About this Research Topic
Mechanochemical reactions rely on factors such as mechanical interaction, temperature, physical and chemical properties of solid surfaces, and even environmental factors such as additives or gas molecules. Therefore, it is extremely challenging to elucidate the potential reaction pathway due to the very large number of degrees of freedom and complexity of reaction conditions involved in buried interfaces. Central questions include: how are mechanical stresses transferred to molecules from external solid surfaces, displacing the molecular conformation from equilibrium states or positions; and how to control reaction pathway or gates that can suppress unwanted reactions, or facilitate wanted reactions. Recent technological advances such as the atomic force microscope, transmission electron microscope, and other microscopic approaches offer promising alternatives to studying these issues. This experimental approach needs to be complemented by numerical simulations such as reactive molecular dynamic (MD) simulations and density functional theory (DFT) calculations.
We welcome reviews and original research articles that address, but are not limited to, the following themes:
• Tribochemical reactions at sliding interfaces with additives and related applications
• Theory, modeling, and experiments of tribochemical wear
• Modeling and simulations of mechanochemical reactions based on MD and DFT simulations
• Superlubricity due to mechanochemical reactions
• Novel multiscale computational approaches for studying mechanochemical reactions
• Novel experimental approaches such as high resolution and surface enhanced spectroscopies
Keywords: mechanochemical reactions, tribochemical wear, computer simulations, reaction kinetics, reaction pathway
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.