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Editorial: Chemoinformatics
Approaches to Structure- and
Ligand-Based Drug Design, Volume II
Leonardo L. G. Ferreira* and Adriano D. Andricopulo*

Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery,
Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos, Brazil

Keywords: drug design, machine learning, drug discovery, molecular docking, virtual screening, medicinal
chemistry, QSAR

Editorial on the Research Topic

Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II

“Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II” follows the
success of the first volume of this Research Topic (RT) (Ferreira and Andricopulo, 2018). The field
has been more relevant than ever, especially in pandemic times, when Covid-19 hit the world and the
scientific community was urged to come up with fast and cost-effective solutions (Robinson et al.,
2022). Apart from the pandemic, chemoinformatics has been a core component in outstanding
developments across different therapeutic areas and will continue to be a strategic innovation driver
in the drug research and development (R&D) process (Chen et al., 2018; Ferreira and Andricopulo,
2019; Jiménez-Luna et al., 2021).

The second volume of this RT contains reviews and original research articles covering up-to-date
research on machine learning (ML), multiparameter optimization (MPO), quantitative structure-
activity relationships (QSAR), chemoinformatics servers, virtual screening, pharmacokinetics,
among other equally relevant topics. More than 140 authors from all over the world contributed
to the 20 articles that are part of this volume. Chemoinformatics investigations applied to different
conditions such as Covid-19, cancer, Chagas disease, inflammation, pain, and immunological
diseases are included. Additionally, novel approaches to pocket druggability analysis, multi-
target drug discovery, artificial neural networks, multi-conformation molecular docking,
molecular dynamics, and quantum studies are provided. Regarding target-based efforts, key
aspects of intermolecular recognition are reported for a variety of proteins, including cruzain,
G-protein coupled receptors (GPCR), phosphoglycerate mutase 1 (PGAM1), glutamate receptor, 5-
lipoxygenase-activating protein (FLAP), Janus kinase 1 (JAK1), CC chemokine receptor 7 (CCR7),
and cyclin-dependent kinase 2 (CDK2).

An MPO campaign combining computational and experimental approaches yielded a series of
novel cruzain inhibitors (Pauli et al.). These compounds showed in vitro and in vivo trypanocidal
activity along with low toxicity and suitable pharmacokinetics, contributing to the advance of Chagas
disease drug discovery. Another study that integrated organic synthesis, biological evaluation, and
molecular modeling (Oliveira et al.) resulted in the discovery of a series of carvacrol-derived
sulfonamides with potent antioxidant, antinociceptive, and anti-edematogenic activities. Moreover,
3D-QSAR models (Wang et al.) were integrated with molecular docking and molecular dynamics to
investigate anthraquinone-based PGAM1 inhibitors. Molecular modeling was also applied in
combination with virtual screening and molecular docking to investigate novel inhibitors of
JAK1 (Babu et al.), a critical enzyme for intracellular signal transduction and the development
of numerous types of cancer. Given the importance of GPCRs in drug design, a review article covers
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recent discoveries on allosteric GPCR ligands and bitopic
modulators (Egyed et al.). The role of the GPCR secondary
site was examined in terms of its effects on properties such as
binding affinity, selectivity, and kinetics. A further review article
examines the currently available tools used to analyze molecular
dynamics results (Baltrukevich and Podlewska).

Chemokines play a critical role in immunological signaling
and, therefore, can be explored as drug targets in different
diseases such as immunological and inflammatory conditions
and cancer (Salem et al., 2021). A set of experimentally validated
decoys were identified for CCR7 using a structure-based virtual
screening approach (Proj et al.). In addition to the traditional
single-target drug design paradigm, a new multitarget strategy is
reported in this RT (Valdés-Jiménez et al.). A computational tool
was developed to explore and identify druggable 3D
arrangements across different proteins. This algorithm allows
the comparison of quaternary structures and the evaluation of
druggability from the 3D structural pattern. However, defining
druggable and non-druggable protein cavities is neither a trivial
nor an obvious task (Ehrt et al., 2019). Departing from the
commonly used two-class classification models, a one-class
approach to assess druggability (Aguti et al.) using a
probabilistic kernel is communicated in this RT. The workflow
proved to be feasible in removing or reducing biases in the
classification of druggable pockets. Virtual screening has
become an important tool in drug discovery as it allows a
preliminary evaluation of large compound collections in short
timelines and costs (Ferreira and Andricopulo, 2021). A novel
virtual screening workflow (Venkatraman et al.) that can sample
billions of compounds and supports parallel and cloud
computing is reported. A collection of approximately 3.7
billion compounds against three Sars-CoV-2 proteins were
used to evaluate the effectiveness of the new virtual screening
pipeline. Another target-based study focuses on CDK2, which
participates in the regulation of the cell cycle and is a critical
player in cancer emergence. A series of aminopurine derivatives
was designed as novel CDK2 inhibitors (Liang et al.) with high
selectivity concerning other CDK isoforms. Anti-proliferative
activity against triple-negative breast cancer cells (TNBC) was
shown, which makes this series suitable starting points for
optimization.

ML has been a hot topic in drug discovery, which is reflected in
the number of articles on this theme published in this RT. Novel
molecular targets for Covid-19 drug repositioning were identified
(López-Cortés et al.) by a combination of artificial neural

networks, single-cell RNA sequencing, and interactome
analyses of the immunological system proteins. After a screen
of more than 1,500 proteins, 25 putative molecular targets were
identified. Interestingly, datasets containing more than 50,000
structurally diverse compounds with reported activity against
several breast cancer cell lines were used to generate predictive
models (He et al.). As a result, a web server was created to predict
the activity of query compounds against breast cancer cell lines.
Another online tool reported in this RT performs multi-
conformational molecular docking (Wang et al.) on estrogen
(ERα and Erβ) and androgen (AR) receptors. In addition, this
interface runs 2D similarity searches against a database of known
ERα, ERβ, and AR ligands. ML was also applied to identify the 2D
features associated with the anti-inflammatory properties of
FLAP inhibitors (Aliza Khan and Jabeen), which can assist the
design of optimized anti-inflammatory agents. Furthermore, this
RT brings to the readers an interesting analysis of the
extrapolation limits of different regression methods (von Korff
and Sander) applied to drug discovery along with an ML-based
QSAR model (Brown et al.) for the estimation of molecular
properties in drug design. In the field of deep learning, this
article Research Topic features a report of a deep graph neural
network (Shi et al.) to predict the interaction of small-molecule
compounds with protein binding cavities. An additional
important topic is drug resistance to antibiotics, which has
emerged as a major health concern all over the world. ML has
been applied to the field to identify novel chemical matter able to
circumvent the main resistance mechanisms found in bacteria
(Chowdhury et al., 2020). A review article examines recent
machine learning studies (Jukič and Bren) applied to the
identification of novel non-peptidic and peptidic antibacterial
compounds and drug targets.

This RT encloses articles that cover a broad range of
chemoinformatics applications to drug discovery and its many
interfaces with the chemical and biological sciences. The
knowledge shared through this RT could not be more relevant
and timely. We hope that the findings, insights, and analyses
reported herein contribute to the advance of drug discovery and,
ultimately, to the promotion of human health.
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Background: There is pressing urgency to identify therapeutic targets and drugs that
allow treating COVID-19 patients effectively.

Methods: We performed in silico analyses of immune system protein interactome
network, single-cell RNA sequencing of human tissues, and artificial neural networks to
reveal potential therapeutic targets for drug repurposing against COVID-19.

Results: We screened 1,584 high-confidence immune system proteins in ACE2 and
TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly
overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal
absorptive enterocytes of patients with several immunopathologies. Then, we
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performed fully connected deep neural networks to find the best multitask classification
model to predict the activity of 10,672 drugs, obtaining several approved drugs,
compounds under investigation, and experimental compounds with the highest area
under the receiver operating characteristics.

Conclusion: After being effectively analyzed in clinical trials, these drugs can be
considered for treatment of severe COVID-19 patients. Scripts can be downloaded at
https://github.com/muntisa/immuno-drug-repurposing-COVID-19.

Keywords: COVID-19, immune system, single-cell RNA sequencing, artificial neural networks, drug repurposing

INTRODUCTION

The first zoonotic transmission of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was located in China in
December 2019 (Tay et al., 2020), and it is the causative agent of
the coronavirus disease 2019 (COVID-19) (Sanders et al., 2020).
TheWorld Health Organization (WHO) declared the outbreak of
COVID-19 as a Public Health Emergency of International
Concern on January 30, 2020, and a pandemic on March 11,
2020 (Gao Q et al., 2020). Classified in the Coronaviridae family
and Betacoronavirus genus, SARS-CoV-2 is the seventh CoV
known to infect humans, along with 229E, NL63, OC43, HKU1,
SARS-CoV, and Middle East respiratory syndrome (MERS)
(Oberfeld et al., 2020). Coronaviruses cause mild to severe
respiratory diseases and have high mutation rates that result
in high genetic diversity, plasticity, and adaptability to invade a
wide range of hosts (Peiris et al., 2004).

The first genome of SARS-CoV-2 namedWuhan-Hu-1 (NCBI
reference sequence NC_045512) was isolated and sequenced in
China in January 2020 (Zhou P et al., 2020; Zhu et al., 2020).
SARS-CoV-2 is a single-stranded positive-sense RNA virus of
about 30 kb in length (Zhou P et al., 2020; Ziegler et al., 2020).
The genomic structure is comprised of a 5′ terminal cap structure,
14 open reading frames (ORFs) encoding 29 proteins, and a 3′
poly A tail (Wu A et al., 2020). ORF1a and ORF1ab are the largest
genes and codify 16 non-structural proteins (nsp1 to nsp16).
According to Gordon et al. (2020), nsps are involved in antiviral
response (nsp1), viral replication (the nsp3-nsp4-nsp6 complex),
the protease 3Cpro (nsp5) (Zhang L et al., 2020), the RNA
polymerase (the nsp7-nsp8 complex), the single-strand RNA
binding (nsp9), the methyltransferase activity (nsp10 and
nsp16), the RNA-dependent RNA polymerase (nsp12) (Gao Y
et al., 2020), the helicase/triphosphatase (nsp13), the 3′-5′
exonuclease (nsp14), the uridine-specific endoribonuclease
(nsp15), and the RNA-cap methyltranspherase (nsp16)
(Gordon et al., 2020). Lastly, the 3′ terminus contains genes
that codify the spike (S) glycoprotein, the envelope (E) protein,
the membrane (M) glycoprotein, the nucleocapsid (N) protein,
and several accessory proteins (3a, 3b, p6, 7a, 7b, 8, 9b, 9c, and 10)
(Figure 1A) (Wu A et al., 2020; Wu C et al., 2020).

COVID-19 is caused when SARS-CoV-2 exploits the host cell
machinery for its own replication and spread (Ortiz-Prado et al.,
2020). SARS-CoV-2 entry into human cells is mediated by the S
glycoprotein that forms homotrimers protruding from the viral
surface (Walls et al., 2020). S1 and S2 are two functional subunits

of the S glycoprotein. Six receptor-binding domain (RBD) amino
acids (L455, F486, Q493, S494, N501, and Y505) of the S1 subunit
directly bind to the peptide domain of angiotensin-covering
enzyme 2 (ACE2) human receptor protein (Andersen et al.,
2020; Cao et al., 2020; Wang Q et al., 2020; Yan et al., 2020).
The affinity constant for RBD of SARS-CoV-2 to ACE2 is greater
than that of SARS-CoV by as much as a factor of 10–15 (Wang Q
et al., 2020, Wang Y et al., 2020; Wrapp et al., 2020). S
glycoprotein is cleaved by the cathepsin L (CTSL) protease
(Muus et al., 2020), and the transmembrane serine protease
(TMPRSS2) in a functional polybasic (furin) cleavage site at
the S1-S2 boundary flanked for O-linked glycans (Hoffmann
et al., 2020; Walls et al., 2020). S2 subunit mediates subsequent
fusion between the human and viral membranes (Kirchdoerfer
et al., 2016; Yuan et al., 2017).

ACE2 is a type I membrane protein widely expressed in nasal
goblet secretory cells, lung type II pneumocytes, ileal absorptive
enterocytes, kidney proximal tubule cells, gallbladder basal cells,
among other human cells (Deng et al., 2020; Lamers et al., 2020;
Singh et al., 2020; Sungnak et al., 2020; Ziegler et al., 2020), and
participates in the maturation of angiotensin, a peptide hormone
that controls blood pressure and vasoconstriction (Donoghue
et al., 2000). After virus entry, many severe ill COVID-19 patients
developed clinical manifestations such as cough, mild fever,
dyspnea, lung edema, severe hypoxemia, acute respiratory
distress syndrome (ARDS) (Montenegro et al., 2020), acute
lung injury (Blanco-Melo et al., 2020), interstitial pneumonia,
increased concentrations of fibrinogen and D-dimer plasma
levels (Spiezia et al., 2020; Tang et al., 2020), elevated levels of
pro-inflammatory chemokines and cytokines such as interleukin
(IL) 6 (Herold et al., 2020; Sarzi-Puttini et al., 2020), low levels of
type I and III interferons (IFNs) (Blanco-Melo et al., 2020), high
levels of lactate dehydrogenase, hyperferritinemia, idiopathic
thrombocytopenic purpura caused by spleen atrophy (Zulfiqar
et al., 2020), formation of hyaline membrane (Yao et al., 2020),
hilar lymph node necrosis, lymphopenia (Terpos et al., 2020),
intravascular coagulopathy (Fogarty et al., 2020), pulmonary
thromboembolism (Rotzinger et al., 2020), hypotension
(Rentsch et al., 2020), cerebrovascular events (Mao et al.,
2020), severe metabolic acidosis, kidney and hepatic
dysfunctions (Zhang C et al., 2020), secondary infections,
septic shock (Li H et al., 2020), and multi-organ failure (Wang
Q et al., 2020; Gupta et al., 2020; Wadman et al., 2020).

Additionally, SARS-CoV-2 interacts with the immune
system triggering dysfunctional immune responses to
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COVID-19 progression (Tay et al., 2020). Given that an
excessive inflammatory response to the novel coronavirus is
thought to be a major cause of disease severity and death
(Blanco-Melo et al., 2020; Mehta et al., 2020), a better
understanding of the immunological underpinnings is
required to identify potential therapeutic targets. To fill in
this gap, we performed in silico analyses of immune system
protein-protein interactome (PPi) network, single-cell RNA
sequencing (scRNA-seq) of human tissues, and artificial neural

networks to reveal potential therapeutic targets for drug
repurposing against COVID-19.

METHODS

Protein Sets
We have retrieved the 332 human proteins physically associated
with 26 of the 29 SARS-CoV-2 proteins proposed by Gordon et al

FIGURE 1 | Interaction between human proteins and SARS-CoV-2 proteins. (A) Proteomic and genomic structure of SARS-CoV-2. (B)Human proteins physically
associated with SARS-CoV-2 proteins.
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(Figure 1B; Supplementary Table S1; Gordon et al., 2020). We
have also retrieved a total of 3,885 immune system proteins from
several databases such as the International ImMunoGeneTics
information system (http://www.imgt.org) (Giudicelli et al., 2005;
Lefranc et al., 2009; Lefranc et al., 2015), the InnateDB database
(https://www.innatedb.com/) (Breuer et al., 2013), and the David
Bioinformatics Resource (https://david.ncifcrf.gov/) (Huang et al.
, 2009b; Huang et al., 2009a) using the gene ontology (GO) terms:
0002376 immune system process, 0045087 innate immune
response, and 0002250 adaptive immune response. Lastly, both
protein sets were integrated to identify the highest confidence
interactions and to design the immune system PPi network.

Protein-Protein Interactome Network
The immune system PPi network with a highest confidence cutoff
of 0.9 and zero node addition was created between the human
proteins physically associated with SARS-CoV-2 and their first
neighboring proteins of the immune system. This network was
generated using the human proteome of the Cytoscape StringApp
(Szklarczyk et al., 2015; Doncheva et al., 2019), which imports
protein-protein interaction data from the STRING database
(Szklarczyk et al., 2015). The degree centrality represents the
number of edges the node has in a network (López-Cortés et al.,
2018; López-Cortés et al., 2020b), and it was calculated using the
CytoNCA app (Tang et al., 2015). All nodes and edges were
organized through the organic layout, which produces clear
representations of complex networks, and lastly, the immune
system PPi network was visualized through the Cytoscape
software v.3.7.1 (Shannon et al., 2003).

Interestingly, Overmyer et al. published a large-scale multi-
omic analysis identifying 146 significantly expressed proteins in
patients with severe COVID-19 (Overmyer et al., 2020). We
located these proteins in our immune system PPi network and
generated the immune system PPi subnetwork encompassing the
significantly expressed proteins in severe COVID-19 and their
first neighbor nodes (cutoff � 0.9). Subsequently, we ranked the
overexpressed and underexpressed proteins according to the
highest degree centrality.

Additionally, Bouhaddou et al. published the global
phosphorylation landscape of SARS-CoV-2 infection identified
97 significantly expressed proteins in Vero E6 cells (Bouhaddou
et al., 2020). We located these proteins in both networks and
ranked the phosphorylated proteins according to the highest
degree centrality. Lastly, human proteins physically associated
with the SARS-CoV-2 proteins, immune system proteins,
significantly expressed proteins in severe COVID-19, and
significantly expressed phosphorylated proteins in SARS-CoV-
2 infection in Vero E6 cells were differentiated by colors in both
the immune system PPi network and subnetwork.

Functional Enrichment Analysis
The functional enrichment analysis gives curated signatures of
protein sets generated from omics-scale experiments (Reimand
et al., 2019). We performed the enrichment analysis to validate
the correlation between the immune system PPi subnetwork and
biological annotations related to severe COVID-19, using the
protein set of the immune system PPi network as background set.

The enrichment was calculated using g:Profiler version
e101_eg48_p14_baf17f0 (https://biit.cs.ut.ee/gprofiler/gost) to
obtain significant annotations (Benjamini-Hochberg false
discovery rate - FDR < 0.001) related to GO: biological
processes, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) signaling pathways, and Reactome signaling pathways
(Wang et al., 2016; Slenter et al., 2018; Raudvere et al., 2019; Jassal
et al., 2020). Lastly, the enrichment analysis was visualized in a
Manhattan plot, and the significant terms related to the
immunopathology of severe COVID-19 were manually curated.

Single-Cell RNA Sequencing Data
Ziegler et al. analyzed human scRNA-seq data to uncover
potential targets of SARS-CoV-2 amongst tissue-resident cell
subsets. They discovered ACE2 and TMPRSS2 co-expressing in
goblet secretory cells from nasal passages, type II pneumocytes
from lung epithelial cells, and absorptive enterocytes from ileal
epithelial cells (Ziegler et al., 2020).

After constructing the immune system PPi network between
the human proteins physically associated with the SARS-CoV-2
proteins, immune system proteins, and significantly expressed
proteins in severe COVID-19, we compared the transcriptomics
data of the network nodes between 10 nasal passage cells (goblet
cell, basal cell of olfactory epithelium, ciliated cell, endothelial
cell, fibroblast cell, glandular epithelial cell, mast cell, myeloid cell,
plasma cell, and T cell), 15 lung epithelial cells (ciliated
cell, lymphatic cell, fibroblast 1, fibroblast 2, macrophage 1,
macrophage 2, macrophage 3, mast cell, monocytes 1,
monocytes 2, neutrophil cell, proliferating cell, T cell, type I
pneumocytes, and type II pneumocytes), and 9 ileal epithelial
cells (cycling stem cell, early enterocyte 1, early enterocyte 2,
absorptive enterocyte, enteroendocrine cell, goblet cell, quiescent
stem cell, TA G1S cell, and TA G2M cell) to identify significantly
expressed genes in goblet secretory cells, type II pneumocytes,
and absorptive enterocytes.

The transcriptomics data was taken from the ‘COVID-19
Studies’ section of the Single Cell Portal (https://singlecell.
broadinstitute.org/single_cell/covid19), and the Alexandria
Project (https://alexandria-scrna-data-library.readthedocs.io/en/
latest/introduction.html). The three single-cell databases
analyzed were: 1) nasal passage cells (Ordovas-Montanes et al.,
2018) (https://singlecell.broadinstitute.org/single_cell/study/
SCP253/allergic-inflammatory-memory-in-human-respiratory-
epithelial-progenitor-cells#study-visualize), 2) lung epithelial
cells (Ziegler et al., 2020) (https://singlecell.broadinstitute.org/
single_cell/study/SCP814/human-lung-hiv-tb-co-infection-ace2-
cells#study-visualize), and 3) ileal epithelial cells (Fujii et al.,
2018) (https://singlecell.broadinstitute.org/single_cell/study/
SCP817/comparison-of-ace2-and-tmprss2-expression-in-
human-duodenal-and-ileal-tissue-and-organoid-derived-
epithelial-cells#study-visualize). Lastly, it is important to clarify
that the scRNA-seq analyses were done in cells non exposed to
the novel coronavirus.

The criteria of analysis of transcriptomics data of nasal passage
cells, lung epithelial cells, and ileal epithelial cells was the
following: ‘t-distributed stochastic neighbor embedding
(t-SNE) cell types’ as load cluster, ‘cell type ontology label’ as
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selected annotation, and ‘all cells’ as subsampling threshold.
Additionally, we adjust the mRNA expression taking into
account the Z-scores, that is, overexpressed mRNAs with
Z-scores > 2 and underexpressed mRNAs with Z-scores < −2.
Regarding visualization of transcriptomics data, we designed
heatmaps to compare the expression between cell types, dot
plots to visualize the percentage of cells expressing, box plots
to compare the expression scores of multiple genes for each cell
type taking into account the mean log normalized expression, and
2D t-SNE to visualize the expression score of significantly
expressed multiple genes per subpopulation cell.

Drug Repurposing
After identifying the significantly expressed biological molecules
present in the scRNA-seq analyses of ACE2 and TMPRSS2 co-
expressing human cells, we evaluated the druggability of these
molecules, and subsequently perform the drug repurposing
analysis.

From all the 75 previously identified and significantly
expressed biological molecules, only 31 had identification
number in the ChEMBL database (https://www.ebi.ac.uk/
chembl) (Gaulton et al., 2017), and from these 31 proteins, all
compounds were extracted from ChEMBL as follow: 1) all
reported interactions with (IC50, Ki, EC50, and GI50) where
extracted from ChEMBL version 26; 2) all extracted interactions
were labeled as active (1) or inactive (0) if values are less than
10 μM; and 3) if more than one report (active or inactive) is
available for the same compound-target interaction, the final
criteria (active or inactive) was assigned considering the 75% of
the information or rejected otherwise. From the 31 proteins, only
25 had identified molecules with active/inactive interactions after
considering the previous filters. Hence, we identified 25 potential
therapeutic targets for drug repurposing against COVID-19.

DeepChem package and Python Jupyter Notebooks (Oliver,
2013) were used to predict if drugs (DrugBank compounds) could
be active for multiple protein targets (Oliver, 2013) (https://
github.com/deepchem/deepchem). DrugBank (https://www.
drugbank.ca/) contains comprehensive information about
drugs, their mechanism of action, and their targets (Wishart
et al., 2006; Wishart et al., 2018). The calculations used the
GPU of Google Colab and the correspondent scripts could be
found at GitHub repository: https://github.com/muntisa/
immuno-drug-repurposing-COVID-19. The fully-connected
deep neuronal networks (FCNNs) have been used to find the
best multitask classification model using 1,024 molecular circular
fingerprints (CFPs) as input descriptors for 15,377 ChEMBL
compounds and activity (1/0) for the 25 therapeutic targets as
outputs/tasks (Wu et al., 2018). The best model resulted from a
grid search for the best parameters have been used to predict the
activity of 10,672 drugs for the 25 targets. The performance of the
classifiers used during the training, grid search and test evaluation
of the best model was the area under curve (AUC) of the receiver
operating characteristic (ROC) curve (AUROC) (Hastie et al.,
2009), the default metric in DeepChem package. The ROC curve
is defined by the True Positive Rate (TPR) (or Sensitivity) vs. the
False Positive Rate (FPR) (or 1-Specificity) for each of the class of
the multi-task classifier for different class probability thresholds.

TPR � TP/(TP + FN), FPR � FP/(FP + TN), where TP � True
Positive; FP � False Positive; TN � True Negative; FN � False
Negative (from the confusion matrix that summarizes the results
of testing the classifier). AUROC represents the area under the
ROC curve, with values between 0 and 1 (1 � perfect model; 0.5 �
no skill/random model).

The main script of the repository (Immuno-Drug-
Repurposing-DeepChem-MultitaskClassification.ipynb) is
presenting all the methodology with python code and results.
The repository folder “datasets” contains the dataset with the
ChEMBL ID, SMILES formula, and the class of protein target
(multiclass_origDS_noDB.csv). The dataset that will be used by
the classifier contains the SMILES formulas of 15,377 ChEMBL
compounds that interacts with 25 different protein targets with
the following UniProt IDs: O00571, P00533, P01024, P01130,
P04233, P07339, P08962, P09668, P11021, P15291, P16070,
P17301, P21741, P25774, P25963, P26006, P27361, P35222,
P40763, P50591, P55085, Q15904, Q16665, Q99519, and
Q99814. This means that the dataset was composed by 15,377
examples with 25 classes. The multi-task classification model will
be able to predict if a compound with a SMILE formula could
have one or more protein targets simultaneously, using separated
tasks/outputs for each of the 25 proteins. It is not a simple
classification with only an output (class) that can predict only
a protein value from the 25 possible targets). The prediction
molecules that will be evaluated with the best classifier can be
found in DB_toPredict.csv (DataBank ID, SMILES formulas, and
the classes to predict). The input SMILES formulas will be used to
calculate molecular descriptors for all molecules (as model
inputs).

In the first step, CFPs molecular descriptor have been
calculated for both ChEMBL dataset and DrugBank prediction
set (Gaulton et al., 2017; Wishart et al., 2018) as a vector of 1,024
values for each compound. Thus, the dataset to build the future
classifier has 1,024 input features in 15,377 examples with 25
output classes (protein target).

In order to build a classifier (model), the training of the model
should be done with a training subset and the final model should
be tested for performance with a test subset that was not used
during the training process. In addition, if different classifiers
with different parameters are used during the training, there is a
need of an extra validation subset to decide the best classifier
(model) using a specific metrics (in our scripts: AUROC). Thus,
the dataset was splitted into 80%-10%-10% training-validation-
test subsets using RandomStratifiedSplitter (to maintain the same
ratio between the examples in all 25 classes as in the initial
dataset). The training and validation subsets were used to find the
best hyperparameters for the FCNN with 1,000 neurons
(MultitaskClassifier from DeepChem package). The constant
parameters are activation functions as relu, momentum of 0.9,
weights initialization using Glorot uniform method (Xavier
uniform initializer), learning rate of 1e-3, decay of 1e-6, 1o
epochs, a single hidden layer (additional parameters could be
found in the main notebook of the repository). During the grid
search for the best model, 64 classifiers have been optimized with
different combination of the following parameters: batch size �
(128, 515), dropouts � (0.0, 0.1, 0.2, 0.3), batch normalization �
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(False, True), and hidden layer sizes (number of neurons) � (100,
500, 1,000, 1,024). Thus, the training subset was used for training
of each model/classifier and the validation subset was used to
decide the best model.

The test set was used to verify the performance of the best
model for each task/protein target (see Supplementary

Table S2). AUROC for the test subset was between 0.935
and 1.000 (mean AUROC � 0.989; standard deviation (SD) �
0.019). Additional results such as the AUROC values for
training, validation and test subset for each protein target
(task/class) are presented into the folder “results” as
multitasks_metrics_best.csv.

FIGURE 2 | Immune system protein interactomes. (A) Immune system PPi network. (B) Immune system PPi subnetwork made up of human proteins physically
associated with SARS-CoV-2 proteins, immune system proteins, significantly expressed proteins in severe COVID-19, and significantly expressed proteins of SARS-
CoV-2 infection in Vero E6 cells. DCM: degree centrality mean.
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The best model has 1,000 neurons in a hidden layer (dropout
of 0.5) with all parameters as ’activation’: ’relu’, ’momentum’:
0.9, ’batch_size’: 124, ’init’: ’glorot_uniform’, ’data_shape’:
(1024), ’learning_rate’: 0.001, ’decay’: 1e-06, ’nb_epoch’: 1,
’nesterov’: False, ’dropouts’: (0.5), ’nb_layers’: 1, ’batchnorm’:
False, ’layer_sizes’: (1000), ’weight_init_stddevs’: (0.1),
’bias_init_consts’: (1.0), ’penalty’: 0.0. This classifier was used
to predict the activity of 10,672 drugs from DataBank for the 25
immune system targets: DDX3X, EGFR, C3, LDLR, CD74,
CTSD, CD63, CTSH, HSPA5, B4GALT1, CD44, ITGA2,
MDK, CTSS, NFKBIA, ITGA3, MAPK3, CTNNB1, STAT3,
TNFSF10, F2RL1, ATP6AP1, HIF1A, NEU1, and EPAS1 (see
Supplementary Table S7 and multitasks_predictions_best.csv
in repository folder “results”). Lastly, the best predicted drug-
target associations were evaluated according to its first ATC
level (https://www.whocc.no/atc_ddd_index/), drug category,
mechanism of action, approval status by the US Food &
Drug Administration (FDA) or the European Medicines
Agency (EMA), the pharmacological indications, and the
current involvement in COVID-19 clinical trials (https://
www.clinicaltrials.gov/ct2/results?cond�COVID-19).

RESULTS

Immune System Protein-Protein
Interactome Network
In biological systems, specialized pathogens (i.e., SARS-CoV-2)
employ a suite of virulent proteins, which interact with key targets
in host interactomes to extensively rewire the flow of information
and cause diseases, such as COVID-19 (Vidal et al., 2011; Pan
et al., 2016; Kumar et al., 2020). The human proteins physically
associated with SARS-CoV-2 are the first line of host proteins,
which also interacts with molecular components involved in a
wide spectrum of biological processes and signaling pathways
within the cell. Therefore, analyzing the interactome of immune
system proteins may reveal novel components in SARS-CoV-2
immunopathogenesis.

Here, we generated the immune system PPi network
encompassing 1,584 nodes and 332,968 edges (Figure 2A). Of
them, 256 human proteins physically associated with SARS-CoV-
2 proteins had high-confidence interactions (cutoff � 0.9) with
1,390 immune system proteins belonging to the first neighbor
nodes (Supplementary Table S3). The degree centrality mean of
the human proteins physically associated with SARS-CoV-2
proteins was 23.6, and proteins with the highest degree
centrality were GNB1, GNG5, RBX1, RHOA, and TCEB1. On
the other hand, the degree centrality mean of the immune system
protein was 44.5, and proteins with the highest degree centrality
were UBA52, APP, FPR2, NCBP1, and NCBP2. Additionally, we
have identified 40 significantly expressed phosphorylated
proteins of SARS-CoV-2 infection according to the global
phosphorylation landscape in Vero E6 cells published by
Bouhaddou et al. (2020). The degree centrality mean of the
phosphorylated proteins was 59.8, and proteins with the
highest degree centrality were PIK3CA, MAPK1, MAPK3,
SRC, and AKT1 (Supplementary Table S4). Lastly,

Supplementary Figure S1 details an expanded visualization of
the immune system PPi network.

Figure 2B shows the immune system PPi subnetwork
encompassing 319 nodes and 5,308 edges. Of them, 26
significantly expressed proteins in severe COVID-19 (15
overexpressed and 11 underexpressed) (Overmyer et al.,
2020) had high-confidence interactions (cutoff � 0.9) with 49
human proteins physically associated with SARS-CoV-2
proteins, and with 281 immune system proteins belonging to
the first neighbor nodes. The degree centrality mean of the
overexpressed proteins was 33.5, and proteins with the highest
degree centrality were STOM, HSP90AA1, AGT, ORM1, and
ORM2. On the other hand, the degree centrality mean of the
underexpressed protein was 32.5, and proteins with the highest
degree centrality were KNG1, CFP, ALB, AHSG, and APOA1.
Additionally, we have identified 10 significantly expressed
phosphorylated proteins of SARS-CoV-2 infection in Vero
E6 cells in our subnetwork. The degree centrality mean of
the phosphorylated proteins was 32.2, and proteins with the
highest degree centrality were PIK3CA, MAPK1, SRC, MAPK3,
and AKT1 (Supplementary Table S4). Although it has been
shown that hubs of high-degree nodes are targets of numerous
human viral (Calderwood et al., 2007; De Chassey et al., 2008;
Gulbahce et al., 2012; Pan et al., 2016; Huttlin et al., 2017), and
are highly correlated with pathogenicity in cancer (López-
Cortés et al., 2018; López-Cortés et al., 2020b; Cabrera-
andrade, 2020), COVID-19 is a novel disease and requires
more in-depth studies.

Functional Enrichment Analysis
The functional enrichment analysis was performed to validate the
correlation between the immune system PPi subnetwork and
biological annotations related to severe COVID-19. Therefore,
after generating the subnetwork encompassing 319 immune
system proteins, we performed a functional enrichment
analysis using g:Profiler to obtain significant annotations
(Benjamini-Hochberg FDR < 0.001) related to GO: biological
processes, KEGG signaling pathways, and Reactome signaling
pathways (Wang et al., 2016; Slenter et al., 2018; Raudvere et al.,
2019; Jassal et al., 2020).

Figure 3 details a Manhattan plot of 373 GO: biological
processes, 22 KEGG signaling pathways, and 29 Reactome
signaling pathways significantly associated with the 319
immune system proteins. However, after a manual curation
of GO terms related to the immunopathology of severe COVID-
19, the most significant GO: biological processes were
neutrophil degranulation (2.8 × 10−60), granulocyte activation
(3.9 × 10−60), myeloid leukocyte mediated immunity (3.7 ×
10−56), inflammatory response (8.5 × 10−9), blood coagulation
(2.0 × 10−7), T-cell activation (3.6 × 10−7), response to
interferon-gamma (1.9 × 10−7), platelet degranulation (8.6 ×
10−7), and acute inflammatory response (6.6 × 10−5). The most
significant KEGG signaling pathways related to severe COVID-
19 were chemokine signaling pathway (4.6 × 10−8), coagulation
cascade (1.2 × 10−7), and antigen presentation (7.2 × 10−5).
Lastly, the most significant Reactome signaling pathways related
to severe COVID-19 were neutrophil degranulation (2.3 ×
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10−60), innate immune system (1.8 × 10−43), hemostasis (1.0 ×
10−12), signaling by VEGF (5.9 × 10−7), insulin-like growth
factor (6.8 × 10−7), and platelet degranulation (4.9 × 10−6)
(Supplementary Table S5).

Single-Cell RNA Sequencing Data Analysis
Omics medicine has evolved the way for identifying
therapeutically actionable targets for complex diseases.
However, one of the major limitations is the gene
expression variability due to the cellular heterogeneity of
organs (Gawel et al., 2019). Single-cell biology is a powerful
approach that provides unprecedented resolution to the
cellular and molecular underpinnings of biological processes
and signaling pathways of diseases in order to find therapeutic
targets (Ballestar et al., 2020). For instance, the significant
overexpression of programmed death 1 (PD-1) in innate
lymphoid cells as therapeutic target for cancer
immunotherapy (Yu et al., 2016).

Regarding COVID-19, there are several single-cell studies
focused on understanding the transcriptional and proteomics
insights into the host response for drug discovery (Ballestar et al.,
2020; Yang X et al., 2020; Di Giorgio et al., 2020; Wu M et al.,
2020; Park and Lee, 2020; Prokop et al., 2020). Ziegler et al.
discovered ACE2 and TMPRSS2 co-expressing cells in nasal
goblet secretory cells, lung type II pneumocytes, and ileal
absorptive enterocytes through scRNA-seq data analyses
(Ziegler et al., 2020). Once we delimited the interactions
between human proteins physically associated with SARS-
CoV-2, and immune system proteins (immune system PPi
network), we analyzed the transcriptomics data of the 1,584
nodes using three single-cell databases incorporated into the
‘COVID-19 Studies’ section of the Alexandria Project (see
Methods), in order to reveal potential therapeutic targets for
drug repurposing against COVID-19.

Chronic rhinosinusitis samples (18,036 cells) developed by
allergic inflammation, and nasal scraping samples (18,704 cells)

FIGURE 3 | Enrichment map analysis of the immune system PPi subnetwork. Significant GO: biological processes, KEGG signaling pathways, and Reactome
signaling pathways.
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conform the nasal passage cells. Figure 4A shows a heatmap of
the five genes whose mRNAs were significantly overexpressed
(Z-score > 2) in goblet cells. Figure 4B shows a dot plot detailing
the five overexpressed genes, its Z-scores between 2.04 and 2.85,
and the percentage of goblet cells expressing the overexpressed
genes (>50%). Figure 4C shows box plots comparing the mean
log normalized expression of the five overexpressed genes in
nasal passage cells. Goblet cells had the highest mean log
normalized expression (1.57) compared to the other cells.
Figure 4D projected the expression scores of the significantly

expressed multiple genes (n � 5) onto 2D t-SNEs per
subpopulation cell (total � 10 subpopulation cells). In
summary, five immune system genes were overexpressed in
the goblet cells from nasal passages.

Epithelial cells of lung tissue (18,915 cells) were the second
single-cell database analyzed. Figure 5A shows a heatmap of
the 46 genes whose mRNAs were significantly overexpressed in
lung type II pneumocytes. Figure 5B shows a dot plot detailing
the 46 overexpressed genes, its Z-scores between 2.05 and 3.61,
and the percentage of type II pneumocytes expressing the

FIGURE 4 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in nasal passage cells. (A) Heatmap of significant
overexpressed genes (Z-score > 2) in nasal goblet secretory cells. (B) Dot plot of significant overexpressed genes in nasal goblet secretory cells and percentage of cells
expressing. (C) Box plots of nasal passage cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and
mean log normalized expression focused on nasal goblet secretory cells.
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overexpressed genes (>50%). Figure 5C shows box plots
comparing the mean log normalized expression of the 46
overexpressed genes in lung cells. Type II pneumocytes had

the highest mean log normalized expression (1.78) compared to
other cells. Figure 5D projected the expression scores of the
significantly expressed multiple genes (n � 46) onto 2D t-SNEs

FIGURE 5 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in lung cells. (A) Heatmap of significant overexpressed genes
(Z-score > 2) in lung type II pneumocytes. (B)Dot plot of significant overexpressed genes in lung type II pneumocytes and percentage of cells expressing. (C)Box plots of
lung cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and mean log normalized expression
focused on lung type II pneumocytes.
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per subpopulation cell (total � 15 subpopulation cells). In
summary, 46 immune system genes were overexpressed in
type II pneumocytes from lung cells.

Samples from adult human duodenum and ileum (15,347
cells) were the third single-cell database analyzed. Figure 6A
shows a heatmap of genes whose mRNAs were significantly

FIGURE 6 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in intestine cells. (A) Heatmap of significant overexpressed
genes (Z-score > 2) in ileal absorptive enterocytes. (B) Dot plot of significant overexpressed genes in ileal absorptive enterocytes and percentage of cells expressing. (C)
Box plots of intestine cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and mean log normalized
expression focused on ileal absorptive enterocytes.
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overexpressed in ileal absorptive enterocytes. Figure 6B shows a
dot plot detailing the 29 overexpressed genes, its Z-scores
between 2.02 and 2.67, and the percentage of ileal absorptive

enterocytes expressing the overexpressed genes (>50%).
Figure 6C shows box plots comparing the mean log
normalized expression of the 29 overexpressed genes in ileal

FIGURE 7 | Circos plots that detail association between GO: biological processes, KEGG signaling pathways, and Reactome signaling pathways and the most
relevant immune system proteins for drug repurposing.
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epithelial cells. Absorptive enterocytes had the highest mean log
normalized expression (0.86) compared to other cells. Figure 6D
projected the expression scores of the significantly expressed
multiple genes (n � 29) onto 2D t-SNEs per subpopulation

cell (total � 9 subpopulation cells). In summary, 29 immune
system genes were overexpressed in absorptive enterocytes from
ileal epithelial cells. The biological function of the 75
overexpressed genes is fully detailed in Supplementary Table S6).

FIGURE 8 | Drug repurposing analyses applying artificial neural networks. (A) Best-predicted experimental compounds per immune system protein target. (B)
Best-predicted compounds under investigation per immune system protein target. (C) Best-predicted approved drugs per immune system protein target. (D) Best-
predicted multi-target experimental compounds, compounds under investigation, and approved drugs. AUROC: Area under the receiver operating characteristic.
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Drug Repurposing
The current work proposes an innovative virtual high-
throughput screening to predict the activity of 10,672
compounds for 25 immune system targets fully detailed in the
Supplementary Table S7. The other 50 targets had not identified
molecules with active/inactive interactions in the ChEMBL
database as previously explained in Methods section.
Interestingly, the 25 potential therapeutic targets analyzed not
only were relevant in the immune system PPi subnetwork and the
scRNA-seq analyses, but also had significant associations with
biological processes and signaling pathways relevant to severe
COVID-19 (Overmyer et al., 2020). For instance, ATP6A1,
B4GALT1, C3, CD44, CD63, CTSD, CTSH, CTSS, DDX3X,
F2RL1, and NEU1 were involved in neutrophil degranulation;
F2RL1, ITGA2, MAPK3, NFKBIA, and STAT3 in blood
coagulation or coagulation cascade; ATP6AP1, CD44, CD63,
CD74, HSPA5, ITGA2, ITGA3, and MAPK3 in hemostasis;
lastly, CD63, HSPA5, and MAPK3 in platelet degranulation
(Figure 7).

The classification model was based on the molecular Circular
Fingerprints descriptors (calculated using SMILES formulas) of
15,377 ChEMBL compounds and its 25 therapeutic targets as
outputs/tasks. The best model was obtained after a
hyperparameter grid search (64 topologies) as a fully
connected deep neuronal networks with 1,000 neurons in one
hidden layer, with the mean AUROC of 0.989 ± 0.019 (AUROC
between 0.935 and 1.000 for 25 classes). Our free GitHub
repository contains the Jupyter notebook as python script
using DeepChem methodology, datasets, calculated descriptors,
best model, metrics of the model, and predictions. After applying
the best classification model, we evaluated drugs taking into
account the first ATC levels associated to COVID-19
symptoms, drug category, mechanism of action,
pharmacological indications, and the best ranked AUROC
values (threshold > 0.8). Consequently, on one hand, we
obtained 44 approved drugs, 16 compounds under
investigation, and 35 experimental compounds with the
highest affinities for 15 immune system proteins
(Supplementary Table S8). On the other hand, we obtained
four approved drugs, nine compounds under investigation, and
16 experimental compounds with the highest multi-target
affinities for nine immune system proteins (Supplementary
Table S9).

Figure 8 details the AUROC affinity score of the best-
predicted experimental compounds, compounds under
investigation, and approved drugs per immune system protein
target and multi-targets. We found eleven different categories of
approved drugs, the anti-neoplastic and immunomodulating
agents were lanreotide, enzalutamide, topotecan, erlotinib,
methotrexate, imatinib, pemetrexel, lapatinib, sunitinib,
vandetanib, midostaurin, bosutinib, axitinib, ruxolitinib,
afatinib, ibrutinib, duvelisib, and gilterintinib; the anti-
hemorrhagic agent was fostamatinib; the anti-inflammatory
agents were clobetasol propionate, nedocromil, oxaprozin, and
beclomethasone dipropionate; the anti-malarial agent was
halofantrine; the anti-parathyroid agent was etelcalcetide; the
anti-viral agents were amprenavir, atazanavir, saquinavir,

darunavir, fosamprenavir, lopinavir, paritrapevir, nelfinavir,
pibrentasvir, zanamivir, peramivir, and rilpivirine; the
antioxidant agent was allopurinol; the cardiovascular agents
were aliskiren, zofenopril, digitoxin, torasemide, and
triamterene; the central nervous system agents were citicoline
and cabergoline; the growth hormone-releasing hormone was
tesamorelin; and the only antibiotic was rosoxacin.

Interestingly, 13 (27%) of the 48 best-predicted approved
drugs are currently involved in approximately 54 COVID-19
clinical trials as detailed in Figure 9. The cardiovascular agents
with clinical trials are aliskiren, torasemide, and triamterene.
Aliskiren had an AUROC affinity of 0.993 on CTSD, and it is
a renin inhibitor used to treat hypertension; torasemide had an
AUROC affinity of 1.0 on EGFR, and it is used to treat edema
associated with heart, renal, and hepatic failures; and triamterene
had an AUROC affinity of 1.0 on EGFR, and it is used to treat
hypertension. The anti-viral agents with clinical trials are
atazanavir, darunavir, and lopinavir. Atazanavir had an
AUROC affinity of 0.997 on CTSD; darunavir had an AUROC
affinity of 0.999 on CTSD, and lopinavir had an AUROC affinity
of 1.0 on CTSD. All of them are protease inhibitors used to treat
HIV infection. The anti-neoplastic and immunomodulating
agents with clinical trials are enzalutamide, methotrexate,
imatinib, ruxolitinib, ibrutinib, and duvelisib. Enzalutamide
had an AUROC affinity of 0.983 on CTSS, and it is an
androgen receptor inhibitor to treat prostate cancer;
methotrexate had an AUROC affinity of 1.0 on EGFR, and it
is an antimetabolite used to treat breast cancer, lung cancer, head
and neck cancer, and non-Hodgkin’s lymphoma; imatinib had an
AUROC affinity of 1.0 on EGFR, and it is a BCR/ABL kinase
inhibitor used to treat chronic myeloid leukemia, acute
lymphoblastic leukemia, and gastrointestinal stromal tumors;
ruxolitinib had an AUROC affinity of 1.0 on EGFR, and it is
an inhibitor of JAK1/2 to reduce the hyperinflammation during
cytokine storm in thrombocythemia myelofibrosis; ibrutinib had
an AUROC affinity of 1.0 on EGFR, and it is an inhibitor of the
Bruton tyrosine kinase causing protection against immune-
induced lung injury; and duvelisib had an AUROC affinity of
1.0 on EGFR, and it is a PI3K inhibitor involved in the immune
homeostasis restoration and viral replication inhibition. Finally,
the anti-hemorrhagic agent with clinical trial was fostamatinib,
which had an AUROC affinity of 1.0 on EGFR, and it is an
inhibitor of spleen tyrosine kinase used to treat chronic immune
thrombocytopenia (Supplementary Table S10; Wishart et al.,
2018).

DISCUSSION

Since the finding of patient zero in China, a wide spectrum of
clinical manifestations has been discovered, as we have
understood the COVID-19 disease. The most common initial
symptoms are cough, fever, anorexia, and dyspnea (Wang D
et al., 2020; Berlin et al., 2020). The most common clinical
features in severe COVID-19 patients are dyspnea, severe
hypoxemia, lung edema, respiratory failure, ARDS
(Montenegro et al., 2020), lymphopenia (Terpos et al., 2020),
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cardiac arrhythmias, rhabdomyolysis, hyperferritinemia,
intravascular coagulopathy (Fogarty et al., 2020), and
pulmonary thromboembolism (Rotzinger et al., 2020). Also,
it has been observed that 15% of patients required supplemental
oxygen (Young et al., 2020), and 5% of patients required
mechanical ventilation. In addition, the smaller percentage of
patients who required mechanical ventilation suffered
comorbidities that lead to sepsis and septic shock (Rhee
et al., 2020). Nowadays, it is known that SARS-CoV-2 is

capable of reaching other organs depending on the host
(Yang W et al., 2020). Different studies worldwide refer that
clinical presentation vary between individuals, presenting
manifestations not only respiratory tract infection, but also
blood, skin, kidney, liver, ocular symptoms, neurologic signs,
among others (Adhikari et al., 2020; Wang Q et al., 2020).
Therefore, it is necessary to continuously review the reports on
clinical manifestations in order to get to know the behavior of
this disease as well as to think over the physiopathological

FIGURE 9 | Best-predicted approved drugs involved in COVID-19 clinical trials. Cardiovascular agents, anti-viral agents, anti-neoplastic and immunomodulating
agents, and anti-hemorrhagic agent with their respective clinical trial identifier number, pharmacological indication, and chemical structure according to DrugBank.
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mechanisms that allows us to better understand the related
complications (Gupta et al., 2020; Wadman et al., 2020).

The effective immune response of the host, including the
innate and adaptive ones, against SARS-CoV-2 seems to be
essential to control and solve the infection. However, the
clinical seriousness of COVID-19 could be associated to the
excessive production of pro-inflammatory cytokines, known as
‘cytokine storm’ (Fajgenbaum and June, 2020; Hussman, 2020),
or to the excessive production of bradykinin peptides, known as
‘bradykin storm’ (Garvin et al., 2020). This clinical paradigm is
still to be figured out, and that is why the effective treatment is still
uncertain. It is indispensable to understand the immunological
responses that are triggered off since the beginning of the
infection with SARS-CoV-2, so as to make progress in search
of effective therapeutic strategies.

Innate immune response executes the first line of antiviral
defense and is essential to obtain immunity against viruses
(Zhong et al., 2020). Pattern recognition receptors (PRRs),
codified by germline DNA, are responsible for recognizing
widely common molecular patterns shared by pathogens of a
certain group. Single-stranded and double-stranded viral RNAs
produced during the replication phase of SARS-CoV-2 are
recognized by endosomal TLRs (TLR7 and TLR8 or TLR3,
respectively) and cytosolic RIG-I like receptors (RLRs), mainly
RIG-I and MDA-5. After PRR engagement, downstream
signaling pathways trigger the activation and nuclear
translocation of key transcription factors, such as NF-kB, AP-1
and interferon regulatory factors (IRFs), and the ensuing
expression of inflammasome activation and anti-viral
cytokines (Lee et al., 2020). Among the most relevant
cytokines we can find interleukins (IL-1, IL-6, and IL-18), pro-
inflammatory TNF-α and TNF-ß, and type I and III IFNs
(Blanco-Melo et al., 2020; Herold et al., 2020; McKechnie and
Blish, 2020). Consequently, cytokines induce antiviral processes
potentiating the innate and adaptive immune responses, limiting
CoVs replication capacity and inducing the elimination of the
virus cell reservoirs (Channappanavar et al., 2019; Blanco-Melo
et al., 2020). However, CoVs have developed mechanisms of
immune evasion where viral factors inhibit viral recognition by
PRR sensing, and cytokine expression and secretion. Individuals
with severe COVID-19 have demonstrated remarkably impaired
type I IFN values as compared to mild patients (Hadjadj et al.,
2020), and the interferon-induced overexpression of ACE2 may
be involved (Ziegler et al., 2020).

Mucosal immune responses against viruses are orchestrated by
myeloid cells such as macrophages, conventional DCs,
plasmacytoid DCs, and monocyte-derived DCs (Guilliams
et al., 2013). Accumulating evidence suggests that deregulation
of myeloid cell-mediated responses potentially triggers
lymphopenia, cytokine release syndrome, acute respiratory
distress syndrome (Mehta et al., 2020), and pathogenic
inflammation with high level secretion of IL-6, IL-2, IL-7,
IFN-ɣ, IFN-I, and type III IFNs (Shi et al., 2019) in COVID-
19 patients with severe clinical manifestations.

Innate lymphoid cells (ILCs) are lymphoid-like immune cells
that lack the expression of rearranged antigen receptors. The non-
cytotoxic group I, II, and III ILCs and the cytotoxic natural killer

(NK) cells form the ILC family (Vivier et al., 2018). Several
clinical data have reported that NK cells decrease in peripheral
blood of severe patients (Song et al., 2020; Yu et al., 2020). An
in vitro study has identified that the CXCL9-11 chemokines are
overexpressed in lung cells infected with SARS-CoV-2, suggesting
that the CXCR3 signaling pathway drives NK cells from
peripheral blood to lungs in COVID-19 patients (Liao M
et al., 2020). In addition, NK cells have the quality to induce
lysis of infected cells causing severe hypoxemia and contributing
to the cytokine storm resulting in ARDS.

T cells are involved in fundamental processes in viral
infections. CD8 T cells eliminate infected cells and CD4
T cells help B cells for antibody production. Nevertheless,
immunopathology is generated when T cells are dysregulated.
Several reports have shown that moderate to severe COVID-19
patients with lymphopenia drastically reduce CD8 T cell and CD4
T cells in peripheral blood (Nie et al., 2020; Wen et al., 2020; Zeng
et al., 2020). T cells reduction in the blood is also a contribution of
mechanisms such as inflammatory cytokine milieu, which is why
lymphopenia has a correlation with TNF-α, IL-6, and IL-10 (Diao
et al., 2020; Wan et al., 2020). Conversely, clinical reports have
shown that convalescent patients have low pro-inflammatory
cytokine levels paired with restored bulk T cell frequencies
(Diao et al., 2020).

The humoral immune response plays a main role in the
clearance of cytopathic viruses and its memory response
prevents reinfection. According to Huang et al. and Wu et al.,
IgM, IgA, and neutralizing IgG antibodies can be detected in 12,
14 and 10–14 days, respectively, after symptom onset on average,
suggesting that SARS-CoV-2 causes a robust B cell response in
the majority of COVID-19 patients (Wu F et al., 2020; Huang
et al., 2020). Indeed, antibodies binding the RBD of the S
glycoprotein can have neutralizing properties, blocking virus
interactions with the human protein receptor ACE2 (Ju et al.,
2020), thereby inhibiting/preventing target cell infection. The
B cell response to SARS-CoV-2 protects from the primary
infection and extends immunity against reinfection due to
memory B cells that can respond quickly by producing high
affinity neutralizing antibodies. However, it is yet impossible to
predict the duration of memory responses due to the timing of the
COVID-19 pandemic.

There is currently a limited number of known risk factors that
confer susceptibility to COVID-19. Several routine blood tests
and immunological biomarkers have been suggested to classify
patients with mild and severe symptoms. The routine blood test
biomarkers currently suggested are lymphocyte count (Tan et al.,
2020), neutrophil to lymphocyte ratio (Liu et al., 2020b),
C-reactive protein (Ji et al., 2020), lactate dehydrogenase
(Xiang et al., 2020), ferritin (Bataille et al., 2020), D-dimer and
coagulation parameters (Zhou et al., 2020b), serum amyloid
protein (Ji et al., 2020), N terminal pro B type natriuretic
peptide (Gao L et al., 2020), platelet count (Qu et al., 2020),
ultrasensitive troponin, and creatine kinase MB (Akhmerov and
Marbán, 2020). On the other hand, immunological biomarkers
associated with different COVID-19 outcomes are CD4+, CD8+,
and NK cell count (Nie et al., 2020); PD-1 and Tim-3 expression
on T cells (Diao et al., 2020); phenotypic changes in peripheral

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 59892516

López-Cortés et al. Drug Repurposing for COVID-19 Therapy

23

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


blood monocytes (Zhang D et al., 2020); expression levels of IP-
10, MCP-3, IL-1ra (Yang Y et al., 2020); IL-6 (Chen et al., 2020),
IL-8, IL-10, IL-2R, IL-1β (Gong et al., 2020), IL-4 (Fu et al., 2020),
IL-18, granulocyte macrophage colony stimulating factor (GM-
CSF) (Zhou et al., 2020a), IL-2, IFN-γ (Liu et al., 2020a), and anti-
SARS-CoV-2 antibodies (Zhang B et al., 2020; Fu et al., 2020).

In this study, we performed proteomics, transcriptomics, and
artificial neural network analyses to reveal potential therapeutic
targets for drug repurposing to treat severe COVID-19. Firstly, we
generated an immune system PPi network encompassing 1,584
nodes and 332,968 edges. Of them, 256 human proteins
physically associated with SARS-CoV-2 proteins (Gordon
et al., 2020) had high-confidence interactions with 1,390
immune system proteins. The degree centrality mean of the
human proteins physically associated with SARS-CoV-2 was
23.6. GNB1, with the highest degree centrality, acts as a
modulator in transmembrane signaling systems, including the
GTPase activity (Gordon et al., 2020). The degree centrality mean
of the immune system proteins was 44.5. UBA52, with the highest
degree centrality, acts as a fusion protein that regulates
ubiquitination of ribosome (Kobayashi et al., 2016). Lastly, the
degree centrality mean of the phosphorylated proteins was 59.8.
PIK3CA had the highest degree centrality and significant
underexpression in SARS-CoV-2 infection in Vero E6 cells
(Bouhaddou et al., 2020; Figure 2A; Supplementary Figure S1).

Overmyer et al. published a large-scale multi-omic analysis
and identified 146 significantly expressed proteins in severe
COVID-19 (Overmyer et al., 2020). We located these proteins
and their high-confidence interactions in the immune system PPi
network and subsequently generated the immune system PPi
subnetwork encompassing 319 nodes and 5,308 edges. Of them,
26 significantly expressed proteins in severe COVID-19
(Overmyer et al., 2020) had high-confidence interactions with
49 human proteins physically associated with SARS-CoV-2
proteins, and with 281 immune system proteins. The degree
centrality mean of the overexpressed proteins was 33.5. STOM,
with the highest degree centrality, is located in cell membranes
regulating ion channels and transporters. Loss of localization of
the encoded protein is associated with hemolytic anemia shown
in COVID-19 patients (Algassim et al., 2020). The degree
centrality mean of the underexpressed proteins was 32.5.
KNG1, with the highest degree centrality, is the precursor for
bradykin synthesis, and is involved in the coagulation system
dysfunction of severe COVID-19 (Sidarta-Oliveira et al., 2020).
Lastly, the degree centrality mean of the phosphorylated proteins
was 32.2, and PIK3CA had the highest degree centrality
(Figure 2B).

SARS-CoV-2 employs a suite of virulent proteins that interact
with key targets in host interactomes to extensively rewire the
flow of information and cause COVID-19 (Vidal et al., 2011; Pan
et al., 2016; Kumar et al., 2020). Although it has been shown that
hubs of high-degree nodes are targets of numerous human viral
(Calderwood et al., 2007; De Chassey et al., 2008; Gulbahce et al.,
2012; Pan et al., 2016; Huttlin et al., 2017), COVID-19 is a novel
disease and requires more in-depth studies. Therefore, we
performed a functional enrichment analysis to validate the
correlation between the subnetwork proteins and COVID-19

signatures published in studies worldwide (Figure 3). After a
manual curation of gene ontology terms, the most significant
biological processes were neutrophil degranulation (Shen et al.,
2020), granulocyte activation (Yang L et al., 2020), myeloid
leukocyte mediated immunity (Chen and John Wherry, 2020),
inflammatory response (Jose and Manuel, 2020; Merad and
Martin, 2020), blood coagulation (Vinayagam and Sattu,
2020), T-cell activation(Chen and John Wherry, 2020),
response to interferon-gamma (Hu et al., 2020), platelet
degranulation (Kuchi Bhotla et al., 2020), and acute
inflammatory response (Manjili et al., 2020). The most
significant KEGG pathways were chemokine signaling pathway
(Chua et al., 2020), coagulation cascade (Overmyer et al., 2020),
and antigen presentation (Li X et al., 2020). Lastly, the most
significant Reactome signaling pathways were neutrophil
degranulation (Wang J et al., 2020), innate immune system
(Ahmed-Hassan et al., 2020), hemostasis (Liao D et al., 2020),
signaling by VEGF (Kong et al., 2020), insulin-like growth factor
(Winn, 2020), and platelet degranulation (Overmyer et al., 2020).

According to Buccitelli & Selbach (Buccitelli and Selbach,
2020), proteomics and transcriptomics typically show
reasonable correlation, and integrating both types of data can
reveal exciting biology and gene expression patterns. In light of
this approach, the ‘COVID-19 Studies’ section of the Alexandria
Project represents a large effort to characterize this
immunopathology from a transcriptomics view. Ziegler et al.
analyzed human scRNA-seq data to uncover potential targets of
SARS-CoV-2 amongst tissue-resident cell subsets. They
discovered ACE2 and TMPRSS2 co-expressing in goblet cells
from nasal passage cells, type II pneumocytes from lung epithelial
cells, and absorptive enterocytes from ileal epithelial cells (Ziegler
et al., 2020). Therefore, after generating our immune system PPi
network, we screened the 1,584 nodes into 10 nasal passage cells,
15 lung epithelial cells, and nine ileal epithelial cells to identify
potential therapeutic targets for drug repurposing against
COVID-19.

We found 75 significantly overexpressed molecules (Z-score >
2) in nasal goblet secretory cells (n � 5) (Figure 4), lung type II
pneumocytes (n � 46) (Figure 5), and ileal absorptive enterocytes
(n � 29) (Figure 6; Reimand et al., 2019). Subsequently, we
analyzed the druggability of these 75 molecules (Methods
section), and identified 25 potential therapeutic targets with
ChEMBL ID and identified molecules with active/inactive
interactions.

Meaningfully, these potential therapeutic targets not only were
relevant in both the immune system PPi subnetwork and the
scRNA-seq data, but also were involved in biological processes
and signaling pathways related to severe COVID-19, such as
neutrophil degranulation, blood coagulation or coagulation
cascade, hemostasis, and platelet degranulation (Figure 7;
Overmyer et al., 2020). Several studies worldwide have
correlated these potential therapeutic targets with COVID-19.
For instance, MAPK3 and EGFR showed kinase activity in the
global phosphorylation landscape of SARS-CoV-2 infection
according to Bouhaddou et al (Bouhaddou et al., 2020).
CTSD, CD63, MKD, NFKBIA, MAPK3, STAT3, TNFSF10,
F2RL1, HIF1A, NEU1, and EPAS1 were identified as
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significantly expressed targets in patients with severe COVID-19
according to Aschenbrenner et al (Aschenbrenner et al., 2020).
C3, LDLR, CTSH, B4GALT1 and NFKBIA were significantly
expressed targets in COVID-19 according to Alsamman & Zayed
(Alsamman and Zayed, 2020). HSPA5 was associated with the
viral entry, the endoplasmic reticulum stress, and anti-clotting
agents according to Law et al (Law et al., 2020). CD44 was
involved in the extravasation cascade with significant expression
in severe COVID-19 according to Chua et al (Chua et al., 2020).
Basu et al found significant expression of the ITGA2 and ITGA3
integrins in COVID-19 patients (Basu et al., 2020). DDX3X was
involved in the coronavirus-host protein-protein interactions
according to Perrin-Cocon et al (Perrin-Cocon et al., 2020).
Daniloski et al showed that ATP6AP1 induces shared
transcriptional changes in cholesterol biosynthesis in human
cells with SARS-CoV-2 infection (Daniloski et al., 2020).
Lastly, CD74, CTSS and CTNNB1 were identified as potential
targets for SARS-CoV-2 diagnosis and treatment according to
Vastrad et al (Vastrad et al., 2020).

There is currently an urgent need for effective COVID-19
drugs. High-throughput screening for drug discovery has been
important in finding antiviral drugs focused on the SARS-CoV-2
spike protein (Micholas and Jeremy, 2020) and the main protease
(Mpro), as detailed in our previous study (Tejera et al., 2020).
However, computational structure-based drug discovery focused
on immune system proteins is imperative to select potential drugs
that, after being effectively analyzed in cell lines (i.e., African
green monkey cells) and clinical trials, these can be considered for
treatment of complex symptoms of COVID-19 patients. Drug
repurposing offers a potentially rapid mechanism to deployment,
since the safety profiles are known (Cabrera-Andrade et al., 2020;
Phimister et al., 2020).

We performed fully connected deep neuronal networks to
predict drugs with the highest affinities per target and multi-
targets. We identified 47 approved drugs, 25 compounds under
investigation, and 50 experimental compounds with the highest
AUROCs for 15 (60%) of the 25 potential therapeutic targets. The
best-predicted approved drugs were enrolled in ten different
categories: anti-neoplastic and immunomodulating agents,
anti-hemorrhagic agents, anti-inflammatory agents, anti-
parathyroid agents, anti-viral agents, anti-oxidant agents,
cardiovascular agents, central nervous system agents, growth
hormone-releasing hormone, and antibiotics (see Results
section and Figure 8).

There are around 4,000 clinical trials on COVID-19 using
small molecules as single or combination agents with other anti-
viral agents worldwide. Interestingly, 54 clinical trials currently
correspond to 13 (27%) of the 48 best-predicted approved drugs
found in our study (Figure 9). The cardiovascular agents
implicated in the renin-angiotensin system are aliskiren,
triamterene, and torasemide. Aliskiren and triamterene are
renin inhibitors used to treat hypertension; and torasemide is
used to treat edema associated with heart, renal, and hepatic
failures. According to Garvin et al., the renin-angiotensin system
is an important pathway linked to hypertension and hypotension
in COVID-19 patients because it maintains a balance of blood
pressure (Garvin et al., 2020). The anti-viral agents are atazanavir,

darunavir, and lopinavir. All of them are protease inhibitors used
to treat HIV infection. According to Mahdi et al., targeting of
SARS-CoV-2Mpro by HIV protease inhibitors might be of limited
clinical potential due to the high concentration of drug required
to achieve this inhibition. However, any potential beneficial effect
in COVID-19 context might be attributed to acting on other
molecular targets (Mahdi et al., 2020). The anti-neoplastic and
immunomodulating agents are enzalutamide, methotrexate,
imatinib, ruxolitinib, ibrutinib, and duvelisib. Enzalutamide is
an androgen receptor inhibitor to treat prostate cancer;
methotrexate is an antimetabolite that inhibits the
dihydrofolate reductase and is used to treat breast cancer, lung
cancer, head and neck cancer, and non-Hodgkin’s lymphoma;
imatinib is a BCR/ABL kinase inhibitor used to treat chronic
myeloid leukemia, acute lymphoblastic leukemia, and
gastrointestinal stromal tumors; ruxolitinib is a Janus kinase 1
and 2 inhibitor that reduces the hyperinflammation during
cytokine storm in thrombocythemia myelofibrosis; ibrutinib is
an inhibitor of the Bruton tyrosine kinase causing protection
against immune-induced lung injury; and duvelisib is a PI3K
inhibitor involved in the immune homeostasis restoration and
viral replication inhibition. According to Saini et al., three
hallmarks of cancer, namely immune dysfunction,
inflammation, and coagulopathy are also seen in patients with
SARS-CoV-2 infection, providing a biological rationale for
testing anti-neoplastic agents for their ability to control the
severe COVID-19 symptoms. However, these anti-neoplastic
drugs should be evaluated carefully through well-designed and
often novel trial platforms to avoid detrimental effects in future
treatments (Saini et al., 2020). Finally, the anti-hemorrhagic
agent, fostamatinib, is an inhibitor of spleen tyrosine kinase
used to treat chronic immune thrombocytopenia. According to
Kost-Alimova et al., elevated mucin-1 (MUC1) protein levels
predict acute lung injury and ARDS with poor clinical outcomes,
and fostamatinib has been shown to reduce MUC1 abundance in
a relevant pre-clinical model and has demonstrated safety profile
in patients (Kost-Alimova et al., 2020; Tabassum et al., 2020).

Despite enormous scientific effort in drug repurposing studies
to inhibit SARS-CoV-2 proteins or control severe COVID-19
symptoms, significant limitations exist. The main concern
associated with drug repurposing studies involves the
implementation of well-designed validation assays through
clinical trials. Other main concerns are related to obtaining
the correct therapeutic doses, safety results to avoid
detrimental effects of repurposed drugs after treatments, and
delivery capabilities worldwide (Parvathaneni and Gupta, 2020).
All of this carried out counter clock due to the health emergency
triggered by the pandemic. However, the positive side of this
enormous scientific effort is to put forward recommendations for
transforming today’s tools into solutions for future pandemics
according to The National Symposium on Drug Repurposing for
Future Pandemics, on behalf of the National Science Foundation.

The current COVID-19 pandemic offers a unique opportunity
to strengthen mechanisms that promote the use of drug
repurposing processes–considering the drug safety profile and
the possibility of originate different adverse reactions in patients
with distinct concomitant diseases–; inclusively, in the ongoing or
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future clinical trials, having the potential to reduce the time and
costs for finding potential solutions to the current pandemic.
Additionally, contributing to future analysis for high threat
pathogens and rare diseases. This idea is welcomed by some
other authors who conveyed on the potential of drug repurposing
for common national and global health benefits (Yan, 2017).
Between the several advantages of this process, the one which
leads efforts to the use of the current information -on human
pharmacology and toxicology-of safe and affordable generic
drugs, is worth to remark. As also stated by Guy et al. (2020),
along with this statement, there is the urge to motivate the
transparency and compliance of the highest ethical principles
for the conduction of studies, including as a key potential for drug
repurposing, the visualization and sharing of negative results.
Mainly, promoting and assuring that well-designed randomized
clinical trials are timely implemented, especially during health
emergencies and crises. In this sense, drug repurposing will be
fulfilling its main objective: proposing potential, prompt, cost-
effective, and safe solutions for the public and global health
problems, with a human-centered approach.

The COVID-19 pandemic has evidenced that there is a strong
urge to strengthen health systems with a major emphasis on
health prevention and the major need, especially of low and
middle income countries, to publicly invest on research and
development. Consequently, the benefits of innovation and the
results of research should be always available and affordable to
anyone in need, to comply with the goal of public health
(Røttingen et al., 2012). This is of particular importance
during the current pandemic situation and on its aftermath.

From a global health perspective, initiatives directed to the
improvement of rapid data sharing are critical during health
emergency. This rapid sharing includes undoubtedly a
transboundary collaboration founded on the principles of
reliability and accuracy of the data (The Lancet, 2020).
Meaningfully, for preventing potential new or existing
pathogens to become high threats to human health and global
security, non-commercial basic research on microorganisms
should be assured. Additionally, introducing and promoting
genomic epidemiology and strengthening global laboratory
alliances would contribute to the national and global rapid
detection and containment of outbreaks, as also promoted by
the WHO. Accordingly, every country is sovereign and should
guarantee the protection and regulation of the use of its biological
resources, specifically working toward the Fair and Equitable
Sharing of Benefits. Nevertheless, international conventions on
the topic and national legislations should include fast track
options for research on pathogens (Knauf et al., 2019).
Relevantly, the links between human, environmental, and

animal health - the One Health approach-are widely
recognized to be effective toward the prevention and reduction
of the emergence and re-emergence of potential pandemic agents
(El Zowalaty and Järhult, 2020). This, not only pursuing to
diminish the impact of epidemics or pandemics in the health
systems, but also to underpin and reinforce economic,
development, and social benefits.
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(2020). Single cell profiling of COVID-19 patients: an international data
resource from multiple tissues. medRxiv. doi:10.1101/2020.11.20.20227355

Basu, A., Sarkar, A., and Maulik, U. (2020). Study of cell to cell transmission of
SARS CoV 2 virus particle using gene network from microarray data. bioRxiv.
doi:10.1101/2020.05.26.116780

Bataille, S., Pedinielli, N., and Bergougnioux, J.-P. (2020). Could ferritin help the
screening for COVID-19 in hemodialysis patients?. Kidney Int. 98, 235–236.
doi:10.1016/j.kint.2020.04.017

Berlin, D. A., Gulick, R. M., and Martinez, F. J. (2020). Severe Covid-19. N. Engl.
J. Med. 383, 2451–2460. doi:10.1056/NEJMcp2009575

Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., Møller,
R., et al. (2020). Imbalanced host response to SARS-CoV-2 drives development
of COVID-19. Cell 181, 1036–1045.e9. doi:10.1016/j.cell.2020.04.026

Bouhaddou, M., Memon, D., Meyer, B., White, K. M., Rezelj, V. V., Correa
Marrero, M., et al. (2020). The global phosphorylation landscape of SARS-
CoV-2 infection. Cell 182, 685–712.e19. doi:10.1016/j.cell.2020.06.034

Breuer, K., Foroushani, A. K., Laird, M. R., Chen, C., Sribnaia, A., Lo, R., et al.
(2013). InnateDB: systems biology of innate immunity and beyond - recent
updates and continuing curation. Nucleic Acids Res. 41, D1228–D1233. doi:10.
1093/nar/gks1147

Buccitelli, C., and Selbach, M. (2020). mRNAs, proteins and the emerging
principles of gene expression control. Nat. Rev. Genet. 21, 630–644. doi:10.
1038/s41576-020-0258-4

Cabrera-andrade, A. (2020). Gene prioritization through consensus strategy,
enrichment methodologies analysis, and networking for osteosarcoma
pathogenesis. Int. J. Mol. Sci. 21, 1053. doi:10.3390/ijms21031053

Cabrera-Andrade, A., López-Cortés, A., Jaramillo-Koupermann, G., González-
Díaz, H., Pazos, A., Munteanu, C. R., et al. (2020). A multi-objective approach
for anti-osteosarcoma cancer agents discovery through drug repurposing.
Pharmaceuticals 13, 409. doi:10.3390/ph13110409

Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus,
A. M., et al. (2007). Epstein-Barr virus and virus human protein interaction
maps. Proc. Natl. Acad. Sci. U.S.A. 104, 7606–7611. doi:10.1073/pnas.
0702332104

Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., et al. (2020). Comparative
genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor
ACE2 in different populations. Cell Discov. 6, 11. doi:10.1038/s41421-020-
0147-1

Channappanavar, R., Fehr, A. R., Zheng, J., Wohlford-Lenane, C., Abrahante, J. E.,
Mack, M., et al. (2019). IFN-I response timing relative to virus replication
determines MERS coronavirus infection outcomes. J. Clin. Invest. 129,
3625–3639. doi:10.1172/JCI126363

Chen, Z., and JohnWherry, E. (2020). T cell responses in patients with COVID-19.
Nat. Rev. Immunol. 20, 529–536. doi:10.1038/s41577-020-0402-6

Chen, X., Zhao, B., Qu, Y., Chen, Y., Xiong, J., Feng, Y., et al. (2020). Detectable
serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically
elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin.
Infect. Dis. 71, 1937–1942. doi:10.1093/cid/ciaa449

Chua, R. L., Lukassen, S., Trump, S., Hennig, B. P., Wendisch, D., Pott, F., et al.
(2020). COVID-19 severity correlates with airway epithelium–immune cell
interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979.
doi:10.1038/s41587-020-0602-4

Daniloski, Z., Jordan, T. X., Wessels, H.-H., Hoagland, D. A., Kasela, S., Legut, M.,
et al. (2020). Identification of required host factors for SARS-CoV-2 infection in
human cells. Cell 184, 92–105.e16. doi:10.1016/j.cell.2020.10.030

De Chassey, B., Navratil, V., Tafforeau, L., Hiet, M. S., Aublin-Gex, A., Agaugué, S.,
et al. (2008). Hepatitis C virus infection protein network.Mol. Syst. Biol. 4, 230.
doi:10.1038/msb.2008.66

Deng, Y. Y., Zheng, Y., Cai, G. Y., Chen, X. M., and Hong, Q. (2020). Single-cell
RNA sequencing data suggest a role for angiotensin-converting enzyme 2 in
kidney impairment in patients infected with 2019-nCoV. Chin. Med. J. 133,
1129–1131. doi:10.1097/CM9.0000000000000783

Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G., and Conticello, S. G.
(2020). Evidence for host-dependent RNA editing in the transcriptome of
SARS-CoV-2. Sci. Adv. 6, eabb5813. doi:10.1126/sciadv.abb5813

Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., et al. (2020). Reduction and
functional exhaustion of T cells in patients with Coronavirus Disease 2019
(COVID-19). medRxiv. doi:10.1101/2020.02.18.20024364

Doncheva, N. T., Morris, J. H., Gorodkin, J., and Jensen, L. J. (2019). Cytoscape
StringApp: network analysis and visualization of proteomics data. J. Proteome
Res. 18, 623–632. doi:10.1021/acs.jproteome.8b00702

Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., et al.
(2000). A novel angiotensin-converting enzyme-related carboxypeptidase
(ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, E1–E9.
doi:10.1161/01.res.87.5.e1

El Zowalaty, M. E., and Järhult, J. D. (2020). From SARS to COVID-19: a
previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic
potential infecting humans – Call for a One Health approach. One Health 9,
100124. doi:10.1016/j.onehlt.2020.100124

Fajgenbaum, D. C., and June, C. H. (2020). Cytokine storm. N. Engl. J. Med. 383,
2255–2273. doi:10.1056/NEJMra2026131

Fogarty, H., Townsend, L., Ni Cheallaigh, C., Bergin, C., Martin-Loeches, I.,
Browne, P., et al. (2020). COVID-19 coagulopathy in caucasian patients. Br.
J. Haematol. 189, 1044–1049. doi:10.1111/bjh.16749

Fu, S., Fu, X., Song, Y., Li, M., Pan, P., Tang, T., et al. (2020). Virologic and clinical
characteristics for prognosis of severe COVID-19: a retrospective observational
study in Wuhan, China. medRxiv. doi:10.1101/2020.04.03.20051763

Fujii, M., Matano, M., Toshimitsu, K., Takano, A., Mikami, Y., Nishikori, S., et al.
(2018). Human intestinal organoids maintain self-renewal capacity and cellular
diversity in Niche-Inspired culture condition. Cell Stem Cell 23, 787–793.e6.
doi:10.1016/j.stem.2018.11.016

Gao, L., Jiang, D., Wen, X. S., Cheng, X. C., Sun, M., He, B., et al. (2020). Prognostic
value of NT-proBNP in patients with severe COVID-19. Respir. Res. 21, 83.
doi:10.1186/s12931-020-01352-w

Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., et al. (2020). Rapid
development of an inactivated vaccine for SARS-CoV-2. bioRxiv. doi:10.1101/
2020.04.17.046375

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., et al. (2020). Structure of the
RNA-dependent RNA polymerase fromCOVID-19 virus. Science 80, eabb7498.
doi:10.1126/science.abb7498

Garvin, M. R., Alvarez, C., Miller, J. I., Prates, E. T., Walker, A. M., Amos, B. K.,
et al. (2020). A mechanistic model and therapeutic interventions for covid-19
involving a ras-mediated bradykinin storm. Elife 9, e59177. doi:10.7554/eLife.
59177

Gaulton, A., Hersey, A., Nowotka, M. L., Patricia Bento, A., Chambers, J., Mendez,
D., et al. (2017). The ChEMBL database in 2017. Nucleic Acids Res. 45,
D945–D954. doi:10.1093/nar/gkw1074

Gawel, D. R., Serra-Musach, J., Lilja, S., Aagesen, J., Arenas, A., Asking, B., et al.
(2019). A validated single-cell-based strategy to identify diagnostic and
therapeutic targets in complex diseases. Genome Med. 11, 47. doi:10.1186/
s13073-019-0657-3

Giudicelli, V., Chaume, D., and Lefranc, M. P. (2005). IMGT/GENE-DB: a
comprehensive database for human and mouse immunoglobulin and T cell
receptor genes. Nucleic Acids Res. 33, D256–D261. doi:10.1093/nar/gki010

Gong, J., Dong, H., Xia, S. Q., Huang, Y. Z., Wang, D., Zhao, Y., et al. (2020).
Correlation analysis between Disease severity and inflammation-related
parameters in patients with COVID-19 pneumonia. medRxiv. doi:10.1101/
2020.02.25.20025643

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 59892520

López-Cortés et al. Drug Repurposing for COVID-19 Therapy

27

https://doi.org/10.1007/s00277-020-04256-3
https://doi.org/10.1007/s00277-020-04256-3
https://doi.org/10.1101/2020.05.06.080960
https://doi.org/10.1101/2020.05.06.080960
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1186/s13073-020-00823-5
https://doi.org/10.1186/s13073-020-00823-5
https://doi.org/10.1101/2020.11.20.20227355
https://doi.org/10.1101/2020.05.26.116780
https://doi.org/10.1016/j.kint.2020.04.017
https://doi.org/10.1056/NEJMcp2009575
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1016/j.cell.2020.06.034
https://doi.org/10.1093/nar/gks1147
https://doi.org/10.1093/nar/gks1147
https://doi.org/10.1038/s41576-020-0258-4
https://doi.org/10.1038/s41576-020-0258-4
https://doi.org/10.3390/ijms21031053
https://doi.org/10.3390/ph13110409
https://doi.org/10.1073/pnas.0702332104
https://doi.org/10.1073/pnas.0702332104
https://doi.org/10.1038/s41421-020-0147-1
https://doi.org/10.1038/s41421-020-0147-1
https://doi.org/10.1172/JCI126363
https://doi.org/10.1038/s41577-020-0402-6
https://doi.org/10.1093/cid/ciaa449
https://doi.org/10.1038/s41587-020-0602-4
https://doi.org/10.1016/j.cell.2020.10.030
https://doi.org/10.1038/msb.2008.66
https://doi.org/10.1097/CM9.0000000000000783
https://doi.org/10.1126/sciadv.abb5813
https://doi.org/10.1101/2020.02.18.20024364
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.1161/01.res.87.5.e1
https://doi.org/10.1016/j.onehlt.2020.100124
https://doi.org/10.1056/NEJMra2026131
https://doi.org/10.1111/bjh.16749
https://doi.org/10.1101/2020.04.03.20051763
https://doi.org/10.1016/j.stem.2018.11.016
https://doi.org/10.1186/s12931-020-01352-w
https://doi.org/10.1101/2020.04.17.046375
https://doi.org/10.1101/2020.04.17.046375
https://doi.org/10.1126/science.abb7498
https://doi.org/10.7554/eLife.59177
https://doi.org/10.7554/eLife.59177
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1186/s13073-019-0657-3
https://doi.org/10.1186/s13073-019-0657-3
https://doi.org/10.1093/nar/gki010
https://doi.org/10.1101/2020.02.25.20025643
https://doi.org/10.1101/2020.02.25.20025643
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., et al.
(2020). A SARS-CoV-2 protein interaction map reveals targets for drug
repurposing. Nature 583, 459–468. doi:10.1038/s41586-020-2286-9

Guilliams, M., Lambrecht, B. N., and Hammad, H. (2013). Division of labor
between lung dendritic cells andmacrophages in the defense against pulmonary
infections. Mucosal. Immunol. 6, 464–473. doi:10.1038/mi.2013.14

Gulbahce, N., Yan, H., Dricot, A., Padi, M., Byrdsong, D., Franchi, R., et al. (2012).
Viral perturbations of host networks reflect disease etiology. PLoS Comput. Biol.
8, e1002531. doi:10.1371/journal.pcbi.1002531

Gupta, A., Madhavan, M. V., Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T. S., et al.
(2020). Extrapulmonary manifestations of COVID-19. Nat. Med. 26,
1017–1032. doi:10.1038/s41591-020-0968-3

Guy, R. K., DiPaola, R. S., Romanelli, F., and Dutch, R. E. (2020). Rapid
repurposing of drugs for COVID-19. Science 368, 829–830. doi:10.1126/
science.abb9332

Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Pere, H., et al. (2020).
Impaired type I interferon activity and exacerbated inflammatory responses in
severe Covid-19 patients. medRxiv. doi:10.1101/2020.04.19.20068015

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical
learning the elements of statistical learningData mining, inference, and
prediction. 2nd Edn New York: Springer-Verlag.

Herold, T., Jurinovic, V., Arnreich, C., Hellmuth, J. C., Bergwelt-Baildon, M., Klein,
M., et al. (2020). Level of IL-6 predicts respiratory failure in hospitalized
symptomatic COVID-19 patients. medRxiv. doi:10.1101/2020.04.01.20047381

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Mü, M. A., Drosten, C., Pö, S.,
et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is
blocked by a clinically proven protease inhibitor article SARS-CoV-2 cell entry
depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease
inhibitor. Cell 181, 271–280.e8. doi:10.1016/j.cell.2020.02.052

Hu, Z.-J., Xu, J., Yin, J.-M., Li, L., Hou, W., Zhang, L.-L., et al. (2020). Lower
circulating interferon-gamma is a risk factor for lung fibrosis in COVID-19
patients. Front. Immunol. doi:10.3389/fimmu.2020.585647

Huang, A. T., Garcia-Carreras, B., Hitchings, M. D. T., Yang, B., Katzelnick, L.,
Rattigan, S. M., et al. (2020). A systematic review of antibody mediated
immunity to coronaviruses: antibody kinetics, correlates of protection, and
association of antibody responses with severity of disease. medRxiv. doi:10.
1101/2020.04.14.20065771

Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009a). Bioinformatics
enrichment tools: paths toward the comprehensive functional analysis of
large gene lists. Nucleic Acids Res. 37, 1–13. doi:10.1093/nar/gkn923

Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009b). Systematic and
integrative analysis of large gene lists using DAVID bioinformatics resources.
Nat. Protoc. 4, 44–57. doi:10.1038/nprot.2008.211

Hussman, J. P. (2020). Cellular and molecular pathways of COVID-19 and
potential points of therapeutic intervention. Front. Pharmacol. 11. 1169.
doi:10.3389/fphar.2020.01169

Huttlin, E. L., Bruckner, R. J., Paulo, J. A., Cannon, J. R., Ting, L., Baltier, K., et al.
(2017). Architecture of the human interactome defines protein communities
and disease networks. Nature 545, 505–509. doi:10.1038/nature22366

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., et al. (2020).
The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503.
doi:10.1093/nar/gkz1031

Ji, W., Bishnu, G., Cai, Z., and Shen, X. (2020). Analysis clinical features of COVID-
19 infection in secondary epidemic area and report potential biomarkers in
evaluation. medRxiv. doi:10.1101/2020.03.10.20033613

Jose, R. J., and Manuel, A. (2020). COVID-19 cytokine storm: the interplay
between inflammation and coagulation. Lancet Respir. Med. 8, e46–e47.
doi:10.1016/S2213-2600(20)30216-2

Ju, B., Zhang, Q., Ge, X., Wang, R., Yu, J., Shan, S., et al. (2020). Potent human
neutralizing antibodies elicited by SARS-CoV-2 infection. bioRxiv. doi:10.1101/
2020.03.21.990770

Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner,
H. L., et al. (2016). Pre-fusion structure of a human coronavirus spike protein.
Nature 531, 118–121. doi:10.1038/nature17200

Knauf, S., Abel, L., and Hallmaier-Wacker, L. K. (2019). The nagoya protocol and
research on emerging infectious diseases. Bull. World Health Organ. 97, 379.
doi:10.2471/BLT.19.232173

Kobayashi, M., Oshima, S., Maeyashiki, C., Nibe, Y., Otsubo, K., Matsuzawa, Y.,
et al. (2016). The ubiquitin hybrid gene UBA52 regulates ubiquitination of
ribosome and sustains embryonic development. Sci. Rep. 6, 36780. doi:10.1038/
srep36780

Kong, Y., Han, J., Wu, X., Zeng, H., Liu, J., and Zhang, H. (2020). VEGF-D: a novel
biomarker for detection of COVID-19 progression. Crit. Care 24, 373. doi:10.
1186/s13054-020-03079-y

Kost-Alimova, M., Sidhom, E.-H., Satyam, A., Chamberlain, B. T., Dvela-Levitt,
M., Melanson, M., et al. (2020). A high-content screen for mucin-1-reducing
compounds identifies fostamatinib as a candidate for rapid repurposing for
acute lung injury. Cell Rep. Med. 1, 100137. doi:10.1016/j.xcrm.2020.100137

Kuchi Bhotla, H., Kaul, T., Balasubramanian, B., Easwaran, M., Arumugam, V. A.,
Pappusamy, M., et al. (2020). Platelets to surrogate lung inflammation in
COVID-19 patients. Med. Hypotheses 143, 110098. doi:10.1016/j.mehy.2020.
110098

Kumar, N., Mishra, B., Mehmood, A., Athar, M., and Mukhtar, M. S. (2020).
Integrative network biology framework elucidates molecular mechanisms of
SARS-CoV-2 pathogenesis. iScience 23, 101526. doi:10.1016/j.isci.2020.101526

Lamers, M. M., Beumer, J., van der Vaart, J., Knoops, K., Puschhof, J., Breugem, T.
I., et al. (2020). SARS-CoV-2 productively infects human gut enterocytes.
Science 369, eabc1669. doi:10.1126/science.abc1669

Law, J. N., Akers, K., Tasnina, N., Della Santina, C. M., Kshirsagar, M., Klein-
Seetharaman, J., et al. (2020). Identifying human interactors of SARS-CoV-2
proteins and drug targets for COVID-19 using network-based label
propagation. arXiv. arXiv:2006.01968v2.

Lee, S., Channappanavar, R., and Kanneganti, T.-D. (2020). Coronaviruses: innate
immunity, inflammasome activation, inflammatory Cell Death, and Cytokines.
Trends Immunol. 41, 1083–1099. doi:10.1016/j.it.2020.10.005

Lefranc, M. P., Giudicelli, V., Duroux, P., Jabado-Michaloud, J., Folch, G., Aouinti,
S., et al. (2015). IMGT R, the international ImMunoGeneTics information
system R 25 years on. Nucleic Acids Res. 43, D413–D422. doi:10.1093/nar/
gku1056

Lefranc, M. P., Giudicelli, V., Ginestoux, C., Jabado-Michaloud, J., Folch, G.,
Bellahcene, F., et al. (2009). IMGT®, the international ImMunoGeneTics
information system®. Nucleic Acids Res. 37, D1006–D1012. doi:10.1093/nar/
gkn838

Li, H., Liu, L., Zhang, D., Xu, J., Dai, H., Tang, N., et al. (2020). SARS-CoV-2 and
viral sepsis: observations and hypotheses. Lancet 395, P1517–P1520. doi:10.
1016/S0140-6736(20)30920-X

Li, X., Geng, M., Peng, Y., Meng, L., and Lu, S. (2020). Molecular immune
pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 10, 102–108.
doi:10.1016/j.jpha.2020.03.001

Liao, D., Zhou, F., Luo, L., Xu, M., Wang, H., Xia, J., et al. (2020). Haematological
characteristics and risk factors in the classification and prognosis evaluation of
COVID-19: a retrospective cohort study. Lancet Haematol. 7, E671–E678.
doi:10.1016/S2352-3026(20)30217-9

Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., et al. (2020). The landscape of
lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA
sequencing. medRxiv. doi:10.1101/2020.02.23.20026690

Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., et al. (2020). Longitudinal
characteristics of lymphocyte responses and cytokine profiles in the peripheral
blood of SARS-CoV-2 infected patients. EBioMedicine 55, 102763. doi:10.1016/
j.ebiom.2020.102763

Liu, J., Liu, Y., Xiang, P., Pu, L., Xiong, H., Li, C., et al. (2020). Neutrophil-to-
lymphocyte ratio predicts severe illness patients with 2019 novel Coronavirus in
the early stage. medRxiv. doi:10.1101/2020.02.10.20021584

López-Cortés, A., Guevara-Ramírez, P., Kyriakidis, N. C., Barba-Ostria, C., León
Cáceres, Á., Guerrero, S., et al. (2020a). Silico analyses of immune system
protein interactome network, single-cell RNA sequencing of human tissues, and
artificial neural networks reveal potential therapeutic targets for drug
repurposing against COVID-19 chemRxiv. doi:10.26434/chemrxiv.12408074.v1

López-Cortés, A., Paz-y-Miño, C., Cabrera-Andrade, A., Barigye, S. J., Munteanu,
C. R., González-Díaz, H., et al. (2018). Gene prioritization, communality
analysis, networking and metabolic integrated pathway to better understand
breast cancer pathogenesis. Sci. Rep. 8, 16679. doi:10.1038/s41598-018-35149-1

López-Cortés, A., Paz-y-Miño, C., Guerrero, S., Cabrera-Andrade, A., Barigye, S. J.,
Munteanu, C. R., et al. (2020b). OncoOmics approaches to reveal essential

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 59892521

López-Cortés et al. Drug Repurposing for COVID-19 Therapy

28

https://doi.org/10.1038/s41586-020-2286-9
https://doi.org/10.1038/mi.2013.14
https://doi.org/10.1371/journal.pcbi.1002531
https://doi.org/10.1038/s41591-020-0968-3
https://doi.org/10.1126/science.abb9332
https://doi.org/10.1126/science.abb9332
https://doi.org/10.1101/2020.04.19.20068015
https://doi.org/10.1101/2020.04.01.20047381
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.3389/fimmu.2020.585647
https://doi.org/10.1101/2020.04.14.20065771
https://doi.org/10.1101/2020.04.14.20065771
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.3389/fphar.2020.01169
https://doi.org/10.1038/nature22366
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1101/2020.03.10.20033613
https://doi.org/10.1016/S2213-2600(20)30216-2
https://doi.org/10.1101/2020.03.21.990770
https://doi.org/10.1101/2020.03.21.990770
https://doi.org/10.1038/nature17200
https://doi.org/10.2471/BLT.19.232173
https://doi.org/10.1038/srep36780
https://doi.org/10.1038/srep36780
https://doi.org/10.1186/s13054-020-03079-y
https://doi.org/10.1186/s13054-020-03079-y
https://doi.org/10.1016/j.xcrm.2020.100137
https://doi.org/10.1016/j.mehy.2020.110098
https://doi.org/10.1016/j.mehy.2020.110098
https://doi.org/10.1016/j.isci.2020.101526
https://doi.org/10.1126/science.abc1669
https://doi.org/10.1016/j.it.2020.10.005
https://doi.org/10.1093/nar/gku1056
https://doi.org/10.1093/nar/gku1056
https://doi.org/10.1093/nar/gkn838
https://doi.org/10.1093/nar/gkn838
https://doi.org/10.1016/S0140-6736(20)30920-X
https://doi.org/10.1016/S0140-6736(20)30920-X
https://doi.org/10.1016/j.jpha.2020.03.001
https://doi.org/10.1016/S2352-3026(20)30217-9
https://doi.org/10.1101/2020.02.23.20026690
https://doi.org/10.1016/j.ebiom.2020.102763
https://doi.org/10.1016/j.ebiom.2020.102763
https://doi.org/10.1101/2020.02.10.20021584
https://doi.org/10.26434/chemrxiv.12408074.v1
https://doi.org/10.1038/s41598-018-35149-1
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


genes in breast cancer: a panoramic view from pathogenesis to precision
medicine. Sci. Rep. 10, 5285. doi:10.1038/s41598-020-62279-2

Mahdi, M., Mótyán, J. A., Szojka, Z. I., Golda, M., Miczi, M., and T}ozsér, J. (2020).
Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2’s main
protease. Virol. J. 17, 190. doi:10.21203/rs.3.rs-40776/v1

Manjili, R. H., Zarei, M., Habibi, M., and Manjili, M. H. (2020). COVID-19 as an
acute inflammatory disease. J. Immunol. 205, 12–19. doi:10.4049/jimmunol.
2000413

Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., et al. (2020). Neurologic
manifestations of hospitalized patients with Coronavirus Disease 2019 in
Wuhan, China. JAMA Neurol. 77, 683–690. doi:10.1001/jamaneurol.2020.
1127

McKechnie, J. L., and Blish, C. A. (2020). The innate immune system: fighting on
the front lines or fanning the flames of COVID-19?. Cell Host Microbe 27,
863–869. doi:10.1016/j.chom.2020.05.009

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., and Manson,
J. J. (2020). COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet 395, P1033–P1034. doi:10.1016/S0140-6736(20)
30628-0

Merad, M., and Martin, J. C. (2020). Pathological inflammation in patients with
COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20,
355–362. doi:10.1038/s41577-020-0331-4

Micholas, S., and Jeremy, C., S. (2020). Repurposing therapeutics for COVID-19:
supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral
spike protein-human ACE2 interface. chemRxiv. doi:10.26434/chemrxiv.
11871402.v4

Montenegro, F., Unigarro, L., Paredes, G., Moya, T., Romero, A., Torres, L., et al.
(2020). Acute respiratory distress syndrome (ARDS) caused by the novel
coronavirus disease (COVID-19): a practical comprehensive literature
review. Expert Rev. Respir. Med. 15, 183–195. doi:10.1080/17476348.2020.
1820329

Muus, C., Luecken, M. D., Eraslan, G., Waghray, A., Heimberg, G., Sikkema,
L., et al. (2020). Integrated analyses of single-cell atlases reveal age,
gender, and smoking status associations with cell type-specific expression
of mediators of SARS-CoV-2 viral entry and highlights inflammatory
programs in putative target cells. bioRxiv. doi:10.1101/2020.04.19.
049254

Nie, S., Zhao, X., Zhao, K., Zhang, Z., Zhang, Z., and Zhang, Z. (2020). Metabolic
disturbances and inflammatory dysfunction predict severity of coronavirus
disease 2019 (COVID-19): a retrospective study.medRxiv. doi:10.1101/2020.03.
24.20042283

Oberfeld, B., Achanta, A., Carpenter, K., Chen, P., Gilette, N. M., Langat, P., et al.
(2020). SnapShot: COVID-19. Cell 181, 954–954.e1. doi:10.1016/j.cell.2020.
04.013

Oliver, J. (2013). Deep learning for the life sciences applying deep learning to
genomics, microscopy, drug discovery, and more Sebastopol, CA: O’Reilly Media

Ordovas-Montanes, J., Dwyer, D. F., Nyquist, S. K., Buchheit, K. M., Vukovic, M.,
Deb, C., et al. (2018). Allergic inflammatory memory in human respiratory
epithelial progenitor cells. Nature 560, 649–654. doi:10.1038/s41586-018-
0449-8

Ortiz-Prado, E., Simbaña-Rivera, K., Gómez-Barreno, L., Rubio-Neira, M.,
Guaman, L. P., Kyriakidis, N. C., et al. (2020). Clinical, molecular and
epidemiological characterization of the SARS-CoV2 virus and the
Coronavirus disease 2019 (COVID-19), a comprehensive literature review.
Diagn. Microbiol. Infect. Dis. 98, 115094. doi:10.1016/j.diagmicrobio.2020.
115094

Overmyer, K. A., Shishkova, E., Miller, I. J., Balnis, J., Bernstein, M. N., Peters-
Clarke, T. M., et al. (2020). Large-scale multi-omic analysis of COVID-19
severity. Cell Syst. 12, 23–40.e7. doi:10.1016/j.cels.2020.10.003

Pan, A., Lahiri, C., Rajendiran, A., and Shanmugham, B. (2016). Computational
analysis of protein interaction networks for infectious diseases. Brief. Bioinform.
17, 517–526. doi:10.1093/bib/bbv059

Park, J. H., and Lee, H. K. (2020). Re-analysis of single cell transcriptome reveals
that the NR3C1-CXCL8-neutrophil axis determines the severity of COVID-19.
Front. Immunol. 11, 2145. doi:10.3389/fimmu.2020.02145

Parvathaneni, V., and Gupta, V. (2020). Utilizing drug repurposing against
COVID-19 – efficacy, limitations, and challenges. Life Sci. 259, 118275.
doi:10.1016/j.lfs.2020.118275

Peiris, J. S. M., Guan, Y., and Yuen, K. Y. (2004). Severe acute respiratory
syndrome. Nat. Med. 349, 2431–2441. doi:10.1038/nm1143

Perrin-Cocon, L., Diaz, O., Jacquemin, C., Barthel, V., Ogire, E., Ramière, C., et al.
(2020). The current landscape of coronavirus-host protein-protein interactions.
J. Transl. Med. 18, 319. doi:10.1186/s12967-020-02480-z

Phimister, E. G., Parks, J. M., and Smith, J. C. (2020). How to discover antiviral
drugs quickly. 382, 2261–2264. doi:10.1056/NEJMcibr2007042

Prokop, J. W., Shankar, R., Gupta, R., Leimanis, M. L., Nedveck, D., Uhl, K., et al.
(2020). Virus-induced genetics revealed by multidimensional precision
medicine transcriptional workflow applicable to COVID-19. Physiol.
Genomics 52, 255–268. doi:10.1152/physiolgenomics.00045.2020

Qu, R., Ling, Y., Zhang, Y. hui. zhi., Wei, L. ya., Chen, X., Li, X. mian., et al. (2020).
Platelet-to-lymphocyte ratio is associated with prognosis in patients with
coronavirus disease-19. J. Med. Virol. 92, 1533–1541. doi:10.1002/jmv.25767

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., et al. (2019).
g:Profiler: a web server for functional enrichment analysis and conversions of
gene lists (2019 update). Nucleic Acids Res. 47, W191–W198. doi:10.1093/nar/
gkz369

Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar,
A., et al. (2019). Pathway enrichment analysis and visualization of omics data
using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14,
482–517. doi:10.1038/s41596-018-0103-9

Rentsch, C., Kidwai-Khan, F., Tate, J., Park, L., King, J., Skanderson, M., et al.
(2020). Covid-19 testing, Hospital Admission, and intensive care among
2,026,227 United States Veterans aged 54–75 Years. medRxiv. doi:10.1101/
2020.04.09.20059964

Rhee, C., Chiotos, K., Cosgrove, S. E., Heil, E. L., Kadri, S. S., Kalil, A. C., et al.
(2020). Infectious Diseases society of America position paper: recommended
revisions to the national severe sepsis and septic shock early management
Bundle (SEP-1) sepsis quality measure. Clin. Infect. Dis. ciaa059 doi:10.1093/
cid/ciaa059

Røttingen, J. A., Chamas, C., Goyal, L. C., Harb, H., Lagradae, L., andMayosi, B. M.
(2012). Securing the public good of health research and development for
developing countries. Bull. World Health Organ. 90, 398–400. doi:10.2471/
BLT.12.105460

Rotzinger, D. C., Beigelman-Aubry, C., von Garnier, C., and Qanadli, S. D. (2020).
Pulmonary embolism in patients with COVID-19: time to change the paradigm
of computed tomography. Thromb. Res. 190, 58–59. doi:10.1016/j.thromres.
2020.04.011

Saini, K. S., Lanza, C., Romano, M., de Azambuja, E., Cortes, J., de las Heras, B.,
et al. (2020). Repurposing anticancer drugs for COVID-19-induced
inflammation, immune dysfunction, and coagulopathy. Br. J. Cancer 123,
694–697. doi:10.1038/s41416-020-0948-x

Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., and Cutrell, J. B. (2020).
Pharmacologic treatments for Coronavirus Disease 2019 (COVID-19): a
review. JAMA – J. Am. Med. Assoc. 323, 1824–1836. doi:10.1001/jama.2020.6019

Sarzi-Puttini, P., Giorgi, V., Sirotti, S., Marotto, D., Ardizzone, S., Rizzardini, G.,
et al. (2020). COVID-19, cytokines and immunosuppression: what can we learn
from severe acute respiratory syndrome?. Clin. Exp. Rheumatol. 38, 337–342.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504. doi:10.1101/
gr.1239303

Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., et al. (2020). Proteomic and
metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72.e15.
doi:10.1016/j.cell.2020.05.032

Shi, C. S., Nabar, N. R., Huang, N. N., and Kehrl, J. H. (2019). SARS-Coronavirus
Open Reading Frame-8b triggers intracellular stress pathways and activates
NLRP3 inflammasomes. Cell Death Discov. 5, 101. doi:10.1038/s41420-019-
0181-7

Sidarta-Oliveira, D., Jara, C. P., Ferruzzi, A. J., Skaf, M. S., Velander, W. H., Araujo,
E. P., et al. (2020). SARS-CoV-2 receptor is co-expressed with elements of the
kinin–kallikrein, renin–angiotensin and coagulation systems in alveolar cells.
Sci. Rep. 10, 19522. doi:10.1038/s41598-020-76488-2

Singh, M., Bansal, V., and Feschotte, C. (2020). A single-cell RNA expression map
of human coronavirus entry factors. bioRxiv. doi:10.1101/2020.05.08.084806

Slenter, D. N., Kutmon, M., Hanspers, K., Riutta, A., Windsor, J., Nunes, N., et al.
(2018). WikiPathways: a multifaceted pathway database bridging metabolomics

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 59892522

López-Cortés et al. Drug Repurposing for COVID-19 Therapy

29

https://doi.org/10.1038/s41598-020-62279-2
https://doi.org/10.21203/rs.3.rs-40776/v1
https://doi.org/10.4049/jimmunol.2000413
https://doi.org/10.4049/jimmunol.2000413
https://doi.org/10.1001/jamaneurol.2020.1127
https://doi.org/10.1001/jamaneurol.2020.1127
https://doi.org/10.1016/j.chom.2020.05.009
https://doi.org/10.1016/S0140-6736(20)30628-0
https://doi.org/10.1016/S0140-6736(20)30628-0
https://doi.org/10.1038/s41577-020-0331-4
https://doi.org/10.26434/chemrxiv.11871402.v4
https://doi.org/10.26434/chemrxiv.11871402.v4
https://doi.org/10.1080/17476348.2020.1820329
https://doi.org/10.1080/17476348.2020.1820329
https://doi.org/10.1101/2020.04.19.049254
https://doi.org/10.1101/2020.04.19.049254
https://doi.org/10.1101/2020.03.24.20042283
https://doi.org/10.1101/2020.03.24.20042283
https://doi.org/10.1016/j.cell.2020.04.013
https://doi.org/10.1016/j.cell.2020.04.013
https://doi.org/10.1038/s41586-018-0449-8
https://doi.org/10.1038/s41586-018-0449-8
https://doi.org/10.1016/j.diagmicrobio.2020.115094
https://doi.org/10.1016/j.diagmicrobio.2020.115094
https://doi.org/10.1016/j.cels.2020.10.003
https://doi.org/10.1093/bib/bbv059
https://doi.org/10.3389/fimmu.2020.02145
https://doi.org/10.1016/j.lfs.2020.118275
https://doi.org/10.1038/nm1143
https://doi.org/10.1186/s12967-020-02480-z
https://doi.org/10.1056/NEJMcibr2007042
https://doi.org/10.1152/physiolgenomics.00045.2020
https://doi.org/10.1002/jmv.25767
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1038/s41596-018-0103-9
https://doi.org/10.1101/2020.04.09.20059964
https://doi.org/10.1101/2020.04.09.20059964
https://doi.org/10.1093/cid/ciaa059
https://doi.org/10.1093/cid/ciaa059
https://doi.org/10.2471/BLT.12.105460
https://doi.org/10.2471/BLT.12.105460
https://doi.org/10.1016/j.thromres.2020.04.011
https://doi.org/10.1016/j.thromres.2020.04.011
https://doi.org/10.1038/s41416-020-0948-x
https://doi.org/10.1001/jama.2020.6019
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1038/s41420-019-0181-7
https://doi.org/10.1038/s41420-019-0181-7
https://doi.org/10.1038/s41598-020-76488-2
https://doi.org/10.1101/2020.05.08.084806
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


to other omics research. Nucleic Acids Res. 46, D661–D667. doi:10.1093/nar/
gkx1064

Song, C.-Y., Xu, J., He, J.-Q., and Lu, Y.-Q. (2020). COVID-19 early warning score:
a multi-parameter screening tool to identify highly suspected patients.medRxiv.
doi:10.1101/2020.03.05.20031906

Spiezia, L., Boscolo, A., Poletto, F., Cerruti, L., Tiberio, I., Campello, E., et al. (2020).
COVID-19-related severe hypercoagulability in patients admitted to intensive
care unit for acute respiratory failure. Thromb. Haemost. 120, 998–1000. doi:10.
1055/s-0040-1710018

Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., et al.
(2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells
together with innate immune genes. Nat. Med. 26, 681–687. doi:10.1038/
s41591-020-0868-6

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas,
J., et al. (2015). STRING v10: protein-protein interaction networks, integrated
over the tree of life. Nucleic Acids Res. 43, D447–D452. doi:10.1093/nar/
gku1003

Tabassum, N., Zhang, H., and Stebbing, J. (2020). Repurposing fostamatinib to
combat SARS-CoV-2-induced acute lung injury. Cell Rep. Med. 1, 100145.
doi:10.1016/j.xcrm.2020.100145

Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y. Q., et al. (2020).
Lymphopenia predicts disease severity of COVID-19: a descriptive and
predictive study. Signal Transduct. Target. Ther. 5, 33. doi:10.1038/s41392-
020-0148-4

Tang, N., Li, D., Wang, X., and Sun, Z. (2020). Abnormal coagulation parameters
are associated with poor prognosis in patients with novel coronavirus
pneumonia. J. Thromb. Haemost. 18, 844–847. doi:10.1111/jth.14768

Tang, Y., Li, M., Wang, J., Pan, Y., and Wu, F. X. (2015). CytoNCA: a cytoscape
plugin for centrality analysis and evaluation of protein interaction networks.
BioSystems 127, 67–72. doi:10.1016/j.biosystems.2014.11.005

Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., and Ng, L. F. P. (2020). The trinity
of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol.
20, 363–374. doi:10.1038/s41577-020-0311-8

Tejera, E., Munteanu, C. R., López-Cortés, A., Cabrera-Andrade, A., and Pérez-
Castillo, Y. (2020). Drugs repurposing using QSAR, docking and molecular
dynamics for possible inhibitors of the SARS-CoV-2 Mpro protease. Molecules
25, 5172. doi:10.3390/molecules25215172

Terpos, E., Ntanasis-Stathopoulos, I., Elalamy, I., Kastritis, E., Sergentanis, T. N.,
Politou, M., et al. (2020). Hematological findings and complications of COVID-
19. Am. J. Hematol. 95, 834–847. doi:10.1002/ajh.25829

The Lancet (2020). Emerging understandings of 2019-nCoV. Lancet 395, 311.
doi:10.1016/S0140-6736(20)30186-0

Vastrad, B., Vastrad, C., and Tengli, A. (2020). Identification of potential mRNA
panels for severe acute respiratory syndrome coronavirus 2 (COVID-19)
diagnosis and treatment using microarray dataset and bioinformatics
methods. Biotech 10, 422. doi:10.1007/s13205-020-02406-y

Vidal, M., Cusick, M. E., and Barabási, A. L. (2011). Interactome networks and
human disease. Cell 144, 986–998. doi:10.1016/j.cell.2011.02.016

Vinayagam, S., and Sattu, K. (2020). SARS-CoV-2 and coagulation disorders in
different organs. Life Sci. 260, 118431. doi:10.1016/j.lfs.2020.118431

Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., et al.
(2018). Innate lymphoid cells: 10 years on. Cell 174, 1054–1066. doi:10.1016/j.
cell.2018.07.017

Wadman, M., Couzin-Frankel, J., Kaiser, J., and Matacic, C. (2020). A rampage
through the body. Science 368, 356–360. doi:10.1126/science.368.6489.356

Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D.
(2020). Structure, function, and antigenicity of the SARS-CoV-2 spike
glycoprotein. Cell 181, 281–292.e6. doi:10.1016/j.cell.2020.02.058

Wan, S., Yi, Q., Fan, S., Lv, J., Zhang, X., Guo, L., et al. (2020). Characteristics of
lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized
patients with 2019 novel coronavirus pneumonia (NCP).medRxiv. doi:10.1101/
2020.02.10.20021832

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., et al. (2020). Clinical
characteristics of 138 hospitalized patients with 2019 novel coronavirus-
infected pneumonia in Wuhan, China. JAMA - J. Am. Med. Assoc. 323,
1061–1069. doi:10.1001/jama.2020.1585

Wang, F., Lu, J., Peng, X., Wang, J., Liu, X., Chen, X., et al. (2016). Integrated
analysis of microRNA regulatory network in nasopharyngeal carcinoma with

deep sequencing. J. Exp. Clin. Cancer Res. 35, 17. doi:10.1186/s13046-016-
0292-4

Wang, J., Li, Q., Yin, Y., Zhang, Y., Cao, Y., Lin, X., et al. (2020). Excessive
neutrophils and neutrophil extracellular traps in COVID-19. Front. Immunol.
11, 2063. doi:10.3389/fimmu.2020.02063

Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., et al. (2020). Structural
and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181,
894–904.e9. doi:10.1016/j.cell.2020.03.045

Wang, Y., Liu, M., and Gao, J. (2020). Enhanced receptor binding of SARS-CoV-2
through networks of hydrogen-bonding and hydrophobic interactions. Proc.
Natl. Acad. Sci. U.S.A. 117, 13967–13974. doi:10.1073/pnas.2008209117

Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., et al. (2020). Immune cell
profiling of COVID-19 patients in the recovery stage by single-cell sequencing.
Cell Discov. 6, 431. doi:10.1038/s41421-020-0168-9

Winn, B. J. (2020). Is there a role for insulin-like growth factor inhibition in the
treatment of COVID-19-related adult respiratory distress syndrome?. Med.
Hypotheses 144, 110167. doi:10.1016/j.mehy.2020.110167

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., et al.
(2018). DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res. 46, D1074–D1082. doi:10.1093/nar/gkx1037

Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P.,
et al. (2006). DrugBank: a comprehensive resource for in silico drug discovery
and exploration. Nucleic Acids Res. 34, D668–D672. doi:10.1093/nar/gkj067

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., et al.
(2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion
conformation. Science 367, 1260–1263. doi:10.1126/science.aax0902

Wu, A.Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., et al. (2020). Genome
composition and divergence of the novel coronavirus (2019-nCoV) originating
in China. Cell Host Microbe 27, 325–328. doi:10.1016/j.chom.2020.02.001

Wu, C.Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., et al. (2020). Analysis of
therapeutic targets for SARS-CoV-2 and discovery of potential drugs by
computational methods. Acta Pharm. Sin. B 10, 766–788. doi:10.1016/j.apsb.
2020.02.008

Wu, F.Wang, A., Liu, M., Wang, Q., Chen, J., Xia, S., et al. (2020). Neutralizing
antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort
and their implications. medRxiv doi:10.2139/ssrn.3566211

Wu,M.Chen, Y., Xia, H., Wang, C., Tan, C. Y., Cai, X., et al. (2020). Transcriptional
and proteomic insights into the host response in fatal COVID-19 cases. Proc.
Natl. Acad. Sci. U.S.A. 117, 28336–28343. doi:10.1073/pnas.2018030117

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al.
(2018). MoleculeNet: a benchmark for molecular machine learning. Chem. Sci.
9, 513–530. doi:10.1039/c7sc02664a

Xiang, J., Wen, J., Yuan, X., Xiong, S., Zhou, X., Liu, C., et al. (2020). Potential
biochemical markers to identify severe cases among COVID-19 patients.
medRxiv. doi:10.1101/2020.03.19.20034447

Yan, Q. (2017). Translational bioinformatics and systems biology methods for
personalized medicine Cambridge, United States: Academic Press

Yan, R., Zhang, Y., Guo, Y., Xia, L., and Zhou, Q. (2020). Structural basis for the
recognition of the 2019-nCoV by human ACE2. bioRxiv. doi:10.1101/2020.02.
19.956946

Yang, L., Liu, S., Liu, J., Zhang, Z., Wan, X., Huang, B., et al. (2020). COVID-19:
immunopathogenesis and Immunotherapeutics. Signal Transduct. Target.
Ther. 5, 128. doi:10.1038/s41392-020-00243-2

Yang, W., Cao, Q., Qin, L., Wang, X., Cheng, Z., Pan, A., et al. (2020). Clinical
characteristics and imaging manifestations of the 2019 novel coronavirus
disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang,
China. J. Infect. 80, 388–393. doi:10.1016/j.jinf.2020.02.016

Yang, X., Kui, L., Tang, M., Li, D., Wei, K., Chen, W., et al. (2020). High-
throughput transcriptome profiling in Drug and biomarker Discovery.
Front. Genet. 11, 19. doi:10.3389/fgene.2020.00019

Yang, Y., Shen, C., Li, J., Yuan, J., Yang, M., Wang, F., et al. (2020). Exuberant
elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is
associated with disease severity and fatal outcome. medRxiv. doi:10.1101/
2020.03.02.20029975

Yao, X.-H., He, Z.-C., Li, T.-Y., Zhang, H.-R., Wang, Y., Mou, H., et al. (2020).
Pathological evidence for residual SARS-CoV-2 in pulmonary tissues of a
ready-for-discharge patient. Cell Res. 30, 541–543. doi:10.1038/s41422-020-
0318-5

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 59892523

López-Cortés et al. Drug Repurposing for COVID-19 Therapy

30

https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1101/2020.03.05.20031906
https://doi.org/10.1055/s-0040-1710018
https://doi.org/10.1055/s-0040-1710018
https://doi.org/10.1038/s41591-020-0868-6
https://doi.org/10.1038/s41591-020-0868-6
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1016/j.xcrm.2020.100145
https://doi.org/10.1038/s41392-020-0148-4
https://doi.org/10.1038/s41392-020-0148-4
https://doi.org/10.1111/jth.14768
https://doi.org/10.1016/j.biosystems.2014.11.005
https://doi.org/10.1038/s41577-020-0311-8
https://doi.org/10.3390/molecules25215172
https://doi.org/10.1002/ajh.25829
https://doi.org/10.1016/S0140-6736(20)30186-0
https://doi.org/10.1007/s13205-020-02406-y
https://doi.org/10.1016/j.cell.2011.02.016
https://doi.org/10.1016/j.lfs.2020.118431
https://doi.org/10.1016/j.cell.2018.07.017
https://doi.org/10.1016/j.cell.2018.07.017
https://doi.org/10.1126/science.368.6489.356
https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.1101/2020.02.10.20021832
https://doi.org/10.1101/2020.02.10.20021832
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1186/s13046-016-0292-4
https://doi.org/10.1186/s13046-016-0292-4
https://doi.org/10.3389/fimmu.2020.02063
https://doi.org/10.1016/j.cell.2020.03.045
https://doi.org/10.1073/pnas.2008209117
https://doi.org/10.1038/s41421-020-0168-9
https://doi.org/10.1016/j.mehy.2020.110167
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1126/science.aax0902
https://doi.org/10.1016/j.chom.2020.02.001
https://doi.org/10.1016/j.apsb.2020.02.008
https://doi.org/10.1016/j.apsb.2020.02.008
https://doi.org/10.2139/ssrn.3566211
https://doi.org/10.1073/pnas.2018030117
https://doi.org/10.1039/c7sc02664a
https://doi.org/10.1101/2020.03.19.20034447
https://doi.org/10.1101/2020.02.19.956946
https://doi.org/10.1101/2020.02.19.956946
https://doi.org/10.1038/s41392-020-00243-2
https://doi.org/10.1016/j.jinf.2020.02.016
https://doi.org/10.3389/fgene.2020.00019
https://doi.org/10.1101/2020.03.02.20029975
https://doi.org/10.1101/2020.03.02.20029975
https://doi.org/10.1038/s41422-020-0318-5
https://doi.org/10.1038/s41422-020-0318-5
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Young, B. E., Ong, S. W. X., Kalimuddin, S., Low, J. G., Tan, S. Y., Loh, J., et al.
(2020). Epidemiologic features and clinical course of patients infected with
SARS-CoV-2 in Singapore. JAMA - J. Am. Med. Assoc. 323, 1488–1494. doi:10.
1001/jama.2020.3204

Yu, L., Tong, Y., Shen, G., Fu, A., Lai, Y., Zhou, X., et al. (2020). Immunodepletion
with hypoxemia: a potential high risk subtype of coronavirus Disease 2019.
medRxiv. doi:10.1101/2020.03.03.20030650

Yu, Y., Tsang, J. C. H., Wang, C., Clare, S., Wang, J., Chen, X., et al. (2016). Single-
cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development
pathway. Nature 539, 102–106. doi:10.1038/nature20105

Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., et al. (2017). Cryo-EM
structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the
dynamic receptor binding domains. Nat. Commun. 8, 15092. doi:10.1038/
ncomms15092

Zeng, Q., Li, Y., Huang, G., Wu, W., Dong, S., and Xu, Y. (2020). Mortality of
COVID-19 is associated with cellular immune function compared to immune
function in Chinese han population. medRxiv. doi:10.1101/2020.03.08.
20031229

Zhang, B., Zhou, X., Zhu, C., Feng, F., Qiu, Y., Feng, J., et al. (2020). Immune
phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease
severity and outcome for patients with COVID-19.medRxiv. doi:10.1101/2020.
03.12.20035048

Zhang, C., Shi, L., andWang, F. S. (2020). Liver injury in COVID-19: management
and challenges. Lancet Gastroenterol. Hepatol. 5, P428–P430. doi:10.1016/
S2468-1253(20)30057-1

Zhang, D., Guo, R., Lei, L., Liu, H., Wang, Y., Wang, Y., et al. (2020). COVID-19
infection induces readily detectable morphological and inflammation-related
phenotypic changes in peripheral blood monocytes, the severity of which
correlate with patient outcome. medRxiv. doi:10.1101/2020.03.24.20042655

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., et al. (2020).
Crystal structure of SARS-CoV-2 main protease provides a basis for design of
improved α-ketoamide inhibitors. Science 368, 409–412. doi:10.1126/science.
abb3405

Zhong, J., Tang, J., Ye, C., and Dong, L. (2020). The immunology of COVID-19: is
immune modulation an option for treatment?. Lancet Rheumatol. 2,
E428–E436. doi:10.1016/S2665-9913(20)30120-X

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A
pneumonia outbreak associated with a new coronavirus of probable bat origin.
Nature 579, 270–273. doi:10.1038/s41586-020-2012-7

Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., qi, Y., et al. (2020a). Aberrant
pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in
severe pulmonary syndrome patients of a new coronavirus. bioRxiv. doi:10.
1101/2020.02.12.945576

Zhou, Y., Yang, Z., Guo, Y., Geng, S., Gao, S., Ye, S., et al. (2020b). A new predictor
of Disease severity in patients with COVID-19 in Wuhan, China. medRxiv.
doi:10.1101/2020.03.24.20042119

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A novel
coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med. 382,
727–733. doi:10.1056/nejmoa2001017

Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C.
N., et al. (2020). SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene
in human airway epithelial cells and is detected in specific cell subsets across
tissues. Cell 181, 1016–1035.e19. doi:10.1016/j.cell.2020.04.035

Zulfiqar, A.-A., Lorenzo-Villalba, N., Hassler, P., and Andrès, E. (2020). Immune
thrombocytopenic purpura in a patient with Covid-19.N. Engl. J. Med. 382, e43.
doi:10.1056/nejmc2010472

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 López-Cortés, Guevara-Ramírez, Kyriakidis, Barba-Ostria, León
Cáceres, Guerrero, Ortiz-Prado, Munteanu, Tejera, Cevallos-Robalino, Gómez-
Jaramillo, Simbaña-Rivera, Granizo-Martínez, Pérez-M, Moreno, García-
Cárdenas, Zambrano, Pérez-Castillo, Cabrera-Andrade, Puig San Andrés,
Proaño-Castro, Bautista, Quevedo, Varela, Quiñones and Paz-y-Miño. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 59892524

López-Cortés et al. Drug Repurposing for COVID-19 Therapy

31

https://doi.org/10.1001/jama.2020.3204
https://doi.org/10.1001/jama.2020.3204
https://doi.org/10.1101/2020.03.03.20030650
https://doi.org/10.1038/nature20105
https://doi.org/10.1038/ncomms15092
https://doi.org/10.1038/ncomms15092
https://doi.org/10.1101/2020.03.08.20031229
https://doi.org/10.1101/2020.03.08.20031229
https://doi.org/10.1101/2020.03.12.20035048
https://doi.org/10.1101/2020.03.12.20035048
https://doi.org/10.1016/S2468-1253(20)30057-1
https://doi.org/10.1016/S2468-1253(20)30057-1
https://doi.org/10.1101/2020.03.24.20042655
https://doi.org/10.1126/science.abb3405
https://doi.org/10.1126/science.abb3405
https://doi.org/10.1016/S2665-9913(20)30120-X
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1101/2020.02.12.945576
https://doi.org/10.1101/2020.02.12.945576
https://doi.org/10.1101/2020.03.24.20042119
https://doi.org/10.1056/nejmoa2001017
https://doi.org/10.1016/j.cell.2020.04.035
https://doi.org/10.1056/nejmc2010472
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Antioxidant Activity, Molecular
Docking, Quantum Studies and In Vivo
Antinociceptive Activity of
Sulfonamides Derived From Carvacrol
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The synthesis and antioxidant, antinociceptive and antiedematogenic activities of
sulfonamides derived from carvacrol—a druglike natural product—are reported. The
compounds showed promising antioxidant activity, and sulfonamide derived from
morpholine (S1) demonstrated excellent antinociceptive and antiedematogenic
activities, with no sedation or motor impairment. The mechanism that underlies
the carvacrol and derived sulfonamides’ relieving effects on pain has not yet been
fully elucidated, however, this study shows that the antinociceptive activity can be
partially mediated by the antagonism of glutamatergic signaling. Compound S1
presented promising efficacy and was predicted to have an appropriate medicinal
chemistry profile. Thus, derivative S1 is an interesting starting point for the design of
new leads for the treatment of pain and associated inflammation and prooxidative
conditions.

Keywords: sulfonamides, pain, carvacrol, molecular modeling, antioxidant

INTRODUCTION

Pain is a major sorrowful condition that affects children, adolescents (Guindon et al., 2007; Schmidt
et al., 2010) and adults (Loeser and Treede, 2008) in several pathologies, including cancer (Ling et al.,
2012). Pain can impair daily activities, diminish life quality, and cause significant psychological
conditions (Rowlingson, 2000).

Pain is a clinically meaningful sign for the detection and evaluation of many diseases. Its
perception is complex, involving two distinct components, an emotional and a physiological or
sensorial component, called nociception (Tominaga et al., 2003). Animal models used for the
evaluation of antinociceptive activity involve several nociceptive responses generated by chemical,
mechanical or thermal stimuli (Silva et al., 2013).

Despite advances in the pharmacokinetics and pharmacodynamics of analgesic agents, their high
toxicity is a determinant of conflicting clinical results due to the need for drug associations and
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interactions, especially in chronic pain due to its bioplasticity, and
association with clinical conditions of anxiety and depression that
reduce the quality of life of patient.

Sound evidence indicates that amino acids, mainly glutamate,
found in C and Aδ fibers, play a fundamental role in the
transmission of pain, as they provoke post-synaptic
depolarization and the propagation of nociceptive information
(Verri et al., 2006). Besides, abnormal excitability caused by
inflammation or injury usually results from increased
expression or activation of receptors, which may be stimulated
by glutamate, favoring the maintenance of the painful stimulus
(Rao, 2009; Salvemini et al., 2011). Therefore, substances capable
of causing selective changes in glutamatergic signaling may give
rise to new analgesic and anti-inflammatory agents.

Upon inflammatory reactions, pro-inflammatory chemical
messengers stimulate resident cells, recruit nociceptors and
cells, and drive pain conduction (Manchope et al., 2016).
Furthermore, augmented oxidative stress upon inflammation
promotes nociception. For example, Reactive Nitrogen Species
(RNS) and Reactive Oxygen Species (ROS) in a direct and indirect
manner promote sensitization and activation of nociceptors
(Maioli et al., 2015). The unbalance between oxidative and
antioxidative agents in inflammatory reactions promotes
oxidative stress (Biswas, 2016). Even though many analgesic
agents can be used for the therapy of pain, research on novel
drug candidates is needed considering that the current analgesics
cause a broad diversity of adverse effects (Burgess and Williams,
2010).

Natural product structural motifs have been an invaluable
source of new chemical matter for drug design and medicinal
chemistry (Rodrigues et al., 2016). Recently, natural product
research in the industry has decreased because of compatibility

problems between natural-product extract collections and high-
throughput screening platforms (Koehn and Carter, 2005). In this
scenario, the monoterpene phenol 2-methyl-5-isopropyl-phenol,
known as carvacrol, is a simple molecule with no stereogenic
centers, with druglike properties and whose derivatives can be
used for structure-activity relationship (SAR) studies. Along with
the anti-inflammatory activity of carvacrol (Arigesavan and
Sudhandiran, 2015), researchers have been interested in
studying the analgesic action of this monoterpene.

Calcium and potassium channels are also directly related to
the transmission of painful impulses since they are central for the
release of neurotransmitters from nociceptor terminals. In this
sense, studies demonstrate that carvacrol promotes a vasorelaxant
response in upper mesenteric artery rings in rats, potentially
because it inhibits the influx of calcium ions mediated by voltage-
sensitive calcium channels (Cav), as well as the receptor-operated
channel (ROC) (Pires et al., 2015). Stock-actuated calcium
channels (SOC) seem to be associated with classical TRP
receptors (C6, C1, and TRPC) and also with melastatin TRP
receptor channel inhibition (TRPM7) (Figure 1). The observed
vasorelaxant activity may be involved in the hypotensive response
detected in in vivo studies (Dantas et al., 2015).

Melo et al. (2010) demonstrated that doses of 12.5, 25, and
50 mg/kg of carvacrol, administered orally, have an anxiolytic
effect and do not alter the locomotor activity of the animals. In a
previous study, we demonstrated that some synthetic
sulfonamides derived from carvacrol at a dose of 30 mg/kg,
intraperitoneal (ip), are able to reduce streptozotocin-induced
Alzheimer’s disease deficits, in addition to producing anxiolytic
and antioxidant effects, without affecting locomotor activity of
animals (de Souza et al., 2020). Also, it was confirmed that
carvacrol, administered orally, at single doses of 50 and

FIGURE 1 | Schematic representation of the probable signaling pathway of the vasorelaxant effect induced by carvacrol. 1) Blockage of calcium influx through the
Cav; 2) Blockade of calcium influx through ROC and/or TRPC6; 3) Blockade of calcium influx through SOC and/or TRPC1; 4) Action on NCX1 by activation of TRPC3; 5)
Inhibition of TRPM7.
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100 mg/kg, produces significant inhibition of nociception caused
by chemical (formalin and acetic acid) and thermal stimulations
(hot-plate test) (Cavalcante Melo et al., 2012). Furthermore, part
of the mechanism by which carvacrol exerts its effects was
demonstrated by Zotti et al. (2013). The authors found that
carvacrol administered orally for seven consecutive days
(12.5 mg/kg) was able to increase dopamine and serotonin
levels in the prefrontal cortex and hippocampus. Following
these findings, it has been demonstrated that carvacrol
promotes antinociceptive effects by a mechanism that is
independent on the activation of the opioid machinery and
the L-arginine-nitric oxide (NO) pathway (Cavalcante Melo
et al., 2012).

Sulfonamides derived from carvacrol have been investigated
recently, for which antibacterial properties (Oliveira et al., 2020)
and potential candidates for the development of drugs for the
treatment of Alzheimer’s disease have been reported (De Souza
et al., 2020). As mentioned above and due to the analgesic and
anti-inflammatory potential of carvacrol, in this research, the
antinociceptive potential of these sulfonamides was investigated.
Thus, this investigation is the first report to demonstrate the
potential antioxidant activity of sulfonamides derived from
carvacrol. Furthermore, this is the first report of sulfonamides
derived from carvacrol, rationally designed to the effective control
of pain via inhibition of the glutamatergic system. Additionally,
molecular docking and quantum investigations were carried out
to rationalize the in vitro and in vivo data.

Despite advances in the pharmacokinetics and
pharmacodynamics of analgesic agents, their high toxicity
is a determinant of conflicting clinical results due to the need
for drug associations and interactions, especially in chronic
pain due to its bioplasticity, and association with clinical
conditions of anxiety and depression that reduce the
quality of life of patient (Berman and Bausell, 2000; Jensen
et al., 2001). Therefore, the development of new

chemotherapeutic agents for pain treatment, which is the
objective of this research, is extremely relevant in the
context of public health worldwide.

MATERIALS AND METHODS

Synthesis of Sulfonamides
All the solvents used were analytically pure. The reagents 5-
isopropyl-2-methylphenol (carvacrol), chlorosulfonic acid,
morpholine, 4-fluoroaniline, pyridin-2-yl methanamine, 2-
hydroxyaniline, 2,4-dichloroaniline were obtained from Sigma
Aldrich.

The synthesis sulfonamides S1–S5, as already described in
the literature (de Oliveira et al., 2016) was performed in two
steps: firstly, the synthesis of 4-hydroxy-2-isopropyl-5-
methylbenzene-1-sulfonyl chloride (ChS) was performed,
subsequently, the ChS was used in reactions with different
amines (Scheme 1). ChS was obtained from the reaction of
carvacrol to six equivalents of chlorosulfonic acid. The
sulfonamides obtained in this study were prepared from
ChS with two equivalents of amine added slowly. Reactions
were followed by thin layer chromatography (TLC). All
sulfonamides were purified by acid-base extraction and the
compounds were duly characterized by spectroscopic and
spectrometric techniques.

Behavioral Tests
Animal Models
Animal care and in vivo procedures were carried out according to
the ethical guides for the study in conscious animals of
experimental pain (Zimmermann, 1983). The experiments
were carried out after protocol approval from the Ethics
Committee of the Federal University of Santa Catarina—UFSC
(protocol PP00745). Male Swiss mice (25–35 g) were obtained

SCHEME 1 | Synthesis of the carvacrol-derived sulfonamides.
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from UFSC. Animals were maintained in a 12 h light/12 h dark
cycle (lights on at 6:00 a.m.) under a temperature of 22 ± 2°C with
water and food ad libitum. At least 1 h before the tests, the
animals were acclimatized to the laboratory conditions. The tests
were executed from 8:00 a.m. to 12:00 a.m. The number of
animals and noxious stimulation intensity were kept at the
minimum needed to obtain consistent results.

Drugs and Reagents
The following substance was used: L-glutamic acid hydrochloride
(Sigma–Aldrich, St. Louis, MO, United States). This formulation
has a glutamate content of ≥99% measured by HPLC, according
to the manufacturer’s technical sheet. The carvacrol, used in this
work, was obtained commercially in liquid form by Sigma-
Aldrich, whose density is 0.976 g/ml at 20°C (lit.), melting
point 3–4°C (lit.) with a concentration of 98 %. Glutamate was
solubilized in isotonic saline solution (0.9% NaCl), and carvacrol
and sulfonamides derived from carvacrol (S1–S5, Scheme 1) were
dissolved in saline plus Tween 80. Tween 80 did not exceed a 5%
final concentration and did not show any activity by itself.
Control groups for each delivery route were given isotonic
saline with Tween 80 at 5%.

Glutamate-Induced Nociception
To demonstrate the possible interplay between the carvacrol
derivatives and the glutamatergic system, we evaluated
whether the compounds would antagonize the glutamate-
induced pain behavior of paw licking and biting. This
glutamate-induced model of nociception was reported
previously (Beirith et al., 2002; Meotti et al., 2010). A 20 µl
glutamate solution (20 µmol/paw, in saline, with pH adjusted
to 7.4) was administered intraplantarly (i.pl.) in the ventral face of
the right hind paw. After the administration of glutamate, the
mice were monitored for 15 min. Nociception was monitored by
measuring with a chronometer the amount of time that mice
spent licking and biting the injected paw. The mice were given
vehicle intragastrically (i.g.) (10 ml/kg) or carvacrol derivatives
(0.0003, 0.003, and 0.03 mg/kg) 1 h before glutamate
administration.

Additionally, the thickness of the animal paw was measured
with a digital micrometer (0–25 mm) before and after the
nociceptive response induced by glutamate (i.pl.) to evaluate
the paw edema. The difference in thickness (mm) of the hind
paw, immediately before and after the test of glutamate, was
considered as an index of edema.

