the DNA methylation of the cells annotated
as HSC. The concordance is calculated by averaging the pairwise correlation coefficients between any two single cells within each group, including Cosine, Hamming
and Pearson correlation coefficient. (B) t-SNE projection plot of the Farlik2016 dataset using the averagemethylation levels on the top 500 variable functional regions in all
six types of putative regulatory regions. Each point represents an individual cell, which is colored according to the annotated cell labels from the original experiment.
(C) Average methylation levels of cells denoted as HSC-raw, HSC-sub and MPP on the six functional genomic regions, including CTCF binding site (CTCF), Distal
element, DNase element, Proximal element, Transcription factor binding site (TFBS) and Transcriptional start site (TSS). Tukey’s multiple comparisons test is used to
determine whether there is a significant difference in mean methylation levels between each pair of the three cell groups. By default, the significance level is .05 and the
significance marks are denoted by: ns, not significant; *p < .05; **p < .01, ***p < .001; ****p < .0001. (D) Genomic Regions Enrichment of Annotations Tool (GREAT)
enrichment analysis of the variable genomic regions based on biological process Gene Ontology (GO) terms between the HSC-sub and HSC-raw. The enriched GO
terms are ordered with the binomial test p value.
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Mouse Phenotype, which further confirmed the difference in these
two cell subpopulations.

4 DISCUSSION

The high resolution of single-cell methylation sequencing enables
researchers to explore cell-to-cell epigenetic heterogeneity and
underlines the significance of clustering cells based on the single-
cell methylation profiles. In a biological sense, DNA methylation
is well suited for exploring cell heterogeneity because this crucial
modification is cell-type-specific and preserves an epigenetic
memory of a cell’s developmental history (Farlik et al., 2016).
In this paper, we propose scMelody, an enhanced consensus-
based clustering model for single-cell methylation data analysis
by reconstructing cell-to-cell pairwise similarity. When applying
it on real single-cell methylation datasets generated from various
sequencing techniques, scMeldoy achieved significant clustering
performance gains over the previous methods, including several
single-distance-based methods and one probabilistic method.
Benefiting from the reconstructed cell-to-cell similarity
measure, scMelody also attained accurate estimates for the
number of clusters based on the silhouette coefficient criterion.
Moreover, using the synthetic datasets generated across a variety
of settings, scMelody was demonstrated to be stable which
robustly maintained its clustering accuracy over a wide range
of number of cells, number of clusters and CpG dropout
proportions. The real case studies also indicated the capability
of scMelody to identify known cell types and uncover novel cell
clusters. To sum up, scMeldoy could accurately recapitulate the
cellular epigenetic heterogeneity and was demonstrated to be
universal for different kinds of single-cell methylation datasets.

Generally, the (dis)similarity measure is the core for quantifying
the methylation differences between cells, thus many methods are
designed to incorporate different cell-to-cell methylation (dis)
similarity measures into the distance-based clustering algorithms
to generate cell partitions. However, our results showed that no
single (dis)similarity measure could provide satisfactory clustering
performance on all datasets as different (dis)similarity measures
captures the cellular heterogeneity from different perspectives. For
example, both PearsonHC and PDclust accurately assigned all cells to
their respective clusters on the Pott dataset while they could hardly
identify the cell types on the Farlik2016 dataset (Figure 4). Instead, a
significant advantage of scMelody was that it integrated the clustering
information of multiple basic similarity measures to overcome their
limitation in capturing complete cellular methylation heterogeneity.
Besides, the reconstructed cell-to-cell similarity measure enabled
scMelody to reach better clustering performance across different
datasets. This highlighted the importance of identifying cell
subpopulations by combining the information of different cell-to-
cell methylation (dis)similarity relationships. However, even
scMelody can process thousands of cells within several hours, the
computational efficiency of scMelody is still to be improved especially
when the computational resources are limited. We will continue to
develop optimized versions of scMelody to improve its
computational efficiency, such as the GPU-accelerated scMelody,
which can be more practical for the researchers to use it.

With the development of single-cell methylation sequencing
technologies, the increase of sequencing depth will greatly
alleviate the sparsity problem of single-cell methylation data,
which can significantly boost the performance of clustering cells
based on cell-to-cell similarity patterns. Our scMelody is flexible
and can easily accommodate additional similarity measures to
cluster cells, as the novel and sophisticated distance measures

FIGURE 8 | t-SNE visualization results of the large Liu dataset based on the 100 kb bins methylation profiles. (A) The t-SNE visualization result of all inhibitory
neurons, where a total of 28077 cells are defined as 14major types and are colored according to the annotations from the original experiment. (B) The t-SNE visualization
result of PAL-Inh subpopulation, where a total of 4307 cells are defined as 10 subtypes are colored according to the annotations from the original experiment. (C) The
t-SNE visualization result of PAL-Inh subpopulation, where the cells are clustered into 11 subtypes by scMelody. For comparison, the novel cell cluster identified by
scMelody is circled with a black rectangle.
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continue to be proposed. This has important implications for
fully utilizing single-cell methylation sequencing to study
cell differentiation versus variation, especially for
uncovering novel cell types in complex human diseases,
such as cancers.
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Accurate detection and location of tumor lesions are essential for improving the diagnosis
and personalized cancer therapy. However, the diagnosis of lesions with fuzzy histology is
mainly dependent on experiences and with low accuracy and efficiency. Here, we
developed a logistic regression model based on mutational signatures (MS) for each
cancer type to trace the tumor origin. We observed MS could distinguish cancer from
inflammation and healthy individuals. By collecting extensive datasets of samples from ten
tumor types in the training cohort (5,001 samples) and independent testing cohort (2,580
samples), cancer-type-specific MS patterns (CTS-MS) were identified and had a robust
performance in distinguishing different types of primary and metastatic solid tumors (AUC:
0.76 ~ 0.93). Moreover, we validated our model in an Asian population and found that the
AUC of our model in predicting the tumor origin of the Asian population was higher than
0.7. The metastatic tumor lesions inherited the MS pattern of the primary tumor,
suggesting the capability of MS in identifying the tissue-of-origin for metastatic
cancers. Furthermore, we distinguished breast cancer and prostate cancer with 90%
accuracy by combining somatic mutations and CTS-MS from cfDNA, indicating that the
CTS-MS could improve the accuracy of cancer-type prediction by cfDNA. In summary, our
study demonstrated that MS was a novel reliable biomarker for diagnosing solid tumors
and provided new insights into predicting tissue-of-origin.

Keywords: cancer biomarkers, cancer diagnosis, cancer localization, mutational signatures, liquid biopsy

INTRODUCTION

An accurate cancer diagnosis is crucial for choosing the optimal therapy and predicting clinical
outcomes (Jerjes et al., 2010; Varadhachary and Raber, 2014; Thomson, 2018). Histological
examination of the resected specimen remains the gold standard for diagnosing tumors.
However, rapid, accurate diagnosis based on morphology and routine ancillary techniques is
challenging for lesions with fuzzy histology, especially metastatic cancers (Saudemont et al.,
2018; Conway et al., 2019). The accuracies of computed tomography and positron emission
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tomography in identifying the tissue-of-origin of the carcinoma
with unknown primary were 20–27% and 24–40%, respectively,
which are far from enough for determining targeted therapies (Fu
et al., 2019; He et al., 2020a). Therefore, effective strategies are
urgently needed for tumor detection and localization.

The mutation data is easily accessible molecular profile, which
could be robustly retrieved and sequenced in various samples,
such as formalin-fixed and paraffin-embedded specimens.
Previous studies showed a high concordance in mutational
patterns between primary and metastatic tumors, especially
when pathogenic mutations in driver genes were considered
(Manca et al., 2019). Accordingly, some methods were
proposed for tumor origin prediction based on somatic
mutations (Dietlein and Eschner, 2014; Marquard et al., 2015;
Jiao et al., 2020). However, somatic mutations also could be
detected in healthy individuals (Welch et al., 2012; Blokzijl et al.,
2016; Martincorena and Campbell, 2016), increasing the
difficulty of cancer diagnosis. Moreover, mutational profiles
showed substantial overlap across different cancer types,
making it difficult to trace the origin of the tumor (Jurmeister
et al., 2019).

Somatic mutations result from multiple mutational processes,
including exposure to exogenous or endogenous mutagens,
enzymatic modification of DNA, and defective DNA repair.
Different mutational processes generate unique combinations
of mutation types, termed mutational signatures (MS). Single
nucleotide variants can be divided into six types according to the
type of base substitution: C >A, C >G, C >T, T >A, T >C, T >G.
Alexandrov et al. extended the original classification of six types
of single-base substitutions by including base 5′ and base 3′ to the
somatic mutation. Mutational signature (MS) is created by
counting the number of substitutions for each of these 96
mutation types. The COSMIC database has described 30 types
of reference MS based on the analyses of ~10,000 whole-genome
or whole-exon sequencing datasets from TCGA and ICGC
databases (https://cancer.sanger.ac.uk/signatures/signatures_v2/
). MS is cancer-derived etiologies that provide a powerful
alternative for understanding cancer pathophysiology
(Alexandrov et al., 2013; Helleday et al., 2014; Roberts and
Gordenin, 2014; Alexandrov et al., 2016; Pilati et al., 2017;
Zou et al., 2018). Unlike the extensive heterogeneity of
somatic mutations across samples, MS is more stable across
individuals in the same tumor type. Previous studies reported
that different tumor types leave distinctive patterns of MS
(Degasperi et al., 2020). For example, the MS patterns
generated in experimental systems for tobacco carcinogens
exposure were observed in lung cancer (Alexandrov et al.,
2016). MS patterns in colorectal cancer are mostly related to
defective DNA mismatch repair (Pandey et al., 2019). Therefore,
we reasonably speculated that MS patterns could predict the
tumor origin.

Based on the MS patterns, we used the logistic regression
method to construct a model for each cancer type to predict the
origin. Our results showed that MS could distinguish cancer
patients from healthy individuals and inflammation.
Furthermore, our MS-based models showed high accuracy in
detecting the origin of tumors in both primary and metastatic

lesions. Besides, we also found that MS had a better performance
in distinguishing various cancer types than somatic mutations.
Finally, we indicated that considering the MS patterns could help
increase the accuracy of cancer-type prediction by cfDNA.

MATERIALS AND METHODS

Collection of the Whole Exome Data of
Tissues and cfDNA
All variant data of primary tumors were downloaded from TCGA
(http://gdac.broadinstitute.org/), International cancer genome
consortium (ICGC, https://icgc.org/), and other previous
studies (Supplementary Tables S1, S2). In these cases, we
used only the data in TCGA for training (Data Set1). The data
outside of TCGAwere validated (Data set 2). The somatic profiles
of metastatic tumors were derived from 303 metastatic tumors
across nine tumor types (Supplementary Table S3). We
assembled several sets of normal or inflammatory tissues to
evaluate the difference in genomic landscape between tumor
patients and healthy individuals. One of the data sets included
28 healthy individuals, 48 patients with ulcerative colitis, and 18
patients with colitis-associated neoplasia, and the other data set
contained 9 normal brains tissues, 13 normal colon tissues, and
13 normal kidney tissues. We also acquired somatic mutations
from 27 breast and 14 prostate cancers of cfDNA and biopsy. All
these data were obtained by whole-exome sequencing and aligned
to the hg19 genome.

Identification of the Cancer-Type-Specific
Mutational Signatures Patterns
The characteristic MS patterns of each cancer type meet the
following requirements. First, MS was observed in at least 20% of
samples. Secondly, there were significant differences compared
with other cancer types, including a fold change greater than 1.5
and an absolute difference greater than 0.1.

Mutational Signatures-Based Machine
Learning Procedure for Predicting the
Cancer Types of the Primary Tumor
For each of the ten cancer types selected from the TCGA data set,
we used a stepwise logistic regression model to train classifiers for
each cancer type on the CTS-MS described in the above section
and validated our models in an independent dataset. To evaluate
the performance of our model in different populations, we
downloaded the somatic mutation data for Asian populations
from the ICGC database, including non-small cell lung cancers
(n = 76), colorectal cancers (n = 187), bladder cancers (n = 103),
gastric cancers (n = 10), and liver cancers (n = 163). We
developed a logistic regression model based on MS for each
cancer type to trace the tumor origin. Take breast cancer as
an instance, we calculated the score of each sample in the
validation dataset using the breast cancer model, labeling
breast cancer patients as “1” and non-breast cancer patients as
“0” to obtain grouping information. The prediction performance
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of AUC was calculated using the predicted values estimated by
the model with the combination of selected MS as predictors and
the group as an outcome.

Tracing the Origin of Metastatic Sites Based
on Mutational Signatures Patterns
First, we used the liver cancer model above to distinguish primary
liver tumors and malignant liver lesions originating from other
tissues. We further predicted the origin of lesions originating
from other tissues, which were correctly classified in the previous
step, including 28 breast cancers, 9 esophagus cancers, and 10
prostate cancers. To predict the origin of malignant liver lesions
originating from other tissues, we combined CTS-MS and the
score of these three primary tumor models to train a classifier by
neural networks based on the three cancer types selected from the
TCGA data set. Then, we used the model to predict the origin of
malignant liver lesions originating from other tissues.

Combination of Mutational Signatures
Patterns and Somatic Mutation to
Distinguish Different Cancer Types Based
on Plasma cfDNA Data
Based on the CTS-MS, we predicted the origin of tumors from
cfDNA, including 27 breast cancers and 14 prostate cancers. We
compared the scores of each sample in the breast cancer model
and the prostate cancer model. The origin of the sample was
considered to be from the tumor type with a high score. Further,
we combined CTS-MS and tumor-specific mutations to improve
the precision. We identified the tumor-specific mutations as
follows: 1) we calculated the frequency of mutations in each
gene in each cancer and identified genes that were mutated in
more than 5% of the samples as candidate markers. 2) it was
considered a tumor-specific mutation if the mutation frequency
changes more than 0.1 compared with other cancer types. Then,
using the stepwise logistic regression model, we developed
classifiers for prostate and breast cancer based on the CTS-MS
and tumor-specific mutations.

Statistical Analysis
The deconstructSigs approach was used to determine the linear
combination of pre-defined signatures of a single tumor sample
(Rosenthal et al., 2016). We next applied SomaticSignatrues to
identify the de novoMS (Gehring et al., 2015). The information of
pre-defined MS was downloaded from the COSMIC database.
The de novo MS was mapped to pre-defined MS through cosine
similarity. If the similarity was higher than 0.75, it was considered
the same MS.

We annotated the mutated genes in each sample in the
STRING database (https://string-db.org/). According to the
STRING database, we constructed a network of protein-
protein interactions for all mutated genes in each sample.
Mutation connection scores were defined by gene connectivity,
measured by the ratio of the number of genes with interactions to
the total number of mutated genes (Eq. 1). Larger mutation

connection scores indicate that the mutated gene is more
functionally relevant.

Mutation connection score � the number ofgeneswith interactions

the total number ofmutated genes

(1)
We calculated the similarity between tumors as Eq. 2. For each

sample i of tumor M and each sample j of tumor N, we calculated
the cosine similarity (rho) between i and j based on pre-defined
MS. Finally, a similarity matrix with m rows and n columns was
generated. We performed zero-mean normalization on each row
and each column of the similarity matrix. Then, we ranked each
row and divided it by the number of columns. Further, we ranked
each column and divided it by the number of rows.

similarity � ∑
i≤m

∑
j≤ n

rho(i, j)2
mn

(2)

Statistical analyses were performed using R software. The
significance probability (p) values were calculated by the two-
tailed Wilcoxon test functions in R, and the LSAfun package
calculated the cosine similarity. Figures were drawn using the
ggplot2, or package under R environment.

RESULTS

Mutational Signatures Patterns Distinguish
Cancers From Inflammation and Healthy
Individuals
To compare the difference in the genomic landscape among
tumor patients, non-tumor inflammation patients, and healthy
individuals, we collected three datasets, including healthy
individuals (HI, n = 28), patients with ulcerative colitis (UC,
n = 48), and patients with colitis-associated neoplasia (CAN, n =
18) (Nanki et al., 2020). We first computationally defined a tumor
mutation connection score measurement to explore whether the
mutated genes were functionally related. The higher the tumor
mutation connection score, the stronger the functional relevance
of the mutated genes in the individual (detail in methods). Results
showed that the functional relevance of the mutated genes in
CAN is significantly different from HI and UC (Figure 1A). The
tumor mutation connection score of CAN was significantly
higher than HI and UC (HI vs. CAN, Wilcoxon rank-sum test
p < 0.001; UC vs. CAN, Wilcoxon rank-sum test p < 0.001),
indicating that rather than randomly mutation, specific
endogenous or exogenous factors were involved in the
mutation genesis in CAN. Accordingly, we next explored the
potential causal factors of the differences between CAN and HI/
UC. Using the non-negative matrix factorization method, we
identified two known MS that showed differential contributions
among cancer, normal, and inflammation groups (Figures 1B,C;
Supplementary Figure S1A), one of which is related to aging and
the other is associated with DNA mismatch repair defective
(MMR). The contribution of aging-related MS was remarkably
higher in CAN than in HI and UC (HI vs. CAN, Wilcoxon rank-
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sum test p < 0.001; UC vs. CAN, Wilcoxon rank-sum test p <
0.001, Figure 1B). To avoid bias from age, we checked the
distribution of age across three groups in our dataset. There
were no differences in the age distribution of the tumor and
healthy individuals/inflammation patients (ANOVA test, p =
0.319, Supplementary Figure S1B). Furthermore, we found
that senior individuals were biased towards higher age-related
signature in the healthy population (Spearman correlation:0.41,
p = 0.035, Supplementary Figures S1C,D). However, there was
no correlation between age and the age-related signature of
cancer patients (Spearman correlation -0.16, p = 0.51,
Supplementary Figures S1C,D). Notably, the age-related
signature of tumor patients was much higher than those of
healthy individuals/inflammatory patients across all age

groups. Even the weights of age-related signature in younger
tumor patients were five times higher than that in healthy senior
individuals (Wilcoxon rank-sum test p = 0.004, Supplementary
Figure S1C). The MMR-relatedMS in CAN also showed a higher
contribution than HI and UC (HI vs. CAN, Wilcoxon rank-sum
test p = 0.046; UC vs. CAN, Wilcoxon rank-sum test p = 0.007,
Figure 1C). These results suggested that the underlying specific
mutagenic processes drove the mutations in CAN, which differed
from HI and UC. To further validate this observation, we
identified MS from 35 normal tissues of the brain (n = 9),
colon (n = 13), kidney (n = 13) (Hoang et al., 2016). Results
showed that the identified MS had low similarity with any known
MS in the Catalogue of somatic mutations in cancer (COSMIC)
database (cosine similarity < 0.75). Although somatic mutations

FIGURE 1 | Mutational signatures for cancer diagnosis. (A–C) The biological processes of accumulated mutations in healthy individuals (HI) and patients with
ulcerative colitis (UC) and colitis-associated neoplasia (CAN). (D) The correlation between DataSet1 (TCGA) and DataSet2 (previous studies) based on MS in bladder
cancer (BLCA), non-small cell lung cancer (NSCLC), pancreatic cancer (PAAD), breast cancer (BRCA), ovarian serous cystadenocarcinoma (OV), liver hepatocellular
carcinoma (LIHC), and gastrointestinal cancer, including colorectal cancer (CRC), esophageal carcinoma (ESCA), and stomach adenocarcinoma (STAD). The
darker the color, the higher the similarity. (E) Heatmaps of MS in BLCA (n = 412), NSCLC (n = 1,108), PAAD (n = 179), BRCA (n = 985), OV (n = 435), skin cutaneous
melanoma (SKCM, n = 468), LIHC (n = 464), CRC (n = 398), ESCA (n = 184), and STAD (n = 439). The color indicates the average contribution of MS. The size of the dots
indicates the fraction. Fraction: The proportion of samples with a mutational signature contribution of more than 0.06 in each cancer type as a proportion of the total
samples. Contribution: Average contribution of each mutational signature in each cancer type.
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were detected in nearly all normal samples, even with some
mutations located on cancer driver genes, we did not find any
known MS associated with tumor initiation in the whole-exome
data of normal tissue (Supplementary Figures S1E,F). These
results suggested that most mutations in normal tissues
accumulated passively and randomly, without clear evidence of
external pathogenic mutagenic processes. Therefore, our results
indicated that MS possessed the potential to distinguish cancer
patients from inflammation patients and healthy individuals.

Identification of the Cancer-Type-Specific
Mutational Signatures Patterns
We next attempted to evaluate the cancer-type-specificity of MS
patterns. We collected two independent datasets with ten primary
cancer types, including non-small cell lung cancer (NSCLC),
ovarian serous cystadenocarcinoma (OV), bladder cancer
(BLCA), breast cancer (BRCA), liver cancers (LIHC), stomach
adenocarcinoma (STAD), esophageal carcinoma (ESCA), colon
adenocarcinoma (COAD), pancreatic cancer (PAAD), and
prostate cancer (PRAD) (Supplementary Table S1). Results
showed that tumor samples from the same tissue origins had a
high degree of homogeneity in MS between two independent
datasets (Figure 1D). In addition to PAAD and PRAD, the MS of
other cancer types had been maintained in a stable state
(similarity > 0.95). Although the MS of PAAD and PRAD had
a slight inconsistency in the two datasets, the similarity of tumors
from the same tissue origin was still greater than 0.9. These results
suggested that although driver mutations among different
individuals were highly diverse, the mutagenic processes in
specific cancer types were consistent. Therefore, it was
reasonably speculated that MS was a stable and informative
tissue-specific molecular biomarker to distinguish cancer types.

To characterize the landscape of MS in cancers, we identified
cancer-type-specific MS (CTS-MS) patterns from The Cancer
Genome Atlas (TCGA) dataset (DataSet1). The result showed
that the contribution of signatures across different cancer types
was distinct (Figure 1E; Supplementary Figure S2). Specifically,
NSCLC highlighted smoking signature, which was previously
found in multiple types of lung cancers with probable etiology of
tobacco carcinogens (Pfeifer 2010). OV harbored signature
associated with the BRCA1 and BRCA2 mutation (Yang et al.,
2018). The most common MS in BLCA was related to the
misdirected activity of APOBEC3 cytidine deaminases,
especially APOBEC3A or APOBEC3B (Robertson et al., 2018).
APOBEC related signature and BRCA-mutation-related
signature were the main mechanisms of mutations in BRCA.
The risk of skin cancer was associated with UV light exposure
(Pham et al., 2020). Signatures related to aflatoxin and
aristolochic acid were observed in LIHC (Li et al., 2020; Lu
et al., 2020; Zhang et al., 2020). STAD and ESCA were
enriched in MMR (Meier et al., 2019; Li et al., 2020). The
difference in genomic fingerprints between STAD and ESCA
was Signature.16, which currently had no clear exposure factor
(Wei et al., 2021). The mutations in COAD resulted from
Signature.1, which was associated with an endogenous
mutational process initiated by spontaneous deamination of 5-

methylcytosine (Pandey et al., 2019). In summary, our results
indicated that CTS-MS implied the origin of the tumors and
could be possibly used to detect and localize the cancers.

Mutational Signatures-Based Machine
LearningModel for Sensitive Primary Tumor
Detection and Classification
To evaluate the performance of MS in cancer diagnosis, we
developed a predictive model for each cancer type based on
the TCGA databases, including BLCA, COAD, ESCA, OV,
STAD, NSCLC, BRCA, LIHC, PAAD, and PRAD. We
incorporated the above CTS-MS patterns into a logistic
regression algorithm to propose a diagnosis model for each
tumor type (Figure 2A). We further applied the classifier to
predict the tissue of origin in an independent validation dataset
with 2,580 additional samples (Supplementary Tables S1, S2).
The classifier achieved an accurate classification decision, in
which the area under the curve (AUC) ranged from 76 to 93%
in different cancer types (Figures 2B,C). The AUC was relatively
higher in cancer types with distinctive MS, such as BLCA (93%),
COAD (92.5%), and ESAD (92.5%). However, PRAD was
confused with other tumors, possibly due to the lack of
specific MS patterns (Supplementary Figure S3A).
Furthermore, we divided our validation dataset into three
groups, including young, middle-aged, and elder samples.
Results showed that the performance of our model remained
stable across different age groups (Supplementary Figures
S3B–D). To evaluate the efficacy of MS in inferring primary
tumor sites across different populations, we validated our model
in an Asian population. We found that the AUC of our model in
predicting the tumor origin of the Asian population was higher
than 0.7, indicating that our model is stable in different
populations (Figure 2D). Thus, the above results suggested
that CTS-MS were robust candidate biomarkers for the
differential diagnosis of various cancer types.

Mutational Signature Patterns of Primary
Cancers Maintain in Metastatic Sites
Identification of the primary location of metastatic tumors is
essential for precision treatment. To further evaluate the ability of
MS to trace tumor location, we performed principal component
analysis (PCA) on matched primary and metastatic cancers from
89 lesions (20 patients), including 30 pancreatic cancer and 59
lung cancers (Supplementary Table S3). We found that the
samples were clustered by tumor origins (Figure 3A;
Supplementary Figure S4). This result was consistent with the
study from Connor et al., who found that the MS patterns
between primary and metastatic tumors were similar (Connor
et al., 2017). Furthermore, different tumor sites from the same
individual also showed the same MS pattern (Figure 3B;
Supplementary Figure S5). We compared the MS patterns in
matched primary and metastatic cancers and observed high MS
consistency between primary cancers and paired metastatic
lesions (normalization score > 0.95, Figures 3A,B). However,
the discrimination efficiency based on the original mutation
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FIGURE 2 | The effectiveness of the cancer diagnosis model based on the MS of the primary tumor. (A,B) AUC-curve of cancer diagnosis models in both training
(A) and validation (B) cohort. Random classifiers, indicating the classification accuracies obtained by chance, are shown in gray. (C) The value of AUC and the number of
patients in both training (left) and validation (right) cohort. (D) The model performance across different populations. The vertical axis is the AUC of model. The horizontal
axis represents tumor type. Red represents European and American population in the training dataset; Green represents European and American population in the
validation dataset; Blue represents Asian populations.

FIGURE 3 | The similarity between metastatic and primary tumors based on MS. (A) PCA based on the MS of matched primary and metastatic cancers. The red
dots represent the primary lung cancer, the red triangles represent metastatic lung cancer, the blue dots represent the primary pancreatic cancer, and the blue triangles
represent metastatic pancreatic cancer. The red dotted line indicates the distribution area of lung cancer, and the blue dotted line indicates the distribution area of
pancreatic cancer. pri., primary cancer; met., metastatic cancer. (B) The similarity between primary cancer and metastatic cancer based on MS. The darker the
color, the higher the similarity. The first line indicates the tumor type. Red represents lung cancer, and blue represents pancreatic cancer. The second line shows the
origin of the sample. The same color indicates that the sample is from the same patient. (C) The correlation between primary and metastatic cancer based on MS in
common cancer. The darker the color, the higher the similarity. The boxplot shows the similarity between the primary and metastatic tumors of the same tumor type and
the similarity between the primary and metastatic tumors among different tumor types.
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spectrum was lower than that of MS, suggesting that MS can
reveal the tissue origin of tumors more effectively than somatic
mutations (Supplementary Figure S6).

To further validate the similarities between MS across the
primary and metastatic tumors, we collected whole-exome
data of primary and metastatic tumors of nine cancer types
from the previous study (Zhao et al., 2016). We
systematically analyzed the homogeneity between
metastatic and primary cancer among nine cancer types.
As shown in Figure 3C, high MS similarities were
observed in the primary and metastatic tumor from the
same tissue-of-origin (similarity > 0.9), which was
significantly higher than the similarity among different
cancer types (Wilcoxon rank-sum test p < 0.01).
Therefore, our result revealed the high homogeneity of MS
among the metastases and primary cancers from the same
tissue, indicating that MS was a potential molecular marker
for tracing the tissue of origin for metastatic cancers.

