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Application of Generalized Cauchy
Process on Modeling the Long-Range
Dependence and Self-Similarity of Sea
Surface Chlorophyll Using 23 years of
Remote Sensing Data
Junyu He1,2*

1Ocean Academy, Zhejiang University, Zhoushan, China, 2Ocean College, Zhejiang University, Zhoushan, China

Understanding the temporal characteristics of sea surface chlorophyll (SSC) is helpful for
marine environmental management. This study chose 10 time series of remote daily sea
surface chlorophyll products from the European Space Agency during the period from July
29, 1998 to December 31, 2020. A generalized Cauchy model was employed to capture
the local and global behaviors of sea surface chlorophyll from a fractal perspective; the
fractal dimensionDmeasures the local similarity while the Hurst parameter Hmeasures the
global long-range dependence. The generalized Cauchy model was fitted to the empirical
autocorrelation function values of each SSC series. The results showed that the sea
surface chlorophyll was multi-fractal in both space and time with the D values ranging from
1.0000 to 1.7964 and H values ranging from 0.6757 to 0.8431. Specifically, regarding the
local behavior, 9 of the 10 series had low D values (<1.5), representing weak self-similarity;
on the other hand, regarding the global behavior, high H values represent strong long-
range dependence that may be a general phenomenon of daily sea surface chlorophyll.

Keywords: long-range dependence, local self-similarity, generalized cauchy model, remote sensing, sea surface
chlorophyll, autocorrelation function, Gulf of California

INTRODUCTION

Sea surface chlorophyll (SSC) is an important bio-indicator, representing the biomass of the
phytoplankton in the surface layer of the ocean [1–3]. On one hand, phytoplankton have made
significant contributions to capture greenhouse gas from the atmosphere and balance the carbon
cycle globally [4,5]; on the other hand, under a suitable living environment condition (such as
temperature, nutrients, etc.), the phytoplankton will grow rapidly and cause blooms, leading to the
degradation of the water environment and ecosystem corruption [6–8]. Therefore, understanding
the evolution and pattern of SSC is of great significance to ocean environmental management.

With the development of remote sensing technology, the sensors equipped on satellites can
provide long-term SSC products at a global scale, which is conducive to the studies of SSC. For
example, the pattern of global ocean primary production can be investigated at a large scale [9–12].
Likewise, the regional SSC variations were studied using remote sensing data. Yamada et al. [13]
employed the Ocean Color and Temperature Scanner (OCTS) and the Sea-Viewing Wide Field of
View Sensor (SeaWiFS) remote sensing data to study the SSC variation in the East China Sea and the
Sea of Japan and found the interannual variability of the spring bloom and the weak temporal
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transition of the fall bloom. In the Bohai Sea and the North
Yellow Sea of China, Zhai et al. [14] found the SSC exhibited a
spatially coherent increasing trend over 2003–2011 and a
decreasing trend over 2012–2018 by using Moderate
Resolution Imaging Spectroradiometer (MODIS) data;
specifically, the decreasing trend was more obvious than the
increasing trend. Further, the Ocean Colour Climate Change
Initiative (OC-CCI) standard products with locally modified SSC
was also used to detect four types of SSC annual cycle in the East
China Sea, i.e., the summer bloom, spring and autumn bloom,
early spring bloom, and low SSC [15]. In summary, the studies
mentioned above only focused on the trends and made simple
statistics for exploring the space-time SSC patterns.

Recently, specific SSC variation modeling has been
implemented in several studies. He et al. [16] chose the
optimal theoretical model (such as Exponential model,
Spherical model, Gaussian model, and their combinations) to
fit the spatial covariance of the SSC distribution in the Gulf of St.
Lawrence, and found that the highest SSC variability occurred in
November while it changed a lot during the period from August
to November. Despite this, few studies have modeled the
temporal variance or pattern of SSC. The long-range
correlation (or dependence) of SSC was detected in the South
China Sea with time scales ranging from a few weeks to 2 years
[17]. However, the long-termmathematical modeling of the long-
range dependence (LRD) and self-similarity of SSC is still lacking.

In general, several important parameters are used to
characterize the complex behavior and dynamics of a time
series, such as the Hurst parameter and the fractal dimension/
index. Further, some methodologies have been developed to
estimate these two parameters separately. Traditionally, the
fractal dimension or index can be estimated by counting the
number of level crossings, using increments, or the relationship
between power variations and the fractal dimension [18–20];
besides this, some other fractal dimensions, such as number-
based fragmentation fractal dimension and mass fractal
dimension for soil properties can be calculated as shown in
other studies [21–23]. Regarding the Hurst parameter, the
variance-plot with various block sizes were fitted to obtain the
slope β and the Hurst parameter can be calculated subsequently
by β � 2H − 1; Kettani and Gubner [24] developed a variogram-
based method to calculate the Hurst parameter and found the
new method was superior to the wavelet method; Li [25] used the
generalized fractional Gaussian noise to fit the autocorrelation
function (ACF) of the traffic and further obtain the Hurst
parameter; moreover, modified multifractal Gaussian noise
theory was also developed to calculate the Hurst parameter of
the sea level across the study period [26]. Given that the two
parameters denote various fractal characteristics of the time
series, it is important to seek ways to simultaneously obtain
the fractal dimension and Hurst parameter. Luckily, the
generalized Cauchy model provides a potential way to achieve
this goal. It can be used to model the ACF of the studied time
series, and it proves that the two parameters were independent of
each other [27]. In the past few decades, the generalized Cauchy
process has been successfully applied to model the sea-level
fluctuations, teletraffic, and network traffic [27,28].

Given the above considerations, the objective of this work is to
use the generalized Cauchy process to model the ACF of remote
SSC data and explore the fractal characteristics of SSC, which will
benefit local SSC monitoring, controlling, and policy-making.

METHODS AND MATERIALS

Data Collection
The long-term daily SSC data was collected from the European
Space Agency (ESA). It merged remote sensing reflectance (Rrs)
from several satellites, including SeaWiFS, MERIS (Medium
Resolution Imaging Spectrometer), Aqua-MODIS, VIIRS
(Visible and Infrared Imager/Radiometer Suite), and OLCI
(Ocean and Land Color Instrument) [29]. Then, the SSC
products are generated using Algorithm Theoretical Baseline
Document (Optical Classification and Algorithm Blending)
[30]. In the present study, the daily SSC products with spatial
resolution 1° × 1° were integrated during the period from July 29,
1998 to December 31, 2020 (8,192 days in total), and 10 locations
were selected for further analysis, see Figure 1. Of the 10
locations, 7 are located in the Gulf of California (Figure 1B),
with 2 and 1 located in the western coastal regions of Madagascar
and South Africa, respectively.

Basic Theories
Long-Range Dependence
Let x(t) and r(τ) denote the time series of the studied natural
attribute and its ACF, i.e., r(τ) � E[x(t)x(t + τ)], where E
represents the expectation operator. Thus, LRD or long
memory is used to depict the situation that the ACF decays
slowly with the characteristic as ∫+∞

−∞ r(τ)dτ � ∞ [31–33], i.e., the
values of the studied natural attribute with large temporal lag
show a strong correlation. Further, the asymptotic form of ACF
with LRD can be expressed as Eq. 1 with the help of the Hurst
parameter [34].

{ r(τ) ∼ cτβ (τ→∞)
β � 2H − 2

(1a-1b)

Where the Hurst parameter H ranges from 0.5 to 1 under the
LRD condition, representing the global property of the time series
x(t), a larger value of H implies that the LRD is stronger.

Self-Similarity
The ACF is self-similar when it remains the same through aggregating
the sub-series of x(t) with nonoverlapping blocks [35], i.e., part of the
time series is locally approximately similar to the entire time series.
According to the literature [36,37], the fractal index (α) was employed
to measure the local self-similarity, as follows:⎧⎪⎨⎪⎩ r(0) − r(τ) ∼ c|τ|α

D � 2 − 1
2
α

(2a-2b)

where c> 0 and 0< α≤ 2. The fractal dimension, D, belongs to
[1, 2). A larger value ofDmeans that the local self-similarity of the
studied time series is stronger [27].
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FIGURE 1 | 10 sea surface chlorophyll data locations. (A) shows the distribution of the 10 data locations at a global scale, while the zoom-in views of the two
rectangles are shown in (B) and (C). The number represents the identity of each data location.
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Generalized Cauchy Process
The generalized Cauchy process is applied when the time series
x(t) and its ACF are of the form of the following equation, subject
to 1< α≤ 2 and β≥ 0 [28,38]:

C(τ) � ψ2(1 + |τ|α)−β
α (3)

where ψ2 is the intensity of x(t). The following comments discuss
features of the two parameters in Eq. 3. Regarding the parameter
β, it defines the dependence of x(t) by setting τ→∞: (a) if
0≤ β< 1, ∫+∞

−∞ [ lim
τ→∞

C(τ)]dτ�∫+∞
−∞

ψ2
∣∣∣∣τ∣∣∣∣−βdτ�∞, i.e., it represents the

LRD with respect to β; (b) if β> 1,∫+∞
−∞ (1 + |τ|α)−β

αdτ � 2
αB(1

α,
β−α
α )<∞, where B is the beta function,

i.e., it represents short-range dependence (SRD). Regarding the
parameter α, it defines the self-similarity of x(t) by setting τ→ 0,
thus lim

τ→0
C(τ) � ψ2

∣∣∣∣τ∣∣∣∣α with respect to α. In short, the LRD and

self-similarity of x(t) only rely on the parameters β and α,
respectively. In this case, with the definition of Eq. 1b and Eq.
2b, the generalized Cauchy process can be written as

C(τ) � ψ2(1 + ∣∣∣∣τ∣∣∣∣4−2D)−1−H
2−D (4)

For modeling purpose, the intensity ψ2 can be set to 1, and Eq.
4 becomes

C(τ) � (1 + ∣∣∣∣τ∣∣∣∣4−2D)−1−H
2−D. (5)

In this case, the generalized Cauchy process can simultaneously
depict the LRD (global property) and self-similarity (local property)
of x(t) by using the two parametersH andD, respectively. Regarding
the Hurst parameter H, if 0≤ β< 1, i.e., 0.5<H< 1, it represents
LRD, and the values of ACF remain high even over large temporal

lag; whereas if β> 1, i.e., 0<H< 0.5, it represents SRD, and the value
of ACF usually decays quickly, e.g., the value of ACF may decline to
zero over a lag of several days. With various values of H and D, the
ACFs were plotted in Figure 2. It was found that the ACF value of
the generalized Cauchy process decreases as the temporal lag τ
increases. Moreover, the ACF value increases when the value of H
increases and the value ofD is fixed, while the ACF value decreases a
little when the value of D increases and the value of H is fixed.
Among the six lines shown in the sub-figures, the three blue
represent the LRD cases, and three red lines represent the SRD
cases. Specifically, when the temporal lag, H value, and D value are
equal to 7.2 days, 0.05, and 1.7 respectively, the value of ACF declines
to 0.01, representing SRD characteristics; see the dark red line of the
bottom right sub-figure in Figure 2. On the other hand, when the
temporal lag,H value, andD value are equal to 31 days, 0.75, and 1.1
respectively, the value of ACF is still greater than 0.179, representing
LRD characteristics; see themiddle blue line of the top left sub-figure
in Figure 2.

Autocorrelation Function Fitting Process
The original time series of SSC at each location was divided
equally into 16 sub-series with no overlapping cases, each
containing 512 data points. Considering that the value of the
autocorrelation function may decay to zero with a 1-month
temporal lag in some parts of the world [39,40], the
theoretical autocorrelation function values for temporal lags
between 0 and 32 was calculated by averaging the 16
autocorrelation functions of each sub-series. Then, the
generalized Cauchy model (Eq. 5) was employed to fit each of
the theoretical autocorrelation function values using the
“lsqnonlin” function embedded in MATLAB software. Then,
the fractal dimension D and the Hurst parameter H were
estimated. The fitting performance of the generalized Cauchy
model was evaluated by R2, MAE, and RMSE, as follows:

R2 � 1 − SSres
SStot

� 1 − ∑  [Y(τ) − Ŷ(τ)]2∑ [Y(τ) − Y]2 (6)

MAE � 1
n
∑n

τ�1
∣∣∣∣Y(τ) − Ŷ(τ)∣∣∣∣ (7)

RMSE �
����������������
Σn
τ�1[Y(τ) − Ŷ(τ)]2

n

√
(8)

where Y(τ) and Ŷ(τ) represent the empirical ACF value and
fitted ACF value at temporal lag τ respectively, Y represents the
mean value of the ACF series, n represents the length of the
series, and SSres and SStot represents the sum of squared
residuals and the sum of squares of deviation from mean
respectively.

RESULTS

Descriptive Statistics
The proportion of missing daily SSC data from ESA at the 10
locations ranges from 8.02 to 11.56% over the entire period.
Given that the missing values were discretely distributed in

FIGURE 2 | Simple examples of the generalized Cauchy model with
various values of D and H.
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each SSC time series, they were interpolated by using the
“spline” function in MATLAB software for further analysis.
The SSC time series with full length (including 8192 SSC
data) at the considered 10 locations are plotted in Figure 3
and the corresponding descriptive statistical results are
presented in Table 1. The statistical results indicate that
the SSC has the highest range (i.e., from 0.3129 to
50.6148 mg/m3) in the location with ID 10103 during the
studied period; while the values of SSC at the other six
locations around the Mexico offshore regions range from
0.0753 to 8.8930 mg/m3. On the other hand, similar ranges
(i.e., from 0.0522 to 1.5799 mg/m3) are found in the two
locations around the offshore of Madagascar. The values of

SSC at the last location with ID 25853 range from 0.0536 to
7.2255 mg/m3.

Generalized Cauchy Process Fitting Results
Figure 4 shows the theoretical autocorrelation values and the
corresponding fitted generalized Cauchy model with the
fitting performance at each of the 10 daily SSC series. Our
findings are as follows: 1) The autocorrelation functions of
SSC can be well fitted by the generalized Cauchy model with
R2 ranging from 0.9469 to 0.9875, MAE ranging from 0.0143
to 0.0358, and RMSE ranging from 0.0187 to 0.0434. 2) The
values of the fractal dimension D and the Hurst parameter H
vary at different locations. 3) A high value for the fractal
dimension D (1.7964) with strong self-similarity was only
found at the location with ID � 10,103, while the D values at
other locations are lower than 1.5 and 5 of the 10 locations
have D values approximately equal to 1. This shows that
most of the 10 daily SSC series have weak self-similarity. 4)
The values of the Hurst parameter H of the 10 daily SSC
series range from 0.6757 to 0.8431, indicating that the daily
SSC series at the 10 locations have strong long-range
dependence.

DISCUSSION

The present work employed the generalized Cauchy process to
model the ACF of daily remote SSC data during a 23-year period

FIGURE 3 | Sea surface chlorophyll time series at the 10 chosen locations.

TABLE 1 | Descriptive statistics of the considered 10 time series of SSC.

ID Min Max Mean Standard Deviation Coefficient of
variation

10,103 0.3129 50.6148 2.5001 1.1656 0.4662
10,104 0.1701 8.2633 1.1285 0.6692 0.5931
10,224 0.1979 6.8945 0.8643 0.4989 0.5773
10,341 0.2039 8.6791 1.1917 0.7225 0.6063
10,342 0.1570 8.8930 1.1009 0.5583 0.5072
10,460 0.1311 3.9872 0.6632 0.4025 0.6069
10,576 0.0753 8.4703 0.5909 0.4155 0.7032
25,853 0.0536 7.2255 0.7518 0.4039 0.5372
27,876 0.0522 1.3131 0.1697 0.0720 0.4244
27,877 0.0542 1.5799 0.1665 0.0763 0.4586
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and good performance of the fitting was obtained, indicating that
the SSC in the 10 chosen locations follows a heavy-tailed
distribution [41]. Compared to the generalized Gaussian noise
model, the outstanding ability of the generalized Cauchy model is
that it can simultaneously estimate both independent variables
(Hurst parameter and fractal dimension). This means that it can
describe the global correlation and local self-similarity of the
considered natural attribute [27,42], such as the SSC in the
present work. To the best of my knowledge, the present effort
is one of the earliest studies in obtaining the LRD and self-
similarity of the SSC in view of fractal statistics.

Impacts of Environmental Factors on the
Fractal Characteristics of Sea Surface
Chlorophyll
Relatively low self-similarity and high LRD of the SSC series at the 10
locations can be summarized. A rather different case was found in a
lake study, i.e., the chlorophyll-a was autocorrelated over lags of five or
6 days [43], indicating SRD. The nutrients and aquatic environment
(light, temperature, salinity, etc.) impact the algae growth and further
influence the SSC variability [44–48].With the continuous variation of
these factors, the variation of SSC across time is also smooth according
to the algae growth, causing the weak irregularity characteristics with
lowvalues of the fractal dimension and strong LRDwith high values of
the Hurst parameter. This phenomenon leads to the empirical values
of ACF (blue dash line shown in Figure 4) being slightly higher than
the theoretical values of ACF (black line shown in Figure 4) with the
temporal lags between 2 and 10 days at most locations. However, with
the temporal lag increasing from 10 to 25 days, the empirical values
become smaller than the theoretical values, because the SSC may be
influenced by the global climatic dynamics, such as the Southern
Pacific Oscillation Index [49], which is different from algae’s own
growth condition.Moreover, theremay be another situation that algae
blooms with enough nutrient inputs [50], leading to extremely high
SSC values, e.g., the SSC value increases rapidly and peaks for one or
2 days (as some peaks shown in Figure 3); and thatmay be the reason
that the value of the fractal dimension is the highest among the 10
series, i.e., D � 1.7964 with the highest maximum SSC value and
standard deviation across the study period. On the other hand, the
values of the fractal dimension and Hurst parameter varied at various
locations, indicating that the environmental conditions are rather
different from each other.Moreover, various species of algaemay exist
at various locations and their growth response to the environmental
conditions are rather different [51,52]. Compared to the values of the
fractal dimension (varies from 1.7244 to 1.7838) of SSC in the
Chesapeake Bay [45], the values of the fractal dimension obtained
in the current study are rather low; this may due to the fact that the
river discharge and the nutrients it carries are not as large as the rivers
(e.g., Susquehanna River and Potomac River) that run into the
Chesapeake Bay. However, the values of the Hurst parameters in
the current study are greater than that in the Chesapeake Bay study
with LRD characteristics, indicating that a large nutrient load in the
Chesapeake Baymay lead to weak LRD. Therefore, the LRDmay be a
general feature of SSC variations in oceans.

Besides this, the aquatic environment will also influence the
behavior of the zooplankton, e.g., warm waters will favor the
consumption of the zooplankton, causing the reduction of SSC
[53–55]. On the other hand, the upwelling system and surface
currents around the coastal areas play important roles in shaping
the distribution of zooplankton and further influence the variation of
SSC [56]. The upwelling systemon theCalifornia coast shows seasonal
variabilities and can be summarized into four types: “Winter Storms”
season (Dec-Jan-Feb), “Upwelling Transition” period (Mar and Jun),
“Peak Upwelling” season (Apr-May), “Upwelling Relaxation” season
(Jul-Aug-Sep), and “Winter Transition” season (Oct-Nov), so the
impacts of upwelling system on the SSC are also seasonally
continuous. That may be one of the reasons that SSC has LRD
characteristic [57].

FIGURE 4 | The empirical autocorrelation function values (dash blue line)
and the fitted generalized Cauchy model (black line) for each of the 10 data
points.
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Long-Range Dependence of Sea Surface
Chlorophyll at the Studied Locations
The present study employedACF to describe the fractal characteristics
(especially the long-range dependence) of SSC with temporal lags of
32 days. The empirical values of the ACF at the 10 studied locations
range from 0.1160 to 0.3351, and the mean and standard deviation of
the empirical values are 0.2319 and 0.0764, respectively. These results
show that strong long-range dependence can be detected within a
temporal lag of 1month. Robles-Tamayo et al. [49] detected seasonal,
semi-annual, and annual cycles of SSC in the Gulf of California using
the Level 3 products of MODIS remote sensing data. In other words,
the SSC variation may experience peak and valley values in a season
(3months). Moreover, the SSC values of the four seasons vary a lot
with high values of the standard deviation. Regarding the seasonal
variation, Escalante-Almazán [58] found that the mean values of SSC
in the central gulf were 1.09, 1.20, 0.44, and 0.60mg/m3 for winter,
spring, summer, and autumn, respectively. The large variation
between seasons suggests that the SSC may not have long-range
dependence at an annual or semi-annual scale. On the other hand, in
the warm period the mean ± standard deviation values of SSC in the
south, central midriff islands, and north sub-regions of the Gulf of
California are 0.79±0.89, 0.55±0.37, 1.19±0.83, and0.63±0.39mg/m3

respectively, and in the cold period, the values are 2.05 ± 1.20, 1.84 ±
0.73, 2.80 ± 1.40, and 1.50 ± 0.61 mg/m3 respectively [49]. The large
standard deviations represent large variations of SSC, indicating that
the SSCmay not have large LRD at a semi-annual or annual scale. To
test the LRDof SSC at a seasonal scale, the empirical values of ACF at
the 10 studied locations were calculated with a temporal lag of
128 days. The results show that the value of empirical ACF at the 10
locations first reached 0 at the temporal lags of 49, 75, 89, 59, 47, 85,
89, 69, 70, and 67 days, respectively. Otherwise, with large temporal
lags, the values of ACF will fluctuate around zero. Hence, long-range
dependence at a seasonal scale (i.e., with temporal lag larger than
90 days) is relatively weak compared to the monthly scale.

Comparisons to Previous Works
Comparisons between the current study and previous studies were
conducted as follows. Some ACFs of teletraffic was rather high, above
0.98 with even 128 days lag [27], but the ACF value of SSC in the
current study fall below 0.5 with 31 days lag. This may be the reason
why very high values of the Hurst parameter (larger than 0.99) were
detected with teletraffic rather than SSC. In addition, the values of the
fractal dimension of teletraffic were much larger than that of SSC,
demonstrating that stronger self-similarity was found in teletraffic
series than SSC. This may be due to the fact that values for teletraffic
aremore random in occurrence while the values for SSC aremore like
a continuous series associated with several environmental factors
mentioned above. In another study [28], the generalized Cauchy
process was used to model the ACF of sea level fluctuations with a
temporal resolution of 1 h, and found that the value of the fractal
dimension was approximately equal to 1 at several locations while the
most of themwere larger than 1.8; the values of Hurst parameter were
larger than 0.98. Interestingly, the locations with low fractal dimension
values are located in the Gulf of Mexico, which is similar to the seven
locations studied in the current study, i.e., the weak self-similarity may
occur in a stable environment.

Limitations and Future Work
Certain limitations of the current study should be acknowledged: 1)
Although there may be a relationship between the fractal
characteristics of SSC and the living environment, rigorous proof
and statistical analysis was not conducted in the current study due to
lack of data. Therefore, future work can focus on quantitatively
exploring the impacts of nutrients and temperature on the fractal
dimension or Hurst parameters of SSC. 2) Even SSC products with
high spatiotemporal coverage were used in the current study, there
still exist missing values from other locations. Hence, spatiotemporal
interpolation methods should be employed to obtain a more
complete remote SSC dataset for mapping the global fractal
dimension or Hurst parameter of SSC, such as the Bayesian
maximum entropy approach [59–61], so that the spatial pattern
of the fractal dimension and Hurst parameter can be further studied.
3) Taking into consideration the stochastic differential equations, the
evolution pattern (or law) of SSC can be further explored, such as the
fractional Brownian motion pattern [62,63].

CONCLUSION

The present study applied a novel generalized Cauchy model to
depict the variations of SSC and good performance was obtained.
The fractal characteristics of the SSC vary at different locations in
terms of the fractal dimension and Hurst parameter; weak self-
similarity was found in most locations with low values of the
fractal dimension while strong LRD was detected across all
locations with reactively high value of the Hurst parameter.
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Stability of Hybrid SDEs Driven by fBm
Wenyi Pei1,2,3* and Zhenzhong Zhang4

1School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, China, 2Collaborative Innovation Center of
Statistical Data Engineering, Technology and Application, Zhejiang Gongshang University, Hangzhou, China, 3College of
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In this paper, the exponential stability of stochastic differential equations driven by
multiplicative fractional Brownian motion (fBm) with Markovian switching is investigated.
The quasi-linear cases with the Hurst parameter H ∈ (1/2, 1) and linear cases withH ∈ (0, 1/
2) andH ∈ (1/2, 1) are all studied in this work. An example is presented as a demonstration.

Keywords: stochastic differential equation (SDEs), stability, fractional brownianmotion, markovian switching, hybrid
system

1 INTRODUCTION

In the natural world, it is a common phenomena that many practical systems may face random abrupt
changes in their structures and parameters, such as environmental variance, changing of subsystem
interconnections and so on. To deal with these abrupt changes, Markovian switching systems, a
particular class of hybrid systems, are investigated and widely used [1, 2]. Especially in signal processing,
financial engineering, queueing networks, wireless communications and so on (see, e.g. [1, 3]).

In recent years, much attention has been paid to the stability of stochastic hybrid systems. For
example, Mao [4] considers the exponential stability of general nonlinear stochastic hybrid systems.
In [5], the criteria of moment exponential stability are obtained for stochastic hybrid delayed systems
with Lévy noise in mean square. Zhou [6] investigates the pth moment exponential stability of the
same systems. Some sufficient conditions for asymptotic stability in distribution of SDEs with
Markovian switching are reported in [7]. See also [8, 9] for more results about Markovian switching.

On the other hand, it is generally known that if H ∈ (0, 1/2) and H ∈ (1/2, 1), BH
t{ }t≥ 0 has a long

range dependence, which means if we put

r(n) � cov(BH
1 , (BH

n+1 − BH
n )),

then ∑∞
n�1r(n) � ∞. Besides, the process BH

t{ }t≥ 0 is also self-similar for any H ∈ (0, 1). Since the
pioneering work of Hurst [10, 11] and Mandelbrot [12], the fractional Brownian motion has been
suggested as a useful tool in many fields such as mathematical finance [13, 14] and weather
derivatives [15]. Even though fractional Brownian motion is not a semimartingale, more and more
financial models have been extended to fBm (see, e.g. [16, 17]). Therefore, in this paper, the risk assets
are described by hybrid stochastic systems driven by multiplicative fBm. Then it is a natural and
interesting question that under what conditions, this stochastic systems have some exponential
stability. For the sake of clarity, we only consider the one dimensional cases. For more details about
fractional noise, we refer the reader to [18–21].