Evaluation of Locomotor Activity
The open-field test is widely used to assess spontaneous locomotor
activity in animals to exclude possible nonspecific effects of a drug on
the central nervous system (CNS), causing sedation or motor
dysfunction. This is an important measure to check for possible
false positives in pain studies, as these parameters can be easily
confused with an analgesic effect of the evaluated drug and cause
research bias. Thus, to examine the activity of the carvacrol
derivatives on spontaneous locomotion, the open-field test was
performed as described above (Nucci-Martins et al., 2016; de
Souza et al., 2020). The open-field test device was a wooden box

(40 × 60 × 50 cm). The floor was split into 12 equal squares, and the
number of squares that the animal covered with all paws in a 6min
session was registered. Mice were given the compounds (i.g., 0.0003,
0.003, and 0.03mg/kg) or vehicle (i.g., 10ml/kg) 1 h before the test.
Healthymice that were not submitted to painful stimuli were used for
the assessment of locomotor activity in the open-field experiment.

Statistical Analyses
Results are reported as average values ± standard deviation (SD) with
the exception of ID50 and EC50 values, which were calculated from
single experiments using nonlinear regression implemented in
GraphPad 7.0 (GraphPad software, San Diego, CA, United States).
The glutamate test with paw edema measurement and the open-field
test showed a normal data distribution in line with the Shapiro–Wilk
threshold (p � 0.05) and, thus, were submitted to one-way ANOVA
analysis and to Dunnett test for multiple analyses. Only p-values
below 0.05 were taken as significant (p < 0.05).

Antioxidant Assays
Scavenging Assay—Nitric Oxide
NO scavenging assay was performed using the method reported
by Sens et al. (2018). In this assay, sodium nitroprusside generates
NO radicals (NO•) which react with oxygen to generate nitrite
ions. The production of the nitrite ions is then determined with
the Griess reagent (1% sulfanilamide, 2% H3PO4 and 0.1%
naphthylethylenediamine dihydrochloride). NO scavenging
activity was measured by adding 1.5 ml phosphate buffer
saline (0.2 M, pH 7.4) and 1 ml sodium nitroprusside (10 mM)
to several concentrations of the test compounds (25, 50, 75, and
100 mg ml−1) and incubating the reaction mixture for 150 min
(25°C). Next, 1 ml of Griess reagent was added to 1 ml of the
reaction solution. A wavelength of 546 nm was set to measure
absorbance (A), and the results of antioxidant assays were
expressed as EC50.

Scavenging Assay—Hydrogen Peroxide
The H2O2 scavenging activity showed by the compounds was
measured spectrophotometrically using a method reported
previously (Sens et al., 2018). A 40mM H2O2 solution was made
in phosphate buffer (pH 7.4). 25, 50, 75, and 100mgml−1 test
compound solutions in phosphate buffer (3.4ml) were added to
the H2O2 solution (0.6 ml). Absorbance was monitored at a
wavelength of 230 nm. The percentage of H2O2 scavenging was
calculated, and the results were expressed as EC50.

Computational Studies
Small-Molecule Modeling and Preparation
All compounds were built in the Avogadro program (Hanwell
et al., 2012). The structures of the compounds were optimized at
pH 7.4 to simulate the conditions found experimentally. Next, the
compounds were minimized with the MMFF94s force field
(Halgren, 1996) and the conjugate gradient method.

Density Functional Theory
All energy values of the lowest unoccupied molecular orbitals
(LUMO) and highest occupied molecular orbitals (HOMO) were
computed by the GAMESS (General Atomic and Molecular
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Electronic Structure System) software (Schmidt et al., 1993). In
the calculation of simple energy, the Becke’s three-parameter
hybrid functional, the Lee–Yang–Parr correlation (B3LYP)
functional (Nageswari et al., 2018) and the 6–31G(d, p) basis
set were used in these molecular systems in gas phase, considering
the neutral and singlet structures. The computation was run
considering the Slater exchange potential correlation and the grid
methodology. The Hückel method (Hückel, 1931) generated an
initial estimate of molecular orbitals and electronic density.
Consequently, the self-consistent field (SCF) convergence was
attributed by the restricted Hartree-Fock (RHF) method
(Schmidt et al., 1993), which was limited to 30 iteration cycles.
LUMO and HOMO potentials were compared with the
experimental results of NO (EC50

NO) and peroxide (EC50
H2O2)

elimination activities. Finally, HOMO-biological activity (EC50
NO

and EC50
H2O2) linear regression models were developed.

Molecular Docking
The PDB (Berman et al., 2002) was searched for structures of
Rattus norvegicus bound to antagonist corresponding to the
UniProt Gene Names Grin1 and Grin2A-D (NMDA receptors;
23 structures found); Gria1-4 (AMPA receptors; 16 structures
found); Grik1-5 (Kainate receptors; 20 structures found); Grm1
and Grm5 (mGluR Group I receptors; 1 structure found);
Grm2–3 (mGluR Group II receptors; no structures found) and
Grm4–8 (mGluR Group III receptors; no structures found).
When more than one structure was available, a direct
comparison of the binding sites was performed to evaluate
their plasticity and select the smallest subset of structures
capable of representing it. For each subset, ensemble docking
calculations were performed. After identifying the structure of
each receptor with a higher affinity for the compounds, docking
simulations were performed individually. The structural data of
the heme domain of rat neuronal NO synthase bound to 6-(3-
fluoro-5-(3-(methylamino)prop-1-yn-1-yl)phenethyl)-4-
methylpyridin-2-amine (PDB 6NGJ) was additionally used.

In all docking calculations, performed with GOLD v.5.6.1 and
the ChemPLP (Korb et al., 2009) scoring function, the receptors
were kept rigid, and the ligands were treated with full flexibility.
The receptors were prepared using GOLD, and structural water
molecules were not considered. The atoms up to a distance of 8 Å
from the crystallographic ligands in both the ensemble and
individual docking simulations were considered to define the
binding sites. PyMOL v.1.8 (Schrödinger, New York, NY) was
used to create the receptor-ligand figures.

Molecular Properties and Pharmacokinetics
Molinspiration Chemoinformatics was used for calculating
Octanol-Water Partition Coefficient (milogP), number of
atoms (natoms), Topological Polar Surface Area (TPSA),
molecular weight (MW), hydrogen bond donors (HBD) and
hydrogen bond acceptors (HBA), rotatable bonds (NRB),
Molecular Volume, and Lipinski RO5 violations.

The SwissADME tool (http://www.swissadme.ch) was
employed for the generation of the Bioavailability Radar, and
assess lipophilicity, druglikeness, medicinal chemistry and
pharmacokinetics parameters.

RESULTS

The synthetic procedures for the sulfonamides S1–S5 (Scheme
1), following a recently reported methodology (de Oliveira et al.,
2016), were performed in good yields (85–95%).

Antioxidant Activity
The antioxidant activity of the sulfonamides derived from
carvacrol (Table 1) was analyzed by the NO and H2O2

scavenging activity assays.

Quantum Studies
The electronic properties were directly correlated with the
antioxidant activity of the molecules. The EHOMO and ELUMO

indicate the molecule’s ability to donate and receive electron
density, respectively. The difference between the two energy levels
is termed the band gap and gives an estimate of the reactivity of a
molecule. The distance between the HOMO and LUMO energy
levels is inversely proportional to the reactivity the compound.
The HOMO and LUMO potentials and band gap of the carvacrol
derivatives are shown in Figure 2.

Figure 3 shows the correlation between HOMO energy and
experimental EC50

NO and EC50
H2O2. The correlation coefficients

r2 and Person’s coefficient (r) of the EC50
NO versus EHOMO were

0.87 and 0.93, respectively. For EC50
H2O2 versus EHOMO, r2 and r

were 0.88 and 0.94, respectively. The angular coefficient values of
the equations EC50

NO � EC50
NO (EHOMO) and

EC50
H2O2 � EC50

H2O2 (EHOMO) were, respectively, 10.28 ± 2.03
and 11.30 ± 2.10 µmol. (L.eV)−1. In addition, the linear
coefficients were 87.90 ± 14.49 and 96.63 ± 14.96 µmol.
(L.eV)−1, respectively. From these equations, the minimal
values of EHOMO (i.e., EC50

NO � EC50
H2O2 � 0) can find the

maximal activity. Thus, with the HOMO energy tending to
−8.55 eV for both equations, the maximal elimination of NO
and H2O2 is reached for both experiments.

Antinociceptive Activity
For a better understanding of the antinociceptive effect of
sulfonamides derived from carvacrol (S1–S5), we used the
model of glutamate-induced (i.pl.) nociception. This method
allowed us to investigate the possible interaction of peripheral
antinociceptive action of the analyzed compounds with the
glutamatergic system. The results are shown in Figure 4.

Figure 5 shows the results of treatment with carvacrol and its
derivatives on paw edema induced by glutamate (i.pl.). Our results
show that only S1 and S5 were able to significantly reduce edema.

TABLE 1 | Antioxidant activity of sulfonamides derived from carvacrol.

Compound NO scavenging activity
EC50 (µM)

H2O2 scavenging activity
EC50 (µM)

S1 12.25 ± 0.12 13.13 ± 0.11
S2 18.11 ± 0.14 20.16 ± 0.17
S3 12.14 ± 0.28 13.85 ± 0.33
S4 18.76 ± 0.22 20.28 ± 0.14
S5 12.04 ± 0.11 13.12 ± 0.18
Ascorbic acid 14.72 ± 0.23 16.3 ± 0.26
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However, S1 inhibited edemamore effectively and dose-dependently.
The percent inhibition values were: 36 ± 10%, 47 ± 6%, and 73 ± 12%
for S1 at 0.0003, 0.003 and 0.03mg/kg i.g., respectively; 19 ± 9%,
33 ± 6%, and 28 ± 7% for S5 at 0.0003, 0.003, and 0.03mg/kg i.g.,

respectively. The value of ID50 for compound S1 was 0.002
(0.0009–0.005) mg/kg. Furthermore, the calculated values for the
ID50 antiedematogenic effect of S1 (0.002mg/kg) agree with the dose
found in the glutamate test, showing homogeneity of the data in this

FIGURE 2 | HOMO and LUMO potentials of the carvacrol derivatives estimated by the B3LYP method and 6–31G(d,p) basis set.
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group. Thus, we suggest that S1 may be an interesting target for the
reduction of edema in inflammatory conditions.

Figure 6 shows that intragastric administration of carvacrol and
compounds S1, S2, S3, S4, and S5 at doses ranging from 0.0003 to
0.03mg/kg had no effect on the locomotion of animals in comparison
with the animals in the control group, suggesting that the compounds
do not induce impairment of motor function in the animals. These
results exclude the possibility that the antinociceptive action of
carvacrol and its derivatives is nonspecifically associated with
activity on the peripheral or central levels of locomotion control,
such as sedation or motor dysfunction.

Molecular Docking
As previously shown (Fundytus, 2001), the administration of
glutamate receptor (GluR) antagonists has an analgesic effect on
peripheral pain. To assess whether the mechanism of action of
S1–S5 is likely to involve these receptors, molecular docking
simulations were performed over different GluR structures of
Rattus norvegicus bound to antagonists (Supplementary
Table S1).

For the predicted binding modes of S1–S5, the main
interactions involving the common scaffold are hydrogen
bonds with Gln405, Arg523, Thr518 and Ser572 and a
displaced π-stacking interaction with Phe484. Of these, the
interactions with Arg523, Thr518, and Phe484 are also
observed for the crystallographic antagonist TK40 (Ravn et al.,
2013). The main interactions observed for carvacrol are only
hydrogen bonds with Pro516 and Thr518 and the displaced
π-stacking interaction with Phe484 (Figure 7). For the
different R groups, mainly van der Waals interactions were
established. Only for the R groups of S3 and S5, -CH···π
interactions with Leu538 and Ser572, respectively, were
observed. Among all five molecules, S4 established the lowest
number of contacts. The scores of each analyzed pose are
presented in Supplementary Table S2.

The three levels of perception of pain—the cerebral
(Dickenson, 1995), spinal and peripheral (Gordh et al.,
1995)—appear to be affected by NO. This compound is an
essential regulator of various immune and inflammatory
functions (Moncada et al., 1991). In this work, we
investigated, besides the NO scavenging activity, the possible
intermolecular interactions between the sulfonamides and NO
synthase. First, to validate the molecular docking protocol,
redocking analysis (Figure 8) of 5,6,7,8-tetrahydrobiopterin
(the crystallographic ligand, PDB ID 6NGJ) (Do et al., 2019)
was carried out with GOLD. The ligand occupied the same
interaction site in molecular docking when compared to the
crystallographic structure, with emphasis on hydrogen bond
interactions with Ser334, Val677, and Arg 596 and a π
interaction with Trp678.

The molecular docking results agree with the results
obtained in the in vitro (NO scavenging activity) and in
vivo tests. All compounds showed an inhibitory profile
against NO synthase, except S4, which was not effective in
all performed assays. The two most active compounds, S1 and
S5 presented lower ID50 values and higher values for the
scoring function, which demonstrate the high correlation
between the in vivo and in silico results. The higher activity
of these compounds was probably due to π stacking
interactions and a hydrogen bond between compounds S1
and S5 and Trp 678 (Figure 9), which were also observed for
the co-crystallized ligand, but was not found for the other
sulfonamides. The scores of each analyzed pose are presented
in Supplementary Table S3.

Molecular Properties
Physicochemical and topological parameters of compounds
S1–S5 were estimated to evaluate their pharmacokinetics
profile. The octanol–water partition coefficient (miLogP),
topological polar surface area (TPSA), molecular weight
(MW), number of atoms, hydrogen-bond acceptors (HBA)
and hydrogen-bond donors (HBD), number of rotatable bonds
(NRB), Lipinski RO5 violations, and molecular volume are
presented in Table 2. The silico-derived descriptor values were
compared with the solubility and permeability filters for drug
candidates reported by Lipinski (Barret, 2018), Oprea and Veber
(Veber et al., 2002).

FIGURE 3 | HOMO energy (EHOMO) correlated with EC50
NO and

EC50
H2O2.
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The SwissADME web tool used to calculate the parameters
is available at http://www.swissadme.ch and allows
straightforward submission and analysis. It allows different
input methods, multi-molecule computation, and offers the
possibility to view and save results for each molecule, in
addition to an interactive and intuitive visualization tool.
To study the ADME parameters of the most active
sulfonamide in the in vitro and phenotypic tests (S1), the
Bioavailability Radar (Figure 10), lipophilicity, drug likeness
(Figure 11), medicinal chemistry and pharmacokinetics
(Figure 12) parameters were analyzed.

The Bioavailability Radar (Figure 10) provides a graphical
output for the drug-likeness of a compound. The central shaded
surface is the optimal domain for lipophilicity (XLOGP3 from
−0.7 to +5.0), size (MW from 150 to 500 g/mol), polarity (TPSA
from 20 to 130 Å2), aqueous solubility (logS ≤ 6), saturation
(fraction of sp3 carbons ≥ 0.25), and flexibility (rotatable bonds ≤
9). Compound S1 falls within the optimal range for all
parameters.

In addition, S1 has a good medicinal chemistry and
synthetic accessibility profile, which is very important in
obtaining a drug that can be commercially distributed at a
more affordable price. Moreover, S1 has high gastrointestinal
absorption (GI) and blood-brain barrier permeability
(Figure 12).

DISCUSSION

Antioxidant Activity
The evaluation of the antioxidant activity of a series of
compounds should be performed in more than one
experiment, allowing for the reliability of the results (Sens
et al., 2018). Diverse in vitro antioxidant assays have been
published. Herein, the antioxidant ability of derivatives S1–S5
was determined in two in vitro tests. Subsequently, the results of
these tests were correlated with the findings from the HOMO and
LUMO studies.

Compounds S1, S3, and S5 were more active than ascorbic
acid (AA), which was used as the reference compound.
Compound S5 showed the highest activity, and S4
demonstrated to be the least active. A linear correlation was
found between both experimental results
(EC50

H2O2 � 1.085EC50
NO + 0.2250; r2 � 0.99).

NO plays a critical part in the control of multiple physiological
responses. Also, the NO cascade is associated with many
conditions, including Alzheimer’s disease (Di Meo et al.,
2016). H2O2 readily decomposes into water and oxygen,
resulting in the production of hydroxyl radicals (OH•), lipid
peroxidation and DNA injury, which makes it a target for
research of new compounds with antioxidant properties
(Phaniendra et al., 2015).

FIGURE 4 | Effect of compounds on nociception induced by glutamate (i.pl.) in mice. The pain behavior, translated by the nociceptive response of licking/biting hind
paws induced by glutamate (i.pl.), was evaluated 1 hour after treatment with carvacrol (A), S1 (B), S2 (C), S3 (D),S4 (E) and S5 (F) at doses ranging from 0.0003, 0.003,
and 0.03 mg/kg, i.g., (open bars) or vehicle/control (closed bar). Each bar denotes the average response for 6–8 animals, and the vertical lines represent the SEM
(standard error of mean). Asterisks (*) indicate the significance in comparison with the control group animals (*p < 0.05, **p < 0.01, and ***p < 0.001). One-way
ANOVA and Dunnett test for multiple comparisons were used to determine the statistical significance.
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FIGURE 5 | Effect of compounds on paw edema in rats induced by glutamate (i.pl.). The edema was evaluated 1 hour after treatment with carvacrol (A), S1 (B), S2
(C),S3 (D),S4 (E) and S5 (F) at doses ranging from 0.0003, 0.003, and 0.03 mg/kg, i.g., (open bars) or vehicle/control (closed bar). The animal paw thickness difference
was observed before and after the glutamate test. Each bar denotes the average response for 6-8 animals, and the vertical lines represent SD. Asterisks (*) indicate the
significance in comparison with the control group animals (*p < 0.05, **p < 0.01, and ***p < 0.001). One-way ANOVA and Dunnett test for multiple comparisons
were used to determine the statistical significance.

FIGURE 6 | Effect of compounds on the spontaneous locomotion of animals. The crossings were evaluated 1 h after treatment with carvacrol (A), S1 (B), S2 (C),
S3 (D), S4 (E) and S5 (F) at doses ranging from 0.0003, 0.003, and 0.03 mg/kg, i.g., (open bars) or vehicle/control (closed bar). Each bar denotes the average values for
6–8 animals, and the vertical lines represent SD. One-way ANOVA and Dunnett test for multiple comparisons were used to determine the statistical significance.
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Extensive research has revealed that NO plays an essential role
in several biological processes, such as neurotransmission,
immune defense, and regulation of cell death (Snider and
McMahon, 1998). The early 20th century witnessed the
discovery of the role played by NO in nociception in both the
central and peripheral levels (Zhuo and Gebhart, 1997). One of
the physiological functions of NO was initially found in the
vasculature; it was shown that the role of endothelium-derived
relaxation factor (EDRF) could be quantitatively explained by the
formation of NO by endothelial cells (Moncada and Higgs, 2006).

Treatment of pain with NO donors began with the use of
nitroglycerin (NTG), which figures among the oldest treatments
for ischemic heart disease (Boden et al., 2015). Discovered in

1847, NTG was used for the therapy of pain in angina pectoris for
100 years. However, its mechanism of action was not revealed
until EDRF was identified as NO (Marsh and Marsh, 2000).
Independently, NO was found to be an endogenous activator of
soluble guanylate cyclase, resulting in the formation of cyclic
GMP (cGMP), which acts as a second messenger in many cells,
including the sensory neurons (Pereira et al., 2011).

NO is a highly reactive chemical messenger diffusible through
the cytoplasmic membranes that is critical for the control of
neuronal transmission, inflammation, cytotoxicity, and neural
plasticity (Pacher et al., 2007). NO modulates the excitability of
spinal sensory neurons and contributes to pain in different ways.
The control of NO biosynthesis is regulated by NO synthase

FIGURE 7 | (A) Docking-predicted binding modes in the rattus norvegicus NMDA-glycine binding site (PDB ID 4KFQ). The carbon atoms of each molecule are
represented in a different color. The carbon atoms of the crystallographic antagonist TK40 are shown in green. (B) Main interactions established by carvacrol in the
predicted binding mode. (C) Main interactions found by S1 in the predicted binding mode. Hydrogen bonds are represented in green and π-interactions in magenta.
Distances are in Å.

FIGURE 8 | Conformation of the crystallographic ligand in the binding site of NO synthase (PDB ID 6NGJ) after the redocking studies.
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(NOS) enzymes. Three NO synthase isoforms (NOS; EC
1.14.13.39) catalyze the production of NO (Förstermann and
Sessa, 2012). They use O2 and L-arginine as substrates and flavin
mononucleotide (FMN), flavin adenine dinucleotide (FAD),
reduced nicotinamide-adenine-dinucleotide phosphate

(NADPH), and tetrahydrobiopterin (BH4) as cofactors
(Förstermann and Sessa, 2012). In this work, molecular
docking was used to investigate NOS inhibition by the
carvacrol derivatives.

Quantum Studies
The HOMO profile showed a variation of the charge density among
the carvacrol derivatives. The HOMO and LUMO energies of
compound S1 is −7.40 and −0.62 eV, respectively. The electronic
density is concentrated in the phenol group for HOMO and LUMO.
Compound S2, however, differs regarding the position of the charge
density for these orbitals. In HOMO (−6.86 eV), the orbitals are
concentrated on the fluoro-phenyl group. This is because fluorine
tends to attract electron density (electronegative atom). In LUMO
(−0.75 eV), the electronic density tends to be favorable in the phenol
group. The band gap in this compound is −6.11 eV. Compound S3
has HOMO and LUMO energies of −7.35 and −0.86 eV, respectively.
The electronic density of HOMO tends to be located at the phenol. In

FIGURE 9 | Top-scoring docking poses for S1 and S5 in the binding site of NO synthase (PDB ID 6NGJ).

TABLE 2 | Molecular properties of sulfonamides S1–S5.

Property S1 S2 S3 S4 S5

miLogP 2.43 4.20 2.57 3.77 5.32
TPSA (Å2) 66.84 66.40 79.29 86.62 66.40
Natoms 20 22 22 22 23
MW 299.39 323.39 320.41 321.40 374.29
HBA 5 4 5 5 4
HBD 1 2 2 3 2
nviolations 0 0 0 0 1
NRB 3 4 5 4 4
Molecular volume (Å3) 268.14 278.75 286.46 281.83 300.89

FIGURE 10 | The Bioavailability Radar for S1. The figure was generated online using SwissADME. Compound S1 combines good hydrophobicity and solubility,
which is vital for membrane transport and permeability. Also, it does not violate any of the filters proposed by Lipinski, Ghose, Veber, Egan, and Muegge (Figure 11).
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LUMO, however, the electronic density concentrates in the region of
the pyridinic group. In compound S4, the HOMO charge density
surrounds the phenolic substituent (−6.83 eV). In LUMO, however,
the charge density concentrates in the carvacrol fragment (−0.59 eV).
Differently from the other compounds, the charge distribution in S5
distributes throughout the structure in HOMO (−7.38 eV) and
LUMO (−1.01 eV). In HOMO, the positive density concentrates
on the sulfonamide group and p-fluorine atom. In LUMO, however,
the same region is predominantly negative throughout the structure.
In ascorbic acid, the dihydroxyfuran has the HOMO electron density
(−6.91 eV) close to the hydroxyl groups in the resonant region. In
LUMO (−0.49 eV), the signal of electronic density changes and
concentrates close to the oxygen atom of the furan group.

Antinociceptive Activity
Injection of glutamate (i.pl.) in the mouse paw causes significant
paw edema and nociception (Beirith et al., 2002; Meotti et al.,
2010). Figure 4 shows that systemic administration of carvacrol,
S1, S2, S3, and S5 significantly inhibits nociception induced by
injection of 20 µmol/paw glutamate, suggesting that these
compounds have an important therapeutic effect for the
treatment of acute pain of inflammatory origin, probably due
to a decrease in peripheral glutamatergic signaling. Treatment
with the compounds significantly reduced pain behavior
induced by glutamate (i.pl.), characterized by spontaneous
licking/biting of the injected hind paw. Carvacrol was able to
reduce nociceptive behavior by 19 ± 6 and 44 ± 8% at 0.0003 and
0.003 mg/kg, respectively. Moreover, the sulfonamides derived
from carvacrol showed the following percent inhibitions: 16 ±
5%, 62 ± 5%, and 50 ± 7% for S1 at 0.0003, 0.003, and
0.03 mg/kg, respectively; 26 ± 5% and 34 ± 6% for S2 at
0.003 and 0.03 mg/kg, respectively; 25 ± 9% and 22 ± 5% for
S3 at 0.003 and 0.03 mg/kg, respectively; 39 ± 8% and 27 ± 13%
for S5 at 0.003 and 0.03 mg/kg, respectively.

The calculated mean ID50 value for sulfonamides derived from
carvacrol was 0.002 (0.001–0.002) mg/kg for S1, 0.442
(0.063–0.387) mg/kg. Thus, the results of the present study
demonstrate that carvacrol and S1, S2, S3, and S5 reduce
nociception induced by glutamate (i.pl.), suggesting that
inhibition of the stimulatory mechanism via peripheral

glutamatergic neurotransmission may contribute, at least in
part, to the antinociceptive effect of these compounds. In
addition, we would like to highlight that carvacrol and
compounds S1, S2, S3, and S5 may be interesting lead
compounds for acute pain, especially S1 (0.003 mg/kg) since it
presented the highest efficacy among the analyzed compounds.

Importantly, the compounds derived from carvacrol, selected
to carry out the in vivo experiments, were chosen from the results
presented in the molecular docking, quantum studies, and the
in vitro antioxidant activity. Our results corroborate previous
results (Arigesavan and Sudhandiran, 2015) which also found
antioxidant and anti-inflammatory effects after treatment with
carvacrol, using a carcinogenicity model in the colon of rats.
Moreover, previous studies demonstrated that carvacrol
attenuates mechanical hypernociception induced by
carrageenan (Guimarães et al., 2012) and the acute pain acetic
acid-induced abdominal constriction and formalin (Cavalcante
Melo et al., 2012). Also, it was shown (Barnwal et al., 2018) that
carvacrol increased the activities of antioxidant enzymes and
downregulated expression by reducing the inflammation marker
in positively dyed cells (iNOS, NF-κB, and COX-2) in a
pulmonary toxicity model. These data from the literature
reinforce the antinociceptive, anti-inflammatory, and
antioxidant potential of carvacrol observed in our study.

Findings from the literature (Pacher et al., 2007; Förstermann
and Sessa, 2012) indicate that superoxide (SO, O(2)•(−)) and
peroxynitrite (PN, ONOO(−), the product of its reaction) are
essential for the emergence of pain caused by different etiologies.
These findings reinforce the concept that ROS play an essential
part in NMDA activation, which is a critical ionotropic
glutamatergic receptor, which contributes to central and
peripheral pain. Therefore, this study supports previous results
(Wang et al., 2004) that stated that superoxide mediates
hyperalgesia (increased sensitivity to painful stimulation)
through M40403, a manganese(II) complex with a bis(cyclo-
hexylpyridine-substituted) macrocyclic ligand, which is a
superoxide dismutase mimetic. These findings disclosed the
central role played by superoxide in the peripheral signaling of
nociception. In addition, it was shown that the M40403
antihyperalgesic activity could not be reverted by naloxone,
which excludes the participation of opioid signaling cascades.

FIGURE 11 | Lipophilicity and drug likeness for S1. These parameters
were generated online using SwissADME.

FIGURE 12 | Medicinal Chemistry and pharmacokinetics for S1. These
parameters were generated online using SwissADME.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 78885012

de Oliveira et al. Sulfonamide Antioxidant and Antinociceptive Activity

43

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Moreover, so far, few studies have investigated the effect of
carvacrol on neurotransmitter modulation. The studies by
Zotti et al. (2013) demonstrated that carvacrol, when ingested
regularly in low concentrations, influences brain activity by
increasing the levels of neurotransmitters such as serotonin
and dopamine, which can determine feelings of well-being and
reinforcing positive effects. Thus, our interest in investigating the
glutamatergic system has arisen, considering that glutamate is a
major mediator in the CNS, mediating excitatory
neurotransmission in mammals, including in sensory neurons
that convey pain, being strongly involved in the stimulation of
peripheral and central pain. Therefore, our findings are
unprecedented and relevant as they demonstrate the inhibitory
capacity of carvacrol on the peripheral glutamatergic pathway.

It was shown (Kuo et al., 2017) that carvacrol mitigated injury
in tissues and inflammation derived from periodontitis induced
by ligation. Besides that, carvacrol proved to attenuate
inflammatory response induced by carrageenan, decreasing
mouse paw edema (Guimarães et al., 2012). These data from
the literature support the anti-inflammatory, antinociceptive and
antiedematogenic effects of carvacrol observed in our study.
Importantly, paw edema and pain induced by glutamate are
essentially associated with non-NMDA ionotropic glutamate
receptors and NO production, a vasodilator, and an important
neurotransmitter (Beirith et al., 2002). When in excess, it may be
involved in the production of oxidative lesions in proteins. These
findings reinforce the importance of studying glutamate-induced
paw edema and nociception, as well as the beneficial effects of
carvacrol and its derivatives found in this study.

Our results agree with literature data which demonstrated that
carvacrol had no effect on the spontaneous locomotion in mice
(Cavalcante Melo et al., 2012; Guimarães et al., 2012). However,
these studies used a curve of carvacrol doses ranging from 25 to
100 mg/kg in the open-field test and we are the first group to test a
much lower dose curve for carvacrol (0.0003, 0.003, and
0.03 mg/kg) in pain, edema, and spontaneous locomotion. In
addition, Guimarães et al. (2012) demonstrated that carvacrol at a
dose of 100 mg/kg reduced the animals’ ambulation in the open-
field test, 30 min after intraperitoneal administration, showing
that this dose is not safe as it causes nonspecific effects on
locomotor activity and should be excluded in future pain
studies. It is already well described that some drugs can cause
motor slowness (bradykinesia) or even act as a muscle relaxant,
causing non-specific changes in the locomotor activity of animals
(Cartmell et al., 1991). In addition, drugs like benzodiazepines
and other anxiolytics decrease the exploratory behavior of
animals (Hazim et al., 2014). In this regard, it was
demonstrated (Coderre and van Empel, 1994) that many
glutamate antagonists, primarily via ionotropic NMDA
receptor, such as the receptor channel block MK-801, produce
significant antinociceptive effects, but decrease exploratory
behavior of animals. In contrast, our results demonstrate that
the intragastric treatment with the tested compounds can induce
a significant antinociceptive effect via inhibition of peripheral
glutamate, without causing any detectable motor dysfunction.
Thus, carvacrol and its derivatives S1, S2, S3, and S4 at doses up

to 0.03 mg/kg have an attractive analgesic potential to treat acute
pain without causing CNS sedation.

Molecular Docking
In general, no significant binding modes were obtained
concerning poses matching the available structural criteria of
known antagonists (Ramírez and Caballero, 2018). Only the
docking simulations in the NMDA-GluN1 glycine binding site
(LBD-GluN1) excelled, which agrees with previous observations
for selective ligands of this site, such as HA-966, “which barely
interacts with other ionotropic glutamate receptors” (Planells-
Cases et al., 2005).

Considering the docking results and the non-ataxic effects of
the compounds at the administered doses, the compounds are
likely to be partial agonists, instead of agonists of the NMDA-
GluN1 glycine binding site, such as rapastinel (Wood et al., 2008)
(GLYX-13 or BV-102), (+)-HA-966 (Millan and Seguin, 1993)
and the recently reported 1-amino-1-cyclobutanecarboxylic acid
(Fung et al., 2019).

Molecular Properties
The Lipinski RO5 applies to compounds that are active after oral
administration. The RO5 includes four physicochemical
property ranges (logP ≤ 5, MW ≤ 500, HBD ≤ 5 and HBA ≤
10) that are present in 90% of the drugs that are active after oral
administration and have reached phase II clinical development
(Barret, 2018). The sulfonamides investigated in this work are
within the RO5 desirable range, except for the miLogP of
sulfonamide S5 (miLogP � 5.32), which is slightly higher
than expected.

TPSA correlates with a compound’s ability to permeate
biological membranes through passive transport. Medicinal
chemists use TPSA as an important parameter to optimize
drug permeation through membranes. Molecules having TPSA
values higher than 140 Å2 are likely to permeate poorly into cell
membranes (Pajouhesh and Lenz, 2005). For molecules that are
required to act in the CNS, penetration into the blood-brain
barrier is needed, which requires a TPSA lower than 90Å2

(Hitchcock and Pennington, 2006). All investigated
sulfonamides are in accordance with these parameters. A
molecule that has a higher number of rotatable bonds
becomes more flexible and have a good binding affinity with
the binding pocket. For a potential drug candidate, Veber
proposed that NRB should be ≤10. All investigated
sulfonamides are following this parameter.

The molecular volume assesses the transport properties of
molecules such as blood-brain barrier penetration. The calculated
values for this property are in line with the values expected for
drug candidates.

During the discovery of novel drugs, molecules with useful
therapeutic properties and low levels of toxicity are highly
desirable. In this process, knowledge of the absorption,
distribution, metabolism, and excretion profiles (ADME) is
essential. It is well-known that the early evaluation of ADME
during the drug discovery process reduces the attrition rates
during clinical development.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 78885013

de Oliveira et al. Sulfonamide Antioxidant and Antinociceptive Activity

44

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


CONCLUSION

In this study, we report the SAR for a series of carvacrol-
derived sulfonamides. The antioxidant and antinociceptive
activities of compounds S1–S5 were investigated using in vitro
and in vivo assays. All the sulfonamides showed antioxidant
activity in the in vitro tests comparable to that of the control
compound (ascorbic acid). The results gathered in the in vitro
antioxidant tests were linearly compared to the binding
energies of the HOMO frontier orbital (r2 � 0.87 and 0.88)
calculated by DFT. The results of this study demonstrate that
carvacrol and its derivatives S1, S2, S3, and S5 were able to
reduce nociception induced by glutamate (i.pl.). Moreover,
these findings show that the intragastric treatment with the
tested compounds can induce a significant antinociceptive
effect via inhibition of glutamatergic peripheral system
without causing any detectable motor dysfunction, and not
affecting the locomotor activity of mice. Thus, carvacrol and
compounds S1, S2, S3, and S5 at doses up to 0.03 mg/kg have
an attractive analgesic potential to treat acute pain with no
CNS sedation. Docking simulations highlighted the
interactions between the compounds and the NMDA-
GluN1 glycine binding site, which suggested that these
molecules act as selective partial agonists. Besides,
compounds S1–S5 exhibit physicochemical parameters and
pharmacokinetics compatible with drug candidates. Overall,
sulfonamides S1–S5 are suitable starting points for further
molecular optimization.
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3D-QSAR,Molecular Docking, andMD
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PGAM1 is overexpressed in a wide range of cancers, thereby promoting cancer cell
proliferation and tumor growth, so it is gradually becoming an attractive target. Recently, a
series of inhibitors with various structures targeting PGAM1 have been reported,
particularly anthraquinone derivatives. In present study, the structure–activity
relationships and binding mode of a series of anthraquinone derivatives were probed
using three-dimensional quantitative structure–activity relationships (3D-QSAR), molecular
docking, and molecular dynamics (MD) simulations. Comparative molecular field analysis
(CoMFA, r2 � 0.97, q2 � 0.81) and comparative molecular similarity indices analysis
(CoMSIA, r2 � 0.96, q2 � 0.82) techniques were performed to produce 3D-QSAR models,
which demonstrated satisfactory results, especially for the good predictive abilities. In
addition, molecular dynamics (MD) simulations technology was employed to understand
the key residues and the dominated interaction between PGAM1 and inhibitors. The
decomposition of binding free energy indicated that the residues of F22, K100, V112,
W115, and R116 play a vital role during the ligand binding process. The hydrogen bond
analysis showed that R90, W115, and R116 form stable hydrogen bonds with PGAM1
inhibitors. Based on the above results, 7 anthraquinone compounds were designed and
exhibited the expected predictive activity. The study explored the structure–activity
relationships of anthraquinone compounds through 3D-QSAR and molecular dynamics
simulations and provided theoretical guidance for the rational design of new anthraquinone
derivatives as PGAM1 inhibitors.

Keywords: PGAM1, molecular docking, molecular dynamics simulation, CoMFA, CoMSIA

INTRODUCTION

Reprogramming energy metabolism has been regarded as one of the 10 essential hallmarks of cancer
cells (Hanahan and Weinberg, 2011), which was called the “Warburg effect.” In 1924, Warburg found
that cancer cells are more likely to metabolize glucose by means of aerobic glycolysis instead of
oxidative phosphorylation as in normal cells (Wang et al., 2018a; Huang et al., 2019b). Cancer
metabolic reprogramming is the performance of adapting to the environment during tumor formation
or metastasis. More and more scientists are focusing on the pivotal enzymes in the metabolic
reprogramming of cancer cells in order to find new cancer treatment targets (Wang et al., 2018b).
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Phosphoglycerate mutase 1 (PGAM1) is a key enzyme that
catalyzes the invertible conversion of 3-phosphoglycerate (3-PG)
and 2-phosphoglycerate (2-PG) during the process of glycolysis
(Fothergill-Gilmore and Watson, 1989). Recent studies have
proven that once the expression of PGAM1 is upregulated, it
will promote tumor cell proliferation and tumor growth in
coordination with glycolysis and biosynthesis (Hitosugi et al.,
2012). PGAM1 regulates the proliferation of cancer cells in term
of biosynthesis regulation, partly by regulating intracellular levels
of its product 2-PG and 3-PG (Hitosugi et al., 2012). In the
oxidative pentose phosphate pathway (PPP), 3-PG inhibits 6-
phosphogluconate dehydrogenase after binding, while 2-PG
feedback control of the levels of through activates 3-
phosphoglycerate dehydrogenase. In addition, PGAM1 is
overexpressed in multiple cancers (Li and Liu, 2020),
including ovarian cancer (Zhang et al., 2020), non–small-cell
lung cancer (NSCLC) (Li et al., 2020), colorectal cancer (Liu et al.,
2008; Lei et al., 2011), pancreatic ductal adenocarcinoma (PDAC)
(Liu et al., 2018), prostate cancer (PCa) (Wen et al., 2018), and
glioma (Xu et al., 2016). Particularly, high expression of PGAM1
was associated with poor prognosis in NSCLC patients (Sun et al.,
2018; Li et al., 2020). Downregulation of the expression of
PGAM1 or suppression of its metabolic activity will lead to
weakened cell proliferation and tumor growth (Hitosugi et al.,
2012; Peng et al., 2016; Liu et al., 2018). Thus, PGAM1 is
considered to be an emerging target for cancer treatment.

Due to the important role of PGAM1 in the occurrence and
development of tumors, many researchers have focused on the
discovery and characterization of small molecules that can target
and modulate the metabolic activity of PGAM1 (Huang et al.,
2019a). MJE3 was first revealed as a covalent PGAM1 inhibitor
on Lys 100 by the Cravatt group in 2005 (Evans et al., 2005).
(-)-Epigallocatechin-3-gallate (EGCG) is a natural product
extracted from green tea, which was first discovered as a non-
substrate competitive PGAM1 inhibitor with potent inhibition
activity against PGAM1 (Li et al., 2017). Anthraquinone
derivatives PGMI-004A (Hitosugi et al., 2012) and xanthone
derivatives (Wang et al., 2018b) were identified as allosteric
PGAM1 inhibitors by the Zhou group, which exhibited
moderate inhibition activity on PGAM1. As another
anthraquinone derivative, HKB99 was identified to
allosterically obstruct the activation of PGAM1, thereby
affecting its catalytic activity and the intermolecular
interaction of ACTA2 (Huang et al., 2019c; Liang et al., 2021).
Based on the excellent anticancer activity of PGMI-004A and
HKB99, new small molecules with the anthraquinone core have
been synthesized, which may have similar mechanisms of action
and therapeutic potential. Therefore, the design and development
of novel small molecules with an anthraquinone core targeting
PGAM1may prove to be an effective strategy for the treatment of
cancer cells.

Computer-aided drug design is an effective tool in the drug
discovery and design process. It can not only be used to predict
the activity of small molecules, explain the action mechanism,
and provide guidance for the design of more effective drug
molecules but also reduce the consumption of manpower and
material resources (Jorgensen, 2004). To elucidate the

structure–activity relationships and provide optimization
guidance for anthraquinone derivatives, 62 collected
compounds were employed to construct 3D-QSAR models
using CoMFA and CoMSIA methods. According to the
contour maps by 3D-QSAR and the crucial residues by MD
simulations, 7 compounds with high predictive activity were
designed. This study will provide a valuable theoretical basis
for the activity prediction and structural modification of targeted
PGAM1 inhibitors containing anthraquinone structures.

MATERIALS AND METHODS

Data Sets and Preparation
In order to ensure the reliability of activity values and reduce
accidental errors, a set of 78 PGAM1 inhibitors were retrieved
from different literature sources in terms of the same group
(Wang et al., 2018a; Wang et al., 2018b; Huang et al., 2019a;
Huang et al., 2019b). The molecular structure and experimental
bioactivity of all chemicals are listed in Table 1. First,
corresponding IC50 values of experimental bioactivity
expressed in nM were converted into negative logarithm
(–lgIC50) and acted as the dependent variable for the QSAR
modeling. According to the diversity of the molecular structure
and activities, all compounds were split into a training set and a
test set at a ratio of approximately 4:1. Finally, 62 compounds
were selected randomly as the training set and the remaining 16
compounds as the test set. The molecular structure of each
compound was determined using ChemDraw 18.0 and then
imported to SYBYL 6.9 (SYBYL, XX) to minimize the energy
based on the Tripos force field with a convergence criterion of
0.01 kcal/mol. The Gasteiger–Hückel method was employed to
calculate the partial atomic charges. Then, the multisearch
strategy was performed to obtain the lowest energy
conformation, and the lowest energy geometry after being
filled with energy was reserved for alignment.

Molecular Alignment
Molecular alignment in terms of the same structure is considered
to be one of the most significant elements in the process of built
3D-QSAR modeling. Hence, molecular alignment based on the
most active molecule, 35, was employed by atom-by-atom fits.
After a common substructure is set, the dominant conformations
of the remaining 77 compounds are selected for superimposition.

Construction of CoMFA and CoMSIA
Models
The 3D-QSAR model for the training set compound was built
after alignment by using SYBYL 6.9 software. The CoMFA
(Cramer et al., 1988b) and CoMSIA (Cramer et al., 1988b) are
the most widely used methods for constructing 3D-QSAR. The
CoMFA and CoMSIA descriptors were obtained by placing the
superposed compound in a 3D cubic lattice with a grid spacing of
2 Å. Using the SP3 hybrid carbon as the probe atom, the
Lennard–Jones and the coulomb potential were applied to
obtain the steric field energy and electrostatic field energy of
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TABLE 1 | Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

1 H OH H H H O 10.10 5.00

2 H OH H H H O 13.20 4.88

3a H OH H H H O 6.40 5.19

4 H OH H H H O 10.2 4.99

5 H OH H H H O 8.40 5.08

6 H OH H H H O 5.90 5.23

7 H OH H H H O 5.50 5.26

8 H OH H H H O 6.00 5.22

9a H H H H H O 14.3 4.84

10 H H H H -OCH3 O 6.50 5.19

11a H H H H -CH3 O 8.60 5.07

12 H H -OCH3 H H O 4.60 5.34

13 H H -CH3 H H O 8.00 5.10

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

14 H H Cl H H O 3.50 5.46

15 H H F H H O 13.7 4.86

16 H H -NO2 H H O 2.10 5.68

17 H H OH H H O 6.40 5.19

18 H H −COOCH3 H H O 2.70 5.57

19 -CH3 OH H H H H -C�O 5.37 5.27
20 OH H H H H -C�O 2.05 5.69

21 OH H H H H -C�O 1.75 5.76

22 OH H H H H -C�O 1.50 5.82

23a OH H H H H -C�O 0.36 6.44

24 OH H H H H -C�O 0.84 6.08

25 OH H H H H -C�O 0.55 6.26

26 OH H H H H -C�O 0.48 6.32

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

27 OH H H H H -C�O 2.81 5.55

28 OH H H H H -C�O 2.86 5.54

29 OH H H H H -C�O 0.63 6.20

30 OH H H H H -C�O 0.55 6.26

31 OH H H H H -C�O 0.49 6.31

32a OH H H H H -C�O 0.19 6.72

33a OH H H H H -C�O 1.29 5.89

34 OH H H H H -C�O 2.05 5.69

35 OH H H H H -C�O 0.097 7.01

36 OH H H H H -C�O 0.25 6.60

37a OH H H H H -C�O 0.26 6.59

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

38 OH H H H H -C�O 0.14 6.85

39 OH H H H H -C�O 0.33 6.48

40 OH H H H H -C�O 2.60 5.59

41 OH H H H H -C�O 0.54 6.27

42 OH H H H H -C�O 0.90 6.05

43 OH H H H H -C�O 0.47 6.33

44 OH H H H H -C�O 2.20 5.66

45a OH H H H H -C�O 0.61 6.21

46 OH H H H H -C�O 0.54 6.27

47 OH H H H H -C�O 0.79 6.10

48a OH H H H H -C�O 0.89 6.05

49 OH H H H H -C�O 0.27 6.57

50 OH H H H H -C�O 0.28 6.55

51 OH H H H H -C�O 0.89 6.05

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

52 OH H H H H -C�O 0.90 6.05

53 OH H H H H -C�O 0.26 6.59

54 OH H H H H -C�O 0.20 6.70

55 OH H H H H -C�O 0.35 6.46

56 OH H H H H -C�O 0.47 6.33

57 OH H H H H -C�O 0.26 6.59

58 -OCH3 H H H H -C�O 2.92 5.53

59 H H H H -C�O 2.00 5.70

60 OH OH H H H O 2.80 5.55

61 OH OH H H H O 7.20 5.14

62 OH OH H H H O 1.90 5.72

63 OH OH H H H O 3.50 5.46

64 OH OH H H H O 6.30 5.20

65a OH OH H H H O 5.80 5.24

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

66 OH OH H H H O 5.50 5.26

67 OH OH H H H O 3.60 5.44

68a OH OH H H H O 2.90 5.54

69a OH OH H H H O 1.90 5.72

70a OH OH H H H O 4.20 5.38

71a OH OH H H H O 2.10 5.68

72 OH OH H H H O 1.70 5.77

73 OH OH H H H O 1.60 5.80

74 OH OH H H H O 1.20 5.92

75 OH OH H H H O 2.60 5.59

76a OH OH H H H O 0.50 6.30

77a OH OH H H H O 2.70 5.57

78 OH OH H H H O 1.00 6.00

aTest set for the validation of the 3D-QSAR model.
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each lattice point. The contributions of the hydrogen bond
acceptor field, hydrogen bond donor field, and hydrophobic
field were calculated by the probe atom. The partial least
squares method (Cramer et al., 1988a) was employed to deal
with the linear correlation between the CoMFA and CoMSIA
fields and biological activity. The cross-validation correlation
coefficient (q2) and optimum number of components (N) were
obtained using the leave-one-out method for cross-validation
analysis. In addition, the r2m (Roy et al., 2013; Cardoso et al.,
2016), r2pred, external standard deviation error of prediction
(SDEPext), and applicability domain (Roy et al., 2015; de Assis
et al., 2016) were also calculated to evaluate the performance of
built models.

Evaluation of the 3D-QSAR Models
The predictive capabilities of built 3D-QSAR models were
evaluated via the test set of 16 compounds. After all
compounds were superimposed upon compound 35, the pIC50

values of all compounds were estimated through the built
CoMFA and CoMSIA models.

Molecular Docking
To obtain more accurate docking results, the resolution of all
crystal structures of PGAM1 in complex with small molecules
obtained from the RSCB Protein Data Bank (PDB) was
compared, and 5Y35, with the best resolution of 1.99 Å, was
preserved as the docking template. Subsequently, the Protein
Preparation Wizard module within (Schrödinger, 2015) was
utilized to preprocess the crystal structure, including adding
hydrogens and side chains, deleting water molecules, and
calculating partial charges and protonation states by using the
OPLS2005 force field (Jorgensen et al., 1996). Then, a grid box
centered at the native ligand with a similar size was produced to
determine the binding pocket of PGAM1 by using the Grid
Generation module of the Schrödinger package. All molecules
were preprocessed using the LigPrep module implemented in the
Schrödinger package, and the ionization states were calculated
using Epik (Shelley et al., 2007) at pH � 7.0 ± 2.0. Finally, all
chemicals were docked into the binding pocket of PGAM1 and
evaluated using the standard precision (SP) mode of Glide. The
scale factor was set at 0.8, and the partial charge intercept was set
at 0.15. The 10,000 poses of each ligand during the initial docking
phase were preserved for evaluation.

Molecular Dynamics Simulations
To obtain the structural basis and significant residues involved in
the process of ligand binding, molecular dynamics simulations
were employed in terms of the crystal structure of compounds 23
and 49 using Amber16 (Case et al., 2005). The general AMBER
force field (GAFF) (Wang et al., 2004) was employed to
parameterize the compounds, while the AMBER ff14SB force
field (Maier et al., 2015) was employed for the PGAM1 structure.
The partial charges of compounds were calculated by using the
restrained electrostatic potential fitting procedure (Bayly et al.,
1993; Cieplak et al., 1995; Fox and Kollman, 1998) based on the
electrostatic potentials calculated using the Hartree–Fock (HF)
method with the 6-31G* basis set in the Gaussian 09 package

(Frisch et al., 2009). Then, the complex was solvated in a cubic
box of TIP3P waters, with the solute 10 Å away from the water
box boundary. After adding sodium ions to neutralize each
system, the steepest descent method followed by the
conjugate-gradient method were employed to minimize the
system every 2,500 steps. Subsequently, each system was
heated in the NVT ensemble from 0 to 300 K in 50 ps
restraint on backbone atoms. The restraint force was gradually
decreased from 5 to 0.1 kcal/(mol Å2) within 0.9 ns. Under a
periodic boundary condition, 50 ns MD simulations were
performed at 300 K and 1 atm without any restraint. The
particle mesh Ewald method (Linse and Linse, 2014) was used
to calculate the long-range electrostatic interactions, and the
SHAKE method (Ryckaert et al., 1977) was employed to
constrain all covalent bonds containing hydrogen atoms.

Trajectory Analysis
After the MD simulation finished, trajectories were dissected via
the Cpptraj module (Roe and Cheatham, 2013) in AmberTools
16. First, the root mean square deviations (RMSDs) value was
calculated in terms of the last 10 ns of each MD trajectory.
Second, the molecular mechanics/generalized born surface area
(MM/GBSA) approach (Massova and Kollman, 2000) was
applied to calculate the binding free energy. After withdrawing
a total of 2,500 snapshots, the MM/GBSA calculation was
executed on each snapshot. The binding free energy (ΔGbind)
was calculated as follows (Hou et al., 2011; Sun et al., 2014):

ΔGbind � Gcomplex − (Gprotein + Gligand)

where the energy term (G) is estimated as follows:

G � Evdw + Eele + GGB + GGBSUR

In the equations above, the Evdw, Eele, GGB, and GGBSUR

represent van der Waals, electrostatic energy, the electrostatic
contribution to the solvation free energy, and non-polar
contribution to the solvation free energy, respectively. The
changes of conformational entropy were ignored. Moreover,
the total free energy was decomposed to each residue in
PGAM1 to obtain the crucial residues contributed to the
ligand binding process.

RESULTS AND DISCUSSION

CoMFA and CoMSIA Models
In the present study, a series of 78 PGAM1 inhibitors were
obtained. The molecular structures and pIC50 values of all
molecules are listed in Table 1. The quality of molecular
superposition is considered to be one of the important factors
affecting 3D-QSAR prediction accuracy (Cho et al., 1996). On the
basis of the structure and bioactivity of PGAM1 inhibitors, the
compounds in the training set were aligned to compound 35,
which had the highest activity based on the common
substructure. It can be seen from Figure 1 that the common
skeleton of all molecules is overlapped. However, the side chains
of several compounds surround the common skeleton due to the
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large difference. Then, the 3D-QSAR models of CoMFA and
CoSIA were successfully developed.

To examine the predictive ability and reliability of the built
model, q2 and r2 were applied to evaluate the predictive power of
the built 3D-QSARmodel, r2, F, and SEE values were employed to
assess the reliability of the model, and r2m, r

2
pred, and SDEPext

values were utilized for external validation of the model. Table 2
lists the classical parameter statistics of CoMFA and CoMSIA
models. In general, r2 > 0.7 and q2, r2m, r

2
pred >0.5 are necessary for

a good model (Pratim Roy et al., 2009). As shown in Table 2, the
values of q2, N, SEE, r2, r2m, r

2
pred, SDEPext, and F are 0.81, 6, 0.106,

0.97, 0.78, 0.89, 0.22, and 258.06, respectively. The results show
that the built CoMFA model exhibits a good stability and
predictive ability. The contribution of the steric field and the
electrostatic field is 81 and 19%, respectively, indicating that the
biological activity of compounds is more affected by the steric
field. In addition, the predicted activity of the new chemical is
only valid when the predicted compound falls within the
applicability domain of the developed model (Roy et al., 2015).
The calculated results show that all compounds are within the
application domain of the built CoMFA model, so this prediction
result is reliable.

Different field combinations of CoMSIA models were
constructed, and it had been proved that CoMSIA-SEHA is
the best model. Based on this model, the values of q2, N, SEE,
r2, r2m, r

2
pred, SDEPext, and F are 0.82, 6, 0.11, 0.96, 0.79, 0.89, 0.23,

and 228.71, respectively. In this model, the contribution of the
steric field is 20%, that of the electrostatic field is 22%, that of the
hydrophobic field is 40%, and that of the hydrogen bond acceptor
field is 18%, respectively. The results show that the hydrophobic
field has a greater effect on the bioactivity of the PGAM1
inhibitors. The calculation results of the application domain
show that almost all the compounds are within the application
domain of the CoSIA model, except for compound 24 with an

Snew of 3.87 and compound 25 with an Snew of 4.06. By analyzing
the descriptors in CoMSIA, we found that compounds 24 and 25
have the largest electrostatic field contribution. The experimental
and predicted values of the biological activity of the training set
and the test set in the established CoMFA and CoMSIA models
are shown in Table 3.

The scatter plot of the experimental and predicted values of the
studied PGAM1 inhibitor is shown in Figure 2. It can be seen
from Figure 2 that the experimental and predicted bioactivity
values of all molecules are distributed around the Y � X equation,
indicating that the predicted values are in good accord with the
experimental values, which further demonstrates that the model
has good predictive ability.

Contour Maps Analysis of CoMFA and
CoMSIA
The structure–activity relationships between PGAM1 inhibitors
and activity can be well demonstrated by using 3D contour maps

FIGURE 1 | Structural alignment of all the molecules in the training set based on the common substructure of compound 35.

TABLE 2 | Summary of CoMFA and CoMSIA models.

PLS statistics CoMFA CoMSIA

q2 0.81 0.82
N 6 6
r2 0.97 0.96
F 258.06 228.71
r2m 0.78 0.79

r2pred 0.89 0.89

SDEPext 0.22 0.23
SEE 0.11 0.11
Steric 0.81 0.20
Electrostatic 0.19 0.22
Hydrophobic - 0.40
Hydrogen bond acceptor - 0.18
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to display the QSAR equation. The field type Stdev* Coeff was
used to generate 3D contour maps. As shown in Figures 3, 4,
compound 35 with the best anti-PGAM1 activity was selected as
the template compound to dissect the results of CoMFA and
CoMSIA models.

The contour map of the steric field of CoMFA is shown in
Figure 3A, and the effect of the steric field on the activity is shown
in green and yellow. The presence of green regions around the
molecule indicates that the group with a large connecting space
contributes to increasing the activity of the compound, while the
presence of yellow regions indicates that the group with a large
connecting space may decrease the activity of the compound. As
can be seen from Figure 3A, there is a green region distributed on
the R1 substituent, so the introduction of a slightly larger volume
of groups at the R1 substituent site is conducive to the
improvement of the activity of the compound. For example,
compound 22 (pIC50 � 5.82) with a benzene ring was
significantly higher than compound 19 (pIC50 � 5.27) in
bioactivity. The contour map of the electrostatic field of
CoMFA is shown in Figure 3B, and the effect of the
electrostatic field on the activity is shown in blue and red. The
blue regions around the molecule indicate that the connection of
the electron-donating group is beneficial to the improvement of
the activity of the compound, while the red regions indicate that
the connection of the electron-withdrawing group is beneficial to
the improvement of the activity of the compound. From
Figure 3B, we can see that the connection of electron-
withdrawing groups near the R1 substituent is conducive to
improving the activity of the compound, so it can explain how
the activity of compound 22 (pIC50 � 5.82) is higher than that of
compound 19 (pIC50 � 5.27). There is a blue region around the R2

substituents of anthraquinone, where the introduction of electron
groups is beneficial. For example, the bioactivity of compound 72
(pIC50 � 5.77) with a hydroxyl group was significantly higher
than that of compound 8 (pIC50 � 5.22).

The contour map of the steric field (Figure 4A) and the
electrostatic field (Figure 4B) of the CoMSIA is very similar

TABLE 3 | Experimental pIC50 (Exp.), predicted pIC50 (Pred.), and corresponding
residuals (Res.) of the anthraquinone derivatives.

Number pIC50 CoMFA CoMSIA

Exp Pred Res Pred Res

1 5.00 5.00 0.00 5.02 0.03
2 4.88 5.00 0.12 5.05 0.17
3 5.19 4.98 −0.21 5.14 −0.05
4 4.99 4.94 −0.05 5.11 0.12
5 5.08 5.11 0.04 5.11 0.03
6 5.23 5.34 0.11 5.15 −0.08
7 5.26 5.28 0.02 5.31 0.05
8 5.22 5.16 −0.06 5.18 −0.05
9 4.84 5.33 0.49 5.29 0.44
10 5.19 5.18 −0.01 5.29 0.10
11 5.07 5.26 0.19 5.21 0.15
12 5.34 5.35 0.01 5.24 −0.10
13 5.10 5.27 0.17 5.31 0.21
14 5.46 5.34 −0.12 5.29 −0.17
15 4.86 4.94 0.08 4.84 −0.03
16 5.68 5.78 0.10 5.67 −0.01
17 5.19 5.23 0.03 5.17 −0.02
18 5.57 5.38 −0.19 5.51 −0.05
19 5.27 5.46 0.19 5.31 0.04
20 5.69 5.61 −0.08 5.74 0.05
21 5.76 5.70 −0.06 5.74 −0.02
22 5.82 5.84 0.02 5.76 −0.07
23 6.44 6.33 −0.12 6.32 −0.13
24 6.08 6.09 0.01 5.88 −0.20
25 6.26 6.44 0.18 6.26 0.00
26 6.32 6.38 0.06 6.24 −0.08
27 5.55 5.59 0.03 5.48 −0.07
28 5.54 5.54 −0.01 5.46 −0.08
29 6.20 6.21 0.01 6.25 0.04
30 6.26 6.27 0.01 6.33 0.07
31 6.31 6.35 0.04 6.42 0.11
32 6.72 6.61 −0.11 6.51 −0.21
33 5.89 5.96 0.07 6.45 0.56
34 5.69 5.65 −0.04 5.69 0.00
35 7.01 7.08 0.07 6.97 −0.04
36 6.60 6.69 0.09 6.53 −0.07
37 6.59 6.84 0.26 6.80 0.21
38 6.85 6.84 −0.01 6.82 −0.03
39 6.48 6.48 0.00 6.66 0.18
40 5.59 5.61 0.03 5.53 −0.06
41 6.27 6.19 −0.07 6.33 0.06
42 6.05 6.08 0.03 6.13 0.08
43 6.33 6.31 −0.02 6.39 0.06
44 5.66 5.77 0.12 5.53 −0.12
45 6.21 6.21 0.00 6.38 0.17
46 6.27 6.43 0.16 6.37 0.10
47 6.10 6.09 −0.01 6.14 0.04
48 6.05 6.05 0.00 6.11 0.06
49 6.57 6.53 −0.04 6.49 −0.08
50 6.55 6.36 −0.19 6.40 −0.16
51 6.05 6.13 0.08 6.24 0.19
52 6.05 6.04 0.00 6.32 0.27
53 6.59 6.54 −0.05 6.51 −0.08
54 6.70 6.50 −0.20 6.49 −0.21
55 6.46 6.11 −0.34 6.39 −0.07
56 6.33 6.49 0.16 6.41 0.08
57 6.59 6.55 −0.03 6.44 −0.15
58 5.53 5.39 −0.15 5.56 0.02
59 5.70 5.69 −0.01 5.72 0.02
60 5.55 5.40 −0.15 5.52 −0.03
61 5.14 5.33 0.19 5.47 0.33
62 5.72 5.72 −0.01 5.72 0.00

(Continued in next column)

TABLE 3 | (Continued) Experimental pIC50 (Exp.), predicted pIC50 (Pred.), and
corresponding residuals (Res.) of the anthraquinone derivatives.

Number pIC50 CoMFA CoMSIA

Exp Pred Res Pred Res

63 5.46 5.43 −0.03 5.46 0.00
64 5.20 5.17 −0.03 5.21 0.01
65 5.24 5.52 0.29 5.48 0.24
66 5.26 5.34 0.08 5.10 −0.16
67 5.44 5.33 −0.12 5.48 0.04
68 5.54 5.34 −0.20 5.47 −0.07
69 5.72 5.39 −0.33 5.69 −0.04
70 5.38 5.41 0.03 5.11 −0.27
71 5.68 5.31 −0.37 5.63 −0.04
72 5.77 5.78 0.01 5.70 −0.07
73 5.80 5.78 −0.02 5.75 −0.05
74 5.92 5.92 0.00 5.88 −0.04
75 5.59 5.51 −0.08 5.52 −0.07
76 6.30 6.30 0.00 6.27 −0.03
77 5.57 5.39 −0.18 5.57 0.00
78 6.00 5.96 −0.04 6.01 0.01
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to the CoMFA model, so they will not be explained here. The
contour map of the hydrophobic field of the CoMSIA model is
shown in Figure 4C. The cyan regions represent how the
introduction of the hydrophobic group is favorable to the
activity, while the white regions represent how the
introduction of the hydrophilic group is favorable to the
activity. There is a cyan region near the R1 substituent,
indicating that the introduction of the hydrophobic group is
very helpful to the improvement of the activity. Therefore, the
biological activity of compound 22 (pIC50 � 5.82) is higher than
that of compound 19 (pIC50 � 5.27). The contour map of the
hydrogen bond receptor field of CoMSIA is shown in Figure 4D.
The orange area is where the hydrogen bond acceptor group is
conducive to the activity of the compound, and the purple area is
where the hydrogen bond donor group is conducive to the activity
of the compound. As shown in Figure 4D, there are purple

regions with substituents of R6 and R2, where hydrogen bond
donors can be imported to improve the anti-PGAM1 activity of
the chemical. Moreover, a large purple region is near the nitrogen
atom on the amino group, suggesting that the group may be a
hydrogen bond donor.

Based on the outcome of CoMFA and CoMSIA analysis, we
obtained the structure–activity relationship diagram of
anthraquinone compounds (see Figure 5). The introduction of
hydrogen bond donors in Region A is beneficial to improving the
activity of the compounds, such as the carbonyl group. The group
with a large space in Region B is conducive to the activity of the
compounds, such as biphenyl or p-cyclohexylbenzene (Huang
et al., 2019b). The introduction of the hydrophilic group in
Region C is conducive to the activity, such as hydroxyl groups
(Wang et al., 2018a). The group with a small space in Region D
can improve the activity of the compound, such as hydrogen.

FIGURE 2 | Scatter plot of experimental and predicted bioactivity values (pIC50)of the CoMFA (A) and CoMSIA models (B), respectively.

FIGURE 3 | Steric contour map (A) and electrostatic contour map (B) of the CoMFA model based on molecule 35. Green regions represent bulky groups that
increase anti-PGAM1 activity, while yellow regions represent sterically unfavored regions. Blue regions show where positive groups are beneficial for increasing anti-
PGAM1 acitivity, and red regions show where negative groups are favored.
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Molecular Docking Analysis
The molecular docking method was employed to interpret the
3D-QSAR result and study the structural basis between PGAM1
and inhibitors. First, the reliability of the glide docking algorithm
with the SP mode was evaluated by redocking analysis. It can be
seen from Figure 6 that the redocking conformations of the
molecule are well superimposed with the initial structure in
PGAM1 protein. The RMSD value between docking
conformation and native conformation is 0.005Å. The results
suggest that the glide algorithm exhibits a good performance for
the PGAM1 protein, which can reproduce the binding pose of the
native ligand. Subsequently, all chemicals were docked into the
binding site of PGAM1. However, we discover that the docking
scores of these compounds are not correlated with the inhibitory
activity, and the r2 of pIC50 vs. the docking score is 0.051, which
demonstrates the fact that glide docking is not appropriate for all
compounds. We speculate that one of the most important reasons
is that 3-PG plays an important role in the process of compounds
binding to PGAM1, and the glide scoring function currently used
is not suitable for this system. In addition, because PGAM1
catalyzes the conversion of 3-PG to 2-PG in the physiological
process, the current docking simulation methods cannot
completely simulate this process. Therefore, the docking score
and activity do not show a correlation.

Molecular Dynamics Simulations
In order to further analyze the atomic details of the interaction
between small molecules and PGAM1, molecular dynamics
simulations were employed based on the co-crystal complex of
compounds 23 (PDB ID: 5Y35) and 49 (PDB ID: 6ISN) using
Amber 16, respectively. 50 ns simulation was performed for each
complex. The RMSD plots of Cα, residues within the range of
ligand 5Å, ligand, and 3-PG for complexes were shown in
Figure 7. By monitoring the fluctuation of RMSDs, it can be
found that the RMSD fluctuation of each system after 20 ns are all
within the range of 2Å. Moreover, the fluctuation of binding free
energy over time was also monitored. As shown in
Supplementary Figure S1, binding free energy of each system
fluctuates around 30 kcal/mol after 35 ns. In summary, these
results indicate that the two systems finally reached a stable state.

During the process of small molecules binding to PGAM1, the
hydrogen bond plays an important role as one of the most
important non-bonding interactions. In order to explore the
interaction between small molecules and PGAM1, the changes
of the hydrogen bond between each residue of PGAM1 and the
inhibitor were also monitored. The fraction of the hydrogen bond
is greater than 10% as listed in Table 4. The results show that two
hydrogen bonds formed between compounds 23 and 49 and
Arg116, and the total occupancies are 180.12% and 38.48%,

FIGURE 4 | Steric contour map (A), electrostatic contour map (B), hydrophobic contour map (C), and hydrogen bond acceptor contour map (D) of the CoMSIA
model based onmolecule 35. Green regions are sterically favored regions, while yellow regions are sterically unfavored regions. Blue regions are where electron-donating
groups are favored, and red regions are where electron-withdrawing groups are favored. The cyan regions are where the hydrophobic group is favorable to the activity,
while the white regions are where the hydrophilic group is favorable to the activity.
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respectively. The results indicate that the hydrogen bonds formed
between Arg116 of PGAM1 and inhibitors play a remarkable role
in the binding of molecules. Besides, another hydrogen bond is
also formed between compound 23 and Arg90 with the
occupancy of 12.14%. It is precisely because the small
molecules form hydrogen bonds with Arg116 and Arg90 to fix
the anthraquinone skeleton of the compounds that compounds
23 and 49 are stably binding with PGAM1.

Binding Free Energy Calculation
The binding free energy is used as a reference standard for
evaluating the activity of molecules. It is generally believed
that the lower the binding value, the more stable the complex
formed by the protein and the small molecule. To evaluate the
binding affinity of each complex, the MM/GBSA method was
performed to calculate the binding free energy of inhibitors. It can
be seen from Table 5 that the binding free energy of compounds
23 and 49 are −27.40 kcal/mol and −27.85 kcal/mol, respectively,
which are consistent with their biological activities. Among them,
van der Waals energies (ΔEvdw) are −38.68 kcal/mol and
−41.63 kcal/mol, respectively, and their values are much lower
than other energy terms, indicating that hydrophobic interaction
is the major contributor to the ligand binding process. In
addition, electrostatic energy (ΔEele) also contributes
significantly to the binding free energy, which indicates that
electrostatic interaction also plays a vital role in ligand
binding. It is worth noting that the polar contribution (ΔGGB)
is not conducive to ligand binding, which may be attributed to the
large size of the binding pocket and the exposure of the
hydrophobic ligand to the solvent.

To further confirm the key residues referred to in the ligand
binding process, MM/GBSA calculation was performed to
decompose the binding free energy into inhibitor–residue
pairs. It can be seen from Figure 8 that the primary residues
with binding free energy less than −1 kcal/mol contributing to the
ligand binding are F22, K100, V112, W115, and R116. In order to
further observe the orientation of compounds and the position of
the key residues, we extracted the average structure (see Figure 9).
It can be seen from Figure 9 that compounds 23 and 49 adopt a
similar binding pose, which is surrounded by those critical
residues. Compound 23 forms three hydrogen bonds with
R90, W115, and R116. Among the three of them, R90 and

FIGURE 5 | Structure–activity relationship diagram of anthraquinone PGAM1 inhibitors.

FIGURE 6 | Surface of PGAM1 and docking pose of the native ligand
based on the alignment. The yellow and cyan carbon atoms represent the
native ligand and the docking pose, respectively.
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R116 show higher fraction in hydrogen bond analysis, while the
bond length of W115 is 3.4 Å due to weak potency. For
compound 49, there is no hydrogen bond formed between
compound 49 and key residues, which may be due to the low
occupancy.

Design New PGAM1 Inhibitors
According to the structure–activity relationships obtained from
CoMFA and CoMSIA models, seven molecules with the
anthraquinone skeleton were designed as potential PGAM1
inhibitors by introducing new substituents at different
positions of compound 35 (see Table 6). Compounds 79 and
80 were designed by adding the hydrogen bond donor in the R6

position to form the key hydrogen bond. Compounds 81, 82, and
83 were designed by introducing the substituent in the R1 position

to increase volume. Based on the contribution of the steric and
hydrogen bond donor, compounds 84 and 85 were designed.
The pIC50 values of designed compounds were predicted by
built CoMFA and CoMSIA models. As shown in Table 6, all of
the designed compounds exhibit better inhibitory activity
targeting PGAM1 than compound 35, and the predictive
values are in accordance with the summarized
structure–activity relationships.

FIGURE 7 | Fluctuation of RMSD values for two complexes during 50 ns MD simulation.

TABLE 4 | Changes of the hydrogen bond over the MD simulations.

Complex Donor Acceptor Occupancy (%) Distance (Å) Angle (°)

PGAM1-Compound 23 Arg116@N-H Ligand@O5 75.08 2.93 152.74
Arg116@NE-H Ligand@O5 59.12 3.11 144.82
Arg116@NE-H Ligand@N1 45.92 3.24 152.12
Arg90@N-H Ligand@O1 12.24 3.12 130.43

PGAM1-Compound 49 Arg116@N-H Ligand@O1 20.20 2.96 148.26
Arg116@NE-H Ligand@O1 18.28 3.05 147.35

TABLE 5 | Calculated binding energy (kcal/mol) of inhibitor binding to PGAM1.

Terms PGAM1-Compound 23 PGAM1-Compound 49

ΔEele −26.51 ± 7.59 −20.76 ± 6.23
ΔEvdw −38.68 ± 2.92 −41.63 ± 3.31
ΔGgas −65.19 ± 8.35 −62.39 ± 8.01
ΔGGB 41.62 ± 5.97 38.35 ± 5.21
ΔGGBSUR −3.82 ± 0.16 −3.81 ± 0.15
ΔGsol 37.79 ± 5.91 34.55 ± 5.14
ΔGbind −27.40 ± 4.21 −27.85 ± 3.68

ΔGgas � ΔEele + ΔEvdw.
ΔGsol � ΔGGB + ΔGGBSUR.
ΔGbind � ΔGgas + ΔGsol.

FIGURE 8 | Binding free energy decomposition plots for the two
systems.
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CONCLUSION

In the present study, a combined strategy of 3D-QSAR, molecular
docking, and molecular dynamics simulations was applied to
explore the structure–activity relationships of anthraquinone
analogs. The built CoMFA (q2 � 0.81, r2 � 0.97, r2m � 0.78,
r2pred � 0.89) andCoMSIA (q2� 0.82, r2� 0.96, r2m � 0.79, r2pred � 0.89)

models have achieved satisfactory results in terms of the statistical
results. The results show that the built models have good internal
and external predictive power. The acquired contour maps
elaborate the structure–activity relationships of anthraquinone
derivatives and successfully predict the activity of the test set.
According to the results of contour maps, the introduction of
hydrogen bond donors in Region A, the group with a large

TABLE 6 | Newly designed PGAM1 inhibitors and the corresponding predicted activity value.

Number R1 R2 R3 R4 R5 R6 X CoMFA CoMSIA

79 OH H H H OH -C�O 7.07 7.03

80 OH H H H NH2 -C�O 7.05 6.99

81 OH H H H H -C�O 7.16 6.83

82 OH H H H H -C�O 7.14 7.07

83 OH H H H H -C�O 7.10 7.03

84 OH H H H OH -C�O 7.14 6.85

85 OH H H H OH -C�O 7.13 7.00

FIGURE 9 | Average structures of PGAM1with compounds 23 (A) and 49 (B). The bonds of residues and ligands are represented in stick, and the carbon atoms of
compound 23, compound 49, and residues are represented in yellow, cyan, and white, respectively. The red dotted line represents the hydrogen bond.
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space in Region B, the hydrophilic group in Region C, and the group
with a small space in Region D could improve the activity of the
compounds. The calculated results of binding free energy suggest
that van derWaals interaction is the major contributor to the ligand
binding process. The decomposition binding free energy and
hydrogen bond show that small molecules with the
anthraquinone core mainly interact with F22, R90, K100, V112,
W115, and R116 of PGAM1. Based on these findings, 7 new
compounds with the anthraquinone core were designed, and the
predicted results show that all of the designed compounds exhibit
great inhibitory activity against PGAM1. The constructed 3D-
QSAR model will provide theoretical guidance for improving the
activity of anthraquinone derivatives and help to develop inhibitors
with potent anti-PGAM1 activity.
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Machine Learning Enables Accurate
and Rapid Prediction of Active
Molecules Against Breast Cancer
Cells
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Breast cancer (BC) has surpassed lung cancer as the most frequently occurring cancer,
and it is the leading cause of cancer-related death in women. Therefore, there is an urgent
need to discover or design new drug candidates for BC treatment. In this study, we first
collected a series of structurally diverse datasets consisting of 33,757 active and 21,152
inactive compounds for 13 breast cancer cell lines and one normal breast cell line
commonly used in in vitro antiproliferative assays. Predictive models were then
developed using five conventional machine learning algorithms, including na€ıve
Bayesian, support vector machine, k-Nearest Neighbors, random forest, and extreme
gradient boosting, as well as five deep learning algorithms, including deep neural networks,
graph convolutional networks, graph attention network, message passing neural
networks, and Attentive FP. A total of 476 single models and 112 fusion models were
constructed based on three types of molecular representations including molecular
descriptors, fingerprints, and graphs. The evaluation results demonstrate that the best
model for each BC cell subtype can achieve high predictive accuracy for the test sets with
AUC values of 0.689–0.993. Moreover, important structural fragments related to BC cell
inhibition were identified and interpreted. To facilitate the use of the model, an online
webserver called ChemBC (http://chembc.idruglab.cn/) and its local version software
(https://github.com/idruglab/ChemBC) were developed to predict whether compounds
have potential inhibitory activity against BC cells.
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1 INTRODUCTION

According to the latest data on the global cancer burden for 2020
released by the International Agency for Research on Cancer of
the World Health Organization, breast cancer (BC) surpassed
lung cancer in 2020 to become the most common cancer
worldwide. BC is the leading cause of cancer-related death
among women worldwide (Sung et al., 2021). BC consists of
the uncontrolled proliferation of mammary epithelial cells under
the action of many carcinogenic factors (Escala-Garcia et al.,
2020), including alcohol consumption, smoking, overweight, and
mammographic density. BC is classified according to the
expression of the estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2
(HER2), and Ki-67 into five subtypes: Luminal A, Luminal B
(HER2-positive or HER2-negative), HER2-positive, and triple-
negative breast cancer (TNBC) (Harbeck et al., 2013). Among
these BC subtypes, TNBC is associated with poor survival
mediated by treatment resistance, and it is the most difficult
to treat with curative intent (Liao et al., 2021). Several drugs (e.g.,
anthracyclines and trastuzumab) have been approved by the U.S.
Food and Drug Administration (FDA) for the treatment of BC;
however, issues such as poor efficacy, toxicity, adverse drug
reactions, and the emergence of drug resistance have limited
their clinical use (Brower, 2013; Cameron et al., 2017; Shah and
Gradishar, 2018; Daniyal et al., 2021; Li and Li, 2021). Therefore,
there is an urgent need to discover and develop new drugs for the
treatment of BC, particularly for TNBC.

Innovative drugs (or active molecules) can be identified
through two mainstream screening methods: phenotypic-based
screening and target-based screening. Target-based screening has
been widely used to discover new drugs for the treatment of
human diseases in both the pharmaceutical industry and
academia for more than 30 years (Chen et al., 2014; Zhang
et al., 2014; Wang et al., 2017a; Luo and Wang, 2017; Moffat
et al., 2017; Shang et al., 2017). Target-based screening has several
advantages, including simplicity, lower cost, and easy to achieve
efficient structure-activity relationship (SAR) for lead
optimization (Croston, 2017). However, there are two major
concerns associated with target-based approaches: 1) the
identification and validation of druggable targets is difficult,
and if a selected target is undruggable, it may lead
practitioners to pursue projects and compounds that fail to
translate into clinical results (Croston, 2017) and 2) the
conventional “one drug, one target” paradigm has shown
unsatisfactory clinical results in human complex diseases (e.g.,
cancer (Wermuth, 2004), Alzheimer’s disease (Wang et al., 2017b;
Albertini et al., 2021), and infectious diseases (Morphy et al.,
2004; Li et al., 2019). Phenotypic-based screening (e.g., whole-cell
activity), an original but indispensable drug screening method,
has gained attention in recent years because of the number of
discovered and approved drugs (Liu et al., 2019; Childers et al.,
2020; Berg, 2021; Quancard et al., 2021). Two influential analyses
by Swinney and Anthony in 2011 and Swinney in 2013
highlighted that the majority of first-in-class drugs (new
chemical entities, NME) approved between 1999 and 2008
were identified through phenotypic screening approaches

compared with target-based screening methods. In reality,
most FDA approvals of first-in-class drugs originated from
phenotypic screening before their precise mechanisms of
action or molecular targets were elucidated.

Although phenotype-based screening has advantages over
target-based screening for drug discovery, it is unscalable,
costly, and does not contribute to the understanding of the
mechanism of action of drugs. Several important technologies
including affinity-based approaches, functional genetic
approaches, cellular profiling approaches, and knowledge-
based (computational) approaches are currently available and
can be used to characterize the direct and indirect target space of
bioactive compounds from phenotypic screening (Schirle and
Jenkins, 2016; Sydow et al., 2019; Hughes et al., 2021).

Increased amounts of phenotypical pharmacological data on
cancer, Alzheimer’s disease, and infectious diseases have been
accumulated in the past 3 decades. Inspired by the available
phenotypic screening data, several efficient and cost-saving
computational models have been developed to accelerate the
drug design and discovery process (Zoffmann et al., 2019;
Buckner et al., 2020; Chandrasekaran et al., 2021; Malandraki-
Miller and Riley, 2021). For example, in 2020, Stokes et al. first
reported directed message passing neural network models using a
collection of 2,335 compounds for those that inhibited the growth
of Escherichia coli (phenotype screening data) and then identified
the lead compound halicin with broad-spectrum antibacterial
activity (Stokes et al., 2020). Other machine learning-based
models have been established to identify new agents against
Methicillin-Resistant Staphylococcus aureus (Wang et al.,
2016b), Mycobacterium tuberculosis (Ye et al., 2021),
Pseudomonas aeruginosa (Fields et al., 2020), Plasmodium
falciparum (Ashdown et al., 2020), and Schistosoma (Zheng
et al., 2021). In the field of anticancer drug design and
discovery, phenotypical whole cell-based screening methods
have substantially advanced our ability to identify new
anticancer drugs. In previous studies, we reported the
development of computational models using integrated NCI-
60 cell-based phenotype screening data to identify new
anticancer agents (e.g., G03 and I2) with significant inhibitory
activity against various cancer cell lines (Guo et al., 2019; Luo
et al., 2019). Although the reported integrated computational
anticancer models provided valuable data for discovering
anticancer agents, these models cannot distinguish or
selectively predict specific cancer cell subtypes (such as BC
and its subtypes). In addition, these prediction models have
not been developed into easy-to-use tools (e.g., local software
packages or online prediction platforms), which limits the use of
these models by practitioners in the field.

In the present study, we expanded our earlier efforts aimed at
developing reliable computational cell-based models to predict
cell inhibitory activity in BC and subtypes and provided a free
platform to share our models. A total of 588 cell-based models for
BC and subtypes were developed using five conventional machine
learning (ML) and five deep learning (DL) algorithms based on
three major types of molecular descriptors, fingerprints, and
graphs. We used the local outlier factor (LOF) (Breunig et al.,
2000) algorithm to evaluate the applicability domain of the best
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model for each BC cell line and applied the SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017; Lundberg et al.,
2020) algorithm to highlight significant structural fragments.
Finally, an online platform (http://chembc.idruglab.cn/) and
local software (https://github.com/idruglab/ChemBC) were
constructed based on reliable models to contribute to future
research.

2 METHODS

2.1 Dataset Collection and Preparation
All quantitative compound-cell associations (cell-based assays,
assay type: F) for available BC cell lines and normal BC cell lines
were collected from ChEMBL (Mendez et al., 2019) (downloaded
in March 2021) after the exclusion of metastatic cell lines. Each
BC cell dataset was then processed using the following steps: 1)
compounds with biological activity reported as IC50, EC50, or GI50
were kept, whereas molecules that had no bioactivity record were
removed; 2) the units of bioactivity (i.e., g/mL, M, nM) were
converted into the standard unit in μM; 3) for a molecule with
multiple bioactivity values, the final bioactivity value was
obtained by averaging the available bioactivity records; 4)
according to previous studies (Fields et al., 2020; Ye et al.,
2021), compounds with bioactivity values (e.g., IC50, EC50,
GI50) ≤10 μM were considered as active and vice versa;
molecules whose labels could not be unequivocally assigned
(e.g., activity <100 μM or activity >1 μM) were excluded from
the dataset; 5) all molecules were processed by removing salt and
optimized based on the MMFF94X force field using MOE
software (version 2018) with the default parameters. Finally,
14 cell lines with the number of active molecules (actives) and
inactive molecules (inactives) >50 were retained. Each cell-
compound dataset was randomly split into three sub-datasets:
training (80%), validation (10%), and test (10%). All datasets used
for the models described in the present study are freely available
at https://github.com/idruglab/ChemBC.

2.2 Molecular Representations Calculation
Choosing suitable molecular representations is essential for
developing acceptable and robust QSAR models. To a certain
extent, the molecular representation determines the upper limit
of the accuracy of the model. To fully characterize the chemical
information of these molecules, three distinct types of features
were calculated and used, including molecular descriptors-,
fingerprints-, and graph-based representations. RDKit
descriptors (RDKitDes), a set of 208 descriptors, were used.
Four fingerprint-based features including Morgan fingerprints
(ECFP-like, 1024-bits) (Rogers and Hahn, 2010), MACCS keys
(166-bits) (Durant et al., 2002), AtomParis fingerprints (2048-
bits) (Carhart et al., 1985), and 2D Pharmacophore Fingerprints
(PharmacoPFP, 38-bits) (Gobbi and Poppinger, 1998) were
implemented. The molecular descriptor- and fingerprint-based
representations were calculated using RDKit (Landrum, 2016)
(version: 2020.03.1).

The molecular graph (G) representative consisted of two
matrices for a given molecule: the N × N adjacency matrix A,

representing a graph structure; and theN × F node-feature matrix
X, where N is the number of nodes and F is the number of node
features. The node-feature matrix contained the following atom
features: atom type, formal charge, hybridization, number of
bound hydrogens, aromaticity, number of degrees, number of
hydrogens, chirality, and partial charge. The edge representation
contained bond type, whether the atoms in the pair are in the
same ring, whether the bond is conjugated or not, and stereo
configuration of a bond (Kearnes et al., 2016). Most of them were
encoded in a one-hot manner into a molecular graph. In this
study, molecular graph-based representations were generated
using Deepchem (version: 2.5.0). For example, the
MolGraphConvFeatureizer module was used to calculate the
molecular graphs of Attentive FP, GAT, and MPNN models,
and the ConvMolFeaturizer (Duvenaud et al., 2015) module was
used to calculate the molecular graph of the GCN model.

2.3Machine Learning Algorithms andModel
Construction
Five conventional ML algorithms (i.e., RF, SVM, XGBoost, KNN,
and NB) and five DL algorithms (i.e., DNN, GCN, GAT, MPNN,
and Attentive FP) were used to develop classification models for
discriminating actives from inactives against breast cell lines. The RF,
SVM, KNN, and NBmodels were constructed using the Scikit-learn
(Pedregosa et al., 2011) python package (https://github.com/scikit-
learn/scikit-learn, version: 0.24.1); the XGBoost (Chen and Guestrin,
2016) models were developed using the XGBoost python package
(https://github.com/dmlc/xgboost, version: 1.3.3); and other graph-
basedmodels were established using the DeepChem python package
(https://deepchem.io/). All descriptor- and fingerprint-based models
and graph-basedDLmodels were trained on CPU [Intel(R) Xeon(R)
Silver 4216 CPU @ 2.10 GHz] and GPU [NVIDIA Corporation
GV100GL (Tesla V100 PCIe 32 GB)], respectively. In addition, we
used grid search to optimize hyperparameters for each model.
Detailed these modeling methods and their hyperparameters are
briefly described as follows.

2.3.1 Random Forest
RF is a representative ensemble learning approach. It establishes a
classifier or regressor by an ensemble of individual decision trees
and makes predictions as final output by vote or by averaging
multiple decision trees (Svetnik et al., 2003). Compared with a
decision tree, RF has high prediction accuracy, good tolerance to
outliers and noise, and is not easy to overfit. To obtain the best RF
model, the following five hyperparameters were optimized:
n_estimators (10–500), criterion (“gini” and “entropy”),
max_depth (0–15), min_samples_leaf (1–10), and
max_features (“log2”, “auto” and “sqrt”).

2.3.2 Support Vector Machine
SVM is a supervised ML algorithm that can be used for both
classification and regression tasks (Zernov et al., 2003). The basic
idea underlying SVM is to find the optimal hyperplane in the
feature space that can be obtained by maximizing the boundary
between classes in N-dimensional space, which distinguishes
objects with different class labels. SVM has been widely used
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in drug discovery-relevant applications such as compound
activity and property prediction (Heikamp and Bajorath,
2014). In the training of SVM models, two hyperparameters,
Kernel coefficient (gamma, “auto”, 0.1–0.2) and penalty
parameter C of the error term (C, from 1 to 100), were optimized.

2.3.3 Extreme Gradient Boosting
XGBoost is one of the so-called ensemble learning algorithms
under the Gradient Boosting framework and has achieved state-
of-the-art ranking results in many ML competitions. It has been
widely used in molecular property/activity prediction tasks (Jiang
Z. et al., 2021; Li et al., 2021; Ye et al., 2021). Seven
hyperparameters were optimized in the training of XGBoost
models: learning_rate (0.01–0.1), gamma (0–0.1),
min_child_weight (1–3), max_depth (3–5), n_estimators
(50–100), subsample (0.8–1.0), and colsample bytree (0.8–1.0).

2.3.4 K-Nearest Neighbor
The basic idea of the KNNML algorithm (Cover and Hart, 1967)
is to identify the k training samples closest to the test samples in
the training set based on distance measures (e.g., Euclidean,
Manhattan, and Jaccard distance), and to make a prediction
based on the information of the k samples. The default
distance measure Euclidean was used in this study. The
following three hyperparameters were optimized: n_neighbors
(1–5), p (1–2), and weight function (“uniform”, “distance”).

2.3.5 Na€ıve Bayes
NB is a classic classification ML method based on Bayes’ theorem
(Duda andHart, 1973) and independent assumption of characteristic
conditions. For a given dataset, the joint probability distribution of
input and output is first learned based on the independent hypothesis
of characteristic conditions. NB is also widely used in drug discovery
practices (Wang et al., 2016b; Wang et al., 2016a; Wang et al., 2016b;
Guo et al., 2020). Two hyperparameters were optimized: alpha
(0.01–1) and binarize (0, 0.5, 0.8).

2.3.6 Deep Neural Networks
DNN is a typical DL algorithm and is essentially an artificial
neural network (McCulloch and Pitts, 1943) with multiple hidden
layers. It consists of many independent neurons, each of which
collects information from its connected neurons, and the
aggregated information is then activated through a nonlinear
activation function. The following key hyperparameters were
optimized: dropouts (0.1, 0.2, 0.5), layer_sizes (64, 128, 256,
512) and weight_decay_penalty (0.01, 0.001, 0.0001).

2.3.7 Graph Convolutional Network
GCN is a classic neural network that can use graph-structured
data as input (Kipf and Welling, 2016). It is composed of graph
convolution layers, a readout layer, fully connected layers, and an
output layer. The core idea of graph convolution is to use edge
information for aggregating node information, thereby
generating a new node representation. Various GCN
frameworks have been proposed. Duvenaud et al. (2015)
introduced a convolutional neural network that allows end-to-
end learning of prediction pipelines. In this study, we used

Duvenaud’s GCN method, and the following hyperparameters
were optimized: weight_decay (0, 10e-8, 10e-6, 10e-4),
graph_conv_layers [(64, 64), (128, 128), (256, 256)], learning
rate (0.01, 0.001, 0.0001) and dense_layer_size (64, 128, 256).

2.3.8 Graph Attention Network
Attention mechanism (AM) is one component of a neural
network architecture, which can be embedded in the DL
models to automatically learn and calculate the contribution
of input data to output data. GCN cannot complete the
inductive task, namely, dynamic graph problems, and it is
not easy for GCN to assign different learning weights to
different neighbors. GAT (Veličković et al., 2017) introduces
an AM to address the disadvantages of previous approaches
based on GCN or its approximation. The weight of the features
of adjacent nodes depends entirely on the features of the nodes
and is independent of the graph structure. In the training of the
GAT model, the following hyperparameters were optimized:
weight_decay (0, 10e-8, 10e-6, 10e-4), learning rate (0.01, 0.001,
0.0001), n_attention_heads (8, 16, 32), and dropouts (0, 0.1,
0.3, 0.5).

2.3.9 Message Passing Neural Network
MPNN, proposed by Gilmer et al. (2017), is a common graph
neural network (GNN) framework for chemical prediction tasks.
It can directly learn the molecular characteristics from the
molecular diagram and is not affected by the graph
isomorphism. In the training of the MPNN model, six
hyperparameters were optimized: weight_decay (10e-8, 10e-6,
10e-4), learning rate (0.01, 0.001, 0.0001), graph_conv_layers
[(64, 64), (128, 128), (256, 256)], num_layer_set2set (2, 3, 4),
node_out_feats (16, 32, 64), and edge_hidden_feats (16, 32, 64).

2.3.10 Attentive FP
Attentive FP, which was proposed by Xiong et al. (Xiong et al.,
2020), is currently a state-of-the-art GNN model for molecular
property prediction, and what is learned from the established
model is interpretable. It allows the model to focus on the most
relevant parts of the input by applying a graph AM. Herein, the
main hyperparameters were optimized as follows: dropout (0, 0.1,
0.5), graph_feat_size (50, 100, 200), num_timesteps (1, 2, 3),
num_layers (2, 3, 4), learning rate (0.0001, 0.001, 0.01), and
weight_decay (0, 0.01, 0.0001).

2.4 Performance Evaluation of Models
The following classification evaluation metrics were used to
evaluate the performance of the classification models:
specificity (SP/TNR), sensitivity (SE/TPR/Recall), accuracy
(ACC), F1-measure (F1 score), Matthews correlation
coefficient (MCC), the area under the receiver operating
characteristic (AUC), and Balanced accuracy (BA). These
evaluation metrics are defined as follows:

SP � TN

TN + FP
(1)

SE � TP

TP + FN
(2)
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ACC � TP + TN

TP + TN + FP + FN
(3)

F1 � 2 × Precision × Recall

Precision + Recall
� 2 × TP

2 × TP + FN + FP
(4)

MCC � TP × TN − FN × FP�������������������������������������������(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)√

(5)

BA � TPR + TNR

2
� SE + SP

2
(6)

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively.

2.5 Model Interpretation
The interpretation of complex ML models remains a challenge
because ML algorithms are often a “black box”. Accordingly, we
used a recently-developed model-agnostic interpretation framework
termed SHapley Additive exPlanation (SHAP) to interpret the
established ML models presented in this study. Inspired by the
idea of cooperative game theory, the SHAP method constructs an
additive explanatorymodel. In thismodel, all features are considered
contributors. For each prediction sample, the model generates a
predicted value, and the SHAP value is the value assigned to each
feature in the sample. The greater the SHAP value, the greater the
contribution of the corresponding feature to the ML model. The
SHAP value is calculated as follows:

yi � ybase + f(Xi1) + f(Xi2) +/ + f(Xik) (7)

where Xi represents the sample, Xij represents the j feature of this
sample, yi represents the predicted value of the model for this
sample, ybase represents the baseline of the entire model (usually
the mean of the target variable for all samples), f (Xij) is the SHAP
value of Xij. Intuitively, f (Xi1) is the contribution value of the first
feature in sample i to the final predicted value yi. When f (Xi1) > 0, it
indicates that this feature improves the predicted value and has a
positive effect. On the contrary, it shows that this feature reduces the
predicted value and has a reverse effect. Collectively, SHAP value can
reflect the influence of the feature in each sample and show the
positive and negative influence of the feature.

2.6 Model Applicability Domain
According to the principles of the Organization for Economic Co-
operation and Development (OECD), it is necessary to determine
the applicability domain (AD) of the QSAR model because of the
limited structural diversity of the molecules used in the training
dataset. From the perspective of ML, a suitable AD can prevent
the prediction deviation from being too large because the feature
range of the samples to be tested is too different from the training
dataset samples. Therefore, effective identification of Out-of-
Domain compounds is the basis for ensuring the reliability of
the establishedmodel. We used the LOF algorithm (Breunig et al.,
2000) to detect super-applicability domain compounds for the
best model for each BC or normal breast cell line. LOF is based on
the concept of local density, where the local area is given by
k-nearest neighbors, whose distance is used to estimate the
density. Regions of similar density can be identified by

comparing the local density of an object with that of its
neighbors, and points that are much lower in density than
their neighbors are considered outliers.

3 RESULTS

3.1 Dataset Analysis and Model
Construction
According to the above-predefined criteria, 14 breast-associated cell
lines were obtained and distributed as follows: 1) two Luminal A
subtypes including MCF-7 and T-47D; 2) two Luminal B subtypes
including BT-474 and MDA-MB-361; 3) three HER-2+ subtypes
includingMDA-MB-435,MDA-MB-453, and SK-BR-3; 4) six TNBC
subtypes including Bcap37, BT-20, BT-549, HS-578T, MDA-MB-
231, andMDA-MB-468; and 5) one normal breast cell line, HBL-100.
Accordingly, we selected these cell-based phenotypical datasets for
subsequent modeling. The model construction pipeline is shown in
Figure 1. Details on the 14 cell lines and their corresponding cell-
associated compound datasets are summarized in Table 1. The
compiled cell-based phenotype datasets included 34,801 unique
compounds and 54,909 cell–compound associations. Among
them, in 14 cell line datasets, 33,757 compounds were labeled as
actives and 21,152 compounds were labeled as inactives
(Supplementary Figure S1A). Supplementary Figure S1B shows
the proportions of actives and inactives in the 14 cell datasets (due to
the natural, although itmay not be the best, we did not add theoretical
decoys to deliberately balance the data), with active compounds
accounting for approximately 40–78%.

The structural diversity and chemical space of compounds in
datasets play a key role in the predictive ability of the ML models.
Bemis–Murcko scaffold analysis (Bemis and Murcko, 1996) showed
that the proportion of the scaffolds for each BC cell line dataset was
between 19.70 and 53.41% (Table 1), suggesting that the anti-BC
compounds of each cell line were structurally more diverse. In
addition, the chemical space of the compounds in each dataset
can be depicted in a two-dimensional space using molecular weight
(MW) and AlogP. As shown in Supplementary Figure S2, the
training, validation, and test set compounds were distributed over a
wide range of MW (108.10–5,714.45) and AlogP (−55.54–42.62),
demonstrating that the compounds in the modeling datasets have a
broad chemical space. Based on the three different types ofmolecular
features (i.e., molecular descriptors-, fingerprints-, and graph-based
features) and the selected ten types of ML algorithms, 476 single
models and 112 fusion models were developed. All models were
optimized based on the validation sets and selected based on the F1
score (Kc et al., 2021). The best models were selected for the
evaluation of external test datasets. The performance of the
established models is discussed in the following sections.

3.2 Performance of Descriptor-Based
Prediction Models for Breast-Associated
Cells
Firstly, 84 predictive models were constructed based on the
RDKit-descriptors using five traditional types of ML
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algorithms (KNN, NB, RF, SVM, and XGBoost) and one deep
learning DNN method. For these traditional ML methods, the
optimized RDKit-descriptors were obtained using the
SelectPercentile module (Percentile � 30) implemented in the
scikit-learn package and then used as input features to construct
models. Each model is denoted as a combination of a given
molecular representation and ML algorithm (e.g., RF:RDKitDes).
For each cell dataset and the corresponding ML methods,
hyperparameters were optimized based on the validation sets
(detailed in the Methods section), and the best set of

hyperparameters are shown in Supplementary Table S1. The
detailed performance results for descriptor-based models are
listed in Supplementary Table S2. The performance of the
models (F1 score, BA, and AUC) for the test sets is
summarized in Figure 2. Overall, most descriptor-based
models performed well in BC cell inhibitory prediction tasks,
achieving a mean F1 score and BA value > 0.5. The RF model
performed the best in all cell lines, with higher average F1 scores
(0.840 ± 0.073), BA (0.725 ± 0.073), and AUC (0.835 ± 0.067).
Meanwhile, the XGBoost model also achieved good and/or

TABLE 1 | Breast cell line datasets used in this study.

Cell lines Classification No. of compounds No. of scaffolds Scaffolds/compounds (%)

MDA-MB-435 HER-2+a 3,030 870 28.71
MDA-MB-453 HER-2+ 440 215 48.86
SK-BR-3 HER-2+ 2026 571 28.18
MCF-7 Luminal Ab 29,378 5,787 19.70
T-47D Luminal A 3,135 926 29.54
BT-474 Luminal Bc 811 308 37.98
MDA-MB-361 Luminal B 367 196 53.41
HBL-100 Normal cell line 316 110 34.81
Bcap37 TNBCd 275 73 26.55
BT-20 TNBC 292 146 50.00
BT-549 TNBC 1,182 497 42.05
HS-578T TNBC 469 215 45.84
MDA-MB-231 TNBC 11,202 2,672 23.85
MDA-MB-468 TNBC 1986 685 34.49

a*HER-2+: HER2-positive breast cancers.
bLuminal A: Luminal A breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), HER2-negative, and has low levels of the protein Ki-67,
which helps control how fast cancer cells grow.
cLuminal B: Luminal B breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), and either HER2 positive or HER2 negative with high levels
of Ki-67.
dTNBC: triple-negative breast cancer.

FIGURE 1 | Model construction pipeline.
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comparable performance results (Figure 2). The detailed best-
performing RF:RdkitDes models results were achieved in five
breast cancer cell lines (BT-20, HS-578T, MCF-7, MDA-MB-231,
and T-47D), while the XGBoost:RDKitDes models also showed
superior performance in five breast-associated cell lines (BT-474,
HBL-100, MDA-MB-453, MDA-MB-468, and SK-BR-3). The
KNN:RDKitDes models exhibited the best performance in the
Bcap37, MDA-MB-361, and MDA-MB-435 cell lines. The SVM:
RDKitDes models performed well in BT-549.

3.3 Performance of Fingerprint-Based
Prediction Models for Breast-Associated
Cells
There were 336 models developed based on four types of
fingerprints (Morgan, MACCS, Atompairs, and PharmacoPFP)
using six types of ML algorithms (KNN, NB, RF, SVM, XGBoost,
and DNN). The detailed performance results for fingerprint-
based models are listed in Supplementary Tables S3-S6. The F1,

AUC, and BA values of the test sets are shown in Figures 3, 4 and
Supplementary Figure S3. Taking the average F1 score as a point
metric into consideration, the numbers of cell lines for which each
model was identified as the best-performing are shown in
Figure 5. No model, fingerprint, or ML algorithm could be
identified as the best-performing for the 14 cell line datasets,
demonstrating that it is necessary to screen different fingerprints
and different ML algorithms for the current breast cell-associated
modeling datasets (Figures 5B–F). Although the characteristics
of the four molecular fingerprints are different, the RF models
performed better than the other five ML models against most of
the 14 cell lines (Figures 3, 4, 5A). Meanwhile, the Morgan
fingerprint represents the best molecular feature representation
because the ML models based on Morgan fingerprints achieved
the best results for these modeling datasets (Table 2). Global
analysis of four fingerprint-based models also demonstrated that
RF methods can achieve a better performance than other ML
methods, with the highest average F1 score (0.848 ± 0.006), BA
(0.750 ± 0.013), and AUC (0.853 ± 0.009).

FIGURE 2 | Performance of descriptor-based BC prediction models. (A) F1 scores of descriptor-based models. (B) AUC results of descriptor-based models. (C)
BC results of descriptor-based models.
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3.4 Performance of Graph-Based Prediction
Models for Breast-Associated Cells

Compared with the traditional pre-tailored molecular descriptors
and/or fingerprints, the key feature of GNN is its capacity to
automatically learn task-specific molecular representations using
graph convolutions. The SOAT accuracies of GNN models and
their variants (e.g., GCN, MPNN, GAT, and Attentive FP) have
been reported in various molecular property prediction tasks (Wu

et al., 2018; Yang et al., 2019; Xiong et al., 2020). Therefore, 56
molecular graph-based models were established using four types of
DL algorithms, including GCN, MPNN, GAT, and Attentive FP.
The detailed performance results of molecular graph-basedmodels
are listed in Supplementary Table S7. As shown in Figure 6, the
Attentive FP models exhibited the overall best performance
compared with other GNN methods, with a relatively higher
average F1 score (0.831 ± 0.070) and AUC (0.809 ± 0.086). The
BA results are shown in Supplementary Figure S4. Figure 6C

FIGURE 3 | Performance of fingerprint-based BC prediction models. (A) F1 scores of the AtomPairs-based models. (B) F1 scores of the MACCS-based models.
(C) F1 scores of the Morgan-based models. (D) F1 scores of the PharmacoPFP-based models.
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shows that the Attentive FPmodels performed the best in six breast
cancer cell lines including Bcap37, MCF-7, MDA-MB-453, MDA-
MB-468, SK-BR-3, and T-47D,making it the most frequent choice.

The GCN models showed the best performance in four breast cell
lines (BT-549, HBL-100, MDA-MB-231, and MDA-MB-361), the
MPNNmodels performed the best in BT-20 and BT-474 cell lines,

FIGURE 4 | Performance of fingerprint-based BC prediction models. (A) AUC results of the AtomPairs-based models. (B) AUC results of the MACCS-based
models. (C) AUC results of the Morgan-based models. (D) AUC results of the PharmacoPFP-based models.
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and the GAT models performed the best in HS-578T and MDA-
MB-435 cell lines.

One advantage of the DL model is its capacity for multi-
task model building for attribute-related datasets to improve
the accuracy of the single-task model (Li et al., 2018).
Therefore, the multi-task models were trained by the entire
13 breast cancer cell-compound datasets based on the features
of the Morgan fingerprints using DNN and molecular graphs

using GCN, Attentive FP. Supplementary Table S8 shows
that the AUC of the multi-task models was not better than that
of the single-task models. Further data point distribution
analysis found that the number of common compounds
shared by 13 cell line datasets was small (only 12
molecules, Supplementary Figure S5), which explains the
poor performance results (Supplementary Table S8) of the
multi-task models.

FIGURE 5 | (A) Summary of the optimal models for each fingerprint-based feature. (B) The best models among various fingerprint-based models for different kinds
of breast cell lines. The optimal models based on (C) AtomPairs, (D) MACCS, (E) Morgan, and (F) PharmacoPFP for different subtypes of breast cell lines.
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3.5 The Optimal Model for Each Breast Cell
Line and Further Validation
Comparison of the established molecular descriptor-, fingerprint-
, and graph-basedmodels showed that Eq. 1 the RF algorithm had
a better performance capability than the other five ML methods,
with higher average metric values of F1 score, BA, and AUC

(Table 2) in both descriptor- and fingerprint-based models, while
XGBoost also achieved comparable results for these 14 modeling
datasets (Table 2 and Figure 5A); 2) among the established
56 graph-based models, Attentive FP architecture outperformed
the other three deep graph learning approaches (i.e., GCN,
MPNN, and GAT) on average across all 14 datasets (Table 2);

TABLE 2 | Optimal models in different datasets and the evaluation of test datasets.

Molecular features Algorithms F1 scoresj BAk AUCl

Morgan DNNa 0.832 ± 0.080 0.735 ± 0.058 0.822 ± 0.078
KNNb 0.836 ± 0.084 0.771 ± 0.063 0.821 ± 0.069
NBc 0.775 ± 0.094 0.720 ± 0.079 0.782 ± 0.078
RFd 0.846 ± 0.087 0.754 ± 0.068 0.852 ± 0.072
SVMe 0.843 ± 0.084 0.747 ± 0.067 0.838 ± 0.072
XGBoostf 0.832 ± 0.076 0.728 ± 0.062 0.813 ± 0.079
Mean 0.827 ± 0.026 0.743 ± 0.019 0.821 ± 0.024

MACCS DNN 0.831 ± 0.076 0.737 ± 0.060 0.822 ± 0.067
KNN 0.846 ± 0.050 0.759 ± 0.056 0.798 ± 0.067
NB 0.723 ± 0.077 0.637 ± 0.073 0.722 ± 0.103
RF 0.853 ± 0.066 0.761 ± 0.064 0.860 ± 0.067
SVM 0.851 ± 0.064 0.755 ± 0.059 0.830 ± 0.068
XGBoost 0.842 ± 0.074 0.760 ± 0.056 0.842 ± 0.068
Mean 0.824 ± 0.050 0.735 ± 0.049 0.812 ± 0.049

AtomPairs DNN 0.853 ± 0.050 0.759 ± 0.057 0.842 ± 0.063
KNN 0.851 ± 0.037 0.781 ± 0.051 0.828 ± 0.064
NB 0.678 ± 0.099 0.668 ± 0.083 0.732 ± 0.085
RF 0.851 ± 0.066 0.753 ± 0.054 0.858 ± 0.059
SVM 0.847 ± 0.062 0.737 ± 0.069 0.829 ± 0.066
XGBoost 0.840 ± 0.074 0.755 ± 0.041 0.837 ± 0.075
Mean 0.820 ± 0.070 0.742 ± 0.039 0.821 ± 0.045

Molecular Graph Attentive FP 0.831 ± 0.070 0.721 ± 0.086 0.809 ± 0.087
GATg 0.810 ± 0.086 0.695 ± 0.088 0.774 ± 0.075
GCNh 0.818 ± 0.076 0.710 ± 0.091 0.798 ± 0.100
MPNNi 0.821 ± 0.080 0.696 ± 0.109 0.781 ± 0.090
Mean 0.820 ± 0.009 0.708 ± 0.011 0.793 ± 0.015

PharmacoPFP DNN 0.824 ± 0.072 0.705 ± 0.091 0.803 ± 0.105
KNN 0.840 ± 0.060 0.755 ± 0.075 0.782 ± 0.070
NB 0.705 ± 0.088 0.619 ± 0.075 0.680 ± 0.080
RF 0.840 ± 0.064 0.731 ± 0.070 0.840 ± 0.060
SVM 0.835 ± 0.068 0.722 ± 0.064 0.823 ± 0.059
XGBoost 0.838 ± 0.049 0.727 ± 0.072 0.825 ± 0.058
Mean 0.814 ± 0.054 0.710 ± 0.047 0.792 ± 0.059

RDKit DNN 0.817 ± 0.063 0.671 ± 0.089 0.782 ± 0.070
KNN 0.831 ± 0.053 0.736 ± 0.065 0.778 ± 0.068
NB 0.753 ± 0.068 0.605 ± 0.083 0.672 ± 0.108
RF 0.840 ± 0.073 0.725 ± 0.073 0.835 ± 0.067
SVM 0.805 ± 0.091 0.656 ± 0.086 0.761 ± 0.077
XGBoost 0.836 ± 0.084 0.740 ± 0.071 0.839 ± 0.060
Mean 0.814 ± 0.032 0.689 ± 0.054 0.778 ± 0.061

aDNN: Deep neural networks.
bKNN: K-Nearest Neighbor.
cNB: Na€ıve Bayesian.
dRF: Random forest.
eSVM: Support vector machine.
fXGBoost: Extreme gradient boosting.
gGCN: Graph convolutional networks.
hGAT: Graph attention network.
iMPNN: Message passing neural networks.
jF1 scores: F1-measure.
kBA: Balanced accuracy.
lAUC: Area under the receiver operating characteristics curve.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 79653411

He et al. Prediction of Breast Cells Inhibition

76

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


and 3) the performance of molecular fingerprint-based models is
generally better than that of both descriptor- and graph-based
models at least in these 14 datasets (Table 2), implying that graph
DL methods do not achieve better results than the traditional ML
learning methods (especially for the two most efficient
algorithms, XGBoost and RF), which is consistent with a
recent systematic comparison study (Jiang D. et al., 2021).

According to the metrics of F1 score, BA, and AUC from
the test sets, the optimal in silico predictive model for each
breast cell line is listed in Supplementary Table S9.
Fingerprint-based RF models performed the best because
they ranked first in eight of 14 cell lines. Fingerprint-based
XGBoost and SVM models are tied for second place and
performed best in two of 14 breast cell lines each. For
example, the RF:Morgan model achieved higher prediction
results against MDA-MB-231 and T-47D breast cancer cell
lines, with ACC values of 83.7 and 84.0%, respectively, and
AUC values of 0.904 and 0.885, respectively. The lack of

selectivity for cancer cells rather than normal cells is one of
the main factors that limit the development of anticancer
drugs for clinical use (Dy and Adjei, 2013; Guo et al., 2020).
For one normal breast cell line (HBL-100), the RF:Morgan
model also showed good prediction results, with ACC and
AUC values of 83.9%, and 0.823, respectively, suggesting that
this model can be used to detect whether a given molecule
selectively inhibits breast cancer cells over normal human
breast cells.

Model fusion may improve the classification prediction
performance of a single model by combining the
classification prediction results from the corresponding
multiple models. Both voting and stacking methods were
used in this study for model fusion. As shown in Table 2,
Morgan fingerprint-based models performed the best in
different kinds of fingerprint-based models with an average
F1 score of 0.827 ± 0.026, and RF, XGBoost, and SVM
algorithms performed best in most of the datasets (Figures

FIGURE 6 | Performance of graph-based BC prediction models. (A) F1 scores of graph-based models. (B) AUC results of graph-based models. (C) The optimal
models based on molecular graph for different subtypes of breast cell lines.
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5A,E). Therefore, RF, SVM, and XGBoost models for model
fusion were applied based onMorgan fingerprints. A total of 112
fusion models were established, and detailed performance

results for these voting and stacking models are listed in
Supplementary Tables S10, S11. As shown in
Supplementary Figure S6, the average F1 scores of voting or

FIGURE 7 | The performance of 10-fold cross-validation results in RF:Morgan and XGBoost:Morgan models. (A–D) F1 scores, AUC, BA, and ACC results in RF:
Morgan models. (E–H) F1 scores, AUC, BA, and ACC results in XGBoost:Morgan models.
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stacking models were similar in each dataset. In all the datasets
of breast cell lines, the RF + XGBoost voting model showed the
best average performance among fusion models, with average
F1, BA, and AUC of 0.849 ± 0.066, 0.749 ± 0.075, and 0.845 ±
0.075, respectively. The fusion models based on Morgan

fingerprints were slightly but not significantly better than the
single models.

To validate the stability and reliability of the models
presented, 10-fold cross-validation and 10 different random
seeds of data were used to retrain the models based on the

FIGURE 8 | Based on the top 20 most important features of the RF:Morgan model in MDA-MB-231, (A) the SHAP values for each molecular substructure, and (B)
the mean of the absolute value of the SHAP value for each molecular substructure.
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combination of Morgan fingerprints and two ML algorithms
(RF and XGBoost). The performance of 10-fold cross-validation
classification models is summarized in Supplementary Table
S12 and Figure 7. Overall, all RF:Morgan models performed
well, showing high F1 scores of 0.582–0.914, AUC values of
0.704–0.960, and ACC values of 0.685–0.878. XGBoost:Morgan
models showed a similar trend in the 10-fold cross-validation

experiment. In 14 cell line datasets, both RF:Morgan and XGBoost:
Morgan models consistently exhibited better performance with
different seeds (Supplementary Figure S7), and the performance
showed comparable or smaller variation compared with the
previous models based on a specific random seed. Taken
together, these results demonstrate that the models presented in
this study show stability and reliability. Y-scrambling testing was

FIGURE 9 | Important molecular substructures of the RF:Morgan model in MDA-MB-231 and the chemical structural of paclitaxel.
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used to demonstrate that the results are not attributed to chance
correlation. As illustrated in Supplementary Figure S8, S9, the F1
scores, BA, and AUC values of the RF:Morgan and XGBoost:
Morgan models were significantly higher than those of any of the
Y-scrambled models, which confirmed that the results were not
chance correlations.

3.6 Interpretation of the Optimal Model for
Each Breast Cell Line
To gain a deeper understanding of the established models, we used
the SHAP method to calculate the contribution of important
structural fragments. Because models based on the combination
of the RF and Morgan fingerprints had relatively high predictive
performance, we used TreeExplainer, a tree explanation method in
SHAP, to calculate the optimal local explanation for these RF:
Morgan models. In the MDA-MB-231 cell line as an example,
the top 20 favorable and unfavorable structural fragments forMDA-
MB-231 inhibition were determined based on the SHAP value and
are displayed in Figures 8, 9. As shown in Figure 8A, the feature
values are represented by different colors (red to blue). Redder points
indicate larger feature values. Morgan fingerprints only contain 1
(with this structural fragment, red) and 0 (without this structural
fragment, blue). For Morgan 128, Morgan 926, and Morgan 314 in
Figure 8A, most of the red points are in the positive value part and
most of the blue points are in the negative value part, indicating that
the predicted molecules with these fragments will have a higher
probability of anti-BC activity. On the contrary, Morgan 784 and
Morgan 171 have more red points in the negative value part,
indicating that high probabilities are judged by the model as
having no inhibitory effect on the MDA-MB-231 cell line. Taking
paclitaxel (a typical drug for BC treatment) as an example, it contains

Morgan 128, Morgan 926, and Morgan 314 but does not contain
Morgan 784 and Morgan 171, implying that it will be predicted to
have an inhibitory effect on theMDA-MB-231 cell line. In fact, this is
consistent with actual predictions and experimental results. The top
20 important structural fragments for other breast cell lines are
shown in Supplementary Figure S10–S35, which may facilitate
anti-BC lead compound selection and optimization.

3.7 Model AD
To further evaluate the generalization capability of our models, the
LOF algorithm was applied to detect super-applicability domain
compounds in the datasets. We first reduced the Morgan
fingerprints of 1,024 bits to two dimensions by Principal
Component Analysis in Scikit-learn and then used the LOF
module for calculation. As shown in Supplementary Figure
S36, there are fewer red points, which indicates that each
dataset has fewer super-applicability domain compounds.
Therefore, selecting compounds that are similar to those in the
datasets of this study may result in higher prediction accuracy
when using the present model. The molecular (feature) spaces can
be used to define the applicability domain, thus, a simpler way to
determine whether a molecule fits the models of this study is to
directly calculate the molecular weight of the molecule. Since the
molecular weight range of the molecules in this study is
108.10–5,714.45, we recommend using molecules in this range
for prediction, which can make the prediction more accurate.

3.8 Webserver and Local Version Software
for the Prediction of Anti-BC Agents
To facilitate the use of these models by experts and non-
experts in the field, we built a web-based online forecasting

FIGURE 10 | Website schematic diagram of bioactivity prediction. (A–F) represents prediction of paclitaxel inhibition for MDA-MB-231 cell line. (G–L) represents
prediction of paclitaxel inhibition against HBL-100 cell line.
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system called ChemBC (http://chembc.idruglab.cn/). To
expand the AD threshold of the established model, we
retained models for each breast cell line according to the
combination of Morgan fingerprint and RF using the entire
dataset, and then implemented these retained models into
ChemBC and its local version. According to the 10-fold
cross-validation (AUC � 0.780–0.928, ACC � 0.714–0.880),
the retrained models for 14 breast cell line datasets showed
excellent predictive performance. ChemBC was developed
based on the Django framework using the Python package.
The main functional module of ChemBC is prediction
(Figure 10) in which users can upload and/or online draw a
structure to easily and quickly predict the inhibitory activity
against 13 breast cancer cell lines and one normal breast cell
line. In addition, a local version executable software (https://
github.com/idruglab/ChemBC) was developed to perform
large-scale VS screening.

Taking paclitaxel as an example, it has a predicted score of 1.0 in
the MDA-MB-231 model, proving that it has a strong inhibitory
effect on the MDA-MB-231 cell line. Meanwhile, it has a predicted
score of 0.8 in the normal breast cell line (HBL-100), suggesting that
it is also toxic to the normal breast cell. Therefore, the ChemBC
webserver can not only predict whether the compound has an
inhibitory effect on breast cancer cells but also predict whether
the compound is toxic to one normal breast cell.

4 CONCLUSION

In this study, we collected datasets of phenotypic compound-
cell association bioactivity toward 13 breast cancer cell lines
and one normal breast cell line and constructed 588 models
based on three molecular representatives, including molecular
descriptors, fingerprints, and graphs using five conventional
ML and five DL algorithms. Compared with these established
models, the performance of RF:Morgan models was superior
to that of the other models based on molecular descriptors
and graphs. Based on RF:Morgan models, the important
favorable and unfavorable fragments for each breast cell
line generated using SHAP algorithms will be helpful for
lead optimization or the design of new agents with better
anti-BC activity. Although some fusion models based on
voting and stacking methods showed better performance
than single models, the observed improvement was minor.
Finally, the online platform ChemBC and its local version

software were developed based on well-established models,
which could contribute to research aimed at designing and
discovering new anti-BC agents. With the growth of
compound toxicity data for BC and normal breast cell
lines, we will add more prediction models in future studies.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

LW conceived and designed the experiments. SH, DZ, YL, and
HC collected and processed the data, implemented the algorithm
and created the web-server. SH performed the analysis and wrote
the manuscript. LW offered support and critically revised the
manuscript. JZ and YC are cooperators. All authors have read and
agreed to the published version of the manuscript.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China (Nos 81973241 and 82060625), the Natural
Science Foundation ofGuangdong Province (2020A1515010548), the
Guizhou Provincial Natural Science Foundation ((2020)1Z073), and
the National Science Foundation of Health and Family planning
Commission of Guizhou Province (gzwjkj2019-1-178).

ACKNOWLEDGMENTS

We acknowledge the use of computational resources from the
SCUT supercomputing platform.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2021.796534/
full#supplementary-material

REFERENCES

Albertini, C., Salerno, A., de Sena Murteira Pinheiro, P., and Bolognesi, M. L.
(2021). From Combinations to Multitarget-Directed Ligands: A Continuum in
Alzheimer’s Disease Polypharmacology. Med. Res. Rev. 41 (5), 2606–2633.
doi:10.1002/med.21699

Ashdown, G. W., Dimon, M., Fan, M., Sánchez-Román Terán, F., Witmer, K.,
Gaboriau, D. C. A., et al. (2020). A Machine Learning Approach to Define
Antimalarial Drug Action from Heterogeneous Cell-Based Screens. Sci. Adv. 6
(39), eaba9338. doi:10.1126/sciadv.aba9338

Bemis, G.W., andMurcko,M. A. (1996). The Properties of KnownDrugs. 1. Molecular
Frameworks. J. Med. Chem. 39 (15), 2887–2893. doi:10.1021/jm9602928

Berg, E. L. (2021). The Future of Phenotypic Drug Discovery. Cell Chem. Biol. 28
(3), 424–430. doi:10.1016/j.chembiol.2021.01.010

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). “Lof, SIGMOD
Rec.,” in proceedings of the 2000 ACM SIGMOD international conference on
Management of data, 93–104. doi:10.1145/335191.335388

Brower, V. (2013). Cardiotoxicity Debated for Anthracyclines and Trastuzumab in
Breast Cancer. J. Natl. Cancer Inst. 105 (12), 835–836. doi:10.1093/jnci/djt161

Buckner, F. S., Buchynskyy, A., Nagendar, P., Patrick, D. A., Gillespie, J. R., Herbst,
Z., et al. (2020). Phenotypic Drug Discovery for Human African

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 79653417

He et al. Prediction of Breast Cells Inhibition

82

http://chembc.idruglab.cn/
https://github.com/idruglab/ChemBC
https://github.com/idruglab/ChemBC
https://www.frontiersin.org/articles/10.3389/fphar.2021.796534/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2021.796534/full#supplementary-material
https://doi.org/10.1002/med.21699
https://doi.org/10.1126/sciadv.aba9338
https://doi.org/10.1021/jm9602928
https://doi.org/10.1016/j.chembiol.2021.01.010
https://doi.org/10.1145/335191.335388
https://doi.org/10.1093/jnci/djt161
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Trypanosomiasis: A Powerful Approach. Trop. Med. Infect. Dis. 5 (1), 23.
doi:10.3390/tropicalmed5010023

Cameron, D., Piccart-Gebhart, M. J., Gelber, R. D., Procter, M., Goldhirsch, A., de
Azambuja, E., et al. (2017). 11 Years’ Follow-Up of Trastuzumab after Adjuvant
Chemotherapy in HER2-Positive Early Breast Cancer: Final Analysis of the
HERceptin Adjuvant (HERA) Trial. Lancet 389 (10075), 1195–1205.
doi:10.1016/S0140-6736(16)32616-2

Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985). Atom Pairs as
Molecular Features in Structure-Activity Studies: Definition and Applications.
J. Chem. Inf. Comput. Sci. 25 (2), 64–73. doi:10.1021/ci00046a002

Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D., and Carpenter, A. E. (2021).
Image-based Profiling for Drug Discovery: Due for a Machine-Learning
Upgrade. Nat. Rev. Drug Discov. 20 (2), 145–159. doi:10.1038/s41573-020-
00117-w

Chen, L., Wang, L., Gu, Q., and Xu, J. (2014). An In Silico Protocol for Identifying
mTOR Inhibitors from Natural Products. Mol. Divers. 18 (4), 841–852.
doi:10.1007/s11030-014-9543-5

Chen, T., and Guestrin, C. (2016). “Xgboost: A Scalable Tree Boosting System,” in
proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 785–794.

Childers, W. E., Elokely, K. M., and Abou-Gharbia, M. (2020). The Resurrection of
Phenotypic Drug Discovery. ACS Med. Chem. Lett. 11 (10), 1820–1828.
doi:10.1021/acsmedchemlett.0c00006

Cover, T., and Hart, P. (1967). Nearest Neighbor Pattern Classification. IEEE
Trans. Inform. Theor. 13 (1), 21–27. doi:10.1109/TIT.1967.1053964

Croston, G. E. (2017). The Utility of Target-Based Discovery. Expert Opin. Drug
Discov. 12 (5), 427–429. doi:10.1080/17460441.2017.1308351

Daniyal, A., Santoso, I., Gunawan, N. H. P., Barliana, M. I., and Abdulah, R. (2021).
Genetic Influences in Breast Cancer Drug Resistance, Bctt. Breast cancer 13,
59–85. doi:10.2147/BCTT.S284453

Duda, R. O., and Hart, P. E. (1973). Pattern Classification and Scene Analysis. New
York: Wiley.

Durant, J. L., Leland, B. A., Henry, D. R., and Nourse, J. G. (2002). Reoptimization
of MDL Keys for Use in Drug Discovery. J. Chem. Inf. Comput. Sci. 42 (6),
1273–1280. doi:10.1021/ci010132r

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,
Hirzel, T., Aspuru-Guzik, A., et al. (2015). “Convolutional Networks on Graphs
for Learning Molecular Fingerprints,” in 29th Annual Conference on Neural
Information Processing Systems. doi:10.1021/ci010132r

Dy, G. K., and Adjei, A. A. (2013). Understanding, Recognizing, and Managing
Toxicities of Targeted Anticancer Therapies. CA Cancer J. Clin. 63 (4), 249–279.
doi:10.3322/caac.21184

Escala-Garcia, M., Morra, A., Canisius, S., Chang-Claude, J., Kar, S., Zheng, W.,
et al. (2020). Breast Cancer Risk Factors and Their Effects on Survival: a
Mendelian Randomisation Study. BMC Med. 18 (1), 327. doi:10.1186/s12916-
020-01797-2

Fields, F. R., Freed, S. D., Carothers, K. E., Hamid, M. N., Hammers, D. E., Ross,
J. N., et al. (2020). Novel Antimicrobial Peptide Discovery Using Machine
Learning and Biophysical Selection ofMinimal Bacteriocin Domains.Drug Dev.
Res. 81 (1), 43–51. doi:10.1002/ddr.21601

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
“Neural Message Passing for Quantum Chemistry,” in International
Conference on Machine Learning: PMLR, 1263–1272.

Gobbi, A., and Poppinger, D. (1998). Genetic Optimization of Combinatorial
Libraries. Biotechnol. Bioeng. 61 (1), 47–54. doi:10.1002/(sici)1097-
0290(199824)61:1<47:aid-bit9>3.0.co;2-z

Guo, Q., Luo, Y., Zhai, S., Jiang, Z., Zhao, C., Xu, J., et al. (2019). Discovery,
Biological Evaluation, Structure-Activity Relationships and Mechanism of
Action of Pyrazolo[3,4-B]pyridin-6-One Derivatives as a New Class of
Anticancer Agents. Org. Biomol. Chem. 17 (25), 6201–6214. doi:10.1039/
c9ob00616h

Guo, Q., Zhang, H., Deng, Y., Zhai, S., Jiang, Z., Zhu, D., et al. (2020). Ligand- and
Structural-Based Discovery of Potential Small Molecules that Target the
Colchicine Site of Tubulin for Cancer Treatment. Eur. J. Med. Chem. 196,
112328. doi:10.1016/j.ejmech.2020.112328

Harbeck, N., Thomssen, C., and Gnant, M. (2013). St. Gallen 2013: Brief
Preliminary Summary of the Consensus Discussion. Breast Care (Basel) 8
(2), 102–109. doi:10.1159/000351193

Heikamp, K., and Bajorath, J. (2014). Support Vector Machines for Drug
Discovery. Expert Opin. Drug Discov. 9 (1), 93–104. doi:10.1517/
17460441.2014.866943

Hughes, R. E., Elliott, R. J. R., Dawson, J. C., and Carragher, N. O. (2021). High-
content Phenotypic and Pathway Profiling to advance Drug Discovery in
Diseases of Unmet Need. Cel Chem. Biol. 28 (3), 338–355. doi:10.1016/
j.chembiol.2021.02.015

Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang, Z., et al. (2021a). Could
Graph Neural Networks Learn Better Molecular Representation for Drug
Discovery? A Comparison Study of Descriptor-Based and Graph-Based
Models. J. Cheminform 13 (1), 12. doi:10.1186/s13321-020-00479-8

Jiang, Z., Xu, J., Yan, A., and Wang, L. (2021b). A Comprehensive Comparative
Assessment of 3D Molecular Similarity Tools in Ligand-Based Virtual
Screening. Brief. Bioinf 22 (6), bbab231. doi:10.1093/bib/bbab231

Kc, G. B., Bocci, G., Verma, S., Hassan, M. M., Holmes, J., Yang, J. J., et al. (2021). A
Machine Learning Platform to Estimate Anti-SARS-CoV-2 Activities. Nat.
Mach. Intell. 3 (6), 527–535. doi:10.1038/s42256-021-00335-w

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. (2016). Molecular
Graph Convolutions: Moving beyond Fingerprints. J. Comput. Aided Mol. Des.
30 (8), 595–608. doi:10.1007/s10822-016-9938-8

Kipf, T. N., and Welling, M. (2016). Semi-supervised Classification with Graph
Convolutional Networks. arXiv:1609.02907.

Landrum, G. (2016). RDKit: Open-Source Cheminformatics Software, 2016.
Available: http://www.rdkit.org.

Li, S., Ding, Y., Chen, M., Chen, Y., Kirchmair, J., Zhu, Z., et al. (2021). HDAC3i-
Finder: A Machine Learning-based Computational Tool to Screen for HDAC3
Inhibitors. Mol. Inf. 40 (3), 2000105. doi:10.1002/minf.202000105

Li, X., Xu, Y., Lai, L., and Pei, J. (2018). Prediction of Human Cytochrome P450
Inhibition Using a Multitask Deep Autoencoder Neural Network. Mol. Pharm.
15 (10), 4336–4345. doi:10.1021/acs.molpharmaceut.8b00110

Li, Y., and Li, Z. (2021). Potential MechanismUnderlying the Role of Mitochondria
in Breast Cancer Drug Resistance and its Related Treatment Prospects. Front.
Oncol. 11, 629614. doi:10.3389/fonc.2021.629614

Li, Y., Zhao, C., Zhang, J., Zhai, S., Wei, B., and Wang, L. (2019). HybridMolDB: A
Manually Curated Database Dedicated to Hybrid Molecules for Chemical
Biology and Drug Discovery. J. Chem. Inf. Model. 59 (10), 4063–4069.
doi:10.1021/acs.jcim.9b00314

Liao, M., Zhang, J., Wang, G., Wang, L., Liu, J., Ouyang, L., et al. (2021). Small-
Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation
and Future Directions. J. Med. Chem. 64 (5), 2382–2418. doi:10.1021/
acs.jmedchem.0c01180

Liu, P., Li, H., Li, S., and Leung, K. S. (2019). Improving Prediction of Phenotypic
Drug Response on Cancer Cell Lines Using Deep Convolutional Network. BMC
Bioinformatics 20 (1), 408. doi:10.1186/s12859-019-2910-6

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al.
(2020). From Local Explanations to Global Understanding with Explainable AI
for Trees. Nat. Mach. Intell. 2 (1), 56–67. doi:10.1038/s42256-019-0138-9

Lundberg, S. M., and Lee, S. I. (2017). “A Unified Approach to Interpreting Model
Predictions,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS’17).

Luo, Y., and Wang, L. (2017). Discovery and Development of ATP-Competitive
mTOR Inhibitors Using Computational Approaches. Curr. Pharm. Des. 23
(29), 4321–4331. doi:10.2174/1381612823666170710150604

Luo, Y., Zeng, R., Guo, Q., Xu, J., Sun, X., andWang, L. (2019). Identifying a Novel
Anticancer Agent with Microtubule-Stabilizing Effects through Computational
Cell-Based Bioactivity Prediction Models and Bioassays. Org. Biomol. Chem. 17
(6), 1519–1530. doi:10.1039/c8ob02193g

Malandraki-Miller, S., and Riley, P. R. (2021). Use of Artificial Intelligence to
Enhance Phenotypic Drug Discovery. Drug Discov. Today 26 (4), 887–901.
doi:10.1016/j.drudis.2021.01.013

McCulloch, W. S., and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in
Nervous Activity. Bull. Math. Biophys. 5 (4), 115–133. doi:10.1007/bf02478259

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., et al.
(2019). ChEMBL: towards Direct Deposition of Bioassay Data. Nucleic Acids
Res. 47 (D1), D930–D940. doi:10.1093/nar/gky1075

Moffat, J. G., Vincent, F., Lee, J. A., Eder, J., and Prunotto, M. (2017). Opportunities
and Challenges in Phenotypic Drug Discovery: an Industry Perspective. Nat.
Rev. Drug Discov. 16 (8), 531–543. doi:10.1038/nrd.2017.111

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 79653418

He et al. Prediction of Breast Cells Inhibition

83

https://doi.org/10.3390/tropicalmed5010023
https://doi.org/10.1016/S0140-6736(16)32616-2
https://doi.org/10.1021/ci00046a002
https://doi.org/10.1038/s41573-020-00117-w
https://doi.org/10.1038/s41573-020-00117-w
https://doi.org/10.1007/s11030-014-9543-5
https://doi.org/10.1021/acsmedchemlett.0c00006
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1080/17460441.2017.1308351
https://doi.org/10.2147/BCTT.S284453
https://doi.org/10.1021/ci010132r
https://doi.org/10.1021/ci010132r
https://doi.org/10.3322/caac.21184
https://doi.org/10.1186/s12916-020-01797-2
https://doi.org/10.1186/s12916-020-01797-2
https://doi.org/10.1002/ddr.21601
https://doi.org/10.1002/(sici)1097-0290(199824)61:1<47:aid-bit9>3.0.co;2-z
https://doi.org/10.1002/(sici)1097-0290(199824)61:1<47:aid-bit9>3.0.co;2-z
https://doi.org/10.1039/c9ob00616h
https://doi.org/10.1039/c9ob00616h
https://doi.org/10.1016/j.ejmech.2020.112328
https://doi.org/10.1159/000351193
https://doi.org/10.1517/17460441.2014.866943
https://doi.org/10.1517/17460441.2014.866943
https://doi.org/10.1016/j.chembiol.2021.02.015
https://doi.org/10.1016/j.chembiol.2021.02.015
https://doi.org/10.1186/s13321-020-00479-8
https://doi.org/10.1093/bib/bbab231
https://doi.org/10.1038/s42256-021-00335-w
https://doi.org/10.1007/s10822-016-9938-8
http://www.rdkit.org
https://doi.org/10.1002/minf.202000105
https://doi.org/10.1021/acs.molpharmaceut.8b00110
https://doi.org/10.3389/fonc.2021.629614
https://doi.org/10.1021/acs.jcim.9b00314
https://doi.org/10.1021/acs.jmedchem.0c01180
https://doi.org/10.1021/acs.jmedchem.0c01180
https://doi.org/10.1186/s12859-019-2910-6
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.2174/1381612823666170710150604
https://doi.org/10.1039/c8ob02193g
https://doi.org/10.1016/j.drudis.2021.01.013
https://doi.org/10.1007/bf02478259
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1038/nrd.2017.111
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Morphy, R., Kay, C., and Rankovic, Z. (2004). From Magic Bullets to Designed
Multiple Ligands. Drug Discov. Today 9 (15), 641–651. doi:10.1016/S1359-
6446(04)03163-0

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,
2825–2830.