Cancer-Type-Specific-Mutational
Signatures can Help Identify the Tissue of
Origin for Metastatic Cancers
According to the above results, we next sought to evaluate
whether CTS-MS was a stable and effective molecular marker
for predicting the tissue origin of metastatic cancers. Liver is
the most common site of distant metastasis in solid tumors
(Riihimaki et al., 2016; Dasari et al., 2017). There is a pressing
need for accurate tracing of original tissues (Varghese et al.,
2017). We validated the ability of the CTS-MS to identify the
tissue origin for metastatic tumor samples in an independent
validation dataset that combined a series of 282 primary liver
cancer with 74 liver metastatic tumors originating from other
organs, including breast, prostate, and esophagus. Firstly, our
model accurately distinguished the primary liver cancer and
liver metastasis cancer originating from other organs
(accuracy: 89%, sensitivity is 94%, specificity is 71%,

Figure 4). Then, we determined the origin of cancer
metastasized to the liver. We identified the origins of
metastases with 62% accuracy, in which 75% of breast
cancers were correctly classified. And we predicted
esophageal cancer with 67% accuracy. However, we only
predicted the origin of prostate cancer with 20% accuracy,
probably due to the absence of PRAD-specific CTS-MS
(Figure 1E; Supplementary Figure S3). Therefore, these
results demonstrated that CTS-MS could help identify the
tissue of origin for metastatic cancers.

Cancer-Type-Specific-Mutational
Signatures Analysis of Plasma cfDNA
Enables Cancer Classification
The advent of non-invasive molecular profiling of plasma cell-
free DNA (cfDNA) raises the possibility of inferring a suggested
diagnosis in cancer screening. To assess the potential of MS for
tracing the tumor origin based on plasma samples, we compared
the MS patterns between cfDNA and matched breast and
prostate tumor biopsies (Adalsteinsson et al., 2017). We
found a high concordance of MS patterns between cfDNA
and tissue (Spearman correlation, rho = 0.82, p < 0.001).
Somatic mutation and gene expression have been used to
predict cancer origins (He et al., 2020a; He et al., 2020b). To
explore the efficiency of somatic mutation and gene expression
in predicting the tumor origin from blood, we also compared the
somatic mutation patterns and gene expression patterns
between cfDNA and tumor tissue. We used the cancer-type
specific genes (IDH1, PTEN, TP53, KRAS, AC008575.1, APC)
in TOOme (He et al., 2020b) to evaluate the performance of
somatic mutations detected in tissue or ctNDA for identifying
the tumor tissue origin. We found that somatic mutations were
detected in 26.8% (11/41) of tissue samples using these genes.
The performance was even lower in paired ctDNA samples, with
only 24.4% (10/41) detection rate (Figure 5A). Importantly,
these gene mutations cannot distinguish breast cancer from
prostate cancer based on these gene mutations. Thus, the above
observations indicated that the performance of somatic
mutations for inferring cancer tissue-of-origin was limited
due to the substantial overlap in mutational profiles across
different cancer types. Then, we compared the efficiency of
MS and somatic mutations to identify the tumor from ctDNA,
based on the somatic mutations detected from plasma of 111
lung cancer patients and 78 benign lung nodules patients (Chen
et al., 2021). We found that MS was able to distinguish tumor
from non-tumor patients better than mutations (AUC:0.73 vs.
0.67, Figure 5B). Next, we compared the expression similarity
between tissues and plasma from breast cancer patients based
on the genes used in TOOme. Our results indicated that the gene
expression pattern differed between tissue and plasma of breast
cancer. Almost all genes used to infer tumor tissue origin in
TOOme were not expressed in plasma (Pearson correlation:
−0.006, p = 0.96, Figure 5C). However, breast cancer-specific
MS could be detected from ctDNA (Figure 5D). These analyses
showed that MS is a reliable and stable biomarker for predicting
the tumor tissue origin from plasma, compared with somatic

FIGURE 4 | Tracing the origin of metastatic tumor based onMS. The first
column distinguishes whether it is primary liver cancer. The second column
traces the origin of metastatic cancer. TP, true positive; FP, false positive; FN,
false negative; TN, true negative. Indicated are sample numbers and
detection rates in percentages.
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mutation and RNA expression. Then, our model was further
used to distinguish breast and prostate cancers based on MS
patterns of cfDNA and achieved 71% accuracy. However, the
model based on the mutation spectrum called cfDNA cannot
distinguish these two tumor types (Supplementary Figure S7).
We integrated the mutation profile of cfDNA and MS to build
diagnosis models. The results showed that the performance of
these diagnosis models had been significantly optimized. We
predicted the tissue origin with 90% accuracy (sensitivity is 96%,
specificity is 79%, Figures 5E,F). In summary, our analysis
proved that the combination of MS and mutational profile
was an available method to detect and localize cancers from
peripheral blood.

DISCUSSION

Using the whole-exome sequencing data from tumors and
cfDNA, we demonstrated that MS pattern was a potential
approach for tumor detection and localization with high
accuracy and robustness. First, we found that the somatic
mutations in healthy individuals and inflammation patients
were not associated with any known tumor initiation-related
MS in the COSMIC database. This observation indicated that MS
might separate healthy/inflammation patients and tumor
patients. To further investigate whether MS could distinguish
different tumor types, we analyzed the MS landscape of tumors
from TCGA. Our results showed that different cancer types had

FIGURE 5 | Distinguishing different cancer types based on the MS patterns and somatic mutations called from plasma ctDNA data. (A) The specific mutations in
tissue (left) and ctDNA (right). Red indicates that mutation was detected. CRPC: prostate cancer; MBC: metastatic breast cancer. (B) The efficiency of MS and somatic
mutations to distinguish lung cancer patients from benign lung nodules patients from ctDNA data. (C,D) The correlation between plasma and tissue in breast cancer
based on gene expression (C) and MS (D). Orange indicates breast cancer-specific markers. (E,F) Combined MS patterns and somatic mutations called from
plasma ctDNA data distinguish breast cancer and prostate cancer. The red points represent prostate cancer and the blue points represent breast cancer. The horizontal
axis represents the score of the prostate cancer model and the vertical axis represents the score of the breast cancer model.
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specific MS patterns and validated this result in an independent
dataset.

Moreover, using the CTS-MS, we could predict the tumor
origin with high accuracy among primary and metastatic cancer.
Notably, MS could better distinguish cancers from different
tissues than somatic mutations. Finally, integrating the
mutation profile and MS identified from cfDNA, we could
predict the tissue origin of tumors with high accuracy.
Therefore, our study showed that MS was a robust molecular
marker for cancer diagnosis.

Lines of evidence indicate that the human body accumulates
random mutations with age (Blokzijl et al., 2016; Hoang et al.,
2016; Lodato et al., 2018; Zhang et al., 2019). The inflammation
states accelerate this accumulation, such as ulcerative colitis,
inflammatory bowel, or cirrhosis diseases (Brunner et al.,
2019; Moore et al., 2020; Olafsson et al., 2020). The critical
question is whether these accumulations of the somatic
mutation have a functional impact or increased cancer risk.
Our results indicated that the somatic mutations in healthy
individuals had no functional relevance. In contrast, somatic
mutations in tumor patients were functionally clustered and
were related to specific biological processes, such as DNA
damage repair deficiency. Our study showed that MS could
distinguish between healthy individuals and tumor patients.

Some previous studies have reported that diverse ethnic
populations have different mutational landscapes in the same
type of cancer (Yao et al., 2016; Jia et al., 2017). However, the MS-
based tumor tracing model in our study showed comparable
performance between Asian and European and American
populations for most of the tumor types, such as liver cancer,
non-small cell lung cancer, and bladder cancer. This observation
indicated that MS was a stable marker for predicting the tumor
tissue origin in different populations. Consistently, Zhang et al.
reported that MS patterns were shared in different populations
with liver cancer, including Signature.5, Signature.22, and
Signature.24 (Zhang et al., 2017; Zhang and Guan, 2021).

Notably, with one or more confirmed metastatic malignant
lesions but the undetectable primary origin, cancers of unknown
primary (CUP) make up 3–5% of total cancer diagnoses and have
a very poor prognosis with a median survival of 6–16 months
(Varadhachary and Raber, 2014; Conway et al., 2019). Refining
the diagnostic classification of CUP patients can facilitate the
selection of potentially effective therapies (Varghese et al., 2017).
We found that theMS of the primary andmetastatic cancers from
identical tissue were highly consistent in whole-exome
sequencing, indicating the tumor traceability of MS for
metastatic cancers. We distinguished the malignant liver
lesions originating from other tissues and primary liver tumors
with high accuracy, indicating that our MS-based model could
trace the origin of the metastatic tumor. Besides, MS inferred
from cfDNA was highly compatible with tumor biopsies. Since
liquid biopsy is increasingly used for cancer screening and

diagnosis, our method may help infer the tissue origin by
cfDNA detection.

In this study, although we demonstrated the potential
diagnostic value of MS in determining the cancer origin by
two independent datasets, more samples needed to be
included to train more robust and precise models. Besides,
only a limited number of MS have been discovered in the
human tissue. The etiology and exposure factors of the
majority of MS remain unclear currently (Alexandrov et al.,
2013). With the development of sequencing technology, more
reliable cancer-related MS will be determined, allowing more
features could be included in our model to achieve higher
accuracy.

In conclusion, we showed that MS was a reliable biomarker for
tumor detection and localization. Our study will provide vital
information for clinical diagnosis and tracing tumor origin for
cancers without known primary sites.
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Pan-Cancer Single-Cell Analysis
Reveals the Core Factors and Pathway
in Specific Cancer StemCells of Upper
Gastrointestinal Cancer
Leijie Li 1, Yujia Zhang1, Yongyong Ren1, Zhiwei Cheng1, Yuening Zhang1, Xinbo Wang1,
Hongyu Zhao2 and Hui Lu1*

1SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong
University, Shanghai, China, 2Department of Biostatistics, Yale University, New Haven, CT, United States

Upper gastrointestinal cancer (UGIC) is an aggressive carcinoma with increasing incidence
and poor outcomes worldwide. Here, we collected 39,057 cells, and they were annotated
into nine cell types. By clustering cancer stem cells (CSCs), we discovered the ubiquitous
existence of sub-cluster CSCs in all UGICs, which is named upper gastrointestinal cancer
stem cells (UGCSCs). The identification of UGCSC function is coincident with the
carcinogen of UGICs. We compared the UGCSC expression profile with 215,291
single cells from six other cancers and discovered that UGCSCs are specific tumor
stem cells in UGIC. Exploration of the expression network indicated that inflammatory
genes (CXCL8, CXCL3, PIGR, and RNASE1) and Wnt pathway genes (GAST, REG1A,
TFF3, and ZG16B) are upregulated in tumor stem cells of UGICs. These results suggest a
new mechanism for carcinogenesis in UGIC: mucosa damage and repair caused by poor
eating habits lead to chronic inflammation, and the persistent chronic inflammation triggers
theWnt pathway; ultimately, this process induces UGICs. These findings establish the core
signal pathway that connects poor eating habits and UGIC. Our system provides deeper
insights into UGIC carcinogens and a platform to promote gastrointestinal cancer
diagnosis and therapy.

Keywords: upper gastrointestinal cancers, cancer stem cell, single-cell sequence data, pan-cancer analysis,
oncogene

INTRODUCTION

Upper gastrointestinal cancer (UGIC), including head and neck squamous cell carcinoma (HNSCC),
esophageal cancer (EC), and gastric cancer (GC), is one of the malignant tumors that seriously
threaten the human health (Yamada et al., 2011). Its occurrence is mainly associated with unhealthy
eating habits and lifestyle and their consequences, including low intake of fruits and vegetables
(Akhtar, 2013), smoking (Gandini et al., 2008), drinking (Goldstein et al., 2010; Zhang et al., 2012;
González et al., 2013), and high body mass index (BMI). The global incidence of UGIC has
significantly increased in recent years (Bray et al., 2018). Patients with UGIC account for a large
proportion of all patients with malignant tumors (Sung et al., 2021). UGIC has a poorer prognosis
and lower overall survival rate than other cancers (Sung et al., 2021). GC is the fifth most prevalent
cancer and the third leading death cause of patients with cancers on a global scale (Yin et al., 2020).
The 5-year survival rate of patients with EC is not more than 20% worldwide (Zhang, 2013). Because

Edited by:
Zhaoyuan Fang,

Zhejiang University, China

Reviewed by:
Binhua Tang,

Hohai University, China
Subhayan Sur,

Saint Louis University, United States

*Correspondence:
Hui Lu

huilu@sjtu.edu.cn

Specialty section:
This article was submitted to

Preclinical Cell and Gene Therapy,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 06 January 2022
Accepted: 07 April 2022
Published: 13 May 2022

Citation:
Li L, Zhang Y, Ren Y, Cheng Z,

Zhang Y, Wang X, Zhao H and Lu H
(2022) Pan-Cancer Single-Cell

Analysis Reveals the Core Factors and
Pathway in Specific Cancer Stem Cells

of Upper Gastrointestinal Cancer.
Front. Bioeng. Biotechnol. 10:849798.

doi: 10.3389/fbioe.2022.849798

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8497981

ORIGINAL RESEARCH
published: 13 May 2022

doi: 10.3389/fbioe.2022.849798

53

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.849798&domain=pdf&date_stamp=2022-05-13
https://www.frontiersin.org/articles/10.3389/fbioe.2022.849798/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.849798/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.849798/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.849798/full
http://creativecommons.org/licenses/by/4.0/
mailto:huilu@sjtu.edu.cn
https://doi.org/10.3389/fbioe.2022.849798
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.849798


of the increasing incidence, the high relapse and metastasis rate,
and the low overall survival rate, studies on the molecular
mechanism of UGICs or gastrointestinal pan-cancer are
imperative.

In recent years, the growing number of patients has prompted
many studies on gastrointestinal tumors (Chakravarthy et al.,
2018; Yang et al., 2020; Cui et al., 2021). At present, researchers
have discovered many biomarkers for the diagnosis and
treatment of gastrointestinal cancer, including human
epidermal growth factor receptor2 (HER2) (Li Z. et al., 2020),
mismatch repair deficiency/microsatellite instability (dMMR/
MSI-H) (Dhakras et al., 2020), and programmed death-ligand
1 (PD- L1) (Dai et al., 2021). In addition, there are many new
biomarkers under investigation, including neurotrophic-
tropomyosin receptor kinase (NTRK) (Westphalen et al.,
2019), claudin-18 (CLDN18) (Zhang et al., 2020), Rho
GTPase-activating protein 26 (ARHGAP26) (Dhakras et al.,
2020), fibroblast growth factor receptor (FGFR) (Babina and
Turner, 2017), lymphocyte-activation gene 3 (LAG3) (Saleh
et al., 2019), and T-cell immunoglobulin and mucin-domain
containing-3 (TIM3) (Wang et al., 2017). However, only few
clinical trials on UGIC patients have shown positive curative
effects; the underlying mechanisms remain elusive so far. Nearly
50% of patients in good conditions will still suffer from local
recurrence or systematic metastasis after aggressive treatment
(Dhakras et al., 2020; Sung et al., 2021). It seems that most of the
works aim at general tumor cells rather than cancer stem cells
(CSCs) in UGIC. It is because CSCs are difficult to isolate due to
the limitation of early experimental conditions and heterogeneity
of CSCs (Clarke et al., 2006; Sreepadmanabh and Toley, 2018).
Considering that the digestive tract organs share a common
external environment and perform similar functions in a
system, diet-induced mucosal lesions may have similar effects
on cancer of the mouth, esophagus, and stomach (Haas et al.,
2012). Therefore, it is necessary to take oral cancer, esophageal
cancer, and gastric cancer as a whole, that is, UGIC, for
integration research.

Some laboratories have conducted pan-cancer research on
UGICs. Tran et al.’s pan-cancer study on somatic mutations
found that leukocyte antigen-restricted T-cell receptors targeted
the KRAS (G12D) hotspot driver mutation found in many
human gastrointestinal cancers (Tran et al., 2015). Another
study observed that IL-6 is the main communication medium
for tumor cells and cancer-related fibroblasts in a murine model
(Johnson et al., 2018). IL-6 deletion inhibits the occurrence of
gastrointestinal tumors through STAT3 and MEK1/2 signals
(Karakasheva et al., 2018). Dana–Farber Cancer Institute
discovered the new immune checkpoint biomarker TET1 and
PD-1 ligands (CD274 and PDCD1LG2) (Thienpont et al., 2016;
Bu et al., 2021; Rahman et al., 2021). But fewer studies focus on
CSCs. The problems of poor prognosis and a high recurrence rate
still require more intensive studies in UGIC.

In this work, to verify the pathogenesis and therapeutic targets
of UGIC, we performed the pan-cancer analysis on UGIC. Our
results identified the unique CSCs in UGIG, which are named
upper gastrointestinal common cancer stem cells (UGCSCs). The
core regulation network of UGCSCs suggested that

inflammation-related genes, namely, CXCL8, PIGR, and
CXCL3, and Wnt pathway-related genes, namely, GAST,
REG1A, TFF3, and ZG16B, are activated. Further analysis
indicated that mucosal damage and inflammation caused by
poor dietary habits trigger the Wnt pathway and eventually
induce UGIC. In addition, GAST and TFF3 activate
phosphatidylinositol 3-kinase (PI3k)/Ras to enhance the
metastasis and invasion of UGIC. Taken together, these results
pave the way for the better diagnosis and treatment of UGIC.

METHODS

Data Collection and Processing
The data were collected from the published literature (Table 1).
For different sequencing methods of single-cell data, specific
analysis procedures were applied. For Drop-seq single-cell
data, Cell Ranger software (Freytag et al., 2018) (3.0.1) was
adopted to calculate the cell expression counts. For Smart-seq2
single-cell sequencing data, we operated cell expression matrixes
provided in the original article. The expression matrix file was
then imported into R 3.6.2 for subsequent analysis.

Data Normalization and Batch Effect
Correction
First, we used Seurat (Stuart et al., 2019) (3.1.4) to filter the quality
of cells and delete all cells with more than 6000 expressed genes or
less than 201 genes. A total of 39,057 UGIC cells and 215,291
other cancer cells were obtained. Next, standardized integration
processing was performed on the cell level, sample level, and
study level.

Cell Level Standardization
The logarithmic percentage of gene expression in cells was
adopted as the standardized integration of data between
different cells in the sample (Butler et al., 2018). The value of
the expression of gene x in a cell was divided by the value of the
expression of all genes in this cell and multiplied by the scale
amplification factor, which is set to 10000 in this experiment.
Then, the logarithm of this value is the normalized value of the
expression of gene x in the cell. This process can reduce the
deviation of gene expression values caused by different
sequencing depths and sequencing methods. The formula (1)
is described as follows:

x′
i � log10⎛⎝ xi∑i∈Uxi

p10000⎞⎠, (1)

where xi represents the expression value of gene i. x′
i represents

the expression value of gene i after normalization. U represents
the gene set in a certain cell.

Sample Level Standardization
We diminished gene features to avert the dimension disaster
problem in the single-cell expression matrix. First, the logarithm
of gene expression means and variances was calculated. Next, we
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fitted a line regression model to represent the relationship
between the two values using the local polynomial regression.
Next, we normalized the gene expression value through the mean
value and expected variance of the model. Finally, the top variable
2000 gene features were selected for the subsequent analysis based
on the normalized expression value.

Study Level Standardization
We conducted an integrated analysis of multiple samples, by
looking for similar sites between cells. First, the dimensionality
was reduced by using canonical correlation analysis (CCA)
(Andrew et al., 2013). Next, similarity anchor points were
constructed, according to the similarity of sample expression

TABLE 1 | Single-cell RNA-seq data of UGIC.

Species Tumor type Tissue Sequence type Cell number Sample PubMed ID

Human EC Esophagus Smart-seq2 366 5 30223068 Wu et al. (2018)
Human HNSCC Oral cavity Smart-seq2 4762 15 29198524 Puram et al. (2017)
Human Early GC Stomach 10x Genomics 4110 1 32209487 Zhang et al. (2019a)
Human GC Stomach 10x Genomics 29817 9 32532891 Zhang et al. (2021a)

FIGURE 1 | Expression profiling of 39,057 single cells in UGIC. (A)Workflow of sample processing, cell type annotation, and functional analysis for 30 samples in
UGIC. (B) t-SNE of 39,057 cells profiled here, with each cell color-coded for the associated cell type. (C) Heatmap of the expression pattern in each cell type. (D)
Expression of marker genes for the cell types defined above each panel. (E) Expression trend of marker genes for each cell type in the violin chart.
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matrixes. Finally, the data were integrated between different
studies, according to the identified anchor points.

UGIC Cell Type Identification
After PCA dimensionality reduction was performed on
39,057 UGIC cells, nine cell sets were obtained by
T-distributed stochastic neighbor embedding (t-SNE)
clustering. In order to identify the cell types, we calculated
highly expressed genes on each cluster through the
FindMarkers (Butler et al., 2018) function in Seurat. Then,
through the artificial gene annotation on the CellMarker
(RRID:SCR_018503) database (Zhang X. et al., 2019), the
marker genes and the corresponding cell type were finally
annotated. We show the statistical graph of cell types
identified by EPCAM in the published articles as an
example in the CellMarker (RRID:SCR_018503) database
(Supplementary Figure S5). Then, we analyzed the
subtypes of cancer stem cells, obtained a total of six
subclasses, and calculated the differentially expressed genes
(DEGs) of each subclass.

Other Cancer Cell Type Identification
A total of 71 single-cell sequencing data (Supplementary Table
S2) from six other cancers were collected. We used the same
method to process other tumor single-cell data to ensure the
consistency of the analysis process. First, the quality control of
single-cell data obtained a total of 215,291 cells. After
standardization at the cell level, sample level, and study level,
we used PCA and t-SNE visualization to reduce the dimension of
those single-cell data and obtained 29 cell collections. We
calculated the highly expressed genes of 29 cell collections and
used the CellMarker database (Zhang X. et al., 2019) to annotate
the cell types. Then, we marked cancer stem cells, which are
subtypes 4 and 7. The relevant marker annotations are shown in
Supplementary Figure S3.

UGIC Transcriptome Sequencing Analysis
We gathered bulk RNA-seq data of UGICs in the TCGA database
(Aldape et al., 2015). We obtained the expression matrix data
using the cBioPortal (Cerami et al., 2012; Gao et al., 2013),
including 522 HNSCC samples, 185 EC samples, and 415 GC
samples. Three types of UGICs were congregated with the data
label “hnsc_tcga,” “esca_tcga,” and “stad_tcga”. DESeq2 (RRID:
SCR_000154) (Love et al., 2014) (1.26.0) software was used to
measure the DEGs in the cancer sample and the corresponding
normal sample.

Gene Function Annotation
We annotated the function and pathway information of the
significantly different genes in the Gene Ontology (GO)
(Ashburner et al., 2000; Ashburner, 2021) database and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (RRID:
SCR_012773) (Kanehisa et al., 2021) database using the
clusterProfiler (RRID:SCR_016884) (Yu et al., 2012) (3.14.3)
package in R (3.6.2) software. The top 15 terms are presented
in Figure 4.

Gene Enrichment Analysis
We adjusted the gene set enrichment score between the specific
differential genes and the cancer-related gene sets through the
Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005)
software (4.1.0). “C6: oncogenic signatures” was selected as the
existing cancer-related gene set in GSEA software. We filtered
several parameters to draw gene enrichment results. The
normalized enrichment score (NES) was larger than 1. The
normalized significance level (NSL) p-value was lower than 0.05.

Protein Interaction Network Analysis
We collected all human entries in the String database (RRID:
SCR_005223) and deleted low-quality and text mining entries
(Szklarczyk et al., 2021). After removing the duplicated edges and
self-loops, we constructed a human protein–protein interaction
network (PPIN) with 19,267 proteins and 1,689,887 edges by
Cytoscape software (RRID:SCR_003032) (Shannon et al., 2003)
(3.7.1). Then, 174 genes specifically expressed in UGCSC were
mapped to the PPIN. After removing outlier proteins, a
regulatory sub-network composed of 144 protein nodes and
545 edges was constructed. Next, we appraised the topological
attributes of the network and selected the degree and clustering
coefficient (CC) to measure the function of the sub-network
(Sporns, 2013). The degree represents the number of connections
through a particular node, which measures the importance of the
node in the network. CC represents the closeness of connections
between a node and the surrounding nodes, which demonstrates
the network closeness and function similarity. The formula (2) is
described as follows:

Ci � 2ei
di(di − 1), (2)

where Ci represents the CC of gene i. di represents the count of
adjacent nodes of gene i. ei represents the number of
interconnected nodes among all adjacent nodes of gene i.

Construction of the Hub Gene Function
Network
We manually reviewed the tumor-related literature studies
published since 2000 to screen functions and pathways of
DEGs. Then, we formulated UGCSC function networks by
integrating different genes and the known inflammation and
Wnt pathways (Figure 6).

RESULT

Landscape of UGIC Single-Cell Data
We collected 39,057 tumor single-cell sequencing data from 30
patients including 4762 HNSCC cells, 366 EC cells, and 33,927
GC cells (Figure 1A). It is noteworthy that EC samples applied
Smart-seq2 single-cell sequencing technology (Picelli et al., 2014)
which is manually sequencing each cell. So the EC group has few
cells but higher confidence. After quality filtering (see Methods)
and removing the batch effect, more than 70 million transcripts
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were obtained from 39,057 cells. Subsequently, we classified
cells into different clusters by using T-distributed stochastic
neighbor embedding (t-SNE) methods in Seurat software
(Supplementary Figure S1). Through marker genes, these
identified cell clusters could be assigned to known cell
lineages: T cells, B cells, epithelial cells, natural killer cells,
fibroblasts, plasma cells, cancer stem cells, mast cells, and
endothelial cells (Figure 1B). To corroborate these profiles,
we showed the high expression gene distribution heatmap of
each cell type and the expression abundance of marker genes of
each type (Figure 1C; Supplementary Table S1). Each cell
type has specific marker genes: CD3D, KRT8, MS4A1,
PDGFRA, IGHG3, EPCAM, ECSCR, TPSB2, and CCL3
(Figure 1D). The violin plot of marker genes shows that the
expression of most marker genes is specific, which indicates
that the classification of cell types is accurate and is very
helpful for subsequent analysis (Figure 1E). Taken together,
these results indicate that the cell classification was accurate,
and most of the cells were classified into the correct cell type.
The distribution of samples and cancer types is shown in
Supplementary Figures S1, S2. We also counted the

number and frequency of all cell types in HNSCC, EC, and
GC and provided the results in Supplementary Figure S6.

UGIC-Specific Cancer Stem Cell
Identification
We focused on cancer stem cell types in order to reveal the
pathogenesis and distant metastasis mechanism of UGIC. We
collected a total of 1,586 CSCs (Figures 2A,B) including 136
HNSCC cells, 23 EC cells, and 1427 GC cells. Due to the
heterogeneity of CSCs, there are differences in the same type
of cancer while similarities exist in different types of cancers,
coincident with the characteristics of the remote metastasis and
recurrence of the cancers. Therefore, we performed a cluster
analysis of CSCs, and a total of six sub-clusters were found. After
annotating and analyzing all sub-clusters, sub-cluster 0 is
ubiquitous in UGICs, including 19 EC stem cells, 356 GC
stem cells, and 114 HNSCC stem cells, which proves that sub-
cluster 0 preliminarily meets the characteristics of common CSCs
(Figures 2C,D). Therefore, we concentrated on sub-cluster 0 in
the follow-up analysis.