The main purpose of this paper is to discuss the exponential stability of a risky asset, with price
dynamics:

dXt � f(Xt, t, rt)dt + g(Xt, t, rt)dBH
t ,

X0 � x0 > 0,
{ (1)

where g(Xt, t, rt) � σ(t, rt)Xt, {rt}t≥ 0 is a Markov chain taking values in S � {1, 2, . . . , N}, BH
t{ }t≥ 0 is a

standard fractional Brownianmotion.Moreover,f(x, t, rt): R × R+ × S→R and σ(t, rt): R+ × S→R.
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In this paper, the initial value x0 is assumed to be deterministic,
otherwise more calculations about Wick product are required.

Equation 1 can be regarded as the result of the following N
fractional stochastic differential equations:

dXt � f(Xt, t, i)dt + g(Xt, t, i)dBH
t , 1≤ i≤N,

X0 � x0 > 0,
{

switching from one to another according to the movement of
{rt}t≥ 0.

Throughout this paper, unless otherwise specified, we let C
denote a general constant and p denote a non-negative constant.
Let C2,1(R × R+ × S;R) denote the family of all real value
functions on R × R+ × S which are continuously twice
differentiable with respect to the first variables and once
differentiable with respect to the second variables.

This paper is organized as follows. For the convenience of
the reader, we briefly recall some of the basic results in Section
2. In Section 3, we investigate the solution and an extended
Itô’s Formula for the general hybrid fractional stochastic
differential Equation 1. Section 3 is devoted to the linear
cases. In this section the moment exponential stability and
almost sure exponential stability are discussed respectively. In
Section 4, some useful criteria for the exponential stability
with respect to quasi-linear cases are presented. Finally, a
numerical example and graphical illustration are presented
in Section 6.

2 PRELIMINARIES

2.1 Markov Chain
Let {rt}t≥ 0 be a right-continuous Markov chain taking values in a
finite state space S � {1, 2, . . . , N}. The generator Q � (qij)N×N is
given by

P{rt+△ � j | rt � i} � qij△ + o(△), if i≠ j,
1 + qij△ + o(△), if i � j,

{
where △ > 0.

Here qij is the transition rate from i to j if i ≠ j. According to
[22, 23], a continuous-time Markov chain {rt}t≥ 0 with generator
Q � (qij)N×N can be represented as a stochastic integral with
respect to a Poisson random measure. Then we have

drt � ∫
R

h(rt−, y)](dt × dy),

with initial condition r0 � i0, where ](dt × dy) is a Poisson random
measure with intensity dt × m(dy). Here m(·) is the Lebesgue
measure on R.

Throughout this paper, unless otherwise specified, the Markov
chain {rt}t≥ 0 has the invariant probability measure μ � (μi)i∈S
and is assumed to be independent of BH

t{ }t≥ 0. Almost every
sample path of the Markov chain {rt}t≥ 0 is assumed to be a right-
continuous step function with a finite number of simple jumps in
any finite time interval [0, T]. The generator Q � (qij)N×N is
assumed to be irreducible and conservative, i.e., qid − qii �∑i≠j qij < ∞. For more details about Markovian switching we
further refer the reader to [24–26].

2.2 Fractional Brownian Motion and Wick
Product
We recall some of the basic results of fBm briefly, which will be
needed throughout this paper. For more details about fBm we
refer the reader to [16, 17, 27, 28]. If H ∈ (0, 1/2) ∪ (1/2, 1), then
the (standard) fractional Brownian motion with Hurst parameter
H is a continuous centered Gaussian process BH

t{ }t≥ 0 with
E(BH

t ) � 0 and covariance function:

RH(s, t) � E(BH
s B

H
t ) �

1
2
(|s|2H + |t|2H − |s − t|2H), s, t≥ 0.

To simplify the representation, it is always assumed that
BH
0 � 0.
Besides, BH

t{ }t≥ 0 has the following Wiener integral
representation:

BH
t � ∫t

0
KH(t, s)dWs,

where {Wt}t≥ 0 is a Wiener process and KH(t, s) is the kernel
function defined by

KH(t, s) � cHs
1
2−H ∫t

0
(u − s)H−3

2uH−1
2 du,

in which cH � ( H(2H−1)
B(2−2H,H−1

2))
1
2, where B(·, ·) is the Beta function,

and s < t. In this paper, BH
t{ }t≥ 0 generates a filtration {F t, t≥ 0}

with F t � σ{BH
s , t≥ 0}. Denote (Ω,F , P,F t) the complete

probability space, with the filtration described above.
Let I be the set of all finite multi-indices α � (α1, . . ., αn) for

some n ≥ 1 of non-negative integers. Denote |α| � α1 + / + αn,
and α! � α1!/αn!.

Define the Hermite polynomials:

hn(x) � (−1)nex2 d
n

dxn
(e−x2), n≥ 0,

and Hermite functions:

~hn(x) � π−1
4(n!)−1

2hn(x)e−x2
4 , n≥ 0.

Let S(R) denote the Schwartz space of rapidly decreasing
infinitely differentiable R-valued functions. Denote the dual
space of S(R) by S′(R). Define

Hα(ω) � ∏n
i�1

hαi(〈~hi(x),ω〉),

the product of Hermite polynomials. Consider a square integrable
random variable

F � F(ω) ∈ L2(S′(R),F , P).
According to [17, 29], every F(ω) has a unique representation:

F(ω) � ∑
α∈I

cαHα(ω),

besides,

‖F‖2L2(ω) � ∑
α∈I

α!c2α <∞.
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Definition 2.1. (Wick Product) For F, G ∈ L2(S′(R),F , P), set
F(ω) � ∑α∈I cαHα(ω) and G(ω) � ∑β∈IdβHβ(ω). Their Wick
product is defined by

F◇G(ω) � ∑
α,β∈I

aαbβHα+β(ω)

� ∑
c∈I

∑
α+β�c

aαbβ( )Hc(ω).

2.3 Malliavin Derivative
Let LpdLp(Ω,F , P) be the space of all random variablesΩ→R,
such that

‖F‖p � E(|F|p)1/p <∞,

and let

L2
ϕ(R+) �{f|f:R+→R,|f|2ϕd∫∞

0
∫∞

0
f(s)f(t)ϕ(s, t)dsdt<∞},

where ϕ(s, t) � H(2H − 1)|s − t|2H−2.

Definition 2.2. The ϕ-derivative of F ∈ Lp in the direction ofΦg is
defined by

DΦgF(ω) � lim
δ→0

1
δ

F ω + δ ∫·

0
(Φg)(u)du( ) − F(ω){ },

if the limit exists in Lp. Moreover if there exists a process
(Dϕ

s Fs, s≥ 0) such that

DΦgF � ∫∞

0
Dϕ

s Fsgsds a.s.,

for all g ∈ L2ϕ, then F is said to be ϕ-differentiable.
According to [16, 30], let A(0, T) be the family of stochastic

process on [0, T] such that F ∈ A(0, T) if E|F|2ϕ <∞ and F is
ϕ-differentiable, the trace of (Dϕ

s Ft, 0≤ s≤T, 0≤ t≤T) exists and
E∫T

0
(Dϕ

s Fs)2ds<∞, and for each sequence of partitions
πn, n ∈ N such that |πn| → 0, as n → ∞. Moreover

∑n−1
i�0

E ∫t(n)i+1

t(n)i

|Dϕ
s F

π
t(n)i

−Dϕ
s Fs|ds

⎧⎨⎩ ⎫⎬⎭2

→ 0,

and

E|Fπ − F|2ϕ → 0,

as n → ∞. Here πn: 0 � t(n)0 < t(n)1 < . . . < t(n)n � T, and |πn| �
maxi∈{0,1,...,n−1}{t(n)i+1 − t(n)i }.

Now we define the BH
t -integral considered in [16].

Definition 2.3. Let {Ft}t≥ 0 be a stochastic process such that
F ∈ A(0, T). Define ∫T

0
FsdBH

s by

∫T

0
FsdB

H
s � lim

|π|→0
∑n−1
i�0

Fπ
ti
◇(BH

ti+1 − BH
ti
),

where |π| � maxi∈{0,1,. . .,n−1}{ti+1 − ti}.

Remark 2.1. : According to Theorem 3.6.1 in [16], if Fs ∈ A(0, T),
then the stochastic integral satisfies E∫T

0
FsdBH

s � 0, and

E ∫T

0
FsdB

H
s

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣2 � E ∫T

0
Dϕ

s Fsds( )2

+ |1[0,T]F|2ϕ[ ]
What’s more, according to Definition 3.4.1 in [16], the stochastic
integral can be extended by∫

R

FtdB
H
t d∫

R

Ft◇WH(t)dt,

where F: R→ (S)*H is a given function such that Ft◇WH(t) is dt
_− integrable in (S)*H. Here (S)*H is the fractional Hida

distribution space defined by Definition 3.1.11 in [16]. In
particular, the integral on [0, T] can be defined by

∫T

0
FtdB

H
t � ∫

R

FtI[0,T](t)dBH
t .

3 HYBRID FRACTIONAL SYSTEMS

In this section, firstly, we consider the existence and uniqueness of
solution for Eq. 1. Then, an extended Itô’s Formula is presented.

3.1 Existence and Uniqueness
To ensure the existence and uniqueness, we impose the following
assumptions.

Assumption 3.1. Let f � f(x, t, i): R × R+ × S → R satisfy the
hypothesises:

1) For each fixed i ∈ S, f(x, t, i) is measurable in all the
arguments.

2) For each fixed i ∈ S, there exists a constant C > 0, such
that
|f(x, t, i) − f(y, t, i)|≤C|x − y|, ∀x, y ∈ R, ∀t ∈ R+.

3) For each fixed i ∈ S, there exists a constant C > 0, such that

|f(x, t, i)|≤C(1 + |x|), ∀(x, t) ∈ R × R+.

Assumption 3.2. Let σ � σ(t, i): R+ × S→R satisfy the
hypothesises:

1) For each fixed i ∈ S, σ(t, i) is nonrandom;
2) For each fixed i ∈ S, σ(t, i) ∈ L

1
H(R+).

Lemma 3.1. : Let Assumptions 3.1, 3.2 hold. Then Eq. 1 has a
unique solution.

Proof: The existence and uniqueness can be proved similar to
that for Theorem 2.6 in [31], so we omit it here.

3.2 The Itô Formula
Next, we first review the results in [16, 30] on the Itô formula with
respect to fBm. Then we extend it to SDEs driven by fBm with
Markovian switching.

Lemma 3.2. [16] (The Itô Formula) Let (Fu, 0 ≤ u ≤ T) be a
stochastic process inA(0, T). Assume that there exists an α > 1 −
H and C > 0 such that
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E|Fu − Fv|2 ≤C|u − v|2α,
where |u − v| ≤ δ for some δ > 0 and

lim
0≤u,v≤t,|u−v|→0

E|Dϕ
u(Fu − Fv)|2 � 0.

Let sup0≤s≤T|Gs| < ∞ and ~g � ~g(x, t) ∈ C2,1(R × R+;R) with
bounded derivatives. Moreover, for ηt � ∫t

0
FudBH

u , it is assumed

that E∫T

0
|FsDϕ

s ηs|ds<∞ and (z~gzx (s, ηs)Fs, s ∈ [0, T]) is in

A(0, T). Denote xt � x0 + ∫t

0
Gudu + ∫t

0
FudBH

u , x0 ∈ R for t ∈
[0, T]. Let (z~gzx (xs, s)Fs, s ∈ [0, T]) ∈ A(0, T),E[sup0≤s≤t|Gs|]<∞.
Then for t ∈ [0, T],

~g(xt, t) � ~g(x0, 0) + ∫t

0

z~g

zs
(xs, s)ds + ∫t

0

z~g

zx
(xs, s)Gsds

+∫t

0

z~g

zx
(xs, s)FsdB

H
s + ∫t

0

z2~g

zx2 (xs, s)FsD
ϕ
s xsds.

HereDϕ
s xs is the Malliavin derivative defined inDefinition 2.2.

In particular, for the process
X(i)

t �X(i)
0 +∫t

0
f(X(i)

s , s, i)ds+∫t

0
g(X(i)

s , s, i)dBH
s , with each

fixed i ∈ S, we have that

F(X(i)
t , t, i) � F(X(i)

0 ,0, i) +∫t

0

zF

zs
(X(i)

s , s, i)ds

+∫t

0

zF

zx
(X(i)

s , s, i)f(X(i)
s , s, i)ds+∫t

0

zF

zx
(X(i)

s , s, i)g(X(i)
s , s, i)dBH

s

+∫t

0

z2F

zx2 (X(i)
s , s, i)g(X(i)

s , s, i)Dϕ
s X

(i)
s ds,

(2)

Formally,

dF(X(i)
t , t, i) � Ft(X(i)

t , t, i)dt + Fxx(X(i)
t , t, i)g(X(i)

t , t, i)Dϕ
s X

(i)
s dt

+Fx(X(i)
t , t, i)f(X(i)

t , t, i)dt + Fx(X(i)
t , t, i)g(X(i)

t , t, i)dBH
t ,

Let

L(i)F(X(i)
t , t, i) � Ft(X(i)

t , t, i) + Fx(X(i)
t , t, i)f(X(i)

t , t, i)
+Fxx(X(i)

t , t, i)g(X(i)
t , t, i)Dϕ

s Xs.
(3)

Substituting Eq. 3 into Eq. 2, we get

F(X(i)
t , t, i) � F(X(i)

0 , 0, i) + ∫t

0
L(i)F(X(i)

s , s, i)ds

+∫t

0
Fx(X(i)

s , s, i)g(X(i)
s , s, i)dBH

s .
(4)

In the sequel of this paper, unless otherwise specified, we let
the coefficients of Eq. 1 satisfy the conditions in Lemma 3.2, for
each fixed i ∈ S. Set V(Xt, t, rt) ∈ C2,1(R × R+ × S;R+). Next we
consider the Itô formula which reveals how Vmaps (Xt, t, rt) into
a new process V(Xt, t, rt), where {Xt}t≥ 0 is a stochastic process
with the stochastic differential Eq. 1.

Lemma 3.3. IfV(Xt, t, rt) ∈ C2,1(R × R+ × S;R+), then for any 0
≤ s < t,

EV(Xt, t, rt) � EV(Xs, s, rs) + E∫t

s
AV(Xu, u, ru)du

+E∫t

s
Vx(Xu, u, ru)g(Xu, u, ru)dBH

u

(5)

where AV is defined by

AV(x, t, i) � L(i)V(x, t, i) +∑N
j�1

cijV(x, t, j).

Proof: This result can be obtained similarly to that in [31] and
we therefore omit it. For further details we also refer to [2, 23].

4 LINEAR HYBRID FRACTIONAL SYSTEMS

There are many models for financial markets with fBm (see, e.g.
[16]). The simplest nontrivial type of market is the fBm version of
the classical Black Scholes market, in which linear fractional SDEs
is used. Thus, we would like to give some new criteria for
switching linear fractional SDEs with H ∈ (0, 12) or H ∈ (12, 1).
At first, we present a definition and a useful lemma.

Definition 4.1. Let H ∈ (0, 1). The operator M is defined on
functions f ∈ S(R) by

Mf(x) � − d

dx

CH

(H − 1/2)∫R

(t − s)|t − x|H−3
2f(t)dt (6)

where

CH � 2Γ H − 1
2

( )cos π

2
H − 1

2
( )[ ]{ }−1

[Γ(2H + 1) sin(πH)]
1
2.

Here Γ(·) denotes the classical Gamma function.
According to [16], Eq. 6 can be restated as follows.
For H ∈ (0, 1/2), we have

Mf(x) � CH∫
R

f(x − t) − f(x)
|t|3/2−H dt.

For H � 1/2, we have

Mf(x) � f(x).
For H ∈ (1/2, 1), we have

Mf(x) � CH∫
R

f(t)
|t − x|3/2−H dt.

Lemma 4.1. Let {rt}t≥ 0 be a right-continuous Markov chain
which takes values in a finite state space S � {1, 2, . . . , N}.
Assume that it is irreducible and positive recurrent with
invarient measure μ. If α(·): S→R is a function verifying

αd∑
i∈S

μ(i)α(i)> 0.

Then there exists constants C, c > 0 such that:

ce−αt ≤E e
−∫t

0
α(rs)ds[ ]≤Ce−αt,

for any initial condition r0 and every t ≥ 0.
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Proof: It is a consequence of Perron-Frobenius theorem and
the study of eigenvalues. See Proposition 4.1 in [25], Proposition
4.2 in [25], and Lemma 2.7 in [26], for further details.

In Eq. 1, let us consider the case g(x, t, rt) � σ(t, rt)x � thb(rt)x,
f(x, t, rt) � α(rt)x, where α(i) and b(i) are constants for each i ∈ S.
This means that we are considering the following linear
equation:

dXt � α(rt)Xtdt + σ(t, rt)XtdB
H
t ,

X0 � x0.
{ (7)

Set �b � max{|b(i)|, i ∈ S} and b � min{|b(i)|, i ∈ S}. x0 is the
deterministic initial value. For the sake of clarity, we firstly set h �
1/2 − H.

4.1 pth Moment Exponential Stability

Theorem 4.1. Let {Xt}t≥ 0 be the solution of Eq. 7 with H ∈ (1/2,
1), h � 1/2 − H.

1) If ∑i∈Sμiα(i) − (1−p)b 2

2 < 0, then lim sup
t→∞

1
t log(E|Xt|p)< 0.

2) If ∑i∈Sμiα(i) − (1−p)�b2
2 > 0, then lim

t→∞
E|Xt|p � ∞.

Proof. According to [16], without too many calculations, we
obtain that {Xt}t≥ 0 has the following form:

Xt � x0 exp ∫t

0
σ(rs)dBH

s + ∫t

0
α(rs)ds − 1

2
∫

R

(Ms(σ(t, rs)I[0,t](s)))2ds[ ],
(8)

where Ms is the operatorM acting on the variable s. Let x0 ≠ 0. It
follows from Eq. 8 that

E|Xt|p

� E |x0| exp ∫t

0
σ(t, rs)dBH

s + ∫t

0
α(rs)ds − 1

2
∫

R

(Ms(σ(t, rs)I[0,t](s)))2ds[ ]( )p

(9)

We then see from Eq. 9 that

E|Xt|p � E exp p ∫t

0
α(rs)ds − 1 − p

2
∫

R

(Ms(σ(t, rs)I[0,t](s)))2ds[ ]( )ζ t( ),
(10)

where

ζ t � |x0|p exp∫t

0
pσ(s, rs)dBH

s − p2

2∫
R

(Ms(σ(t, rs)I[0,t](s)))2ds.

Noting that ζ t is the solution to the equation

dζ t � pσ(t, rt)ζ tdBH
t ,

with initial value ζ0 � |x0|
p. Thus

ζ t � |x0|p + ∫t

0
pσ(t, rs)dBH

s ,

which yields

Eζ t � E |x0|p + ∫t

0
pσ(t, rs)dBH

s[ ] � |x0|p. (11)

Substituting Eq. 11 into Eq. 10 gives

E|Xt|p � E exp p ∫t

0
α(rs)ds − 1 − p

2
∫

R

(Ms(σ(rs)I[0,t](s)))2ds[ ]( )|x0|p.
(12)

Note that

∫
R

(Ms(b shI[0,t](s)))2ds≤∫
R

(Ms(σ(t, rs)I[0,t](s)))2

ds≤∫
R

(Ms(�bshI[0,t](s)))2ds.

Consequently, by Definition 4.1 and [16], one has

b 2t≤∫
R

(Ms(σ(rs)I[0,t](s)))2ds≤ �b
2
t. (13)

Making use of Eqs 12, 13, we obtain that

E exp p ∫t

0
α(rs)ds − 1 − p

2
�b
2
t[ )( ]|x0|p ≤E|Xt|p

≤E exp p ∫t

0
α(rs)ds − 1 − p

2
b 2t[ )( ]|x0|p.

Therefore, by Lemma 4.1 and Eq. 12, the required assertions
follow. The proof is complete.

Theorem 4.2. Let {Xt}t≥ 0 be the solution of Eq. 7 with H ∈ (0, 1/
2), h � 1/2 − H.

1) If ∑i∈Sμiα(i)< (1−p)b 2

2 , then lim sup
t→∞

1
t log(E|Xt|p)< 0.

2) If ∑i∈Sμiα(i)> (1−p)�b2
2 , then lim

t→∞
E|Xt|p � ∞.

Proof: Similar to Theorem 4.1, we write the solution as
follows.

E|Xt|p � E exp p ∫t

0
α(rs)ds + p − 1

2
∫

R

(Ms(σ(rs)I[0,t](s)))2ds[ ]( )|x0|p.
(14)

Note thatMs is the operator M acting on the variable s, where

Mf(x) � CH∫
R

f(x − t) − f(x)
|t|3/2−H dt.

According to [16], we also have that

b 2t≤∫
R

(Ms(σ(t, rs)I[0,t](s)))2ds≤ �b
2
t. (15)

Consequently, by Lemma 4.1, the result follows. The proof is
complete.

Remark 4.1. In the above Theorems 4.1, 4.2, the parameter h
is supposed to be H − 1/2. Noting that by Eqs 13, 15 and
together with the Definition 4.1, the stability of solution for
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Eq. 7 with h < 1/2 −H or h > 1/2 −H can be deduced respectively
without too many difficulties.

Remark 4.2. Take H � 1/2. It’s easy to show that if∑i∈Sμiα(i) � α< (1−p)σ 2

2 , then lim sup
t→∞

1
t log(E|Xt|p)< 0, and if∑i∈Sμiα(i) � α> (1−p)�σ2

2 , then lim
t→∞

E|Xt|p � ∞, which coincide

with the results of SDEs driven by Brownian motion
in [4, 32].

4.2 Almost Sure Exponential Stability
To proceed, we need to introduce the definition of almost sure
stability and a useful lemma.

Definition 4.2. The equilibrium point x � 0 is said to be almost
surely exponential stable if

lim sup
t→∞

1
t
log|Xt|< 0 a.s.

for any x0 ∈ R.

Lemma 4.2. (Law of the iterated logarithm) For a standard fBm
BH
t{ }t≥ 0, we have that

lim sup
t→∞

BH
t

tH
������
log logt

√ � CH, (16)

where CH > 0 is a suitable constant.
Proof: By [33], we have

lim sup
t→0+

BH
t

tH
��������
log logt−1

√ � cH,

where cH is a suitable constant. Then the thesis follows by the self-
similarity of fBm and a change of variable t → 1/t.

For the sake of clarity, we firstly set h � 0. Namely, let us
consider

dXt � α(rt)Xtdt + b(rt)XtdB
H
t ,

X0 � x0.
{ (17)

Noting that Eq. 17 is exactly the geometry fBm with
Markovian Switching. We proceed to discuss the almost sure
exponential stability about it.

Theorem 4.3. 1) If 0 <H < 1/2, the equilibrium point x � 0 of the
system Eq. 17 is almost surely exponential stable when∑i∈Sμiα(i)< 0, but unstable when ∑i∈Sμiα(i)> 0; 2) If H � 1/2,
the equilibrium point x � 0 of the system Eq. 17 is almost surely
exponential stable when ∑i∈Sμiα(i)< 1

2b
2, but unstable when∑i∈Sμiα(i)> 1

2
�b
2
; 3) If 1/2 < H < 1, the equilibrium point x �

0 of the system Eq. 17 is almost surely exponential stable for all
parameters α(i) and σ(i), i ∈ S.

Proof: Define

λ � lim sup
t→∞

1
t
log|Xt|.

From Eqs 8, 16, we have

λ � lim sup
t→∞

1
t
log|Xt|

� lim sup
t→∞

1
t
log

∣∣∣∣∣∣∣∣x0 exp[∫t

0
σ(rs)dBH

s + ∫t

0
α(rs)ds − 1

2
∫

R

(Ms(σ(rs)I[0,t](s)))2ds]∣∣∣∣∣∣∣∣
� lim

t→∞
∑
i∈S

μiα(i) −
1
2t
∫

R

(Ms(σ(rs)I[0,t](s)))2ds( ).
By Definition 4.1 and [16], one has

b 2t2H ≤∫
R

(Ms(b(rs)I[0,t](s)))2ds≤ �b
2
t2H. (18)

Making use of Eq. 18, we get

λ � ∑
i∈S

μiα(i), 0<H< 1/2;
−∞, 1/2<H< 1.

{
Especially, when H � 1/2, we have that

∑
i∈S

μiα(i) −
1
2
�b
2 ≤ λ≤ ∑

i∈S

μiα(i) −
1
2
b 2.

Therefore, the required results follows. The proof is
complete.

Remark 4.3. Making use of Eq. 18, one can discuss the almost
sure exponential stability for Eq. 7 with h ≠ 0. The proofs are
similar to Theorem 4.3 and are omitted.

5 QUASI-LINEAR HYBRID FRACTIONAL
SYSTEMS

We now apply the extended Itô Formula in Section 3 to discuss
the stability for quasi-linear fractional SDEs with Markovian
switching.

Theorem 5.1. : Let Assumptions 3.1, 3.2 hold. If there exists a
function V ∈ C2,1(R × R+ × S;R+) and positive constants a1, a2,
b and p ≥ 1, such that

a1|Xt|p ≤ |V(Xt, t, i)|≤ a2|Xt|p, (19)

L(i)V(Xt, t, i)≤ − b|Xt|p, (20)

for all Xt ∈ R, t ≥ t0, i ∈ S.
Then the solution of Eq. 1 is pth moment exponential stable.

More precisely,

lim sup
t→∞

1
t
log(E|Xt|p)< 0.

Proof: According to Lemma 3.1, Eq. 1 has a unique solution.
Denote it {Xt}t≥ 0. Set

U(Xt, t, i) � eλtV(Xt, t, i),
where λ ∈ (η, b

a2
), η > 0. Making use ofDefinition 2.3 and Lemma

3.2, one hasAU � eλt(λV +AV) and (Uxg, s ∈ [0, T]) ∈ A(0, T).
Applying the conditions Eq. 19, 20, together with the

generalized ItôEq. 5 and Remark 2.1, we obtain that for
any t ∈ [0, T]
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a1e
ηtE|Xt|p ≤EU(Xt, t, i) � EV(X0, 0, r0) + E∫t

0
AUds

+ E∫t

0
UxgB

_

H

s

� EV(X0, 0, r0) + E∫t

0
L(rs )Uds

� EV(X0, 0, r0) + E∫t

0
eλs(λV +AV)ds≤EV(X0, 0, r0)

+ E∫t

0
eλs(λa2 − b)|Xt|pds.

