Introduction: Post-traumatic stress disorder (PTSD) is associated with hippocampal system structural and functional impairments. Neurobiological models of PTSD posit that contextual memory for traumatic events is impaired due to hippocampal system dysfunction whilst memory of sensory details is enhanced due to amygdalar impact on sensory cortices. If hippocampal system dysfunction is a core feature of PTSD, then non-traumatic hippocampal-dependent cognitive functions such as scene construction, spatial processing, and memory should also be impaired in individuals with PTSD.
Methods: Forty-six trauma survivors, half diagnosed with PTSD, performed two tasks that involved spatial processing. The first was a scene construction task which requires conjuring-up spatially coherent multimodal scenarios, completed by all participants. Twenty-six participants (PTSD: n = 13) also completed a navigation task in a virtual environment, and underwent structural T1, T2 and diffusion-tensor MRI to quantify gray and white matter integrity. We examined the relationship between spatial processing, neural integrity, and symptom severity in a multiple factor analysis.
Results: Overall, patients with PTSD showed impaired performance in both tasks compared to controls. Scenes imagined by patients were less vivid, less detailed, and generated less sense of presence; importantly they had disproportionally reduced spatial coherence between details. Patients also made more errors during virtual navigation. Two components of the multiple factor analysis captured group differences. The first component explained 25% of the shared variance: participants that constructed less spatially coherent scenes also made more navigation errors and had reduced white matter integrity to long association tracts and tracts connecting the hippocampus, thalamus, and cingulate. The second component explained 20% of the variance: participants who generated fewer scene details, with less spatial coherence between them, had smaller hippocampal, parahippocampal and isthmus cingulate volumes. These participants also had increased white matter integrity to the right hippocampal cingulum bundle.
Conclusion: Our results suggest that patients with PTSD are impaired at imagining even neutral spatially coherent scenes and navigating through a complex spatial environment. Patients that showed reduced spatial processing more broadly had reduced hippocampal systems volumes and abnormal white matter integrity to tracts implicated in multisensory integration.
Background: Increasing evidence points toward the need to extend the neurobiological conceptualization of posttraumatic stress disorder (PTSD) to include evolutionarily conserved neurocircuitries centered on the brainstem and the midbrain. The reticular activating system (RAS) helps to shape the arousal state of the brain, acting as a bridge between brain and body. To modulate arousal, the RAS is closely tied to the autonomic nervous system (ANS). Individuals with PTSD often reveal altered arousal patterns, ranging from hyper- to blunted arousal states, as well as altered functional connectivity profiles of key arousal-related brain structures that receive direct projections from the RAS. Accordingly, the present study aims to explore resting state functional connectivity of the RAS and its interaction with the ANS in participants with PTSD and its dissociative subtype.
Methods: Individuals with PTSD (n = 57), its dissociative subtype (PTSD + DS, n = 32) and healthy controls (n = 40) underwent a 6-min resting functional magnetic resonance imaging and pulse data recording. Resting state functional connectivity (rsFC) of a central node of the RAS – the pedunculopontine nuclei (PPN) – was investigated along with its relation to ANS functioning as indexed by heart rate variability (HRV). HRV is a prominent marker indexing the flexibility of an organism to react adaptively to environmental needs, with higher HRV representing greater effective adaptation.
Results: Both PTSD and PTSD + DS demonstrated reduced HRV as compared to controls. HRV measures were then correlated with rsFC of the PPN. Critically, participants with PTSD and participants with PTSD + DS displayed inverse correlations between HRV and rsFC between the PPN and key limbic structures, including the amygdala. Whereas participants with PTSD displayed a positive relationship between HRV and PPN rsFC with the amygdala, participants with PTSD + DS demonstrated a negative relationship between HRV and PPN rsFC with the amygdala.
Conclusion: The present exploratory investigation reveals contrasting patterns of arousal-related circuitry among participants with PTSD and PTSD + DS, providing a neurobiological lens to interpret hyper- and more blunted arousal states in PTSD and PTSD + DS, respectively.