FIGURE 2 | Cancer stem cell clusters. (A) t-SNE plot of 1,586 CSC cells color-coded by sub-clusters. (B) t-SNE plot color-coded for cancer type of origin. (C)
Histogram of cell numbers in each CSC cancer type. (D)Heatmap of the expression pattern of six sub-clusters in CSC. (E) Venn diagram of DEGs in downsample CSCs
and All CSCs.
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To verify whether sub-cluster 0 reflects the characteristics of
UGIC rather than only GC, we performed a down-sampling
process in sub-cluster 0 since there are more than 70% GC stem
cells in sub-cluster 0. We randomly selected the same number of
GC cells as the HNSCC cells and named new sub-cluster 0.
Subsequently, we compared the differential genes between sub-
cluster 0 and the new sub-cluster 0 in CSCs. The merge ratio is
77.14% (Figure 2E), which means these two sub-clusters share
the same differential gene set. These results indicate that the
differentially expressed genes (DEGs) of sub-cluster 0 represent
the features of UGICs.

To validate the specificity of UGCSCs, we compared UGCSCs
with other tumor cells. We collected 71 samples (215,291 cells)
from six types of cancers including glioma (GLM), melanoma
(MELA), osteosarcoma (OSTC), breast cancer (BC), ovarian
cancer (OVC), and stellate cell cancer (SCC) (Supplementary
Table S2). After normalizing the cells and removing the batch
effect (seeMethod), all the cells were gathered into 29 sub-clusters
(Figures 3A,C). After annotating all cancer cells in the
CellMarker database, we noticed that there are plenty of cell
types due to the complexity of tissue types involved. Therefore, we
only annotated CSCs by using marker genes. The tumor stem
cells were obviously aggregated with CXCR4markers (Figure 3B;
Supplementary Figure S3), which are sub-clusters 4 and 7 and
contain 21323 cells, as circled in Figure 3A. We compared CSCs
of other cancers with CSCs of UGICs. We re-clustered and
obtained 31 sub-clusters in all CSCs, which reveals the
differences between CSCs of different tumor types

(Figure 3D). But at the same time, the cluster distribution of
CSCs from different tissues is uniform, which indicates that there
are similarities between different tissues in CSCs (Figures 3E,F).
This phenomenon is also coincident with the heterogeneity of
tumors. The cluster annotation of cancer types shows that the
UGCSC is self-clustering and far away from other tumor CSCs
(Figure 3E). Therefore, the UGCSC is the specific cancer stem cell
in UGIC while UGCSC does not exist in other cancers.

UGCSC Function Analysis
We comprehensively analyzed the distribution and function of
UGCSCs. The cell sources of UGCSC cancers were analyzed and
counted (Figure 4A). As shown in Figure 4, UGCSCs are
averagely expressed in UGIC patients, including 10 GC
patients, four EC patients, and nine HNSCC patients. In
summary, the UGCSCs are distributed uniformly, which
proves that the UGCSC is common in upper gastrointestinal
patients.

We analyzed the expression network of UGCSCs. First, we
compared the expression profiles of UGCSCs and all other tumor
stem cells and obtained 174 genes with significant differences,
including 33 upregulated genes and 141 downregulated genes
(Supplementary Data S1). We uncovered that the gene
information function reflects the characteristics of UGCSCs as
a digestive system and as cancer stem cells by analyzing the
function annotation (Ashburner et al., 2000) of DEGs (Figures
4B,D). The upregulated genes are related to antibacterial
response, such as “antibacterial humoral response,”

FIGURE 3 | Expression profiling of 215,291 single cells in six cancer types. (A) t-SNE plot of 215,291 single cells in six cancer types, color-coded by 29 clusters.
Clusters 4 and 7 are cancer stem cells, which are marked by a red circle. (B) Box plot shows the expression of the CSC marker gene CXCR4. The x-axis represents the
cell type. The y-axis represents the log value of the normalized CXCR4 expression. (C) t-SNE plot of other cancer cells, color-coded by the cancer type. (D) t-SNE plot of
all CSCs, color-coded by clusters. (E) t-SNE plot of all CSCs, color-coded by the CSC type. (F) t-SNE plot of all CSCs, color-coded by cancer types.
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“antibacterial humoral immune response-mediated,” and
“mucosal immune response,” which are consistent with the
function of the digestive tract in the human body. In addition,
the functions of downregulated genes mainly focus on reducing
the activity of T cells and lymphocytes and downregulating cell
killing which could reduce the body’s immune response and
enhance the survival rate of tumor cells, and these are also the
characteristics of cancer stem cells. The downregulated genes also
play a role in the regulation of cell–cell adhesion to facilitate the

distant metastasis of tumors, which is in line with the feature of
metastasis. Through the analysis of the KEGG pathway (Kanehisa
et al., 2021), we observed that the significantly differentially
expressed genes are enriched in inflammation-related mucosal
infections such as “Staphylococcus aureus infection,” “epithelial
cell signaling in Helicobacter pylori infection,” “IL-17 signaling
pathway,” and “chemokine signal pathway” (Figure 4C). These
results uncovered a potential carcinogenic factor of UGIC, that is,
mucosal damage induced activation and mutation in

FIGURE 4 | UGCSC function annotation. (A) Sample source of UGCSCs. Green, yellow, and orange represent HNSCC, EC, and GC, respectively. The inner circle
is for three types of cancer, and the middle circle is the number of cells in each cancer. The outer circle represents the number of cells in each sample. (B)Gene ontology
function annotation of UGCSC DEGs. (C) Pathway analysis of UGCSC differentially expressed genes. (D)Gene function integration in UGCSCs. (E) UGCSC differentially
expressed gene set enrichment analysis in the ATF2_UP tumor set. (F) UGCSC differentially expressed gene set enrichment analysis in the ERBB2_UP tumor set.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8497987

Li et al. Pan-Cancer Reveals CSCs in UGICs

59

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


inflammatory pathways. Through gene set enrichment analysis
(GSEA), we found that the significantly differentially expressed
genes were significantly enriched in ATF2- and ERBB2-related
cancer genes (Figures 4E,F). To further confirm the reliability of
these genes, we calculated the DEGs betweenUGCSCs and 30,267
cells of normal tissues in the upper alimentary tract (Cillo et al.,
2020; Zhang X. et al., 2021) (Supplementary Figure S7A). The
DEGs of UGCSCs and tumor cells are few and share fewer genes
with the DEGs of UGCSCs and normal cells (Supplementary
Figure S7B). Also, the functional analysis of DEGs of UGCSCs
and normal cells indicates that the functional pathways are
related to cell development, which is a common feature of
tumors (Supplementary Figure S7C). In summary, these
results indicate that the DEGs of UGCSCs and tumor cells are
oncogenes related to the function of the digestive tract.

UGIC Carcinogenic Mechanism Detection
In order to study the pathogenic mechanisms that may exist in
UGCSCs, we mapped 174 proteins into the human protein–protein
interaction network (PPIN). We constructed PPIN and deleted low-
quality text mining terms in the String database (Szklarczyk et al.,
2021). After mapping 174 DEGs in UGCSCs into PPIN, an
interaction network consisting of 144 proteins and 545 edges was
obtained (Figure 5A). Through the analysis of the topological
properties of the network, we found that the degree of DEGs in
PPIN is 362.174, which is significantly higher than 175.418 in the
human total network (Figure 5B). This result indicates that the
shortest path through different genes is significantly higher than the
average value (Figure 5B), which implied that these genes are hub
genes in the UGCSC network. Furthermore, another topological
property, the clustering coefficient (CC), is significantly higher than
the background network, which points out that the 144 genes are
closely linked compared with the random gene set in the network.
The close interaction means a similar or synergistic function in cells.

Through the comprehensive analysis of degree and CC, we inferred
that the 144 genes are tightly connected hub genes in PPIN, which
means that they play an important function in UGCSCs as a co-
operative hub gene set.

We have performed functional annotations on the possible
functions of these genes and inferred regulatory pathways with
the aim to explore the possible pathogenic mechanisms and
potential therapeutic targets in UGIC. We analyzed the
regulation pathway of those genes through published articles
and proved that the upregulated genes are basically related to
cancer (Supplementary Table S3). Here are some exciting
discoveries. Some genes are related to inflammatory pathways,
such as CXCL8 (Ha et al., 2017), BPIFB1 (Li J. et al., 2020),
PIGR (Kakiuchi et al., 2020), CXCL3, and RNASE1 (Wang et al.,
2006), and some genes are related to specific functions of the
digestive tract, such as GAST (Giraud et al., 2016), REG1A (Sha
et al., 2019), and TFF3 (Braga Emidio et al., 2020). These results
illustrated that there may have similar pathogenic mechanisms and
common regulatory pathways in some UGICs. We speculated that
mucosal damage is induced by long-term unhealthy eating habits,
which include smoking, drinking, and hot food breed inflammation.
Persistent inflammation leads to carcinogenic mutations and early
gastrointestinal tumors. These conjectures have been confirmed in
the specific regulatory network of UGCSCs. Based on the detected
differentially expressed genes and the mining of relevant research
literature studies, we speculated the pathogenesis of the disease, as
shown in the Figure 6. Inflammation-associated interleukin (CXCL8
and CXCL3) and inflammation defense-related BPIFB1, PIGR, and
RNASE1 are activated in UGCSCs. Combined with the
epidemiological investigation of gastrointestinal cancer, there is a
hypothesis that chronic inflammation is incited by mucosal damage
due to long-term bad eating habits. We present that the cancerous
chronic inflammation is activated by GAST, REG1A, TFF3, and
ZG16B in theWnt signaling pathway. Upregulated hPG80 andTFF3

FIGURE 5 |Network analysis of UGCSCs. (A) Protein regulation networks of DEGs in UGCSCs. (B) Topological attribute comparison of UGCSC sub-networks and
whole PPIN.
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induce PI3K/Ras and lead to tumor cell growth and invasion, which
may be one reason for the poor prognosis of UGIC. Hence, this
resource provides a novel view for the occurrence and development
of UGIC and the advancement of gastrointestinal cancer diagnosis
and therapy.

CONCLUSION

In this article, we collectively analyzed single-cell sequencing data
of HNSCC, EC, and GC and identified a specific cancer stem cell
type in UGIC: UGCSCs. Then, we presented the unique
expression pattern and hub gene set in UGCSCs by comparing
it with other tumors’ single-cell RNA-seq data. We declared the
common carcinogens of UGICs that the mucosa damage of the
digestive tract induces chronic inflammation due to unhealthy
eating habits. The hub gene set provides promising entry points
for the design of novel therapies including CXCL8, CXCL3,
GAST, TFF3, PIGR, and RNASE1.

DISCUSSION

Here, we provided a comprehensive catalog of human UGICs at
single-cell resolution. In the integrative analysis of UGICs, we

confirmed that there are specific cancer stem cells in UGIC, which
are named UGCSCs. This discovery provides a new perspective
for scientific analysis of the poor prognosis and easy recurrence of
UGIC. By comparing the tumor stem cells of six cancers, we
extracted the core gene set that plays an important role in
UGCSCs and explored the possible pathogenic pathway of
UGIC and core genes including GAST, CXCL8, CXCL3, PIGR,
REG1A, and TFF3. With further in-depth research, these genes
can also be used as diagnostic markers or possible therapeutic
targets for gastrointestinal cancers.

However, all cell types and subtypes cannot possibly be
described here; some key results emerge. On one hand, the
distribution of all cell types in UGIC is shown in the cell
clustering figure (Figure 1B). On the other hand, through the
comparative analysis with bulk RNA-seq sequencing data, the
DEGs between single-cell data and bulk RNA-seq data varied
significantly. Therefore, we performed further research only
on cancer stem cells. Intriguing questions remain as to whether
there are specific immune cells in UGIC and whether the
immune cell counts would have an impact on the prognosis
of UGIC.

The single-cell data of UGIC and the six cancer types are
composed of cells from different patients. Some sub-clusters of
cell types have different abundances due to sample differences,
according to the results of cell clustering. We removed batch

FIGURE 6 | Regulation pathway in UGCSCs. Inflammatory pathway (left) and Wnt pathway (right) activated in UGCSC. The green genes represent inflammatory
factors that are highly expressed in UGCSCs. The brown–yellow genes represent Wnt-related factors that are highly expressed in UGCSCs.
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effects and deleted outlier cells from the clustering result. In this
way, the impact of samples from different patient sources is
reduced.

We performed the same analysis on bulk RNA sequencing data;
however, due to the varieties of cell types and the low proportion of
CSCs in cancer tissues, the pathways and therapeutic targets were
not discovered. We collected 1,122 patients and 1,966 normal
samples of bulk RNA-seq data in TCGA database. The
differentially expressed genes of the three cancers were
compared with those of UGCSCs. The result suggests that the
merge ratio is only 0.79%. Moreover, the function of differentially
expressed genes is mostly about cell cycle-related pathways in bulk
RNA-seq data (Supplementary Figure S4). We inferred that
plenty of cell types in UGIC generates noises in UGIC
expression profile information and makes some core pathways
and genes undetectable, while single-cell RNA-seq can filter noise
signals by extracting specific cell types.

Last, we constructed a regulatory network of UGCSCs under
the framework of the existing experimental knowledge atlas.
More and other types of data such as downstream genes and
mutation information of the core regulatory network need to be
further studied. However, we proposed UGCSCs and their
regulatory networks based on the analysis of single-cell data
from more than 100 patients and more than 25,000 cells,
which has strong robustness. These data build a framework
for a deeper understanding of the molecular mechanisms of
UGCSCs and the regulation network of hub genes and might
be applied to screen for molecular target drugs to improve the
efficacy and outcomes for UGIC patients.
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Cell transplantation is an effective method for compensating for the loss of liver function
and improve patient survival. However, given that hepatocytes cultivated in vitro have
diverse developmental processes and physiological features, obtaining hepatocytes that
can properly function in vivo is difficult. In the present study, we present an advanced
computational analysis on single-cell transcriptional profiling to resolve the heterogeneity of
the hepatocyte differentiation process in vitro and tomine biomarkers at different periods of
differentiation. We obtained a batch of compressed and effective classification features
with the Boruta method and ranked them using the Max-Relevance and Min-Redundancy
method. Some key genes were identified during the in vitro culture of hepatocytes,
including CD147, which not only regulates terminally differentiated cells in the liver but
also affects cell differentiation. PPIA, which encodes a CD147 ligand, also appeared in the
identified gene list, and the combination of the two proteins mediated multiple biological
pathways. Other genes, such as TMSB10, TMEM176B, and CD63, which are involved in
the maturation and differentiation of hepatocytes and assist different hepatic cell types in
performing their roles were also identified. Then, several classifiers were trained and
evaluated to obtain optimal classifiers and optimal feature subsets, using three
classification algorithms (random forest, k-nearest neighbor, and decision tree) and the
incremental feature selection method. The best random forest classifier with a 0.940
Matthews correlation coefficient was constructed to distinguish different hepatic cell types.
Finally, classification rules were created for quantitatively describing hepatic cell types. In
summary, This study provided potential targets for cell transplantation associated liver
disease treatment strategies by elucidating the process and mechanism of hepatocyte
development at both qualitative and quantitative levels.

Keywords: hepatocytes, single cell RNA sequencing, machine learning, boruta, max-relevance, min-redundancy
and random forest
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INTRODUCTION

Over the past few decades, liver disease has gradually become one
of the leading causes of death worldwide. Acute hepatitis,
cirrhosis, and liver cancer account for approximately 4% of all
deaths globally (Xiao et al., 2019). The only treatment for an end-
stage liver disease that impairs the ability of the liver to regenerate
is liver transplantation (Zhang et al., 2018). However, the
practical use of liver transplantation is limited by the shortage
of liver grafts for transplantation (Iansante et al., 2018). A
potential alternative therapy for liver transplantation,
allogeneic hepatocyte transplantation requires the cultivation
of active hepatocytes in vitro (Iansante et al., 2018). However,
obtaining hepatocytes that can function properly in vivo is
difficult because of the different developmental processes and
physiological characteristics of hepatocytes cultured in vitro (Hu
and Li, 2015). Therefore, the development of functional
hepatocytes for liver regeneration is a priority. The
developmental mechanisms and heterogeneous characteristics
of hepatocytes in vitro have become major subjects of interest
because of the high clinical demand.

Liver transplant patients experience alloimmune rejection,
which may cause various complications and affect the long-
term survival of recipients (Du et al., 2020). Chronic allograft
injury, late graft failure, and the negative effects of anti-rejection
medication continue to be the major roadblocks to good
outcomes (Thomson et al., 2020). Following the development
of allogeneic hepatocyte transplantation technology, analysis
methods for hepatic cell types and immune cell characteristics
in vitro have become effective tools for the study of immune
rejection (Kawahara et al., 1998; Iansante et al., 2018). Different
hepatic cell types, including hepatoblasts, hepatocytes, and
cholangiocytes, which are cultured in vitro and can be
transplanted into a damaged liver, can repair the liver and
improve liver function. The challenge of culturing functional
hepatocytes in vitro is enormous. Primary hepatocytes have
difficulty maintaining stimulation by a complex set of factors
in vivo during in vitro culture, resulting in loss of hepatocyte
polarity and function (Lauschke et al., 2019). In addition, owing
to the shortage of donors and the lack of strategies that can
increase these donors, primary hepatocytes are extremely scarce
to meet the conditions for treatment. The selection of appropriate
original stem cells and an in vitro system suitable for stem cell
differentiation is crucial to the differentiation of stem cells into
mature liver type cells (Guo et al., 2017). It is particularly
significant to explore the process of differentiation of different
original stem cells in vitro and to elucidate the key pathways that
maintain the properties of primary hepatocytes.

Through single-cell sequencing, scientists can now investigate
the mechanisms of cell growth and differentiation in
unprecedented detail and resolve cell heterogeneity. Aizarani
et al. successfully resolved the heterogeneity of human
hepatocytes in vivo and the differentiation process (Aizarani
et al., 2019). However, owing to environmental differences,
hepatocytes cultured in vitro can show characteristics different
from those cultured in vivo. Logan et al. distinguish hepatocytes
cultured in vitro on the basis of cell shape with a machine learning

approach (Logan et al., 2016). However, distinguishing
hepatocytes at different stages of differentiation in vitro by this
method remains difficult because of the diversity and ambiguity
of cell morphology during development. In our study, the
transcriptional profiles of different hepatic cell types cultured
in vitro are combined using advanced machine learning methods,
and the characteristic markers of various hepatocyte populations
were identified. Results suggest the functional characteristics of
each population. Advanced computational methods for
describing liver cells cultured in vitro and resolving hepatocyte
developmental processes andmechanisms have become a focus of
research as the amount and variety of data grow.

Here, we uncovered a series of genes and classification rules
linked with in vitro hepatocyte differentiation processes and type
specificity by using advanced computational approaches based on
public single-cell RNA sequencing data. First, we used two
effective feature selection approaches (Boruta (Kursa and
Rudnicki, 2010) and Max-Relevance and Min-Redundancy
(Peng et al., 2005)) to filter and rank features. Based on
ranked features, several feature sets were constructed in
incremental feature selection (IFS) approaches (Liu and
Setiono, 1998), which were fed into three efficient
classification algorithms to build classifiers. The optimal
classifier and the optimal feature subset were obtained by
evaluating the performance of each classifier and observing the
IFS curve. A number of genes in the optimal feature subset are
associated with hepatocyte differentiation and function,
demonstrating the accuracy of our computational analysis. In
addition, a series of quantitative rules were established for
distinguishing specific cell types and functions during
hepatocyte differentiation in vitro. Overall, our study provided
a novel computational analysis for revealing the characteristic
markers of various hepatocyte populations, suggesting the
functional characteristics of each cell population. The top-
ranked features and decision rules identified by our analysis
provided a theoretical basis for resolving hepatocyte
developmental processes and mechanisms and potential targets
for the treatment of clinical liver diseases.

MATERIALS AND METHODS

Data
We obtained in vitro cultured human hepatocyte single-cell RNA
sequencing expression profiles from the Gene Expression
Omnibus (GEO) database under accession number GSE128060
(Feng S. et al., 2020). These data include 1,147 cells from 16
different hepatic cell types, each with 63,255 genes at different
expression levels obtained through Smart-Seq2 sequencing. The
sample sizes of each hepatic cell type are listed in Table 1. In each
cell, the expression levels of genes were quantified using the
transcript-per-million method.

Boruta Feature Filtering
The majority of the features is irrelevant to the classification.
When all features are selected for further analysis, redundancy
and noise are introduced, whichmight lead to biased calculations.
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We used the Boruta approach to filter extraneous features in this
case (Kursa and Rudnicki, 2010). The Boruta feature filtering
method has been widely used in biological data mining in the past
(Chen L. et al., 2021; Ding et al., 2021).

Boruta is based on the random forest (RF) classifier, which
adds randomness to a system and collects results from a collection
of random features. This function reduces the misleading effects
of random fluctuations and correlations for the generation of the
most relevant features for classification. Boruta includes the
following steps: 1) When modeling for the first time, copies of
the original variables as shadow variables are generated. 2) The
values of the corresponding shadow variables are randomly
shuffled. 3) The importance score of each variable is calculated
with RF modeling. 4) For each true characteristic variable, the
difference between its significance maximum and that of each
shadow variable is evaluated using statistical tests. The true
characteristic variables with significantly higher importance
than the shadow variables are defined as significant. Real
characteristic variables with significantly lower importance
than the shadow variables are defined as insignificant. 5) All
insignificant variables and shadow variables are removed. The
modeling and selection process is repeated and performed on the
basis of the new variable composition of the dataset until all
variables are classified as significant or insignificant, or a pre-set
number of iterations is reached.

We used the Boruta tool from https://github.com/scikit-learn-
contrib/boruta_py in this study and used the default parameters
for the analysis.

Max-Relevance and Min-Redundancy
mRMR is a filtered feature selection algorithm that maximizes the
relevance between features and targets and decreases the
redundancy between selected features (Peng et al., 2005; Zhu
et al., 2020; Chen et al., 2022). The algorithm analyzes each
feature and output category as an independent variable and
measures the similarity between two variables by using mutual
information, as expressed by

MI(x, y) � ∫∫ p(x, y)log p(x, y)
p(x)p(y) dxdy (1)

Where p(x, y) represents the joint probabilistic density of x and
y, and p(x) and p(y) represent the marginal probabilistic
densities of x and y, respectively. Each time a feature is
introduced to the mRMR process, the correlation between a
feature set and a target must be determined. However, in
feature selection, the combination of individual good features
does not necessarily increase the performance of classifiers
because the features may be highly correlated with each other
and thus show redundancy. That is, the correlation between
features and categorical variable are maximized, and the
correlation between features are minimized. The formulas for
maximizing correlation and minimizing redundancy are as
follows:

maxD(S, c),D � 1

|S| ∑f i∈S
MI(f i, c) (2)

minR(S),R � 1

|S|2 ∑f i ,f j∈S
MI(f i, f j) (3)

Where S is the feature subset, |S| is the number of features, fi is
the i-th feature, and c is the target category. Finally, the features
are selected by maximizing the equation ϕ as follows:

max ϕ(D,R), ϕ � D − R (4)
However, it is not easy to obtain such feature subset as this

problem is NP-hard. Accordingly, mRMR employs a heuristic
way to complete this task. It repeatedly selects one feature with
maximum relevance to target category and minimum
redundancies to already-selected features. This procedure stops
until all features have been selected. According to the selection
order, features are sorted in a feature list. Evidently, features with
high ranks are more important than those with low ranks.

We used the mRMR tool from http://home.penglab.com/proj/
mRMR/ and used the default parameters for the analysis.

TABLE 1 | The sample sizes of different cell types cultured in vitro.

Class Index Cell types Sample size

1 5C-condition cultured human primary hepatocyte 96
2 Cultured human primary intrahepatic biliary epithelial cell 34
3 Definitive endoderm 15
4 Endoderm stem cell (EnSC) 24
5 EnSC-derived cholangiocyte 68
6 EnSC-derived EGFi-untreated hepatocyte 128
7 EnSC-derived hepatic endoderm 59
8 EnSC-derived hepatoblast 84
9 EnSC-derived hepatocyte 177
10 EnSC-derived immature hepatocyte 31
11 EnSC-derived TPPB-untreated cholangiocyte 75
12 Hepatocyte derived from ProliHH P2 through 3D maturation 22
13 Hepatocyte derived from ProliHH P5 through 3D maturation 32
14 Human embryonic stem cell-derived hepatocyte-like cell 140
15 Sorted ALB+ CYP3A4+ EnSC-derived hepatocyte 67
16 Uncultured adult human primary hepatocyte 95
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Incremental Feature Selection
Through mRMRmethod, we can obtain a feature list. However, it
is still a problem which features should be selected. To determine
the optimal features for one classification algorithm, the IFS
method (Liu and Setiono, 1998) was employed.

IFS is a frequently used method for determining the ideal
feature number for classification when combined with a
classification algorithm (Liu and Setiono, 1998; Zhang et al.,
2020; Zhang et al., 2021). Based on the feature list yielded by the
mRMR method, it first builds a succession of feature subsets by
one-step interval. The top feature in the list is included in the first
feature subset, the top two features are included in the second
feature subset, and so on. On each feature subset constructed, one
classifier is generated based on the given classification algorithm
and samples represented by the features in the subset. Such
classifier is assessed through ten-fold cross-validation (Kohavi,
1995). The best classifier can be found, which was termed as the
optimal classifier. The features used in such classifier were called
optimal features and they comprised the optimal feature subset.

Synthetic Minority Oversampling Technique
As shown in Table 1, various cell types have different sample
sizes. The sample size of hEnSC-derived hepatocytes was
approximately 12 times that of EnSCs, and thus the sample
size was highly unbalanced. This condition can lead to strong
preferences in the training process, resulting in unreliable results.
In the analysis of the effectiveness of each classifier, the synthetic
minority oversampling technique (SMOTE) was used to lessen
the impact of imbalance (Chawla et al., 2002; Ding et al., 2022;
Pan et al., 2022; Zhou et al., 2022). The SMOTE implementation
process consists of the following steps: 1) randomly select one
sample, say x, from aminority class; 2) the k closest neighbors of x
are obtained from all samples in the same minority class; 3)
sample xi(nn) is randomly selected from these k closest neighbors,
and a random number ζ1 between 0 and 1 is generated to
synthesize a new sample xi1 with the following formula:

xi1 � xi + ζ1 × (xi(nn) − xi) (5)
This new sample is put into the minority class; 4) above steps

are repeated several times until the minority class has same
number of samples in the majority class. In this project, the
“SMOTE” tool fromWeka was used. The new samples yielded by
SMOTE were only used in the IFS method.

Classification Algorithm
Three efficient classification algorithms were used as candidates
for the IFS method, which have been applied to tackle various
biological and medical problems (Chen W. et al., 2021; Carlos
et al., 2021; Liu et al., 2021; Li et al., 2022; Wu and Chen, 2022;
Yang and Chen, 2022). They were briefly described as follows.