Thus we obtain that

a1e
ηtE|Xt|p ≤EV(X0, 0, r0) + E∫t

0
eλs(λa2 − b)|Xt|pds. (21)

Dividing both sides of Eq. 21 by a1e
ηt, noting that λa2 − b < 0,

we get

E|Xt|p ≤
e−ηt

a1
EV(X0, 0, r0) + e−ηt

a1
E∫t

0
eλs(λa2 − b)|Xt|pds

≤
e−ηt

a1
EV(X0, 0, r0).

Consequently,

sup
t∈[0,T]

a1e
ηtE|Xt|p ≤EV(X0, 0, r0).

Letting T → ∞ gives

sup
t≥0

E|Xt|p ≤ e−ηt

a1
EV(X0, 0, r0),

and the required assertion follows. The proof is complete.
In the sequel of this section, we give another useful criterion

and prove it briefly.

Theorem 5.2. Assume that Eq. 1 has a unique solution and there
exist a function V ∈ C2,1(R × R+ × S;R+) and positive constants
b1, b2, p ≥ 1 and βi ∈ R such that for all x ∈ R, t ≥ t0, i ∈ S,

b1|x|p ≤ |V(x, t, i)|≤ b2|x|p,
L(i)V(x, t, i)≤ βiV(x, t, i),

and ∑
i∈S

μiβi < 0

Then Eq. 1 is pth moment exponential stable.
Proof: Set �βi � 1

θ βi, where θ ∈ (0, 1). Let δ � −∑i∈Sμi
�βi � −μ�β.

Let 1 denote the vector which all elements are 1. Then,

μ(�β + δ1) � μ�β + δ � −δ + δ � 0. (22)

By [1], Eq. 22 implies the Poisson equation:

Qc � �β + δ1. (23)

Note that Eq. 23 has the solution c � (c1, . . . , cN)T. Hence,

−δ � �βi −∑N
j�1

qijcj, i ∈ S. (24)

For each i ∈ S, set U(x, t, i) � (1 − θci)V(x, t, i), where θ ∈ (0, 1)
is already defined and sufficiently small satisfying 1 − θci > 0.

Then, for any t ∈ [0, T] we get

AU(x, t, i) � (1 − θci)L(i)V(x, t, i) +∑
i≠j

qij(U(x, t, j) − U(x, t, i))

� (1 − θci)L(i)V(x, t, i) − θV(x, t, i)∑
i≠j

qij(cj − ci)

≤ (1 − θci)θV(x, t, i) �βi −∑
i≠j

qij
cj − ci

(1 − θci)
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(25)

According to [1, 31], one has

∑
i≠j
qij

cj − ci
(1 − θci) � ∑

i≠j
qijcj +∑

i≠j
qij
θcicj − ci
1 − θci

� ∑N
j�1

qijcj +∑
i≠j

qij
ci(cj − ci)
1 − θci

θ � ∑N
j�1

qijcj + o(θ).
(26)

Making use of Eqs 25, 26, we obtain that

AU(x, t, i)≤ (1 − θci)θV(x, t, i) �βi −∑N
j�1

qijcj + o(θ)⎡⎢⎢⎣ ⎤⎥⎥⎦. (27)

Substituting Eq. 24 into Eq. 27, we get

AU(x, t, i)≤ (1 − θci)θV(x, t, i)[o(θ) − δ] � κU(x, t, i),
where κ < 0.Making use ofTheorem5.1, the desired criterion follows.

On the other hand, we can prove it in another way. Set η > 0
and λ ∈ (η, − κ). Define

�U(Xt, t, i) � eλt

1 − θci
U(Xt, t, i).

Compute

b1e
ηtE|Xt|p ≤E �U(Xt, t, i) � EU(X0, 0, i0) + E∫t

0
A �Uds + E∫t

0

�UxgdB
H
s

� EU(X0, 0, i0) + E∫t

0
eλs(λU +AU)ds≤EU(X0, 0, i0) + E∫t

0
eλs(λ + κ)Uds

� EV(x0, 0, i0) + E∫t

0
eλs(λ + κ)Vds

≤EV(x0, 0, i0) + E∫t

0
eλs(λ + κ)b2|Xt|pds.

Thus we obtain that

b1e
ηtE|Xt|p ≤V(x0, 0, i0) + E∫t

0
eλsb2(λ + κ)|Xt|pds, (28)

Dividing both sides of Eq. 28 by b1e
ηt, noting that b2(λ + κ) < 0,

we get

E|Xt|p ≤
e−ηt

b1
EV(X0, 0, r0) + e−ηt

b1
E∫t

0
eλsb2(λ + κ)|Xt|pds

≤
e−ηt

b1
EV(X0, 0, r0).

Therefore, we obtain the required assertion

lim sup
t→∞

1
t
log(E|Xt|p)< 0.

The proof is complete.
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6 EXAMPLE

In this section we give a numerical example to illustrate our
results.

Example 1. Let {rt}t≥ 0 be a right-continuousMarkov chain taking
values in S � {1, 2} with invariant probability measure μ1 � μ2 �
1
2.

Consider a risky asset, with the price dynamics:

dXt � f(Xt, t, rr)dt + σ(t, rt)XtdB
H
t ,

X0 � 1,
{ (29)

on t ≥ 0. Here we take H � 0.7 and

f(x, t, i) � −4x, σ(t, i) � 1
t + 1

, if i � 1,

f(x, t, i) � [2 − sin(x)]x, σ(t, i) � e−t, if i � 2.

⎧⎪⎪⎨⎪⎪⎩
Note that for all i ∈ S, dXt � f(Xt, t, i)dt + σ(t, i)XtdBH

t
satisfy the hypothesises (i)-(v). Then, by Lemma 3.1, it is easy
to show that Eq. 29 has a unique solution {Xt}t≥ 0 as well. Set V(x,
t, i) � x2, for i � 1, 2.

Noting that for some t0 > 0 sufficiently large and all t > t0, we
have

L(1)V(x, t, 1) � Vx(x, t, 1)f(Xt, t, 1) + Vxx(x, t, 1) 1
t + 1

xDϕ
s x

≤ − 8x2 + 2
1

t + 1
x xHt2H−1[ ]

� −8x2 + o(1)x2dβ1x
2,

and

L(2)V(x, t, 2) � Vx(x, t, 2)f(Xt, t, 2) + Vxx(x, t, 2)e−txDϕ
s x

� 2x2[2 − sin(x)] + o(1)x2

≤ 6x2 + o(1)x2dβ2x
2.

Compute

∑
i∈S

μiβi �
1
2
(−8 + 6) + o(1)< 0.

By Theorem 5.2, it’s clear that the solution of Eq. 29 is second
moment exponential stable. Figures 1, 2 show a single path of the
solution and the solution’s norm square, respectively.
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FIGURE 1 | A single path of solution. FIGURE 2 | Norm square trajectory.
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Almost Periodic Solutions to Impulsive
Stochastic Delay Differential
Equations Driven by Fractional
Brownian Motion With 1

2 < H < 1
Lili Gao and Xichao Sun*

Department of Mathematics and Physics, Bengbu University, Bengbu, China

In this article, we study the existence and uniqueness of square-mean piecewise almost
periodic solutions to a class of impulsive stochastic functional differential equations driven
by fractional Brownian motion. Moreover, the stability of the mild solution is obtained. To
illustrate the results obtained in the paper, an impulsive stochastic functional differential
equation driven by fractional Brownian motion is considered.

Keywords: fractional Brownian motion, square-mean piecewise almost periodic solution, impulsive systems,
stochastic functional differential equation, stability

1 INTRODUCTION

Impulsive systems arise naturally in a wide variety of evolutionary processes in which states are
changed abruptly at certain moments of time. Impulsive stochastic modeling has come to play an
important role in many branches of science where more and more people have encountered
impulsive stochastic differential equations. For example, a stochastic model for drug distribution in a
biological system was described by Tsokos and Padgett [1] as a closed system with a simplified heart,
one organ, or capillary bed, and recirculation of blood with a constant rate of flow, where the heart is
considered as a mixing chamber of constant volume. Recently, there has been a significant
development in impulsive stochastic differential equations (ISDEs). The existence and stability of
ISDEs were investigated in [2–11] and the references therein.

On the other hand, in recent years, there has been considerable interest in studying fractional
Brownian motions (fBms) due to their compact properties and applications in various scientific
areas, including telecommunications [12, 13], turbulence [14], image processing [15], and finance
[16]. Stochastic differential equations (SDEs) driven by fBms attract the interest of researchers [2, 3,
17–21]. Taking the time delay into account, the theory of stochastic differential equations has been
generalized to stochastic functional differential equations; it makes the dynamics more complex and
the system may lose stability and show almost periodicity. Arthi et al. [2] considered the existence
and exponential stability for neutral stochastic integrodifferential equations with impulses driven by
fractional Brownian motion (fBm), and Caraballo [3] studied the existence of mild solutions to
stochastic delay evolution equations with fBm and impulses.

In this paper, we are concerned with the existence and stability of almost periodic mild solutions
to the following impulsive stochastic functional differential system driven by fBm with Hurst
index H ∈(1/2, 1):

dx t( ) � Ax t( ) + b t, xt( )[ ]dt + σ t( )dBH t( ), t≠ ± ti, i ∈ Z,
△x ti( ) � x t+i( ) − x t−i( ) � Ii x ti( )( ), i ∈ Z,
xt0 � ξ � ξ t( ): − θ ≤ t≤ 0{ },

⎧⎪⎨⎪⎩ (1)
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where Z is the set of integer, for any i, k ∈ Z, and the sequence {ti}
is such that the derived sequence {tki � ti+k − ti} is equipotentially
almost periodic. Moreover, A: D(A) ⊂ H→H is a linear
bounded operator, ρ(A) is the resolvent set of A, and for λ ∈
ρ(A), R(λ, A) is the resolvent of A. In addition, b, σ, and Ii are
appropriate functions, xt(·): [−θ, 0]→H is given by xt(s) � x(t +
s), for any s ∈ [ − θ, 0], and ξ ∈ Cθ is an F t0−measurable random
variable such that E‖ξ‖2 <∞. Let θ > 0 be a given constant and let

Cθ � ϕ: [−θ, 0] × Ω→H, ϕ{ be continuous everywhere except
for a finite number of points s at which ϕ(s−) and ϕ(s+) exist and
satisfy ϕ(s−) � ϕ(s)}, endowed with the norm

‖ϕ‖Cθ � sup
−θ≤s≤0

E‖ϕ s( )‖2( )12,
such that ϕ(s, ·) is F 0-measurable for each s ∈ [ − θ, 0] and
sup

s∈[−θ,0]
E‖ϕ(s)‖2 <∞.

There are several difficulties with our problems. First, there is
the delay for the impulsive stochastic differential equations.
Second, about the stochastic differential equations driven by
fractional Brownian motion, the classical stochastic integral
failed for lack of the martingale property. Third, there is no
strong solution for stochastic partial delay differential equations
driven by fractional Brownian motion. The lifting space method,
mild solutions, fixed point theorem, and semigroup theory will be
used to overcome these difficulties.

The paper is organized as follows. In Section 2, we introduce
some notations and necessary preliminaries. Section 3 is devoted
to stating the existence and uniqueness of the mild square-mean
piecewise almost periodic solution to (1). In Section 4, we show
the stability of the mild square-mean piecewise almost periodic
solution. An example is provided to illustrate the effectiveness of
the results.

2 PRELIMINARIES

Let (H, ‖ · ‖H, (·, ·)H) and (K, ‖ · ‖K, (·, ·)K) denote two real
separable Hilbert spaces. We denote by L(H,K) the set of all
linear bounded operators from H into K, equipped with the usual
operator norm ‖ ·‖ and use |·| to denote the Euclidean norm of a
vector. In this article, we use the symbol ‖·‖ to denote the norms of
operators regardless of the spaces involved when no confusion
possibly arises. Let (Ω,F , {F t}t≥ 0, P) be a filtered complete
probability space satisfying the usual condition.

2.1 Fractional Brownian Motion
In this subsection, we briefly introduce some useful results about
fBm and the corresponding stochastic integral taking values in a
Hilbert space. For more details, refer to Hu [22], Mishura [23],
Nualart [24], and references therein.

A real standard fractional Brownian motion {βH(t), t ∈ R}
with Hurst parameter H ∈ (0, 1) is a Gaussian process with
continuous sample paths such that E[βH(t)] � 0 and

E βH t( )βH s( )[ ] � 1
2

|t|2H + |s|2H − |t − s|2H( ),

for all s, t ≥ 0. It is known that fBm {βH(t), t ≥ 0} withH> 1
2 admits

the following Wiener integral representation:

βH t( ) � ∫t

0
KH t, s( )dW s( ),

whereW is a standard Brownian motion and the kernel KH(t, s) is
given by

KH t, s( ) � cH ∫t

s
u − s( )H−3

2
u

s
( )H−1

2

du, s< t,

where cH > 0 is a constant satisfying E(βH1 )2 � 1. For any function
σ ∈ L2(0, T), the Wiener integral of σ with respect to βH is
defined by

∫T

0
σ s( )dβH s( ) � ∫T

0
K∗

Hσ s( )dW s( ),

for any T > 0, where K∗
Hσ(s) � ∫Ts zKH

zr (r, s)dr. A K-valued,
F t-adapted fBm BH with Hurst index H can be defined by

BH t( ) �∑∞
n�1

��
λn

√
enβ

H
n t( ),

where βHn , n � 1, 2, · · · are independent fBms with the same Hurst
parameter H ∈ (12, 1), {en, n ∈ N}, which is a complete
orthonormal basis in K, {λn, n ∈ N} that is a bounded
sequence of non-negative real numbers satisfying Qen � λnen,
and Q is non-negative self-adjoint trace class operator with
TrQ � ∑∞

n�1 λn < +∞.
Let L0

2(H,K) denote the space of all σ ∈ L(H,K) such that
σQ

1
2 is a Hilbert–Schmidt operator. The norm is defined by

‖σ‖2
L0
2
� ∑∞

n�1 ‖
��
λn

√
σen‖2. Generally, σ is called a Q-

Hilbert–Schmidt operator from H to K.

Definition 2.1. Let σ: [0, T]→ L02(H,K) such that

∑∞
n�1

‖K∗
H σen( )‖2L0

2
<∞,

then the stochastic integral of σ with respect to fBm BH is defined by

∫t

0
σ s( )dBH s( )d∑∞

n�1
∫t

0
σ s( )Q1

2 endβ
H s( )

�∑∞
n�1

∫t

0
K∗

H σ s( )Q1
2en( )( ) s( )dW s( ).

Remark. If {λn}n∈N is a bounded sequence of non-negative real
numbers such that the nuclear operator Q satisfies Qen � λen,
assuming that there exists a positive constant Kσ such that
‖σ‖2

L0
2
≤Kσ uniformly in [0, T], then it is obvious that∑∞

n�1 ‖σQ1
2 en‖2 is uniformly convergent for t ∈ [0, T].

2.2 Piecewise Almost Periodic Stochastic
Processes
In this subsection, we recall some notations about the square-
mean piecewise almost periodic stochastic process and introduce
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some lemmas. For further details, we refer to Takens and Teissier
[25] and Liu [26].

Recall that a stochastic process X: R→ L2(Ω;H) is said to be
continuous if

lim
t→s

E‖X t( ) −X s( )‖2 � 0,

for all s ∈ R, and it is said to be bounded if there existsN > 0, such
that E‖X(t)‖2 ≤ N for all t ∈ R. For convenience, we list the
following concepts and notations:

• L2(Ω,H) is Banach space when it is equipped with norm
‖ · ‖L2(Ω,H).

• Let T be the set consisting of all real sequences {ti}i∈Z such
that α � inf i∈Z(ti+1 − ti)> 0, and lim

i→∞
ti � ∞, lim

i→−∞ ti � −∞,
x(t−i ),and x(t+i ) represent the left and right limits of x(t) at
the point ti, i ∈ Z, respectively.

• Let PC(R, L2(Ω,H)) be the space consisting of all
stochastically bounded functions b: R→L2(Ω,H) such
that b(·) is stochastically continuous at t for any
t ∉ {ti}i∈Z, and b(ti) � b(t−i ) for all i ∈ Z, {ti}i∈Z ∈ T .

• Let PC(R × Cθ, L2(Ω,H)) be the space of all piecewise
stochastic process b: R × Cθ → L2(Ω,H) such that

• for any ϕ ∈ Cθ , b(·, ϕ) is stochastically continuous at point t
for any t ∉ {ti}i∈Z and b(ti, ϕ) � b(t−i , ϕ) for all i ∈ Z;
and b(t, ·) is stochastically continuous at ϕ ∈ Cθ , for t ∈ R.

• For k < i, t − tk � t − ti + ti − tk ≥ t − ti + (i − k)α, if {ti}i∈Z ∈ T ,
and ti < t ≤ ti+1 (see [27]).

Definition 2.2. ([28]). The family of the sequence {tki � ti+k −
ti}, i ∈ Z, k ∈ Z will be called equipotentially almost periodic if for
any ε > 0; there exists a relatively dense set Qε of R and an integer
q ∈ Z such that the inequality

|ti+q − ti − τ|< ε, (2)

holds for each τ ∈ Qε and i ∈ Z.

Definition 2.3. A function {b(t), t ≥ 0} is said to be square-mean
piecewise almost periodic if the following conditions are fulfilled:

a) For any ε > 0, there exists a positive number δ � δ(ε) such that if
the points t′ and t″ belong to the same interval of continuity
and |t′ − t″| < δ, then E‖b(t′) − b(t″)‖2 < ε.

b) For any ε > 0, there exists l(ε) > 0, such that every interval of
length l(ε) contains a number τ with the property

sup
t∈R

E‖b t + τ( ) − b t( )‖2 < ε,

which satisfies the condition |t − ti|> ε, i ∈ Z.
Let APT (R, L2(Ω;H)) denote the space of all square-mean

piecewise almost periodic functions. Obviously
APT (R, L2(Ω;H)) endowed with the supremum norm is a
Banach space. Let UPC(R; L2(Ω;H)) be the space of all
functions b ∈ PC(R, L2(Ω;H)) such that b satisfies the
condition (a) in Definition 2.3. It is easy to check that
UPC(R; L2(Ω;H)) is a Banach space with the norm

‖X‖∞ � sup
t∈R

E‖X t( )‖2( )12,
for each X ∈ UPC(R; L2(Ω;H)).

Definition 2.4. (compare with [28]). A sequence
{xi}: Z→ L2(Ω,H) is called square-mean almost periodic if for
any ε > 0, there exists a natural number N � N(ε) such that, for
each k ∈ Z, there is at least one integer p in the segment [k, k + N],
for which inequality

E‖xi+p − xi‖2 < ε,
holds for all i ∈ Z.

Definition 2.5. The function b(t,φ) ∈ PC(R × Cθ, L2(Ω,H)) is
said to be square-mean piecewise almost periodic in t ∈ R

uniformly in φ ∈ Λ, where Λ4Cθ is compact if for any ε > 0,
there exits l(ε, Λ) > 0 such that any interval of length l(ε, Λ)
contains at least a number τ for which

sup
t∈R

E‖b t + τ, x( ) − b t, x( )‖2 < ε,

for each x ∈ Λ, t ∈ R, satisfying |t − ti| > ε. The collection of all such
processes is denoted by APT (R × Cθ, L2(Ω,H)).

Lemma 2.1. Let the function f: R × Cθ → L2(Ω;H) be square-
mean piecewise almost periodic in t ∈ R uniformly for y ∈ Cθ,
whereΛ ⊂ Cθ is compact. If f is a Lipschitz function in the following
sense,

E‖f t, y( ) − f t, ~y( )‖<M2 ‖y − ~y‖Cθ( ), (3)

for all y, ~y ∈ Cθ, t ∈ R, and a constant M2 > 0, then for
any ϕ(·) ∈ APT (R, L2(Ω;H)), f(·, ϕ·) ∈ APT (R, L2(Ω;H)).

Proof. Noting that ϕ(t): R→ L2(Ω;H) is square-mean almost
periodic, we can conclude that ϕt � {ϕ(t + s), − θ ≤ s ≤ 0, θ > 0} is
square-mean almost periodic by Theorem 1.2.7 of [29]. Thus, for
each ε > 0, there exists a constant l(ε) > 0 such that every interval
with the length l(ε) contains a number τ satisfying

E‖ϕt+τ − ϕt‖2Cθ ≤
ε

4M2
,∀t ∈ R. (4)

Noting that f: R × Cθ → L2(Ω;H) is square-mean piecewise
almost periodic, we can see that for any ε > 0, there exits l(ε,Λ) > 0
such that each interval with length l(ε, Λ) contains at least a
number τ satisfying

E‖f t + τ, ϕt( ) − f t, ϕt( )‖2 ≤ ε

4
,∀t ∈ R, (5)

for any x ∈ Λ(4Cθ), t ∈ R with |t − ti| > ε. Using the elementary
inequality |a + b|2 ≤ 2(|a|2 + |b|2) and condition (3), we have

E‖f t + τ, ϕt+τ( ) − f t, ϕt( )‖2
≤ 2E‖f t + τ, ϕt+τ( ) − f t, ϕt+τ( )‖2 + 2E‖f t,ϕt+τ( ) − f t,ϕt( )‖2
≤ 2E‖f t + τ, ϕt+τ( ) − f t, ϕt+τ( )‖2 + 2M2

2E‖ϕt+τ − ϕt‖2Cθ ,

for all t ∈ R. Combining (4) and (5), one can show that
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sup
t∈R

E‖f t + τ, ϕt+τ( ) − f t,ϕt( )‖2 ≤ 2 · ε
4
+ 2M2 · ε

4M2
≤ ε,

which implies that f(t, ϕt) is square-mean piecewise almost
periodic.

3 EXISTENCE OF SQUARE-MEAN
PIECEWISE ALMOST PERIODIC SOLUTION

In this section, we study the existence of the square-mean piecewise
almost periodic solution to (1). We first present some assumptions
as follows:

(H1) Let the bounded linear operator A be an infinitesimal
generator of an analytic semigroup {S(t), t ≥ 0} such that

‖S t( )‖≤Me−ct, t≥ 0 (6)

for some c > 0,M > 0. Moreover, R(λ,A) is almost periodic, where
λ ∈ ρ(A).

(H2) Let b ∈ APT (R × Cθ, L2(Ω,H)). Moreover, there exists a
positive constant Mb such that

E‖b t, x( ) − b t, ~x( )‖2 ≤Mb‖x − ~x‖2Cθ ,
for any x, ~x ∈ Cθ .

(H3) Let σ ∈ APT (RL02(Ω, L2(Ω,H))) and let {Iix(ti), i ∈ Z}
be a square-mean piecewise almost periodic sequence
satisfying

E Ii x( ) − Ii y( )���� ����2 ≤MIE x − y
���� ����2.

for some positive constant MI.
Recall the notion of a mild solution for Eq. 1.

Definition 3.1. An F t-progressive process {x(t)}t∈R is called a
mild solution of the system (1) on R if it satisfies the corresponding
stochastic integral equation

x t( ) � S t( )x0 + ∫t

t0

S t − s( )b s, xs( )ds

+∫t

t0

S t − s( )σ s( )dBH s( )
+ ∑

t0 < t< ti
S t − ti( )Ii x ti( )( ), (7)

for all t ≥ t0 and for each t0 ∈ R.

Theorem 3.1. Let (H1) − (H3) be satisfied. Then, (1) has a
unique square-mean piecewise almost periodic mild solution
whenever

ΘdM2Mb

c2
+ M2MI

1 − e−cα( )2 < 1. (8)

Consider the following equation:

x t( ) � ∫t

−∞
S t − s( )b s, xs( )ds + ∫t

−∞
S t − s( )σ s( )dBH s( )

+ ∑
ti < t

S t − ti( )Ii x ti( )( ),

with t ≥ t0. It is easy to verify that the above equation is
equivalent to (7). Define the operator L on APT (R, L2(Ω,H))
by

Lx t( ):� ∫t

−∞
S t − s( )b s, xs( )ds

+∫t

−∞
S t − s( )σ s( )dBH s( ) + ∑

ti < t

S t − ti( )Ii x ti( )( )
≡ Φ1 t( ) +Φ2 t( ) + Φ3 t( ),

for all t ∈ R. To prove the theorem, it is sufficient to show that the
next statements hold:

I) Lx(t) is square-mean piecewise almost periodic.
II) L admits a unique fixed point.

Proof of Statement (I)This will be done in two steps.