Quancard, J., Bach, A., Cox, B., Craft, R., Finsinger, D., Guéret, S. M., et al. (2021).
The European Federation for Medicinal Chemistry and Chemical Biology
(EFMC) Best Practice Initiative: Phenotypic Drug Discovery.
ChemMedChem 16 (11), 1736–1739. doi:10.1002/cmdc.202100041

Rogers, D., and Hahn, M. (2010). Extended-connectivity Fingerprints. J. Chem. Inf.
Model. 50 (5), 742–754. doi:10.1021/ci100050t

Schirle, M., and Jenkins, J. L. (2016). Identifying Compound Efficacy Targets in
Phenotypic Drug Discovery. Drug Discov. Today 21 (1), 82–89. doi:10.1016/
j.drudis.2015.08.001

Shah, A. N., and Gradishar, W. J. (2018). Adjuvant Anthracyclines in Breast
Cancer: What Is Their Role. Oncologist 23 (10), 1153–1161. doi:10.1634/
theoncologist.2017-0672

Shang, J., Dai, X., Li, Y., Pistolozzi, M., andWang, L. (2017). HybridSim-VS: aWeb
Server for Large-Scale Ligand-Based Virtual Screening Using Hybrid Similarity
Recognition Techniques. Bioinformatics 33 (21), 3480–3481. doi:10.1093/
bioinformatics/btx418

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M.,
et al. (2020). A Deep Learning Approach to Antibiotic Discovery. Cell 180 (2),
688–702.e13. doi:10.1016/j.cell.2020.01.021

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
MortalityWorldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P.
(2003). Random forest: a Classification and Regression Tool for Compound
Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 43 (6),
1947–1958. doi:10.1021/ci034160g

Sydow, D., Burggraaff, L., Szengel, A., van Vlijmen, H. W. T., IJzerman, A. P., van
Westen, G. J. P., et al. (2019). Advances and Challenges in Computational
Target Prediction. J. Chem. Inf. Model. 59 (5), 1728–1742. doi:10.1021/
acs.jcim.8b00832

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2017). Graph Attention Networks. arXiv:1710.10903.

Wang, L., Li, Y. C., Xu, M. Y., Pang, X. Q., Liu, Z. H., and Tan, W. (2016b).
Chemical Fragment-Based CDK4/6 Inhibitors Prediction andWeb Server. RSC
Adv. 6 (21), 16972–16981. doi:10.1039/c5ra23289a

Wang, L., Chen, L., Yu, M., Xu, L. H., Cheng, B., Lin, Y. S., et al. (2016a).
Discovering New mTOR Inhibitors for Cancer Treatment through Virtual
Screening Methods and In Vitro Assays. Sci. Rep. 6 (1), 18987–19013.
doi:10.1038/srep18987

Wang, L., Pang, X., Li, Y., Zhang, Z., and Tan, W. (2017a). RADER: a RApid
DEcoy Retriever to Facilitate Decoy Based Assessment of Virtual
Screening. Bioinformatics 33 (8), 1235–1237. doi:10.1093/
bioinformatics/btw783

Wang, L., Wang, Y., Tian, Y., Shang, J., Sun, X., Chen, H., et al. (2017b). Design,
Synthesis, Biological Evaluation, and Molecular Modeling Studies of Chalcone-
Rivastigmine Hybrids as Cholinesterase Inhibitors. Bioorg. Med. Chem. 25 (1),
360–371. doi:10.1016/j.bmc.2016.11.002

Wang, L., Li, Y., Xu, M., Pang, X., Liu, Z., Tan, W., et al. (2016b). Chemical
Fragment-Based CDK4/6 Inhibitors Prediction and Web Server. RSC Adv. 6
(21), 16972–16981. doi:10.1039/c5ra23289a

Wermuth, C. G. (2004). Multitargeted Drugs: the End of the "One-Target-One-
Disease" Philosophy. Drug Discov. Today 9 (19), 826–827. doi:10.1016/S1359-
6446(04)03213-1

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al.
(2018). MoleculeNet: a Benchmark for Molecular Machine Learning. Chem. Sci.
9 (2), 513–530. doi:10.1039/c7sc02664a

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., et al. (2020). Pushing the
Boundaries of Molecular Representation for Drug Discovery with the Graph
Attention Mechanism. J. Med. Chem. 63 (16), 8749–8760. doi:10.1021/
acs.jmedchem.9b00959

Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., et al. (2019). Analyzing
Learned Molecular Representations for Property Prediction. J. Chem. Inf.
Model. 59 (8), 3370–3388. doi:10.1021/acs.jcim.9b00237

Ye, Q., Chai, X., Jiang, D., Yang, L., Shen, C., Zhang, X., et al. (2021). Identification
of Active Molecules against Mycobacterium tuberculosis through Machine
Learning. Brief. Bioinf 22 (5), bbab068. doi:10.1093/bib/bbab068

Zernov, V. V., Balakin, K. V., Ivaschenko, A. A., Savchuk, N. P., and Pletnev, I.
V. (2003). Drug Discovery Using Support Vector Machines. The Case
Studies of Drug-Likeness, Agrochemical-Likeness, and Enzyme Inhibition
Predictions. J. Chem. Inf. Comput. Sci. 43(6), 2048–2056. doi:10.1021/
ci0340916

Zhang, W., Wang, L., Zhang, L., Chen, W., Chen, X., Xie, M., et al. (2014).
Synthesis and Biological Evaluation of Steroidal Derivatives as Selective
Inhibitors of AKR1B10. Steroids 86, 39–44. doi:10.1016/
j.steroids.2014.04.010

Zheng, J. X., Xia, S., Lv, S., Zhang, Y., Bergquist, R., and Zhou, X. N. (2021).
Infestation Risk of the Intermediate Snail Host of Schistosoma Japonicum in the
Yangtze River Basin: Improved Results by Spatial Reassessment and a Random
forest Approach. Infect. Dis. Poverty 10 (1), 74. doi:10.1186/s40249-021-
00852-1

Zoffmann, S., Vercruysse, M., Benmansour, F., Maunz, A., Wolf, L., BlumMarti, R.,
et al. (2019). Machine Learning-Powered Antibiotics Phenotypic Drug
Discovery. Sci. Rep. 9 (1), 5013. doi:10.1038/s41598-019-39387-9

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 He, Zhao, Ling, Cai, Cai, Zhang andWang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 79653419

He et al. Prediction of Breast Cells Inhibition

84

https://doi.org/10.1016/S1359-6446(04)03163-0
https://doi.org/10.1016/S1359-6446(04)03163-0
https://doi.org/10.1002/cmdc.202100041
https://doi.org/10.1021/ci100050t
https://doi.org/10.1016/j.drudis.2015.08.001
https://doi.org/10.1016/j.drudis.2015.08.001
https://doi.org/10.1634/theoncologist.2017-0672
https://doi.org/10.1634/theoncologist.2017-0672
https://doi.org/10.1093/bioinformatics/btx418
https://doi.org/10.1093/bioinformatics/btx418
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.3322/caac.21660
https://doi.org/10.1021/ci034160g
https://doi.org/10.1021/acs.jcim.8b00832
https://doi.org/10.1021/acs.jcim.8b00832
https://doi.org/10.1039/c5ra23289a
https://doi.org/10.1038/srep18987
https://doi.org/10.1093/bioinformatics/btw783
https://doi.org/10.1093/bioinformatics/btw783
https://doi.org/10.1016/j.bmc.2016.11.002
https://doi.org/10.1039/c5ra23289a
https://doi.org/10.1016/S1359-6446(04)03213-1
https://doi.org/10.1016/S1359-6446(04)03213-1
https://doi.org/10.1039/c7sc02664a
https://doi.org/10.1021/acs.jmedchem.9b00959
https://doi.org/10.1021/acs.jmedchem.9b00959
https://doi.org/10.1021/acs.jcim.9b00237
https://doi.org/10.1093/bib/bbab068
https://doi.org/10.1021/ci0340916
https://doi.org/10.1021/ci0340916
https://doi.org/10.1016/j.steroids.2014.04.010
https://doi.org/10.1016/j.steroids.2014.04.010
https://doi.org/10.1186/s40249-021-00852-1
https://doi.org/10.1186/s40249-021-00852-1
https://doi.org/10.1038/s41598-019-39387-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Multiparameter Optimization of
Trypanocidal Cruzain Inhibitors With
In Vivo Activity and Favorable
Pharmacokinetics
Ivani Pauli 1†, Celso de O. Rezende Jr. 2†, Brian W. Slafer2, Marco A. Dessoy2,
Mariana L. de Souza1, Leonardo L. G. Ferreira1, Abraham L. M. Adjanohun3,
Rafaela S. Ferreira3, Luma G. Magalhães1, Renata Krogh1, Simone Michelan-Duarte1,
Ricardo Vaz Del Pintor4, Fernando B. R. da Silva4, Fabio C. Cruz4, Luiz C. Dias2* and
Adriano D. Andricopulo1*

1Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos,
Brazil, 2Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil, 3Departamento de Bioquímica e Imunologia,
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 4Departamento de Farmacologia, Universidade Federal de São
Paulo, São Paulo, Brazil

Cruzain, the main cysteine protease of Trypanosoma cruzi, plays key roles in all stages of
the parasite’s life cycle, including nutrition acquisition, differentiation, evasion of the host
immune system, and invasion of host cells. Thus, inhibition of this validated target may lead
to the development of novel drugs for the treatment of Chagas disease. In this study, a
multiparameter optimization (MPO) approach, molecular modeling, and structure-activity
relationships (SARs) were employed for the identification of new benzimidazole derivatives
as potent competitive inhibitors of cruzain with trypanocidal activity and suitable
pharmacokinetics. Extensive pharmacokinetic studies enabled the identification of
metabolically stable and permeable compounds with high selectivity indices. CYP3A4
was found to be involved in the main metabolic pathway, and the identification of metabolic
soft spots provided insights into molecular optimization. Compound 28, which showed a
promising trade-off between pharmacodynamics and pharmacokinetics, caused no acute
toxicity and reduced parasite burden both in vitro and in vivo.

Keywords: chagas disease, cruzain, medicinal chemistry, drug design, multiparameter optimization,
pharmacokinetics, molecular modeling

INTRODUCTION

Endemic in Latin America, Chagas disease affects 6–7 million people worldwide and has become an
emerging public health problem in nonendemic countries1. Among nonendemic nations, the greatest
burden occurs in the United States, which is estimated to have approximately 300,000 cases of the
disease (Pérez-Molina and Molina, 2018). Chagas disease kills ∼12,000 people annually, and 70
million people are at risk of infection in the Americas2. Moreover, the disease is an important cause of
infectious cardiopathy worldwide, playing a key role in the global prevalence of cardiovascular
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disease (Bern, 2015; Cucunubá et al., 2016). Chagas disease
significantly impacts the productivity of endemic countries,
which are estimated to lose more than US $7.2 billion per year
because of the disease (GBD DALYs and HALE Collaborators,
2016; Arnal et al., 2019). According to the World Health
Organization (WHO), the development of innovative
therapeutic approaches is required for this neglected tropical
disease (NTD) because of the lack of efficient control measures
and the insufficient research and development (R&D) funding. The
need for novel therapeutic approaches has become more evident
this year, as the WHO released a new roadmap for NTDs for
2021–2030, whose target is to eliminate the epidemics of these
diseases by 2030. Chemotherapy for Chagas disease consists of
benznidazole (BZ) and nifurtimox, two nitro compounds that have
limited efficacy and produce serious adverse reactions that lead up
to 40% of patients to discontinue treatment (Rodriques Coura and
De Castro, 2002). Given these shortcomings, the development of
novel, effective and safe drugs for the treatment of Chagas disease is
critically needed.

Cruzain (EC 3.4.22.51), the main cysteine protease of
Trypanosoma cruzi, has been broadly explored as a molecular
target in Chagas disease drug discovery (Engel et al., 1998;
McKerrow, 1999; Jose Cazzulo et al., 2001; Massarico Serafim
et al., 2014). This enzyme plays a key role in all stages of the
parasite’s life cycle, participating in processes such as nutrition,
differentiation, evasion of the host immune system, and invasion
of host cells (Ferreira and Andricopulo, 2017). Genetic studies of
T. cruzi and the efficacy of cruzain inhibitors in reducing parasite
load in vivo have validated the enzyme as a molecular target for
the discovery of novel drugs for Chagas disease (Zanatta et al.,
2008; Doyle et al., 2011; Ndao et al., 2014). Following these
investigations, various classes of cruzain inhibitors, such as
nitroalkenes, vinyl sulfones, thiosemicarbazones, and triazoles,
have been described in the literature (Rogers et al., 2012; Avelar
et al., 2015; Espíndola et al., 2015; Neitz et al., 2015; Latorre et al.,
2016). In this work, we describe the design, synthesis, and in vitro
and in vivo evaluations of novel benzimidazole derivatives. In
addition to improving pharmacodynamic properties, such as
binding affinity and potency, we evaluated the
pharmacokinetic (PK) profile of newly synthesized and
previously described benzimidazoles (Ferreira et al., 2014) by
applying a multiparameter optimization (MPO) approach. MPO
has increasingly been adopted in the early phases of pharma R&D
to exclude pipeline compounds that feature poor PK profiles as
early as possible (Eddershaw et al., 2000; Andricopulo and
Montanari, 2005; Wang et al., 2007; Wang, 2009; Wang and
Skolnik, 2009). This study led to the discovery of potent cruzain
inhibitors with trypanocidal activity and innovatively contributed
to the identification of compounds with improved safety and PK
profiles to be explored for Chagas disease drug discovery.

MATERIALS AND METHODS

Expression and Purification
Pro-cruzain truncated at the C-terminus was expressed and
purified using a previously described protocol (Ferreira et al.,

2019). Escherichia coli (strain M15) cultures were grown
overnight at 37°C and 200 rpm in Luria Bertani (LB) medium
supplemented with ampicillin (100 μg/ml) and kanamycin
(50 μg/ml). Next, the cultures were diluted 10-fold in fresh LB
medium supplemented with 0.5 M NaCl, 0.2% glucose, 1 mM
betaine, 0.5 M sorbitol, 100 μg/ml ampicillin, and 50 μg/ml
kanamycin and incubated at 37°C and 200 rpm. At an optical
density (OD600) of 0.9, the cultures were incubated at 47°C for
20 min to promote the expression of chaperones. Then, the
expression of cruzain was induced by adding isopropyl β-D-
thiogalactopyranoside (IPTG) to a final concentration of 0.2 mM,
which was followed by overnight incubation of the cultures at
20°C and 200 rpm. Next, the cultures were centrifuged
(5,000 rpm, 30 min, 4°C), and the cells were suspended in
50 ml of lysis buffer (300 mM NaCl, 50 mM Tris-HCl, and
1.6 mg/ml lysozyme, pH 8.0) per liter of culture and lysed by
sonication (12 cycles of 30 s). This cell lysate was centrifuged
(9,000 rpm, 30 min, 4°C), and the supernatant was collected.
Cruzain was precipitated by incubation with 35% ammonium
sulfate (2 h), and this suspension was centrifuged at 9,000 rpm for
30 min at 4°C. The precipitated cruzain was resuspended in lysis
buffer, and the sample was dialyzed to eliminate ammonium
sulfate. The soluble fraction of the dialysate was loaded on a
Ni−NTA column (Qiagen, Hilden, Germany), and the
contaminants were washed using washing buffer (300 mM
NaCl, 50 mM Tris-HCl, and 10 mM imidazole, pH 8.0).
Cruzain was eluted by applying an increasing imidazole
gradient: 25, 50, 75, 100, and 250 mM. The fractions
containing cruzain were pooled together and dialyzed against
1.5 L of 0.1 M acetate buffer, pH 5.5, and then concentrated to
0.5 mg/ml. Pro-cruzain was activated by incubation with
activation buffer (100 mM sodium acetate, pH 5.5, 10 mM
EDTA, 5 mM DTT, and 1 M NaCl) at 37°C. The activation of
cruzain was monitored by following the enzymatic activity at 30-
min intervals, and the process was observed to stop after
approximately 1 h. After activation, the enzyme was diluted
20-fold in binding buffer (20 mM sodium phosphate and
150 mM NaCl, pH 7.2) and added to thiopropyl Sepharose 6B
resin (GE Healthcare Life Sciences, Pittsburgh, PA). After
overnight incubation at 4°C, the resin was loaded on a
column, and cruzain was eluted with binding buffer
supplemented with 20 mM DTT. Fractions containing cruzain
were pooled together and stored in 0.1 M sodium acetate, pH 5.5,
at −80°C.

Enzyme Kinetics Assays
Cruzain activity was followed by monitoring the cleavage of the
fluorogenic substrate Z-Phe-Arg-aminomethyl coumarin (Z-FR-
AMC), as previously described (Ferreira et al., 2019), using 96-
well flat-bottom black plates and wavelengths of 355 nm for
excitation and 460 nm for emission. All cruzain assays were
performed in 0.1 M sodium acetate buffer with 5 mM
dithiothreitol (DTT) and 0.01% Triton X-100, pH 5.5. The
final concentration of cruzain was 1.5 nM, and the substrate
concentration was 5.0 μM (Km � 1.6 μM), except in the
experiments for Ki determination, in which several
concentrations of substrate were used. The cleavage of the
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substrate was monitored for 5 min, and the activity was calculated
based on the initial reaction rates compared with the rate of a
DMSO control at 30°C. The IC50 values were independently
calculated by considering the rate measurements for at least
six inhibitor concentrations, each evaluated in triplicate. To
determine the mechanism of cruzain inhibition, eight
concentrations of the substrate Z-FR-AMC and four
concentrations of the inhibitor were employed, each in
triplicate. Kinetic parameters were determined using the
SigmaPlot (Systat Software Inc., Erkrath, Germany) enzyme
kinetics module. Compounds were tested in two or three
independent experiments. All enzyme assays were performed
using varying Triton X-100 concentrations (0, 0.01, and 0.1%)
(Ferreira et al., 2009). Compound concentrations were 100 μM in
the single-dose percentage inhibition assays.

Rhodesain Assays
Rhodesain activity was measured using a fluorescence-based
assay as previously described (Fonseca et al., 2015). The
cleavage rates of the fluorogenic substrate Z-Phe-Arg-
aminomethyl coumarin (Z-FR-AMC) were monitored at
wavelengths of 340 nm for excitation and 440 nm for
emission. All assays were performed in triplicate in a 0.1 M
sodium acetate buffer, pH 5.5, with 1 mM beta-
mercaptoethanol and 0.01% Triton X-100. The final
concentration of rhodesain was 3 nM, and the substrate
concentration was 2.5 μM. The cleavage of the substrate was
followed by continuous reading for 5 min, and enzyme activity in
the presence of 100 μM of each potential inhibitor was calculated
based on initial velocity rates compared to DMSO controls. All
compounds were tested in triplicate in three independent
experiments.

Molecular Docking
The three-dimensional structures of the cruzain inhibitors were
constructed using the standard geometric parameters embedded
in SYBYL-X 2.1 (Certara, Princeton, NJ). Each compound was
energetically minimized employing the Tripos force field (Clark
et al., 1989) and Powell conjugate gradient method (Powell,
1977), with a convergence value of 0.05 kcal/mol.Å, and the
Gasteiger-Hückel model was used for charge calculation
(Gasteiger and Marsili, 1980). The molecules were docked
using GOLD 5.3 (Cambridge Crystallographic Data Centre,
Cambridge, United Kingdom) (Jones et al., 1997; Verdonk
et al., 2003) against the X-ray structure of cruzain (PDB ID
3KKU, 1.28 Å) (Ferreira et al., 2010). The preparation of the
cruzain structure consisted of removing all water molecules and
inserting hydrogen atoms. The active site Cys25 was kept
negatively charged, and His162 was kept protonated. The
binding site was defined as a sphere with a 10 Å radius
centered on the Cys25 sulfur atom. The default GOLD
parameters were applied for the molecular docking runs,
except for the search efficiency, which was changed to its
maximum value of 200%. The generated poses were evaluated
using the GoldScore scoring function, and the analysis of the
binding conformations was visualized using PyMOL 3.1
(Schrödinger, New York, NY) (Lill and Danielson, 2011).

Biological Assays Against T. cruzi
Intracellular Amastigotes
Biological assays against T. cruzi intracellular amastigotes were
performed as reported previously using the T. cruzi Tulahuen
strain, which is genetically engineered to express the E. coli
β-galactosidase gene lacZ (Buckner et al., 1996). β-Galactosidase
catalyzes a colorimetric reaction with chlorophenol red β-D-
galactopyranoside (CPRG, Sigma Chemical Co., St. Louis, MO)
as the substrate. The assays were conducted in 96-well tissue
culture plates, and the compounds to be tested were prepared
in 100% DMSO. Epimastigotes were maintained in liver infusion
tryptone (LIT) enriched with 10% fetal calf serum (FCS),
streptomycin, and penicillin at 28°C. Epimastigotes were
converted to trypomastigotes by incubation in Grace’s insect
medium (Sigma–Aldrich, St. Louis, MO) enriched with 10%
FCS at 28°C. Human HFF-1 fibroblasts were seeded at 2 × 103/
well in 80 μl of RPMI 1640 without phenol red and incubated
overnight at 37°C and 5%CO2. Trypomastigotes were seeded at 1.0
× 104/well in 20 μl of RPMI 1640, and the plates were incubated at
37°C and 5% CO2. The next day, the synthesized compounds were
added (50 μl) in 3-fold serial dilutions at concentrations ranging
from 0.4 to 300 μM, and the plates were incubated at 37°C and 5%
CO2. Each compound concentrationwas assayed in triplicate. After
120 h, 50 μl of chlorophenol red β-D-galactopyranoside (CPRG,
Sigma–Aldrich) and IGEPAL CA-630 (Sigma–Aldrich) at a final
concentration of 0.1% were added. The absorbance was measured
at a wavelength of 570 nm in an automated microplate reader. The
data were transferred to SigmaPlot 10.0 (Systat Software Inc.,
Erkrath, Germany) to determine the IC50 values. Benznidazole
(BZ, Sigma–Aldrich) was used as a positive control, and untreated
wells (100% parasite growth) were used as negative controls in all
plates. All compounds were tested in three independent assays.

Cytotoxicity Assays in HFF-1 Fibroblasts
The synthesized compounds were evaluated for their cytotoxicity
against HFF-1 cells using theMTS assay (Promega, Madison,WI)
(Barltrop et al., 1991) as previously described (Ferreira et al.,
2019). HFF-1 fibroblasts were plated at 2 × 103/well in 96-well
culture plates in RPMI 1640 without phenol red enriched with
10% FCS and incubated overnight at 37°C and 5% CO2. Next, 7
concentrations (0.1–100 µM) of the compounds were added in 3-
fold serial dilutions, each concentration in triplicate, and the
plates were incubated for 72 h at 37°C and 5% CO2. Next, 20 µl of
MTS was added to each well, and the plates were incubated for an
additional 4 h at 37°C and 5%CO2. The absorbance was measured
at 490 nm using a spectrophotometer, and the data were
transferred to SigmaPlot 10.0 (Systat Software Inc., Erkrath,
Germany) to determine the IC50 values. Doxorubicin
(Sigma–Aldrich) was used as a positive control, and untreated
wells (100% growth) were used as negative controls in all plates.
All compounds were tested in two independent assays.

In Vitro Metabolic Stability in Liver
Microsomes
Isolated mouse (BD Gentest, Bedford, MA) and human liver
microsomes (XenoTech, Kansas City, KS) (Plant, 2004) were
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added at a final concentration of 0.25 mg/ml to a solution
containing 40 mM dibasic potassium phosphate and 10 mM
monobasic potassium phosphate. Stock solutions of
compounds at 5 mM were prepared in 100% DMSO. A 50:50
quenching solution of acetonitrile (ACN) and methanol (MeOH)
was prepared. An NADPH solution was prepared at 10 mM. The
preparations containing the microsomes were added to each well
of the incubation plate (450 µl), which was then heated to 37°C for
10 min. The compounds were added to the respective wells of the
test plate (2 µl). Then, 300 µl of the microsome preparation was
added to each well of the test plate. The test plate was heated
under gentle rotation for 5 min at 37°C. Next, 90 µl of the mixture
contained in the test plate was added to the incubation plate,
making a final volume of 540 µl. Samples were collected at the
following incubation times: 0, 5, 10, 15, 20, and 30 min. To the
0 min sample plate, quenching solution (180 µl), NADPH (6 µl),
and the incubation plate mixture (54 µl) were added to each well.
The sample plate was then sealed, homogenized, and stored at
4°C. Then, 54 µl of the NADPH solution was added to the
incubation plate, which was homogenized. Before the
collection of each sample at the established times, 45 µl of the
quenching solution was added to each well of the corresponding
sample plates. After reaching the incubation times, 60 µl of the
mixture contained in the incubation plate was added to the
corresponding sample plates. The sample plates were then
sealed and stored at 4°C. After the collection of the last sample
(30 min), all sample plates were centrifuged at 3,800 rpm for
30 min. The supernatant from each well was collected and
transferred to clean plates for mass spectrometry. Five to 10 µl
of each sample was injected into an AB Sciex Triple Quad 5500
LC-MS/MS instrument.

In Vitro Metabolic Stability Using
Recombinant CYP Enzymes
Stock solutions of compounds at 5 mM were prepared in 100%
DMSO. An NADPH solution at 10 mM was prepared in a
50 mM potassium phosphate buffer. A solution at 100 pmol/
ml of each of the recombinant CYP450 enzymes (1A2, 2C8,
2C9, 2C19, 2D6, and 3A4) was prepared in 50 mM potassium
phosphate buffer (Proctor et al., 2004). A 50:50 quenching
solution of ACN and MeOH was prepared. 320 µl of each
CYP solution was added to the incubation plate, and 1 µl of
each compound was added to the compound plate. Then, 100 µl
of each CYP solution was added to the compound plate, and 10 µl
from the compound plate was added to the incubation plate. The
incubation plate was heated to 37°C with 600 rpm rotation for
10 min. To the 0 min plate, 30 µl of quenching solution, 1 µl of
NADPH, and 9 µl of the incubation plate solution were added
to each well, and the plate was sealed and stored at 4°C. Next,
10-µl samples were collected from the incubation plate at
different incubation times (5, 10, 20, 30, and 60 min). For
each time point, a separate plate containing 30 µl of quenching
solution and incubation plate solution was used. After collecting
the last sample, the plates were centrifuged for 20 min at
3,000 rpm. The supernatant from each well was collected and
transferred to new plates for mass spectrometry. Five to 10 µl of

each sample was injected into an AB Sciex Triple Quad 5500
LC-MS/MS instrument. The compounds were tested at a final
concentration of 5 µM.

In Vitro Metabolic Stability in Hepatocytes
Rat and human hepatocytes were used (McGinnity, et al., 2004).
Samples were collected at six different time points during the
incubation period and analyzed by LC-MS/MS to determine the
T½ and the intrinsic clearance. Stock solutions of the CYP
inhibitors azamulin (8.75 mM) and 1-ABT (350 mM) were
prepared. Next, the test compounds were added to 96-well
plates and incubated in Williams medium (Invitrogen,
A12176-01) supplemented with 2 mM L-glutamine and 15 mM
HEPES to reach a final concentration of 2 µM. Then, compounds
(50 µl) were transferred to other plates, one plate for each time
point (0, 15, 30, 60, 120, and 240 min), and incubated at 37°C and
5% CO2 for 30 min. Cryopreserved hepatocytes were heated in a
wet bath at 37°C and dispensed in InVitroGRO HT medium
supplemented with 10% FCS, 0.15 µM hydrocortisone, 0.2 mg/ml
BSA, fructose, insulin, and amino acids. The cells were
centrifuged at 500 rpm for 5 min. The supernatant was
discarded, and the cells were resuspended in 1 ml of
incubation medium heated to 37°C. Next, the cells were
counted and diluted to 1 × 106/ml in incubation medium. The
cell suspension was divided into 3 samples: without CYP
inhibitors; with 25 µM azamulin, a CYP3A4 inhibitor; and
with 1 mM 1-ABT, an inhibitor of all CYPs. Each hepatocyte
sample with 12,500 cells/well was incubated with either azamulin
or 1-ABT for 30 min (except the group without CYP inhibitor).
To the plates with the test compounds, 12,500 cells/well were
added. The plates were incubated in a shaker at 37°C, 5% CO2,
and 300 rpm. At the specified time points, the hepatocyte
enzymatic activity was interrupted by the addition of 75 µl of
cold ACN, and the samples were read by LC-MS/MS.

Parallel Artificial Membrane Permeability
Assay
The permeability of the compounds was assessed using the
PAMPA method (Yu et al., 2015). The test compounds were
dissolved in DMSO to a concentration of 5 mM. Next, the
compounds were diluted in a stock plate in saline phosphate
buffer (PBS), pH 6.5, containing 1% DMSO to a concentration of
1 µM. Then, 300 µl of each test compound was added to the donor
plate. Afterward, 200 µl of PBS buffer, pH 7.4, was added to the
acceptor plate. The donor plate was attached to the acceptor plate.
The assembled acceptor-donor plate was then incubated at 37°C
for 5 h under gentle agitation. To analyze the concentration of the
compounds by mass spectrometry, two analysis plates (one for
the donor and another for the acceptor plate) containing 300 μl of
MEOH:ACN 50:50 were prepared. To the donor analysis plate,
90 µl of PBS, pH 6.5, and 10 µl of the content of the donor plate
were added. For the acceptor analysis plate, 100 µl of the content
of the acceptor plate was added. To monitor any potential
decomposition/intrinsic instability of the test compounds in
solution, samples from the stock plate were subjected to LC-
MS/MS. The compounds that presented Pe ≥ 1.5 × 10−6 cm/s were

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 7740694

Pauli et al. Cruzain Inhibitors as Trypanocidal Agents

88

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


classified as permeable, while compounds that presented Pe < 1.5
× 10−6 cm/s were considered poorly permeable or nonpermeable.

Experimental Distribution Coefficient
For the eLogD assays (Waring, 2010), each compound (5 μl) from
a 5 mM stock solution was diluted in 245 μl of a solution
containing buffers A (5% MeOH, 10 mM ammonium acetate,
pH 7.4) and B (100% MeOH, pH 7.4) (50:50). Nine control
compounds with known eLogD and column retention times
(acyclovir, atenolol, antipyrine, fluconazole, metoprolol,
carbamazepine, ketoconazole, tolnaftate, and amiodarone;
eLogD values ranging from −1.86 to 6.1) were subjected to
LC-MS/MS in triplicate before and after the analysis of the
test compounds. Retention times were recorded for each
control and test compound in a C18 column. The retention
time of each control compound was plotted against the
respective eLogD values described in the literature (Lombardo
et al., 2002; Lombardo et al., 2004; Alelyunas et al., 2010). The
resulting linear equation (y � mx + b) was used to calculate the
eLogD values of the test compounds, in which x is the retention
time in minutes and y is the eLogD value.

Fraction Unbound
The fraction unbound (fu) (Masimirembwa et al., 2003) of the test
compounds was determined after incubation with different
media, namely, plasma, microsomes, and buffer with 10%
FCS. Equilibrium dialysis was performed in a 96-well plate
(HT-Dialysis, Gales Ferry, CT) in which each well was divided
by a semipermeable membrane (12–14 kDa cutoff). The test
compounds diluted in either plasma, microsome suspension,
or buffer were added to one side of the membrane. Potassium
phosphate buffer (50 mM, pH 7.4) was added to the other side of
the membrane. A standard curve was used to calculate the
compound concentration (fu) on each side of the membrane.
Stock solutions of each compound were prepared in 100% DMSO
to obtain a final concentration of 1 mM. The following compound
concentrations were used: 1, 2, 20, 200, 2,000 and 5,000 nM. To
500 μl of medium, 0.5 μl of the compound stock solution was
added, and this was applied to one side of the well. Each
compound was evaluated in triplicate. Next, the plate was
assembled, sealed, and incubated at 37°C under rotation
(150 rpm) for 4 h. After the incubation period, the plates were
subjected to LC-MS/MS.

Biotransformation and Analysis of
Metabolites
Stock solutions of compounds at 5 mM were prepared in 100%
DMSO for the biotransformation analyses (Obach, 1999). Test
solutions of compounds at 1 mM were prepared in H2O/MeOH:
2/1 (v/v). A solution of 10 mM NADPH, a 50:50 quenching
solution of ACN and MeOH, and 100 mM phosphate buffer was
prepared. Isolated mouse (BD Gentest, Bedford, MA) and human
liver microsomes (XenoTech, Kansas City, KS) were dissolved to
2 mg/ml in phosphate buffer. One plate for the 0 min time point
and another for the 60 min time point were prepared. To these
plates, 178 μl of the microsome solution and 2 μl of the

compound stock solution (final test concentration of 5 μM)
were added. The plates were incubated at 37°C for 5 min
under gentle agitation. Next, 400 μl of the quenching solution
was added to the 0 min plate, which was followed by the addition
of 20 μl of NADPH. The plate was sealed and kept under
refrigeration (4°C). To the 60 min plate, 20 μl of NADPH was
added, and the plate was sealed and incubated at 37°C for 60 min
under gentle agitation. Next, 400 μl of quenching solution was
added to the 60 min plate. The two plates were centrifuged (4°C,
3300 rpm, 30 min), and the supernatant was collected for mass
spectrometry.

In Vivo Pharmacokinetics
The in vivo pharmacokinetic profiles of the compounds were
determined using male CD1 mice weighing 50 g (Davies and
Morris, 1993; Liu and Jia, 2007). The compounds were
administered in a single dose orally (0.5 mg/kg) and
intravenously (0.5 mg/kg). Stock solutions of the compounds
in DMSO were diluted in Tween 80, PEG-400, and D5W (5%
dextrose in water) at a ratio of 2:5:20:73 (v/v). The injection
volume was 10 ml/kg. The remaining plasma concentration was
monitored over time by LC-MS/MS by collecting blood samples
(40 μl) at 10, 25, and 50 min and 1, 3, 6, 9, 12, and 24 h after
administration of the compound.

Pharmacokinetics Analysis by LC-MS/MS
For the biotransformation experiments and analysis of
metabolites in microsomes, an Ultra-High-Pressure Liquid
Chromatography instrument (UHPLC, Thermo Accela,
Waltham, MA) (Spaggiari et al., 2014) connected to an
automatic sample injector and a 1250 series pump was used.
The UHPLC system was connected to a Thermo Fisher
(Waltham, MA) LTQ Orbitrap mass spectrometer. For all
other analyses, an AB Sciex Triple Quad 5500 coupled to a
UHPLC equipped with a UV 1290 diode detector (Agilent
Technologies, Santa Clara, CA) and a CTC PAL self-collecting
system (LEAP Technologies, Carrboro, NC) was used. Q1 MS
positive ion mode (300–500 Da) was used to detect the ions of
the parent compounds. The UV detector was operated in
spectral mode (250–280 nm). A Hypersil Gold C18 (2.1 mm ×
100 mm, 1.9 µm, Thermo Fisher) HPLC column was used.
The mobile phases were solvent A (0.1% formic acid in water)
and solvent B (0.1% formic acid in ACN). The flow was
adjusted to 0.55 ml/min, and the injection volume was
adjusted to 20 ml. The gradient started with 1% solvent B for
0.4 min, reached 40% (solvent B) in 2.3 min and 95% (solvent B)
in 0.67 min, was maintained for 0.5 min, and returned to the
initial condition of 1%. This condition was maintained for
1 min before injection of the next sample. The peak area ratio
(peak area of the test compounds/peak area of the control
compounds) was converted to the percentage of remaining
compound, with the 0 min time point ratio set to 100%. T½

and CLint were calculated from the percentage of remaining
compound versus the incubation time. From the resulting
function, the slope (k) was determined. The equations T1/2

(min) � ln(2)/k and CLint in vitro (μL/min/mg) � k*1000/0.25 were
used to determine T½ and CLint.
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Animals for the In Vivo Assays
Thirty-day-old female Swiss mice weighing 20–25 g and procured
from the Center for the Development of Experimental Models for
Medicine and Biology (CEDEME/UNIFESP) served as the subjects
for these experiments. Animals were housed (5–6 per cage) in
polypropylene cages and kept under controlled temperature
(22–23°C) and humidity on a 12-h light/dark cycle (12 h light,
12 h dark; lights on at 6:30 am). Rodent chow and water were
available ad libitum throughout the experiments. The Committee
of Ethics in Research of the Universidade Federal de São Paulo
approved all the experiments (CEUA n° 5301080816).

Chemistry
Unless stated otherwise, all reactions were performed under an
atmosphere of argon with dry solvents and magnetic stirring
(detailed organic synthesis methods are in the Supplementary
Material). Dichloromethane (DCM) and triethylamine (Et3N)
were distilled from CaH2. Tetrahydrofuran (THF) was distilled
from sodium/benzophenone. Dimethyl formamide (DMF) was
purchased from Aldrich (anhydrous) and used without
further purification. Yields refer to homogeneous materials
obtained after purification of reaction products by flash
column chromatography using silica gel (200–400 mesh) or
recrystallization. Analytical thin-layer chromatography was
performed on silica gel 60 and GF (5–40 μm thickness) plates,
and the plates were treated with a basic potassium permanganate
stain or ninhydrin solution, heated and visualized under UV
light. Melting points were measured with a Buchi M-565
instrument and are uncorrected. 1H and proton-decoupled 13C
NMR spectra were acquired in CDCl3, CD3OD or d6-DMSO at
250 MHz (1H) and 62.5 MHz (13C) (Bruker DPX250), 400 MHz
(1H) and 100 MHz (13C) (Bruker AVANCE 400), 500 MHz (1H)
and 125 MHz (13C) (Varian Inova 500), or 600 MHz (1H) and
150 MHz (13C) (Bruker AVANCE 600). Chemical shifts (δ) are
reported in ppm using residual undeuterated solvent as an
internal standard (CDCl3 at 7.26 ppm, CD3OD at 3.31 ppm,
d6-DMSO at 2.50 ppm, and TMS at 0.00 ppm for 1H NMR
spectra and CDCl3 at 77.16 ppm, CD3OD at 49.0 ppm,
d6-DMSO at 39.52 ppm for 13C NMR spectra). Multiplicity data
are reported as follows: s � singlet, d � doublet, t � triplet, q �
quartet, br s � broad singlet, dd � doublet of doublets, dt � doublet
of triplets, app d � apparent doublet, app t � apparent triplet,
m � multiplet, and br m � broad multiplet. The multiplicity is
followed by the coupling constant(s) in Hz and integration. High-
resolution mass spectrometry (HRMS) was measured using
electrospray ionization (ESI) (Waters xevo Q-tof, Thermo LTQ-FT
ultra, or Thermo Q Exactive) or using electron ionization (EI) (GCT
Premier Waters). The synthesis and characterization of compounds
1, 17, 18, 31–63 were previously reported (Ferreira et al., 2014).

RESULTS AND DISCUSSION

Synthesis of Novel Benzimidazole
Derivatives
Phenoxyacetic acids of type I were prepared from the
corresponding substituted phenols by nucleophilic substitution

with 2-bromoacetic acid or nucleophilic substitution with alkyl 2-
bromoacetic ester, followed by ester hydrolysis (Scheme 1A). A
subsequent reaction of activated carboxylic acid I with amine II
led to the formation of amides 1–4, 6, 8, 10–12, 14, and 16–18.
Alcohols 5 and 7 and aniline 9 were prepared by reduction
reactions of imides 4 and 6 with sodium borohydride and
nitrobenzene derivative 8 using hydrogenation under Pd/C
catalysis. Carboxylic acid derivatives 13 and 15 were
synthesized by hydrolysis under basic conditions of methyl
esters 12 and 14, respectively. N-alkylated compounds 19–29
were synthesized by N-alkylation of the benzimidazole moiety of
compounds 1, 17, and 18 with different electrophiles. N-Phenyl
derivative 30 was prepared as described in Scheme 1B by an
amidation reaction followed by cyclization and dehydration.

Design of Novel Cruzain Inhibitors
In this work, we designed a series of cruzain inhibitors based on a
previously identified benzimidazole derivative (18, Figure 1A)
(Ferreira et al., 2010; Ferreira et al., 2014). Considering the lead-
like profile of compound 18 and its activity against cruzain and T.
cruzi, we selected this compound for a lead optimization program
and, for the first time, the pharmacokinetics and the in vivo
trypanocidal ability of this molecule and its analogs were
investigated. We explored compound 18 by appending diverse
substituents at the phenyl and benzimidazole rings to improve
both the interaction with cruzain and the PK profile. By adding
substituents at the phenyl ring, we aimed to enhance the
selectivity for cruzain over other proteases by promoting
hydrogen bonding with Glu208, a critical residue located in
the S2 subsite of the active site (Figure 1B). Glu208 is absent
in most other proteases, including human cathepsins. We
additionally focused on increasing the affinity and potency of
the compounds by exploring N-substitutions at the
benzimidazole and enabling additional interactions with the S1
and S1’ subsites.

Exploring the Benzimidazole and Phenyl
Rings
The structure and activity against cruzain of N-substituted
benzimidazoles are summarized in Table 1. Three out of the
derivatives that were initially evaluated showed IC50 values below
3 μM. Only compounds lacking the o-bromine at the substituent
appended to the benzimidazole core were active against cruzain.
No significant variation in the percent inhibition values was
observed for different Triton X-100 concentrations (0, 0.01,
and 0.1%), demonstrating that the inhibitors do not act as
aggregators (Supplementary Table S1).

The mechanisms of action of compounds 20 and 24 were
determined by measuring their remaining enzymatic activity in
the presence of distinct concentrations of the substrate and
inhibitors. Double reciprocal Lineweaver-Burk plots (Figure 2)
showed that unlike the benzimidazole analogs previously
described (Ferreira et al., 2014), compounds 20 and 24 act as
noncompetitive cruzain inhibitors with a higher affinity for the
free enzyme than for the corresponding enzyme-substrate
complex. The typical behavior of noncompetitive inhibitors
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was additionally confirmed in another experiment, in which no
significant variation in IC50 values was observed with increasing
substrate concentrations at a constant protein concentration
(Supplementary Table S2).

Next, novel compounds were synthesized to evaluate the effect of
growing the N-substituent on the mechanism of action against
cruzain. Compound 1 (IC50 � 10.9 μM, Table 1), which, in
contrast with lead compound 18, lacks the o-bromine at the
phenyl ring, is more than 10-fold less potent than 18 (IC50 �
0.8 μM). Installing a methyl group as the N-substituent also
resulted in a decrease in activity (25, IC50 � 8.6 μM). As shown
in Figure 3, compounds 1 and 25 act as competitive inhibitors.
Growing theN-substituent to a benzyl (26, IC50 � 1.1 μM) enhanced
the activity; however, expanding to but-3-enyl (27, IC50 � 13.7 μM)
significantly reduced the activity. Interestingly, in contrast with
compounds 1 and 25, compounds 26 and 27 act as

noncompetitive inhibitors (Figure 3). No significant variation in
the IC50 values of 26 and 27 was observed with increasing substrate
and constant protein concentrations, further corroborating the
noncompetitive inhibition mechanism (Supplementary Table S2).

These results clearly highlight the role played by the
N-substituents in the mechanism of cruzain inhibition. The
importance of the amine was previously demonstrated by
replacing the nitrogen with an oxygen atom, and the activity was
lost (Ferreira et al., 2014). Additionally, the distinct N-substituents
allowed us to correlate the substituent volumewith themechanism of
inhibition. The lack of a substituent (1) or the presence of a methyl
(25) results in competitive inhibition, while bulkier groups such as
benzyl (26) and but-3-enyl (27) lead to noncompetitive inhibition.

In the next step, we explored substitutions at the phenyl
ring. Given that the phenyl ring of lead compound 18 occupies
the S2 pocket of the cruzain-binding site, we expanded the

Scheme 1 | (A) Reagents and conditions: (a) i) ethyl 2-bromoacetate, K2CO3, DMF, r.t., 4–6 h; ii) NaOH (6 mol. L−1), MeOH, r.t., 30 min; iii) HCl (6 mol. L−1), 0 C,
10 min; (b) i) benzyl 2-bromoacetate, K2CO3, DMF, r.t., 4–6 h; ii) Pd/C (20%), H2(g), EtOAc, MeOH, r.t., 1–2 h; (c) i) oxalyl chloride, DMF, DCM, r.t., 1 h; ii)
N-Hydroxysuccinimide, DCM, triethylamine, 0°C, 30 min; iii) II, sodium carbonate, EtOAc, r.t., 1 h; (d) II, EDC, HOBt, trimethylamine, DMF, r.t., 8–15 h; (e) sodium
borohydride, MeOH, THF, r.t., 5 h; (f) Pd/C (20%), H2(g), MeOH, r.t., 2 h; (g) i) NaOH (6 mol. L−1), MeOH, r.t., 20 min; ii) HCl (6 mol. L−1), 0°C, 10 min; (h) haloalkyls,
18-crown-6, potassium tert-butoxide, THF, r.t. or 45°C, 13–48 h. (B) Reagents and conditions: (a) i) oxalyl chloride, DMF, DCM, r.t., 30 min, ii) N1-phenylbenzene-1,2-
diamine, n-butanol, 110°C, 18 h.
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phenyl into a naphthyl system and appended different
hydrogen bond donors and acceptors to the phenyl ring.
The goal was to explore a potential interaction with Glu208.
As shown in Table 2, among the 15 synthesized compounds,
the three naphthyl analogs with either hydroxyl or ether at the
meta or para positions were the most potent: 6-
hydroxynaphthyl 10 (IC50 � 3.4 μM), 7-hydroxynaphthyl 11
(IC50 � 2.7 μM), and 6-methoxycarbonyl 12 (IC50 � 2.3 μM).
The design concept was corroborated by molecular docking
runs, which predicted the formation of a hydrogen bond
between the hydroxyl groups of 10 and 11 and Glu208
(Figure 4). To further corroborate the formation of a
hydrogen bond with Glu208, we evaluated the activities of
six compounds against the enzyme rhodesain, a cysteine
protease that has a similar active site to that of cruzain, in
which Glu208 is replaced with an alanine residue (Lima et al.,
2013). The activities of the compounds against cruzain were
significantly more pronounced than their activities against
rhodesain, indicating the importance of interactions with
Glu208 for inhibition by 10 and 11 (Supplementary Table S3).

Trypanocidal Activity, Physicochemical
Profile, and Cytotoxicity
After the enzyme inhibition studies, active compounds were evaluated
for their activity against T. cruzi intracellular amastigotes and PK
properties (Table 3). Among theN-substituted analogs, compounds 20
(IC50 � 2.04 μM) and 24 (IC50 � 1.43 μM) were equipotent to the
reference drug BZ (IC50 � 1.45 μM). The only inactive compound in
this series was the N-methyl analog 25. In general, these compounds
are more lipophilic than BZ, as shown by the LogP and eLogD values.
Among the molecules in Table 3, six were classified as high-
permeability compounds (PAMPA higher than 1.5 × 10−6 cm/s),
and nine were classified as low-permeability compounds (PAMPA
lower than 1.5 × 10−6 cm/s).

Most compounds with substituents on the phenyl ring were active
againstT. cruzi, with IC50 values in the lowmicromolar range (Table 3).
The exception was compound 13, which has a 6-carboxynaphthyl
moiety. Compound 13 showed moderate activity against cruzain
(IC50 � 24.2 μM) in addition to a LogP value higher than those of
the other analogs. The combination of these two properties may be the
cause of the lack of trypanocidal activity of this compound.

FIGURE 1 | (A) Cruzain inhibitor 18 was used as the lead compound for the design of novel benzimidazole derivatives. (B) X-ray structure of compound 18 in
complex with cruzain (PDB 3KKU, 1.28 Å). Binding site residues (carbon in gray) and compound 18 (carbon in orange) are shown as sticks. A hydrogen bond is shown as
a dashed line. Cruzain subsites are labeled as S1, S1′, S2, and S3.
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TABLE 1 | Structure and activity against cruzain of new N-substituted
benzimidazole derivatives.a

Compound Structure %
Cruzain
inhibition
(100 µM)a

IC50

(µM)b

1 90 10.9 ± 1.0

19 72 ND

20 92 1.04 ± 0.7

21 76 1.69 ± 0.4

22 36 ND

23 49 ND

(Continued in next column)

TABLE 1 | (Continued) Structure and activity against cruzain of new N-substituted
benzimidazole derivatives.a

Compound Structure %
Cruzain
inhibition
(100 µM)a

IC50

(µM)b

24 81 2.2 ± 1.2

25 87 8.6 ± 1.7

26 77 1.1 ± 0.2

27 79 13.7 ± 1.4

28 81 12.1 ± 2.4

29 79 8.8 ± 1.8

30 79 8.6 ± 2.6

aThe percentage of inhibition refers to the mean of three experimental measures.
bIC50 values were determined independently in triplicate using at least six
distinct inhibitor concentrations, and the values represent the mean ± SD of 2–3
independent assays.
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The benzimidazole derivatives were further evaluated regarding
their cytotoxicity against human HFF-1 fibroblasts, which were used
as host cells for T. cruzi (Table 4). Selectivity indices (SI), which
express the ratio between the IC50 values for HFF-1 cells and T. cruzi,
were calculated. Overall, the evaluated compounds exhibited no
significant toxicity against human HFF-1 fibroblasts. Three
compounds showed SI values comparable to or greater than that
of the reference drug BZ (SI > 33): 18 (SI > 61), 17 (SI > 35), and 37
(SI > 34). It is worth noting that compounds 1 (SI > 26) and 8 (SI >
29) also exhibited suitable SI values.

Determination of In Vitro and In Vivo
Metabolic Stability
A series of 10 benzimidazole derivatives were selected based on their
activity against cruzain and T. cruzi to undergo PK studies, including

in vitro and in vivometabolism. Table 5 shows the in vitro results for
CLint after incubation with human and mouse microsomes, fu, LogD,
and PAMPA. Corrected clearance values (CLint_u) were obtained by
calculating the ratio between CLint and fu. It is important to note that
only unbound drug molecules are available for clearance, interaction
with metabolizing enzymes and transporters, equilibration into tissues,
and pharmacological activity. Thus, PK, pharmacodynamics, and
toxicity are driven by unbound drug concentrations (Zamek-
Gliszczynski, et al., 2011). As such, protein binding (PPB) in
plasma, microsomes, and target tissues is routinely evaluated in
drug discovery to determine the respective fu values (Wang, et al.,
2014). The drug-like space for unbound clearance lies at approximately
10 L/h/kg. As shown in Table 5, all benzimidazole derivatives have
CLint_u values much higher than the drug-like reference and that of the
reference drug BZ. Compounds 17, 18, 37, which have IC50

T. cruzi

values comparable to that of BZ, have CLint_u values ranging from ∼10

FIGURE 2 | Lineweaver-Burk plots for compounds 20 (A) and 24 (B). Each curve represents a different inhibitor concentration.

FIGURE 3 | Lineweaver-Burk plots for compounds 1 (A); 25 (B); 27 (C); and 26 (D). Each curve represents a different inhibitor concentration.
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to 21 times higher than that of BZ, which could undermine the
achievement of the bioavailability levels required for biological
response. Most compounds listed in Table 5 had PAMPA values
higher than 1.5 × 10−6 cm/s and were classified as having good
permeability.

Next, the same set of molecules was evaluated for their in vivo
PK profile (Table 6). From this assay, information such as T1/2,
plasma clearance (CLp), and bioavailability (F) were obtained. As
observed for the in vitro assays, all benzimidazoles had high
unbound clearance compared to that of BZ. The in vivo assays
reinforced the concept that the high clearance may be the reason
for the very low oral bioavailability (F) observed for the
benzimidazoles (0–35%) compared to that of BZ (90%).

In vitro experiments are faster and less expensive than in vivo
assays. Accessing the in vitro-in vivo correlation (IVIVC) for
metabolic stability is important to demonstrate whether one can
rely on in vitro studies and keep the use of animals to a minimum
for a series of molecules. The lack of IVIVC is also informative,
indicating that other metabolic routes are likely to be responsible
for the observed in vivo clearance. In our experiments, a positive
IVIVC was observed for fu-corrected clearance (Figure 5), which
allowed us to rely on in vitro assays for the prediction of in vivo
metabolic stability and prioritize compounds for further studies.

Determination of Metabolic Stability in
Human Hepatocytes and Identification of
CYP450 Isoforms
All compounds evaluated showed high clearance values, reaching
60–180% of mouse liver blood flow (5.4 L/h/kg), which is a
plausible explanation for their low bioavailability (0–35%). To
better understand pathways involved in the elimination of the
compounds, metabolic stability studies in human hepatocytes,

TABLE 2 | Structure and activity against cruzain of new benzimidazoles with
substituents at the phenyl ring.a

Compound Structure % Cruzain
inhibition
(100 μM)a

IC50

(μM)b

2 79 4.5 ± 0.5

3 70 28.1 ±
3.1

4 20 ND

5 87 ND

6 38 ND

7 75 ND

8 83 13.5 ±
2.6

9 90 18.2 ±
1.8

10 90 3.4 ± 0.9

11 96 2.7 ± 0.7

12 100 2.3 ± 0.6

13 89 24.2 ±
4.5

(Continued in next column)

TABLE 2 | (Continued) Structure and activity against cruzain of new
benzimidazoles with substituents at the phenyl ring.a

Compound Structure % Cruzain
inhibition
(100 μM)a

IC50

(μM)b

14 92 8.3 ± 2.1

15 58 > 100

16 62 ND

aThe percentage of inhibition refers to the mean of three experimental measures.
bIC50 values were determined independently in triplicate using at least six distinct inhibitor
concentrations, and the values represent the mean ± SD of 2–3 independent assays.
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FIGURE 4 | Molecular docking predicted the binding conformations of compounds 10 (A) and 11 (B) in complex with cruzain (PDB 3KKU, 1.28 Å), showing the
formation of hydrogen bonds (dashed lines) between the hydroxyl groups and Glu208. Binding site residues (carbon in gray) and compounds 10 and 11 (carbon in green
and orange, respectively) are shown as sticks.

TABLE 3 | In vitro activity against T. cruzi and physicochemical properties of a subset of the benzimidazoles.

Compound Structure IC50
T. cruzi

(μM)a
PAMPA (×10−6 cm/s) eLogD LogP PSA (Å2)

BZa 1.45 ± 0.4 3.17 0.84 1.00 92.70

N-substituted Analogs
1 3.9 ± 0.3 4.21 2.90 2.41 67.00

20 2.04 ± 0.6 4.30 4.24 1.57 104.38

24 1.43 ± 0.4 2.29 4.45 4.31 65.38

25 � 100 1.46 2.93 2.62 56.15

26 7.4 ± 2 8.72 4.06 4.20 56.15

(Continued on following page)
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TABLE 3 | (Continued) In vitro activity against T. cruzi and physicochemical properties of a subset of the benzimidazoles.

Compound Structure IC50
T. cruzi

(μM)a
PAMPA (×10−6 cm/s) eLogD LogP PSA (Å2)

27 6.9 ± 2.2 9.06 3.75 3.56 56.15

28 6.8 ± 0.9 0.71 2.16 1.47 99.24

Phenyl-substituted Analogs
2 4.5 ± 0.6 0.21 1.92 1.53 96.10

3 5.0 ± 1.0 0.17 2.26 1.53 96.10

8 3.5 ± 0.7 2.17 2.98 2.31 112.83

9 5.4 ± 0.9 0.38 1.88 1.67 93.03

10 14.6 ± 0.7 0.21 3.17 3.08 87.24

11 2.8 ± 0.6 0.17 2.26 3.08 87.24

12 16.6 ± 2.4 0.34 3.89 3.18 93.31

13 >50 0.83 ND 3.31 76.24

aIC50 values represent the mean ± SD of three independent assays; BZ, benznidazole. eLogD and PAMPA were experimentally determined. LogP and PSA were predicted
computationally.
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which contain the whole set of human phase I and phase II
hepatic metabolizing enzymes, were conducted. This experiment
was performed in the absence of CYP inhibitors for the
determination of the total clearance (Phase I + Phase II); in
the presence of 1-ABT (a CYP450 inhibitor) for the
determination of the fraction of the compounds that are
metabolized by the remaining Phase I as well as the
conjugating Phase II enzymes; and in the presence of
azamulin (a CYP3A4 inhibitor) for the identification of the
fraction metabolized by this isoform. This last assay provides
critical information for prioritizing compounds since CYP3A4
plays a key role in drug-drug interactions (DDIs) and is
associated with adverse effects and low efficacy when two or
more drugs are taken together. Phase I metabolism, performed
mainly by the CYP450 family, was responsible for 56–95% of the
metabolism of the compounds (mean � 78.1 ± 12.9%). A much
lower contribution to total clearance was observed for all other
Phase I enzymes, which were responsible for 5–35% of the
metabolism (mean � 21.9 ± 13.6%). The central role played by
CYP3A4 became apparent when the CYP3A4 inhibitor azamulin
was used in the assay: the resulting clearance values were
approximately 40% lower, reaching a minimum value of 31.6%
and a maximum value of 59.5% when compared with total
clearance values (Supplementary Figure S1).

TABLE 5 | In vitro PK profile of benzimidazole analogs.

Compound Structure CLint
(L/h/kg) human

CLint
(L/h/kg) mouse

fu CLint_u
(L/h/kg) human

CLint_u
(L/h/kg) mouse

eLogD PAMPA
(×10−6 cm/s)

BZ 1.5 4.4 1.0 1.5 4.4 0.8 3.2

17 23.9 300.0 0.8 31.2 392.2 3.6 5.9

18 9.2 191.0 0.6 16.0 334.5 3.9 5.6

31 5.6 74.6 0.9 6.6 87.9 2.6 2.2

32 25.5 526.0 0.7 39.2 808.0 3.6 4.9

33 10.4 161.0 0.8 12.5 193.3 2.8 0.7

(Continued on following page)

TABLE 4 | Biological evaluation of a subset of the benzimidazoles against T. cruzi
and human HFF-1 fibroblasts.

Compound IC50
T. cruzi (µM)a IC50

HFF-1 (µM)b SIc

BZ 3.00 ± 0.60 >100 >33
Doxorubicin — 0.26 —

1 3.9 ± 0.3 >100 >26
2 12.1 ± 1.3 >100 >8
3 5.0 ± 1.0 >100 >20
5 ∼ 50.00 >100 >2
8 3.5 ± 0.7 >100 >29
10 14.6 ± 0.7 >100 >7
17 2.81 ± 0.75 >100 >35
18 1.63 ± 0.57 >100 >61
20 2.04 ± 0.60 >30 >14
24 1.43 ± 0.40 >30 >21
26 7.40 ± 2.00 >100 >13
27 6.90 ± 2.20 >100 >14
28 6.8 ± 0.9 >100 >15
32 7.90 ± 2.13 >100 >12
33 6.68 ± 2.35 >100 >15
34 16.22 ± 3.51 >30 >2
35 46.12 ± 6.21 >100 > 2
37 2.90 ± 0.66 > 100 >34
38 11.14 ± 3.19 >100 >9
aIC50 values represent the mean ± SD of three independent assays.
bIC50 values represent the mean ± SD of two independent assays.
cSelectivity index (SI) � IC50

HFF-1/IC50
T. cruzi.
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After identifying the central role of CYP3A4 in the metabolism
of this series, the next step was to identify the involved isoforms
using recombinant CYP enzymes. CLint was determined based on
the residual amount of the compound over time. Additionally, the
contribution of each CYP isoform to metabolism was calculated
based on their relative abundance in humans. The information
generated by this experiment was essential to assess the risk of
potential drug-drug interactions (DDIs) for this series of
compounds. Molecules eliminated through multiple pathways
have reduced DDI potential and are therefore more suitable for
advancing to further steps in a drug discovery pipeline. The
benzimidazole derivatives are mainly metabolized by CYP3A4
(23–90%) (Supplementary Table S4). Although modest, a
contribution from isoforms CYP2D6 and CYP1A2 is observed,
featuring an attractive profile from a DDI perspective despite the
high clearance values.

Identification of Sites of Metabolism
All studies on benzimidazoles showed that these molecules are
metabolically unstable, and biotransformation mediated by
CYP3A4 is the major metabolic route. Therefore, studies to
identify the molecular sites of metabolism (SOM) were
performed. These studies can enable the blockage of these sites
by the inclusion of blocking groups to achieve appropriate levels
of metabolic stability. Ideally, these molecular changes should not
significantly affect the potency toward the molecular target. The
test compounds were then incubated with human and mouse
liver microsomes. Most of the metabolites were found to be
oxidation products mainly of the linker and benzimidazole

moieties (Supplementary Figures S2–S5). Strategies to block
these SOMs could include switching the amide position and
adding halogen atoms to the linker. At the benzimidazole ring,
N substitutions and the addition of halogens could be explored
(Supplementary Figure S6).

Metabolic Stability Studies for an Additional
Set of Benzimidazole Derivatives
After completing the PK profile for 10 molecules (set 1), an
additional set of 55 compounds (set 2) was evaluated to provide
additional information for the establishment of a SAR for
metabolic stability. The results for clearance after incubation
with human and mouse liver microsomes, eLogD, and
PAMPA are summarized in Supplementary Table S5. Some
set 2 compounds with lower clearance values than those of set
1 molecules were identified, some of which exhibited clearance
values comparable to that of BZ (Supplementary Figure S7).

The clearance values listed in Supplementary Table S5 show
that the presence of substituents on the phenyl ring might
influence the metabolic stability of the compounds.
Substituents at para and meta, for example, led to the most
stable compounds with the lowest CLint_u values. Among the
compounds with substituents at para, compounds 2, 4 and 5 are
highlighted, for which clearance values are in the same range of
BZ (CLint_u � 1.50 L/h/kg). In addition, compounds 6 (CLint_u �
3.54 L/h/kg), 7 (CLint_u � 1.50 L/h/kg), and 3 (CLint_u � 6.90 L/
h/kg), with substituents at meta, showed drug-like profiles for
metabolic stability. Substituents at ortho also led to stable

TABLE 5 | (Continued) In vitro PK profile of benzimidazole analogs.

Compound Structure CLint
(L/h/kg) human

CLint
(L/h/kg) mouse

fu CLint_u
(L/h/kg) human

CLint_u
(L/h/kg) mouse

eLogD PAMPA
(×10−6 cm/s)

34 49.9 607.0 0.1 539.5 6562.2 4.4 0.3

35 21.1 565.0 0.5 43.9 1174.6 3.9 0.7

36 28.8 705.0 0.8 38.2 935.0 3.8 4.7

37 22.9 745.0 0.9 26.9 874.4 3.9 19.7

38 230.0 934.0 0.5 501.1 2034.9 4.1 7.7

CLint, intrinsic clearance after incubation with human and mouse microsomes; fu, fraction unbound; CLint_u, corrected clearance (CLint/fu); eLogD, experimentally determined distribution
coefficient; PAMPA, parallel artificial membrane permeability assay.
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compounds: 31 (CLint_u � 6.6 L/h/kg), 42 (CLint_u � 4.64 L/
h/kg), and 43 (CLint_u � 3.94 L/h/kg).

Set 2 compounds did not show significant structural variability
in the linker region. Among the few exceptions are compounds
48, in which sulfur replaced the linker oxygen (CLint_u � 11.38 L/
h/kg), and 58 (CLint_u � 16.99 L/h/kg) and 49 (CLint_u � 3.28 L/
h/kg), in which the position of the phenoxy fragment was
modified by the introduction of a methylene group at the
linker. At the benzimidazole ring, the introduction of a
hydrophilic amide led to high metabolic stability (28, CLint_u
� 1.53 L/h/kg). It is important to highlight the influence exerted
by the physicochemical nature of the substituents at the phenyl
and the benzimidazole on the stability of the compounds
(Supplementary Figure S8). The introduction of hydrophobic
substituents at the phenyl resulted in high clearance values, such
as those observed for compounds 44 (CLint_u � 70.62 L/h/kg), 51
(CLint_u � 65.56 L/h/kg), 52 (CLint_u � 2,122.45 L/h/kg), and 60
(CLint_u � 194.48 L/h/kg). Hydrophobic substituents at the
benzimidazole (19, 20, 21, 23, 26, 27, and 30) followed the

same trend, with CLint_u values ranging from 70.23 to 3,366.34 L/
h/kg. Overall, the clearance values for the benzimidazole derivatives
increased with increasing hydrophobicity (Supplementary Figure
S9). Seven set 2 compounds (1, 2, 3, 8, 10, 11, and 28) with suitable
trypanocidal activity and in vitro clearance underwent in vivo PK
studies. Overall, the set 2 compounds exhibited lower CLp_u values
compared to those of the set 1 analogs (Supplementary Table S6),
with benzimidazoles 2 and 28 showing themost promising profiles
(CLp_u of 4.16 and 3.98, respectively). Additionally, similar to the
profile observed for the set 1 compounds, a good correlation
between in vitro and in vivo clearance was found for the set 2
benzimidazoles (Figure 6).

In Vivo Toxicity and Trypanocidal Activity
Compound 28 (IC50

T. cruzi � 6.8 µM) was selected for a proof-of-
concept study given its suitable balance between
pharmacodynamics and PK properties. Initially, we
determined the doses that elicited no acute toxicity. The
compound, solubilized in 10% DMSO aqueous solution, was

FIGURE 5 | Clearance in vitro-in vivo correlation (IVIVC) plot showing a good correlation between the metabolic stability data. Benznidazole (green triangle);
benzimidazole analogs (orange diamonds).

TABLE 6 | In vivo PK profiles of selected benzimidazole derivatives.

IV PO

Cpd T1/2(h) C0 (ng/ml) V SS (L/kg) AUC
(ng*h/ml)

CLp (L/h/kg) fu CLpu

(L/h/kg)
T1/2 (h) Cmax

(ng/ml)
Tmax (h) AUC

(ng*h/ml)
F (%)

BZ 0.8 961 1.1 1.020 1.0 0.99 1.0 1.5 404 0,4 1.040 90
17 0.5 153 4.4 83 6.3 0.06 104.3 — 0.0 — 0.0 0.0
18 0.2 283 1.8 84 3.2 0.03 103.7 — — 0.3 1.0 1.2
31 0.2 232 1.9 67 4.6 0.15 29.9 — 12.8 0.3 — —

32 0.2 220 2.5 53 5.9 0.04 157.4 — — 0.3 1.0 1.9
33 0.2 658 0.6 160 9.5 0.16 60.6 0.4 71.7 0.3 56.5 35.2
34 0.3 255 1.9 116 7.6 0.00 2,874.7 0.6 7.6 0.3 6.5 5.6
35 0.2 228 2.0 86 5.8 0.02 334.6 0.2 3.7 0.3 1.7 2.0
36 0.5 144 7.2 55 9.5 0.04 231.5 — 0.0 — 0.0 0.0
37 0.2 169 2.4 53 9.5 0.05 187.1 — 14.6 0.3 — —

38 0.4 126 3.3 82 6.2 0.01 430.5 — 2.5 0.3 — —

IV, intravenous administration; PO, oral administration; T1/2, plasma half-life; C0, concentration at time � 0; VSS, steady-state volume of distribution; AUC, area under the curve; CLp,
plasma clearance; fu, fraction unbound; CLpu, plasma clearance corrected for the fraction unbound; Cmax, peak plasma concentration; Tmax, time of peak plasma concentration; F,
bioavailability.
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FIGURE 7 | Acute toxicity and trypanocidal activity in vivo. (A) Open-field test. Mice were orally treated with vehicle (10% DMSO) or benznidazole (BZ) at doses of
150 mg/kg or 28 at doses of 150 and 300 mg/kg. (B) Parasitemia during T. cruzi infection in mice treated with vehicle, BZ or 28 (150 and 300 mg/kg) expressed as the
number of trypomastigotes per 5 μl of blood. The data represent the mean parasitemia ± SEM (4–8 animals per group) for all assays. (C) Peak parasitemia expressed as
the number of trypomastigotes per 5 μl of blood in mice treated with vehicle, BZ or 28 (150 and 300 mg/kg) (*p <0.05 when compared to vehicle and other groups).
(D) Reduction of peak parasitemia (seventh day of infection) in mice treated with vehicle, BZ or 28 (150 and 300 mg/kg). Vehicle solution: 0.9% NaCl + 10% DMSO.

FIGURE 6 | Clearance in vitro-in vivo correlation (IVIVC) plot showing a good correlation between the metabolic stability data. Benznidazole (green triangle); set 1
compounds (orange diamonds); set 2 compounds (red diamonds). Compounds 2 (A) and 28 (B).
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administered orally in a single dose of 150 and 300 mg/kg of body
weight in female Swiss mice. Parameters related to behavior,
autonomic functions, neurological activity, and mortality were
assessed as toxicity signs. Soon after the administration of the
compound, mice were placed in a circular open-field arena
(40 cm diameter) with 50-cm-high walls to assess motor
deficits. Mortality and clinical signs associated with toxicity
were recorded 0.5, 2, 4, 8, and 24 h after the single-dose
administration. After this period, toxicity signs were assessed
once a day for two consecutive weeks. The reference drug BZ at
150 mg/kg and vehicle (10% DMSO) were administered as
controls. No toxicity signs were observed within the 2 weeks of
observation for any of the tested doses. Additionally, no mortality
was observed (Figure 7A). One-way ANOVA did not reveal any
difference among the groups [F3,4 � 0.15; p � 0.9238], indicating
that treatment with 28 at doses of 150 and 300 mg/kg did not
cause locomotor deficits.

Considering the favorable acute toxicity results, the in vivo
trypanocidal activity of 28 was determined at single doses of 150
and 300 mg/kg for 5 days. Female Swiss mice were infected with
T. cruzi (Y strain) (Rodriguez et al., 2014) and treated via gavage
with five daily doses of BZ (150 mg/kg of body weight), 28 (150
and 300 mg/kg of body weight) and vehicle (10% DMSO).
Treatment started on day five after infection with T. cruzi. The
following parameters were evaluated in these experiments: level of
parasitemia after the treatment, suppression of peak parasitemia
(day seven after the infection), and reduction of parasitemia on the
peak day (day seven after infection). Parasitemia was expressed as
the number of T. cruzi trypomastigotes per 5 µl of blood and was
calculated using the Brener method (Brener, 1962). Repeated
ANOVA measures considering the factors treatment and day
(repeated measure) showed a main effect of treatment (F3,18 �
12.68; p < 0.05) (Figure 7B). On the seventh day of treatment,
when parasitemia reached its peak, one-way ANOVA indicated
a treatment effect (F3,16 � 7.47; p � 0.002). Post hoc analyses
indicated that the treatment with BZ significantly decreased
parasite burden compared with the other treatments (p < 0.05)
(Figure 7C). BZ and 28 (150 mg/kg) reduced peak parasitemia
by 100 and 36.9%, respectively, compared with the vehicle. At a
dose of 300 mg/kg, benzimidazole 28 showed an increase of 13%
in the peak parasitemia when compared with the vehicle
(Figure 7D). This dose-response effect is likely associated
with the modulation of physiological systems that increase
the susceptibility of the animals to infection with T. cruzi at
high doses of the compound. Further tests with lower doses
(75 mg/kg and 37.5 mg/kg) showed no reduction in parasitemia
levels (Supplementary Figure S10). The results of the in vivo
studies indicate a moderate ability of 28 to suppress peak
parasitemia at 150 mg/kg.

Considering that few molecular targets are validated in NTDs
(De Rycker et al., 2018) and the relatively unsuitable compounds
regarding toxicity and drug-likeness that have been historically
explored in the area, the findings reported herein address an
important gap in Chagas disease drug discovery. Regardless of the
mechanism of action, it is noteworthy that in rare cases a
compound succeeds in terms of efficacy in Chagas disease in
vivo infection models. This is a major hurdle in the field that can

be related to the complex life-cycle biology of T. cruzi, and the
many poorly understood aspects of the interplay between the
parasite and the host (Libisch et al., 2021). Among the
compounds that reached this milestone, we can highlight vinyl
sulfone K777, CYP51-inhibitor azoles (including posaconazole),
and cruzain-inhibitor triazoles and carbamoyl imidazoles (Ferraz
et al., 2007; McKerrow et al., 2009; Brak et al., 2010; de Souza et al.,
2020). K777 was a landmark in the field as it was the first
compound to show the possibility to enter clinical trials for
Chagas disease. However, tolerability issues in dogs and
primates during the preclinical phase hampered the progression
of this compound toward clinical development. After the failure of
K777, it was discussed whether the toxicity issues would be due to
the irreversible mechanism of action and resulting lack of
selectivity of K777 over other proteases, which could include
human proteases. The case of K777 highlights the importance
of designing reversible cruzain inhibitors with improved selectivity
as are the benzimidazole derivatives investigated in this work. In
this study, we adopted the strategy of diversifying the substitution
pattern at the phenyl and benzimidazole regions. This approach led
to an enhanced interaction with cruzain and, by enabling the
formation of a hydrogen bond with Glu208, it improves the
selectivity for cruzain over other proteases. Glu208 is part of the
S2 subsite in the cruzain active site and is lacking in most other
proteases such as human cathepsins. The role played by the
formation of a hydrogen bond with Glu208 was investigated by
evaluating a set of compounds against rhodesain, a cysteine
protease that has an active site that resemble that of cruzain in
which an alanine replaces Glu208. The compounds were far more
active against cruzain over rhodesain, which indicates the
important part played by Glu208 in selectivity toward cruzain.

Another key finding reported in Chagas disease drug design was
the identification of CYP51-inhibitor antifungal azoles (Ferraz
et al., 2007). These compounds, particularly Posaconazole and
E1224 (the ravuconazole prodrug), showed promising suppressive
effects in parasite burden in animal models of Chagas disease.
However, their failure in clinical trials raised fruitful discussions
regarding the mechanism of action of the compounds. Although
these azoles displayed a remarkable suppressive effect, they failed
in providing sustained parasite clearance when opposed to
benznidazole. These studies served to establish the landmark
that T. cruzi CYP51 is not a molecular target to be pursued in
Chagas disease drug discovery. These previous findings
demonstrate the critical importance of target validation and
identification of compounds that act by different modes of
action, for example, the modulation of cruzain. The compounds
studied herein showed a moderate reduction of parasite burden
and, therefore, open novel possibilities for future work on this
molecular target. Moreover, the benzimidazoles did not
demonstrate toxicity in animal studies, which, as seen in the
K777 case, can be an issue of cysteine protease inhibitors. The
best compound (28) administered orally to mice in a single dose of
150 and 300 mg/kg showed no toxicity signs for any of the doses
and, importantly, no mortality was observed.

Another important class of compounds is triazole-based
cruzain inhibitors, whose representative analogs showed
promising in vivo efficacy (Brak et al., 2010; Neitz et al.,
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2015). These non-peptidic ketones irreversibly inactivate cruzain
by attaching covalently to Cys25, which can raise selectivity issues
and, therefore, be a drawback for further development. Regarding
the PK profile, optimization of these triazoles resulted in
enhanced bioavailability and exposure after oral dosing,
although they proved to inhibit CYP3A4, the most important
CYP isoform for the elimination of xenobiotics. The best
compound identified herein (28), showed a suitable tradeoff
among pharmacodynamics and PK properties. Regarding its
mechanism of action, inhibitor 28 is a reversible inhibitor and
interacts with Glu208, which reduces the probability of inhibition
of human proteases. Additionally, the extensive PK studies
enabled the identification of permeable, metabolically stable,
and bioavailable compounds with high selectivity indices, and
that are metabolized mainly by CYP3A4. Incubation of the
compounds with isolated recombinant CYPs using CYP3A4
and pan-CYP inhibitors as controls showed that the
benzimidazoles do not inhibit CYP3A4. These findings are
pivotal in the context of drug-drug interactions, particularly in
the case of chagasic patients who need to use different drugs to
mitigate the complications of the disease.

CONCLUSION

AnMPO strategy for the optimization of benzimidazole derivatives
as antichagasic agents was developed. This strategy relied on the
parallel optimization of activity against cruzain and T. cruzi,
selectivity, and PK parameters such as metabolic stability and
permeability. New compounds were synthesized, and previously
synthesized analogs were thoroughly evaluated for PK properties.
Newly introducedN-substituents at the benzimidazole ring revealed
that increasing bulkiness at this site modifies the mechanism of
action toward cruzain from competitive to noncompetitive. These
results introduce new and interesting aspects regarding the binding
mode and mechanism of action of cruzain inhibitors. Newly
designed phenyl-substituted analogs showed increased inhibition
of cruzain over rhodesain, demonstrating the key role played by
Glu208 in the selective inhibition of cruzain over other proteases.
Some of the benzimidazole derivatives showed appropriate
metabolic stability and clearance values comparable to those of
drug-like molecules. Phase I oxidation reactions catalyzed by
CYP3A4 were detected as the main elimination pathway, and
the identified sites of metabolism provided insights into the
improvement of metabolic stability. Moreover, the analysis of the
in vitro trypanocidal and cytotoxicity data revealed a sound
selectivity index for the investigated compounds, indicating a
low potential for toxicity.

The applied MPO approach enabled the prioritization of
compounds considering an appropriate combination of
in vitro activity, toxicity, and PK properties. The gathered
in vitro data supported in vivo PK studies for representative
compounds. A solid IVIVCwas obtained, demonstrating the high
predictive ability of the in vitro PK models for the corresponding
in vivo endpoints. Finally, acute toxicity and efficacy studies were
conducted for compound 28, which showed no toxicity signs and
a moderate reduction in peak parasitemia at 150 mg/kg.

Importantly, the knowledge gathered in this study opens novel
opportunities to understand the molecular aspects of cruzain
inhibition, enabling the discovery of compounds with a good
trade-off between pharmacodynamics and pharmacokinetics.
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ER/AR Multi-Conformational Docking
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Studying Estrogen and Androgen
Receptor Modulators
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China

The prediction of the estrogen receptor (ER) and androgen receptor (AR) activity of a
compound is quite important to avoid the environmental exposures of endocrine-disrupting
chemicals. The Estrogen and Androgen Receptor Database (EARDB, http://eardb.
schanglab.org.cn/) provides a unique collection of reported ERα, ERβ, or AR protein
structures and known small molecule modulators. With the user-uploaded query
molecules, molecular docking based on multi-conformations of a single target will be
performed. Moreover, the 2D similarity search against known modulators is also
provided. Molecules predicted with a low binding energy or high similarity to known ERα,
ERβ, or ARmodulatorsmay be potential endocrine-disrupting chemicals or newmodulators.
The server provides a tool to predict the endocrine activity for compounds of interests,
benefiting for the ER and AR drug design and endocrine-disrupting chemical identification.

Keywords: estrogen receptor (ER), androgen receptor (AR), molecular docking, similarity search, web-server

INTRODUCTION

With the development of chemistry technology, numerous natural or non-natural compounds are
synthesized and used in the daily life of human beings such as medicines, perfumes, food additives,
automobiles, electronics, pesticides, textiles, plastics, and so on (Barr Dana et al., 2005; Judson et al., 2011).
It is noted that a number of the compounds act as endocrine-disrupting chemicals (EDCs) with the
potential to interfere the hormone systems in human or wild lives (Schug et al., 2011; Dionisio et al., 2015).
The occupational and environmental exposures of EDCs are strongly correlated with the adverse health
outcomes such as reproductive health, development disorders, oncological, immunological and
cardiovascular disease, obesity, and neurobehavior disorders (Elobeid and Allison 2008; Yilmaz et al.,
2020; Boudalia et al., 2021; O’Shaughnessy et al., 2021; Priya et al., 2021). Numerous efforts have been
taken to identify that if a compound is endocrine-active or not. The Endocrine Disruptor Screening
Program (EDSP) and the Toxicology Testing in the 21st Century (Tox21) projects set up various in vitro
or in vivo assays to measure the potential effects of chemicals on the endocrine system in humans or
wildlife (Judson et al., 2010;Willett et al., 2011; Judson et al., 2015; Yilmaz et al., 2020).However, high costs
and low speedmake the experimentalmethods not fulfill the need of testing the rapid increased number of
synthetic chemicals in use. Currently, only a small fraction of compounds have the experimental
determined endocrine activity data available (Egeghy et al., 2012; Tickner et al., 2019). It is of great need to
develop the predictive models to provide clues of the compounds’ endocrine activity.
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The in silico methods, especially the ligand-based QSAR
(quantitative structure–activity relationships) approaches and
structural base docking methods, are widely used in the
computer-aided drug design field (Mao et al., 2021; Sabe et al.,
2021). These methods are applied to predict the compound’s
activities against endocrine-related proteins, such as the estrogen
receptor (ER) and androgen receptor (AR) (Schneider et al., 2019).
The CERAPP (Collaborative Estrogen Receptor Activity Prediction
Project) and CoMPARA (Collaborative Modeling Project for
Androgen Receptor Activity) construct various predictive models
trained by different QSAR approaches for estrogen or androgen
receptor activity prediction (Mansouri et al., 2016; Mansouri et al.,
2020). Both categorical and continuous models are built based on the
dataset provided by the U.S. EPA, and a consensus model was
obtained by weighting the models on scores based on evaluated
accuracies of singlemodels. Shen et al. collected the estrogenic activity
data from public sources and developed QSAR models based on the
dataset (Shen et al., 2013). Machine learning and deep learning
methods are also applied in EDC predictions and achieved a relative
high overall predictive accuracy (Zhang et al., 2017). One of the
important limitations of the QSAR-basedmodel is the quality of data
for model training (Maggiora 2006). The structure-based docking
method provides significant complementation for EDC prediction.
The “Endocrine disruptome” server provides docking models for 14
nuclear hormone receptors such as ER, AR, glucocorticoid receptor,
liver X receptors, etc. (Kolšek et al., 2014). However, only 18
structures are incorporated in the server.

ER and AR are also pivotal therapeutic targets due to the roles
in regulation of development, endocrinology, and metabolism,
and numerous compounds are developed to modulate the protein
functions. The nuclear receptors including the ER and AR are
composed of several functional domains, such as the N-terminal
domain (NTD), the DNA-binding domain (DBD), and the
ligand-binding domain (LBD) (McEwan 2009). The
investigation of PDB structures show that except the native
hormone-binding pocket, there are activation function 2 (AF-

2) pocket and binding function 3 (BF-3) pocket located on the
ligand-binding domain (LBD) of the ER and AR (Estébanez-
Perpiñá et al., 2007; Axerio-Cilies et al., 2011; Lack et al., 2011;
Buzón et al., 2012). Compounds bound to either of the pockets
are demonstrated to interfere with the protein functions and the
related signal pathway as agonists or antagonists (Moore et al.,
2010; Nwachukwu et al., 2017) (Figure 1A). Even for the same
pocket, such as the native ligand-binding pocket, considerable
conformational changes occurred upon various types of
compound binding (Min et al., 2021) (Figure 1B).

Current used small molecule docking programs such as
AutoDock Vina can only consider the flexibility of the small
molecule while keeping the protein conformation fixed (Trott
and Olson 2010). The bias will be introduced only when one of
the protein structures is used as the receptor for docking
experiments. To integrate the conformation change information
from the resolved structures, here we built docking models based
on all available complex structures of the ER and AR and
constructed a docking server (Estrogen and Androgen Receptor
Database, EARDB, http://eardb.schanglab.org.cn/). The user can
easily dock the compound of interest to the conformational
ensembles of ERα, ERβ, and AR by several simple clicks. The
top 10 highest docking score poses among all the ensembles are
returned. The compound fit to any of the pocket may be potential
EDCs of the ER or AR. In addition, the 2D similarity search
function for the known ER or AR modulators is also implemented
based on data retrieved from the binding database. The aim is to
provide a tool to predict any possible ER or AR effectors with
multi-conformational docking models and ligand-based similarity.

MATERIAL AND METHODS

Construction of Docking Models
By using the advance search option, the structures of ERα, ERβ,
and AR are retrieved from the PDB (the Protein Data Bank) with

FIGURE 1 | (A) Three binding sites in the ligand-binding domain of the AR depicted based on PDBID 2POI and (B) the ligand-binding site flexibility of ERα in
complex with different compounds, estradiol ((8R,9S,13S,14S,17S)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocy clopenta[a]henanthrene-3,17-diol) and 7AI
((1S,2R,4S)-5,6-bis(4-hydroxyphenyl)-N-{4-[2- (piperidin-1-yl)ethoxy]phenyl}-N-(2,2,2-trifluoroethyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonamide) (structures from
PDBID 5GS4 and 7RRX). Proteins are represented in a cartoon model, and compounds or residues, in a stick model. In (B), proteins from 5GS4 and 7RRX are
colored in cyan and orange, and the compounds estradiol and 7AI are colored in green and gray, respectively. Residues undergoing considerable conformation
changes, such as ILE 424, GLU419, HIS524, and LEU525 are depicted in the stick model.
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the uniprot accession numbers of P03372, Q92731, and P10275. The
structures with small molecules bound with the protein are used to
generate the dockingmodels. Totally, 282, 29, and 81 PDB structures
are downloaded for proteins ERα, ERβ, and AR, respectively. For a
crystal structure with multiple chains, each chain is separated and

treated as a unique docking model. Then, the protein structure and
ligand structure are split into different files. AutoDock Vina is
chosen as the docking tool due to its excellent performance in
systematic docking program evaluations (Trott and Olson 2010;
Wang et al., 2016). The protein structures are operated by
Receptor_prepare.py to remove waters and add polar hydrogens
and Kollman charges to obtain the receptor pdbqt files. The docking
box is defined by using the geometric center of the native binding
ligand from the original PDB as the box center with 28 × 28 × 28 Å in
size to include the entire binding site. Ligand_prepare.py is used to
generate the ligand pdbqt file. The flexible bonds are set as default,
and the Gasteiger charge is computed for the ligand. Both the
receptor and ligand pdbqt files are generated in the neutral pH
condition. The top ten docking poses are allowed to output with the
docking score. In the re-dock experiment, the native binding ligands
are docked into the corresponding receptors to validate the docking
protocol. The receptor files which possess docking poses less than
2 Å rmsd with the native binding ligand are incorporated to the web
server to evaluate the user-submitted small molecules.

Activity Data Curation
We also collected the activity data of the reported ERα, ERβ, and
AR agonist or antagonist from the binding database (http://www.
bindingdb.org) (Chen et al., 2001; Liu et al., 2007; Gilson et al.,
2016) to enable the user to evaluate the 2D similarity of his own
compound and the known ER/AR modulators. All the records
with the uniprot accession numbers of P03372, Q92731, and
P10275 are retrieved from the binding database and implemented
in the local server.

Structure Similarity Search
In the structure similarity search function, the smi, mol2, or sdf
file of the interested compound need to be provided by the user.

FIGURE 2 | Workflow of the EARDB.

TABLE 1 | Number of structures and docking models for ERα, ERβ, and AR.

Protein name Number of crystal
structures with the

small molecule ligand

Number of docking
modes in re-dock

experiment

Number of successful
docked systems in
re-dock experimenta

ERα 282 609 580
ERβ 32 66 62
AR 81 105 91

aDocking models with the lowest RMSD of docking poses less than 3.0 Å are defined as successful docking systems.

FIGURE 3 | Representative poses from re-dock experiments of ERα (A), ERβ, and (B) AR (C). The proteins are represented in a green cartoon model, and ligands
are represented in a stick model. The carbon atoms from crystal structures are shown in green color and those from the docking pose are shown in cyan.
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The Tanimoto similarity coefficient between the user-uploaded
small molecule and the ligands in the EARDB is computed by
Open Babel 2.3.2 based on the linear fingerprint of fragment
indices. The Tanimoto coefficient is a value range from 0 to 1,
representing the level of similarity between two molecules. The
value of 1 is the highest similarity and indicates the same
molecules, and the value of 0 is the lowest similarity. The
EARDB will automatically calculate the Tanimoto value for
each ligand in the database with the query compound and will
only return the ligands with similarity values higher than the
user-defined cutoff with a descending rank.

Implementation
The EARDB is installed on CentOS 7.6 server workstations. The
webserver platform is constructed by Apache 2.4.6, and the
website was built with PHP 5.6.4. The MySQL 5.7 Database
management system was used to organize, manage, and sort data
of various types. The open-source Java viewer NGL is embedded
on the webpage for 3Dmolecular visualization (https://nglviewer.
org/). Open Babel 2.3.2 is used for format transformation, 3D
coordinate generation, and 2D similarity search for the uploaded
files (O’Boyle et al., 2011). AutoDock Vina 1.1.2 (Trott and Olson
2010) is used to obtain the docking scores and binding modes
with default settings.

RESULTS AND DISCUSSION

Overview of the Database
The EARDB (http://eardb.schanglab.org.cn/) currently
implements two major functions, the 2D chemical similarity
search for known ER/AR modulators and the online docking
module to predict the potential ER/ARmodulator (Figure 2). The
ligand database contains about 7,800 unique compounds
associated with 13,190 related activity records of the ER and
AR from Homo sapiens. For each ER/AR modulator entry, the
molecular chemical name, the 2D chemical structure and
monomer ID from the binding database are provided. The
online docking module provides a web-based interface to
predict the binding mode and binding affinity for the user-
uploaded compounds with the protein of interest. There are
three types of protein targets, including ERα, ERβ, and AR.
For each type of target, structures in complex with differential
compounds are retrieved from the RCSB Protein Data Bank
(Rose et al., 2011). Totally, 580, 62, and 91 docking models
derived from the experimental structures of ERα, ERβ, and AR
are available on the server.

The workflow of the web server is shown in Figure 2. For the
user-interested compound, the strict smi, mol2, or sdf format file
is needed to upload to the server. Two computational types are
provided as following: “S” for similarity search and “D” for
docking. For similarity search, the Tanimoto cutoff needs to
be defined by the user. By submission of the job, Open Babel 2.3.2
is launched on the server to retrieve any compounds with
Tanimoto values greater than the cutoff value. A molecular
table is presented on the webpage to display the results, and
also, a tab-delimited txt file is provided to download. For the

docking module, the target type needs to be selected as the first
step. By submission of the job, ligand preparation, a series of
molecular docking experiments against all structures of the
specific target type will be automatically carried out on the
EARDB server. The top 10 models ranked by the predicted
binding affinities are kept and visualized in 3D by NGL. A
package of docking results is also provided to download from
the results page.

FIGURE 4 | (A) Input webpage for multi-conformational docking of ERα,
ERβ, or AR; (B) The result page of multi-conformational docking (example
running for FHM); (C) The result page of multi-conformational docking
(example running for DDT).
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Validation of Docking Models
To consider the conformational change of proteins upon binding
different ligands, we retrieved all the protein–small molecule
complex structures of ERα, ERβ, and AR from the PDB
website. As shown in Table 1, there are 282, 32, and 81
complex structures for ERα, ERβ, and AR, respectively. Based
on these structures, totally 621, 66, and 105 docking models were
obtained by separating chains. Then, the re-dock experiments
were performed to dock the native ligand from the experimental
structures to the protein active site. It is necessary to validate the
parameters set in the docking protocol, as well as if the protein
structure is qualified for docking. The root mean square deviation
(RMSD) between the docking poses generated by Vina and the
native ligand structure from the original experimental structure
are used to evaluate the accuracy of re-dock experiments. As
shown in Table 1 and Supplementary Table S1, among 780
docking models, 733 models obtained docking poses with RMSD
less than 2.0 Å (Supplementary Table S1). The re-dock results of
1XP1 (ERα) (Blizzard et al., 2005), 2FSZ (ERβ) (Wang et al.,
2006), and 2AX8 (AR) (Bohl et al., 2005) are shown here as
examples. The docking poses and the original crystal structures
are presented in Figure 3. The RMSD values of 1XP1 (ERα), 2FSZ
(ERβ), and 2AX8 (AR) are 1.48, 0.87, and 1.12 Å, respectively.

The docking poses superimpose well with the native ligand
structure from the original crystal structures, indicating the
docking procedure is able to recover the experimental
structures. To include more conformational diverse structures,
the docking models with RMSD less than 2.0 Å are considered as
successful docking systems and kept in the receptor database to
provide readily to dock function on the web server.

Multiple Conformation–Based Docking
Multiple structures of ERα, ERβ, and AR are collected from the
PDB database and prepared as docking models. The user could
upload the smi, sdf, or mol2 file of one small molecule and then
choose a receptor for docking (Figure 4A). An email address is
needed to receive the message of job submission and job status.
After the job is completed, a notification email will be sent to the
user’s email address. An investigation drug of AR, ligand name
from the PDB as FHM, was used as an example for multiple
conformational docking. FHM is a native ligand in the crystal
structure with PDBID as 2AXA. The sdf file of FHM was
uploaded, and the receptor type of the AR was selected. With
one click on submission button, the job is submitted to the server
conveniently. After about 3 h running, ninety-three docking
experiments were finished. On the “Job Status” page, it is

FIGURE 5 | Input (A) and output (B) webpages for 2D similarity search.
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shown that the job was completed. By click the result link from
the email or by search for the job ID in the “Check Result” page,
the result page can be accessed. As shown in Figure 4B, a table of
the top 10 lowest energy poses is provided in the result webpage.
The PDBID of the receptor model and the corresponding docking
score are presented. For FHM, its original receptor file 2AXA
(chain A) obtained the lowest docking score as −11.0 kcal/mol.
The binding poses could also be explored by the NGL molecule
viewing window on the page. As the docking score of Vina is
fitted to the binding affinity, molecules with a low docking score
may be a possible modulator.

DDT (4,4-dichlorodiphenyltrichloroethane) is used as another
example. As a pesticide, DDT was banned because it acts as an
endocrine-disrupting chemical with ERα agonist activity
(Nwachukwu et al., 2017). The sdf file of the compound was
uploaded to the server, and ERα was chosen as the receptor to
perform the multi-conformation–based docking. The results are
displayed in Figure 4C. It is showed that the compound bound
well with various PDB structures of ERα, and the top ten lowest
docking scores ranged from −9.3 to −9.1 kcal/mol, indicating
DDT as a strong ERα binder (Figure 4C).

3.4 2D Similarity Search for Known ERα,
ERβ, or AR Modulators
Ligand-based chemical structure similarity search is provided on the
web server. As shown in Figure 5A, the user can choose a molecule
in the smiles format from the local storage and upload it to the
server. Here, we also take FHM as an example. The default value of
0.6 is taken as the Tanimoto cutoff. As shown in Figure 5B, the
monomerID from the binding database, ligand name, 2D chemical
structure, and Tanimoto value are presented. A hyperlink is added to
the monomer ID, and by clicking the ID, the user will be led to the
binding database webpage for detailed information, such as activity
values, assay description, and publication. The first hit in the table
with the Tanimoto value of 1.0 is the compound itself. Molecules
highly similar to the potent modulator may have the same function
and could be an endocrine active compound.

CONCLUSION

A web server, EARDB database, was constructed to predict the
potential ERα, ERβ, and AR modulators. Both structure-based

methods, the multi-conformation docking, and ligand-based
method, and 2D similarity search are provided on the server.
The investigation of the available PDB structures of ERα, ERβ,
and AR showed that there are several ligand binding sites on these
targets and considerable binding site plasticity. Thus, over 600
docking models are prepared and allowed to settle on the web
server to provide docking against the conformational ensemble of
each target type. The results of re-dock experiments suggest the
docking procedures could reproduce most of the experiment
structures of the protein–small molecule complexes. The server
provides either the protein structure–based docking function or
ligand-based similarity search function to estimate if the query
compound is a potential ERα, ERβ, or AR modulator. It will
benefit for either the ER or AR drug design or EDC prediction.
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Introduction to the BioChemical
Library (BCL): An Application-Based
Open-Source Toolkit for Integrated
Cheminformatics and Machine
Learning in Computer-Aided Drug
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Benjamin P. Brown1*, Oanh Vu2, Alexander R. Geanes2, Sandeepkumar Kothiwale2,
Mariusz Butkiewicz2, Edward W. Lowe Jr2, Ralf Mueller2, Richard Pape2,
Jeffrey Mendenhall 2* and Jens Meiler 3,4*

1Chemical and Physical Biology Program, Medical Scientist Training Program, Center for Structural Biology, Vanderbilt University,
Nashville, TN, United States, 2Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN,
United States, 3Department of Chemistry, Departments of Pharmacology and Biomedical Informatics, Center for Structural
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The BioChemical Library (BCL) cheminformatics toolkit is an application-based academic
open-source software package designed to integrate traditional small molecule
cheminformatics tools with machine learning-based quantitative structure-activity/
property relationship (QSAR/QSPR) modeling. In this pedagogical article we provide a
detailed introduction to core BCL cheminformatics functionality, showing how traditional
tasks (e.g., computing chemical properties, estimating druglikeness) can be readily
combined with machine learning. In addition, we have included multiple examples
covering areas of advanced use, such as reaction-based library design. We anticipate
that this manuscript will be a valuable resource for researchers in computer-aided drug
discovery looking to integrate modular cheminformatics and machine learning tools into
their pipelines.

Keywords: drug discovery, drug design, cheminformatics, open-source, deep neural network, QSAR, biochemical
library, BCL

INTRODUCTION

Computer-aided drug discovery (CADD) methods are routinely employed to improve the efficiency
of hit identification and lead optimization (Macalino et al., 2015; Usha et al., 2017). The importance
of in silico methods in drug discovery is exemplified by the multitude of cheminformatics tools
available today. These tools frequently include capabilities for tasks such as high-volume molecule
processing (Hassan et al., 2006; SciTegic, 2007), ligand-based (LB) small molecule alignment (Labute
et al., 2001; Jain Ajay, 2004; Chan, 2017; Brown et al., 2019), conformer generation (Cappel et al.,
2015; Kothiwale et al., 2015; Friedrich et al., 2017a, 2019), pharmacophore modeling (Hecker et al.,
2002; Acharya et al., 2011; Vlachakis et al., 2015), structure-based (SB) protein-ligand docking
(Friesner et al., 2004; Meiler and Baker, 2006; Davis and Baker, 2009; Hartmann et al., 2009; Morris
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et al., 2009; Kaufmann and Meiler, 2012; Lemmon et al., 2012),
and ligand design. Increasingly, modern drug discovery relies on
customizable and target-specific machine learning-based
quantitative structure-activity relationship (QSAR) and
structure-property relationship (QSPR) modeling during
virtual high-throughput screening (vHTS) (Lo et al., 2018;
Vamathevan et al., 2019).

Frequently, building a drug discovery pipeline with all of these
parts requires users to combine multiple different software
packages into their workflow. This can be challenging because
of different version requirements in package dependencies.
Moreover, file- and data-type incompatibilities between
packages can lead to errors and pipeline inefficiencies. Here,
we describe the BioChemical Library (BCL) cheminformatics
toolkit, a freely available academic open-source software
package with tightly integrated machine learning-based QSAR/
QSPR capabilities.

The BCL is an application-based software package
programmed and compiled in C++. This means that BCL
applications can be integrated into existing pipelines without
the need for package dependency management
(i.e., maintaining directory-dependent virtual
environments, or keeping separate Miniconda
environments for each task). In addition, BCL applications
are modular and can be easily combined into complex
protocols with simple Shell scripts. Output files from the
BCL are primarily common file types that can also be read
as input by other software packages. Its command-line usage
will be familiar to users of the popular macromolecular
modeling software ROSETTA (Kaufmann et al., 2010). The
simple command line user interface (UI) makes it easy to
create complex protocols without extensive coding or
scripting experience. Our goal with this manuscript is to
describe the core functionalities of the BCL
cheminformatics toolkit and provide detailed examples for
real use cases. At the end, we briefly discuss ongoing software
developments that may be of interest to users.

MOLECULE PREPARATION AND
PROCESSING
Fundamentals of BioChemical Library
Command-Line Syntax
The first thing to complete after downloading and installing the
BCL is to add the license file to the/path/to/bcl folder. We further
recommend adding/<path>/<to>/bcl to the
LD_LIBRARY_PATH and PATH environment variables in
the. cshrc/.bashrc. This allows users to access the BCL from
any terminal window simply by typing bcl. exe into the
command-line. For detailed setup instructions, read the
appropriate operating system (OS)-specific ReadMe file in bcl/
installer/.

The BCL is organized into application groups each of
which contains multiple applications. To view the application
groups and associated applications, run the BCL help
command:

bcl.exe help

The BCL has application groups for cheminformatics, protein
folding, machine learning, and other tasks (Supplementary
Table S1). To isolate and view the applications associated with
the application group molecule, for example, run the application
group help command:

bcl.exe molecule:Help

Generally, the syntax to access a BCL application is as follows:

bcl.exe application_group:Application

The help menu for any application cans similarly be
accessed as

bcl.exe application_group:Application --help

These help options list the basic arguments and parameters
available for each application. More detailed help options are also
frequently available for individual application parameters. In this
way, all of the documentation required to run the BCL can be
readily accessed from the command line. The application groups
composing the core of the BCL cheminformatics toolkit include
the following: Molecule, Descriptor, and Model (Table 1).

Filtering
Molecules are input to the BCL in the MDL structure-data format
(SDF) file. Often, molecules that are downloaded or converted
from one source to another contain errors (e.g., incorrect bond
order assignments, undesired protonation states/formal charge,
etc.). Dataset sanitization is a critical component of
computational chemistry and informatics projects. The BCL
molecule: Filter application is the first step in correcting these
errors or identifying molecules that cannot be easily and
automatically corrected.

To see all of the options available in molecule:Filter, run the
following command:

bcl.exe molecule:Filter--help

or view the supplementary material (Supplementary Table
S2,S3).

For the following examples we will make use of a set of the
PlatinumDiverse Dataset, a subset of high-quality ligands in their
protein-bound 3D conformations (Friedrich et al., 2017b).

bcl.exe molecule:Filter \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. matched.
sdf.gz \
-output_unmatched platinum_diverse_dataset_2017_01.
unmatched.sdf.gz \
-add_h -neutralize \
-defined_atom_types–simple \
-logger File platinum_diverse_dataset_2017_01. Filter.log
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This command reads in the SDF platinum_diverse_
dataset_2017_01. sdf.gz, saturates all molecules with hydrogen
atoms, neutralizes any formal charges, checks to see whether the
molecules have valid atom types (e.g., carbon atoms making five
covalent bonds are not valid), and then checks to see whether the
molecules have simple connectivity (e.g., whether they are part of
a molecular complex, such as a salt). The neutralization flag
identifies atoms with formal charge and tries to remove the
formal charge. The default behavior allows modification of the
protonation state of the atom (i.e., pH) and/or the bond order.
Other options (more or less aggressive neutralization schemes)
are also available and can be seen in the help menu. Adding
hydrogen atoms and neutralizing charges are not required
operations but are shown above to demonstrate the functionality.

All molecules that match the filter (i.e., molecules with defined
atom types and are not part of molecular complexes) are output
into platinum_diverse_dataset_2017_01. matched.sdf, and
molecules that fail to pass the filters are output into
platinum_diverse_dataset_2017_01. unmatched.sdf. In this
case, all molecules pass the filter. This allows the user to
review the molecules that failed the filter and choose to either
fix them or continue without them.

The molecule:Filter application can also be used to separate
molecules by property and/or substructure using the
compare_property_values flag. For example, to filter out
molecules that contain 10 or more rotatable bonds and a
topological polar surface area (TPSA) less than 140 Å2, the
following command can be used:

bcl.exe molecule:Filter \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. veber_pass.
sdf.gz \
-output_unmatched platinum_diverse_dataset_2017_01. veber_
fail.sdf.gz \
-compare_property_values TopologicalPolarSurfaceArea less 140 \
NRotBond less_equal 10 \
-logger File platinum_diverse_dataset_2017_01. veber.log

Of 2,859 molecules, 395 were first filtered out for have a TPSA
≥140 Å2, and then an additional 84 molecules that had greater
than 10 rotatable bonds were filtered out. Notice that the filters
are applied sequentially, and molecules must pass both filters to

be output to the matched file. Alternatively, the any flag can be
specified such that if a molecule meets any one of the filter
criteria, then it is output to the matched file:

bcl.exe molecule:Filter \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. any_pass.
sdf.gz \
-output_unmatched platinum_diverse_dataset_2017_01. any_fail.
sdf.gz \
-compare_property_values TopologicalPolarSurfaceArea less 140 \
NRotBond less_equal 10 \
-any -logger File platinum_diverse_dataset_2017_01. any.log

In this example, 2,801 molecules passed at least one of the
filters and only 58 were filtered out.

One may also filter based on substructure similarity. This is
particularly useful if there are specific substructures that are
desired or that need to be avoided. For example, aromatic
amines are a well-known toxicophore and cannot be
incorporated into potential druglike molecules; however, it is
not uncommon to find these substructures in datasets. Here, we
will filter a subset of DrugBank (Wishart et al., 2018) molecules to
remove aniline-containing compounds:

bcl.exe molecule:Filter \
-input_filenames drugbank_nonexperimental.simple.sdf.gz \
-output_matched drugbank_nonexperimental.simple.anilines.
sdf.gz \
-output_unmatched drugbank_nonexperimental.simple.clean.
sdf.gz \
-contains_fragments_from aniline. sdf.gz \
-logger File drugbank_nonexperimental.simple.toxicity_check.
log

In practice, we usually explicitly filter certain toxicophore
substructures via graph search with the
MoleculeTotalToxicFragments descriptor in conjunction with
compare_property_values flag; however, this example
illustrates the flexibility to filter by substructure similarity with
molecule:Filter. In addition to the standard use cases presented
here, molecule:Filter can identify molecules with clashes in 3D
space, conformers outside of some tolerance value from a
reference conformer, exact substructure matches, specific
chemical properties, and more. Some of these filters will be
further explored in other subsections.

Removing Redundancy
Another critical aspect of dataset sanitization is removing
redundancy. This is especially important when preparing
datasets for QSAR model training and testing. If molecules
appear more than once in a dataset, then it is possible that
they could appear simultaneously in the training and test sets,
leading to an artificial inflation in test set performance.

The BCL application molecule:Unique can help with this task.
It has four levels at which it can compare and differentiate
molecules:

TABLE 1 | Overview of BCL application groups covered in this manuscript.

Application
Group

Typical Inputs Typical Outputs

Molecule Molecules (.sdf) Molecules (.sdf)

Descriptor Descriptor sets Dataset binary file (.bin)
Molecules (.sdf;
GenerateDataset only)

Dataset comma-separated
file (.csv)

Dataset binary file (.bin)
Dataset comma-separated
file (.csv)

Model Dataset binary file (.bin) Machine learning model(s)
Machine learning model(s) Predictions
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1. Constitutions–compares atom identities and connectivity
disregarding stereochemistry;

2. Configurations–compares atom identities, connectivity, and
stereochemistry;

3. Conformations–compares configurations as well as 3D
conformations;

4. Exact–checks to see whether atom identities and order are
equal with the same connectivities, bond orders,
stereochemistry, and 3D coordinates.

The first time the BCL encounters a molecule in an SDF it
will store it in memory. Any additional encounters with the
same molecule (at the chosen level described above) will be
marked as duplicate encounters. The default behavior is to
output only the first encounter of each molecule. There are
cases in which a molecule appears multiple times but has
different MDL properties and/or property values. It may
not be desirable to lose the stored properties on
duplicate compounds. In such cases, the user can choose
to merge the properties or overwrite the duplicate descriptors
instead.

For example, one may want to see if any high-throughput
screening (HTS) hits have activity onmultiple targets. Previously, we
published nine high-quality virtual HTS (vHTS) benchmark sets
for QSAR modeling binary classification tasks (Butkiewicz et al.,
2013). Here, wewill take a look at the active compounds from each of
those nine datasets and see if any of them have activity on multiple
targets.

bcl.exe molecule:Unique \
-input_filenames 1798_actives.sdf.gz 1843_actives.sdf.gz \
2258_actives.sdf.gz 2689_actives.sdf.gz \
435008_actives.sdf.gz 435034_actives.sdf.gz \
463087_actives.sdf.gz 485290_actives.sdf.gz 488997_actives.sdf.
gz \
-compare Constitutions \
–output_dupes all_actives.dupes.sdf.gz \
–logger File all_actives.unique.log

The output file all_actives.dupes.sdf.gz contains 22 molecules
that are active in at least two different datasets (note that each
individual dataset was pre-processed to remove redundant
molecules). If we want to merge the properties of these 22
compounds and isolate them from the rest of the actives, we
can perform a second molecule: Unique with the
merge_descriptors flag set, and then use molecule:Filter with
the contains flag to isolate the duplicated compounds:

bcl.exe molecule:Unique \
-input_filenames 1798_actives.sdf.gz 1843_actives.sdf.gz \
2258_actives.sdf.gz 2689_actives.sdf.gz \
435008_actives.sdf.gz 435034_actives.sdf.gz \
463087_actives.sdf.gz 485290_actives.sdf.gz 488997_actives.sdf.
gz \
-compare Constitutions–merge_descriptors \
-output all_actives.unique_merged.sdf.gz \
–logger File all_actives.unique_merged.log

followed by

bcl.exe molecule:Filter \
-input_filenames all_actives.unique_merged.sdf.gz \
-contains all_actives.dupes.sdf.gz \
-output_matched all_actives.dupes_merged.sdf.gz \
–logger File all_actives.dupes_merged.log

When merge_descriptors is passed, all unique properties are
included in the resultant output file. If the same property is present
on duplicates, then thefirst observation of that property is stored on the
output molecule. If overwrite_descriptors is passed instead of
merge_descriptors, the last observation of a duplicate property is
stored. By default, without either of these flags only the MDL
properties on thefirst occurrence of amolecule are stored in the output.

It may be that some of the compounds in the previous example
that have activity on multiple targets are actually stereoisomers.
Here, the molecules were compared based on atom identity and
connectivity (Constitutions). Iterative runs of molecule:Unique
coupled with molecule:Filter can be used to identify such cases.

Sorting and Reordering
Sortingmolecules is also useful during vHTS. Aftermaking predictions
on a million compounds with a QSAR model, frequently users will
want to identify some small top fraction of most probable hits for
experimental testing. This can be readily achieved with molecule:
Reorder (note–this example utilizes pseudocode for filenames):

bcl.exe molecule:Reorder \
-input_filenames < screened_molecules.sdf> \
-output < screened_molecules.best.sdf > -output_max 100 \
-sort <QSAR_Score> -reverse \
–logger File < screened_molecules.best.log>

In this example, the reverse flag indicates that the scores will be
sorted from largest to smallest (default behavior is smallest to
largest). Not more than 100 molecules will be output into the file
screened_molecules.best.sdf.gz because of the output_max
specification (the default behavior returns all molecules in the
new order).

In the previous section, we demonstrated that the BCL could
identify duplicate compounds at multiple levels of discrimination.
One important note is that redundant molecules are excluded
(i.e., sent to the output_dupes file) in the order in which they are
observed in the original input. Often, the user may want to control
this sequence by sorting the molecules according to some property.
In these cases, molecule:Reorder can be used to do just that.

Finally, a general note on SDF input and output. Aromaticity is
automatically detected when reading input files; however, output
structures are Kekulized (represented as alternating single-double
bonds) by default. To output an SDF that contains explicit aromatic
bonds (achieved by labeling bond order as 4 in the MDL SDF), pass
the explicit_aromaticity flag on the command line.

Making Fragments
The BCL application molecule:Split gives researchers a tool to
derive fragments from starting small molecules to aid in
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pharmacophore modeling, fragment-based drug discovery, and
de novo drug design. There are many different types of fragments
molecule:Split is able generate from whole molecule(s) (Table 2).

For example, we can derive the Murcko scaffold from the
FDA-approved 3rd generation tyrosine kinase inhibitor (TKI)
osimertinib (Ramalingam et al., 2017) as follows:

bcl.exe molecule:Split \
-input_filenames osimertinib. sdf.gz \
-output osi. murcko.sdf.gz \
-implementation Scaffolds

Alternatively, we could remove the Murcko scaffold and
return the other components:

bcl.exe molecule:Split \
-input_filenames osimertinib. sdf.gz \
-output osi. inverse_scaffold.sdf.gz \
-implementation InverseScaffold

Substructure comparisons are described in more detail in
Section 5.1.

Coordinate Information
The last application of interest for molecule processing is
molecule: Coordinates molecule: Coordinates is a minor
application that performs several convenience tasks. First,
molecule: Coordinates can recenter all molecules in the input
file(s) to the origin. Second, it can compute molecular centroids.

Third, molecule: Coordinates can compute statistics onmolecular
conformers.

For example, passing the statistics flag compute statistics on
bond lengths, bond angles, and dihedral angles. Passing the
dihedral_scores flag will compute a per-dihedral breakdown of
the BCL 3D conformer score. The BCL 3D conformer score, or
ConfScore, computes an amide non-planarity penalty in addition
to a normalized dihedral score. Passing the amide_deviations and
amide_penalties will output the amide deviations and penalties
on a per-amide basis, respectively. This can be useful when
comparing conformations obtained from conformation
sampling algorithms, crystal structures, and/or molecular
dynamics (MD) trajectory ensembles. See Section 4 for more
information on conformer sampling.

COMPUTING MOLECULAR PROPERTIES

Computing molecular descriptors/properties is a critical
component of cheminformatics model building. We use the
term “properties” to refer to individual chemical features and
“descriptors” to refer to combinations of properties, often used to
train QSAR/QSPR models; however, the terms are often used
interchangeably in the BCL. In conjunction with substructure-
based comparisons, generating molecular descriptors is arguably
the foundation of LB CADD. The BCL was designed with a
modular descriptor interface and extensible property definitions
framework. This allows both developers and users alike to write
new descriptors for specific applications as needed. To see a list of

TABLE 2 | Fragment splits currently supported by the BCL.

Molecule Split
Implementation

Description Customizations

Scaffolds returns Murcko scaffolds of molecules (Bemis and Murcko, 1996) None

Inverse Scaffold returns the remaining components of a molecule after the Murcko scaffold is removed
(Bemis and Murcko, 1996)

None

GADD Fragments splits molecules into GA-based Drug Database fragments (Daylight Theory: SMILES) None
Largest Common Substructure splits molecules into their maximum common substructures relative to an input set level of equivalence of element-

and bond- type comparisons
ECFP Fragments splits molecules into radial fingerprint fragments similar to those used for extended connectivity

fingerprints (Rogers and Hahn, 2010)
bond distance from each
reference atom

Linear Fragments splits molecule into linear non-branching fingerprint fragments similar to Obabel FP2 fingerprints bond distance from each
reference atom

Rings returns all ring components of molecules None
Rings With Unsaturated
Substituents

returns ring components of molecules along with their unsaturated substituents None

Unbridged Aromatic Rings returns unbridged aromatic ring components of molecules None
Unbridged Rings returns unbridged ring components of molecules None

Chains returns non-ring (chain) components of molecules None
Rigid splits a molecule into rigid components; defined by breaking non-ring, non-amide single-bonds to

heavy atoms
None

Rigid Sans Amide splits a molecule into rigid components; defined by breaking non-ring, non-amide single-bonds to
heavy atoms

None

Isolate splits a molecule with multiple disconnected parts (e.g., salt crystal) into component parts None
Largest splits a molecule with multiple disconnected parts (e.g., salt crystal) into component part and

returns the largest component by molecular weight
None
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available predefined molecular properties, perform the following
command:

bcl.exe molecule:Properties–help

The property interface is organized into two general
categories: 1) Descriptors of Molecules, and 2) Descriptors of
Atoms. As you will see throughout this section and Section 6,
properties can be modified and recombined in a highly
customizable fashion. See the Supplementary Materials for an
example containing multiple custom property definitions, as well
as for sample output from the molecule:Properties help menu
options detailing available features.

Computing Whole Molecule Properties
As the names suggest, some descriptors are intrinsic to the whole
molecule, while others are specific to atoms. For example,
compute some whole molecule descriptors for the EGFR
kinase inhibitor osimertinib:

bcl.exe molecule:Properties \
-input_filenames osimertinib. sdf.gz \
-output osi. mol_properties.sdf.gz \
-addWeight NRotBond NRings TopologicalPolarSurfaceArea \
-tabulateWeightNRotBondNRingsTopologicalPolarSurfaceArea \
-output_table osi. mol_properties.table.txt

The flag add will add the specified properties to the SDF as
MDL properties. The tabulate flag will output the properties for
each molecule in row-column format in the file specified by
output_table. There is also a statistics flag that will compute basic
statistics for each of the specific descriptors across all the
molecules in the input SDFs and output to output_histogram.
The key observation regarding the output file is that the values for
Weight, NRotBond, etc., are emergent properties of the whole
molecule.

Computing Atomic Properties
Next, compute some atomic descriptors for osimertinib:

bcl.exe molecule:Properties \
-add_h–neutralize \
-input_filenames osimertinib. sdf.gz \
-output osi. atom_properties.sdf.gz \
-add Weight Atom_SigmaCharge Atom_TopologicalPolar
SurfaceArea \
-tabulate Atom_SigmaCharge Atom_TopologicalPolarSurfaceArea \
-output_table osi. atom_properties.table.txt \
-statisticsAtom_SigmaChargeAtom_TopologicalPolarSurfaceArea \
-output_histogram osi. atom_properties.hist.txt

Notice here that the statistics flag outputs statistics across each
atom property rather than across each molecule property. This is
also the behavior when there are multiple input molecules.
Importantly, here we see that the output is an array of values
for each property. The indices of the array correspond to the atom
indices of the molecule.

Performing Operations on Descriptors
Each category of descriptors can further be modified by
molecule-specific or atom-specific operations. For example,
some whole molecule properties can be obtained by
performing simple operations on the per-atom properties.
TopologicalPolarSurfaceArea (whole molecule property) is the
sum of Atom_TopologicalPolarSurfaceArea (atomic property)
across the whole molecule.

bcl.exe molecule:Properties \
-add_h–neutralize \
-input_filenames osimertinib. sdf.gz \
-output osi. mol_properties.sdf.gz \
-add TopologicalPolarSurfaceArea \
“MoleculeSum (Atom_TopologicalPolarSurfaceArea)”

Check to verify that TopologicalPolarSurfaceArea and
MoleculeSum (Atom_TopologicalPolarSurfaceArea) yield the
same value for osimertinib.

Examples of additional operations include other basic statistics
(mean, max, min, standard deviation, etc.), property radial
distribution function (RDF), Coulomb force, and shape
moment. See the help menu for additional options and details.

Combining Properties to Evaluate
Druglikeness
In Section 2.2 we discussed using the molecule:Filter application
to remove molecules from a dataset that failed specific
druglikeness criteria (e.g., TPSA ≥140 Å2). Several familiar
druglikeness metrics come prepackaged in the BCL
(i.e., Lipinski’s Rule of 5 and Veber’s Rule), as well as several
others inspired by the literature and conventional medicinal
chemistry practices. For each molecule in the Platinum
Diverse dataset, count how many Lipinski and Veber
violations there are. In addition, count as drug-like all
molecules that have fewer than two Lipinski violations:

bcl.exe molecule:Properties \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. druglike.txt \
-tabulate LipinskiViolations LipinskiViolationsVeber
LipinskiDruglike

The property LipinskiViolations counts how many times a
molecule violates one of Lipinski’s Rules ( ≤ 5 hydrogen bond
donors (HBD; –NH and–OH groups), ≤10 hydrogen bond
acceptors (HBA; any–N or–O), molecular weight (MW) < 500
Daltons, and water-octanol partition coefficient (logP) < 5). The
LipinskiViolationsVeber property computes the number of
times a molecule violates Veber’s Rule (infraction if TPSA
≥140 Å2 and/or number of rotatable bonds >10). The
LipinskiDruglike property is a Boolean that returns 1 if fewer
than two Lipinski violations occur; 0 otherwise. There is
no equivalent Boolean operator for Veber druglikeness;
however, it is simple to implement one using the aforementioned
operators.
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bcl.exe molecule:Properties \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. veber_druglike.
txt \
-tabulate “Define [VeberDruglike = Less (lhs =
LipinskiViolationsVeber, rhs = 1)]” VeberDruglike

This command makes use of the Define and Less operators to
return 1 if there are no violations to Veber’s Rule and 0 otherwise.
New properties created with Define can also be passed to
subsequent operators on the same line. For example, one
could create a descriptor called VeberAndLipinskiDruglike by
doing the following:

bcl.exe molecule:Properties \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. veber_druglike.
txt \
-tabulate \
“Define [VeberDruglike = Less (lhs = LipinskiViolationsVeber,
rhs = 1)]” \
“Define [VeberAndLipinskiDruglike =Multiply (LipinskiDruglike,
VeberDruglike)]” \
VeberAndLipinskiDruglike

This new descriptor returns 1 if a molecule passes both
druglikeness filters, and 0 otherwise.

Many metrics can be created using the BCL descriptor
framework without modifying the source code. This can be
useful to users who come across novel methods in the
literature and wish to implement them in their own work.
Take as an example a seminal work from Bickerton et al.,
which sought to quantify the chemical aesthetics of potential
druglike compounds. Bickerton et al. asked 79medicinal chemists
at AstraZeneca to answer “would you undertake chemistry on this
compound if it were a hit?” for ~200 compounds each, to which
chemists replied either “yes” or “no” (Bickerton et al., 2012). They
generated a regression function that yielded a quantitative
estimate of druglikeness (QED) using eight chemical
descriptors: molecular weight, logP, number of hydrogen bond
acceptors, number of hydrogen bond donors, polar surface area,
number of rotatable bonds, number of aromatic rings, and
number of ALERTS (Bickerton et al., 2012).

Using the same dataset and descriptors as Bickerton et al.
(generously provided in their Supplemental Materials), similar
druglikeness metrics can be implemented in the BCL through the
descriptor framework. One approach could be to use the
operators described above to reproduce the algebraic
expression described in Eq. 1 of Bickerton et al. with the
parameters described in their Supplemental Materials. The
algebra expressed in BCL notation can be saved to an external
text file and passed to the command-line using standard shell
script syntax (e.g., @File.txt in Bash). Because there are relatively
few descriptors in the Bickerton et al. model, an alternative
approach could be to create a classification model.

Here, we demonstrate the latter by (Eq. 1) generating a
decision tree (DT) model and then 2) converting our DT into

a single logic statement to pass to the BCL descriptor interface.
For comparison, we also generate linear regression (LinReg) and
artificial neural network (ANN) models, and we include the
original QED score. All models are trained to predict a
chemist’s verdict for each potential compound based on the
descriptors used in Bickerton et al. (for details on model
training and validation, see Supplementary Methods; for
details on how to build machine learning models with the
BCL, see Section 7).

Model classification performance is displayed as a receiver-
operating characteristic (ROC) curve (Figure 1). Bickerton et al.
found that the mean QED score for molecules that medicinal
chemists found favorable was 0.67 (±0.16 standard deviation).
Taking the mean and mean plus standard deviation QED scores
as cutoffs, we see that QED performs comparably to multiple
linear regression. The ANN and DT perform better, but perhaps
owing to the small number of and simple relation between
variables there is no performance benefit of the ANN over the
DT (Figure 1).

Now that we have our DT, we can reduce it to a readable if-else
style format that can be converted into a BCL descriptor. Run the

FIGURE 1 | Classifying small molecules’ potential for hit optimization.
Models were trained to predict whether medicinal chemists would perform hit
optimization on target molecules (“yes” or “no”) starting with seven
descriptors: molecular weight, logP, number of hydrogen bond
acceptors, number of hydrogen bond donors, polar surface area, number of
rotatable bonds, number of aromatic rings. Model types include linear
regression (red), decision tree (blue), single-layer artificial neural network
(yellow), and the quantitative estimate of druglikeness score with cutoffs at
mean score for attractive molecules (0.67; gray) and the mean plus one
standard deviation (0.83; black) by Bickerton et al. (Bickerton et al., 2012).
Models trained on supplemental data from Bickerton et al. (Bickerton et al.,
2012).
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script SimplifyDecisionTree.py, passing as an argument the DT
model:

/path/to/bcl/scripts/machine_learning/analysis/
SimplifyDecisionTree.py \
./models/DT/model000000. model > DT. logic_summary.txt

We can see in the contents of DT. logic_summary.txt that the
first thing the DT checks is whether the small molecule has less
than two aromatic rings. Molecules with no aromatic rings are
excluded, and molecules with one aromatic ring are subject to
different criteria than molecules with two or more. Subsequent
criteria are then evaluated. We can rewrite the logic summary as a
descriptor and save it in a file called “dt.obj”. Then, we pass that
file to molecule:Properties as a descriptor definition and use it to
classify molecules:

bcl.exe molecule:Properties \
-add_h -neutralize \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. dt_druglike.
txt \
-tabulate “Define (Hitlike = @dt.obj)” Hitlike

The “dt.obj” code object file is a plain text file that can be
opened with any text editor. The syntax mimics the BCL
command-line syntax. Code object files are a convenient way
to write a long, multi-line BCL command-line that makes it easier
to build and reuse feature sets.

On the topic of druglikeness, it is worth noting that additional
advanced methods are also available to classify the chemical space
of molecules in a dataset. In some cases, it is useful to identify
potential drug-like compounds that not only fit the criteria
discussed above but are also similar to some known class (es)
of drugs. For example, when performing fragment-based
combinatorial library design for kinase inhibitors, in addition
to filtering out molecules that violate Veber’s rules, it may also be
desirable to filter molecules that are not sufficiently chemically
similar to existing kinase inhibitors. This can be accomplished by
building and scoring against an applicability domain (AD)model.
For further details on creating and using AD models in the BCL,
see Section 7.4.3.

We have described multiple uses of the molecule:Properties
application, placing special emphasis on how it can be utilized to
build different types of druglikeness metrics. As it is
fundamentally a tool to obtain information from small
molecule chemical structures, molecule:Properties can also be
used to help generate statistical potentials, chemical filters,
QSAR/QSPR models, and more. Some of these use-cases will
be explored in later sections.

SMALL MOLECULE CONFORMER
GENERATION

Small molecule 3D conformer generation is a critical aspect of
both SB and LB CADD because the biologically relevant

conformation of the molecule of interest is rarely known a
priori. In SB molecular docking, small molecule flexibility is
often represented through the inclusion of multiple discrete
pre-generated conformers (Brylinski and Skolnick, 2008;
Morris et al., 2009; Lemmon and Meiler, 2012; Combs et al.,
2013; DeLuca et al., 2015). Small molecule conformations need to
be sampled to arrive at the correct binding pose. Molecules that
appear in binding pockets of substantially different proteins often
bind in distinct modes for each protein, suggesting that the
binding pose of the molecule need not be near the global
energy minima of the molecule (Nicklaus et al., 1995; Boström
et al., 1998; Perola and Charifson, 2004; Sitzmann et al., 2012;
Friedrich et al., 2018). Likewise, in LB pharmacophore modeling,
small molecules need to be flexibly aligned according to their
chemical properties to identify the biologically relevant 3D
features conferring bioactivity.

The BCL conformer generator, also called BCL:Conf, utilizes a
fragment-based rotamer library derived from the crystallography
open database (COD) to combine rotamers consisting of one or
more dihedral angles according to a statistically-derived energy
(Mendenhall et al., 2020). Clashes are dynamically resolved by
iteratively identifying clashed atom pairs and rotating the central-
most bonds between them without changing dihedral bins. In this
way, conformational ensembles are stochastically generated
according to likely rotamer combinations from the COD.

The BCL small molecule conformation sampler is a leader
among general purpose small molecule conformer generation
algorithms (Kothiwale et al., 2015; Mendenhall et al., 2020). In
this section, we demonstrate how to use the BCL to generate
global and local conformational ensembles and sample discrete
rotamers within a molecule.

Generating Global Conformational
Ensembles
Start by generating conformers of osimertinib with the default
settings. Here, all that is needed is an input filename and an
output filename:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. global_confs.sdf.gz

The ensemble_filenames argument is equivalent to the
input_filenames argument used elsewhere (the difference is
historical). The conformers_single_file argument is one of two
output options. The other option is conformers_separate_files. As
implied by the name, in the former case all conformers are output
to a single file. In the latter case, if multiple molecules are input to
ensemble_filenames, then a unique SDF will be written for the
conformational ensembles of each of the input molecules [e.g., if
the input SDF(s) contained 10 molecules, then
conformers_separate_files would output 10SDFs each with a
conformational ensemble of one of the input molecules].

By default, BCL:Conf will perform 8,000 conformer generation
iterations, each of which rebuilds the molecule essentially from
scratch (excepting rigid ring structures and bonds that do not
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vary substantially in length or angle). Without any other options,
the top conformations will be clustered, yielding the 100 best-
scoring representatives of each different cluster. An unbiased
view of the conformational space around the ligand can be
obtained by setting the skip_cluster flag. For this application,
it is advisable to lower the number of iterations to roughly double
the number of desired conformations; the conformers are rebuilt
from scratch at every iteration, so there is little gain from doing
more iterations than conformers desired. The returned
conformers are sorted by score. Number of iterations and final
conformers can be specified with the max_iterations and
top_models flags, respectively.

Conformations can be filtered to remove highly-similar
conformations using the conformation_comparer flag (e.g., to
standard RMSD, dihedral distance, etc.) and the tolerance for
what constitutes an “identical” conformer increased from the
default (0.0) to an arbitrarily large value (note that RMSD- and
dihedral-based metrics have units of Å and degrees, respectively)
(Kothiwale et al., 2015). For most applications, we recommend
the use of SymmetryRMSD with a modest tolerance of 0.25 Å. By
default, the tolerance is adjusted automatically to yield the desired
number of clusters so as to best represent conformational space,
however, a user-provided tolerance is treated as a minimal
acceptable difference between clusters.

For high-throughput applications, we recommend reducing
iterations from 8,000 down to 800 or even 250. BCL:Conf’s speed
is nearly linear in number of iterations. Generally, more iterations
yield better performance, at a trade-off of slightly-faster than
linear increase in time per conformation when clustering is used
(Mendenhall et al., 2020).

Alternatively, if conformation_comparer is set to “RMSD 0.0”,
then no filtering or clustering is specified, and BCL:Conf will
perform max_iterations conformer generation iterations,
randomly select top_models conformers, sort them from best to
worst by score, and return them. This option is the fastest, and the
ensembles returned are arguably the most Boltzmann-like. For a
recent comparison of each set of parameters to one another and
other conformer generation algorithms, please see Mendenhall
et al., 2020 (Mendenhall et al., 2020). We recommend generating
conformers with explicit hydrogen atoms added.

Generate conformers using two of the protocols described
protocols. First, run

bcl.exe molecule:ConformerGenerator \
-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. symrmsd_cluster.confs.
sdf.gz \
-max_iterations 8,000 –top_models 25 \
-conformation_comparer SymmetryRMSD 0.25

Then,

bcl.exe molecule:ConformerGenerator \
-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. raw.confs.sdf.gz \
-max_iterations 8,000 –top_models 250 –skip_cluster
-conformation_comparer RMSD 0.0

Notice that the ensemble generated with the SymmetryRMSD
comparer and clustering enabled occupies the densest part
of the broader conformational space sampled in the raw
distribution.

Generating Local Conformational
Ensembles
Local sampling was implemented in the recent algorithmic
improvements to BCL:Conf (Mendenhall et al., 2020). The idea
is that sometimes users know or have predicted with some degree
of certainty a chemically meaningful or bioactive pose of a small
molecule, but additional refinement is needed. This is a common
use case when modeling protein-ligand complexes starting with
another ligand with some similarity to the ligand of interest
(Bozhanova et al., 2021; Hanker et al., 2021). When using pre-
generated conformers for docking or small molecule flexible
alignment, it is unlikely that the best ligand conformer will be
chosen and simultaneously have its position fully optimized in
Cartesian space. Local sampling around an input conformer allows
the user to refine ligand poses after an initial search.

Local sampling in the BCL is accomplished by restricting the
rotamer search in one of four ways:

1. -skip_rotamer_dihedral_sampling–preserve input dihedrals
to within 15-degrees of closest 30-degree bin (centered on
0°) in non-ring bonds.

2. -skip_bond_angle_sampling–preserve input conformer bond
lengths and angles

3. -skip_ring_sampling–preserve input ring conformations
4. –change_chirality–by default, input chirality and isometry are

preserved. Use this flag to allow for generation of enantiomers
and stereoisomers.

These options are not mutually exclusive. Depending on how
they are combined, different levels of sampling can be achieved.
Moreover, they can be used in combination with any of the other
options (e.g., conformation comparison type, clustering)
described above. Generate local conformational ensembles of
osimertinib by first placing all three restrictions:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. skip_all.local_confs.sdf.
gz \
-skip_rotamer_dihedral_sampling
-skip_bond_angle_sampling \
-skip_ring_sampling–skip_cluster

Next, apply only the skip_rotamer_dihedral_sampling and
skip_bond_angle_sampling restrictions to generate a local
ensemble:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. skip_dihed_ring.local_confs.
sdf.gz \
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-skip_rotamer_dihedral_sampling
-skip_ring_sampling–skip_cluster

Both of the ensembles show less conformational diversity than
the global conformational ensemble created in the previous
section. Notice the relative sampling differences between each
of the local conformation sampling protocols described.

Conformational Sampling of Substructures
Often times one may wish to only sample conformations of part
of a molecule. For example, in docking congeneric ligand series,
the core scaffold pose may be known with a high degree of
confidence, and the goal is to optimize the pose of the rest of the
molecule while keep the core scaffold fixed. Alternatively, crystal
structures of protein-ligand complexes often have low or missing
density for part of a bound ligand, and thus coordinate
assignment may not accurate. Discretely sampling specific
small molecule rotamers thus becomes a useful task to perform.

In the BCL, this is accomplished by first assigning an MDL
miscellaneous property named “SampleByParts” to the
molecule(s) of interest. The value of the SampleByParts
property corresponds to the 0-indexed atom indices of atoms
in dihedrals that are allowed to be sampled by molecule:
ConformerGenerator. By encoding this as a molecule-specific
property, we avoid multiple command-line calls with different
atom index specifications, allowing users to generate conformers
more rapidly for multiple molecules and/or different independent
rotamers within a molecule.

As an example, consider a crystal structure of epidermal growth
factor receptor (EGFR) kinase in complex with osimertinib (PDB
ID 4ZAU) (Yosaatmadja et al., 2015). This is the first publicly
available crystal structure of the EGFR-osimertinib complex. In
this structure, the solvent-exposed ethyldimethylamine substituent
is missing density. We will sample alternative conformations of the
ethyldimethylamine substituent than that which is proposed in the
PDB ID 4ZAU. First, add the corresponding atom indices to the file
osimertinib. sdf:

bcl.exe molecule:Properties \
-add “Define [SampleByParts = Constant (3,36,18,19,6,20,21)]”
SampleByParts \
-input_filenames osimertinib. sdf.gz–output \
osimertinib.sample_by_parts.sdf

Also, note that if you have many molecules for which you want
to assign SampleByParts atom indices and you do not want to have
to manually identify the relevant indices, you can also use the
molecule:SetSampleByPartsAtoms application. This application
sets SampleByParts indices based on comparison to user-
supplied substructures. With the SampleByParts property defined
in the SDF, generate global conformers as previously described:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sample_by_parts.sdf.gz \
-conformers_single_file osimertinib. sample_by_parts.confs.sdf.
gz \
-top_models 250 –cluster

Observe that sampling global conformers (i.e., sampling across
dihedral bins allowing bond angle/length adjustment and ring
conformer changes) with SampleByParts maintains the
coordinates of all unspecified atoms. In this case, only
dihedrals containing strictly the ethyldimethylamine atoms are
sampled (Figure 2). Similarly, SampleByParts can be used in
conjunction with the local sampling methods described above.