Random Forest
RF is an emerging and highly flexible machine learning algorithm
that is widely used in biological data mining (Breiman, 2001). It is
a typical type of ensemble classifier. The idea of an ensemble is to
solve shortcomings inherent in a single model or a model with a

certain set of parameters, and thus more models can be
integrated, and limitations can be avoided. RFs are the
products of the idea of ensemble, where many decision trees
(DTs) are integrated into a forest for the prediction of a final
outcome. Here, we called RF model from python’s scikit-learn
package for classification. For convenience, we used default
parameters to execute RF package. The number of DTs was 100.

k-Nearest Neighbor
KNN is the earliest collaborative filtering algorithm (Cover and
Hart, 2003). The basic idea is to classify sample points that are
close to one another into the same class. The KNN first
determines a k-value which is used in selecting k-nearest
samples in a specific point. Then, a selected distance is used in
calculating the distance of the k-nearest samples to a specific
point. Finally, a voting-based classification rule is used to
determine the class to which the new sample belongs. We
adopted the KNN model in scikit-learn for subsequent
analysis. Default parameters were used, where the distance was
defined as Minkowsk distance, K was set to one.

Decision Tree
DTs are machine learning algorithms with good interpretation,
high training efficiency, and simple comprehension and
frequently used in classification and feature selection (Safavian
and Landgrebe, 1991). A DT splits in a recursive manner,
resulting in a tree structure with nodes and directed edges.
The classification of an instance is determined by sorting
along the tree until it reaches a leaf node. In this study, we
adopted DT implemented by the Scikit-learn package. It uses
CART method with Gini index to expand the tree.

Performance Evaluation
The Matthews correlation coefficient (MCC) is a well-balanced
indicator that may be used when the sample size is imbalanced
(Matthews, 1975). It is used in measuring the binary classification
problem and is more reliable than other measurements in
biological data. Gorodkin proposed a widely used formulation
of MCC in multi-class classification problems (Gorodkin, 2004).
Such MCC can be determined using the formula below:

MCC � cov(X,Y)�����������������
cov(X,X)cov(Y ,Y)√

�
1
K ∑N

n�1∑K
k�1(Xnk − �Xk)(Ynk − �Yk)����������������������������������∑N

n�1∑K
k�1(Xnk − �Xk)2∑N

n�1∑K
k�1(Ynk − �Yk)2√ , (6)

Where X is the binary matrix into which one-hot encoding
converts the predicted class of each sample, Y is another
binary matrix into which one-hot encoding converts the real
class of each sample, and cov(X,Y) is the covariance of two
matrices. The average of the kth column of matrices X and Y are
represented by �Xk and �Yk, respectively. The elements in the n-th
row and k-th column of the matrices X and Y are referred to as
Xnk and Ynk, respectively. The MCC range is [−1, 1], and 1
indicates that the forecasts are identical to actual outcomes, 0
indicates that the predictions are no difference from random, and
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FIGURE 1 | Flow chart of the entire analysis process of this study. Single-cell RNA sequencing data acquired through the GEO database includes cells from 16
different hepatic cell types cultured in vitro. Following that, using feature selection methods, a sorted feature list is constructed. To recover efficient genes, develop
effective classifiers, and construct classification rules, this list is partitioned into feature subsets and put into the three classification algorithms.
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−1 indicates that the predictions are the polar opposites of the
actual results.

In addition, some other widely used measurements for multi-
class classification problems were also adopted in this study. They
were overall accuracy (ACC) and individual accuracy on each
class (cell type in this study). For the i-th class, its individual
accuracy is defined as

ACCi � ni

Ni
, (7)

WhereNi stands for the number of samples in the i-th class and ni
is the number of correctly predicted samples in this class. As for
ACC, it can be computed by

ACC � ∑16
i�1ni∑16
i�1Ni

, (8)

Above measurements were provided as reference.

Functional Enrichment Analysis
We can get the optimal features for one classification algorithm
using the IFS method. Functional enrichment analysis is critical for
uncovering key pathways involved with the in vitro culture process
and for unraveling the molecular processes of biomedicine. Thus,
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment studies were performed
using the R package ClusterProfiler (Wu et al., 2021).

RESULTS

In the current research, we explored genes that characterize the
process of hepatocyte culture and differentiation in vitro and
created a series of rules for differentiating various hepatic cell
types. The entire calculation process is shown in Figure 1. The
outcomes of each step were discussed in full below.

Results of Boruta and mRMR Methods
We processed the original 63,255 features with the Boruta feature
filtering approach. 1901 features were selected, which are listed in
Supplementary Table S1. Subsequently, these features were
analyzed by mRMR method, to obtain a list of features ranked
by importance, which are also shown in Supplementary
Table S1.

Results of the IFS Method
Based on the feature list obtained in Results of Boruta and
mRMR Methods section, the IFS method was performed. It
constructed 1,901 feature subsets with one step interval. On
each feature subset, a classifier was built by applying one
classification algorithm (RF, KNN or DT) to samples
represented by features in this subset. Each classifier was
evaluated by 10-fold cross-validation. The evaluation results,
including measurements listed in Performance Evaluation
section, are provided in Supplementary Table S2. To clear
display the performance of one classification algorithm under
different feature subsets, an IFS curve was plotted, as shown in
Figure 2, which set MCC as Y-axis and number of features as
X-axis. For RF, the highest MCC was 0.940, which was obtained
by using top 1212 features in the list. Accordingly, the optimal RF
classifier can be built with these features. The ACC of this
classifier was 0.945, as listed in Table 2. Its detailed
performance on 16 cell types (i.e., individual accuracies) is
shown in Figure 3. It can be observed that several cell types
were perfectly predicted. All these suggested the excellent high
performance of the optimal RF classifier. As for another
classification algorithm, KNN, its highest MCC was 0.924,
which was produced by using top 829 features. With these
features, the optimal KNN classifier was set up. Such classifier
yielded the ACC of 0.930 (Table 2). The MCC and ACC were all
lower than those of the optimal RF classifier. Its individual
accuracies on 16 cell types were also generally lower than

FIGURE 2 | IFS curves for evaluating the performance of the three classification algorithms under different feature subsets according to MCC. RF/KNN/DT reaches
the maximum MCC value of 0.940/0.924/0.850 at the feature number of 1212/829/1774.
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those of the optimal RF classifier, which can be observed from
Figure 3.

With RF and KNN, the efficient classifiers can be built.
However, they cannot provide useful clues to uncover the
heterogeneity of the hepatocyte differentiation process in vitro.
In view of this, this study further employed DT in the IFSmethod.
The IFS curve of DT is also shown in Figure 2. When top 1,774
features were used, DT provided the highest MCC of 0.850.
Likewise, the optimal DT classifier was constructed using these
features. Its ACC was 0.863, as listed in Table 2. Evidently, such
performance was much lower than that of the optimal RF/KNN
classifier. Its performance on 16 cell types was also much lower
than that of the other two optimal classifiers (Figure 3). Although
the performance of the optimal DT classifier is much lower than
the optimal KNN/RF classifier, it has its own merits, which would
be given in Classification Rules section.

With the above arguments, we can find that the optimal RF
classifier was best. Such classifier can be a useful tool to
differentiate hepatic cell types cultured in vitro. However,
the efficiency of this classifier was a problem because lots of
features were used in this classifier. In view of this, we carefully
checked the IFS results of RF and found that when top 222
features were adopted, RF can generate the MCC of 0.931. In
this case, the ACC was 0.937 (Table 2). They were slightly
lower than those of the optimal RF classifier. As for its
individual accuracies, they were also a little lower than
those of the optimal RF classifier, as shown in Figure 3.

Furthermore, this RF classifier was superior to the optimal
KNN and DT classifiers. Thus, it was more proper than the
optimal RF classifier to be a tool for differentiating hepatic cell
types cultured in vitro.

Classification Rules
By applying IFS method with DT to the in vitro cultured
human hepatocyte single-cell RNA sequencing expression
profiles, the optimal DT classifier was built. It used the top
1,774 features in the list. Although its performance was not
very high, it can provide novel clues to uncover the
heterogeneity of the hepatocyte differentiation process
in vitro. With top 1,774 features, we applied DT on all cells,
obtaining a large tree, from which 118 rules for classifying
hepatic cell types were obtained. These rules are available in
Supplementary Table S3. Each rule established a limit on the
quantity of gene expression, indicating the relevance of high or
low gene expression in distinguishing in vitro cultured cell
types. Each cell type received at least one rules. Figure 4 shows
the number of rules for each cell type. The cell type “EnSC-
derived hepatocyte” got the most rules (18), where four cell
types only got one rule. In Quantitative Rules for Stages of
Liver Cells Differentiation and Specific Function
Classification section, a detailed analysis of these rules
would be given.

Functional Enrichment Analyses
The IFS results showed that the optimal RF classifier provided the
best classification performance. Such classifier used the top
1,212 features in the list, suggesting that these features greatly
contributed to the model construction process for
distinguishing the samples of different cell types and were
directly or indirectly involved in the biological processes that
distinguished these cells. To support this result, GO and KEGG
pathway enrichment analysis was performed on the
corresponding genes of these features by using
ClusterProfiler (Wu et al., 2021) package in R. The FDR
<0.05 criterion was used in filtering GO terms and KEGG
pathways. Supplementary Table S4 shows the results of GO
and KEGG pathway enrichment analysis results. Then, we
selected the top five GO terms in each GO group and KEGG
pathways for visualization, as shown in Figure 5. Some terms,
such as cell–substrate junction and cadherin binding, were
linked to hepatocyte differentiation in vitro in these
enrichment results. Functional Enrichment Analysis of
Optimum Genes section presented a full analysis of the
enrichment results.

TABLE 2 | 10-fold cross-validation performance of some key classifiers based on different classification algorithms.

Classification algorithm Number of features Overall accuracy (ACC) Matthews correlation coefficient
(MCC)

Random Forest 1212 0.945 0.940
Random Forest 222 0.937 0.931
k-Nearest Neighbor 829 0.930 0.924
Decision Tree 1774 0.863 0.850

FIGURE 3 | Box plot to show performance of key classifiers on 16 cell
types. RF and KNN classifiers have superior classification performance, with
ACC reaching above 0.950 in most cell types. DT classifier has a weaker
classification performance compared to the other three classifiers.
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DISCUSSION

We used advanced computational methods to identify qualitative
features and quantitative rules for different stages of
differentiation and specific functional populations of liver cells,

which were cultured in vitro, at the single-cell level. The violin
plot and heatmap were drawn using highly ranked genes to show
expression patterns between different classes, which can be seen
in Figure 6. These features play important roles in hepatocyte
development, which also shows the accuracy of our analysis

FIGURE 4 | Bar chart to show the number of rules for each cell type.

FIGURE 5 | Gene ontology and KEGG pathway enrichment analysis on optimal genes for RF. The FDR<0.05 criterion was used to filter GO terms and KEGG
pathways. (A) The top five GO enrichment results for each GO group. (B) The top five KEGG pathway enrichment results.
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FIGURE 6 | Identified expression patterns of highly ranked genes among different classes. (A) The violin plot of five identified genes, C9, RBBP4,MYL9,GAL3ST1,
andCAPG, which have significant high expression level in specific classes. (B) The heatmap of genes ranked high in the feature list. The corresponding cell types of Class
1–16 can be found in Table 1.
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results. A detailed description of these features and rules can be
seen below.

Optimal Features for Distinguishing
Different Transplantable Liver Cells In Vitro
By the Boruta and mRMR methods, a feature list, indicating the
importance of genes, were obtained. Here, we selected five genes
with high ranks in the list for detailed analysis, which are listed in
Table 3.

The first identified gene in the list was TMSB10
(ENSG00000034510). TMSB10 encodes the conserved small
acid protein belonging to the beta-thymosin family, which
functions in actin function during cell motility. TMSB10
expression is related to the development of several tissues
(Bani-Yaghoub et al., 2001). Back in 1990, TMSB10 was found
to be highly expressed during the human fetal brain period (Hall
et al., 1990). In 2011, Fanni et al. found significant differences in
the expression of TSM10 among the different stages of salivary
gland organogenesis (Fanni et al., 2011). TSM10 is strongly
expressed in the early stages of physiological development of
human salivary glands (Nemolato et al., 2009; Fanni et al., 2011).
Although no studies have directly shown that TSM10 plays an
important role in liver formation and development, some studies
implied the important role of TSM10 in embryonic development,
revealing that TSM10 may be an important regulator in the
differentiation of embryonic cells into hepatocytes.

CD147 (ENSG00000172270), also known as basigin (BSG),
encodes a plasma membrane protein that plays important roles
in life processes, such as embryo implantation and tumor
progression. CD147 is one of the positive markers of a type
of mesenchymal stem cells that are isolated from fetal liver
(Zhao et al., 2004). This finding demonstrates the role of CD147
as a marker for identifying stem cells with high differentiation
potential. It helped us select good starting cells during the
in vitro culture of hepatocytes. CD147 regulates the
production of MMP in hepatocytes and bile duct cells and
reduces the degree of liver fibrosis (Calabro et al., 2014).
CD147 expression affects carcinogenesis development by
modulating the degree of cell differentiation in hepatocellular
carcinoma (Wu et al., 2016). Through previous studies, we
found that CD147 not only regulates terminally differentiated
cells in the liver but also affects the differentiation process of the
cells. Our method ranked it high in the list, indicating its
importance in the differentiation and maturation of
hepatocytes in vitro.

The next identified gene was TMEM176B
(ENSG00000106565), which was first found in human lung
fibroblasts (Lurton et al., 1999). TMEM176B was highly
expressed in transplanted livers with recurrent hepatitis C
virus, revealing its potential as a marker to distinguish
abnormal reactions occurring after liver transplantation
(Gehrau et al., 2011). Our study showed that TMEM176B was
one of the efficient classification features, implying a specific
pattern in TMEM176B expression among cell populations and
further suggesting that diverse in vitro cultured cell populations
have different adaptations for liver transplantation. In addition,
TMEM176B regulates the maturation process of monocytes and
dendritic cells in mice and humans (Condamine et al., 2010;
Picotto et al., 2020). No direct evidence of the role of TMEM176A
in hepatocyte differentiation was found, but the combination of
previous and our studies revealed that TMEM176A potentially
acts as a potential target for regulating hepatocyte maturation.

PPIA (ENSG00000196262), also known as CYPA, encodes a
peptidyl-prolyl cis-trans isomerase that plays an important role in
protein folding. It can act as a ligand to bind to CD147, thereby
affecting intracellular physiological activities (Yurchenko et al.,
2002). CD147, as described above, can affect the differentiation of
cells within the liver. Therefore, PPIA is a potential target that
influences hepatocyte differentiation. In addition, the inhibition
of PPIA activity leads to the blocked polymerization of hensin in
the extracellular matrix, thus preventing the full differentiation of
epithelial cells (Peng et al., 2009). In 2005, CYPA was
demonstrated to be involved in the early stages of neural
differentiation (Urano et al., 2006). PPIA mediates many
biological pathways, such as inflammation and apoptosis, but
its function in the differentiation of embryonic hepatocytes
in vitro has not been investigated. Previous studies and our
studies showed its potential influence on functional cell
differentiation.

The next identified gene was CD63 (ENSG00000135404),
which encodes a quadruple transmembrane protein localized
on the surface of the cell membrane. This protein-mediated
signal transduction event plays a role in the regulation of cell
development, activation, growth, and motility (Pols and
Klumperman, 2009). Exogenous TIMP-1 binds to CD63 and
activates a series of pathways that ultimately mediate human
hematopoietic stem or progenitor cells proliferation (Rossi et al.,
2015). Thus, CD63 may act as a signaling initiator molecule that
facilitates the proliferation and differentiation of stem cells
in vitro, leading to the formation of cells with specific
functions. In addition, CD63 interacts with ameloblastin in
osteoblasts and promotes the interaction between CD63 and
integrin β1, which ultimately promote osteogenic
differentiation (Iizuka et al., 2011). CD63 is associated with
cell differentiation in a variety of tissues and a potential target
that influences the in vitro culture and differentiation of
hepatocytes. Meanwhile, CD63 is one of the indicators for
assessing liver regeneration and prognosis in patients with
acute-on-chronic liver failure (Jiao et al., 2021). This result
suggested that CD63 is critical to hepatocytes cultured in vitro
and it may be directly related to the success of the subsequent
transplantation of these cells into damaged livers.

TABLE 3 | Important genes yielded by Boruta and mRMR methods.

Ensembl ID Gene symbol Description

ENSG00000034510 TMSB10 Thymosin Beta 10
ENSG00000172270 CD147/BSG Basigin (Ok Blood Group)
ENSG00000106565 TMEM176B Transmembrane Protein 176B
ENSG00000196262 PPIA Peptidylprolyl Isomerase A
ENSG00000135404 CD63 CD63 Molecule
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Functional Enrichment Analysis of Optimum
Genes
The IFS curve showed that the RF reached optimal performance
in 1,212 features. We performed enrichment analysis on these
1,212 feature genes and filtered. The FDR was <0.05. The GO
terms and KEGG pathways were directly or briefly involved in
hepatocyte differentiation and functional formation, confirming
the reliability of our selection method for the classification of
hepatocytes at different stages of differentiation and cells with
different functions. This result confirmed the validity of our
selection method for the classification of hepatocytes at
different stages of differentiation and different functions. We
selected some of the top GO and KEGG enrichment results for
detailed analysis.

In the biological process of GO enrichment results, GO:
0072599, which refers to the establishment of protein
localization to the endoplasmic reticulum, displayed
significant enrichment. Similar results were found for GO:
0070972, which refers to protein localization to the
endoplasmic reticulum. During hepatocyte differentiation,
changes in endoplasmic reticulum morphology and protein
content in the microsomes on the endoplasmic reticulum
were observed (Dallner et al., 1966; Kanamura et al., 1990). In
addition, during liver development, endoplasmic reticulum
processed large amounts of proteins and lipids to temporarily
direct and perform proper functions (Hetz, 2012). In the
cellular component of GO enrichment results, GO:0030055,
which refers to the cell–substrate junction, showed high
enrichment. Hepatocytes must interact with other cells and
with a chemically complex substrates to maintain activity and
function (Parsons-Wingerter and Saltzman, 1993). The
biomechanical effects of cell–substrate interactions affect
the differentiation of embryonic liver progenitor cells
(Kourouklis et al., 2016). In the molecular function of GO
enrichment results, GO:0045296, which refers to cadherin
binding, was found to be significantly enriched. Calnexin-
mediated intercellular contacts are essential to the in vitro
maintenance of functioning hepatocytes (Semler et al., 2005).
Moreover, the incorporation of E-calcineurin in cells
containing appropriate substrates can maintain cell-specific
functions in the liver and induce hepatocyte differentiation
processes in vitro (Semler et al., 2005; Haque et al., 2011).
Interestingly, in the KEGG enrichment analysis, we found
hsa05171, which refers to the coronavirus disease (COVID-
19), to be significantly enriched. Hepatocytes and
cholangiocytes cultured in vitro are extremely permissive
to SARS-CoV-2 infection (Yang et al., 2020). Hence,
COVID19-related genes may be involved in the functional
formation of hepatocytes and cholangiocytes in vitro.

Quantitative Rules for Stages of Liver Cells
Differentiation and Specific Function
Classification
In addition to qualitative features, we established a series of
quantitative rules for distinguishing in vitro cultured liver cells.

We classified these rules and cell clusters into two main
categories. The first category included rules that distinguish
specific cell clusters at different stages of hepatocyte
differentiation in vitro. The second category included rules
used in distinguishing specific hepatocyte clusters formed by
the differentiation of different original cells in vitro. A detailed
description of the rules can be found below.

First, the classification rules of six cell groups derived from the
development of endodermal stem cells into hepatocytes and
cholangiocytes were resolved. In developmental stages originating
from endodermal stem cells, all the six cell types exhibited restricted
SAA1, TMEM123, and CD36 expression. During the differentiation
of stem cells into hepatocytes, SAA1 expression is upregulated in favor
of liver metabolism, but the overexpression of SAA1 determines the
development of inflammation (Shi et al., 2020; Choi et al., 2021). This
findingwas consistentwith our results and showed the accuracy of our
method. CD36 is involved in themetabolismof fat in hepatocytes, and
high CD36 expression leads to fat accumulation and affects the
normal functions of hepatocytes (Wilson et al., 2016; Li et al.,
2019). PABPAC1 had high expression levels in Class 9
(hepatocyte) and Class 10 (immature hepatocyte) and low
expression in other cells. The upregulated expression of PABPAC1
is associated with hepatocyte proliferation and growth (Hsieh et al.,
2009). The classification rules for Class 4 (endoderm stem cell) and
Class 7 (hepatic endoderm) showed a high degree of similarity,
exhibiting the low expression of HAMP and SPTBN1 and high
expression of APOE. HAMP, a protein specifically expressed in
the liver, constitutes a major circulating regulator of iron uptake
and distribution across tissues (Fang et al., 2020). Class 4 and Class 7
hepatocytes are cell populations in the early stages of differentiation
and therefore have lower expression levels on hepatocyte-specific
expressed genes. The inhibition of SPTBN1 in hepatocellular
carcinoma cells increases the expression of stem cell markers, and
this process is consistent with the less differentiated nature of these
two types of cells (Zhi et al., 2015; Hu and Wu, 2021). APOE
deficiency leads to liver senescence and is detrimental to
hepatocyte differentiation (Bonomini et al., 2013). Thus, the high
expression of APOE retains the strong differentiation abilities of Class
4 and Class 7 cells. In rule11, which was used in distinguishing Class 4
(endodermal stem cells), FOXH1 showed high expression levels.
FOXH1 acts as a transcriptional co-activator and promotes the
expression of MixL1, which plays an important role in the
morphogenesis and endodermal differentiation of mouse embryos.
In rule 7, which was used in distinguishing Class 5 (cholangiocyte),
S100A6, GSTA1, and NOCA7 showed low expression levels, whereas
QSOX1, BTG1 showed high expression levels. S100A6 plays a
regulatory role in a variety of cell differentiation processes and has
a low expression level in terminally differentiated cholangiocytes
(Grahn et al., 2020). Given that high BTG1 expression inhibits cell
proliferation and differentiation, cholangiocytes were presumed to
have reached a stable state. Class 9 (hepatocyte) and Class 10
(immature hepatocyte) contained RPS27 in their classification
rules, which had low expression in Class 9 and high expression in
Class 10. High RPS27 expression has been reported in regenerating
hepatocytes (Ganger et al., 2001). We hypothesized that RPS27 is a
potential target for the transformation of immature hepatocytes into
active mature hepatocytes.
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The classification rules for the six classes of cell subtypes were
resolved. These classes were hepatocytes obtained from the
differentiation and development of three distinct original cells
under different conditions. Class 1 included the primary
hepatocytes maintained in vitro under 5C conditions, which
brings the primary hepatocytes to a steady state by inhibiting
a series of signaling pathways (Xiang et al., 2019). In rule 2, which
was used for distinguishing Class 1, RAB5IF and CRIM1 showed
low expression levels, whereas EMC7 showed high expression
levels. In hepatocellular carcinoma, the RAB5I with low
expression level binds to FLGR5, thereby inhibiting the
proliferation of hepatocellular carcinoma cells (Koo et al.,
2019). Inhibitory effect of RAB5I is similar to the inhibition of
proliferation of primary hepatocytes under 5C conditions,
indicating the accuracy of our method. CRIM1 is an
important regulator of organ development and is highly
expressed during differentiation (Iyer et al., 2016). primary
cells maintained under 5C conditions are more stable and
have lower differentiation indexes that those that are not, and
CRIM1 has low expression level (Xiang et al., 2019). The function
of EMC7 is currently undefined, but it is a potential target for
maintaining the stability of primary hepatocytes in vitro. As for
Class 16 (rule 3, uncultured adult human primary hepatocyte),
SAA1 showed a high expression level in the classification rule.
SAA1 encodes an acute phase protein that is highly expressed
during tissue injury, inflammation, or infection (Li and Liao,
1999). Uncultured primary hepatocytes cannot maintain function
in vitro for long periods of time. The cells may internally generate
responses related to SAA1 function. In rule 16, which was used
for distinguishing Class 13, XIST and CAT showed high
expression levels. Highly expressed XIST binds miRNAs that
inhibit cell differentiation, thereby promoting cell differentiation
(Feng Y. et al., 2020). CAT is more highly expressed in immature
cells than in mature cells, indicating that it is a maturation-
associated gene (Tomisato et al., 2002). This finding is consistent
with the characteristics of ProliHHs, which exhibits progenitor
cell properties after multiple generations of culture (Zhang et al.,
2018). As for Class 14 (rule 17, Human embryonic stem cell-
derived hepatocyte-like cell), NRAGE and SPTBN1 showed high
expression levels in the classification rule. The high expression of
NRAGE facilitates the repair of homologous recombination and
can make cells radioresistant by altering subcellular localization
(Xue et al., 2010; Chang et al., 2018; Liu et al., 2020). The high
expression of SPTBN1 can suppress inflammation in the liver
(Lin et al., 2021). Our rule demonstrated the specificity of the
function of hepatocytes differentiated from different original
cells, proving the superiority of our method.

CONCLUSION

We used innovative and widely used computational
approaches on single-cell RNA sequencing data to reveal
the markers of various hepatic cell types. The results

suggested the functional characteristics of each population
of cells. The following three major aspects of our work are
the end results of our efforts. The first is a list of genes that are
potential targets for hepatocyte populations cultivated in vitro
and related to specific markers. Some markers such as CD147,
PPIA, TMSB10, TMEM176B, and CD63 were identified, and
these markers have been proven to be associated with
hepatocyte differentiation and maturation in vitro. This
aspect provides a theoretical foundation for understanding
hepatocyte developmental processes and mechanisms and
possible targets for clinical liver disease treatment. The
second is the efficient classifier for determining the types of
cells in the liver. The best random forest classifier with a 0.940
Matthews correlation coefficient had been constructed to
distinguish different hepatic cell types. This classifier was
trained on a vast amount of single-cell data and achieved
outstanding classification results. The third aspect
encompassed a set of classification rules as direct indicators
of distinct cell types. The classification rules reveal the features
of hepatic cell types at the level of quantitative gene expression,
providing a theoretical foundation for the modification of
hepatocytes to better function in vivo.
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Diabetes is themost common disease and amajor threat to human health. Type 2 diabetes
(T2D) makes up about 90% of all cases. With the development of high-throughput
sequencing technologies, more and more fundamental pathogenesis of T2D at genetic
and transcriptomic levels has been revealed. The recent single-cell sequencing can further
reveal the cellular heterogenicity of complex diseases in an unprecedented way. With the
expectation on the molecular essence of T2D across multiple cell types, we investigated
the expression profiling of more than 1,600 single cells (949 cells from T2D patients and
651 cells from normal controls) and identified the differential expression profiling and
characteristics at the transcriptomics level that can distinguish such two groups of cells at
the single-cell level. The expression profile was analyzed by several machine learning
algorithms, includingMonte Carlo feature selection, support vector machine, and repeated
incremental pruning to produce error reduction (RIPPER). On one hand, some T2D-
associated genes (MTND4P24, MTND2P28, and LOC100128906) were discovered. On
the other hand, we revealed novel potential pathogenic mechanisms in a rule manner. They
are induced by newly recognized genes and neglected by traditional bulk sequencing
techniques. Particularly, the newly identified T2D genes were shown to follow specific
quantitative rules with diabetes prediction potentials, and such rules further indicated
several potential functional crosstalks involved in T2D.