Step 1. We claim that Lx(t) ∈ UPC.
Let i ∈ Z. By the uniform continuity of S(t), we can see that, for

any ε > 0, there exists a number δ > 0 between 0 and
min {

�
ε
~b

√
,

�
ε
~σ

2H
√

} such that

‖S t″ − t′( ) − I‖2 ≤min
c2ε
~b
,
c2Hε

H2H~σ
,
1 − e−cα( )2ε

~I
{ }, (9)

for all t′, t″ ∈ (ti, ti+1), t′ < t″ as 0 < t″ − t′ < δ, where
~b � 36M2‖b‖2∞, ~σ � 36H(2H − 1)M2‖σ‖2∞, ~I � 9M2‖I‖2∞. It
follows from the inequality |a + b + c|3 ≤ 3(a2 + b2 + c2) that

E‖Lx t′( ) − Lx t″( )‖2 ≤ 3E‖Φ1 t′( ) −Φ1 t″( )‖2
+3E‖Φ2 t′( ) −Φ2 t″( )‖2 + 3E‖Φ3 t′( ) −Φ3 t″( )‖2,

for all t′, t″ ∈ (ti, ti+1), t′ < t″. By the assumptions (H1), (H2), and
(H3), we have that

E‖∫t″

t′
S t″ − s( )b s, xs( )ds‖2 ≤M2 ∫t″

t′
e−c t″−s( )

ds∫t″

t′
e−c t″−r( )E‖b s, xr( )‖2dr
≤M2 t″ − t′( )2 sup

t∈R
E‖b t, xt( )‖2, (10)

and

E‖∫t″

t′
S t″ − s( )σ s( )dBH s( )‖2 ≤H 2H − 1( )M2‖σ‖2∞ ∫t″

t′
e
−
c t″ − s( )

H ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2H

≤M2 t″ − t′( )2H sup
t∈R

E‖b t, xt( )‖2,
(11)

for all t′, t″ ∈ (ti, ti+1), t′ < t″. Moreover, we also have that
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E‖∫t′

−∞
S t′ − s( ) − S t″ − s( )[ ]b s, xs( )ds‖2

� E‖∫t′

−∞
I − S t″ − t′( )[ ]S t′ − s( )b s, xs( )ds‖2

≤M2‖I − S t″ − t′( )‖2 ∫t′

−∞
e−c t′−s( )ds∫t′

−∞
e−c t′−r( )E‖b s, xr( )‖2dr

≤M2‖I − S t″ − t′( )‖2c−2 sup
t∈R

E‖b t, xt( )‖2,
(12)

and

E‖∫t′

−∞
S t′ − s( ) − S t″ − s( )[ ]σ s( )dBH s( )‖2

≤H 2H − 1( )M2‖I − S t″ − t′( )‖2

∫t′

−∞
e
−
c t′ − s( )

H ‖σ s( )‖ 1
H

L20
ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2H

≤H 2H − 1( )M2‖I − S t″ − t′( )‖2‖σ‖2∞
H

c
( )2H

,

(13)

for all t′, t″ ∈ (ti, ti+1), t′ < t″. Combining these with Hölder’s
inequality and (9), we get that

E‖Φ1 t′( ) − Φ1 t″( )‖2 ≤ 2M2

c2
c2ε
~b
‖b‖2∞ + 2δ2M2‖b‖2∞ ≤

ε

9
,

and

E ‖Φ2 t′( ) − Φ2 t″( )‖2

≤ 2H 2H − 1( )M2⎛⎝‖I − S t″ − t′( )‖2‖σ‖2∞
H

c
( )2H

+ ‖σ‖2∞ t″ − t′( )2H⎞⎠≤
ε

9
,

for all t′, t″ ∈ (ti, ti+1), t′ < t″ provided |t″ − t′| < δ. Similarly, by the
assumptions (H1) and (H3) and (9), one can see that

E‖Φ3 t′( ) −Φ3 t″( )‖2 ≤E‖ ∑
ti < t′

S t′ − ti( )Ii x ti( )( )
− ∑

ti < t″
S t″ − ti( )Ii x ti( )( )‖2

≤E‖ ∑
ti < t″

S t′ − ti( )Ii x ti( )( ) − S t″ − ti( )Ii x ti( )( )[ ]‖2

≤M2‖I − S t″ − t′( )‖2 ∑
ti < t′

e−c t′−ti( )⎛⎝ ⎞⎠
∑
ti < t′

e−c t′−ti( )E‖Ii x ti( )( )‖2⎛⎝ ⎞⎠
≤M2‖I − S t″ − t′( )‖2 ∑

ti < t′
e−c t′−ti( )⎛⎝ ⎞⎠2

‖I‖2∞

≤M2‖I − S t″ − t′( )‖2 1
1 − e−cα
( )2‖I‖2∞ ≤

ε

9
,

for all t′, t″ ∈ (ti, ti+1), t′ < t″ provided |t″ − t′| < δ. Thus, we have
shown that the estimate

E‖Lx t′( ) − Lx t″( )‖2 < ε,
holds for all t′, t″ ∈ (ti, ti+1), t′ < t″ provided |t″ − t′| < δ, which
means Lx(t) ∈ UPC.

Step 2. We prove the almost periodicity of Lx(t).
For Φ1(t), let ti < t < ti+1; by (H1), (H2), and Hölder’s

inequality, we have that

E Φ1 t + τ( ) −Φ1 t( )‖ ‖2

� E ∫t+τ

−∞
S t + τ − s( )b s, xs( )ds − ∫t

−∞
S t − s( )b s, xs( )ds

������� �������2
� E ∫t

−∞
S t − s( ) b s + τ, xs+τ( ) − b s, xs( )[ ]ds

������� �������2
≤E ∫t

−∞
Me−c t−s( ) b s + τ, xs+τ( ) − b s, xs( )‖ ‖ds( )2

≤
M2

c
∑i−1

j�−∞
∫tj+1−η

tj+η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds⎛⎝

+ ∑i−1
j�−∞

∫tj+η

tj

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

+ ∑i−1
j�−∞

∫tj+1

tj+1−η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

+∫ti+η

ti

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds),
where η � min {ε, α2}. By Lemma 2.1 and (H2), we find that for
any ε > 0 and i ∈ Z, there exists a real number l(ε, Λ) > 0 such
that every interval of length l(ε, Λ) contains at least a constant
τ and

E b t + τ, xt+τ( ) − b t, xt( )‖ ‖2 < ε, ∀t ∈ R,

for each x ∈ Λ, |t − ti| > ε, since b ∈ APT (R, L2(Ω,H)), where
Λ ⊂ Cθ is compact.

For s ∈ [tj + η, tj+1 − η], j ∈ Z, j ≤ i, t − s ≥ t − ti + ti − (tj+1 − η) ≥
t − ti + α(i + j − 1) + η, we have

∑i−1
j�−∞

∫tj+1−η

tj+η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

≤ ε ∑i−1
j�−∞

∫tj+1−η

tj+η
e−c t−s( )ds≤

ε

c
∑i−1

j�−∞
e−c t−tj+1+η( )

≤
ε

c
∑i−1

j�−∞
e−cα i−j+1( ) ≤ ε

c 1 − e−cα( ).

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7831255

Gao and Sun Almost Periodic Solutions to ISDDEs

26

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


For s ∈ [tj, tj + η], j ∈ Z, j≤ i, by the mean value theorem of
integral, we get that

∑i−1
j�−∞

∫tj+η

tj

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

≤ 2 sup
s∈R

E‖b s, xs( )‖2 ∑i−1
j�−∞

∫tj+η

tj

e−c t−s( )ds≤ 2‖b‖2∞εecη

∑i−1
j�−∞

e−c t−tj( )

≤ 2‖b‖2∞εecηec t−ti( ) ∑i−1
j�−∞

e−cα i−j( ) ≤ 2‖b‖2∞e
c
2

1 − e−cα
ε.

Similarly, we can show that

∑i−1
j�−∞

∫tj+1

tj+1−η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds≤C1ε,

∫ti+η

ti

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds≤C2ε,

whereC1,C2 are two positive constants. Thus, we have introduced
the next estimate:

E Φ1 t + τ( ) − Φ1 t( )‖ ‖2 <N1ε,

where N1 is a positive constant, which implies that Φ1(t) is
square-mean piecewise almost periodic.

We now show that Φ2(t) is square-mean piecewise almost
periodic. Recall that t1σ(t) is piecewise almost periodic if for
each ε > 0 there exists a real number l(ε) > 0 such that the
estimate

σ s + τ( ) − σ s( )‖ ‖2 < ε,∀t ∈ R, |t − ti|> ε, i ∈ Z (14)

holds for every interval of length l(ε) containing a number τ. By
using (H1) and the computation of fBm, we have

E Φ2 t + τ( ) −Φ2 t( )‖ ‖2

� E ∫t+τ

−∞
S t + τ − s( )σ s( )dBH s( ) − ∫t

−∞
S t − s( )σ s( )dBH s( )

������� �������2
� E ∫t

−∞
S t − s( )σ s + τ( )dBH s + τ( ) − ∫t

−∞
S t − s( )σ s( )dBH s( )

������� �������2
� E ∫t

−∞
S t − s( ) σ s + τ( ) − σ s( )[ ]d~BH

s( )
������� �������2

� H 2H − 1( )∑∞
n�1
∫t

−∞
∫t

−∞
S t − u( ) σ u + τ( ) − σ u( )[ ]Q1

2en
����� �����

× S t − v( ) σ v + τ( ) − σ v( )[ ]Q1
2en

����� ����� · u − v| |2H−2dudv

≤H 2H − 1( )M2∑∞
n�1
∫t

−∞
∫t

−∞
e−c t−u( ) σ u + τ( ) − σ u( )[ ]Q1

2en
����� �����

× e−c t−v( ) σ v + τ( ) − σ v( )[ ]Q1
2en

����� ����� · u − v| |2H−2dudv

≤H 2H − 1( )M2 ∫t

−∞
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖L02( ) 1

Hds( )2H

.

Furthermore, by Hölder’s inequality, we have

E Φ2 t + τ( ) − Φ2 t( )‖ ‖2

≤H 2H − 1( )M2 ∫t

−∞
e

−c t − s( )
2H − 1 ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2H−1

2H

∫t

−∞
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds( )

≤H 2H − 1( )M2 2H − 1
c

( )2H−1
2H

∑i−1
j�−∞

∫tj+1−η

tj+η
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds⎛⎝

+ ∑i−1
j�−∞

∫tj+η

tj

e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds

+ ∑i−1
j�−∞

∫tj+1

tj+1−η
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds

+∫ti+η

ti

e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds)⎞⎠,
where η � min {ε, α2}. In the same way as that of handling Φ1(t),
one can introduce the estimate

E Φ2 t + τ( ) − Φ2 t( )‖ ‖2 <N2ε,

where N2 is a positive constant, and hence Φ2(t) is piecewise
square-mean almost periodic.

For Φ3(t) � ∑ti < tS(t − ti)Ii(x(ti)), i ∈ Z, let βi � Ii(x(ti)).
For ti < t ≤ ti+1, |t − ti| > ε, |t − ti+1|> ε, i ∈ Z, by (2), one
has ti+q+1 > t + τ > ti+q. From (H3), it follows that βi is a square-
mean almost periodic sequence, for any ε > 0; there exists such
a natural number N � N(ε) that, for an arbitrary k ∈ Z, there is
at least one integer p > 0 in the segment [k, k + N] such that the
inequality

E‖βi+p − βi‖2 < ε,

holds for all i ∈ Z. We get

E Φ3 t + τ( ) −Φ3 t( )‖ ‖2

� E ∑
ti < t+τ

S t + τ − ti( )βi − ∑
ti < t

S t − ti( )βi
���������

���������2
≤E S t − ti( ) βi+q − βi( )����� �����2
≤M2 ∑

ti < t
e−c t−ti( ) ∑

ti < t

e−c t−ti( )E‖βi+q − βi‖2

≤
M2ε

1 − e−cα( )2,

which implies that Φ3(t) ∈ APT (R, L2(Ω,H)). Thus, we have
proved that Lx(t) ∈ APT (R, L2(Ω,H)) and Lx(t) is square-
mean piecewise almost periodic.

Proof of Statement (II). Given B � {u ∈ APT (R, L2(Ω,H))}
and assuming that x(t), y(t) ∈ B are both almost periodic
solutions of (1) and x(t) ≠ y(t), then we have
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E‖Lx t( ) − Ly t( )‖2
� E ∫t

−∞
S t − s( ) b s, xs( ) − b s, ys( )[ ]ds�������
+∑

ti < t
S t − ti( ) Ii x ti( )( ) − Ii y ti( )( )[ ]‖2

≤ 2 E ∫t

−∞
S t − s( ) b s, xs( ) − b s, ys( )[ ]ds������� �������2(
+E ∑

ti < t
S t − ti( ) Ii x ti( )( ) − Ii y ti( )( )[ ]���������

���������2)
≡ 2 A1 + A2( ).

From (H1), (H2), (H3) and the Cauchy-Schwarz inequality, we
have that

A1 ≤E ∫t

−∞
M2e−2c t−s( ) b s, xs( ) − b s, ys( )���� ����ds( )2

≤ ∫t

−∞
M2e−c t−s( )ds( ) ∫t

−∞
e−c t−s( )E b s, xs( ) − b s, ys( )���� ����2ds( )

≤
M2

c
∫t

−∞
e−c t−s( )MbE xs − ys

���� ����2Cθds
≤
M2

c2
Mb sup

r∈R
E x r( ) − y r( )���� ����2 � M2Mb

c2
x − y
���� ����2∞,

and

A2 ≤E ∑
ti < t

M2e−2c t−ti( ) Ii x ti( )( ) − Ii y ti( )( )[ ]���������
���������2

≤ ∑
ti < t

M2e−c t−ti( )⎛⎝ ⎞⎠ ∑
ti < t

e−c t−ti( )E Ii x ti( )( ) − Ii y ti( )( )���� ����2⎛⎝ ⎞⎠
≤

M2

1 − e−cα
∑
ti < t

e−c t−ti( )MIE x ti( )( ) − y ti( )( )���� ����2⎛⎝ ⎞⎠
≤

M2MI

1 − e−cα( )2 supr∈R
E x r( ) − y r( )���� ����2 � M2MI

1 − e−cα( )2 x − y
���� ����2∞.

It follows that

E‖Lx t( ) − Ly t( )‖2 ≤Θ x − y
���� ����2∞,

for each t ∈ R, which implies that

‖Lx t( ) − Ly t( )‖∞ ≤
��
Θ2

√
x − y
���� ����∞.

This means that L is a contraction when (8) holds and
statement (II) follows.

4 ASYMPTOTIC STABILITY

In this section, we are interested in the asymptotical stability of
the almost periodic mild solution to (1) with t0 � 0. For
convenience, we rewrite the equation as follows:

dx t( ) � Ax t( ) + b t, xt( )[ ]dt + σ t( )dBH t( ), t ∈ t0,∞[ ), t≠ ± ti i ∈ Z,
△x ti( ) � x t+i( ) − x t−i( ) � Ii x ti( )( ), i ∈ Z,
xt0 � ξ � ξ t( ) : − θ ≤ t≤ 0{ }.

⎧⎪⎨⎪⎩
(15)

Lemma 4.1. ([30]). Let a nonnegative piecewise continuous
function t1v(t) satisfy the inequality

v t( )≤C + ∫t

t0

u σ( )v σ( )dσ + ∑
t0 < σi < t

αiv σ i( ),

for t ≥ t0, where C ≥ 0, u(σ) > 0, αi ≥ 0, i ∈ Z, and σ i, i ∈ Z are the
first kind discontinuity points of the function v. Then, the following
estimate holds:

v t( )≤C ∏
t0 < σi < t

1 + αi( )e∫t

t0
u σ( )dσ

.

Theorem 4.1. Assume that (H1) − (H3) hold. The almost periodic
solutions to (15) are asymptotically stable in the square-mean
sense if

1
α
ln 1 + 3M2MI

1 − e−cα
( ) − c + 3M2Mb

c
< 0, (16)

Proof. Let x(t) and x*(t) be two square-mean piecewise almost
periodic mild solutions of (15); we then have that

E x t( ) − x∗ t( )‖ ‖2 � E S t( ) ξ − ξ∗[ ] + ∫t

0
S t − s( ) b s, xs( ) − b s, x∗

s( )[ ]ds�������
+ ∑

0<ti < t
S t − ti( ) Ii x ti( )( − Ii x∗ ti( )( )[ ]‖2,

for all t ≥ 0. By using Cauchy–Schwartz’s inequality, Fubini’s
theorem, and assumptions (H1) − (H3), we deduce that

E x t( ) − x∗ t( )‖ ‖2 ≤ 3E S t( ) ξ − ξ∗[ ]���� ����2 + 3E ∫t

0
S t − s( ) b s, xs( ) − b s, x∗

s( )[ ]ds������� �������2
+3E ∑

0<ti < t

S t − ti( ) Ii x ti( )( )[ − Ii x∗ ti( )( )
���������

���������2
≤ 3M2e−2ct ξ − ξ∗

��� ���2 + 3E ∫t

0
Me−c t−s( ) b s, xs( ) − b s, x∗

s( )[ ]���� ����ds( )2

+3E ∑
0<ti < t

Me−c t−ti( ) Ii x ti( )( )[ − Ii x∗ ti( )( )
���������

���������2
≤ 3M2e−ct ξ − ξ∗

��� ���2 + 3∫t

0
M2e−c t−s( )ds∫t

0
e−c t−s( )E b s, xs( ) − b s, x∗

s( )���� ����2ds
+ 3 ∑

0<ti < t

M2e−c t−ti( )⎛⎝ ⎞⎠ ∑
0<ti < t

e−c t−ti( )E Ii x ti( )( ) − Ii x∗ ti( )( )‖ ‖2⎛⎝ ⎞⎠
≤ 3M2e−ct ξ − ξ∗

��� ���2 + 3M2

c
Mb ∫t

0
e−c t−s( ) xs − x∗

s

���� ����2Cθds
+ 3M2

1 − e−cα
MI ∑

0<ti < t

e−c t−ti( )E x ti( ) − x∗ ti( )‖ ‖2⎛⎝ ⎞⎠
≤ 3M2e−ct ξ − ξ∗

��� ���2 + 3M2

c
Mb ∫t

0
e−c t−s( ) sup

0≤r≤s
E x r( ) − x∗ r( )‖ ‖2( )ds

+ 3M2

1 − e−cα
MI ∑

0<ti < t

e−c t−ti( )E x ti( ) − x∗ ti( )‖ ‖2⎛⎝ ⎞⎠,

for t ≥ 0. Multiplying both sides of the above inequality by ect,
we get

ectE x t( ) − x∗ t( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2

+ 3M2

c
Mb ∫t

0
ecs sup

0≤r≤s
E x r( ) − x∗ r( )‖ ‖2( )ds

+ 3M2

1 − e−cα
MI ∑

0<ti < t

ectiE x ti( ) − x∗ ti( )‖ ‖2⎛⎝ ⎞⎠,
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for t ≥ 0, which implies that

sup
0≤s≤t

ecsE x s( ) − x∗ s( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2 + 3M2

c
Mb ∫t

0

× sup
0≤r≤s

ecsE x r( ) − x∗ r( )‖ ‖2ds

+ 3M2

1 − e−cα
MI ∑

0<ti < t

sup
0≤r≤ti

ecrE x r( ) − x∗ r( )‖ ‖2⎛⎝ ⎞⎠,
for t ≥ 0. Combining this with Lemma 4.1, we get that

sup
0≤s≤t

ecsE x s( ) − x∗ s( )‖ ‖2

≤ 3M2 ξ − ξ∗
��� ���2 ∏

0<ti < t

1 + 3M2

1 − e−cα
MI( )e∫t

0

3M2

c
Mbdσ

≤ 3M2 ξ − ξ∗
��� ���2 1 + 3M2

1 − e−cα
MI( )tα e3M2

c
Mbt

,

for t ≥ 0. So,

ectE x t( ) − x∗ t( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2 1 + 3M2

1 − e−cα
MI( )t

α

e
3M2
c Mbt,

for t ≥ 0. Thus, we get the desired estimate

E x t( ) − x∗ t( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2 1 + 3M2

1 − e−cα
MI( )t

α

e

3M2

c
Mbt

e−ct

≤ 3M2 ξ − ξ∗
��� ���2e 1

α
ln 1 + 3M2MI

1 − e−cα
( ) − c + 3M2Mb

c
[ ]t

,

and the square-mean piecewise almost periodic solution of (15) is
asymptotically stable in the square-mean sense because of (16).
This completes the proof.

5 AN EXAMPLE

Consider the semilinear impulsive stochastic partial functional
differential equations of the following form:

dv t, x( ) � z2

zx2 v t, x( ) + 2a sin x t − r( )( )sin t[ ]dt
+cos tdBH t( ), t≠ ± ti i ∈ Z,

△x ti( ) � x t+i( ) − x t−i( ) � 2a cos x ti( )( ), i ∈ Z,

v t, 0( ) � v t, π( ) � 0,

xt0 � ξ � ξ s( ): − θ ≤ s≤ 0{ },

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where r is a constant and BH(t) is a fractional Brownian motion.
Denote X � L2(Ω, L2([0, π])) and define A: D(A)4 X→ X given
by A � z2

zx2 with the following domain:

D A( ) � v ·( ) ∈ X: v″ ∈ X, v′ ∈ X are absolutely continous on{
0, π[ ]}.

It is well known that a strongly continuous semigroup {S(t)}t≥0
generated by the operator A satisfies ‖S(t)‖ ≤ e−t, for t ≥ 0. Take

b t, xt( ) � 2a sin xt( )sin t,

and

Ii x ti( )( ) � 2a cos x ti( )( ).
Thus, one has

E‖b t, xt( ) − b t, yt( )‖2 ≤ 4a2‖xt − yt‖2Cθ ,
and

‖Ii x( ) − Ii y( )‖2 ≤ 4a2‖x − y‖2.
Let α � 1. Then, (17) has a square-mean piecewise almost

periodic mild solution, provided that 0< a2 < 1
16 by Theorem 3.1,

and moreover the solution of (17) is asymptotically stable in the
square-mean sense provided that 0< a2 < 1

36 by Theorem 4.1.

6 CONCLUSION

In this article, we have investigated the existence and asymptotic
stability of square-mean piecewise almost periodic mild solutions
for a class of impulsive stochastic delay differential equations
driven by fractional Brownian motion with the Hurst parameter
H ∈ (12, 1) in a Hilbert space. An example is presented to illustrate
our theoretical results. Fractional Brownian motion BH with
H ∈ (0, 12) admits different Wiener integral representation from
fractional Brownian motion withH ∈ (12, 1). It is difficult to get the
square-mean piecewise almost periodic mild solutions of ISDEs
driven by fractional Brownian motion withH ∈ (0, 12) in a Hilbert
space properly due to estimation without moment.
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Global Mean Sea Level. Time Trends
and Persistence with Long Range
Dependent Data
Luis Alberiko Gil-Alana1,2*

1Faculty of Economics and NCID-ICS, University of Navarra, Pamplona, Spain, 2Facultad de Ciencias Juridicas y Empresariales,
Universidad Francisco de Vitoria, Madrid, Spain

Global mean sea level data are examined in this work by looking at the presence of time trends
in the context of longmemory or long range dependent processes. By looking at both seasonal
signals retained and seasonal signals removed data from 1992 to 2020, the results show that
the two series display significant time trend coefficients and high levels of persistence.

Keywords: sea level, time trend, fractional integration, long memory JEL classification: C12, K32, Q54,
nonstationarity

1 INTRODUCTION

The evidence shows that global mean sea level (GMSL) has risen during the 20th century [1], and this rise
has been larger than that observed during the previous two centuries [2]. In line with this, GMSL data are
examined in this work by using a long memory or long range dependent model. The idea is to estimate a
linear time trend in the data under the assumption that the errors in the regression model might be
fractionally integrated, which is a particularmodel within the longmemory class. The reason for this is that
this property (long memory) has been widely observed in the majority of geophysical and climatological
series (see, e.g., [3–5]; etc.) and therefore it should also be expected in the sea level data (see also [6]).

The model examined in the empirical section is the following one:

yt � c0 + c1 β t + xt , (1 − B)dxt � ut, (1)

where yt is the sea level data; γ0 and γ1 are unknown parameters referring to an intercept and a
(linear) time trend, and xt is the regression error that is assumed to be integrated of order d or I (d)
where d can be any real value, and thus, potentially fractional. In this context, B is the backshift
operator, i.e., Bkxt � xt-k, and the d-differenced process ut in (1) is supposed to be integrated of order
0, or I (0), defined as a covariance stationary process where its spectral density function is positive
and bounded at all frequencies. It includes the case of a white noise process but also stationary and
invertible AutoRegressive Moving Average (ARMA) models. Thus, if ut is ARMA (p,q), xt is said to
be AutoRegressive Fractionally Integrated Moving Average (ARFIMA (p,d,q) model. In this paper,
however, we will deal with the autocorrelation by using a non-parametric method [7] widely used in
the context of I (d) models. In this context, evidence of significantly positive values of γ1 in (1) will
indicate that the sea level data reflect increases over time, and we do the estimation without imposing
the strong assumption that the xt in (1) are I (0) but I (d) with d freely estimated from the data.

2 METHODOLOGY

As it has been mentioned in the previous section, the methodology used in this work is based on long
memory, which is a feature observed in many time series of different disciplines including among
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others climatological and meteorological data. Long memory
processes are characterized because the spectral density function
of the data (which is the Fourier transform of the
autocovariances) displays values that explote at the smallest (zero)
frequency, which is usually consistent with first differentiation of the
data. However, inmany cases, the spectral density function of the first
differenced data shows values close to zero at the zero frequency,
which is consistent with over-differentiation. This was the origin of
fractional differentiation [8], which is a particularmodel satisfying the
long memory property, and that is described by the second equation
presented in (1).

The differencing parameter d is important from various
viewpoints. Thus, if d � 0, the series is said to be short memory
or I (0), unlikewhat happenswith positive d that implies longmemory
or long range dependence, so-named because of the strong degree of
association between the observations even if they are far distant in
time; also, from a statistical viewpoint, the value 0.5 is important. Thus,
if d < 0.5 the series is still covariance stationary, while d ≥ 0.5 implies
nonstationarity; finally, if d < 1 the series is said to be mean reverting
with the effect of the shocks disappearing in the long run, contrary
to what happens with d ≥ 1 with shocks persisting forever.

We estimate the parameter d by using the Whittle function
expressed in the frequency domain, employing a version of the tests
of Robinson [9] widely used in empirical applications (see, e.g. [10]).
Note, however, that the fractional integration approach employed in
this work ismerely one of the numerous formulations for long range

dependence that include among others the generalized Cauchy
processes, the generalized fractional Gaussian noise models and
the modefied multifractional fractional Gaussian noise model (see,
e.g., [11, 12]). These methods may also be considered as flexible
tools to investigate long range dependence in time series, including
sea level data ([13, 14], etc.).

3 DATASET

We use data which are estimates of sea level based on measurements
from satellite radar altimeters. They are available for TOPEX/Poseidon
(T/P), Jason-1, Jason-2, and Jason-3, which have been monitored.
Only altimetry measurements between 66°S and 66°N have been
processed. An inverted barometer has been applied to the time series.

Two time series are examined (see Figure 1) referring to the global
mean sea level data, with seasonal signals retained and removed.

The data are provided by the NOAA Laboratory for Satellite
Altimetry from the NOAA (http://www.star.nesdis.noaa.gov/sod/
lsa/SeaLevelRise/) and Radar Altimeter Database System (http://
www.deos.tudelft.nl/altim/rads/).

4 RESULTS

Table 1 displays the estimated coefficients of themodel given by Eq. 1
under the assumption that the error term ut is a white noise process.
We observe that the estimated value of d is 0.73 for the seasonal signals
retained data and 0.45 for the seasonal signals removed data, and in
both cases, the confidence intervals reject the null of d � 1 in favour of
d< 1, implyingmean reversion in its behaviour. Thus, shockswill have
a transitory effect in the series, disappearing by themselves in the long
run, and faster in the case of the seasonal signals removed data. The
time trend coefficient is significantly positive in the two series, being
slightly higher with the seasonal signals retained data.