MOLECULE PROPERTY- AND
SUBSTRUCTURE-BASED COMPARISONS

A critical component of LB CADD is molecular similarity
analysis. Provided a set of molecules, we frequently want to
know how similar each molecule is to a reference molecule(s).
Fundamentally, this requires 1) defining what specifically will be
compared between the molecules, and 2) defining the metric with
which similarity will be measured. In the BCL, this is
accomplished primarily through use of the molecule:Compare
application. The command-line syntax of molecule:Compare
differs from the syntax of other applications discussed so far.
The SDF input files to molecule:Compare are passed as
parameters instead of argument flags.

bcl.exe molecule:Compare < mandatory_parameter_one.sdf> \
<optional_parameter_two.sdf> –output <mandatory_output.file> \

This syntax strictly enforces two types of behavior:

1. If a single SDF is specified as a parameter, then all molecules in
the file are compared with one another

2. If two SDFs are specified, then the molecule(s) in the second
file will be compared against the molecule(s) in the first file.

Finally, it is worth noting that molecule:Compare’s performance
scales approximately linearly with number of threads for costly
comparisons. To enable threads, set -scheduler PThread
<number_threads>. We suggest setting number_threads to
number of physical cores on the device for maximum performance.

Defining Molecular Structures
The BCL encodesmolecules as graphs where the edges are bonds, and
the atoms are nodes. For substructure-based comparisons, we can
define equivalence between bonds and atoms using various
comparisons dubbed comparison types. For any substructure-based
comparison between two or more molecules, some combination of
atom and bond comparison types is required, which defines the
equivalence class for the atoms and bonds, respectively. The default
combination differs between tasks. For a summary of available atom
and bond type comparisons, examine the help menu options of any
comparer that utilizes substructures. For example,

bcl.exe molecule:Compare \
-method “LargestCommonSubstructureTanimoto (help)”

will display the default atom and bond comparison types for
this comparison method as well as list the available comparison
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types. For example, if atom type resolution occurs at AtomType,
then an SP3 carbon would match another SP3 carbon but not an
SP2. If the resolution is lowered to ElementType, then all carbon
atoms can match one another independent of their orbital
configuration. Similarly, bond type resolutions of BondOrder
and BondOrderAmideWithIsometryOrAromaticWithRingness
will yield different substructure matches.

Not all similarity comparisons occur at the structural/
substructural level. A number of comparison metrics in the
BCL occur between properties computed at the whole
molecular, substructural, or atomic level. Further, distance-
based comparisons between molecules that are constitutionally
identical can also be made.

Similarity Scoring Between Constitutionally
Unique Molecules
In cases where the similarity between unique molecules is desired
there are broadly two approaches for measuring similarity: by
substructure and by property. These are not mutually exclusive;
depending on the desired resolution of the substructure
comparisons, one can further measure property differences
between substructures of different molecules.

One common substructure similarity metric is the Tanimoto
coefficient (TC), expressed between two molecules as the ratio of
matched-to-unmatched atoms:

TC � |A ∩ B|
|A| + |B| − |A ∩ B|, (1)

where A and B are the twomolecules. The intersection of atoms in
(Eq. 1) is the size of the largest common substructure under the
specified comparison types. This is a specific formalism of the
more general Tversky index when both α and β are equal to 1:

TC � |A ∩ B|
|A ∩ B| + α|A − B| + β|B − A|, (2)

The first-generation EGFR tyrosine kinase inhibitor gefitinib
and the second-generation inhibitor afatinib are structurally very
similar. Afatinib is modified from the gefitinib scaffold and

incorporates an acrylamide linker. Visualize the maximum
common substructure (MCS) of afatinib and gefitinib using
molecule:Split (Figure 3):

bcl.exe molecule:Split \
-implementation “LargestCommonSubstructure (file =
afatinib.sdf)" \
-input_filenames gefitinib. sdf.gz–output mcs_gef_afa.sdf.gz

Next, calculate the MCS TC of the gefitinib and afatinib:

bcl.exe molecule:Compare gefitinib. sdf.gz afatinib. sdf.gz \
-method LargestCommonSubstructureTanimoto–output
gef_afa_mcs_tani.txt

This method searches for the single largest common connected
substructure as the intersection of two molecules and computes
the TC. In this case, the MCS TC is approximately 0.48.
Sometimes searching for a single connected substructure can be
disadvantageous. For example, if the primary differences between
molecules results from core substitutions bridging two otherwise
identical halves, then the single largest common substructure
approach will fail to account for the complete degree of
similarity. Alternatively, the user can calculate the maximum
common disconnected substructure (MCDS) TC:

bcl.exe molecule:Compare gefitinib. sdf.gz afatinib. sdf.gz \
-method
LargestCommonDisconnectedSubstructureTanimoto \
–output gef_afa_mcds_tani.txt

As expected, the MCDS TC is greater than the MCS TC at
approximately 0.86.

Distance-Based Scoring Between
Constitutionally Identical Molecules
In Section 4 we demonstrated how the BCL can be used to
generate small molecule conformational ensembles. One
common way to measure the performance of small molecule

FIGURE 2 | Substructure sampling of small molecule rotamers with BCL:Conf. (A) Crystallographic structure of osimertinib bound to EGFR kinase (PDB ID 4ZAU)
contains missing density of the ethyldimethylamine substituent of osimertinib. (B) Global conformational sampling of the osimertinib ethyldimethylamine substituent
without perturbing the rest of the bound pose using BCL:Conf. Osimertinib electron density visualized with green mesh by importing the 2fo-fc map in PyMOL and
contouring at 2σ.
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conformer generators is to measure how close we can recover
biologically relevant conformations. We can do this in the BCL by
measuring the RMSD or SymmetryRMSD of molecules in our
conformational ensemble to the experimentally determined
conformations. Generate a global ensemble of osimertinib:

bcl.exe molecule:ConformerGenerator \
-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. confs.sdf.gz \
-max_iterations 8,000 –top_models 50 –cluster \
-conformation_comparer SymmetryRMSD 0.25 –generate_3D

Note that we are generating the molecule completely de novo
ignoring all information from input coordinates by using
generate_3D. Measure the heavy-atom symmetric RMSD to
the native conformation:

bcl.exe molecule:Compare osimertinib. sdf.gz osimertinib.
confs.sdf.gz \
-method SymmetryRMSD -logger File osi. sym_rmsd_native.log \
-output osi. sym_rmsd_native.txt -remove_h

On examination of osi. sym_rmsd_native.txt, we see that see
that of our 25 generated conformers, 3 are less than 2.0 Å from
the native conformer, and the best is approximately 0.66 Å from
native. If we repeat this process for two additional TKIs, the first-
generation inhibitor erlotinib and the second-generation
inhibitor afatinib, we also see that we are able to obtain
multiple conformers less than 1.0 Å from native.

In addition to RMSD-based metrics, molecule:Compare can
also measure distance in the form of dihedral angle sums and
dihedral distance bins. For additional information, examine the
help menu options.

Largest Common Substructure Alignment
The BCL can be used to align small molecules according to their
MCS. Unlike most of the examples in this section, this is
accomplished through the molecule:AlignToScaffold
application by passing three parameters:

bcl.exemolecule:AlignToScaffold<scaffold><ensemble><output>

For example, to align afatinib to gefitinib based on their MCS,
use the following command:

bcl.exe molecule:AlignToScaffold gefitinib. sdf.gz afatinib.
sdf.gz \
afatinib.ats.sdf.gz \

Instead of aligning by MCS, the user may also align the target
ensemble to the largest rigid component of the scaffold structure
by passing the align_rigid flag. Moreover, if the user wants to a
define an alternative set of atoms to be aligned instead of the
defaults, this can be accomplished by specifying those atoms for
each the scaffold and target ensemble with align_scaffold_atoms
and align_ensemble_atoms, respectively.

Property-Based Flexible Alignment
In addition to substructure-based alignment, we can also perform
property-based alignment. Property-based alignment algorithms
typically maximize the overlap or minimize the distance between
molecular and/or atomic properties (Sliwoski et al., 2014). We
have previously demonstrated that the performance of the BCL
property-based alignment algorithm, also referred to as BCL:
MolAlign, is on par with leading academic and commercial
molecular alignment algorithms (Brown et al., 2019).

BCL:MolAlign combines the conformational sampling ability
of BCL:Conf with the property framework described in Section 3
to minimize the property-distance between two molecules
through flexible superimposition. The property-distance is
computed between mutually-matching atom pairs that are
dynamically updated with each iteration. Alignment pose
sampling is accomplished through a series of moves that
traverse the co-space defined by the relative position of the
two molecules to one another (Brown et al., 2019). BCL:
MolAlign can be used to perform alignments which can be
classified as rigid (two molecules with fixed conformers), semi-
flexible (one molecule with a fixed conformer, one molecule
whose conformers are sampled), and fully-flexible (two
molecules whose conformers are sampled).

To demonstrate how BCL:MolAlign can be used to perform
each of these alignments, consider the classic problem of
obtaining the crystallographic alignment of methotrexate
(MTX) and dihydrofolic acid (DHF). This example is a good
one because the intuitive heterocyclic overlap is not the correct
one (Labute et al., 2001). Instead, alignment of the binding
pockets of dihydrofolate reductase (DHFR) co-crystallized with
MTX (PDB ID 1DLS) and DHF (PDB ID 1DHF) shows only
partial heterocycle overlap and superimposition of the

FIGURE 3 | Maximum common substructure between gefitinib and afatinib. (A) Afatinib (PDB ID 4G5J) and (B) gefitinib (PDB ID 4I22) in their binding mode 3D
conformations next to (C) their maximum common substructure extracted with the BCL.
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heterocycle carbonyl in DHF and an aromatic hydrogen bond
accepting nitrogen in MTX (Figure 4A). Perform a rigid
alignment of MTX to DHF with the following command:

bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf. sdf.gz \
-add_h–neutralize \
-output mtx_dhf_rigid_rmsdx.output \
-logger File rigid_alignment.log -random_seed \
-method “PsiField \
(
output aligned mol a = mtx. rigid_aligned.sdf,
iterations = 1,000,
number outputs = 1
)"

The rigid alignment ranks the correct alignment mode as the
top scoring alignment (Figure 4B). Rigid alignments are rarely
useful for drug discovery because the bioactive conformation of
the target small molecule is usually unknown; however, they
provide a useful check for alignment scoring functions. Next,
flexibly align MTX to the DHFR-binding pose of DHF:

bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf. sdf.gz \
-add_h–neutralize \
-output mtx_dhf_rigid_rmsdx.output \
-logger File semi-flexible_alignment.log -random_seed \
-method “PsiFlexField
(
output_aligned_mol_a = mtx. semiflex_aligned.sdf,
rigid_mol_b = true,
number_flexible_trajectories = 3,
fraction_filtered_initially = 0.25,

fraction_filtered_iteratively = 0.50,
iterations = 400,
filter_iterations = 200,
refinement_iterations = 50,
conformer_pairs = 500,
number_outputs = 1,
sample_conformers = SampleConformations (
conformation_comparer = SymmetryRMSD,
generate_3D = 1,tolerance = 0.10,rotamer_library = cod,
max_iterations = 8,000,max_conformations = 50,
cluster = true)
)”

Here, we can see that BCL:MolAlign correctly determines the
alignment of the heterocycles, central aromatic rings, and
(partially) the acidic groups (Figure 4C). Note that
rigid_mol_b is enabled, which fixes the pose of the second
parameter molecule. For a detailed description of how each
argument modifies the alignment algorithm, see Brown et al.
(Brown et al., 2019). For performance considerations, we
generally find that the number of conformer pairs is more
critical to pose recovery than the numbers of iterations at each
stage. For complex ligands with many rotational bonds, we
recommend increasing max_conformations and
conformer_pairs.

Fully-flexible alignment is useful when one is trying to recover
pharmacophore features without knowing the binding pose of
either molecule. Here, the goal is to align pharmacophore features
of the molecules, not recover the native pose of the target
molecule(s) by aligning to another molecule with a known
binding mode. Perform a fully-flexible alignment of MTX
and DHF.

FIGURE 4 | Property-based alignment of dihydrofolic acid and methotrexate with BCL:MolAlign. (A) Superimposed crystallographic structures of dihydrofolic acid
(DHF; PDB ID 1DHF) and methotrexate (MTX; PDB ID 1DLS) in complex with dihydrofolate reductase (DHFR). (B) Rigid alignment of DHF and MTX starting from the
bioactive conformers from the crystal structures. (C) Flexible alignment of MTX (flexible) to DHF (rigid, bioactive conformer). (D) Fully flexible alignment of DHF and MTX.
DHF is colored white and MTX is colored wheat. MTX was randomly rotated and translated prior to rigid alignment to DHF. All flexible alignments performed using
generate_3D to remove bias from start coordinates.
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bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf.
perturbed.sdf.gz \
-add_h–neutralize \
-output mtx_dhf_rigid_rmsdx.output \
-logger File fully-flexible_alignment.log \
-random_seed–scheduler PThread 8 \
-method “PsiFlexField \
( \
output_aligned_mol_a = mtx-dhf. fullflex_aligned.sdf, \
rigid_mol_b = false, \
number_flexible_trajectories = 5, \
fraction_filtered_initially = 0.25, \
fraction_filtered_iteratively = 0.50, \
iterations = 800, \
filter_iterations = 400, \
refinement_iterations = 100, \
conformer_pairs = 2,500, \
number_outputs = 1, \
sample_conformers = SampleConformations ( \
conformation_comparer = SymmetryRMSD, \
generate_3D = 1,tolerance = 0.10,rotamer_library = cod, \
max_iterations = 8,000,max_conformations = 50, \
cluster = true) \
)”

Fully-flexible alignment of MTX and DHF does not recover
the most native-like conformations ofMTX and DHF; however, it
does recover correct alignments of the heterocycles, central
aromatic rings, and acidic groups (Figure 4D). Notice that we
increased the number of conformer pairs from 500 to 2,500 when
we went from semi-flexible to fully-flexible alignment.

FEATURE GENERATION

The descriptor application group is the workhorse for molecule
featurization. Similar to the molecule:Properties application, the
descriptor application group provides command-line access to
the internal descriptor framework. Unlike molecule, descriptor is
dataset centric; its primary purpose is to generate, manipulate,
and analyze feature datasets for QSAR/QSPR. In this section, we
will demonstrate core applications in descriptor and how they can
be utilized in QSAR/QSPR modeling.

Generating Simple Datasets From
Molecules
Four specifications are required to generate feature datasets from
small molecules:

1. The molecules for which to generate the features; these can be
any valid SDF.

2. The types of features to generate; these are properties such as
those described in Section 3. Typically, these are stored in a
separate file and passed to the command-line at run-time;
however, they can also be specified directly on the command-

line. Importantly, combining multiple descriptors for feature
generation requires the use of the Combine descriptor.

3. The feature result label; this indicates the output(s) that
models will train toward. This can be a constant value
(i.e., if featurization is being done for some purpose other
than model training), a property (e.g., LogP for a QSPR
model), or another label (e.g., bioactivity label from
experimental data).

4. The output filename; three output types are available. The BCL
has a partial binary format with the “.bin” suffix that is used for
all model training. Feature datasets can also be output with the
“.csv” suffix for a comma-separated values (CSV) file.
Moreover, “.csv” files and “.bin” files can be interconverted.
In this way, features generated with the BCL can be used by
other software, and vice versa. For inter-operability withWeka
software, “.arff” format is also supported, with a limitation of
only working with continuous variables.

Generate a simple feature dataset consisting of several scalar
descriptors for a set of confirmed active M1 Muscarinic Receptor
positive allosteric modulators (PAMs) and corresponding true
negatives (Butkiewicz et al., 2013). The SDF corresponding to
these compounds is 1798. combined.sdf. These molecules have
been labeled with the MDL property “IsActive” such that the
confirmed actives have a value of 1 and the negatives have a value
of 0.

bcl.exe descriptor:GenerateDataset \
-source “SdfFile (filename = 1798. combined.sdf)” –id_labels
“String (M1)” \
-result_labels “Combine (IsActive)” \
-feature_labels “Combine (Weight, LogP,HbondDonor,
HbondAcceptor)” \
-output 1798. combined.scalars.bin

Binary files were designed for rapid non-consecutive reading
and writing, but the interested reader will find that the file format
consists of a textual header specifying the properties and their
sizes followed by a simple binary output of all features. Dataset
information and statistics can be obtained by calling descriptor:
GenerateDataset compare. For example:

bcl.exe descriptor:GenerateDataset–compare 1798.
combined.scalars.bin

To better understand the binary file encodings, convert 1798.
combined.scalars.bin to a CSV file:

bcl.exe descriptor:GenerateDataset \
-source “Subset (filename = 1798. combined.scalars.bin)” \
-output 1798. combined.scalars.csv

The first column of every row contains the ID label “M1” as
specified when the binary file was generated. The next four
columns contain the descriptors specified above: Weight,
LogP, HbondDonor, and HbondAcceptor. The very last
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column is the result value, which contains either 0 or 1 depending
on the value in the SDF MDL property “IsActive”.

Convert CSV file back to a binary file:

bcl.exe descriptor:GenerateDataset \
-source “Csv(filename = 1798. combined.scalars.csv, number
result cols = 1, number id chars = 2)” \
-output 1798. combined.scalars.bin

CSV files do not contain all of the supplementary
information contained within the partial binary file format.
Thus, certain information needs to be provided directly. For
example, we need to specify the number of characters that
are part of the row ID label, otherwise the BCL will try to
convert the string (or numerical) ID into feature values. ID
labels therefore must be fixed-width. In addition, we need to
tell the BCL how many of the columns are result values. By
default, the BCL will assume that only the last column is
the result label. By specifying number result cols = N, we tell
the BCL to take the last N columns of the CSV as the result
value(s).

Also notice that the feature and result label information is not
informative after converting from CSV to binary. The values are
transferred to the new file format, but the BCL obviously cannot
know where those values came from. These must be manually
specified.

bcl.exe descriptor:GenerateDataset \
-source “Csv(filename = 1798. combined.scalars.csv, number
result cols = 1, number id chars = 2)” \
–id_labels “String (M1)” \
-result_labels “Combine (IsActive)” \
-feature_labels “Combine (Weight, LogP,HbondDonor,
HbondAcceptor)” \
-output 1798. combined.scalars.bin

In this case, the feature labels are internal parsable properties
of the BCL; however, when relabeling feature labels upon
converting from CSV to binary format, the user can specify
any labels so long as the total number of labels is consistent
with the number of feature columns.

Modifying Datasets
After generating a dataset or importing a CSV file and converting
it to binary format, feature datasets can be modified. The most
frequent form of modification is randomization. Training a
machine learning model, for example a neural network, often
requires dataset randomization.

bcl.exe descriptor:GenerateDataset \
-source “Randomize [Subset (filename = 1798. combined.scalars.
bin)]” \
-output 1798. combined.scalars.rand.bin

Binary files are read by the “Subset” retriever. The Randomize
operator is passed through the source flag and provided the
dataset retriever option corresponding to the binary file.

Additional dataset operators can be classified by how they
modify the dataset. For example, the PCA (principal components
analysis) and EncodeByModel operators perform dimensionality
reduction across feature (column) space, while the KMeans
operator reduces dimensionality across molecule (row) space.
Other operators are useful during model training and validation,
such as Balanced, Chunks, and YScramble. Still others can be
used to select particular ranges of rows from a dataset, such as
Rows. Here, we will take a look at a few dataset operators. For full
details on all available dataset operators, see the descriptor:
GenerateDataset help menu.

Start by generating a dataset for the Kir2.1 inward rectifying
potassium channel using the dataset compiled in Butkiewicz et al.
(Butkiewicz et al., 2013) and the best performing LB descriptor set
from Mendenhall and Meiler (Mendenhall and Meiler, 2016).
This dataset contains 301,493 small molecules, 172 of which are
confirmed active molecules. For eachmolecule, there will be 1,315
feature columns and 1 result column.

bcl.exe descriptor:GenerateDataset \
-source “SdfFile (filename = 1843. combined.sdf.gz)”
–scheduler PThread 8 \
-feature_labels MendenhallMeiler2015. Minimal.object \
-result_labels “Combine (IsActive)” \
–output 1843. Minimal.bin–logger File 1843. Minimal.log

Randomize the dataset:

bcl.exe descriptor:GenerateDataset \
-source “Randomize (Subset (filename = 1843. combined.bin))” \
-output 1843. combined.rand.bin–logger File 1843. Minimal.
rand.log

Note that we could have generated a randomized dataset with
a single command by wrapping the SdfFile dataset retriever with
Randomize; however, the Randomize dataset retriever is unable
to support hyperthreading. Consequently, it is faster to generate
larger datasets first using multiple threads and randomize them
afterward. Next, perform PCA on the dataset using OpenCL to
accelerate the calculation with a GPU. The flag opencl is optional
and may not be supported on all platforms, but may provide a
substantial speedup, depending on the GPU and dataset size:

bcl.exe descriptor:GeneratePCAEigenVectors \
-training “Subset (filename = 1843. Minimal.rand.bin)” \
-output_filename 1843. Minimal.PCs.dat–opencl \
-logger File 1843. Minimal.PCs.log

Finally, generate a new feature dataset accounting for 95% of
the variance:

bcl.exe descriptor:GenerateDataset \
-source “PCA(dataset = Subset (filename = 1843. Minimal.
rand.bin), fraction = 0.95, filename = 1843. Minimal.PCs.
dat)” \
-output 1843. Minimal.rand.pca_095. bin–opencl \
-logger File 1843. Minimal.rand.pca_095. log
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Performing PCA on the dataset has reduced the number of
descriptors from 1,315 to 695. Alternatively, one could use
EncodeByModel to reduce the number of feature columns
using a pre-generated model. The following example utilizes
pseudocode and a hypothetical pre-generated ANN with the
MendenhallMeiler2015. Minimal.object features.

bcl.exe descriptor:GenerateDataset/
-source “EncodeByModel [storage = File (directory = /path/to/
model/directory, prefix = model),retriever = Subset
(filename=<my_binary_file.bin>)]” \
-output < my_encoded_binary_file.bin>

The input file < my_binary_file.bin > would have 1,315
descriptors from MendenhallMeiler2015. Minimal.object, and
the output file < my_encoded_binary_file.bin > would have a
number of descriptors corresponding to the number of neurons
in the final hidden layer preceding the output layer of our
hypothetical pre-generated ANN.

As a practical note, we have found that PCA-based
dimensionality reduction useful for dataset visualization, but of
limited value in improving model performance. Performance can
often be recovered to that of the initial dataset when requiring at
least 95% of the variance to be preserved, but performance
improvement is rare from PCA, when using a regularized
method such as dropout-ANNs.

Suppose you encoded the same original feature set using two
different models and now want to combine the new encoded files
for further training. This can readily be accomplished with the
Combine operator.

bcl.exe descriptor:GenerateDataset \
-source “Combined [Subset (filename=<my_binary_file_1.
bin>), Subset (filename=<my_binary_file_2. bin>)]” \
-output < my_combined_binary_file.bin>

Next, instead of performing dimensionality reduction along
the column (features) axis, we will reduce the dimensionality
along the row (molecule) axis. Perform K-means clustering of the
feature dataset to reduce our row number from 301,493 to 300.

bcl.exe descriptor:GenerateDataset \
-source “KMeans [dataset = Subset (filename = 1843.
combined.rand.bin), clusters = 300]” \
-output 1843. combined.rand.k300. bin \
-logger File 1843. combined.rand.k300. log

This form of dimensionality reduction is unlikely to be as
useful for training a deep neural network (DNN); however, it can
be useful in similarity analysis in low dimensional feature space.
Some of the datasets generated in this section will be referenced
again in Section 7 to train classificationmachine learning models.

Small Molecule Autocorrelation Descriptors
As indicated in the previous section, the BCL can also compute
signed autocorrelation functions. Autocorrelations are regularly
used as features in cheminformatics machine learning models

(Sliwoski et al., 2014). When computed for atomic descriptors,
such as Atom_SigmaCharge, the autocorrelations sum pairwise
property products into distance bins by calculating the separation
between molecule atom pairs in number of bonds (2DA) or
Euclidean distance (3DA). Each distance bin is further separated
into three sign-pair bins corresponding to property value sign of
each atom in the pair (Eq. 3) (Sliwoski et al., 2015).

A(ra, rb) � ∑N

j
∑N

i
δ(ra ≤ ri,j < rb)PiPj, (3)

where ra and rb are the boundaries of the current distance interval,
N is the total number of atoms in the molecule, r(i,j) is the distance
between the two atoms being considered, δ is the Kronecker delta,
and P is the property computed for each atom. 2DAs are
conformation-independent, while 3DAs are conformation-
dependent (Figure 5).

The “dasatinibs.sdf” file contains the coordinates and
connectivity for two dasatinib molecules: one with 2D
coordinates, the other with 3D coordinates. Compute the
signed 2DA and 3DA for Atom_SigmaCharge on both
dasatinib molecules.

bcl.exe descriptor:GenerateDataset \
–source “SdfFile (filename = dasatinibs.sdf)” \
-feature_labels “Combine (3daSmoothSign (property = Atom_
SigmaCharge))” \
-result_labels “Combine [Constant (999)]” -output dasatinibs.
3da.csv \
–logger File dasatinibs.3da.log
bcl.exe descriptor:GenerateDataset \
–source “SdfFile (filename = dasatinibs.sdf)” \
-feature_labels “Combine [2DASmoothSign (property = Atom_
SigmaCharge)]” \
-result_labels “Combine [Constant (999)]” -output dasatinibs.
2da.csv \
–logger File dasatinibs.2da.log

Upon examination of the tabulated 2DA and 3DA values for
the two different dasatinib molecules, we observe that the 2DA
contains the same values in both cases, while the 3DA contains
unique values for the different conformers. To visualize the
variance in each 3DA distance bin, we can tabulate the 3DAs
for Atom_SigmaCharge on an ensemble of 3D conformations for
several different molecules (Figure 6). Dasatinib is a TKI with 7
rotatable bonds, amprenavir is a HIV protease inhibitor with 12
rotatable bonds, AZD1283 is an antagonist of the P2Y12 receptor
with 9 rotatable bonds, and ethinyl estradiol is a synthetic
estradiol with only 1 rotatable bond that binds and activates
estrogen receptors.

We can see that the variance in each descriptor column
increases as a function of distance and number of rotatable
bonds. In ethinyl estradiol there is little change in descriptor
column variance as a function of distance. In contrast, molecules
with increasing numbers of rotatable bonds display increasingly
large variances at longer distance bins. This suggests that
increasing conformational heterogeneity at longer distance
bins leads to increased noise. Indeed, we have previously
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found that extending LB 3DAs beyond approximately 6.0 Å
generally results in reduced performance on QSAR
classification tasks (Sliwoski et al., 2015), consistent with our
example here (Figure 6). Importantly, however, at shorter
distances where there is less conformational heterogeneity we
are able to improve our performance with 3DAs even when the
active conformation of the small molecule is unknown (Sliwoski
et al., 2015; Mendenhall and Meiler, 2016). Moreover, models
making predictions on molecules that are fairly rigid (e.g., steroid
derivatives) may benefit from longer range distance bins.

It is also possible to use molecule:Properties to tabulate and
compute statistics for molecules instead of plotting the CSV
file data from descriptor:GenerateDataset. Here, we used
descriptor:GenerateDataset to illustrate its usage. In
practice, we do not just use a single 3DA or 2DA, but
instead build sets of descriptors for feature and result

labels and store them as separate code object files. As
mentioned previously, the code object file format is the
same format as allowed on the command line.

MACHINE LEARNING ARCHITECTURES
AND APPLICATIONS

The BCL supports multiple machine learning algorithms for
QSAR/QSPR modeling. Among the methods available are
ANNs (including DNNs and multitasking neural networks)
(Dahl, 2014; Bharath et al., 2015; Mendenhall and Meiler,
2016; Xu et al., 2017), support vector machines (SVM) (Kawai
et al., 2008; Ma et al., 2008; Mariusz et al., 2009), Kohonen
networks (KN) (Kohonen, 1990; Korolev et al., 2003; Wang
et al., 2005), restricted Boltzmann machines (RBM) (Le Roux
and Bengio, 2008; Tijmen Tieleman, 2008), and decision trees
(DT) (Mariusz et al., 2009; Sheridan, 2012; Butkiewicz et al.,
2013). GPU acceleration is available for ANNs and SVMs
through OpenCL (Munshi, 2008). The primary application
group for machine learning in the BCL is model. To see the
applications within model, check the help menu:

bcl.exe model:Help

Overview of BioChemical Library Model
Training and Validation
Here, we will first introduce the user to the overall workflow
involved in training, analyzing, and subsequently testing BCL
machine learning models. The basic workflow for model training
is the same for each machine learning method and can be
completed via the model:Train application. To see the
available machine learning methods, access the help options
within model:Train.

bcl.exe model:Train --help

FIGURE 5 | Illustration of signed autocorrelation descriptors. Signed autocorrelations are the sums of products of each atom property pair (e.g., i0,j2) in a distance
bin defined by (A) bond separation, or (B) Euclidean distance in 3D space. Within each distance bin, atom property pairs are further separated into bins corresponding to
the sign of the property of the first (left hand side of ‘/’) and second (right hand side of ‘/’) atoms in the pair.

FIGURE 6 | Signed 3DA variance increases with bin distance in flexible
molecules. The 3DA distance bins extend to 6.0 Å at intervals of 0.25 Å. At
each distance bin, there are three sign-pair bins (−/−, +/+, −/+).
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As of this writing, the available model types can be found in
Table 3. The most reliable way to see available model types is via
the help menu options of your version of the BCL.

To expose all options for a particular machine learning
method, pass the algorithm name as the first parameter to the
application with the help menu request:

bcl.exe model:Train “<training algorithm>(help)”

The following is a typical command-line format to train a
model beginning with a pre-generated descriptor binary file:

bcl.exe model:Train < training algorithm> \
-max_minutes < maximum time of training in minutes> \
-max_iterations < maximum number of training iterations> \
-final_objective_function < performance metrics for model
evaluation> \
-feature_labels < names of descriptors> \
-training < training set> \
-monitoring < monitoring set> \
-independent < independent set> \
-storage_model < location in which to store the model> \
-opencl < enables GPU acceleration> \
-logger File < log file>

Model performance is evaluated with the user-specified
objective function. The choice of objective function is typically
related to the task being performed (e.g., classification vs
regression) (Table 4).

BCL model:Train is designed to readily enable cross-
validation. The application is flexible with respect to
serialization of model predictions for each of the monitoring,
independent, and training partitions as well as writing of
the model itself. For example, in five-fold cross-validation, the
dataset is split into five chunks. For each round of cross-

validation, the model is trained on four-fifths of the dataset,
and the other fifth “independent” set is left out for testing. One of
the chunks can additionally be specified as the monitoring
dataset. The monitoring dataset can be used for early
termination of the model training session to prevent
overtraining (early termination is largely deprecated in favor
of dropout to prevent earlier termination; we demonstrate it
here to illustrate the syntax).

The initial dataset set is split into monitoring,
independent, and training partitions with model:Train by
assigning chunks with the dataset retriever responsible for
binary format files, Subset. In the following pseudocode
example, we will set the options to divide the training set
into the following five chunks (0-indexed): chunks one to four
will be used as the training set, and chunk 0 will be used as
both the monitoring set and the independent set (this is
appropriate only if the monitoring dataset is not being
used for early termination).

-training “Subset (number chunks = 5,chunks = [1, 4],
filename=<my_dataset.bin>)”
-monitoring “Subset (number chunks = 5,chunks = [0],
filename=<my_dataset.bin>)”
-independent “Subset (number chunks = 5,chunks = [0],
filename=<my_dataset.bin>)”

Dataset partitioning is repeated for each round of cross-
validation until each chunk takes a turn as the independent
set. Then, the predictions of all the test sets are pooled
together by the model:PredictionMerge application:

bcl.exe model:PredictionMerge \
-input_model_storage ‘File (directory = /path/to/models/
,prefix = model)’ \
-output < output_pooled_predictions>

TABLE 3 | Machine learning model types.

Model Name Description

Applicability Domain Kohonen A Kohonen map-based implementation to detect whether a point is within the applicability domain of a model. All nodes will
use the same spline for computing applicability. This implies an assumption that the model in question has the most difficulty
predicting things far from any node center, regardless of which node center it is

Applicability Measure Kohonen A Kohonen map-based implementation to detect whether a point is within the applicability domain of a model. All nodes will
have their own distance metric, which is valid if the model is capable of distinguishing between classes of features (e.g., if the
model in question is a Kohonen map itself)

Decision Tree A decision tree trained using one of several methods to partition feature indices

Kappa Nearest Neighbor A k-nearest-neighbor predictor; iteration optimizes k
Kohonen A Kohonen-network based predictor
Leverage Computes the leverage matrix (projection or hat matrix), which allows identification of significant outliers that would likely

substantially influence any simple linear model of system. A returned value >2 represents probable outliers, while greater
than 3 represent definitive outliers. The average value is 1 for all values in the training set

Linear Regression Performs multiple linear regression
Multiple Output Support Vector Machine A support vector machine with multiple outputs using sequential-minimal-optimization
Neural Network A neural network with many customizable hyperparameters (e.g., hidden layer count, layer size, dropout type and fraction,

transfer function, initialization with pre-generated models, learning rate, weight update/backpropagation scheme, etc.)

Restricted Boltzmann Machine A restricted Boltzmann machine neural network
Support Vector Machine A support vector machine trained using sequential-minimal-optimization
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This command line averages predictions made on the same
independent set, though other pooling operations are available
(see help). Prediction performance is evaluated with the specified
objective function on the pooled predictions using the model:
ComputeStatistics application:

bcl.exe model:ComputeStatistics \
-input < output_pooled_predictions> \
-obj_function < performance_metric> \
-filename_obj_function < output_performance_metric_file>

Simplifying the Model Training and
Validation Framework in Practice
To simplify model training, we have written a Python script
“launch.py” to perform training and cross-validation with one
command.

To see a list of model training operations (descriptor selection
or scoring, for example):

/path/to/bcl/scripts/machine_learning/launch.py–h

To see the list of available flags for cross-validation, call

/path/to/bcl/scripts/machine_learning/launch.py–t cross-
validation–h

The following pseudocode example generates a simple linear
regression model:

/path/to/bcl/scripts/machine_learning/launch.py -t cross-
validation \
--cross-validation 5 --local \
--learning-method LinearRegression (objective function =
RMSD, \

solver = Cholesky (smoothing = 0)) \
--id linear_regression --final-objective-function RMSD \
--datasets <my_dataset.bin > --override-memory-multiplier: 1.25

More complex commands can be easily prepared inside of
a configuration file to be passed to the “launch.py” script. A
sample configuration file is available in the Supplementary
Material.

bcl/trunk/scripts/machine_learning/launch.py–t
cross_validation \
--config-file config. example.ini

The “launch.py” script will automatically generate three
new directories titled “log_files”, “results”, and “models”. Into
each of those three directories a labeled directory (name
specified with the id flag) is made. Model prediction output
files and results of the final objective function are stored in
the labeled directory within the “results” folder. Log files,
commands, and autogenerated scripts are stored in the
labeled directory within the “log_files” folder. Finally, final
model details are stored in the labeled directory within the
“models” folder.

In addition to running the training jobs locally, training can be
run on a SLURM cluster using the slurm flag. In this way, large
cross-validation jobs may leverage high-performance computing
with minimal changes to the configuration. See additional
configuration operations, such as slurm-host, using launch.
py–t cross-validation–h.

Applying Models to Independent Test Sets
for Virtual High-Throughput Screening
Note that in the above examples the training and test splits are
derived from the same binary format file. This is not strictly

TABLE 4 | Objective functions for machine learning models.

Name Prediction task Formula

Accuracy Classification Accuracy � TP+TN
P+N

AUC (Area under the receiver operating characteristic curve) Classification TPR � TP
FN+TP

FPR � FP
TN+FP

AUC � ∫ TPR d(FPR)
LogAUC Classification

logAUC � ∫
0.1

0.001
TPR d(log(FPR))

∫
0.1

0.001
d(log(FPR))

MCC (Matthew’s correlation coefficient) Classification MCC � TPpTN−FPpFN����������������������
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

√
PPV (Positive predictive value) Classification PPV � TP

TP+FP
Enrichment factor Classification EF(x%) � PPV(x%)

PPV(100%)
MAE (Mean absolute error) Regression

MAE � 1
N∑

N

i
|f(xi) − yi |

MAE_NMAD (MAE normalized by the mean absolute deviation) Regression MAENMAD � MAE
1
N∑

N

i
|yi−�y|

RMSD (Root-mean-square deviation) Regression
RMSD �

�������������
1
N∑

N

i
(f(xi) − yi)2

√

NRMSD (RMSD normalized by the range) Regression NRMSD � RMSD
max(y)−min(y)

RMSD_NSTD (RMSD normalized by the standard deviation) Regression RMSD NSTD � RMSD
Stdev(y)
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necessary, and the user can supply alternatively derived
validation splits prepared in separate files. Moreover, using
a dataset split as the independent test set is generally only
useful for model validation. To apply trained model
predictions to new molecules in a vHTS, either model:Test
or molecule:Properties can be used. For example, if a model is
trained and validated using five-fold cross-validation, then the
merged prediction on an external test set can be made as
follows with model:Test:

bcl.exe model:Test \
-retrieve_dataset “Subset (filename=<vHTS.test.bin>)” \
-storage_model “File (directory = /path/to/models/,prefix =
model)” \
-average output < vHTS.model_test.csv> –logger File <
vHTS.model_test.log>

Likewise, predictions can be made with molecule:Properties
using the Prediction operators:

bcl.exe molecule:Properties–input_filenames < vHTS.test.sdf> \
–tabulate \
“Define {predicted_activity = PredictionMean [storage = File
(directory = /path/to/models/,prefix =model)])}” predicted_activity \
“Define {local_ppv = PredictionInfo [predictor = File
(directory = /path/to/models/,prefix = model),metrics
(LocalPPV)]}” local_ppv \
“Define {XActive = Multiply [predicted_activity, Greater (lhs
= local_ppv,rhs = 0.50)]}” XActive \
-output_table < vHTS.prop.test.csv > -logger File < vHTS.prop.
test.log>

Notice that scoring new compounds via molecule:Properties
allows multiple outcome metrics to be reported and modified on-
the-fly, while scoring with model:Test just outputs the raw
prediction values (and optionally just the mean with average).
In this case, the output of model:Test is equivalent to
“predicted_activity” from molecule:Properties. The property
“XActive” is the “predicted_activity” score when the local PPV
is greater than 0.5, and 0.0 otherwise. The localPPV metric
calibrates model output values to local classification
probability on the test sets. It is an estimate of the PPV at a
singular model output value. This is in contrast to traditional
PPV, which specifies the value of a prediction at, or above, a given
output value (assuming positive parity). This metric assumes that
the trained model prediction value varies monotonically with the
actual prediction likelihood.

Supervised Learning
Training a Standard Artificial Neural Network to
Classify Kir2.1 Positive Allosteric Modulators
ANNs are one of the most commonly employed classes of non-
linear classifiers in QSAR modeling for LB-CADD due to their
strong predictive power (Dahl, 2014; Xu et al., 2017; Vamathevan
et al., 2019). To see all the options available to a neural network in
the BCL, call

bcl.exe model:Train “NeuralNetwork (help)”

The BCL supports shallow and deep single- and multi-tasking
neural networks. Transfer functions include linear, sigmoid,
rectified linear, and leaky rectified linear. For a network with L
hidden layers indexed l ∈ (1 . . . L), forward propagation for
l ∈ (0 . . . L − 1) can be described as

z(l+1) � w(l+1)yl + b(l+1), (4)
y(l+1) � f(z(l+1)) (5)

where yl is the output vector at layer l connected to the input
vector z(l+1) at layer l+1 by weights w and biases b, and f is the
transfer function applied to each set of inputs into the l+1 layer.
Correspondingly, the activation of a single neuron i in hidden
layer l+1 can be represented as

z(l+1)i � w(l+1)
i yl + b(l+1)i , (6)

y(l+1)
i � f(z(l+1)i ) (7)

to yield the output y(l+1)
i from layer l+1. We have found that for

classical QSAR tasks a simple mean-squared error (MSE) cost
function is adequate.

Historically, overtraining in ANNs has been prevented by
early termination of training when the monitoring dataset
improvement rate or improvement scores fail to progress
beyond a pre-determined extent. More recently, we have
demonstrated that dropout is a better alternative to prevent
model overtraining in QSAR tasks (Mendenhall and Meiler,
2016). The dropout approach has been described elsewhere in
detail (Nitish et al., 2014). Briefly, during forward propagation
each layer of the ANN is assigned a probability p according to
which the output value yl

i of each i neuron in the layer l will be
independently set to zero (i.e., “dropped”).

z(l+1)i � w(l+1)(rl*yl) + b(l+1)i , (8)
Here, rl is a vector with the same dimensions as yl whose

values are either 0 (at fraction p) or 1 (at fraction 1—p) and
multiplied elementwise by the values in yl. At the end of every
training batch, rl is shuffled. If neurons are dropped with a
probability p, then at test time the corresponding weights are
scaled down by the factor 1—p.

Train a shallow (single hidden layer) neural network to classify
molecules as either active or inactive PAMs of Kir2.1 beginning
with the randomized dataset we generated in Section 6.2:

launch.py -t cross-validation --local \
--datasets 1843. combined.rand.bin --id 1843. ann.1x32_005_025 \
--config-file config. example.ann.ini \

The configuration file specifies the learning method as follows:

learning-method: ‘NeuralNetwork ( \
transfer function = Sigmoid, \
weight update = Simple (alpha = 0.50,eta = 0.05), \
dropout (0.05,0.25), \
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objective function = % (objective-function)s, \
scaling = AveStd, steps per update = 1, hidden architecture (32), \
balance = True, balance target ratio = 0.10, \
shuffle = True, input dropout type = Zero \
)’

Note that we are asking for an ANN with one hidden layer
composed of 32 neurons. The input and hidden layers will have 5
and 25% dropout, respectively. In addition, we have enabled class
balancing. We have far fewer active (172) than inactive (301,321)
compounds. Balancing oversamples the underrepresented
(minor) class to achieve a ratio of (in this case) 0.10 with the
most common class (major). The balance max repeats flag can
also be set to specify the maximum number of times that a feature
can be repeated. This does not lead to overtraining because of
dropout. Batch size is controlled with the steps per update flag.
The objective-function variable is defined in the configuration
file as

“AucRocCurve (cutoff = 0.5,parity = 1,x_axis_log = 1, min fpr
= 0.001, max fpr = 0.1)”

Additional variables, such as the maximum number of
training iterations (20), number of rounds of cross-validation
(5), monitoring dataset (independent set), etc. are also set in the
configuration file.

As a comparison, train an additional ANN with the same
parameters using the feature set whose dimensions were reduced
with PCA in Section 6.2:

launch.py -t cross-validation --local \
--datasets 1843. combined.rand.pca_095. bin \
--id 1843. pca_095. ann.1x32_005_025 \
--config-file config. example.ann.ini \

The “launch.py” pipeline automatically generates a ROC curve
for each model with and without a log scaled x-axis (Figure 7).
The overall AUC is quite similar between the two methods
(Figures 7B,D); however, the model trained with the PCA
descriptors has worse early enrichment (logAUC = 0.39) than
the model trained with the full descriptors (logAUC = 0.46)
(Figures 7A,C).

Training a Deep, Multitasking Neural Network to
Predict Solubility
Predicting physicochemical properties such as solubility is a
challenging but critical component of lead compound
optimization. Many substitutions to a candidate molecule may
increase the potency or selectivity, but at the cost of worsening
solubility, metabolic stability, or other properties. Therefore, it is
advantageous to prioritize synthesis and evaluation of derivatives
that are simultaneously predicted to be active and have a
promising chemical profile. To do this, we need a target-
agnostic QSPR model.

Dahl and colleagues demonstrated that multitask learning
could improve the prediction of multiple outputs
simultaneously if the training tasks are correlated (Dahl, 2014;

Xu et al., 2017). As an example of how such a model is trained
with the BCL, we will train a deep neural network to
simultaneously predict three measures relating to solubility:
the water-octanol partition coefficient (logP), the aqueous
solubility (logS), and the hydration free energy (i.e., the
solvation free energy in water; ΔGhydration). Note that not the
descriptors, model architecture, nor hyper-parameters have been
optimized for performance. This can be seen as an “out of the
box” model a user might create.

Molecules for training and validation are sourced from
previously published databases (Syracuse Research
Corporation, 1994; Edward W.; Lowe et al., 2011; Mobley and
Guthrie, 2014;Wu et al., 2018) and combined with BCLmolecule:
Unique to remove redundant compounds (see Supplementary
Methods for details). Note that we anticipate some additional
error in predictions introduced by not averaging replicate
experimental measurements of QSPR properties prior to
removing redundancy. Generate three datasets: One with all of
the unique compounds (Full), another that contains only those
compounds with all three result labels (Dense), and one that
contains all of the compounds minus those with all three result
labels (Full–Dense). The following command generates the
feature set for all of the compounds with three result labels
encoded by MDL property labels:

bcl.exe descriptor:GenerateDataset \
-source “SdfFile (filename = all_logp_logs_dgsolv.sdf.gz)” \
-feature_labels VuMendenhallMeiler2019. Scalar_Mol2D.object \
-result_labels “Combine (LogP_actual, LogS_actual,dG_hydration_
kcal-mol)” \
-output all_logp_logs_dgsolv.Scalar_Mol2D.bin \
-logger File all_logp_logs_dgsolv.Scalar_Mol2D.log \
-scheduler PThread 8 –compare

To generate the Dense feature set, add
the–forbid_incomplete_records flag. The two binary format
files should contain 35,874 and 448 rows, respectively, and the
third dataset should contain the difference between them, 35,426.
The distribution of result values overlaps reasonably well between
the Full and Dense datasets, with the exception of the LogS
distributions (Figure 8).

Randomize the datasets before training the model. The
configuration file config. exmple.mdnn.ini sets up the neural
network architecture:

learning-method: “NeuralNetwork ( \
transfer function = Rectifier (0.05), \
weight update = Simple (alpha = 0.50,eta = 0.005), \
dropout (0.05,0.25, 0.05), \
objective function = % (objective-function)s, \
scaling = AveStd, steps per update = 10, hidden architecture
(128,32), \
balance = False, shuffle = True, input dropout type = Zero \
)”

Note that our network contains 2 hidden layers with 128 and
32 neurons, respectively, with 5% dropout on the input layer, 25%
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dropout on the first hidden layer, and 5% dropout on the second
hidden layer. Our objective function will be MAE_NMAD since
this is a regression task. We will perform five-fold cross validation
(specified in the configuration file). Train the network:

launch.py -t cross-validation --local \
--datasets all_logp_logs_dgsolv.Scalar_Mol2D.rand.bin \
--id all_logp_logs_dgsolv.Scalar_Mol2D.2x256-32_005_025_005 \
--config-file config. example.mdnn.ini --just-submit

The just-submit flag sends the process to the background.
Train the dense network as well; it should take less time since
there are relatively few examples in the training sets. Check the
log_merge.txt file in the corresponding “log_files” subdirectory to
view the final objective function for each of the three result labels
(Table 5).

In cases where the training set has small deviation from the
mean value, MAE will be lower, which can be misleading. To

address this, we normalize MAE by MAD. Here, we see that the
model trained on the Dense set of features learned LogP the best.
However, this may be an artifact of the reduced training space. If
we were to evaluate whether the Dense model was able to
extrapolate beyond the very small training set, we would
almost certainly see worse performance.

To illustrate this, evaluate the predictive power of our
Dense model on molecules in our Full–Dense training set,
and vice versa. This can be accomplished using either model:
Test or molecule:Properties as described in Section 7.1. The
results of this analysis are in Table 6. The model trained on
the Full–Dense set does a good job predicting the QSPR
properties for the Dense molecule set, achieving Pearson
correlation coefficients between 0.82 and 0.99 for the three
tasks. We see that the values we obtained in the internal
random-split 5-fold cross validation (Table 5) agree with
those obtained on the Dense set predictions (Table 6). In
contrast, despite having the best five-fold cross-validation

FIGURE 7 |ROC curve comparison Kir2.1 activity prediction models with different descriptors. Models were trainedwith either (A,B) theMinimal dataset containing
959 non-redundant standard LB descriptors (see Supplemental Data) on a log10 (A) or linear (B) x-axis, or PCA-modified LB descriptors accounting for 95% variance on
a log10 (C) or linear (D) x-axis.
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performance (Table 5), the model trained on the Dense
feature set performs extremely poorly at predicting
quantitative QSPR properties of the Full–Dense molecule
set (Table 6).

Taken together, these data suggest that there is likely a
significant fraction of molecules in the Full–Dense set that
occupy an area of feature space not represented in the 448
molecule Dense set. This is a good example that internal
randomized cross-validation on a small training set is not an
accurate predictor of external test set performance unless the
external test set is within a similar domain of applicability
(Tetko et al., 2008; Sheridan, 2012). Applicability domains in
the BCL will be discussed in more detail in Section 7.5.

Training a Decision Tree
DT is a tree-based machine learning algorithm that partitions
the dataset into smaller subsets as it develops. A DT starts
from a root node, branches out to internal nodes, and ends at
leaf nodes. To see the different options of a decision tree, call

bcl.exe model:Train “DecisionTree (help)”

The default option of the decision method chooses the features
for data splitting with the maximum information gain, and its
prediction performance is scored by accuracy.

learning-method: DecisionTree ( \

FIGURE 8 |Result value overlap between the Full and Dense datasets. Density normalized histograms of LogP, LogS, and ΔGhydration between the Full (35874 total,
35113 LogP, 20721 LogS, 1,339 ΔGhydration; gray) and Dense (448 total for all values; green) datasets.

TABLE 5 | Five-fold cross validation results for multitask modeling of solubility prediction. These table values are automatically calculated and output in the log_merge.txt file
in the corresponding subdirectory of the autogenerated “log_files” directory. The Full set consisted of 35,874 molecules (with 35113 LogP, 20721 LogS, and 1,339
ΔGhydration result labels). The Dense set consisted of 448 molecules (with 448 LogP, 448 LogS, and 448 ΔGhydration result labels). The Full–Dense set contained 35,428
molecules (with 34665 LogP, 20273 LogS, and 891 ΔGhydration result labels).

QSPR Prediction

LogP LogS ΔGhydration

Analysis Metric MAE MAD MAE/MAD MAE MAD MAE/MAD MAE MAD MAE/MAD

Model Feature Set Full 0.61 0.95 0.64 0.21 1.51 0.14 1.64 3.62 0.45
Dense 0.20 0.68 0.29 0.24 1.51 0.16 1.53 3.58 0.43
Full—Dense 0.51 0.97 0.53 0.23 1.51 0.15 2.03 3.85 0.53
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objective function = Accuracy, \
partitioner = InformationGain, \
Activity cutoff = 0.5, \
nodes core = SplitRating, \
min split = 0 \
)

There are two factors that determine the order of features and
their corresponding splitting values in dataset partitioning in a
decision tree: partitioners and node scores. Four types of
partitioners are currently implemented in the BCL:
InformationGain, Gini, ROC, and Sequence. The first three
options rate the feature to split the dataset by information
gain, Gini index, and area under the curve of the local ROC
curves (Ferri et al., 2002), respectively. The last option only allows
splits that result in at least one pure node.

While the partitioner determines how to calculate the split
rating of different configurations of dataset partition, the node
score type dictates how to rank different combinations of
feature order and their corresponding splitting values. Four
types of node scores are currently implemented in the BCL:
split rating (SplitRating), number of correct predictions before
splitting (InitialNumIncorrect), split rating times initial
number of correct predictions
(RatingTimesInitialNumIncorrect), and sum of number of
incorrect predictions before and after data splitting
(InitialIncorrectPlusFinalCorrect). The users can also
control the minimum number of incorrect classifications of
a node by assigning a value to the min split flag.

A DT was employed in Section 3.4 to classify small molecules’
potential for hit optimization. The BCL can convert DTs into
descriptor files that can be used to help defined new properties.
For more details, see Section 3.4.

Unsupervised Learning
Adjusting Tunable Parameters in a
Self-Organizing Map
A self-organizing map (SOM), also commonly referred to as a
Kohonen map, is an unsupervised learning method that is
commonly used in clustering and dimensionality reduction.
The SOM produces a low-dimensional (typically one to two
dimensions), discretized representation of the input space of
the training samples, called a map. This method applies

competitive learning to reach a solution, as opposed to
conventional feed-forward neural networks, which utilize
error-correction learning. To see the options available to a
Kohonen map model, call

bcl.exe model:Train “Kohonen (help)”

Here is the typical configuration file setup to build a Kohonen
map model:

learning-method: Kohonen (
shuffle = True, scaling = AveStd, map dimensions = (10, 10), \
steps per update = 0,radius = 7.5, length = 140, Neighbor
kernel = Bubble, \
Initializer = RandomlyChosenVectors, cutoff = 0.5, objective
function = RMSD \
)
Before training a Kohonen map, users may shuffle the

training set (shuffle = True). Similar to the ANNs, there
are two options for scaling the input: AveStd and MinMax.
The former works best when the input descriptors are
continuous, and the latter is ideal for sparse and/or
discretized input data. Regarding the configuration of the
SOM, the map dimensions option dictates the number of
nodes, or neurons, in each direction of the map. Setting the
steps per update flag (i.e., batch size) to 0 indicates that all
training rows will be used for each iteration.

The initial radius of the neighborhood function, radius, is the
maximum distance between the neighbor neuron and the best
matching unit (BMU). Increasing the radius generally increases
model quality at the expense of training time. In our experience,
diminishing returns are met when the radius approaches 1/3 to 1/2
the total distance of themap. The number of iterations it takes for the
radius to decrease to 0 in the given neighbor kernel function is given
by length. The radius of the neighborhood is gradually reduced as the
number of the iterations t increases, such that by 4plength the
original radius is reduced to size 0:

radiust+1 � radiust�0(1 − t + 1
4 × length

), (9)

Each iteration, the neurons compete by measuring their
distances to the input dataset. The neuron j, with associated

TABLE 6 |QSPR external test-set predictions. Results of predicting QSPR properties on the Dense dataset with the model trained on the Full–Dense feature set, and results
of predicting QSPR properties on the Full–Dense dataset with the model trained on the Dense feature set. The table is organized such that the values indicate the
performance of the model trained with the indicated set of descriptors on the alternate test set. The Dense set consisted of 448 molecules (with 448 LogP, 448 LogS, and
448 ΔGhydration result labels). The Full–Dense set contained 35,428 molecules (with 34665 LogP, 20273 LogS, and 891 ΔGhydration result labels).

Model Feature Set

Full—Dense Dense

QSPR Prediction LogP LogS ΔGhydration LogP LogS ΔGhydration

Analysis Metric MAE 0.94 0.27 1.71 580.32 65.18 30.03
MAE/MAD 1.37 0.18 0.48 599.81 43.20 7.80
R 0.88 0.99 0.82 0.00 -0.11 -0.05
p 0.89 0.99 0.88 0.48 0.88 0.75
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weight vector w, with the lowest distance d to the randomly
selected input vector x is the winner.

dj(x) �
�����������
∑
i

(xi − wji)
2

√
, (10)

Iterations proceed for the entire batch size prior to updating
neuron weights. The next step is updating the weights within the
neighborhood of the winning node. There are two options for the
neighbor kernel function: Bubble and Gaussian. The new weights
are updated as

wt+1
ij � wt

ij + αt
jBj(xt

i − wt
ij), (11)

where the β is 0.8 for the wining node and 0.2 for other nodes in
the neighborhood and learning rate α is exp(−(distance to winner)2

2 × radius2 )
for the Gaussian kernel and 1 for the Bubble kernel. The Bubble
kernel keeps the learning rate constant inside the neighborhood,
while the Gaussian kernel reduces the learning rates for more
distant nodes, at a substantial performance cost.

Finally, users can select one of the objective functions
mentioned above to evaluate the prediction performance of
the model. At test time, the model will assign an AD score for
each external compound. This AD score is the normalized
distance of that compound to the closest node of the training
set. For instance, a tested molecule with an AD score of 0.90 is
further from the closest node than 90% of other molecules in the
training set. In other words, that molecule’s feature space was not
so well-represented in the training dataset.

Training a Self-Organizing Map Druglikeness
Applicability Domain
We will use the BCL to build class-specific druglikeness
applicability domain (AD) models from the structures of
FDA approved drugs: 58 opioid receptor modulators and 82
kinase inhibitors (Wishart et al., 2018). From each set of
molecules, 5 molecules are randomly removed from the
training set for external validation. Training occurs on the
remaining molecules. The AD models will be used to
measure the similarity between external compounds and a
“typical drug” targeting opioid receptors or kinases. Generate
a configuration file for the AD called AD. config containing the
following:

learning-method: “ApplicabilityDomainKohonen ( \
shuffle = 0, map dimensions (% (cluster_num)s), steps per
update = 0, \
length = 140, radius = 7.5, neighbor kernel = Bubble, \
initializer = RandomlyChosenVectors, scaling = AveStd, cutoff
= 0.5, \
share distance metric = True
)”

Note that the map dimensions are set by the cluster_num flag
in the training command. Generate feature set for each molecule
file using descriptor:GenerateDataset. Train the kinase set AD
model:

launch.py -t cross_validation --config-file AD. config \
--datasets kinase. train.Scalar_UMol2D.bin \
--id kinase. Scalar_UMol2D.AD --max-iterations 200 \
--local --no-cross-validation --cluster_num 5

Afterward, train the opioid receptor set AD model. Next,
we can evaluate the test sets with each AD model, beginning
with the kinase inhibitor test set with the kinase inhibitor AD
model:

bcl.exe model:Test -retrieve_dataset \
“SdfFile (filename = kinase.test.sdf.gz)” \
-storage_model \
“File (directory = ./models/kinase_mol2d_scalar_AD, prefix =
model)” \
-output kinase_kinaseAD.test.out

The AD scores are listed in the output data file. The first two
lines are the format name, and the dimension of the data table.
The AD scores of five test compounds are stored in the second
columns of the last 5 lines. We can see that our test set
compounds from the FDA approved kinase inhibitor list have
a shorter AD distance than our molecules in the opioid receptor
test set, and vice versa (Figure 9). These scores represent the
distance of each test compound to the feature space occupied by
the training set FDA approved kinase inhibitors. In other words,
they tell us how far we are from drug-like feature space for this
group of inhibitors. The output AD scores are summarized in
Figure 9.

DRUG DESIGN

Up to this point we have demonstrated vHTS predictions on pre-
existing external datasets. Screening external datasets can be very
valuable because of the ever-increasing number and availability of

FIGURE 9 | Applicability domain models differentiate molecular
structures targeting unique proteins. Each box plot represents AD scores of
five drugs that target either kinases or opioid receptors. AD models trained on
kinase and opioid training datasets are colored in red (legend: kinaseAD)
and blue (legend: opioidAD), respectively.
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public, commercial, and institutional small molecule repositories.
Nevertheless, it is also frequently the case that computation can
be applied to assist specific medicinal chemistry projects. For
example, in silico drug design can conceivably be utilized for
library design, hit explosion, or scaffold hopping. Here, we will
demonstrate how to perform multicomponent reaction (MCR)-
based drug design with the BCL.

Defining Reaction Files for Drug Design
Reaction-based drug design in the BCL proceeds according to user-
defined MDL RXN (.rxn) files. There are a number of predefined
reactions located in bcl/rotamer_library/functional_reactions.
Reactions can be single-component intramolecular reactions, or
multi-component intermolecular reactions of up to four unique
reagents. Reactants must have their atomsmapped to corresponding
atoms in the product(s). Atom mapping is required for substituents
on the input reagents to be merged with the product(s).

The reaction design framework functions in part by performing
substructure comparisons of candidate reagents to reactant structures
drawn in the RXN file. Substructurematching occurs at a resolution of
ElementType for atoms and BondOrderOrAromatic for bonds. If
there are candidate reagents that collectively can match all reactant

positions in a reaction, then the reaction can proceed. Note that unlike
input SDFs for molecule files, aromaticity must be shown explicitly in
the RXN file to be interpreted. Also note that reactant matching will
only match hydrogen atoms if they are drawn explicitly.

Executing Reaction Design
In this example, we will generate products according to a 4-
component split-Ugi reaction utilizing piperazine as the diamine
scaffold in all designs (Figure 10A).

bcl.exe molecule:React \
-starting_fragments piperazine. sdf -reagents reagents_le_20. sdf \
-reactions./rxns_dir/ -routine Random -repeats 9 -
ligand_based \
-fix_geometry -fix_ring_geometry -extend_adjacent_atoms 2 \
-output_filename ugi_products.sdf -logger File ugi_reaction.log

The individual molecule fragments passed via
starting_fragments are treated as required reaction
components. The reactions flag is given the path to a directory
containing all RXN files the user wishes to include in the reaction.
The reagents flag specifies candidate reactants with which the

FIGURE 10 |Multicomponent reaction-based design of dopamine receptor D4 antagonist candidates. (A) The 4-component split-Ugi reaction utilizing a piperazine
as the diamine. Hydrogen atoms are represented implicitly. Atom numbers correspond to mappings between reactant and product atoms. The density of molecules
generated with respect to (B) the predicted activity local PPV for each classification result label, (C) number of hydrogen bond donors, hydrogen bond acceptors, or
rotatable bonds, (D) topological polar surface area, and (E) the computed logP. LogP estimates are computed using the Full neural network from Section 7.4
(XLogP; gray), the property-based cLogP approach from Xing and Glen, 2002 (Xing and Glen, 2002), and the atom-based cLogP approach from Mannhold et al., 2008
(Mannhold and Van deWaterbeemd, 2001). (F)Density of generatedmolecules with respect to synthetic accessibility score (x-axis) and predicted dopamine receptor D4
antagonist activity (local PPV for 100 nM classification; y-axis). The 2D histogram density is log10-scaled. (G) Structural representation of six randomly selected
molecules from a sample of 198 designs that had local PPV values greater than or equal to 0.80 for predicted activity at 100 nM.
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starting_fragments molecules are reacted. Thus, for every entry in
the SDF passed via starting_fragments, the molecule: React
application will check to see if it is a valid reactant for any of
the reactions in the directory specified by reactions; for those
reactions that the current starting_fragments molecule is a valid
reactant, the remaining possible reactant positions are fit against
the molecule fragments provided via reagents.

The routine flag specifies how to continue with reaction
sampling. Currently, there are two options, though additional
options are under development. The default is Random, which
will perform one valid reaction (if any exist) for each molecule in
starting_fragments using a randomly selected reaction and
reagents from the user input. By default, the Random routine
will run one time; however, by specifying repeats users can
increase the number of cycles. If the starting_fragments SDF
contains 100 entries and repeats is set to 4, then the molecule:
React application will run 500 times–one initial run for all entries
followed by four repeats of all 100 entries. Alternatively, users
may specify Exhaustive, which will enumerate all possible
products from all given reactions and reagents for each
starting_fragments molecule. Ongoing efforts to expand the
reaction-based drug design framework include additional
optimization routines, such as evolutionary fragment
generation and simulated annealing, as well as mixed intra-
and inter-reagent reactions. Other options are related to
generation of 3D conformers for the product molecules and
are explained in the help menu.

bcl.exe molecule:React --help

Analyzing Designs
For illustration purposes, we generated ~700,000
configurationally unique molecules with the split-Ugi reaction
(Figure 10A). As our starting fragment, we used a solitary
piperazine ring. For simplicity and to keep the size of the
product library reasonably small, we also utilized a
formaldehyde in the second reactant position (though another
aldehyde is possible). We passed a collection of commercially
available building block fragments, filtered such that the heavy
atom count was less than or equal to 20, to fill positions three and
four via our reagents flag. We analyzed the resulting library
without any additional filtering (e.g., for druglikeness,
predicted mutagenicity, Lipinski’s rules, etc.).

Piperazine rings and related substructures are well-defined core
components of dopamine receptor (DR) antagonists (Lindsley and
Hopkins, 2017). Utilizing BCL commands described in previous
sections along with publicly available PubChemBioassays, we trained
a single QSAR model to simultaneously predict dopamine receptor
D4 (DRD4) antagonist activity at multiple thresholds (10, 100, 500,
1,000, and 5,000 nM). Subsequently, we employed this QSAR model
to predict the DRD4 antagonist activity of our newly created library
(Figure 10B).

As might be expected, there are a high density of molecules
with a low (< 0.20) local PPV for activity at 10 nM; however, as
the threshold for activity increases, the density of molecules that
are identified as active increases (Figure 10B). We also quantified
the number of HBDs, HBAs, and rotatable bonds in our

molecules (Figure 10C). Most compounds have fewer than 5
HBD and 10 rotatable bonds. Approximately half of the dataset
contains 10 or more HBA, which would contribute to Lipinski’s
rules violations, though many FDA-approved molecules do not
follow Lipinski rules strictly (DeGoey et al., 2018). Nevertheless,
number of HBAs may be one criterion by which to filter out
molecules from the library from further analysis.

We also estimated topological polar surface area (TPSA)
(Figure 10D) and water-octanol partition coefficient (logP)
(Figure 10E). More than half of the molecules have a TPSA
less than 150 Å2. One could also filter out molecules from the
library that have TPSA greater than 150 Å2 and/or greater than 10
rotatable bonds (Veber rules for druglikeness). We performed
logP estimates with three uniquemethods: 1) the DNNwe trained
in Section 7.4.2; 2) a property-based metric from Xing and Glen,
2002 (Xing and Glen, 2002); and 3) an atom-based metric from
Mannhold et al., 2008 (Mannhold and Van de Waterbeemd,
2001). Each of these metrics are available in the BCL as molecular
properties and can be employed to characterize the solubility of
candidate compound libraries.

Finally, we display predicted activity at 100 nM as a function of
synthetic accessibility score (SAScore) (Ertl and Schuffenhauer, 2009)
(Figure 10F). Encouragingly, the molecules predicted most likely to
be active at 100 nM (local PPV ≥0.80) have SAScores below 2.0, well-
within an acceptable range (Ertl and Schuffenhauer, 2009). Overall,
the SAScores of the library are low, reflective of the reaction type and
selected reagents (Figure 10F). We selected six random molecules
with local PPV greater than 0.80 at the 100 nM activity cutoff for
display (Figure 10G). These molecules are topologically similar to
known antagonists of DRs, specifically DRD4; however, it is possible
that this reaction produces a scaffold with an activity cliff (loss of
protonation of the piperazine ring) (Berry et al., 2010; Lindsley and
Hopkins, 2017).

DISCUSSION

The BCL is an academic research project made available for
public use. As an academic research project, the BCL is under
continuous development. Ongoing improvements are anticipated
for many of the applications described here, including small
molecule conformer sampling, small molecule flexible
alignment, descriptor/feature generation, and additional
machine learning architectures (e.g., random forest, gradient
boosting, and convolutional neural networks), strategies, and
pre-generated models. In addition, several new tools are
currently under active development for tasks such as library
design, de novo drug design, pharmacophore mapping, and more.

This manuscript has focused extensively on LB in silico
drug discovery tools; however, we have also begun
incorporating SB tools, such as deep learning-based
protein-ligand interaction scoring (Brown et al., 2021).
Two primary goals moving forward are 1) continuing to
increase the accessibility of the BCL to other scientists, and
2) integrating the BCL with other state-of-the-art software
packages to allow for more complex protocol design. To
accomplish these goals in tandem, we are completing
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scientific advances and software changes required to
functionally integrate and compile the BCL in the Rosetta
macromolecular modeling suite (Leman et al., 2020), enabling
access to protocol development at the C++ (Rosetta
applications), Python (PyRosetta), and XML
(RosettaScripts) levels, in addition to the API described in
this manuscript. We are also developing a graphical user
interface (GUI) for the BCL LB drug discovery. The GUI
will enable on-the-fly QSAR/QSPR calculations and
druglikeness evaluation while the user is drawing molecules.

Our hope is that this manuscript will serve as a resource for
those interested in utilizing the BCL for cheminformatics
research. Several high level BCL applications can also be
accessed via webserver for non-expert users. The webserver is
available through the BCL Commons website at http://www.
meilerlab.org/bclcommons. Example files mentioned
throughout the manuscript are freely available on the Meiler
Lab GitHub page.

The BCL can be downloaded freely from http://www.
meilerlab.org/bclcommons and requires a supporting license
from http://meilerlab.org/servers/bcl-academic-license that is
free for academic and non-profit users, with commercial
licenses available for a fee.
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Combined Machine Learning and
GRID-Independent Molecular
Descriptor (GRIND) Models to Probe
the Activity Profiles of 5-Lipoxygenase
Activating Protein Inhibitors
Hafiza Aliza Khan and Ishrat Jabeen*

Research Centre for Modelling and Simulation (RCMS), NUST Interdisciplinary Cluster for Higher Education (NICHE), National
University of Sciences and Technology (NUST), Islamabad, Pakistan

Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid
(AA), and their high production has been reported in multiple allergic, autoimmune, and
cardiovascular disorders. The biological synthesis of leukotrienes is instigated by transfer
of AA to 5-lipoxygenase (5-LO) via the 5-lipoxygenase-activating protein (FLAP).
Suppression of FLAP can inhibit LT production at the earliest level, providing relief to
patients requiring anti-leukotriene therapy. Over the last 3 decades, several FLAP
modulators have been synthesized and pharmacologically tested, but none of them
could be able to reach the market. Therefore, it is highly desirable to unveil the
structural requirement of FLAP modulators. Here, in this study, supervised machine
learning techniques and molecular modeling strategies are adapted to vaticinate the
important 2D and 3D anti-inflammatory properties of structurally diverse FLAP inhibitors,
respectively. For this purpose, multiple machine learning classification models have been
developed to reveal the most relevant 2D features. Furthermore, to probe the 3Dmolecular
basis of interaction of diverse anti-inflammatory compounds with FLAP, molecular docking
studies were executed. By using the most probable binding poses from docking studies,
the GRIND model was developed, which indicated the positive contribution of four
hydrophobic, two hydrogen bond acceptor, and two shape-based features at certain
distances from each other towards the inhibitory potency of FLAPmodulators. Collectively,
this study sheds light on important two-dimensional and three-dimensional structural
requirements of FLAP modulators that can potentially guide the development of more
potent chemotypes for the treatment of inflammatory disorders.

Keywords: 5-lipoxygenase activating protein (FLAP) inhibitors, machine learning, molecular docking, grind,
leukotrienes (LTs)

1 INTRODUCTION

The 5-LO pathway is responsible for the biological synthesis of leukotrienes (LTs) using arachidonic
acid (AA) predominately by inflammatory cells like polymorphonuclear leukocytes, activated
macrophages, and mast cells upon arrival of immunologic and non-immunologic stimuli (Hedi
and Norbert 2004). Activation of leukocytes results in translocation of cytosolic protein
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phospholipase A2 (PLA2) to membrane where it selectively
hydrolyzes the sn-2 acyl bond of membrane phospholipids to
release AA and lysophosphatidic acid. An integral membrane
protein called FLAP (5-lipoygenase activating protein) uptakes
the AA and efficiently transfers it to the active site of 5-
lipoxygenase (5-LO) enzyme, which catalyzes a series of
reactions at a single active site (Peters-Golden 1998; Peters-
Golden and Brock 2003). In the first step, in a calcium- and
ATP-dependent reaction, AA is converted to a 5-lipoxygenase-
specific hydroperoxide intermediate (5-HPETE), while in the
second step, 5-LO performs synthase reaction for conversion
of 5-HPETE to the epoxide intermediate, leukotriene A4 (LTA4)
(Woods et al., 1995; Smyrniotis et al., 2014). LTA4 acts as a
common precursor for biosynthesis of chemoattractant
leukotriene B4 (LTB4) by a zinc-bound LTA4 hydrolase
(LTA4H) and bronchoconstrictive cysteinyl leukotrienes
(CysLTs or LTC4) with the help of LTC4 synthase (LTC4S)
(Jakschik and Kuo 1983; Haeggström 2000). Both LTB4 and
CysLTs are physiologically active final products of the 5-LO
pathway and are exported out of the cell through specific
transport proteins while extracellular peptidases metabolize
LTC4 to LTD4, which is converted into LTE4 depending on
type of inflammatory signal and cell demand (Jedlitschky and
Keppler 2002). After export, LTs bind with respective G-protein-
coupled receptors, e.g., LTB4 binds with BLT1 and BLT2, whereas
CysLTs activate CysLT1 and CYsLT2 receptors to incite further
proinflammatory signaling cascades (Ghosh et al., 2016).

Since high levels of LTs have been reported in the
pathophysiology of a wide range of inflammatory,
cardiovascular, and autoimmune disorders, FLAP has become
the focus of immense research because LT production can be
stopped at the earliest level (Folco et al., 2000; Liu and Yokomizo
2015). Over the course of the last 3 decades, several FLAP
modulators have been proposed including first generation of
derivatives of indoles and quinolines for asthma treatment
(Evans et al., 1991; Frenette et al., 1999). These inhibitors
such as MK-886, MK-591, and BAY-X-1005 demonstrated
efficiency in clinical trials in patients with inflammatory
diseases in the mid-1990s but were not brought to market
due to poor pharmacokinetics (Friedman et al., 1993;
Diamant et al., 1995; Dahlén et al., 1997). Revelation of
SAR data along with crystal structure expedites the drug
discovery quest against FLAP, leading to the second
generation consisting of derivatives of diarylalkanes, biaryl
amino-heteroarenes, and benzimidazoles, proposed with
renewed interest for treatment of cardiovascular diseases
(Lemurell et al., 2015; Macdonald et al., 2008; N.; Stock
et al., 2010). Moreover, several inhibitors proved to be
promising readouts for preclinical and clinical studies such
as AM103, AM803, BI665915, AZD5718, and AZD6642 and
have been shown to ameliorate inflammation-related diseases
(Bain et al., 2010; Lorrain et al., 2010; Antoniu, 2014; Ericsson
et al., 2020). However, despite several practices, not a single
inhibitor has won the race to the market as a drug to date.
Therefore, development of more potent chemical entities
against FLAP is highly desirable to provide relief to
patients suffering from inflammatory disorders.

Mostly FLAP modulators were synthesized and
pharmacologically tested and optimized through SAR
(structure–activity relationship) studies. Some candidates were
also identified by virtual screening from a ligand-based
pharmacophore built upon smaller datasets (Banoglu et al.,
2012; Temml et al., 2017; Olgac et al., 2020). Here, in this
study, advanced machine learning (ML) techniques along with
classical modeling strategies are adapted to shed light on
important 2D and 3D anti-inflammatory properties of a
diverse set of inhibitors targeting FLAP. For this reason, ML
models based on most relevant 2D descriptors or features have
been constructed. Further molecular docking was performed to
establish a binding hypothesis of each class of inhibitors within
the FLAP binding cavity followed by common scaffold clustering
to obtain the most probable 3D binding solutions. The most
probable 3D binding poses were utilized for GRID-independent
molecular descriptor analysis (GRIND) to probe the important
3D binding features and associated mutual distances in active
FLAP modulators.

2 MATERIALS AND METHODS

2.1 Machine Learning Modeling
2.1.1 Dataset Preparation
All compounds having activity values in IC50 against FLAP were
retrieved from the ChEMBL database under target ID
ChEMBL4550 followed by removal of compounds with similar
canonical smiles resulting in a dataset of 658 compounds. The
IC50 of the finalized 658 compounds ranged from 0.3 to
22,500 nM. Furthermore, the highly active and least active
compounds were distinguished by the application of activity
threshold, i.e., compounds having IC50 < 10 nM were
categorized as highly active while compounds having IC50 >
70 nM were categorized as least active considering that FLAP
inhibitors that have entered clinical trials usually possess values <
10 nM (Gür, Çalışkan, and Banoglu 2018). Compounds with IC50

values in between >10 nM and <70 nM were labeled as
intermediates and were removed. For ML classification model
development, highly active compounds were labeled as one, while
least active ones were labeled as 0. The final dataset was composed
of 503 (253 highly actives and 250 least actives) compounds and
was randomly divided into a training set (402 compounds: 201
highly actives and 201 least actives) and a test set (101
compounds: 52 highly actives and 49 least actives) by a ratio
of 80% and 20% respectively using train_test_split function
(random_state = 42) of model_selection library from the
scikit-learn Python package (Pedregosa et al., 2012).
Additionally, it was ensured that the ratio of the highly active
to weakly active inhibitors remained equal in the training and
test set.

2.1.2 Computation of 2D Chemical Descriptors
Initially, 4,179 2D descriptors were calculated using alvaDesc tool
version 2.0.8 (Mauri 2020). The descriptors can be divided into 21
categories named constitutional indices, ring descriptors,
topological indices, walk and path counts, connectivity indices,
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information indices, 2D-matrix based descriptors, 2D
autocorrelations, burden eigenvalues, P_VSA like descriptors,
ETA indices, edge adjacency indices, fractional group counts,
atom-centered fragments, atom-type-estate indices,
pharmacophore descriptors, 2D atom pairs, charge descriptors,
molecular properties, drug-like indices, MDE descriptors, and
chirality descriptors. Descriptors with null values and variance
near zero were removed. For the remaining 2,352 descriptors,
Pearson autocorrelation coefficient was calculated and
autocorrelated descriptors along with low dependency
(correlation) on the target variable (inhibitory potency, IC50)
were discarded, resulting in a set of 442 descriptors. The final 442
features were further applied to train the ML models.

2.1.3 Machine Learning Modeling
For this study, six supervised ML classification models named
support vector machine (SVM), random forest (RF), multilayer
perceptron (MLP), decision tree (DT), logistic regression (LR),
and gradient boost decision tree (GBDT) were developed. SVM,
RF, MLP, DT, and LR were generated using the scikit-learn
Python package whereas the GBDT was built by the XGBoost
Python package (Cortes, Vapnik, and Saitta 1995; Liaw and
Wiener 2002; Haykin, 2009; Quinlan 1986; T.; Chen and
Guestrin 2016; McCullagh and Nelder 1989). To select the
most relevant features from the set of 442 descriptors, the
RFECV (Recursive Feature Elimination and Cross-Validation
Selection) algorithm of scikit-learn was used (Guyon et al.,
2002). Recursive feature elimination (RFE) is a wrapper-type
feature selection that works by eliminating n features from a
model by fitting the model multiple times and, at each step,
removing the weakest features, determined by either the coef_
(SVM and LR) or feature_importances_ (RF, DT, and XGBoost)
attribute of the fitted model (Guyon et al., 2002). Since there is no
attribute available to estimate feature importance in MLP,
XGBoost was used as the base estimator. The cross-validation
(cv) parameter of RFECV was set at fivefold and was done by
using the RepeatedStratifiedKFold method of the
model_selection library from scikit-learn (Zeng and Martinez
2010). The GirdSearchCV library in scikit-learn was used to tune
hyperparameters of the estimators based on a 10-fold cross-
validation Matthews Correlation Coefficient (MCC). This
process was repeated ten times. Moreover, to assemble data
transformer (RFECV) and hyperparameter tuner
(GirdSearchCV) with simultaneous cross-validation while
setting different parameters, the pipeline module of scikit-learn
was used.

An SVM constructs a maximummarginal hyperplane with the
help of a kernel function to map the non-linear problem in
multidimensional space for data separation. The performance of
the SVM model is controlled by parameters such as kernel,
capacity parameter (C), and gamma. Kernel represents sample
distribution in the mapping space, C controls the trade-off
between smooth decision boundary, and gamma controls the
extent of curvature in decision boundary (Nekoei,
Mohammadhosseini, and Pourbasheer 2015; Pourbasheer
et al., 2017). For this project, linear kernel was utilized while
all parameters were set at their default values except for tuning of

penalty parameter (C) (Chang and Lin, 2021). MLP is a
feedforward artificial neural network and is trained using back
propagation algorithm. It has an activation function that forms a
linear combination according to weights of inputs to decide the
output. The MLP model was controlled by tuning the following
parameters: the number of neurons (hidden_layer_sizes) and
activation function (activation), while the rest of the
parameters were set at their default values (Glorot and Bengio,
2021). An LR model predicts a dependent data variable by
analyzing the relationship through logic functions between one
or more existing independent variables. It was controlled by
tuning the following parameters: the way of regularization
(penalty), strength of regularization (C), tolerance for stopping
criteria (tol), and algorithm of optimization (solver), whereas
other parameters not mentioned were set at their default values
(Fan et al., 2008). A DT classifies data by splitting them into
source nodes and then multiple child nodes using statistical
probability. The DT model was optimized by tuning the
following parameters: quality of split (criterion), split at each
node (splitter), and number of features for the best split
(max_features). The remaining parameters were set as their
default values (Brieman and Olshen 2012). An RF builds
multiple decision trees and merges them together to get an
accurate and stable prediction. The RF model was controlled
by tuning the following parameters: number of trees
(n_estimators), quality of a split (criterion), features for the
best split (max_features), and the minimum number of
samples required for splitting (min_samples_split); the other
parameters not mentioned were set at their default values
(Breiman 2001). XGBoost is an ensemble tree method that
applies the principle of boosting weak learners using the
gradient descent architecture. For this project, gradient boost
tree (GBDT) has been implemented, which uses decision trees as
weak classifiers. The XGBoost model was controlled by tuning the
following parameters: the maximum depth of a tree (max_depth),
the number of the tree (n_estimators), minimum loss reduction
required for partition on a node (gamma), minimum sum of
instance weight needed to generate a child node
(min_child_weight), strength of L1 regularization (reg_alpha),
and learning rate (learning_rate). The other parameters not
mentioned were set at their default values (T. Chen and
Guestrin 2016).

The repeated stratified 5-fold cross-validation was used on the
training set to select and evaluate the robustness of models, and
the test set was used to evaluate the performance of models.
Evaluation parameters include classification accuracy (ACC),
true positive rate or sensitivity (SE), true negative rate or
specificity (SP), and Matthews correlation coefficient (MCC)
as mentioned in (Eqs 1–4) below:

True Positive Rate (Sensitivity) � TP

TP + FN
(1)

True Negative Rate (Specificity) � TN

TN + FN
(2)

Classification Accuracy (ACC) � TP + TN

TP + TN + FP + FN
(3)
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Matthews Correlation Coefficient (MCC)
� (TP × TN − FP × FN)�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (4)

2.2 Molecular Modeling
2.2.1 Calculation of Lipophilic Efficiency (LipE) and
cLogP
To estimate the druglikeness of the initially finalized 658 FLAP
inhibitors (section 2.1.1), LogP was calculated by using Bio-
Loom software (BioByte - Bio-Loom, 2021) followed by
computation of LipE with the following equation:

LipE � pIC50 − c logP (5)
Briefly, lipophilicity or cLogP strongly impacts membrane

passive permeability, which is required for oral absorption and
access of the drug to intracellular compartments and tissue
penetration (Arnott and Planey 2012). Lipophilic efficiency
(LipE) is defined as normalization of the pIC50 with respect to
cLogP of the compound. Previously, Leeson et al. proposed that
an ideal drug candidate should have a LipE value greater than five,
which is obtained in case of high potency and low lipophilicity
(Leeson and Springthorpe 2007). For the application of molecular
modeling techniques (Docking and 3D QSAR GRIND), LipE and
cLogP filter were used; i.e., compounds having LipE greater than
one and cLogP greater than two were selected. The new dataset of
compounds having LipE value greater than one and cLogP greater
than two was divided into a training set (80%) and a test set (20%)
by using the train_test_split function (random_state = 42) of the
model_selection library from the scikit-learn Python package.
Both training and test datasets were further employed in
molecular modeling studies (docking studies and GRIND
modeling).

2.2.1 Molecular Docking and Pose Analysis
To explore the binding interactions of structurally diverse FLAP
inhibitors, and to obtain the most probable 3D binding
conformations of ligands for GRIND analysis, inhibitors
having LipE value greater than one and cLogP greater than
two were docked into the binding pocket of the FLAP
structure retrieved from the Protein Data Bank (PDB ID:
2Q7M) (Ferguson et al., 2007). Protein structure was prepared
by energy minimization through the Amber99 force field of MOE
(A. A. Chen and Pappu 2007). The energy-minimized structure
was imported into GOLD software (version 5.6.1) (Jones et al.,
1997) followed by determination of x, y, z coordinates around the
single-solvent accessible point present in the center of the active
site. The binding site area was kept at 12 Å radius, which included
all important amino acid residues reported by previous studies. A
total of 100 conformations for each ligand were generated, and
GOLD fitness scoring function was used to rank each pose of
ligands with subsequent energy minimization of ligand–protein
docking complexes using LigX implemented in software MOE.
Gold score fitness scoring function was calculated as:

Fitness � S(hb)ext + 1.3750pS(vdw)ext + S(hb)int + 1.0000p S(int)
(6)

Based on structural similarity, common scaffold clustering
(CSC) as proposed by Jabeen et al. (2012) was conducted to
reduce the conformational space. For this purpose, RMSDmatrix
was generated through agglomerative hierarchical cluster
analysis, and clusters with maximum docked ligands were
selected for ligand–protein interaction profiling. Common
interactions between each class were sorted out and binding
hypothesis was generated for each class with respect to
interaction pattern and position in binding pocket.
Conformations from selected clusters were further utilized in
GRIND analysis as training set.

2.2.3 Grid Independent Molecular Descriptors
Analysis
Selected 3D molecular confirmations of ligands obtained from
clusters containing maximum docked ligands along with their
inhibitory potencies (pIC50) were imported in Pentacle software
version 1.06 to construct the GRIND model (Pastor et al., 2000).
Calculation of molecular interaction fields (MIFs) was done by
use of different probes, namely, N1, O, DRY, and TIP, where N1
(amide N) represents a hydrogen bond donor, O (sp2 carbonyl O)
denotes a hydrogen bond acceptor, DRY indicates a hydrophobic
region, and TIP stands for steric hotspots within the virtual
receptor site. A GRID was used to iteratively place these
probes to calculate the total energy by addition of Lennard-
Jones potential energy (Elj), hydrogen bond energies (Ehb),
and the electrostatic energy (Eel), whereas with the help of the
following equation, total interaction energy at each node was
calculated:

E xyz � ∑E hb +∑E lj +∑E el (7)
AMANDA algorithm was used to extract the most relevant

and significant MIFs along with evaluation of structural
characteristics of the dataset explained by GRIND descriptors
(Durán, Martínez, and Pastor 2008). The default GRID space of
0.5 and the energy cutoff values, which are –4.2, –2.6, –0.5, and
–0.74 for N1, O, DRY, and TIP, respectively, were used for
discretization of MIFs, while nodes that did not meet the
energy cutoff were discarded. The next encoding step involves
CLACC algorithm that aided in selection of consistent nodes by
adjustment of compounds according to their moment of inertia.
The values obtained from encoding consist of a consistent set of
variables whose values were directly represented in the form of
correlogram plots. The final GRINDmodel with PLS (partial least
square) analysis using LOO (leave one-out) method with
statistically significant R2, q2, and standard error values
(SDEP) was built on the training set followed by evaluation
with the test set (section 2.2.1). Additionally, r2m metrics
(r2m, Delta r2m) was also generated for validation purposes
according to the previously published studies (Roy et al., 2013;
Gajo et al., 2016).
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3 RESULTS

3.1 Machine Learning Models
Six MLmodels were developed by different algorithms (SVM, LR,
MLP, DT, RF, and GBDT) using two-dimensional structural
features of FLAP inhibitors. The performance of these models on
5-fold repeated stratified cross-validation is explained in Table 1. The
cross-validation accuracy of the training set ranged between 0.90 and
0.75, and theMCC ranged from 0.81 to 0.50. The prediction accuracy
and MCC values of the test set ranged from 0.90 to 0.70 and 0.80 to
0.40, respectively. MCC is often used as a measure of quality of binary
classification models. Two models (XGBoost and RF) exhibited an
MCC value of >0.7 on training and test sets, which means these two
algorithms have a relatively good ability to predict whether a
compound was a highly active or a least active FLAP modulator.
In terms of the best model, XGBoost outperformed all and the
accuracy and MCC values were observed as 0.90 and 0.81,
respectively. Additionally, a pervious fingerprint-based ML study
on FLAP modulators stated that that the reliability of predicted
results depends mainly on the compounds themselves rather than
algorithms or fingerprints (Tu et al., 2020).

The lowest performance was shown by theMLPmodel with an
accuracy value of 0.75 and an MCC value of 0.50. For the best
model (XGBoost), RFECV curve jumps to a maximum accuracy
when the 46 informative features are captured with feature
importance values ranging from 0.01 to 0.4. These 46 features
mainly belong to eight descriptor categories named topological
indices, 2D matrix-based descriptors, 2D autocorrelations, P_VSA-
like descriptors, edge adjacency indices, atom-type E-state indices,
pharmacophore descriptors, and molecular properties descriptors. All
46 captured features of the best-performing model (XGBoost) along
with description and feature importance values are given in
Supplementary Table S1. Additionally, 84, 126, 89, and 90
features have been captured by RF, DT, SVM, and LR,
respectively, and RFECV curves for all models with optimal
number of selected features are illustrated in Supplementary
Figure S1. We anticipate that these 46 2D descriptors have the
largest impact to differentiate between highly active and least active
FLAP inhibitors. Additionally, the tuned hyperparameters for each
model can be found in Supplementary Table S2.

3.2 LipE and cLogP Calculation
LipE and cLogP demonstrate the druggability of a compound in
lead optimization programs to evaluate the potential for better in

vivo efficacy and safety. A graph between pIC50 and cLogP along
with LipE values of the compounds in the training set is shown in
Supplementary Figure S2. In the current dataset of 658 FLAP
inhibitors, only 238 compounds out of 658 demonstrated LipE
value greater than five, which is the optimal threshold with cLogP
values in the range of −0.27 to 3.78. Moreover, only 136
compounds showed a cLogP value between optimal range of
2–3.5 as proposed by Leeson and Springthorpe (2007).
Additionally, 349 compounds out of 658 exhibited values of
LipE less than 1 (cLogP = 4.3–10.19) while the cLogP range
for 309 compounds having a LipE value greater than one was
observed as 0.27–7.88. Interestingly, several potent FLAP
inhibitors such as MK-886 (pIC50 = 8.65 cLogP = 8.58, LipE =
0.07), MK-591 (pIC50 = 9.30 cLogP = 8.82, LipE = 0.48), AM-643
(pIC50 = 8.69, cLogP = 7.72, LipE = 0.97), AM-679 (pIC50 = 8.65,
cLogP = 7.98, LipE = 0.67), AM-803 (pIC50 = 8.53, cLogP = 8.97,
LipE = 0.43), and BRP-7 (pIC50 = 6.50, cLogP = 7.23, LipE = 0.72)
displayed significantly low values of LipE. It seems that increase
in potency of these compounds might be due to increase in
lipophilicity. On the other hand, other FLAP modulators such as
BI665915 (pIC50 = 8.76, cLogP = 2.14, LipE = 6.62) and AZD6642
(pIC50 = 8.31, cLogP = 1.72, LipE = 6.62) showed relatively high
values of LipE.

Herein, a dataset of 187 compounds having LipE value greater
than one and cLogP greater than two was selected for further
application of molecular modeling studies as all FLAP inhibitors
in clinical trials possess high values of lipophilicity (cLogP). The
dataset of 187 compounds was subsequently divided into a
training set (151 compounds, Supplementary Table S3) and a
test set (36 compounds, Supplementary Table S4). Docking-
guided GRIND analysis was performed on the training set
followed by evaluation of the final GRINDmodel with the test set.

3.3 Molecular Docking and SAR-Guided
Pose Analysis
The selected dataset of 187 compounds mainly consists of already
published indoles, biaryl bicycloheptanes, oxadiazole, and
benzimidazole-based compounds. The dataset was further
divided into a training set (151 compounds) and a test set (36
compounds) and based on common scaffolds; the training set was
classified into six distinct classes. Common scaffold along with
activity, lipophilicity, and lipophilic efficiency ranges of the six
classes is depicted in Figure 1. Furthermore, a binding hypothesis
of each class within the FLAP binding cavity was established. The

TABLE 1 | The layout of prediction performances of machine learning models assessed by stratified 5-fold cross-validation for the training set and test set.

Classifier Training set (n = 402) CV5 of training set (n = 402) Test set (n = 101)

SE SP ACC MCC SE SP ACC MCC SE SP ACC MCC

XGBoost (GBDT) 0.99 0.99 0.99 0.98 0.91 0.89 0.90 0.81 0.89 0.91 0.90 0.80
Random forest (RF) 0.99 1.00 1.00 0.99 0.85 0.90 0.87 0.75 0.94 0.88 0.91 0.82
Decision tree (DT) 0.88 0.94 0.91 0.82 0.83 0.83 0.83 0.66 0.83 0.84 0.84 0.68
Support vector machine (SVM) 0.96 0.98 0.97 0.93 0.84 0.77 0.80 0.61 0.75 0.80 0.78 0.56
Logistic regression (LR) 0.82 0.88 0.85 0.69 0.84 0.75 0.79 0.59 0.85 0.87 0.86 0.72
Multilayer perceptron (MLP) 0.79 0.81 0.80 0.60 0.72 0.78 0.75 0.50 0.70 0.71 0.70 0.40
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distributions of compounds in each class along with common
scaffolds are depicted in Supplementary Table S5.

All datasets of the selected 187 compounds were docked into
the FLAP binding pocket, which included an area of 12 Å selected
by assigning x (65.7018), y (58.7512), and z (36.4565) coordinates
between chains B and C near previously known interacting amino
acid residues (B-F123, B-L120, B-I119, B-R117, B-K116, B-G115,
B-F114, B-I113, B-Y112, B-T66, B-A63, B-D62, C-V61, C-C60,
C-Q58, C-N57, C-H28, C-A27, C-F25, C-G24, C-N23, and
C-V21) (Mancini et al., 1994; Ma et al., 2008). To remove any
biases in the docking protocol, 100 poses per ligand were
generated using the GOLD score fitness function. Further
docking solutions were inspected by algoromatics hierarchical
cluster analysis based on root mean square deviation (RMSD) at
3.5 Å of the heavy atoms around a common scaffold. To follow
the idea of similar binding mode for similar compounds, only
those clusters that comprised the maximum number of docked
ligands were selected. Overall, one cluster of binding
conformations of compounds in all classes have been
identified that contained the maximum number of docked
ligands. The final selected cluster of each class and details of
common scaffold clustering are depicted in Supplementary
Table S5. Briefly, 26 out of 32 compounds for class I, 12 out
of 20 for class II, 32 out of 35 for class III, 10 out of 10 for class IV,
13 out of 18 for class V, and 26 out of 36 for class VI were
clustered out. Interestingly, the binding position of all final
clusters was the same, and they bind between helix 4 (α4) and
helix 2 (α2) of chain B and helix 1 (α1) and helix 2 (α2) of chain C,
but a distinct binding pattern was observed for each class. The

binding region between chains B and C occupied by all generated
poses of 187 ligands is shown in Figure 2A.

Briefly, class I compounds are derivatives of indole with
dimethyl butanoic acid and S-tert-butyl substituents at
positions two and three, respectively, as displayed in Figure 1,
while R1 at position one and R2 at position five are generally
occupied by heterogeneous 6-membered cyclic rings. The binding
solutions for final cluster (cluster 1, Supplementary Table S5) of
compounds in class I showed that dimethylbutanoic acid makes
π-H-bond interactions with C-H28 and C-Val21, S-tert-butyl
makes π-H-bond interactions with B-L120 and B-F123, while the
indole scaffold is primarily involved in making π-H-bond
interactions with C-G24 (Figure 2B). The R1 substituents
show hydrogen bonding with B-D62 and C-N23 and π-H
interactions contact with B-A63 and C-N23, whereas N of the
pyridine ring of R2 shows a strong hydrogen bond with B-A63
while R2 substituents show hydrogen bonding with B-R117 and
B-K116 (Figure 2B). Overall, compounds of class 1 displayed a
positive trend (R2 = 0.57) between lipophilicity and inhibitory
potency (Supplementary Figure S3) and exhibit a distinct SAR
pattern. For instance, compound 1 (IC50 = 0.4 nM,
Supplementary Table S3) having the highest activity value
(cLogP = 8.06, LipE = 1.34) among all the datasets contains 5-
methylpyridine at R1 and para-fluoro-2-phenylpyridine at R2 as
depicted in Supplementary Table S6. The final docking solution
of compound 1 reveals that the pyridine ring present at R1 shows
a π-H-bond bonding interaction with the -NH2 group of B-R117
(Figure 4). Compound 98 (IC50 = 9.0 nM, Supplementary Table
S6) has a similar structure to compound 1 except for the absence

FIGURE 1 |Common scaffolds of six classes of FLAP inhibitors used for common scaffold clustering to obtain the most probable 3D binding poses for employment
in GRIND studies.
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of terminal 5-methyl on R1 and the absence of fluorine on R2,
rendering it low lipophilic (cLogP = 3.35, LipE = 4.69) and less
active.

A study by Stock et al. also established that terminal 5-
methyl on pyridine at R1 significantly increases the
inhibitory potency of compounds against FLAP (N. Stock
et al., 2010; N. S. Stock, 2011). Interestingly, the hydrogen
bonding between -NH2 of B-R117 and nitrogen of the
pyridine ring of R2 of compound 98 has also been
observed in the final docking solutions. However, the
pyridine ring at R1 did not seem to be involved in making
any clear interactions. It was observed that the absence of
terminal methyl on the pyridine ring of R1 in compound 98
might reduce the exposure of pyridine ring to amino acids
inside the FLAP binding cavity (Figure 3), leading to a
substantial decrease in inhibitory potency of compound
98. Moreover, the high LipE value of compound 98 as
compared to compound 1 could be attributed only to its
low logP (o/w) without an increase in biological activity.

Class II of FLAP antagonists contains 2,2-biaryl
bicycloheptane as a common scaffold having diverse
substituents at position 2 (R1) and quinoline moiety at
position 5 (R2) of the exo aryl group (Figure 1).
Ligand–protein interaction profiling of the final cluster (cluster
3, Supplementary Table S5) shows that the common scaffold
orients itself towards the outer side-facing membrane and makes
π-H interactions with B-L120, B-I119, and C-V21, whereas the
quinoline moiety occupied the inside of the FLAP binding cavity
and shows π-H interactions with B-A63, C-G24, and C-N23
(Figure 2D). Generally, R1 is involved in making hydrogen bonds
with B-F123 and B-K116 amino acid residues. Overall, a slight
positive correlation (R2 = 0.27) has been observed between
inhibitory potency and lipophilicity for class III
(Supplementary Figure S3). Moreover, a distinct SAR pattern
was observed among compounds of class III. For instance,
compound 10 (IC50 = 1.1 nM, Supplementary Table S3),
being the most potent and lipophilic (cLogP = 7.88, LipE =
1.07) member of this class, possesses oxadiazole-2-thione at R1,

FIGURE 2 | (A) illustrates the binding positions and chemical space occupied by all generated poses of 187 FLAP antagonists between chains B and C of the FLAP
binding cavity. Chain B is shown in green color, chain C is depicted in blue color, while chain A is depicted in orange color. (B–G) represents binding poses of maximum
docked ligands in final clusters from class I to VI respectively obtained from common scaffold-based clustering.
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and absence of thiol substituent of oxadiazole at R1

(Supplementary Table S6) resulted in approximately threefold
decease in inhibitory potency of compound 47 (IC50 = 2.9 nM,
cLogP = 7.37, LipE = 1.16). The lipophilicities and LipE values of
compounds 10 and 47 are relatively the same and the difference
in inhibitory potencies might be due to a distinct binding pattern.
The final docking solution of compound 10 reveals the presence
of two hydrogen bonds between the terminal sulfur of the
oxadiazole-2-thione group at R1 and -NH2 of B-R117
(Figure 3). In compound 47, only a π-H-bond interaction was
found between the oxadiazole ring of R1 and C-V21 that might be
not very favorable and contribute to its low inhibitory. The
positive contribution of negative ionizable moieties at the
oxadiazole ring of R1 towards inhibitory potency for class II
FLAP antagonists is also evident from previous SAR studies (Chu
et al., 2012).

Classes III, IV, and V are cyclobutylbenzene,
cyclopropylethylbenzene, and dimethylpropylbenzene
derivatives of oxadiazole, respectively (Figure 1). Unlike other
three classes, no positive correlation between lipophilicity and
inhibitory potency was observed for classes III, IV, and V
(Supplementary Figure S3). It means that the difference in
inhibitory potency might be due to the distinct interaction

pattern and LipE values. All compounds of classes IV, V, and
VI contain diverse substituents at R1 and pyrimidinamine at R2

(Supplementary Table S6), which occupies the inside of the
FLAP binding cavity (Figures 2E–G). The final cluster of class III
(cluster 3, Supplementary Table S5) reveals that the common
scaffold shows π-π stacking with B-F114 and π-H-bond
interactions with B-A63 (Figure 2E). R2 forms hydrogen
bonding with B-D62, C-C60, and π-H-bond interactions with
C-N57 and C-N23, while R1 seems to be involved in making
hydrogen bonds with B-K116 and π-H interactions with B-I119.
Compound 7 (IC50 = 1.0 nM, cLogP = 3.13, LipE = 5.87,
Supplementary Table S3), being the most potent compound
of class III, contains N-tert-butyl methylacetamide at the pyrazole
ring of R1 compared to compound 83 (IC50 = 6.5 nM, cLogP =
2.68, LipE = 5.50, Supplementary Table S3), which contains only
piperidine ring at R1, resulting in a twofold decrease in its
inhibitory potency (Supplementary Table S6). The final
docking solution of compound 7 reveals that the carbonyl
group of N-tert-butyl methylacetamide at R1 forms a strong
hydrogen bond with -NH2 of B-K116 (Figure 3). However, for
compound 83, no interaction was observed between the
piperidine ring of R1 and amino acid residues of the FLAP
binding cavity. The difference in the binding interaction

FIGURE 3 | Optimal binding poses of compounds displaying a distinct SAR pattern from all six classes of FLAP modulators. These poses were obtained from
clusters withmaximum docked ligands (common scaffold clustering) andwere further employed for GRID-independentmolecular descriptor (GRIND) analysis. Chain B is
shown in green while chain C is depicted in blue color.
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pattern of compounds 7 and 83 might be solely responsible for
the difference in inhibitory potencies of both compounds as
lipophilicities and LipE values are not significantly different.
For class IV, ligand–protein interaction profiling of the final
cluster (cluster 4, Supplementary Table S2) suggests that the
common scaffold makes π-H interactions with B-T66, B-A63,
C-G24, B-I119, and C-Val21, and π-π stacking with B-F114
(Figure 2F). Amino acid residues such as B-D62 and C-N57
present inside the FLAP binding cavity shows hydrogen bonding
with R2 whereas R1 makes hydrogen bonds with B-K116 and π-π
interactions with C-H28 and C-F25. Compounds 13 and 114 of
class IV were selected to evaluate binding poses due to the distinct
SAR pattern (Supplementary Table S6). Compound 13 (IC50 =
1.3 nM, cLogP = 2.36, LipE = 6.52, Supplementary Table S3),
being the most active from class IV, contains the terminal methyl
at the pyrazole ring of R1, while compound 114 (IC50 = 29.0 nM,
cLogP = 4.86, LipE = 2.67, Supplementary Table S3) contains
N,1-dimethylpyrazol-4-amine at R1, resulting in a twofold
decrease in inhibitory potency. The final docking solution of
compound 13 reveals that the pyrazole ring of R1 is involved in
making π-π stacks with C-H28, whereas no significant interaction
was observed for terminal methyl (Figure 3). For compound 114,
the final binding pose suggests that the terminal pyrazole ring at
R1 is unable to show any interactions that might contribute to low
inhibitory potency. The significantly low LipE value of compound
114 as compared to compound 13 suggests that gain in activity of
compound 13 might be due to its distinct interaction pattern.
Similarly, the ligand–protein interaction analysis of the final
cluster (cluster 5, Supplementary Table S5) of class V points
out that the scaffold makes π-H-bond interactions with B-L120,
B-I119, B-A63, C-G24, and C-Val21, and π-π stacks with B-F123
and B-F114 (Figure 2G). R2 is involved in making hydrogen
bonds with B-D62 and C-N57 while R1 makes hydrogen bonds
with B-K116 and π-π contact with C-H28. Compound 19 (IC50 =
1.6 nM, cLogP = 3.08, LipE = 5.71, Supplementary Table S3)
contains terminal methyl at the pyrazole ring of R1, whereas
compound 110 (IC50 = 23 nM, cLogP = 2.65, LipE = 4.98,
Supplementary Table S3) possesses acetonitrile at the
pyrazole ring of R1 (Supplementary Table S6) and
approximately two orders of magnitude decrease of inhibitory
potency was observed for compound 110 as compared to
compound 19. The final binding pose of compound 19 reveals
that the pyrazole ring of R1 is involved inmaking π-π contact with
C-H28 while terminal methyl could not make any interactions
(Figure 3). The absence of interactions between acetonitrile at R1

of compound 110 and amino acid residues of the FLAP binding
pocket was likely the reason for the two orders of magnitude
decrease in inhibitory potency of compound 110 as LipE and
lipophilicity values of both compounds do not differ appreciably.
Overall, compounds of classes III, IV, and V displayed better LipE
values, but the high inhibitory potencies of highly active
compounds are due to strong interactions among particular
functional groups and amino acids of the FLAP binding cavity.

Class VI FLAP inhibitors are benzimidazole derivatives
(Figure 1) having diverse substituents at R1 and
pyrimidinamine at R2 around the benzimidazole scaffold. The
compounds of class VI did not exhibit any correlation between

activity and lipophilicity (Supplementary Figure S3). The
ligand–protein interaction profile of the final cluster indicated
that the pyrimidinamine group orients itself towards the inner
side of the FLAP binding cavity and is involved in making
hydrogen bonds with B-D62 and C-N23, whereas the common
scaffold occupies the between chains B and C and forms π-H
bonding with B-I119, C-G24, and C-V21. The diverse R1 is
involved in making hydrogen bonds with B-K116 and π-π
interactions with C-H28. Compounds of class VI showed a
distinct SAR pattern; e.g., in compound 70 (IC50 = 4.2 nM,
cLogP = 2.54, LipE = 5.84), the pyridine moiety of R1 contains
methyl triazole at position three and its replacement with
acetonitrile in compound 82 resulted in two orders of
magnitude decrease in the inhibitory potency of compound 82
(IC50 = 6.09 nM, cLogP = 2.18, LipE = 6.04). The selected binding
pose of compound 70 indicated that the triazole ring is making
hydrogen bonds with B-K116 whereas no interaction was
observed between acetonitrile and amino acid residues of the
FLAP binding cavity in the case of compound 82 (Figure 3). The
compounds of class VI did not show any correlation with LipE,
which means that the difference in binding interactions is the
main driving factor behind the difference in activity.

Overall, our criteria for the selection of compounds for
molecular modeling studies were cLogP and LipE. However,
our results indicate that only cLogP contributes slightly
positively towards inhibitory potency for classes I and II,
whereas for compounds of classes III, IV, V, and VI, the
difference in interaction pattern might be exclusively
responsible for the difference in inhibitory potency, as in these
classes of FLAP inhibitors, the high LipE values were maintained
due to loss in lipophilicity. In addition, our docking results
suggest that heterocyclic moieties are involved in making π-H
interactions with hydrophobic amino acid residues of the FLAP
binding cavity. Therefore, the presence of pyridine, pyrimidine,
pyridazine, pyrazole, triazole, and oxadiazole rings moderately
increases not only the lipophilicity but also the inhibitory
potency. Moreover, an increase or decrease in LipE values of
FLAP inhibitors does not alter the inhibitory potencies in either
way. Further docking poses obtained from multiple clusters with
maximum docked ligands were employed to generate the
vGRIND model.

3.4 GRID-Independent Molecular
Descriptors Analysis
The selected binding poses of 151 (Supplementary Table S3)
compounds of the training set obtained through common
scaffold clustering of docking poses along with their inhibitory
activity (pIC50) values were implied in the pentacle v 1.07
software package that utilizes special alignment independent
GRIND descriptors to develop a 3D-QSAR model. To
correlate the inhibitory potencies with 3D structural features
and to derive the most important pharmacophoric features of
our training set, a partial least square model was developed on five
principal components using the leave-one-out (LOO) cross-
validation method, resulting in initial models with satisfactory
values of variables. The inconsistent nodes were removed by one-
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time application of the fractional factorial design (FFD) variable
selection algorithm. The final GRIND model was obtained with
good values of performance measures, q2 = 0.66 and R2 = 0.82,
while the standard error of prediction (SDEP) was 0.47. The
before and after FFD application statistics along with the r2m
metric is shown in Table 2. The difference between actual and
predicted activity values was less than one log unit for all 151
inhibitors of the training set as shown in Figure 4. The test set
(Supplementary Table S4) was used for the evaluation of the
final GRIND model, which predicted inhibitory potencies of test
set compounds with a difference of less than one log unit for all
compounds between experimental and predicted pIC50 values
with R2 value observed as 0.77 (Figure 4).

A PLS coefficient correlogram of the GRIND variables is
shown in Figure 5A and describes important 3D structural
features that directly/inversely correlate with the inhibitory
potencies of the training set compounds. The PLS coefficient
correlogram depicts that DRY-DRY, DRY-N1, DRY-TIP, and
N1-TIP pair of probes positively contribute towards the
inhibitory potency of chemically diverse FLAP inhibitors
whereas no inverse contribution was observed by any variable.
These variables are located at a certain distance within active
inhibitors between substitutions at R1, R2, and common scaffolds.

More explicitly, the DRY-DRY correlogram in Figure 5A
shows the presence of two hydrophobic contours (HYD1 and
HYD2) at a mutual distance of 16.00–16.40 Å in a virtual receptor

site of highly active FLAP inhibitors pIC50 > 7.5. For class I, the
distance is present between the pyridine ring of R1 and the phenyl
ring of R2; for class II, it is observed between the quinoline group
and the endo aryl moiety of the common scaffold; for classes III,
IV, and V, it is present between the pyrazole ring at R1 position
and the phenyl ring of the common scaffold; and for class VI, it
was observed between phenyl of the common scaffold and
pyrimidinamine of R2 (Figures 5B–E). Furthermore, the
backstage projection of the actual FLAP structure onto the
identified hotspots revealed the presence of complementary
hydrophobic amino acid residues such as B-A63, B-I119, and
B-L120. This further strengthened our docking outcomes as all of
these amino acid residues are involved in making extensive π-H
interactions with dataset compounds. Additionally, a recent
pharmacophore study of Olgac et al. revealed that four
hydrophobic features are important in most potent indole-
and oxadiazole-based FLAP inhibitors (Olgac et al., 2020).

Similarly, DRY-N1 (Figure 5A) explicates the positive
contribution of one hydrophobic (HYD3) and one hydrogen
bond acceptor (HBA1) at a mutual distance of 16.40–16.80 Å
within active FLAP modulators. Interestingly, this distance was
observed in all highly active FLAP modulators pIC50 > 7.5 and
absent in all less-active compounds pIC50 < 7.5. Briefly, for class I,
it is observed between the terminal negative ionizable moiety
present at R2 and the pyridine ring of R1; in class II, it is observed
between the quinoline group and pyrazole ring; for classes III, IV,
and V, it is present between the pyrimidinamine group of R2 and
oxadiazole ring; and for class VI, it was observed between
pyrimidinamine and pyridine of R1 as displayed in Figures
5B–E. Projecting actual FLAP structure onto the identified
virtual hotspots revealed the presence of hydrophobic amino
acids B-F114, B-A63, and C-G24 and complementary amide
groups in the B-K116 and B-R117 amino acid residues within
the FLAP binding cavity that further complements the accuracy
of our model. These results further reinforce our docking
outcomes, which demonstrated the importance of B-A63 and
B-K116 for the hydrophobic and hydrogen bonding interactions
within the FLAP binding cavity. These outcomes are also in
accord with another pharmacophore-based study that
demonstrated the importance of hydrophobic and hydrogen
bond acceptor features in the highly active indole- and biaryl
bicycloheptane-based FLAP inhibitors (Temml et al., 2017).

Moreover, DRY-TIP correlogram (Figure 5A) portrays the
presence of one hydrophobic (HYD4) and one shape-based
feature (TIP1) that positively contribute towards the inhibitory
potency of FLAP inhibitors. For the sharpest peak, the two

TABLE 2 | Statistical parameters obtained before and after application of fractional factorial design (FFD) on final GRIND model.

Fractional factorial design cycle (FFD)

Complete variable FFD1

Datasets R2 q2
LOO SDEP r2m Delta

r2m

Datasets R2 q2
LOO SDEP r2m Delta

r2m

Training
set

0.71 0.60 0.49 0.703 0.004 Training
set

0.82 0.66 0.47 0.775 0.001

Test set 0.63 0.58 0.49 0.517 0.028 Test set 0.77 0.64 0.47 0.686 0.012

FIGURE 4 | Activity interactive graph plot between predicted and actual
experimental activity values. The graph plot displays separate data series for
training (filled circles) and test (rhombus) set. R2 for training set was observed
as 0.82 and 0.77 for test set.
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FIGURE 5 | (A) Correlogram of PLS coefficients representing the pair of probes contributing positively (peaks above 0) or negatively (peaks below 0) towards the
inhibitory potencies of training set compounds. The positive contribution towards pIC50 of FLAP inhibitors has been depicted by DRY-DRY (two hydrophobic), DRY-N1
(one hydrophobic and one hydrogen bond acceptor), DRY-TIP (one hydrophobic and one steric), and N1-TIP (one hydrogen bond acceptor and one steric) variables.
The variables are present in all highly active FLAP compounds and are located at mutual distances of 16.00–16.40 Å, 16.40–16.80 Å, 18.00–18.40 Å, and
17.20–17.60 Å, respectively. (B) The identified hotspots onmost active indole-based FLAP inhibitor (compound 1) of training set with projection of actual FLAP structure.
Hydrophobic features are depicted in yellow, hydrogen bond acceptors are in blue, while steric hotspots are depicted in green color. The two hydrophobic hotspots
(HYD1 and HYD2) are located between two aromatic moieties, one hydrophobic (HYD3) and one hydrogen bond acceptor feature (HBA1) are present between aromatic
rings and terminal negative ionizable substitution, one hydrophobic (HYD4) and steric feature (TIP1) can be spotted between aromatic ring and indole scaffold, while one
hydrogen bond acceptor (HBA2) and one steric (TIP2) hotspot are present between dimethylbutanoic acid and pyridine ring. (C) The most active compound (compound
10) of class II with mapping of complemented amino acids on the recognized contours. (D) The most active of class III (compound 7), which is also the most active
compound from oxadiazole-based FLAP antagonists (classes III, IV, and V) and mapped hotspots along with projection of complementary amino acids of FLAP binding
cavity. Due to high structural similarity, the features were also observed at the same positions in all active compounds of classes IV and V. (E) The compound (70) from
class VI with identified hotspots and corresponding amino acids.
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contours are present at a mutual distance of 18.00–18.40 Å,
indicating the distance between indole scaffold and R1 for
class I; exoaryl of common scaffold and quinoline for class II;
phenyl ring of scaffold and pyrazole ring of R1 for classes III, IV,
and V; and pyrazole of common scaffold and pyrimidinamine for
class VI (Figures 5B–E). Two identified contours (HYD4 and
TIP) were mapped on the actual FLAP binding site, and
interestingly, the hydrophobic region in all active compounds
is complementary to hydrophobic amino acids C-V21, C-G24,
and C-H28. It is also in accordance with our docking findings
where many compounds of our dataset are involved in making π-
H interactions and π-π stacking with these amino acids. The
green contour elucidates a steric hotspot region, and it defines the
3D molecular shape of FLAP inhibitors.

The last selected peak N1-TIP (Figure 5A) represents the
presence of one hydrogen bond acceptor (HBA2) and one shape-
based feature (TIP2) at a mutual distance of 17.20–17.60 Å within
highly active FLAP inhibitors. The two features at this distance
contributes positively towards the inhibitory potency of
compounds against FLAP. The hydrogen bond acceptor
hotspot in the virtual receptor site of FLAP is complemented
by the presence of B-K116, B-D62, C-N57, and C-N23 amino
acids in the actual receptor site when we mapped the FLAP
structure onto the identified N1 (HBA2) hotspot. The -NH2 and
carbonyl groups of these amino acids are involved in making
hydrogen bonds with active FLAP modulators as evident from
our docking studies and pose analysis. Moreover, these features
have been observed in all active FLAP inhibitors pIC50 > 7.5 while
they are absent in less active compounds pIC50 < 7.5. For class I,
the distance is present between the pyrimidine ring at R2 position
and dimethylbutanoic acid; for class II it is observed between
substituents at the pyrazole ring of R1 and endo aryl of scaffold;
for classes III, IV, and V, it is present between the pyrimidine
amine of R2 and pyrazole ring at R1 position; and for class VI, it is
present between the triazole of R1 and tertbutyl of the common
scaffold (Figures 5B–E). The TIP probe signifies the importance
of a steric hotspot at a distance of 17.20–17.60 Å from the
hydrogen bond acceptor feature.

Generally, our study provided a deeper understanding of
three-dimensional requirements of diverse inhibitor binding
within the FLAP binding cavity by mapping the mutual
distances of important pharmacophoric features (four
hydrophobic, two hydrogen bond acceptor, and two steric
features) as well as the complementary distances of the
important interacting amino acid residues (B-L120, B-I119,
B-R117, B-K116, B-F114, B-A63, B-D62, C-H28, C-G24,
C-N23, and C-V21). Previous docking studies also revealed
that highly potent FLAP modulators result in π-π stacking
with C-H28, hydrophobic interactions with B-L120, B-I119,
and hydrogen bonding with B-R117, B-K116, and B-D62 (Ma
et al., 2008). Overall, the binding hypothesis generated for each
class within the FLAP binding cavity was complementary with
our GRIND model, which predicted the inhibitory potencies of
validation and test sets with reasonable accuracy, indicating the
fitness of our model. Based on our current findings, we suggest
that the high inhibitory potency of a compound against FLAP can
be achieved by (1) increasing the hydrogen bond acceptor

strength on at least one substitution position (R1 or R2); (2)
insertion of heterocyclic moieties such as pyridine, pyrimidine,
pyridazine, pyrazole, and triazole at each side of the common
scaffold to increase hydrophobic strength; and (3) maintaining a
distance of 16.00–16.40 Å between two hydrophobic groups
(aromatic rings) and 16.40–16.80 Å between hydrophobic and
hydrogen bond acceptor groups.

4 DISCUSSION

Since high levels of leukotrienes have been reported in multiple
pathophysiological conditions in the past 3 decades, leukotriene
synthesis pathway has been targeted at many levels while FLAP
has received the greatest focus because it initiates the biological
synthesis of leukotrienes via leukotriene synthesis pathway
(Massoumi and Sjölander 2007; Bryda and Wątroba 2018; Jo-
Watanabe, Okuno, and Yokomizo 2019). Several practices have
been made to propose potent FLAP modulators, and many of
them have shown good clinical efficacy. However, not a single
molecule could be able to change into the status of “drug”. The
focus of the present study is to unveil the two- and three-
dimensional structural requirements of FLAP modulators.

First to demonstrate the important two-dimensional
structural features, supervised ML approach was adapted over
classical 2D QSAR modeling. The preference was made for two
reasons: (1) to escape the alignment step as FLAP modulators are
highly diverse in nature, and (2) evidence from the past
strengthens the adaptation of ML for quantitative
structure–activity relationship studies (Tsou et al., 2020; Gupta
et al., 2021). We developed multiple ML models including
XGboost (GBDT), random forest (RF), decision tree (DT),
support vector machine (SVM), logistic regression (LR), and
multilayer perceptron (MLP), and in comparison, XGBoost
and RF were able to classify our training set and predict the
test set with significant classification and prediction accuracies.
Moreover, recursive feature elimination with cross-validation
(RFECV) captured relevant features or 2D descriptors, which
are mainly participating in the classification of highly active and
least active FLAP inhibitors.

Further molecular modeling studies were performed to
vaticinate the important three-dimensional pharmacophoric
features instead of ML. The preference was made because (1)
three-dimensional structural properties are highly dependent on
binding poses, and (2) the GRIND model not only explains the
important molecular interaction fields but also distances between
them along with important amino acid residues by creating a
virtual receptor site (Shafi and Jabeen 2017). Before implication of
molecular modeling strategies, the dataset was first subjected to
calculation of LipE and cLogP. The purpose of LipE-based lead
optimization is to improve LipE while maintaining an
appropriate range of logP for the optimization of potency and
ADME properties. The increased potency of a compound with
eque-LipE to the reference ligand demonstrates that the increase
in lipophilicity alone is responsible for the increased potency,
although other factors associated with the specific structural
change cannot be ruled out. Also, an increase in LipE of a
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compound suggests that an increase in potency is beyond
lipophilicity increases alone and other factors such as
transport to the target and hydrogen bonding strength within
the protein binding site could be associated with this response. In
total, 238 out of 658 demonstrated the LipE value greater than
five, which is the optimal threshold, and only 136 demonstrated
cLogP between the optimal range of 2–3.5. Herein, we selected
187 compounds having LipE greater than one and cLogP greater
than two because FLAP is an integral membrane protein, which
means that compounds should possess a high lipophilicity value
for efficient binding. Also, FLAP modulators in clinical trials
usually possess lipophilicity >3. The dataset of 187 compounds
was divided into six distinct classes based on the common scaffold
with subsequent docking into the FLAP binding pocket. Our
docking results indicated that the FLAP binding pocket can cater
diverse anti-inflammatory compounds and they bind between
chains B and C. The ligand–protein interaction profile of selected
FLAP modulators revealed that mostly B-R117, BK-116, C-N57,
C-N23, and B-D62 FLAP amino acid residues are involved in
making hydrogen bonds; B-A63, B-L119, B-L120, B-V21, and
C-G24 make π-H-bond interactions, whereas C-H28 is involved
in forming π-π contact with FLAP modulators. Also, for classes I
and II, a moderate correlation was observed between lipophilicity
and inhibitory potency, whereas for compounds of classes III, IV,
V, and VI, an increase or decrease in lipophilicity or LipE did not
alter the inhibitory potency in either way or vice versa.

To select the most probable binding poses, common scaffold
clustering was performed because using GRID-independent
molecular descriptors, analysis of 3D structural features is highly
dependent on 3D confirmations of the molecules (Pastor et al., 2000).
Multiple clusters at 3.5 Å RMSD were generated and binding poses
from clusters with maximum number of docked ligands were further
used to build the GRIND model. The reliability of binding pose
selection via common scaffold clustering for generation of the GRIND
model can be explained by satisfactory statistical results obtained for
the final GRINDmodel. Furthermore, the model signifies the positive
contribution of four hydrophobic, two hydrogen bond acceptor, and
two steric features towards the inhibitory potency of FLAP
modulators. The identified hotspots or pharmacophoric features
were successfully mapped onto the highly active FLAP modulators
followed by projection of the actual receptor site, which revealed the
presence of corresponding amino acid residues. Overall, our GRIND
model suggested that (1) two hydrophobic features should be present
at a mutual distance of 16.00–16.40 Å, (2) one hydrophobic and
hydrogen bond acceptor feature should be present at a distance of
16.40–16.80 Å, (3) the distance between hydrophobic and steric
feature should be 18.00–18.40 Å, and (4) and it should be
17.20–17.60 Å between hydrogen bond acceptor and steric features.
The importance of hydrophobic and hydrogen bond acceptor features
has also been demonstrated by previous studies (Temml et al., 2017;
Olgac et al., 2020).

Based on these findings, further analyses will focus on virtual
screening from bothML and GRINDmodels followed by selection of
common compounds. The common hits can further be structurally
tuned and optimized. The ML and GRIND model will allow internal
inspection of FLAP modulators, before validating them using
predictions on vendor libraries, purchase, and testing.

5 CONCLUSION

The current study deals with the development of ML models and
a GRINDmodel on a diverse series of FLAP inhibitors. First of all,
our ML models signify some important 2D descriptors, and the
best-performing model (XG-Boost) has successfully classified the
active and inactive compounds present in our training set
exhibiting 91% overall classification accuracy. The subsequent
screening of test set from the model resulted in 90% prediction
accuracy, which further accentuates the efficiency of the model.
Secondly, docking studies reveal that hydrogen bonding and
hydrophobic interactions are critical for binding of FLAP
inhibitors. Further common scaffold-based clustering revealed
the optimal binding mode of structurally diverse inhibitors and
aided in determination of their molecular basis of interaction
within the FLAP binding cavity. Thirdly, the most probable
binding poses were utilized for GRIND model development,
which showed valid statistical results having an R2 of 0.82 and
a q2 of 0.66. Additionally, the GRIND model predicted all
compounds of training and test set with an activity difference
of less than one log unit. Overall, our GRIND model illustrated
that four hydrophobic, two hydrogen bond acceptor, and two
steric features are critical for achieving high inhibitory potency
against FLAP. All the features were successfully complemented by
the docking studies highlighting the significance of respective
amino acid residues such as B-L120, BI119, B-A63, C-H28,
C-G24, and C-V21 for hydrophobic interactions and B-R117,
B-K116, D-62, and C-N57 for hydrogen bonding. In general,
application of ML, docking analysis, common scaffold clustering,
and GRIND modeling to predict the 2D structural requirements
as well as the 3D molecular basis of interaction of diverse FLAP
inhibitors could potentially guide the development of more
potent chemotypes for the treatment of inflammatory
disorders requiring anti-leukotriene therapy.
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The Impact of the Secondary Binding
Pocket on the Pharmacology of Class
A GPCRs
Attila Egyed, Dóra Judit Kiss and György M. Keserű*

Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary

G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to
their pathophysiological significance and pharmacological relevance. Class A receptors
represent the largest group of GPCRs that gives the highest number of validated drug
targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in
the intrahelical space of the receptor. During the last 10 years, however, it has been turned
out that in many receptors there is secondary binding pocket (SBP) located in the
extracellular vestibule that is much less conserved. In some cases, it serves as a
stable allosteric site harbouring allosteric ligands that modulate the pharmacology of
orthosteric binders. In other cases it is used by bitopic compounds occupying both the
OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of
the bitopic ligands. Together with others, our research group showed that SBP binders
contribute significantly to the affinity, selectivity, functional activity, functional selectivity and
binding kinetics of bitopic ligands. Based on these observations we developed a structure-
based protocol for designing bitopic compounds with desired pharmacological profile.

Keywords: GPCR (G-protein coupled receptor), allosteric, bitopic, selectivity, functional selectivity

INTRODUCTION

G-protein coupled receptors (Figure 1) are among the most popular targets for drug discovery and
the development of novel therapeutic and pharmacological tools. One third of the drugs currently
approved by the Food and Drug Administration affects one of the GPCRs (Sriram and Insel, 2018).
They are critical in signal transduction of hormones and neurotransmitters, and consequently are
pharmacological targets for many diseases (Overington et al., 2006). Furthermore, studying these
receptors may help to elucidate the signaling mechanisms in cells, as they play a crucial role in the
regulation of both central and peripherial neurological and physiological processes. Detailed
understanding of these processes facilitates the development of more targeted therapies
(Christopoulos, 2014).

GPCRs have multiple ligand binding sites, the orthosteric binding pocket and a generally
separated less conserved allosteric secondary binding pocket (Christopoulos, 2014). Basically, the
endogenous ligand binds to the OBP. SBPs are found in both the extracellular and intracellular parts
of the receptor (Figure 2), some of these binding sites are well separated from the OBP while others
may have extended binding pocket-like features such as the 5-HT2A aripirazole structure (PDB:
7VOE) (Chen et al., 2021).

These secondary binding sites have become key to achieve the right subtype selectivity and
functionality. Therefore, a lot of effort was given to the research of allosteric binding sites and
allosteric modulators. A large number of allosteric modulators of GPCRs that bind to the
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extracellular or intracellular domains were identified. The
combination of a primary pharmacophore (PP) binding to the
OBP and a secondary pharmacophore (SP) binding to the SBP
resulted in bitopic compounds (Figure 2C) that combine the
pharmacological properties of both types of ligands defining a
new unique pharmacological profile. One of the first published
bitopic molecules of this type is methoctramine that acts as an
antagonist at the muscarinic receptor M2R (Melchiorre et al.,
1987).

In this review we would like to give only a brief insight into
class A GPCR structures and the world of allosteric modulators as
several reviews have been published in the field. Mainly, we

discuss in detail the recent advances in bitopic ligands, while
we close the review with an outlook towards the design
approaches in the field.

LIGAND BINDING POCKET REVEALED BY
EXPERIMENTAL STRUCTURES

Recent advances in X-ray crystallography and cryo electron
microscopy provided many new structures of GPCRs
complexed with allosteric ligands. As of early December 2021,
57 GPCR structures containing allosteric ligands have been found

FIGURE 1 | Class A GPCRs. The structures of the receptors marked with red dots have already been solved experimentally (Kooistra et al., 2021).
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in GPCRdb (Kooistra et al., 2021), these structures cover 20
receptor types and three different states; active, inactive and
intermediate. Among allosteric ligands, examples of positive
(PAM) and negative allosteric modulators (NAM) can be
found. The collection of the published GPCR structures with
allosteric ligands is available in the supporting information
(Kooistra et al., 2021) (Supplementary Table S1). In addition,
a significant number of active structures have become accessible,
which may provide more information on the mechanism of
receptor activation and offer considerable support for drug

design, although few of these are allosteric ligands. Among
them, 35 active aminergic GPCR structures have been
published in the last 2 years (Supplementary Table S2)
(Kooistra et al., 2021). These include 7 serotonin (Kim et al.,
2020; Peiyu Xu et al., 2021a; Huang et al., 2021) (5-HTR), 15
dopamine (Zhuang et al., 2021a; Xiao et al., 2021; Zhuang et al.,
2021b; Yin et al., 2020; Peiyu Xu et al., 2021b) (DR), 1 histamine
(Xia et al., 2021) (HR), 1 muscarinic (Staus et al., 2020) (MR) and
11 adrenergic (Lee et al., 2020; Fan Yang et al., 2021; Yuan et al.,
2020; Su et al., 2020; Xinyu Xu et al., 2021; Zhang et al., 2020;

FIGURE 2 | (A) Schematic representation of the main allosteric sites in Class A GPCRs. The OBP, where the endogenous ligands bind to the receptor, is located
between the extracellular allosteric site and the sodium binding site, deep in the crevice of the receptor formed by the transmembrane helixes. Some allosteric sites are
clearly separated from OBP, while others can be considered as an expansion of the orthosteric pocket. (B) Visualisation of allosteric binding sites for some important
compounds related to the review: mevidalen in the D1R (green, PDB code: 7LJD), AP8 in FFAR1 (cyan, PDB code: 5TZY), ORG27569 in CB1 (red, PDB code:6KQI),
MIPS521 in A1R (yellow, PDB code: 7LD3), LY2119620 in M2R (magenta, PDB code:4MQT), Cmpd-15PA in β2AR (dark green, PDB code: 5X7D), AS408 in β2AR (dark
blue, PDB code:6OBA), cmpd-6fa in β2AR (orange, PDB code: 8N48). Cholesterol was shown to bind to extrahelical binding sites to different TMs that could not be
depicted on the figure to maintain clarity. For details please see the recent review of Jakubík and El-Fakahany (2021) and for a review of the allosteric sites at the
receptor–lipid bilayer interface please seeWang et al. (2021) (C) Schematic structure of a bitopic compound. The primary pharmacophore that binds to the OBP is linked
through a linker to the secondary pharmacophore binding to the SBP.

FIGURE 3 | Structures of some important bitopic compounds. (A) The unusual “upside-down” binding mode of cariprazine (green) and aripiprazole (cyan) in the
inactive 5-HT2A structure. Risperidone (orange) is shown as a reference to highlight the cryptic pocket opened up by aripiprazole and cariprazine. (B) The aligned LSD
(Wacker et al., 2017) and ergotamine (Wacker et al., 2013) 5-HT2B structure highlighting that the introduction of an SP can influence the binding mode of the PP. The
figure was reproduced from Supplementary Figure S7 of our paper (Egyed, A et al. Controlling Receptor Function from the Extracellular Vestibule of G-Protein
Coupled Receptors. Chem. Commun. 2020, 56 (91), 14167–14170) (Egyed et al., 2020). (C) The binding mode of salbutamol (cyan) and salmeterol (green) (Masureel
et al., 2018) in the β2R highlighting the important role of ECL2 as discussed in more detail in the binding kinetic section of this review.
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Nagiri et al., 2021) (AR) receptor structures. Out of these
complexes, 20 structures contain allosteric modulators but not
obviously in the SBP, while 10 were co-crystallized with bitopic
ligands bound both the OBP and the SBP. The discussion of the
structures in detail is out of scope of this review, however we
highlight here the new cariprazine and aripiprazole bound 5-
HT2A structures (Figure 3A). (Chen et al., 2021) Interestingly,
both compounds display an unexpected binding mode with their
secondary binding motif exploring a binding pocket deep in the
receptor instead of engaging with the extracellular secondary
binding pocket. In the dopamine D2 and D3 receptors (D2R, D3R)
the docking positions of aripiprazole so far have shown that 4-
(2,3-dichlorophenyl)piperazine PP is located roughly parallel to
the membrane plane and close to S5.42 and F6.51. The
dihydroquinoline secondary pharmacophore is located at the
junction of transmembrane helices (TM) 1, TM2, TM7 or
TM3, TM5 and extracellular loop (ECL) 2. However, in the 5-
HT2A crystal structures of aripiprazole and cariprazine the
ligands are located in an “upside-down” binding mode. The
2,3-dichlorophenyl PP occupies the orthosteric site and faces
the extracellular region, but the dihydroquinoline SP vertically
penetrates the hydrophobic pocket formed between TM5 and
TM6 and interacts with residues L2475.51, V3336.45 and C3376.49

and forms π-π interactions with residues F3326.44 and W3386.48.
Upon binding of aripiprazole, a conformational rearrangement
occurs resulting in an increase in the size of the binding pocket.
Induced docking with D2R was used to reproduce the “upside-
down” binding pose of aripiprazole and cariprazine. Compared
with the rigid docking, a much lower binding energy was
calculated in the induced-fit docking, indicating that the
upside-down binding mode represents a more stable
conformation of D2R (Chen et al., 2021).