Keywords: type 2 diabetes, single-cell sequencing, Monte Carlo feature selection, support vector machine, RIPPER

1 INTRODUCTION

Diabetes mellitus (DM) turns out to be the general term describing metabolic disorders with high
blood sugar levels as typical symptoms (Tseng et al., 2012; Tao et al., 2015). Due to either lack of
insulin or pathogenic insulin reactive responses, diabetes can be divided into three groups: type 1 DM
with low insulin production, type 2 DM with insulin resistance, and gestational diabetes with high
blood sugar levels induced by diabetes recurrence during pregnancy (American Diabetes
Association, 2014). According to the epidemiologic statistics data in 2015, more than four
hundred million people suffered from diabetes, and about five million people died from such
disease all over the world (Gao et al., 2016; Disease and Injury Incidence and Prevalence
Collaborators, 2017; Global Burden of Disease Cancer Collaboration et al., 2017). Particularly,
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type 2 diabetes (T2D) makes up about 90% of all cases (392
million) and is the primary subtype of diabetes (Disease and
Injury Incidence and Prevalence Collaborators, 2017; Global
Burden of Disease Cancer Collaboration et al., 2017),
indicating such kind of disease is one of the major threats to
human health.

Different from type 1 DM and gestational diabetes, the major
pathogenesis of type 2 DM is insulin resistance and beta-cell
dysfunction accompanied with insufficient insulin secretion
(Pandey et al., 2015), where insulin resistance is generally
defined as dysfunctional insulin-mediated glucose clearance
(Yabe et al., 2015). During the pathogenesis of type 2 DM, the
typical insulin-associated biological processes and action cascade
are usually disturbed by either intracellular signals or extra
interferences, including serine phosphorylation of IRS-1, excess
glucosamine, mitochondria defects, FA (fatty acid)-induced
insulin dysfunction, and alternate fatty acid effects (Taylor,
2013; Eckardt et al., 2014; Pandey et al., 2015). Early in 1997,
Boden (1997) has already demonstrated the significance of fatty
acids in diabetes. Further similarly in the same year, functional
signaling molecules IRS-1 and IRS-2 were confirmed by Zick
(2001), revealing the initial biological foundations for diabetes.
Apart from such complicated pathogenesis associated with
insulin resistance, beta-cell dysfunction has also been widely
identified in type 2 DM patients as the other etiological factor.
Similar to insulin resistance, such pathogenesis also has various
potential mechanisms, including glucose toxicity, beta-cell
exhaustion, impaired proinsulin biosynthesis, and lipo-toxicity
(Ferrannini, 2009). In 2003, Kahn (2003) demonstrated the
specific contribution of both insulin resistance and beta-cell
dysfunction to the pathogenesis of diabetes, laying a
foundation for the basic pathological mechanisms of such
disease. Different from the downstream mechanisms of two
major pathogeneses, such pathogenic mechanisms can be both
attributed to either genetic predisposition or environmental
interferences (Andersen et al., 2016; Stancakova and Laakso,
2016). They would be involved in the progressive dysfunction
of pancreatic islet alpha and beta cells, so that, the pancreatic islet
cells actually have specific roles in the initiation and progression
of type 2 DM.

Traditionally, the studies on the pathogenic characteristics and
contribution of pancreatic islet cells mainly focused on the
abnormal biochemical reactions and physiological processes of
such cell types in type 2 DM (Borg et al., 2001; Donath et al., 2003;
Prentki and Nolan, 2006; Westermark and Westermark, 2008).
According to these studies, there are four major pathogenic
characteristics of pancreatic islet cells, including increased islet
glucose metabolism (Forst et al., 2014), abnormal lipid signaling
(Chakraborty et al., 2014), abnormal GLP-1 secretion (Trujillo
and Nuffer, 2014), and compensatory feedback stimulation on
parasympathetic and sympathetic neurons (Thorens, 2014). With
the development of high-throughput sequencing technologies,
more and more fundamental pathogenesis of type 2 DM at
genetic and transcriptomic levels has been revealed. Apart
from such transcription factors, genes regulating optimal
glucose-responsive insulin secretion, like IAPP, GLUT2,
GAD65, and IA-2, have also been identified to participate in

T2D-associated pathogenesis (Clocquet et al., 2000). Therefore,
the abnormal gene functions of pancreatic islet cells may be one of
the major pathogenic factors for type 2 DM. However, as we all
know, the cellular components of pancreatic islet cells are quite
complicated involving various cell subtypes. Meanwhile,
traditional studies all focused on the biological features (either
at the cellular level or genetic level) of cell population, no matter
pathogenic or not for individual cells. Therefore, these
conventional studies may ignore some potential pathogenic
factors and mistake non-pathogenic features due to normal or
irrelevant cells’ interferences.

Multiple previous studies have focused on single-cell analyses
on pancreatic islets under physical or pathological conditions.
With the development of single-cell techniques, the studies on
pancreatic islets under either pathological or normal conditions
have been extended to the single-cell level. Early in 2016,
Segerstolpe et al. (2016) have identified some typical
biomarkers to distinguish pancreatic islets under healthy and
diabetic conditions. However, as limitations of this study, the
authors only applied differential expression analyses and the
t-SNE method to identify some potential biomarkers to reveal
the heterogeneity (Segerstolpe et al., 2016). Apart from this study,
further in 2017, another study extended to identify the specific
biomarkers for T2D, confirming that genes are differentially
expressed at the transcriptomics level not only between
patients and controls but also among different cell types
(Lawlor et al., 2017). In 2018, another single-cell gene
expression analysis on T2D also tried to identify specific
biomarkers for the prediction of cellular states of beta-cells,
either healthy or T2D beta-cells (Ma and Zheng, 2018). The
shortcomings of these two studies turn out to be a lack of
quantitative standards establishment, making it still quite hard
to predict T2D using single-cell transcriptomics data.

To overcome the limitations of previous studies mentioned
earlier, in this study, for the first time, we used the single-cell
sequencing results from one previous study (Xin et al., 2016) and
tried to extend their analyses at two levels: 1) using multiple
machine learning algorithms for deep analysis; 2) taking the
pancreatic islets as a whole and did not distinguish different
cell subtypes. We extended the classification and prediction of
cellular states from just beta cells to multiple cell types, including
human pancreatic alpha, beta, delta, and PP cells. Also, different
from previous studies, we did not just focus on the pathogenic
effects of T2D on beta cells but tried to reveal the general
comprehensive pathogenic effects on all the cells from the
pancreatic islets. Although most of the previous studies
identified that pancreatic islet B cells are the major
participants in the pathogenesis of T2D, other cells, including
alpha, delta, and PP cells, are also either shown to be correlated
with the pathogenesis of T2D or may act as potential biomarkers
for T2D due to their typical changes during the pathogenesis.
Therefore, it is not only innovative but effective to reveal the
comprehensive effects of T2D on pancreatic islets and identify
more valuable biomarkers for such disease.

All in all, to remove the interferences caused by conventional
bulk sequencing and analysis, we have tried to identify potential
pathogenic factors of T2D from the transcriptomic profiling
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covering multiple cell subtypes at the single-cell level. Relied on
single-cell RNA sequencing techniques and related public
datasets (Xin et al., 2016), we investigated such datasets with
several powerful machine learning algorithms. Different from
previous studies, focusing on identifying biomarkers for
distinguishing a tissue under normal or pathological
conditions but not an entire tissue, which makes hard to
detect biomarkers from a single-cell subtype in clinical
applications, this study tried to identify the common
transcriptomics characteristics across different cell types at the
single-cell level for T2D. Biomarkers identified in this study may
not be affected by the cell composition of the islet tissue that may
vary among different individuals. In addition, our results revealed
novel potential pathogenic mechanisms induced by newly
recognized genes in a rule manner, which are always neglected
by traditional bulk sequencing techniques. On the one hand, these
results deepen our understanding on the etiology and
pathogenesis of T2D. On the other hand, such identified new
biomarkers can be potential candidates for further clinical
application in the diagnosis of T2D using the transcriptomics
information of the entire tissue, with no further cell separation
and preprocessing required.

2 MATERIALS AND METHODS

In this study, we first used a feature selection method to analyze a
RNA sequencing dataset of T2D for ranking the important genes

associated with T2D, and these genes were further optimized for
diabetes using incremental feature selection (IFS) (Liu and Setiono,
1998) with some supervised classifiers. In the end, we applied the
rule learning method to generate interpretable classification rules
for T2D. The whole process is illustrated in Figure 1.

2.1 Datasets
We downloaded the RNA sequencing data of 1,600 human
pancreatic islet cells from the GEO (Transcript Expression
Omnibus) database under the accession number of GSE81608
at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE81608 (Xin et al., 2016). There were 949 pancreatic islet
cells from six T2D patients and 651 pancreatic islet cells from
12 non-diabetic donors. Within the 949 pancreatic islet cells from
T2D patients, there were 569 alpha, 296 beta, 30 delta, and 54 PP
cells. Within in the 651 pancreatic islet cells from non-diabetic
donors, there were 377 alpha, 207 beta, 28 delta, and 39 PP cells.
The expression levels of 39,851 genes were quantified as RPKM
(Reads Per Kilo bases per Million reads). The processed gene
expression profiles of these cells downloaded from https://ftp.
ncbi.nlm.nih.gov/geo/series/GSE81nnn/GSE81608/suppl/
GSE81608_human_islets_rpkm.txt.gz were used. Despite islet
cells containing different cells, this work expects to identify
the common gene signatures for T2D across multiple cell types.

2.2 Feature Selection
In this study, we first used the Monte Carlo feature selection
(MCFS) (Draminski et al., 2008) to evaluate the importance of all

FIGURE 1 | Workflow for key gene identification of type 2 diabetes. The MCFS method was used to evaluate the importance of all features (genes). On the one
hand, the IFS method with SVM/RF/KNN was applied on the feature list yielded by the MCFS method to extract optimal T2D-associated genes and optimal classifiers.
On the other hand, the informative features yielded by theMCFSmethodwere fed into the Johnson reducer and RIPPER algorithms to construct optimal T2D-associated
rules.
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genes, obtaining a feature list and some informative genes
expressed in diabetes. For the feature list, it was fed into the
IFS (Liu and Setiono, 1998) with one classification algorithm to
extract optimal genes that had a strong discriminate ability
between diabetes and non-diabetes samples and construct an
efficient classifier. On the other hand, repeated incremental
pruning to produce error reduction (RIPPER) was employed
to determine interpretable rules on gene expression patterns with
informative features.

2.2.1 Monte Carlo Feature Selection
The investigated data contained 1,600 samples, each of which was
represented by expression levels on lots of genes. Accordingly, the
data can be summarized as a matrix with low row numbers and
high column numbers. MCFS is deemed to be a powerful feature
selection method to deal with such data. Thus, it was employed in
this study. MCFS is a multivariate feature selection method based
on bootstrap samples and decision trees, which focuses on
selecting discriminate features for classification with
robustness. In this feature selection algorithm, it generates
multiple bootstrap sets, and on each bootstrap set, multiple
decision trees are grown on smaller feature subsets randomly
selected from original features. Then, the involvement of each
feature in the decision trees shows a relative importance (RI)
score, which indicates the overall number of splits involving this
feature in all nodes of all constructed trees. The MCFS program
was downloaded from http://www.ipipan.eu/staff/m.draminski/
mcfs.html. For convenience, default parameters were adopted.

The MCFS program was executed on the aforementioned
RNA sequencing data. According to the output of the MCFS
program, we can obtain the RI values of all features. Accordingly,
features can be ranked in a list with the decreasing order of their
RI values. Furthermore, it also provides the informative features,
which are generated by a permutation test on class labels and one-

sided Student’s t-test. These features are always the top-ranking
features in the list. We would adopt these features to construct
classification rules via RIPPER.

2.2.2 Incremental Feature Selection
In this study, we performed IFS on the MCFS-generated feature
list, denoted by F � [f1, f2, . . . , fN] (N was the total number of
features), to screen out a set of optimal features, which can
accurately discriminate between diabetes and non-diabetes
samples. Based on such list, we generated a series of feature
subsets with step 5. Suppose there are m feature subsets
[F1, F2, . . . , Fm], where the ith feature subset contains top 5 × i
features, that is, Fi � [f1, f2, . . . , fi×5]. Then, for a given
classification algorithm, we built one classifier on samples
represented by features from each feature subset and yielded the
10-fold cross-validation performance for evaluating this classifier.
After all constructed feature subsets had been tested, the feature
subset, on which the classifier provided the best performance, can
be obtained. Such a feature subset was called the optimal feature
subset for this classification algorithm, and the features inside were
named as the optimal features. Furthermore, the classifier with the
best performance was termed as the optimal classifier.

2.3 Classification Algorithm
For the IFSmethod, one classification algorithmwas necessary. In
this study, we tried three classic classification algorithms: 1)
support vector machine (SVM) (Cortes and Vapnik, 1995), 2)
K-nearest neighbor (KNN) (Cover and Hart, 1967), and 3)
random forest (RF) (Breiman, 2001). Their brief descriptions
were as follows.

2.3.1 Support Vector Machine
The SVM is a supervised learning model based on statistical
learning theory and is widely used in many biological problems

FIGURE 2 | Performance of KNN integrated in IFS using different numbers of features. The y-axis is F1-measure, and the x-axis is the number of participated
features. k is the parameter of KNN, indicating the number of nearest neighbors that are used tomake prediction. KNN can yield the best F1-measure of 0.886when k = 5
and the top 665 features are used.
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(Pan and Shen, 2009; Mirza et al., 2015; Chen et al., 2017; Jia et al.,
2018; Wei et al., 2018; Zhou et al., 2022a; Zhou et al., 2020b; Liu
et al., 2021; Wang et al., 2021; Zhu et al., 2021; Li X. et al., 2022;
Wu and Chen, 2022). Given a set of training samples, each
training sample is assigned to positives or negatives. The SVM
training algorithm fits a hyperplane that has the maximum
margin between positives and negatives, where the
generalization error becomes smaller when the margin is
larger. The SVM generally is good at handling non-linear data,
since it can first map the data in non-linear space to high-
dimensional linear space by the kernel function and then fit a
linear model in the high-dimensional space.

2.3.2 K-Nearest Neighbor
KNN is one of the simplest schemes for classifying samples.
However, in many cases, it still can yield good performance.
Given a training dataset, KNN directly uses samples in it to make
prediction for any query sample, that is, KNN does not contain a
learning procedure. Generally, it finds k training samples, which
have the nearest distances (e.g., Euclidean distance) to the query
sample. By counting the classes of these k training samples, the
class with most votes is assigned to the query sample.

2.3.3 Random Forest
RF is another classic classification algorithm. In fact, it is an
integrated algorithm, consisting of several decision trees. For
constructing each decision tree, it randomly picks up samples
from the training dataset, with replacement, to constitute the
basic dataset. The tree is extended at each node by selecting an
optimal split on one feature among the randomly selected
features. RF integrates the predictions of all decision trees with
majority voting. RF is deemed as a powerful classification
algorithm and has wide applications in tackling many
biological problems (Kandaswamy et al., 2011; Casanova et al.,
2014;Marques et al., 2016; Jia et al., 2020; Liang et al., 2020; Zhang
et al., 2021b; Chen et al., 2021; Onesime et al., 2021; Chen et al.,
2022; Ding et al., 2022; Yang and Chen, 2022).

To quickly implement the aforementioned three classification
algorithms, we employed the corresponding packages in scikit-
learn (https://scikit-learn.org/stable/). Some main parameters
were tuned for extracting optimal parameters.

2.4 Johnson Reducer and Repeated
Incremental Pruning to Produce Error
Reduction Algorithms
Classification algorithms mentioned in Section 2.3 are powerful
to construct efficient classifiers. However, we cannot understand
their principles because they are black-box algorithms. In this
case, few clues for uncovering essential differences between T2D
patients and non-diabetic donors can be obtained. In view of this,
we further adopted rule learning algorithms to investigate the
RNA sequencing data. Although it is generally weaker than the
aforementioned algorithms, it can provide rules that clearly
indicate special expression patterns on T2D patients, thereby
improving our understanding on T2D. The procedures were
described in the following sections.

Asmentioned in Section 3.2.1, theMCFSmethod can select some
informative features. These features are quite essential to describe
the characteristics of the dataset. Here, we used these features to
construct classification rules via RIPPER algorithm (Cohen, 1995).
Before that, the Johnson reducer algorithm (Johnson, 1974) was
applied on the informative features to select the most important
features, which had the similar classification ability compared to the
original informative features. The selected features were fed into the
RIPPER algorithm. RIPPER, proposed by Cohen (1995), is a rule
learning algorithm which is capable of handling large noisy datasets
effectively. RIPPER is the improved version of IREP (Johannes and
Widmer, 1994) which combines both the separate-and-conquer
technique used first in the relational learner FOIL (Quinlan, 1990)
and the reduced error pruning strategy proposed by Brunk and
Pazzani (1991). In RIPPER, the training set is first split into growing
and pruning sets. Then, repeat the rule grow phase and rule prune
phase until no positive samples are left in the growing set, or the
description length (DL) is 64 bits greater than the smallest DL found
so far, or the error rate is greater than 50%. In the rule grow phase,
one rule is generated by greedily adding conditions to the rule that
achieves the highest FOIL’s information gain. In the rule prune
phase, the rule is pruned using reduced error pruning. Finally, global
optimization strategy is applied to further prune the rule set. The
aforementioned procedures for constructing rules are also
implemented in the MCFS program, that is, the set of rules is
one output of the MCFS program.

2.5 Performance Measurement
In this study, we used six measurements to evaluate the
performance of all classifiers under 10-fold cross-validation
(Kohavi, 1995; Li Z. et al., 2022; Ding et al., 2022; Tang and
Chen, 2022), including sensitivity (SN) (same as recall),
specificity (SP), accuracy (ACC), Matthew correlation
coefficient (MCC), precision, and F1-measure (Matthews,
1975; Zhao et al., 2018; Zhao et al., 2019; Jia et al., 2020;
Liang et al., 2020; Zhang et al., 2021a; Zhang et al., 2021c; Pan
et al., 2021). Their formulations are written as follows:

SN � Recall � TP

TP + FN
, (1)

SP � TN

TN + FP
, (2)

ACC � TP + TN

TP + TN + FP + FN
, (3)

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ , (4)

Precision � TP

TP + FP
, (5)

F1 −measure � 2 × Recall × Precision

Recall + Precision
, (6)

where TP represents the number of truly positive samples, FP
represents the number of false-positive samples, TN represents
the number of truly negative samples, and FN represents the
number of false-negative samples. Among these six
measurements, we selected F1-measure as the key one,
whereas others were provided for reference.
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2.6 Gene Ontology Enrichment Analysis on
Optimal Genes
Some rules can be extracted via the Johnson reducer and RIPPER
algorithms, which involved several features (genes), called rule
genes, in the following text. We performed Gene Ontology (GO)
enrichment analysis using R package topGO (http://
bioconductor.org/packages/release/bioc/html/topGO.html, v.2.
24.0) on these rule genes. The genes of interest were set as
rule genes, and the gene background was set as all the
available genes. The p-value threshold was set at 0.001.

3 RESULTS

T2D is one type of DMandmakes upmost DM cases. In this study,
we investigated potential pathogenic factors of T2D at the single-
cell level by analyzing a single-cell RNA sequencing dataset. Such
dataset contained 1,600 single cells, including 949 cells from T2D

patients and 651 cells from normal controls. It was analyzed by
some powerful machine learning algorithms, including MCFS
(Draminski et al., 2008), SVM (Cortes and Vapnik, 1995), KNN
(Cover and Hart, 1967), RF (Breiman, 2001), and RIPPER (Cohen,
1995). The entire procedure is shown in Figure 1. On one hand, we
obtained some T2D-associated genes, which can be novel
biomarkers of T2D. On the other hand, some interesting rules
were constructed, which can uncover different expression patterns
in T2D patients and normal controls. This section gives the
detailed results of these procedures.

3.1 Results of the Monte Carlo Feature
Selection Method
The MCFS method was directly applied to the RNA sequencing
data to analyze the importance of all features (genes). Each gene
was assigned a RI score. A total of 26,978 genes were assigned RI
scores larger than zero. These genes and their RI scores are

FIGURE 3 | Bar chart to show five measurements of three optimal classifiers based on different classification algorithms.

FIGURE 4 | Performance of RF integrated in IFS using different numbers of features. The y-axis is F1-measure, and the x-axis is the number of participated features.
I is the parameter of RF, indicating the number of decision trees. RF can yield the best F1-measure of 0.907 when I = 100 and the top 305 features are used.
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provided in Supplementary Table S1. Because the RI scores of
the rest genes were zero, meaning their associations for the
identification of T2D samples were very weak, they were
discarded. A feature list was generated by sorting the
remaining 26,978 genes in the decreasing order of their RI
scores, which is also provided in Supplementary Table S1.

In addition to the feature list, the MCFS method can output
some informative features. For investigating RNA sequencing
data, 235 informative features were extracted by the MCFS
method, which were the top 235 genes listed in
Supplementary Table S1.

3.2 Results of the Incremental Feature
Selection Method
To further extract optimal features, the IFS method combined
with one classification algorithm was employed. Here, we tried
three classification algorithms: SVM, KNN, and RF. Some main
parameters of each algorithm were tuned. In detail, for SVM, four
kernels were attempted, including linear, polynomial, RBF, and
sigmoid kernels. The parameter k for KNNwas set to 1, 5, and 10,
and the parameter, number of decision trees (I), for RF was set to
20, 40, 60, 80, and 100. Because the feature list contained a huge
number of features, we only considered the top 5,000 features in
this study to save time. Several feature subsets were constructed
using step 5.

When the classification algorithm was KNN, several KNN
classifiers with a certain parameter k were constructed on all
feature subsets. All these classifiers were evaluated by 10-fold
cross-validation. The obtained six measurements are listed in
Supplementary Table S2. For an easy observation, we plot a
curve for KNN with a certain parameter k, as shown in
Figure 2, in which the F1-measure was set to the y-axis and the
number of features was set to the x-axis. We can see that when k =

1, 5, and 10, the highest F1-measure was 0.885, 0.886, and 0.880,
respectively. Thus, the KNN classifier with k = 5 provided the best
performance. Such classifier used the top 665 features (genes) in the
feature list. These features were the optimal features for KNN. The
other five measurements are illustrated in Figure 3. Except MCC,
all measurements exceeded 0.8, implying the good performance of
such KNN classifiers. Furthermore, it can be observed from
Figure 2 that the IFS curves of KNN with different parameters
k had a common feature. The curve followed a sharp decreasing
trend before about top 600 features were used. The top features in
the list were highly related to class labels (T2D patients and non-
diabetic patients in this study), and a simple scheme based on these
features, as KNN used, can correctly predict the cells of T2D
patients and non-diabetic patients. However, when features with
low ranks, which had low relevance to class labels, were added,
KNN cannot exclude interference information contained in these
features as KNN has no training procedures, inducing the quick
descent of its performance. In this study, the set containing about
top 600 features was a pivotal point for KNN. After this point, the
performance of KNN followed a sharp decreasing trend.

We also tried another classification algorithm, RF. The same
IFS procedure was conducted on this algorithm. The obtained
measurements are listed in Supplementary Table S3. Likewise, a
curve was plotted for RF with a certain number of decision trees,
as shown in Figure 4. It can be observed that when I = 20, 40, 60,
80, and 100, the highest F1-measure was 0.903, 0.904, 0.905,
0.904, and 0.907. The RF classifier with I = 100 provided the
highest performance. The top 305 features in the list were adopted
in this classifier and were termed as optimal features for RF.
Evidently, such an RF classifier was superior to the best KNN
classifiers mentioned earlier. Furthermore, the other five
measurements of this RF classifier are shown in Figure 3. All
measurements were higher than 0.8, suggesting the better
performance of this classifier than the aforementioned KNN
classifier.

FIGURE 5 | Performance of SVM integrated in IFS using different numbers of features. The y-axis is F1-measure, and the x-axis is the number of participated
features. SVM can yield the best F1-measure of 0.936 when the kernel is a linear function and the top 745 features are used.
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Finally, we conducted the same IFS procedure for SVM. The
measurements are listed in Supplementary Table S4. Similarly,
for each SVM with a certain kernel, a curve was plotted, as shown
in Figure 5. With four different kernels, SVM yielded the highest
F1-measure of 0.936, 0.894, 0.909, and 0.687. The SVM with a
linear kernel provided the best performance. Also, such
performances were based on the top 745 features in the list.
Accordingly, they were called the optimal features for SVM.
Furthermore, the performance of this SVM classifier was
better than that of the aforementioned KNN and RF
classifiers. The same conclusion can be obtained according to
the five measurements of such SVM classifiers, illustrated in
Figure 3. Due to the best performance of the SVM with its
optimal 745 genes, these genes were quite important for
investigating T2D at the single-cell level. The top seven genes
are listed in Table 1.

With the earlier IFS results with different classification
algorithms using various parameters, the SVM with linear
kernel and top 745 features provided the best performance of
F1-measure 0.936. The ACC and MCC of such classifier were
0.925 and 0.846, respectively. Other three measurements, SN, SP,
and precision were 0.925, 0.925, and 0.947, respectively. These
measurements suggested the excellent performance of this
classifier, and it can be an efficient tool to identify cells of
T2D patients.

3.3 Classification Rules
Although we can construct efficient classifiers to identify cells of
T2D patients through three classification algorithms, these
classifiers were absolute black-box algorithms, which prevented
us from uncovering the essential differences between cells of T2D
patients and non-diabetic donors. As mentioned in Section 2.4,
rule learning algorithms were employed.

According to the output of the MCFS program, 235 features
were selected as informative features. To test the utility of the
classification rules yielded by Johnson reducer and RIPPER
algorithms, we performed the 10-fold cross-validations three
times, obtaining the F1-measure of 0.910, which was lower
than that of the optimal SVM classifier but higher than that of
the optimal KNN and RF classifiers. The SN was 0.898, SP was
0.891, ACC was 0.895, MCC was 0.784, and precision was
0.923. Although such performance was lower than that of the
optimal SVM classifier, the RIPPER algorithm can construct a
group of rules, which made the classification procedure
completely open and provided more insights. Thus, the
Johnson reducer and RIPPER algorithms were applied to all

samples, producing nine different classification rules, as listed
in Table 2. These rules are able to accurately screen patients
with T2D from non-diabetic population. Although these rules
were mainly for non-diabetes, based on the aforementioned
evaluation results (SP = 0.891), it was believed that these rules
were statistically shown to cover almost all possible non-
diabetes samples. Thus, investigation on these rules can also
figure out the characteristics of T2D patients in an opposite
aspect.

3.4 Comparison of Classifiers With
Informative Features
TheMCFSmethod can directly output some informative features.
These features can capture essential information of the dataset.
Here, as mentioned in Section 3.3, 235 features were selected as
informative features. We can directly use them to construct

TABLE 1 | Top seven genes among the optimal genes for SVM.

Rank Gene ID Gene symbol RI

1 100128906 LOC100128906 0.1140
2 100873254 MTND4P24 0.1046
3 100271063 RPS14P1 0.1032
4 100652939 MTND2P28 0.0979
5 285045 LINC00486 0.0959
6 729898 ZBTB8OSP2 0.0954
7 391524 THRAP3P1 0.0862

TABLE 2 | Nine classification rules for diabetes generated by the RIPPER
algorithm.