Very similar results are obtained under the assumption of
autocorrelated (Bloomfield)1 errors. The estimates of d are now

FIGURE 1 | Time series plots. Seasonal signals retained. Seasonal signals removed.

TABLE 1 | Estimated coefficients I: White noise errors.

Series d

Seasonal retained 0.73 (0.69, 0.78) −17.3955 (−5.86) 0.0639 (3.95)
Seasonal removed 0.73 (0.69, 0.78) −17.3955 (−5.86) 0.0639 (3.95)

In parenthesis in column 2: 95% confidence band of values of d. In columns 3 and 4,
t-values.

TABLE 2 | Estimated coefficients imposing d � 0.

Series d (diff. par.) γ0 γ1

Seasonal retained 0.00 −15.6869 (−42.89) 0.0591 (115.36)
Seasonal removed 0.00 −15.5863 (−83.52) 0.0590 (225.60)

1The model of Bloomfield [7] is a non-parametric approach that produces errors
with the autocorrelation function decaying exponentially fast as in the ARMA case.
(see [17], for its implementation in the context of fractional integration).
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slightly smaller (0.66 for the seasonal retained data and 0.38 for the
seasonal removed data), and the slope coefficients are again
significant, 0.0637 in the first case (seasonal retained) and
0.0622 in the seasonal signals removed data. The estimated time
trends are displayed in Figure 1.

Finally, inTable 2, we display the coefficients under the assumption
that xt in Eq. 1 is I (0). Thus, the longmemory feature is not taken into
account. We observe that the slope coefficient, though significant, is
slightly smaller than under the I (d) specification. Note, however, that
this hypothesis is decisively rejected according to the results in Tables
1, 3 where d was found to be significantly positive. Thus, the fact that
the long memory is not considered here produces a bias reducing the
amount of the global sea level rise.

5 CONCLUSION

We have examined data corresponding to the global mean sea level
for the time period from 1992 to 2020, using a long range dependent
model based on fractional integration and testing for the presence of
time trends. Our results show first that long range dependence is a

feature of these data, consistent with works such as Ercan et al. [6]
and others, since the degree of differentiation is in the interval (0, 1)
in the two series examined. Moreover, the slope coefficient is highly
significantly positive and slightly higher than the one observed under
the wrong assumption that the errors are I (0).

Further work with these series should investigate other
alternative approaches for trends in the data such as LOWESS,
piece-wise-linear trends, or the presence of non-linear trends,
using, for example, either segmented trends based on structural
breaks or, alternatively, using non-linear polynomials in time, like
those based on Chebyshev polynomials [15], in both cases using
still long memory and fractional integration. Data disaggregated
by areas should also be examined. Finally, it would also be of
interest to link the inter-annual fluctuations with ENSO as
suggested by authors such as Cazenave et al. [16]. Work in
these directions is now in progress.
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TABLE 3 | Estimated coefficients II: Weakly autocorrelated (Bloomfield) errors.
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In parenthesis in column2: 95%confidence bandof values of d. In columns3 and4, t-values.
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A Novel Clock Skew Estimator and Its
Performance for the IEEE 1588v2 (PTP)
Case in Fractional Gaussian Noise/
Generalized Fractional Gaussian
Noise Environment
Yehonatan Avraham and Monika Pinchas*

Department of Electrical and Electronic Engineering, Ariel University, Ariel, Israel

Papers in the literature dealing with the Ethernet network characterize packet delay
variation (PDV) as a long-range dependence (LRD) process. Fractional Gaussian noise
(fGn) or generalized fraction Gaussian noise (gfGn) belong to the LRD process. This paper
proposes a novel clock skew estimator for the IEEE1588v2 applicable for the white-
Gaussian, fGn, or gfGn environment. The clock skew estimator does not depend on the
unknown asymmetry between the fixed delays in the forward and reverse paths nor on the
clock offset between the Master and Slave. In addition, we supply a closed-form-
approximated expression for the mean square error (MSE) related to our new
proposed clock skew estimator. This expression is a function of the Hurst exponent H,
as a function of the parameter a for the gfGn case, as a function of the total sent Sync
messages, as a function of the Sync period, and as a function of the PDV variances of the
forward and reverse paths. Simulation results confirm that our closed-form-approximated
expression for the MSE indeed supplies the performance of our new proposed clock skew
estimator efficiently for various values of the Hurst exponent, for the parameter a in gfGn
case, for different Sync periods, for various values for the number of Sync periods and for
various values for the PDV variances of the forward and reverse paths. Simulation results
also show the advantage in the performance of our new proposed clock skew estimator
compared to the literature known ML-like estimator (MLLE) that maximizes the likelihood
function obtained based on a reduced subset of observations (the first and last timing
stamps). This paper also presents designing graphs for the system designer that show the
number of the Sync periods needed to get the required clock skew performance (MSE �
10–12). Thus, the system designer can approximately know in advance the total delay or the
time the system has to wait until getting the required system’s performance from the MSE
point of view.
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1 INTRODUCTION

Clock synchronization is an essential process in computer
networks. This process has to achieve frequency (clock skew)
and time (offset or phase) synchronization to ensure that all the
components function accurately. There are three significant
protocols for time and frequency distribution over the
Network: global positioning system (GPS), network time
protocol (NTP), and Precision Time Protocol (PTP) Pinchas
[1]; Levy and Pinchas [2]; Karthik and Blum [3]. GPS offers
frequency and time synchronization accuracy in the sub-
microsecond range Levy and Pinchas [2]. However, it requires
expensive equipment and routine maintenance Guruswamy et al.
[4]. Furthermore, we have a limitation in placing the equipment
that communicates with the satellites in certain places Shan et al.
[5]; Karthik and Blum [3]. According to Vyas et al. [6]; Peng et al.
[7] the GPS also suffers from a weak indoor GPS signal. The NTP
is not designed for local area networks (LANs) and has slow
response and software clock implementations Levy and Pinchas
[2]. Therefore, it can not achieve accurate results compared to the
PTP protocol Pinchas [1]. The PTP is defined by the standard
IEEE 1588v2 Arnold [8]. It requires minimal Network,
computing, and hardware resources Fubin et al. [9]. According
to Arnold [8], the PTP is based on a two-way message exchange
scheme between the Master and the Slave. By using the two-way
message exchange, frequency and time synchronization can be
approximately estimated by applying some assumptions. The
synchronous Ethernet (SyncE) is a protocol defined by the
ITU ITU-T Recommendation [10,11]. It distributes a reference
timing signal, where this signal can be extracted, processed, and
frequency can be recovered from this signal by the Ethernet
equipment clock (EEC) ITU-T Recommendation [10,11]. It
should be pointed out that according to Levy and Pinchas [2],
the EEC is not available in every system. Generally, the GPS or the
SyncE are applied for frequency synchronization, where the PTP
protocol and the GPS can be also applied for time or frequency
synchronization as well unlike SyncE. The use of PTP for time
synchronization is an important step for operations such as
managing, securing, planning, and debugging when it is
needed to determine the time that events happen Pinchas [1].
The use of PTP for time and frequency synchronization is
required in electrical grid networks, cellular base station
synchronization, industrial control, communication in
financial markets Guruswamy et al. [4]; Karthik and Blum
[12] and in Industrial Internet of things (IIoT) Puttnies et al.
[13]. The PTP has three different synchronization issues: a.)
phase synchronization only, where the PTP protocol is applied
for estimating the constant offset. In this scenario, frequency
synchronization already exists between the Master and the Slave.
b.) Frequency synchronization only, where the PTP is applied for
this purpose, while the time (offset) synchronization is not
needed here. c.) Time and frequency synchronization is
carried out with the PTP protocol. Please note that the offset
between the Master and the Slave increases when no frequency
synchronization exists between the Master and the Slave.

The PTP uses hardware timestamps traveling between the
Master and the Slave nodes Arnold [8], where the path is through

several switches and routers. The traveling time in those
components determines the duration of the delay in this path.
According to Karthik and Blum [12,14,15]; Guruswamy et al. [16]
there are two types of delay: a.) the fixed delay, a deterministic
propagation delay along the network path, and b.) the random
delay, also named as PDV. The PDV is defined as a random
variable due to the routers, or the switches behavior ITU-T
Recommendation [11]. As mentioned in Karthik and Blum
[12] the primary source of the PDV is the output queuing
delay, caused when a message arrives at a switch or router and
has to wait in a queue due to other traffic that blocked the exit
port. The PDV has a major impact on the accuracy obtained with
the PTP Sathis Kumar and Kemparaj [17]. Theoretically, PTP can
achieve precision of the order of nanoseconds, but, in practice, the
PDV causes lower accuracy Puttnies et al. [13]. The queuing delay
depends on the load in the network Levy and Pinchas [2]. As the
load in the network increases, the PDVmay increase accordingly,
meaning a higher load may lead to a lower synchronization (time
and frequency) accuracy Pinchas [1]. In order to estimate the
offset or the clock skew in that scenario, the PTP usually needs
more message exchanges between the Master and the Slave, as
will be also seen in the simulation results.

The presence of the fixed delay and the PDV cause a problem
in estimating the clock skew (frequency) and the offset (time).
Due to the behavior of the random delay (PDV), this problem is
modeled as a statistical estimation problem Guruswamy et al. [4].
This estimation task is an open issue because we have more
unknown variables than number of equations. In order to
overcome this problem, the symmetric path between the
Master and the Slave is assumed in some algorithms (please
refer to Table 1). However, the assumption of a symmetric path
may lead to an inaccuracy in the clock skew and offset estimation
task, since in practice, this assumption is not valid.

According to Mizrahi [18]; Mizrahi and Moses [19], a
correlation exsits between network latency measurements
taken at adjacent times. Therefore, the network latency can
not be characterized as white noise. In Li and Limb [20]; Peng
et al. [21]; Jusak and Harris [22] the PDV is characterized as a
Long-Range Dependence (LRD) process. This process can be
modeled as a fractional Gaussian noise (fGn) Li and Zhao [23];
Pinchas [1]; Levy and Pinchas [2]; Paxson [24]; Ledesma and Liu
[25] or as a generalized fractional Gaussian noise (gfGn) Li [26]
(where fGn is a special case of gfGn). Those models (fGn, gfGn)
are with Hurst exponent in the range of 0.5 ≤H < 1, where forH �
0.5 we have the white Gaussian noise. It should be pointed out
that we have also the modified multifractional Gaussian noise
(mmfGn) Li [27] and the multi-fractional generalized Cauchy
process Li [28] for representing a LRD process. But, in this paper
we focus on the fGn/gfGn case. The traffic model has a significant
impact on the estimation accuracy. Therefore, network traffic
models such as the Gaussian or Exponential models may not
accurately describe a real network traffic.

On one hand, the PTP is applied for the offset synchronization
task only as is done in Pinchas [1], Mizrahi [18,29], Karthik and
Blum [14]; Guruswamy et al. [4]; Anand Guruswamy et al. [30].
On the other hand, we may find other algorithms estimating the
clock skew and the offset as is done in Levy and Pinchas [2]; Chin
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and Chen [31], Puttnies et al. [13], Chaudhari et al. [32]; Li and
Jeske [33], Noh et al. [34], Guruswamy et al. [4]; Karthik and
Blum [12,14,15], Giorgi and Narduzzi [35]. In addition, we may
find in the literature algorithms that estimate only the clock skew
as is done in Shan et al. [5]; Chaloupka et al. [36]. In this paper, we
focus on the clock skew algorithms. In the literature, we can find
several approaches estimating the clock skew: 1) The Maximum
Likelihood (ML) estimator Levy and Pinchas [2], Karthik and
Blum [12]; Guruswamy et al. [4], Chaudhari et al. [32]; Li and
Jeske [33]; Noh et al. [34]; Karthik and Blum [11,14]. 2) The
Linear Programming estimator Puttnies et al. [13]. 3) The
Kalman Filter (KF) estimator Chaloupka et al. [36]; Shan et al.
[5]; Giorgi and Narduzzi [35]. Please note that each algorithm
used different assumptions, which may also lead to inaccuracy of
the clock skew estimator. The authors in Puttnies et al. [13]
presented a linear programming estimator that can decrease the
influence of the PDV on the synchronization accuracy. However,
they assumed that the PDV is Gaussian and that the fixed delay is
symmetric between the forward (Master to Slave) and the reverse
(Slave to Master) paths. In Chaudhari et al. [32]; Li and Jeske [33]
the authors presented an ML estimator where an Exponential
model was applied describing the PDV. In addition, they assumed
the symmetric path assumption between the forward and reverse
paths. In Noh et al. [34] the author suggested first an ML
estimator for estimating the clock skew by using the Gaussian
and Exponential model for the PDV case. The fixed delay was
assumed to be known in this algorithm, which is often an
unknown parameter. Therefore, the author presented another
algorithm that does not depend on the knowledge of the fixed
delay. Still, these algorithms presented in Noh et al. [34] are
suitable only for the Gaussian or for the Exponential case. In Levy
and Pinchas [2] the authors proposed an ML estimator for
estimating the clock skew and the offset in the presence of
asymmetric paths and where the PDV was modeled as fGn.
This method Levy and Pinchas [2] is based on the dual slave
clocks in a slave presented by Chin and Chen [31]. However, Kim
[37] demonstrated that the algorithm in Chin and Chen [31] is
unusable in practical cases. In Giorgi and Narduzzi [35] the
authors presented KF equations with symmetrical paths
assumption. The measurement uncertainty in Kalman’s

equations gives the solution to the asymmetric forward and
the reverse paths. According to Giorgi and Narduzzi [35], the
uncertainty was taken in a range of 0.1–100 micro seconds.
However, in practice, the asymmetry between the paths can be
greater than the given range, so that the clock skew simulation
results may be less accurate for that scenario. In addition, this
algorithm Giorgi and Narduzzi [35] applies the Gaussian model
for the PDV. In Chaloupka et al. [36] the authors used the One
Way Mode (OWM) to avoid the asymmetric path problem.
Based on simulation results demonstrated in Chaloupka et al.
[36], the clock skew estimator achieves relative accurate results
only after we wait for a relative long time which in practical
cases we can not always afford. The authors in Shan et al. [5]
applied KF combined with Sliding Mode Controller (SMC) in
order to get better accuracy. Also here, the algorithm assumes
symmetrical paths and a Gaussian model for describing the
PDV. In Karthik and Blum [12,15]; Guruswamy et al. [4] the
authors presented an innovative estimator for the clock skew
and for the offset between the Master and the Slave. In
Guruswamy et al. [4] the authors presented first their joint
estimator, the MINIMAX algorithm, that minimizes the
maximum mean squared error of all the unknown
parameters. This algorithm assumes that the fixed delays
from the Master to Slave and Slave to Master are known, or
at least, the difference between them is known. In Karthik and
Blum [15] the authors assumed complete knowledge of the
statistical information describing the PDV. Recently Karthik
and Blum [12], an algorithm was proposed for estimating both
the offset and the clock skew in the presence of unknown
asymmetric paths, named as the Space Alternating
Generalized Expectation-Maximization (SAGE) algorithm.
This algorithm assumed a Gaussian Mixture Model (GMM)
for the PDV. In estimating the clock skew and the offset
according to Karthik and Blum [12], the assumption of
having more than only one Master-Slave path was applied
(assumption of having multiple Masters). In addition, half of
the paths have to be symmetric. Please note that this method
Karthik and Blum [12] may be overqualified for applications
requiring only clock skew estimation, since Karthik and Blum
[12] needs the calculation of the offset estimator for carrying

TABLE 1 | Clock skew estimators.

The algorithm References Forward/Reverse paths PDF models
(of the PDV)

Closed form of
the clock skew

variance

Linear programming Puttnies et al. [13] Symmetric Gaussian No
ML estimator Chaudhari et al. [32] Symmetric Exponential No
ML estimator Li and Jeske [33] Symmetric Exponential No
ML estimator Noh et al. [34] known Gaussian/Exponential Yes
ML estimator Noh et al. [34] Asymmetric Gaussian/Exponential No
ML estimator Levy and Pinchas [2] Asymmetric fgn Yes
KF estimator Giorgi and Narduzzi [35] Asymmetric Gaussian —

KF estimator Chaloupka et al. [36] OWD (forward) — —

KF and SMC estimator Shan et al. [5] Symmetric Gaussian —

SAGE estimator Karthik and Blum [12] Asymmetric GMM No
Our new proposed method Asymmetric fGn, gfGn Yes
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out the clock skew estimator. Thus, the offset estimator can not
be shut down when calculating the clock skew estimator. The
authors in Karthik and Blum [12] also presented an expression
for the Cramer-Rao lower bound (CRLB). This expression
(CRLB) is based on the knowledge of which of the multiple
masters to the slave paths are considered as asymmetric (where
the fixed delays in the Master-Slave and Slave-Master are
asymmetric) and on the knowledge of the probability
density function (PDF) of the random queuing delays of
those paths. Please refer to Table 1 that summarizes the
different clock skew algorithms (described earlier in this
section), with their assumptions.

In this paper, we propose a novel clock skew estimator based
on PTP in an fGn/gfGn environment with Hurst exponent in
the range of 0.5 ≤ H < 1 that does not depend on the unknown
asymmetry between the fixed path delays in the forward and
reverse directions nor on the clock offset between the Master
and Slave. We supply a closed-form-approximated expression
for the performance (MSE) related to our new proposed clock
skew estimator. This closed-form-approximated expression is
a function of the Hurst exponent H, as a function of the
parameter a for gfGn, as a function of the number of total
PTP messages exchanges used in the system for
synchronization, as a function of the period between the
messages and as a function of the PDV variances in the
forward and reverse directions. In addition, we supply
designing graphs for the system designer that show the
number of PTP messages exchanges needed in the network
to get the required clock skew performance as a function of the
network parameters (Hurst exponent, parameter a in gfGn and
variances of the forward and reverse directions PDV), for the
rates of PTP messages exchanges of 64 packets/sec, 16 packets/
sec and 8 packets/sec. Simulation results confirm that our
closed-form-approximated expression for the MSE related to
our new proposed clock skew estimator indeed supplies
efficiently the performance of our new proposed estimator
for various values of the Hurst exponent, for the parameter a in
gfGn, for different periods between the messages, for various
values for the number of PTP messages exchanges and for
various values for the variances of the PDV in the forward and
reverse directions. Simulation results also show the advantage
in performance of our new proposed clock skew estimator for
various values of the Hurst exponent compared to the
literature known ML-like estimator (MLLE) Noh et al. [34]
that maximizes the likelihood function obtained based on a
reduced subset of observations (the first and last timing
stamps). In addition, simulation results will also show the
advantage in performance of our new proposed clock skew
estimator compared to the maximum likelihood clock skew
estimator proposed by Levy and Pinchas [2] and compared to
the Kalman clock skew estimator given by Chaloupka
et al. [36].

The paper is organized as follows. In Section 2, we briefly
introduce the system under consideration and the assumptions
we applied for our algorithm. Section 3 proposes the new clock
skew estimator and the closed-form approximated expression for
theMSE related to our new clock skew estimator. In Section 4, we

propose some designing graphs while in Section 5, we present
simulation results. Section 6, is our conclusion.

2 SYSTEM DESCRIPTION

The IEEE 1588v2 is based on the Master-Slave architecture. This
protocol distributes information from a Master to its Slave by
exchanging messages with timestamps (please refer to Figure 1).
The following sequence of steps are performed by the two-way
message exchange:

1) TheMaster initiates the exchange by sending a SYNCmessage
to the Slave at timestamp t1.

2) The Slave receives the SYNC message and keeps the arrival
time at timestamp t2.

3) The Master sends the FOLLOWUPmessage to the Slave with
the timestamp t1.

4) The Slave sends back to the Master DELAY REQ message at
timestamp t3.

5) The Master receives the DELAY REQ message and keeps the
arrival time at timestamp t4.

6) The Master sends the timestamp t4 to the Slave with the
DELAY RESP message.

Based on Karthik and Blum [12,14,15] we may write:

t1 j[ ] + dms + ω1 j[ ] � t2 j[ ] 1 + α( ) + Q (1)

t4 j[ ] − dsm − ω2 j[ ] � t3 j[ ] 1 + α( ) + Q (2)

where Q is the time difference between the Master and the Slave
clocks (offset) and α is the clock skew. The forward and the
reverse fixed delays are denoted as dms, dsm respectively and the
forward and the reverse PDV are denoted as ω1 [j], ω2 [j]
respectively. The total number of the Sync messages periods is
denoted as J, where j � 1, 2, 3, . . . , J.

We consider three different models for the PDV:

1) The PDV is modeled as a white-Gaussian noise with zero
mean and the variance E[ωn[j],ωn[m]] is σ2ωn

when j �m and
zero when j ≠ m
where E [.] denotes the expectation operator on (.) and n �
1, 2.

2) The PDV is modeled as an fGn process with zero mean. Based
on Li and Zhao [23]; Peng et al. [21] we have:
a. When j � m: E[ωn[j],ωn[m]] � σ2ωn

.
b. When j ≠ m: E[ωn[j],ωn[m]] � σ2ωn

2 [‖j −m| − 1|2H −
2(|j −m|)2H + (|j −m| + 1)2H].

3) The PDV is modeled as an gfGn process with zero mean.
Based on Li [26] we have:
a. When j � m: E[ωn[j],ωn[m]] � σ2ωn

.

b. When j≠m:E[ωn[j],ωn[m]] � σ2ωn
2 [‖(j −m)a| − 1|2H

−2|(j −m)a|2H + (|(j −m)a| + 1)2H]
In this paper we assume that the forward and reverse PDVs are

independent. This assumption is consistent with real systems.
Thus, we can write: E[ω1[j],ω2[m]] � 0 ∀ j, m.
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3 THE CLOCK SKEW ESTIMATOR AND ITS
PERFORMANCE

In this section we present our new clock skew estimator
and the closed-form-approximated expression for the MSE
related to our new clock skew estimator for three PDV cases:
1. The PDV is a white-Gaussian process, 2. The PDV is an fGn
process, 3. The PDV is an gfGn process. At first, we
present our new proposed clock skew estimator in
Theorem 1. Theorem 2 presents a general closed-form
approximated expression for the MSE related to our
new clock skew estimator involving the
expectation operator on the PDVs. Since the PDV can be
one of three cases (a white-Gaussian process, an fGn
process and an gfGn process), the MSE from Theorem 2 is
further developed for each case. Namely, Theorem 3,
Theorem 4 and Theorem 5 are the closed-form
approximated expressions for the MSE related to our new
clock skew estimator for the white-Gaussian case, fGn case
and gfGn case respectively.

3.1 Theorem 1
For the case of t3 [j] − t2 [j] � X, where X is a constant. The clock
skew estimator can be defined as:

α̂ � 1
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T1,j i( ) + T4,j i( )
T2,j i( )( ) − 1 (3)

where

T1,j i( ) � t1 j + i[ ] − t1 j[ ], T2,j i( ) � t2 j + i[ ] − t2 j[ ],
T4,j i( ) � t4 j + i[ ] − t4 j[ ] (4)

3.1.1 Proof of Theorem 1
In order to avoid the fixed delay, we can subtract between two
timestamps from different Sync periods. Based on Eqs 1, 2 we have:

T1,j i( ) +Ω1,j i( ) � 1 + αj,i( )T2,j i( ) (5)

T4,j i( ) −Ω2,j i( ) � 1 + αj,i( )T3,j i( ) (6)

where

T3,j i( ) � t3 j + i[ ] − t3 j[ ], Ω1,j i( ) � ω1 j + i[ ] − ω1 j[ ],
Ω2,j i( ) � ω2 j + i[ ] − ω2 j[ ] (7)

and αj,i is the clock skew between the (j + i)-th and ith Sync
period.

Based on the summation of Eqs. 5, 6, we can define:

T1,j i( ) + Ω1,j i( )
T2,j i( ) + T4,j i( ) −Ω2,j i( )

T3,j i( ) � 2(1 + α
j,i
) (8)

Please note that T3,j(i) � t3 (j + i) − t3(j) is also T3,j(i) � t2
(j + i) + X − (t2(j) + X), meaning that T3,j(i) � T2,j(i).
Therefore, αj,i is:

α
i,j

� 1
2

T1,j i( ) + T4,j i( )
T2,j i( )( ) + Ω1,j i( ) − Ω2,j i( )

T2,j i( )( )( ) − 1 (9)

Thus the clock skew can be defined as:

α � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

αj,i (10)

By putting Eq. 9 into Eq. 10 we have:

α � 1
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T1,j i( ) + T4,j i( )
T2,j i( )( ) + Ω1,j i( ) −Ω2,j i( )

T2,j i( )( )( ) − 1 (11)

FIGURE 1 | PTP messaging timing diagram.
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Now, we can write Eq. 11 as:

α � 1
J J − 1( ) ∑J−1

i�1
∑J−i
j�1

T1,j i( ) + T4,j i( )
T2,j i( )( ) − 1 +∑J−1

i�1
∑J−i
j�1

Ω1,j i( ) −Ω2,j i( )
T2,j i( )( )⎛⎝ ⎞⎠

� α̂ + 1
J J − 1( ) ∑J−1i�1

∑J−i
j�1

Ω1,j i( ) −Ω2,j i( )
T2,j i( )( )

(12)

Based on Eq. 12 the clock skew estimator is as defined in Eq. 3
and this completes our proof.