ALLOSTERIC MODULATORS IN THE
CLASS A GPCR FIELD

Allosteric binding sites (Figures 2A,B) have attracted increasing
interest in order to develop more selective agents with fewer side
effects (Congreve et al., 2017a; Chan et al., 2019). Allosteric sites
are typically less conserved than orthosteric pockets and therefore
they could provide greater selectivity and better control over the
dynamical equilibrium of the receptor. Following the classic
structural architecture of a class A GPCR, the orthosteric
binding pocket is formed by the transmembrane helixes while
the extracellular loops and the N-terminus of the peptide chain
define the secondary binding domain. It should be mentioned,
however, that there are other allosteric sites (e.g., extrahelical sites
at the protein-membrane interface, intracellular sites at the
signalling domain or intrahelical sodium site) available.
Allosteric ligands can modify the biological response, they can
stabilise the active or inactive conformation that is potentially
linked to biased signalling or partial agonism (Wakefield et al.,
2019). Based on spectroscopic and structural studies,
conformational changes in the receptor govern the activation
of signalling pathways. Characterization of interactions with
intracellular partners guiding the allosteric process is a major

challenge and can only be fully understood by using a
combination of different methodologies (Liu et al., 2012;
Masureel et al., 2018; Frei et al., 2020). Most allosteric
modulators have been discovered serendipitously by high
throughput screening (HTS) campaigns (Bian et al., 2020).
Due to the vastness of the topic and the number of reviews
published in the last years, we will only provide a brief insight into
the world of allosteric modulators.

The tissue distribution and relative expression of the four
adenosine receptor (AR) subtypes A1R, A2AR, A2BR and A3R
regulate the physiological effects of endogenous adenosine.
Adenosine receptors are expressed in most tissues and major
organs, including brain, heart, kidney, skin, adipose tissue,
immune cells, lung and liver. The four adenosine receptor
subtypes can be broadly classified into two classes. Baressi
et al. described a type of A2BR allosteric modulators with good
selectivity over the other subtypes, these compounds contain a
1,3-substituted indole unit (Barresi et al., 2021a; Barresi et al.,
2021b). Lu et al. established a fragment screening method using
mass spectrometry to screen GPCR ligands, identifying an A2AR
NAM. Fg754 (Figure 4) contains a specific acetidine moiety that
forms bonds in the sodium ion pocket. Based on molecular
dynamics (MD) simulations, it may overlap with the
orthosteric binding site, probably acting in a mixed mode. The
compound could thus be a new starting point for the
development of allosteric modulators or bitopic compounds
(Yan Lu et al., 2021). The A1R and A3R preferentially bind to
Gi/o proteins to inhibit adenylate cyclase activity, while the A2AR
and A2BR preferentially bind to Gs proteins to stimulate adenylate
cyclase activity. Like other GPCRs, adenosine receptors can
interact with different G-protein subtypes. In addition, A2BR
has been suggested to couple to both Gi/o and Gq proteins (Linden
et al., 1999; Gao et al., 2018), while A1R has been shown to couple
to both Gs and Gq proteins (Cordeaux et al., 2004). In addition to
Gα signalling, Gβγ dimers released following G protein activation
can interact with effector proteins to modulate intracellular
signalling. Beside G-protein-dependent signalling, adenosine
receptors can also signal through G-protein-independent
effectors. One of the best described G-protein-independent
pathway is initiated following recruitment of arrestin adaptor
proteins (β-arrestin1 and β-arrestin2). This process is typically
preceded by G-protein coupled receptor kinase mediated
phosphorylation, but recent studies have shown the possibility
of phosphorylation independent β-arrestin recruitment for
several GPCRs, including A3R. Arrestin recruitment has been
investigated primarily in A2BR and A3R and there is limited
evidence that A1R or A2AR can recruit β-arrestin. McNeill et al.
have discussed in detail the effects of allosteric modulators
belonging to different subtypes on distorted signalling, which
will not be discussed in detail below (McNeill et al., 2021).

Free fatty acids may act as signalling molecules at FFA
receptors (FFARs). Free fatty acids of different chain lengths
and saturation states activate FFARs as endogenous agonists by
binding at the orthosteric receptor site. Following FFAR
deorphanisation, a number of ligands targeting allosteric sites
on FFARs have been identified with the aim of developing drugs
for metabolic, (auto)inflammatory, infectious, endocrine,
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cardiovascular and renal diseases. In 2021, Grundmann et al.
published a detailed review (Grundmann et al., 2021) on free fatty
acid receptors, describing in detail the subtypes (FFAR1, FFAR2,
FFAR3, FFAR4, GPR84), their function, structures and outlined
the importance and challenges of allosteric modulators. FFAR1 is
the most studied subtype. Although the biology of the receptors is
still largely elusive, a large body of research evidence has
accumulated around ligand-receptor interactions and their
associated signalling capabilities. At least three distinct groups
of FFAR1-activating ligands can be distinguished: 1) endogenous/
orthosteric agonists (long-chain fatty acids), partial allosteric
agonists (fasiglifam, MK-8666, AM 837), and full allosteric
agonists (AM 1638, AP8) (Figure 2B, Figure 4). These groups
differ not only in their apparent binding sites (Figure 2B) on the
receptor, but also in their ability to induce different downstream
signalling pathways of FFAR1, ultimately leading to different
results in the phenotype of the FFA1 receptor in vivo. New results
on allosteric FFAR2 ligands (AMG 7703, AZ1729, Compound
58) (Figure 4), show promising pharmacological properties and
have generated new interest in this target, considering new
allosteric modalities. GLPG1205 (Figure 4), an antagonist and
negative allosteric modulator of GPR84, showed promising
preclinical results in models of idiopathic pulmonary fibrosis,
but was later discontinued from development. Allosteric targeting
of small-, medium-, and long-chain fatty acid receptors is a

promising approach to address a variety of therapeutic areas,
demonstrating the biological diversity and drug target
attractiveness of members of this receptor family (Grundmann
et al., 2021).

The cannabinoid receptor type 1 (CB1) was first discovered as
the main target for Δ9-tetrahydrocannabinol (THC), the
psychoactive compound in Cannabis. CB1 was first identified
in rat and later cloned from a human brain cDNA library. Widely
known CB1 agonists are synthetic cannabinoids and THC
analogues, such as HU-210 (Howlett et al., 1990), CP55940
(Kapur et al., 2009), and WIN55212 (Felder et al., 1995). The
CB1 receptor preferentially binds a Gi protein and its activation
leads to a decrease in cyclic adenosine monophosphate (cAMP)
levels in cells. Other signalling pathways have also been
investigated, focusing primarily on ERK1/2 phosphorylation.
ERK signalling is hypothesised to play a role in cocaine
addiction, and together with cAMP, to be an important
regulator of synaptic plasticity, memory and learning.
Inhibition of CB1 proved effective in the treatment of obesity
with antagonists or inverse agonists, but they were later
withdrawn from the market due to adverse psychiatric side
effects (anxiety, suicidal ideation). Several new strategies to
avoid potential side effects have been analysed, one of them
being the development of allosteric modulators. Leo and Abood
reviewed the physiological and pathophysiological roles of CB1,

FIGURE 4 | Chemical structure of selected allosteric modulators.
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described the signalling mechanisms, and investigated CB1 biased
signaling (Leo and Abood, 2021). Based on agonist-bound
solvated molecular structures and biased allosteric modulators
they look at possible molecular mechanisms of CB1 signalling.
Mielnk et al. present the in vitro and in vivo profiles of several
NAMs (Org27569, PSNCBAM-1, ABM300, Pepcan-12,
Pregnenolone, and cannabidiol) and PAMs (ZCZ011, GAT211,
Lipoxin A4, LDK1258) in detail (Figure 2B, Figure 4). They
concluded that CB1 PAMs in anxiety and depression while CB1
NAMs—in combination with cannabidiol—in psychosis could be
promising (Mielnik et al., 2021).

Che and Roth have provided a detailed summary of the
pharmacology, ligands (orthosteric, allosteric), and structures
of opioid receptors (OR) (Che and Roth, 2021). Activating
µ-opioid receptor (MOR) causes serious side effects, which are
the root of the current opioid crisis. In their review, potential
strategies and targets for developing opioid alternatives were
discussed. Separately, they list OR biased agonists, allosteric
modulators, multitarget ligands and peripherally restricted
ligands. The complexity of signalling pathways should be
considered in the therapeutic potential of biased agonists, and
allosteric modulators are alternative means to modulate more
precisely the action of endogenous or exogenous ligands. As
opioid receptors are widely expressed in the peripheral system,
the use of ligands restricted to this system would avoid central
nervous system induced side effects. Simultaneous targeting of
multiple opioid and non-opioid receptors may result in safer
analgesics (Che and Roth, 2021).

The family of aminergic GPCRs includes adrenergic,
dopamine, serotonin, histamine, muscarinic and trace amine
receptors. These receptors have several similarities, they bind
monoamine neurotransmitters, acetylcholine, or trace amines.
They share common features in sequence, structure and function.
Ergotamine (Figure 3B) can bind to 22 aminergic receptors with
Ki values less than 1 µM (Peng et al., 2018). Other examples can
be found in the literature, such as chlorpromazine, clozapine,
thioridazine, olanzapine which have good affinity for several
aminergic GPCRs (Roth et al., 2004). On the other hand, it
would be important to produce drugs that have subtype and
functional selectivity to avoid side effects.

In the field of adrenergic receptors, Wu and co-workers have
discussed in detail the binding of endogenous ligands to different
receptors, the mechanism of β-adrenergic and α2 receptor
attenuation, distorted signal transduction, subtype selectivity,
and selectivity between the main types. Insights into the
allosteric modulation of β2AR were provided. They also
reported on the results obtained with different modalities. The
cholesterol binding site was recently described in detail by Sarkar
and Chattopadhyay (2020) The arrangement of the 7 TMs in each
class of GPCRs results in a groove at the lipid interface formed by
TM3/4/5, and in β2AR, to this site the binding of PAMs and
NAMs were identified. GPCRs use the cytoplasmic surface to
interact with intracellular partners with small molecules binding
at this site discovered primarily in chemokine receptors. Only
Cmpd15PA (Figure 2B, Figure 4) in β2AR targets this site outside
the chemokine subfamily. These small molecules are all NAMs.
Cmpd15PA has little interaction with the G protein, but stabilizes

the receptor inactive state through extensive interactions with
TM1, TM2, TM6, TM7, H8 and intracellular loop 1 (Wu et al.,
2021).

The five dopamine receptor subtypes (D1–5) are activated by
the endogenous catecholamine dopamine. The D1-like family
comprises dopamine D1 and D5 receptors that mainly couple to
the Gs G-protein and thereby stimulate cAMP production. The
D2-like family includes D2, D3, and D4 receptors, that couple to
Gi/o G-proteins and attenuate cAMP production (British
Pharmacological Society, 2021). Fasciani et al. have presented
allosteric modulators of the DR, the bitopic compound SB269652
has been analysed in detail. Mao et al. describe the role of different
dopamine receptor allosteric modulators in the treatment of
Parkinson’s disease. DR allosteric modulators represent an
alternative and promising strategy for drug discovery of
GPCRs with high selectivity and low side effects (Mao et al.,
2020). Like many other receptors, the classical approach to D1R is
the development of orthosteric ligands, but this has several
drawbacks from a therapeutic point of view. D1R agonists
have narrow therapeutic window, can induce seizures and
hypotensive side effect. PAMs are a more useful approach
because they potentiate the effect of endogenic dopamine, the
available dopmaine level provides a natural ceiling effect for PAM
activity, and endogenous spatial and temporal regulation of
dopamine-mediated stimulation is maintained. To date, seven
D1R PAM structural classes have been discovered. Two of these
(MLS1082 and MLS6585) were discovered in 2018 by Luderman
and colleagues using HTS (Luderman et al., 2018) (Figure 4).
Subsequently, MLS1082 was investigated in a SAR study and they
identified several analogues that enhanced dopamine-induced
D1R activation (Luderman et al., 2021).

There are five subtypes of the muscarinic acetylcholine
receptor. The different subtypes show high degree of
homology in the transmembrane domains. In recent years, the
structures of all five have been resolved by X-ray crystallography
(Vuckovic et al., 2019; Thal et al., 2016; Kruse et al., 2013; Kruse
et al., 2012; Haga et al., 2012). In a review, Jakunik and El-
Fakahany provide a detailed analysis of allosteric adhesion, the
molecular mechanisms of action, and present specific
modulators. The diversity of the effects of allosteric
modulators and the studies on them will greatly influence the
development of new therapies. Selective PAMs (LY2119620)
(Figure 2B, Figure 4), which have therapeutic potential in the
treatment of Alzheimer’s disease or schizophrenia, show
encouraging results (Conn et al., 2009; Bock et al., 2018;
Jakubik and El-Fakahany, 2020).

Biochemically, 5-hydroxytryptamine (5-HT) is derived from
the amino acid tryptophan, undergoing hydroxylation and
decarboxylation processes that are catalyzed by tryptophan
hydroxylase and aromatic L-amino acid decarboxylase,
respectively. As a biogenic amine, 5-HT plays important roles
in cardiovascular function, bowel motility, platelet aggregation,
hormone release and psychiatric disorders. 5-HT achieves its
physiological functions by targeting various 5-HT receptors (5-
HTRs), which are composed of six classes (5-HT1, 5-HT2, 5-HT4,
5-HT5, 5-HT6, and 5-HT7 receptors, a total of 13 subtypes) and a
class of cation-selective ligand-gated ion channels, the 5-HT3
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receptor. Barnes et al. have published a review (Barnes et al.,
2021) detailing each subtype, describing their functions and
pharmacology one by one and discuss known allosteric
ligands. They find that 5-HT receptors are less involved in
allosteric modulation than other GPCRs (e.g., muscarinic,
GABA), with the possible exception of 5-HT3R. However,
from some structures with ergoline, it becomes clear that, in
addition to the classical OBP, some 5-HT receptors have an
extended binding site very similar to that described for
muscarinic allosteric ligands. Such molecular targets may offer
attractive strategies for new therapies (Barnes et al., 2021).

BITOPIC LIGANDS TOSTUDY SELECTIVITY
ANDFUNCTIONAL SELECTIVITYOFCLASS
A GPCRS
As outlined in the introduction, our primary focus is on bitopic
compounds in this review. These compounds combine the
efficiency of orthosteric ligands and the diversity of allosteric

SPs by interacting with both binding sites simultaneously. This
gives bitopic ligands an advantage over allosteric modulators, as
the latter need an orthosteric ligand to exert their effect. This may
be important in cases where endogenous substrate depletion
contributes to the pathogenesis of disease, such as in
Parkinson’s and Alzheimer’s diseases, but there are further
examples in metabolic disorders. The key strucutural moieties
of bitopic compounds (PP, SP and linker, depicted on Figure 3C)
have different roles. PP is classically considered to be responsible
for functionality while SP can modulate binding affinity,
selectivity as well as functional character and efficacy. The
linker connects the two pharmacophores and may be
responsible for the optimal binding poses by positioning the
pharmacophores and affecting the pharmacology profile
(Bethany et al., 2019).

In the design of bitopic compounds, the desired orthosteric
binding motif should have high affinity for the selected
receptor and ideally, the SP should provide high subtype
selectivity while maintaining or even increasing affinity. In
the case of a linker, the choice of attachment points and length

FIGURE 5 | Designed bitopic ligands and the reference compounds in the study of Keserű et al. (Egyed et al., 2021).
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TABLE 1 | Selected compounds from DR related selectivity studies (Battiti et al., 2019; Tan et al., 2020; Lee et al., 2021).

Cmpd Structure Ki (nM)

D1R D2R D3R D4R D5R 5-HT2C

(1S,2S)-17a 1,071 1,230 3.8 851 >5,000 50.1

(1R,2R)-17b 4,898 1,349 4.1 575 >5,000 1,122

(1S,2S)-18a 1,047 1,148 20.8 776 >5,000 138

(1R,2R)-18b 1,288 676 4.4 813 >5,000 513

(1S,2S)-19a 1,122 992 12.8 676 >5,000 61.7

(1R,2R)-19b 1,380 537 2.2 1,047 >5,000 513

(1S,2S)-20a 2344 1,023 5.3 912 >5,000 44.7

(Continued on following page)
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must be appropriate, and the linker must be moderately
flexible to allow the pharmacophores to bind properly. For
agonists, it is important that the linker does not interfere with
conformational changes induced by receptor activation
(Valant et al., 2012; Lane et al., 2013; Fronik et al., 2017;
Bethany et al., 2019). Reinecke et al. published a review on
bitopic compounds in 2019, summarizing the new bitopic
compounds that have been published in the last 5 years
(Bethany et al., 2019). Here we therefore focus on

compounds published in 2020–21, with a contextual
analysis of previously published compounds where
appropriate. In the following subsections, we discuss
subtype selectivity and functional selectivity results separately.

Receptor and Subtype Selectivity
Receptor and subtype selectivity is an important criterion for
minimizing side effects, therefore tremendous efforts go into the
development of compounds with designed binding profile.

TABLE 1 | (Continued) Selected compounds from DR related selectivity studies (Battiti et al., 2019; Tan et al., 2020; Lee et al., 2021).

Cmpd Structure Ki (nM)

D1R D2R D3R D4R D5R 5-HT2C

(1R,2R)-20b 1,349 550 1.5 676 >5,000 417

Cmpd Structure D2R Ki (nM) D3R Ki (nM) D4R Ki (nM) D2R/D3R D4R/D3R

24 2600 24200 ND 0.110 ND

25 34.6 31.2 ND 1.1 ND

27 134 5.96 357 22.5 59.9

28a 87.8 1.85 286 47.5 155

28b 831 282 2930 2.95 10.4

39 648 1.4 - 467 -
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Keserű et al. have developed a fragment based docking
protocol to design specific receptor ligands. Based on the
docking results, they have synthesized several compounds and
demonstrated the usefulness of the method for the designing D2/
D3, 5-HT1B/5-HT2B and H1/M1 receptor ligands with improved
selectivity (Figure 5). In the first two cases, the selectivity of the
PP was reversed using the SP moiety, while in the third case, a
selective compound was designed and synthesized for a receptor
pair with very similar PP (Egyed et al., 2021).

The importance of bitopic compounds in the inhibition of
dopamine receptors is demonstrated by second and third
generation antipsychotics, including aripiprazole (Burris et al.,
2002) and cariprazine (Ágai-Csongor et al., 2012). 2,3-
dichlorophenyl-piperazine, that serves as PP in these
compounds was changed to 2-methoxyphenylpiperazine (1)
PP. Although this PP exhibits weak D2R selectivity, combined
with a suitable SP group (2,3) its profile has been changed to mild
D3R selectivity. The efficacy of this methodology was further
tested on serotonin receptors. The LSD-like PP of ergotamine
(Figure 3B) did not show subtype selectivity at the two selected
serotonin receptors, but the designed compounds (4,5) with the
modified SP already had significantly higher affinity at 5-HT2BR
over 5-HT1BR. Although ergotamine was more potent,
compounds 4 and 5 had much greater selectivity over it.
Among the first-generation antihistamines, muscarinic
acetylcholine M1 activity was a major problem due to side
effects. Therefore, huge efforts were dedicated to the
development of compounds with significant H1R receptor
selectivity. Starting from amitriptyline having only 7-fold
selectivity, bitopic compounds (6,7) were designed that
demonstrated 50–80 fold selectivity over M1R (Egyed et al.,
2021). The proposed protocol detailed in the design section of
this review may be applied to other targets to achieve designed
selectivity with bitopic compounds.

Tan et al. have exploited the basic 2-
phenylcyclopropylmethylamine (PCPMA) scaffold (8, 9),
whose analogues are known 5-HT2CR agonists (Cheng et al.,

2015; Cheng et al., 2016a; Cheng et al., 2016b; Zhang et al., 2017),
to design new bitopic compounds (Tan et al., 2020)
(Supplementary Table S3). Here we discuss only a subset of
these compounds. As secondary pharmacophore, 1,2,4-
triazolylthiol ethers were used and a propyl chain was
employed as a linker. The introduction of SP alone improved
D3R activity 3-fold. A major leap forward was the realization that
the alkyl side chain introduced on the amino group of PCPMA
significantly improves subtype selectivity and D3R affinity. Next,
they investigated the substituents of the aromatic ring of PCPMA.
First, the ortho positioned 2-fluoroethoxy group was changed,
whereby methoxy was found to be the optimal one, thus
significantly improving the D3R affinity. The replacement of
the fluorine atom by chlorine resulted in a moderate selectivity
towards D2R, D4R, 5-HT2CR and a strong selectivity towards D1R
and D5R (10–12). As these results could only approximate the
values of the reference compound 13 (BP-897) (Supplementary
Table S3) the strategy was changed and a buthylene linker was
used instead of the propylene group, the SP was replaced by other
aromatic rings (naphthyl, indolyl, and 4-pyridylphenyl) and an
amide bond between the linker and the SP was introduced instead
of thioether (14–20). For these compounds, only N-alkyl
substituted variants have been prepared and the effects of
several PPs have been investigated. When examining the
racemic compounds, the compound containing 4-
pyridylphenyl SP and dichlorophenyl PP (20) has more than
1000-fold selectivity towards the other DRs, with milder but still
significant selectivity in the range of 17, 18, and 19 (Tan et al.,
2020) (Table 1).

Battiti and co-workers performed a SAR analysis combining
two PPs for the synthesis of bitopic compounds; one is a selective
dopamine agonist PF-592379 (Allerton et al., 2005; Ackley, 2008)
and the other is PD-128907, which is a D2R/D3R agonist.
(Supplementary Table S4) They concluded that the structural
features of PD-128907 avoided the construction of bitopic
compound. Therefore, they focused to PF-592379 to synthesize
D2R/D3R active bitopic compounds. Here we discuss a

TABLE 2 | NTS1 and NTS2 receptor-binding data for bitopic ligands (Kling et al., 2019).

Cmpd NT (8–13)-AA Ki (nM) NTS2/NTS1 IP acc. Assay

NTS1 nM±SEM NTS2 nM±SEM EC50 nM±SEM Efficacy %±SEM

NT(8–13) 0.24 ± 0.048 1.2 ± 0.25[h] 5.0 0.74 ± 0.20 100%
51 NT (8–13)-Gly-OH 6.8 ± 4.5 53 ± 21 7.8 18 ± 4 98 ± 2%
52 NT (8–13)-Ser-OH 3.3 ± 1.7 58 ± 28 18 37 ± 16 98 ± 5%
53 NT (8–13)-Phe-OH 0.91 ± 0.49 12 ± 4.0 13 150 ± 22 100 ± 5%
54 NT (8–13)-Tyr-OH 1.3 ± 0.38 34 ± 9.4 26 110 ± 26 95 ± 10%
55 NT (8–13)-hTyr-OH 1.5 ± 0.65 37 ± 9.1 25 24 ± 5 92 ± 8%
56 NT (8–13)-meta-Tyr-OH 2.1 ± 0.4 44 ± 23 21 34 ± 7 94 ± 4%
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representative example for different SPs (Supplementary Table
S4). D2R and D3R binding data clearly show that the (S,S)
enantiomer of the PP is more favourable for receptor binding.
The (S,S) enantiomer already plays a prominent role in PP (22,
23), with a 3-fold activity difference between the enantiomers.

The same effect can be observed when using
tetrahydroisoquinoline (24,25) or indole (26,27) SP, although
here the difference in activity at the D3 receptor is about 100-fold
(Table 1, Supplementary Table S4). Compound 27 show a 22.5-
fold subtype selectivity towards D3R that is due to the SP moiety.

FIGURE 6 | D2R and D3R ligands with designed functional profile (Egyed et al., 2020). The binding mode of compound 60 and 63 was extracted from the MD
simulations. The simulations revealed that the SP motif influence the position of the PP and that might be linked to the observed different functional profile. The figure
representing the binding mode is reproduced from the TOC Figure of our original article Egyed, A et al. Controlling Receptor Function from the Extracellular Vestibule of
G-Protein Coupled Receptors. Chem. Commun. 2020, 56 (91), 14167–14170.

TABLE 3 | Functional activities (pIC50 or pEC50 and maximal efficacy (Emax) values with s.d. values in parentheses) measured for the G-protein mediated and β-arrestin
mediated pathway of the hD2 and hD3 receptor (Egyed et al., 2020).

hD2R G-protein mediated pathway β-Arrestin mediated pathway

H SP 1 SP 2 H SP 1 SP 2

PP 1 57 EC50 < 4.3 uM Emax =
45.6% (3) partial agonist

Cariprazine pEC50 = 8.85 (0.1)
Gao et al. (2014) Emax = 77.4%
(7) partial agonist

61 pEC50 = 8.64
(0.22) Emax = 99.4%
(2) full agonist

pEC50 = 3.85 (0.12)
Emax = 7% (1) partial
agonist

pEC50 = 9.69 Gao et al.
(2014)Emax = 13.9%
partial agonist

pEC50 = 8.40 (0.17)
Emax = 26% (2) partial
agonist

PP 2 58 pIC50 = 6.4 (1.0)
Newman et al. (2012) Emax

= 14% (1) partial agonist

2 pEC50 = 8.62 (0.07) Emax =
82.7% (3) partial agonist

62 pIC50 = 8.42
(0.18) Emax = 78.7%
(4) partial agonist

pIC50 = 5.03 (0.12)
antagonist

pIC50 = 8.08 (0.05)
antagonist

pIC50 = 7.63 (0.10)
antagonist

PP 3 59 pIC50 = 4.72 (0.78)
antagonist

60 pIC50 = 6.10 (0.13)
antagonist

63 EC50 > 50 uM
Emax = 25.4% (4)
partial agonist

pIC50 = 5.89 (0.13)
antagonist

pIC50 = 7.71 (0.10)
antagonist

pIC50 = 7.23 (0.12)
antagonist

hD3R G-protein mediated pathway β-arrestin mediated pathway

H SP 1 SP 2 H SP 1 SP 2

PP 1 pEC50 = 7.50 (0.34)
Emax = 72% (12) partial
agonist

pEC50 = 8.58 Kiss et al. (2010)
Emax = 27% Kiss et al. (2010)
partial agonist

pEC50 = 8.09 (0.13)
Emax = 94% (7) full
agonist

30% (5) in 80 μM
partial agonist

pEC50 = 8.32 Frank et al. (2018)
Emax = 32% Frank et al. (2018)
partial agonist

pEC50 = 8.42 (0.21)
Emax = 61% (6) partial
agonist

PP 2 pEC50 = 6.12 (0.17)
Emax = 11% (4) partial
agonist

pEC50 = 8.43 (0.51) Emax =
11% (3) partial agonist

pEC50 = 8.63 (0.13)
Emax = 15% (6)
partial agonist

pIC50 = 4.83
(0.30) antagonist

pIC50 = 7.92 (0.10) antagonist pIC50 = 7.52 (0.20)
antagonist

PP 3 pIC50 = 5.01 (0.17)
antagonist

pIC50 = 7.56 (0.23) antagonist pEC50 = 7.53 (0.34)
Emax = 15% (3)
partial agonist

pIC50 = 5.44
(0.15) antagonist

pIC50 = 8.04 (0.32) antagonist pIC50 = 7.86 (0.21)
antagonist

The bold values indicate the number of compounds.
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Next the authors investigated the effect of the linker. Changing
the original cyclopropylethyl linker (Supplementary Table S4)
for the racemic derivative (rac-trans-28) resulted in 37.3-fold
selectivity towards D3R. Separating the enantiomers, (1S, 2R)-
trans-cylopropyl stereochemistry (28a) showed D3R Ki of
1.85 nM and an unprecedented 47.5-fold selectivity for D3R
over D2R (D2R Ki = 87.8 nM), while the other enantiomer
(28b) has much weaker activity coupled with poor selectivity
(Battiti et al., 2019). Finally, two additional linkers were used (31,
32) that are widely used among D3R bitopic compounds
including several high selectivity partial agonists or antagonists
(Kumar et al., 2016; Michino et al., 2017; Verma et al., 2018).
Compound 31 showed reduced affinity compared to 28a,
inferring that the hydroxyl group on the linker is optimal for
antagonism but cannot be directly transferred to the agonist
binding mode due to different receptor conformations in the
active and inactive states. Compound 32 shows good affinity but
neither affinity nor selectivity reaches that of 28a. Compounds 31,
32, 28a were tested at MOR. For 32 there is a decrease in affinity
at the dopamine receptor but the weak subtype selectivity is
retained, however there is a 22.9-fold increase in activity at the
MOR receptor (Supplementary Table S4) (Battiti et al., 2020).
The same group synthesized a number of eticlopride analogues
using different SPs in the 2-N or 4-C position of pyrrolidine via
lycerol (Battiti et al., 2020). They found that O-alkylated
analogues had better affinity for D2 and D3 receptors than the
N-substituted derivatives. In BRET assays, these compounds
exhibited antagonist or very weak partial agonist behaviour.
Docking studies revealed that the SPs of the O-alkylated
analogues form aromatic stacking interactions with conserved
residues His6.55 and Tyr7.35 both in the D2 and D3 receptors,
while the SPs of the N-alkylated derivatives extend towards the
extracellular site that is less conserved (Shaik et al., 2021).

N-phenylpiperazine analogues were used extensively for
constructing bitopic ligands against dopamine receptors. Lee
et al. synthesized and evaluated a series of N-phenylpiperazine
analogues substituted with 3-thiophen and 4-
thiazolylphenylfluoride (Supplementary Table S5). They
identified several ligands that bind with high affinity to D3R
and exhibit considerable selectivity towards D2R. Comparison of
the binding results of compounds 33–38 and 39–44 suggests that
39–44 binds to D3R but not to D2R. The replacement of the
thiophene ring by a thiazole ring (45–50) led to a decrease in
receptor binding selectivity. Compound 39 (Table 1) possessed

the highest D3R affinity (Ki = 1.4 nM) and 450-fold selectivity that
nominated this compound for in vivo testing. Intraperitoneal
administration of 39 led to a significant reduction in DOI-
dependent head twitch response in mice and a reduction in
AIM scores in dyskinetic hemiparkinsonian rats. These data
suggest that compound 39 is able to cross the blood-brain
barrier and achieves therapeutic concentrations (Lee et al., 2021).

Starting from the 5-HT2A receptor-bound structure of
aripiprazole and cariprazine Chen et al. designed D2/D3

receptor ligands with no significant 5-HT2A affinity (Chen
et al., 2021). The authors suggested that the unusal “upside-
down” binding mode (Figure 3A) might affect the observed
selectivity. According to the structural rearrangements, the
location of the SP of aripiprazole in the exosite is important
for its signal transduction efficiency. In the interest of identifying
residues critical for efficacy, the exosite sequence of the 5-HT2A

and D2 receptors was aligned, with an important difference
between the two found at position 5.51, which is Leu in 5-
HT2AR and Phe in D2R. Mutations in D2R demonstrated that
substitution of F2025.51 with Leu or Ala reduces the G-protein
activity and β-arrestin2 recruitment of aripiprazole. In addition,
a derivative of aripiprazole substituted with benzothiazole for
the dihydroquinoline ring of D2R had reduced efficiencies of
both G protein activity and β-arrestin2 recruitment.
Substitution of L2475.51F in 5-HT2AR did not increase the
efficacy of aripiprazole. The results suggest that aripiprazole
may stabilize different conformations of TM5 and TM6
between the two receptors. Alignment of 5-HT2AR and D2R
structures (active and inactive) shows that activation of 5-
HT2AR requires a larger downstream swing of W6.48 from
the CWxP motif than that observed for D2R activation. In the 5-
HT2AR, dihydroquinoline is located deeper in the binding
pocket interacting with W3366.48, restricting its movement,
whereas it can move gently upon D2R receptor activation.
Similar observations were made for cariprazine. Here, the
dynamic coupling between F/L5.51, W6.48 and the PIF motif
by the exosite may partly explain why the compounds tested
have different efficacies at 5-HT2AR and D2R receptors.
Compared with inactive and active D2R constructs, the 5-
HT2AR-aripiprazole complex in the extracellular
compartment shows inward movement of TM6, TM7, and
ECL2 toward the seven transmembrane cores. These
rearrangements suggest that the 5HT2AR affinity of the
bitopic compounds can be reduced by increasing the size of

TABLE 4 | Functional Data of compounds at D3R and 5-HT2C (All compounds were tested as HCl salts. For agonist activity, Emax values are shown in brackets. NT, not
tested.).

Cmpd D3R Gi D3R Tango 5-HT2CGq (Ca2+)

(1R,2R)-17b EC50 = 3.58 nM (77.9%b) EC50 = 126.4 nM (50.2%) antagonist IC50 = 14.5 μM
(1S,2S)-17a no agonism; antagonist: Ki = 16.7 nM NT antagonist IC50 = 0.86 μM
(1R,2R)-18b EC50 = 177.5 nM (71.7%) 9.2% at 3 μM antagonist IC50 = 16.1 μM
(1S,2S)-18a EC50 = 99.2 nM (83.4%) 44.4% at 3 μM agonist EC50 = 3538 nM (30.3%)
(1R,2R)-19b EC50 = 87.0 nM (40.7%) <5% at 3 μM antagonist: IC50 > 30 μM
(1S,2S)-19a EC50 = 142.8 nM (63.4%) EC50 = 1,000.2 nM (27.1%) agonist EC50 = 2549 nM (44.2%)
(1R,2R)-20b EC50 = 12.5 nM (68.1%) 3.1% at 3 μM antagonist IC50 = 10.1 μM
(1S,2S)-20a EC50 = 29.6 nM (96.2%) EC50 = 11086 nM (119.1%) agonist EC50 = 738.3 nM (51.9%)
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TABLE 5 | Pharmacological profiling of compounds (D2R binding and functional activity) (Yan et al., 2021).

Cmpd Structure D2R binding Ki nM
(pKi±SEM)

D2R Gαi1 BRET
EC50 nM (Emax%) (pEC50 ± SEM)

D2R β-arrestin2 BRET
EC50 nM (Emax%) (pEC50 ± SEM)

64 61.9 (7.21 ± 0.04) 49.0 (25 ± 2%) (7.31 ± 0.09) 67.6 (30 ± 1%) (7.17 ± 0.07)

65 59.9 (7.22 ± 0.13) 26.3 (52 ± 1%) (7.58 ± 0.08) 32.4 (53 ± 2%) (7.49 ± 0.14)

66 125.7 (6.90 ± 0.08) 9.30 (58 ± 3%) (8.03 ± 0.01) 10.0 (52 ± 1) (8.00 ± 0.11)

67 155.7 (6.81 ± 0.03) 11.2 (65 ± 3%) (7.95 ± 0.04) 7.08 (60 ± 1%) (8.15 ± 0.12)

68 259.2 (6.59 ± 0.05) 891.2 (12 ± 1%) (6.05 ± 0.42) 416.9 (14 ± 4%) (6.38 ± 0.64)

69 217.8 (6.66 ± 0.08) 77.6 (18 ± 1%) (7.11 ± 0.12) 190.6 (19 ± 1%) (6.72 ± 0.49)

70 977.2 (6.01 ± 0.11) 8.45 (68 ± 1%) (8.07 ± 0.11) 9.49 (16 ± 1%) (8.02 ± 0.06)

71 244.3 (6.61 ± 0.07) 34.8 (51 ± 5%) (7.46 ± 0.10) 94.0 (39 ± 4%) (7.03 ± 0.20)

72 128.1 (6.89 ± 0.112) 14.73 (66 ± 3%) (7.83 ± 0.12) 27.6 (33 ± 1%) (7.56 ± 0.09)

(1S,2S)-73a 20.8 (7.68 ± 0.06) 9.43 (29 ± 3%) (8.03 ± 0.05) 3.63 (18 ± 1%) (8.44 ± 0.17)

(Continued on following page)
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the PP. Changing the arylpiperazine PP to aza-ergoline the
authors identified IHCH7009 (D2R Ki = 33.65 nM, 5-HT2AR
Ki = 3639.15 nM), IHCH7010 (D2R Ki = 9.03 nM, 5-HT2AR
Ki = 906.78 nM) and IHCH7041 (D2R Ki = 50.64 nM, 5-HT2AR
Ki = 2371.37 nM) all with very weak 5-HT2AR affinity.
IHCH7041 retains partial agonism of D2R while IHCH7009
and IHCH7010 are full D2R agonists (Chen et al., 2021).

Kling et al. investigated the neurotensin receptor type (NTS) 1
receptor crystal structures (White et al., 2012; Egloff et al., 2014)
and found that an allosteric binding site was saturated at the
C-terminus of NT (8–13). Following sequence analysis, they
confirmed that there is a difference between NTS1R
(Arg1493.32) and NTS2R (His1153.32) that may allow for
subtype selectivity. Several bitopic ligands of type NT (8–13)

TABLE 5 | (Continued) Pharmacological profiling of compounds (D2R binding and functional activity) (Yan et al., 2021).

Cmpd Structure D2R binding Ki nM
(pKi±SEM)

D2R Gαi1 BRET
EC50 nM (Emax%) (pEC50 ± SEM)

D2R β-arrestin2 BRET
EC50 nM (Emax%) (pEC50 ± SEM)

(1R,2R)-73b 43.8 (7.36 ± 0.07) 12.9 (13 ± 3%) (7.89 ± 0.14) 1.86 (10 ± 2%) (8.71 ± 0.15)

(1S,2S)-74a 6.58 (8.18 ± 0.04) 4.12 (55 ± 2%) (8.39 ± 0.08) 4.66 (29 ± 1%) (8.33 ± 0.15)

(1R,2R)-74b 362.5 (6.44 ± 0.07) 62.0 (7 ± 1%) (7.21 ± 0.16) 14.7 (17 ± 1%) (7.83 ± 0.12)

(1S,2S)-75a 11.5 (7.94 ± 0.07) 8.9 (40 ± 2%) (8.05 ± 0.04) 2.50 (20 ± 1%) (8.60 ± 0.10)

(1R,2R)-75b 30.1 (7.52 ± 0.02) NT NT

(1S,2S)-76a 12.8 (7.89 ± 0.05) 3.41 (71 ± 3%) (8.47 ± 0.08) 8.30 (47 ± 2%) (8.08 ± 0.06)

(1R,2R)-76b 317.0 (6.50 ± 0.04) 197.2 (41 ± 5%) (6.71 ± 0.05) 70.1 (18 ± 3%) (7.15 ± 0.15)
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were synthesized (Table 2) and compounds (51–56) showed a
promising trend in the NTS1R selectivity. The best compound
(54) has Ki value of 1.3 nM associated with 26-fold selectivity
towards NTS2R. Homology modelling and MD simulations
confirmed that the compounds bind in a bitopic mode, with
NT (8–13) occupying the orthosteric binding site and the amino
acid extension occupying the secondary binding site. These
results provide a promising starting point for the design of
NTS1R selective agonists (Kling et al., 2019).

Functional Selectivity
Advances in GPCR structural biology and pharmacology have
opened up new opportunities for functional drug design.
Modulation of GPCRs through allosteric binding sites can
alter receptor structure, dynamics and function, resulting in
increased spatial and temporal variation. One important aspect
of these changes is functional selectivity or otherwise termed
biased signalling. Biased signalling can contribute to the
enhancement of the intended effect, but can also cause side
effects, so one of the most intriguing areas of current research
is investigating the functional character of the ligands in different
signalling pathways (Hauser et al., 2017).

Egyed at al. reported a systematic study exploring the
extracellular SBP to fine-tune the functional profile of D2R
and D3R ligands. Introduction of the SP increased affinity at
both D2 and D3 receptors for each ligand. The study
demonstrated that the Gi/o and β-arrestin pathways can be
specifically modulated from the extracellular vestibule
incorporating different SPs to the ligands. Molecular dynamics
simulations revealed that G-protein signalling could be linked to
the orientation of the PP that is influenced by the SBP binding
part of the bitopic compounds (Figure 6). Three PPs and two SPs
(Figure 6) were tested using an ethylcyclohexyl linker in analogy
to cariprazine. In the Gi/o-mediated signalling pathway,
dichlorophenylpiperazine (57) (PP 1) was a partial agonist on
both D2R and D3R (Table 3). Application of N,N-dimethylurea
(SP 1) (cariprazine) also resulted in a partial agonist with
significantly increased potency (D2R pEC50 = 8.85 nM, Emax =
77.4%, D3R pEC50 = 8.58 nM Emax = 27%). The use of the OtBu
motif (SP 2) (61) led to a full agonist, the potency on D2R was
superior to that on D3R. For 2-methoxyphenylpiperazine (2, 58,
62) (PP 2), no prominent change was observed, all were partial
agonists. The 3-(piperazin-1-yl)-5-(trifluoromethyl)benzonitrile
(59) (PP 3) with the N,N-dimethylurea SP (60), showed
antagonist effects on the G protein coupled signalling pathway
of D2R and D3R, with an increase in potency. Interestingly,
incorporating SP 2 (63) turned the function of PP to a weak
partial agonist at both receptors. These results suggest that PP and
SP affect functionality together. In the β-arrestin signalling
pathway, compounds with SP 2 achieve the largest increase in
Emax values, while this was lower for cariprazine. (Table 3). This
suggests that cariprazine shows a significant bias towards the
G-protein controlled pathway on D2R. In all cases, the bitopic
compounds with 2-methoxyphenylpiperazine PP (2, 58, 62)
exhibited antagonist behaviour in contrast to the partial
agonism observed in the G-protein coupled signalling
pathway. The antagonistic behaviour of 59 was also preservedT
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in the β-arrestin signalling pathway; following the previous trends
introduction of any SP led to an increase in pIC50 values here as
well. In general, the efficacy data measured at both receptors
followed similar trends in both modalities as the receptor
affinities (Egyed et al., 2020).

High affinity binders, such as 39, 40, 41, 42, 49
(Supplementary Table S5) were also tested for their efficacy
on D3R, both by examining forskolin-dependent inhibition of
adenylyl cyclase and by measuring β-arrestin binding.

Compounds 42 and 49 were found antagonists in both assays.
Compound 41 display functional selectivity, being a weak partial
agonist in the adenylyl cyclase assay and a very weak partial
agonist/antagonist in the β-arrestin binding assay. Compounds
39 and 40 exhibit weak partial agonism in both the adenylyl
cyclase inhibition and β-arrestin binding assays (Lee et al., 2021).

Investigating pure enantiomeric forms of compounds 17–20
(Supplementary Table S3) Tan et al. showed that the (R,R)
enantiomers (17b-20b) have a better affinity for D3R than (S,S)

TABLE 7 | Potency and efficacy induced by muscarinic agonists bitopic compounds HEK293t cells overexpressing the M1 receptor (Schramm et al., 2019).

Cmpd N R pEC50 nM ± SEM % Emax±SEM

CCh 6.97 ± 0.03 99 ± 1

TBPB 7.32 ± 0.02 83 ± 1

BQCA 7.20 ± 0.03 90 ± 1

77 (TBPB) 1 n.d. n.d.

78 (TBPB) 3 5.09 ± 0.24 12 ± 2

79 (TBPB) 6 n.d. n.d.

80 (BQCA) 1 5.89 ± 0.01 66 ± 0.5

81 (BQCA) 3 6.67 ± 0.02 78 ± 1

82 (BQCA) 6 6.62 ± 0.03 28 ± 0.5

83 (TBPB) 1 H 6.05 ± 0.01 99 ± 1

84 (TBPB) 3 H 6.42 ± 0.01 97 ± 1

85 (TBPB) 6 H 7.38 ± 0.04 98 ± 2

86 (BQCA) 1 H 5.82 ± 0.02 35 ± 1

87 (BQCA) 3 H n.d. n.d.

88 (BQCA) 6 H n.d. n.d.
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(17a-20a), with the exception of compound 17, which had an
identical affinity for both of the enantiomers (17a, 17b) (Tan
et al., 2020). The (R,R) isomers (17b-20b) showed weaker affinity
(3–20-fold) towards 5-HT2CR than their (S,S) counterparts (17a-
20a). The data suggest that D3R is less sensitive to conformational
changes than the 5-HT2C receptor. Functional studies were also
performed with the 17a,b-20a,b (Table 4). Compounds 18–20
were all full or partial agonist on D3 receptors, whereas for 5-
HT2CR the (S,S) enantiomers (18a-20a) are weak partial agonists,
whereas the (R,R) enantiomers (18b-20b) are weak antagonists.
Compared to the binding assay, functional results indicate greater
selectivity towards D3R. Furthermore, these compounds showed
only very weak partial agonism at 5-HT2AR and no affinity at 5-
HT2BR. The two enantiomers of compound 17 exhibit opposite
behaviour, while (1R,2R)-17b was a potent agonist (EC50 =
3.6 nM, Emax = 77.9%), (1S,2S)-17a was an antagonist on D3R
with a Ki of 16.7 nM, and both derivatives were weak antagonists
with micromolar activity on 5-HT2C receptor. Docking studies
suggested a difference between the two compounds (17a,17b) in
the orientation of PP. In the case of the agonist (1R,2R)-17b, the

2-methoxy group is deep in the OBP and forms hydrophobic
interactions with residues C1143.36, S1965.46, and F3466.52. In the
case of the antagonist (1S,2S)-17a, the 2-methoxy group flips
out to the extracellular side and the cyclopropane linker between
the benzene ring and the protonated N overlays perfectly with
the amide linker of eticlopride, which is not present in the
agonist. Compounds (1S,2S)-17a, (1R,2R)-18b, (1R,2R)- 19b,
and (1R,2R)-20b were inactive in the Tango assay on D3R,
indicating their preference for the G-protein signalling pathway.
For further profiling (1R,2R)-17b and (1R,2R)-19b were tested
on 29 other aminergic GPCRs that confirmed their good
selectivity for D3R (Tan et al., 2020).

Yan et al. also used PCPMA analogues as PP, with propyl,
butyl, pentyl, or cyclohexylethyl linkers, and SP groups taken
from aripiprazole, brexipirazole, and cariprazine, respectively.
The synthesized library was measured in D2R binding, D2R Gi

and D2R β-arrestin BRET assays (Table 5). The starting
compound (64) exhibits good affinity (Ki = 61.9 nM) and
partial agonist activity in both Gi (EC50 = 49.0 nM, Emax =
25%) and β-arrestin (EC50 = 67.6 nM, Emax = 30%) BRET
assays. In comparison, replacement of SP with quinolone (65)
increased the potency two-fold with unchanged binding.
Changing the linker to propyl (66,67) led to a small decrease
in binding affinity but an increase in efficacy (~10 nMEC50 values
and Emax values higher than 50%). Lengthening the linker to 5C
units (68,69) led to a decrease in binding affinity and functional
activity. The cariprazine-like SP (dimethylamine) and linker
(cyclohexyl) with this PP did not show significant activity. The
best compound from this series (70) has very potent partial
agonist character in both Gi BRET (EC50 = 8.45 nM, Emax =
68%) and β-arrestin2 recruitment assays (EC50 = 9.49 nM, Emax =
16%), with a much lower Emax in the latter. The significant
difference between binding affinity and potency for many of
these compounds likely reflects the use of an antagonist
radioligand [(3H)-N-methylspiperone] in the competitive

TABLE 8 | Binding affinities and functional efficacies of NAQ and NCQ (Wang et al., 2020).

Cmpd Ki (nM±SEM) MOR vs. KOR MOR vs. DOR MOR (35S) GTPγS binding

MOR KOR DOR EC50 (nM±SEM) Emax of
DAMGO % ± SEM

0.55 ± 0.15 26.45 ± 5.22 132.50 ± 27.01 48 241 4.36 ± 0.72 15.83 ± 2.53

0.55 ± 0.01 22.20 ± 2.10 33.90 ± 0.50 40 62 1.74 ± 0.13 51.00 ± 0.40

FIGURE 7 | Iperoxo derivatives investigated at the M1 receptor in the
study of Holze et al. (2020).
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binding assay, from which an agonist ligand tends to show much
lower apparent binding affinity. Attempts have been made to use
several PPs but these have been shown to give significantly worse
results than the methoxy derivative. In the case of isoquinoline
and tetrahydroisoquinoline SP, it was not practical to use the
dichlorophenyl motif in the PP (71,72). The best results were
obtained with derivatives containing halogen in the meta position
on the phenyl group of PP and methoxy in the ortho position
(73a,b-76a,b). Pure forms of the enantiomers were also
investigated. The majority of the fluorinated derivatives
((1S,2S)-42a, (1R,2R)-73b, (1S,2S)-74a) showed Ki values
below 50 nM on binding assay and EC50 values below 20 nM
in both Gi and β-arrestin2 BRET assays. The same trend was
observed for the chlorinated derivatives [(1S,2S)-75a,(1S,2S)-
76a]. Higher Emax was observed for the halogenated
derivatives in the Gi signal transduction than in the β-
arrestin. After separation of the enantiomers, it was
confirmed that the (S,S)-isomers were more efficient in D2R
binding and functional assay. The (R,R) compounds exhibit
partial agonist behaviour and the Emax values are higher for Gi

signaling. The selectivity of the compounds [(1S,2S)-73a,
(1S,2S)-74a, (1S,2S)-75a, (1S,2S)-76a] was investigated on
D1R, D2R, D4R, D5R, 5-HT1AR, 5-HT2AR, and 5-HT2CR,
with low selectivity observed towards the D3 receptor and
potent activity on the 5-HT1A receptor, and good or
acceptable selectivity on the other receptors (Table 6). In the
case of D3R, these compounds showed weak partial agonist
activity in both Go and β-arrestin2 BRET assays, albeit with
different efficacies. For the 5-HT1A receptor, all four
compounds ((1S,2S)-73a, (1S,2S)-74a, (1S,2S)-75a, (1S,2S)-
76a) were similar partial agonists in Gi BRET assays. The
lack of selectivity over D3R and 5-HT1AR should not be a
concern for these compounds, as both D3R and 5-HT1AR
have been shown to be involved in the therapeutic effects of
some antipsychotics. Overall, these four compounds have
shown an interesting pharmacological profile (Yan et al., 2021).

Schramm et al. investigated the effect of bitopic compounds on
muscarinic acetylcholine receptors. Carbachol (CCh) PP was
cross-linked to allosteric ligands by linkers of different lengths
(1C, 3C, 5C, 8C). The benzoimidazole-piperidine moiety of TBPB
[1-(1′-(2-tolyl)-1,4′-bipiperidin-4-yl)-1H-benzo(d)imidazol-
2(3H)-one], a known selective bitopic M1R agonist, and BQCA
(benzyl quinolone carboxylic acid) derivatives, that are PAMs,
were used as allosteric modulators (Table 7). It was found that
BQCA-CCh bitopic compounds act as agonists. The highest
potency and efficacy was observed for the compound
containing BQCA moiety 81. Comparing with reference
compound 86, which does not contain a CCh moiety but only
the linker, revealed that the CCh moiety provides some of the
agonist activity. In contrast, the TBPB-CCh bitopic ligand (78)
showed partial agonism, while the reference 84 was a full agonist.
The binding mode of 81 was investigated by docking to an active
receptor model. The ammonium group of the CCh moiety forms
a charge-assisted hydrogen bond with D1053.32, while the
carbamate carbonyl group serves as a hydrogen bond acceptor
for the hydroxyl group of Y4087.43. This is different from the
carbachol binding mode, in which the carbamate structure has a

different orientation. The BQCA moiety, located in the region of
the extracellular loop, is stabilized by hydrophobic contacts with
L174ECL2 and Y179ECL2 and a charge-assisted H-bond with
K392ECL3. They concluded that partial agonism through
bitopic compounds can be achieved not only by quenching
orthosteric receptor activation by an allosteric moiety as in 81
but also by quenching bitopic activation of the receptor by an
orthosteric moiety such as CCh in 78 (Schramm et al., 2019).

Holze et al. have shown that allosteric coupling of the M1R can
induce conformational changes that affect intracellular signalling.
They investigated two groups of M1R bitopic agonists and varied
the length of the linker. Iperoxo, a known agonist, was selected as
the PP motif, while two negative allosteric modulators, phtp
(89–91) and naph (92–94), were incorporated as SP.
(Figure 7) The latter differs from the phth derivative in two
main respects: naph contains a larger and branched aliphatic
linker. The two pharmacophores were linked by alkyl chains of
different length (6–8C) (89–94). While the ligand affinities for the
allosteric binding site were very similar within a ligand set, the
ligand affinities for the orthosteric binding site depended on the
length of the linker, where increasing linker length was correlated
with increasing ligand affinity. From this information, it was
concluded that the same binding mode was adopted by iperoxo in
a series of bitopic compounds driven by its high affinity, and this
was confirmed by MD simulations. Therefore, a series of bitopic
ligands differing only in the length of the linker may be suitable to
investigate the effect of allosteric coupling on signal transduction
with subnanometer accuracy. Whereas the longest bitopic
agonist, 91, was able to stimulate all three G-protein families,
90 activated Gq/11 and Gs proteins, 89 promoted signal
transduction only via Gq/11. 93 and 94 only activated Gq/11

protein signalling, while 92 did not activate any signalling
pathway, unlike 89. None of the naph-based ligands were able
to activate Gs and Gi/o signalling. These data suggest that different
G-proteins show different sensitivities to M1R activation by these
bitopic compounds. While Gq/11 coupling is conserved in almost
all bitopic ligands, Gs signalling is promoted only by two
members of the phth series. Gi/o activation is particularly
sensitive to the bitopic ligand structure with only 91 showing
weak M1R/Gi/o coupling among the compounds tested. MD
simulations show that binding of iperoxo results in a complete
contraction of the extracellular parts of the ligand binding pocket.
In contrast, the bitopic ligands of the phth series bind in such a
way that they sterically inhibit the closure of the binding pocket.
The extent of the conformational interference depends on the
length of the linker and hence the position of the allosteric
building block. Since the phth part of 89 is located close to
the orthosteric binding site, it inhibits closure, resulting in a more
open extracellular conformation. Elongation of the linker with
additional methylene groups allowed for subnanometer
regulation of the position of the allosteric building block,
thereby progressively reducing the closure of the binding
pocket, ultimately resulting in greater G-protein binding
capacity. FRET measurements have demonstrated that the
more closed ligand-binding pocket is associated with greater
receptor conformational changes at the G-protein binding
surface via an allosteric coupling mechanism. Consistent with
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this idea, 92, a bitopic ligand with a branched and larger allosteric
motif, did not induce conformational changes in M1R (Holze
et al., 2020).

Wang et al. investigated two naltrexone derivatives substituted
with isoquinoline at MOR. The isoquinoline moiety of these
bitopic compounds is the SP that interacts with the allosteric site
of MOR, and the epoxymorphinan moiety is the PP (Table 8).
NAQ has a high affinity for MOR (Ki = 0.55 nM) and high
selectivity for κ-opioid receptor (KOR) (48-fold) and δ-opioid
receptor (DOR) (241-fold). Compared to DAMGO, it acts as a
MOR antagonist in the 35S-GTP [γS]-binding assay with CHO
cell lines expressing MOR. It showed less significant withdrawal
effects compared to the well-known opioid antagonists naloxone
and naltrexone. Similar properties were observed for the
compound NCQ (Ki = 0.55, 40-fold KOR, 62-fold DOR
selectivity), which shares the same PP part as NAQ and differs
only in the SP. NCQ contains a methoxy at position 1 and a
chloro functional group at position 4 of isoquinoline. However, in
35S-GTP (γS)-binding assay, NCQ behaved as a partial agonist.
MD simulations and free energy calculations proposed that the
allosteric part of NAQ and NCQ bind differently in the inactive
structure and in the active structure, respectively. Docking
studies have shown that the SP parts of NAQ and NCQ may
occupy two different subdomains of the allosteric site of MOR,
named ABD1 and ABD2. MD simulations were performed with
three poses (NAQ inactive, NCQ active and inactive) obtained
from the docking calculations and showed that the SP part
of NAQ was bound to ABD1 in the inactive MOR. Although
the SP motif occupied an allosteric site, no significant
modulatory effect was observed on the binding of the PP,
similar to the function of a silent allosteric modulator. In the
inactive and active MOR the SP of NCQ showed positive
allosteric modulation through binding to ABD2. Molecular
modelling combined with interaction energy and distance
analyses unravelled the molecular mechanisms of allosteric
modulation of NAQ and NCQ and emphasized the
importance of the chlorine and methoxy substituents of the
isoquinoline ring for the allosteric modulatory function of NCQ
(Wang et al., 2020).

Binding Kinetics
Although ligand-receptor binding kinetics might have a
fundamental role in the development of drug candidates, it is
still often overlooked in the early phase of drug discovery. In line
with the increased interest in the field, more and more kinetics
data (among others association and dissociation rate, residence
time, etc.) have been published in the literature, however the
magnitude still lags behind the amount of affinity and selectivity
data available especially regarding only the allosteric and bitopic
ligands. Furthermore, the interpretation of the kinetic data might
be hindered by the probe dependence as observed in a
prototypical competitive radioligand binding assay for H1

receptor antagonists, although that aspect is often not
considered (Bosma et al., 2019). In line with the relatively
limited amount of recent papers, first we refer the readers to
recent general review articles on binding kinetics (Sykes et al.,
2019; Hoare et al., 2020; Rafael et al., 2020; van der Velden et al.,

2020). Very recently a book chapter collecting available kinetic
data of GPCR ligands together with experimental evidence for
properties that influence the residence time were published
(Potterton et al., 2022). The repository enables researchers to
analyse the relationship between the structure and the kinetic
parameters as well as provides data for the development of
predictive algorithms. The authors also outline machine
learning workflows to predict residence time. Sykes et al.
reviewed recently the literature related to the binding kinetics
of GPCR ligands (Sykes et al., 2019). They discussed the
theoretical aspects, the experimental methods and their
limitations, detailed several factors influencing binding kinetics
among others they explored the role of allosteric modulators, that
by definition act through the modulation of the binding kinetics
of the endogenous or orthosteric ligands. The authors also discuss
some molecular level features including shielding the hydrogen
bonds from water that affects the binding kinetics.

Although shielding the hydrogen bonds was thought to
decrease residence time, in a recent case study on CCR2
receptor, MD simulations of Magarkar et al. suggested that
even shielding an intra protein hydrogen bond can enhance the
residence time of ligands through the preservation of the
binding site rigidity (Magarkar et al., 2019). The ECL2 loop,
that is regularly engaged with bitopic compounds, was also
proposed to modulate the binding kinetics (Sykes et al., 2019;
van der Velden et al., 2020). Already one of the seminal works in
the field of modelling the binding pathway to GPCRs, which
investigated the binding of three antagonists and an agonists to
the β2-adrenoreceptor and one agonist to the β1-
adrenoreceptor with MD simulations, highlighted the role of
the ECL2 loop and the extracellular vestibule. Interestingly, even
the highest barrier of binding often corresponds to the
association with the extracellular vestibule even though the
binding requires conformational change of the receptor and
the ligand has to enter through a narrow passage (Dror et al.,
2011). In several receptors, ECL2 were proposed to function as a
lid facilitating the entrance and exit of the ligands (Thomas
et al., 2016; Wacker et al., 2017; Frank et al., 2018). One of these
studies investigated the binding kinetics of cariprazine and
aripiprazole. As a prototypical bitopic compounds we
exemplify here the effect of the SBP on the binding kinetics
through them (Frank et al., 2018). At the D3 receptor,
aripiprazole exhibits a slow monophasic dissociation, while
cariprazine displays a rapid biphasic behaviour. Interestingly,
in the D2 receptor both compounds display a slow dissociation.
These differences may influence the in vivo action of the drugs.
Interactions with ECL2 residues influence the residence time in
other receptors like in the β2 and A2A receptors, as well (Guo
et al., 2016; Masureel et al., 2018). Gaussian accelerated
molecular dynamics revealed the role of the ECL2 loop in
the formation of allosteric sites for PAMs in the adenosine
A1 receptor (Miao et al., 2018) and unveiled an intermediate
binding site between ECL2 and TM1 for caffein in the adenosine
A2A receptor. The authors analysed the effect of more general
features like physicochemical properties of the ligand (e.g.,
lipophilicity) and close contact residue numbers on the drug-
receptor dissociation.
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Van der Velden et al. summarized structural considerations in
relation to binding kinetics presenting the results through four
case studies (van der Velden et al., 2020). They showcased the role
of the ECL2 loop in the regulation of the ligand kinetics through
tiotropium binding to the M3R and M2R receptors (Kruse et al.,
2012; Tautermann et al., 2013). The more open, flexible ECL2
loop conformation was linked to the shorter residence time
observed in the M2R receptor. Through the example of
ZM241385, an A2A receptor antagonists they highlighted the
role of molecular dynamics and mutation experiments in
providing structural background for observed kinetics
behaviour (Guo et al., 2016). Another example was focused on
the β2 adrenoreceptor. Salmeterol, a bitopic compound displays a
5–7 fold higher residence time compared to salbutamol and
epinephrin, both binding only to the orthosteric site
(Figure 3C). As salmoterol and salbutamol share the
orthosteric binding motif, the interactions in the extracellular
site are linked to the increased residence time (Masureel et al.,
2018). They also discussed other aspects, like the effect of natural
receptor variants, ligand variants and probe dependency.

Riddy et al. investigated the binding kinetics of H3 receptor
antagonists/inverse agonists (Riddy et al., 2019). Although the
binding mode of the compounds were not investigated
experimentally, they likely form interactions outside the
orthosteric pocket, too therefore can be considered bitopic.
The different pharmacological profile and the residence time
of the compounds might be linked to their preclinical and clinical
efficacy. Furthermore, H3 and off-target sigma-1 receptor
occupancy may contribute to paradoxical efficacy of some
compounds. In the study of Pedersen et al. (2020) the
differential binding kinetics profile of the agonists were not
linked to the functional bias, as the bias profile of the selected
agonists were not time-dependent and despite the difference in
their binding kinetic properties they can display the same degree
of bias.

Bitopic compounds and allosteric modulators may directly
bind to the secondary binding pocket, however, during the
association and dissociation process the secondary site plays a
crucial role for the appropriate positioning of all compounds.
While experiments rarely shed light on the structural details of
binding, molecular dynamics simulations can explore the
atomistic process and are useful to predict residence time
(Potterton et al., 2019; Decherchi and Cavalli, 2020; Lamim
Ribeiro et al., 2020; Salmaso and Jacobson, 2020; Bekker et al.,
2021; Kokh and Wade, 2021). Ribeiro and co-workers recently
used machine learning and infrequent metadynamics to
efficiently predict kinetic rates, transient conformational states,
and molecular determinants of drug dissociation on the MOR
(Lamim Ribeiro et al., 2020). While both investigated compounds
bind to the orthosteric pocket, the transient conformational state
for the dissociation was identified around the secondary binding
pocket suggesting a key role of the secondary site in the
association/dissociation process. In dynamic docking
simulations Bekker et al. investigated β2-adrenoreceptor
antagonists identifying several stable and metastable
conformational states for the compounds along their
association/dissociation path (Bekker et al., 2021). Based on

these simulations they propose a way to develop allosteric
modulators to inhibit the receptor by blocking the path of the
endogenous ligand to the orthosteric site. Metastable binding sites
play a crucial role in the study of Gaiser et al. as well (Gaiser et al.,
2019). They developed homobivalent bitopic ligands for β2AR to
target the OBP and a previously identified metastable binding site
as an allosteric site. Among others the residence time of
orthosteric and bitopic A2A receptor binders was predicted
with ensemble based steered molecular dynamics (Potterton
et al., 2019). Analysis of the pathways revealed dominant
interactions, residues influencing the dissociation time and the
calculations proposed that changes in water-ligand energy from
the ligand in the binding pocket to the extracellular vestibule was
the main factor in the determination of residence time. While
hydrophilic ligands are expected to access the orthosteric binding
site, that is deeply embedded in the center of the receptor, from
the aqueous phase, hydrophobic compounds were proposed to
entry through lipid pathways. The examples detailed in this part
explore the traditional pathway, however cholesterol and other
ligands might enter the receptor from the membrane. As an
exciting study we refer to the work of Guixá-González et al. who
investigated the cholesterol access to the A2AR with combined
computational and experimental methods. They showed that
cholesterol’s impact on A2AR-binding affinity goes beyond
pure allosteric modulation and unveils a new interaction mode
between cholesterol and the A2AR (Guixà-González et al., 2017).
Similar findings were collected and analysed in a recent review
dedicated to the role of the lipid bilayer in the binding of the
ligands to the orthosteric and allosteric sites (Szlenk et al., 2019).
Even though in this review we focused mainly on the secondary
binding pocket in the extracellular vestibule that is accessible
through the aqueous phase, some allosteric sites on the receptor
surface can only be targeted through the membrane fortifying
that investigation of the binding pathways through themembrane
is also crucial.

DESIGN APPROACHES FOR ALLOSTERIC
AND BITOPIC COMPOUNDS

During the previous sections we often pointed out the value of
computational approaches in the investigation of both allosteric
and bitopic compounds. Due to the tremendous number of
studies a comprehensive overview of the computational
approaches to design allosteric (Wold et al., 2019;
Chatzigoulas and Cournia, 2021) and bitopic ligands
(Newman et al., 20162020; Fronik et al., 2017) for GPCRs
warrant a separate review (Basith et al., 2018; Raschka and
Kaufman, 2020; Ballante et al., 2021), we could only highlight
here a few important studies to draw attention towards their
usefulness in drug discovery settings (Dehua Yang et al., 2021).

Allosteric sites are less conserved and therefore they can be
exploited to design ligands with high selectivity and modalities
that could not be achieved from the orthosteric site. The
increasing number of experimental GPCR structures urges the
use of structure-based methods. However, the identification of
the allosteric sites remains challenging as they often form fully
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only in the presence of an allosteric ligand following an induced
fit mechanism. Nevertheless, several computational approach
were developed to facilitate the spotting of new allosteric sites
like Allosite (Huang et al., 2013), AlloFinder (Huang et al., 2018),
ExProSE (Greener et al., 2017), Fpocket (Le Guilloux et al., 2009;
Schmidtke et al., 2010), FTmap (Brenke et al., 2009; Kozakov
et al., 2015), GRID (Goodford, 1985), LIGSITEcsc (Huang and
Schroeder, 2006), SiteMap (Halgren, 2009) and MixMD
(Ghanakota and Carlson, 2016). FTMap and FTSite was
recently shown to perform well on identifying GPCR allosteric
sites with limitations on those occurring on the protein-
membrane interface that could be attributed to the
development of the program originally for soluble globular
proteins (Wakefield et al., 2019).

Even after the identification of the allosteric site, simple
docking might not always be successful due to induced fit
binding. Furthermore, allosteric modulators are prone to
“steep” SAR, obscure relationship between the binding affinity
and functional effect and slow kinetics (on and/or off rates) that
hinders their discovery and design (Congreve et al., 2017b).
Huang et al. developed a protocol combining homology
modelling and docking to find novel allosteric modulators of
the orphan GPR68 and GPR65 receptors (Huang et al., 2015).
They generated over three thousand homology models and
docked their experimentally validated active compound
lorazepam and decoy compounds to identify putative binding
sites. They optimized the binding site around the bound ligand
and redocked the ligand and the decoys again until a stable
docking mode emerged. That plausible binding site was utilized
to dock over 3.1 million lead-like compounds. From the selected
17 hits four increased cAMP production. Docking close
analogues of the hit compounds lead to another 25
compounds for testing among them 13 with higher activity
than the reference compound lorazepam. Similar protocol was
utilized for the GPR65 receptor as well showing that the protocol
might be applied to a broader field. While this protocol might be
applied to several—even orphan—GPCRs it requires at least one
experimentally determined known active compound that might
be hard to get for other orphan GPCRs and close enough
homology to templates that warrant the homology modelling.
Nevertheless, this is a great example how the combined
experimental and computational approaches can lead to the
identification of novel allosteric modulators even for orphan
GPCR targets. Miao et al. focused on the identification of
novel, chemically diverse allosteric modulators of the M2

receptor (Miao et al., 2016). The authors used accelerated
molecular dynamics to account for receptor flexibility and to
generate an ensemble of structures for docking. After
retrospective validation virtual screening coupled with induced
fit docking (IFD) was applied to select compounds targeting the
IXO-nanobody-bound active and the QNB-bound inactive M2

mAChR for testing. The method successfully identified both
positive and negative allosteric modulators and clearly
demonstrate that accounting for receptor flexibility is a key in
the discovery of allosteric modulators. Nevertheless, for less
flexible binding sites even simple docking protocols might be
plausible as demonstrated by Korczynska et al. identifying a

positive allosteric modulator that potentiates antagonist
binding leading to subtype selectivity at the M2 muscarinic
acetylcholine receptor (Korczynska et al., 2018). Since
allosteric modulators are often small and rigid compounds,
fragment based approaches (Keserű et al., 2016) emerge as a
plausible choice for the design that is supported by several
successful application (Christopher et al., 2015; Orgován et al.,
2019). Furthermore, covalent approaches should not be
overlooked either to aid structurally informed rational design
(Lu and Zhang, 2017; Bian et al., 2020; Wenchao Lu et al., 2021).

Bitopic compounds are in the forefront of drug development
for GPCRs as they can combine the advantages of targeting the
orthosteric and a secondary site (Newman et al., 20162020;
Fronik et al., 2017). Fragment based methods are often applied
to design novel bitopic compounds (Vass et al., 2014; Egyed et al.,
2021). Recently our group have developed a computational
protocol to design specific, selective receptor ligands (Egyed
et al., 2021). First fragments were docked to the orthosteric
binding site of the receptors available in experimental
structures (D3: PDB ID: 3PBL (Chien et al., 2010), 5-HT1B:
PDB ID: 4IAQ (Wang et al., 2013), 4IAR (Wang et al., 2013);
5-HT2B: PDB ID: 4IB4 (Wacker et al., 2013), 4MC3 (Liu et al.,
2013); H1: PDB ID 3RZE (Shimamura et al., 2011) and M1: PDB
ID: 5CXV (Thal et al., 2016)), or a homology model in case of the
D2 receptor. Then, virtual fragment screening was performed
against the secondary binding site of the combined protein-ligand
complex. The identified SBP fragment was then linked to the OBP
core by a linker. As a control, the resulting bitopic compounds
were docked back into the initial crystal structure. This protocol
has been validated by designing selective D2/D3, 5-HT1B/5-HT2B

and H1/M1 receptors. Docking-based fragment evolution
approach utilizes the same methodology as exemplified on the
design of β1 and β2 receptor bitopic compounds (Chevillard et al.,
2021). The fragment evolution protocol merges fragment
growing with a matrix-based strategy that was originally
implemented for potency optimization (Chevillard et al.,
2019). First, possible OBP fragments were docked and they
were evaluated using the concept of ligand efficiency. Next,
fragment growing surrogates suitable for reactive alkylation
were defined and docked to the secondary binding pocket.
Surrogates that overlap with the core OBP fragment or was
marked favourably in both receptors were removed from the
top ranked compounds, the remaining top surrogates were kept
for further investigation. The OBP fragments were reacted in
silico with the surrogates, the resulting compounds were docked
into the receptors to ensure pose fidelity. Based on these
calculations the best surrogates were selected as secondary
binding motif for the β1 and β2 receptor, respectively. The
approach was validated by the synthesis and experimental
evaluation of the designed compounds. Classical docking and
virtual screening approaches could be also utilized for the
development of bitopic compounds (Cao et al., 2018) and
even to develop fluorescent GPCR probes (Prokop et al.,
2021). We highlight here a study that utilized structure guided
design of GPCR polypharmacology (Kampen et al., 2021).
Kampen et al. aimed to design dual A2A/D2 bitopic
compounds that was very challenging due to the significantly
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different binding sites of the receptors. First, docking based
structural analysis confirmed that dual-target ligands of the
A2AR and D2R could be obtained by targeting the orthosteric
and secondary pockets. Then, they designed potential dual
targeting virtual chemical libraries that could be rapidly
synthesized. The prepared libraries were screened virtually
with docking on the A2A and the D2 receptor to select hits.
From them one promising compound was selected and developed
further with SAR investigations.

Discussing the recent advances in the allosteric and bitopic field
we pointed out several times the usefulness of MD based methods.
These simulations can explore the differences in the interaction
patterns of congeneric molecules more sensitively compared to
docking that could be important to understand the different
functional outcome of these ligands (Egyed et al., 2020) and to
design compoundswith specific pharmacological profile (McCorvy
et al., 2018) and they might reveal cryptic pockets opened by
ligands (Ferruz et al., 2018) that might be overlooked in simple
docking calculations. Mutation studies combined with extensive
molecular dynamics modelling the dissociation of the ligands was
utilized to clarify the structural basis of the long duration of action
and kinetic selectivity of tiotropium for the M3 receptor
(Tautermann et al., 2013). A similar study aimed to clarify the
molecular determinants of the bitopic binding mode of a negative
allosteric modulator of the dopamine D2 receptor (Draper-Joyce
et al., 2018). MDs combined with docking linked the degree of
closure of the extracellular loop region to the extent of ligand bias
and highlighted the importance of the appropriate receptor
conformation for virtual screening at the 5-HT2B receptor
(Denzinger et al., 2020). A similar concept was presented by
Bermudez et al. proposing that agonists with extended binding
modes selectively interfere with binding pocket closure and
through divergent allosteric coupling that leads to ligand bias
(Bermudez and Bock, 2019).

The structure-based methods clearly benefit from the increase of
published GPCR structures, especially that more and more active
structures are available, however the design still remains challenging.
Nevertheless, with more template available for homology modelling
and the publication of AlphaFold (Jumper et al., 2021) facilitate the
structure-based methods for targets previously out of scope for these
methods broadening the applicability spectrum. While we mainly
highlighted structure based approaches classical ligand based
methods and cheminformatics also contribute to the development
of bitopic GPCR ligands (Basith et al., 2018; James and Heifetz, 2018;
Raschka and Kaufman, 2020).

CONCLUSION

GPCRs are one of the largest families of receptors and are among
the most targeted proteins for drug discovery. One of the major
challenges in the field is the identification of subtype and
functionally selective compounds with high potency, designed
efficacy and appropriate binding kinetics profile, which are
essential to avoid side effects. The secondary binding pocket
plays a prominent role in achieving selectivity, while orthosteric
ligands are mainly responsible for affinity and functional activity.
Bitopic compounds combine the properties of orthosteric and
allosteric pharmacophores. With the continuous expansion of
available GPCR structures, the secondary binding sites of the
receptors are becoming better understood, allowing the
construction of complex ligands with designed pharmacological
profile. In this review, we have provided an insight into allosteric
modulators of class A GPCRs and a detailed review of bitopic
compounds that have been released in the last years. We have
highlighted the influence of the secondary site in affinity,
selectivity, functional selectivity and binding kinetics. The
increasing amount of pharmacological data and new structures
together with appropriate modelling tools can contribute to the
design of allosteric and bitopic drug candidates with an optimized
pharmacology profile and thus accelerating the drug discovery
against diseases with high unmet medical need.
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Limits of Prediction for Machine
Learning in Drug Discovery
Modest von Korff* and Thomas Sander

Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland

In drug discovery, molecules are optimized towards desired properties. In this context,
machine learning is used for extrapolation in drug discovery projects. The limits of
extrapolation for regression models are known. However, a systematic analysis of the
effectiveness of extrapolation in drug discovery has not yet been performed. In response,
this study examined the capabilities of six machine learning algorithms to extrapolate from
243 datasets. The response values calculated from the molecules in the datasets were
molecular weight, cLogP, and the number of sp3-atoms. Three experimental set ups were
chosen for response values. Shuffled data were used for interpolation, whereas data for
extrapolation were sorted from high to low values, and the reverse. Extrapolation with
sorted data resulted in much larger prediction errors than extrapolation with shuffled data.
Additionally, this study demonstrated that linear machine learning methods are preferable
for extrapolation.

Keywords: machine learning, drug discovery, extrapolation, data set, PLS (partial least square), Gaussian
regression, random forest, support vector regression

INTRODUCTION

In drug discovery, new molecules undergo clinical trials in human subjects only after numerous
checks for safety and potency in biological test systems. Often, a drug suitable for oral administration
is desired, i.e., a molecule that can cross cellular membranes separating the gastrointestinal system
and blood vessels. After absorption, blood vessels distribute the molecule throughout the organism
and to its site of action. Blood contains many proteins that bind a substantial fraction of any
compound. During distribution, molecules pass through the liver, which contains enzymes able to
metabolize many types of chemical substances, thus reducing the concentration of the active drug
(clearance). An important measure used in the optimization of a bioactive molecule is plasma
exposure after oral administration, often expressed as “area under the curve” (AUC), i.e., the
concentration of the active molecule in blood plasma integrated over time. Bioavailability depends on
multiple properties of the molecule including cell layer permeability and clearance in the liver. When
a molecule reaches the target protein, it must bind in such a way that it has the desired effect. A
specific assay is usually developed to measure the effect of the molecule on the target protein. At
present, it is still not possible to design a successful drug, fulfilling all necessary requirements, without
biological tests. However, biological testing requires time and resources, which limit the number of
compounds that can be explored. Medicinal chemists require quantitative models allowing
prioritization the most promising molecules for biological testing.

Related Work
The use of quantitative structure-activity relationships (QSAR) is essential in drug discovery and has
been investigated in multiple publications (Gramatica, 2007; Cherkasov et al., 2014). Recently, huge
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efforts has been undertaken to find appropriate meta-parameter
for QSAR models (Olier et al., 2018). It is well known that
statistical models lose their predictive power when they are
outside the range of calibration. Outside the calibration range,
confidence intervals become infinite. These limits have been
previously discussed for QSAR from (Tong et al., 2005) and
were formulated in OECD policies for the validation of QSAR
models (Member countries, 2004; OECD, 2014). Closely related
to the calibration range is the term applicability domain. The
term applicability domain is used in cheminformatics for
quantitative structure activity models. The OECD guideline
demands to consider the applicability domain but does not
give a binding definition. By Roy et al. the application domain
was defined as “The AD is a theoretical region in chemical space
encompassing both the model descriptors and modeled response
which allows one to estimate the uncertainty in the prediction of a
particular compound based on how similar it is to the training
compounds employed in the model development” (Roy et al.,
2015). If the predicted molecules are similar to the training
molecules in descriptor space, they are in the application
domain (Jaworska et al., 2005). In drug discovery, the modeled
response are molecular properties which the medicinal chemists
aim to optimise. So, the properties medicinal chemists would like
to predict are often outside the range of response values, which
were already covered by experiments. At the start of a drug
discovery project, a few molecules are usually identified which
show modest activity at the target protein site. Starting
compounds are modified by medicinal chemists to improve
their properties. By adding all available information into the
new compounds, they improve their characteristics over time.
The next compound is often designed with the aim to show a
lower binding constant to the target protein. Usually, this
compound is similar to the already synthesized compounds
and therefore in the applicability domain. During this
optimization process, the desired response values are outside
the range of the available response values. A model that aims to
support the medicinal chemist in his work needs the capability of
extrapolation. Recently, the use of extrapolation throughmachine
learning, to assess the bioactivity of a molecule in drug discovery,
has been evaluated (Cortés-Ciriano et al., 2018). Extrapolation
outside the upper limits of the measured value range is wanted for
the plasma exposure after oral administration. The plasma
exposure should be as high as possible, but in a drug
discovery project it is often to low. Additionally, frequently the
majority of available response values are far away from the
desired value range.

Our Work
The missing information in QSAR literature about differences
between the errors of interpolation and extrapolation triggered a
question. How effective can extrapolation of response values for
chemical molecules be? To answer this question, we decided to use
organic molecule datasets with calculated physicochemical
properties. The physicochemical properties were used as
response values in this study and were calculated from the
molecular structure. Mathematically, a molecule is represented
as a small graph with colored edges and colored nodes. This

molecular graph cannot directly be used as input for the applied
machine learning methods. The graph must be transformed into a
vector, a chemical descriptor. Machine learning creates models that
relate descriptor vectors to the corresponding response values.With
our setup a fully correct machine learning model was theoretically
possible. The complete information needed to predict the response
values was enclosed in themolecular structure. If this information is
transferred to the descriptor vector and the machine learning
algorithm constructs a perfect fitting model, a correct prediction
will result. This model is “semi-mechanistic”, which is covered by
the OECD guideline “When the AD is defined in more mechanistic
terms, the (Q)SAR can predict reliably beyond the physicochemical
and response space of the training set”. In our experimental setup
the used response values allowed the machine learning algorithms
to create such “semi-mechanistic” models.

METHODS

Datasets
For the construction of our molecule datasets, the size and
structure of typical datasets in drug discovery was considered.
In a drug discovery project, the molecules usually show a high
similarity. New molecules are derived from a starting molecule
that is explored by medicinal chemists. The newly synthesized
molecules are similar to the starting molecule, but ideally have the
desired features. We mimicked this process by taking a known
drug molecule and removing randomly peripheral non hydrogen
atoms. The removed atom was replaced with an appropriate
number of hydrogen atoms. Rings were also randomly cut. Three
top selling drug molecules were chosen: apixaban, rosuvastatin,
and sofosbuvir (Figure 1). From each molecule, three sets,
Sapix,1–3, Srosu,1–3 and Ssofo,1–3, of about 300 molecules each
were created. Consequently, nine datasets were constructed
from three blockbuster drugs. Similar molecules are needed for
successful machine learning models in QSAR (Netzeva et al.,
2005). The similarity of test- and training molecules was
guaranteed by our molecule degradation approach.

Dependent Variables
Dependent variables and response variables were calculated for
each molecular structure. The simplest dependent variable in this
study was molecular weight, which was calculated from the
corresponding molecular formula. The logP value, the
logarithm of the 1-octanol/water partition coefficient, is a
more sophisticated variable which estimates the distribution of
a drug based on an octanol/water system. The cLogP value
assesses the permeation of a molecule from the gastrointestinal
tract into blood vessels, and it is an important measure in drug
discovery. Here, a fragmental approach from DataWarrior
(Sander et al., 2015) was used to calculate the cLogP. This
fragmental approach was developed for the OSIRIS Property
Explorer (OsirisP) and successfully benchmarked in a large study
with 90,000 compounds (Mannhold et al., 2009). In this
independent examination, OsirisP ranked between the top
logP calculation methods. An improved version of the Osiris
logP calculator was implemented in DataWarrior in 2014. This
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updated OsirisP calculation is implemented as increment system
adding contributions of every atom based on its atom type.
OsirisP distinguishes around 400 atom types. This includes
hybridisation state, ring membership, aromaticity, and
additionally to the older version charges. More than 5,000
compounds with experimentally determined logP values were
used as training set to calculate the increments. A recent
comparison with 25,000 experimental logP values is given in
Figure 2. The strong relation between the experimental and the
calculated logP is shown by a correlation coefficient of 0.93.

However, this strong correlation is not needed for our
experimental setup. Important for the experiment is the linear
dependency between the molecular structure and the calculated
logP values. Theoretically, this linear dependency allows linear
regression methods like partial least square regression a perfect fit
of dependent and independent variables.

A third response variable was the number of sp3-carbon atoms
in a molecule, where each sp3-carbon atom has 4 neighboring
atoms. In early drug discovery, the number of sp3-carbon atoms
is used to chose molecules for high throughput screening in

FIGURE 1 | Seed molecules for dataset generation.

FIGURE 2 | Comparison of 25,000 experimental logP values with DataWarrior calculated logP.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8321203

von Korff and Sander Limits of Prediction

187

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


biological assays. For every molecule in the nine datasets Sapix,1–3,
Srosu,1–3 and Ssofo,1–3, the three dependent variables were
calculated. By considering independent and dependent
variables, a set of 27 datasets was obtained. A summary of the
obtained values is given in Table 1.

Descriptors
A molecular graph is inappropriate input for most machine
learning algorithms. Molecular descriptors are used in
cheminformatics to describe molecular structure in algebraic
form (Todeschini and Consonni, 2008). For a descriptor, a
molecular graph is usually converted into a vector, which is
the input for machine learning. The transformation from a
molecule into a vector is one directional and comes with a
loss of information. The molecular structure can not be
recovered from the vector. Different transformations result in
different losses of information. For this reason, three different
topological molecule descriptors were chosen.

Fragment Fingerprint Descriptor
The fragment fingerprint is a dictionary based descriptor with a
length of 512 bits. Each bit represents a substructure fragment.
The dictionary of 512 substructures was created by a
computational procedure, which had been optimized to
achieve two goals: 1) any of these fragments should occur
frequently in organic molecule structures and 2) each
fragment should be linearly independent with regard to their
substructure-match-pattern in diverse organic compound sets.
To generate a descriptor vector, the molecular structure is
searched for any of the substructures in the dictionary. For
any match, the corresponding bit of the vector is set to 1. Any
molecular structure is represented by a binary vector of length
512. The fragment fingerprint descriptor belongs to the same
class as the “MDL structure keys” (McGregor and Pallai, 1997),
which have recently been shown to outperform 3D descriptors in
virtual screening (Nettles et al., 2006).

Path Fingerprint Descriptor
The path fingerprint is a molecular graph path walking
fingerprint descriptor. All distinguishable paths with up to 7

atoms are hashed into a descriptor vector of 512 bits. This
descriptor is conceptually similar to ChemAxCFp, the
chemical fingerprints from ChemAxon (ChemAxon, 1998) and
to the Daylight fingerprints (Daylight, 1998).

Skeleton Spheres Descriptor
The skeleton spheres descriptor is a vector of integers which
counts the occurrence of different substructures in a molecule.
Five circular layers with increasing bond distance are located for
each atom in the molecule. Hydrogen atoms are not considered.
This results in four fragments starting with the naked central
atom, adding one layer at a time. Every fragment is encoded as a
canonical string (id-code), similar to the generation of canonical
SMILES (Weininger et al., 1989). The canonical id-code includes
the stereochemistry of the encoded fragment, which is a feature
missing in other molecular descriptors. The id-code is then
assigned to one of 1,024 fields in a vector. Therefore, the hash
value of the id-code is calculated and the corresponding value in
the vector is increased by one. The Hashlittle algorithm (Jenkins,
2006) is used as a binning function, which takes a text string as
input and returns an integer value between 0 (inclusive) and
1,024 (exclusive). In preliminary experiments, this hash function
showed a good uniform distribution of the generated hash
values. To consider the molecular scaffold without the
influence of the heteroatoms, the whole calculation is
repeated while replacing the hetero atoms with carbon. The
resulting hash values are used to increment the corresponding
fields in the vector. By adding this skeleton information to the
descriptor vector, the similarity calculation between two
descriptor vectors becomes a bit insensitive to the exact
position of the heteroatoms in two molecules. This directs the
similarity value towards the perception of similarity bymedicinal
chemists. For medicinal chemists, the exact position of a hetero
atom is not as discriminating as it would be for the spheres
descriptor without the skeleton coding part. The additional
consideration of the scaffold information and the use of a
histogram instead of a binary vector distinguishes the
skeleton spheres descriptor from other circular fingerprints.
(Glem et al., 2006).

TABLE 1 | Summary of the response values for all datasets. The first column
indicates the property and the other columns the minimum, maximum,
average, standard deviation, and median values.

min max avr sdv median

Apixaban
MW 110 434 288 101 294
sp3-atoms 2 19 10 3 10
cLogP −2.5 6.8 2.1 1.6 2.2
Rosuvastatin
MW 60 453 255 115 256
sp3-atoms 0 17 8 4 8
cLogP −1.0 6.0 2.6 1.3 2.6
Sofosbuvir
MW 110 500 317 108 317
sp3-atoms 5 24 16 4 16
cLogP −4.8 4.8 0.8 1.2 0.9

FIGURE 3 | Prediction of molecular weight, random shuffling.
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Each of the nine molecule sets Sapix,1–3, Srosu,1–3, and Ssofo,1–3
was compiled into three descriptor sets fragment fingerprint, path
fingerprint and skeleton spheres.

Dataset Construction
A dataset D contains a matrix X and a vector y. Every row in the
matrix X represents a molecule by one of the three descriptors,
fragment fingerprint, path fingerprint, and skeleton spheres.
Corresponding to a row i in X is a response value i in y.
Three response values, molecular weight, cLogP and sp3-
carbon, were available for each row in X. In drug discovery
projects, the optimization process aims for response values
outside the range of response values initially obtained. To
assess the predictive power of a machine learning tool in a
drug discovery project, we sorted the compounds by their
response values. One dataset contained the ascending response
values, a second the descending values and a third dataset was
compiled from the shuffled response values. Summarizing the
data set up, nine sets with molecules, each set compiled three
descriptors, gave 27 descriptor matrices X. Three different
response values, molecular weight, cLogP, and the number of
sp3-carbon atoms were sorted according to ascending,
descending or shuffled data. Combined with the 27 X
matrices, a total of 243 datasets were obtained. The molecules

together with the descriptors and the calculated response values
are available from (Korff, 2021). Each of these datasets underwent
the successive regression procedure, as described in the next two
paragraphs.

Machine Learning Techniques
Six modeling techniques were applied to construct regression
models for the datasets: k next neighbor regression (kNN), partial
least square regression (PLS), partial least square regression with
power transformation (PLSP), random forest regression (RFR),
Gaussian process regression (GPR), and support vector (SVM)
regression. All parameters for these machine learning models
were optimized by an exhaustive search. The median model was
used as a baseline model. Any successful machine learning model
should be significantly better than the baseline model. Also easy
to calculate was the k next neighbor model for regression. In this
model, the k next neighbors in the training set were screened for
the query descriptor vector. The predicted ŷ value was the average
of the corresponding y values weighted by similarity. Partial least
square regression (PLSR) is a multivariate linear regression
technique (De Jong, 1993), which only requires the number of
factors as the input parameter. PLSR with power transformation
includes a Box Cox transformation and is often used to model

TABLE 2 | Prediction of molecular weight, random shuffling, skeleton spheres
descriptor. The first column indicates the machine learning algorithm. The first
row is the fraction of data used for model construction. The other values are the
relative errors of the test data.

Fraction of train data

0.30 0.40 0.50 0.60 0.70 0.80 0.90
GPR 0.02 0.01 0.01 0.01 0.01 0.01 0.01
Med 0.29 0.30 0.30 0.29 0.29 0.29 0.28
PLS 0.02 0.01 0.01 0.01 0.01 0.01 0.01
PLSP 0.02 0.01 0.01 0.01 0.01 0.01 0.01
RFR 0.03 0.03 0.02 0.02 0.02 0.02 0.02
SVM 0.02 0.02 0.02 0.02 0.01 0.01 0.01
kNN 0.09 0.08 0.08 0.07 0.06 0.07 0.06

FIGURE 5 | cLogP, random shuffling.

FIGURE 4 | sp3-atoms, random shuffling.

FIGURE 6 | Molecular weight, high to low sorted response values.
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biological data, which are notoriously not normally distributed
(Sakia, 1992). For random forests and Gaussian process
regression, we used the implementation from Haifeng Li. (Li,
2021). Random forest regression was only included because it is
frequently used for models in drug discovery. Random forests
base on decision trees and are not capable of extrapolation. The
Java program library libsvm was used for the support vector
machine regression (Chang and Lin, 2011). Details for meta-
parameter search: kNN: k from 1 to 9, step 1. PLSR: factors from 1
to 31, step 1. PLSR power transformation: factors like PLSR; λ
from 0.05 to 2, step 0.05. Gaussian process regression: λ 0.001,
0025 . . . 1, . . . 10,10,000. Random forest: trees 50, 100, 250, 500,
1,000; Maximum number leaf nodes from 2 to 54 step 2. Mtry:
0.15, 0.333, 0.45. Maximum node size from 2 to 54, step 2.
Support vector regression: (Smola and Schölkopf, 2004) Epsilon
regression, RBF kernel, power of 2 rule for: C from 2 to 5 to 215; ϵ
from 2 to 10 to 26; γ 1/(number of fields in the descriptor). Details
for the objective function are given in the next section.

Successive Regression
A two-step process was implemented to ensure an unbiased
estimation for the extrapolation power of a model. The first step
was the selection of one meta-parameter set for every machine

learning technique. The algorithm started with the first 20% of the
molecule descriptors X0,0.2, y0,0.2 together with the measured
response values to determine the meta parameters of the
machine learning models via an exhaustive search. An eleven-
fold Monte Carlo cross validation was employed to split all data
into the training and validation datasets (Xu and Liang, 2001). A
left out fraction of 25% was chosen as the size of the validation
dataset. With this set up, the average error for all meta-parameter
sets was calculated. For each machine learning technique t, the
meta-parameter set Mmin,t was chosen that showed the minimum
average error. This meta-parameter set was used to construct a
model from all data in X0,0.2, y0,0.2. In the second step, an
independent test set was compiled from the next 10% of data,
X0.3, y0.3. The average prediction error of ŷ0.3 gave an unbiased
estimator for the model, because the machine learning algorithm
Mmin,t,0.2 had not seen these data before prediction. Subsequently,
step one was repeated, this time with the dataset X0.3, y0.3. So, the
former test data were added to X0,0.2, y0,0.2. The meta parameter for
the machine learning algorithms Mmin,t,0.3 were now determined

FIGURE 7 | Number of sp3-atoms, high to low sorted response values.

FIGURE 9 | Molecular weight, low to high sorted response values.

FIGURE 8 | cLogP, high to low sorted response values.

FIGURE 10 |Number of sp3-atoms, low to high sorted response values.
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with X0,0.3, y0,0.3. So, the prediction was done for y0.4. This process
was repeated eight times, up to a model size with X0,0.9, y0,0.9 and a
prediction for y1.0. Using thismethod, we assessed the extrapolation
power of the machine learning method together with the applied
molecular descriptor for the sorted response data. The 10% test set,
with higher or lower response values than the training set, was an
unbiased estimator of the model’s quality for extrapolation. As a
quality measure for prediction, we used the relative error.

Technical Details
The source code was implemented in Java 1.8. The calculations
were done on a SuperMicro computer with 176 processor cores.
Meta-parameter calculation and test data prediction took
approximately 72 h for all datasets. Data visualization was
done with DataWarrior (Sander et al., 2015), an open source
tool for data visualization and evaluation (Sander, 2021).

RESULTS

The successive regression procedure was applied to all 243
datasets. In the following, the results for nine datasets with the
molecular structures Sapix,1–3, Srosu,1–3 and Ssofo,1–3 are
summarized by their median relative error. No extrapolation
was needed for the shuffled datasets. Figure 3 and Table 2 show
the machine learning results for the prediction for the shuffled
data for three descriptors and three properties. The three
descriptors, fragment fingerprint, path fingerprint and skeleton
spheres, are indicated by shape. Circles, squares and triangles
indicate fragment fingerprint, path fingerprint and skeleton
spheres descriptors, respectively. A color code was used for the
machine learning algorithms. Green indicated our base line
model, which was the prediction by median, kNN regression
in red, Gaussian process regression in blue, partial least square
regression in yellow, partial least square regression with power
transformation in light blue, random forest regression in
magenta, and support vector regression in orange. All results
are available as Data Warrior files (Korff, 2021).

For almost all models, the relative error for predicted molecular
weight was less than 10%. For the majority of predictions, relative
error was less than or equal 5%. No preference for any of the
descriptors was observed, as indicated in Figure 3. A higher
separation was shown by the machine learning techniques. The
error for the median model is not shown in Figure 3. A relative
error of approximately 30% was observed for all fractions of the
model. Three machine learning models performed equally well.
Gaussian process regression, partial least square regression and
partial least square regression with power transformation showed a
relative error below 3%. These results were obtained together with
the skeleton spheres descriptor.

Figure 4 shows the results for the sp3-atoms with the shuffled
data. The results were similar to the predictedmolecular weight in
3. Relative error was higher than for the molecular weight
prediction, but all models were better than the median model.
In contrast to the molecular weight prediction, all three
descriptors performed equally well for the models with the
lowest error.

The predictions for cLogP, draw a different picture than the
predictions for molecular weight and number of sp3-atoms,
Figure 5. Only one model showed a relative error below 20%.

FIGURE 11 | cLogP, low to high sorted response values.

TABLE 3 | Summary of the best results for the machine learning techniques. Rank
count for the top three ranks. The ranks were calculated from all descriptors,
predicted properties, and fractions of training data. The columns show the three
different orientations of the response data: shuffled, sorted from high to low and
from low to high.

ML method Shuffled low2high high2low

Gaussian process regression 9 6 1
KNN regression 0 0 0
Median 0 0 0
PLS 8 13 18
PLS Power 3 6 6
Random Forest regression 0 0 0
SVM regression 7 2 2

TABLE 4 | Summary of the best results for the three descriptors. Rank count for
the top three ranks. The ranks were calculated from all methods, predicted
properties, and fractions of training data.

Descriptor Shuffled low2high high2low

FragFp 17 16 13
PathFp 16 22 26
SkelSpheres 30 25 24

TABLE 5 | Summary of the best results for the three response datasets. Rank
count for the top three ranks. The ranks were calculated from all descriptors,
methods, and fractions of training data.

Response value Shuffled low2high high2low

MW 54 47 49
cLogP 0 0 0
sp3-Atoms 9 16 14
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Many models were worse than the median model, indicated in
green. The best performing machine learning models were partial
least square regression and Gaussian process regression.

The prediction for shuffled data did not require extrapolation.
The data range of the response values is covered by the training
data. To simulate the requirements of drug discovery, the datasets
were sorted by their response values. In the following, we discuss
the results for sorting from high to low response values. This
experimental set up forced the machine learning algorithms into
extrapolation. The range of predicted response values was always
outside the range of the training data. Figure 6 shows the results
for the prediction of molecular weight. The data were sorted from
high to low.

As for the molecular weight prediction for shuffled data, the
skeleton spheres descriptor together with partial least square
regression, partial least square regression with power
transformation and Gaussian process regression delivered the
most predictive models. The range of the relative errors was very
large, below 10% for the best models up to 50% for the kNN
models with the skeleton spheres descriptor, depicted in red
triangles. But, relative errror was higher for all predictions
than for the shuffled data. For the shuffled data, only one
prediction was above a relative error of 0.1, with the kNN
model at a fraction of 0.2. For the high to low sorted
molecular weight data the majority of predictions showed a
relative error above 0.1.

Two trends were observed for the prediction of number of sp3-
atoms, Figure 7. The relative error of the median prediction
increased with an increasing fraction of data used to construct the
models. This also happened with the relative error for the kNN
models, in red, and the random forest, in magenta. The relative
error for Gaussian process regression, partial least squares, partial
least squares with power transformation and support vector
regression remained almost constant. As for molecular weight,
the predictions for high to low sorted data had a much higher
relative error than predictions for sorted data.

Figure 8 shows the results for cLogP. Data were sorted from
high to low. Curve progression was similar to the curve
progression of the relative error for the sp3-atom number
prediction. However, the values for the relative error are
much higher. Only four predictions had relative errors less
than 100%.

When molecular weight values were sorted from low to high,
the values to be predicted were higher than the values used for
model construction. For the molecular weight prediction, the
results are depicted in Figure 9. The skeleton spheres descriptor
resulted inmodels with the lowest relative error. In the figures, the
skeleton spheres descriptor is indicated by triangles. For the
prediction of the number of sp3-atoms in Figure 10 the
models constructed from the path fingerprint were better than
the models constructed from the skeleton spheres descriptor. As
for the high to low sorted values in Figure 7, the path fingerprint
was the best performing descriptor. Also, for cLogP value
prediction, given in Figure 11, the path fingerprint was the
best performing descriptor.

For each of the experimental set ups, including 243
individual datasets, all machine learning algorithms

outperformed median predictions, which were used as
baseline controls. kNN regression and random forest
regression were very similar in their prediction quality. These
two algorithms were outperformed by support vector
regression. The best performing machine learning algorithms
were Gaussian process regression, partial least square regression
and partial least square regression with power transformation.
Together with the path fingerprint and the skeleton spheres
descriptor, the best results were obtained. The relative errors for
the successive predictions were lower for the low to high sorted
values than for the high to low sorted values. This was caused by
numeric effects, the absolute prediction error for big values
results in a lower relative error than the same absolute
prediction error for small values.

RESULTS SUMMARY AND CONCLUSION

All results are summarized in Tables 3–5. The figure of merit was
the rank of the median error. For every successive fraction of test
data, a median error was calculated from the nine molecule
datasets Sapix,1–3, Srosu,1–3 and Ssofo,1–3. By using the ranks of
the errors, a bias was prevented, which would have been
otherwise introduced by the error dependency on the fraction
of training data. Because, a higher fraction of training data
generally results in better models. This would have resulted in
a bias if the median would have been used. By using the ranks the
results for different fractions of training could be combined. In
Tables 3–5, the frequency of the top three ranks is given. This
means, the rank count increased by one, if the corresponding
error belonged to the three lowest errors for the given conditions.
Results for the machine learning algorithms are provided in
Table 3. For shuffled response data, Gaussian process
regression delivered the highest number of top models 9) for
prediction. For extrapolation, for high to low sorted and for low to
high sorted data, the partial least square regression outperformed
the other machine learning algorithms. That the linear method
outperformed the non-linear method is in accordance with the
results from (Cortés-Ciriano et al., 2018), where the linear
method, ridge regression, also outperformed the non-linear
method, random forest.

Results for the descriptors are provided in Table 4. In total, the
skeleton spheres descriptor outperformed the other two
descriptors. However, the path fingerprint slightly
outperformed the skeleton spheres descriptor for extrapolation
for the high to low sorted response values. Table 5 presents the
rank counts for the most accurately predicted response values. As
expected, the best models were obtained for molecular weight,
followed by the number of sp3-atoms.

The purpose of this study was to examine the difference
between prediction in the range of the training response
values and extrapolation outside the training response values.
It must be considered that the molecules in each dataset were
derived from a single molecule. Consequently, there was a high
similarity between molecules in a dataset. All molecules in this
examination were in the domain of applicability. They were
similar to the training molecules in descriptor space.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8321208

von Korff and Sander Limits of Prediction

192

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Nevertheless, the differences between the relative errors for the
shuffled data and sorted data were striking. Even for molecular
weight, with a very low error for shuffled data, the extrapolation
for high to low sorted data became much more difficult. This was
unexpected, because molecular weight depends solely on the
molecular formula and does not need any molecular graph
dependent feature. In addition, the relation between the
molecular formula and molecular weight is strictly linear.
cLogP values were hardest to predict. Prediction was achieved
with a moderate error for shuffled data using linear regression
techniques. However, after sorting the response values from high
to low and successively extrapolating the lower values, no
meaningful prediction for cLogP was possible. None of the
machine learning algorithms were able to extrapolate cLogP
values for high to low sorted data. This result was unexpected
because the cLogP model is an incremental model that relies on
substructure contributions to the overall cLogP. Therefore the
contributions are linear and theoretically can be modelled by
linear regression with chemical descriptors. We had expected,
that the linear regression algorithms would be able to create
“semi-mechanistic”models with more predictive power. There is
a high demand in drug discovery for extrapolation of molecular
features. The results of this study show large differences in
prediction quality between interpolation and extrapolation.
This demonstrates that any model used for extrapolation
should be validated with extrapolation. For this validation, we
suggest the successive prediction as described in this

contribution. We suggest to add the prediction of calculated
values as reference standard to all publications in
cheminformatics when regression methods are applied. Partial
least square regression was by far the most successful
extrapolation method. The successful extrapolation of
molecular features show that partial least square regression is
capable of providing meaningful models for extrapolation.
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From Data to Knowledge: Systematic
Review of Tools for Automatic
Analysis of Molecular Dynamics
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An increasing number of crystal structures available on one side, and the boost of
computational power available for computer-aided drug design tasks on the other,
have caused that the structure-based drug design tools are intensively used in the
drug development pipelines. Docking and molecular dynamics simulations, key
representatives of the structure-based approaches, provide detailed information about
the potential interaction of a ligand with a target receptor. However, at the same time, they
require a three-dimensional structure of a protein and a relatively high amount of
computational resources. Nowadays, as both docking and molecular dynamics are
much more extensively used, the amount of data output from these procedures is also
growing. Therefore, there are also more and more approaches that facilitate the analysis
and interpretation of the results of structure-based tools. In this review, we will
comprehensively summarize approaches for handling molecular dynamics simulations
output. It will cover both statistical and machine-learning-based tools, as well as various
forms of depiction of molecular dynamics output.

Keywords: molecular dynamics, machine learning, structure-based drug design, clustering, data dimensionality
reduction, interaction fingerprints

INTRODUCTION

Structure-based drug design is becoming an indispensable part of virtual screening campaigns, due to
the expanding possibilities of carrying out experiments from this path. It is related both to the
achievements in the field of crystallography (expressed by the increasing number of deposited crystal
structures), but also to the availability of the computational power and more efficient computational
algorithms. Structure-based tools, with their key representatives—docking and molecular dynamics
simulations–are a great source of information on the possible interaction schemes occurring between
ligand and target receptors (Yang, 2014; Wang et al., 2018).

Molecular docking is a technique that aims to predict the optimal binding mode(s) of a ligand in
the respective receptor (Morris and Lim-Wilby, 2008; Guedes et al., 2014; Ferreira et al., 2015). As the
docking methodology relies on minimizing free energy of the ligand-receptor complex, the obtained
structure can constitute a good starting point for more detailed analysis of ligand-protein
interactions during molecular dynamics (MD) simulations (Santos et al., 2019; Wang et al.,
2019). Moreover, as most docking tools provide limited flexibility of the target, MD can explore
conformational space and generate an ensemble of receptor conformations, which could further be
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used during screening of chemical databases (Amaro et al., 2018;
Acharya et al., 2020). The so-called ensemble sampling has not
only increased the hit rate and, thus, improved the quality of
virtual screening, but has also allowed efficient docking to the so-
called “difficult protein targets” (Fu et al., 2014; Ellingson et al.,
2015; Uehara and Tanaka, 2017; Bhattarai et al., 2020).

MD is an approach that relies on simulating dynamical
changes of the system and capturing its evolution in time. MD
offers an insight into the movement of the ligand-receptor
complex at an atomistic level. Furthermore, it enables
quantitative estimation of parameters that cannot be
established in wet-lab experiments, e.g., values of torsional
angles to describe flexibility, solvent accessible surface area to
predict stability, or change in the entropy for distinct structures,
such as water molecule in particular location (Ferreira et al., 2015;
Leimkuhler and Matthews, 2016; Hollingsworth and Dror, 2018).
The basis of the classical MD methodology is solving the
Newton’s motion equations for each atom in the system,
where the potential energy and forces of interacting particles
are from the force-field definitions (Sutmann, 2002; Lindahl,
2008). These approximations are necessary to balance between
the required accuracy and optimal speed of simulations’
performance. Moreover, MD timestep should be very
small—1–10 fs – in order to minimize errors related to the
potential energy estimation (Binder et al., 2004; Leimkuhler
and Matthews, 2016). Huge numbers of timesteps, which are
required for even relatively short simulations, contribute to the
consumption of a great amount of computational resources.
Fortunately, due to the increasing computational power and
possibilities to perform simulations with the use of graphical
processing units (GPU), MD simulations reached a millisecond
time scale allowing to investigate events such as protein folding
(Figure 1; Lindahl, 2008).

Thus, the amount of data produced by MD has dramatically
increased over recent years and is far beyond the accessibility of
manual analysis. For this reason, it is crucial to develop
automatic tools for post-processing of such data. Great
numbers of approaches are offered specifically by the
software for MD simulations. Nevertheless, a lot of new
independent methods for automated analysis have appeared
recently, which are based on various statistical methods and
machine learning (ML).

ML approaches are nowadays used at each stage of the drug
design process and development (Ballester, 2019; Vamathevan

et al., 2019; Patel et al., 2020). Their most common application
involves the evaluation of compound potential bioactivity in
ligand-based virtual screening (Melville et al., 2009; Carpenter
and Huang, 2018; Hussain et al., 2021); however, they are also
widely applied in the evaluation of compound physicochemical
and ADMET properties (Göller et al., 2020; Göller et al., 2022; Jia
and Gao, 2022). The ML role in computer-aided drug design is
not limited to the assessment of compound libraries, but a
number of generative approaches is used to enumerate new
sets of potentially active compounds (Baskin, 2020). Moreover,
ML can help in the compound optimization and indication of
features, which are important for a particular type of activity,
thanks to the wide range of interpretability tools (Hudson, 2021).
ML methods also support structure-based path of virtual
screening tasks – they assist in the detection of ligand-protein
interaction patterns characteristic for considered activity profiles
(Khamis et al., 2015; Khamis and Gomaa, 2015; Khamis et al.,
2016), as well as in the detection of complex relationships
between ligand-protein interaction schemes occurring during
MD simulations (Podlewska et al., 2020; Kucwaj-Brysz et al.,
2021).

In this review, we comprehensively summarize existing
approaches to automatic handling of MD simulations’ outputs.
We will describe approaches available within the MD software,
but our main focus is on the automatic statistical and ML-based
post-processing tools.

TOOLS AVAILABLE WITHIN THE MD
SOFTWARE OR PACKAGES DEDICATED
TO MD OUTPUT ANALYSIS
Numerous software packages are able to perform MD
simulations. The list of the most popular programs includes
GROMACS (Abraham et al., 2015), HyperChem (Laxmi and
Priyadarshy, 2002), AMBER (Case et al., 2005), LAMMPS
(Thompson et al., 2021), CHARMM (Brooks et al., 2009),
DL_POLY (Todorov et al., 2006), HOOMD (Glaser et al.,
2015), TINKER (Lagardère et al., 2018), NAMD (Phillips
et al., 2005), and Desmond (Bowers et al., 2006). The resulting
simulation trajectory can then be analyzed at different levels –
from the qualitative visualization of changes occurring in the
modeled system to detailed investigation of variations in atom
positions and ligand-protein interactions. Due to the high

FIGURE 1 | The influence of simulation time on events occurring during MD (according to Lindahl, 2008).
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amount of data produced during MD simulations (of up to
several terabytes size), programs for MD analysis should also
be able to efficiently deal with such data volumes.

The list of the most known packages for MD simulations
analysis opens VMD [Visual Molecular Dynamics (Humphrey
et al., 1996)], developed by the Theoretical and Computational
Biophysics Group at the University of Illinois at Urbana-
Champaign. VMD is a program designed for interactive
visualization and analysis of biomolecular systems including
processing of very large systems (composed of up to billion
particles). The software is written in C and C++ (source code
available) and is distributed free of charge. Convenient graphical
interface supports performing various types of coordinate
analysis on Unix, MacOS, and Windows operating system,
along with NVIDIA OptiX and CUDA support. In addition to
the built-in analysis tools applicable to trajectories processing,
VMD has a broad collection of plugins and scripts (VMD Plugin
Library, 2021, n. d.; VMD Script Library (2021), n. d.).

Execution of Tcl and Python scripts and implementation of
developed plugins enables adjustement of VMD capabilities to users’
needs without recompiling the source code. Both types of tools are
distributed under an open-source license, unless otherwise stated.
Moreover, researchers are encouraged to develop and share new
utilities in order to support the growth of the VMD community and
development of the software. VMD plugins are divided into the
“molfile” plugins, which enable working withmultiple file formats of
molecular data, and scripting extensions used to perform requested
tasks. Plugins dedicated to data analysis allow performing various
calculations: from RMSD (RMSD Tool, RMSD Trajectory Tool) to
electrostatic potentials (APBSRun, Delphi Force) and IR spectral
density (IRSpecGUI). Resulting outcomes can be visualized through
generated plots—GofRGUI,NAMDPlot, RamaPlot, Timeline—or as
maps—ContactMap,VolMap,HeatMapper, PMEpot. There are also
plugins capable of analysing free-energy perturbation calculations
(AlaScan, ParseFEP) and obtaining data on proteins—Intervor
(extracts and displays protein-protein interface), SurfVol
(measures surface area and volume of proteins), and
NetworkView (shows protein interaction networks). Developed
statistical tools visualize clusters of structure conformations
(Clustering Tool) or perform normal mode visualization and
comparative analysis (NMWiz). VMD has constantly been
developed: the latest version (1.9.3) includes introduction of the
following major features: introduction of new QwikMD plugin
connecting VMD with MD program NAMD, enabling quick
preparation of common molecular simulations; the TopoTools
plugin used for automated topology conversion from CHARMM
to GROMACS: the new TachyonL-OSPray ray tracing engine for
generating high quality renderings of molecular systems containing
hundreds millions of particles; and OpenGL rendering for parallel
visualization runs on “headless” clouds and petascale computers.

PTRAJ (Process TRAJectory) is another example of a tool
enabling post-processing of MD data (Roe et al., 2013). It was
dedicated for the analysis of the AMBER output. Its successor,
CPPTRAJ, emerged as a response to the growing trajectory sizes,
offering a wider range of functionalities and more efficient data
processing. In contrast to PTRAJ (written primarily in C),
CPPTRAJ code is based on C++ and the whole program

structure was reorganized to facilitate the addition of new
functionalities. The programs and their source code are freely
available under the GNU General Public License version 3 and
are distributed within the AmberTools21. The strong point of
CPPTRAJ is batch-processing, which allows the use of remote
sites for analysis and possibility of combining various types of
commands, trajectories, and topologies in the same run. Other
important features of CPPTRAJ are: the availability of MPI,
OpenMP, and CUDA parallelization, support for
implementation of variables and loops, and possibility to apply
atom masking to specify which part of the system should be
analyzed. The number of developed commands applicable for
MD data analysis is great, including simple calculations, such as
estimation of the number of hydrogen bonds (hbond), and
multiple examples of more complex tools, such as performing
non-linear curve fitting (curvefit, multicurve) and linear
regression (regress), matrix based calculations (crosscorr,
diagmatrix, hausdorff, modes), estimating auto-/cross-
correlation (autocorr, correlationcoe, timecorr), creating
histograms (hist, kde, multihist), and many more (Case et al.,
2021). CPPTRAJ development has resulted in new features,
among which are: rewritten code expanding clustering
capabilities, ability to RMS-fit grids onto coordinates,
automatic calculation of multiple puckers, speeding up the
non-bonded energy calculation, enhancing the performance of
the permutedihedrals and randomizeions commands, and
automation of downloading and building external libraries in
CPPTRAJ (2021).

MDAnalysis is an object-oriented library developed for the
analysis of MD trajectories and protein structures (Michaud-
Agrawal et al., 2011). The package is written in Python and
Cython and uses NumPy arrays to expand its functionality.
MDAnalysis is available under the GNU General Public
License version 2.0 (https://github.com/MDAnalysis/
mdanalysis). The analysis modules are capable of assessing
distances and contacts (e.g., calculating path similarity, which
reveals geometric similarity of trajectories useful for identification
of patterns in trajectory), performing dimensionality reduction
and carrying out volumetric analysis (e.g., linear density
estimation). Other modules analyze the structure of
macromolecules (such as HELANAL (Sugeta and Miyazawa,
1967; Bansal et al., 2000)—a tool for the analysis of protein
helices), polymers (including determination of the polymer
persistence length), nucleic acids and, finally, membrane and
membrane proteins (namely, HOLE (Stelzl et al., 2014), a suite of
tools used to assess pore dimensions of the holes as a function of
time). Recently MDAnalysis announced the introduction of a
command-line interface in answer to user needs, and a number of
supported analysis modules is provided in the documentation.

MDTraj (McGibbon et al., 2015) is a Python library applied for
MD trajectory manipulation and analysis, whose goal is to
provide interafce between MD data and modern tools and
programs for statistical analysis and visualization based on
Python. MDTraj is licensed under the Lesser GNU General
Public License (LGPL v2.1+) on GitHub (https://github.com/
mdtraj/mdtraj). MDTraj works with every possible MD data
format, focusing on speed and efficient performance and
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providing multiple analysis possibilities. Available functions
identify hydrogen bonds, compute distances to create residue-
residue contact maps, assess secondary structure of the protein
and assign code according to the implemented Dictionary
(Kabsch and Sander, 1983), calculate solvent-accessible surface
area (SASA) and NMR scalar coupling, as well as determine
nematic order parameters, which describe the orientational order
of a system from 0 to 1. Another special feature is the particularly
fast RMSD computations due to performance optimization based
on Haque at al. (2014) along with C/C++ code implementation.
Moreover, MDTraj documentation gives access to 14 notebooks
containing analysis examples with executable code—e.g., PCA
with scikit-learn ML library followed by plotting data using
Matplotlib.

LOOS (Lightweight Object-Oriented Structure-analysis)
(Romo et al., 2014; Grossfield and Romo, 2021) aims at
enabling rapid development and testing of new tools for MD
analysis. Additionally, the program includes a number of easy-to-
use prebuilt applications. As LOOS is a C++ library, its
combination with Python interface (PyLOOS) resulted in high
performance and simplicity of use and further development.
Moreover, the C++ layers could be used independently for even
more efficient utilization of resources. LOOS is freely distributed
under the GPLv3 license and is available via GitHub (https://github.
com/GrossfieldLab/loos). In LOOS, 140 prebuilt tools are grouped
into the following categories: macromolecule tools (e.g., computation
of the radial distribution function), hydrogen bonding handling,
principal component analysis (PCA), elastic networkmodels (ENM),
clustering, assessment of statistical error (e.g., block-averaged
standard error calculations), and convergence. The tools included
in the "membrane systems" category are dedicated for analyzing lipid
bilayers and associated systems (e.g., calculation of molecular order
parameters. Furthermore, 2D Voronoi decomposition tools are used
to obtain data within a particular membrane slice. 3D density
distributions tools generate 3D histograms from MD trajectories.
They were originally created for visualization of water distribution;
however, they are able to estimate membrane lipid density as well.

Pteros (Yesylevskyy, 2012; Yesylevskyy, 2015) is a high-
performance molecular modeling library available for C++ and
Python. It lets users analyse MD data and develop new analysis
tools with the assistance of the easy-to-use APIs in both of the
above-mentioned programming languages. In order to accelerate
the analysis process, Pteros asynchronously reads files with MD
trajectories and performs analysis tasks in parallel. Analysis plugins
are completely independent and, besides typical calculations,
provide more specific manipulations. For example, they enable
assessing properties related to curvature with the Curvature plugin,
which computes mean and Gaussian curvatures of various lipid
aggregates, smooths membrane surfaces, and calculates other
properties of molecules embedded into the lipid membrane.
While the above-mentioned plugin is not open-source, Pteros is
a free software distributed under Artistic License and available at
GitHub (https://github.com/yesint/pteros).

Till now, we have described exclusively open source software and
libraries, which serve as powerful and freely available tools for MD
output analysis. Nevertheless, some commercial software is also
worth mentioning, e.g., Molecular Operating Environment (MOE)

[Molecular Operating Environment (MOE), 2019], Desmond
(Schrödinger Release 2021–4: Desmond Molecular Dynamics
System, 2021), and CHARMM (Brooks et al., 2009). MOE
constitutes a platform for integrated computer-aided molecular
design with vast capabilities: QSAR models generation, virtual
screening, protein engineering, homology modeling, as well as
carrying out MD simulations. However, MOE offers limited
opportunities for MD analysis, as only Free Energy Calculations
along with Torsion Scan and Analysis are mentioned at the official
software webpage. Greater analysis possibilities are provided by
Desmond—a commercial software available without cost for non-
commercial use, developed by D. E. Shaw Research for high-speed
MD simulations of biological systems. Desmond offers multiple
panels for different post-processing operations, such as Trajectory
Frame Clustering Panel, Simulation Quality Analysis Panel
(enabling estimation of potential energy, temperature, pressure,
etc.), Simulation Event Analysis Panel (enabling calculation of
geometric and energy-based properties, e.g., RMSF, hydrogen
bonds, Coulomb energy), and Radial Distribution Function Panel.
What is more, Desmond provides distinct panels for metadynamics
and replica exchange simulations analysis, and Python scripts
applicable for PCA, density profile calculations, and others. The
advantages ofMDdata analysis inDesmond are its detailed tutorials,
intuitive GUI, and conveniency of some tools, such as Simulation
Interaction Diagram. Its output is saved as a pdf file, which contains
results of protein-ligand system analysis in the form of colored plots,
together with the short explanation of themeaning of each calculated
property.

Plenty of other software and tools are useful in MD data
analysis; among them are GROMACS (Abraham et al., 2015) and
CHARMM (Brooks et al., 2009)— well-known MD programs
capable of performing analysis tasks as well. Carma (Glykos,
2006) is a lightweight program written in C along with its
graphical user interface grcarma (Koukos and Glykos, 2013)
and Wordom (Seeber et al., 2007; Seeber et al., 2011) - a
simple and fast command-line utility. MMTSB (Feig and
Karanicolas, 2004) is a set of tools for enhanced sampling and
multiscale molecular modeling approaches, while Simulaid
(Mezei, 2010) is a program for carrying out analysis tasks of
multiple types and MD trajectory data manipulation. MMTK
(Hinsen, 2000), the Molecular Modeling Toolkit, contains MD
analysis scripts; both Bio3D package (Grant et al., 2006) written
in R language, and Python toolkit. MD-Tracks (Verstraelen et al.,
2008) provides statistical analysis of MD data, and ST-Analyzer
(Jeong et al., 2014) is an intuitive and simple web-based GUI
environment, with nine analysis modules for extraction of various
parameters from MD output.

MACHINE LEARNING—CLASSES OF
MODELS USED IN THE
STRUCTURE-BASED DRUG DESIGN
ML methods have become an integral element of structure-based
path of drug design, and they assist in the analysis of both docking
and MD simulations (Dutta and Bose, 2021). The general task of
ML is to detect relationships and complex patterns in large
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datasets. As the amount of data produced in the structure-based
path has recently grown enormously, the application of ML
methods for MD outcome analysis is becoming more and
more popular. Within ML methods, we can also distinguish
deep learning (DL) algorithms with their main usage in
computer-aided drug design to generate examples of new
potential ligands via generative approaches.

The most popular classes of ML models applied in the broadly
understood campaigns for searching for new drugs include:

1) Bayesian models—a collection of models based on the Bayes’
theorem. It defines the probability of an event on the basis of
prior knowledge of conditions, which might be influencing
this event. The Bayes’ theorem in its simplest form (taking
into account only two events, A and B) can be described using
the following equation:

P(A|B) � P(B|A)P(A)
P(B) ,

where P (A|B) is a conditional probability of occurrence of event
A, given that B is true; P(B|A) is a conditional probability of
occurrence of event B, given that B is true; and P(A) and P(B) are
probabilities of occurrence A and B, respectively, without any
conditions (P(B) > 0).

Bayes’ theorem for a higher number of events adopts the
following form:

If B, T1,. . .,Tn are such events that:
P(B) > 0, BC∪n

i�1Ti and Ti ∩ Tj � ϕ(i ≠ j), then:

P(Tj|B) �
P(B|Tj)P(Tj)

∑n
i�1P(B|Ti)P(Ti)

.

In drug design approaches, Bayes’ theorem is most often used
within the Naïve Bayes algorithm. In such a case, Bayes’ theorem
is used together with an assumption of events (features)
independence (Berrar, 2019).

Another concept using Bayes’ theorem is Bayesian statistics, in
which all observed and unobserved parameters of a statistical
model are given a joint probability distribution (prior and data
distribution). Bayesian statistics expresses probability as a degree
of belief, and Bayes’ theorem is used to assign a probability
distribution to quantitatively describe this degree of belief in
the form of a set of parameters (van de Schoot et al., 2021).

The Bayesian concept is also used in fuzzy clustering (Glenn
et al., 2015).

2) K-nearest neighbors methods – based on the determination of
distances between an evaluated sample and representatives
of the training set. In its simplest form (K = 1), the evaluated
sample is assigned to the class of its closest neighbor from
the training set (or value of the considered parameter of the
closest neighbor is returned in the case of regression). If a
higher number of examples closest to the query is
considered (K > 1), voting for the most frequent class
label is carried out (classification) or values of evaluated
parameters are averaged (regression)–Figure 2 a (Cover
and Hart, 1967; Hall et al., 2008).

In MD studies, k-nearest neighbors algorithm is also used in
clustering procedures aimed at the formation of groups of
geometrically similar conformations (Keller et al., 2010).

3) Trees—tree-based algorithms are considered to be one of the
most efficient and most broadly used types of ML models. Their
important advantage is their simplicity and ease of interpretation,
which play a role in drug design protocols (e.g., by the possibility
of indication of features important for a particular compound
activity). Predictions can be made using one decision tree or
multiple tress (as it is in the case of Random Forest). Attributes
for a root and subsequent nodes are selected on the basis of their
discrimination power (at each level, a feature which provides the
best distinguishment between considered classes is selected).
Evaluation of new examples is carried out via checking values
of features present in the subsequent nodes -Figure 2B (Breiman
et al., 1984; Quinlan, 1986).

4) Neural networks—neural networks search for relationships in
data in such a way that they mimic the processes occurring in the
human brain. Their neurons are constituted by a mathematical
function, which collects and classifies information. Such artificial
neurons are interconnected (such connections reflect biological
synapses, called edges) and they have the ability to communicate
with each other. A neuron (node) receives a signal, processes it,
and passes the respective information to the connected neurons.
Typically, neurons are organized into layers, and the signal is
passed from the input layer (the first one) to the output layer (the
last one) (Hopfield, 1982).

A special type of neural network that has recently gained
enormous popularity is deep neural network (DNN) with “deep”
referring to the application of multiple layers in the network
(LeCun et al., 2015; Schmidhuber, 2015).

Neural networks concept is also applied in unsupervised
approaches for MD data clustering, e.g., in the form of Self
Organizing Maps (SOMs) (Hyvönen et al., 2001; Fraccalvieri
et al., 2013; Mallet et al., 2021). In order not to lose the topological
properties of the input space, a neighborhood function is used.

5) Support Vector Machines (SVM)—an algorithm according
to which each data item constitutes a point in
n-dimensional space (n is equal to the number of
features), with coordinates defined by the particular
feature value. The task of the model is to find a
hyperplane, which discriminates example classes with the
highest margin (Figure 2C). As linear discrimination is
often not possible, a kernel function needs to be applied in
order to transform the input into a space of higher
dimension, so an inseparable problem is converted into a
separable one–Figure 2D (Cortes and Vapnik, 1995).

CLUSTERING AND REDUCTION OF DATA
DIMENSIONALITY

The most common approach to use the automatic post-
processing of the MD simulations output is the reduction of
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dimensionality and clustering (Amadei et al., 1993; Lange and
Grubmüller, 2006).

Clustering
Clustering, from its assumptions, is an unsupervised technique
of finding patterns and relationships in data. In contrast to the
previously described techniques, clustering does not require
the presence of the training set, as its aim is to form subgroups
of similar objects. Clustering algorithms use various “distance”
measures to evaluate object similarity. Two main groups of
clustering approaches can be distinguished, namely partitional
and hierarchical, both of which can be carried out in the
bottom-up agglomerative way or using a top-down divisive
approach (Kaufman and Rousseeuw, 1990). Another group of
data grouping methods are density-based schemes, in which
the clusters refer to the peaks of the probability distribution (or
free energy minima) from which the data are collected (Sander,
2011; Glielmo et al., 2021). In MD simulations, such
probability peaks typically correspond to metastable states
of the system. An example application of density-based
clustering to the analysis of MD data is density-based
spatial clustering of applications with noise (DBSCAN)
(Ester et al., 1996; Schubert et al., 2017), in which the
clusters are defined as regions with density above the
particular threshold. Such an approach was used to find
representative structures from MD simulations and analyze
MD trajectories (Wang et al., 2013). MD trajectories have also
been analyzed by the density peak clustering.

The most popular partitional clustering technique is the
K-means algorithm. Clustering in this approach starts from
the random placement of K initial centroids. Then, K clusters
are formed iteratively in such a way that a point which is
closest to a particular centroid is added to the respective
cluster, and a new centroid for each cluster is determined.
When the cluster membership does not change (the
convergence is obtained), the process is stopped. The
drawback of K-means clustering is the dependence of the
final outcome on the initial choice of the centroids.
Problems might also occur when significant variations in
the cluster sizes or densities appear, when data outliers are
present, or when the ‘natural’ clusters have non-spherical
shapes (Hartigan and Wong, 1979; Huang, 1998).

The starting point of agglomerative hierarchical clustering is a
formation of singleton clusters from each object from the dataset.
Then, iterative linkage of the nearest clusters is carried out, until
the whole dataset constitutes one group. On the basis of the
resulting dendrogram, the final division of data is produced.
Hierarchical clustering is deterministic, but it requires high
computational power and storage abilities, which limits its
application to small datasets.

The most popular metric used to evaluate MD simulations’
output in terms of data proximity is Root Mean Square
Deviation (RMSD). Despite the presence of some drawbacks
[e.g., incidents of wrong conclusions when applied to
equilibrium evaluation (Grossfield and Zuckerman, 2009)],
it is still the most frequently used method for comparison of

FIGURE 2 | Visualization of selected ML algorithms: (A) k-nearest neighbor, (B) decision tree, (C) hyperplane with the highest separation margin constructed within
the support vector machines algorithm implementation, (D) data transformation to the space, in which they are linearly separable with the use of the kernel function.
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conformation similarity. Several different solutions were also
proposed, such as the application of Euclidean Distances
Matrices (EDM) (de Souza et al., 2017); however, they have
not gained such wide popularity as RMSD.

Evaluation of Clustering Approaches
The evaluation of clustering is not easy, as falling into the group of
unsupervised approaches, clustering does not refer to true labels.
One group of cluster assessment methods is the so-called
“internal evaluation,” where clusters are evaluated on the basis
of the clustered data. In general, in such an evaluation, the highest
scores are assigned to the approaches which produce clusters of
high similarity between particular cluster elements and low
similarity between elements belonging to different clusters
(Rand, 1971). An example of internal measure of clustering
quality is Davies-Bouldin index (DB) (Davies and Bouldin, 1979):

DB � 1
n
∑
n

i�1
max
j≠i

⎛⎝ σ i + σj

d(ci, cj)
⎞⎠

with n being the number of clusters, ci, cj being centroids of
clusters i and j, respectively; σi refers to the average distance of
elements belonging to cluster i to its centroid ci; and d (ci,cj) is the
distance between centroids of clusters i and j. The lower the values
of DB index, the better they are.

Another approach of the assessment of clustering quality is
external evaluation, which refers to pieces of information that
were not used during clustering. External evaluation can be based
on the known class labels or on some benchmark datasets.
However, if the true class labels are known, the clustering is
actually not needed (de Souto et al., 2012).

Before the application of methods for clustering evaluation,
the dataset should be examined in terms of the clustering
tendency. If the dataset is composed of the uniformly
distributed points (therefore, there is no clustering tendency
present), then the identified clusters may be invalid. In order
to verify the clustering tendency, the Hopkins test (Hopkins and
Skellam, 1954) can be used (statistical test for spatial randomness
of a variable).

Reduction of Data Dimensionality
Principal Component Analysis (PCA) is an approach for the
reduction of the data dimensionality via transformation of a large
set of variables into a smaller one, preserving as much
information of the original set as possible (Ichiye and Karplus,
1991; Jolliffe, 2002; Jolliffe and Cadima, 2016). The goal is
obtained via extraction of important information from the
data table and its representation in the form of new
orthogonal (linearly independent) variables (principal
components). Then, the relationships between observations
and variables can be displayed in the form of points in the
maps. PCA is based on the assumption that the phenomena of
interest can be explained by variances and covariances between
original variables from the dataset. PCA is often applied before
performing the clustering procedure. In MD-related applications,
PCA is responsible for extracting the dominant modes in the
molecule motion. It should be pointed out that, during the MD,

the Cartesian positions of all atoms of the simulated system (of a
size of thousands or even millions of atoms) are recorded in every
time step, which indicates the importance of application of post-
processing methods. If the dimensionality reduction is carried out
properly, all relevant information is preserved, and the analysis of
the MD output is valid.

Another approach for reduction of data dimensionality is
multidimensional scaling (MDS), which determines the data
space of lower dimension with the best possible preservation
of the pairwise distances between data points (Young and
Householder, 1938; Torgerson, 1952). Its mode of action is
closely related to PCA; however, for MDS it is sufficient to
provide a pairwise distance between points (their exact
positions are not necessary).

PCA and MDS are representatives of linear methods of data
dimensionality reduction; however, there is also a number of non-
linear approaches to this task, with such examples as isometric
features mapping (Tenenbaum et al., 2000), kernel PCA
(Schölkopf et al., 1998), diffusion map (Coifman et al., 2005;
Coifman and Lafon, 2006), and t-Distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten and Hinton, 2008). Low-
dimensional spaces to embed high-dimensional data are also
more and more often determined using DL approaches. One of
the most popular DL techniques for reduction of data
dimensionality is autoencoder (Kramer, 1991). Autoencoder
maps input configuration to representation of lower dimension
and thenmaps it back to the original space via respective decoder.
Low-dimensional representation is learned via minimization of
error between the original data points and data points obtained by
the application of the above-mentioned decoder. Another DL-
based approach for reduction of data dimensionality falls into the
group of generative neural networks. Its representatives include
Variational Autoencoders (VAEs) (Lopez et al., 2018) and
Generative Adversarial Networks (GANs) (Goodfellow, et al.,
2014).

Examples of Clustering and Data
Dimensionality Reduction for MD Output
Analysis
Unsupervised procedures are widely applied in the MD outcome
analysis, due to the above-mentioned problem of the vast amount
of data produced during simulations: clustering data into groups
gathering similar conformations obtained during MD, and
reduction of data dimensionality which lowers the number of
features considered. Both these approaches help in the analysis of
MD output.

The problem of clustering MD data emerged quite early. The
first reports of clustering MD output were released in the early
1990s (Gordon and Somorjai, 1992; Torda and van Gunstered,
1994). Various groups also compared effectiveness of various
clustering algorithms (Shao et al., 2007; Keller et al., 2010;
Abramyan et al., 2016). Nowadays, clustering of MD data has
become a standard procedure applied in order to facilitate
interpretation and analysis of MD trajectories (Bruno et al.,
2011; De Paris et al., 2015a; De Paris et al., 2015b; Rudling
et al., 2018; Takemura et al., 2018; Evangelista et al., 2019;
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Yoshino et al., 2019; Bekker et al., 2020; Roither et al., 2020; Araki
et al., 2021; Mallet et al., 2021; Wu et al., 2021) and new
algorithms to improve this procedure are constantly developed.