Rule Criteria Patient

Rule 1 Gene Id 100128906 (LOC100128906) ≥ 2.7722 Non-diabetes
Gene Id 326307 (RPL3P4) ≤ 15.2306
Gene Id 8781 (PSPHP1) ≥ 0.0965
Gene Id 100873065 (PTCHD1-AS) ≤ 0.1036

Rule 2 Gene Id 100462954 (MICOS10P3) ≥ 2.0984 Non-diabetes
Gene Id 1487 (CTBP1) ≤ 17.3460
Gene Id 326307 (RPL3P4) ≤ 6.2868
Gene Id 100873254 (MTND4P24) ≥ 3.0364

Rule 3 Gene Id 100128906 (LOC100128906) ≥ 49.6340 Non-diabetes
Gene Id 143244 (EIF5AL1) ≥ 1.0987
Gene Id 486 (FXYD2) ≤ 152.8666
Gene Id 326307 (RPL3P4) ≤ 11.3894
Gene Id 6126 (RPL9P7) ≤ 103.5050

Rule 4 Gene Id 100128906 (LOC100128906) ≥ 3.0256 Non-diabetes
Gene Id 326307 (RPL3P4) ≤ 22.4381
Gene Id 100128906 (LOC100128906) ≥ 225.8732
Gene Id 388147 (RPL9P9) ≤ 50.3934
Gene Id 100271332 (RPL36AP21) ≥ 1.7952
Gene Id 222901 (RPL23P8) ≤ 2.6067

Rule 5 Gene Id 100652939 (MTND2P28) ≥ 450.8125 Non-diabetes
Gene Id 4574 (MT-TS1) ≤ 445.4115
Gene Id 1487 (CTBP1) ≤ 37.6438

Rule 6 Gene Id 285045 (LINC00486) ≤ 0.0930 Non-diabetes
Gene Id 100873254 (MTND4P24) ≤ 28.2479
Gene Id 653147 (RPL26P30) ≥ 5.1856
Gene Id 285900 (RPL6P20) ≥ 0.4760
Gene Id 643932 (RPS3AP20) ≥ 5.5063

Rule 7 Gene Id 100128906 (LOC100128906) ≥ 3.0256 Non-diabetes
Gene Id 440737 (RPL35P1) ≥ 4.118
Gene Id 100271003 (RPL34P18) ≥ 9.0166

Rule 8 Gene Id 100128906 (LOC100128906) ≥ 109.2232 Non-diabetes
Gene Id 100873254 (MTND4P24) ≤ 28.3353
Gene Id 644972 (RPS3AP26) ≥ 53.5552
Gene Id 644604 (EEF1A1P12) ≤ 7.9556

Rule 9 Others Diabetes

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 8909018

Li et al. Identification of T2D Biomarkers

87

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


classifiers with different classification algorithms. These classifiers
were also evaluated by 10-fold cross-validation. The main
measurement, F1-measure, of these classifiers is listed in
Table 3. For KNN, F1-measure varied between 0.839 and
0.849. The F1-measure of RF changed between 0.889 and
0.897. Also, SVM provided the F1-measure varying between
0.631 and 0.886. Compared with the F1-measure yielded by
the optimal classifier based on the corresponding classification
algorithm, the classifier using informative features generated a
lower F1-measure, suggesting that such a classifier was inferior to
the optimal classifier. The employment of the IFS method can
help us construct more efficient classifiers.

4 DISCUSSION

As we have described earlier, we applied our newly presented
computational framework to the expression profiling data of
more than 1,600 single pancreatic islet cells, constituting 949
diabetic cells and 651 non-diabetic cells (Xin et al., 2016). Based
on such a bioinformatics approach, we not only screened out a
group of discriminative genes that have distinctive expression
patterns in diabetic or non-diabetic cells but also set up a series
of quantitative rules for the recognition of pathogenic cells at
the single-cell level. According to recent literature reports,
several identified genes and established rules could be
validated by existing experimental datasets, indicating the
efficacy and accuracy of our analysis. The detailed functional
analysis and evaluation of each predicted genes with high
informative rank and their optimal rules in the expression
pattern have been summarized and introduced in the
following sections.

4.1 Analysis of Optimal Type
2 Diabetes-Associated Genes
Because the optimal SVM classifier provided the best
performance, which used top 745 features (genes), we focused
on these 745 genes. However, it is impossible to analyze them one

by one. Here, only top seven genes were analyzed, which are listed
in Table 1.

The first predicted gene, WDR45-like pseudogene
(100128906), is the pseudogene of gene WDR45. According to
recent publications, it encodes a functional lncRNA associated
with the regulation of WDR45 (Tsuyuki et al., 2014; Lebovitz
et al., 2015). WDR45 has been functionally related to autophagy
(Lebovitz et al., 2015). Considering that abnormal autophagy has
been well known to contribute to the pathogenesis of T2D (Lee,
2014), it is reasonable to speculate that the expression level of
WDR45 and its upstream regulator (i.e., our predicted gene
LOC100128906) may have quite different expressions in
diabetic pancreatic islets cells compared to normal cells.

The next identified gene isMTND4P24 (100873254), which is
shown to have quite different expression levels in diabetic and
normal tissues containing multiple cell subtypes. As an lncRNA-
encoding pseudogene, the expression level of such a gene is able to
reflect the regulatory ability of lncRNAs on its target gene, MT-
ND4 (Torrell et al., 2013; Mella et al., 2016). Recent publications
also confirmed that the expression level of the target gene MT-
ND4 is functionally related to cellular insulin sensitivity in rat
models (Houstek et al., 2012). Therefore, as one regulator ofMT-
ND4’s expression, the expression pattern of MTND4P24 may
involve in the pathogenic insulin sensitivity decreasing in type 2
diabetic cells. Similarly, a homolog of MTND4P24 and
MTND2P28 (100652939) has also been predicted to have
different expression levels in multiple cell subtypes from
pathogenic or normal pancreatic islets. Considering its similar
regulatory mechanisms and the biological function of MTND2, it
is also quite convincing to regard such a gene as a potential
distinctive standard for diabetic and non-diabetic cells (Mathews
et al., 2005).

The predicted gene, RPS14P1 (100271063), is also a
pseudogene, contributing to the regulation of ribosomal
protein S14’s expression (Aubert et al., 1992). Meanwhile, the
function of ribosomal protein S14 is widely reported to
participate in p53-dependent cell-cycle arrest by interacting
with MDM2 (Zhou et al., 2013), which is abnormally activated
during the pathogenesis of diabetes (Golubnitschaja et al., 2006;
Garufi et al., 2017). Thus, it is a reasonable assumption that
ribosomal protein S14 together with RPS14P1 has different
expression levels in normal and diabetic cells.

Apart from such predicted pseudogenes, we also identified
some functional lncRNAs that may have different expression
patterns in normal and diabetic cells. LINC00486 (285045) is a
predicted lncRNA that contributes to the distinction of normal
and diabetic cells. According to recent publications, various
functional lncRNAs (Liu et al., 2014; Pullen and Rutter, 2014),
including LINC00486, have been confirmed to contribute to
the initiation and progression of T2D (Pullen and Rutter,
2014).

The following predicted gene, named ZBTB8OSP2 (729898), is
a pseudogene and has been reported to contribute to anti-saccade
response and eating disorders (Cornelis et al., 2014; Broer and van
Duijn, 2015). As a transcriptional regulator for ZBTB8, such
genes may indirectly contribute to a specific complication of T2D,
the refractory diabetes insipidus, especially in adolescent male

TABLE 3 | Performance of classifiers using informative features yielded by the
MCFS method.

Classification algorithm F1-measure Decrementa

KNN (k = 1) 0.849 0.036
KNN (k = 5) 0.839 0.047
KNN (k = 10) 0.847 0.033
RF (I = 20) 0.889 0.014
RF (I = 40) 0.891 0.013
RF (I = 60) 0.894 0.011
RF (I = 80) 0.894 0.010
RF (I = 100) 0.897 0.010
SVM (linear kernel) 0.882 0.054
SVM (polynomial kernel) 0.859 0.035
SVM (RBF kernel) 0.886 0.023
SVM (sigmoid kernel) 0.631 0.056

aNumbers listed in this column indicate the difference of F1-measure yielded by the
optimal classifier and that listed in the second column of this table.
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patients (Soto et al., 2014). Therefore, we can infer that such genes
together with their downstream binding targets may have
respective specific expression patterns in normal and
diabetic cells.

The next predicted gene is THRAP3P1 (391524), the
pseudogene of THRAP3. The post-transcriptional regulatory
target of THRAP3 has been confirmed to dock on
phosphoserine 273 of PPAR-gamma and further contribute to
the pathogenic programming of diabetic genes, inducing insulin
resistance (Choi et al., 2014). Therefore, to accomplish the
regulatory role, such gene has a high expression level in
normal cells compared to diabetic cells.

4.2 Specific Role of Pseudogenes in Type
2 Diabetes-Associated Genes
As we have discussed earlier, we identified multiple pseudogenes
associated with T2D. Pseudogenes are nonfunctional segments
with similar or reverse sequences of actual coding genes. The
biological functions of pseudogenes are still unclear. It has only
been speculated that pseudogenes participate in the post-
transcriptional regulation via generating siRNAs, piRNAs,
microRNAs, or other small RNAs (Guo et al., 2009). Although
pseudogenes cannot generate protein products, the regulatory
effects of such group of genes may still be significant under
physical and pathological conditions (Tay et al., 2014). For
transcriptomics analyses, especially for single-cell
transcriptomics analyses, multiple pseudogenes have been
identified as candidate biomarkers for different systematic
diseases in studies specifically focusing on pseudogenes’ effects
(Kalyana-Sundaram et al., 2012; Poliseno et al., 2015). For most
previous studies, the pseudogenes were removed in the data
preprocessing. Therefore, most previous studies have not
identified a lot of pseudogenes as potential candidate
biomarkers for diabetes. In our study, we did not filter out the
pseudogenes and for the first time confirmed that pseudogenes
with potential transcriptomic regulatory effects may further
contribute to the regulation of specific diseases via regulating
the biological functions of their respective recognized protein-
coding genes.

4.3 Comparison With Previously Reported
Type 2 Diabetes Biomarkers
Here, in this study from other perspective of view, we applied
several machine learning algorithms to identify new potential
biomarkers for T2D patients. Multiple previous publications
have already identified a group of T2D biomarkers such as
HbA1c, advanced glycation end-products (AGEs), and pigment
epithelial-derived factor (PEDF) (Lyons and Basu, 2012). Also,
for the publication from which we retrieved the single-cell
sequencing data, unique biomarkers like LINC00486,
ZNF445, and SYBU have also been identified for T2D (Xin
et al., 2016). Compared with these prediction results, first, we
identified a group of confirmed biomarkers like LINC00486,
validating the efficacy and accuracy of our results. Second, we
identified a group of new biomarkers like MTND4P24 and

THRAP3P1. Although such genes have been shown to be
functionally correlated with T2D, previous studies have not
identified such genes as potential biomarkers of T2D. There are
two major advantages of our studies compared to previous
studies, which may lead us to find novel biomarkers:

1) First, compared with previous studies, we used the single-cell
level data with the gene expression profiling of different cells
and not just an averaged comprehensive value for each
patient. Therefore, we can identify potential biomarkers
that are missing due to the averaging procedures.

2) Second, due to the sample size and cell type distribution, it is
not proper to use feature selection and machine learning
models for distinguishing each cell type independently. An
integration of all the cell types may lead to a more reasonable
result with effective biomarkers with clinical application
potentials.

Such advantages explained why we identified novel protein
biomarkers to distinguish T2D patients from normal controls. As
we have discussed earlier, some identified biomarkers have been
functionally correlated with T2D, implying that it is reasonable to
regard such genes/transcripts as potential biomarkers for T2D.

4.4 Analysis of Optimal Type
2 Diabetes-Associated Rules
We also screened out a group of functional quantitative rules of
the gene expression pattern to distinguish non-diabetic cells from
diabetic ones with more interpretability, which are listed in
Table 2. Many qualitative rules can be validated according to
the gene expression level in existing databases and recent reports
on gene expression trends, which support the efficacy and
accuracy of the rules. The detailed analysis of each expression
rule is widely discussed as follows:

The first rule (rule1) involved four genes including
LOC100128906 [(100128906), RPL3P4 (326307), PSPHP1
8781], and PTCHD1 (100873065). As mentioned earlier,
gene LOC100128906 has been reported to have quite
different transcriptomics patterns between normal and
diabetic cells, inhibiting autophagy (Lebovitz et al., 2015).
As the antagonistic gene of diabetes-associated autophagy,
such genes are reasonable to have high expression in normal
cells compared to diabetic cells. As for gene RPL3P4, the
regulatory target of such pseudogene, RPL3 has been
reported to have a quite low expression level in diabetic
cells compared to normal cells (Tsai et al., 1994),
corresponding with this rule. As for PSPHP1 (8781), it has
been shown to be associated with the macrophage-related
inflammation processes (Walker et al., 2015). Considering
that during the initiation and progression of diabetes,
regional and systematic inflammation have been widely
observed (Donath et al., 2003; Lontchi-Yimagou et al.,
2013), it is reasonable to predict such genes as quantitative
parameters for the distinction of non-diabetes and diabetes. As
for PTCHD1, although no direct evidence confirms its
contribution on diabetes, it has been confirmed that such a
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gene is associated with the eye and ear complications of
diabetes (Gambin et al., 2017), consistent with this rule.

As for the second rule (rule2), four genes were involved
including MICOS10P3 (100462954), CTBP1 (1487), RPL3P4
(326307), and MTND4P24 (100873254). Few publications have
reported the biological contribution of MICOS10P3; therefore, it
is hard to interpret such gene’s contribution on T2D. As for gene
CTBP1, it has been reported to participate in the abnormal
phosphorylation processes (Kim et al., 2013) and shows a
quite high expression level in diabetic cells compared to
normal controls. As for gene RPL3P4, the regulatory target of
such a pseudogene, RPL3 has been reported to have a quite low
expression level in diabetic cells compared to normal cells (Tsai
et al., 1994), corresponding with such a rule. MTND4P24 and its
homolog, MTND5P11, have been confirmed to regulate a group
of functional mitochondrial-encoded NADH ubiquinone
oxidoreductase. According to recent publications, during the
pathogenesis of diabetes, MT-ND4 has a quite low-expression
pattern and on the contrary, MT-ND5 has a relevantly higher
expression level, corresponding with the prediction expression
level of their agonists individually (Elango et al., 2014; Urbanova
et al., 2017).

In the third rule (rule3), apart from genes we have discussed
earlier, the gene EIF5AL1 (143244) has also been predicted to
have a higher expression pattern in normal cells but not in
diabetic cells. Considering the abnormal endocrine stress
responses of diabetic cells (Siddiqui et al., 2015), the lower
expression level of EIF5AL1 may also contribute to the
identification of diabetic cells. FXYD2 (486) has been shown
to contribute to the pathogenesis of diabetes (Ding et al., 2019).
Another specific gene in rule3 is the homolog of RPL3P4, RPL9P7,
which may also participate in the regulation of the pathogenesis
of T2D with similar expression patterns to RPL3P4.

From the fourth to eighth rules, most of the involved genes
occurred in the top three rules or were the top T2D-associated
genes just with different combination patterns. Specific genes,
like RPL9P9 (388147) and RPL36AP21 (100271332) for rule4,
MT-TS1 (4574) for rule5, RPL26P30 (653147) and RPL6P20
(285900) for rule6, RPL35P1 (440737) for rule7, and RPS3AP26
(644972) for rule8, have been identified in our quantitative
rules. As we can see from such typical rule associating
biomarkers, most of the genes are ribosome-associated genes
like RPL3P4 (326307) as discussed earlier. Although no direct
evidence confirmed the associations between such genes and
T2D, it is still reasonable to speculate that such genes may play
an irreplaceable role in the identification of T2D. As for MT-
TS1, such genes have already been reported as potential

biomarkers for T2D (Mannino and Sesti, 2012),
corresponding with our prediction.

4.5 Potential Applications of Identified Type
2 Diabetes-Associated Genes and Rules
There are two potential applications for identified T2D-
associated genes: 1) potential biomarkers for T2D diagnosis
and monitoring; 2) potential drug target for T2D therapy.

For the identified T2D-associated genes, considering that
such genes are identified from pancreatic tissues, they can
reflect the original tissue alterations during T2D initiation
and progression. Therefore, such genes can be used as
biomarkers for direct pancreatic islet biopsy examinations.
Apart from that, the candidate genes as potential drug
targets can also be manually regulated to prevent the
initiation and progression of T2D. Using high-throughput
drug screening, antibodies or chemicals specifically targeting
the candidate genes can be identified and developed as potential
target drugs for T2D.

For the quantitative T2D-associated rules, although we have
already identified a group of genes associated with T2D, it is still
quite difficult to diagnose T2D. With specific quantitative rules,
the identification of T2D patients can be more accurate and
efficient. Also, the rules can also be summarized as clinical
guidelines for T2D diagnosis using pancreatic tissue single-cell
sequencing techniques.

4.6 Functional Interpretation of Significant
Rule Genes
As listed in Table 2, we identified quantitative rules associated
with T2D. The GO enrichment analyses on rule genes were
conducted. Table 4 lists the enriched GO terms of these rule
genes. It was indicated that most rules are shown to be associated
with ribosome-associated biological processes. According to
recent publications, ribosome-associated biological processes
have been widely shown to be associated with the
pathogenesis of T2D. In 2019, in a metabolic study on
pancreatic tissues, ribosome-associated genes have been shown
to participate in the ERK/hnRNPK/DDX3X pathway in
pancreatic islet cells and further regulated the initiation and
progression of T2D (Good et al., 2019), consistent with our
results. Apart from that, in 2020, DIMT1, as a regulator of
ribosomal biogenesis has been shown to participate in the
physical biological processes of pancreatic tissue, further
validating our results.

TABLE 4 | Significant Gene Ontology enrichment analysis result on rule genes.

GO ID Term p-value Cluster

GO:1903408 Positive regulation of sodium: potassium-exchanging ATPase activity 5.30E-04 BP
GO:0045901 Positive regulation of translational elongation 7.00E-04 BP
GO:0045905 Positive regulation of translational termination 7.00E-04 BP
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4.7 Limitations of Current Analyses
In this study, for the first time, we adopted several machine
learning algorithms to identify disease-specific biomarkers
using the mixed single-cell sequencing data. Such analyses
may not only identify biomarkers from the single-cell level,
getting rid of the bias generated by the averaged
transcriptomics using the bulk sequencing method, but also
overcome the sample size restriction of traditional single-cell
analysis. Compared with traditional single-cell analysis, we did
not focus on the classification of different cell subtypes but just
the patients and control subjects, improving the analysis
accuracy. However, there still remain three major
limitations of current analyses on pancreatic single-cell
sequencing data:

1) First, the dataset we used is still a relatively small dataset,
with around 20 subjects. A larger single-cell sequencing
dataset may improve the efficacy and accuracy of our
results.

2) Second, the number of cells in each group is not balanced in
the raw dataset. Although in the original publications the
authors have claimed that the sampling procedure does not
affect the distribution of cell subgroups in each subject, a more
balanced dataset may perform better.

3) Single-cell sequencing always misses a lot of genes at low-
expression levels which cannot be detected at the single-cell
level but can be identified in bulk sequencing. Our analyses
may also lose the gene expression profiling and analysis on
such low-expression genes.
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Deconvolution of a Large Cohort of
Placental Microarray Data Reveals
Clinically Distinct Subtypes of
Preeclampsia
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Computational Biology, School of Life Sciences, Fudan University, Shanghai, China, 2Human Phenome Institute, Fudan
University, Shanghai, China, 3Children’s Hospital of Fudan University, Shanghai, China, 4Qilu Children’s Hospital of Shandong
University, Jinan, China

It has been well established that the dysfunctional placenta plays an important role in the
pathogenesis of preeclampsia (PE), a hypertensive disorder in pregnancy. However, it is notwell
understood how individual cell types in the placenta are involved in placenta dysfunction
because of limited single-cell studies of placentawith PE. Given that a high-resolution single-cell
atlas in the placenta is now available, deconvolution of publicly available bulk PE transcriptome
data may provide us with the opportunity to investigate the contribution of individual placental
cell types to PE. Recent benchmark studies on deconvolution have provided suggestions on
the strategy of marker gene selection and the choice of methodologies. In this study, we
experimented with these suggestions by using real bulk data with known cell-type proportions
and established a deconvolution pipeline using CIBERSORT. Applying the deconvolution
pipeline to a large cohort of PE placental microarray data, we found that the proportions of
trophoblast cells in the placenta were significantly different between PE and normal controls.
We then predicted cell-type-level expression profiles for each sample using CIBERSORTx and
found that the activities of several canonical PE-related pathways were significantly altered in
specific subtypes of trophoblasts in PE. Finally, we constructed an integrated expression profile
for each PE sample by combining the predicted cell-type-level expression profiles of several
clinically relevant placental cell types and identified four clusters likely representing four PE
subtypes with clinically distinct features. As such, our study showed that deconvolution of a
large cohort of placental microarray provided new insights about the molecular mechanism of
PE that would not be obtained by analyzing bulk expression profiles.

Keywords: deconvolution, preeclampsia, heterogeneity, single-cell, pipeline

1 INTRODUCTION

Preeclampsia (PE) is a hypertensive disorder of pregnancy and is the main reason for maternal and
fetal morbidity and mortality (Bokslag et al., 2016). Abnormal development and dysfunction of the
placenta are thought to be the main cause of PE though detailed pathophysiology is still not fully
understood (Horii et al., 2021). As the placenta is a heterogeneous tissue consisting of diverse types of
cells, single-cell studies of PE’s placentas are expected to lead to a better understanding of the
molecular mechanisms underlining PE pathogenesis. However, most PE transcriptome studies
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published so far were done at the bulk level (Leavey et al., 2016;
Robineau-Charette et al., 2020; Yadama et al., 2020; Xu et al.,
2021). A recently published single-cell study on the placenta of PE
included only three samples each in the PE and the control groups
(Zhang et al., 2021), providing a limited number of samples to
investigate the association of individual cell types in the placenta
with PE. Cell-type deconvolution is a technology that can infer
cell-type proportions from bulk transcription profiles when cell-
type-specific expression profiles of marker genes are available (Jin
and Liu, 2021). Given that the high-resolution single-cell atlas of
the placenta is now available (Suryawanshi et al., 2018; Vento-
Tormo et al., 2018), reanalyzing existing bulk PE transcriptome
data by deconvolution may therefore provide us with the
opportunity to investigate the contribution of individual
placental cell types in the placenta to PE.

Numerous deconvolution methods have been developed
(Newman et al., 2015; Hao et al., 2019; Newman et al., 2019;
Tsoucas et al., 2019;Wang et al., 2019; Dong et al., 2021), and they
can be generally divided into two broad categories (Cobos et al.,
2020): the bulk and the single-cell reference-based methods,
respectively, with the former requiring a predefined cell-type-
specific signature gene matrix and the latter not. CIBERSORT
(Newman et al., 2015) and CIBERSORTx (Newman et al., 2019)
are the representative methods of these two categories,
respectively. The use of deconvolution methods has greatly
accelerated the study of diseases. For example, prognostic
biomarkers of renal cell carcinoma were identified by
estimating the proportions of tumor-infiltrating immune cells
by cell-type deconvolution using CIBERSORT (Zhang et al.,
2019). Recent benchmark studies evaluating the performance
of current deconvolution methods (Cobos et al., 2020; Jin and
Liu, 2021; Nadel et al., 2021) have provided suggestions on the
strategy of marker gene selection and the choice of deconvolution
methodologies. For our study, i.e., conducting deconvolution on
bulk PE transcriptome data, however, on the one hand, the
detailed thresholds for marker selection need to be specified.
On the other hand, we still need to decide on one of several
recommended methods to perform deconvolution.

In this study, we followed the strategy suggested by Francisco
et al. (Cobos et al., 2020) to determine the thresholds for marker
gene selection. Then, by using different sources (RNA-seq and
microarray) of real bulk data with known cell-type proportions,
we evaluated several deconvolution methods recommended by
Francisco et al. using two measures—the Pearson correlation
coefficient between the predicted and true cell-type proportions
(PCCP) and the Pearson correlation coefficient between the
predicted and true bulk transcripts (PCCT). As PCCT can be
directly calculated from a deconvolution, it has been suggested to
be potentially useful for improving the performance of
deconvolution (Newman et al., 2015; Dong et al., 2021). We,
therefore, investigated the relationships between the two PCCs to
explore the possibility of using PCCT to select a deconvolution
method. Finally, we applied the deconvolution pipeline derived
from the above-described experiments to a large cohort of PE
microarray data that have detailed clinical phenotypes (Leavey
et al., 2016). We then conducted an in-depth analysis on the
deconvolution results and particularly explored the cell-type-level

expression profiles predicted based on the estimated placental
cell-type proportions. Our results led to four PE subtypes with
clinically distinct features that would not be observed by
analyzing bulk gene expression profiles.

2 RESULTS

2.1 The Development of a Practical Pipeline
for the Deconvolution of Placenta
Microarray Data
The benchmark study by Francisco et al. (Cobos et al., 2020)
provided suggestions on marker gene selection and the choices of
methodologies. For marker gene selection, it is recommended to
use a stringent selection strategy by using the following three
measures—logFC, logCPM, and SecondFC, representing the cell-
type-specificity across all cell types, the averaged expression level
across all cell types, and the cell-type to cell-type difference of a
marker gene, respectively (see Section 3 for details about the
definition of these three measures). For the choice of
methodologies, it recommended several bulk reference-based
methods, including CIBERSORT (Newman et al., 2015),
robust linear regression (RLR) (Venables and Ripley, 2002),
FARDEEP (Hao et al., 2019), OLS (Chambers et al., 1990),
and nonnegative least squares (NNLS) (Katharine et al., 2012),
and several single-cell reference-based methods, including DWLS
(Tsoucas et al., 2019), MuSiC (Wang et al., 2019), and SCDC
(Dong et al., 2021). We added CIBERSORTx (Newman et al.,
2019), which is based on CIBERSORT’s improved method of
using single-cell data as input. There are also nonreference-based
deconvolution methods available, such as ssFrobenius (Gaujoux
and Seoighe, 2012). However, Avila Cobos et al. (2018) had
shown that reference-based methods would work better than
nonreference-based methods when the reference expression
profiles are available. Because the single-cell reference of the
placental atlas is available in this study, we did not consider the
nonreference-based deconvolution methods in this study.
Although the above suggestions were useful, in our case, we
still need to determine the thresholds for the three marker gene
selection measures and also have to choose a method from the
recommended ones.

To determine the thresholds for marker gene selection, we
selected the peripheral blood mononuclear cells (PBMCs) bulk
data produced by Finotello et al. (2019) in which cell-type
proportions were determined by flow cytometry for
deconvolution. We then obtained the reference expression
profiles of the immune cell types from the RNA-seq data
generated by Hoek et al. (2015) to generate the signature gene
matrix. We fixed the thresholds of both logFC and log CPM to be
one and experimented with different thresholds of SecondFC to
construct the signature gene matrices. We used the Pearson
correlation coefficient between the predicted and true cell-type
proportions (PCCP) for evaluating the performance of
deconvolution. We found that with the increase of SecondFC,
the average correlation between cell types in the signature gene
matrix decreases, but PCCP increases; when the similarity
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FIGURE 1 | Development of a practical pipeline for the deconvolution of placenta microarray data. (A) Average PCC on PBMC signature matrix changing with SecondFC
cutoff. (B)PCCpof differentmethods changingwith SecondFCcutoff. (C)The changes of PCCTandPCCp,where the predicted expression profiles of the former and the latterwere
computed by using the input signature genematrix varied. PCCT1 and PCCT2 are the PCC between the predicted and the real bulk expression profiles on inputted signature gene
matrix and the signature genematrix with all marker genes, respectively. (D) The changes of PCCT andPCCpby using different deconvolutionmethods, where PCCT refers to
PCCT2 in (C). (E) Three benchmark tests to evaluate the performance of different deconvolution methods. In Tests 1 and 2, the reference expression profiles were from the 10X
scRNA-seq PBMC data generated by Ding et al. (2020), and the bulk data were Finotello’s PBMC RNA-seq data and Newman’s PBMCmicroarray data. In Test 3, the bulk data
were the same as in Test 2, while the reference expression profiles were the Drop-seq and inDrops scRNA-seq PBMCdata generated by Ding et al. (2020) (F) The average rank of
different deconvolutionmethods across the three tests in (E). (G) The comparison of the performance of single-cell and bulk reference-basedmethods across the three tests in (E).
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decreases to an inflection point, PCCP would reach a high level
(Figures 1A,B). Accordingly, the threshold of SecondFC could be
determined by investigating the relationship between SecondFC
and the average correlation between cell types in the signature
gene matrix.