3.2 Theorem 2
For the case where |Ωn,j(i)

T1,j(i)|≪ 1 [n � 1,2 and where |.| is the
absolute value of (.)], the general expression for the
approximated MSE related to our new clock skew
estimator is:

E e2[ ] ≈
1 + α

J J − 1( )( )Tsyn
( )2 ∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ E Ω2,j i( )Ω2,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦
(13)

3.2.1 Proof of Theorem 2
Based on Eq. 12 the error is defined as:

e � α − α̂ � 1
J J − 1( ) ∑J−1i�1

∑J−i
j�1

Ω1,j i( ) −Ω2,j i( )
T2,j i( )( ) (14)

According to Eq. 5 we have:

T2,j i( ) � T1,j i( ) +Ω1,j i( )
1 + α( ) (15)

Based on Eq. 15 we may write the expectation of Eq. 14 as:

E e[ ] � 1 + α( )
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

E
aj,i

1 + aj,i( ) − bj,i

1 + aj,i( )⎡⎢⎣ ⎤⎥⎦ (16)

where aj,i and bj,i are defined as:

aj,i � Ω1,j i( )
T1,j i( ); bj,i � Ω2,j i( )

T1,j i( ) (17)

For |Ωn,j(i)
T1,j(i)|≪ 1 and based on Spiegel et al. [38] we can rewrite

Eq. 16:

E e[ ] ≈ 1 + α( )
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

E aj,i 1 − aj,i( )[ ] − E bj,i 1 − aj,i( )[ ][ ]
(18)

Based on the assumption made in Section 2, we may write Eq.
18 as:

E e[ ] ≈ 1 + α( )
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

E aj,i − a2j,i[ ] − E bj,i[ ][ ] (19)

Now, based on Eq. 19 the approximated MSE related to our
new proposed clock skew estimator can be written as:

E e2[ ] ≈ 1 + α( )2
J J − 1( )( )2 ∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
j�m

E aj,iam,k[ ] − E a2j,iam,k[ ] − E aj,ia
2
m,k[ ] + E a2j,ia

2
m,k[ ] + E bj,ibm,k[ ][ ] (20)

Next, by recalling the definitions of T1,j(i) and T1,m(k), we can
write:

T1,j i( ) � t1 j + i[ ] − t1 j[ ] � iTsyn

T1,m k( ) � t1 m + k[ ] − t1 m[ ] � kTsyn
(21)

where Tsyn is denoted as the Sync message period.
Based on Eq. 21 we can simplify the expressions in

Eq. 20:

E aj,iam,k[ ] � E
Ω1,j i( )
T1,j i( )

Ω1,m k( )
T1,m k( )[ ] � E Ω1,j i( )Ω1,m k( )[ ]

ikT2
syn

(22)

E a2j,iam,k[ ] � E
Ω2

1,j i( )
T2
1,j i( )

Ω1,m k( )
T1,m k( )⎡⎣ ⎤⎦ � E Ω2

1,j i( )Ω1,m k( )[ ]
i2kT3

syn

(23)

E aj,ia
2
m,k[ ] � E

Ω1,j i( )
T1,j i( )

Ω2
1,m k( )

T2
1,m k( )[ ] � E Ω1,j i( )Ω2

1,m k( )[ ]
ik2T3

syn

(24)

E a2j,ia
2
m,k[ ] � E

Ω2
1,j i( )

T2
1,j i( )

Ω2
1,m k( )

T2
1,m k( )

⎡⎣ ⎤⎦ � E Ω2
1,j i( )Ω2

1,m k( )[ ]
i2k2T4

syn

(25)

E bj,ibm,k[ ] � E
Ω2,j i( )
T1,j i( )

Ω2,m k( )
T1,m k( )[ ] � E Ω2,j i( )Ω2,m k( )[ ]

ikT2
syn

(26)

Since the PDV has zero mean (please refer to Section 2), Eqs
23, 24 can be set to zero.

Now, by putting Eqs 22, 25, 26 into Eq. 20 we obtain the
expression in Eq. 13 and this completes our proof.

In the following, we will calculate the approximated expression
for the MSE related to our new proposed clock skew estimator for
three different cases:

1) The white-Gaussian case, 2) The fGn case, 3) The gfGn case.

3.3 Theorem 3
The approximate MSE for the white-Gaussian case is:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2ω1

+ σ2
ω2

T2
syn

A⎛⎝ ⎞⎠ 1 + 1
P

( ) (27)

where P is defined as:

P � A

B

σ2
ω1
+ σ2ω2

σ4ω1

( )T2
syn (28)

and A and B are given by:
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A � 2∑J−1
i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

B � 12∑J−1
i�1

J − i

i4
+ 6∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k
m�j+i
m�j−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(30)

3.3.1 Proof of Theorem 3
In the following, we calculate separately the three different parts
in Eq. 13. We start with the first part in Eq. 13. Based on Eq. 7 we
can write:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

(31)

For calculating Eq. 31 we have to consider only five non-
zero cases.

The first case is when i � k and m � j. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E ω1 j + i[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

E ω1 j + i[ ]ω1 j + i[ ] + ω1 j[ ]ω1 j[ ][ ]
i2

� 2σ2ω1
∑J−1
i�1

J − i

i2

(32)

The second case is when i ≠ k andm � j. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω1 j[ ]ω1 m[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω1 j[ ]ω1 j[ ][ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1
ik

(33)

The third case is when m � j + i. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

−E ω1 j + i[ ]ω1 m[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

−E ω1 j + i[ ]ω1 j + i[ ][ ]
ik

� −σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1
ik

(34)

The fourth case is when m � j − k. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

−E ω1 j[ ]ω1 m + k[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

−E ω1 j[ ]ω1 j[ ][ ]
ik

� −σ2
ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1
ik

(35)

The fifth case is when i ≠ k and m � j + i − k. For this case Eq.
31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω1 j + i[ ]ω1 m + k[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω1 j + i[ ]ω1 j + i[ ][ ]
ik

� σ2
ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1
ik

(36)

Based on Eqs 32–36, we may write Eq. 31 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
2∑J−1

i�1

J − i

i2
⎛⎝

+∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik
⎞⎠ (37)

Based on Eq. 7 the second part in Eq. 13 can be given as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω2 j + i[ ]ω2 m + k[ ] − ω2 j + i[ ]ω2 m[ ] − ω2 j[ ]ω2 m + k[ ] + ω2 j[ ]ω2 m[ ][ ]
ik

(38)

The only change in Eq. 38 concerning Eq. 31 is the PDV.
Therefore, we can use the calculations we made for the first part.
Based on Eq. 37, we can write Eq. 38 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

� σ2ω2
⎛⎝2∑J−1

i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik
⎞⎠
(39)

The third part in Eq. 13 is:
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1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2 � 1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω2
1 j + i[ ]ω2

1 m + k[ ] + ω2
1 j + i[ ]ω2

1 m[ ] + ω2
1 j[ ]ω2

1 m + k[ ] + ω2
1 j[ ]ω2

1 m[ ][ ]
ik( )2(

− 2
E ω2

1 j + i[ ]ω1 m + k[ ]ω1 m[ ] + ω2
1 j[ ]ω1 m + k[ ]ω1 m[ ][ ]

ik( )2
− 2

E ω1 j + i[ ]ω1 j[ ]ω2
1 m + k[ ] + ω1 j + i[ ]ω1 j[ ]ω2

1 m[ ][ ]
ik( )2

+ 4
E ω1 j + i[ ]ω1 j[ ]ω1 m + k[ ]ω1 m[ ][ ]

ik( )2 )
(40)

In order to calculate Eq. 40 we have to consider only six non-
zero cases.

The first case is when i � k and m � j. For this case Eq.
40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E ω2
1 j + i[ ]ω2

1 j + i[ ] + ω2
1 j + i[ ]ω2

1 j[ ] + ω2
1 j[ ]ω2

1 j + i[ ] + ω2
1 j[ ]ω2

1 j[ ][ ]
i4

(
+ 4E ω1 j + i[ ]ω1 j[ ]ω1 j + i[ ]ω1 j[ ][ ]

i4
) � 2 3σ4

ω1
( ) + 6 σ2

ω1
σ2
ω1

( )
T2
syn

∑J−1
i�1

J − i

i4

(41)

The second case is when i ≠ k and m � j. For this case Eq.
40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω2
1 j + i[ ]ω2

1 j + k[ ] + ω2
1 j + i[ ]ω2

1 j[ ] + ω2
1 j[ ]ω2

1 j + k[ ] + ω2
1 j[ ]ω2

1 j[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2

ω1
σ2ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1

ik( )2

(42)

The third case is when m � j + i. For this case Eq. 40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E ω2
1 j + i[ ]ω2

1 j + i + k[ ] + ω2
1 j + i[ ]ω2

1 j + i[ ] + ω2
1 j[ ]ω2

1 j + i + k[ ] + ω2
1 j[ ]ω2

1 j + i[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2ω1

σ2ω1
( )

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1

ik( )2

(43)

The fourth case is when m � j − k. For this case Eq. 40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E ω2
1 j + i[ ]ω2

1 j[ ] + ω2
1 j + i[ ]ω2

1 j − k[ ] + ω2
1 j[ ]ω2

1 j[ ] + ω2
1 j[ ]ω2

1 j − k[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2

ω1
σ2ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1

ik( )2

(44)

The fifth case is when i ≠ k and m � j + i − k. For this case Eq.
40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω2
1 j + i[ ]ω2

1 j + i[ ] + ω2
1 j + i[ ]ω2

1 j + i − k[ ] + ω2
1 j[ ]ω2

1 j + i[ ] + ω2
1 j[ ]ω2

1 j + i − k[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2ω1

σ2
ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1

ik( )2

(45)

The sixth case is when m ≠ j and m ≠ j + i and m ≠ j − k and
m + k ≠ j + i. For this case Eq. 40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

E ω2
1 j + i[ ]ω2

1 m + k[ ] + ω2
1 j + i[ ]ω2

1 m[ ][ ]]
ik( )2

+ E ω2
1 j[ ]ω2

1 m + k[ ] + ω2
1 j[ ]ω2

1 m[ ][ ]
ik( )2 � 4 σ2ω1

σ2
ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2

(46)

Based on Eqs 41–46, we can write Eq. 40 as:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2 � σ4

ω1

T2
syn

12∑J−1
i�1

J − i

i4
⎛⎝

+ 6∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j
m�j+i
m�j−k
m�j+i−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(47)

Now, based on Eqs 37, 39, 47 we may write the approximated
MSE related to our new proposed clock skew estimator for the
white-Gaussian case as:

E e2[ ] ≈ 1 + α

J J − 1( )( )( )2 σ2
ω1
+ σ2ω2

( )
T2
syn

2∑J−1
i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + σ4
ω1

T4
syn

12∑J−1
i�1

J − i

i4
⎛⎝

+ 6∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k
m�j+i
m�j−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2
⎞⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)
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In order to calculate the approximatedMSE related to our new
proposed clock skew estimator, it can be assumed that (1 + α) ≈ 1,
because in practical systems, the two clocks (Master and Slave)
operate at almost the same frequency. Therefore, Eq. 48 can be
rewritten as:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2

ω1
+ σ2ω2

( )
T2
syn

A + σ4ω1

T4
syn

B⎡⎣ ⎤⎦ (49)

where A and B are defined in Eqs 29, 30 respectively.
Next, we define the correction factor P. This correction factor

helps us to calculate the expression for the approximated MSE
related to our new proposed clock skew estimator in the fGn and
gfGn cases, as will be shown later on.

In the following, we define P as:

σ2ω1
+ σ2ω2

T2
syn

A � σ4
ω1

T4
syn

B⎛⎝ ⎞⎠P → P � A

B

σ2ω1
+ σ2ω2

σ4ω1

( )T2
syn (50)

We can write Eq. 49 as:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2ω1

+ σ2ω2
( )

T2
syn

A 1 + B

A

σ4ω1

σ2
ω1
+ σ2ω2

( ) 1

T2
syn

⎡⎣ ⎤⎦
(51)

Now, by putting Eq. 50 into Eq. 51 we can write
the closed-form approximated expression for the
approximated MSE related to our new proposed clock
skew estimator as is defined in Eq. 27 and this completes
our proof.

3.4 Theorem 4
For the case where the PDV is defined as an fGn process with 0.5
≤ H < 1, the closed-form approximated expression for the
approximated MSE related to our new proposed clock skew
estimator is approximately given by:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2

ω1
+ σ2ω2

T2
syn

⎛⎝ ⎞⎠ 1 + 1
P

( )C +D( ) (52)

where C and D are given by:

C � ∑J−1
i�1

J − i

i2
2 − fGH i,H( )( )

+∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

1 + 1
2

fG
H

i − k,H( ) − fGH i,H( ) − fGH k,H( )( )( )
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

1 − 1
2

fGH i,H( ) − fGH k,H( ) + fGH i + k,H( )( )( )
(53)

D � ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
2ik

fGH j −m,H( ) − fGH j + i −m,H( )(
−fGH j −m − k,H( ) + fGH j + i −m − k,H( ))

(54)

and the function fGH (.) is:

fGH x,H( ) � ‖x| − 1|2H − 2 |x|( )2H + |x| + 1( )2H[ ] (55)

3.4.1 Proof of Theorem 4
Based on Eq. 7 the two first parts in Eq. 13 can be written as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( ) + Ω2,j i( )Ω2,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

(
+ E ω2 j + i[ ]ω2 m + k[ ] − ω2 j + i[ ]ω2 m[ ] − ω2 j[ ]ω2 m + k[ ] + ω2 j[ ]ω2 m[ ][ ]

ik
)

(56)

For calculating Eq. 56 we have to consider only six non-
zero cases.

The two parts in Eq. 56 have the same calculations. Therefore,
we present our calculations for the first part that is given by:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

( )
(57)

The first case is when i � k and m � j. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E ω1 j + i[ ]ω1 j + i[ ] − ω1 j + i[ ]ω1 j[ ] − ω1 j[ ]ω1 j + i[ ] + ω1 j[ ]ω1 j[ ][ ]
i2

( )
(58)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� 2σ2
ω1
∑J−1
i�1

J − i

i2
− 2

σ2
w1

2
( )∑J−1

i�1
∑J−i
j�1

1

i2

j − j + i( )| − 1
���� ∣∣∣∣2H − 2 |j − j + i( )|( )2H + |j − j + i( )| + 1( )2H( )

(59)

after rearranging Eq. 59:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

�

σ2
w1

∑J−1
i�1

J − i

i2
2 − |i − 1|2H − 2 i( )2H + i + 1( )2H( )( )⎛⎝ ⎞⎠ (60)

The second case is when i ≠ k and m � j. For this case Eq.
57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω1 j + i[ ]ω1 j + k[ ] − ω1 j + i[ ]ω1 j[ ] − ω1 j[ ]ω1 j + k[ ] + ω1 j[ ]ω1 j[ ][ ]
ik

( )
(61)

which can be written also as:
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∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1
ik

1 + 1
2

− j + i − j| − 1
���� ∣∣∣∣2H − 2 |j + i − j|( )2H + |j + i − j| + 1( )2H[ ]((

− j − j − k| − 1
���� ∣∣∣∣2H − 2 |j − j − k|( )2H + |j − j − k| + 1( )2H[ ]+

j + i − j − k| − 1
���� ∣∣∣∣2H − 2 |j + i − j − k|( )2H + |j + i − j − k| + 1( )2H[ ]))

(62)

after rearranging Eq. 62:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1
ik

1 + 1
2

|i − k| − 1( )2H − 2|i − k|2H + |i − k| + 1( )2H[ ]((
− |i − 1|2H − 2 i( )2H + i + 1( )2H[ ] − |k − 1|2H − 2 k( )2H + k + 1( )2H[ ]))

(63)

The third case is when m � j + i. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E ω1 j + i[ ]ω1 j + i + k[ ] − ω1 j + i[ ]ω1 j + i[ ] − ω1 j[ ]ω1 j + i + k[ ] + ω1 j[ ]ω1 j + i[ ][ ]
ik

( )
(64)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1
ik

−1 + 1
2

j − j − i| − 1
���� ∣∣∣∣2H − 2 |j − j − i|( )2H + |j − j − i| + 1( )2H[ ]((

− j − j − i − k| − 1
���� ∣∣∣∣2H − 2 |j − j − i − k|( )2H + |j − j − i − k| + 1( )2H[ ]

+ j + i − j − i − k| − 1
���� ∣∣∣∣2H − 2 |j + i − j − i − k( )|[ )2H + |j + i − j − i − k| + 1( )2H]))

(65)

after rearranging Eq. 65:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1
ik

−1 + 1
2

|k − 1|2H − 2 k( )2H + k + 1( )2H[ ] + |i − 1|2H − 2 i( )2H + i + 1( )2H[ ]((
− |i + k − 1|2H − 2 i + k( )2H + i + k + 1( )2H[ ]))

(66)

The fourth case is when m � j − k. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E ω1 j + i[ ]ω1 j[ ] − ω1 j + i[ ]ω1 j − k[ ] − ω1 j[ ]ω1 j[ ] + ω1 j[ ]ω1 j − k[ ][ ]
ik

( )
(67)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1
ik

−1 + 1
2

j + i − j| − 1
���� ∣∣∣∣2H − 2 |j + i − j|( )2H + |j + i − j| + 1( )2H[ ]((

− j + i − j + k| − 1
���� ∣∣∣∣2H − 2 |j + i − j + k|( )2H + |j + i − j + k| + 1( )2H[ ]

+ j − j + k| − 1
���� ∣∣∣∣2H − 2 |j − j + k|( )2H + |j − j + k| + 1( )2H[ ])) (68)

after rearranging Eq. 68:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1
ik

−1 + 1
2

− |i + k − 1|2H − 2 i + k( )2H + i + k + 1( )2H[ ]((
+ |i − 1|2H − 2 i( )2H + i + 1( )2H[ ] + |k − 1|2H − 2 k( )2H + k + 1( )2H[ ]))

(69)

The fifth case is when i≠ k andm� j+ i− k. For this caseEq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω1 j + i[ ]ω1 j + i[ ] − ω1 j + i[ ]ω1 j + i − k[ ] − ω1 j[ ]ω1 j + i[ ] + ω1 j[ ]ω1 j + i − k[ ][ ]
ik

( )
(70)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1
ik

1 + 1
2

j − j − i + k| − 1
���� ∣∣∣∣2H − 2 |j − j − i + k|( )2H + |j + i − i + k| + 1( )2H[ ]((

− j + i − j − i + k| − 1
���� ∣∣∣∣2H − 2 |j + i − j − i + k|( )2H + |j + i − j − i + k| + 1( )2H[ ]

− j − j − i| − 1
���� ∣∣∣∣2H − 2 |j − j − i|( )2H + |j − j − i| + 1( )2H[ ]))

(71)

after rearranging Eq. 71:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1
ik

1 + 1
2

i − k| − 1‖ |2H − 2|i − k|2H + |i − k| + 1( )2H[ ]((
− |k − 1|2H − 2 k( )2H + k + 1( )2H[ ] − |i − 1|2H − 2 i( )2H + i + 1( )2H[ ]))

(72)

The sixth case is when m ≠ j and m ≠ j + i and m ≠ j − k and
m + k ≠ j + i. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

( )
(73)

which can be written also as:
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∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1

2
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
ik

j + i −m − k| − 1
���� ∣∣∣∣2H − 2 |j + i −m − k|( )2H + |j + i −m − k| + 1( )2H[ ](

− j + i −m| − 1
���� ∣∣∣∣2H − 2 |j + i −m|( )2H + |j + i −m| + 1( )2H[ ]

− j −m − k| − 1
���� ∣∣∣∣2H − 2 |j −m − k|( )2H + |j −m − k| + 1( )2H[ ]

+ j −m| − 1
���� ∣∣∣∣2H − 2 |j −m|( )2H + |j −m| + 1( )2H[ ])

(74)

Please note that the summation of Eqs 60, 63, 66, 69, 72 can be
written as (σ2ω1

C), where C is defined in Eq. 53. The expression in
Eq. 74 can be written as (σ2ω1

D), where D is defined in Eq. 54.
Now, we can write Eq. 57 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
C +D( ) (75)

Based on Eq. 75 we may write Eq. 56 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ E Ω2,j i( )Ω2,m k( )[ ]
ik

⎛⎝ ⎞⎠
� σ2ω1

+ σ2
ω2

( ) C +D( ) (76)

The third part in Eq. 13 is quite difficult to carry out for the
fGn case. Now, looking at Eq. 27 we notice that Eq. 27 consists
actually on the sum of the two first parts of Eq. 13 multiplied by
the factor (1 + 1

P). Please note that P (28) is actually obtained by
dividing the sum of the first two parts of Eq. 13 by the third part
of Eq. 13 for the white-Gaussian noise.

In order to carry out the third part in Eq. 13 for the fGn case,
we approximate it based on Eq. 27. In our approximation we
simply multiply the expression of C(σ2ω1

+ σ2ω2
) with the

expression of (1 + 1
P). The expression for D is not multiplied

with the expression of (1 + 1
P), since D is zero for H � 0.5.

This completes our proof.

3.5 Theorem 5
For the case where the PDV is defined as an gfGn process with 0.5
≤ H < 1 and 0 < a ≤ 1 the closed-form approximated expression
for the MSE related to our new proposed clock skew estimator is
given by:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2ω1

+ σ2ω2

T2
syn

⎛⎝ ⎞⎠ 1 + 1
P

( )Cp +Dp( ) (77)

where C* and D* are given by:

Cp � ∑J−1
i�1

J − i

i2
2 − fGp

H i,H, a( )( )
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

1 + 1
2

fGp

H
i − k,H, a( ) − fGp

H i,H, a( ) − fGp
H k,H, a( )( )( )

−∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

1 − 1
2

fGp
H i,H, a( ) − fGp

H k,H, a( ) + fGp
H i + k,H, a( )( )( )

(78)

Dp � ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
2ik

fGp
H j −m,H, a( ) − fGp

H j + i −m,H, a( )(
−fGp

H j −m − k,H, a( ) + fGp
H j + i −m − k,H, a( ))

(79)

and the function fGp
H(.) is:

fGp
H x,H, a( ) � ‖xa| − 1|2H − 2 |xa|( )2H + |xa| + 1( )2H[ ] (80)

3.5.1 Proof of Theorem 5
As already was shown in Section 2, we have for the fGn process Li
and Zhao [23]; Peng et al. [21]:

for j � m E ωn j[ ],ωn m[ ][ ] � σ2ωn

for j ≠ m E ωn j[ ],ωn m[ ][ ] � σ2ωn

2
j −m| − 1
���� ∣∣∣∣2H − 2 |j −m|( )2H + |j −m| + 1( )2H[ ]

(81)

where n � 1,2.
On the other hand, we have for the gfGn process Li [26]:

for j � m E ωn j[ ],ωn m[ ][ ] � σ2
ωn

for j ≠ m E ωn j[ ],ωn m[ ][ ] � σ2ωn

2
j −m( )a | − 1

���� ∣∣∣∣2H − 2| j −m( )a |2H + | j −m( )a| + 1( )2H[ ]
(82)

Please note that the difference between Eqs 81, 82 is only by
the a factor. Thus, we can use Eqs 52–55 for the gfGn case where
the function fGH (.) defined in Eq. 55 and used in Eq. 53 to Eq. 54
is substituted by the function fG*

H(.) Eq. 80 and this completes
our proof.

4 DESIGNING GRAPHS

In this section, we propose some designing graphs for the
fGn and gfGn cases. Thus, the designing graphs for the fGn
case will be based on Theorem 4 while the designing graph
for the gfGn case will be based on Theorem 5. The closed-
form approximated expression for the MSE (for the fGn
process Eq. 52 and for the gfGn process Eq. 77) is a function
of H, a function of Tsyn, a function of the total sent Sync
messages, and a function of the PDV variances. It could be
very helpful for the system designer if he could
approximately know the total sent Sync messages that the
system needs in order to receive the system’s requirement
such as MSE � 10–12.

Thus in the following, we will try to create some designing
graphs that can help the system designer to achieve the system’s
requirement of MSE � 10–12.

Based on Eqs 28, 52, 77 we can write the approximated MSE
related to our new proposed clock skew estimator as:

E e2[ ] ≈ 1

J J − 1( )( )2
σ2ω1

+ σ2
ω2

T2
syn

⎛⎝ ⎞⎠ Ct +Dt( ) + σ4
ω1

T4
syn

B

A
Ct( )⎛⎝ ⎞⎠

(83)
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where A and B are defined in Eqs 29, 30 respectively. For the fGn
case Ct � C Eq. 53 and Dt � D Eq. 54, and for the gfGn case Ct �
C* Eq. 78 and Dt � D* Eq. 79.

After arranging Eq. 83 we have:

σ2ω1
+ σ2

ω2
( ) + σ4ω1

T2
syn

B

A

Ct

Ct +Dt
( ) ≈ E e2[ ]T2

syn

J J − 1( )( )2
Ct +Dt( ) (84)

In order to simplify Eq. 84 we use the following condition:

σ2ω1
+ σ2

ω2
( )≫ σ4ω1

T2
syn

B

A

Ct

Ct +Dt
( ) (85)

Thus, for the fGn and gfGn cases, we may write based on Eqs
84, 85:

σ2
ω1
+ σ2ω2

( ) ≈ E e2[ ]T2
syn

J J − 1( )( )2
Ct +Dt( ) (86)

Based on Eq. 86 we carry out some designing graphs (Figures
2–5) that were obtained for MSE � 10–12 and for three different
Tsyn rates: 64

packet
sec , 16 packet

sec and 8 packet
sec . Please note that we have

three designing graphs for the fGn case (Figures 2–4) where each
designing graph was carried out for various values for H, and one
designing graph for the gfGn case with H � 0.95 (Figure 5).

In order to see if Eq. 85 can actually be ignored, we are going
back to the obtained designing graph in Figure 2 to check
ourselves.

In the following, we assume that σω1 � σω2 and for simplicity
we denote the expression B

A
Ct

Ct+Dt as F.
According to Figure 2, where Tsyn � 15.6ms (64 packet

sec ) and
H � 0.9:

1. σ2ω1
+ σ2ω2

� 9.65e − 13 0 J � 30
0 F � 46.88 0

σ4ω1
T2
syn

� 9.57e − 22

0 σ2
ω1

+ σ2
ω2

� 9.65e − 13≫F
σ4ω1
T2
syn

� 4.49e − 20

2. σ2ω1
+ σ2ω2

� 2.89e − 11 0 J � 140 0 F � 94.97
0

σ4ω1
T2
syn

� 8.58e − 19

0 σ2
ω1

+ σ2
ω2

� 2.89e − 11≫ F
σ4ω1
T2
syn

� 8.15e − 17

3. σ2ω1
+ σ2ω2

� 4.76e − 8 0 J � 500
0 F � 150.93 0

σ4ω1
T2
syn

� 2.33e − 16

0 σ2
ω1

+ σ2
ω2

� 4.76e − 10≫ F
σ4ω1
T2
syn

� 3.52e − 14

According to Figure 2, where Tsyn � 15.6ms (64 packet
sec ) and

H � 0.8:

1. σ2ω1
+ σ2ω2

� 8.92e − 13 0 J � 30 0 F � 56.37

0
σ4ω1
T2
syn

� 8.18e − 22
0 σ2

ω1
+ σ2

ω2
� 8.92e − 13≫ F

σ4ω1
T2
syn

� 4.61e − 20

2. σ2ω1
+ σ2ω2

� 3.63e − 11 0 J � 140 0 F � 137.77

0
σ4ω1
T2
syn

� 1.35e − 18

0 σ2
ω1

+ σ2
ω2

� 3.63e − 11≫F
σ4ω1
T2
syn

� 1.86e − 16

3. σ2ω1
+ σ2ω2

� 7.72e − 10 0 J � 500 0 F � 260.74

0
σ4ω1
T2
syn

� 6.12e − 16

0 σ2
ω1

+ σ2
ω2

� 7.72e − 10≫F
σ4ω1
T2
syn

� 1.59e − 13

According to Figure 2, where Tsyn � 15.6ms (64 packet
sec ) and

H � 0.6:

1. σ2ω1
+ σ2ω2

� 1.47e − 12 0 J � 30
0 F � 81.39 0

σ4ω1
T2
syn

� 2.22e − 21

0 σ2
ω1

+ σ2
ω2

� 1.47e − 12≫ F
σ4ω1
T2
syn

� 1.81e − 19

2. σ2ω1
+ σ2ω2

� 1.09e − 10 0 J � 140
0 F � 306.76 0

σ4ω1
T2
syn

� 1.22e − 17

0 σ2
ω1

+ σ2
ω2

� 1.09e − 10≫ F
σ4ω1
T2
syn

� 3.75e − 15

3. σ2ω1
+ σ2ω2

� 3.84e − 9 0 J � 500
0 F � 881.07 0

σ4ω1
T2
syn

� 1.52e − 14

0 σ2
ω1

+ σ2
ω2

� 3.84e − 9≫F
σ4ω1
T2
syn

� 1.34e − 11

According to the list from above, we can see that for 10 < J <
500, Eq. 86 is applicable.