Dimensionality reduction of MD data with the use of PCA was
also first used in the early 90s (Ichiye and Karplus, 1991; Amadei
et al., 1993) and since that time its application in MD output
analysis has been constantly growing (Das and Mukhopadhyay,
2007; Chiappori et al., 2010; Kim et al., 2010; Casoni et al., 2013;
Ng et al., 2013; Novikov et al., 2013; Bhakat et al., 2014; Sittel et al.,
2014; Ernst et al., 2015; Chaturvedi et al., 2017; Cossio-Pérez et al.,
2017; Fakhar et al., 2017; Chen, 2018; Cholko et al., 2018; An et al.,
2019; Barletta et al., 2019; Girdhar et al., 2019; Karnati andWang,
2019; Lipiński et al., 2019; Martínez-Archundia et al., 2019; Wu
et al., 2019; Magudeeswaran and Poomani, 2020; David et al.,
2021; Majumder and Giri, 2021). Although PCA is the most
popular approach applied to handle MD trajectories, other data
dimensionality reduction methods are also used in the MD field.
Pisani et al. used MDS to examine conformational landscapes of
CDK2 (Pisani et al., 2016) and Bécavin et al. improved the
application of MDS for MD data by using singular value
decomposition. MDS in the context of MD was also described
by Troyer and Cohen (1995), Andrecut (2009), Tribello and
Gasparotto (2019), and Srivastava et al. (2020). There are also
examples of the application of other approaches: isometric feature
mapping (Stamati et al., 2010), kernel PCA (Antoniou and
Schwartz, 2011), diffusion map (Rohrdanz et al., 2011; Zheng
et al., 2011; Zheng et al., 2013a; Zheng et al., 2013b; Preto and
Clementi, 2014), t-SNE (Zhou et al., 2018; Zhou et al., 2019;
Spiwok and Kříž, 2020), and VAE (Hernández et al., 2018; Shamsi
et al., 2018; Moritsugu, 2021; Tian et al., 2021).

MARKOV STATE MODELING

Markov state modeling (MSM) (Pande et al., 2010; Husic and
Pande, 2018) is another approach widely applied in the MD-
based studies. MSM can be used to characterize events that occur
at longer timescales than available computational power to
perform such long simulation. Such MDs are simulated as
transitions between a set of discrete stable states. The MSM
parametrization can be performed via running several short
MDs, which can be computed in parallel. The main difficulty
in the MSM application is definition of the above-mentioned
stable states (Abella et al., 2020). In general, MSM is an approach
for modeling random processes with the use of the Markov
assumption, which is when the present state is given, all
following states are independent of all past states. MSMs
describe the stochastic dynamics of a biomolecular system
using two objects: a discretization of the high-dimensional
molecular state space into n disjoint conformational sets and a
model of the stochastic transitions between these states [usually
described by a matrix of conditional transition probabilities
(Chodera and Noé, 2014)].

Examples of MSM applications in drug design include:
examination of the binding kinetics of the trypsin inhibitor
benzamidine (Buch et al., 2011), description of the multiple
unbinding pathways of ligands dissociating from FKBP

(Huang and Caflisch, 2011), examination of substrate binding
mechanism of HIV-1 protease (Pietrucci et al., 2009), analysis of
binding pathways of opiates to µ-opioid receptors (Barati et al.,
2018), reconstruction of binding process of alprenolol to the
beta2-adrenergic receptor (Bernetti et al., 2019), membrane-
mediated ligand unbinding of the PK-11195 ligand from the
translocator protein (TSPO) (Dixon et al., 2021), study of the two
bromodomain-inhibitor systems using multiple docked starting
poses (Dickson, 2018), examination of the unbinding kinetics of a
p38 MAP kinase type II inhibitor (Casasnovas et al., 2017),
examination of ligand-induced active-inactive conformation
change of beta-2 adrenergic receptor (Bai et al., 2014), and
investigation of the interplay of conformational change and
ligand-binding kinetics for the serine protease trypsin and its
competitive inhibitor benzamidine (Plattner and Noé, 2015).

EXAMPLES OF ML-BASED ANALYSIS
OF MD

The proper representation of MD outcome opens the door to
the wide range of possibilities in terms of the post-processing
approaches. Podlewska et al. (2020) and Kucwaj-Brysz et al.
(2021) analyzed ligand-receptor contact patterns occurring
during MD simulations and examined them with reference to
the modeled property. Via the calculation of the Pearson’s
correlation coefficient between the contact frequencies and
values of examined parameters, the highest correlated
residues (considered as the most important for the
modeled property) were detected. Scheme of the above-
described protocol is presented in Figure 3. At first, each
simulation frame was represented with the use of the
Structural Interaction Fingerprints (Singh et al., 2006).
Then, for each amino acid, the contact frequency during
simulation was calculated. Finally, for each protein residue,
the Pearson’s correlation coefficients between the respective
contact frequency and values of the evaluated compound
parameters were determined. The highest correlated
positions were indicated as those which should be
considered in detail during the further design of
compounds of particular activity profile.

Riniker (2017) developed a molecular dynamics fingerprint
(MDFP) to combine MD approach with ML methods. MDFPs
were obtained via the extraction of three properties from MD
trajectories: intramolecular and total potential energy of the solute,
radius of gyration, and solvent-accessible surface area resulting in a
vector of floats. The fingerprint also contained information on the
distribution of each property, characterized by its average, standard
deviation, and median values. In addition, MDFP was enriched with
standard 2D fingerprints: Morgan fingerprints and 2D-counts
fingerprints from RDKit (number of heavy atoms, number of
rotatable bonds, number of N, O, F, P, S, Cl, Br, and I atoms in
the compound). Such representation constituted an input for ML
models, which were trained to predict solvation free energies in five
different solvents (water, octanol, chloroform, hexadecane, and
cyclohexane) and partition coefficient in octanol/water,
hexadecane/water, and cyclohexane/water.
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MDFP was also used by Gebhardt et al. (2020). In this
approach, ML was combined with the atomistic MD
simulations encoded with MDFPs enabling the large-scale
free-energy calculations. The so-called ML/MDFP method
overcomes limitations related to free-energy estimation with
MD – high computational expense and imperfections of force-
fields. ML models are able to detect systematic force field errors
caused by specific chemical groups and, afterwards, decrease their
influence on final prediction. Moreover, ML models provide
efficient and fast calculations when working with fingerprints
databases; as an example, Gebhart et al. utilized the distributions
of potential energy of the solute, radius of gyration, and SASA,
which were generated from MD data. The outcomes proved that
ML/MDFP approach predicted free-energy not worse or even
slightly better than rigorous free-energy simulations and two
models, namely quantum chemistry-based COSMO-RS. When
two models for free energy predictions (COSMO-RS and
UNIFAC) were compared with the support vector regression
(SVR), it appeared that the latter one demonstrated the best
results. The other application of fingerprints extracted from MD
could be distinguishing active compounds, as Jamal et al. (2019)
proved on the example of caspase-8 ligands. MD descriptors
determined in this work were analogous to those obtained by
Gebhardt et al. Moreover, fingerprints of different types were also
calculated for reference. Multiple combinations of 2D, 3D, and
MD descriptors were used to train two ML models: artificial
neural networks and Random Forest. MD descriptors used
individually showed better performance than being combined
with other 2D/3D descriptors, which proved applicability of MD
descriptors for lead prioritization and optimization of caspase-8
ligands.

Ash and Fourches (2017) made benefits of combination ofMD
and chemical descriptors to generate innovative QSAR models
based on MD data, resulting in the construction of the so-called
hyperpredictive MDQSAR models. The researchers in their work
hypothesized that exploring dynamic noncovalent protein-ligand
interactions would help to distinguish active compounds from

non-active. A set of ERK2 inhibitors served as a case study, after
previous unsuccessful attempts to rank them using conventional
QSAR and sophisticated molecular docking techniques. Each
ligand was docked in the ERK2 binding site using Glide, then
20 ns simulations of obtained ligand-protein complexes were
performed in Desmond. MDs were followed by the extraction
of descriptors on the basis of MD data with KNIME, such as
traditional 1D-MACCS fingerprints, as well as 2D RDKit, 3D-D
Moments and 3D-WHIM descriptors. The results indicate that
MD descriptors successfully tackled the primary challenge and
clearly pointed out the most active ligands. The hierarchical
clustering highlighted similarities between MD descriptors and
activities; furthermore, MD descriptors turned out to be useful in
the identification of activity cliffs in all descriptor spaces. The
research underlines the importance of further investigation of the
MD descriptors usage, which could lead to implementation of
new highly effective MDQSAR models in the future computer-
aided drug design workflows.

MD data were also used by Vitek et al. (2013) to develop
Support Vector Regression (SVR) model for water molecule
energy estimation and by Jamroz et al. (2012) to examine
fluctuations of protein residues during simulation.

Exploring protein conformations is extremely useful in
understanding protein structure and function. However, to
capture conformational changes we would need to perform
long-time simulations and overcome multiple high energy
barriers between local energy minima, which is related to the
consumption of significant amounts of computational resources.
Traditionally, enhanced sampling methods are exploited to solve
these problems; however, their efficiency requires improvement
(Yang et al., 2019). Fortunately, owing to technology advances,
numerous novel efficient techniques have been developed. For
example, a number of DL-based, approaches have already been
proposed, such as variational autoencoders (VAEs), which
significantly increases sampling “power”, if combined with
MD potential. Tian et al. (2021) demonstrated successful
protein sampling with VAEs on the example of adenosine

FIGURE 3 | Scheme of the protocol for indication of the important amino acids on the basis of the contact frequency with particular amino acids during MD
simulations.
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kinase (ADK) conformational change from its closed state to the
open one. Decoded conformations were similar to the training
ones. Additionally, the latent space provided by VAEs could serve
as a starting point for new simulations and studying of
unexplored conformational spaces. VAEs application allows to
perform short simulations of 20 ns and reach sampling efficiency
comparable to a single long MD simulation. Another example of
analysis of MD trajectories of proteins applies the Bayesian
interference method to perform structural fitting for removing
time-dependent translational and rotational movements
(Miyashita and Yonezawa, 2017). On the other hand, Perez
et al. (2015) combined MD with Bayesian interference to
speed up simulation. The combination of Bayesian interference
with MD simulations was also used by Shevchuk and Hub (2017)
to refine structures and ensembles against small-angle X-ray
scattering (SAXS) data.

Proteins change their conformations upon the influence of
many factors, such as temperature, pH, and more importantly as
a consequence of molecular recognition due to ligand binding
(Doms et al., 1985; Takeda et al., 1989; Andersen et al., 1990).
What is more, the ligand-protein complex is formed by the
induced fit of both molecules, and the resulting protein
conformations depend on the structure of the ligand
(Bosshard, 2001). Conformational dynamics of proteins have a
profound effect on cell functioning, such as in the case of
G-protein coupled receptors (GPCRs), which transduce
external signals into cells by activation of specific cellular
pathways. The binding of different ligands stabilizes certain
conformational state, which results in the elicitation of distinct
signalling—a phenomenon called functional signalling, or biased
agonism (Hilger et al., 2018; Wootten et al., 2018). An essential
role of GPCRs in signal transmission highlights the importance of
understanding how ligand binding alters protein conformations,
in order to design new GPCR ligands, which would target desired
pathways and avoid others, potentially causing side effects. MD is
perfectly suited for perceiving ligand-protein conformational
change; however, the difficulty lies in the necessity to analyze
long-scale MD simulations, which are required to capture tiny
structural changes, responsible for functional signalling. Plante
et al. (2019) successfully applied deep neural networks (DNNs),
to analyze MD data. MD output was transformed into the pixel
representation, which is interpretable by the state-of-art DL
object-recognition technology. When the method was applied
to the pharmacological classification of 5-HT2A and D2 receptors
ligands, among which were full, partial, and inverse agonists,
DNN achieved near-perfect accuracy, classifying correctly >99%
frames. Moreover, the sensitivity analysis identified the molecular
determinants, which were considered by the model as the most
important for the correct prediction. Even if the study has limited
scope, including only eight ligands and two receptors, it gives
hope for the highly accurate and efficient estimation of ligand-
protein functional selectivity with the help of DNN.

Allostery is called the second secret of life (Fenton, 2008), as it
is crucial for the adaptation of living organisms to changing
environmental conditions by altering multiple cell functions, like
enzyme catalysis, cell signalling, gene transcription, and others
(Goodey and Benkovic, 2008; Nussinov et al., 2014). Designing

allosteric drugs is a challenging task for multiple reasons. First of
all, classical docking alone is unable to predict how orthosteric
binding sites would adjust to allosteric modulation, and,
importantly, which functional effect ligands would exert on
protein’s function (Nussinov and Tsai, 2013; Lu et al., 2019;
Sheik et al., 2020). Luckily, MD simulations give insight into the
nature of allosteric perturbations; moreover, the application of
ML algorithms to MD data expands possibilities to extract
valuable information from long-scale simulations. Recently
conducted research proved that such a combined MD-ML
approach is able to efficiently determine ligand’s functional
activity and models explaining ligand efficacy can be
constructed. Marchetti et al. (2021) brought together the
benefits of ensemble docking, MD and ML, in order to predict
whether a set of ligands would inhibit or activate molecular
chaperone Hsp90. MD of Hsp90 with several ligands was
followed by cluster analysis of the obtained metatrajectory,
subsequently, representative protein conformations were
chosen for ensemble docking. The features obtained from
docking, notably docking score, RMS, and RMSD, were used
for training a supervised model, which served as a classification
tool. Among three popular algorithms—logistic regression, SVM,
and Random Forest - SVM reached the highest accuracy (0.9), as
well as showed the best performance. On the other hand, attempts
to classify ligands on the basis of separate features or
chemometrics properties (here, molecular fingerprints) were
far less efficient. In contrast, Ferraro et al. (2021) aimed to
predict allosteric ligand functionality quantitatively. A
computational experiment was performed on the allosteric
modulators of the molecular chaperone TRAP1, which had
similar affinities, but inhibited ATPase function with different
efficacy. Two ML algorithms–Naïve Bayes and SVM–were
applied to extract the local dynamic patterns responsible for
the allosteric perturbation. The models were trained and
validated on MD simulations of the perturbed and
unperturbed systems. Whereas the discriminative SVM models
qualitatively assessed the disparities between the perturbed and
unperturbed ensembles, the implementation of the generative
Naïve Bayes model produced a linear regression model with a
0.71 correlation between predicted states in the inhibitor-bound
trajectories (TPR percentage) and the TRAP1 inhibition
percentage. Additionally, Naïve Bayes could estimate the
weight of ligand effects on each feature, which would support
the identification of the features crucial for the allosteric
propagation. Therefore, ML expands the possibilities of
computer-aided drug design of allosteric modulators and could
bring drug design to a new level with limited experimental testing.

The number of proteins with unknown functions is increasing
due to the advances in bioinformatics, especially in the field of
structural genomics. Identification of binding pockets could
potentially be the key to understanding which functions
specific proteins carry out. The FEATURE (Wei and Altman,
1998) is an ML-based algorithm for the identification of Ca2+-
binding sites, utilizing the Bayesian scoring scheme. The
FEATURE prediction does not depend on the sequence or
structure, as the models examine local 3D physicochemical
environment and that is why they are able to recognize

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 84429310

Baltrukevich and Podlewska Automatic Analysis of Molecular Dynamics

204

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


diverse binding sites. However, the applications of the algorithm
were limited to static structures, until Glazer et al. (2008) applied
MD to improve the FEATURE detection ability by increasing
structural diversity. The hypothesis was tested on parvalbumin β –
an EF-hand Ca2+-binding protein, which has two Ca2+-binding
sites–and MD-assisted calcium-binding pockets recognition.
Moreover, relatively small time steps were characterized by
significant change in the FEATURE scores, meaning that the
FEATURE is very sensitive to small conformational changes,
which might have an impact on calcium binding. These
promising results could help to implement MD methodology in
the exploration of protein functions.

Researchers’ efforts and technological advancement
resulted in the development of a framework designed to
support performing of MD simulations by means of ML
algorithms – TorchMD (Doerr et al., 2021). Since the
toolset is written in PyTorch (Paszke et al., 2019), it can be
easily integrated with other models from this ML library.
Among essential features of the framework is TorchMD-
Net, which takes advantage of training neural network
potential in order to improve force-field development.
Furthermore, TorchMD enables running simulations with
end-to-end differentiability of parameters, beneficial for the
performance of steered and highly constrained MD
simulations, sensitivity analysis, and others. Additionally,
TorchMD with implemented neural network potential is
used for coarse-grained MD simulations, which are helpful
in studying protein folding and exploring conformational
space. Code, step-by-step tutorials, and data are available at
GitHub (https://www.github.com/torchmd).

CONCLUSION

Both intense growth in the amount of data, as well as
increasing capabilities of various algorithms to detect
patterns and relationships in various sets of information,

dramatically increased the popularity of automatic
approaches for MD outcome analysis. The output of such
experiments consists of billions of timesteps, and recorded
positions and velocities of thousands of atoms. Therefore,
extracting important information from such a data package
can be very challenging, and so the application of various post-
processing approaches is needed. The post-processing
protocols can help in the finding of non-obvious ligand-
protein interaction patterns, detection of rare
conformational states, or examining dependence of
conformational changes of the examined system in time.
Moreover, thanks to the post-processing approaches, the
prediction of the system behavior in longer time scales than
modeled can be made.

However, given all the advantages of ML approaches, we
should still be aware of their limitations and pay attention to
data used for models training, as it will substantially define the
quality of the outcome. Importantly, ML models could have
limited transferability and must be applied to other types of
data carefully. Nevertheless, application of ML to MD data is
undoubtedly the future, which makes the potential of MD
applications almost unlimited.
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Pocket2Drug: An Encoder-Decoder
Deep Neural Network for the
Target-Based Drug Design
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Computational modeling is an essential component of modern drug discovery. One of its
most important applications is to select promising drug candidates for pharmacologically
relevant target proteins. Because of continuing advances in structural biology, putative
binding sites for small organic molecules are being discovered in numerous proteins linked
to various diseases. These valuable data offer new opportunities to build efficient
computational models predicting binding molecules for target sites through the
application of data mining and machine learning. In particular, deep neural networks
are powerful techniques capable of learning from complex data in order to make informed
drug binding predictions. In this communication, we describe Pocket2Drug, a deep graph
neural network model to predict binding molecules for a given a ligand binding site. This
approach first learns the conditional probability distribution of small molecules from a large
dataset of pocket structures with supervised training, followed by the sampling of drug
candidates from the trained model. Comprehensive benchmarking simulations show that
using Pocket2Drug significantly improves the chances of finding molecules binding to
target pockets compared to traditional drug selection procedures. Specifically, known
binders are generated for as many as 80.5% of targets present in the testing set consisting
of dissimilar data from that used to train the deep graph neural network model. Overall,
Pocket2Drug is a promising computational approach to inform the discovery of novel
biopharmaceuticals.

Keywords: ligand binding sites, drug discovery and development, in silico drug design, deep learning, graph neural
network, recurrent neural network, generative model, machine learning

INTRODUCTION

Recent developments in genomics revealed novel disease-related molecular targets, many of which
are yet to be characterized with respect to the possibility of modulating their functions with
pharmaceutical agents. Another challenge in pharmacotherapy arises from resistance effects to
existing drugs complicating the treatment of particularly infectious diseases (Trebosc et al., 2019) and
cancer (Shou et al., 2004). Therefore, many drug development projects are focused on the discovery
of small molecule therapeutics with new mode of action (Gerry and Schreiber, 2018). Generating
novel small molecules is a difficult endeavor due to the high complexity of biological systems and the
enormous size of chemical space of organic compounds. Traditional experimental techniques can be
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used to identify drug-like molecules performing specific
biochemical tasks by binding to macromolecular targets with a
high specificity in order to modulate their cellular functions.
Nonetheless, even advanced high-throughput screening methods
have notable limitations due to the long time and high costs of
screening a large number of drug candidates.

To make the drug discovery process more efficient, modern
approaches incorporate miscellaneous computational
components. Virtual screening (VS) is perhaps the most
widely used strategy to help identify potentially bioactive
molecules from large collections of commercially available as
well as virtual compounds (Segler et al., 2018). Despite its utility,
this technology has certain drawbacks such as high false-positive
rates, the requirement of predefined ligand libraries for structure-
based VS, oversimplified scoring functions, and protein structure
frameworks absent in ligand-based VS (Wu et al., 2019). More
recently, machine learning (ML) methods addressing many of
these issues have become available for drug discovery. New ML
techniques include a quantitative structure-activity relationship
model to predict the target affinity, toxicity, and side effects
(Mouchlis et al., 2021) and an approach to model polypharmacy
side effects with graph convolutional networks (GCN) (Zitnik
et al., 2018).

Deep learning (DL) is a family of modern machine leaning
models utilizing deep neural networks (DNNs). DL models have
been demonstrated to be powerful feature extractors for ligand
binding site classifiers (Jiménez et al., 2017; Pu et al., 2019; Shi
et al., 2020) and metric learning models for binding sites in
proteins (Simonovsky and Meyers, 2020). Recurrent neural
networks (RNNs) are iterative DL models that generate
sequences through multiple iterations. In each iteration, the
RNN model generates an output of time t taking the output of
iteration t − 1 as the input. According to the probabilistic
language model (Graves, 2013), the probability of input token
xt+1 is modeled as P(xt+1|yt), which is the probability of xt+1
conditioned on the output token yt from the previous iteration.
This powerful methodology was applied to de novo drug
discovery, where RNNs were trained to model the probability
distribution of a drug dataset (Ertl et al., 2017; Segler et al., 2018;
Gupta et al., 2018; Yasonik, 2020). These methods treat a drug
dataset as a set of languages and employ an RNN to learn the
corresponding language models. After the training stage is
completed, the RNN learns the probability distribution
P(molecule) of the drug dataset, from which molecules can be
sampled. RNN-based approaches often represent molecules using
a simplified molecular-input line-entry system (SMILES)
(Weininger, 1988), where individual string characters represent
tokens of time steps. Although using RNNs to learn the
distributions of drug datasets offers new opportunities to find
drugs, these techniques still employ a random search of the
chemical space leading to long virtual screening times. From a
computational standpoint, when the aim is to identify promising
lead molecules against a target binding site, it is certainly
advantageous to have the search space significantly reduced.

In order to achieve this goal, we developed Pocket2Drug, a
new deep generative model with the encoder-decoder
architecture. Inspired by the framework of image captioning

models taking images as the input to generate corresponding
captions (Vinyals et al., 2015; Xu et al., 2015), the basic idea is to
provide RNN with the prior information on ligand binding
pockets to improve the chances of finding bioactive molecules.
A typical image captioning model consists of two parts, an
encoder/feature extractor and a decoder. A convolutional
neural network (CNN) is often used as the encoder extracting
fixed-size latent feature vectors from the input images containing
the prior information that can subsequently be decoded by an
RNN to generate image captions. Formally, image captioning
models learn the probability of sequences conditioned on prior
information, i.e., P(caption|image).

Pocket2Drug has a similar encoder-decoder architecture
consisting of an encoder to extract features and a decoder to
generate molecules. Nonetheless, Pocket2Drug differs from
typical image captioning models in that it employs a graph
representation of drug binding sites instead of images.
Consequently, a GNN is employed as the encoder to extract
the prior information from input pockets followed by an RNN
decoder to generate molecule strings, which are the equivalents of
image captions. In comprehensive benchmarking simulations
against ligand-bound, ligand-free, and low-homology datasets
of binding sites, we show that Pocket2Drug employing the
encoder-decoder DNN effectively predicts binding drugs for
input pocket structures.

MATERIALS AND METHODS

Datasets
Datasets used in this study were compiled from a non-
redundant library of 51,677 pockets with bound ligands
constructed for binding site prediction with eFindSite
(Brylinski and Feinstein, 2013). The redundancy in the
original library was already removed by excluding proteins
with the template modeling (TM)-score, measuring the
structure similarity (Zhang and Skolnick, 2004), of ≥0.4 and
the 3D Tanimoto coefficient (TC), measuring the ligand
similarity (Kawabata, 2011), of ≥0.7. We further filtered the
dataset based on the synthetic accessibility (SA) score (Ertl and
Schuffenhauer, 2009) removing low- and high-complexity
compounds whose SA scores are ≤1 and ≥6, respectively.
This procedure resulted in a high-quality dataset of 48,365
pockets binding small organic compounds, which were
randomly split into training (90%) and testing (10%) subsets.
The training subset of 43,529 pockets is referred to as the
Pocket2Drug-train dataset while the remaining 4,836
(testing) pockets are called the Pocket2Drug-holo dataset.

Next, 433 pockets having a protein sequence identity of ≤0.5
with pockets in the training subset were selected from the
Pocket2Drug-holo dataset creating the Pocket2Drug-lowhomol
dataset to evaluate the ability to generalize to unseen data. Finally,
the basic local alignment search tool (BLAST) (Altschul et al.,
1990) was used with a sequence identity threshold of 95% to
identify the apo structures of Pocket2Drug-holo proteins in the
Protein Data Bank (PDB) (Berman et al., 2002). Ligand-free
structures were then aligned on the corresponding holo-
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proteins with TM-align (Zhang and Skolnick, 2005) and those
producing significant alignments with a TM-score of ≥0.5 (Xu
and Zhang, 2010) were retained. This procedure resulted in
828 ligand-free pockets referred to as the Pocket2Drug-apo
dataset.

Graph Representation of Pockets
Binding pockets are represented as graphs, in which nodes are
non-hydrogen atoms and edges connect pairs of atoms spatially
located within 4.5 Å from one another (Shi et al., 2021). Node
features include the hydrophobicity (Mahn et al., 2009), the
charge, the binding probability (Jian et al., 2016), the solvent
accessible surface area (Ali et al., 2014), and the sequence entropy
(Liao et al., 2005), whereas the edge attribute is the bond
multiplicity for covalently bonded atoms and 0 for atoms
interacting non-covalently. Pockets are centered at the origin
with principal axes aligned to Cartesian axes. The coordinates of
individual atoms are also used as node features in order to provide
the additional 3D information on binding pockets. This graph
representation of ligand binding sites was used to accurately
classify pockets in protein structures with GraphSite (Shi et al.,
2021).

Encoder-Decoder Architecture
Pocket2Drug is implemented in PyTorch v1.7.1 (Paszke et al.,
2019) and employs a DNN with the encoder-decoder
architecture. The model learns the probability distribution of
molecules conditioned on ligand binding pockets,
P(molecue|pocket), which is then used to sample molecules
for a given pocket as the prior condition. The pipeline
implemented in Pocket2Drug is illustrated in Figure 1. For
the input binding site (Figure 1A), a graph representation is
generated by GraphSite (Shi et al., 2021) (Figure 1B) and the
resulting graph is processed by an encoder to generate a fixed-size
graph embedding (Figure 1C). As the encoder, we use a GNN
constructed by removing the fully connected layers of the
GraphSite classifier with parameters pretrained on binding site
classification tasks (Shi et al., 2021). Subsequently, an RNN
decoder takes the generated embedding vector as the input to
compute SMILES sequences representing binding drugs
(Figure 1D). Pocket2Drug is trained in an end-to-end fashion
meaning that the parameters of both encoder and decoder are
updated during backpropagation.

Graph Neural Network Encoder
The GNN encoder extracts latent features from the input pocket
graphs. We use the embedding network implemented in the
GraphSite classifier as the feature extractor with the last fully
connected layer removed and the remaining parts of the classifier
employed as the feature extractor. The message passing function
utilizes weighted neighbor node features, in which weights are
generated by a two-layer, fully connected neural network taking
edge features as the input. Updated node features in k-th layer of
node x(k)

i , defined as

x(k)
i � hθ⎛⎝ concat

c∈Channels
⎛⎝(1 + εc) · x(k−1)

i + ∑
j∈N (i)

hωc(eij) · x(k−1)
j

⎞⎠⎞⎠

(1)
are first computed as a weighted sum of the first-order neighbors.
The features of x(k−1)

i are weighted by (1 + ϵc), where ϵc is a
trainable parameter. The weights of the first-order neighbors are
generated by a neural network hωc taking the edge feature, eij, as
the input. Then, multiple channels of the weighted sum of the node
features are concatenated and updated by another neural network
hθ . Finally, the output of each layer is connected by the jumping
knowledge (JK)-network (Xu et al., 2018). The JK-network enables
an automatic selection of the number of layers for individual nodes.
Finally, the initial node embeddings are processed by the Set2Set
graph read-out layer (Vinyals et al., 2016) to construct final, fixed-
size graph embeddings.

Recurrent Neural Network Decoder
As a decoder, we use the gated recurrent unit (GRU), which is a
variation of the vanilla RNN (Cho et al., 2014). The decoder
network models a conditional probability of the output sequence
based on the prior information on a ligand binding pocket:

P(molecule
∣∣∣∣pocket) � P(s0

∣∣∣∣pocket)∏
n

t�1
P(st

∣∣∣∣pocket, s0,/, st−1)

(2)
where st is the token of a molecule string at iteration t, and n is the
length of the output string. Note that sn represents the “end of string”,
or eos, token.Figure 2 shows that theGRUnetworkworks differently
during training and inference stages. During training, the graph
embedding is taken by theGRUas the prior information tomodel the

FIGURE 1 | Flowchart of Pocket2Drug. The input ligand-binding pocket (A) is first represented as a graph (B) and then used by the encoder graph neural network
to generate a fixed-size graph embedding (C). The decoder recurrent neural network generates molecule strings (D) from the graph embedding.
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probability distribution of all tokens, where the probability of a token
s0 is P(s0). In the remaining iterations, input tokens st of the binding
drug string are mapped to vectors by the embedding layer and passed
to the GRU as the input. The GRU then predicts the next token by
generating another probability distribution P(st+1). The negative log
likelihood of the binding drug is used as the loss function:

L � −∑
n

t�0
logP(st) (3)

Dashed arrows in Figure 2 represent the inference stage. Here,
the first iteration is the same as during training, i.e., the encoder
generates graph embeddings used as the input in the first
iteration. However, in the subsequent iterations, the RNN
model takes the token st, sampled from the distribution of the
previous step, to generate the distribution st+1. The inference
stops when the eos token is reached.

Tokenization Scheme
Molecules can be represented by strings encoded by different
tokenization schemes. Although SMILES is a widely used
molecular string system, it was not designed for ML applications.
Because of a strict syntax of SMILES, a significant portion of
molecules generated by machine learning models are invalid. In
addition, parentheses and ring indicators may be separated by long
distances in SMILES strings causing problems for RNNs that have
difficulty learning long-term dependencies (Öztürk et al., 2020). This
issue can be addressed by improving either the RNN model or the
tokenization scheme. For instance, RNN variants implementing
“shortcuts” were developed to model long-term dependencies
(Hochreiter and Schmidhuber, 1997). A long short-term memory
(LSTM) model can also be used instead of a vanilla RNN in de novo
drug design applications to learn the distribution of a drug dataset
(Ertl et al., 2017). Another workaround is to improve the

tokenization scheme to make the string representation of
molecules more suitable for ML applications. An example is
DeepSMILES developed to enhance DL-based models taking
SMILES as the input (O’Boyle and Dalke, 2018).

Pocket2Drug employs SELF-referencing Embedding Strings
(SELFIES), another molecule tokenization scheme designed for
machine learning applications (Krenn et al., 2020). The SELFIES
method was selected because of several important properties. Not
only any molecule can be represented by a SELFIES string, but
also all virtual molecules generated by an ML model are valid.

FIGURE 2 | Architecture of the recurrent neural network decoder. The decoder employs multiple gated recurrent units (GRUs). During model training, the molecule
strings of binding drugs are used as the input. Dashed arrows represent the inference stage, in which the token sampled from P(st−1) is used as the input at iteration t.

FIGURE 3 | Relationship between the ligand size and the size of binding
pockets. The size of ligands and pockets is quantified by the number of non-
hydrogen atoms. Binding pockets are assigned to four size groups: <100,
100–160, 161–220, and >220 atoms. For each pocket group, quartiles
and the interquartile range are calculated for the size of label ligands (blue bars)
and those molecules generated by Pocket2Drug (green bars).
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Importantly, the information on rings and branches in SELFIES is
localized by storing the branch size and ring size together with
their identifiers. This tokenization scheme makes it easier for
RNNs to learn from the “past” information compared to, e.g.,
SMILES that require RNNs to infer ring/branch indicators based
on non-localized information.

EVALUATION AND RESULTS

Pocket2Drug was trained on the Pocket2Drug-train dataset and
validated against Pocket2Drug-holo, -apo, and -lowhomol
datasets. We first analyze the size of molecules generated for
the Pocket2Drug-holo dataset. Figure 3 shows that there is a
notable correlation between the size of pockets and the size of
binding molecules, referred to as label ligands, across
experimental complex structures (blue bars). Encouragingly,
the size of ligands constructed by Pocket2Drug is also
correlated with the pocket size, although these molecules tend
to be somewhat smaller than the corresponding label ligands
(green bars). This result can be attributed to the fact that
capturing longer dependencies in molecular strings is more
difficult for the RNN trained to minimize the sum of cross-
entropy loss function. In other words, the model makes fewer
mistakes by generating smaller molecules.

Next, the quality of molecules generated for the Pocket2Drug-
holo dataset is evaluated using two complementing protocols, one
based on the chemical similarity of binding molecules (Baldi and
Nasr, 2010) and another utilizing the structure alignments of
protein pockets (Yeturu and Chandra, 2011). Pocket2Drug is
compared to two baselines. The first method randomly selects
drug candidates from the ZINC database, a curated collection of
commercially available chemical compounds prepared
specifically for virtual screening (Irwin and Shoichet, 2005).
The second baseline method selects drug candidates from the
output of a vanilla RNN (Segler et al., 2018) representing a typical
DL-based approach for de novo drug design.

Evaluation by Ligand Chemical Similarity
The performance of Pocket2Drug, ZINC, and vanilla RNN are
evaluated with the TC between the generated molecules and label
ligands. For each pocket in the Pocket2Drug-holo dataset, TC
values are calculated for a specified number of molecules sampled
from the model output and the highest TC is selected as the final
score. Table 1 reports the percentage of Pocket2Drug-holo
pockets with the corresponding score greater than or equal to
a TC threshold ranging from 0.7 to 1.0. Encouragingly, using
Pocket2Drug significantly improves chances to find binding

molecules compared to ZINC and vanilla RNN. For a sample
size of 20,480 (10 batches of 2,048molecules each tomaximize the
GPU utilization), Pocket2Drug generates at least one molecule
which a TC of ≥0.7 to the label ligand for as many as 95.9%
pockets. Note that twomolecules sharing chemical similarity with
a TC of ≥0.7 tend to have a similar bioactivity (Kumar, 2011; Ben
Lo, 2016). For the majority of pockets (52.5%), Pocket2Drug
selects the label ligand itself (a TC of 1.0). This performance is
significantly higher than that of ZINC/vanilla RNN that selects
ligands with a TC of ≥0.7 for 58.9%/57.1% of pockets and label
ligands for merely 0.4%/0.1% of pockets. Increasing the sample
size to 81,920 slightly improves the performance because four
times more molecules are used to select that with the highest TC
value. A significantly improved performance of Pocket2Drug
over vanilla RNN can be attributed to the effective utilization
of the prior information on ligand binding pockets learned by the
ML model.

Next, the performance of Pocket2Drug is assessed against the
Pocket2Drug-apo dataset. The mean root-mean-square deviation
(RMSD) (Kabsch, 1976) of ligand-free structures against ligand-
bound conformations is 1.2 Å ± 0.9. This low RMSD is expected
because, with a few exceptions, the structures of apo- and holo-
proteins tend to be highly similar (Brylinski and Skolnick, 2008).
Table 2 reports hit rates for molecules generated by Pocket2Drug
using ligand-free and the corresponding ligand-bound pockets in
the Pocket2Drug-holo dataset. Encouragingly, the performance
of Pocket2Drug is independent on the ligand binding state of
target proteins, therefore, the model does not require input
proteins to be co-crystallized with ligands in order to
successfully generate binding molecules.

We also evaluate the ability of Pocket2Drug to generalize to
unseen data bymeasuring its performance against the Pocket2Drug-
lowhomol dataset. As reported in Table 3, label ligands (a TC of 1.0)
are generated by Pocket2Drug in 77.1%/80.5% of the cases when the
sample size is 20,480/81,920. This performance represents a notable
improvement over ZINC and vanilla RNN selecting a very few label
ligands. Pocket2Drug also achieves the highest performance for
other TC thresholds ranging from 0.7 to 0.9. These results show
that Pocket2Drug not only performs exceptionally well against
Pocket2Drug-holo and -apo datasets, but also against the
Pocket2Drug-lowhomol dataset comprising proteins with a low
sequence homology to the training subset demonstrating that it
generalizes well to unseen data.

Two representative examples of pockets in the Pocket2Drug-
lowhomol dataset are discussed in detail, a nucleotide binding site
in the human mitogen and stress activated protein kinase 1
(MSK1) and a sugar binding site in D-allose binding protein
(ALBP) from E. coli. MSK1 is involved in the regulation of

TABLE 1 | Hit rates for the Pocket2Drug-holo dataset.

Method Sample size of 20,480 Sample size of 81,920

TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%) TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%)

Pocket2Drug 95.9 79.9 64.8 52.5 98.4 86.8 69.7 56.4
ZINC 58.9 23.8 3.3 0.4 73.6 40.5 8.4 1.2
Vanilla RNN 57.1 19.7 1.6 0.1 70.9 35.3 4.7 0.3
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mitogen activated kinases and it is required by the tumor-
promoter-induced neoplastic cell transformation (Malakhova
et al., 2010). The complex structure of MSK1 and the
phospho-amino-phosphonic acid-adenylate ester (AMP-PNP)
(Malakhova et al., 2010) was chosen as the target. AMP-PNP
is a competitive ATPase inhibitor blocking the ATP-dependent
oxidative phosphorylation (Lardy et al., 1975). Figure 4A shows
the distribution of TC similarities between the label ligand, AMP-
PNP, and molecules generated by Pocket2Drug and two baseline
methods. Although most virtual molecules have relatively low TC
similarities to AMP-PNP, more molecules with high TC vales are
sampled from the Pocket2Drug model compared to ZINC and
vanilla RNN. According to the Fisher-Pitman permutation test
(Neuhäuser and Manly, 2004), the difference between

Pocket2Drug and vanilla RNN is statistically significant with a
p-value close to 0 and that between Pocket2Drug and ZINC is
insignificant with a p-value of 0.1.

To better understand the biological relevance of molecules
generated by Pocket2Drug, five representative compounds with
TC similarities against AMP-PNP ranging from 1.0 to 0.8 are
presented in Figure 5. Figure 5A shows AMP-PNP, which is a
nonhydrolyzable ATP analogue forming hydrogen bonds with
MSK1 pocket residues through several moieties, NH2 in adenine,
3′OH in pentose sugar, OH in ß-phosphate, NH linking ß- and γ-
phosphates and OH in γ-phosphate in the complex crystal
structure (Malakhova et al., 2010). Interestingly, several
molecules generated by Pocket2Drug have common
substructures with either substitutions in the adenine moiety
(Figures 5E,F) and the terminal phosphate group (Figure 5B) or
sharing the PNP subunit (Figures 5C,D). These virtual molecules
contain groups forming important hydrogen bonds with MSK1
pocket residues. To further evaluate the possibility of binding, all
molecules were docked into the AMP-PNP pocket of MSK1 with
fkcombu (Kawabata and Nakamura, 2014). The docking scores of
the generated molecules are 12.5, 18.1, 21.8, 17.6, and 13.0
(Figures 5B–F, respectively). These results indicate that
molecules generated by Pocket2Drug dock favorably to the
target pocket with the compound shown in Figures 5B,G
having the best docking score due to the substitution in ß-
phosphate group.

The improvement of Pocket2Drug over baseline methods is
even more perceptible for ALBP where the distribution of TC
similarities to the label ligand is shifted toward much higher
values for molecules sampled from the Pocket2Drug model
(Figure 4B). Differences between Pocket2Drug and both
baseline methods are statistically significant with p-values close
to 0. ALBP is a member of the ATP-binding cassette (ABC)
transporter family facilitating the import and export of various
molecules across the cell membrane (Fath and Kolter, 1993).
ALBP binds ß-D-allose, shown in Figure 6A, with a Kd of 0.33 μM
(Chaudhuri et al., 1999). In the crystal complex structure, ß-
D-allose forms multiple interactions with the pocket residues of

TABLE 2 |Hit rates for the Pocket2Drug-apo dataset. For each ligand-free structure, the corresponding ligand-bound pocket is selected from the Pocket2Drug-holo dataset
for the apples-to-apples comparison.

Binding state Sample size of 20,480 Sample size of 81,920

TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%) TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%)

Ligand-free 95.3 72.7 53.3 37.4 98.2 82.2 57.2 40.5
Ligand-bound 95.3 72.2 52.3 37.0 98.2 81.6 58.1 41.2

TABLE 3 | Hit rates for the Pocket2Drug-lowhomol dataset.

Method Sample size of 20,480 Sample size of 81,920

TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%) TC ≥ 0.7 (%) TC ≥ 0.8 (%) TC ≥ 0.9 (%) TC =1.0 (%)

Pocket2Drug 98.2 95.2 87.5 77.1 98.9 96.8 90.0 80.5
ZINC 49.2 18.4 2.7 0.2 66.7 36.3 10.4 2.3
Vanilla RNN 50.8 16.1 0.9 0.0 62.8 28.8 5.7 0.9

FIGURE 4 | Chemical similarity of molecules generated by Pocket2Drug
to label ligands. Label ligands are molecules bound to target pockets in
experimental complex structures, (A) AMP-PNP binding to MSK1 and (B) ß-
D-allose binding to ALBP. Chemical similarity is measured with the
Tanimoto coefficient (TC).
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FIGURE 5 | Examples of molecules generated by Pocket2Drug for a binding site in MSK1. (A) The label ligand, AMP-PNP. (B–F) Molecules constructed by
Pocket2Drug with maximum common substructures to the label ligand highlighted in cyan. (G) Molecule shown in B (ice blue) docked to the binding site in MSK1
(orange).

FIGURE 6 | Examples of molecules generated by Pocket2Drug for a binding site in ALBP. (A) The label ligand, ß-D-allose. (B–F) Molecules constructed by
Pocket2Drug with maximum common substructures to the label ligand highlighted in cyan. (G) Molecule shown in E (ice blue) docked to the binding site in ALBP
(orange).
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ALBP through the ring oxygen and five hydroxyl moieties
(Chaudhuri et al., 1999). Selected compounds generated by
Pocket2Drug are presented in Figures 6B–F. In addition to a
substituted cyclohexane (Figure 6B), several substituted allose
molecules (Figures 6C–F) sharing a high chemical similarity with
the label ligand, ß-D-allose (Figure 6A), were constructed. Most
of these molecules dock well to ALBP pocket with docking scores
of 4.1, 3.7, 20.9, 3.5, and 9.8 for compounds shown in Figures

6B–F, respectively. Interestingly, a substituted cyclohexane in the
molecule shown in Figure 6B adopts the chair conformation
similarly to ß-D-allose bound to ALBP in the experimental
complex structure. A compound shown in Figures 6E,G has
the best docking score, whereas that shown in Figure 6D has less
favorable docking score than those ligands having a comparable
size to ß-D-allose because of the large substitution at 5′ position
that does not fit in the binding pocket of ALBP. Docking results
suggest that molecules generated by Pocket2Drug are capable of
forming favorable interactions with the target pocket.

Evaluation by Pocket Structure Alignments
In addition to the assessment by ligand chemical similarity
described above, the performance of Pocket2Drug is also
evaluated with pocket structure alignments. This approach
is based on an assumption that a molecule generated for the
target pocket is a hit if a similar molecule binds to a site that is
structurally similar to the target pocket (Govindaraj and
Brylinski, 2018; Gaieb et al., 2019). A flowchart of the
evaluation procedure is shown in Figure 7. For a target
pocket in the testing set (Figure 7A), molecules generated
by Pocket2Drug are ranked according to their frequencies and
100 of the most frequent molecules are selected. For each drug
candidate (Figure 7B), chemically similar ligands with a TC of
≥0.7 are identified in the PubChem BioAssay dataset
comprising 73,021 active interactions involving 919 unique
proteins and 17,367 unique compounds (Wang et al., 2012).
Next, the experimental complex structures of these ligands
bound to similar proteins with a sequence identity of ≥70% to
PubChem BioAssay targets are retrieved from the PDB. The
extracted binding sites (Figure 7C) are finally structurally
aligned to the initial target pocket with PocketAlign, an
accurate method to superpose ligand binding sites in a
sequence order-independent manner (Yeturu and Chandra,
2011). Essentially, this procedure validates molecules
generated for target pockets by finding similar interactions
that have already been determined experimentally through
binding assays and protein crystallography.

Similar to the evaluation protocol by ligand chemical
similarity, Pocket2Drug is compared to ZINC and vanilla
RNN. For each target pocket, 100 molecules from the ZINC
database and 100 molecules generated by vanilla RNN are
selected so that their molecular weight distributions match
those calculated for compounds selected by Pocket2Drug. In
terms of statistics, the number of pocket pairs used as input
for structure alignments is 17,620 for Pocket2Drug, 6,307 for
ZINC, and 6,694 for vanilla RNN. The number of valid
pocket alignments constructed by PocketAlign (Yeturu and
Chandra, 2011) are 16,987 (Pocket2Drug), 741 (ZINC), and
4,902 (vanilla RNN). A valid pocket alignment has the RMSD
of ≤2 Å; higher RMSD values indicate that two pockets are
structurally dissimilar. According to this criterion, as many as
96.4% of validation pairs of pockets identified using output
molecules generated by Pocket2Drug produce valid structure
alignments, while these percentages are notably lower for
ZINC (11.7%) and vanilla RNN (73.2%). The distribution of
the RMSD scores of pocket alignments for all tested methods is

FIGURE 7 | Flowchart of the evaluation by pocket structure alignments.
For a target pocket (A), a molecule is generated by Pocket2Drug (B). This
compound is then scanned through the PubChem BioAssay for similar
molecules for which experimental complex structures are available in the
Protein Data Bank. The extracted binding site (C) corresponding to the know
interaction in PubChemBioAssay is structurally aligned to the target pocket by
PocketAlign. A high-quality alignment (D) indicates that the generated
molecule is likely to bind to the target pocket.
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presented in Figure 8. Not only using molecules selected by
Pocket2Drug results in the highest percentage of valid structure
alignments, but also RMSD values for these superpositions are
generally much lower compared to ZINC and vanilla RNN. The
mean RMSD scores for pocket2Drug, ZINC, and vanilla RNN are
1.1 Å, 1.6 Å, and 1.6 Å, respectively.

Structure alignment results demonstrate that for a large number of
molecules generated by Pocket2Drug for target pockets, there are
experimentally determined interactions between chemically similar
ligands binding to structurally similar pockets. Two representative
cases are selected to exemplify the evaluation by pocket structure
alignments. The first target pocket is a nucleotide binding site in

MSK1 used in the previous section to illustrate the results of the
evaluation by ligand chemical similarity. Amongmolecules generated
by Pocket2Drug, a compound ranked 12 with the frequency of 21
(Figure 9A) is chemically similar to midostaurin (PubChem-CID:
9829523, Figure 9B), a protein kinase C (PKC) inhibitor (Eder et al.,
2004) used to treat systemic mastocytosis, acute myeloid leukemia,
and mast cell leukemia (National Cancer Institute Dictionary, 2021).
According to the bioassay data (PubChem-BAID: 208295368),
midostaurin inhibits PKC-α isoform with the half-maximal
inhibitory concentration (IC50) of 22 nM (Millward et al., 2006).
Midostaurin has been co-crystalized with the human dual specificity
tyrosine-phosphorylation-regulated kinase 1A (DYRK1A, 25%
sequence identity with PKC-α) with the equilibrium dissociation
constant (Kd) of 100 nM (PDB-ID: 4nct) (Alexeeva et al., 2015).
Figure 9C shows the structure alignment constructed by PocketAlign
between AMP-PNP binding pocket in MSK1 and midostaurin
binding pocket in DYRK1A. Despite a low global sequence
identity between these proteins of only 26%, their binding pockets
are structurally highly similar with the RMSD of 0.90 Å. The
compound generated by Pocket2Drug docks to the AMP-PNP
binding pocket in MSK1 with a score of 58.5 (Figure 9D).

The second example is the human angiopoietin-1 receptor
(Tie-2), an enzyme involved in vessel remodeling, branching,
stability, and maturation (Yu, 2005). Using the binding site of
Tie-2 as the input, Pocket2Drug generated a molecule shown
in Figure 10A at rank 9 with a frequency of 5. This compound
is chemically similar to doramapimod (PubChem-CID:
156422, Figure 10B), an inhibitor of ephrin type-A
receptor 2 (EphA2) with a TC of 0.73. According to the
bioassay data (PubChem-BAID: 40394839), doramapimod
binds to EphA2 with a Kd of 0.37 nM and has been tested
for its anti-proliferative activity in the SF-268 cell line. It
inhibits the viability of EphA2 growth dependent
glioblastoma cells with a half-maximal effective
concentration (EC50) of 5 μM (Heinzlmeir et al., 2017).
Despite a low global sequence identity of 37%, the
structure alignment of binding sites in Tie-2 (PDB-ID:

FIGURE 8 | Assessment of the quality of pocket alignments constructed
with PocketAlign. Alignment quality is evaluated by the root-mean-square
deviation (RMSD) calculated over non-hydrogen atoms of binding residues.
Target pockets are aligned to binding sites identified in the Protein Data
Bank for molecules generated by Pocket2Drug (green) and two baselines,
ZINC (red) and vanilla RNN (gray).

FIGURE 9 | Example of the evaluation by pocket alignment for a binding site in MSK1. (A) A molecule generated by Pocket2Drug at rank 12. (B) A similar
compound, midostaurin, with the maximum common substructure to Pocket2Drug molecule highlighted in cyan. (C) A structure alignment between the target binding
site in MSK1 (orange) and midostaurin binding pocket in DYRK1A (purple). (D) The molecule generated by Pocket2Drug (ice blue) docked to the target site in MSK1
(orange) with fkcombu.
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2oo8) and EphA2 (PDB-ID: 5nkd) yields an RMSD of 0.95 Å
(Figure 10C). Docking simulations with fkcombu confirmed
that the molecule generated by Pocket2Drug fits well into the
binding site of Tie-2 with a score of 24.3 (Figure 10D).

DISCUSSION

In this communication, we describe Pocket2Drug, a novel deep
learning model employing an encoder-decoder architecture to
predict binding molecules for a ligand binding site. Pocket2Drug
was trained in an end-to-end supervised manner against a large
collection of ligand-pocket pairs. The analysis of molecules
generated by Pocket2Drug using two evaluation protocols
based on ligand chemical similarity and pocket structure
alignments revealed that this algorithm significantly improves
the chances of finding binding ligands compared to traditional
techniques. Pocket2Drug not only yields a high accuracy against
ligand-free structures, but it also generalizes well to unseen data,
viz. those pockets extracted from proteins that are different from
training instances. These findings are particularly important in
drug discovery against novel protein structures, where it can help
significantly reduce the search space of drug candidates. In
contrast to traditional virtual screening typically employing a
library of 200,000 to over 1,000,000 molecules (Hughes et al.,
2011), Pocket2Drug generates molecules that have high chances
to bind to target pockets within a smaller sample of 81,920
compounds. Therefore, it can potentially decrease the number
of molecules to be subjected to structure-based virtual screening
from millions to tens of thousands.

Pocket2Drug can be improved by incorporating reinforcement
learning imposing additional restraints on the synthetic accessibility,
solubility, and toxicity of generated molecules, depending on a
specific application. Additional improvements can also be
achieved by applying a framework similar to the conditional
recurrent neural network (cRNN), utilizing the RNN with the

prior information (Xu et al., 2021), to the heterogeneous input
data. In contrast to cRNN, in which the pre-computed
information is used as the prior condition for RNN, Pocket2Drug
is an end-to-end DNN, therefore the encoder is updated during
training. Another difference is the data representation; cRNN uses a
voxel representation as the prior information, whereas Pocket2Drug
employs a computationally more efficient graph representation.
Nonetheless, the heterogeneous pocket data can be combined by
concatenating embedding vectors generated by different feature
extractors in order to provide the prior information on ligand
binding sites.

An attention mechanism was shown to significantly improve
the performance of image captioning because it helps the model
capture more semantically meaningful parts of images (Xu et al.,
2015).We expect that the samemethodology can be implemented
in Pocket2Drug since pocket residues contribute differently to the
formation of molecular interactions with binding ligands. These
are examples of future research directions that will be explored to
further improve the performance of Pocket2Drug in the discovery
of novel biopharmaceuticals.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
shiwentao00/Pocket2Drug, https://osf.io/qacwj/.

AUTHOR CONTRIBUTIONS

Conceptualization: WS; Methods: WS and LP; Dataset: MB;
Evaluation and case studies: WS, MS, and GS; Supervision:
MB; Funding requisition: JR and MB; Manuscript draft: WS,
LP, MS, and GS; Final manuscript: MB.

FIGURE 10 | Example of the evaluation by pocket alignment for a binding site in Tie-2. (A) Amolecule generated by Pocket2Drug at rank 9. (B) A similar compound,
doramapimod, with the maximum common substructure to Pocket2Drug molecule highlighted in cyan. (C) A structure alignment between the target binding site in Tie-2
(orange) and doramapimod binding pocket in EphA2 (purple). (D) The molecule generated by Pocket2Drug (ice blue) docked to the target site in Tie-2 (orange) with
fkcombu.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 83771510

Shi et al. Drug Design with Deep Learning

220

https://github.com/shiwentao00/Pocket2Drug
https://github.com/shiwentao00/Pocket2Drug
https://osf.io/qacwj/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FUNDING

This work has been supported in part by the National Institute of
General Medical Sciences of the National Institutes of Health

award R35GM119524, the US National Science Foundation
award CCF1619303, the Louisiana Board of Regents contract
LEQSF(2016-19)-RD-B03 and by the Center for Computation
and Technology, Louisiana State University.

REFERENCES

Alexeeva, M., Åberg, E., Engh, R. A., and Rothweiler, U. (2015). The Structure of a
Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A-Pkc412
Complex Reveals Disulfide-Bridge Formation with the Anomalous Catalytic
Loop HRD(HCD) Cysteine. Acta Crystallogr. D Biol. Crystallogr. 71 (Pt 5),
1207–1215. doi:10.1107/S1399004715005106

Ali, S. A., Hassan, M. I., Islam, A., and Ahmad, F. (2014). A Review of Methods
Available to Estimate Solvent-Accessible Surface Areas of Soluble Proteins in
the Folded and Unfolded States. Curr. Protein Pept. Sci. 15 (5), 456–476. doi:10.
2174/1389203715666140327114232

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
Local Alignment Search Tool. J. Mol. Biol. 215 (3), 403–410. doi:10.1016/S0022-
2836(05)80360-2

Baldi, P., and Nasr, R. (2010). When Is Chemical Similarity Significant? the
Statistical Distribution of Chemical Similarity Scores and its Extreme
Values. J. Chem. Inf. Model. 50 (7), 1205–1222. doi:10.1021/ci100010v

Ben Lo, J. Z. T. (2016). “Chemical Similarity Networks for Drug Discovery,” in
Special Topics in Drug Discovery (Intech), 53–72. doi:10.5772/65106

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt,
K., et al. (2002). The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 58
(Pt 6 No 1), 899–907. doi:10.1107/s0907444902003451

Brylinski, M., and Feinstein, W. P. (2013). eFindSite: Improved Prediction of
Ligand Binding Sites in Protein Models Using Meta-Threading, Machine
Learning and Auxiliary Ligands. J. Comput. Aided Mol. Des. 27 (6),
551–567. doi:10.1007/s10822-013-9663-5

Brylinski, M., and Skolnick, J. (2008). What Is the Relationship between the Global
Structures of Apo and Holo Proteins. Proteins 70 (2), 363–377. doi:10.1002/
prot.21510

Chaudhuri, B. N., Ko, J., Park, C., Jones, T. A., andMowbray, S. L. (1999). Structure
of D-Allose Binding Protein from Escherichia coli Bound to D-Allose at 1.8 A
Resolution. J. Mol. Biol. 286 (5), 1519–1531. doi:10.1006/jmbi.1999.2571

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., et al. (2014). “Learning Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, October 25–29, 2014.

Eder, J. P., Jr., Garcia-Carbonero, R., Clark, J. W., Supko, J. G., Puchalski, T. A.,
Ryan, D. P., et al. (2004). A Phase I Trial of Daily Oral 4’- N -Benzoyl-
Staurosporine in Combination with Protracted Continuous Infusion 5-
fluorouracil in Patients with Advanced Solid Malignancies. Invest. New
Drugs 22 (2), 139–150. doi:10.1023/B:DRUG.0000011790.31292.ef

Ertl, P., and Schuffenhauer, A. (2009). Estimation of Synthetic Accessibility Score
of Drug-like Molecules Based on Molecular Complexity and Fragment
Contributions. J. Cheminform 1 (1), 8. doi:10.1186/1758-2946-1-8

Ertl, P., Lewis, R., Martin, E., and Polyakov, V. (2017). In Silico Generation of Novel,
Drug-like Chemical Matter Using the LSTM Neural Network. arXiv preprint
arXiv:1712.07449.

Fath, M. J., and Kolter, R. (1993). ABC Transporters: Bacterial Exporters.
Microbiol. Rev. 57 (4), 995–1017. doi:10.1128/mr.57.4.995-1017.1993

Gaieb, Z., Parks, C., and Amaro, R. (2019). Evaluation of Binding Site Comparison
Algorithms and Proteometric Machine Learning Models in the Detection of
Protein Pockets Capable of Binding the Same Ligand. ChemRxiv preprint
ChemRxiv:9178136.

Gerry, C. J., and Schreiber, S. L. (2018). Chemical Probes and Drug Leads from
Advances in Synthetic Planning and Methodology. Nat. Rev. Drug Discov. 17
(5), 333–352. doi:10.1038/nrd.2018.53

Govindaraj, R. G., and Brylinski, M. (2018). Comparative Assessment of Strategies
to Identify Similar Ligand-Binding Pockets in Proteins. BMC Bioinformatics 19
(1), 91. doi:10.1186/s12859-018-2109-2

Graves, A. (2013). Generating Sequences with Recurrent Neural Networks. arXiv
preprint arXiv:1308.0850.

Gupta, A., Müller, A. T., Huisman, B. J. H., Fuchs, J. A., Schneider, P., and
Schneider, G. (2018). Generative Recurrent Networks for De Novo Drug
Design. Mol. Inform. 37 (1-2), 1700111. doi:10.1002/minf.201700111

Heinzlmeir, S., Lohse, J., Treiber, T., Kudlinzki, D., Linhard, V., Gande, S. L., et al.
(2017). Chemoproteomics-Aided Medicinal Chemistry for the Discovery of
EPHA2 Inhibitors. ChemMedChem 12 (12), 999–1011. doi:10.1002/cmdc.
201700217

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput. 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735

Hughes, J. P., Rees, S., Kalindjian, S. B., and Philpott, K. L. (2011). Principles of
Early Drug Discovery. Br. J. Pharmacol. 162 (6), 1239–1249. doi:10.1111/j.1476-
5381.2010.01127.x

Irwin, J. J., and Shoichet, B. K. (2005). ZINC--a Free Database of Commercially
Available Compounds for Virtual Screening. J. Chem. Inf. Model. 45 (1),
177–182. doi:10.1021/ci049714+

Jian, J. W., Elumalai, P., Pitti, T., Wu, C. Y., Tsai, K. C., Chang, J. Y., et al. (2016).
Predicting Ligand Binding Sites on Protein Surfaces by 3-dimensional
Probability Density Distributions of Interacting Atoms. PloS one 11 (8),
e0160315. doi:10.1371/journal.pone.0160315

Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., and De Fabritiis, G. (2017).
DeepSite: Protein-Binding Site Predictor Using 3D-Convolutional Neural
Networks. Bioinformatics 33 (19), 3036–3042. doi:10.1093/bioinformatics/btx350

Kabsch, W. (1976). A Solution for the Best Rotation to Relate Two Sets of Vectors.
Acta Cryst. Sect A. 32 (5), 922–923. doi:10.1107/s0567739476001873

Kawabata, T. (2011). Build-up Algorithm for Atomic Correspondence between
Chemical Structures. J. Chem. Inf. Model. 51 (8), 1775–1787. doi:10.1021/
ci2001023

Kawabata, T., and Nakamura, H. (2014). 3D Flexible Alignment Using 2D
Maximum Common Substructure: Dependence of Prediction Accuracy on
Target-Reference Chemical Similarity. J. Chem. Inf. Model. 54 (7), 1850–1863.
doi:10.1021/ci500006d

Krenn, M., Häse, F., Nigam, A., Friederich, P., and Aspuru-Guzik, A. (2020). Self-
Referencing Embedded Strings (SELFIES): A 100% Robust Molecular String
Representation. Machine Learn. Sci. Techn. 1 (4), 045024. doi:10.1088/2632-
2153/aba947

Kumar, A. (2011). Chemical Similarity Methods : A Tutorial Review. The Chem.
educator 16, 46–50. doi:10.1333/s00897112344a

Lardy, H. A., Schuster, S. M., and Ebel, R. E. (1975). Exploring Sites on
Mitochondrial ATPase for Catalysis, Regulation, and Inhibition. J. Supramol
Struct. 3 (3), 214–221. doi:10.1002/jss.400030303

Liao, H., Yeh, W., Chiang, D., Jernigan, R. L., and Lustig, B. (2005). Protein
Sequence Entropy Is Closely Related to Packing Density and Hydrophobicity.
Protein Eng. Des. Sel 18 (2), 59–64. doi:10.1093/protein/gzi009

Mahn, A., Lienqueo, M. E., and Salgado, J. C. (2009). Methods of Calculating
Protein Hydrophobicity and Their Application in Developing Correlations to
Predict Hydrophobic Interaction Chromatography Retention. J. Chromatogr.
A. 1216 (10), 1838–1844. doi:10.1016/j.chroma.2008.11.089

Malakhova, M., D’Angelo, I., Kim, H. G., Kurinov, I., Bode, A. M., and Dong, Z.
(2010). The crystal Structure of the Active Form of the C-Terminal Kinase
Domain ofMitogen- and Stress-Activated Protein Kinase 1. J. Mol. Biol. 399 (1),
41–52. doi:10.1016/j.jmb.2010.03.064

Millward, M. J., House, C., Bowtell, D., Webster, L., Olver, I. N., Gore, M., et al.
(2006). The Multikinase Inhibitor Midostaurin (PKC412A) Lacks Activity in
Metastatic Melanoma: a Phase IIA Clinical and Biologic Study. Br. J. Cancer 95
(7), 829–834. doi:10.1038/sj.bjc.6603331

Mouchlis, V. D., Afantitis, A., Serra, A., Fratello, M., Papadiamantis, A. G., Aidinis,
V., et al. (2021). Advances in De Novo Drug Design: From Conventional to
Machine Learning Methods. Int. J. Mol. Sci. 22 (4), 1676. doi:10.3390/
ijms22041676

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 83771511

Shi et al. Drug Design with Deep Learning

221

https://doi.org/10.1107/S1399004715005106
https://doi.org/10.2174/1389203715666140327114232
https://doi.org/10.2174/1389203715666140327114232
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1021/ci100010v
https://doi.org/10.5772/65106
https://doi.org/10.1107/s0907444902003451
https://doi.org/10.1007/s10822-013-9663-5
https://doi.org/10.1002/prot.21510
https://doi.org/10.1002/prot.21510
https://doi.org/10.1006/jmbi.1999.2571
https://doi.org/10.1023/B:DRUG.0000011790.31292.ef
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1128/mr.57.4.995-1017.1993
https://doi.org/10.1038/nrd.2018.53
https://doi.org/10.1186/s12859-018-2109-2
https://doi.org/10.1002/minf.201700111
https://doi.org/10.1002/cmdc.201700217
https://doi.org/10.1002/cmdc.201700217
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1021/ci049714+
https://doi.org/10.1371/journal.pone.0160315
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1107/s0567739476001873
https://doi.org/10.1021/ci2001023
https://doi.org/10.1021/ci2001023
https://doi.org/10.1021/ci500006d
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1333/s00897112344a
https://doi.org/10.1002/jss.400030303
https://doi.org/10.1093/protein/gzi009
https://doi.org/10.1016/j.chroma.2008.11.089
https://doi.org/10.1016/j.jmb.2010.03.064
https://doi.org/10.1038/sj.bjc.6603331
https://doi.org/10.3390/ijms22041676
https://doi.org/10.3390/ijms22041676
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


National Cancer Institute Dictionary (2021). Available from: https://www.cancer.gov/
publications/dictionaries/cancer-terms/def/n-benzoyl-staurosporine (Accessed
December 4, 2021).

Neuhäuser, M., and Manly, B. F. (2004). The Fisher-Pitman Permutation Test
when Testing for Differences in Mean and Variance. Psychol. Rep. 94 (1),
189–194. doi:10.2466/pr0.94.1.189-194

O’Boyle, N., and Dalke, A. (2018). DeepSMILES: An Adaptation of SMILES for Use
in Machine-Learning of Chemical Structures. ChemRxiv. doi:10.26434/
chemrxiv.7097960.v1

Öztürk, H., Özgür, A., Schwaller, P., Laino, T., and Ozkirimli, E. (2020). Exploring
Chemical Space Using Natural Language Processing Methodologies for Drug
Discovery. Drug Discov. Today 25 (4), 689–705. doi:10.1016/j.drudis.2020.
01.020

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in
Proceedings of the Thirty-third Conference on Neural Information Processing
Systems (NeurIPS), Vancouver, BC, December 8–14, 2019.

Pu, L., Govindaraj, R. G., Lemoine, J. M., Wu, H. C., and Brylinski, M. (2019).
DeepDrug3D: Classification of Ligand-Binding Pockets in Proteins with a
Convolutional Neural Network. Plos Comput. Biol. 15 (2), e1006718. doi:10.
1371/journal.pcbi.1006718

Segler, M. H. S., Kogej, T., Tyrchan, C., and Waller, M. P. (2018).
Generating Focused Molecule Libraries for Drug Discovery with
Recurrent Neural Networks. ACS Cent. Sci. 4 (1), 120–131. doi:10.
1021/acscentsci.7b00512

Shi, W., Lemoine, J. M., Shawky, A. A., Singha, M., Pu, L., Yang, S., et al. (2020).
BionoiNet: Ligand-Binding Site Classification with Off-The-Shelf Deep Neural
Network. Bioinformatics 36 (10), 3077–3083. doi:10.1093/bioinformatics/
btaa094

Shi, W., Singha, M., Pu, L., Ramanujam, J., and Brylinski, M. (2021). Graphsite:
Ligand-Binding Site Classification Using Deep Graph Neural Network. bioRxiv,
2021.12.06.471420.

Shou, J., Massarweh, S., Osborne, C. K., Wakeling, A. E., Ali, S., Weiss, H., et al.
(2004). Mechanisms of Tamoxifen Resistance: Increased Estrogen Receptor-
HER2/neu Cross-Talk in ER/HER2-positive Breast Cancer. J. Natl. Cancer Inst.
96 (12), 926–935. doi:10.1093/jnci/djh166

Simonovsky, M., and Meyers, J. (2020). DeeplyTough: Learning Structural
Comparison of Protein Binding Sites. J. Chem. Inf. Model. 60 (4),
2356–2366. doi:10.1021/acs.jcim.9b00554

Trebosc, V., Gartenmann, S., Tötzl, M., Lucchini, V., Schellhorn, B., Pieren, M.,
et al. (2019). Dissecting Colistin Resistance Mechanisms in Extensively Drug-
Resistant Acinetobacter Baumannii Clinical Isolates. mBio 10 (4), e01083.
doi:10.1128/mBio.01083-19

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). “Show and Tell: A Neural
Image Caption Generator,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, June 8–10, 2015,
3156–3164. doi:10.1109/cvpr.2015.7298935

Vinyals, O., Bengio, S., and Kudlur, M. (2016). “Order Matters: Sequence to
Sequence for Sets,” in Proceedings of the International Conference on Learning
Representations, San Juan, Puerto Rico, May 2–4, 2016, 3156–3164. doi:10.
1109/cvpr.2015.7298935 arXiv preprint arXiv:1511.06391.

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., Zhou, Z., et al. (2012).
PubChem’s BioAssay Database. Nucleic Acids Res. 40 (Database issue),
D400–D412. doi:10.1093/nar/gkr1132

Weininger, D. (1988). SMILES, a Chemical Language and Information System. 1.
Introduction to Methodology and Encoding Rules. J. Chem. Inf. Model. 28 (1),
31–36. doi:10.1021/ci00057a005

Wu, K. J., Lei, P. M., Liu, H., Wu, C., Leung, C. H., andMa, D. L. (2019). Mimicking
Strategy for Protein-Protein Interaction Inhibitor Discovery by Virtual
Screening. Molecules 24 (24), 4428. doi:10.3390/molecules24244428

Xu, J., and Zhang, Y. (2010). How Significant Is a Protein Structure Similarity with
TM-Score = 0.5? Bioinformatics 26 (7), 889–895. doi:10.1093/bioinformatics/
btq066

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., et al. (2015). “Show,
Attend and Tell: Neural Image Caption Generation with Visual Attention,” in
International conference on machine learning (Lille, France: PMLR).

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., and Jegelkaet, S. (2018).
“Representation Learning on Graphs with Jumping Knowledge Networks,” in
International Conference on Machine Learning (Stockholm, Sweden: PMLR).

Xu, M., Ran, T., and Chen, H. (2021). De Novo molecule Design through the
Molecular Generative Model Conditioned by 3D Information of Protein
Binding Sites. J. Chem. Inf. Model. 61 (7), 3240–3254. doi:10.1021/acs.jcim.
0c01494

Yasonik, J. (2020). Multiobjective De Novo Drug Design with Recurrent Neural
Networks and Nondominated Sorting. J. Cheminform 12 (1), 14–19. doi:10.
1186/s13321-020-00419-6

Yeturu, K., and Chandra, N. (2011). PocketAlign a Novel Algorithm for Aligning
Binding Sites in Protein Structures. J. Chem. Inf. Model. 51 (7), 1725–1736.
doi:10.1021/ci200132z

Yu, Q. (2005). The Dynamic Roles of Angiopoietins in Tumor Angiogenesis.
Future Oncol. 1 (4), 475–484. doi:10.2217/14796694.1.4.475

Zhang, Y., and Skolnick, J. (2004). Scoring Function for Automated Assessment of
Protein Structure Template Quality. Proteins 57 (4), 702–710. doi:10.1002/prot.
20264

Zhang, Y., and Skolnick, J. (2005). TM-align: a Protein Structure Alignment
Algorithm Based on the TM-Score. Nucleic Acids Res. 33 (7), 2302–2309.
doi:10.1093/nar/gki524

Zitnik, M., Agrawal, M., and Leskovec, J. (2018). Modeling Polypharmacy Side
Effects with Graph Convolutional Networks. Bioinformatics 34 (13), i457–i466.
doi:10.1093/bioinformatics/bty294

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shi, Singha, Srivastava, Pu, Ramanujam and Brylinski. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 83771512

Shi et al. Drug Design with Deep Learning

222

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/n-benzoyl-staurosporine
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/n-benzoyl-staurosporine
https://doi.org/10.2466/pr0.94.1.189-194
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.1016/j.drudis.2020.01.020
https://doi.org/10.1016/j.drudis.2020.01.020
https://doi.org/10.1371/journal.pcbi.1006718
https://doi.org/10.1371/journal.pcbi.1006718
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1093/bioinformatics/btaa094
https://doi.org/10.1093/bioinformatics/btaa094
https://doi.org/10.1093/jnci/djh166
https://doi.org/10.1021/acs.jcim.9b00554
https://doi.org/10.1128/mBio.01083-19
https://doi.org/10.1109/cvpr.2015.7298935
https://doi.org/10.1109/cvpr.2015.7298935
https://doi.org/10.1109/cvpr.2015.7298935
https://doi.org/10.1093/nar/gkr1132
https://doi.org/10.1021/ci00057a005
https://doi.org/10.3390/molecules24244428
https://doi.org/10.1093/bioinformatics/btq066
https://doi.org/10.1093/bioinformatics/btq066
https://doi.org/10.1021/acs.jcim.0c01494
https://doi.org/10.1021/acs.jcim.0c01494
https://doi.org/10.1186/s13321-020-00419-6
https://doi.org/10.1186/s13321-020-00419-6
https://doi.org/10.1021/ci200132z
https://doi.org/10.2217/14796694.1.4.475
https://doi.org/10.1002/prot.20264
https://doi.org/10.1002/prot.20264
https://doi.org/10.1093/nar/gki524
https://doi.org/10.1093/bioinformatics/bty294
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


A Set of Experimentally Validated
Decoys for the Human CC Chemokine
Receptor 7 (CCR7) Obtained by Virtual
Screening
Matic Proj 1, Steven De Jonghe2, Tom Van Loy2, Marko Jukič 3,4, Anže Meden1, Luka Ciber5,
Črtomir Podlipnik5, Uroš Grošelj 5, Janez Konc6, Dominique Schols2 and Stanislav Gobec1*

1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia, 2Laboratory of
Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research,
KU Leuven, Leuven, Belgium, 3Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical
Thermodynamics, University of Maribor, Maribor, Slovenia, 4Faculty of Mathematics, Natural Sciences and Information
Technologies, University of Primorska, Koper, Slovenia, 5Faculty of Chemistry and Chemical Technology, University of Ljubljana,
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We present a state-of-the-art virtual screening workflow aiming at the identification of novel
CC chemokine receptor 7 (CCR7) antagonists. Although CCR7 is associated with a variety
of human diseases, such as immunological disorders, inflammatory diseases, and cancer,
this target is underexplored in drug discovery and there are no potent and selective CCR7
small molecule antagonists available today. Therefore, computer-aided ligand-based,
structure-based, and joint virtual screening campaigns were performed. Hits from
these virtual screenings were tested in a CCL19-induced calcium signaling assay. After
careful evaluation, none of the in silico hits were confirmed to have an antagonistic effect on
CCR7. Hence, we report here a valuable set of 287 inactive compounds that can be used
as experimentally validated decoys.

Keywords: virtual screening, decoys, chemical library, computer-aided drug design, CCR7, GPCR

1 INTRODUCTION

Chemokines (chemoattractant cytokines) are small, secreted proteins (~10 kDa) that were first
described as essential mediators of immune cell migration throughout the human body. They are
characterized by conserved N-terminal cysteine (C) residues (i.e., C, CC, CXC, and CX3C
chemokines, where X is a variable amino acid) and exert their function through activation of G
protein-coupled receptors (GPCRs). About 20 human chemokine receptors and approximately 50
different human chemokines are known. A given chemokine receptor can sometimes be activated by
more than one chemokine and, at the same time, a particular chemokine can signal via multiple
receptors (Griffith et al., 2014).

The CC chemokine receptor 7 (CCR7) is crucial for lymphoid organogenesis and the recruitment
of naïve T lymphocytes and activated dendritic cells towards the lymph nodes, where they initiate the
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immune response (Zlotnik et al., 2011). CCR7 can be activated by
two receptor ligands, the chemokines CCL19 and CCL21 that
bind with high affinity to CCR7 (Sullivan et al., 1999). Unlike
CCL19, CCL21 harbors an extended and highly positively
charged C-terminal tail that mediates strong binding to
glycosaminoglycans (GAGs) expressed at the cell surface
(Barmore et al., 2016). Several studies revealed the biased
signaling properties of CCL19 and CCL21 and indicate that
both chemokines differentially target CCR7 in terms of G
protein activation, β-arrestin recruitment and receptor
internalization (Kohout et al., 2004; Corbisier et al., 2015;
Hjortø et al., 2016). CCR7 signaling can contribute to the
progression of severe human diseases. Tumor cells of diverse
origins can hijack CCR7-mediated migration to metastasize,
primarily to the lymph nodes (Zlotnik et al., 2011; Jørgensen
et al., 2018). Recruitment of leukaemic T cells to the central
nervous system is also dependent on CCR7 (Buonamici et al.,
2009). Other human diseases associated with CCR7 signaling
include chronic inflammatory diseases (e.g., rheumatoid arthritis)
(Moschovakis and Förster, 2012). Hence, CCR7 has emerged as a
promising therapeutic target, but remains understudied from a
drug discovery perspective.

Even though CCR7 is implicated in various human diseases,
to the best of our knowledge, no selective and potent small
molecule antagonists for CCR7 have been developed so far.
Recently, a high-throughput screening of 150,000 compounds
using Chinese hamster ovary (CHO)–K1 cells expressing
human or murine CCR7 in a β-arrestin recruitment assay
was described (Hull-Ryde et al., 2018). The most potent CCR7
antagonist that emerged from this campaign was cosalane
(Figure 1) with a half maximal inhibitory concentration (IC50)
value of 0.2 µM (when CCL19 was used as the natural CCR7
ligand) and 2.7 µM (when CCL21 was used as the agonist). In

addition, cosalane exhibited nearly identical activity against
the human and murine CCR7 orthologues. However, the high
lipophilicity of cosalane and its complex chemical structure
make it unattractive as lead structure for further chemical
optimization. Recently, the X-ray co-crystal structure of
CCR7, complexed with cmp2105 (Figure 1), was solved
(Jaeger et al., 2019). This compound was shown to bind to
a conserved allosteric Gi protein binding pocket at the
intracellular side of the receptor. Validation of its CCR7
binding was performed in a membrane-based competition
binding experiment with radiolabeled CCL19, in which an
IC50 value of 35 nM was determined for cmp2105.
Furthermore, CCR7 antagonism of cmp2105 was confirmed
in a cell-based β-arrestin recruitment assay, which yielded an
IC50 value of 7.3 µM (Jaeger et al., 2019). Cmp2105 was
initially discovered by screening in a CCR7 thermal-shift
assay. Navarixin (Figure 1) also displayed a
thermostabilizing effect in this assay and subsequently an
IC50 value of 33.9 µM was determined in the β-arrestin
recruitment assay (Jaeger et al., 2019). Other analogues
(i.e., CS-1, CS-2, and CS-3, Figure 1) also proved to be hits
in the thermofluor stability assay, albeit less potent than
cmp2105 and navarixin, and were not further
pharmacologically validated (Jaeger et al., 2019). Other
known chemokine receptor ligands, such as vercirnon (a
CCR9 antagonist) and maraviroc (a CCR5 antagonist)
completely lacked the ability to thermally stabilize CCR7
(Jaeger et al., 2019).

To improve our understanding of the role of CCR7 in
various pathologies, there is a clear need for potent, drug-like,
and selective CCR7 antagonists that can be used as chemical
probes to validate CCR7 as a drug target. In addition, these
chemical tools can be used as starting points for medicinal
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chemistry-based optimization campaigns. In this study, we
describe a virtual screening workflow, followed by
experimental validation, in search for novel CCR7 small
molecule antagonists. Known CCR7 ligands from the
patent and scientific literature, whose CCR7 antagonism
was independently confirmed, were used as starting points
for ligand-based virtual screening (LBVS) protocols. In
addition, the recently published crystal structure of CCR7
was used to perform molecular docking and to generate a
pharmacophore model.

2 MATERIALS AND METHODS

2.1 GPCR Assays
2.1.1 CCR7 Competition Binding Assay
Human U87 glioblastoma cells that stably express CD4 and the
human CCR7 receptor (U87.CD4.CCR7) were used to determine
CCR7 binding affinity, essentially by adopting a previously
published protocol used to study binding to another
chemokine GPCR, CXCR4 (Schoofs et al., 2018). U87.CD4
cells that do not overexpress CCR7 were used as control cells

to evaluate the level of non-specific cell binding of the
fluorescently labeled ligand (Alexa-Fluor647 labeled CCL19,
CCL19AF647, Almac, United Kingdom). In brief,
U87.CD4.CCR7 cells were pre-incubated with compound (at
different concentrations) in 150 μL assay buffer [Hank’s
balanced salt solution (HBSS), 20 mM HEPES and 0.5% Fetal
Calf Serum] for 15 min at room temperature (RT) in the dark.
Afterwards, 50 μL of CCL19AF647 was added (25 ng/mL final
concentration) and samples were incubated for another 30 min
at RT, protected from light. Then, cells were washed twice with
assay buffer and fixed in 1% paraformaldehyde in Dulbecco’s
phosphate-buffered saline (DPBS).

Samples were immediately analyzed by flow cytometry (FACS
Canto II, BD). Data were analysed using Flowjo. The percentage
inhibition of CCL19AF647 binding was calculated according to
formula {1—[(MFIX–MFINC)/(MFIPC–MFINC)]} x 100, where
MFIX is the mean fluorescence intensity (MFI) of the
compound-treated sample, MFINC the MFI of the negative
control (i.e., autofluorescence of untreated and unlabeled cells)
and MFIPC the MFI of the positive control (i.e., cells exposed to
CCL19AF647 only). IC50 values (i.e., the compound concentration
that inhibits CCL19AF647 binding by 50%) were calculated using

FIGURE 1 | Compounds studied as CCR7 antagonists.
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four parameter non-linear curve fitting in GraphPad Prism 9.0.2.
For each experiment the stain index (SI) was calculated as the
ratio of the separation betweenMFIPC andMFINC, divided by two
times the standard deviation of MFINC.

2.1.2 Calcium Mobilization Assays
U87.CD4 cells that stably express either human CCR7, CXCR2,
CCR5 or CXCR4 were seeded (20,000 cells/well) in gelatin-coated
black-walled polystyrene 96-well plates with clear bottom and
incubated overnight at 37°C and 5% CO2. The next day, a
fluorescent Ca2+-sensitive dye solution (Fluo-2 AM) was
prepared as described before (Claes et al., 2018). Culture
medium was removed, and cells were incubated for 45 min at
room temperature in the dark. Meanwhile, 96-well polypropylene
plates containing 5-fold concentrated compound dilutions and
5-fold concentrated solution of chemokine ligands (CCL19,
CXCL8, LD78-β, CXCL12, respectively; all purchased from
PeproTech) were prepared for use with the FLIPR Tetra
device (Molecular Devices) as described before (Claes et al.,
2018). The antagonistic properties of the compounds were
calculated based on their capacity to inhibit the Ca2+ release
induced by a fixed concentration of chemokine (i.e. 50 ng/mL
final concentration for CCL19, CXCL8 and CXCL12 and
100 ng/ml for LD78-β), as described (Claes et al., 2018).
Exactly the same protocol was used to record calcium
responses in Chinese hamster ovary (CHO)-K1 cells, upon
stimulation with adenosine triphosphate (ATP, purchased
from Sigma).

2.2 Preparation of Chemical Libraries
2.2.1 Active Compounds and Generated Decoys
The survey of patent and scientific literature revealed the
existence of eight CCR7 antagonists (Supplementary Figure
S1). Based on this, a set of 600 decoy molecules (see
Supporting Excel file) was generated using DUD-E server
(Mysinger et al., 2012). The generated decoys have similar
physicochemical properties (molecular weight, estimated
water–octanol partition coefficient (miLogP), rotatable bonds,
hydrogen bond acceptors, hydrogen bond donors, and net
charge), but have a different 2D topology when compared to
the active compounds. Decoys can be used as alternatives to
experimentally confirmed inactive compounds for the purpose of
model validation.

Primary literature search identified an additional 104
compounds active on multiple chemokine receptors, namely
CCR1, CCR2, CCR3, CCR4, CCR5, CCR7, CCR8, CCR9,
CCR10, CXCR1, CXCR2, CXCR3, CXCR4, and CXCR7
(Supplementary Table S1). Those compounds were used to
construct a focused chemokine receptor targeted compound
library, as described below.

2.2.2 FKKTlib Academic Compound Library
The FKKTlib academic compound library currently contains
3,428 unique synthesized compounds resulting from many
years of research across various projects at the University of
Ljubljana, Faculty of Chemistry and Chemical Technology. Most
of the compounds in this library are heterocycles that are

documented in the scientific literature. Most of the samples
are available as solids and are stored in cryogenic vials labelled
with a QR code that allows for quick retrieval of the samples. To
ensure the stability of the samples, they are stored under argon at
–25°C. Information about the compounds in the library is stored
in a web-based, fully retrievable molecular structure database
based on the open-source solution MolDB6, developed by Prof.
Norbert Haider from the University of Vienna (Haider, 2010).
The system uses MySQL as a database engine, and the molecular
structures with their corresponding data are stored in MySQL
tables. The check/matchmol programme is used for structure or
substructure searches, which is performed in a two-step
procedure: pre-selection by fingerprint matching, followed by a
complete atom-by-atom comparison of the remaining
candidates. Structures and data can be added via the web
interface or by importing from an MDL SD file using a Perl
script on the server. The library is freely accessible at: https://
knjiznica-spojin.fkkt.uni-lj.si/fkktlib/.

2.2.3 ZINC Library
The ZINC in-stock subset (Sterling and Irwin, 2015), containing
13.7 million drug-like compounds, was used for the virtual
screening using the Ligand Similarity Using Clique Algorithm
(LiSiCA) software (Lešnik et al., 2015). The ZINC subset was first
filtered using the FILTER 3.1.2.2 software (OpenEye Scientific
Software, Inc, Santa Fe, NM, United States; www.eyesopen.com),
eliminating known or predicted aggregators, compounds
containing metals, and compounds with reactive functional
groups, and retaining only compounds with appropriate
molecular weights (200–800 Da) and partition coefficients (-4.
0-6.9) (see Supplementary Material for FILTER configuration
file). The filtered ZINC library contained 8.9 million compounds.
Finally, the stereoisomer and conformational model generator
OMEGA 3.1.2.2 (OpenEye Scientific Software, Inc, Santa Fe,
NM, United States; www.eyesopen.com) was used to enumerate
stereocenters and to generate up to 30 conformers per
compound.

2.2.4 Chemokine Receptor Targeted Compound
Library
The ZINC in-stock subset (Sterling and Irwin, 2015) was also
used for the construction of a library covering compounds
targeting chemokine receptors. FP2 molecular fingerprints
were calculated for the 104 compounds targeting various
chemokine receptors (details in Supplementary Material) as
well as for the complete ZINC subset. Using OpenBabel
(v2.3.0), a similarity search in ZINC was carried out with 104
queries and a Tanimoto index of ≥0.5 to obtain a similarity library
of 951,471 unique structures. The similarity library was then
filtered using the FILTER software (OpenEye Scientific Software,
Inc, Santa Fe, NM, United States; www.eyesopen.com), as
described beforehand, to obtain a focused chemokine receptor
library of 539,814 compounds. Finally, OMEGA (OpenEye
Scientific Software, Inc, Santa Fe, NM, United States; www.
eyesopen.com) was used to enumerate all possible
stereocenters and generate up to 10,000 conformers per
compound (RMS of 0.3).
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2.2.5 MolPort Library
The second library was prepared from the MolPort database of
in-stock compounds (7.5 million). It was used for core motif
substructure searches, virtual screening with ROCS, docking with
FRED, Glide, and ProBiS-Dock. Duplicates were removed using
OpenBabel 2.4.1 (O’Boyle et al., 2011), and the database was
processed using the FILTER 3.1.2.2 software (OpenEye Scientific
Software, Inc, Santa Fe, NM, United States; www.eyesopen.com),
eliminating known or predicted aggregators, compounds
containing metals, and compounds with reactive functional
groups, retaining only compounds with appropriate molecular
weights (200–800 Da) and partition coefficients (-4.0–6.9) (see
Supplementary Material for FILTER configuration file).
Compounds known to cause interference in assay systems
(Dahlin et al., 2015) were removed using the RDKit Molecule
Catalog Filter node (catalog PAINS A) (RDKit: Open-source
cheminformatics, 2021) as implemented in the KNIME platform
(Berthold et al., 2007). Compounds with reactive functional
groups (Brenk et al., 2008) were also removed. Protonation
states at pH 7.4 were generated using OpenBabel 2.4.1
(O’Boyle et al., 2011). The final library contained 3.5 million
compounds. Finally, the stereoisomer and conformational model
generator OMEGA 3.1.2.2 (OpenEye Scientific Software, Inc,
Santa Fe, NM, United States; www.eyesopen.com) was used to
enumerate stereocenters and generate up to 200 conformers per
compound.

2.2.6 Diversity Set of Compounds Available From
Trusted Commercial Vendors
The third library used for pharmacophore-based screening
contained 1.1 million compounds based on curated diversity
sets from Asinex, ChemBridge, ChemDiv, Enamine,
KeyOrganics, and Pharmeks. The libraries were downloaded in
SDF format, merged, and duplicates removed using the
LigandScout database Merger and Duplicates Remover nodes
implemented in the Inte:Ligand Expert KNIME Extensions.
Protonation states at pH 7.4 were generated using OpenBabel
2.4.1 (O’Boyle et al., 2011). Finally, a maximum of 200
conformations were generated for each molecule using the
iCon algorithm of LigandScout (Poli et al., 2018) with default
“BEST” settings and saved in LDB (LigandScout database format)
using the idbgen algorithm.

2.3 Core Motif Substructure Search
Core motif substructure searches were performed using SMILES
filters applied to the MolPort library and the FKKTlib. The core
motifs of cyclobutenedione (with an additional nitrogen atom)
and thiourea were defined by SMILES expressions O=C1C=C(N)
C1=O and NC(N)=S, respectively. First, MolPort library filtering
was performed using the RDKit substructure filter node (RDKit:
Open-source cheminformatics, 2021) as implemented in the
KNIME analytics platform (Berthold et al., 2007). 2,452
cyclobutenediones were extracted from the MolPort database
and docked to the prepared CCR7 receptor using Glide XP
(Schrödinger Suite 2020-2, Schrödinger, LLC, New York, NY,
2020) (Friesner et al., 2006) as described below. Of the 100 highest
scoring compounds, 16 diverse compounds were selected for

purchase. Second, the MolPort database was searched for the
thiourea core motif, which yielded more than 90k available
compounds. Duplicates, PAINS (Dahlin et al., 2015), and
compounds with reactive functional groups were removed to
yield 63k compounds. Docking with Glide SP (Schrödinger Suite
2020-2, Schrödinger, LLC, New York, NY, 2020) was performed
as described below, and after clustering, from the top 500 hits, 13
diverse compounds were purchased. Second, the FKKTlib was
filtered and all 9 and 13 compounds available in solid form with
cyclobutenedione and thiourea core motifs, respectively, were
experimentally evaluated.

2.4 LBVS With LiSiCA Software
Ligand-based virtual screening (LBVS) of the ZINC database of
purchasable compounds using LiSiCA software (Lešnik et al.,
2015) was performed with the bioactive 3D conformation of
cmp2105 as the reference compound (PDB ID: 6QZH, ligand
JLW) (Jaeger et al., 2019). The double bonds of the thiadiazole-
dioxide of the JLW ligand were correctly assigned, since they are
missing in the PDB structure. Both 2D and 3D options of the
LiSiCA were used with all other settings set to default values.
From the 200 compounds most similar to the reference cmp2105
according to the Tanimoto score, 27 diverse compounds were
purchased—12 of them arising from the 2D method and 15 were
discovered with the 3D method.

2.5 LBVS With ROCS Software
The MolPort library was screened using ROCS 3.3.2.2 software
(OpenEye Scientific Software, Inc, Santa Fe, NM,
United States; www.eyesopen.com) (Hawkins et al., 2007).
For model A, a 3D pose for the first query, navarixin, was
obtained by docking with Glide XP to the prepared CCR7
receptor, as described below. The bioactive 3D conformation
of cmp2105 (PDB ID: 6QZH, ligand JLW) (Jaeger et al., 2019)
was used to create models B and C. All models were validated
with the set of active compounds and generated decoys. The
default settings of ROCS were used for virtual screening of all
three queries. Virtual hits were prioritized based on the
ComboScore, which considers similarity of 3D shape
(“ShapeTanimoto”) and chemical pattern (“ColorScore”).
For each query, 27–30 top scoring compounds were
purchased from the clustered list of top 100 scoring hits.

2.6 Homology Modelling
Before the release of the CCR7 X-ray crystal, a homology
model of CCR7 was built using the structure of human CCR9
(PDB ID: 5LWE; B chain). The template was identified by
running 10 PSI Blast iterations on the starting CCR7 (UniProt
ID: P32248) sequence to identify five top scoring templates
(PDB IDs: 5LWE, 5UIW, 4YAY, 5WB2 and 5UNF) (Müller
et al., 1999). The alignment and template was used to build the
homology model using YASARA Twinset software (Krieger
et al., 2002; Krieger and Vriend, 2015) using the following
parameters: speed: Slow, EValue Max: 0.5, Templates Total: 5,
Templates SameSeq: OligoState: 4, Alignments: 5,
LoopSamples: 50 and TermExtension: 10.18 models were
built and each model subjected to an unrestrained energy
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minimization with explicit water molecules by simulated
annealing employing the YASARA2 force field (Krieger
et al., 2009). The models were rated according to a quality
Z-score and the best scoring model was used. The latter
contained 276 of 378 target residues (73.0%) aligned to
template residues. The sequence identity was 46.0% and the
sequence similarity 68.1% (BLOSUM62 > 0). The monomer
homology model after full unrestrained simulated annealing
minimization was rated as optimal by YASARA with internal
quality Z-score of 0.110, comprised amino acids 47-352, and
was further checked with WHAT-IF test set.

2.7 Receptor Preparation
The CCR7 receptor was prepared from the X-ray crystal structure
(PDB ID: 6QZH) (Jaeger et al., 2019) using Protein Preparation
Wizard (Schrödinger Suite 2020-2, Schrödinger, LLC, New York,
NY, 2020) (Madhavi Sastry et al., 2013). Briefly, missing side
chains and missing loop 255-261 were modelled with Prime
(Jacobson et al., 2004), hydrogen atoms were added, residues
were protonated at pH 7.0, the hydrogen bonding network was
refined, waters beyond 3.0 Å from other heteroatoms were
removed, and restrained minimization was performed. The
double bonds of the thiadiazole-dioxide core in the co-
crystalized ligand cmp2105 (PDB ID: 6QZH, ligand JLW)
were assigned (Jaeger et al., 2019). Only the allosteric binding
site was considered for pharmacophore-based screening and
molecular docking.

2.8 Pharmacophore-Based Screening
The prepared CCR7 receptor was used to generate a structure-based
pharmacophore model using LigandScout 4.4 (Inte:Ligand GmbH)
(Wolber and Langer, 2005). Exclusion volumes defining regions
based on the shape of the binding site residues were generated,
and all features were converted to vectors. One hydrogen bond donor
and one hydrophobic feature were marked as optional. This model
was validated with the set of active compounds and generated decoys.
Default settings in LigandScout were used. Virtual screening of the
diversity set of compounds available from trusted commercial
vendors yielded 78 virtual screening hits, which were then visually
inspected, clustered according toMorgan fingerprints, and 23 diverse
compounds were purchased.

2.9 Molecular Docking With FRED and Glide
Software
Molecular docking was performed sequentially with FRED
3.4.0.2 (OpenEye Scientific Software, Inc, Santa Fe, NM,
United States; www.eyesopen.com) and Glide software
(Schrödinger Suite 2020-2: Glide, Schrödinger, LLC, New
York, NY, 2020). First, Make Receptor 3.4.0.2 (OpenEye
Scientific Software, Inc, Santa Fe, NM, United States; www.
eyesopen.com) was used to define grid box of the allosteric
binding site of the prepared receptor. The volume of the box
was 6,725 Å3 (17.75 Å × 21.15 Å × 17.92 Å) and size of the
outer contour was reduced to 1,139 Å3. Re-docking of the co-
crystalized ligand cmp2105 using FRED and Glide SP resulted
in a root-mean-square deviation (RMSD) of 0.77 Å and 0.

34 Å, respectively, confirming the validity of the pose
prediction during docking. In the same manner, docking
with Glide XP (Schrödinger Suite 2020-2, Schrödinger,
LLC, New York, NY, 2020) (Friesner et al., 2006) was used
to obtain the bioactive 3D conformation of navarixin. The
MolPort library was docked with FRED and 100,000 highest
scoring hits were used for sequential docking with Glide. A 3D
structure of one stereoisomer was generated using LigPrep
(Schrödinger Suite 2020-2, Schrödinger, LLC, New York, NY,
2020). The prepared receptor’s grid box was centered on the
co-crystallized ligand and docking was performed using Glide
SP (Schrödinger Suite 2020-2, Schrödinger, LLC, New York,
NY, 2020) (Friesner et al., 2004). The 100 highest scoring
virtual hits were clustered according to Morgan fingerprints,
and 46 diverse compounds were purchased.

2.10 Molecular Docking With ProBiS-Dock
Algorithm
Molecular docking with ProBiS-Dock algorithm (Konc et al.,
2022) was performed with the prepared CCR7 receptor. Similar
receptors with allosterically bound ligands that were known at the
time of screening, i.e., CCR9 (PDB ID: 5LWE, ligand 79K
[vercirnon]) (Oswald et al., 2016) and CCR2 (PDB ID: 5T1A,
ligand VT5) (Zheng et al., 2016), were aligned to the prepared
CCR7 receptor. All three ligands, namely cmp2105, vercirnon
and VT5, were extracted and used as template ligands that are
required for molecular docking with ProBiS-Dock. Re-docking of
the co-crystalized ligand cmp2105 with an RMSD of 0.77 Å was
performed for validation. From the MolPort library, one million
compounds were randomly selected and used for virtual
screening. The top 450 virtual hits were clustered according to
Morgan fingerprints, and 40 diverse compounds were purchased.

2.11 Coupled Virtual Screening Approach
For the LBVS coupled to SBVS approach, we examined similar
protein complexes published in the PDB database using
ProBiS server (https://probis.nih.gov/) to identify all
possible binding sites and small-molecule binding modes
on the CCR7. Therefore, the built CCR7 homology model
was used as an input for ProBiS calculation and one binding
site identified (binding site one in ProBiS; proximity of ligand
vercirnon from CCR9 PDB ID: 5LWE) (Konc and Janežič,
2012). The postulated binding site comprised of two pockets
was defined by residues: Thr93, Leu147, Ile150, Val264,
Ile265, Val268 and Val79, Val80, Thr82, Tyr83, Phe86,
Asp94, Thr95, Leu97, Leu98, Leu100, Asp110, Asp336.
Model was later validated with an all-atom RMSD of 1.
942 Å towards PDB 6QZH crystal with allosteric site
correctly identified relative to crystal JLW ligand. With the
binding site defined, the receptor structure was generated
using OEDocking 3.2.0.2 software package (OpenEye
Scientific Software, Inc, Santa Fe, NM, United States; www.
eyesopen.com) with MakeReceptor. A box with the volume of
5,805 Å3 (18,33 × 19,00 × 16,67 Å) was defined around
reference ligand vercirnon. A balanced site shape potential
was calculated where docking volume was 587 Å3. No
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constraints were used. Docking of the chemokine receptor
targeted library (539,814 compounds) to the prepared receptor
was performed using FRED from OpenEye as described above
with dock_resolution parameter set to High. Top 100 scoring
compounds according to Chemgauss4 score were collected,
clustered according to Morgan fingerprints (20 clusters,
average RMSD linkage) and best scoring representatives
selected for purchase and testing.

3 RESULTS AND DISCUSSION

3.1 Experimental Hit Validation
Before we initiated an extensive in silico-based screening
program, several compounds described in the literature were
either resynthesized (see Supplementary material) or purchased
from commercial vendors to confirm their CCR7 antagonism in
various pharmacological assays. Compounds previously shown to
be CCR7 antagonists (i.e., cmp2105, navarixin, CS-2, and CS-3),
as well as inactive control compounds (maraviroc and
vercirnon), were included in this study (Figure 1; Table 1). A
competition binding assay was established based on the specific
interaction of fluorescently labeled CCL19 with CCR7
overexpressed on whole living cells (Figure 2A). Using
CCL19AF647 as a tracer, the binding affinity for cmp2105,
navarixin, CS-2 and CS-3 was evaluated (Figure 2B; Table 1).
Whereas dose-dependent inhibition of CCL19AF647 binding was
confirmed for cmp2105 and navarixin, CS-2 and CS-3 did not
show any CCR7 affinity. The previously observed stabilizing
effect of CS-2 and CS-3 in thermal stability experiments was
much smaller than for cmp2105 and navarixin (Jaeger et al.,
2019), suggesting a very low binding affinity for CCR7. It should
further be noted that for cmp2105 an IC50 value of 35 nM was
previously reported when this compound was assessed in
membrane-based competition experiments using radioactively
labeled CCL19 (Jaeger et al., 2019). The fact that in our assay
whole cells are used instead of membrane preparation, which
requires the compound to first enter the cell before reaching its

intracellular binding pocket, may therefore partly explain the
increased apparent IC50 value observed here.

Reference compounds were also evaluated in a CCR7 kinetic,
fluorescence-based calcium mobilization assay. Cmp2105 and
navarixin showed IC50 values in the 5–15 µM range for
antagonizing the CCL19-induced calcium response (Figure 3;
Table 1) in line with their CCR7 antagonistic activity previously
determined in a β-arrestin recruitment assay (Jaeger et al., 2019).
In agreement with the lack of observed binding affinity, CS-2 and
CS-3 were also inactive in this CCR7 calcium mobilization assay
(Table 1). Furthermore, the absence of activity of vercirnon and
maraviroc in the calciummobilization assay is in agreement with
their lack of activity in the thermal shift assay (Jaeger et al., 2019).

3.2 Virtual Screening Campaign
To expand the current set of potent CCR7 modulators, we
launched a virtual screening campaign. Based on known CCR7
ligands, in particular cmp2105 and navarixin, an LBVS was
performed. Furthermore, a recently published crystal structure of
the receptor (Jaeger et al., 2019) was used for structure-based
virtual screening (SBVS). In addition to libraries of commercially
available compounds, we also used the FKKTlib academic library
for screening (Figure 4).

LBVS is commonly used in drug discovery and is based on the
assumption that structurally similar compounds have similar
biological properties. Various metrics are used to express
similarity between compounds (Maggiora et al., 2014). We
started with a simple substructure search for core motifs that
are typical for small molecule ligands targeting the intracellular
binding sites of various chemokine receptors. Thioureas bind to
an intracellular binding pocket of CXCR2 (Nicholls et al., 2008)
and cyclobutenediones have been shown to bind intracellularly to
CXCR2 (Liu et al., 2021, 2) and CCR7 (Jaeger et al., 2019). This
approach was applied to both the FKKTlib academic library and a
library of commercially available compounds.

Second, we used ligand-based virtual screening software LiSiCA
(Lešnik et al., 2015) to find compounds with different scaffolds and
core motifs than those of the reference compound cmp2105. LiSiCA

FIGURE 2 | Inhibition of CCL19AF647 binding by cmp2105 and navarixin (A) Incubation of U87 cells that overexpress CCR7 (CCR7+) with CCL19AF647 generates
a strong fluorescent binding signal, which is not present when CCL19AF647 is incubated with cells that do not overexpress CCR7 (CCR7-) (Mean stain index ±SD of two
(CCR7-) or four (CCR7+) independent experiments) (B) Dose dependent inhibition of CCL19AF647 binding by cmp2105 and navarixin.
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is based on a graph-theoretical representation of molecules and uses
a fast maximum clique algorithm (Konc and Janežič, 2007) to search
for 2D or 3D similarities between a reference compound and a
database of target compounds. The similarities found are expressed
by the Tanimoto coefficients. A library of commercially available
compounds was compared to the reference based on both 2D and
3D molecular representations.

Third, 3D shape-based virtual screening was performed by
rapid overlay of chemical structures (ROCS) (Hawkins et al.,
2007). This method is based on the concept that compounds have
a similar shape if their volumes, described by a Gaussian function,
overlap well. In addition tomolecular volume, a color force field is
used to describe other molecular features, such as hydrogen bond
donors and acceptors, anions, cations, hydrophobes and rings
(Kirchmair et al., 2009). As a starting point for the ROCS search,
we modeled a 3D conformation of navarixin by docking with
Glide XP and used it to generate ROCSmodel A (Figure 5A). The
bioactive conformation of cmp2105 was extracted from the co-
crystal structure (PDB ID: 6QZH) and used directly to create
models B and C, which differed in the selection of color features.
Only relevant hydrogen bond donors and acceptors based on the
distances in the crystal structure were used for the model B
(Figure 5B). For model C, only color features in the inner part of
the binding pocket were selected, leaving more degrees of
freedom for the part of the molecule that extends toward the
solvent (Figure 5C). All three models performed well in screening
a set of active compounds and generated decoys. The results are
presented in the form of receiver-operating characteristic (ROC)
curves (Figure 5). Subsequently, the models were used to screen a
library of commercially available compounds.

A structure-based pharmacophore model was constructed from
the crystal structure of cmp2105 (Figure 6A). The model consisted

FIGURE 3 | Inhibition of the intracellular Ca2+ release. The ability of cmp2105, navarixin, and C040 to inhibit the Ca2+ response induced by (A) CCL19-CCR7 (B)
CXCL8-CXCR2 (C) CXCL12-CXCR4, and (D) LD78-β-CCR5 was evaluated. Mean ± SD of at least three independent experiments is shown.

TABLE 1 | CCL19 competition binding, CCR7 calcium mobilization and CCR7 β-
arrestin data of reference compounds.

Compound β-arrestin IC50 (µM)a Calcium
assay IC50 (µM)b

Binding
assay IC50 (µM)c

Cmp2105 7.3 7.30 ± 1.66 6.12 ± 2.36
Navarixin 33.9 17.39 ± 1.12 2.43 ± 0.98
CS-2 NAd >50 µM >50 µM
CS-3 NAd >50 µM >50 µM
Vercirnon NAd >50 µM NDe

Maraviroc NAd >50 µM NDe

aIC50: compound concentration inhibiting β-arrestin recruitment in CHO-K1 cells by 50%.
Data from (Jaeger et al., 2019).
bIC50: compound concentration inhibiting CCL19 induced intracellular calcium flux by
50% (Mean ± SD of at least three independent experiments).
cIC50: compound concentration inhibiting CCL19AF647binding by 50% (Mean ± SD of
four independent experiments).
dNA: not available.
eND: not determined.
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of a hydrogen bond acceptor for the sulfonyl moiety, two hydrogen
bond donors for the secondary amines (one labeled as optional), a
hydrogen bond donor and acceptor for the phenol moiety, four
hydrophobic features, and exclusion spheres. A hydrophobic feature
for themethyl moiety on furan ring was also labeled as optional. The
results of screening a set of active compounds and generated decoys
were visualized by ROC plot, with the rate of active compounds on
the y-axis and the rate of decoys on the x-axis (Figure 6B). Three of
eight active compounds were detected by this model, which was in
turn used to screen a library of commercially available compounds.

In the next SBVS approach, molecular docking into the
allosteric binding site of CCR7 was employed (Figure 7A).
First, we used FRED software (McGann, 2012), which was
capable of high-throughput docking of a prepared library
containing more than 3.5 million commercially available
compounds. Then, only 100,000 highest-scoring compounds
were used for subsequent docking with Glide software
(Friesner et al., 2004), which was expected to be more

successful in enriching a virtual hit list but is also more
computationally intensive (Kellenberger et al., 2004;
McGaughey et al., 2007). Besides, Glide performed better in a
re-docking experiment with cmp2105, achieving an RMSD of
0.34 Å, compared to FRED with an RMSD of 0.77 Å.

A SBVS approach was also explored using the ProBiS-Dock
algorithm (Konc et al., 2022). Allosteric binding sites of other
chemokine receptor crystal structures available at the time of our
study were aligned and compared. Accordingly, three template
ligands were selected: cmp2105 (CCR7), vercirnon (CCR9), and
VT5 (CCR2). The template ligands were used together with the
CCR7 crystal structure (PDB ID: 6QZH) (Jaeger et al., 2019) as
input to the ProBiS-Dock algorithm (Figure 7B). When docking
the library of commercially available compounds, both the
docked compound and the receptor were treated as fully
flexible to account for the induced fit of ligand binding. The
obtained poses were scored using a combination of a site-specific
and a generalized statistical scoring function. A site-specific

FIGURE 4 | Virtual screening workflow represented as a Sankey diagram. Compounds described in this manuscript were obtained from the scientific literature, the
FKKTlib academic library, and databases of commercially available compounds. Different ligand-based virtual screening (LBVS) (core motif substructure search,
screening with LiSiCA and ROCS software), structure-based virtual screening (SBVS) (pharmacophore screening and docking) and coupled virtual screening (VS.)
approaches were explored. Altogether 293 compounds were tested in the CCL19 induced calcium signaling CCR7 assay.
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scoring function scores the docked compounds based on their
overlap with the template ligands, while a generalized statistical
scoring function scores the compounds based on their
interactions with the receptor.

Finally, a coupled virtual screening approach was explored, in
which a chemokine receptor targeted compound library

containing 539,814 compounds was docked using FRED
software. This library covered similar compounds to the
literature actives on all chemokine receptors. The allosteric
binding site of a CCR7 homology model, 5 Å around the
vercirnon ligand from the template structure of CCR9, was
used for docking.

FIGURE 6 | (A) Structure-based pharmacophore model with four hydrophobic features (yellow spheres), two hydrogen bond acceptors (red spheres), three
hydrogen bond donors (green spheres), and exclusion volumes (gray spheres) defining restricted regions based on the shape of the binding site residues. Optional
features are marked as dashed (B) Resulting ROC plot from virtual screening of 609 compounds (8 active compounds and 601 generated decoys). TP = true positives;
FP = false positives; AUC = area under the curve; EF = enrichment factor.

FIGURE 5 | ROCS models and their corresponding ROC plots (A) Navarixin (B) cmp2105 with relevant color features as determined from the crystal structure,
and (C) cmp2105 with color features extending into the inner part of the binding pocket. The color features are shown as spheres: hydrogen bond acceptor (red
spheres), hydrogen bond donor (blue spheres), hydrophobic region (yellow spheres), and ring (green spheres). AUC = area under the curve.
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In total, 287 virtual screening hits were selected from the
various approaches and experimentally evaluated as potential
CCR7 antagonists in the calcium mobilization assay
(Supplementary Excel File). One compound (C040,
Figure 8A) showed dose-dependent inhibition of the
CCR7-mediated calcium response, affording an EC50 value
of 13.14 µM (Figure 3A). Given the conserved nature of the
intracellular binding pocket targeted by cmp2105 and
navarixin (Jaeger et al., 2019), the inhibiting effect of
C040, alongside the reference compounds cmp2105 and
navarixin, on the intracellular calcium mobilization
mediated by several other chemokine receptors was
evaluated (Figure 3B–D). Cmp2105 and navarixin
inhibited the CCR7 and CXCR2 mediated calcium
mobilization, in line with literature data (Gonsiorek et al., 2007;
Jaeger et al., 2019), but had no (or only very limited) effect on
CXCR4 and CCR5 mediated responses. In contrast, C040
completely lacked receptor specificity as it inhibited the calcium
mobilization downstream all tested chemokine receptors, with
similar potencies (IC50 values in the 3–18 µM range). These

data suggested that the chemokine receptor antagonistic activity
of C040 may, at least partially, be due to interference with the
fluorescent assay readout. To further explore this hypothesis, the
ability of C040 to inhibit calcium responses not mediated by
human chemokine receptors was investigated. It is known that
stimulation of CHO-K1 cells with adenosine triphosphate (ATP)
leads to a rapid release of Ca2+ from intracellular stores (Iredale and
Hill, 1993). Using CHO-K1 cells, exactly the same experimental
set-up as for the chemokine receptor expressing U87 cells was
applied, essentially including the same fluorescent calcium dye
(Fluo-2) for cell loading. Also in this experimental setup C040 was
able to dose-dependently inhibit the measured calcium response
induced by ATP (10 µM final concentration) (Figure 8B),
confirming its interference with this particular fluorescent
readout. Furthermore, when C040 was assessed in the CCR7
competition binding assay described above, it was inactive at
the highest concentration tested (25 µM). Altogether, these data
indicate that C040, despite showing activity in the CCR7 calcium
assay, should not be selected as a hit compound, for a medicinal
chemistry-based optimization campaign.

FIGURE 8 | (A) Chemical structure of C040 (B) Inhibition of the ATP-induced Ca2+ release by C040.

FIGURE 7 | (A) The prepared CCR7 receptor (PDB ID: 6QZH, yellow) was used for docking with FRED and subsequently with Glide. The surface of the allosteric
pocket is shown in gray (B) The input for the ProBiS-Dock algorithm consisted of the prepared CCR7 receptor (PDB ID: 6QZH, yellow) and three template ligands,
cmp2105 (magenta), vercirnon (green), VT5 (cyan).
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4 CONCLUSION

The CCR7 antagonistic activity of previously reported ligands
(cmp2105 and navarixin) was confirmed in two independent
assays, namely a kinetic, fluorescence-based calcium
mobilization CCR7 assay and a CCR7 competition binding
assay. Starting from this, an in silico virtual screening campaign
for the identification of novel CCR7 antagonists was carried out
using several strategies. A library of commercially available
compounds and an academic library FKKTlib (available at:
https://knjiznica-spojin.fkkt.uni-lj.si/fkktlib/) were used to
prepare the input libraries. LBVS, SBVS, and coupled virtual
screenings were followed by experimental validation. A selection
of 287 in silico hits was experimentally investigated for CCR7
antagonism. Initial data revealed that one analogue (C040) showed
promising CCR7 antagonistic activity in the calcium mobilization
assay. Unfortunately, C040 was equally active against other
chemokine receptors tested and was completely devoid of
activity in a CCR7 binding assay. Since C040 also behaves as an
antagonist of a purinergic receptor, it strongly suggests that C040
interferes with the assay read-out, rather than being a bona fide
chemokine receptor antagonist. This study highlights the
importance of experimental validation of virtual hits, using an
array of orthogonal assays to confirm activity before nominating
any hits. Since none of the compounds disclosed in this manuscript
showed any CCR7 antagonistic activity, we report them as a large
set of inactive compounds that can be used by the medicinal
chemistry community as a set of experimentally validated decoys.
We believe this will facilitate the identification and computational
design of new CCR7 ligands in the future.
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The identification of similar three-dimensional (3D) amino acid patterns among different
proteins might be helpful to explain the polypharmacological profile of many currently used
drugs. Also, it would be a reasonable first step for the design of novel multitarget
compounds. Most of the current computational tools employed for this aim are limited
to the comparisons among known binding sites, and do not consider several additional
important 3D patterns such as allosteric sites or other conserved motifs. In the present
work, we introduce Geomfinder2.0, which is a new and improved version of our previously
described algorithm for the deep exploration and discovery of similar and druggable 3D
patterns. As compared with the original version, substantial improvements that have been
incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a
list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns
are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm
achieves up to 353x speedup as compared to the previous sequential version, allowing the
exploration of a significant number of quaternary structures in a reasonable time. In order to
illustrate the potential of the updated Geomfinder version, we show a case of use in which
similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These
channels are quite different in terms of structure, sequence and function and both have
been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we
describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which
was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels’
activity and discuss its possible repositioning as a novel antiarrhythmic drug.
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Edited by:
Leonardo L. G. Ferreira,

University of São Paulo, Brazil

Reviewed by:
Marcus Scotti,

Federal University of Paraíba, Brazil
Simon Wang,

Howard University, United States

*Correspondence:
Wendy González

wgonzalez@utalca.cl
Miguel Reyes-Parada
miguel.reyes@usach.cl
Gabriel Núñez-Vivanco

gabriel.nunez@uaysen.cl

Specialty section:
This article was submitted to

Experimental Pharmacology and Drug
Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 16 January 2022
Accepted: 21 February 2022
Published: 18 March 2022

Citation:
Valdés-Jiménez A, Jiménez-González

D, Kiper AK, Rinné S, Decher N,
González W, Reyes-Parada M and

Núñez-Vivanco G (2022) A New
Strategy for Multitarget Drug

Discovery/Repositioning Through the
Identification of Similar 3D Amino Acid
Patterns Among Proteins Structures:
The Case of Tafluprost and its Effects

on Cardiac Ion Channels.
Front. Pharmacol. 13:855792.

doi: 10.3389/fphar.2022.855792

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8557921

ORIGINAL RESEARCH
published: 18 March 2022

doi: 10.3389/fphar.2022.855792

236

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.855792&domain=pdf&date_stamp=2022-03-18
https://www.frontiersin.org/articles/10.3389/fphar.2022.855792/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.855792/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.855792/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.855792/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.855792/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.855792/full
http://creativecommons.org/licenses/by/4.0/
mailto:wgonzalez@utalca.cl
mailto:miguel.reyes@usach.cl
mailto:gabriel.nunez@uaysen.cl
https://doi.org/10.3389/fphar.2022.855792
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.855792


INTRODUCTION

Although most novel drugs are still developed using the “magic
bullet” paradigm, which involves highly selective profiles,
chemical compounds are naturally promiscuous in practice.
Indeed, most therapeutically beneficial agents interact with
more than one molecular target (Feldmann and Bajorath,
2020). Interestingly, this promiscuity is now, in some cases,
considered an advantageous feature and is proactively pursued.
Thus, many drug development initiatives are focused on the
design of multitarget compounds with a polypharmacological
profile that may improve drug-based treatments’ efficacy and/or
safety (Ramsay et al., 2018; Proschak et al., 2019). Unfortunately,
the design of drugs with multiple activities on a selected handful
of different protein structures remains a significant experimental
and computational challenge (Konc, 2019). Recent reports have
proposed several strategies to identify multitarget drugs, such as
clinical observations and target combinations based on
phenotypic screening. Bioinformatics is also a useful tool to
address these challenges through molecular modelling
techniques for detecting similar targets, machine learning
methods to find disease-related targets, target-fishing using
molecular docking, ligand-based pharmacophore searching,
virtual screening simulations, and the search of binding sites
similarities (Ma et al., 2010; Ren et al., 2021; Stępnicki et al., 2021).
Finding compounds with multitarget action on related proteins
which share a similar function, folding or binding sites, is
currently an accessible task. Unfortunately, complex diseases
often comprise a wide range of evolutionary distant and
structurally different proteins where current methods are not
entirely precise. For example, neuropsychiatric, cardiac or
autoimmune disorders (among others), including atrial
fibrillation or major depression, are complex diseases that
often encompass dysfunctions in a wide range of types of
proteins such as ion channels, enzymes, transporters, globular
proteins, etc. (Bolognesi, 2019; Konc, 2019). Thus, the
identification of conserved/similar sites (or more broadly
three-dimensional (3D) patterns, defined as a local structural
arrangement of amino acids) among a set of proteins (related or
not between them), can be useful for the rational design/
repositioning of polypharmacological drugs (Konc, 2019;
Adasme et al., 2020; Li et al., 2021). In this context, tools such
as G-LoSA (Lee and Im, 2016), Geomfinder (Núñez-Vivanco
et al., 2016), 3D-PP (Valdés-Jiménez et al., 2019) and others (Ehrt
et al., 2016; Ehrt et al., 2018), which work regardless of
information about known ligands, binding sites, sequence
similarity, or structural folding of the proteins, improve the
chances of finding similar 3D patterns among very different or
unrelated targets. Although some of these similarities may appear
by chance, others might represent distant evolutionary
relationships and correspond, for instance, to secondary
binding sites. These sites have recently gained attention for the
rational design of polypharmacological allosteric modulators
(Abdel-Magid, 2015; Meysman et al., 2015; Reyes-Parada and
Iturriaga-Vasquez, 2016; Wakefield at al., 2019). Indeed, by using
our in-house algorithm Geomfinder (Núñez-Vivanco et al.,
2016), we have reported the finding of some similar 3D

patterns among very different protein structures, which cannot
be observed through other structural tools or with sequence-
based methods. Noteworthy, in the original version of
Geomfinder, the residues of each detected 3D pattern could
only be part of one specific protein chain. However, it is well
known that several important 3D patterns (e.g. binding sites,
catalytic sites) are located either at the interface between different
subunits of a single target (Lee et al., 2017) or at the oligomer
interface in multimeric proteins (Baek et al., 2017).

In the present work, we introduce Geomfinder2.0, which is a
new and improved version of our previous tool for the deep
exploration and discovery of similar and druggable 3D patterns.
Thus, the possibility of exploring 3D patterns formed by different
chains of a quaternary protein structure is one of the major novel
features of this version. Also, the updated algorithm includes a
function that predicts the zone where similar 3D patterns may be
druggable (Le Guilloux et al., 2009). Thus, a 3D pattern with a
high level of druggability found in several protein structures
might be used as the input for the design of multitarget
compounds using approaches such as Pocket-Based Drug
Design (Zheng et al., 2013). From a computational perspective,
the currently available version of Geomfinder has been fully
migrated from Python 2.7 to C++ language and parallelized
using the shared memory programming model OpenMP
(Dagum and Menon, 1998). These improvements allowed a
speedup of up to 353x. Furthermore, as a functional
enhancement, Geomfinder can now compute several pairs of
comparisons simultaneously.

In addition, in order to illustrate the potential of the updated
Geomfinder version, we show a case of use in which similar 3D
patterns were detected in two cardiac ion channels, specifically
NaV1.5 and TASK-1, which are selective for sodium or
potassium, respectively. These channels have been regarded as
important targets for drugs aimed at treating atrial fibrillation
(Sossalla et al., 2010; Wiedmann et al., 2021). Finally, we describe
the in vitro effects of tafluprost (a putative ligand identified after a
receptor-based drug search approach) upon both ion channels’
activity and discuss its possible repositioning as a novel
antiarrhythmic drug.

MATERIALS AND METHODS

Computational Methods
Software Improvements
The new version of Geomfinder includes all geometrical
characteristics and processes described previously (Núñez-
Vivanco et al., 2016) and incorporates new features and
substantial improvements. In the Supplementary Figure S1,
the implemented architecture and essential components and
services of Geomfinder are shown. Remarkably, the input can
be a list of pairs of structures (always as PDB files) in this new
version. This new feature makes it possible to find similar 3D
patterns simultaneously in several pairs of protein structures
submitted by the user (Figure 1). Another essential feature of
the new version is the possibility of searching for 3D patterns in
the interface between two or more protein chains/subunits. To
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FIGURE 1 | The user may request the measures between two protein structures or within a list of pairs of proteins. Also, the protein structures can be both
experimentally solved (downloaded from Protein Data Bank) or homology models (uploaded by the user).

FIGURE 2 | The user can concatenate different protein chains. The information concerning chains, names, and the source organism of each protein is obtained
from the Protein Data Bank or from the same PDB file (in the case of homology models).

FIGURE 3 | The user can select the application of Fpocket on the exploration of pockets. In addition, if this option is activated, a minimum druggability percentage
must be included.
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this end, in the submission process, the user can select one
particular chain of each or concatenate either all or some of
the structure’s chains (Figure 2). Also, it is now possible to search
3D patterns only in those zones of the proteins where the cavities
detected achieve the user-defined druggability score threshold,
which is interpreted as the probability of the cavity to bind a drug
and alter its normal activity (Pérot et al., 2010; Schmidtke and
Barril, 2010). This preprocessing step is an optional parameter
(Figure 3) calculated by the Fpocket algorithm (Le Guilloux et al.,
2009), considering features such as the size, the hydrophobicity,
and the normalized polarity of the residues lining the cavity.
Technically, several sections of the algorithmwere also optimized.
The original version of Geomfinder (PythonThreading) was
developed in Python 2.7 using threads as a parallel strategy.
Searching for a better performance, three new versions were built:
PythonMultiprocessing using Python 2.7 with multiprocessing,
C++/Pthreads using C++ and POSIX threads, and C++/OpenMP
using C++ with OpenMP annotations. These versions were
analyzed (using a 32-CPU machine with hyperthreading
activated) against a sequential version of Geomfinder
implemented with benchmarking purposes.

Detection of Similar 3D Amino Acid Patterns Using
Geomfinder
Searching for similar 3D amino acid patterns begins with the creation
of a virtual grid of coordinates on each protein structure. Then, using
all geometrical centers of all side chains of the residues, Geomfinder
performs a residues grouping step depending on the distance between
each virtual coordinate. With this, hundreds of 3D amino acid
patterns are defined in each protein structure. After that, for each
3D pattern, four descriptors are measured: a) The list of distances
between the geometric centers of the side chains of all the residues
forming the 3Dpattern; b) the sumof the short andmedium-range of
non-bonded energy of each residue forming the 3D pattern; c) the list
of the residues forming a 3D pattern; and d) the list of the distances
constituting the shortest pathway necessary to go over all the residues
lining the 3D pattern. Finally, all pairs of 3D patterns identified in the
two tested proteins are compared using an all-versus-all approach.
Thus, at the end of the analysis, each pair of the 3D pattern has a final
similarity score named GScore. The GScore is defined as a
combination of the similarities (S) of the four descriptors:

GScore � SDist pDp + SNbE pCp + STsp pTp + SSc p Sp

which is calculated as the relative changes on each pair of the 3D
pattern as follows:

SDist � |DistA ∩ DistB|
max(|DistA|, |DistB|)

SNbE � min(|NbEA|, |NbEB|)
max(|NbEA|, |NbEB|)

STsp �
∣∣∣∣TspA ∩ TspB

∣∣∣∣
max(

∣∣∣∣TspA
∣∣∣∣,
∣∣∣∣TspB

∣∣∣∣)
SSc � |ScA ∩ ScB|

max(|ScA|, |ScB|)
SDist, SNbE, STsp, and SSc, are the partial scores of similarity

of the distances, the non-bonded energies, the perimeter, and the
sequence components, between any two 3D patterns.

Receptophore Determination
As we have previously proposed (Núñez-Vivanco et al., 2018), a
“receptophore” can be defined -by analogy with the
pharmacophore concept-as a 3D ensemble (present in two or
more receptors), of molecular, steric, and electronic features that
ensure the optimal molecular interactions with a common
promiscuous ligand. Therefore, here we describe how we
determine it from the local similarities identified with
Geomfinder. The method consists basically of the structural
alignment of the similar 3D patterns identified between the
protein structures. This process was performed using the
external computational methods PocketAlign and MultiBind
(Shulman-Peleg et al., 2008; Yeturu and Chandra, 2011). This
approach finds the best match of physicochemical properties
among the residues forming each site. PocketAlign carries out
multiple alignments between the similar 3D patterns detected to
recognize similar amino acids matches. Then, numerous
structural rearrangements of superimposed binding sites are
applied to find the best structural fit. Briefly, this method
consists of two main processes: a) the preprocessing of the
features of each 3D pattern and hashing them into a table;
and b) the recognition of the similar features in the objects of
the hash table. In the preprocessing, each amino acid is denoted
by pseudocenters (X, Y, and Z coordinates), which provides a
unique physicochemical property to the binding site: hydrogen-
bond donor, hydrogen-bond acceptor, mixed donor/acceptor,
hydrophobic aliphatic or aromatic contacts. Finally, MultiBind
performs a combination of multiple superimposed binding site
conformations to find common patterns. Because 3D patterns
that originate the receptophore are not necessarily identical,
different residues might be partially aligned if the overall
structural alignment score turns out to be maximized with
that arrangement. After that, to generate the final
receptophore, all equivalent amino acids between both 3D
patterns (same physicochemical group: polar, non-polar,
positively or negatively charged) appearing aligned or
superimposed, are manually merged in the resultant PDB file.
In contrast, all non-equivalent amino acids are preserved in the
final receptophore.

Receptor/Pocket Based Virtual Screening
The previously defined receptophore was used to perform a
virtual screening analysis through the computation tool
e-LEA3D (Douguet, 2010). This program can create new
molecules with a fragment-based approach or evaluate a
user-defined data set of compounds. In our case, we used
the “FDA-approved” data set to determine if some of these
compounds exhibit affinity for the receptophore. Thus, each
molecule’s fitness was evaluated via a function that inputs the
molecular structure and returns a numeric score. The
evaluation can integrate a selected number of molecular
properties and/or a protein-ligand docking score calculated
by the program PLANTS (Korb et al., 2009). After that, a list
of FDA-approved drugs, ranked by their affinity for the
receptophore, was obtained and analyzed for further
experiments.
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Protein Structures
For the case of use, we employed the crystallographic protein
structures (obtained from the Protein Data Bank) of the sodium
channel NaV1.5 (PDBid: 6UZ3, resolution 3.50 Å) and the two-
pore domain potassium ion channel TASK-1 (PDBid: 6RV3,
resolution 2.90 Å). Only chain A was selected in the case of
NaV1.5, whereas for TASK-1, chains A and B were concatenated.
All details of input parameters and results can be found at https://
geomfinder2.appsbio.utalca.cl/result/11598984329232/

Pharmacological Methods
Drugs and IC50 Values
Tafluprost was purchased from Merck. All other reagents used
were of analytical grade. Tafluprost was dissolved in DMSO and
added to the external solution just before the recordings. The
IC50 (or EC50) were determined from Hill plots using up to five
concentrations for each construct and are expressed as mean ±
SD coming from the different replicates measurements (n = 3-9
replicates).

Oocyte Preparation and cRNA Injection
All procedures performed in this study involving animals were
carried out in accordance with the EU Directive 2010/63/EU for
animal experiments. The work with Xenopus laevis at the
University of Marburg with all experimental protocols were
approved by the Regierungspräsidium Gießen, Germany (V54-
19c20 15 h 02 MR 20/28 Nr.A 4/2013).

Oocytes were obtained from anesthetized Xenopus laevis frogs
and incubated in OR2 solution containing in mM: 82.5 NaCl, 2
KCl, 1 MgCl2, 5 HEPES (pH 7.5) substituted with 2 mg/ml
collagenase II (Sigma) to remove residual connective tissue.
Then the oocytes were stored at 18°C in ND96 supplemented
with 50 mg/L gentamycin, 274 mg/L sodium pyruvate, and
88 mg/L theophylline.

Oocytes were each injected with either 50 nL of cRNA of
human TASK-1 (KCNK3, NM_002246) or 10 ng of cRNA of
human Nav1.5 (hH1, M77235), as previously described (Ortiz-
Bonnin et al., 2016; Rinné et al., 2019).

Two-Electrode Voltage Clamp Recordings
Two-electrode voltage clamp recordings were performed at room
temperature (20–22°C) with a TurboTEC 10CD (npi) amplifier
and a Digidata1200 Series (Axon Instruments) as analog/digital
converter, as previously described (Ortiz-Bonnin et al., 2016;
Rinné et al., 2019). Briefly, micropipettes were made from
borosilicate glass capillaries GB150TF-8P (Science Products)
and pulled with a DMZ Universal Puller (Zeitz). Recording
pipettes had a resistance of 0.5–1.5 MΩ when filled with 3M
KCl solution.

For both, TASK-1 or NaV1.5 channel measurements,
recording solution ND96 contained in mM: 96 NaCl, 2 KCl,
1.8CaCl2, 1 MgCl2, 5 HEPES (pH 7.5). In the case of TASK-1
channel, block was analyzed with voltage steps from a holding
potential of −80 mV. A first test pulse to 0 mV of 1 s duration was
followed by a repolarizing step to −80 mV for 1 s directly followed
by another 1 s test pulse to +40 mV. The sweep time interval was
10 s. For NaV1.5 channel, block was analyzed with voltage steps

from a holding potential of −120 mV. A first depolarizing pulse to
−10 mV of 20 ms duration, then, after holding at −40 mV for 4s, a
20 ms step at −120 mV was carried out. The sweep time interval
was 10 s.

Tafluprost at different concentrations was evaluated on
channel currents. Stability in recordings was monitored prior
to the addition of compounds, which were removed from the bath
to show recovery.

Data were acquired with Clampex 10 (Molecular Devices) and
analyzed with Clampfit 10 (MolecularDevices) and Origin 7
(OriginLab Corp.).

RESULTS

Software Optimization
All the new versions of Geomfinder, implemented with
benchmarking purposes, incorporated several optimizations
such as more efficient data structures and compilation flags
for the machines utilized on the webserver. As denoted by the
green line in Figure 4, the version C++/OpenMP always showed a
better performance than the other implementations, achieving a
maximal 353x speedup compared to the original Sequential
version (Supplementary Figure S6). On this basis, the C++/
OpenMP version was selected for the implementation of the new
server of Geomfinder.

Case of Use
It has been shown that some local anesthetics are multi-
channel blocking drugs, which interact with cardiac ion
channels such as NaV1.5 and TASK-1 (Tikhonov and
Zhorov, 2017; Rinné et al., 2019). Considering that this
polypharmacological profile likely underlies their
antiarrhythmic effect, we searched similar and druggable
3D patterns between these channels. Although NaV1.5 and
TASK-1 have different sequences, structures, and topologies
(Figure 5), Geomfinder required a few seconds to detect
several similar 3D patterns (Supplementary Figure S2).

Interestingly, one of the patterns found contains two key
residues of the local anesthetics binding site in NaV1.5
(Phe1762, Ile1468; (Nguyen et al., 2019)) and one key residue
in TASK-1 (Phe238; (Rinné et al., 2019)) located at the
fenestrations. Considering that these 3D patterns are similar
(GScore = 66.5%) and are located in zones with high
druggability values (Phe1762 and Ile1468 are located in
pockets with 99.9% druggability in NaV1.5; and Phe238 in a
pocket with 100% druggability in TASK-1; result #25 in
Supplementary Figure S3), it is enticing to state that the use
of these 3D patterns is a promising starting point to understand
the polypharmacological profile of local anesthetics and to
design/search new multitarget compounds aimed to these
cardiac ion channels. The fact that the residues Phe1762 in
NaV1.5 and Phe238 in TASK- 1 were found by Geomfinder in
similar tridimensional orientations into each 3D pattern
(Figure 6), supports the idea that the aromatic ring of local
anesthetics interacts with the ion channels establishing a π−π
interaction (González et al., 2001).
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FIGURE 4 | Performance of new Geomfinder implementations. The original (PythonThreading) and three new versions, including parallel programming paradigm
and code optimization, were compared against a sequential Python version (Sequential) developed with benchmarking purposes. These versions were built using
Python 2.7 with multiprocessing (PythonMultiprocessing), C++ with POSIX threads (C++/Pthreads), and C++ with OpenMP annotations (C++/OpenMP). As is denoted
by the green line in the graph, the version C++/OpenMP always showed better performance than the other implementations, reaching their best acceleration using
54 threads: 353x speedup compared to Sequential version. Thus, the version C++/OpenMP was selected for the implementation of the new server of Geomfinder. The
experimental setup used in the comparisons is a 32 Intel Xeon CPU E5-2683 (2.10 GHz) SMP system with hyperthreading enabled (64 virtual cores/threads), 252 GB
RAM, 40 MB Intel Smart Cache.

FIGURE 5 | General overview of structure (A), topology (B) and sequence (inset) similarity of NaV1.5 and TASK-1. NaV1.5 corresponds to the PDBid:6UZ3 and
TASK-1 to the PDBid:6RV3. NaV1.5 is a monomer with four domains, each containing a pore sequence and TASK-1 is a dimer with four transmembrane segments and
two pore sequences each monomer.
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In order to show how these results could be useful for the
design/search of new multitarget compounds, we initially
performed docking molecular simulations of bupivacaine (a
common local anesthetic) on NaV1.5 and TASK-1 using the
coordinates of the similar pockets detected with Geomfinder as
grid centers. As shown in Supplementary Figures S4, S5, the
aromatic ring of the bupivacaine seems to be establishing π-π
interactions with Phe238 in TASK-1 and with Phe1762 in
NaV1.5. After selecting the best conformers of bupivacaine
(those with the lowest estimation of free energy of binding) in
both proteins, we extracted the residues located at 4 Å of the

ligands, and constructed a common binding site for TASK-1 and
NaV1.5, as we have previously described (Möller-Acuña et al.,
2015; Núñez-Vivanco et al., 2018). Briefly, this common binding
site was constructed using external computational tools such as
PocketAlign (Yeturu and Chandra, 2011) and MultiBind
(Shulman-Peleg et al., 2008), which perform several structural
alignments and tridimensional rearrangements, looking for the
best match of the physicochemical properties of the selected
binding sites. As shown in Figure 7, it was possible to find a
tridimensional fit for adjusting the physicochemical properties
and the structural alignment of the residues of both binding sites,

FIGURE 6 | Similar 3D pattern found in NaV1.5 and TASK-1. In both sites, the residues PHE1762 and PHE238 show similar orientation.