Next, we aimed to determine which deconvolution method
should be used in practice. Given the estimated cell-type
proportions by a deconvolution method, the predicted
expression profiles of bulk transcripts can be computed by
T � C · P, where T represents the predicted bulk expression
profile, C is the signature gene matrix, and P is the estimated
cell-type proportions. The PCC between the predicted and true
expression of bulk transcripts (PCCT) can then be calculated. It is
assumed that the closer the estimated cell-type proportions to
true cell-type proportions, that is, a higher PCCP, the closer the
predicted expression of bulk transcripts to true expression, that is,
a higher PCCT. It has thus been proposed that maximizing PCCT

may have the effect of maximizing PCCP (Newman et al., 2015;
Dong et al., 2021). If this were true, then PCCT may also be used
for selecting the deconvolution method, that is, a method with a
greater PCCT ought to have a greater PCCP. To test this
possibility, here we investigated the relationships between
PCCp and PCCT.

From the marker genes selected by following the above-
described parameters, we selected a top fraction of genes
according to their logFC to generate a signature gene matrix
and conduct deconvolution. A pair of PCCp and PCCT could be
calculated for each selected fraction of marker genes, and a series
of paired PCCp and PCCT could be calculated by increasing the
fraction of marker genes. Note that there are two ways of
predicting T: one in which C is the signature gene matrix
corresponding to a selected fraction of marker genes and
varies when the fraction changes, and another in which C is
the signature gene matrix corresponding to the whole set of
marker genes and does not change with different selected
fractions. The PCCT corresponding to these two situations was
named PCCT1 and PCCT2, respectively. In general, PCCp

increased with the inclusion of more marker genes, and the
increase was relatively sharp before the inclusion of the top
25% of marker genes. Interestingly, before the inclusion of the
top 25% of marker genes, PCCT1 and PCCP were negatively
correlated, whereas PCCT2 and PCCP were positively correlated
(Figure 1C). Although for a given method, a higher PCCT2

usually indicates a higher PCCP, this prediction cannot be
generalized when the comparison is across different methods
(Figure 1D). Accordingly, we concluded that it is not possible to
select a deconvolution method by comparing their PCCT.

In our situation of deconvolution, the reference expression
profiles were obtained from a single-cell study of the placenta
(Vento-Tormo et al., 2018) while the bulk data were from a large
cohort of microarray study on PE (Leavey et al., 2016). In order to
select a deconvolution method from the recommended ones, we,
therefore, prepared three benchmark tests whose degree of
deconvolution difficulty was considered to be similar to ours
and reasoned that a method performing stably across these three
datasets would also likely performwell in our situation. In the first
benchmark dataset (Test 1), the bulk data were PBMC RNA-seq

data produced by Finotello et al. (2019), and the reference
expression profiles were from the single-cell PBMC RNA-seq
data generated by Ding et al. (2020) using 10X sequencing
platform. In the second benchmark dataset (Test 2), the
reference expression profiles were the same as in Test 1, while
the bulk data were PBMCmicroarray data (Newman et al., 2015).
In the third benchmark dataset (Test 3), the bulk data were the
same as in Test 2, while the reference expression profiles were
from the single-cell PBMC RNA-seq data generated by Ding et al.
(2020) using Drop-seq and inDrops sequencing platform. In each
of the three benchmarks, the signature gene matrices were
produced from a top fraction of marker genes selected
according to the previously described procedures. In general,
most bulk reference-based methods perform better when more
marker genes are used, and CIBERSORT and RLR achieved better
performance than the other three methods did across the three
tests (Figure 1E). To further quantify how stable a method’s
performance is with the inclusion of more marker genes, we
ranked the performance of the five methods at a given fraction
(from top 25% to top 100%) of marker genes and then calculated
the averaged rank of each method. We found that CIBERSORT
had the most stable overall performance across the three tests
(Figure 1F). We also evaluated the performance of four single-
cell reference-based methods (DWLS, MuSiC, SCDC, and
CIBERSORTx) in these three tests and found that DWLS
performed the best among the four methods though its overall
performance was worse than CIBERSORT’s (Figure 1G).

Based on the above analyses, we, therefore, developed a
practical pipeline for the deconvolution of PE microarray data.
We would follow the procedures described previously to select
marker genes and construct a signature gene matrix. Then, we
would use CIBERSORT, the method with the most stable and
good performance across the three benchmark tests, to perform
deconvolution.

2.2 Deconvolution of Preeclampsia
Placenta Microarray Data Revealed
Significantly Altered Proportions of
Trophoblasts in Preeclampsia
The cohort of PE placental microarray data was constructed by
Leavey et al. (2016) and included a total number of 330 samples
(157 PE and 173 control), of which 157 had detailed clinical
information. The clinical information is mainly about the fetal
and maternal state, like newborn weight z-score, maximum
systolic bp, mode proteinuria, etc. The reference expression
profiles were obtained from the single-cell placental RNA-seq
data produced by Vento-Tormo et al. (2018). Following
Francisco’s suggestion to include all cell types that possibly
exist in the bulk mixture, we selected the expression profiles of
all major cell types (subpopulations were pooled) in the placenta
and the blood of the Vento-Tormo dataset (see Section 3 for
details) and constructed a signature matrix consisting of
endothelial cells (Endo), epithelial cells (Epi), fibroblasts (FB),
three types of trophoblasts cells—villous cytotrophoblasts (VCT),
syncytiotrophoblasts (SCT), and extravillous trophoblasts (EVT),
and eight types of immune cells—Hofbauer (HB), natural killer
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(NK), T cells, plasma, granulocytes, monocyte (MO),
macrophage (Mac), and dendritic cells (DC). Here, we set
SecondFC to 1.5 (Figure 2A) by following the above-described
procedures to select the marker genes for deconvolution and
applied CIBERSORT to perform the deconvolution. The
deconvolution results showed that Endo, the major component
cells of placental blood vessels, were the largest population of cells
in the placenta samples of this cohort, while FB, which is located
within the villus core matrix with HB, and SCT were the second
and the third largest population of cells, respectively (Figure 2B).
However, if VCT and EVT were considered together with SCT,
then trophoblasts were the largest population of cells in the
placenta. Among the eight types of immune cells, however,
only granulocytes and T cells accounted for a noticeable
proportion in the placental samples (Figure 2B).

PE can be generally classified as early-onset PE (EOPE) and
late-onset PE (LOPE) depending on the gestational age (GA)
(34 weeks) of disease onset (Von Dadelszen et al., 2003).
Following this definition, we then classified the PE samples

in this cohort as EOPE or LOPE and also classified the normal
samples as early control (EC) or late control (LC), respectively.
As trophoblasts are the major population of cells in the
placenta and are also responsible for the normal function of
the placenta, we compared the proportion of trophoblasts
between PE and normal controls and observed significant
differences (Figure 2C). LOPE has a significantly higher
proportion of trophoblasts than its group of normal
controls (Figure 2C). As for the subpopulations of
trophoblasts, compared to normal controls, VCT’s
proportion was significantly lower in EOPE and lower but
not significant in LOPE; EVT’s proportion was significantly
higher in both EOPE and LOPE; SCT’s proportion was not
significantly altered in PE (Figure 2C). It has been shown that
the impaired invasive ability of EVT is a major reason for
dysfunctional placenta in PE (Crosley et al., 2013). Here, the
significantly increased proportion of EVT in PE may be
because of a compensatory enhancement of EVT production
occurring in response to dysfunctional EVT.

FIGURE 2 | Estimated cell-type proportions of placental samples included in the cohort of placental microarray data. (A) Average PCC on placenta signature matrix
changing with SecondFC cutoff. (B) Boxplots of the estimated proportions of different placental cell types in the cohort of placenta microarray data. (C) Comparison of
the estimated proportions of trophoblasts between PE and normal samples. CT: cytotrophoblast, EC: early-stage control, EOPE: early-onset preeclampsia, LC: late-
stage control, LOPE: late-onset preeclampsia.
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FIGURE 3 | Comparison of the activity of canonical PE-related pathways in between PE and normal samples. (A) Assessment of the biological relevance of the
predicted cell-type-level expression profiles. We first averaged the expression profile of imputed transcriptome in each cell type. Then, the Wilcox test was used to
evaluate if the expression on the averaged profile of the cell-type marker genes is specifically high in the corresponding cell type. The negative log P value of the Wilcox
test was scaled by rows. (B) The expression level of classic trophoblasts marker genes in the predicted cell-type-level expression profiles of three trophoblast
subtypes. (C–E) Activity of the canonical PE-related pathway in different groups of samples. The activity was measured by AUCell.
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2.3 The Predicted Cell-Type-Level
Expression Profiles Revealed Patterns of
Cell-Type-Specific Gene Expression
Alterations in Preeclampsia
Given the estimated cell-type proportions, CIBERSORTx
provides a way to infer cell-type-level expression profiles
(Steen et al., 2020). Here, we applied the high-resolution
mode of CIBERSORTx with the default parameters to
predict the expression profiles of placental cell types for
each sample. To validate that the predicted cell-type-level
expression profiles are biologically meaningful, we tested
whether the corresponding cell-type-specific marker genes
identified from the reference expression profiles were at
significantly higher expression levels than background genes
did. The biological relevance of the predicted expression
profiles of trophoblasts (VCT, EVT, and SCT), Endo, Epi,
FB, and HB was well validated (Figure 3A). However, the
predicted expression profiles of granulocytes, T cells, NK, and
plasma were found to be more similar to SCT’s than to
themselves (Figure 3A), indicating that the predicted
expression profiles of these cells are likely not very useful
for further analysis. We further examined the expression levels
of the canonical marker genes of the three trophoblast
subtypes in these profiles. As the trophoblast stem cell,
VCT highly expresses TOP2A and MIK67, both of which
are related to cell proliferation, and the keratin gene KRT7
is highly expressed in EVT too. The other marker genes of EVT
are HLA-G, which is involved in the immune tolerance process
(Ferreira et al., 2017), and PRG2 and DIO2, both of which are
related to the invasion ability of EVT (Windsperger et al., 2017;
Adu-Gyamfi et al., 2021). SCT highly expresses CGA and GH1,
which are related to hormone synthesis (Freemark, 2010), and
GDF15, a classic SCT marker gene, was reported to be
associated with PE (Sugulle et al., 2009). Here, these
selected marker genes were all highly expressed in their
respective predicted cell-type-specific expression profiles
(Figure 3B). As such, the aforementioned results indicated
that the predicted expression profiles of major placental cell
types, including Endo, FB, HB, and trophoblasts were worthy
of further exploration.

We then focused on the predicted expression profiles of
trophoblasts and inspected the activity of several canonical
PE-related pathways in between PE and normal controls. As a
comparison, we also inspected the activity of these pathways by
using the bulk expression profiles. Here, the activity of a pathway
was measured by AUCell (Aibar et al., 2017). AUCell sorts all
genes in the sample according to their expression and calculates
the pathway activity of each sample according to the ranks of the
pathway genes. The canonical PE-related pathways inspected
here include the epithelial-mesenchymal transition (EMT)
hallmark pathway, the hypoxic pathway, and the GO pathway
of “Hormone activity.”

During the development of trophoblasts (from VCT to EVT
and from noninvasive EVT to invasive EVT), the cell
undergoes phenotypic changes termed the EMT process in

order to gain the invasive ability (Vićovac and Aplin, 1996). It
has been well established that the EMT process of trophoblasts
was inhibited in PE (Sun et al., 2011). Using the bulk data,
however, we did not observe any significant difference in
EMT’s activity between PE and normal samples
(Figure 3C). In contrast, in both EVT and VCT, the
activity of the EMT pathway was significantly reduced in
both EOPE and LOPE though the reduction was not
significant in LOPE’s EVT (Figure 3C), indicating that the
invasive ability of EVT and the differentiation of VCT to EVT
are likely both inhibited in PE. Not that no EMT-related genes
were predicted in SCT.

Placenta hypoxia is one of the most significant clinical
manifestations of PE (Soleymanlou et al., 2005). This was
clearly shown by using the bulk data: the activity of the
hypoxia pathway was significantly upregulated in PE samples
(Figure 3D). The predicted cell-type-level expression profiles
provided more detailed information about hypoxia at the cellular
level. In both EOPE and LOPE, the activity of the hypoxia
pathway was significantly upregulated in VCT, but not in EVT
(Figure 3D), reflecting the different pressure of oxygen limitation
to different types of trophoblast cells. The significant
upregulation of the hypoxia pathway in VCT is probably
because VCT is located deeply in the trophoblast layer and is
more likely affected by oxygen limitation. Note that there were
only a few genes predicted to be associated with the hypoxia
pathway in SCT.

It has been reported that the placenta of PE is likely
hormonally compensated in response to development
deficiency (Tamimi et al., 2003). Here, we observed a
significantly higher “Hormone activity” in PE by using the
bulk data and further found that the activity was significantly
upregulated in SCT, but not in EVT and VCT, by using the
predicted cell-type-level expression profiles (Figure 3E). Thus,
the above results showed that the predicted cell-type-level
expression profiles revealed patterns of cell-type-specific gene
expression alterations in PE.

As the predicted cell-type-level expression profiles were
biologically relevant and provided more details about the
altered PE canonical pathways, we explored whether they
could better distinguish PE from normal controls than the
bulk expression profiles did. For each of the six above-
mentioned cell types, we used 80% samples to train an
SVM model to distinguish PE from normal samples by
using the predicted cell-type-level expression profiles and
then tested it using the 20% remaining samples (see Section 3
for details about the procedures). As a comparison, we also
used the bulk expression profiles to develop an SVM model.
Overall, it was easier to distinguish EOPE from LOPE; for
most cell-type-level SVMs, their performance was
comparable to that of bulk-level SVM in EOPE but was
superior to LOPE (Figure 4A,B). However, even the best
SVM in either EOPE or LOPE only achieved an AUCROC less
than 0.9, indicating that PE is a heterogeneous and complex
disease that may involve multiple subtypes and cannot be
easily described by using one model.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9170867

Yao et al. PE Deconvolution

101

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


2.4 Unsupervised Clustering of Predicted
Cell-Type-Level Expression Profiles
Revealed Clinically Distinct Preeclampsia
Subgroups
Although EOPE is generally considered more severe than LOPE,
the real situation is usually more complex and severe and
nonsevere PE types are actually difficult to distinguish by their
subjective clinical indicators (Roberts et al., 2021). The cohort of
PE microarray data provided 13 clinical features for a total
number of 157 PE samples (EOPE: 80 and LOPE: 77). These
features can be divided into two general categories: fetal state-
related and maternal state-related. The fetal state-related features
include GA, newborn weight z-score, placental weight z-score,
umbilical cord diameter, mean umbilical PI, Apgar score (1 min),
Apgar score (5 min), and IUGR diagnosis, while the maternal
state-related features include maximum systolic bp, maximum
diastolic bp, mode proteinuria, mean uterine pi, and maternal
BMI. To explore whether PE samples could be classified into
subtypes, here for each of the six placental cell types, we
conducted unsupervised clustering of PE samples using their
predicted expression profiles. Then, we investigated whether the
clustering was significantly associated with each of the 13 clinical
features.

As a comparison, we first conducted unsupervised clustering
of PE samples based on their bulk expression profiles by using
negative matrix factorization (NMF) (see Section 3 for details).
We obtained three clusters. The clustering results were found to
be significantly associated with not only the definition of EOPE
and LOPE but also four fetal state-related features: GA, newborn
weight, placental weight, and umbilical cord diameter
(Figure 5A). Because EOPE and LOPE are defined based on
their GA while newborn weight, placental weight, and umbilical
cord diameter are also strongly dependent on GA, it is not

unexpected that those features were all significantly associated
with the clustering results. However, we did not observe any
significant maternal state-related clinical features associated with
the clustering results.

We next conducted unsupervised clustering of PE samples
using the predicted cell-type-level expression profiles of each
of the six cell types and investigated their association with
clinical features. We found that the clustering results of all six
cell types except for SCT were all significantly associated with
some clinical features (Figure 5). The reason why SCT was not
linked to any clinical features was probably that some
transcriptional signatures of SCT were misassigned to other
cell types, such as NK, granulocytes, and plasma. The clinical
features linked to Endo, FB, and VCT were all fetal state-
related: Endo was linked to GA, newborn weight z-score,
placental weight z-score, and umbilical cord diameter; FB
was linked to GA; VCT was linked to mean umbilical PI
and umbilical cord diameter (Figures 5B–D). Interestingly,
the clinical features linked to HB were both fetal state and
maternal state-related: newborn weight z-score, placental
weight z-score, mode proteinuria, and IUGR diagnosis,
while the clinical features linked to EVT were only
maternal-related: maximum systolic bp, and maximum
diastolic bp (Figures 5E,F). HB is an immune cell that
promotes trophoblast differentiation and angiogenesis by
producing various growth factors and cytokines (Wang and
Zhao, 2010). EVT is the primary cell type in the placenta that
invades the decidual of the mother during the pregnancy. The
reasons why these 2 cell types were linked to maternal state-
related features were probably because they had more
interaction with maternal cells. In contrast, Endo, FB, and
VCT may be more related to the growth of the placenta, that is,
more fetus oriented. The predicted cell-type-level expression
profiles thus provided more links to clinical features that

FIGURE 4 | (A,B) ROC of SVM models for distinguishing EOPE (A) and LOPE (B) from their respective groups of normal samples. SVM models were trained by
using either the bulk or the predicted cell-type-level expression profiles.
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would not be observed by using the bulk expression profiles,
especially the maternal state-related features.

Given that the predicted cell-type-level expression profiles of
the above five cell types were strongly linked to clinical features,

we constructed an integrated expression profile for each sample
by combining the predicted expression profiles of the highly
variable genes of each cell type and then conducted unsupervised
clustering (see Section 3 for details about constructing the

FIGURE 5 | Unsupervised clustering of PE samples using the bulk or predicted cell-type-level expression profiles. The expression profiles used in (A–F) were the
bulk, the predicted cell-type-level expression profiles of Endo, FB, VCT, HB and EVT, respectively. In each of (A–F), the clinical phenotypes significantly associated with
the clustering were shown.
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FIGURE 6 | Unsupervised clustering results of integrated five cell types of transcriptional profiles of PE by NMF and significance testing of clinical features. (A)
Unsupervised clustering result of integrated cell types transcription profiles using NMF, the consensus matrix of NMF output display that four stable clusters can be
obtained. (B) The four clusters showed significant differences in gestational age (GA), and the fraction of EOPE and LOPE. (C) The four clusters showed significant
differences in newborn weight z-score, placental weight z-score, and umbilical cord diameter which reflect the state of fetal development. (D) The four clusters
showed significant differences in mean umbilical PI and the fraction of IUGR in the cluster. A higher mean umbilical PI indicates a greater likelihood of IUGR. (E) Four
clusters showed significant differences in maximum systolic bp. (F) Differences in the proportion of three kinds of trophoblast cells (EVT, VCT, and SCT) in four clusters
of PE.
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integrated expression profiles). We obtained four clusters by
using NMF (Figure 6A) and found that they were significantly
associated with seven clinical features of which six were fetal
state-related (GA, newborn weight z-score, placental weight
z-score, umbilical cord diameter, mean umbilical PI, and
IUGR diagnosis) and one was maternal state-related
(maximum systolic bp) (Figures 6B–E). We compared each of
these significant features between the four PE clusters and found
that they had distinct clinical features. In general, Clusters 1 and
2 have longer GA, while Clusters 3 and 4 have shorter GA, with
Clusters 2 and 4 having the longest and the shortest GA,
respectively (Figure 6B). Clusters 2 and 4 are also significantly
enriched with LOPE and EOPE samples, respectively, while the
other two clusters do not have a preference for either EOPE or
LOPE (Figure 6B). Probably because Clusters 2 and 4 have the
longest and shortest GA, they also correspond to the best and the
poorest fetal state, respectively (Figure 6C). Although Cluster 1’s
GA is close to Cluster 2’s, its fetal state was significantly worse
than that of Cluster 2.

For example, Cluster 1 has a significantly higher proportion of
intrauterine growth retardation (IUGR), which consists of the higher
“mean umbilical PI”—a potential IUGR predictor (Khanduri et al.,
2017), compared to Cluster 2 (Figure 6D). And its other fetal-related
features are also significantly worse than Cluster 2’s (Figure 6C).
Cluster 3’s GA is close to Cluster 4’s, but it is significantly maternal
state-related: it has the highest maximum systolic bp, that is, the most
severe state of blood pressure (Figure 6E). We also found that the
proportions of EVT andVCTwere significantly different in these four
clusters. For example, the proportion of EVTwas the lowest in Cluster
2 which corresponds to the best fetal state, while the proportion of
VCT was the highest (Figure 6F). Note that when comparing PE
samples with normal controls, we observed a significantly increased
proportion of EVT and decreased proportion of VCT in PE samples.
Therefore, the relative increase or decrease of the proportion of EVT
may indicate the severity of PE.

In conclusion, by using the integrated expression profiles, we
obtained four clinically distinct PE subtypes that are significantly
associated with not only fetal state-related but also maternal state-
related clinical features that would not be observed by using the

bulk expression profiles (Figure 7), highlighting the important
value of deconvolution.

3 MATERIALS AND METHODS

3.1 Datasets Used in This Study
A number of PBMC datasets were used for developing the
deconvolution pipeline. The bulk PBMC datasets included
Finotello’s PBMC RNA-seq dataset (Finotello et al., 2019)
(GSE107572) and Newman’s PBMC microarray dataset
(Newman et al., 2015) (GSE65136), and both datasets had
known flow-sorting cell-type proportions. The datasets for the
reference expression profiles included Hoek’s PBMC data (Hoek
et al., 2015) with cell-type purified RNA-seq data (GSE64655) and
Ding’s PBMC dataset (Ding et al., 2020) (https://singlecell.
broadinstitute.org/single_cell/study/SCP424) that includes
single-cell data produced by 10X, Drop-seq, and inDrops
sequencing platforms. The cohort of placenta microarray
dataset was built by Leavey et al. (2016) (GSE75010),
integrating from 8 placenta microarray studies. It contains
157 samples that had detailed clinical information, including
fetal state-related and maternal state-related indicators, and the
single-cell placenta reference was generated by Vento-Tormo
et al. (2018) (https://www.ebi.ac.uk/arrayexpress/experiments,
E-MTAB-6678, E-MTAB-6701). Datasets from GEO were
downloaded with accessions above through the website
(https://www.ncbi.nlm.nih.gov/geo).

3.2 Procedures for Constructing the
Signature Gene Matrix and Description of
the Deconvolution Methods Used in the
Evaluation
We followed Francisco’s recommended strategy on marker gene
selection. Given a single-cell reference gene expression matrix, we
applied the following parameters to select the marker gene set:
logFC ≥ 1 and logCPM ≥ 1. For SecondFC, we determined the
relationship between SecondFC and the average correlation

FIGURE 7 | Information overview of four clusters of PE. The sample fractions of the four clusters, respectively, accounted for 36%, 22%, 18%, and 24%.
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between cell types in the signature genematrix, setting it to no less
than 6. Here, logFC means log fold change between the highest
expressed cell type and the average expression of other cell types,
logCPM means the log average normalized expression level
among all cell types, and SecondFC means the average
expression fold change of a given marker gene between the
highest expressed cell type and the second-highest expressed
cell type. When evaluating different deconvolution methods,
we ranked the marker genes by logFC and selected a given
fraction of top-ranked genes, for example, top 5%, 10%, . . .
100%, and averaged the expression counts of all cells in each
cell type to construct the signature gene matrix for the selected
marker genes.

We evaluated nine deconvolution methods in this study,
among which five bulk reference-based methods and three
single-cell reference-based methods were recommended by
Francisco et al. (Cobos et al., 2020). The five bulk reference-
based methods are nonnegative least squares (NNLS) (https://
CRAN.R-project.org/package=nnls), ordinary least squares
(OLS) (https://www.R-project.org/), robust linear regression
(RLR) (https://www.stats.ox.ac.uk/pub/MASS4/), FARDEEP
(https://github.com/YuningHao/FARDEEP), and CIBERSORT
(https://cibersort.stanford.edu/), while the three single-cell
reference-based methods are DWLS (https://github.com/
dtsoucas/DWLS), MuSiC (https://github.com/xuranw/MuSiC),
and SCDC (https://github.com/meichendong/SCDC). In
addition, we added CIBERSORTx (https://cibersortx.stanford.
edu/), which is based on CIBERSORT’s improved method of
using single-cell data as input.

3.3 The Processing of the Single-Cell
Placental Atlas
The single-cell reference expression matrix used for the
deconvolution of placental microarray data was constructed
from the single-cell placental atlas produced by Vento-Tormo
et al. (2018). In order to reduce the problem of collinearity, that is,
challenging to the deconvolution algorithm, we merged the
subgroups of each of the following cell types in the Vento-
Tormo dataset: “DC1” and “DC2” were merged into DC
(dendritic) cells, “dNK p,” “dNK1,” “dNK2,” “dNK3,” “NK
CD16-,” and “NK CD16+” were merged into NK (natural
killer), “dM1,” “dM2,” and “dM3” were combined to Mac
(macrophage), “Endo (f),” “Endo (m),” and “Endo L” were
merged into Endo (endothelial), “Epi1” and “Epi2” were
merged into Epi (epithelial), and “fFB1” and “fFB2” were
merged into FB (fibroblast). Finally, the single-cell reference
expression matrix consisting of a total number of 14 placental
cell types was constructed, including eight types of immune cells
Hofbauer (HB), NK, T cells, plasma, granulocytes, monocyte
(MO), Mac, and DC), three subtypes of trophoblasts (VCT, EVT,
and SCT), Epi, Endo, and FB cells. The signature gene matrix was
then constructed by applying these cutoffs (logFC ≥ 1, logCPM ≥
1, and SecondFC ≥ 1.5) and by requiring that each marker gene
was expressed in at least 30% of cells of the corresponding
cell type.

3.4 The Development of SVM Models to
Distinguish PE From Normal Controls
We randomly selected 80% of the samples (training set) to train
an SVM model and tested the model using the 20% remaining
samples. When training the SVM model, we first identified the
differentially expressed genes (DEGs) between PE and normal
controls by controlling log CPM >4 using the package of “edgeR”
in R. The log-normalized expression profiles of DEGs were then
used as the input to train SVM model. For the SVM model, we
used svm.SVC classifiers from the scikit-learn library in Python.
For the kernel, we chose “linear”. For other parameters like degree
and gamma, we used the default parameters in the function
svm.SVC. For the hyperparameter, C was grid searching between
0 and 2, with 0.2 intervals, and fivefold cross-validation was
performed on the training set to find the most appropriate
hyperparameter C. The hyperparameter C was determined and
then retrained for the whole training set and tested on the test set.