5 SIMULATION RESULTS

In this section, we test our new proposed clock skew
estimator Eq. 3 and our closed-form-approximated
expression for the MSE for the white-Gaussian Eq. 27, fGn
Eq. 52 and gfGn Eq. 77 cases. At first, we show various
simulation results in order to show the efficiency of our new
proposed clock skew estimator Eq. 3 compared to the ML-
like estimator (MLLE) Noh et al. [34] that maximizes the
likelihood function obtained based on a reduced subset of
observations (the first and last timing stamps). According to
Noh et al. [34] we have:

β̂ � T2,1 J − 1( )2 + T3,1 J − 1( )2
T1,1 J − 1( )T2,1 J − 1( ) + T3,1 J − 1( )T4,1 J − 1( ) − 1 (87)

where

β̂ � 1
α̂ + 1

− 1 (88)

T2,1 (J − 1) � t2 [J] − t2 [1], T1,j(i), T2,j(i), T3,j(i) and T4,j(i) are
defined in Eqs. 4, 7.

Figure 6 shows the performance comparison between our new
proposed clock skew estimator Eq. 3 with the estimator obtained
from Noh et al. [34] for the Gaussian case. The results in Figure 6
were obtained for different values for the PDV variances. In
addition, we also show there the performance of the new
proposed closed-form-approximated expression for the MSE
Eq. 27 compared to the simulated one via Eq. 3. According to
Figure 6 our new clock skew estimator Eq. 3 achieves a lower
MSE compared to the clock skew estimator from Noh et al. [34]
for the Gaussian case. In addition, we can clearly see from
Figure 6 that our new closed-form-approximated expression
for the MSE Eq. 27 supplies results that are very close to the
simulated one.

Figure 7 shows the performance comparison between our
new proposed clock skew estimator Eq. 3 with the clock skew
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FIGURE 2 | Designing graph for the fGn case. The graph is based on Eq. 86, Tsyn � 15.6 ms (64 packet
sec ) and E [e2] � 10–12.

FIGURE 3 | Designing graph for the fGn case. The graph is based on Eq. 86, Tsyn � 62.5ms (16 packet
sec ) and E [e2] � 10–12.
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FIGURE 4 | Designing graph for the fGn case. The graph is based on Eq. 86, Tsyn � 125ms (8 packet
sec ) and E [e2] � 10–12.

FIGURE 5 | Designing graph for the gfGn case. The graph is based on Eq. 86, E [e2] � 10–12 and H � 0.95.
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estimator obtained from Noh et al. [34] for the fGn case with
different values for H. Figure 8 shows the performance
comparison between our new proposed clock skew
estimator Eq. 3 with the clock skew estimator obtained
from Noh et al. [34] for the fGn case with different values
for the PDV variances. In addition, we also show in Figures 7,
8 the performance of our new closed-form-approximated
expression for the MSE Eq. 52 compared to the simulated
one. According to Figures 7, 8 our new clock skew estimator
achieves a lower MSE compared to the clock skew estimator
from Noh et al. [34] for the fGn case. In addition, we can
clearly see from Figures 7, 8 that the performance of our
new closed-form-approximated expression for the MSE Eq. 52
is very close to the performance obtained by the
simulated MSE.

Figure 9 shows the MSE obtained by the new proposed clock
skew estimator Eq. 3 compared with our closed-form-
approximated expression for the MSE Eq. 52 for the fGn case.
The results in Figure 9 were obtained for different forward and
reverse PDV variances. According to Figure 9 there is a high
correlation between the performance of our closed-form-
approximated expression for the MSE Eq. 52 with the
simulated MSE.

Figure 10 shows the performance comparison between
our new proposed clock skew estimator Eq. 3 with the clock
skew estimator obtained from Noh et al. [34] for the gfGn

case. The results in Figure 10 were obtained for different
values of a (please note that we set the values of H and a
according to Li [26]). In addition, we also show in Figure 10
the performance of our closed-form-approximated
expression for the MSE Eq. 77 compared to the simulated
one. According to Figure 10, our new clock skew estimator
achieves a lower MSE compared to the clock skew estimator
from Noh et al. [34]. In addition, we can see from Figure 10
that the performance of our closed-form-approximated
expression for the MSE Eq. 77 is high correlated with the
simulated one.

It should be pointed out that the clock skew estimator
from Noh et al. [34], does not depend on the unknown fixed
delay paths nor on the clock offset between the Master and
Slave. Thus, it is a good candidate for performance
comparison with our new proposed clock skew estimator
Eq. 3. Please note that in order to carry out a fair
performance comparison, we can only take those clock
skew estimators for the simulation performance
comparison task, that do not rely on the symmetric
assumption for the forward and reverse fixed delay paths
as is the case in Puttnies et al. [13], Chaudhari et al. [32], Li
and Jeske [33] and Shan et al. [5] (please refer to Table 1). In
addition, those clock skew estimators should not rely on
multiple Masters or on multiple paths between the Master
and Slave as is the case in Karthik and Blum [12]. Thus, based

FIGURE 6 | Performance comparison between the new clock skew estimator Eq. 3 with the clock skew estimator of Noh et al. [34]denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 27 for the white-Gaussian case. α � 50 ppm, Q �
5 ms, Tsyn � 15.6ms (64 packet

sec ). For: σω1 � σω2 � σ � 100 μs the delay dms � 1 ms, dsm � 0.8 ms For: σω1 � σω2 � 1000 μs, the delay dms � 3.3 ms, dsm � 3 ms. The
results were obtained for 100 Monte-Carlo trails.
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FIGURE 7 | Performance comparison between the new clock skew estimator Eq. 3 with the clock skew estimator of Noh et al. [34] denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 52 for the fGn case. α � 50 ppm, Q � 5 ms.
Tsyn � 15.6ms (64 packet

sec ), σω1 � σω2 � 1000 μs, dms � 5 ms, dsm � 5.5 ms. The results were obtained for 100 Monte-Carlo trails.

FIGURE 8 | Performance comparison between the new clock skew estimator Eq. 3 with the clock skew estimator of Noh et al. [34] denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 52 for the fGn case. α � 50 ppm, Q � 5 ms,
Tsyn � 15.6ms (64 packet

sec ), σω1 � σω2 � σ, dms � 5 ms, dsm � 5.5 ms, H � 0.6. The results were obtained for 100 Monte-Carlo trails.
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FIGURE 9 | Performance comparison between the new proposed expression for theMSE Eq. 52with those obtained from the simulated clock skew estimator Eq. 3
for the fGn case (denoted here as sim MSE), where the forward and reverse PDV variances are different. α � 50 ppm, Q � 5 ms, Tsyn � 15.6ms (64 packet

sec ), dms � 5 ms,
dsm � 5.5 ms, H � 0.6. case 1: σω1 � 0.8ms, σω2 � 0.5ms, case 2: σω1 � 0.8ms, σω2 � 1.2ms. The results were obtained for 100 Monte-Carlo trails.

FIGURE 10 | Performance comparison between the new clock skew estimator Eq. 3with the clock skew estimator of Noh et al. [34] denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 77 for the gfGn case. α � 50ppm, Q � 5 ms, Tsyn �
15.6 ms, σω1 � σω2 � 0.1ms, d ms � 5 ms, d sm � 5.5 ms, H � 0.95. The results were obtained for 100 Monte-Carlo trails.
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FIGURE 11 | Performance comparison between the new clock skew estimator Eq. 3 for the gfGn casewith the clock skew estimator of Noh et al. [34] and Levy and
Pinchas [2]. The clock skew estimator of Noh et al. [34] is denoted here as the likelihood estimator. We also have the simulated performance results for our new proposed
expression for the MSE Eq. 77 for the gfGn case. α � 50 ppm, Q � 5 ms, Tsyn � 15.6 ms, σω1 � σω2 � 0.5ms, dms � 5 ms, dsm � 5.5 ms, H � 0.95, a � 0.08. The results
were obtained for 100 Monte-Carlo trails.

FIGURE 12 | Performance comparison between the new clock skew estimator Eq. 3 for the fGn case with the clock skew estimator of Noh et al. [34] and
Chaloupka et al. [36]. The clock skew estimator of Noh et al. [34] is denoted here as the likelihood estimator. α � 50 ppm,Q � 5 ms, Tsyn � 15.6 ms, σω1 � σω2 � 0.25ms,
dms � 5 ms, dsm � 5.5 ms, H � 0.7, L � 200, QKAL � 0, δσ � δμ � 1e − 4, μ̂[1] � 0. The results were obtained for 50 Monte-Carlo trails.
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on Table 1, we can use for the simulation performance
comparison task also the recently proposed clock skew
estimators proposed by Levy and Pinchas [2] and
Chaloupka et al. [36]. But, as already was mentioned
earlier in this paper, Levy and Pinchas [2] is based on the
dual slave clocks in a slave presented by Chin and Chen [31]
where Kim [37] demonstrated that the algorithm in Chin and
Chen [31] is unusable in practical cases. The clock skew
estimator proposed by Chaloupka et al. [36] depends on a
predefined parameter L defining the sliding window’s length
in the algorithm which has an important role for reaching a
low value for the MSE. But, this predefined parameter (L)
depends also on the total number of sync periods available
for the frequency synchronization task. In other words, the
predefined parameter (L) can not be set too large, for
example to a value of 1,000 if the available total number
of sync periods is only 500. In addition, the noise
measurement variance is estimated in Chaloupka et al.
[36] involving two smoothing factors which must also be
defined in advance.

According to Levy and Pinchas [2] we have:

ε̂ � 2∑J
i�1

∑J
j�1

∑min i,j( )−1
k�1

Amax J, i, j, k,H( ) △Ts1.i −△Ts2.i( ) △Ts1.j −△Ts2.j( )[ ]⎛⎝ ⎞⎠
∑J
i�1

∑J
j�1

∑min i,j( )−1
k�1

Amax J, i, j, k,H( ) △Tm.j △Ts1.i −△Ts2.i( )[[⎛⎝
+△Tm.i △Ts1.j −△Ts2.j( )]])−1 − 1

(89)

where Amax (J, i, j, k, H) is:

Amax J, i, j, k,H( ) � Γ J( )
Γ −H + 0.5( )Γ J −H + 0.5( )[ ]2

Γ i − k −H + 0.5( )(
Γ J −H + 0.5 − i + k( )Γ j − k −H + 0.5( )Γ J −H + 0.5 − j + k( ))

Γ J − i + k( )Γ J − j + k( )Γ i − k( )Γ j − k( )( )−1
1

i − k( )
1

j − k( ) − 1
J − i + k( )

1
J − j + k( )[ ] (90)

and ε̂ is:

ε̂ � 1
α̂ + 1

− 1 (91)

Γ(.) denotes the Gamma function, △ denotes the difference
between two consecutive timestamps. Tm.i is the timestamp in the
ith period when the Master sends the Sync message. Ts1.i is the
timestamp in the ith period when the dual-Slave receives the Sync
message. Ts2.i is the timestamp in the ith period when the Slave
receives the Sync message.

According to Chaloupka et al. [36] the Kalman’s measurement
equation is:

T1,j L( ) − T2,j L( ) � T2,j L( )α j[ ] +Ω1,j L( ) (92)

where L is the is the sliding window’s length as defined in
Chaloupka et al. [36].

The Kalman’s state equation is:

α̂ j + 1[ ] � α̂ j[ ] + u j[ ]. (93)

where the variance of u [j] is QKAL. The estimate of the noise
measurement variance is given by Chaloupka et al. [36]:

R̂ j[ ] � 1 − δσ( )R̂ j − 1[ ] + δσ x j[ ] − μ̂ j[ ]( )2 (94)

where

μ̂ j[ ] � 1 − δμ( )μ̂ j − 1[ ] + δμx j[ ]; x j[ ] � T1,j L( ) − T2,j L( )
(95)

δμ and δμ are smoothing factors which are between zero and one.
Figure 11 shows the performance comparison between

our new proposed clock skew estimator Eq. 3 with the clock
skew estimator obtained from Noh et al. [34] and Levy and
Pinchas [2] for the gfGn case. In addition, we also show in
Figure 11 the performance of our closed-form-approximated
expression for the MSE Eq. 77 compared to the simulated
one. According to Figure 11, our new proposed clock skew
estimator achieves a lower MSE compared to the clock skew
estimators proposed by Noh et al. [34] and Levy and
Pinchas [2].

Figure 12 shows the performance comparison between our
new proposed clock skew estimator Eq. 3 with the clock skew
estimator obtained from Noh et al. [34] and Chaloupka et al.
[36] for the fGn case. According to Figure 12 our new
proposed clock skew estimator achieves a lower MSE
compared to the clock skew estimators proposed by Noh
et al. [34] and Chaloupka et al. [36].

6 CONCLUSION

In this paper, we have developed a novel clock skew estimator
(applicable for the PTP case) in the presence of asymmetric in the
forward and reverse paths. This estimator does not depend on the
unknown fixed paths nor on the clock offset between the Master
and Slave. Our clock skew estimator does not need multiple
Masters nor prior knowledge about the forward and the reverse
paths. In addition, we proposed a closed-form approximated
expression for the MSE related to our new proposed clock skew
estimator. This closed-form approximated expression for the
MSE is suitable for the white-Gaussian, fGn, or gfGn
environment. Thus, the clock skew estimator and its
performance (MSE) are applicable for the long-range
dependence environment. It can be seen from the simulation
results that the performance of our closed-form approximated
expression for the MSE has a high correlation with the
performance obtained via the new proposed clock skew
estimator. This paper also supplies designing graphs for the
system designer that may help the system designer to have
approximately the total sent Sync messages to receive the
system’s requirement (MSE � 10–12). For a requirement of
MSE lower than 10–12, new designing graphs can be easily
obtained by Eq. 86. Thus, we have also a closed-form
approximated expression Eq. 86 that can help the system
designer to figure out the total sent Sync messages needed to
get the MSE of any value.
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Confidence Regions for Parameters in
Stationary Time Series Models With
Gaussian Noise
Xiuzhen Zhang1,2, Riquan Zhang1 and Zhiping Lu1*

1Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, School of Statistics, East China
Normal University, Shanghai, China, 2School of Mathematics and Statistics, Shanxi Datong University, Datong, China

This article develops two new empirical likelihood methods for long-memory time series models
based on adjusted empirical likelihood and mean empirical likelihood. By application of Whittle
likelihood, one obtains a score function that can be viewed as the estimating equation of the
parameters of the long-memory time seriesmodel. An empirical likelihood ratio is obtainedwhich
is shown to be asymptotically chi-square distributed. It can be used to construct confidence
regions. By adding pseudo samples, we simultaneously eliminate the non-definition of the
original empirical likelihood and enhance the coverage probability. Finite sample properties of the
empirical likelihood confidence regions are explored through Monte Carlo simulation, and some
real data applications are carried out.

Keywords: confidence region, adjusted empirical likelihood, mean empirical likelihood, stationary time series, long
memory

1 INTRODUCTION

The empirical likelihood (EL) method is originally designed to construct a confidence region only for
independent data [1,2]. Nowadays, it is quite popular in the statistical inference of time series,
(dependent data) thanks to the asymptotical independent property of the periodogram ordinates, see
[3], [4], and [5]. EL received considerable attention because of its nice statistic properties. For
example, it runs a low risk of a misspecified probability model by setting up a semi-parametric
moment model; it is easy to construct a confidence region or interval under the chi-square
approximation; there is no need to calculate the covariance estimates when it is used to
construct confidence regions; and the shape of confidence region that is naturally driven by data.

In spite of nice properties of EL, it still does not work well for the case of small sample or high-
dimensional data. Its main drawback is the large coverage error of the corresponding confidence region.
One reason for the under-coverage is that the original EL ratio poorly approximates to the chi-square
limiting distribution. This under-coverage issue can be alleviated to some extent by the Bartlett correction
[6]. Another reason for the under-coverage is the non-definition problem of the EL ratio.When the sample
size is small, the definition of the original EL ratio often does not exist. [7] proposed adjusted EL by adding
pseudo points to ensure the original convex hull lie on the opposite of the origin, which not only eliminates
the non-definition but also improves the accuracy of approximation with the conventional level of
adjustment. [8] put forward the optimal adjustment level to improve the chi-square approximation with a
high-order precision, but the problem is not solved. Afterward, [9] derived an adjustment factor from the
Bartlett correction and proved by adding two pseudo observations; the new adjusted EL (AEL) has the
same order of chi-square approximation as the Bartlett correction. Many research studies about choosing
an optimal adjustment factor arose, such as [10], [11], [12], and [13]. In practice, when the dimension of the
unknown parameter is large, it is difficult to calculate the Bartlett correction factor. Recently, the mean EL
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(MEL) was proposed to improve the precision of the EL-based
confidence regions by constructing a new pseudo data point [14].
By greatly increasing the sample size, the MEL method leads to a
more accurate chi-square approximation. Hence, the corresponding
coverage error is reduced, and the coverage probability is enhanced.

For time series, EL inherits the undesirable problem of under-
coverage. To the best of our knowledge, there have been some works
applying AEL on the improvement of the precision of the EL-based
confidence region, such as [15] and [16]. But under their proposed
conventional adjustment level a � max (1, log(n)/2), the precision of
chi-square approximation distribution of AEL is not obviously
enhanced. In this article, we propose another adjustment level to
construct new AEL for the parameters in stationary short- and long-
memory time series models with Gaussian noise. Following the Liu &
Chen’s method, our proposed AEL possesses a high-order
approximation to chi-square distribution by adding two pseudo
observations. We also propose the MEL method for estimating the
parameters of stationary time series models. By increasing the sample
size, the MEL does enhance the confidence precision. The Monte
Carlo simulation results indicate that our proposed AEL-based
confidence regions benefit more accurate coverage probabilities
than those of the original EL and the previous AEL. When the
sample size is moderate, the coverage probability based on MEL is
comparable to the previous AEL. There is no need to compute the
Bartlett correction factor for MEL, which is a challenge when the
dimension of the parameter vector is large.

The remainder of this article is organized as follows; in Section 2,
we present the proposed AEL and MEL ratio statistics for parameters
in stationary ARMA and ARFIMA processes and deduce their
asymptotical chi-square properties. Monte Carlo simulation results
are provided in Section 3 to show the improved finite-sample
performance of our methods. Real data examples are presented in
Section 4. Section 5 is the brief proof of the theorem.

2 METHODOLOGY

In this section, we derive the asymptotical chi-square properties
of the new AEL and MEL ratio statistics for the parameters in

representative stationary short- and long-memory models, that is,
ARMA and ARFIMA models. We begin with introducing the
moment-estimating equations of parameters in these models.

2.1 Estimating Equations
Suppose, we have a time series {Xt}t�1,...,T satisfying the
relationship

Φ B( ) I − B( )dXt � Θ B( )ϵt, t ∈ Z, d ∈ 0, 0.5[ ),
where Φ(B) � ∑p

i�0ϕiB
i and Θ(B) � ∑q

i�0θiBi with ϕ0 � θ0 � − 1
and B is the backward operator. The two polynomials have no
common factor to avoid the parameter redundancy. All roots of
their corresponding equations strictly lie out of the unit circle to make
sure that the model is stationary and invertible, which is the most
important setup for many time series studies. d is the constant
memory parameter and ϵt is a Gaussian white noise with mean 0
and variance σ2. Then, when d � 0, it is the popular ARMA (p,q)
(short-memory) model. When d ∈ (0, 0.5), it is the widely used
ARFIMA (p,d,q) (long-memory)model [17]. σ2 is often considered as
a nuisance parameter. Then, β � (ϕ1, . . . , ϕp, d, θ1, . . . , θq) is the
parameter vector of our interest with the dimension m � p + q + 1.
Many important literatures come up with the application of the
fractional long-memory model ([18], [19], and [20]).

By taking the derivative of Whittle likelihood [21], the
estimating equations are derived as

∑N
i�1

ψi I ωi( ), β( ) � ∑N
i�1

I ωi( )
fi β( ) − 1( ) z ln fi β( ){ }

zβ
� 0,

where N � [(T − 1)/2] and [x] is the integer part of x. The
periodogram ordinates are denoted as

I ωi( ) � ∑T
t�1

xt sin ωit( )⎡⎣ ⎤⎦2 + ∑T
t�1

xt cos ωit( )⎡⎣ ⎤⎦2⎧⎨⎩ ⎫⎬⎭/2πT,
ωi � 2πi/T, i � 1, . . . , N,

and the spectral density function is

fi β( ) � σ2

2π

∣∣∣∣1 − e−iωi
∣∣∣∣−2d|Θ e−iωi( )|2

|Φ e−iωi( )|2.

2.2 AEL of β
It is well known that when the origin lies out of certain convex
constraints Ωβ � ψi(I(ωi), β), i � 1, . . . , N{ } involving the
computation of EL, the solution of the optimization problem
does not exist, which results in the no definition of EL and the
under-coverage of the corresponding confidence region. In this
section, we propose a new AEL in time series to ensure the well
definedness of AEL and improvement of the coverage probability
of confidence regions.

For simplicity, denote ψidψi (I (ωi), β). Based on the original
sample set Ωβ � ψi, i � 1, . . . , N{ }, for a given β, the empirical
log-likelihood ratio is defined as

R β( ) � −2sup ∑N
i�1

lnNpi, pi > 0,∑N
i�1

pi � 1,∑N
i�1

piψi � 0
⎧⎨⎩ ⎫⎬⎭.

TABLE 1 |Coverage probabilities (average length) of confidence intervals of θ �0.2
in MA (1).

EL AEL MEL AEL*

Level T CP(AL) CP(AL) CP(AL) CP(AL)

0.90 60 0.857 (0.428) 0.884 (0.463) 0.874 (0.452) 0.895 (0.963)
100 0.866 (0.324) 0.883 (0.339) 0.878 (0.334) 0.887 (0.607)
200 0.885 (0.227) 0.893 (0.233) 0.892 (0.231) 0.896 (0.306)

0.95 60 0.921 (0.520) 0.938 (0.578) 0.937 (0.560) 0.946 (1.382)
100 0.928 (0.389) 0.941 (0.409) 0.939 (0.407) 0.944 (0.874)
200 0.934 (0.271) 0.940 (0.279) 0.940 (0.279) 0.942 (0.407)

0.99 60 0.975 (0.715) 0.987 (1.068) 0.987 (0.806) 0.988 (2.440)
100 0.981 (0.522) 0.987 (0.561) 0.989 (0.566) 0.988 (1.652)
200 0.983 (0.359) 0.986 (0.369) 0.987 (0.376) 0.987 (0.733)
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TABLE 2 | Coverage probabilities of confidence intervals of d in ARFIMA (0,d,0).

Level T EL AEL MEL AEL* EL AEL MEL AEL*

0.90 d � 0.1 d � 0.2

20 0.796 0.875 0.840 0.899 0.803 0.882 0.845 0.910
30 0.815 0.874 0.850 0.905 0.819 0.874 0.851 0.908
50 0.838 0.874 0.862 0.898 0.830 0.863 0.852 0.897
100 0.848 0.866 0.859 0.889 0.848 0.871 0.863 0.891

d � 0.3 d � 0.4

20 0.800 0.885 0.843 0.908 0.786 0.870 0.830 0.899
30 0.813 0.865 0.843 0.905 0.824 0.873 0.852 0.912
50 0.827 0.862 0.848 0.895 0.818 0.856 0.841 0.893
100 0.848 0.866 0.859 0.891 0.838 0.857 0.853 0.889

0.95 d � 0.1 d � 0.2

20 0.868 0.953 0.951 0.948 0.865 0.953 0.949 0.947
30 0.889 0.935 0.923 0.950 0.882 0.932 0.922 0.949
50 0.899 0.929 0.920 0.944 0.899 0.929 0.921 0.944
100 0.909 0.922 0.921 0.935 0.908 0.922 0.921 0.933

d � 0.3 d � 0.4

20 0.860 0.954 0.949 0.947 0.862 0.955 0.949 0.945
30 0.880 0.930 0.922 0.948 0.880 0.931 0.919 0.949
50 0.898 0.926 0.919 0.944 0.896 0.928 0.917 0.945
100 0.907 0.920 0.918 0.937 0.907 0.921 0.918 0.939

0.99 d � 0.1 d � 0.2

20 0.932 1 0.954 0.978 0.930 1 0.954 0.976
30 0.956 0.991 0.975 0.984 0.958 0.993 0.977 0.988
50 0.968 0.986 0.983 0.990 0.969 0.986 0.984 0.989
100 0.974 0.981 0.982 0.985 0.971 0.981 0.981 0.983

d � 0.3 d � 0.4

20 0.931 1 0.956 0.976 0.925 1 0.954 0.980
30 0.955 0.991 0.972 0.986 0.955 0.990 0.973 0.987
50 0.972 0.984 0.983 0.989 0.965 0.984 0.981 0.987
100 0.972 0.980 0.980 0.983 0.972 0.979 0.979 0.984

TABLE 3 | Coverage probabilities of 95% confidence intervals of ϕ in AR (1).