FIGURE 7 |Common binding site of bupivacaine on TASK-1 and NaV1.5. The table (fromMultibind) indicates the equivalent physicochemical properties matched.
The colored residues depicted in licorice show the alignment (from PocketAlign) of the bupivacaine binding sites on both proteins (Red: NaV1.5; Blue: TASK-1).

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8557927

Valdés-Jiménez et al. Geomfinder2.0 and Cardiac ion Channels

242

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


which we call the common “receptophore” (Núñez-Vivanco et al.,
2018). After that, we used this “receptophore” to perform a
structure-based virtual screening with the e-LEA3D tool
(Douguet, 2010). This software requires as input a PDB file of
one pocket structure, which can then be used to make either a de
novo drug design or a virtual screening into a collection of known
compounds, which in both cases should lead to find molecules
with high potential affinity for the pocket. In our case, we merged
both aligned binding sites into one unique PDB file and after run
e-LEA3D in the virtual screening mode (using the “FDA
approved drugs” data set available at the e-LEA3D web
server), a list of molecules ranked by their theoretical affinities
for the pocket submitted was obtained. The top ranked molecule
was tafluprost (Drugbank_ID: DB08819), a prostaglandin F2α

(PGF2α)-type agonist currently used as a treatment for glaucoma
and ocular hypertension (Papadia et al., 2011; Klimko and Sharif,
2019), which in theory should be, a new putative multitarget
ligand of NaV1.5 and TASK-1.

To test this idea, we performed new docking molecular
simulations with tafluprost on the structures of NaV1.5 and
TASK-1, setting the same parameters that were used for the
experiments with bupivacaine. As stated in Figure 8, tafluprost
showed better affinities than those obtained for bupivacaine at
both protein structures. The stabilization of the protein-ligand
complexes seems to be determined by several hydrophobic
interactions of residues which have been previously reported
as key residues for the local anesthetics (e.g. Phe238, Leu1464
and Phe1762).

FIGURE 8 | Binding modes of tafluprost on TASK-1 (A) and NaV1.5 (B). The box at (C) shows the estimation of Free Energy of Binding of bupivacaine and
tafluprost for both proteins. These experiments were performed at the same conditions.

FIGURE 9 | (A) Representative current traces of TASK-1 in the absence (black) or the presence of increasing concentrations of tafluprost (colored). (B) Percentage
of block of outward currents in TASK-1 channel by tafluprost. Each point is the mean ± SD of 3-8 determinations. (C) Representative current traces of NaV1.5 (also
referred as to SCN5A) before (black) and after (blue) application of 100 µM tafluprost.
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Experimental Evaluation of Tafluprost
As shown in Figure 9, tafluprost potently blocked TASK-1
outward currents in a concentration-dependent manner (EC50

= 186 ± 40 nM; Figures 9A,B). It should be noted that since the
highest tafluprost concentration used in these experiments was
10 µM (Figure 9B), here we report EC50 instead of IC50, as the
hill fit determines the concentration where tafluprost reaches 50%
of its maximal effect but not 50% inhibition. As we reached 82%
maximal inhibition, EC50 concentration corresponds to about
40% inhibition (not 50% inhibition). On the other hand,
tafluprost also blocked NaV1.5 inward currents, although with
much less potency than that observed at TASK-1 (estimated IC50
of about 76 µM Figure 9B).

DISCUSSION

The search of multitarget compounds might be a difficult task,
particularly when the drugs are aimed to act at receptors with
highly diverse structure and function. Based on the idea that a
given compound could simultaneously interact with two (or
more) relevant targets if they have similar binding sites
(Jalencas and Mestres, 2013; Salentin et al., 2014; Ehrt et al.,
2016; Konc, 2019; Naderi et al., 2019), one reasonable approach to
find promiscuous drugs under these circumstances is to look for
similar binding sites at the addressed targets. In this context,
Geomfinder2.0 appears as a valuable tool since it is a fast web
server for the discovery of similar and druggable 3D patterns
between any pair of protein structures. This new version has
significantly improved its usefulness and performance as
compared with the original version, with up to 353x speedup
for the input data set analyzed and the available machine, and
allowing to compare a list of pairs of structures. It also identifies
3D patterns formed by different protein chains and characterizes
how druggable is the zone where the 3D patterns were detected. It
is important to note that, beyond these functional and
performance improvements, the core method for searching
and comparison of 3D patterns is the same as in the original
version (Núñez-Vivanco et al., 2016). The accuracy and precision
of this core method has already been compared with those of
computational tools such as PocketMatch and ClickTopology
(Núñez-Vivanco et al., 2016). In addition, in the present work we
confirmed the reliability of our algorithm with a case of use, in
which the theoretical predictions were experimentally confirmed.

Interestingly, when analyzing TASK-1 and NaV1.5, two
cardiac channels with highly different structures and functions,
Geomfinder2.0 was able to find (in a few seconds) several similar
3D patterns, a pair of which seemed remarkably attractive since
they included some key residues involved in the binding of local
anesthetics at both types of ion channels (Nguyen et al., 2019;
Rinné et al., 2019). On this basis, we dissected these 3D patterns
and constructed a common binding site which was used to search
for possible novel multitarget ligands. As the development of
novel polypharmacological agents can be a difficult, time-
consuming and expensive task, drug repurposing (i.e. the
establishment of new indications of existing drugs), has been
proposed as an efficient alternative over the de novo drug

development approach. Thus, using a “FDA-approved” data
set we searched for known compounds that might show an
unanticipated ability to interact with TASK-1 and NaV1.5.
Tafluprost, a prostaglandin analogue (PGF2α agonist) currently
used for the treatment of open-angle glaucoma (Papadia et al.,
2011; Klimko and Sharif, 2019), was the most promising drug
arising from this analysis. Remarkably, when experimentally
tested tafluprost blocked the corresponding currents at both
NaV1.5 and TASK-1, although with a higher potency for the
latter. The differential activity of tafluprost upon both ion
channels (as well as its higher potency as compared with the
local anesthetic bupivacaine (Stoetzer et al., 2016)) roughly agrees
with the theoretical binding energies predicted by the docking
simulations. Noteworthy, although tafluprost was clearly less
active in NaV1.5 than in TASK-1, it still shows a potency in a
similar range as that shown by the well-known sodium channel
blocker bupivacaine (Zhang et al., 2014). Even though this is the
first time that an activity of tafluprost on cardiac channels is
described, it should be noted that it had been reported that the
drug is able to induce a relaxation of rabbit ciliary arteries
precontracted with a high-potassium solution (Dong et al.,
2008). Accordingly, this effect might be related with its potent
TASK-1 blocking properties.

Both NaV1.5 and TASK-1 are attractive drug targets in
particular for the development of treatments of atrial
fibrillation, the most common cardiac arrhythmia (Sossalla
et al., 2010; Wiedmann et al., 2021). In addition, multichannel
blockers such as amiodarone or dronedarone have been used in
clinical settings (Kraft et al., 2021). In this context, the
pharmacological activity predicted and demonstrated here for
tafluprost, suggests that this compound could be a good candidate
to evaluate its properties and repurpose it as a novel
antiarrhythmic drug.

In summary, despite mounting evidence indicating that
polypharmacological drugs might show better efficacy and
less side effects than more selective compounds, early work in
this area had already recognized that the rational search of
multitarget drugs faces at least two major challenges,
including a) the need to identify a combination of nodes in
a biological network whose perturbation results in a desired
therapeutic outcome, and b) to develop drugs whose
polypharmacological profile allows those nodes to be
perturbed specifically (Hopkins, 2008). Therefore,
computational tools such as Geomfinder can be helpful to
discover similar and druggable 3D patterns among proteins
which have been tagged as targets in a multi-factorial disease,
which appears as an important first step to either rationally
design or -as in this case-purpose novel indications for
compounds already in use.
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JAK1 plays a significant role in the intracellular signaling by interacting with cytokine
receptors in different types of cells and is linked to the pathogenesis of various cancers and
in the pathology of the immune system. In this study, ligand-based pharmacophore
modeling combined with virtual screening and molecular docking methods was
incorporated to identify the potent and selective lead compounds for JAK1. Initially, the
ligand-based pharmacophore models were generated using a set of 52 JAK1 inhibitors
named C-2 methyl/hydroxyethyl imidazopyrrolopyridines derivatives. Twenty-seven
pharmacophore models with five and six pharmacophore features were generated and
validated using potency and selectivity validation methods. During potency validation, the
Guner-Henry score was calculated to check the accuracy of the generated models,
whereas in selectivity validation, the pharmacophore models that are capable of identifying
selective JAK1 inhibitors were evaluated. Based on the validation results, the best
pharmacophore models ADHRRR, DDHRRR, DDRRR, DPRRR, DHRRR, ADRRR,
DDHRR, and ADPRR were selected and taken for virtual screening against the
Maybridge, Asinex, Chemdiv, Enamine, Lifechemicals, and Zinc database to identify
the new molecules with novel scaffold that can bind to JAK1. A total of 4,265 hits
were identified from screening and checked for acceptable drug-like properties. A total of
2,856 hits were selected after ADME predictions and taken for Glide molecular docking to
assess the accurate binding modes of the lead candidates. Ninety molecules were
shortlisted based on binding energy and H-bond interactions with the important
residues of JAK1. The docking results were authenticated by calculating binding free
energy for protein–ligand complexes using the MM-GBSA calculation and induced fit
docking methods. Subsequently, the cross-docking approach was carried out to
recognize the selective JAK1 lead compounds. Finally, top five lead compounds that
were potent and selective against JAK1 were selected and validated using molecular
dynamics simulation. Besides, the density functional theory study was also carried out for
the selected leads. Through various computational studies, we observed good potency
and selectivity of these lead compounds when compared with the drug ruxolitinib.
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Compounds such as T5923555 and T5923531 were found to be the best and can be
further validated using in vitro and in vivo methods.

Keywords: JAK1, pharmacophore modeling, virtual screening, molecular docking, molecular dynamics simulation,
density function theory

INTRODUCTION

Janus kinase 1 (JAK1) is the most widely employed JAK,
according to biochemical and genetic research, since it is
involved in the signaling of the gamma common (γc), beta
common (βc), gp130, type I and type II interferon, IL-6, and
IL-10 cytokine subfamilies (Kulagowski et al., 2012). JAK1
comprises seven homology domains (JH1–JH7) (Harpur et al.,
1992). The C-terminal kinase module (JH1) is the protein’s
physiologically active catalytic domain. The JH2 domain is a
catalytically inactive pseudokinase domain that has been found to
interact with the JH1 domain and control its activity (Saharinen
and Silvennoinen 2002). Two Src homology 2 (SH2) domains
(JH3 and JH4) precede the FERM domain (JH5–JH7) at the
N-terminus. The JH1 domain has an ATP-binding site, which has
been the target of a number of small-molecule inhibitors. All four
members of JAK have a highly conserved kinase domain,
particularly at the ATP-binding region, which complicates the
development of particular inhibitors (Caspers et al., 2016). The
active sites of JAKs comprise multiple subdomains that include
the β-glycine loop, the catalytic loop, and activation loops
(Taldaev et al., 2022). The amino acid present in and around
the hinge region serves critical functions in the integrity of kinase
activity control. Furthermore, since this area is adjacent to the
ATP-binding site in the catalytic cleft, it is reasonable to believe
that the mutations in this region might promote constitutive
activation of the kinase (Gorden et al., 2010; Haan et al., 2010).

All STAT proteins (STAT1–STAT6) that are ubiquitously
expressed in all the tissues may be phosphorylated by JAK1
enzyme (Gruber et al., 2020). JAK1 has been shown in mouse
knockout experiments to have a critical function in signal
transduction (Itteboina et al., 2017). According to earlier
research, JAK1 is ascendant over JAK3, and in the absence of
JAK1, JAK3 is unable to activate STATs (Haan et al., 2011).
Furthermore, recent studies have shown that JAK1 rather than
JAK3 kinase is the primary driver of the immune-relevant
cytokine activity (Menet et al., 2015). JAK1 is involved in
various types of cancer. Activation of JAK1 kinase by IL-6
family cytokines appeared to be the mechanism for
constitutive STAT3 activation in human ovarian cancer cells
(Wen et al., 2014). In gastric cancer, by activating the JAK1/
STAT3 pathway, the upregulation of HOXA10 gene increased cell
proliferation, cloning formation, and tumorigenesis and lowered
cell apoptosis (Chen et al., 2019). In lung adenocarcinoma
patients, the overall survival time was substantially reduced in
patients with EGFR-amplified tumors expressing greater levels of
phosphorylated JAK1 compared with individuals with tumors
without one or both of these traits. Additionally, JAK inhibition
was demonstrated to limit the development of human lung
adenocarcinoma with a K-RAS mutation (Xie et al., 2021).

AML and breast cancer patients have exhibited several
STAT5-activating JAK1 mutations (Hornakova et al., 2011).
Moreover, in ER-negative breast cancer cell lines, the
upregulation of phosphorylated JAK1 expression was observed
(Yeh et al., 2007).

According to clinical and experimental investigations,
rheumatoid arthritis synovial response may be influenced by
the JAK1-mediated cytokine (IFN and IL-6) signaling. As a
result, inhibiting JAK1 is regarded as a significant therapeutic
strategy for the successful treatment of rheumatoid arthritis
(Keretsu et al., 2021b). Recently, it has been discovered that
inhibiting JAK1 selectively may be an effective therapy option for
patients suffering from autoimmune and hematological illnesses
because of the role that altered JAK1 signaling plays in these
conditions (Kleppe et al., 2017). Moreover, JAK1 expression in
cancer cells allows individual cells to contract, perhaps enabling
them to transcend their tumor and spread to other areas of the
body (Nordqvist 2011). Mutations in JAK1 are less common than
in T-ALL patients with B-ALL or leukemia of the myeloid origin.
In two AML patients, a JAK1 mutation V623A was found,
emphasizing the capacity of constitutively active JAK1 to
induce a variety of leukemias (Xiang et al., 2008; Raivola et al.,
2021).

JAK inhibitors, which have been authorized for the treatment
of cancer and autoimmune illnesses, have provided the first
insight on the importance of JAK1 in NK cell biology
(Schwartz et al., 2017). Ruxolitinib, JAK1/JAK2 inhibitor, has
lowered the number of NK cells and hampered maturation and
function in bothmice and human patients (Schönberg et al., 2015;
Bottos et al., 2016). Ruxolitinib’s influence on NK cell
development has been linked to JAK2 as well; therefore, it is
not clear which of the two kinases is accountable for the reported
results (Bottos et al., 2016; Kim et al., 2017). The fascinating
finding by Sohn et al. (2013) has highlighted the importance of
JAK1 inhibitor on the IL-6, IL-22, and INF-pathways. JAK1
inhibitors including ruxolitinib, tofacitinib, filgotinib,
peficitinib, and numerous additional second-generation
inhibitors are now under investigation for the treatment of
inflammatory and autoimmune illnesses. Because of limited
potency, non-targeting, and off-target effects (Keretsu et al.,
2021a), new JAK1 inhibitors with high potency and selectivity
are urgently needed.

Pharmacophore models are widely employed to quantitatively
explore common chemical characteristics among a considerable
number of structures with great diversity (Taha et al., 2008; Xie
et al., 2009). It is one of the widely used approaches to search for
chemical databases and identify novel scaffolds for various targets
(Wang H. et al., 2008; Lu et al., 2007). To discover the potent hits,
the ligand-based and structure-based pharmacophore models can
be used. In this study, the ligand-based pharmacophore models
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TABLE 1 | The chemical structures and the biological activity of JAK1 inhibitors.

Compound 1–21 Compound 22 Compound 23–32 Compound 33–53

S. no. R Ki (nM) pKi S.no R Ki (nM) pKi

1 10 8.000 27 13 7.886

2 1.3 8.886 28 16 7.796

3 0.9 9.046 29 1.8 8.745

4 1.3 8.886 30 7.2 8.143

5 18 7.745 31 1.6 8.796

6 2.8 8.553 32 2.6 8.585

7 150 6.824 33 3.4 8.469

8 1.2 8.921 34 2 8.699

9 9.3 8.032 35 5.2 8.284

10 2 8.699 36 43 7.367

11 1.5 8.824 37 31 7.509

(Continued on following page)
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TABLE 1 | (Continued) The chemical structures and the biological activity of JAK1 inhibitors.

Compound 1–21 Compound 22 Compound 23–32 Compound 33–53

12 4.5 8.347 38 68 7.167

13 6.1 8.215 39 2.8 8.553

14 2.6 8.585 40 5.4 8.268

15 5.8 8.237 41 12 7.921

16 6.7 8.174 42 2.7 8.569

17 1.8 8.745 43 4.9 8.310

18 7.3 8.137 44 0.8 9.097

19 90 7.046 45 1.1 8.959

20 4.8 8.319 46 53 7.276

21 5.4 8.268 47 2 8.699

22 - 0.7 9.155 48 1.2 8.921

(Continued on following page)
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were generated using the 52 JAK1 inhibitors reported by Zak et al.
It elucidates the spatial arrangement of structural features of
various potent and structurally diverse inhibitors crucial for
biological recognition. One efficacious approach toward the
discovery and development of the drugs is the virtual screening
of molecular libraries (Stahl et al., 2006). Virtual screening helps to
identify the potential lead molecules and reduces the time and cost
of the drug discovery process (Reddy et al., 2007). Thus,
pharmacophore-based virtual screening was implemented. In
many research works, it was proposed that the combination of
pharmacophore modeling and molecular docking is a successful
method to discover the novel and potent lead compounds (Sakkiah
et al., 2009; Sakkiah et al., 2010; Sakkiah et al., 2011). Hence, the
results of pharmacophore-based virtual screening were taken for
molecular docking.

Docking results were used to predict the binding
orientations of the hits as well as the filter to select the hits.
The molecular docking results were validated by calculating
the free energy of binding using the molecular mechanics-
generalized born surface area (MM-GBSA) method for the
protein–ligand complexes (Friesner et al., 2006). Furthermore,
induced fit docking (IFD) was carried out to get additional
understanding about the structure and flexibility of these hits
into the binding site since IFD has been reported to be a
powerful method to account for both receptor and ligand
flexibility (Zhong et al., 2009). Subsequently, the cross-
docking method was used to identify the selective hits by
docking every hit to every receptor. By examining the
results, the top five hits were selected and taken for

molecular dynamic simulation and density functional theory
(DFT) study. To identify the potency and selectivity of the
leads, a drug molecule named ruxolitinib was included in the
study. The results of selected lead compounds and the drug
were compared and analyzed.

MATERIALS AND METHODS

Dataset Selection
For ligand-based pharmacophore modeling, a set of 52 JAK1
inhibitors (C-2 methyl/hydroxyethyl imidazopyrrolopyridines
derivatives) reported by Zak et al. (2012) and Zak et al. (2013)
were selected because of their diverse biological activity. The Ki

values of these inhibitors (0.1–150 nM) were derived using
biochemical and cell-based assays. These inhibitors have
shown higher selectivity toward JAK1 over JAK2. The
experimental Ki values were converted into pKi values that
are simply the negative log of the Ki value. The chemical
structures and biological activities of all molecules are given
in Table 1.

Pharmacophore Model Generation
Phase 4.3, a high-performance program module of Schrödinger
2015, was used to generate the ligand-based pharmacophore
models (Dixon et al., 2006). It uses a fine-grained
conformational sampling method to predict a hypothesis
consisting of the common pharmacophore features. The
Ligprep module was used to clean, minimize, and generate

TABLE 1 | (Continued) The chemical structures and the biological activity of JAK1 inhibitors.

Compound 1–21 Compound 22 Compound 23–32 Compound 33–53

23 1.1 8.959 49 1.9 8.721

24 3.5 8.456 50 0.9 9.046

25 10 8.000 51 0.1 10.000

26 0.8 9.097 52 0.3 9.523
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conformations of all compounds. Based on the diversity of the
chemical structure and its biological activity, the quantitative
pharmacophore models were generated using the Develop
Pharmacophore Model option. On the basis of biological
activity distribution (pKi values), the activity threshold value
was set and the inhibitors were divided into actives, inactives,
and moderately actives. In this study, both five and six featured
pharmacophore hypotheses were generated by defining the
minimum and maximum numbers of sites to five and six. The
pharmacophore models were developed possessing different
combinations of hydrogen-bond acceptor (A), hydrogen-bond
donor (D), aromatic ring (R), hydrophobic group (H), positively
ionizable (P), and negatively ionizable (N) groups. The resulting
hypotheses were scored and ranked on the basis of scoring
parameters. The scoring algorithm includes the alignment of
site points and vectors, number of ligands matched, volume
overlap, relative conformational energy, selectivity, and
activity. The difference between the survival score and the
survival inactive score notifies the ability of the hypotheses to
correctly distinguish between actives and inactives.

Pharmacophore Model Validation
Since the pharmacophore model is just a theoretical model, it is
necessary to analyze whether or not the generated model is able to
predict the active compounds. Thus, two approaches, namely,
potency validation and selectivity validation, were performed to
measure the accuracy of pharmacophores in selecting the active
compounds.

Potency Validation
Potency validation was carried out to test whether the
pharmacophore model is good enough to pick a greater
number of active molecules. This was achieved by screening
the database consisting of both active molecules and decoys.
Active molecules are the known inhibitors of JAK with higher
biological activities, whereas decoys are the molecule that does
not have any activity toward JAK and it was downloaded from
DUD-E (a Database of Useful Decoys-Enhanced) database
(Mysinger et al., 2012). DUD-E datasets were used only after
removing the biasness through docking. Based on the number of
actives and decoys retrieved by the pharmacophore models,
statistical parameters such as Guner-Henry (GH) score, %A, %
Y, and E score were calculated using the following formula:

GH score � (
Ha (3A + Ht)

4pHtpA
)(1 − Ht − Ha

D − A
);

%A � Ha

A
p100;%Y � Ha

Ht
p100;E � Ha/Ht

A/D
,

where Ha is the number of actives in the hits list, Ht is the number of
hits retrieved, A is the number of active compounds in the database,
D is the number of compounds in the database, %A is the percentage
of known active compounds obtained from the database, %Y is the
percentage of known actives in the hits list, and E is the enrichment
of the concentration of actives by the model relative to random
screening without a pharmacophoric approach. GH score ranges
from 0 to 1, which indicates a null model and an ideal model,

TABLE 2 | The summary of statistical data obtained for the pharmacophore hypotheses.

S. no. Hypothesis Survival score Survival inactive Post hoc Site Vector Volume

1 ADHRRR 3.514 1.420 3.514 0.72 0.992 0.803
2 AADHRR 3.513 1.396 3.513 0.72 0.994 0.801
3 AAADHR 3.509 1.410 3.509 0.71 0.995 0.805
4 DDHRRR 3.424 1.371 3.424 0.77 0.953 0.705
5 ADDHRR 3.420 1.364 3.420 0.75 0.960 0.710
6 AADDHR 3.398 1.244 3.398 0.73 0.948 0.724
7 AADRR 4.378 2.106 3.607 0.85 0.992 0.761
8 AAADR 4.364 2.141 3.593 0.84 0.969 0.780
9 ADRRR 4.353 2.081 3.582 0.85 0.979 0.757
10 ADDRR 4.339 2.080 3.568 0.89 0.917 0.763
11 AADDR 4.330 1.877 3.559 0.88 0.920 0.755
12 DDRRR 4.292 1.841 3.521 0.87 0.901 0.747
13 ADHRR 4.259 1.747 3.487 0.80 0.979 0.709
14 DHRRR 4.257 1.883 3.486 0.81 0.969 0.710
15 AADHR 4.253 1.744 3.481 0.79 0.985 0.709
16 AHRRR 3.974 1.916 3.510 0.72 0.988 0.803
17 AAHRR 3.972 1.892 3.508 0.72 0.991 0.801
18 AAAHR 3.965 1.907 3.501 0.70 0.993 0.806
19 AAADH 3.954 1.927 3.490 0.69 0.996 0.802
20 DPRRR 3.945 1.666 3.481 0.71 0.993 0.780
21 ADPRR 3.940 1.662 3.476 0.71 0.993 0.776
22 AADPR 3.929 1.631 3.465 0.69 0.993 0.778
23 ADDHR 3.896 1.788 3.432 0.73 0.959 0.741
24 DDHRR 3.896 1.794 3.432 0.78 0.951 0.701
25 AADDH 3.853 1.726 3.389 0.73 0.957 0.701
26 DHHRR 3.441 1.703 2.977 0.44 0.964 0.575
27 ADHHR 3.437 1.612 2.973 0.46 0.961 0.555

A- acceptor, D- donor, H- hydrophobic, R- aromatic ring, and P- positive group. The selected pharmacophore hypotheses are represented in bold.
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respectively. GH score >0.6 indicates the acceptable quality of the
pharmacophore model and is useful in differentiating the known
active molecules from inactives and suitable for retrieving active
JAK1 inhibitors (Sathe et al., 2014; Li et al., 2015).

Selectivity Validation
Selectivity validation was performed to check which
pharmacophore models are more selective in choosing high
number of JAK1 molecules. Selectivity validation was carried
out in two ways. First, a database comprising 30 JAK1, 30 JAK2,
30 JAK3, and 30 TYK2 molecules (Yang et al., 2007; Wang et al.,
2009; Pissot-Soldermann et al., 2010; Ioannidis et al., 2011;
Kulagowski et al., 2012) was created and used for validation.
The ability of pharmacophore models to differentiate the selective
JAK inhibitors was evaluated using virtual screening workflow on
a manually curated database. Second, to further confirm the
selectivity of the selected models, the available 288 JAK1
(Kulagowski et al., 2012; Labadie et al., 2012; Hurley et al.,
2013; Labadie et al., 2013), 627 JAK2 (Lucet et al., 2006; Wang
et al., 2009; Pissot-Soldermann et al., 2010; Harikrishnan et al.,
2011; Ioannidis et al., 2011; Schenkel et al., 2011; Dugan et al.,
2012; Forsyth et al., 2012; Lynch et al., 2013; Vazquez et al., 2018),
and 431 JAK3 (Chrencik et al., 2010; Thoma et al., 2011; Jaime-
Figueroa et al., 2013; Lynch et al., 2013; Soth et al., 2013; De
Vicente et al., 2014; Duan et al., 2014) inhibitors from diverse
research papers that mention either IC50 values or Ki values of
these inhibitors were taken for validation.

Pharmacophore-Based Virtual Screening
Virtual screening is the process where the complete databases are
used to identify the molecules in the database which are most
likely to bind to a drug target (Vyas et al., 2008). In this study,
pharmacophore-based virtual screening was carried out using the
“find matches to hypothesis” option available in the phase
module which efficiently search for pharmacophore matches
from the database of fixed conformers. The pharmacophore-
based virtual screening was performed against Maybridge
(53,000) (www.maybridge.com), Lifechemicals (12, 92, 000)
(https://lifechemicals.com/), Enamine (24,91,318) (https://
enamine.net/), Chemdiv (15,00,000) (https://www.chemdiv.
com/), Asinex (398,022) (https://www.asinex.com/), and Zinc
chemical and Zinc natural databases (https://zinc.docking.org/)
(44,92,226) (Irwin and Shoichet 2005; Irwin et al., 2012; Sterling
and Irwin 2015) to identify the new molecules with novel
scaffolds. After screening, fitness score that is a measure of
how well the hypothesis matched to the aligned ligand
conformers based on RMSD site matching, volume terms, and
vector alignments was used to filter the molecules.

Absorption, Distribution, Metabolism, and
Excretion Prediction
After virtual screening, the molecular descriptors and
pharmaceutically applicable properties of the hits were
calculated using Qikprop 4.4. Qikprop generates the

TABLE 3 | Pharmacophore validation results from potency validation.

S. no. Hypothesis Ha (#40) Decoys
(#1000)

Ht %A %Y E GH score

1 ADHRRR 11 0 11 27.50 100.00 26.00 0.819
2 AADHRR 11 10 21 27.50 52.38 13.62 0.457
3 AAADHR 11 22 33 27.50 33.33 8.67 0.312
4 DDHRRR 21 0 21 52.50 100.00 26.00 0.881
5 ADDHRR 24 13 37 60.00 64.86 16.86 0.628
6 AADDHR 22 27 49 55.00 44.90 11.67 0.461
7 AADRR 23 106 129 57.50 17.83 4.64 0.248
8 AAADR 21 242 263 52.50 7.98 2.08 0.145
9 ADRRR 23 9 32 57.50 71.88 18.69 0.677
10 ADDRR 26 39 65 65.00 40.00 10.40 0.444
11 AADDR 22 128 150 55.00 14.67 3.81 0.216
12 DDRRR 28 1 29 70.00 96.55 25.10 0.898
13 ADHRR 33 85 118 82.50 27.97 7.27 0.381
14 DHRRR 31 12 43 77.50 72.09 18.74 0.726
15 AADHR 32 252 284 80.00 11.27 2.93 0.213
16 AHRRR 11 3 14 27.50 78.57 20.43 0.656
17 AAHRR 11 78 89 27.50 12.36 3.21 0.149
18 AAAHR 11 141 152 27.50 7.24 1.88 0.106
19 AAADH 11 54 65 27.50 16.92 4.40 0.185
20 DPRRR 11 0 11 27.50 100.00 26.00 0.819
21 ADPRR 11 4 15 27.50 73.33 19.07 0.616
22 AADPR 12 10 22 30.00 54.55 14.18 0.479
23 ADDHR 23 71 94 57.50 24.47 6.36 0.304
24 DDHRR 29 17 46 72.50 63.04 16.39 0.643
25 AADDH 19 132 151 47.50 12.58 3.27 0.185
26 DHHRR 23 53 76 57.50 30.26 7.87 0.351
27 ADHHR 19 164 183 47.50 10.38 2.70 0.164

The number of compounds used for the validation study is mentioned within parenthesis. The selected pharmacophore hypotheses are represented in bold.
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physicochemical properties for a compound to find whether the
compound follows drug likeliness properties. Lipinski’s rule
characterizes the important molecular properties of drug,
including absorption, distribution, metabolism, and excretion
(ADME) that is essential for a drug’s pharmacokinetics in the
human body (Jorgensen and Duffy 2002). Parameters that
determine the ADME of the molecules were Molweight
(Molecular weight), QPlogPo/w (partition coefficient), QPlogS
(water solubility), percentage of human oral absorption, and
intestinal absorption parameters such as Caco-2 and MDCK
permeability. The compounds are expected to be active in
humans only if the molecule passes through Lipinski’s rule of
five. Therefore, the compounds retrieved after filtration were
subjected to ADME prediction and its physicochemical
properties were analyzed.

Molecular Docking
Molecular docking predicts the binding mode and interaction of
the small molecule to the protein. It distinguishes the behavior of
small molecules in the binding site of target protein and explicates
its fundamental biochemical processes (Gschwend et al., 1996;
Lipinski 2000). The binding conformations of the hits inside the
JAK1 ATP-binding site were investigated using Grid-based
Ligand Docking with Energetics (Glide 6.7) module. The ATP-
binding site of JAK1 comprises Leu881, Glu883, Val889, Ala906,
Met956, Glu957, Phe958, Leu959, Gly962, Ser963, Glu966,
Arg1007, Asn1008, Leu1010, Gly1020, and Asp1021 residues.

Before docking, protein preparation wizard was used to prepare
protein structure (3EYG) (Williams et al., 2009) applying the
default parameters that include adding hydrogens, filling missing
atoms and residues using PRIME, assigning correct bond orders,
and hydrogen-bond optimization and minimization. In the
Receptor Grid Generation panel, the center of the gird box
was defined on the centroid of the co-crystallized ligand
(MI1), and the volume in the active-site region of the receptor
was calculated by default settings (van der Waals radius scaling
factor 1.0 and partial charge cutoff 0.25). Molecular docking was
performed using both the Standard Precision (SP) and Extra
Precision (XP) docking modes in which the receptor was held
rigid and the ligand was free to move (Jain 2003; Halgren et al.,
2004). Glide score is a combination of hydrophobic, hydrophilic,
van der Waals energy, metal binding groups, freezing rotatable
bonds, and polar interactions with the receptor. Comparing Glide
SP and XP score, Glide SP score is a softer and more forgiving
function whereas Glide XP score is a harder function and adept at
reducing the false positives. Therefore, Glide XP score was
considered for the selection of hits and further analysis.

MM-GBSA Calculations
The binding free-energy calculations procured via theMM-GBSA
method are more precise and consistent than the glide XP score
and improve the ranking of potential leads (Lyne et al., 2006; Das
et al., 2009; Yang et al., 2009). Therefore, the binding free energy
(ΔG bind) of the protein–ligand complexes was calculated using

TABLE 4 | Pharmacophore validation results from selectivity validation.

S. no. Hypothesis No. of inhibitors retrieved

JAK1 (#30) JAK2 (#30) JAK3 (#30) TYK2 (#30) JAK1 (#288) JAK2 (#627) JAK3 (#431)

1 ADHRRR 5 - 1 - 24 0 1
2 AADHRR - 6 1 - - - -
3 AAADHR - 4 - - - - -
4 DDHRRR 8 - 1 - 54 0 1
5 ADDHRR 1 9 1 - - - -
6 AADDHR 2 9 - - - - -
7 AADRR 7 16 3 3 - - -
8 AAADR 4 9 1 - - - -
9 ADRRR 10 - 3 - 77 22 5
10 ADDRR 3 - 4 - - - -
11 AADDR 2 9 1 - - - -
12 DDRRR 18 - 2 - 86 1 10
13 ADHRR 23 - 3 - - - -
14 DHRRR 26 - 1 - 142 56 20
15 AADHR 21 13 1 3 - - -
16 AHRRR - - 7 - - - -
17 AAHRR - 13 1 - - - -
18 AAAHR - 8 1 - - - -
19 AAADH - 4 - - - - -
20 DPRRR 9 - - - 19 0 0
21 ADPRR 9 2 - - 25 0 0
22 AADPR 9 1 - - - - -
23 ADDHR 4 9 - - - - -
24 DDHRR 17 - 1 b 60 6 37
25 AADDH - 9 - - - - -
26 DHHRR 17 13 3 - - - -
27 ADHHR 12 23 4 3 - - -

The number of compounds used for the validation study is mentioned within parenthesis. The selected pharmacophore hypotheses are represented in bold.
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FIGURE 1 | The representation of selected pharmacophore models (A) ADHRRR, (B) DDHRRR, (C) DDRRR, (D) DPRRR, (E) DHRRR, (F) ADRRR, (G) DDHRR,
and (H) ADPRR. Pharmacophore features are colored in light blue, brown, dark blue, brick red, and green contours representing the H-bond donor (D), H-bond acceptor
(A), positives (P), aromatic ring (R), and hydrophobic (H) groups, respectively. The distances between the pharmacophore features (A˚) are given in pink dotted lines.
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the Prime MM-GBSAmodule implemented in Schrödinger 2015.
The Prime MM-GBSA Module incorporates the OPLS3 force
field and the VSGB dissolvable model to look through
calculations (Li et al., 2011). The energy difference between
the free and complex states of protein and ligand was
calculated. The energy components such as covalent binding
energy, van der Waals energy, generalized born electrostatic
solvation energy, Coulomb energy, total energy, and H-bond
correction were retrieved from the calculations.

Induced Fit Docking
In the docking protocol, to retain the flexibility of the receptor, a
mixed molecular docking protocol called induced fit docking
(IFD) developed by Schrödinger 2015 was employed (Wang H.
Y. et al., 2008). IFD uses the refinement module in Prime to
account for the receptor flexibility and Glide to account for the
ligand flexibility (Jacobson et al., 2004). Protein preparation
wizard and the Ligprep module were used for protein and ligand
preparation, respectively. Grid was generated on the ATP-
binding site amino acid residues based on the co-crystallized
ligand. The ATP-binding site residues and their flexibility were
considered for the IFD protocol. IFD was carried out with
default parameters, and 20 conformational poses were
calculated for each ligand. IFD scores (IFD score = 1.0
Glide_Gscore +0.05 Prime_Energy) were calculated based
upon the total energy of the system and the protein–ligand
interaction energy and used to rank the IFD poses (Luo et al.,
2014). The electrostatic interactions formed between the
receptor and the ligand were calculated by the docking scores
under “Electro,” and hydrophilic interactions under “Lipophilic
Evdw” mention the lipophilicity component acquired from the
hydrophobic grid. IFD poses were ranked based on the scores,
and the best pose was chosen for each hit.

Cross Docking
Cross docking is the process of taking a series of complexes of
ligand–receptor pairs and docking every ligand to every receptor.
This is used to study the specificity of the ligands and the
receptors and, thus, yield valuable report regarding the effects
of ligand upon binding. Protein preparation wizard and LigPrep
were used to prepare proteins and the shortlisted hits,
respectively. Grid was generated on the ATP-binding site
residues. The hits shortlisted from the molecular docking
study were docked against JAK1, JAK2, and JAK3 using the
Glide XP module to identify the selective lead compounds.

Molecular Dynamics Simulation
Docking results could be the instantaneous state and were not
considered decisive because binding of the inhibitor to a
protein in an in vivo state is a dynamic process. For
advanced studies, the stable binding mode of the ligand is
more reliable. Hence, to explore the detailed binding modes
and compare the stability and molecular interactions of the
docked lead complexes, molecular dynamics simulation was
carried out for 100ns using GROningen MAchine for Chemical
Simulations (GROMACS version 2016.3 installed in Centos
7.3) software (Abraham et al., 2015). GROMACS works
according to Newton’s laws of motions and simulates the
behavior of bio-molecules such as nucleic acids, proteins,
lipids, ligands, ions, and water. The coordinates for MD
simulations have been achieved from the docking results.
The PRODRG server (http://davapc1.bioch.dundee.ac.uk/cgi-
bin/prodrg) was used to calculate the ligand parameters in the
framework of GROMOS96 54a7 force field. The SPC water
model was used as a solvent during simulation. To achieve the
stability of the simulated system, the potential energy,
temperature, and pressure were monitored during the
simulations. The temperature and pressure of the system
were equilibrated (from ps to ns) till they reach 300 K and
1.05 bar, respectively. The stability of the secondary structure
elements and conformational changes of the simulated
complexes were evaluated by root mean square deviations
(RMSDs), root mean square fluctuation (RMSF), radius of
gyration (Rg), and solvent-accessible surface area (SASA)
values obtained from MD trajectories. The molecular
dynamics study was performed using High-Performance
Computing server (Intel Xeon 14 core processor with 28
threads and 2.40 GHz processor speed).

MM-PBSA Calculation
The molecular mechanics energies combined with the
Poisson–Boltzmann and surface area continuum solvation
(MM/PBSA) method have been applied to predict binding free
energies and to evaluate the relative stabilities of different
bimolecular structures. The MM/PBSA calculations were
performed for the simulated systems using g_mmpbsa, a
GROMACS Tool for High-Throughput MM-PBSA
Calculations (Kumari et al., 2014). Combined with molecular
dynamics (MD) simulations, MM-PBSA can also incorporate
conformational fluctuations and entropic contributions to the
binding energy (Homeyer and Gohlke 2012).

TABLE 5 | Number of hits obtained from pharmacophore-based virtual screening.

S. no. Hypothesis Maybridge Lifechemicals Enamine Asinex Chemdiv Zinc

1 ADHRRR 0 10 5 16 4 0
2 DDHRRR 0 6 9 0 1 0
3 DDRRR 3 117 167 18 16 16
4 DPRRR 1 57 68 9 40 14
5 DHRRR 9 250 321 161 151 155
6 ADRRR 3 134 224 335 17 113
7 DDHRR 9 151 558 44 88 213
8 ADPRR 1 74 436 30 9 202
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Density Functional Theory Study
The density functional theory (DFT) study was carried out to
observe the chemical behavior of the lead compounds using the
electron density-relevant concepts (Zhao et al., 2011). Also, it
provides a quantum-level understanding of the molecules and
assists in building the relationship between the electronic
properties and the biological activity of the molecule
(Nagarajan et al., 2018). Molecular descriptors such as total
energy, highest occupied molecular orbital (HOMO), lowest
unoccupied molecular orbital (LUMO), band energy gap (ΔE),
molecular dipole moment, absolute hardness (η), global softness
(σ), chemical potential (μ), electronegativity (χ), and
electrophilicity index (ω) were studied for the selected lead
compounds using Gaussian 16 software. Initially, the
molecules were optimized using the B3LYP function with a 6-
31G(d) basis set to calculate their molecular properties such as
total energy and molecule dipole moment (Becke 1998). The
dipole moment relates to the electro-chemical reactivity of the
compounds. The electron donating and accepting ability of the
molecules HOMO energy (EHOMO) and LUMO energy (ELUMO),
respectively, were calculated.

RESULTS AND DISCUSSION

Pharmacophore Model Generation
In the phase module, ligand-based pharmacophore model
generation was carried out utilizing 52 JAK1 inhibitors named

C-2 methyl/hydroxyethyl imidazopyrrolopyridine derivatives
(Table 1) along with their activity values. Ten molecules
whose pKi > 8.9 were taken as actives, twelve molecules
whose pKi < 8.1 were taken as inactives, and the remaining
thirty-one molecules were considered to be intermediates.
Twenty-seven different pharmacophore hypotheses (six with
six featured pharmacophores and twenty-one with five
featured pharmacophores) were generated and put through
the stringent scoring function. The generated pharmacophores
were ranked by aligning them with the active ligands, and the
statistical data obtained after scoring are tabulated in Table 2.
Besides the survival active score, survival inactive score, and
post-hoc score, fitness score was considered to measure the
quality of the pharmacophores. The fitness score was
calculated between the pharmacophores and the highly
active (compound 51) and highly inactive (compound 7)
compounds in the dataset. For all pharmacophores, the
fitness score was higher with the highly active compound
compared with the inactive compound. Subsequently, the
pharmacophores were evaluated using different validation
methods.

Pharmacophore Model Validation
Potency Validation
For potency validation, a database containing 40 JAK1 actives and
1,000 decoys was created. The generated pharmacophore models
were allowed to screen this database to calculate the GH score. It
was observed that six featured hypotheses have picked less

FIGURE 2 | The binding of highly active compound 51 into the ATP-binding site of JAK1.
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number of decoys compared with five featured hypotheses. The
ADHRRR, DDHRRR, and DPRRR hypotheses were more potent
because they do not pick any decoys. DDRRR, ADPRR, and

AHRRR have picked very less number of decoys. DDRRR,
ADHRR, DHRRR, AADHR, DDHRR, and DDRRR have
picked more active molecules. The results of potency

FIGURE 3 | The chemical structure of selected lead compounds. (A) T6649932, (B) ST088474, (C) T5923555, (D) T5923531, and (E) T6763842.

TABLE 6 | The drug likeliness properties of the selected lead compounds and the drug.

S. no. Molecule ID molMW
(130.0–725.0)

dHB (0.0–6.0) aHB (2.0–20.0) logPo/w
(–2.0–6.5)

logS
(–6.5–0.5)

logBB
(–3.0–1.2)

PCaco
(<25 poor>500

great)

PMDCK
(<25 poor>500

great)

1 T6649932 426.5 2 8 3.5 −5.3 −1.1 756.168 365.722
2 ST088474 297.3 4 10 −0.4 −2.1 −1.3 132.825 95.256
3 T5923555 416.9 2 7 3.3 −5.1 −0.8 582.955 674.629
4 T5923531 410.5 2 7 3.4 −5.4 −1.1 679.576 325.851
5 T6763842 351.4 1 6 2.7 −4.4 −1.2 385.229 176.425
6 Ruxolitinib 306.4 2 4.5 1.4 −3.3 −0.4 941.735 463.628

molMW, molecular weight; dHB, donor atoms; aHB, acceptor atoms; logPo/w, partition coefficient; logS, aqueous solubility; logBB, brain/blood partition coefficient; PCaco, predicted
apparent; Caco-2, cell permeability in nm/sec; PMDCK, predicted apparent MDCK cell permeability in nm/sec. The qikprop recommended values are given inside the parenthesis.

TABLE 7 | Molecular docking results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID XP score Glide energy Glide evdw Glide ecoul H-bond interaction

1 T6649932 −10.335 −61.771 −53.839 −7.932 Leu959, Glu957, Arg1007
2 ST088474 −10.653 −50.800 −34.600 −16.200 Leu959, Glu957, Leu881, Ser963, Glu966
3 T5923555 −10.015 −57.500 −49.348 −8.151 Leu959, Glu957, Arg1007
4 T5923531 −10.303 −57.350 −49.885 −7.465 Leu959, Glu957, Arg1007
5 T6763842 −10.671 −51.703 −46.166 −5.536 Leu959, Glu957
6 Ruxolitinib −9.282 −57.553 −43.488 −14.065 Leu959, Glu957
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validation are tabulated in Table 3. Based on the number of
actives and decoys retrieved by the hypotheses, the GH score was
calculated. The hypotheses such as DDHRRR, ADHRRR,

ADDHRR, DDRRR, DPRRR, DHRRR, ADRRR, AHRRR,
DDHRR, and ADPRR have obtained the GH score >0.6
indicating the goodness of these hypotheses.

FIGURE 4 | The representation of docked lead compounds and drug ((A) T6649932, (B) ST088474, (C) T5923555, (D) T5923531, (E) T6763842, and (F)
ruxolitinib) present inside the ATP-binding site of JAK1 after molecular docking.
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Selectivity Validation
Initially, the selectivity validation was performed with a set of
30 JAK1, 30 JAK2, 30 JAK3, and 30 TYK2 molecules retrieved
from different studies. DPRRR has picked only JAK1
molecules. The DHRRR, ADHRR, DDRRR, and DDHRR
hypotheses have picked a high number of JAK1 molecules
and very less JAK3 molecules. ADHRRR and DDHRRR have
picked only few JAK1 and one JAK3 molecules. The results of
selectivity validation are tabulated in Table 4. The fitness score
for JAK1 inhibitors was greater than or equal to 1.5, whereas
for other JAK inhibitors, the fitness score was <1.5 for most of
the molecules indicating that the pharmacophore models were
able to map well with the JAK1 inhibitors (Sathe et al., 2014;
Babu et al., 2015).

Six feature pharmacophore hypotheses were more potent but
not highly selective to JAK1. Based on potency and selectivity
validation results, the DDHRRR, ADHRRR, DDRRR, DPRRR,
DHRRR, ADRRR, DDHRR, and ADPRR hypotheses were
selected because they were successful in retrieving active
compounds from the database. The representation of the
selected JAK1 pharmacophore models showing the distances
between the pharmacophoric sites is shown in Figures 1A–H.
On mapping the selected pharmacophore models with highly

active compound 51 and inactive compound 7, it was observed
that the fitness score was >2.5 for the highly active compound
mapping with all pharmacophore features whereas inactive
compound 7 could map with either four or five
pharmacophore features with low fitness score. The highest
fitness score with compound 51 suggests screening using these
models would pick the similar active compounds. From the
results, we suggest the combination of two or three aromatic
rings (R) and one or two donor atoms (D) with a hydrophobic
(H) group is an important pharmacophoric feature for identifying
the selective JAK1 inhibitors. The important pharmacophore
features obtained were compared with the contribution maps
obtained through the hologram-based fingerprint technique
(Supplementary Figure S1). The contribution maps depict the
imidazopyrrolopyridine ring which possesses one donor and
three aromatic rings responsible for the intermediate
contribution of the inhibitory activity. From the highly active
compounds, we observed the cyano group attached to
cyclohexanes (yellow) and the hydroxyethyl group attached to
imidazopyrrolopyridines (green); a hydrophobic and an
aromatic/donor group, respectively, are strongly responsible
for the higher activity. Thus, these pharmacophore features are
highly important for the inhibitory activity of JAK1.

TABLE 8 | MM-GBSA results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID ΔG _Bind ΔG_Bind_Coulomb ΔG_Bind_Covalent ΔG_Bind_Lipo ΔG_Bind_vdW

1 T6649932 −46.430 −10.816 6.512 −15.475 −55.026
2 ST088474 −44.915 −29.704 5.740 −8.571 −36.645
3 T5923555 −45.936 −11.512 13.940 −15.199 −45.837
4 T5923531 −41.698 −14.070 4.485 −11.368 −47.637
5 T6763842 −43.157 −6.535 5.179 −15.922 −48.815
6 Ruxolitinib −46.184 −18.883 1.186 −13.853 −38.185

TABLE 9 | Induced fit docking results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID XP score IFD score Lipophilic EvdW Electro H-bond interaction

1 T6649932 −8.557 −598.316 −5.175 −0.353 Leu959, Glu883
2 ST088474 −8.791 −594.272 −2.492 −0.519 Leu959, Glu957, Arg1007
3 T5923555 −9.343 −598.889 −4.142 −0.638 Leu959, Glu957, Ser963
4 T5923531 −9.941 −598.697 −4.919 −0.701 Leu959, Glu883
5 T6763842 −9.550 −599.541 −5.590 −0.236 Ser963
6 Ruxolitinib −9.725 −595.395 −3.654 −1.055 Leu959, Glu957

TABLE 10 | Cross-docking results of the selected JAK1 lead compounds and the drug.

S. no. Molecule ID Glide XP Gscore Glide energy (Kcal/mol)

JAK1 JAK2 JAK3 JAK1 JAK2 JAK3

1 T6649932 −10.623 −6.065 −8.192 −65.073 −59.156 −57.574
2 ST088474 −10.784 −8.938 −7.963 −52.980 −44.112 −40.231
3 T5923555 −10.650 −7.314 −8.298 −56.889 −54.956 −54.964
4 T5923531 −10.608 −7.810 −8.344 −59.950 −57.629 −55.855
5 T6763842 −10.652 −5.243 −8.754 −51.761 −48.136 −48.034
6 Ruxolitinib −9.178 −9.091 −10.209 −49.475 −48.884 −48.434
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To confirm the selectivity of the selected pharmacophore
models (DDHRRR, ADHRRR, DDRRR, DPRRR, DHRRR,
ADRRR, DDHRR, and ADPRR), the second round of
selectivity validation was carried out with a set of 288 JAK1,
627 JAK2, and 431 JAK3 inhibitors with diverse activity. It was
observed (Table 4) that all the selected pharmacophore models
were able to pick more number of JAK1 inhibitors compared with
its subtypes. Hence, the selected pharmacophore models were
capable of discriminating the JAK1 inhibitors and appropriate for
retrieving the novel and selective JAK1 inhibitors.

Pharmacophore-Based Virtual Screening
The selected pharmacophore models were screened against
Maybridge, Lifechemicals, Enamine, Chemdiv, Asinex, and
Zinc (chemical and natural) databases for the identification of
new hits. The identified hits contain the structural features that
overlap with the selected pharmacophore models. The hits
obtained were ranked and filtered based on the fitness score.
The fitness score was set to >1.5 for the Maybridge, Asinex,
Chemdiv, Lifechemicals, and Enamine databases, whereas for the
Zinc database, the fitness score was set to >2 because of high

FIGURE 5 | The change in RMSD values of the backbone Cα atoms of JAK1 systems over a period of 100 ns after binding with the lead compounds and drug.

FIGURE 6 | The change in RMSF values of JAK1 residues over a period of 100 ns after binding with the lead compounds and drug.

FIGURE 7 | The change in Rg values over a period of 100 ns after binding with the lead compounds and drug.
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number of molecules retrieved from the Zinc database. As a result
of screening and filtration, 4,265 compounds were retrieved. The
total numbers of hits retrieved from different databases are
tabulated in Table 5.

The potentiality of the pharmacophore models was validated
using receiver operating curves (ROCs) utilizing the screened
molecules (Hevener et al., 2009); 10 compounds identified from
the pharmacophore-based virtual screening were seeded with 500
decoys. Enrichment was estimated based on how well the
compounds were fetched. After ranking the decoy set and

docked compounds by the Glide score, the enrichment was
calculated using the ROC plot that provides the report on
sensitivity and specificity. The ROC plot inferred that Glide
XP ranked seven compounds in top 10% with the ROC value
as 0.93 and the AUC value as 0.92. 80% of the true positives were
fetched in top 20% which indicates its capability of retrieving the
active compounds. The gentle increase in the ROC curve
(Supplementary Figure S2) was noticed in the beginning,
which implies that number of true positives was sacrificed to
reduce the amount of false positives.

FIGURE 8 | The change in SASA values over a period of 100 ns after binding with the lead compounds and drug.

FIGURE 9 | The number of hydrogen bonds formed by lead compounds and drug over the simulation time.

TABLE 11 | The protein–ligand interaction analysis of the selected JAK1 lead compounds and the drug before, during, and after MD simulation.

S. no. Molecule
ID

H-bond interaction

Before simulation During simulation After
simulation25 ns 50 ns 75 ns 99 ns

1 T6649932 Leu959, Glu957, Arg1007 - Leu959 - Leu959 -
2 ST088474 Leu959, Glu957, Leu881,

Ser963, Glu966
Asp1021 Arg1007, Val1009 Arg1007 Asp1021 Asp1021

3 T5923555 Leu959, Glu957, Arg1007 Leu959, Glu957 Leu959, Glu957 Leu959, Glu957,
Leu881

Leu959, Glu957 Leu959,
Glu957

4 T5923531 Leu959, Glu957, Arg1007 Leu959, Glu957 Leu959, Glu957 Leu959, Glu957 Leu959, Glu957 Leu959,
Glu957

5 T6763842 Leu959, Glu957 Ser963 Ser963 Ser963 Ser963 Ser963
6 Ruxolitinib Leu959, Glu957 Leu959, Glu957,

Leu881
Leu959, Glu957,
Leu881

Leu959, Glu957 Leu959, Glu957,
Arg1007

Leu959,
Glu957
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FIGURE 10 | The representation of final conformation of the docked lead compounds and drug ((A) T6649932, (B) ST088474, (C) T5923555, (D) T5923531, (E)
T6763842, and (F) ruxolitinib) present inside the ATP-binding site of JAK after molecular dynamics simulation.
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Absorption, Distribution, Metabolism, and
Excretion Prediction
Compounds that pass Lipinski’s rule of five and other ADME
properties of the drug are expected to be active in humans.
Properties such as molecular weight, H-bond donors, H-bond
acceptors, log p, van der Waals surface, aqueous solubility,
blockage of HERG K+ channels, apparent Caco-2 cell
permeability, apparent MDCK cell permeability, brain/blood
partition coefficient, skin permeability, binding to human
serum albumin, and human oral absorption of the hits were
studied. Finally, 2,856 compounds whose drug-like properties
were in the acceptable range (according to qikprop recommended
range) were selected and subsequently exposed to glide SP and XP
docking protocols to remove both the false-positive and false-
negative hits.

Molecular Docking
The molecular docking study was carried out using the Glide SP
and XPmodes to explore the bindingmode and interaction of hits
on the ATP-binding site. The crystal structure of JAK1 protein
3EYG in complex with MI1 (Williams et al., 2009) was used to
perform molecular docking. The grid was developed on the
centroid of co-crystallized ligand MI1 surrounding the ATP-
binding site residues (Leu881, Glu883, Val889, Ala906, Met956,
Glu957, Phe958, Leu959, Gly962, Ser963, Glu966, Arg1007,
Asn1008, Leu1010, Gly1020, and Asp1021) of JAK1. Initially,
the docking of MI1 into the ATP-binding site was performed to
check the accuracy and reproducibility of the docking program.
Subsequently, the highly active compound 51 and 2,856 hits were

docked into the ATP-binding site. Considering the docking result
of compound 51 (glide XP score -9.691), the glide XP threshold
value was set to ≥ −9.60 to identify the novel hits. We observed
that 90 molecules have exhibited glide score greater than the
threshold and it was shortlisted (Supplementary Table S1).
Among the JAK1 ATP-binding site residues, Leu959 and
Glu957 that are present in the hinge region were found to be
the most selective amino acid residues for the H-bond interaction
and also crucial for selective inhibition of JAK1. Hence, the
interactions with Leu959 and Glu957 were investigated for the
hits. Compound 51 has shown H-bond interactions with Leu959,
Glu957, and Leu881. The selected 90 hits have exhibited H-bond
interaction with either Leu959 or Glu957 or both residues.
Additionally, the Leu881, Glu883, Ser963, Glu966, and
Arg1007 residues were involved in H-bond interaction with
most of the hits. The hydrophobic interactions were formed
mainly by the residues Leu881, Val889, Ala906, Val938,
Met956, Phe958, Pro960, and Leu1010. The binding of
compound 51 into the ATP-binding site is shown in Figure 2.

MM-GBSA Calculations
The highly ranked hits selected from glide docking were taken for
MM-GBSA calculations to predict the binding energy of the
protein–ligand complexes. The calculated free energy of binding
(ΔG bind) was lower than glide energy. It was observed that van der
Waals (ΔG_Bind_vdW) energy contributes more for the ligand
binding, whereas covalent interaction (ΔG_Bind_Covalent) and
electrostatic salvation (ΔG_Bind_Solv_GB) energy terms disfavor
for the inhibitor binding.

TABLE 12 | MM-PBSA results obtained from the molecular dynamics trajectory for the selected JAK1 lead compounds and the drug.

S. no. Molecule ID van der
Waals energy

(kJ/mol)

Electrostatic energy
(kJ/mol)

Polar solvation
energy (kJ/mol)

SASA energy
(kJ/mol)

Binding energy
(kJ/mol)

1 T6649932 −194.226±16.777 −74.970±32.984 203.123±32.793 −18.207±1.508 −24.281±30.279
2 ST088474 −135.299±6.176 −19.370±4.198 97.066±9.529 −14.916±0.839 −22.519±9.921
3 T5923555 -212.143±8.554 -2.460±7.922 256.402±9.826 -19.217±0.649 -42.581±11.158
4 T5923531 −214.550±9.829 −13.931±5.705 219.798±14.381 −20.106±0.900 −38.790±15.145
5 T6763842 −163.284±11.976 −89.322±11.300 230.810±17.465 −15.839±0.839 −27.636±15.186
6 Ruxolitinib −185.994±50.799 −34.821±65.738 206.801±108.464 −17.040±6.025 −24.054±36.312

TABLE 13 | The statistical results of the DFT-based descriptors for the selected lead compounds and the drug.

S. no. Total
energy
(a.u.)

Energy of ΔE Dipole
moment
(debye)

η σ χ μ ω

εHOMO
(Kcal/
mol)

εLUMO
(Kcal/
mol)

1 −1,195.61 −0.20 −0.04 4.48 3.06 2.24 0.22 −3.20 3.20 2.29
2 −1,325.80 −0.21 −0.01 5.43 3.48 2.71 0.18 −3.08 3.08 1.75
3 −1,675.02 −0.29 −0.07 6.09 5.59 3.04 0.16 −4.83 4.83 3.84
4 −1824.84 −0.22 −0.08 3.84 8.02 1.92 0.26 −4.08 4.08 4.33
5 −1,695.05 −0.25 −0.07 4.97 5.14 2.48 0.20 −4.28 4.28 3.69
R −987.14 −0.22 −0.05 4.59 4.09 2.29 0.22 −3.64 3.64 2.88

T6649932 (1), ST088474 (2), T5923555 (3), T5923531 (4), T6763842 (5), ruxolitinib (R). ΔE, band energy gap (εLUMO-εHOMO); η, absolute hardness; σ, global softness; χ,
electronegativity; μ, chemical potential; ω, electrophilicity index.
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Induced Fit Docking
IFD was performed on the highly ranked hits using the crystal
structure of JAK1 (3EYG). It was observed that IFD also produces
good IFD score and XP score comparable to glide XP score. The
IFD score of JAK1 hits was greater than or equal to −590, and
their corresponding XP score was greater than −8.00 which
indicates the good binding ability of the hits. The observed
H-bond and hydrophobic interaction with the IFD results was
highly similar to glide results, indicating that these hits could bind
and produce similar H-bond and hydrophobic interaction inside
the binding site upon both receptor and ligand flexibility.

Cross Docking
Since an important objective of this work is to attain admissible
levels of intra-family selectivity, the cross-docking approach was
employed for the highly ranked hits. For cross docking, the crystal
structure of JAK1 (3EYG), JAK2 (3KRR), and JAK3 (3ZEP) was
used. Among 90 hits tested, the top five compounds (T6649932,
ST088474, T5923555, T5923531, and T6763842) that have the
highest docking score toward JAK1 (>-10.5) compared with JAK2
and JAK3 were selected and taken for further study.

Analysis of Selected Lead Compounds
The top five compounds that showed good potency and selectivity
were selected and analyzed. To identify the potency and
selectivity of the leads, a drug molecule named ruxolitinib was
included in the study. Molecular docking, MM-GBSA
calculations, IFD docking, and cross docking were performed
for the drug and compared with the selected leads. Subsequently,
the selected leads were taken for the molecular dynamics
simulation study using the GROMACS and DFT calculations
using Gaussian. The chemical structures of the selected lead
compounds are shown in Figures 3A–E.

Absorption, Distribution, Metabolism, and Excretion
Properties
ADME properties are the key determinants for the successful
development of new drugs. All the analyzed pharmacokinetic
parameters of these lead compounds were found to be within the
permissible range. The percentage of the human oral absorption
was found to be greater than 50%. The partition coefficient and
water solubility that are important for the assessment of
absorption and distribution of drugs within the body ranged
between −0.4 and 3.5 and −5.4 and −2.1, respectively.
Compounds T6649932, T5923555, and T5923531 possessing
good Caco-2 and MDCK permeability have good level of
intestinal absorption. The drug-likeliness properties of the
selected leads and ruxolitinib are given in Table 6.

Glide XP Docking Analysis
For the selected leads, the glide XP score was greater than
−10.015, whereas for ruxolitinib, it was −9.282. The highest
docking score was observed for T6763842 (−10.671). The
major contribution of vdW interactions was observed which
indicate that the vdW interaction favors the protein-ligand
complex. The glide XP score, glide energy, glide evdw, and
glide ecoul of the selected leads are given in Table 7. On

analyzing the interaction, it was observed that the lead
compounds showed conserved H-bond interactions with both
the selective residues of JAK1 (Leu959 and Glu957) similar to the
drug indicating its remarkable selectivity. Compounds such as
T6649932, T5923555, and T5923531 formed another H-bond
with Arg1007. Additionally, hydrophobic interactions were
formed with the ATP-binding site residues Leu881, Val889,
Ala906, Val938, Met956, Phe958, Pro960, and Leu1010.
Figures 4A–F show the docked pose of lead compounds and
drug inside JAK1 ATP-binding site.

MM-GBSA Analysis
The binding free energy of the selected lead compounds ranges
from −41.698 to −46.430 suggesting good binding affinity with
JAK1.Many lead compounds have shown comparable free energy
of binding with ruxolitinib. This provides the insight that these
lead compounds have exhibited good specificity. Furthermore,
the contribution of ΔG_Bind_vdW and ΔG_Bind Lipo
components to the binding free energy was compared. The
high binding free energy was majorly contributed by ΔG_Bind
vdW than ΔG_Bind Lipo component. The predicted binding free
energy of the selected leads and drug is tabulated in Table 8.

Induced Fit Docking Analysis
The accuracy of glide scoring function in identifying the leads was
checked using the IFD method. The IFD score was greater than
−594, and their corresponding docking score was greater than
−8.5. The IFD scores of four lead compounds were higher
compared to ruxolitinib (−595.395), whereas the docking
scores of four lead compounds were little lower compared
with ruxolitinib (−9.725). The highest IFD score and XP score
were observed for T6763842 and T5923531. The Electro and
Lipophilic Evdw scores of the lead compounds and drugs showed
higher lipophilicity compared with electrostatic interactions
which implies the important role of lipophilicity in inhibitory
activity. The glide XP score, IFD score, lipophilic evdw, electro,
and H-bond interaction of the selected leads are given in Table 9.
The representation of docked lead compounds and drug present
inside the ATP-binding site of JAK1 after induced fit docking is
shown in Supplementary Figure S3. The IFD results also
confirmed that the selected lead compounds have occupied the
ATP-binding site of JAK1 irrespective of receptor flexibility.

Cross-Docking Analysis
The cross-docking results of selected leads indicate that their
docking score was greater than −10.00 with JAK1, whereas with
respect to other JAKs, their docking score ranges from −5.2 to
−8.9. For ruxolitinib, docking scores were −9.178 with JAK1,
−9.091 with JAK2, and −10.209 with JAK3. Therefore, the
selected lead compounds have shown good selectivity in terms
of docking score compared with ruxolitinib. The important
components to determine the selectivity of the lead
compounds were the electrostatic and hydrophilic components
of the docking score. The drug and lead compounds showed
higher lipophilicity compared with electrostatic interactions
which implies that lipophilicity plays an important role in
dictating the selectivity of these molecules. The cross-docking
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results of the drug and selected leads are given in Table 10. The
cross-docking results of ruxolitinib showed higher binding
affinity with JAK3 compared with JAK1 and JAK2 indicating
its lesser selectivity, whereas the selected lead compounds showed
greater affinity and selectivity toward JAK1 compared with other
JAK subtypes. Hence, the cross-docking results indicate the
selected lead compounds are more selective than the drug.

Molecular Dynamics Simulation
RMSD Plot Analysis
RMSD relative to the respective initial conformations was
monitored and analyzed to examine the stability and
equilibration of all systems. The RMSD value for both the lead
compounds and drug was calculated for the 100ns time scale using
the apo form of JAK1 (3EYG) as reference. In Figure 5, it was
observed that the RMSD values of both the drug and lead
complexes were stable throughout the simulation. Furthermore,
RMSD values for all protein backbone atoms attained convergence
after 1 ns and maintained a plateau of 0.01 nm after the initial
convergence. This suggests that all system simulations reached
equilibrium and stabilization during the simulation. RMSD of both
drug and lead complexes was found to be in the range of
0.02–0.03 nm indicating the similar stability. The observed
smaller RMSD fluctuations for all compounds confirmed that
the obtained binding conformations of these lead compounds
and drug were highly reasonable.

RMSF Plot Analysis
RMSF of backbone atoms were monitored to identify the strong
binding interactions and exemplify the pliability of these lead
complexes in the ATP-binding site of JAK1. The RMSF plot
shown in Figure 6 indicates very minimal fluctuations were
observed during the simulation except the terminal and loop
regions of the protein. Most of the fluctuations were between
0.016 and 0.035 nm indicating the stability of the simulated
system. Very minimal fluctuations were observed in the
residues Pro912, His918, Glu946, Asn950, and Gly951 for all
lead compounds and ruxolitinib. The JAK1 ATP-binding site
residues that are crucial for binding and fixing the inhibitors have
displayed insignificant fluctuations during the course of
simulation. However, the most important and selective amino
acid residues Leu959 and Glu957 that are important for inhibitor
binding attained a quite stable behavior.

Rg Plot Analysis
The level of compactness in the structure of protein due to the
presence or absence of ligands was calculated using radius of
gyration (Rg) plot (Lobanov et al., 2008). It can be observed that
all lead complexes and the drug showed consistently lower Rg values
and exhibited a relatively similar nature of compactness in Figure 7.
Thus, a relatively consistent Rg value indicates that a stably folded
structure was observed throughout the MD simulation.

Solvent Accessible Surface Area Plot Analysis
The solvent accessible surface area (SASA) calculation of the
protein–ligand complexes was used for predicting the extent of the
conformational changes that occurred during the interaction. The

SASA plot shown in Figure 8 indicates that no significant changes in
the protein structure were caused by these lead compounds and drug
during simulation. Hence, the protein–ligand complexes are relatively
stable throughout the simulation.

Protein–Ligand Interaction Analysis
The most significant part in MD simulations is the analysis of
protein–ligand interactions because it illustrates the changes in
the binding mode of the ligands during simulations. Figure 9
shows the number of H-bond formations over the trajectory for
lead compounds and the drug. The H-bonds were the principal
binding forces between protein and ligand. The drug ruxolitinib
has produced 2–4 H-bonds, whereas lead compounds have
produced 0–2 H-bonds throughout the simulation. T5923555,
T5923531, and T6763842 have produced 1–3 H-bonds, whereas
ST088474 produced one H-bond with JAK1 all through the
simulation. Ruxolitinib, T6763842, and T5923555 had retained
two H-bonds, and T5923531 had retained one H-bond, whereas
T6649932 does not have an H-bond at the end of the simulation.
A strong hydrogen bond network was formed mainly by the
residues Glu957 and Leu959. T5923555 and T5923531 retained
hydrogen bonds with Leu959 and Glu957 at the end of simulation.
Moreover, the ATP-binding site residues were almost
hydrophobic, which can form strong nonpolar interactions with
lead compounds. The detailed protein–ligand interaction residues
before and after molecular dynamics simulation (Saddala and Adi
2018) were studied and are given in Table 11. T5923555 and
T5923531 were found to be more stable and reliable before and
after simulation, and their important interaction (Glu957 and
Leu959) remains unchanged throughout the simulation.

The binding mode of the drug and lead compounds after
simulation is represented in Figures 10A–F. It was inferred that
the initial docked conformation and the final conformation of the
lead compounds and drug lie in the same binding pocket
(Supplementary Figure S4). Hence, the conformation of the
lead compounds was stable inside the binding pocket which, in
turn, validates the reliability of the docking results. Furthermore,
these absolute results suggest that the identified lead compounds
are highly selective and potent and they can be taken for in vitro
and in vivo studies.

MM-PBSA Calculation
The average binding energy of all the simulated complexes was
calculated using the g_mmpbsa tool. The van der Waals energy,
electrostatic energy, polar solvation energy, solvent-accessible
surface area (SASA) energy, and binding energy were
calculated and are tabulated in Table 12. T5923555 and
T5923531 have shown good binding energy and van der
Waals energy compared with other compounds.

Density Functional Theory Calculation
Molecular descriptors based on the electron density of the
molecules were studied using Gaussian. Based on HOMO
energy (EHOMO) and LUMO energy (ELUMO), descriptors such
as ΔE, η, σ, μ, χ, and ω were calculated. The smaller energy gap
(ΔE) for all lead compounds suggests that they can easily transit
from HOMO to LUMO, which is important for the molecular
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reactivity. Since the decrease in electronegativity (χ) value is
proportional to the increase in inhibitive efficiency (Zhan
et al., 2003), these leads would have higher inhibitory activity
because of their lower electronegativity value. The statistical
values of the calculated molecular descriptors are tabulated in
Table 13. The smaller energy gap, lower electronegativity, and
higher dipole moment that are vital for the inhibitory effect of a
molecule were observed which validates the better inhibitory
activity for the selected lead compounds.

CONCLUSION

Pharmacophore modeling, virtual screening, and molecular
docking are the rational methods for the identification of novel
leads with diverse chemical scaffold. Therefore, ligand-based
pharmacophore modeling combined with virtual screening and
docking was applied in this study to discover novel, potent, and
selective virtual hits for JAK1 enzyme. Initially, the ligand-based
pharmacophore models were generated and validated using the
potency and selectivity validation methods. Eight pharmacophore
models were selected and taken for pharmacophore-based virtual
screening against six databases. The hits obtained from screening
were filtered through ADME prediction and molecular docking.
The binding free-energy calculation and induced fit docking
methods were employed to validate the docking results.
Subsequently, cross docking was carried out to identify the lead
compounds that are more selective toward JAK1. Finally, the top
five lead compounds were selected and taken for molecular
dynamics and the DFT study. Among the five compounds,
T5923555 and T5923531 were found to be the best leads and
can be further validated using in vitro and in vivo methods.
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The SARS-CoV2 pandemic has highlighted the importance of efficient and effective
methods for identification of therapeutic drugs, and in particular has laid bare the need
for methods that allow exploration of the full diversity of synthesizable small molecules.
While classical high-throughput screening methods may consider up to millions of
molecules, virtual screening methods hold the promise of enabling appraisal of billions
of candidate molecules, thus expanding the search space while concurrently reducing
costs and speeding discovery. Here, we describe a new screening pipeline, called
drugsniffer, that is capable of rapidly exploring drug candidates from a library of billions
of molecules, and is designed to support distributed computation on cluster and cloud
resources. As an example of performance, our pipeline required ~40,000 total compute
hours to screen for potential drugs targeting three SARS-CoV2 proteins among a library of
~3.7 billion candidate molecules.

Keywords: virtual screeening,machine learning, computer aided drug design, de novo design, SARS-C0V-2, protein-
ligand docking

1 INTRODUCTION

The war against viruses is largely fought using vaccines and therapeutic drugs. As of December
2021, there are 55 FDA-approved vaccines against 19 human viruses (FDA, 2021), while only
three viruses are targeted by approved antiviral drugs (FDA, 2020b). This disparity is
particularly visible in the context of the ongoing SARS-CoV2 pandemic, in which vaccines
were produced at a remarkable speed and with excellent effectiveness (FDA, 2020a; Wouters
et al., 2021), while effective antiviral agents (Mahase, 2021; Jayk Bernal et al., 2022) only
arrived 2 years into the pandemic, and with very limited availability. Despite vaccine success,
there remains a vital need for development of effective antiviral drugs due to a combination of
vaccine hesitancy, incomplete vaccine availability, breakthrough infection risk, and the
continued emergence of viral variants (Kaplan and Milstein, 2021). Beyond SARS-CoV2,
the cost and limited exploratory scope of current drug discovery pipelines will hamper efforts
to quickly respond to future pandemic needs, and are an obstacle to development of
antiviral drugs for viruses primarily afflicting relatively poor populations (Adamson et al.,
2021).
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Modern drug development efforts rely on high-throughput
screening (HTS) analysis, which involves automated physical
evaluation of activity across a library of thousands to millions
of candidate small-molecule drugs (Berdigaliyev and Aljofan,
2020). HTS can be complemented by computer-aided drug
design (CADD) and virtual screening (VS), in which
interactions between small-molecules and a targets are
estimated using computational models. In particular,
computational analysis holds the promise of enabling
expansion of the number of considered molecules from
millions to billions.

VS strategies are traditionally divided into two categories:
ligand-based (LBVS) and structure-based (SBVS) methods. In
LBVS methods, a known active ligand is used as the basis for a
search for chemically and structurally similar molecules
(Ripphausen et al., 2011), with no consideration of the target
protein. In SBVS approaches, small molecules are
computationally docked into target binding sites to estimate
their activities (Maia et al., 2020); this approach depends on
availability of structural information, and is computationally
intensive. The two methods can be integrated either by
combining results (Wilson and Lill, 2011; Wang et al., 2020),
or by using LBVS methods to quickly establish a set of candidates
subjected to subsequent SBVS docking analysis (Drwal and
Griffith, 2013).

Table 1 provides a list of various open access VS tools. For
large scale virtual screening of compound libraries, software
pipelines such as VSpipe Álvarez-Carretero et al. (2018),
VirtualFlow Gorgulla et al. (2020, 2021), AMIDEDarme
et al. (2021) have been used. Many of these approaches
make use of SBVS and facilitate the use of a variety of
docking Bender et al. (2021) programs with significant
emphasis on scaling the calculations. Recent GPU
acceleration of docking (Santos-Martins et al., 2021) has

improved throughput, but resource requirements are still
exceedingly high. For example, an effort to performing one
billion docking assays was reported to require 664K GPU
hours and 4.64M core hours for a single VS analysis (Acharya
et al., 2020). With the aim of automating hit-selection
protocols and minimizing human intervention, artificial
intelligence-driven VS. pipeline have also been introduced
Gentile et al. (2020), Gentile et al. (2021); Yaacoub et al.
(2021).

Herein, we describe our development and release of an open
source, massively-scalable LBVS-filtered SBVS pipeline, called
drugsniffer, that is designed to achieve the goal of virtually
screening bioactive drugs from datasets of billions of probably-
synthesizable small molecules in a much-reduced time budget.
Drugsniffer is easy to install and manages the distribution of
computation across cluster or cloud resources. It reduces the
computational burden to 10s of thousands of compute hours for
search across a library of billions of candidate molecules, and
provides a framework in which future methodological advances
can be incorporated and evaluated. Using an early iteration of
drugsniffer, we assessed ~3.7B molecules for binding potential
against 3 SARS-CoV2 proteins (22 binding pockets), with total
computational investment of ~40 K compute hours. The results
of our analysis were accepted as a finalist in Joint European
Disruptive Initiative (JEDI) “billionmolecules against COVID19”
challenge (Le et al., 2021).

2 METHODS

Drugsniffer consists of the following phases (see Figure 1): 1)
select the protein target and determine its structure, 2) identify
binding pockets, 3) design de novo ligands for each pocket, 4) use
these as seeds to identify similar molecules in a large composite

TABLE 1 | Several open access software tools for virtual screening. In a number of the tools, such as dockECR and VirtualFlow, multiple docking programs are used to
predict scores between a single target or multiple targets (merging and shrinking approach) and a library of compounds. The AMIDE software carries out large-scale
chemical ligand docking over a large dataset of proteins with the aim of identifying potential side effects of new drugs. iDrug, Pharmit (for structure-based pharmacophore
modeling), iStar, e-LEA3D, USR-VS (3D shape-based similarity), MTiOpenScreen and ChemicalToolbox are web-based platforms for computer-aided drug design.
ChemicalToolbox allows for integration with other tools and workflows (molecular dynamics) that are part of the Galaxy software framework (https://galaxyproject.org/).
e-LEA3D uses a de novo drug design strategy in which fragments or combination of fragments that fit a QSARmodel or the binding site of a protein are identified. * iDrug
uses a pocket structure to define the pharmacophore descriptors needed for LBVS. However, they do not explicitly calculate the interaction between a ligand and the
pocket, such as docking. In our opinion, they are marginally SBVS.

Software LBVS SBVS ADMET

dockECR Ochoa et al. (2021) 7 ✓ 7

MolAr Maia et al. (2020) 7 ✓ 7

iDrug Wang et al. (2014) ✓ ✓* 7

ChemicalToolbox Bray et al. (2020) 7 ✓ ✓
VirtualFlow Gorgulla et al. (2020), Gorgulla et al. (2021) 7 ✓ ✓
AMIDE Darme et al. (2021) 7 ✓ 7

VSPipe Álvarez-Carretero et al. (2018) 7 ✓ 7

DockBlaster Irwin et al. (2009) 7 ✓ 7

e-LEA3D Douguet (2010) 7 ✓ 7

Pharmit Sunseri and Koes (2016) ✓ 7 7

iStar Li et al. (2014) 7 ✓ 7

USR-VS Li et al. (2016) ✓ 7 7

MTiOpenScreen Labbé et al. (2015) 7 ✓ 7

DrugSniffer ✓ ✓ ✓
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database of synthesizable small molecules, 5) perform in silico
docking assays on these candidates, 6) apply a new neural
network model to predict and rank binding affinity based on
features of the docked poses, 7) identify potential toxicity of
compounds using a custom ADMET filter. In this section, we
describe these stages in detail, then discuss our application of an
early implementation of the pipeline to the JEDI COVID19
Grand Challenge.

2.1 Selecting Target Proteins and
Determining Structure
The first step in the drug screening process is the selection of the
target protein–the user must provide a structural model for the
selected protein. Drugsniffer is agnostic about the source of the
structural model, and will work with experimentally-validated or
computationally-predicted structures. Though protein structures
may be retrieved from a variety of sources, we have had good
experiences with ChimeraX (Pettersen et al., 2021), which, for
example, supports retrieval of structures from the Protein Data
Bank (Berman et al., 2000)) or prediction using AlphaFold2
(Jumper et al., 2021). AlphaFold2 achieved remarkable
accuracy in the CASP14 competition; for example, in 92.5% of
predictions, all side chain atoms are predicted with error ≤ 5 Å
(Pereira et al., 2021). This accuracy is unprecedented for

computational models, and these models may provide insight
into the diversity of conformations that extend beyond the single
conformer of a crystal-based structure. Even so, a substantial
fraction of the predicted atoms, primarily from the flexible parts
of the proteins, may not be modeled correctly by AlphaFold2. We
encourage users to evaluate the overall (IDDT) and residue-
specific (pLDDT) scores to evaluate the predicted accuracy of
the overall and pocket regions of an AlphaFold2 model.

2.2 Identifying Pockets
In addition to a target protein structure, drugsniffer must be
provided with at least one pocket descriptor, as well as a preferred
pocket box size. The most reliable way of detecting a ligand-
binding pocket is a user’s prior knowledge about the binding
pocket from experience, experimental evidence, and literature
search. Computational identification of a pocket-like region is
challenging and an active area of research (Zhao et al., 2020). The
drugsniffer pipeline includes a copy of the cavity detection
software Fpocket (Le Guilloux et al., 2009) only because it is a
stand-alone free program. We encourage users to use multiple
pocket search algorithms, such as FTMAP Kozakov et al. (2015),
POCASA Yu et al. (2010), and molecular dynamics simulations,
and use their judgment to define a pocket-like region in the
protein. The current implementation of the drugsniffer pipeline
produces an FPOCKET output that includes all predicted

FIGURE 1 |Outline of the drugsniffer virtual screening pipeline. The stages include (1) model the targets (e.g., using AlphaFold or crystal structure where available),
(2) identify possible binding sites/pockets (e.g., using FPocket), (3) design multiple de novo ligands for the target pockets using AutoGrow, (4) use the designed
molecules as seeds to identify similar compounds from small-molecule libraries (using ECFP4 fingerprints as found in RDKit), (5) dock the molecules (using AutoDock
Vina) identified by the similarity search and calculate the interaction energy between the target and the docked poses, (6) re-score the best-docked poses of all the
molecules using our new scoring function (terms for the function are provided by SMINA and DLIGAND2), (7) identify potentially toxic compounds using our fast ADMET
analyzer (using FP-ADMET).
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pockets; the user is tasked with manually reviewing these and
identifying the subset for which the downstream drug discovery
stages should be performed, e.g., using ChimeraX or PyMol
(Oliveira et al., 2014). Pocket descriptors identified outside of
the drugsniffer pipeline may be provided as an alternative or
supplementary source of predicted pockets. Box size must be
determined for each pocket; we recommend basing this on the
scheme proposed by (Feinstein and Brylinski, 2015).

2.3 De Novo Ligand Design
Following manual pocket identification, drugsniffer accepts as
input the set of targeted pockets, and proceeds in an automatic
fashion through the remaining stages. In the first stage, a large
number of candidate ligand molecules are designed from scratch
using the software AutoGrow4 (Spiegel and Durrant, 2020), which
employs a genetic algorithm to evolve ligands from building blocks
obtained from the ZINC library (Sterling and Irwin, 2015).
AutoGrow4 utilizes a diversity score that acts as a secondary
fitness metric and is used to select seed compounds that are
structurally unique from previous generations. The molecules
are subsequently docked into the pockets of the specified target
protein using QuickVina (Alhossary et al., 2015) which is a faster
version of Autodock Vina. Docked results are ranked based on the
Vina docking score of the top ranking pose. A Lipinski RO5 filter is
used to exclude candidate structures that do not satisfy drug-like
criteria. The NIH filter (Jadhav et al., 2010) is also included to
screen against compounds containing undesirable functional
groups. AutoGrow4 performs in silico chemical reactions
(Durrant and McCammon, 2012) derived from a set of robust
organic reactions (Hartenfeller et al., 2011) to generate new child
compounds from a parent molecule. These reaction-based
structural transformations are used to increase the likelihood of
the designed molecules being synthetically accessible. However, a
drawback of using pre-defined reaction schemes is that they may
match reaction handles and fail to consider the presence of
competing functionalities that can compromise the reaction
outcome (Ghiandoni et al., 2020; Meyers et al., 2021). By
default, the pipeline runs AutoGrow4 for 10 generations, and

captures 150 de novo molecules from each of the final three
generations. Drugsniffer can optionally forgo this AutoGrow4
step, and instead accept a collection of ligands provided by the
user–these may be sourced from some prior de novo computation,
or from a collection of co-crystallized protein-ligand complexes.

2.4 Molecular Similarity Search
Themotivation for employing de novo ligand design is to produce
drug-like compounds that can mimic known inhibitors or
potentially active ligands with a diversity of chemical
structures. While the molecules produced by AutoGrow4 are
predicted to be synthesizable, factors such as establishing
synthetic routes, material procurement, costs and time
involved are difficult to predict. We therefore sought to build
on the value of these designed molecules through an LBVS search
strategy in which the de novomolecules serve as seeds in a search
for similar compounds within a massive library of molecules.

We compiled a collection of molecules from various small-
molecule libraries, with the aim of capturing a large diversity of
molecules that either already exist, or are likely-synthesizable and
can be made to order (see Table 2). The Enamine collection
includes more than 1 billion compounds that comply with
Lipinski’s rule of five (RO5) criteria and are expected to be
realized in 1–3 synthesis steps. The Synthetically Accessible
Virtual Inventory (SAVI) (Patel et al., 2020) contains over 1
billion reliably-synthesizable compounds generated through
expert-system rules. GDB-13 (Blum and Reymond, 2009) also
contains over 1 billion compounds (containing up to 13 atoms of
C, N, O, S, and Cl = , generated according to chemical stability
and synthetic feasibility rules. PubChem (Kim et al., 2020), ZINC
(Sterling and Irwin, 2015), and Molport are curated collections of
commercially-available molecules. SweetLead (Novick et al.,
2013) and DrugBank (Wishart et al., 2017) contain drugs that
are in use or in clinical trials, and may therefore facilitate
repurposing of established drugs. We removed molecules
containing salts, because downstream docking methods fail in
the face the apparent disjoint molecules. The full de-duplicated
collection contains ~3.7 billion unique molecules.

To identify library-sourced compounds similar to the de novo
seeds produced by AutoGrow4, 1024-bit ECFP4 fingerprints
(O’Boyle and Sayle, 2016) are computed for all ~3.7 billion
library compounds. The ECFP4 fingerpint is a 1024-element
binary vector that encodes structural and chemical features.
Though a multitude of fingerprint strategies exist, ECFP4 has
been reported to effectively rank diverse structures by similarity
(O’Boyle and Sayle, 2016). Future releases of drugsniffer will
enable selection of other fingerprints, or related similarity
measures. ECFP4 fingerprints are computed using RDKIT
(https://www.rdkit.org), then stored as a sequence of 1,024 bit
vectors, so that a library of 3.7 billion molecules is represented by
a ~475 Gbyte fingerprint database. Fingerprints are similarly
computed for all seeds. A measure of similarity between two
molecules is computed by comparing the 1024-bit fingerprints of
each molecule, using the Tanimoto coefficient (aka Jacaard
index): the ratio of the intersecting set (number of bits set to
one in both fingerprints) to the union set (number of bits set to
one in at least one of the two fingerprints) (Bajusz et al., 2015).

TABLE 2 | The small molecule databases searched as part of the VS protocol.

Database Number of ligands

Sweetlead ≈4,000
Drugbank ≈10,000
MOLPROT ≈7,600,000
PUBCHEM ≈103,000,000
ZINC15 ≈417,000,000
GDB ≈1,003,000,000
SAVI ≈1,009,000,000
ENAMINE ≈1,200,000,000
Total ≈3,700,000,000

https://simtk.org/projects/sweetlead
https://www.drugbank.ca/releases/latest
https://www.molport.com/shop/libraries-collections
http://ftp.ncbi.nlm.nih.gov/pubchem/Compound/
http://files.docking.org/catalogs/
http://gdb.unibe.ch/downloads/
https://cactus.nci.nih.gov/download/savi_download/
https://enamine.net/library-synthesis/real-compounds/real-database

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8747464

Venkatraman et al. Drugsniffer

274

https://www.rdkit.org
https://simtk.org/projects/sweetlead
https://www.drugbank.ca/releases/latest
https://www.molport.com/shop/libraries-collections
http://ftp.ncbi.nlm.nih.gov/pubchem/Compound/
http://files.docking.org/catalogs/
http://gdb.unibe.ch/downloads/
https://cactus.nci.nih.gov/download/savi_download/
https://enamine.net/library-synthesis/real-compounds/real-database
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Similar (“neighbor”) molecules are identified by computing the
Tanimoto coefficient for each seed against each molecule in the
fingerprint database using SIMD vectorized bit-level comparison
over 1,024 representative bits per molecule. By default, neighbors
with Tanimoto similarity > 0.5 to at least one seed are captured
for later docking estimates. This threshold is selected based on
experience, with the aim of balancing stringency (reducing the
computational burden of later stages) with permissiveness
(expanding the pool of candidates that reach the next stage); it
can be altered at run time.

2.5 Protein-Ligand Docking
For the seed-neighbor molecules identified by the similarity
search, initial 3D coordinates are generated from the SMILES
representations using OpenBabel (O’Boyle et al., 2011a). Diverse
low-energy conformers for the molecules are generated using the
Confab (O’Boyle et al., 2011b), then the lowest energy
conformation is retained. These optimized structures of
neighbors are docked into their respective targets using
AutoDock Vina (Trott and Olson, 2010). The number of
docking poses produced and the exhaustiveness parameter for
the search for each ligand are parameterized by the user; the
default values are 9 and 4, respectively.

2.6 Re-Scoring Docked Ligands, to
Estimate Binding Affinity
AutoDock Vina reports a set of molecular poses within the pocket,
along with a value representing a prediction of the quality of each
docked pose. Because this prediction is only a loose estimate of actual
binding affinity, a variety of post hoc re-scoring methods have been

devised [e.g., see (Koes et al., 2013a; Chen et al., 2019; McNutt et al.,
2021)]. Drugsniffer can report either the Autodock Vina score, the
SMINA (Koes et al., 2013b) rescoring value, or the result of a new
neural network re-scoring strategy that we have produced for this
workflow (dock2bind, which is the default). Drugsniffer supports
retraining of this model with domain-specific binding affinity data,
and also will accept an alternate re-scoring function that is injected
by the user into the drugsniffer wokflow by providing a Docker
container meeting a simple documented API.

For each docked pose, our dock2bind receives 16 pose
descriptors calculated by SMINA, along with the DFIRE
estimate of protein–ligand potential (Chen et al., 2019), and
computes a new affinity estimate for the pose. This estimate is
a value between 0 and 1 and can be thought of as the model’s
confidence that the molecule binds to the pocket, constrained by
the specific pose. See Figure 2 for model details. Ligand-protein
pairs were taken from the DUD-E benchmark (Mysinger et al.,
2012) and LIT-PCBA (Tran-Nguyen et al., 2020). To train the
model, docked poses were generated for ~14,000 ligand-protein
pairs from the DUD-E dataset, along with ~800,000 decoy ZINC-
sourced compounds docked to the same protein partners. These
were supplemented with an additional ~4,000 ligand-protein
complexes from LIT-PCBA, and ~121,000 decoys docked to
the same proteins. The active:decoy ratio is intended to reflect
the large actual classification imbalance (most molecules are
inactive for any specific target). For each target, 9 docked
poses were produced, and the pose with the best SMINA score
was provided to the dock2bind model for training.

2.7 ADMET Analysis
Drugsniffer includes a suite of models to predict properties tied to
bioavailability and safety. Owing to their ease of computation,
molecular fingerprints have been frequently used to predict these
properties (Kim and Nam, 2017; Ai et al., 2018; Yang et al., 2019).
Fingerprint-based classification models were trained on
experimental data available [see (Venkatraman, 2021)] for
solubility in dimethyl sulfoxide (DMSO), blood brain barrier
permeability, human intestinal absorption (HIA), AMES
mutagenicity, HERG cardiotoxicity, drug induced liver injury
(DILI), Cytochrome p450 interaction (CYP3A4 and CYP2C9
isoforms), metabolic stability and acute LD50 toxicity based on
the criteria defined by the Environmetal Protection Agency (EPA).
For each property, various fingerprints (Hinselmann et al., 2011)
(substructure and extended/functional connectivity fingerprints)
were evaluated for their discriminant ability and the fingerprint
model [using random forests (Breiman, 2001)] yielding the best
balanced accuracy (Brodersen et al., 2010; Venkatraman, 2021) was
retained. The drugsniffer pipeline applies these models to the list of
candidates produced by previous stages, and appends the resultant
vector of properties to the affinity prediction results. The models
can be accessed at https://gitlab.com/vishsoft/fpadmet.

2.8 Software and Data
Drugsniffer is implemented as a Nextflow workflow (Di
Tommaso et al., 2017) that orchestrates the activity of a
curated set of open source tools, and supports analysis in
cluster (SLURM) and cloud (AWS) environments. Table 3

FIGURE 2 | Affinity prediction model. The model consists of three
separate paths from input to output, each composed of five sequential fully-
connected layers. Each path uses a separate set of activation functions,
allowing the network to learn diverse representations of the input. The
outputs of the three paths are concatenated and passed through a final fully-
connected (FC) layer that emits a prediction of binding or non-binding. Fully-
connected (FC) layers are represented with blue blocks. The number of nodes
in each FC layer is indicated below the block. Activation functions applied to
the output of the FC layers are shown in circles. The model was trained for
2000 epochs and batch size 8,192 with the Adam (Diederik and Ba, 2014)
optimizer using default β1,2 parameters and a learning rate of 0.001. Dropout
(Srivastava et al., 2014) with p = 0.5 was applied after each fully connected
layer during training, and also during validation.
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lists the different software tools that are used in the workflow. The
workflow depends on a collection of Docker containers and
runner scripts wrapping each of our own tools as well as the
external open source tools included in the analysis pipeline. This
organizing principle makes it possible for the user to configure
and run drugsniffer without concern for dependencies. Docker
container files, NextFlow scripts, and tool code are all available
via GitHub (https://github.com/TravisWheelerLab/drug-sniffer).
Versioned Docker container images are published in the GitHub
containiner registry, and the full library of ~3.7 billion molecules
(with pre-computed fingerprints) is housed in a persistent OSF
repository (Soderberg, 2018) and. Instructions for download and
use are found at http://drugsniffer.org.

2.9 Application of Drugsniffer to JEDI
COVID19 Grand Challenge
In May 2020, the Joint European Disruptive Initiative (JEDI)
launched a “Grand Challenge” competition intended to motivate
development of methods capable of searching a library of billions
of molecules for those with potentially good binding affinity for
target SARS CoV2 proteins. We developed drugsniffer to meet
these goals, and submitted candidate molecules identified with an
early version of the piepeline. Our submissions have reached the
finalist stage, and are currently under experimental review. Here,
we describe how our pipeline was used to prepare our submission,
and document the differences between the version of the pipeline
used for our JEDI submission and its current released form.

To begin, we selected three target proteins: RNA dependent RNA
polymerase (Non-structural Protein 12, akaNSP12), 3C like protease
(3CLPro), and Nucleocapsid protein (N). At the time of the analysis,
no whole-protein experimental structure was available for any of the
targets and AlphaFold2 was not yet released. We therefore
downloaded models created by I-TASSER (Yang et al., 2015),
and added hydrogen atoms with CHARMM (Brooks et al., 2009).

Candidate binding pockets for the three selected targets were
identified using a combination of literature search and results

from the tools FTMAP (Kozakov et al., 2015) and POCASA (Yu
et al., 2010) (drugsniffer incorporates Fpocket in lieu of these,
because its license allows redistribution). Seven pocket-like
regions were identified: 2 each for N and 3CLpro, and 3 for
NSP12. Some of the pocket-like regions were too large to be
occupied by a typical-sized ligand. Consequently, the larger
pocket-like regions were subdivided into smaller pockets. A
total of 22 pockets were finalized as targets: 8 each for N and
NSP12 and 6 for 3CLPro. We searched the literature to identify
any glycosylation sites for the three selected targets and did not
find any. We also used N-GlyDe (Pitti et al., 2019) to identify any
potential sites for N-linked glycans. Our predicted glycosylation
sites are residue 269 of N and residues 767 and 911 of NSP12. As
none of the glycosylation sites were near any of the predicted
binding pockets, we did not consider glycosylation for our later
docking exercises.

The next several pipeline stages were run as in the current
release of the pipeline, including de novo ligand design, molecular
similarity search, and protein-ligand docking. AutoGrow4 was
run for 25 generations, over five independant runs. In total,
31,962 seed molecules were identified by AutoGrow4 (12,227 for
nsp12 pockets, 14,334 for N pockets, and 5,401 for 3CLPro
pockets). Molecular similarity search identified ~97,000 library
compounds with Tanimoto similarity > 0.6 to some seed, and
another ~955,000 with Tanimoto similarities of 0.5–0.6. Among
the 97,000 closest neighbours: ~43,000 were identified for nsp12,
~34,000 for N, ~20,000 for 3CLPro. For each pocket, all seed
neighbor molecules were docked (AutoDock Vina) to the pocket,
and poses were re-scored using dock2bind, using the top re-
scored pose for each molecule as its predicted affinity. The top-
scoring 30,000 candidates (10,000 per protein) were analyzed for
ADMET and predicted synthetic complexity [SCSCORE (Coley
et al., 2018)] of the target molecule. Candidates with no ADMET
contraindications, and with an expected number of synthesis
steps ≤5 were submitted to the JEDI challenge; 18 compounds
passed JEDI criteria for the final evaluation, and are being
synthesized and evaluated.

TABLE 3 | Software used in the VS pipeline.

Software Comments

RDKit Routines for ECFP4 fingerprint generation
Chemistry Development Kit logP estimation routines
OpenBabel interconvert chemical file formats
MGLTools interconvert chemical file formats
AutoDock Vina Protein-ligand docking
DLigand2 statistical potential term for protein-ligand binding affinity prediction
SMINA scoring terms for protein-ligand binding affinity prediction
AUTOGROW4 de novo ligand design using docking
FP-ADMET Prediction of ADMET properties

https://www.rdkit.org
https://cdk.github.io/
http://openbabel.org/wiki/Main_Page
https://ccsb.scripps.edu/mgltools/downloads/
https://github.com/ccsb-scripps/AutoDock-Vina
https://github.com/sysu-yanglab/DLIGAND2
https://github.com/mwojcikowski/smina
https://git.durrantlab.pitt.edu/jdurrant/autogrow4
https://gitlab.com/vishsoft/fpadmet
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3 RESULTS

Here, we have described the stages and availability of a new
pipeline for exploring a pre-built library of billions of likely-
synthesizable molecules for a small set of candidate molecules
that are expected to show good binding affinity to a user-
provided protein structure and pocket descriptor. As a proof
of principle, we used a variant of this pipeline to identify drug
candidates from our library of ~3.7 billion molecules,
targeting 22 pockets in 3 proteins associated with SARS-
CoV2, resulting in a list of ~30,000 candidate compounds.
This collection was submitted for analysis to the JEDI “Grand
Challenge,” and were advanced to “finalist” status;
experimental review of a subset of these molecules is
underway. Compute time for the total search for candidate
molecules for all 22 pockets was ~40,000 CPU hours. By
distributing workload across a cluster, the analysis required
only a few days. In addition to these run time results, we
explored the efficacy of our custom docking re-scoring model,
as well as the outcomes of ADMET and synthesizability
analysis.

3.1 Performance of the Deep Learning
Re-Scoring Model
To quantitatively evaluate our model, a test set was developed
from DUD-E and LIT-PCBA, consisting of complexes involving
proteins not found in the training set. A total of ~3000 DUD-E
ligand-protein pairs, ~186,000 decoys for DUD-E proteins,
~900 LIT-PCBA ligand-protein pairs, and ~27,000 decoys for
LIT-PCBA. No hyperparameter tuning was performed on any of
the models so a validation set was unnecessary. To test the

efficacy of our method of ranking potential binders, we
compared our method to a variety of open-source
implementations of affinity-predicting methods, including
Vina’s default method, the SMINA default score, and the
NNScore and RF-score (version 3) from the Open Drug
Discovery Toolkit (Wójcikowski et al., 2015) (ODDT).
Figure 3 shows the performance of the model architecture
trained on different subsets of the data.

3.2 ADMET and Synthesizability Analysis
Figure 4 shows the distribution of the ADMET properties for the
~30,000 compounds that were submitted to the JEDI
competition. For the most part, the shortlisted compounds
were predicted to have favourable ADMET properties. Our
ML model for DILI (Venkatraman, 2021) predicts a majority
(~85%) of the compounds to be hepatotoxic. The DILI model
however only provides a binary (yes/no) prediction and does not
indicate the level of the underlying DILI severity. A strict
application of the models (i.e., selecting only those compounds
that are deemed to be favourable across all calculated properties)
yielded a set of 1,635 compounds. Many ADMET properties are
affected by the dosage, route and frequency. For better assessment
of ADMET, knowledge of the underlying mechanisms is
required. Given that it is far from trivial to prioritize one
property over the other (leading to varying application of the
filter), we have used the model predictions as a guide rather than a
filter. With respect to synthesizability, ~79% of molecules
identified by the pipeline were predicted to require three or
fewer predicted reaction steps.

4 DISCUSSION

Virtual screening has seen a recent rise in prominence, supported
by improved computational methods across the range of analyses
represented in the drugsniffer pipeline. The ongoing pandemic
has highlighted the need for improved speed and increased
exploratory scope of virtual screening methods. Relatedly, the
development of low-cost virtual screening methods holds the
promise of improving opportunities for development of drugs
targeting diseases prevalent in low-income regions, for which
economic incentives discourage expensive high-throughput
screening assays. We developed drugsniffer as a preliminary
tool to meet this need, exploring billions of candidate
molecules for a target protein pocket in a few thousand
compute hours–relatively modest resources available to most
HPC infrastructures. Even with its development, each of the
stages of the drugsniffer pipeline will be well-served by
methodological advances. We highlight a few such areas of
opportunity here, and observe that drugsniffer can easily adapt
to incorporate advances along these lines, due to its modular
nature.

With the development and release of AlphaFold2 and similar
structure prediction methods, structure prediction is perhaps no
longer a general bottleneck in the drug discovery problem,
though some protein types still suffer from relatively
uncertain predictions. Pocket identification remains a

FIGURE 3 | Test data consisting of 3,900 ligand-protein pairs and
213,000 decoy-protein pairs was analyzed with the tools listed in the legend,
with the relevant tool producing a binding affinity estimate for each pair. Default
parameters were used for all tools; our model was trained as described
in the text. A ROC curve was produced for each tool, based on the sorted list
of predicted affinity.
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challenge, and most current techniques can detect pockets only
with ~60% accuracy (Zhao et al., 2020). Advances in this field
will reduce the dependency on expert manual analysis of
structures and pockets.

4.1 Future Advances
Drugsniffer will also be improved by development of advances
in de novo molecule production (where limitations include
wall clock run time and molecule synthesizability and utility),
molecular similarity search (where current molecule-centric
approaches fail to account for pocket-specific interaction
profiles), and docking-based affinity prediction (where re-
scoring methods produce only modestly enrichment for
actives vs. decoys (see Figure 3) and may not generalize
well to structures that are not represented in the training
set). Drugsniffer will be expanded by including molecular
dynamics simulations to consider multiple conformations of
a pocket region and refining binding energy estimation of
shortlisted ligands. It should be emphasized that the scope of
the drugsniffer pipeline is to identify possible ligands with high
enrichment factors. Users should carry out such MD or QM
studies on the possible ligands predicted by the drugsniffer for
a more accurate prediction of binding affinity or to investigate
the effect of protonation states in binding. Due to their
approximate nature, docking forcefields are insensitive to
such details.
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Machine Learning in Antibacterial
Drug Design
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Advances in computer hardware and the availability of high-performance supercomputing
platforms and parallel computing, along with artificial intelligence methods are successfully
complementing traditional approaches in medicinal chemistry. In particular, machine
learning is gaining importance with the growth of the available data collections. One of
the critical areas where this methodology can be successfully applied is in the development
of new antibacterial agents. The latter is essential because of the high attrition rates in new
drug discovery, both in industry and in academic research programs. Scientific
involvement in this area is even more urgent as antibacterial drug resistance becomes
a public health concern worldwide and pushes us increasingly into the post-antibiotic era.
In this review, we focus on the latest machine learning approaches used in the discovery of
new antibacterial agents and targets, covering both small molecules and antibacterial
peptides. For the benefit of the reader, we summarize all applied machine learning
approaches and available databases useful for the design of new antibacterial agents
and address the current shortcomings.

Keywords: artificial intelligence, machine learning, computer-aided drug design (CADD), infectious diseases,
antibacterial drug design, antibacterial, antibacterial target discovery, antibacterial drug resistance

INTRODUCTION

Modern antibacterial drug development currently notes a lack of novel antibacterial classes, an
observation that is critical in the context of antibacterial drug resistance (Brown and Wright,
2016). Furthermore, not only single-drug resistance but also multiple-drug antibiotic resistance
(MDR) has been observed in clinically relevant pathogens worldwide, rendering current
established therapies ineffective (Laxminarayan et al., 2020; Vila et al., 2020). The annual
number of deaths caused by infections with resistant pathogens alone is currently high and is
expected to reach into millions by 2050, making high-quality data collection and reporting and
antibacterial research essential (de Kraker et al., 2016; Matamoros-Recio et al., 2021). Recent
advances in Computer-aided drug design (CADD) coupled with parallel and high-performance
computing (HPC) platforms and new in silico methods represent a new paradigm for
antibacterial drug discovery. In particular, machine learning methods have the potential to
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increase the accuracy of high-throughput virtual screening
using ligand-based, structure-based, or consensus-based
approaches (Serafim et al., 2020). It should be noted that
modern software implementations of machine learning
algorithms efficiently utilize computer hardware and are
ideal for the bioinformatics or chemoinformatics scenario;
however, extreme care should be taken with input data

(Bzdok et al., 2017). Most importantly, the increasing
availability of data makes machine learning methods even
more important, either as a stand-alone method or in a
consensus scenario where they can boost traditional
medicinal chemistry approaches (He et al., 2021). In this
review, we focus on machine learning approaches in CADD
that have been reported in recent years and have been used in

FIGURE 1 |Commonmachine learningmethodology in novel antibacterial drug design and a typical modeling workflow. ANN, artificial neural network; DT, decision
tree; FSC, feedback system control; HTVS, high-throughput virtual screening; kNN, k-nearest neighbors; LBVS, ligand-based virtual screening; LOR, logistic regression;
(M)LR, (multiple) linear regression; NB, naïve Bayes; QSAR, quantitative structure–activity relationship; RF, random forest; SBVS, structure-based virtual screening;
SCM, set covering machine; SVM, support vector machines.

TABLE 1 | Currently available antibacterial compound and peptide databases suitable for in silico drug design.

Database name Type Location References

ChEMBL Comprehensive bioactivity database and
bioinformatics platform

https://www.ebi.ac.uk/chembl/ Mendez et al. (2019)

Shared Platform for Antibiotic Research and
Knowledge (SPARK) or CO-ADD

Community for open antimicrobial drug
discovery

https://co-add.org/ Thomas et al. (2018),
Cooper (2015)

Antimicrobial Index Microorganisms and antimicrobial agents http://antibiotics.toku-e.com/ Amirka and Qiubao,
(2011)

MEGAres Antibacterials and resistance determinants https://megares.meglab.org/ Doster et al. (2020)
Antimicrobial Combination Networks Antibacterial combinations http://www.sing-group.org/

antimicrobialCombination/
Jorge et al. (2016)

AntibioticDB Antibacterial compounds https://www.antibioticdb.com/ Farrell et al. (2018)
The Drug Repurposing Hub Compounds, targets, and indications https://clue.io/repurposing/ Corsello et al. (2017)
APD3 Antibacterial peptides https://aps.unmc.edu/ Wang et al. (2016)
CAMP3 Antibacterial peptides http://www.camp3.bicnirrh.res.in/ Waghu et al. (2016)
BAGEL4 Bacteriocins and RiPPs http://bagel4.molgenrug.nl/ van Heel et al. (2018)
DBAASP v3 Antibacterial peptides https://dbaasp.org/ Pirtskhalava et al. (2016)
Defensins knowledgebase Defensins http://defensins.bii.a-star.edu.sg/ Seebah et al. (2007)
DRAMP Antibacterial peptides https://ngdc.cncb.ac.cn/ Kang et al. (2019)
BaAMPs Biofilm-active peptides http://www.baamps.it/ Di Luca et al. (2015)
dbAMP 2.0 Antibacterial peptides https://awi.cuhk.edu.cn/dbAMP/ Jhong et al. (2022)
AECD Antimicrobial enzyme combinations https://www.ceb.uminho.pt/aecd/ Jorge et al. (2019)
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the development of novel antibacterials. We summarize the
relevant databases and consolidate the general workflow along
with the methods used in Figure 1.

RELEVANT DATABASES FOR
ANTIBACTERIAL DRUG DESIGN

The currently accessible libraries of antibacterial compounds are
enlisted that include small molecules or peptides that can be used
for the design of new antibacterial agents and model development
(Table 1). The reader should also be aware of tailored or focused
libraries and antibacterial libraries offered by commercial
compound suppliers and complete online antibacterial drug
discovery communities (CO-ADD; of special mention is that
the industry also contributes to the CO-ADD community, or
previously SPARK-database). The ChEMBL bioinformatics
platform is by far the most comprehensive resource (especially
considering small molecules), followed by CO-ADD (SPARK)
and antimicrobial index. Databases supporting antibacterial
peptides are far more common and offer quality data.

SMALL MOLECULES

To utilize machine learning approaches in the design of
antibacterial small molecules and test different machine
learning approaches, Yang et al. computed a simple set of
molecular descriptors for small molecules with and without
antibacterial properties and evaluated the decision tree,
k-nearest neighbor, and support vector machine (SVM)
classification models. The authors noted the good accuracy of
the SVM approach and the applicability of the methodology for
antibacterial drug design. Developed models produced the best
prediction accuracies of 96.66 and 98.15% for antibacterial
compounds and 99.50 and 98.02% for non-antibacterial
compounds (Yang et al., 2009). Ivanenkov et al. (2019)
compiled a database of 145,000 small molecules, most of
which came from a proprietary high-throughput screening
campaign with Escherichia coli (E. coli; 1,786 active and
130,855 inactive compounds; all data points were obtained
under the same experimental conditions). 1243 molecular
descriptors were calculated using Dragon, ChemoSoft, MOE,
and SmartMining software tools. Subsequently, self-organizing

FIGURE 2 | Antibacterial compounds identified by machine learning boosted in silico methods in CADD.
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maps (Kohonenmaps) were used for classification and prediction
of antibacterial activity with SmartMining software, and good
results were obtained (predictive power of 75.5% on average). The
developed models were deployed to identify new agents against
E. coli (compound 9, Figure 2). Maltarollo (2019) focused on
Staphylococcus aureus (S. aureus), specifically FabI inhibitors. 166
literature compounds were collected and molecular descriptors
and fingerprints were calculated using PaDEL software. Decision
trees (DTs), random forests (RF), multilayer perceptron (MLP),
k-nearest neighbors (kNN), Naive Bayes (NB), and support
vector machine (SVM) models were trained for classification.
RF models performed best in classifying known connections.

Shi et al. collected a database of New Delhi metallo beta-
lactamase (NDM-1) inhibitors (511 compounds) from the
literature (Shi et al., 2020). This was followed by the
calculation of molecular descriptors (34 descriptors, MOE
software) and the representation of SMILES strings padded
with zeros up to a length of 550. Different methods were
tested, such as RF, SVM, and linear discriminant analysis.
Finally, it was decided to use the RF model, which performed
much better than the classical virtual screening model (90.5 and
69.14%, respectively). The model was used to predict potential
NDM-1 inhibitors from a natural product library that contained
2,172 compounds (compound 1, Figure 2). The authors noted
that the deep-learning method was not very powerful because of
low data availability. Li et al. approached in a more general
manner using more data points from the ChEMBL database (Li
et al., 2021). The group collected a library of 2708 active
antibacterial compounds (IC50 cut-off of 10 μM) and 78,620
inactive compounds and proceeded to calculate fingerprints
(FP2, FP3, FP4, DLFP, MACCS, ECFP2, ECFP4, ECFP6,
FCFP2, FCFP4, and FCFP6) and vector representations
(mol2vec, SMILES2Vec, FP2VEC software; Jaeger et al., 2018;
Öztürk et al., 2018; Jeon and Kim, 2019). Several machine
learning methods were reviewed, and the FP2 database along
with RF, SVM, and MLP methods was selected for screening
(scikit-learn library; average accuracy of 0.85). The team then
constructed a predictor for antibacterial agents based on all three
models and applied it to the FDA-approved small-molecule
database (DrugBank, Wishart et al., 2018). Of interest is the
observed low FP2 similarity (<0.2) between the predicted and
FDA-approved antibacterial agents. The group focused on the
nine most different predicted compounds from the FDA
antibacterials with the highest screening scores in all three
models; however, it did not follow up with biological
evaluation. The identified compounds belonged to the classes
of anticancer drugs, ocular antihypertensives, and general
anesthetics, with enflurane scoring the highest. Enflurane was
previously demonstrated to possess antibacterial properties
in vitro (enflurane, Figure 2).

The superiority of machine learning–assisted molecular
docking was reported by de Avila et al. (2018). The group
collected a database of 22 structurally supported 3-
dehydroquinate dehydratase (DHQD) inhibitors with
measured inhibition constants. They developed a new
polynomial scoring function with selected energy terms from
classical scoring functions. Using Sandres software (Lasso and

Ridge Regression), the newly developed scoring functions
performed significantly better in the DHQD system test set
supplemented by decoy compounds (the group did not further
deploy the model).

Mansbach et al. focused on the permeation of Gram-negative
bacteria and developed a fragment-based approach. They
collected a database of compounds with MIC values in
Pseudomonas aeruginosa (P. aeruginosa) and calculated
fragment-based molecular representations for sparse regression
and hierarchical clustering to identify the most relevant
fragments thought to influence antibacterial activity
(Mansbach et al., 2020). The method was used to predict new
compounds with antibacterial properties and design “hybrid”
molecules from multiple fragments (OU-457, Figure 2).
Predicted molecules were experimentally evaluated.

Interestingly, an approach combining both antibacterial small
molecules and antimicrobial peptides in a heterogenous library
was reported by Nava Lara et al. (2019). To identify compounds
with antimicrobial activity in the intestinal flora, 1444 descriptors
were calculated (Padel Descriptor software) and 52 different
machine learning algorithms were tested (WEKA, AutoWEKA
software) to finally select a random committee algorithm
classifier with receiver operating characteristic (ROC) area
under the curve (AUC) performance of 0.83 for the
classification. The model was applied to the FDA-approved
antimicrobial agents and found that almost half of them had
potential broad-spectrum activity against intestinal bacteria;
however, the predictions were not experimentally
substantiated. Since antibacterial peptides make up a large
proportion of antibacterial chemical substances, they are
discussed in more detail in the section Antibacterial Peptides.

Mycobacteria infections are a significant public health
problem worldwide. The development of novel
antimycobacterial agents remains a challenge, especially in
light of the increasing emergence of multidrug-resistant strains
of mycobacteria. Several reviews have been published collecting
the main therapeutic targets in this field and highlighting the
importance of in silico methods, particularly promoted by
machine learning approaches and focusing on cell-wall
permeability studies (Aleksandrov and Myllykallio, 2019;
Pushkaran et al., 2019; Ejalonibu et al., 2021). In this way,
classical approaches of virtual screening against the
mycobacterial target PrpR (Vina, Glide software), MMGBSA,
and molecular dynamics (MD) studies on hit compounds were
complemented by the MycoCSM method to identify novel
benzimidazole derivatives as potential PrpR inhibitors
(compound 1p, Figure 2; Rajasekhar et al., 2021). MycoCSM
is a graph-based DT model (scikit-learn library) based on 15,000
unique compounds (featurized with RDkit descriptors) with
activity against bacteria of the genus Mycobacterium (MIC
cut-off of 1 μM), achieving correlation coefficients of up to
0.89 in predicting bioactivity in terms of minimum inhibitory
concentration (Pires and Ascher, 2020).

Korbee et al. used predictive clustering trees (PCTs) to explore
host-directed pathways toward antimycobacterial drug design
(Clus software; https://sourceforge.net/projects/clus/). The
group deployed their models on a library of pharmacologically
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active compounds in a (LOPAC)-based drug-repurposing screen
to identify experimentally validated compounds which target
receptor tyrosine kinases (RTKs) and inhibit intracellular
mycobacteria (SU-6656, Figure 2) and salmonellae
(haloperidol, Figure 2; Korbee et al., 2018).

NATURAL COMPOUNDS

Prediction of antibacterial activity while considering molecular
structure and metabolic reaction networks was also attempted by
Nocedo-Mena et al. (2019) (dataset: Jeong et al., 2000). The
metabolic reaction network data were merged with compounds
with MIC properties in ChEMBL, and machine learning
modeling with multi-output perturbations was used to build
predictive models. The models were deployed to identify
natural antibacterial compounds from C. incisa (phytol,
Figure 2).

The natural compounds were further explored by Masalha
et al., (2018). The group assembled a library of 628 antibacterial
compounds (Comprehensive Medicinal Chemistry Database)
along with an inactive set of 2892 natural compounds
(AnalytiCon Discovery GmbH database) and proceeded to
calculate molecular descriptors (MOE software). An iterative
indexing model based on stochastic elimination was created
for discriminative filtering and antibacterial identification via
the calculated molecular bioactivity index (Rayan et al., 2010).
The model ROC AUC for antibacterial classification was 0.96,
and the model was deployed for screening of the natural product
database to identify 10 potential antibacterial hits, two of which
were experimentally confirmed as active and others are still under
research (glucosinalbin, Figure 2). It is interesting to note that the
authors found that comparable performance could not be
achieved with either structure-based or ligand-based
approaches due to non-efficient scoring or the number of
false-positives.

Another report focused on marine natural sources to identify
new compounds with activity against MRSA (Dias et al., 2019).
Construction of a database of 6645 small molecules (ChEMBL,
PubChem, ZINC; active molecules with MIC <5 μM and inactive
molecules with MIC ≥5 μM) was followed by a calculation of a
comprehensive list of molecular descriptors and fingerprints
(PaDEL and CDK Descriptor Software) to finally build a
regression model using RF, SVM, Gaussian processes (GPs),
and consensus approaches for pMIC determination against
MRSA. The best consensus model (R2 of 0.68) was deployed
on the StreptomeDB database and resulted in 150 hits with 12
prioritized compounds, all with confirmed anti-MRSA
experimental activity (AGN-PC-07NPF8H, Figure 2). The
same group also reported a nuclear magnetic resonance (1H
and 13C NMR)–based approach where compounds were
featurized using experimental NMR-spectra assignation data.
The compound library was a dataset of 155 samples that
included 50 crude extracts, 55 fractions, and 50 pure
compounds obtained from microbial actinobacteria isolated
from marine sediments off the Madeira archipelago. RF, SVN,
and convolutional neural network (CNN) models were generated

with an accuracy of 0.77 for the test set and were ready for further
research and application.

Drug similarity identification was also attempted using
molecular descriptors and fingerprints calculated using a
database from the Current Medicinal Chemistry Database,
MDL Drug Data Repot, World Drug Index (drug-like
molecules), and Available Chemicals Directory for
non–drug-like molecules (180,000 compounds in total).
Naive Bayesian classifiers and recursive partitioning models
were developed and used for drug similarity prediction in the
Traditional Chinese Medicine Compound Database (TCMD)
(Tian et al., 2012). The research found that the classifiers can
successfully provide valuable information in the early stages
of drug design (drug-like compound identification accuracy of
0.86) and identify important drug-like scaffolds and even
classify them by pharmacological activity, for example,
label scaffolds of antibacterial compounds (BE-52211D,
Figure 2).

Indeed, natural compounds represent an invaluable source of
chemical diversity, and their drawbacks (availability, complexity,
synergistic pharmacodynamics) in drug development could be
mitigated by modern machine learning methods (Rodrigues et al.,
2016). To this end, Zhang et al. have collected several machine
learning protocols for activity prediction of natural products
(Zhang et al., 2021).

ANTIBACTERIAL PEPTIDES

An important subfield of the discovery of new antibacterials is
also the discovery of antibacterial peptides. The latter can serve as
active agents, starting points for the design of peptidomimetics, or
probes for further studies. The field and in silico tools have been
reviewed previously (Lee et al., 2017; Cardoso et al., 2020; Wang
et al., 2021), with the emphasis on machine learning–enabled
antimicrobial peptide discovery and SVM for the discovery of
membrane-active peptides (Lee et al., 2018). However, Frecer
reported a successful design of cationic antibacterial peptides
derived from protegrin-1 as early as 2006 (Frecer, 2006), and
machine learning methodology contributed significantly to the
design and discovery of novel peptides, as demonstrated by Fjell
et al. To single out just one report, they reinforced the traditional
QSAR approach with an artificial neural network model (ANN)
that inferred a set of peptides with known antibacterial properties
from computed descriptors (MOE software). After deploying the
model in a screening scenario (in silico library with random
peptides), short cationic peptides with MICs in the range of
0.3–10 μM were identified (Fjell et al., 2009). The extended
research group later reported an interesting approach for
relational learning algorithms (RelF and WEKA software for
regression) to explore patterns from the relational structures of
the antibacterial peptides or an approximate attribute-value
representation of the peptides (Szaboova et al., 2012). Feature
vectors for peptide representation were also usedusing Chou’s
pseudo-amino acid composition (PseAAC), and the SVM was
successfully used to classify antibacterial peptides (Khosravian
et al., 2013).
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The later approaches were also extended beyond antibacterial
peptide identification to peptide target selectivity or prediction of
Gram-positive or Gram-negative activities (Veltri et al., 2015).
The group used an evolutionary feature construction and a fast
correlation-based filter selection algorithm with logistic
regression (WEKA) to successfully identify antibacterial
peptides of up to 11 amino acids in length. The same group
used APD3 database, converted peptide sequences into zero-
padded numerical vectors of length 200, and trained a deep neural
network (DNN; Keras, TensorFlow software) model to classify
antimicrobial peptides (accuracy of 0.98 on APD3 data).
Embedding vector visualization was also performed, and a
reduced alphabet learnt from the DNN model was developed.
Reduced sequence space retained good classification performance
(Veltri et al., 2018). Mu€ller et al. trained a recurrent neural
network (RNN) with helical antimicrobial peptides (1554
peptides, APD). The sequences were padded according to the
length of the longest sequence, N-terminal token added, and One-
hot encoding employed (Mu€ller et al., 2018). The resulting model
was developed for de novo sequence generation, where 82% were
predicted to be active antimicrobial peptides compared to 65% of
randomly sampled sequences with the same amino acid
distribution as the training set (CAMP AMP prediction tool;
Waghu et al., 2014). Wu et al. used previous amino acid
substitution data for antibacterial peptides and developed an
amino acid activity contribution matrix (Wu et al., 2014).
Using this methodology, the group developed a 12-mer DP7
peptide with antibacterial properties against multiple strains
(Zhang et al., 2019). Similarly, Yoshida et al. used a natural
antibacterial peptide Temporin-Ali (FFPIVGKLLSGLL-NH2)
and PSI BLAST to create a library of distantly related and
functionally similar sequences, prepared the peptides, and
evaluated their antibacterial activities in vitro on E. coli to
construct a fitness matrix. The data were then used to train a
model and deploy it to optimize peptide sequences. The group
produced a peptide with 163-fold lower activity on E. coli bacteria
(Yoshida et al., 2018). Another approach using rough set theory
constructed quantitative structure–activity relationship rules for
existing antibacterial peptides. New sequence development via a
genetic algorithm and further in vitro testing resulted in a peptide
being active against Staphylococcus epidermidis (S. epidermidis)
(Boone et al., 2021).

Approaches were again extended by considering toxicity data in
the development of novel antibacterial peptides intended for human
drug development campaigns. Capecchi et al. used the Database of
Antimicrobial Activity and Structure of Peptides (DBAASP; 4774
active peptides with an MIC threshold of 32mg/ml) to train a
recurrent neural network (RNN) generative model to develop
nonhemolytic antibacterial peptides with activity against P.
aeruginosa, Acinetobacter baumannii (A. baumannii), MRSA, and
a broader range of MDR strains. To test the performance of machine
learning models for antibacterial peptide design, Wani et al. trained
models on a database of antibacterials (2638) and inactive peptides
(3700) using RF, kNN, SVM, DT, NB, quadratic discriminant
analysis (QDA), and ensemble learning. RF models were found to
perform best in validation experiments. The group also highlighted
three important peptide descriptors as essential for antibacterial

activity, namely, charge, polarity, and pseudo-amino acid
composition (Wani et al., 2021). The field of in silico tools for
designing antibacterial peptides using machine learning is also
gaining traction, and targeted tools such as AMPGAN v2 are
being developed (Van Oort et al., 2021). AMPGAN v2 is a
bidirectional conditional generative adversarial network (BiCGAN)
that targets de novo generation of antibacterial peptides. The group
used training data by compiling the Database of Antimicrobial
Activity and Structure of Peptides (DBAASP), Antiviral Peptide
database (AVPdb), and UniProt databases (Apweiler et al., 2004;
Gogoladze et al., 2014; Qureshi et al., 2014).

ANTIBACTERIAL DRUG RESISTANCE

Machine learning approaches are also being used to combat
antibiotic resistance. Back in 2017, Macesic et al. published a
review of antibacterial susceptibility testing using
genotype–phenotype prediction, machine learning approaches to
identify resistant strains, and the use of machine learning to improve
treatment and optimize clinical approaches to MDR infections
(Macesic et al., 2017). Interestingly, the authors lamented data
abstraction and quality but pointed out that the methodology
gains strength with the availability of quality data. A recent
review article discusses several bioinformatics approaches
involving machine learning that are useful for studying bacterial
resistance, such as the use of modern bioinformatics approaches for
the interpretation of data from increasing sequencing libraries; study
of protein structures; in silico analysis of serovar, serogroup, and
antigen markers; the development of in silico plasmid detection
methods; in silico identification of resistance genes; antibacterial
surveillance; and in turn, the prediction of the evolution of
antibacterial drug resistance (Ndagi et al., 2020). In addition,
machine learning approaches have been used beyond resistance
prediction using genomic data to elucidate resistance mechanisms
and for antibacterial stewardship applications. The latter are mainly
concerned with patient data analysis, diagnosis, treatment, and
prevention of resistance development in a clinical scenario
(Anahtar et al., 2021). With the increasing use of antibiotics and
the accompanying bacterial resistance, we cannot overemphasize the
importance of these new approaches in translational research.
Furthermore, the power of reported methods is increasing with
the growth of quality data and availability of curated and resistance-
focused libraries such as Plasmid ATLAS by Jesus et al., (2019),
Ensembl Genomes (Bacteria) by Yates et al., (2022), BacDive by
Reimer et al., (2019), Virulence Factor Database VFDB by Chen
et al., (2005), Beta-Lactamase Database (BLDB) by Naas et al.,
(2017), Antibiotic Resistance Genes Database (ARDB, Liu and
Pop, 2009), BacMed (Pal et al., 2014), and Comprehensive
Antibiotic Resistance Database (CARD, McArthur et al., 2013
and Alcock et al., 2020).

MODERN APPROACHES

As reviewed already by Durrant and Amaro in 2014 (Durrant and
Amaro, 2015) up to now, the medicinal chemistry community
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and pharmaceutical industry are adopting machine learning
techniques in medicinal chemistry and drug design in general
(Ekins et al., 2019) and antibacterial drug development (Patel
et al., 2020; Serafim et al., 2020). Of special mention would be the
acknowledgment of enormous data availability, its application
toward drug design (Burki, 2020), and utilization of modern
artificial intelligence approaches (David et al., 2021). Specifically,
the applications of modern deep learning methods in
antibacterial drug design are evident from a multitude of
published reports in scientific literature, tailored offerings by
commercial drug design software developers, and emergence
of deep-learning in drug design–focused CROs and start-ups
(Schroedl, 2019; Chang et al., 2019; Gupta et al., 2021; da Silva
et al., 2021).

Deep-Learning and Artificial Neural
Networks
An excellent example of the development and use of deep learning
supervised, semi-supervised, or unsupervised models in the area of
novel antibacterial drug development and discovery was recently
reported (Stokes et al., 2020). The group initially generated the
dataset by computing graph representations, Morgan fingerprints,
and molecular features computed using RDKit (internal training set
of 2560 compounds, 120 positive controls; with a test set: Broad’s
Drug Repurposing Hub of 6111 compounds) and used a Directed
Message Passing Neural Network (D-MPNN; Chemprop
implementation available on Github), a type of graph
convolutional neural network for model development. After
prioritization by toxicity prediction, the authors identified one
promising new antibiotic, halicin (SU -3327, Figure 2), and eight
(ZINC000098210492, ZINC000001735150, ZINC000225434673,
ZINC000019771150, ZINC000004481415, ZINC000004623615,
ZINC000238901709, and ZINC000100032716) other potential
antibiotic candidates and experimentally validated the obtained
hits to have an antibiotic activity on E. coli.

K-Nearest Neighbor
kNN is a supervised learning method that can be applied for
classification and regression tasks and is effectively utilized in
medicinal chemistry for novel antibacterial drug design. A
classification application of kNN was reported by Karakoc
et al. for classification of small molecules based on selecting
the most relevant set of chemical descriptors used for ultimate
discrimination between active and inactive compounds on
various biological systems (Karakoc et al., 2007). A
comprehensive list of kNN applications in classification and
regression tasks all applied toward drug delivery for infectious
disease treatment, treatment regimen optimization, drug delivery
system and administration route design, and drug delivery
outcome prediction was reported by He et al. (2021).

Support Vector Machines
SVM supervised learning models are also widely applied for
classification, regression, and ranking/virtual screening tasks in
medicinal chemistry in a range of fields such as novel anticancer
research, design of antivirals, protein–protein interaction

research etc. (Romero-Molina et al., 2019). Focusing on
antibacterial drug design, Li et al. reported SVM model
development from the fingerprint-featurized ChEMBL
database in order to identify novel antibacterial compounds
(Li et al., 2021). SVM model applications in antibacterial
design and antibacterial drug resistance research were
reviewed by Serafim et al. (2020). In a broader scope, recent
advances in SVMs and their numerous drug discovery
applications are summarized by Maltarollo et al. (2019).

Random Forest and Decision Trees
RF is a supervised ensemble learning method that consists of a
multitude of decision trees, constructed at a training phase. Upon
reviewing literature on novel antibacterial design supported by
machine learning, RF models were found to be one of the most
commonly applied for classification, regression, and other tasks
and represent a performance and computationally lean approach.
In this review, a number of RF applications are presented, for
small molecules, peptides (Bhadra et al., 2018), natural
product–based antibacterial design, and studying antibacterial
drug resistance (Dias et al., 2019; Maltarollo et al., 2019; Shi et al.,
2020; Li et al., 2021; Wani et al., 2021). A good example of
underlying supervised learning DT method was reported by
Suay-Garcia et al. (2020). The authors created a QSAR model
to predict antibacterial activity against E. coli. The compounds
were classified using a tree-based method and linear discriminant
analysis. A comprehensive review on other DT applications is
also provided by Serafim et al., (2020).

Coupling to Big Data
Needless to say, we must emphasize the coupling of modern
machine learning approaches to valuable data sources. Sripriya
Akondi et al., (2022) emphasize the use of compound and protein
conformational data which in its abundance classifies as big data
in all respects. However, common problems with big data sources
such as data quality, over-fitting, and difficult or lengthy
protocols should be taken in consideration (Motamedi et al.,
2022). Taken together, the big data era will walk hand-in-hand
with future drug design and will have a significant impact on how
to approach a drug discovery campaign (Zhu, 2020; Bhattarai,
et al., 2022; Lee et al., 2022). Zhao et al. point out in a wonderful
report “10 Vs.” or characteristics that are intrinsic in drug
discovery big data that we should be aware of and utilize,
namely: volume (size of data), velocity (data growth), variety
(lots of data sources), veracity (variable data quality), validity
(authenticity of data), vocabulary (aware of the terminology),
venue (numerous data platforms), visualization (presentation and
patterns in data), volatility (time domain of the data and
usefulness time window), and value (associated economic and
added value, Zhao et al., 2020).

CONCLUSION

In conjunctionwith antibacterial compound databases (Table 1) and
general (big) data sources such as ChEMBL andCO-ADD (SPARK),
efficient research in the area of new antibacterial drug design and
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target identification is possible (Gaulton et al., 2017; Wishart et al.,
2018). Incorporating novel machine learning methods can
successfully boost the traditional medicinal chemistry approaches,
and this review highlights a host of applications and machine
learning model deployments. The examples include synthetic and
natural small molecules, as well as peptides, ranging from a narrow
spectrum of Gram-positive or Gram-negative bacteria to a broad
spectrum of compounds acting onmycobacteria and eventually even
MDRbacteria. However, in reviewing the literature, it is immediately
apparent that medicinal chemistry is currently still in the
introductory phase of exploring modern (and also established)
machine learning methods and adapting them to the field. Most
of the reports are proof-of-concept works where the models are only
deployed to test the data and no experimental biological evaluation is
performed. However, the analysis of the best performing
featurization approaches and the methods themselves may be
even more important takeaways.

Input data is of critical importance, and the available tailored
or focused antibacterial data libraries, especially public resources,
leave much to be desired. The good availability of antimicrobial
peptide data and general relational databases, such as the ones

mentioned above, improves the situation. In conclusion, the
immense value of modern machine learning methods is
obvious—coupled with classical and experimental approaches
in medicinal chemistry— and new advances in antibacterial drug
design and mode of action research are possible.
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Structure-Based Design of
2-Aminopurine Derivatives as CDK2
Inhibitors for Triple-Negative Breast
Cancer
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Xuben Hou1*
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Cyclin-dependent kinase 2 (CDK2) regulates the progression of the cell cycle and is
critically associated with tumor growth. Selective CDK2 inhibition provides a potential
therapeutic benefit against certain tumors. Purines and related heterocycle (e.g.,
R-Roscovitine) are important scaffolds in the development of CDK inhibitors. Herein,
we designed a new series of 2-aminopurine derivatives based on the fragment-centric
pocket mapping analysis of CDK2 crystal structure. Our results indicated that the
introduction of polar substitution at the C-6 position of purine would be beneficial for
CDK2 inhibition. Among them, compound 11l showed good CDK2 inhibitory activity
(IC50 = 19 nM) and possessed good selectivity against other CDKs. Further in vitro tests
indicated that compound 11l possesses anti-proliferation activity in triple-negative breast
cancer (TNBC) cells. Moreover, molecular dynamics simulation suggested the favorable
binding mode of compound 11l, which may serve as a new lead compound for the future
development of CDK2 selective inhibitors.