3.5 Procedures of Unsupervised Clustering
of Bulk or Predicted Cell-Type-Level
Expression Profiles
We first log-normalized raw expression counts and selected
highly variable genes by using the “mean.var.plot” method in
the Seurat package, with the parameter “mean.cutoff” > 0.5. The
“dispersion.cutoff” parameter was tried between 1 and 2.5, with
0.1 intervals, to ensure the stability of unsupervised clustering
results. Next, we used the “ScaleData”method to scale the data to
maximize the variation between samples. Finally, we used the
negative matrix factorization (NMF) to do unsupervised
clustering. The input of NMF was the scaled data, and the
output of the NMF was the specified k clusters, where k is
given artificially. To determine the optimal number of clusters,
we iteratively tested k from 2 to 10. In each iteration, we
calculated the cophenetic coefficient (CC) of the clusters,
which represents the stability of clustering. Ideally, CC
remains stable initially when k increases from 2 and then
drops quickly when k continues to increase, and the k before
the quick drop of CC would be selected. In practice, we would try
different values for “dispersion.cutoff” when selecting highly
variable genes and selected the one where we could identify
the best k.

3.6 Statistical Tests to Inspect the
Association of Clinical Features with the
Clustering of Preeclampsia Samples
Most of the clinical features are in numerical values. To test the
significance of the association of a clinical feature with the
clustering of PE samples, when the data type of the clinical
feature is numerical, we used analysis of variance (ANOVA)
to inspect whether there is any difference in the mean of the
clinical features in between clusters, and used t-test to check the
difference between pairs of clusters, where p values were corrected
by FDR; when the data type is categorical, we used the Chi-
Square test.
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4 DISCUSSION

In this study, we aimed to reanalyze a large cohort of PE placental
microarray data through deconvolution. For this purpose, we first
attempted to develop a practical pipeline by experimenting with
the strategies for marker gene selection and several deconvolution
methods recommended by Francisco’s benchmark study (Cobos
et al., 2020). While the selection of marker genes was relatively
straightforward, we found that it was not possible to determine
which deconvolution method to use by using the metric of PCCT,
the PCC between the predicted expression and true expression of
bulk transcripts that can be calculated given estimated cell-type
proportions. To have an approximate solution to this problem, we
designed several benchmark tests that likely have a similar degree
of challenges to the deconvolution of PE placental microarray
data and found CIBERSORT performed the best across these
tests. CIBERSORT was therefore chosen as the deconvolution
method of our study. The successful validation of the biological
relevance of the predicted cell-type-level expression profiles of the
major placental cell types using their marker genes also confirmed
that the deconvolution results by CIBERSORT can be trusted.
Based on our experience, the CIBERSORT-based practical
pipeline may also well be suited for the deconvolution of other
microarray datasets.

In this study, the deconvolution of PE placental microarray
data has resulted in several important findings of PE. First, the
proportions of EVT and VCT in the placenta are significantly
altered in PE, but in different directions, with EVT increasing and
VCT decreasing. It has been shown that the differentiation of
VCT to EVT and the transition of EVT to gain invasive ability are
both inhibited by PE (Sun et al., 2011). Consistently, the activity
of the EMT pathway, which plays an important role in these two
important development processes (Vićovac and Aplin, 1996), was
found to be significantly downregulated in both VCT and EVT in
this study. Therefore, the significant increase in EVT and the
significant decrease of VCT likely reflect a compensatory
enhancement of EVT differentiation and transition in response
to the impaired invasive abilities of EVTs. Second, the canonical
PE-related pathways showed cell-type-specific alterations in PE.
For example, hypoxia was mainly found in VCT, while enhanced
hormonal production was found in SCT. Third, placental cell
types could be linked to not only fetal state but also maternal
state-related clinical features by clustering of predicted cell-type-
level expression profiles. In contrast, the clustering of bulk
expression profiles could be only linked to fetal state-related
clinical features. Although the placenta is a fetus tissue, PE is a
disease with significant maternal symptoms, such as high blood

pressure. It is therefore of great value that placental cell types,
specifically EVT, could be linked to maternal state-related features
in our study. Fourth, four clinically distinct clusters of PE samples
were identified in this study and likely represent distinct PE subtypes.
Clusters 2 and 4 have the longest and the shortest GA and also
correspond to the best and the poorest fetal state, respectively.
Although Cluster 1 has a similar GA to Cluster 2, it has a
significantly much worse fetal state. As for Cluster 3, though it
has a similar GA to Cluster 4, it has the most severe maternal state,
with the highest blood pressure among the four clusters.

The discovery of clinically distinct clusters by this study is of
great value to the field of PE. For example, a new diagnostic model
can be developed based on the classification of these clinically
distinct clusters, such that PE patients can be assigned into
different groups and different treatment plans can be applied.
New therapeutic drugs targeting the most severe PE may also be
developed by selecting drug target genes from the marker genes
from the PE cluster with the most severe outcomes. Moreover,
there is a rich trove of bulk RNA-seq or microarray data in the
public domain, with many having disease-related clinical
information. The fact that the deconvolution of PE placental
microarray data led to several new findings on the disease
strongly suggests that similar deconvolution studies should be
conducted to reanalyze disease-related bulk data to generate new
insights into the molecular mechanisms of diseases.
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Recent studies have confirmed the existence of microbiota in the lungs.

The relationship between lung ground-glass opacity (GGO) and microbiota

in the lung microenvironment is not clear. In this study, we investigated the

microbial composition and diversity in bronchoalveolar lavage fluid (BALF)

of diseased lung segments and paired contralateral healthy lung segments

from 11 GGO patients. Furthermore, lung GGO and paired normal tissues of

26 GGO patients were explored whether there are microbial characteristics

related to GGO. Compared with the control group, the community richness

of GGO tissue and BALF of GGO lung segment (α-diversity) and overall

microbiome difference (β-diversity) had no significant difference. The

microbiome composition of BALF of GGO segments is distinct from that

of paired healthy lung segments [genus (Rothia), order (Lachnospiraceae),

family (Lachnospiraceae), genus (Lachnospiraceae_NK4A136_group,

Faecalibacterium), and species (Faecalibacterium prausnitzii, Bacteroides

uniforms)]. GGO tissue and adjacent lung tissue had more significant

differences at the levels of class, order, family, genus, and species level,

and most of them are enriched in normal lung tissue. The area under the

curve (AUC) using 10 genera-based biomarkers to predict GGO was 91.05%

(95% CI: 81.93–100%). In conclusion, this study demonstrates there are

significant differences in the lower respiratory tract and lung microbiome

between GGO and the non-malignant control group through the BALF and

lung tissues. Furthermore, some potential bacterial biomarkers showed

good performance to predict GGO.
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Introduction

Low-dose computed tomography (LDCT) is widely used as

the main method of lung cancer screening project wordwide, and

an increasing number of lung ground-glass opacity (GGO) are

found (Aberle et al., 2011). Pulmonary nodules are round

shadows with a diameter of less than 3 cm in chest CT

images. Among pulmonary nodules, GGO are defined as

lesions with higher opacity than normal lung tissue, but lower

than the consolidated bronchovascular edge (MacMahon et al.,

2017). Although GGO is a non-specific radiologic manifestation,

persistent and long-term stable GGO is generally considered to

be malignant and still considered to be an inert and progressed

slowly subtype of lung adenocarcinoma (Chang et al., 2013).

Therefore, the causes of GGO have attracted the attention of

clinicians and researchers. GGO usually does not have driver

gene mutations, which usually occurred in lung

adenocarcinomas, such as EGFR and ALK (Ren et al., 2019a).

Benign lesions including infectious diseases such as COVID-19

can also be radiographed as GGO. Pathologically, GGO can be

caused by interstitial thickening with inflammation, edema,

fibrosis, and tumor proliferation (Fan et al., 2012). Meanwhile,

epidemiological studies have also suggested that there is a close

relationship between chronic infection, inflammation, and lung

cancer (Gomes et al., 2014). Therefore, the microbiome may play

an important role in the occurrence of early adenocarcinoma

characterized by GGO.

At present, the most research on microbiome and diseases is

the correlation between intestinal microbiome and some

metabolic diseases or gastrointestinal cancer. However, with

the development of high-throughput next-generation

sequencing (NGS), the entire spectrum of the human

microbiome has been surveyed; recent studies show that in

addition to intestinal microbiome, symbiotic microbiome also

exists in other locations of the human body. In the past, it was

considered that the lung is a sterile space, but recent studies have

suggested that the lower respiratory tract is also full of various

bacterial communities, which is very important in maintaining

the stability of the internal environment and can cause

respiratory diseases such as asthma, COPD, and lung cancer

(Hilty et al., 2010; Mao et al., 2018; Maddi et al., 2019; Ramírez-

Labrada et al., 2020). Compared with gastrointestinal cancer,

there are few studies on the correlation between microbiome and

lung cancer. Epidemiological studies have shown the correlation

between repeated exposure to antibiotics and increased risk of

lung cancer (Boursi et al., 2015), but the effect of lung

microbiome on lung cancer is still unknown.

Some studies have confirmed that there are some unique

microbiota in BALF, sputum, saliva, or lung tissue of patients

with lung cancer (Lee et al., 2016; Yu et al., 2016; Cameron et al.,

2017; Liu et al., 2018a; Tsay et al., 2018; Peters et al., 2019; Zhang

et al., 2019; Mao et al., 2020), and these studies have not only

found similar but also contradictory microbiota prevalent in

patients with lung cancer. However, previous studies have mostly

compared the microbial composition of bronchoalveolar lavage

fluid from lung cancer patients and healthy people, or tumor

tissue and normal lung tissue from typical lung cancer patients.

Few studies explored the microbiome composition of GGO

lesions. In this study, we screened BALF from 11 patients

with GGO, fresh frozen GGO lung tissue, and paired adjacent

lung tissue from 26 patients. Furthermore, the microbial diversity

of lower respiratory tract and lung tissue of patients with GGO

and the identified characteristic microbiome were revealed,

which also provides a new idea for the occurrence and

treatment of GGO.

Materials and methods

Patient enrollment and sample collection

The enrolled patients were from patients who underwent radical

resection of lung cancer in the First Affiliated Hospital of Medical

College of Zhejiang University from September 2019 to September

2021. Twenty six lung tumor specimens and paired normal lung

tissues were collected, and bronchoalveolar lavage fluid of 11 diseased

lung segments and paired contralateral healthy lung segments were

collected. The included patients did not use antibiotics or adjuvant

therapy 3 months before operation; HRCT showed pulmonary

ground-glass nodules; lung cancer was diagnosed by pathology;

and no previous history of other cancers. Bronchoalveolar lavage

fluid (15ml) from the diseased lung segment and the contralateral

healthy lung segment was centrifuged and enriched and put into

liquid nitrogen. The tumor tissue was removed under sterile

conditions and immediately put into liquid nitrogen, and then

transferred to the −80° refrigerator for preservation until DNA

extraction. While collecting tumor tissue, collect adjacent normal

lung tissue more than 5 cm away from tumor lesion to avoid local

influence of tumor. At the same time, a blank control tube is designed

to run through the whole sample collection process, and then

delivered in dry ice container to Novogene Inc. (Beijing, China)

for 16S rRNA gene sequencing.

DNA extraction

Total genome DNA from BALF and lung tissue samples was

extracted using the CTAB method. DNA concentration and

purity were monitored on 1% agarose gels. According to the

concentration, DNA was diluted to 1 ng/μl using sterile water.

16S rRNA gene sequencing

16S rRNA genes of distinct regions (16S V4/16S V3/16S V3-

V4/16S V4-V5) were amplified using specific primer with the
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barcode. All PCR reactions were carried out with 15 µl of

Phusion® High-Fidelity PCR Master Mix (New England

Biolabs). Mix same volume of 1X loading buffer (contained

SYBR Green) with PCR products and operate electrophoresis

on 2% agarose gel for detection. PCR products were mixed in

equidensity ratios. Then, mixture PCR products were purified

with the Qiagen Gel Extraction Kit (Qiagen, Germany).

Sequencing libraries were generated using TruSeq® DNA

PCR-Free Sample Preparation Kit (Illumina, United States),

following manufacturer’s recommendations, and index codes

were added. The library quality was assessed on the Qubit@

2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer

2100 system. At last, the library was sequenced on an Illumina

NovaSeq platform and 250 bp paired-end reads were generated.

Data analysis

Sequences with ≥97% similarity were assigned to the same

OTUs. Representative sequence for each OTU was screened for

further annotation. OTUs abundance information was normalized

using a standard of the sequence number, corresponding to the

sample with the least sequences. Subsequent analysis of alpha

diversity and beta diversity were all performed based on this

output normalized data. Alpha diversity is applied in analyzing

complexity of species diversity for a sample through two indices,

including Shannon and Simpson. All this indices in our samples were

calculated with QIIME (Version 1.7.0) and displayed with R software

(Version 2.15.3). Beta diversity analysis was used to evaluate

differences of samples in species complexity; beta diversity on

both weighted and unweighted UniFrac was calculated by QIIME

software (Version 1.9.1). PERMANOVA was used to test the

statistical significance of diversity differences between groups. The

linear discriminant analysis (LDA) score by LEfSe (LDA effect size)

was used to estimate taxa features with significant differential

abundance. The random forest model was performed to estimate

the importance of each differential genus and test predictive power

based on the area under the receiver operating characteristic

curve (ROC).

Results

Patient characteristics

A total of 37 patients with ground-glass nodules were

included in the study. All patients had no other lung

comorbidities. They were confirmed as lung cancer by

pathology. Among all patients, 11 patients underwent

bronchoscopy, and bronchoalveolar lavage fluid was collected

before operation, and 26 patients underwent radical resection of

lung cancer and collected surgical specimens. The clinical

characteristics of the two groups of patients are shown in Table 1.

Lower respiratory tract microbiota in lung
segment with ground-glass opacity and
contralateral normal lung segment

Splicing and quality control were performed to obtain

effective tags for subsequent analysis through the Illumina

NovaSeq sequencing platform. An average of 87,624 tags was

measured per sample, and an average of 70,471 valid data was

obtained after quality control. The effective rate of quality control

was 80%. The operational taxonomic units (OTUs) were

clustered with 97% identity, and a total of 4,272 OTUs were

obtained with 3,685 OTUs in BALF of a lung segment with GGO

and 3,365 in BALF of a contralateral normal lung segment

(Figure 1A), and the sequence of OTUs was annotated finally.

The richness and diversity of microbial community (α-diversity)
in BALF samples of the lung segment with GGO and

contralateral normal lung segment were measured by

Chao1 index, Shannon index, and Simpson index had no

significant difference (Figure 1C). PERMANOVA analysis

based on the Bray–Curtis dissimilarity (Figure 1D),

unweighted, and weighted UniFrac boxplot (Supplementary

Figure S1) revealed that there were no significant differences

in the overall microbiota (β-diversity) between two groups

of BALF.

According to the relative abundance of the microbiota in the

BALF samples of the two groups, classification and analysis were

based on the phylum, class, order, family, genus, and species

levels (Supplementary Figure S2). At the phylum level, the most

abundant compositions were Bacteroidota, Proteobacteria,

Firmicutes, Fusobacteriota, and Actinobacteria in both BALF

of the lung segment with GGO and contralateral normal lung

segment (Figure 1B). However, there was no significant

difference in the phylum level of the main flora between the

two groups. In addition, at the genus level, Rothia is more

enriched in BALF of the normal lung segment (p < 0.05)

(Figure 2). Furthermore, the relative abundance of microbiota

at order (Lachnospiraceae), family (Lachnospiraceae), genus

(Lachnospiraceae_NK4A136_group, Faecalibacterium), and

species (Faecalibacterium prausnitzii, Bacteroides uniforms)

level is increased significantly in BALF of the lung segment

with GGO (p < 0.05) (Figure 2).

The composition and diversity of lung
microbiota in lung ground-glass opacity
and paired adjacent normal tissue

Based on the Illumina NovaSeq sequencing platform, lung

tissue samples were sequenced and analyzed similar to BALF

samples to obtain OTUs for subsequent analysis. GGO tumor

tissue and paired adjacent normal lung tissue had the same total

of 4,491 OTUs, which is much more than BALF samples

(Figure 3A). The main phyla in the microbiome of GGO
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TABLE 1 Baseline clinical characteristics of the study cohort.

Clinical characteristic BALF group (n = 11) GGO group (n = 26)

Age (years; mean ± SD) 51.81 ± 9.06 51.54 ± 9.84

Sex (female) 9 (81.82%) 20 (76.92%)

Smoking (yes) 1 (9.09%) 5 (23.08%)

Multiple (yes) 2 (18.18%) 7 (26.92%)

Lesion location

Upper left 3 (27.27%) 6 (23.08%)

Lower left 2 (18.18%) 4 (15.38%)

Upper right 3 (27.27%) 10 (38.46)

Middle-lower right 3 (27.27%) 6 (23.08)

Surgery type

Wedge resection 6 (54.55%) 14 (53.85%)

Segmentectomy 5 (45.45%) 9 (34.62%)

Lobectomy 0 3 (11.53%)

Tumor diameter (cm; mean ± SD) 0.82 ± 0.15 0.91 ± 0.23

Histology

AIS 0 2 (7.69%)

MIA 7 (63.63%) 16 (61.54%)

IAC 4 (36.37%) 8 (30.77%)

FIGURE 1
Microbial composition and diversity in BALF of the lung segment with GGO and contralateral normal lung segment. (A)Operational taxonomic
units (OTUs) between GGO and normal BALF groups. (B) Bar plot presents the relative abundance of microbial phyla in each sample and groups. (C)
Shannon, Simpson, and Chao1 index of GGO and normal BALF groups (p > 0.05). (D)Non-metric multidimensional scaling (NMDS) plot visualizes the
overall microbiome dissimilarity measured by Bray–Curtis dissimilarities.
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tissues and adjacent non-malignant tissues include

Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes,

and the most abundant genera were Ralstonia,

Herbaspirillum, and Sphingomonas (Figure 3B). In addition,

there are significant differences in Proteobacteria between

tumor tissues and normal tissues in main phyla (Figure 4).

However, α-diversity which was estimated by Chao1 index,

Shannon index, and Simpson index and PERMANOVA

analysis (β-diversity) based on Bray–Curtis dissimilarity

(Figures 3C,D), unweighted, and weighted UniFrac boxplot

were of no significant difference between GGO tissues and

adjacent tissues, which was the same as BALF samples. GGO

tissue and adjacent lung tissue had significant differences in the

composition of flora at the levels of class, order, family, genus,

and species as shown in Figure 4, and interestingly most of them

are enriched in normal lung tissue.

Potential biomarkers for ground-glass
opacity based on bacterial taxa feature

The receiver operating characteristic (ROC) analysis was

performed to evaluate the diagnostic ability of potential

biomarkers in GGO based on the 10 different genera of

GGO tissue and adjacent normal lung tissue, and the

calculated area under the curve (AUC) represented the

diagnostic performance of each biomarker. The AUC

produced by 10 difference genera was 91.05% (95% CI:

81.93–100%) (Figure 5A), which were proven to be

effective in distinguishing GGO and paired adjacent

normal tissue. The importance ranking of the 10 difference

genera included in the random forest analysis was

demonstrated by mean decrease accuracy (Figure 5B) and

mean decrease Gini (Figure 5C).

FIGURE 2
Bar plot presents the microbiota with significant differential relative abundance on the phylum, class, order, family, genus, and species levels
between BALF of lung segment with GGO and contralateral normal lung segment.
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Discussion

The past view was that the lungs of healthy people were

sterile. However, with the development of high-throughput NGS,

several studies recently confirmed the existence of microbiota in

healthy lungs (Dickson et al., 2016), which overturned the past

cognition, and the lung microbiota was associated with human

health and disease status and played an important role in cancer

progressing (Maddi et al., 2019). In this study, we confirmed that

there was obvious microbiota in the BALF and tissue samples of

patients with GGO, which provides the research direction and

clue of tumor microbiome for the occurrence of GGO.

Because the bacteria content of healthy lung is very small, the

external pollution in the process of sample collection and

experiment has a great impact on the results (Salter et al.,

2014). It is very important to set up a negative control in the

study of lung microbiome. In our study, we collected BALF and

lung tissue removed by aseptic surgery. In order to avoid

pollution in the process of sampling and DNA extraction, we

designed a negative control respectively. The results showed that

the DNA concentration of the negative control was very low and

could not be amplified by PCR, which ruled out the influence of

external pollution on the results.

In the current study of lung microbiome, most of them are

studied through BALF and brush samples. Because

bronchoscopy needs to enter the lower respiratory tract

through the upper respiratory tract, there is a risk of sample

contamination. However, studies have shown that the microbiota

in BALF obtained by bronchoscopy is not affected (Dickson et al.,

2016). Therefore, BALF is feasible as a research method of lower

respiratory tract microbiome.

Some studies have confirmed that in chronic lung diseases,

the flora structure of lower respiratory tract will change, such as

COPD (Mammen and Sethi, 2016) and bronchiectasis (Budden

et al., 2019). Differences in the overall structure of lung

microbiome composition between lung cancer and non-

malignant diseases were observed, which was consistent with

the results of Liu et al. (2018b); Tsay et al. (2018), indicating that

there were significant differences in the composition of

pulmonary microbial communities between the two groups. In

our study, we found that there were differences in the overall

structure of microbial communities between the two groups by

NMDS analysis, which suggested that there were significant

differences in the microbial composition of the lower

respiratory tract between the lung segment with GGO and the

contralateral normal lung segment. The results of a diversity

analysis showed that there was no significant difference in the

richness and diversity of microbiota between the BALF samples

of the diseased and normal lung segment, which was similar with

the conclusions of Jin’s study on BALF microbiome in patients

with lung cancer and healthy patients (Jin et al., 2019), indicated

that the microbiome composition of the lower respiratory tract is

FIGURE 3
Microbial composition and diversity in lungGGOand paired adjacent normal tissues. (A)Operational taxonomic units (OTUs) betweenGGOand
normal tissues. (B) Bar plot presents the relative abundance of microbial phyla and genera in GGO and normal lung tissues. (C) Shannon, Simpson,
and Chao1 index of GGO and normal groups (p > 0.05). (D) Non-metric multidimensional scaling (NMDS) plot visualizes the overall microbiome
dissimilarity measured by Bray–Curtis dissimilarities.
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FIGURE 4
Bar plot presents the microbiota with significant differential relative abundance on the phylum, class, order, family, genus, and species levels
between lung GGO and paired adjacent normal tissues.

FIGURE 5
Random forest model based on bacterial taxa feature to distinguish GGO tissue and adjacent normal lung tissue. (A) Receiver operating
characteristic (ROC) curves with the 10 significant differential genera (AUC = 91.05%) to predict GGO and paired adjacent normal tissue. (B) Mean
decrease accuracy measures the degree of reduction in the accuracy of random forest prediction by changing the value of a variable into a random
number. The higher the value, the greater the importance of the variable. (C)Mean decrease Gini calculates the influence of each variable on the
heterogeneity of observations at each node of the classification tree throughGini index, so as to compare the importance of variables. The higher the
value, the greater is the importance of the variable.
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very similar to that of the upper respiratory tract, and the oral

flora may be the main source of the respiratory tract flora

(Dickson and Huffnagle, 2015). In our study, the four main

phyla of BALF are Bacteroidota, Proteobacteria, Firmicutes,

Fusobacteriota, and Actinobacteria, which are consistent with

the results of other studies on the composition of microbiota in

BALF at the phylum level and commonly found in the oral cavity

(Jin et al., 2019; Cheng et al., 2020). Cheng et al. (2020) found

phylum TM7 and six genera were enriched in the lung cancer

group compared with the control group by comparing BALF

samples from patients with lung cancer (n = 32) and patients with

benign lung disease (n = 22). However, the same microbiome

differences were not found in our study, but we found that there

was greater abundance of family Lachnospiraceae in BALF of

GGO patients. Some studies have found that richness of family

Lachnospiraceae is related to the low survival rate of lung cancer

patients, which seems to indicate that it is also related to early

lung cancer such as GGO. Interestingly, Lachnospiraceae can

produce anti-inflammatory short chain fatty acids (Louis and

Flint, 2009), which seems to be inconsistent with the current

result. The difference between studies may be caused by

differences in the environment, geographical location, and

eating habits. In addition, different sampling methods may

also be another reason for different results. Furthermore, it is

also related to the heterogeneity of each person’s lung

microbiome.

Our results confirm that BALF is indeed vulnerable to

contamination by the upper respiratory tract and oral microbiota.

In this study, we also used lung tissue directly obtained from surgery,

so that we can not only obtain the actual lung tissue microbiome but

also reduce possible oral contamination through sample collection. In

this study, our results show that the lung microbiota of cancer

patients is different from that of other sites of the body, and the

most dominant phylumof lungmicrobiota is Proteobacteria, which is

also themain phylum of BALF. Compared with BALF samples, there

are some different microbiotas of two kinds of samples. The

microbiome of lung tissue samples is more complex and the

percentage of main microbiota is lower. However, it is worth

noting that the main microbiota of the two samples are similar,

also the specific proportion is different, this suggests that the

microbiome of lung tissue may also be affected by lower

respiratory tract microbiota. Our results are partly consistent with

previous studies, which revealed the lung microbiome in lung cancer

at the phylum level (Mao et al., 2020). However, compared with

previous studies, we did not observe the relative abundance difference

of unclassified Comamonadaceae and Propionibacterium at other

taxonomic levels between lung cancer and adjacent tissues (Mao

et al., 2020), which indicated that there may be differences in the

composition of lung microbiome between GGO and typical lung

cancer. However, the microbiome characteristics of GGO are still

unclear. A small sample study found that the core microbiotas in

GGO tissue are Mycobacterium, Corynebacterium, and

Negativicoccus (Ren et al., 2019b). Nevertheless, they did not find

the different microbiota between GGO and adjacent normal tissues.

Our results were partially the same as a recent study, which explored

microbiome diversity through tumor tissues of lung ground-glass

nodules and solid nodules (Ma et al., 2021). However this study did

not involve with the microbiome of BALF, as well as the relationship

of microbiome between BALF and tumor tissues. In our study, we

found reduced genera including Ralstonia, Lactobacillus,

unidentified-Chloroplast, and Pseudomonas in the GGO group,

Among them, Ralstonia pickettii was found to be a mesothelioma

specific microbiota involved in tumor progression (Higuchi et al.,

2021), and Lactobacillus induce anticancer effect by promoting

cancer cell apoptosis and preventing oxidative stress, which is

common in probiotics (Badgeley et al., 2021), the effect on GGO

can mechanically be interpreted by carcinogenesis due to the

decreased genera. Interestingly, the most dominant phylum

Proteobacteria is also significantly reduced. The results indicate

that the microbiota in the local microenvironment may also be

involved in the initiation and progression of GGO. In our study, all

10 different bacterial genera were used to distinguish GGO and

normal lung tissue through the method of random forest analysis,

and the AUC was 91.05%, indicating that these bacterial genera have

certain value in discriminating GGO and normal lung tissue.

However, our study also has some limitations. First, the

sample size is too small to generate credible evidence.

Therefore, larger samples and dynamic longitudinal studies

are needed in the future to verify the association between

microbiome and different pathological types of lung cancer

based on different regions and populations. Second, our

studies need to combine bacterial and clinical characteristics

to raise the ROC value, which indicates that the combined

multidimensional data can better predict lung cancer to a

certain extent. Finally, we do not obtain lung tissue samples

from healthy patients in this study because it is immoral to obtain

lung biopsy from healthy subjects, which is also an unsolvable

problem for later researchers.

Conclusion

In conclusion, this is the first time to investigate the

microbiome diversity of GGO by BALF combined with lung

tissue samples. We found significant differences in the lower

respiratory tract and lung microbiome between GGO and the

matched non-malignant control group through the BALF and

lung tissues. These features may be potential bacterial biomarkers

and new targets for GGO diagnosis and treatment.
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