Keywords: structure-based drug design, CDK2 inhibitor, purine, anticancer, triple-negative breast cancer

1 INTRODUCTION

Cyclin-dependent kinases (CDKs) are essential kinases that drive cell cycle transformation and
transcriptional regulation (Wood and Endicott, 2018; Rice, 2019). CDKs involve in a variety of
biological processes, including cell metabolism, differentiation, and development. Human CDKs
are mainly divided into two categories: 1) One group is involved in cell cycle regulation and related
to mitosis, and the subtypes are CDK1, 2, 3, 4, and 6. 2) Another group is mainly involved in
transcriptional regulation, regulating phosphorylation of RNA polymerase II, and the subtypes are
CDK7, 8, 9, and 11 (Satyanarayana and Kaldis, 2009). Other subtypes, such as CDK5, have long
been thought to be neuron-specific kinases that play an important role in cellular activity (survival,
motility, etc.) (Roufayel and Murshid, 2019). Heretofore, several CDK4/6 inhibitors (e.g.,
Palbociclib (Fry et al., 2004), Ribociclib (Tripathy et al., 2017), and Abemaciclib (Lee et al.,
2019)) have been approved by the FDA for the treatment of breast cancer and other solid tumors
(Yuan et al., 2021). However, the long-term use of CDK4/6 inhibitors results in drug resistance and
poor therapeutic effect on Rb-deficient tumors, especially some malignant tumors, which limits the
clinical application of CDK4/6 inhibitors (Braal et al., 2021; Gomatou et al., 2021; Julve et al.,
2021).
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CDK2 plays a key role in cell cycle regulation (Aleem et al.,
2004; Tadesse et al., 2019a; Volkart et al., 2019). CDK2 forms a
complex with Cyclin E and then phosphorylates Rb, therefore
activates E2F (Narasimha et al., 2014). CDK2-Cyclin A complex
promotes cells to pass through the S/G2 checkpoint (Kimball and
Webster, 2001). CDK2 also controls the phosphorylation of many
transcription factors including Smad3 (Liu, 2006), FoxM1, FoxO1
(Adams, 2001), NFY, B-Myb (Joaquin and Watson, 2003), Myc
(Hydbring and Larsson, 2010) and promotes the cell cycle. In
addition, CDK2 also plays an important role in DNA replication
(Fagundes and Teixeira, 2021), adaptive immune response, cell
differentiation (Adams, 2001), and apoptosis (Golsteyn, 2005;
Satyanarayana and Kaldis, 2009). CDK2 is an important
regulatory factor of various carcinogenic signaling pathways
(Jin et al., 2020). The overexpression of CDK2 and its related
Cyclin A or Cyclin E is closely related to the development of
tumors (Sviderskiy et al., 2020). Especially, the inhibition of
CDK2 is a potential therapeutic strategy for those tumors that
are considered to be ineffective by CDK4/6 inhibitors (Pandey
et al., 2019; Tadesse et al., 2020). Inhibition of CDK2 resulted in
increased Smad3 activity and decreased triple-negative breast
cancer (TNBC) cell migration (Tarasewicz et al., 2014). Recently,
CDK2 has been found to mediate phosphorylation of EZH2,
which drives tumorigenesis of TNBC (Nie et al., 2019a).
Nowadays, CDK2 has been recognized as a potential target for

anticancer drug development (Chohan et al., 2015; Zhang et al.,
2015; Sánchez-Martínez et al., 2019).

Previously, we have reported a series of purine-2,6-diamine
derivatives as CDK2 selective inhibitors (Figure 1) (Wang et al.,
2013). We also developed purine-8-one derivatives that displayed
good antitumor activities (Lu et al., 2019). In 2016, Coxon et al.
designed a series of 6-substituted 2-arylaminopurines, which also
possessed good CDK2 selectivity (Figure 1) (Coxon et al., 2017).
Based on the crystal structures of the CDK2-inhibitor 73 complex
(PDB: 5NEV), we performed fragment-centric topographic
mapping using AlphaSpace and analyzed the binding pocket
of 73. As shown in Figure 2, we identified an unoccupied
polar pocket (pocket 5) besides the biphenyl group of 73.
Moreover, the partially polar binding pocket (pocket 2,
nonpolar rate = 73%) for the biphenyl group is also not fully
occupied (occupancy = 79%). Based on the structural analysis
above, we designed a new series of 2-arylaminopurines by
introducing various substitutions in the C-6 position of the
purine scaffold to further explore the structure–activity
relationships.

2 RESULTS AND DISCUSSION

2.1 Chemistry
The synthesis routes of compounds 5a-5k are depicted in Scheme
1. The 6-substituted purine derivatives were synthesized from the
THP-protected 2,6-dichloropurine via a Suzuki coupling reaction
with aryl boric acid or aryl pinacol boric acid ester. Coupling by
Buchwald-Harwting Reaction with 3-Nitroaniline, employing
Pd(OAc)2/Xantphos afforded the THP-protected 2-
aminopurine derivates in excellent yield. Then the N9-THP
group was removed under the acidic condition to give the
final compound.

And the synthesis routes of compounds 11a-11r are depicted
in Scheme 2. Ortho- or para-bromo benzylamine were protected
by the Boc group, respectively. Then, through the Miyaura
borylation reaction, the Boc-protected aryl borate esters were
prepared. And then, similar to the synthetic route of Scheme 1,
compounds 10a-10r were obtained by Suzuki coupling,
Buchwald-Harwting Coupling (Yin et al., 2002), and the
removal of protection groups.

2.2 CDK2 Inhibitory Activities
All compounds were screened for CDK2 inhibitory activities at
0.5 μM. Compounds with inhibition rates higher than 50% were
further tested at different concentrations to determine IC50

values. And results are summarized in Table 1. The 6-position
benzene substituted purine derivative (5a) showed good potency
against CDK2 (IC50 = 0.31 μM).When the benzene ring at the C6
position of compound 5a was changed to naphthalene ring (5b),
pyrrole ring (5c), benzo[d][1,3]dioxole (5d), and thiophene (5e),
the CDK2 inhibitory activity decreased (Table 1). Among these
compounds, 5e was inactive, 5b and 5d showed weak activity
against CDK2, whereas 5c exhibited a 37% inhibition rate at
0.5 μM. Then, we sought to investigate the impacts of different
substituted benzenes at the C-6 position. As shown inTable 1, the

FIGURE 1 | Reported CDK2 inhibitors from literature and our previous
work: R-Roscovitine (Meijer et al., 1997), Palbociclib (Fry et al., 2004),
compound 11a’ (Wang et al., 2013), and compound 73 (Coxon et al., 2017).
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introduction of methyl formate (5h and 5k), fluorine (5i), or nitro
(5f) substituted the benzene-abolished CDK2 inhibitory activity.
Interestingly, the meta-substituted carboxylic group (5g) is
beneficial for CDK2 inhibition, whereas the para-substituted
carboxylic group leads to a compound with low activity (5j).
The introduction of phenylamino or benzylamine group (11a-
11d) in the C-6 position increases the CDK2 inhibitory activity.
Compound 11a (IC50 = 0.31 μM) exhibited a similar CDK2
inhibitory activity with 5a. Importantly, compound 11c
(IC50 = 0.11 μM) possessed a better CDK2 inhibitory activity
than 5a. When the pare-amino group was changed to meta-
amino group (11d), its CDK2 inhibitory activity was decreased
slightly (IC50 = 0.23 μM). The above SAR result is consistent with
our hypothesis that the introduction of a polar group at the C-6
site would be beneficial for binding against CDK2 protein. Next,
we sought to optimize the R2 substitutions and got compound

11f-11r. When we introduced different substituents to the
benzene ring, such as the electron-donating methyl group
(11i) and tert-butyl group (11j), the activity decreased
obviously. The biphenyl group (11h) seems to be too bulky to
occupy the active site and cause a decrease in activity. The
introduction of fluorine (11n and 11o), sulfonamide groups
(11l, 11p, and 11q), and pyridine group (11r) is beneficial for
CDK2 inhibition, and compound 11l exhibited the best activity
(IC50 = 0.019 μM).

2.3 Isoform Selectivity
Three potent CDK2 inhibitors (11c, 11l, and 11p) were further
selected to evaluate their inhibitory activities against other CDKs
isoforms. As shown in Table 2, compounds 11c, 11l, and 11p
showed potent activity against CDK1 (IC50 = 0.12–0.24 μM),
weak activity against CDK6 (IC50 = 2.2–4.8 μM) and are nearly

FIGURE 2 | (A)Calculated binding pockets of compound 73 in CDK2. Pockets are represented using spheres located at the centroid of each alpha-cluster. (B) The
table presents pocket features including space, occupancy, and nonpolar rate.

SCHEME 1 | Synthetic route of target compounds 5a-5k. Reagents and conditions: (A) 3,4-dihydro-2H-pyran, DL-Camphorsulfonic acid, EA, 65°C, 18 h; (B) aryl
borate ester, Pd(PPh3)4, K2CO3, 1,4-dioxane/H2O = 4:1, 80°C, 9 h; (C) 3-Nitroaniline, Pd(OAc)2, Xantphos, Cs2CO3, 1,4-dioxane, 100°C, 9 h; (D) HCl/EA, rt, 4 h; (E)
LiOH, THF/H2O = 4:1, rt, 4 h.

SCHEME2 | Synthetic route of target compounds 11a-11r. Reagents and conditions: (A) (Boc)2O, K2CO3, DCM, rt, 4 h; (B) Bis(pinacolato)diboron, Pd (dppf)2Cl2,
KOAc, DMSO, 80°C, 9 h; (C) 2, Pd(PPh3)4, K2CO3, 1,4-dioxane:H2O = 4:1, 80°C, 9 h; (D) substituted anilines, Pd(OAc)2, Xantphos, Cs2CO3, 1,4-dioxane, 100°C, 9 h;
(E) HCl/EA, rt, 4 h.
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inactive against CDK8 (inhibition rate <20% @ 5 μM).
Compounds 11l and 11p possess good selectivity for CDK2
over CDK6 and CDK8 (more than 140-fold), whereas their
selectivity against CDK1 is lower (4.6 to 6.3-fold). Compared
with compounds 11l and 11p, compound 11c is a less selective
CDK2 inhibitor (2-fold for CDK1, 18-fold for CDK6, more than
42-fold for CDK8). Taking the above results together, our newly
designed compound 11l is a potent and selective CDK2 inhibitor.

2.4 Anti-Triple-Negative Breast Cancer
Activity of Selected Compounds
Previous studies have proved that CDK2 plays a critical role in breast
cancer progression by phosphorylating and activating hormone
receptors (Pierson-Mullany and Lange, 2004; Tadesse et al.,

2019b). In triple-negative breast cancer (TNBC), inhibition of
CDK2 has shown synergistic effects with chemotherapy and
radiotherapy (Deans et al., 2006; Rao et al., 2017; Nie et al., 2019b;
Zhu et al., 2022). In the current study, we further investigated the
antitumor activity of three compounds using MDA-MB-231 cells,
which were derived from TNBC patients. As shown in Figure 3A,
compounds 11c, 11l, and 11p (IC50 = 8.11–15.66 μM) exhibited
better anti-proliferation activities than R-Roscovitine (IC50 =
24.07 μM) in MDA-MB-231 cells. Furthermore, we also evaluated
the cytotoxicity of compound 11l in human embryonic kidney cell
(293T) using the MTT assay. This compound showed low
cytotoxicity with an IC50 value higher than 100 μM.

To explore the mechanism of action of our newly designed
compound, we further investigated their effects on the cell cycle
regulation. As shown in Figure 3B, treatment of compounds 11c,

TABLE 1 | The inhibitory activities of compounds 5a-5k and 11a-11r against CDK2.

Compound R1 R2 IC50
a (μM) or

inhibition rate (%)
@0.5 μM

5a Ph- 3-NO2-Ph- 0.31 ± 0.01
5b naphthyl 3-NO2-Ph- 3%
5c pyrrole-2-yl 3-NO2-Ph- 37%
5d 4-benzo[d][1,3]dioxole 3-NO2-Ph- 7%
5e thiophene-1-yl 3-NO2-Ph- NA
5f 3-NO2-Ph- 3-NO2-Ph- NA
5g 3-COOH-Ph- 3-NO2-Ph- 0.15 ± 0.01
5h 3-COOCH3-Ph- 3-NO2-Ph- 11%
5i 4-F-Ph- 3-NO2-Ph- NA
5j 4-COOH-Ph- 3-NO2-Ph- 7%
5k 4-COOCH3-Ph- 3-NO2-Ph- 3%
11a 3-NH2-Ph- 3-NO2-Ph- 0.31 ± 0.02
11b 4-NH2-Ph- 3-NO2-Ph- 40%
11c 3-NH2-Bn- 3-NO2-Ph- 0.11 ± 0.01
11d 4-NH2-Bn- 3-NO2-Ph- 0.23 ± 0.01
11e 3-CH2NH2-Bn- 3-NO2-Ph- 35%
11f 3-NH2-Bn- Ph- 35%
11g 4-NH2-Bn- Ph- 0.13 ± 0.02
11h 3-NH2-Bn- biphenyl 13%
11i 3-NH2-Bn- 4-Me-Ph- 0.28 ± 0.02
11j 3-NH2-Bn- 4-t-Bu-Ph- 28%
11k 3-NH2-Bn- 4-piperazine-1-yl-Ph- 26%
11l 3-NH2-Bn- 4-SO2NH2-Ph- 0.019 ± 0.001
11m 3-NH2-Bn- 3-NH2-Ph- 33%
11n 3-NH2-Bn- 4-F-Ph- 0.32 ± 0.06
11o 4-NH2-Bn- 4-F-Ph- 0.24 ± 0.01
11p 3-NH2-Bn- 4-SO2N(Me)H-Ph- 0.032 ± 0.001
11q 3-NH2-Bn- 4-SO2N(Me)H-Ph- 0.18 ± 0.02
11r 3-NH2-Bn- pyridin-3-yl 0.19 ± 0.01
Roscovitine - - 0.073 ± 0.022

aValues are geometric means of n P 3 experiments, with a range of less than 20% of the mean value.

TABLE 2 | Inhibitory activity of selected compounds against different CDKs.

Compound CDK2/cyclin A CDK1/cyclin B CDK6/cyclin
D3 IC50 (μM)

CDK8/cyclin C

IC50 (μM) IC50 (μM) Inhibition
rate @5 μM (%)

11c 0.117 ± 0.01 0.24 ± 0.04 2.2 ± 0.1 19
11l 0.019 ± 0.01 0.12 ± 0.02 2.7 ± 0.5 11
11p 0.032 ± 0.01 0.15 ± 0.02 4.8 ± 0.1 15
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11l, and 11p increased the percentage of cells in the G2/M phase,
compared with the negative control group. The results above
suggested that our newly designed CDK2 inhibitors are potential
antitumor agents for the treatment of TNBC.

2.5 Molecular Dynamics Simulation
To further decipher the binding mode of 11l, we performed 100
ns molecular dynamics (MD) simulation based on the docking
result. As shown in Figure 4, the RMSD values of the

protein–ligand complex are within 4 Å, while the RMSD
values of compound 11l are within 1.5 Å, indicating that the
simulation system is stable during MD simulation. Then we
extracted the representative binding mode from the MD
trajectory and analyzed the key interacting residues. As shown
in Figure 4C, compound 11l forms multiple hydrogen bond
interactions with surrounding residues in CDK2. The
sulfonamide group forms hydrogen bonds with the side chain
and backbone nitrogen of Lys90 and His85. The benzyl amine

FIGURE 3 | (A) Ani-proliferation activities of compounds 11c, 11l, and 11p against MDA-MB-231 cells. R-Roscovitine was employed as the positive control. (B)
Impacts of compounds 11c, 11l, and 11p on the cell cycle of MDA-MB-231 cells.

FIGURE 4 | (A) Predicted binding mode of 11l in CDK2 from MD simulation. The key residues of CDK2 are highlighted and colored in green. (B) RMSD values of
protein–ligand complex and 11l during MD simulation. (C) Interacting residues between 11l and CDK2.
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group of 11l locates at the entrance of the ATP-binding pocket,
and form hydrogen bonds with Lys34, Glu52, and Ala145,
respectively. The key hydrogen bonds were listed in Table 3.
The hydrogen bond between His85/Lys34 and 11l is the most
stable hydrogen bond interaction occupation values of 0.57
and 0.4, respectively (Table 3). The results above revealed the
most favorable binding mode as well as key interactions of
compound 11l with CDK2, which would be helpful for further
structural optimization.

3 CONCLUSION

In the current study, we designed a series of 2-aminopurine
derivatives as new CDK2 inhibitors based on the fragment-
centric pocket mapping of crystal structure. As expected, the
introduction of polar groups in the C-6 position of the purine
scaffold is beneficial for CDK2 inhibition. Among them,
compound 11l (IC50 = 0.019 μM) exhibited higher CDK2
inhibitory activity against CDK2 than known inhibitor
R-Roscovitine (IC50 = 0.073 μM). Moreover, 11l also possessed
good selectivity against other CDK isoforms and showed better
anti-proliferation activity in MDA-MB-231 cells than
R-Roscovitine. Molecular dynamics simulation further
suggested the binding mode of 11l with CDK2, which would
be helpful for the future development of more potent and
selective CDK2 inhibitors.

4 EXPERIMENTAL SECTION

4.1 Chemistry
Chemical reagents were purchased commercially and were used
without further purification. All reactions with air- or moisture-
sensitive reagents were carried out under nitrogen and solvents
were also dried before use. Reactions were monitored by thin-
layer chromatography with preparative silica gel GF254 plates
(UV lamp. or iodine), and column chromatography was
performed on silica gel. The 1H-NMR spectra were obtained
at 400 MHz. For 1H NMR spectra, chemical shifts were given in
parts per million (ppm) and were referenced to tetramethylsilane
(TMS) peak as an internal standard or the residual solvent peak.
13C NMR spectra were recorded at 101 MHz. Chemical shifts
were reported in ppm and were referenced to the appropriate
residual solvent peak. Splitting patterns were designed as s,

singlet; d, doublet; t, triplet; m, multiplet. High-resolution
mass spectrometry (HRMS) data were recorded with a
1200RRLC-6520 Accurate-Mass Q-TOF LC/MS system at the
Shandong Analysis and Test Center.

4.1.1 Preparation of
2,6-dichloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine
(2)
2,6-dichloropurine (5.29 mmol) and DL-Camphorsulfonic acid
(0.05 mmol) were dissolved in ethyl acetate (20 ml), and heated to
65°C. 3,4-2H-dihydropyran (5.29 mmol) was added slowly and
then the reaction mixture was stirred for 18 h at 65°C. After the
completion, the reaction mixture is poured into H2O (20 ml),
extracted twice with ethyl acetate (50 ml), washed with brine, and
dried with anhydrous Mg2SO4. The crude product was
concentrated and purified by silica gel chromatography to
obtain compound 2. White solid; Yield: 70%; m.p.: 93–95°C;
1H NMR (600 MHz, CDCl3) δ 8.33 (s, 1H), 5.76 (dd, J = 10.8, 2.4
Hz, 1H), 4.21–4.11 (m, 1H), 3.78 (td, J = 11.8, 2.6 Hz, 1H),
2.21–2.15 (m, 1H), 2.13–2.06 (m, 1H), 2.02–1.93 (m, 1H),
1.87–1.72 (m, 2H), 1.71–1.66 (m, 1H).

4.1.2 General Method for the Preparation of
Compounds 3a-3f, 3h, 3i, 3k, 9a-9e
Tert-butyl (4-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-
purin-6-yl)benzyl) carbamate (9d). Compounds 8d
(4.5 mmol), compound 2 (4.5 mmol), Pd (PPh3)4 (0.05 mmol),
and K2CO3 (13.5 mmol) were mixed in a two-neck flask. Under
the protection of N2, the solution of 1,4-dioxane and water (4:1)
was added and the mixture reacted at 80°C for 12 h. After the
completion, the reaction mixture was filtered through a pad of
Celite. Spinned the filtrate dry and then dissolved it with ethyl
acetate (15 ml) and water (20 ml), extracted twice with ethyl
acetate (50 ml), washed with brine, and dried with anhydrous
Mg2SO4. The crude product was concentrated and purified by
silica gel chromatography (eluting with petroleum ether/ethyl
acetate 3/1 to 1/1) to obtain compound 9d. White solid; Yield:
75%; m.p.: 175–177°C; 1H NMR (400 MHz, CDCl3) δ 8.76 (d, J =
7.9 Hz, 2H), 8.32 (s, 1H), 7.46 (d, J = 7.9 Hz, 2H), 5.83 (d, J = 10.4
Hz, 1H), 4.92 (s, 1H), 4.41 (d, J = 5.0 Hz, 2H), 4.20 (d, J = 11.3 Hz,
1H), 3.81 (t, J = 11.0 Hz, 1H), 2.18 (d, J = 12.4 Hz, 1H), 2.08 (s,
1H), 1.99 (dd, J = 22.9, 11.4 Hz, 1H), 1.80 (td, J = 22.9, 12.2 Hz,
2H), 1.68 (d, J = 9.8 Hz, 1H), 1.48 (s, 9H).

Compounds 3a-3f, 3h, 3i, 3k, 9a-9c, 9e were synthesized
following the procedure described above.

2-chloro-6-phenyl-9-(tetrahydro-2H-pyran-2-yl)-9H-purine
(3a). Light yellow solid; Yield: 95%; m.p.: 132–134°C; 1H NMR
(600 MHz, CDCl3) δ 8.86–8.73 (m, 2H), 8.32 (s, 1H), 7.60–7.50
(m, 2H), 5.84 (dd, J = 10.8, 2.4 Hz, 1H), 4.27–4.15 (m, 1H), 3.81
(td, J = 11.8, 2.5 Hz, 1H), 2.18 (dd, J = 12.5, 2.0 Hz, 1H), 2.13–2.06
(m, 1H), 2.00 (ddd, J = 23.5, 12.5, 4.0 Hz, 1H), 1.89–1.73 (m, 2H),
1.68 (d, J = 12.1 Hz, 1H).

2-chloro-6-(naphthalen-1-yl)-9-(tetrahydro-2H-pyran-2-
yl)-9H-purine (3b). White solid; Yield: 67%; m.p.: 149–151°C;
1H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 8.30–8.24 (m, 1H),
8.03 (t, J = 7.6 Hz, 2H), 7.97–7.89 (m, 1H), 7.66–7.60 (m, 1H),
7.57–7.49 (m, 2H), 5.88 (d, J = 10.6 Hz, 1H), 4.21 (d, J = 11.2

TABLE 3 | Statistical analysis of the hydrogen bond interactions between 11l and
CDK2 during MD simulation.

Donor Acceptor Occupancy (%) Distance (Å)

11l@N5-H His85@O 0.4580 2.8481
11l @N6-H Ala145@O 0.2140 2.8607
Lys34@NZ-H 11l @N6 0.2120 2.8698
Lys34@NZ-H 11l @N6 0.1740 2.8698
11l @N5-H His85@O 0.1120 2.8600
Lys34@NZ-H 11l @N6 0.1040 2.8717
11l @N3-H Leu84@O 0.1020 2.8160
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Hz, 1H), 3.83 (t, J = 11.5 Hz, 1H), 2.11 (dt, J = 11.4, 9.6 Hz, 3H),
1.89–1.65 (m, 3H).

Tert-butyl 2-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-6-yl)-1H-pyrrole-1-carboxylate (3c). White
solid; Yield: 60%; m.p.: 142–144°C; 1H NMR (400 MHz,
CDCl3) δ 8.24 (s, 1H), 7.50 (s, 1H), 7.27 (s, 1H), 7.11 (d,
J = 1.6 Hz, 1H), 6.36 (s, 1H), 5.79 (d, J = 10.7 Hz, 1H), 4.19
(d, J = 11.1 Hz, 1H), 3.78 (d, J = 11.3 Hz, 1H), 2.30–1.93 (m,
3H), 1.76 (ddd, J = 34.6, 22.7, 11.2 Hz, 3H).

6-(benzo[d][1,3]dioxol-5-yl)-2-chloro-9-(tetrahydro-2H-pyran-
2-yl)-9H-purine (3d). White solid; Yield: 74%; m.p.: 177–179°C; 1H
NMR (400MHz, CDCl3) δ 8.53 (d, J = 8.3 Hz, 1H), 8.30 (d, J = 17.9
Hz, 2H), 6.98 (d, J = 8.3 Hz, 1H), 6.06 (s, 2H), 5.81 (d, J = 10.5 Hz,
1H), 4.19 (d, J = 11.4 Hz, 1H), 3.80 (t, J = 11.2 Hz, 1H), 2.17 (d, J =
12.1Hz, 1H), 2.08 (s, 1H), 1.98 (dd, J= 24.3, 13.3Hz, 1H), 1.79 (td, J=
23.0, 12.0 Hz, 2H), 1.68 (d, J = 9.4 Hz, 1H).

2-chloro-9-(tetrahydro-2H-pyran-2-yl)-6-(thiophen-3-yl)-
9H-purine(3e). Yellow solid; Yield:98%; m.p.:156–158°C; 1H
NMR (400 MHz, CDCl3) δ 8.97–8.90 (m, 1H), 8.31–8.23 (m,
2H), 7.45 (q, J = 4.55, 4.04 Hz, 1H), 5.81 (d, J = 10.49 Hz, 1H),
4.19 (d, J = 10.81 Hz, 1H), 3.80 (t, J = 11.05 Hz, 1H), 2.23–1.96
(m, 3H), 1.78 (dt, J = 24.39, 11.95 Hz, 3H).

2-chloro-6-(3-nitrophenyl)-9-(tetrahydro-2H-pyran-2-yl)-
9H-purine (3f). White solid; Yield: 57%; m.p.: 105–107°C; 1H
NMR (400 MHz, CDCl3) δ 9.72 (s, 1H), 9.18 (d, J = 7.8 Hz, 1H),
8.40 (d, J = 3.5 Hz, 2H), 7.74 (t, J = 8.0 Hz, 1H), 5.85 (d, J = 10.4
Hz, 1H), 4.21 (d, J = 11.0 Hz, 1H), 3.82 (t, J = 10.9 Hz, 1H), 2.21
(d, J = 12.5 Hz, 1H), 2.11 (d, J = 6.4 Hz, 1H), 2.02 (dd, J = 12.4,
9.3 Hz, 1H), 1.87–1.64 (m, 3H).

Methyl 3-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-
yl)benzoate (3h). White solid; Yield: 42%; m.p.: 110–112°C; 1H
NMR (400MHz, CDCl3) δ 9.42 (s, 1H), 9.00 (d, J = 7.8 Hz, 1H), 8.35
(s, 1H), 8.22 (d, J = 7.7 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H), 5.84 (d, J =
10.4 Hz, 1H), 4.20 (d, J = 10.0 Hz, 1H), 3.81 (t, J = 11.3 Hz, 1H), 2.19
(d, J= 12.5Hz, 1H), 2.09 (d, J= 6.4Hz, 1H), 1.98 (dd, J= 16.8, 7.0Hz,
1H), 1.90–1.71 (m, 3H).

2-chloro-6-(4-fluorophenyl)-9-(tetrahydro-2H-pyran-2-yl)-
9H-purine (3i). Oil; Yield: 88%. The product was used for the
next step without purification.

Methyl 4-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-
yl)benzoate (3k). Oil; Yield: 80%; 1H NMR (400MHz, CDCl3) δ
8.87 (d, J = 8.0 Hz, 2H), 8.36 (s, 1H), 8.20 (d, J = 8.0 Hz, 2H), 5.84 (d,
J = 10.3 Hz, 1H), 4.20 (d, J = 10.7 Hz, 1H), 3.97 (s, 3H), 3.81 (t, J =
11.0 Hz, 1H), 2.19 (d, J = 12.3 Hz, 1H), 2.10 (d, J = 6.7 Hz, 1H),
2.03–1.94 (m, 1H), 1.79 (dt, J = 23.7, 11.7 Hz, 2H), 1.69 (d, J = 9.7
Hz, 1H).

Tert-butyl (3-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-6-yl)phenyl)carbamate (9a). White solid; Yield:
58%; m.p.: 158–160°C; 1H NMR (400 MHz, CDCl3) δ 8.53 (s,
1H), 8.47 (d, J = 7.8 Hz, 1H), 8.32 (s, 1H), 7.84 (s, 1H), 7.49
(t, J = 8.0 Hz, 1H), 6.75 (s, 1H), 5.82 (d, J = 10.2 Hz, 1H), 4.19
(d, J = 12.4 Hz, 1H), 3.80 (t, J = 10.8 Hz, 1H), 2.17 (d, J = 12.9
Hz, 1H), 2.09 (d, J = 10.1 Hz, 1H), 2.02–1.96 (m, 1H),
1.88–1.74 (m, 2H), 1.70 (d, J = 11.3 Hz, 1H), 1.54 (s, 9H).

Tert-butyl (4-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-6-yl)phenyl)carbamate (9b). White solid; Yield:
62%; m.p.: 199–201°C; 1H NMR (400 MHz, CDCl3) δ 8.79 (d,

J = 7.9 Hz, 2H), 8.29 (s, 1H), 7.54 (d, J = 8.2 Hz, 2H), 6.70 (s,
1H), 5.82 (d, J = 10.6 Hz, 1H), 4.19 (d, J = 10.9 Hz, 1H), 3.80
(t, J = 11.2 Hz, 1H), 2.16 (d, J = 12.5 Hz, 1H), 2.06 (d, J = 10.4
Hz, 1H), 1.98 (dd, J = 22.7, 12.0 Hz, 1H), 1.87–1.72 (m, 2H),
1.67 (d, J = 10.1 Hz, 1H), 1.54 (s, 9H).

Tert-butyl (3-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-6-yl)benzyl)carbamate (9c). White solid; Yield:
60%; mp: 102–104°C; 1H NMR (400 MHz, CDCl3) δ 8.74 (d,
J = 7.2 Hz, 1H), 8.64 (s, 1H), 8.31 (s, 1H), 7.56–7.46 (m, 2H),
5.83 (d, J = 10.5 Hz, 1H), 4.97 (s, 1H), 4.45 (d, J = 4.3 Hz,
2H), 4.20 (d, J = 10.8 Hz, 1H), 3.81 (t, J = 10.9 Hz, 1H), 2.18
(d, J = 12.5 Hz, 1H), 2.08 (s, 1H), 1.99 (d, J = 11.0 Hz, 1H),
1.80 (td, J = 23.3, 12.3 Hz, 2H), 1.68 (d, J = 10.7 Hz, 1H),
1.24 (s, 9H).

Tert-butyl (4-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-6-yl)benzyl)carbamate (9d). White solid; Yield:
75%; m.p.: 175–177°C; 1H NMR (400 MHz, CDCl3) δ 8.76 (d,
J = 7.9 Hz, 2H), 8.32 (s, 1H), 7.46 (d, J = 7.9 Hz, 2H), 5.83 (d,
J = 10.4 Hz, 1H), 4.92 (s, 1H), 4.41 (d, J = 5.0 Hz, 2H), 4.20
(d, J = 11.3 Hz, 1H), 3.81 (t, J = 11.0 Hz, 1H), 2.18 (d, J = 12.4
Hz, 1H), 2.08 (s, 1H), 1.99 (dd, J = 22.9, 11.4 Hz, 1H), 1.80
(td, J = 22.9, 12.2 Hz, 2H), 1.68 (d, J = 9.8 Hz, 1H),
1.48 (s, 9H).

Tert-butyl (3-(2-chloro-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-6-yl)phenethyl) carbamate (9e). Yellow solid;
Yield: 65%; m.p.: 149–151°C; 1H NMR (400 MHz, CDCl3)
δ 8.69 (d, J = 7.7 Hz, 1H), 8.57 (s, 1H), 8.31 (s, 1H), 7.50 (t,
J = 7.7 Hz, 1H), 7.39 (d, J = 7.3 Hz, 1H), 5.83 (d, J = 10.4 Hz,
1H), 4.60 (s, 1H), 4.20 (d, J = 12.4 Hz, 1H), 3.81 (t, J = 11.0
Hz, 1H), 3.46 (d, J = 5.7 Hz, 2H), 2.94 (t, J = 6.7 Hz, 2H), 2.18
(d, J = 12.5 Hz, 1H), 2.08 (s, 1H), 2.00 (dd, J = 24.6, 13.5 Hz,
1H), 1.80 (td, J = 23.3, 12.3 Hz, 2H), 1.68 (d, J = 10.7 Hz, 1H),
1.43 (s, 9H).

4.1.3 General Method for the Preparation of
Compounds 4a-4f, 4h, 4i, 4k, 10a-10r
Tert-butyl (4-(2-((4-fluorophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate (10o).
Compound 9d (1.0 mmol), 4-fluoroaniline (2 mmol),
Pd(OAc)2 (0.05 mmol), Xantphos (0.10 mmol), and
Cs2CO3 (13.5 mmol) were mixed in a two-neck flask.
Under the protection of N2, the anhydrous 1,4-dioxane
was added and the mixture reacted at 100°C for 18 h.
After the completion, the reaction mixture was filtered
through a pad of Celite. Spinned the filtrate dry and
then dissolved it with ethyl acetate (15 ml) and water
(20 ml), extracted twice with ethyl acetate (50 ml),
washed with brine, and dried with anhydrous Mg2SO4.
The crude product was concentrated and purified by silica
gel chromatography (eluting with dichloromethane/
menthol 100/1 to 40/1) to obtain compounds 10o.

Compounds 4a-4f, 4h, 4i, 4k, 10a-10n, and 10p-10r were
synthesized following the procedure described above.

N-(3-nitrophenyl)-6-phenyl-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-2-amine (4a). Light yellow solid; Yield: 76%; m.p.:
164–166°C; 1H NMR (400MHz, DMSO-d6) δ 10.29 (s, 1H), 9.38 (s,
1H), 8.85 (d, J= 7.2Hz, 2H), 8.61 (s, 1H), 8.01 (d, J= 8.1Hz, 1H), 7.81
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(d, J = 7.9 Hz, 1H), 7.60 (t, J = 8.5 Hz, 4H), 5.73 (d, J = 10.9 Hz, 1H),
4.10 (d, J = 11.4 Hz, 1H), 3.76 (dd, J = 15.6, 6.5 Hz, 1H), 2.41 (dd, J =
21.4, 10.6 Hz, 1H), 2.08 (d, J = 11.3 Hz, 2H), 1.84–1.58 (m, 3H).

6-(naphthalen-1-yl)-N-(3-nitrophenyl)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-2-amine(4b). White solid; Yield:
81%. m.p.: 190–192°C; 1H NMR (400 MHz, DMSO-d6) δ
10.42 (s, 1H), 9.30 (s, 1H), 8.53 (s, 1H), 8.21 (d, J = 8.4
Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 8.05 (t, J = 8.0 Hz, 2H), 7.97
(d, J = 7.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.70 (t, J = 7.6 Hz,
1H), 7.57 (ddd, J = 25.1, 12.7, 7.3 Hz, 3H), 5.78 (d, J = 10.9 Hz,
1H), 4.12 (d, J = 11.1 Hz, 1H), 3.80 (dd, J = 15.8, 6.6 Hz, 1H),
2.45 (d, J = 9.5 Hz, 1H), 2.10 (t, J = 14.2 Hz, 2H),
1.87–1.60 (m, 3H).

Tert-butyl 2-(2-((3-nitrophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)-1H-pyrrole-1-carboxylate
(4c). White solid; Yield: 80%; m.p.: 185–187°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.27 (s, 1H), 9.26 (s, 1H), 8.51
(d, J = 12.6 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.79 (d, J =
8.1 Hz, 1H), 7.63–7.52 (m, 2H), 6.86 (s, 1H), 6.44 (s, 1H), 5.70
(d, J = 10.8 Hz, 1H), 4.09 (d, J = 11.0 Hz, 1H), 3.75 (dd, J =
15.5, 6.6 Hz, 1H), 2.43 (d, J = 10.7 Hz, 1H), 2.04 (d, J = 9.4 Hz,
2H), 1.85–1.70 (m, 1H), 1.65 (d, J = 15.4 Hz, 2H), 1.23 (s, 9H).

6-(benzo[d][1,3]dioxol-5-yl)-N-(3-nitrophenyl)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-2-amine (4d). Yellow solid; Yield: 65%;
m.p.: 207–209°C; 1H NMR (400MHz, DMSO-d6) δ 10.20 (s, 1H),
9.34 (s, 1H), 8.58 (d, J = 10.4Hz, 2H), 8.36 (s, 1H), 7.97 (d, J = 8.3Hz,
1H), 7.80 (d, J = 8.1 Hz, 1H), 7.59 (t, J = 8.1 Hz, 1H), 7.15 (d, J = 8.2
Hz, 1H), 6.16 (s, 2H), 5.71 (d, J = 10.8 Hz, 1H), 4.09 (d, J = 11.4 Hz,
1H), 3.73 (d, J = 8.7 Hz, 1H), 2.39 (dd, J = 22.0, 10.6 Hz, 1H), 2.06 (d,
J = 10.5 Hz, 2H), 1.84–1.57 (m, 3H).

N-(3-nitrophenyl)-9-(tetrahydro-2H-pyran-2-yl)-6-(thiophen-
3-yl)-9H-purin-2-amine (4e). Light yellow solid; Yield: 60%; m.p.:
208–210°C; 1H NMR (400MHz, DMSO-d6) δ 10.23 (s, 1H), 9.39 (t,
J = 2.12 Hz, 1H), 8.96 (dd, J = 2.93, 0.97 Hz, 1H), 8.59 (s, 1H), 8.27
(dd, J = 5.07, 0.89Hz, 1H), 8.00 (dd, J = 8.17, 1.38 Hz, 1H), 7.87–7.77
(m, 2H), 7.59 (t, J = 8.17 Hz, 1H), 5.71 (dd, J = 10.91, 1.69 Hz, 1H),
4.09 (d, J= 11.31Hz, 1H), 3.74 (td, J = 11.36, 3.74Hz, 1H), 2.40 (ddd,
J = 16.28, 12.65, 4.22 Hz, 1H), 2.07 (d, J = 10.72 Hz, 2H),
1.82–1.59 (m, 3H).

N,6-bis(3-nitrophenyl)-9-(tetrahydro-2H-pyran-2-yl)-
9H-purin-2-amine (4f). Yellow solid; Yield: 77%; The
product was put into the next step without purification.

Methyl 3-(2-((3-nitrophenyl)amino)-9-(tetrahydro-2H-pyran-
2-yl)-9H-purin-6-yl) benzoate (4h). Yellow solid; Yield: 40%; m.p.:
222–224°C; 1H NMR (400MHz, DMSO-d6) δ 10.35 (d, J = 9.6 Hz,
1H), 9.41 (s, 1H), 9.31 (s, 1H), 9.11 (d, J = 6.7 Hz, 1H), 8.65 (d, J = 6.2
Hz, 1H), 8.17 (d, J = 6.5 Hz, 1H), 8.04 (d, J = 7.4 Hz, 1H), 7.85–7.68
(m, 2H), 7.67–7.54 (m, 1H), 5.75 (d, J= 10.1Hz, 1H), 4.11 (d, J= 11.3
Hz, 1H), 3.75 (d, J = 9.5 Hz, 1H), 2.42 (d, J = 12.0 Hz, 1H), 2.08 (t, J =
11.5 Hz, 2H), 1.84–1.60 (m, 3H).

6-(4-fluorophenyl)-N-(3-nitrophenyl)-9-(tetrahydro-2H-pyran-
2-yl)-9H-purin-2-amine (4i). Yellow solid; Yield: 69%; m.p.:
206–208°C; 1H NMR (400MHz, DMSO-d6) δ 10.30 (s, 1H), 9.34
(s, 1H), 8.97–8.87 (m, 2H), 8.62 (s, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.82
(d, J= 8.1Hz, 1H), 7.60 (t, J= 8.1Hz, 1H), 7.47 (t, J= 8.4Hz, 2H), 5.73
(d, J = 10.8 Hz, 1H), 4.10 (d, J = 11.3 Hz, 1H), 3.74 (d, J = 8.6 Hz, 1H),
2.47–2.34 (m, 1H), 2.08 (d, J = 11.4Hz, 2H), 1.75 (s, 1H), 1.65 (s, 2H).

Methyl 4-(2-((3-nitrophenyl)amino)-9-(tetrahydro-2H-pyran-
2-yl)-9H-purin-6-yl) benzoate (4k). Yellow oil; Yield: 41%; 1H
NMR (400MHz, DMSO-d6) δ 10.38 (s, 1H), 9.36 (s, 1H), 8.96
(d, J = 7.9 Hz, 2H), 8.66 (s, 1H), 8.19 (d, J = 8.0 Hz, 2H), 8.00 (d, J =
8.0 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.61 (t, J = 8.1 Hz, 1H), 5.74 (d,
J= 10.9Hz, 1H), 4.10 (d, J= 10.7Hz, 1H), 3.92 (s, 3H), 3.74 (d, J= 9.5
Hz, 1H), 2.47–2.35 (m, 1H), 2.09 (d, J = 11.0 Hz, 2H),
1.83–1.59 (m, 3H).

Tert-butyl(3-(2-((3-nitrophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)phenyl)carbamate (10a).
Yellow solid; Yield: 22%; m.p.: 192–194°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.25 (s, 1H), 9.54 (s, 1H), 9.23
(s, 1H), 8.90 (s, 1H), 8.60 (s, 1H), 8.44 (d, J = 7.7 Hz, 1H), 8.17
(d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.54 (m, J = 32.5,
16.0, 8.0 Hz, 3H), 5.73 (d, J = 10.9 Hz, 1H), 4.10 (d, J = 10.9
Hz, 1H), 3.75 (t, J = 10.8 Hz, 1H), 2.41 (dd, J = 20.7, 11.2 Hz,
1H), 2.07 (d, J = 9.6 Hz, 2H), 1.76 (d, J = 9.2 Hz, 1H), 1.64 (s,
2H), 1.50 (s, 9H).

Tert-butyl(4-(2-((3-nitrophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)phenyl)carbamate (10b).
Yellow solid; Yield: 68%; m.p.: 220–222°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.22 (s, 1H), 9.74 (s, 1H), 9.41
(s, 1H), 8.80 (d, J = 8.2 Hz, 2H), 8.57 (s, 1H), 7.98 (d, J = 8.2
Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.59
(t, J = 8.2 Hz, 1H), 5.72 (d, J = 10.9 Hz, 1H), 4.09 (d, J = 11.5
Hz, 1H), 3.75 (t, J = 10.8 Hz, 1H), 2.39 (dd, J = 21.4, 10.8 Hz,
1H), 2.06 (d, J = 10.7 Hz, 2H), 1.84–1.60 (m, 3H), 1.51 (s, 9H).

Tert-butyl(3-(2-((3-nitrophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate (10c).
Yellow solid; Yield: 77%; m.p.: 163–165°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.29 (s, 1H), 9.36 (s, 1H), 8.75
(d, J = 7.8 Hz, 1H), 8.67 (s, 1H), 8.59 (s, 1H), 8.03 (d, J = 8.3
Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.65–7.54 (m, 2H), 7.47 (d,
J = 6.9 Hz, 2H), 5.74 (d, J = 11.0 Hz, 1H), 4.27 (d, J = 5.5 Hz,
2H), 4.10 (d, J = 11.4 Hz, 1H), 3.74 (d, J = 9.2 Hz, 1H), 2.40
(dd, J = 31.6, 20.3 Hz, 1H), 2.08 (d, J = 9.8 Hz, 2H), 1.73 (d, J =
14.4 Hz, 1H), 1.66 (d, J = 15.1 Hz, 2H), 1.35 (d, J = 40.1
Hz, 9H).

Tert-butyl(4-(2-((3-nitrophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate (10d). Yellow
solid; Yield: 53%; m.p.: 195–197°C; 1H NMR (400MHz, DMSO-
d6) δ 10.27 (s, 1H), 9.40 (s, 1H), 8.80 (d, J = 7.8Hz, 2H), 8.61 (s, 1H),
7.99 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.9 Hz,
1H), 7.56–7.40 (m, 3H), 5.73 (d, J = 10.9 Hz, 1H), 4.25 (d, J = 5.8 Hz,
2H), 4.10 (d, J = 11.6 Hz, 1H), 3.75 (t, J = 8.7 Hz, 1H), 2.47–2.32 (m,
1H), 2.05 (t, J = 19.1Hz, 2H), 1.69 (m, J = 38.5, 16.9Hz, 3H), 1.38 (d,
J = 36.5 Hz, 9H).

Tert-butyl(3-(2-((3-nitrophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)phenethyl)carbamate (10e).
Yellow solid; Yield: 73%; m.p.: 104–106°C; 1H NMR
(400 MHz, CDCl3) δ 9.52 (s, 1H), 8.69 (d, J = 7.3 Hz, 1H),
8.55 (s, 1H), 8.13 (s, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.60 (s, 1H),
7.47 (dd, J = 19.6, 7.2 Hz, 3H), 7.37 (d, J = 6.3 Hz, 1H), 5.79 (d,
J = 9.8 Hz, 1H), 4.68 (s, 1H), 4.23 (d, J = 11.8 Hz, 1H), 3.89 (t, J =
11.4 Hz, 1H), 3.48 (s, 2H), 2.96 (s, 2H), 2.17 (dd, J = 19.4, 10.6
Hz, 3H), 1.85 (ddd, J = 36.7, 24.7, 12.0 Hz, 2H), 1.71 (d, J = 12.5
Hz, 1H), 1.43 (s, 9H).
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Tert-butyl(3-(2-(phenylamino)-9-(tetrahydro-2H-pyran-
2-yl)-9H-purin-6-yl)benzyl)carbamate (10f). Yellow solid;
Yield: 62%; m.p.: 110–112°C; 1H NMR (400 MHz, DMSO-
d6) δ 9.68 (s, 1H), 8.70 (d, J = 7.7 Hz, 1H), 8.64 (s, 1H),
8.51 (s, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.54 (dd, J = 15.2, 7.3 Hz,
2H), 7.44 (d, J = 7.3 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H), 6.96 (t, J =
7.2 Hz, 1H), 5.69 (d, J = 10.8 Hz, 1H), 4.25 (d, J = 5.7 Hz, 2H),
4.08 (d, J = 11.0 Hz, 1H), 3.70 (s, 1H), 2.39 (dd, J = 22.1, 10.9
Hz, 1H), 2.03 (d, J = 11.2 Hz, 2H), 1.77 (s, 1H), 1.63 (s, 2H),
1.49–1.17 (s, 9H).

Tert-butyl(3-(2-([1,19-biphenyl]-4-ylamino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate(10h). Yellow
solid; Yield:77%; m.p.: 120; 1H NMR (400 MHz, DMSO-d6) δ
9.82 (s, 1H), 8.72 (d, J = 7.8 Hz, 1H), 8.65 (s, 1H), 8.53 (s, 1H),
8.04 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 7.7 Hz, 4H), 7.60–7.41 (m,
5H), 7.31 (t, J = 7.0 Hz, 1H), 5.71 (d, J = 10.7 Hz, 1H), 4.26 (d, J =
5.6 Hz, 2H), 4.09 (d, J = 9.9 Hz, 1H), 3.73 (s, 1H), 2.42–2.32 (m,
1H), 2.05 (d, J = 11.9 Hz, 2H), 1.79 (s, 1H), 1.64 (s, 2H),
1.38 (s, 9H).

Tert-butyl(3-(9-(tetrahydro-2H-pyran-2-yl)-2-(p-tolylamino)-
9H-purin-6-yl)benzyl)carbamate(10i). Yellow solid; Yield: 60; m.p.:
106–108°C; 1H NMR (400MHz, DMSO-d6) δ 9.57 (s, 1H), 8.68 (d,
J = 7.6 Hz, 1H), 8.63 (s, 1H), 8.48 (s, 1H), 7.81 (d, J = 7.9 Hz, 2H),
7.53 (dd, J = 16.2, 8.2 Hz, 2H), 7.44 (d, J = 7.6Hz, 1H), 7.15 (d, J = 7.9
Hz, 2H), 5.67 (d, J= 10.8Hz, 1H), 4.25 (d, J = 5.7Hz, 2H), 4.07 (d, J=
11.3 Hz, 1H), 3.72 (d, J = 13.1 Hz, 1H), 2.39 (dd, J = 22.0, 11.7 Hz,
1H), 2.28 (s, 3H), 2.02 (d, J = 11.0 Hz, 2H), 1.76 (s, 1H), 1.63 (s, 2H),
1.48–1.19 (s, 9H).

Tert-butyl(3-(2-((4-(tert-butyl)phenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate (10j). Oil;
Yield: 64%; 1H NMR (400MHz, DMSO-d6) δ 9.54 (s, 1H), 8.67
(d, J = 7.6Hz, 1H), 8.64 (s, 1H), 8.47 (s, 1H), 7.84 (d, J = 8.0Hz, 2H),
7.54 (t, J = 7.7 Hz, 1H), 7.44 (d, J = 7.4 Hz, 2H), 7.36 (d, J = 8.1 Hz,
2H), 5.69 (d, J = 10.9 Hz, 1H), 4.25 (d, J = 5.3 Hz, 2H), 4.07 (d, J =
11.2 Hz, 1H), 3.72 (s, 1H), 2.45–2.33 (m, 1H), 2.03 (d, J = 11.2 Hz,
2H), 1.78 (s, 1H), 1.63 (s, 2H), 1.40 (s, 9H), 1.30 (s, 9H).

Tert-butyl 4-(4-((6-(3-(((tert-butoxycarbonyl)amino)
methyl)phenyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-2-
yl)amino)phenyl)piperazine-1-carboxylate (10k). Yellow
solid; Yield: 72%; m.p.: 120–124°C; 1H NMR (400 MHz,
DMSO-d6) δ 9.45 (s, 1H), 8.67 (d, J = 7.3 Hz, 1H), 8.61 (s,
1H), 8.45 (s, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.49 (dt, J = 25.1, 7.7
Hz, 3H), 6.98 (d, J = 8.4 Hz, 2H), 5.66 (d, J = 11.0 Hz, 1H), 4.24
(d, J = 5.4 Hz, 2H), 4.07 (d, J = 11.0 Hz, 1H), 3.70 (s, 1H), 3.48
(s, 4H), 3.03 (s, 4H), 2.43–2.30 (m, 1H), 2.02 (d, J = 10.2 Hz,
2H), 1.76 (s, 1H), 1.63 (s, 2H), 1.35 (dd, J = 55.6, 18.5 Hz, 18H).

Tert-butyl(3-(2-((4-sulfamoylphenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate (10l). Yellow
solid; Yield: 35%; m.p.: 145–147°C; 1H NMR (400 MHz, DMSO-
d6) δ 10.12 (s, 1H), 8.76–8.62 (m, 2H), 8.57 (s, 1H), 8.09 (d, J = 8.3
Hz, 2H), 7.80 (d, J = 8.3 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.47 (t,
J = 8.2 Hz, 2H), 7.16 (s, 2H), 5.73 (d, J = 10.7 Hz, 1H), 4.26 (d, J =
5.5 Hz, 2H), 4.09 (d, J = 11.2 Hz, 1H), 3.74 (s, 1H), 2.47–2.32 (m,
1H), 2.05 (d, J = 10.6 Hz, 2H), 1.80 (s, 1H), 1.65 (s, 2H), 1.36 (d,
J = 36.9 Hz, 9H).

Tert-butyl(3-(2-((4-fluorophenyl)amino)-9-(tetrahydro-
2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate (10n).

Yellow solid; Yield: 52%; m.p.: 159–161°C; 1H NMR
(400 MHz, DMSO-d6) δ 9.57 (s, 1H), 8.68 (d, J = 7.6 Hz,
1H), 8.63 (s, 1H), 8.48 (s, 1H), 7.81 (d, J = 7.9 Hz, 2H), 7.53
(dd, J = 16.2, 8.2 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.15 (d, J =
7.9 Hz, 2H), 5.67 (d, J = 10.8 Hz, 1H), 4.25 (d, J = 5.7 Hz, 2H),
4.07 (d, J = 11.3 Hz, 1H), 3.72 (d, J = 13.1 Hz, 1H), 2.39 (dd, J =
22.0, 11.7 Hz, 1H), 2.28 (s, 3H), 2.02 (d, J = 11.0 Hz, 2H), 1.76
(s, 1H), 1.63 (s, 2H), 1.48–1.19 (s, 9H).

Tert-butyl(3-(2-((4-(N-methylsulfamoyl)phenyl)amino)-9-
(tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate
(10p). Yellow solid; Yield: 30%; 1H NMR (400 MHz, DMSO-d6)
δ 10.21 (s, 1H), 8.70 (d, J = 7.5 Hz, 1H), 8.65 (s, 1H), 8.59 (s, 1H),
8.14 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 8.3 Hz, 2H), 7.62–7.43 (m,
3H), 7.23 (d, J = 5.0 Hz, 1H), 5.74 (d, J = 10.9 Hz, 1H), 4.26 (d, J =
5.8 Hz, 2H), 4.08 (d, J = 11.3 Hz, 1H), 3.75 (s, 1H), 2.46–2.30 (m,
4H), 2.04 (dd, J = 24.5, 13.0 Hz, 2H), 1.80 (s, 1H), 1.64 (s, 2H),
1.40 (s, 9H).

Tert-butyl(3-(2-((4-(N,N-dimethylsulfamoyl)phenyl)amino)-
9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)benzyl)carbamate
(10q). Yellow solid; Yield: 57%; m.p.: 123–125°C; 1H NMR
(400MHz, DMSO-d6) δ 10.27 (s, 1H), 8.71 (d, J = 7.7 Hz, 1H),
8.62 (d, J = 15.9 Hz, 2H), 8.20 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 8.1 Hz,
2H), 7.57 (t, J = 7.6 Hz, 1H), 7.54–7.42 (m, 2H), 5.74 (d, J = 10.8 Hz,
1H), 4.25 (d, J = 5.5 Hz, 2H), 4.08 (d, J = 11.1 Hz, 1H), 3.74 (d, J =
10.8 Hz, 1H), 2.61 (s, 6H), 2.37 (dd, J = 22.3, 11.4 Hz, 1H), 2.05 (d,
J = 10.0 Hz, 2H), 1.80 (s, 1H), 1.64 (s, 2H), 1.40 (s, 9H).

Tert-butyl(3-(2-(pyridin-3-ylamino)-9-(tetrahydro-2H-pyran-
2-yl)-9H-purin-6-yl)benzyl)carbamate (10r). Yellow solid; Yield:
46%; 1H NMR (400MHz, DMSO-d6) δ 9.89 (s, 1H), 9.01 (s, 1H),
8.67 (d, J = 7.6 Hz, 1H), 8.63 (s, 1H), 8.54 (s, 1H), 8.42 (d, J = 8.2 Hz,
1H), 8.17 (s, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.50 (s, 1H), 7.45 (d, J = 7.5
Hz, 1H), 7.40 (d, J= 6.4Hz, 1H), 5.70 (d, J= 10.7Hz, 1H), 4.25 (d, J=
5.7 Hz, 2H), 4.08 (d, J = 11.2 Hz, 1H), 3.71 (t, J = 8.4 Hz, 1H), 2.38
(dd, J = 22.4, 11.3 Hz, 1H), 2.04 (d, J = 10.4 Hz, 2H), 1.78 (m, 1H),
1.63 (m, 2H), 1.35 (s, 9H).

4.1.4 General Method for the Preparation of
Compounds 5a-5f, 5h, 5i, 5k, 11a-11r
6-(4-(aminomethyl)phenyl)-N-(4-fluorophenyl)-9H-purin-2-
amine hydrochloride (11o). Compounds 10o (1.0 mmol) were
dissolved in HCl saturated ethyl acetate solution (15 ml) and
stirred at room temperature for 4 h and then filtered to get
compounds 11o. Light yellow solid; Yield: 90%; m.p.: >300°C;
1H NMR (400 MHz, DMSO-d6) δ 9.56 (s, 1H), 8.80 (d, J = 8.06
Hz, 2H), 8.36 (d, J = 14.57 Hz, 6H), 7.91–7.82 (m, 3H), 7.69 (d,
J = 8.22 Hz, 3H), 7.16 (t, J = 8.90 Hz, 2H), 4.14 (q, J = 5.94 Hz,
3H), 4.10 (s, 16H).13C NMR (101 MHz, DMSO-d6) δ 155.46,
155.24, 152.79, 148.27, 144.12, 140.34, 137.29, 136.04, 129.84,
129.59, 125.56, 117.53, 42.49. HRMS (AP-ESI) m/z Calcd for
C18H15FN6 [M + H]+ 335.1415, found: 335.1418.

Compounds 5a-5f, 5h, 5i, 5k, 11a-11n, and 11p-11r were
synthesized following the procedure described above.

N-(3-nitrophenyl)-6-phenyl-9H-purin-2-amine (5a). Light
yellow solid; Yield: 85%; m.p.: 201–203°C; 1H NMR (400 MHz,
DMSO-d6) δ 10.18 (s, 1H), 9.18 (s, 1H), 8.80 (d, J = 7.1 Hz, 2H),
8.53 (s, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.61
(dd, J = 12.3, 7.1 Hz, 4H); 13C NMR (101 MHz, DMSO-d6) δ
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155.77, 155.21, 153.43, 148.72, 143.21, 143.07, 136.26, 131.34,
130.09, 129.82, 128.99, 126.03, 124.61, 115.39, 112.23. HRMS
(AP-ESI) m/z Calcd for C17H12N6O2 [M + H]+ 333.1095, found:
333.1090.

6-(naphthalen-1-yl)-N-(3-nitrophenyl)-9H-purin-2-amine
(5b). Light yellow solid. Yield: 92%; m.p.: >300°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.31 (s, 1H), 8.98 (s, 1H), 8.54 (s, 1H),
8.18 (dd, J = 20.0, 9.5 Hz, 3H), 8.07 (d, J = 8.0 Hz, 1H), 7.95 (d,
J = 7.0 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H),
7.56 (m, J = 15.1, 14.2, 7.2 Hz, 3H). 13C NMR (101 MHz, DMSO-
d6) δ 156.27, 148.72, 143.93, 142.79, 133.86, 130.85, 130.67,
130.20, 129.36, 128.80, 127.23, 126.72, 126.19, 125.70, 124.73,
115.71, 112.46. HRMS (AP-ESI) m/z Calcd for C21H14N6O2 [M
+ H]+ 383.1251, found: 383.1250.

N-(3-nitrophenyl)-6-(1H-pyrrol-2-yl)-9H-purin-2-amine
hydrochloride (5c). Yellow solid; Yield: 91%; m.p.: 236°C
(Dec.); 1H NMR (400 MHz, DMSO-d6) δ 11.41 (s, 1H), 9.87
(s, 1H), 9.14 (s, 1H), 8.31 (s, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.77
(d, J = 8.0 Hz, 1H), 7.58 (t, J = 8.1 Hz, 1H), 7.42 (s, 1H), 7.20 (s,
1H), 6.35 (s, 1H); 13C NMR (101 MHz, DMSO-d6) δ 155.98,
154.38, 148.73, 147.23, 143.24, 142.59, 130.08, 128.69, 124.54,
124.45, 122.78, 115.11, 113.89, 112.32, 110.54. HRMS (AP-
ESI) m/z Calcd for C15H11N7O2 [M + H]+ 322.1047, found:
322.1044.

6-(benzo[d][1,3]dioxol-5-yl)-N-(3-nitrophenyl)-9H-purin-
2-amine (5d). Yellow solid; Yield: 97%; m.p.: 260°C (Dec.); 1H
NMR (400 MHz, DMSO-d6) δ 10.12 (s, 1H), 9.14 (s, 1H),
8.75–8.44 (m, 2H), 8.33 (s, 1H), 8.08 (d, J = 8.2 Hz, 1H),
7.79 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 8.1 Hz, 1H), 7.16 (d, J =
8.2 Hz, 1H), 6.17 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ
155.92, 154.27, 152.61, 150.62, 148.62, 148.32, 143.28, 142.42,
130.16, 128.88, 125.40, 124.89, 121.08, 115.92, 112.53, 109.00,
108.95, 102.33. HRMS (AP-ESI) m/z Calcd for C18H12N6O4 [M
+ H]+ 377.0993, found: 377.0993.

N-(3-nitrophenyl)-6-(thiophen-3-yl)-9H-purin-2-amine
(5e). Yellow solid; Yield: 93%; m.p.:> 280°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.09 (s, 1H), 9.22 (s, 1H), 8.97 (s,
1H), 8.40 (s, 1H), 8.28 (d, J = 5.02 Hz, 1H), 8.09 (d, J = 8.04 Hz,
1H), 7.79 (d, J = 5.09 Hz, 2H), 7.59 (t, J = 8.13 Hz, 1H). 13C
NMR (101 MHz, DMSO-d6) δ 155.89, 154.93, 149.24, 148.66,
143.55, 142.89, 138.35, 131.01, 130.14, 127.79, 127.55, 124.73,
115.54, 112.32. HRMS (AP-ESI) m/z Calcd for C15H10N6O2S
[M + H]+ 339.0659, found: 339.0661.

N,6-bis(3-nitrophenyl)-9H-purin-2-amine (5f). Brown solid;
Yield: 84%; m.p.: >300°C; 1H NMR (400 MHz, DMSO-d6) δ 13.44
(s, 1H), 10.29 (s, 1H), 9.79 (s, 1H), 9.34 (d, J = 7.7 Hz, 1H), 9.12 (s,
1H), 8.57–8.45 (m, 2H), 8.20 (d, J = 8.0 Hz, 1H), 7.98 (t, J = 8.0 Hz,
1H), 7.86 (d, J = 7.9 Hz, 1H), 7.66 (t, J = 8.1 Hz, 1H). 13C NMR
(101 MHz, DMSO-d6) δ 155.81, 154.95, 152.96, 147.88, 144.25,
140.57, 135.49, 135.07, 132.55, 130.41, 129.76, 129.62, 125.58,
117.81, 42.73. HRMS (AP-ESI) m/z Calcd for C17H11N7O4 [M +
H]+ 378.0945, found: 378.0964.

Methyl 3-(2-((3-nitrophenyl)amino)-9H-purin-6-yl)benzoate
(5h). Light yellow solid; Yield: 53%; m.p.: 257°C; 1H NMR
(400MHz, DMSO-d6) δ 10.20 (s, 1H), 9.45 (s, 1H), 9.19–9.04
(m, 2H), 8.46 (s, 1H), 8.17 (d, J = 8.0 Hz, 2H), 7.84–7.77 (m,
2H), 7.60 (t, J = 8.1 Hz, 1H), 3.93 (s, 3H); 13C NMR (101MHz,

DMSO-d6) δ 166.51, 155.96, 155.30, 152.22, 148.69, 143.74, 142.84,
136.50, 134.22, 131.87, 130.66, 130.34, 130.15, 129.64, 124.81, 115.67,
112.48, 52.84. HRMS (AP-ESI)m/zCalcd for C19H14N6O4 [M+H]+

391.1149, found: 391.1147.
6-(4-fluorophenyl)-N-(3-nitrophenyl)-9H-purin-2-amine

(5i). Yellow solid; Yield: 97%; m.p.: 245–247°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.13 (s, 1H), 9.13 (s, 1H), 8.97–8.89
(m, 2H), 8.41 (s, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 7.9 Hz,
1H), 7.59 (t, J = 8.1 Hz, 1H), 7.46 (t, J = 8.3 Hz, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 165.58, 163.10, 155.97, 154.99, 152.26,
148.67, 143.51, 142.77, 132.21, 132.12, 130.17, 124.77, 116.26,
116.05, 115.67, 112.41. HRMS (AP-ESI) m/z Calcd for
C17H11FN6O2 [M + H]+ 351.1000, found: 351.0998.

Methyl 4-(2-((3-nitrophenyl)amino)-9H-purin-6-yl)benzoate
(5k). Light yellow solid; Yield: 95%; m.p.; 212–214°C; 1H NMR
(400MHz, DMSO-d6) δ 10.26 (s, 1H), 9.17 (s, 1H), 8.93 (d, J = 8.1
Hz, 2H), 8.57 (s, 1H), 8.18 (d, J= 8.0Hz, 2H), 8.11 (d, J= 8.1Hz, 1H),
7.80 (d, J = 7.9 Hz, 1H), 7.60 (t, J = 8.1 Hz, 1H), 3.92 (s, 3H). 13C
NMR (101MHz, DMSO-d6) δ 166.37, 155.88, 155.66, 151.78,
148.72, 144.04, 142.88, 140.37, 131.73, 130.15, 129.89, 129.76,
125.53, 124.73, 115.59, 112.35, 52.81. HRMS (AP-ESI) m/z Calcd
for C19H14N6O4 [M + H]+ 391.1149, found: 391.1148.

6-(3-aminophenyl)-N-(3-nitrophenyl)-9H-purin-2-amine
hydrochloride (11a). Yellow brown solid; Yield: 90%; mp:
>300°C; 1H NMR (400 MHz, DMSO-d6) δ 13.16 (s, 1H),
10.05 (s, 1H), 9.16 (s, 1H), 8.34 (s, 1H), 8.17–8.09 (m, 2H),
8.05 (d, J = 7.7 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.58 (dd, J =
18.0, 9.8 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 6.78 (d, J = 7.8 Hz,
1H), 5.26 (s, 2H).

13C NMR (101 MHz, DMSO-d6) δ 155.67, 149.17, 148.74,
143.18, 136.84, 130.13, 129.36, 124.53, 117.78, 116.99, 115.26,
112.19. HRMS (AP-ESI) m/z Calcd for C17H13N7O2 [M + H]+

348.1203, found: 348.1200.
6-(4-aminophenyl)-N-(3-nitrophenyl)-9H-purin-2-amine

hydrochloride (11b). Yellow solid; Yield: 85%; m.p.: >300°C; 1H
NMR (400 MHz, DMSO-d6) δ 10.46 (s, 1H), 9.13 (s, 1H), 8.74
(d, J = 7.7 Hz, 3H), 8.08 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.1 Hz,
1H), 7.62 (t, J = 8.1 Hz, 1H), 7.32 (d, J = 7.7 Hz, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 155.36, 154.78, 151.97, 148.69, 143.66,
142.35, 131.41, 130.30, 124.96, 120.21, 116.05, 112.60, 40.60,
40.40, 40.19, 39.98, 39.77, 39.56, 39.35. HRMS (AP-ESI) m/z
Calcd for C17H13N7O2 [M + H]+ 348.1203, found: 348.1205.

6-(3-(aminomethyl)phenyl)-N-(3-nitrophenyl)-9H-purin-2-
amine hydrochloride (11c). White solid; Yield: 81%; m.p.:
236–238°C; 1H NMR (400MHz, DMSO-d6) δ 10.20 (s, 1H),
9.29 (s, 1H), 8.84 (d, J = 31.7 Hz, 2H), 8.52 (s, 4H), 8.07 (d, J =
8.2 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.76 (s, 1H), 7.70 (t, J = 7.6 Hz,
1H), 7.61 (t, J = 8.1 Hz, 1H), 4.19 (d, J = 5.4 Hz, 2H); 13C NMR
(101MHz, DMSO-d6) δ 156.32, 152.77, 148.70, 143.88, 142.63,
135.05, 132.47, 130.37, 130.21, 129.83, 129.59, 124.92, 115.85,
112.51, 42.76. HRMS (AP-ESI) m/z Calcd for C18H15N7O2 [M
+ H]+ 362.1360, found: 362.1358.

6-(4-(aminomethyl)phenyl)-N-(3-nitrophenyl)-9H-purin-2-
amine hydrochloride (11d). Light yellow solid; Yield: 92%; m.p.:
>300°C; 1H NMR (400MHz, DMSO-d6) δ 10.24 (s, 1H), 9.23 (s,
1H), 8.82 (d, J = 7.7 Hz, 2H), 8.63 (s, 4H), 8.08 (d, J = 8.1 Hz, 1H),
7.79 (dd, J = 16.3, 7.9 Hz, 3H), 7.60 (t, J = 8.1 Hz, 1H). 13C NMR
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(101 MHz, DMSO-d6) δ 156.07, 154.90, 152.60, 148.64, 143.76,
142.66, 137.67, 135.36, 130.16, 129.72, 129.68, 124.84, 122.81,
115.77, 112.43, 42.34. HRMS (AP-ESI) m/z Calcd for
C18H15N7O2 [M + H]+ 362.1360, found: 362.1356.

6-(3-(2-aminoethyl)phenyl)-N-(3-nitrophenyl)-9H-purin-
2-amine hydrochloride (11e). Yellow solid; Yield: 54%; mp:
>230°C; 1H NMR (400 MHz, DMSO-d6) δ 10.24 (s, 1H), 9.21 (s,
1H), 8.77–8.52 (m, 3H), 8.19 (s, 3H), 8.11 (d, J = 8.2 Hz, 1H),
7.81 (d, J = 7.9 Hz, 1H), 7.61 (dd, J = 12.0, 7.7 Hz, 2H), 7.53 (d,
J = 7.4 Hz, 1H), 3.23–3.00 (m, 4H); 13C NMR (101 MHz,
DMSO-d6) δ 156.41, 154.21, 153.39, 153.02, 148.60, 146.95,
143.64, 142.37, 138.68, 138.57, 135.14, 132.34, 130.19, 129.84,
129.59, 128.16, 124.99, 116.04, 112.60, 40.25 33.35. HRMS (AP-
ESI) m/z Calcd for C19H17N7O2 [M + H]+ 376.1516, found:
376.1520.

6-(3-(aminomethyl)phenyl)-N-phenyl-9H-purin-2-amine
hydrochloride (11f). Light yellow solid; Yield: 92%; m.p.:
203–205°C; 1H NMR (400 MHz, DMSO-d6) δ 9.97 (s, 1H),
9.09 (s, 1H), 8.77 (s, 3H), 8.58 (s, 1H), 8.48 (d, J = 7.5 Hz, 1H),
7.87 (d, J = 7.8 Hz, 2H), 7.81 (d, J = 7.4 Hz, 1H), 7.69 (t, J = 7.5
Hz, 1H), 7.34 (t, J = 7.4 Hz, 2H), 7.00 (t, J = 7.1 Hz, 1H), 4.18 (d,
J = 4.5 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 157.16,
154.55, 152.94, 143.13, 140.84, 135.06, 132.67, 130.59, 129.66,
129.44, 129.07, 122.15, 119.43, 42.69. HRMS (AP-ESI) m/z
Calcd for C18H16N6 [M + H]+ 317.1509, found: 317.1507.

6-(4-(aminomethyl)phenyl)-N-phenyl-9H-purin-2-amine
hydrochloride (11g). Light yellow solid; Yield: 92%; m.p.:
200–202°C; 1H NMR (400 MHz, DMSO-d6) δ 9.53 (s, 1H),
8.81 (d, J = 8.09 Hz, 2H), 8.36 (s, 1H), 7.87 (d, J = 8.05 Hz, 2H),
7.70 (d, J = 8.21 Hz, 2H), 7.32 (t, J = 7.85 Hz, 2H), 6.95 (t, J =
7.27 Hz, 1H), 4.15 (q, J = 5.90 Hz, 2H).13C NMR (101 MHz,
DMSO-d6) δ 156.05, 155.04, 152.76, 144.44, 143.60, 137.54,
136.35, 135.56, 129.73, 129.66, 127.06, 123.46, 117.98, 42.38.
HRMS (AP-ESI) m/z Calcd for C18H16N6 [M + H]+ 317.1509,
found: 317.1507.

N-([1,19-biphenyl]-4-yl)-6-(3-(aminomethyl)phenyl)-9H-purin-
2-amine hydrochloride (11h). Yellow solid; Yield: 89%, m.p.: 210°C
(Dec.); 1H NMR (400MHz, DMSO-d6) δ 9.80 (s, 1H), 8.75 (d, J = 7.7
Hz, 2H), 8.57 (s, 1H), 8.49 (s, 3H), 8.00 (d, J= 7.8Hz, 2H), 7.70 (dt, J=
13.3, 7.0 Hz, 6H), 7.45 (t, J = 7.2 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 4.18
(d, J = 5.2 Hz, 2H). 13CNMR (101MHz, DMSO-d6) δ 157.13, 154.45,
153.07, 143.16, 140.41, 135.09, 133.75, 132.71, 130.59, 129.69, 129.49,
129.34, 128.34, 127.29, 127.22, 126.60, 124.40, 119.66, 42.69. HRMS
(AP-ESI) m/z Calcd for C24H20N6 [M + H]+ 393.1822, found:
393.1826.

6-(3-(aminomethyl)phenyl)-N-(p-tolyl)-9H-purin-2-amine
hydrochloride (11i). Light yellow solid, Yield: 90%; m.p.:
>300°C; 1H NMR (400 MHz, DMSO-d6) δ 9.85 (s, 1H), 9.03
(s, 1H), 8.72 (s, 3H), 8.59 (s, 1H), 8.50 (d, J = 7.5 Hz, 1H), 7.73
(dq, J = 23.2, 7.6 Hz, 4H), 7.16 (d, J = 7.9 Hz, 2H), 4.18 (d, J = 5.0
Hz, 2H), 2.29 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 157.20,
154.70, 152.84, 143.01, 138.28, 135.16, 135.03, 132.59, 131.02,
130.57, 129.65, 129.48, 119.57, 60.23, 42.72.HRMS (AP-ESI) m/z
Calcd for C19H18N6 [M + H]+ 331.1666, found: 331.1667.

6-(3-(aminomethyl)phenyl)-N-(4-(tert-butyl)phenyl)-9H-purin-
2-amine hydrochloride (11j). Yellow solid; Yield: 64%; 260°C (Dec.);
1H NMR (400MHz, DMSO-d6) δ 9.50 (s, 1H), 8.78–8.69 (m, 2H),

8.48 (d, J = 9.8 Hz, 4H), 7.77 (d, J = 7.9 Hz, 2H), 7.74–7.65 (m, 2H),
7.34 (d, J = 8.0 Hz, 2H), 4.16 (d, J = 5.2 Hz, 3H), 1.31 (d, J = 12.0 Hz,
9H); 13C NMR (101MHz, DMSO-d6) δ 157.29, 154.55, 152.88,
144.65, 143.05, 138.07, 135.06, 134.95, 132.70, 130.59, 129.68,
129.42, 125.68, 119.45, 42.68, 34.42, 31.78. HRMS (AP-ESI) m/z
Calcd for C22H24N6 [M + H]+ 373.2135, found: 373.213.

6-(3-(aminomethyl)phenyl)-N-(4-(piperazin-1-yl)phenyl)-
9H-purin-2-amine hydrochloride (11k). Yellow solid; Yield:
91%; m.p.: >300°C; 1H NMR (400 MHz, DMSO-d6) δ 9.68 (s,
1H), 9.42 (s, 2H), 8.78 (s, 1H), 8.69–8.53 (m, 4H), 7.83–7.72 (m,
3H), 7.68 (t, J = 7.7 Hz, 1H), 7.08 (d, J = 8.3 Hz, 2H), 4.17 (d, J =
5.2 Hz, 2H), 3.27 (s, 4H), 1.99 (s, 4H). 13C NMR (101 MHz,
DMSO-d6) δ 157.79, 156.51, 154.95, 152.82, 142.99, 134.96,
132.41, 130.49, 129.62, 129.52, 120.64, 117.93, 47.38, 42.79.
HRMS (AP-ESI) m/z Calcd for C22H24N8 [M + H]+ 401.2197,
found: 401.2193.

4-((6-(3-(aminomethyl)phenyl)-9H-purin-2-yl)amino)
benzenesulfonamide hydrochloride (11l). Yellow solid;
Yield: 96%;1H NMR (400 MHz, DMSO-d6) δ 10.04 (s, 2H),
8.79 (s, 3H), 8.73–8.59 (m, 1H), 8.50 (d, J = 5.42 Hz, 2H), 8.44
(s, 7H), 8.09–8.02 (m, 4H), 7.82–7.63 (m, 7H), 7.20 (s, 3H),
4.18 (d, J = 6.00 Hz, 4H), 4.03 (t, J = 6.87 Hz, 1H), 2.00 (d, J =
1.84 Hz, 1H), 1.26–1.14 (m, 1H). 13C NMR (101 MHz,
DMSO-d6) δ 156.14, 152.84, 144.57, 143.72, 136.21,
134.93, 132.10, 130.39, 129.81, 129.53, 127.11, 117.89,
42.89. HRMS (AP-ESI) m/z Calcd for C18H17N7O2S [M
+ H]+ 396.1237, found: 396.1234.

N1-(6-(3-(aminomethyl)phenyl)-9H-purin-2-yl)benzene-1,3-
diamine dihydrochloride (11m). Yellow solid; Yield: 96%; m.p.:
>300°C; 1H NMR (400MHz, DMSO-d6) δ 10.52 (s, 2H), 9.95 (s,
1H), 8.84 (d, J = 6.78Hz, 1H), 8.73 (s, 1H), 8.54 (s, 3H), 8.22 (s, 1H),
7.73 (ddd, J = 25.27, 17.03, 7.59 Hz, 3H), 7.43 (t, J = 8.13 Hz, 1H),
6.99 (d, J = 7.67Hz, 1H). 13CNMR (101MHz, DMSO-d6) δ 156.47,
152.82, 143.75, 142.57, 135.93, 135.01, 132.49, 132.38, 130.37,
130.26, 130.15, 129.55, 118.43, 115.95, 113.36, 42.78. HRMS
(AP-ESI) m/z Calcd for C18H17N7 [M + H]+ 332.1618, found:
332.1621.

6-(3-(aminomethyl)phenyl)-N-(4-fluorophenyl)-9H-purin-
2-amine hydrochloride (11n). Light yellow solid; Yield: 99%;
m.p.: >300°C; 1H NMR (400 MHz, DMSO-d6) δ 9.93 (s, 1H), 8.99
(s, 1H), 8.72 (s, 3H), 8.59 (s, 1H), 8.52 (d, J = 7.3 Hz, 1H), 7.87 (dd,
J = 7.6, 5.3 Hz, 3H), 7.79 (d, J = 7.4 Hz, 1H), 7.69 (t, J = 7.7 Hz,
2H), 7.20 (t, J = 8.5 Hz, 3H), 4.18 (d, J = 5.2 Hz, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 158.88, 157.13, 156.51, 154.70, 153.03,
143.05, 137.39, 135.37, 135.02, 132.53, 130.49, 129.62, 129.52,
121.07, 120.99, 115.68, 115.46, 60.23, 42.72. HRMS (AP-ESI)m/z
Calcd for C18H15FN6 [M + H]+ 335.1415, found: 335.1418.

4-((6-(3-(aminomethyl)phenyl)-9H-purin-2-yl)amino)-
N-methylbenzenesulfonamide hydrochloride (11p). Yellow
solid; Yield: 91%, m.p.: >300°C; 1H NMR (400 MHz, DMSO-
d6) δ 10.16 (s, 1H), 8.77–8.71 (m, 1H), 8.63 (s, 0H), 8.56 (s,
1H), 8.14–8.07 (m, 1H), 7.73 (dt, J = 14.44, 7.08 Hz, 2H), 4.74
(s, 9H), 4.18 (q, J = 5.95 Hz, 1H), 2.41 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 156.04, 152.84, 145.17, 136.21,
134.93, 132.09, 130.79, 130.35, 129.88, 129.55, 128.28,
118.04, 42.89, 29.18. HRMS (AP-ESI) m/z Calcd for
C19H19N7O2S [M + H]+ 409.4680, found: 409.4675.
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4-((6-(3-(aminomethyl)phenyl)-9H-purin-2-yl)amino)-
N,N-dimethylbenzene sulfonamide hydrochloride (11q).
Yellow solid; Yield: 91%, m.p.: >300°C; 1H NMR
(400 MHz, DMSO-d6) δ 10.34 (s, 1H), 8.86 (s, 1H), 8.67 (t,
J = 11.0 Hz, 5H), 8.16 (d, J = 8.1 Hz, 2H), 7.86–7.67 (m, 4H),
4.19 (d, J = 5.2 Hz, 2H), 2.61 (s, 6H). 13C NMR (101 MHz,
DMSO-d6) δ 156.20, 155.13, 152.97, 145.64, 143.91, 135.76,
135.03, 132.38, 130.39, 129.77, 129.62, 129.24, 126.10, 118.14,
42.78, 38.18. HRMS (AP-ESI)m/z Calcd for C20H21N7O2S [M
+ H]+ 424.1550, found: 424.1554.

6-(3-(aminomethyl)phenyl)-N-(4-(piperazin-1-yl)phenyl)-
9H-purin-2-amine dihydrochloride (11r). Yellow solid; Yield:
49%; m.p.: >300°C; 1H NMR (400 MHz, DMSO-d6) δ 10.70 (s,
1H), 9.73 (s, 1H), 8.86 (d, J = 7.1 Hz, 1H), 8.72 (s, 1H), 8.67 (d,
J = 8.6 Hz, 1H), 8.54 (d, J = 7.2 Hz, 4H), 8.08–8.01 (m, 1H), 7.75
(d, J = 7.3 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 4.24 (d, J = 5.4 Hz,
2H). 13C NMR (101 MHz, DMSO-d6) δ 152.82, 142.99, 134.96,
132.41, 130.49, 129.62, 129.52, 120.64, 117.93, 47.38,
42.79.HRMS (AP-ESI) m/z Calcd for C17H15N7 [M + H]+

318.1462, found: 318.1457.

4.1.5 General Method for the Preparation of
Compounds 5g, 5j
3-(2-((3-nitrophenyl)amino)-9H-purin-6-yl)benzoic acid (5g).
To a solution of compound 5h (0.48 mmol) in THF/H2O solution
(4:1, 10 ml), LiOH (1.5 mmol) was added, and the mixture was
stirred at rt for 4 h. Themixture was adjusted to around pH 2 with
HCl solution (2M), and the mixture was extracted twice with
ethyl acetate (50 ml), washed with brine, and dried with
anhydrous Mg2SO4. The solution was concentrated to get
compound 5g. White solid; Yield: 69%; m.p.:>300°C; 1H NMR
(400 MHz, DMSO-d6) δ 13.30 (s, 1H), 13.15 (s, 1H), 10.19 (s, 1H),
9.51 (s, 1H), 9.11 (d, J = 7.8 Hz, 1H), 9.08 (s, 1H), 8.42 (s, 1H), 8.16
(dd, J = 16.5, 7.9 Hz, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.75 (t, J = 7.6
Hz, 1H), 7.60 (t, J = 8.1 Hz, 1H). 13C NMR (101 MHz, DMSO-d6)
δ 167.63, 155.84, 155.28, 152.52, 148.72, 143.46, 142.97, 136.56,
133.80, 131.96, 131.76, 131.12, 130.84, 130.14, 129.38, 126.06,
124.70, 115.53, 112.38. HRMS (AP-ESI) m/z Calcd for
C18H12N6O4 [M + H]+ 377.0993, found: 377.0998.

Compound 5j was synthesized following the procedure
described above.

4-(2-((3-nitrophenyl)amino)-9H-purin-6-yl)benzoic acid
(5j).Yellow solid; Yield: 97%; m.p.: >300°C; 1H NMR
(400 MHz, DMSO-d6) δ 13.31 (s, 2H), 10.21 (s, 1H), 10.17 (s,
2H), 9.17 (s, 2H), 9.00 (t, J = 8.00 Hz, 4H), 8.42 (s, 2H), 8.17 (t, J =
7.15 Hz, 4H), 8.11 (d, J = 8.38 Hz, 2H), 7.80 (d, J = 8.20 Hz, 2H),
7.60 (t, J = 8.27 Hz, 2H), 7.56–7.47 (m, 1H). 13C NMR (101 MHz,
DMSO-d6) δ 166.40, 155.80, 155.55, 148.74, 143.86, 142.94,
140.53, 131.68, 130.68, 130.16, 129.90, 129.76, 124.70, 115.54,
112.31, 52.81. HRMS (AP-ESI) m/z Calcd for C18H12N6O4 [M +
H]+ 377.0993, found: 377.0998.

4.1.6 General Method for the Preparation of
Compounds 7a-7e
Tert-butyl (4-bromophenethyl)carbamate (7d). Compounds 6d
(2 mmol) and Di-tert-butyl dicarbonate (2.4 mmol) were dissolved
in dichloromethane (25 ml). K2CO3 (6mmol) was added and stirred

for 4 h at room temperature. After the completion, the reaction
mixture is extracted with ethyl acetate (15 ml x 3), washed with
water, 1M citric acid solution, and brine, and dried with anhydrous
Mg2SO4. The crude product were concentrated and purified by silica
gel chromatography to obtain compound 7d. Oil; Yield: 90%; m.p.:
44–46°C; 1H NMR (400MHz, CDCl3) δ 7.36 (d, J = 7.7 Hz, 2H),
7.20–7.10 (m, 2H), 4.56 (s, 1H), 3.36 (d, J = 6.2 Hz, 2H), 2.77 (t, J =
6.5 Hz, 2H), 1.44 (s, 9H).

Compounds 7a-7c and 7e were synthesized following the
procedure described above.

Tert-butyl (3-bromophenyl)carbamate (7a). White solid;
Yield: 70%; m.p.: 85–87°C; 1H NMR (400 MHz, CDCl3) δ 7.67
(s, 1H), 7.21 (d, J = 7.1 Hz, 1H), 7.18–7.10 (m, 2H), 6.49 (s, 1H),
1.52 (s, 9H).

Tert-butyl (4-bromophenyl)carbamate (7b). White solid; Yield:
77%; m.p.: 62–64°C; 1H NMR (400MHz, CDCl3) δ 7.39 (d, J = 8.3
Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 6.46 (s, 1H), 1.51 (s, 9H).

Tert-butyl (3-bromobenzyl)carbamate (7c). White solid;
Yield: 60%; m.p.: 55–57°C; 1H NMR (400 MHz, CDCl3) δ 7.43
(s, 1H), 7.39 (d, J = 6.4 Hz, 1H), 7.20 (d, J = 6.0 Hz, 2H), 4.86 (s,
1H), 4.29 (d, J = 5.1 Hz, 2H), 1.46 (s, 9H).

Tert-butyl (3-bromophenethyl)carbamate (7e). White solid;
Yield: 100%; m.p.: 44–46°C; 1H NMR (400 MHz, CDCl3) δ 7.36
(d, J = 7.7 Hz, 2H), 7.20–7.10 (m, 2H), 4.56 (s, 1H), 3.36 (d, J = 6.2
Hz, 2H), 2.77 (t, J = 6.5 Hz, 2H), 1.44 (s, 9H).

4.1.7 General Method for the Preparation of
Compounds 8a-8e
Tert-butyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)
carbamate (8d). Compound 7d (4.5 mmol), bis(pinacolato)diboron
(4.5 mmol), Pd (dppf)2Cl2 (0.05mmol), and KOAc (13.5 mmol)
were mixed in a two-neck flask. Under the protection of N2,
anhydrous DMSO (10ml) was added and the mixture reacted at
80°C for 12 h. After the completion, the reactionmixture was filtered
through a pad of Celite. Spinned the filtrate dry and then dissolved it
with ethyl acetate (15 ml) and water (20 ml), extracted twice with
ethyl acetate (50ml), washed with brine, and dried with anhydrous
Mg2SO4. The crude product was concentrated and purified by silica
gel chromatography to obtain compounds 8d. Oil; Yield: 90%; 1H
NMR (400MHz, CDCl3) δ 7.83 (d, J = 7.4 Hz, 2H), 7.09 (d, J = 7.4
Hz, 2H), 2.56 (s, 2H), 1.37 (s, 9H), 1.34 (s, 12H).

Compounds 8a-8c and 8e were synthesized following the
procedure described above.

Tert-butyl (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
phenyl)carbamate (8a).White solid; Yield: 93%; m.p.: 108–110°C;
1H NMR (400MHz, CDCl3) δ 7.61 (s, 2H), 7.47 (d, J = 7.2 Hz, 1H),
7.31 (t, J = 7.8 Hz, 1H), 6.46 (s, 1H), 1.51 (s, 9H), 1.33 (s, 12H).

Tert-butyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
phenyl)carbamate (8b). White solid; Yield: 63%. The product is
put into the next step without purification.

Tert-butyl (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
benzyl)carbamate (8c). White solid; Yield:70%; 1H NMR
(400 MHz, DMSO-d6) δ 7.57 (s, 1H), 7.52 (d, J = 6.4 Hz, 1H),
7.40 (s, 1H), 7.34 (t, J = 8.1 Hz, 2H), 4.12 (d, J = 5.8 Hz, 2H), 1.39
(s, 9H), 1.29 (s, 12H).

Tert-butyl (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
phenethyl)carbamate (8e). Oil; Yield: 58%; 1H NMR (400 MHz,
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CDCl3) δ 7.67 (d, J = 6.6 Hz, 1H), 7.64 (s, 1H), 7.38–7.28 (m, 2H),
4.52 (s, 1H), 3.38 (d, J = 6.1 Hz, 2H), 2.80 (t, J = 6.6 Hz, 2H), 1.43
(s, 9H), 1.35 (s, 12H).

4.2 Cyclin-Dependent Kinases Inhibition
Test
Experiments were carried out using the Kinase-Glo® Luminescent
Kinase Assays as described previously (Kashem et al., 2007). Briefly,
all enzymatic reactions were conducted at 30°C for 40min. The 50 µl
reaction mixture contains 40 mM Tris, pH 7.4, 10 mM MgCl2,
0.1 mg/ml BSA, 1 mM DTT, 10 µM ATP, 0.2 μg/ml CDKs, and
100 μM lipid substrate. The compounds were diluted with 10%
DMSO and then 5 µl of the dilution was removed and put into the
subsequent reaction. The kinase activities were measured by
detecting the content of remaining ATP. The luminescent signal
was correlated with the amount of residual ATP and negatively
correlated with the amount of kinase activity. The IC50 values were
calculated using Prism GraphPad software.

4.3 Anti-proliferation Test
Standard MTT (thiazolyl blue; 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide) assays were performed as 5 mg/
ml. Briefly, MDA-MB-231 or 293T cells were seeded into 96-well
plates and incubated for 24 h at 37°C. All compounds were
dissolved in DMSO, and a gradient dilution series were
prepared in 100 μl of cell medium, added to cells (in
triplicates), and incubated for 48 h at 37°C with 5% CO2. MTT
was added (5 mg/ml, 20 μl) to each plate and these mixtures were
incubated for another 4 h. Then, the medium was removed, and
the mixture was completely dissolved in DMSO (200 μL) after
shaking for 10 min. The absorbance was recorded at 490 nm
(detection wavelength) and 630 nm (reference wavelength) and
inhibition rates were calculated to determine IC50 values.

4.4 Cell Cycles
MDA-MB-231 cells were seeded in six-well plates and incubated
with 20 μM compounds 11c, 11l, 11p, and vehicle (0.2% DMSO)
for 24 h. Subsequently, cells were centrifugated and washed with
cold PBS buffer. After the centrifugation, the supernatants were
removed, and the cells were resuspended in PBS buffer. Then,
10 μl of PI were added and the cells were incubated in the dark for
15 min at room temperature. The stained cells were analyzed by a
flow cytometer (BD Accuri C6).

4.5 Molecular Dynamics Simulation
Based on the crystal structure of CDK2–inhibitor complex
(PDB: 5NEV), we performed molecular docking used by

AutoDock Vina to obtain the initial structure complex for
molecular dynamics simulation. Molecular dynamics
simulations of CDK2-11l complex were carried out
employing Amber16 package. The Amber14SB force field
was used for proteins, and the TIP3P model was used for
water molecules. The partial charge of 11l was assigned using
AM1-BCC methods via antechamber. The system was
neutralized with Cl-counterions and solvated in a
rectangular periodic box with explicit TIP3P water using
AmberTools17. The solvation system consists of ~30,000
atoms. The Particle-mesh Ewald method for nonbonded
interactions is used for MD simulation. After a series of
minimization and equilibration, standard molecular
dynamics simulations were performed on the GPU using
the CUDA version of PMEMD (Particle Mesh Ewald
Molecular Dynamics) for 50 ns with periodic boundary
conditions. The SHAKE algorithm is used to constrain all
the bonds involving hydrogen atoms. A time step of 2 fs was
used and the system temperature was controlled at 300K using
the Berendsen thermostat method. The snapshots were saved
every 10 ps for analysis. All other parameters are default.
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Probabilistic Pocket Druggability
Prediction via One-Class Learning
Riccardo Aguti 1,2†, Erika Gardini 1,2†, Martina Bertazzo1, Sergio Decherchi1* and
Andrea Cavalli 1,2

1Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy, 2Department of Pharmacy and
Biotechnology, University of Bologna, Bologna, Italy

The choice of target pocket is a key step in a drug discovery campaign. This step can be
supported by in silico druggability prediction. In the literature, druggability prediction is
often approached as a two-class classification task that distinguishes between druggable
and non-druggable (or less druggable) pockets (or voxels). Apart from obvious cases,
however, the non-druggable class is conceptually ambiguous. This is because any pocket
(or target) is only non-druggable until a drug is found for it. It is therefore more appropriate
to adopt a one-class approach, which uses only unambiguous information, namely,
druggable pockets. Here, we propose using the import vector domain description
(IVDD) algorithm to support this task. IVDD is a one-class probabilistic kernel machine
that we previously introduced. To feed the algorithm, we use customized DrugPred
descriptors computed via NanoShaper. Our results demonstrate the feasibility and
effectiveness of the approach. In particular, we can remove or mitigate biases chiefly
due to the labeling.

Keywords: druggability prediction, drug design, machine learning, unsupervised methods, one-class classification,
import vector domain description, conceptron

1 INTRODUCTION

Drug discovery is a time-consuming and complex task (Nicolaou, 2014). It requires a multistep
pipeline from biological understanding to fine-tuning of the lead candidate (for small molecules),
often via computational means (Csermely et al., 2013; Jamali et al., 2016). In the past 20 years,
computation has significantly contributed to many drug discovery steps via physics-based
simulation, machine learning modeling, and the combination of the two (Decherchi and Cavalli,
2020b; Decherchi et al., 2021).

In particular, computational modeling can help find a putatively druggable target and hence a
pocket that may accept a small molecule. A protein of interest is considered druggable when a drug
has been found to inhibit it. However, some authors consider ligandability to be a more appropriate
term for the propensity of the target/protein to accept drug-like molecules, irrespective of the more
complex pharmacokinetic and pharmacodynamic mechanisms implied by the term druggability
(Edfeldt et al., 2011). Here, we use the term druggable pocket to indicate a region of a protein with a
high probability of accepting a small molecule. The reliable in silico identification of potentially
druggable pockets is important for drug discovery. Finding new druggable hot spots can be
particularly relevant when searching for an allosteric binder and to boost selectivity. Selectivity,
in turn, is particularly important when designing chemical entities like PROTACs (Shimokawa et al.,
2017; Qi et al., 2021), even more relevant than optimizing the affinity of the warhead itself. While
researchers often know about the orthosteric pocket of a specific protein, it requires geometric and
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chemical insights to detect alternate druggable pockets, making it
a much more complex task. Effective tools are therefore required
to support the computational medicinal chemist in detecting and
ranking new pockets in order to design highly selective drugs.

The literature contains many reports on the computational
estimation of druggability (Agoni et al., 2020). The available tools
for this task include standalone software [e.g., P2Rank (Krivák
and Hoksza, 2018)] and web servers [e.g., PockDrug (Hussein
et al., 2015)]. Prediction often involves defining geometric and
chemical features to support machine learning techniques (Xie
et al., 2009) [e.g., DrugPred (Krasowski et al., 2011)].
Alternatively, more recent deep learning methodologies often
use 3D grids (voxels) of physicochemical fields. Indeed, there are
several methods for predicting the probability of a pocket’s
druggability. DoGSiteScorer (Volkamer et al., 2012b) is an
algorithm that detects pockets and estimates druggability by
considering global and local pocket proprieties. It uses support
vector machines to build a predictive model. PRANK (Krivák and
Hoksza, 2015) uses decision trees and random forests to re-rank/
re-score the pockets predicted by other software, such as
ConCavity (Capra et al., 2009) and Fpocket (Le Guilloux et al.,
2009). PRANK could help improve the performance of existing
prediction methods; it aims to predict the ligandability of a
specific point near the surface of the pocket. TRAPP is a
powerful method for analyzing molecular dynamics
trajectories. It was recently endowed with druggability
assessment capabilities, extending its analysis to an entire
ensemble of structures (Yuan et al., 2020).

Druggability can also be assessed with pharmacophores
(Desaphy et al., 2012) by using either very simple geometric
considerations (e.g., Cavity (Yuan et al., 2013)) or fully fledged
deep learning approaches. There are many such deep learning
approaches, which often leverage convolutional neural networks
coupled to 3D grids. In Zhang et al. (2020), the authors used both
the pocket and the ligand with DenseNet architecture. In contrast,
Pu et al. (2019) used convolutional neural networks specialized
for nucleotide and heme-binding sites, again starting from 3D
grids. InDeep (Mallet et al., 2021) is another contribution based
on a convolutional architecture. Here, the focus is on
characterizing protein–protein interfaces (PPI) to allow
designing of PPI disruptors. The capabilities of convolutional
neural networks were boosted by pocket segmentation in
Aggarwal et al. (2021). This work and others [e.g.,
Stepniewska-Dziubinska et al. (2020)] demonstrated that both
prediction and other activities, such as segmentation, are
beneficial, so one can devise a more complex framework than
a pure predictor. Along these lines, PUResNet (Kandel et al.,
2021) uses an interesting deep residual (skip connections)
decoder/encoder architecture derived from the U-net concept.
This work presented both an architecture and a cleanup
procedure for the training set. This class of deep methods is
very accurate but lacks native interpretability.

From the protein dataset perspective, some datasets used in
published works are suitable benchmarks. They are often used to
train and test machine learning protocols, thus creating a shared
base. For instance, in Hajduk et al. (2005), the authors created an
online dataset containing 72 unique protein-binding sites. The

authors in Schmidtke and Barril (2010) published two datasets: a
large but redundant dataset (DD, with 1,070 structures) and a
non-redundant subset (70 binding sites).

Here, we address the problem of druggability estimation from
the perspective of bias mitigation. The a priori dichotomy
between druggable and less druggable (or non-druggable)
pockets technically supports machine learning classifiers.
Conceptually, however, it is questionable to use or define a
non-druggable class. Indeed, apart from trivial cases (e.g., very
small pockets), it is at best ambiguous to define such class.
Defining a pocket as non-druggable (or less druggable)
automatically creates a bias in the learned model, which may
hamper the detection of a potentially useful pocket. Hence, we
argue that druggability estimation should be approached as a one-
class unsupervised learning task, not a classification one. This is
because a classification task would inevitably create arbitrary
user-dependent biases in the definition of the non-druggable
(or less druggable) class. Starting from this observation, we
devised a protocol that uses the import vector domain
description method (a probabilistic one-class non-linear
learner) to learn a hypersphere (a generalized minimum
enclosing ball), which contains druggable pockets (Decherchi
and Rocchia, 2016; Decherchi and Cavalli, 2020a). That is, only
the definition of a druggable pocket is required during training,
avoiding the creation of bias in the definition of the non-
druggable class. To support the learner, we used a
NanoShaper-based implementation of DrugPred (Krasowski
et al., 2011) descriptors with minor modifications (the
entrance area computed by NanoShaper is used as an
additional descriptor). We employed the dataset in Krasowski
et al. (2011) because it is widely used and explicitly defines a less
druggable set of pockets. Furthermore, we defined a diversified
new dataset of 100 protein targets to further validate the method.
This dataset is a subset of the Potential Drug Target Database
(PDTD (Gao et al., 2008)). Our results demonstrate the
effectiveness of the approach. In the following, Section 2
describes the method workflow, Section 3 shows the results of
the experiments, and Section 4 introduces possible future
developments and reports the final conclusions.

2 METHODS

In this section, we have described the proposed workflow for
druggability prediction. For clarity, we have separated the
training workflow from the testing (the operative phase) one.
The training phase is a step that is required to estimate (learn) the
model and comprises three main steps (see Figure 1):

1 First, we compute descriptors for the proteins of the training
set, in particular, for each protein, as follows:
a) the protein part is filtered from the input PDB, and the

radii of the Amber99SB-ildn force field are assigned to it;
b) the PDB file is thus converted to a .xyzr file and then passed

to NanoShaper to detect all the pockets;
c) a main druggable pocket is identified (one for each training

protein);

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 8704792

Aguti et al. One-Class Probabilistic Pocket Druggability Prediction

309

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


d) the geometric and chemical descriptors of the pocket are
computed.

2 All the information from the previous step is aggregated in
order to form the training dataset, which is therefore composed
by the descriptors of each main druggable pocket of the
training targets.

3 Finally, the training dataset is used to train the import vector
domain description (IVDD) machine learning method. In this
phase, a sphere is learned and allows to assign a probability
value to each pocket and consequently to distinguish druggable
(probability ≥ 0.5) and non-druggable pockets
(probability < 0.5).

On the other hand, the testing/operative protocol, that is,
when the model is used for predictions only, comprises three
main steps (see Figure 2):

1 First, we compute the descriptors for the current target protein,
as follows:
a) the protein part is filtered from the input PDB and the radii

of the Amber99SB-ildn force field are assigned to it;
b) the PDB file is thus converted to a .xyzr file and then passed

to NanoShaper to detect all the pockets;
c) the geometric and chemical descriptors of the pockets are

computed.
2 All the information from the previous step is aggregated
obtaining a single file comprised of the descriptors of each
pocket of the current target.

3 Finally, the previously estimated hypersphere is used to predict
the probability of each of the newly detected pockets. The

pockets with the highest probability are most likely to be
druggable.

In the following sections we provide more details regarding
the abovementioned steps. In particular, Section 2.1 describes
steps 1b and 1c of the pipeline, Section 2.2 provides
information regarding the descriptors building step (1d),
and finally, Section 2.3 explains the IVDD method
mentioned in step 3.

2.1 NanoShaper Pockets Detection and
Main Pocket Identification
The detection of all the available pockets is instrumental for
estimating the druggability of each pocket in the protein of
interest. For this step, we used the NanoShaper tool
(Decherchi and Rocchia, 2013; Decherchi et al., 2018) to
efficiently deliver the set of pockets on a protein. NanoShaper
was chosen as it accurately estimates the molecular surface
(Wilson and Krasny (2021)); the detected pockets are
triangulated with the same technique used for molecular
surface triangulation, hence providing smooth triangulated
meshes.

The detected pockets are saved as mesh files in MSMS or in
the .off format, and they can be easily parsed to support the
subsequent descriptors building step. NanoShaper also
provides volume, surface area, and a list of the
constituining atoms for all the internal cavities and pockets
identified for the given molecular system. These are identified
and computed via an intuitive approach, which involves a

FIGURE 1 | Training workflow. From the creation of the training dataset to the training phase of the IVDD method.
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volumetric difference of the regions of the space between
system’s solvent-excluded surfaces (SESs), with two probe
radii, dubbed a large probe (with radius R) and a small one
(with radius r) (Decherchi et al., 2018). The probe sizes encode
the expectation onto the shape of the pockets. High R values
allow the identification of shallow pockets, whereas high r
values will smooth inner surface gaps. Default values are 3.0 Å
and 1.4 Å for the large and small probes, respectively. The large
radius is based on empirical evidence and the small radius
mimics the water molecule. Here, we used the default value of
the small radius but fine-tuned the large radius to a value of
3.5 Å. With respect to the default value of 3.0 Å, we found that
this value allows a better detection of slightly more shallow
pockets (a larger surface size of pocket entrance).

To create the training dataset, we needed an automated
method to detect the orthosteric/main pocket, where the
ligand is located, and discriminate it from the others
(NanoShaper delivers several pockets). Because the
orthosteric pocket is well-identified in the analyzed PDB,
we used the surrounding atoms of the ligand. In detail, we
used the Jaccard index on the atom indices to easily detect the
ortostheric pocket; the Jaccard index of atoms is an accurate
proxy of the discretized volume overlap, often found in
druggability predictors. We defined the orthosteric pocket
as the pocket detected by NanoShaper with the maximal
Jaccard index with respect to the reference indices. This is
easily achieved by localizing the atom indices around target’s

natural substrate (or drug). The Jaccard index is defined as
follows:

J O, Pi( ) � |O ∩ Pi|
|O ∪ Pi|, (1)

where O is the indices set for the orthosteric site and Pi is the set of
detected atom indices in the ith pocket. The Jaccard index is
hence a natural measure of the quality of the detected pocket with
respect to ligand’s envelope. One can note that the Jaccard index
can be decomposed into two components, which account for the
degree of overimposition of the pocket and reference ligand
volume in two different ways. The first component is the
normalized intersection component Jint:

Jint O, Pi( ) � |O ∩ Pi|
|O| , (2)

and the second one is the normalized union component Jor:

Jor O, Pi( ) � |O|
|O ∪ Pi|. (3)

They both belong to the interval (0,1). They account, respectively,
for the ability to detect all the reference atoms (Jint) and the
tightness of detection (Jor). Both properties are desirable and
consistently lead to the Jaccard index upon multiplication. To
fairly evaluate the results, we considered these metrics together
with classification accuracy.

FIGURE 2 | Testing workflow. From the protein PDB file to the druggability prediction with the trained IVDD.
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2.2 Descriptors Building
To characterize each pocket identified by NanoShaper, we used
the descriptors defined by Krasowski et al. (2011) together with
the entrance area provided by NanoShaper (Table 1).

Binding site properties describing size, shape, polarity, and
amino acid composition were calculated using NanoShaper output
files as input to the descriptors builder. In particular, to compute
volume (vol), total surface area (area_b), and entrance area
(area_e) (which describes the area of the pocket mouth), we
directly used the estimations provided by NanoShaper. To
calculate the other descriptors, we started from the NanoShaper
output files describing the atoms and meshes of each pocket. The
hydrogen-bond donor and acceptor properties of each pocket were
calculated by considering the surface area surrounding all the polar
atoms (dsa_t and asa_t). Based on these descriptors, the
hydrophobic surface area (hsa_t) is defined as the difference
between the total surface area and the sum of the hydrogen-
bond donor and acceptor surface areas. Moreover, relative
amplitude of the hydrogen-bond donor and acceptor surface
areas (dsa_r and asa_r) and the hydrophobic surface area
(hsa_r) were computed by dividing each descriptor by the total
surface area of the binding site. Finally, the relative polar surface
area (psa_r) is defined as the sum between the relative hydrogen-
bond donor and acceptor surface areas. To characterize the shape
of different cavities, we used the compactness descriptor, defined
by Krasowski et al. (2011):

cness �
4π

��
vol
4
3 π

3
√

( )
2

area_b
. (4)

According to this equation, the closer the compactness is to 1, the
more spherical is the pocket. The remaining descriptors, relating
to amino acid composition, were calculated by considering the
occurrence of different classes of amino acids grouped by their
overall physicochemical properties. In particular, all the amino
acids were grouped into the following classes:

• Apolar: Ala, Gly, Val, Ile, Leu, Met, Phe, and Pro.
• Polar: Thr, Lys, Arg, Glu, Asp, Gln, Asn, and Ser.
• Charged: Lys, Arg, His, Asp, and Glu.
• Multifunctional: Trp, Tyr, His, and Cys.

To define the relative occurrence of hydrophic amino acids
(haa), polar amino acids (paa), charged amino acids (caa), and
multifunctional amino acids (maa), we computed the fraction of
each group of amino acids with respect to the total number of
amino acids comprising each cavity. Finally, we reported the
incidence of each amino acid of type (in_X) as descriptors,
defined as the sum of all the surface areas surrounding the
amino acid X.

2.3 Druggability Estimation via IVDD
One-Class Learning
As anticipated, we used a one-class approach, that is, we require
and consider for the training phase only the samples in the class
from which we want to learn the concept. The aim is to learn the
concept of a druggable pocket. This requires only samples
(pockets) that are known to be druggable. To perform this
step, we used the one-class learner dubbed import vector
domain description (Decherchi and Rocchia (2016)). The
import vector domain description method tries to embed the
available training samples into an enclosing hypersphere. This
sphere does not belong to the original input space but rather
resides in a, possibly infinite dimensional, kernel space. This
approach allows us to wrap the data in arbitrarily complex
enclosing surfaces because the hypersphere in kernel space
corresponds to a not necessarily spherical enclosing surface in
the original space (see Figure 3).

This makes the method very flexible. Moreover, the enclosing
surface is endowed with a probabilistic model, which assigns the
probability of belonging (or not) to the enclosing sphere.

The aim of the training procedure of IVDD is to find a sphere
configuration (center position and radius size) that best
minimizes the cost function (see later). The cost function tries
to maintain as much as possible the samples inside the sphere
while at the same time keeping under control the radius size,
possibly letting some training samples outside the sphere. One is
eventually searching for a compact representation of the space
spanned by the samples. We will call [πlow, πhigh] the range of
acceptance of the fraction of training examples inside the sphere.
It can be shown that the optimal sphere (the solution of the
minimization problem) is unique, as the problem is convex. Once
the final sphere configuration is found it determines predictions
during the operative phase. The non-druggable nature of a pocket
is just an interpretation over the probability values; strictly
speaking, one-class learning just describes the adherence of a
sample (a pocket) to a concept (druggability). If a crisp
classification is needed, the probability threshold of 0.5 can be
used. Samples outside the sphere (decision boundary) are
predicted as non-druggable (with a corresponding probability
lower than 0.5), while samples inside the sphere are predicted as
druggable (with a corresponding probability higher than 0.5).
Clearly, the inner and most central pockets are estimated to have

TABLE 1 |Descriptors of the datasets. The incidence is calculated for every amino
acid X.

Descriptor Abbr

Binding site volume vol
Total surface area area_b
Entrance area area_e
Binding site compactness cness
Relative hydrogen-bond donor surface area dsa_r
Hydrogen-bond donor surface area dsa_t
Relative hydrogen-bond acceptor surface area asa_r
Hydrogen-bond acceptor surface area asa_t
Relative hydrophobic surface area hsa_r
Hydrophobic surface area hsa_t
Relative occurrence of polar amino acids paa
Relative occurrence of non-polar amino acids haa
Relative occurrence of multifunctional amino acids maa
Relative occurrence of charged amino acids caa
Relative polar surface area (dsa_r + asa_r) psa_r
incidence of amino acid X in the binding site relative to the surface in_X
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the highest probabilities of being druggable. Indeed, this
probability is high at the core of the sphere and decreases
toward the edges.

At a mathematical level, the training phase of the IVDD
method is characterized by the following minimization problem:

min
Γ,a

Γ2 − Ĉ∑
n

i�1
log pi( ), (5)

where Γ is the square of the radius of the hypersphere, constant
Ĉ � C/n represents the trade-off between the radius size and the
error minimization, and pi is the probability defined by a logistic
model:

pi � 1
1 + exp βfi( )

, (6)

where β is a fixed coefficient and fi is the decision function defined
as follows:

fi � d2 Φ(xi), a( ) − Γ, (7)
where d2 (Φ(xi), a) is the distance function and a is the center of
the hypersphere. The cost function in Eq. 5 is optimized via an
efficient learning algorithm that can be ascribed to a class of
sequential minimal optimization (SMO) algorithms (Zeng et al.,
2008). The introduced probability model is used to probe the
druggability of each pocket. We refer the reader to Decherchi and
Rocchia (2016) for further details.

3 RESULTS

3.1 Datasets
In this work, we used two different datasets to run the
experiments. In both cases, we generated two versions of the
dataset: with and without hydrogen atoms. The first dataset is the
NRDLD dataset, presented in Krasowski et al. (2011). It is the
largest publicly accessible non-redundant dataset for model

building and validation of structure-based druggability
methods. The dataset comprises 115 structures (protein-
binding sites), including 71 druggable and 44 less druggable
(which becomes 42 after the analysis in Krasowski et al.
(2011)). For each binding site, 35 different descriptors are
calculated, as described in section 2.2 and summarized in Table 1.

In addition to the NRDLD dataset, we created another dataset
comprising the binding sites of 100 different proteins. Those
targets are taken from the PDTD (Potential Drug Target
Database) (Gao et al., 2008), a free online collection of 1,100
3D structures of proteins. The targets in our 100-protein dataset
include enzymes, receptors, antibodies, signaling proteins, and
lipid-binding proteins. We thus obtained 5,692 and 4,807 binding
sites without and with hydrogen atoms, respectively. Of these, 100
are orthosteric (one for each target). For each structure, we
selected the pocket that hosts the drug or substrate. We
avoided selecting pockets that host cofactors. We defined these
pockets as orthosteric (or main) throughout the text (because the
drug is co-crystallized in the orthosteric site in most cases). As for
the NRDLD dataset, we calculated previously defined descriptors
for each binding site (see Table 1).

For more information on the targets of the NRDLD and the
PDTD datasets, see Supplementary Material Sections S1, S2.

3.2 Model Training
We trained IVDD considering the descriptors of n = 70 druggable
structures in the NRDLD dataset. The 1nvj structure was
excluded since it represents a small oligonucleotide and we
only considered proteins to calculate the descriptors. The
following parameters were adopted: kernel used is RBF with
σ = maxij (dij)/log(n) (where dij is the distance between the i-
th and the j-th sample); value of C is initialized as 0.5, the value of
β is set as 25, while the range of accepted inner samples is set to
[πlow, πhigh] = [0.8, 0.9]. The values of [πlow, πhigh] may vary
according to the reliability of the training dataset. In this case, we
preferred a conservative approach, with 80–90% of samples
included inside the sphere and the remaining peripheral

FIGURE 3 | IVDD method: each sample (druggable pocket) is a single point in a d-dimensional space (here d =35, which is the number of descriptors). The
hypersphere is created in a kernel space. The mapping between the feature space and the kernel space is given by the function ϕ.
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20–10% as outliers, in order to avoid overfitting. The learning
phase is stopped when the range of inner samples is hit. Each time
the training is repeated, the C is increased/reduced by 0.01
(increased if the percentage of samples inside the sphere is
lower than the desired range, reduced otherwise). In our case,
the training procedure ended with 90% samples inside the sphere

and a final C value of 0.1 for the solution without hydrogen atoms
and with 90% of samples inside the sphere and a final C value of
0.12 for the solution with hydrogen atoms.

Figure 4 shows a 2D representation of the training set
obtained by reducing the dimensionality via a principal
component analysis (PCA) (Jolliffe, 1986). For some samples,

FIGURE 4 | 2D representation of the training samples via PCA dimensionality reduction. Each point corresponds to a training sample (protein-binding site). The
color of each point corresponds to the probability assigned by IVDD (graded according to the color map on the right). For some training samples, the corresponding 3D
structure is shown. (A) is without hydrogen atoms, whereas in (B) hydrogen atoms were added.
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we additionally plotted the corresponding 3D structure. In both
cases, most of the training samples coherently obtained a high
probability of druggability (dark red points in Figure 4). This
outcome is obtained because we imposed the solution to include
at least 80% of the training samples inside the sphere.

Considering the solution without hydrogen atoms (see
Figure 4A), the sample 1udt has the highest probability and is
the sample nearest to the center of the sphere. In this structure,
the pocket identified by NanoShaper is very compact and well-
defined. IVDD performs the best in cases where the pocket closely
surrounds the ligand bound in it. The samples outside the sphere
(corresponding to 10% of the samples) obtained low probability
scores. These scores are explainable by looking at the pocket
shape. Structures such as 1kvo, 4cox, and 1k7f do not look like
well-defined pockets but rather like a fusion of more than one
pocket. This leads to descriptors that are quite distant from those
that the algorithm is learning as the druggable reference. As a
consequence, those structures are scored as outliers. This
highlights that ex post segmentation can be a powerful
preprocessing tool before the machine learning step.
Nevertheless, IVDD can cope with this situation by excluding
or marginalizing percolating pockets. It is possible to identify
another case where NanoShaper did not correctly identify the
orthosteric pocket (i.e., 2aa2). Here, the pocket is very shallow
and the bound ligand is not deeply buried. The identified pocket
is much smaller than it should be, leading to a low probability.
This effect is expected because NanoShaper can only detect
shallow pockets via a proper tuning of the big probe, whereas
the selected value is expected to work mainly for deep buried
prototypical pockets.

The solution with hydrogen atoms (see Figure 4B) identifies
the sample 1xm6 as having the highest probability. In contrast to
the solution without hydrogen atoms, its structure is now more
compact around the ligand with a greater Jint. Since the presence
of hydrogen atoms better defined the orthosteric pocket,
NanoShaper improved its accuracy, leading to a high IVDD
probability. This happened similarly for 1k7f, where the
channel that led to a big pocket was closed by the presence of
hydrogen atoms. In this specific case, NanoShaper identified the
orthosteric pocket with a Jaccard index three times better than the
solution without hydrogen atoms. Although the solution with
hydrogen atoms solved some NanoShaper errors (wide
percolation), pockets such as 1kvo, 4cox, and 2aa2 remained
more or less unchanged, with very big or shallow structures. The
option to use hydrogen atoms (or not) is partially data-dependent
and is further studied in NRDLD and new datasets.

3.3 Experiment on the NRDLD Dataset
In this step, we used the 42 less druggable structures described in
Krasowski et al. (2011) in order to test the previously trained
model and perform druggability prediction. Figures 5 and 6 show
the probability assigned to each structure by the IVDD method
for the solutions without and with hydrogen atoms, respectively.

Generally speaking, the following results are relatively similar.
The resulting trend shows that IVDD predicts a probability
greater than 0.8 for around half of the less druggable set. This
points to a possible bias in the “less druggable” set. Indeed, a
purely unsupervised approach such as this one, in which no a
priori dichotomy is created, shows that several pockets are not
judged to be less druggable. On the contrary, more than half are

FIGURE 5 | Druggability prediction for the less druggable subset of the NRDLD dataset without adding hydrogen atoms. For each protein-binding site (the x-axis),
we predicted its druggability probability (the y-axis and color of the bar).
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scored with high probability values. The less druggable nature can
be ascribed partially to the shallow nature of this set; however,
thanks to the large probe set to 3.5 Å, NanoShaper can still
detect them.

This result hence partially contrasts with the less druggable
labeling of this dataset. One should consider the principles behind
this previous classification. Krasowski et al. (2011) postulated that
a protein (not just the pocket) can be ascribed to the less
druggable realm if none of the following conditions are met:
1) at least one ligand is orally available as judged by the Lipinski’s
rule of five and 2) the ligands must have a clogP ≥ –2. In addition,
the ligand efficiency of at least one of the ligands fulfilling criteria
1) and 2) must be ≥ 0.3 kcal mol−1 per heavy atom. To correctly
fulfill the requirements one should be able to test all the chemical
space before making any conclusion. Indeed, ideally, and more
correctly, one could define the true druggability of a pocket as the
value of the activity of the best possible ligand for that pocket in
the chemical space. As the sampling of the chemical space is
limited and further biases are due to the drug discovery
community interest and efforts for a specific protein, this
classification is questionable and not necessarily reliable. The
problem of druggability classification of a pocket, or a protein,
that is ligand-dependent is that it would require the true sampling
of the chemical space. In our proposal, instead, we do not define a
priori the labels but concentrate on the only reliable information
that is, druggable pockets. The final result of this is that some
pockets previously labeled as less druggable instead obtain high
druggability probability values.

It is interesting to analyze the probability shift from lower to
upper values, systematically. Figure 7 shows the orthosteric

pockets found by NanoShaper for the less druggable proteins,
where we subsampled the structures set with a ratio of one every
five complexes. The pockets here tend to become deeper and
more compact moving from lesser probability to higher. The shift
is particularly evident comparing 1onz and 1cg0, where the first
case is a very shallow pocket, in which a ligand can be found, but it
is neither a prototypical nor ideal pocket; its probability value is
0.46. In contrast, 1cg0 shows a much better defined and large
enough pocket that would host a potential ligand well; IVDD
classifies it as druggable with a probability value of 0.97. Except
for 1qxo (a pocket detected by NanoShaper that is too large), one
can observe that the lower the score, the smaller andmore shallow
the pocket is. This is also evident looking at the portion of solvent-
exposed surface of the ligands, where the low probability pockets
tend to have more solvent-floating ligands.

There are some particularly interesting cases in this less
druggable set, also considering the ligands found in the crystal
structures. In 1kts, 1gpu, 1ucn, and 1cg0 the ligands are small
molecules or small molecule–like ligands. Missing these pockets
would be quite negative in a drug discovery campaign. All these
pockets score quite high with our method. One should not restrict
to the pure small molecule paradigm; in the case where one is
concerned with the design of a molecular glue or a PROTAC,
even a warhead relatively not too active can be sufficient to
degrade the protein. Our method is agnostic to ligand-induced
labeling and avoids to miss or undervalue this kind of pockets.

At a technical level, it is interesting to compare the pocket
probabilities with and without hydrogen addition and to consider
the NanoShaper’s behaviour. As anticipated, adding or not
adding hydrogen atoms does not change the detection of the

FIGURE 6 | Druggability prediction for the less druggable subset of the NRDLD dataset with the addition of hydrogen atoms. For each protein binding site (the
x-axis), we predicted its druggability probability (the y-axis and color of the bar).
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main pocket by NanoShaper (highest Jaccard index). However,
the shape and relative probability ranking both change. A first
observation is that, in some peculiar cases, the percolating
behavior of NanoShaper pockets cannot be solved by adding
hydrogen atoms. Indeed, 1qxo is still ranked last and, coherently,
this pocket is percolating widely inside protein crevices. This
global invariance is confirmed by analyzing 1icj (see Figure 8). In
this case, the detection of the main pocket is geometrically, but
not semantically, changed when the structure with and without
hydrogens atoms are considered. That is, the main detected

pocket is the same but is in another monomer of the
homotrimeric unit. Despite this finding, its druggability
probability changes when adding hydrogen atoms. This
demonstrates that the same pocket in two different
conformations (monomers) is well-detected and always ranked
as druggable. Indeed, without hydrogen atoms we can identify the
orthosteric pocket in monomer A. Upon addition of hydrogen
atoms, we instead identified the orthosteric pocket in monomer B.
In this last case, the Jaccard index is higher with improved pocket
quality (the pocket is more compact and located at the interface).

FIGURE 7 | Main pockets (computed without hydrogen atoms) of 1onz, 1bmq, 1m0n, 1mai, 1nnc, 3jdw, 1f9g, and 1cg0. The pocket surface is in blue and the
complexed ligand in the pdb file is in the VdW style. The number is the estimated druggability probability value.

FIGURE 8 | Main pocket shift for 1icj together with the co-crystallized ligand. (A) Main pocket detected when adding hydrogen atoms. (B) Main pocket without
adding hydrogen atoms. The pocket is semantically the same orthosteric pocket but changes from onemonomer to another. The three structures of ligands bound in the
PDB structure are also reported.
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However, the probability value changes as the corresponding
geometry (and presence or absence of hydrogen atoms) changes,
leading to a way higher value for pocket B. Therefore, from one side,
what is judged druggable remains druggable. However, inside the
druggable set, conformational changes of the same pocket have a
non-trivial role in shifting the probability value. This confirms that it
is crucial to consider dynamical aspects, particularly the probability
of a given site conformation (and hence its free energy), in order to
obtain a complete picture of the overall druggability of a site, which
may be dealt with as a physical observable value.

Overall, this analysis shows that the dataset definition can
create non-trivial biases, including biases due to labeling and the
presence or absence of hydrogen atoms, which can induce local
changes. One-class learning can mitigate the first bias because it
only uses the druggable class during training. In the next section,
we discuss other possible sources of bias and further evaluate the
accuracy on a wider and curated dataset, also considering the
initial processing of the structures (hydrogen addition).

3.4 PDTD Subset Validation
In this analysis, we used the 100-protein dataset, which is our
curated subset of the PDTD. Here, we again evaluated the
accuracy of classification and also searched for other possible
sources of biases. It is well-known that the volume value has a
crucial role in determining the druggability of a site. Among
others, in Nayal and Honig (2006), the authors used SCREEN
(Surface Cavity Recognition and Evaluation) to locate and
analyze pockets in the NRDLD dataset. They observed that
just picking the pocket with the highest volume value had a
success rate of 64%. However, just looking at the volume value
may create further biases, some intrinsic, some operational, and
some technical. An overly large volume could be erroneously
ascribed to the main site just because a small fraction contains the
true binding site. This can happen in dependence of the pocket
detection engine (e.g., for the percolation effect). Fortunately, this
can be evaluated well via overlapping volume metrics or by the

Jaccard index. Here, we performed this analysis by considering
this issue. We compared our performance with that obtained by
considering a simple descending ranking of the pocket volumes.
Figure 9 and Table 2 show the results for the situations with and
without hydrogen atoms. Using a simple ranking of the volume,
we obtained a better performance at top 5, with an accuracy of
97%. This decreased to 89%when hydrogen atoms were added. In
contrast, IVDD identified 90% of the orthosteric pockets in the
top 5 highest probability pockets, which increased to 92% when
hydrogen atoms were added. This shows that IVDD is more
stable, although lower in accuracy in absolute terms.

It is important to consider the quality of the pockets identified
in both cases. The presence of hydrogen atoms sometimes allows
the fragmentation of some of the overly large pockets. This not
only increases the accuracy in terms of the main pocket
druggability estimation but also affects the overall shape,
which often becomes too tight. This is a NanoShaper-
dependent effect, which is documented in Figures 10 and 11.
In Figure 11, we reported the cumulative scores, namely J, Jint, Jor,
for the volume and the IVDD ranking for the top 1 pockets,
ordered respectively by volume and by probability. The trend
shows a systematically higher value for all three scores for IVDD
without hydrogen atoms and almost indistinguishable scores with
hydrogen atoms. Interestingly, without hydrogen atoms, IVDD
has a lower accuracy than that in the simple volume. This is

FIGURE 9 | Enrichment analysis on the 100-protein experiment. (A) Solution without hydrogen atoms. For the 10% of pockets (for each protein) with the highest
probability (on average 5.28 pockets), the orthosteric site is found in 90% of cases with IVDD and in 97% of cases with the descending ranking of the pocket volumes. (B)
Solution with hydrogen atoms. For the 10% of the pockets (for each protein) with the highest probability (on average 4.43 pockets), the orthosteric site is found in 87% of
cases with IVDD and in 86% of cases with the descending ranking of pocket volumes.

TABLE 2 | Results obtained on the PDTD subset (with and without hydrogen
atoms) with the IVDD method and by a simple descending ranking of the
pocket volumes. All results are referred to the orthosteric/main sites.

Description IVDD Volume IVDD + H Volume + H

Top 1 50 60 50 50
Top 2 67 76 69 65
Top 3 81 87 81 79
Top 5 89 97 92 89
Top 10% 90 97 87 86
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unsurprising since an overly percolating volume allows easier
main pocket detection. However, when quality is considered,
even if some pockets are lost with IVDD, the remaining pockets
have significantly higher scores. Again, we can mitigate a bias by

not overfitting the volume-induced ranking. In the paradoxical
case where one has a volume percolating throughout the protein,
one would get a completely useless top 1 with 100% accuracy by
using a pure volume ranking.

FIGURE 10 | NanoShaper score distribution with and without hydrogen atoms.

FIGURE 11 | Cumulative scores (J, Jor and Jint) for IVDD and volume ranking. Here, the orthosteric sites identified by IVDD and the volume ranking in top 1 are
considered and ranked according to the probability score and the volume, respectively. Both the rankings are in descending order. Inset (A) is results without hydrogen
atoms and inset (B) is with hydrogen atoms.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 87047912

Aguti et al. One-Class Probabilistic Pocket Druggability Prediction

319

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Within the IVDD results, it is also relevant to compare what
happens with and without hydrogen atoms. Examining the
structures that did not land in the top 5 positions with and
without hydrogen atoms, one can conclude that most (e.g.,
1vkg, 1qpb, and 1ht8) are large pockets with low or
intermediate Jaccard index or with very low Jor value. In
some cases, there are shallow pockets (e.g., 1gp6 and 1i7g)
characterized by very high values of Jor. Some of those
structures improve in the presence of hydrogen atoms,
reducing the number of targets that fall outside the top five
from 11 to 8. Some shared structures (e.g., 1ht8, 1h9u, and
1v8b) do not change the shape of the orthosteric pocket,
leading to not significant changes in the probability.

We can compare the proposed solution to the many others in
the literature. We have shown that by avoiding some of the
possible biases (chiefly the labels) and considering the model
without hydrogen atoms, we can obtain 81% detection accuracy
in top 3 and 89% in top 5. We have also shown that a non-
negligible fraction of the missed detections in top 5 can be
ascribed to NanoShaper’s behavior. In comparison, Volkamer
et al. (2012a) obtained 88% accuracy in correctly assigning to the
druggable or non-druggable class in the NRDLD dataset with
DoGSiteScorer, where the support vector machine is used as
machine learning backend. In contrast, DrugPred (Krasowski
et al., 2011) obtained 91% accuracy for NRDLD. A widely used
method is fpocket from Le Guilloux et al. (2009), which correctly
identified 83% of ligandable pockets in top 3 of all analyzed
proteins. Overall, we achieved an accuracy that is similar to that of
several existing methods but with some ab initio safeguards such
as avoiding biases due to labels and volume.

To further investigate the IVDD results, we identified how
much each single feature affects the IVDD prediction. IVDD
does not embed a feature selection method, so we used an ex
post labeling strategy. We first estimated the probability
obtained, on average, for each orthosteric site in the dataset,
obtaining 0.852 and 0.877, respectively, without and with
hydrogen atoms. These values represent two thresholds and
allow a labeling for each binding site, which is 0 when its
probability is lower than the threshold value, otherwise 1. This
ex post labeling allows us to fit a classifier (here, we chose a
random forest classifier (Breiman, 2001) with 100 estimators
and the Gini index as criteria for the split) and to estimate the
features importance. Figure 12 shows the results of this
additional experiment. Volume (Vol) is a major impacting
feature, followed by area of the pocket surface (Area_b),
hydrophobic surface area, hydrogen-bond acceptor surface
area (asa_t), hydrogen-bond donor surface area (dsa_t),
binding site compactness (cness), and entrance (mouth)
surface area (Area_e). Similar results can be obtained with
different classifiers and can be found in Supplementary
Material Section S3.

To further check these results, we ran this experiment by
normalizing data. We found that hydrophobic surface, polar
surface, and volume still dominate the model. This means that
IVDD is influenced by the volume, but it also considers other
chemical aspects in predicting probability. Of less relevance is the
fact that hydrophobic residues (LEU, PHE, MET, and GLY) and
some charged residues (HIS, GLU) rank slightly higher. The
presence of hydrophobic residues and volume as key factors is
largely consistent with chemical intuition.

FIGURE 12 |Random Forest features importance in the descending order by assigning ex post labels to the IVDD predictions. Results shown are without hydrogen
atoms; similar results are obtained with hydrogen atoms.
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The correlation between IVDD prediction and volume can
be seen in Figure 13, in which we have plotted each binding
site as a point in the 2D space, where the coordinates are the
probability predicted by IVDD and the volume itself. In the
presence (see Figure 13) and absence (data not shown) of
hydrogen atoms, the samples with the highest probability
have a volume between 500 and 2,000 Å3. The orthosteric sites
and the training samples are condensed on the right side of
the figure, meaning that they obtained high probability scores
in most cases. Non-orthosteric binding sites are condensed in
the bottom left of the figure since they are mostly small
pockets and obtain low probability scores. However, both
figures contain some non-orthosteric pockets with a volume
between 1,000 and 2,000 Å3 and lower probability scores. In
such cases, the IVDD decision has been influenced by factors
other than volume.

4 DISCUSSION AND CONCLUSIONS

In this study, we presented an unsupervised one-class
approach to build a druggability estimation model. We
defined a pipeline to obtain all the pockets of a protein
(NanoShaper), their corresponding descriptors, and
druggability prediction. The method achieved 89%
accuracy in top 5, in line with other methods. Although
the method was less accurate than a trivial volume-based
ranking by NanoShaper, it favors well-shaped pockets with
higher J, Jor, and Jint scores. This has practical relevance since
a relatively tight and well-shaped pocket reduces the
ambiguity and difficulty of the subsequent virtual
screening and docking campaigns. Crucially, the proposed
method does not aim to distinguish between druggable and

less druggable pockets (binary classification). Rather, a
probability for pocket is given, which is easily interpretable
and comparable across different proteins. In contrast to a
score, the probability estimation does not need a posteriori
calibration. Rather, the logistic model of the hypersphere
naturally delivers this information. Again, a probability
allows the computational medicinal chemist to easily
identify the most eligible pocket for subsequent drug
discovery steps, without wondering if the score value is high
or low in absolute terms. This is because any probability very
close to one is inevitably a strong indicator. Most importantly,
this approach does not need to define a less druggable or non-
druggable class. This potentially ambiguous concept is
bypassed by the one-class approach. The results show that
druggability prediction is best considered as a concept learning
problem, rather than a classification problem. This approach
allows de-biasing from the start of the learning process, which
is clear in the results from the less druggable dataset. We also
found that the presence or absence of hydrogen atoms can
change the overall modeling attempt in ways that are not
always obvious. This is because the effects of NanoShaper are
overimposed on the IVDD learning model. Our proposal to
mitigate and reduce various biases, even at the cost of lower
accuracy, is indebted to the fair machine learning field (Jiang
and Nachum, 2019). While fairness concepts are usually
applied to social aspects (e.g., demographic parity), we draw
on this way of thinking to focus on certain label
information only.

Together with explicit structural biases, technical aspects
also have an important role. We tested several different values
for the small and large NanoShaper probes (data not shown) to
identify the pockets. The small probe was easy because there is
no reason not to choose the water molecule–like size of 1.4 Å.
For the large probe, there is no immediate physically driven
quantity, with the convex hull being the extreme solution. We
found that a value of 3.5 Å performed better than 3 Å in
detecting relatively shallow pockets together with the more
prototypical buried ones. Larger values generally led to poorer
results in terms of shape, with a systematic decrease in Jaccard
index values.

In terms of future developments, we envision several
improvements of our methodology. A volume segmentation ad
hoc algorithm could improve the accuracy, particularly when
selecting the value of the large probe. Such a tool could provide
more freedom of choice for this parameter. The work of Aggarwal
et al. (2021), among others, has shown that many pieces of
software for pocket identification tend to identify large pockets
without segmentation techniques. Segmentation could be used to
find subpockets that are better suited to virtual screening and
docking. Another development would be a web server to easily
access the tool. Finally, we plan to combine this method with the
Pocketron method (La Sala et al., 2017) to not only track the
pocket volume and residues over time but also to provide a
dynamic druggability score that explicitly considers the
probability of the conformation ultimately delivering a
Boltzmann weighted estimator.

FIGURE 13 | IVDD probability scores vs. volume. Each sample
represents a pocket (colored according to the corresponding dataset). The
x-axis represents the probability that a pocket is druggable, while the y-axis
represents the volume of each pocket. The plot is referred to the solution
with hydrogen atoms. Similar results are obtained without hydrogen atoms.
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