T EL AEL MEL AEL* EL AEL MEL AEL*

ϕ � 0.2 ϕ � 0.5

20 0.876 0.953 0.913 0.950 0.874 0.926 0.906 0.936
30 0.900 0.943 0.927 0.956 0.876 0.928 0.910 0.934
50 0.913 0.936 0.932 0.946 0.903 0.929 0.921 0.936
100 0.927 0.939 0.937 0.943 0.910 0.925 0.920 0.930
200 0.941 0.947 0.948 0.948 0.920 0.928 0.929 0.934

ϕ � 0.7 ϕ � 0.9

20 0.841 0.938 0.881 0.933 0.788 0.889 0.838 0.900
30 0.862 0.919 0.890 0.937 0.815 0.874 0.845 0.883
50 0.865 0.904 0.888 0.922 0.813 0.857 0.838 0.897
100 0.893 0.911 0.905 0.921 0.809 0.835 0.829 0.913
200 0.908 0.916 0.918 0.922 0.828 0.840 0.840 0.889
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If the origin contains in the convex set Ωβ, by a simple
Lagrange multiplier calculation, pi � 1/(1 + λτβψi) and the
Lagrange multiplier λβ is the solution to ∑N

i�1ψi/(1 + λτψi) � 0.
Therefore, the level of the 1 − α confidence region is
constructed as

β: R β( )≤ χ2m,1−α{ },
where χ2m,1−α is the 1 − α quantile of chi-square distribution with
the degreem of freedom. Such EL-based confidence regions often
suffer from the problem of under-coverage.

To overcome such drawback, we propose a new AEL
following the Liu & Chen’s method. By adding two pseudo
observations, the AEL not only guarantees the likelihood ratio
to be always well defined but also obviously improves the
coverage probability of the confidence region in stationary
time series. Set the two pseudo observations ψN+1 � −a1 �ψ and
ψN+2 � a2 �ψ, where a1, a2 are positive and �ψ � (∑N

i�1ψi)/N.
Then, for each given β, the new AEL ratio statistic is
defined as

RA β( ) � −2sup ∑N+2

i�1
ln N + 2( )pi, pi > 0, ∑N+2

i�1
pi � 1, ∑N+2

i�1
piψi � 0

⎧⎨⎩ ⎫⎬⎭.

By the Lagrange method, we have

RA β( ) � 2 ∑N+2

i�1
ln 1 + λ*β( )τψi( ), (1)

where the Lagrange multiplier λ*β satisfies the equation

∑N+2

i�1

ψi

1 + λτψi

� 0. (2)

[22] proved such AEL ratio statistic RA (β0) approximated
to chi-square distribution with order O (n−2) for the
independent sample when β0 is the true value. Here, we
assert that such result is preserved for the stationary time
series model as the following theorem:

Theorem 2.1. Assume the characteristic function of ψ satisfies
Cram�er’s condition,

lim sup‖t‖→∞|E exp itTψ){ }|< 1.
Also E‖ψ‖18 <∞ and var(ψ) are positive definites. If β0 is the true
value, then

Pr RA β0( )≤ x( ) � Pr χ2m ≤ x( ) + Op n−2( ). (3)

Consequently, the 1 − α confidence region for β based on AEL
is constructed as

β: RA β( )≤ χ2m,1−α{ },
whose coverage error is O (n−2).

Remark 1. The proof of Theorem 2.1 is similar to that of
Theorem 1 in [22], hence is omitted. The two positive
adjustment factors a1 and a2 are also obtained following
the way of [22]. That is, a1 and a2 originate from the
Bartlett correction factor. It is the intrinsic relationship
between the new AEL and the Bartlett-corrected EL that
makes the precision of approximation to enhance
obviously. In practice, a1 and a2 are replaced by their
moment estimators, which do not affect the order of chi-
square approximation. For more details, refer to [22].

2.3 MEL of β
When the dimension of the parameter vectorm ≥ 3, it is difficult to
compute the Bartlett correction factor. To avoid the computation
and to resolve the under-coverage problem, we derive the MEL
method in this subsection. By greatly increasing the sample size,
MEL is constructed on the pseudo sample set
~Ωβ � (ψi + ψj)/2; 1≤ i≤ j≤N{ }. For simplicity, we denote ~Ωβ �
g1, . . . , gK{ } with gkd(ψi + ψj)/2 and K � N(N + 1)/2.
Then, the MEL ratio for given β is defined as

RM β( ) � −2sup ∑K
k�1

log Kpk( ): pk ≥ 0, ∑K
k�1

pk � 1, ∑K
k�1

pkgk � 0
⎧⎨⎩ ⎫⎬⎭.

By a simple Lagrange calculation, we have

RM β( ) � 2∑K
k�1

ln 1 + λ**β( )τgk( )/ N + 1( ), (4)

TABLE 4 | Coverage probabilities of 95% confidence regions of (ϕ1, ϕ2) in AR (2).

(ϕ1, ϕ2) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.3.0.2) 0.743 0.816 0.810 0.871 0.830 0.869 0.887 0.933
(0.1.0.7) 0.649 0.753 0.725 0.856 0.724 0.782 0.785 0.906
(0.7.0.2) 0.639 0.723 0.718 0.840 0.759 0.799 0.819 0.918
(0.4.0.5) 0.629 0.714 0.702 0.849 0.711 0.760 0.779 0.900

T � 50 T � 100

(0.3.0.2) 0.860 0.882 0.900 0.948 0.879 0.892 0.903 0.928
(0.1.0.7) 0.770 0.803 0.819 0.929 0.787 0.807 0.817 0.936
(0.7.0.2) 0.802 0.829 0.851 0.920 0.825 0.839 0.846 0.933
(0.4.0.5) 0.785 0.819 0.830 0.910 0.799 0.817 0.830 0.925
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and the Lagrange multiplier λ**β is the solution to

∑K
k�1

gk

1 + λτgk
� 0. (5)

Theorem 2.2. Under the assumptions of A1–A4 [4], if β0 is
the true value, RM(β0) → χ2m in distribution as n → ∞.

Consequently, the MEL-based confidence region for β of level
1 − α is

β: RM β( )≤ χ2m 1 − α( ){ }.
In the next section, we will verify the accurate coverage

probability of the confidence region under the finite sample by
simulation study for different versions of EL.

TABLE 5 | Coverage probabilities of 95% confidence regions of (θ, ϕ) in ARMA (1.1).

(θ, ϕ) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.1.0.2) 0.761 0.825 0.825 0.914 0.844 0.879 0.894 0.957
(0.1.0.7) 0.736 0.803 0.798 0.890 0.802 0.840 0.856 0.941
(0.6.0.2) 0.732 0.802 0.792 0.878 0.808 0.851 0.867 0.947
(0.5.0.7) 0.708 0.789 0.779 0.882 0.728 0.823 0.840 0.938

T � 50 T � 100

(0.1.0.2) 0.876 0.900 0.918 0.951 0.904 0.914 0.927 0.942
(0.1.0.7) 0.847 0.872 0.890 0.945 0.880 0.896 0.903 0.929
(0.6.0.2) 0.852 0.878 0.898 0.955 0.887 0.895 0.907 0.933
(0.5.0.7) 0.834 0.859 0.873 0.951 0.866 0.881 0.892 0.934

TABLE 6 | Coverage probabilities of 95% confidence regions of (d, θ) in ARFIMA (0,d,1).

(d, θ) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.1.0.3) 0.653 0.727 0.707 0.865 0.801 0.838 0.856 0.930
(0.2.0.7) 0.718 0.797 0.785 0.857 0.793 0.843 0.853 0.925
(0.3.0.4) 0.624 0.703 0.681 0.874 0.733 0.789 0.792 0.919
(0.4.0.7) 0.724 0.799 0.787 0.866 0.795 0.844 0.858 0.922
(0.4.0.1) 0.738 0.799 0.796 0.884 0.817 0.856 0.876 0.941

T � 50 T � 100

(0.1.0.3) 0.837 0.862 0.880 0.954 0.868 0.875 0.886 0.946
(0.2.0.7) 0.832 0.858 0.875 0.948 0.875 0.886 0.897 0.942
(0.3.0.4) 0.818 0.844 0.860 0.953 0.846 0.859 0.871 0.954
(0.4.0.7) 0.846 0.862 0.879 0.949 0.874 0.885 0.895 0.941
(0.4.0.1) 0.853 0.876 0.893 0.953 0.874 0.887 0.898 0.938

TABLE 7 | Coverage probabilities of 95% confidence regions of (ϕ, d) in ARFIMA (1,d,0).

(ϕ, d) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.3.0.1) 0.667 0.739 0.726 0.875 0.793 0.833 0.851 0.928
(0.7.0.2) 0.696 0.780 0.767 0.879 0.770 0.821 0.832 0.933
(0.4.0.3) 0.616 0.700 0.679 0.882 0.720 0.769 0.774 0.917
(0.6.0.4) 0.692 0.791 0.771 0.896 0.748 0.808 0.822 0.925
(0.1.0.4) 0.740 0.807 0.806 0.889 0.799 0.841 0.857 0.942

T � 50 T � 100

(0.3.0.1) 0.842 0.867 0.887 0.953 0.858 0.872 0.882 0.941
(0.7.0.2) 0.825 0.850 0.866 0.931 0.856 0.872 0.885 0.941
(0.4.0.3) 0.818 0.846 0.862 0.949 0.839 0.854 0.864 0.944
(0.6.0.4) 0.796 0.825 0.845 0.930 0.843 0.856 0.868 0.942
(0.1.0.4) 0.857 0.882 0.899 0.955 0.866 0.881 0.891 0.940
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3 SIMULATION

To investigate the finite-sample performance of our
proposed AEL*(the notation of our proposed AEL in the

following statements) and MEL, we carry out extensive
Monte Carlo simulation studies of the ARMA (p,q) and
ARFIMA (p,d,q) models in this section. To emphasize
that our proposed adjustment level is better than the

FIGURE 1 | 95% confidence regions with a sample size 1,000. (A)Confidence regions of (d,Φ)=(0.3,0.5) in ARFIMA(1,d,0); (B)Confidence regions of (d,θ)=(0.4,0.1)
in ARFIMA(0,d,1).

FIGURE 2 | 95% confidence regions with a sample size 200. (A) Confidence regions of (θ1,θ2)=(0.5,0.2) in MA(2); (B) Confidence regions of (Φ1,Φ2)=(0.2,0.6)
in AR(2).

FIGURE 3 | (A) Trajectory of the annual U.S. unemployment rate from 1948 to 2019; (B) plot of 95% confidence regions for parameters (ϕ1, ϕ2) based on EL, AEL,
AEL*, and MEL methods; the corresponding AEL* point estimate is denoted as △.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8016926

Zhang et al. Confidence Regions for Stationary Models

60

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


conventional adjustment level a �max{ log(N)/2, 1} of AEL
of [15] and [16], we also studied the unadjusted EL and
their AEL. Furthermore, we studied the confidence region
graphically.

3.1. Simulation Setup
We consider several ARMA (p,q) and ARFIMA (p,d,q) processes
with different sample sizes and Gaussian noise with zero mean. In
each case, 5,000 replications are generated to compute the coverage
probability. Nominal levels are set to be 1 − α � 0.90, 0.95, 0.99,
respectively. It is notable that although the series length is T, the
sample size we use is only N � [(T − 1)/2]. In the simulations, we
use the consistent estimators â1 and â2 to replace the adjustment
factors a1 and a2, respectively. The computations â1 and â2 are
completely similar to those of Section 3.3 in [22]. When the
dimension of the parameter m � 1, we only add one pseudo
observation with the adjustment level â � â1 − â2. Specifically,

a1 � 1
2m

∑
r

αrrrr

2 αrr( )2 −
αrrr( )2

3 αrr( )3{ } + 1
2m

∑
r<s

αrrss

αrrαss −
αrss( )2

αrr αss( )2{ }
a2 � 1

2m
∑
r<s

αrss( )2
αrr αss( )2 +

1
m

∑
r<s<t

αrst( )2
αrrαssαtt

,

where αrs/t � E (YrYs . . . , Yt), Yt is the tth component of Y, Y �
Pτψ0, ψ0 � ψ(I(ω), β0), and P is the orthogonal matrix such that
Var(ψ(I(ω), β0) � Pdiag{ξ1, . . . , ξm}Pτ . {ξi, i = 1, . . . , m} are
eigenvalues ofVar(ψ(I(ω), β0).Note α̂rs/t � n−1∑i(Yr

i Y
s
i . . . ,Y

t
i ).

Then, the consistent estimators â1 and â2 are obtained by
replacing the components of a1, a2 with their corresponding
consistent estimators, which are given in the following table:

3.2 Simulation Results
Tables 1–7 report the coverage probabilities of confidence regions
based on four versions of EL. First, we find that our proposed AEL*
performs better than other ELs in terms of the coverage probability
for all cases and that the coverage probability of our proposed AEL*
is the closest to the normal level. Second, when the sample size is very
small, the coverage probability based on MEL is smaller than that
based onAELwith the adjustment level a�max (log(N)/2, 1). But,
when the sample size is moderate, the coverage probability is
comparable to that based on AEL method, which is because
the improvement only relies on the increasing sample size in
essence. So, MEL enhances the coverage probability at some
expense of computational efficiency. Third, the coverage

FIGURE 4 | (A) Trajectory of VIX series from April 25, 2019 to November 21, 2019; (B) plot of 95% confidence regions for parameters (ϕ, d) in ARFIMA (1,d, 0)
based on EL, AEL, AEL*, and MEL methods; corresponding maximum likelihood and EL point estimates are denoted as ◦ and △, respectively.

FIGURE 5 | Trajectory of the daily log-return rate of Shanghai Securities
Composite Index.

TABLE 8 | Point estimates and the length of 95% confidence interval of the
Shanghai Securities Composite Index by fitting it as an ARFIMA (0,d,0) model.

d̂ d̂E EL AEL MEL AEL*

0.0646 0.0306 5.3457 5.3822 6.0126 5.1740

Parameter Estimator

αrr nα̂rr /(n − 1)
αrst nα̂rst/(n − 3)
αrrss (nα̂rrss − 2~αrr ~αss − 4I(r � s)~αrr ~αrr)/(n − 4)
αrrαss ~αrr ~αss − ~αrrss/n
αrstαrst ~αrst ~αrst − (α̂rrsstt − ~αrst ~αrst)/n
αrrαssαtt ~αrr ~αss ~αtt
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probabilities based on AEL and AEL* are not always enhanced
with the increasing sample size. Fourth, from Table 1, when
the coverage probability increases, the corresponding average
length of the confidence interval is getting large. Fifth, Table 3
indicates that the coverage probabilities become small when
the parameter approximates the critical value tending to non-
stationarity. The confidence regions in Figures 1, 2 are
respectively depicted as the case with the series length
1,000 and 200. When the sample size is large, there is little
difference in four kinds of the confidence region in Figure 1.
In Figure 2, obviously, when the sample size is small, our
proposed AEL*-based confidence region is the smallest among the
four counterparts, and the MEL-based confidence contour
contains others. It indicates that our proposed AEL* has not
only high-coverage probabilities but also small confidence
regions, and MEL has high-coverage probabilities and relative
large confidence regions. The shape of the confidence region
matches with the data-driven property of the EL method. That
is, the shapes of confidence regions are completely determined by
the data.

4 REAL EXAMPLES

In this section, we illustrate and compare the validity of our
proposed EL methods described in previous sections by analyzing
some real examples.

4.1 Annual U.S. Unemployment Rate
First, we take annual U.S. unemployment rate series as an example to
investigate the confidence region of our proposed EL methods. The
data are collected from 1948 to 2019 and available from https://
forecast-chart.com/forecast-unemployment-rate.html. The trajectory
of these data is displayed in Figure 3A. We consider it as a
realization of a stationary process. By the sample autocovariance
function (ACF) and partial autocovariance function (PACF)
analysis, we fit the unemployment rate by an AR (2) model. The
95% confidence regions based on our proposed AEL* and MEL are
displayed in Figure 3B. The shapes coincide with EL’s data-driven
property, and the size indicates our proposedmethods aremuch better
than the previous EL and AEL methods.

4.2 S&P 500 VIX
S&P 500 VIX is a forward-looking index. If it is extended to the
price observations of the broader market level index, the investor

will get a peek into volatility of the larger market. So, it is
meaningful to fit a proper model. Here, we collect the data
from April 25, 2019 to November 21, 2019. The trajectory is
displayed in Figure 4A. We fit the data by an ARFIMA (1,d, 0)
model with maximum likelihood point estimates
(ϕ̂, d̂) � (0.170, 0.356). Then, the confidence regions are
exhibited in Figure 4B. Compared with the original EL and
the previous AEL, our proposed AEL*-based confidence region is
still the best, and the MEL-based confidence contour also
contains the others.

4.3 Shanghai Securities Composite Index
Finally, we analyze the daily log-return rate of Shanghai Securities
Composite Index. The data range from June 4, 2020 to March 26,
2021. Figure 5A displays the realization of the index. We fit it as
an ARFIMA (0,d, 0) model. The maximum likelihood and the EL
estimate are d̂ and d̂E, respectively, and the lengths of four kinds
of the EL confidence interval are displayed in Table 8. We find
that the confidence interval based on MEL is still the largest, and
the one based on our proposed AEL* is still the smallest.

5 CONCLUSION

In this article, we introduce two new versions of EL to construct
confidence regions for parameters in stationary short- and long-
memory time series. Our proposed AEL* and MEL do enhance the
approximation precision of chi-square limiting distribution, which
determines the good performance of corresponding confidence
regions. Simulations show that our proposed AEL* has the better
coverage probability than that of the previous AEL and MEL.
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APPENDIX

Proof of Theorem 2.2. For simplicity, denote gkdgk (I (ωk), β),
λdλ**β , and ρdρβ. Following [3], ‖λ‖ � Op(N

−1/2) and
1
N∑N

i�1ψi � Op(N−1/2). Hence,

1
K
∑K
k�1

gk � 1
K

∑
1≤i≤j≤N

ψi + ψj

2
⎛⎝ ⎞⎠ � 1

2K
∑N
i�1

∑N
j�1

ψi + ψj

2
+∑N

i�1
ψi

⎛⎝ ⎞⎠
� 1
N

∑N
i�1

ψi � Op N−1/2( );
1
K
∑K
k�1

gkg
τ
k �

1
K

∑
1≤i≤j≤N

ψi + ψj

2
( ) ψi + ψj

2
( )τ

� 1
2K

∑N
i�1

∑N
j�1

ψi + ψj

2
( ) ψi + ψj

2
( )τ

+∑N
i�1

ψiψ
τ
i

⎛⎝ ⎞⎠
� N + 2

4K
∑N
i�1

ψiψ
τ
i +

1
4K

∑N
i�1

ψi∑N
j�1

ψτ
j

→ 1
2N

∑N
i�1

ψiψ
τ
i + op 1( ).

The Taylor expansion of equation (5) is

0 � 1
K
∑K
k�1

gk

1 + λτgk
� 1
K
∑K
k�1

gk − 1
K
∑K
k�1

gkg
τ
kλ + op 1( ),

then λ � (1
K∑K

k�1gkgτ
k)−1(1

K∑K
k�1gk) + op(1). Substituting λ into

RM(β0), we have

RM β0( ) � 2 ∑K
k�1

ln 1 + λτgk( )/ N + 1( )

� 2 ∑K
k�1

λτgk − λτgk( )2/2( )/ N + 1( ) + op 1( )
;

� N

2
1
K
∑K
k�1

gk
⎛⎝ ⎞⎠τ

1
K
∑K
k�1

gkg
τ
k

⎛⎝ ⎞⎠−1
1
K
∑K
k�1

gk
⎛⎝ ⎞⎠ + op 1( )

� N
1
N

∑N
i�1

ψi
⎛⎝ ⎞⎠τ

1
N

∑N
i�1

ψiψ
τ
i

⎛⎝ ⎞⎠−1
1
N

∑N
i�1

ψi
⎛⎝ ⎞⎠ + op 1( ).

.

Combining Equations (4.4) and (4.5) of Monti (1997) with the
proof of Theorem 1 of Yau (2012), we have RM(β0)→d χ2m as n→
∞, where→d means convergence in distribution.
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Large Time Behavior on the Linear
Self-Interacting Diffusion Driven by
Sub-Fractional Brownian Motion With
Hurst Index Large Than 0.5 I:
Self-Repelling Case
Han Gao1*, Rui Guo2, Yang Jin3 and Litan Yan3

1College of Fashion and Art Design, Donghua University, Shanghai, China, 2College of Information Science and Technology,
Donghua University, Shanghai, China, 3Department of Statistics, College of Science, Donghua University, Shanghai, China

Let SH be a sub-fractional Brownian motion with index 1
2<H< 1. In this paper, we consider

the linear self-interacting diffusion driven by SH, which is the solution to the equation

dXH
t � dSH

t − θ(∫t

0
(XH

t − XH
s )ds)dt + ]dt, XH

0 � 0,

where θ < 0 and ] ∈ R are two parameters. Such process XH is called self-repelling and it is
an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303
(1995), 87–93]. Our main aim is to study the large time behaviors. We show the solution XH

diverges to infinity, as t tends to infinity, and obtain the speed at which the process XH

diverges to infinity as t tends to infinity.

Keywords: the self-repelling diffusion, asymptotic distribution, convergence, sub-fractional Brownian motion,
stochastic integral

1 INTRODUCTION

In 1995, Cranston and Le Jan [1] introduced a linear self-attracting diffusion

Xt � Bt − θ∫t

0
∫s

0
Xs −Xu( )duds + ]t, t≥ 0 (1.1)

with θ > 0 and X0 � 0, where B is a 1-dimensional standard Brownian motion. They showed that the
process Xt converges in L2 and almost surely, as t tends infinity. This is a special case of path
dependent stochastic differential equations. Such path dependent stochastic differential equation was
first developed by Durrett and Rogers [2] introduced in 1992 as a model for the shape of a growing
polymer (Brownian polymer) as follows

Xt � X0 + Bt + ∫t

0
∫s

0
f Xs −Xu( )duds, (1.2)

where B is a d-dimensional standard Brownian motion and f is Lipschitz continuous. Xt corresponds
to the location of the end of the polymer at time t. Under some conditions, they established
asymptotic behavior of the solution of stochastic differential equation and gave some conjectures and
questions. The model is a continuous analogue of the notion of edge (resp. vertex) self-interacting
random walk. If f(x) � g(x)x/‖x‖ and g(x) ≥ 0, Xt is a continuous analogue of a process introduced by
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Diaconis and studied by Pemantle [3]. Let L X(t, x) be the local
time of the solution process X. Then, we have

Xt � X0 + Bt + ∫t

0
ds∫

R

f −x( )L X s,Xs + x( )dx

for all t ≥ 0. This formulation makes it clear how the process X
interacts with its own occupation density. We may call this
solution a Brownian motion interacting with its own passed
trajectory, i.e., a self-interacting motion. In general, the Eq. 1.2
defines a self-interacting diffusion without any assumption on
f. If

x · f x( )≥ 0 x · f x( )≤ 0( )
for all x ∈ Rd, we call it self-repelling (resp. self-attracting). In
2002, Benaïm et al [4] also introduced a self-interacting diffusion
with dependence on the (convolved) empirical measure. A great
difference between these diffusions and Brownian polymers is
that the drift term is divided by t. It is noteworthy that the
interaction potential is attractive enough to compare the diffusion
(a bit modified) to an Ornstein-Uhlenbeck process, in many case
of f, which points out an access to its asymptotic behavior. More
works can be found in Benaïm et al. [5], Cranston andMountford
[6], Gauthier [7], Herrmann and Roynette [8], Herrmann and
Scheutzow [9], Mountford and Tarr [10], Shen et al [11], Sun and
Yan [12] and the references therein.

On the other hand, starting from the application of fractional
Brownian motion in polymer modeling, Yan et al [13] considered
an analogue of the linear self-interacting diffusion:

XH
t � BH

t − θ∫t

0
∫s

0
XH

s −XH
u( )duds + ]t, t≥ 0 (1.3)

with θ ≠ 0 andXH
0 � 0, where BH is a fractional Brownian motion

(fBm, in short) with Hurst parameter 1
2≤H< 1. The solution of

(1.3) is a Gaussian process. When θ > 0, Yan et al [13] showed
that the solution XH of (1.3) converges in L2 and almost surely, to
the random variable

XH
∞ � ∫∞

0
hθ s( )dBH

s + ]∫∞

0
hθ s( )ds

where the function is defined ar follows

hθ s( ) � 1 − θse
1
2 θs

2 ∫∞

s
e−

1
2 θu

2
du, s≥ 0

with θ > 0. Recently, Sun and Yan [14] considered the related
parameter estimations with θ > 0 and 1

2≤H< 1, and Gan and Yan
[15] considered the parameter estimations with θ < 0 and
1
2≤H< 1.

Motivated by these results, as a natural extension one can
consider the following stochastic differential equation:

Xt � Gt − θ∫t

0
∫s

0
Xs −Xu( )duds + ]t, t≥ 0 (1.4)

with θ > 0 and X0 � 0, where G � {Gt, t ≥ 0} is a Gaussian process
with some suitable conditions which includes fractional
Brownian motion and some related processes. However, for a
(general) abstract Gaussian process it is difficult to find some

interesting fine estimates associated with the calculations. So, in
this paper we consider the linear self-attracting diffusion driven
by a sub-fractional Brownian motion (sub-fBm, in short).
We choose this kind of Gaussian process because it is only
the generalization of Brownian motion rather than the
generalization of fractional Brownian motion. It only has
some similar properties of fractional Brownian motion, such
as long memory and self similarity, but it has no stationary
increment. The so-called sub-fBm with index H ∈ (0, 1) is a
mean zero Gaussian process SH � {SHt , t≥ 0}with SH0 � 0 and the
covariance

RH t, s( ) ≡ E SHt S
H
s[ ] � s2H + t2H − 1

2
s + t( )2H + |t − s|2H[ ]

(1.5)

for all s, t ≥ 0. For H � 1/2, SH coincides with the standard
Brownian motion B. SH is neither a semimartingale nor a Markov
process unless H � 1/2, so many of the powerful techniques from
stochastic analysis are not available when dealing with SH. As a
Gaussian process, it is possible to construct a stochastic calculus
of variations with respect to SH (see, for example, Alós et al [16]).
The sub-fBm has properties analogous to those of fBm and
satisfies the following estimates:

2 − 22H−1( ) ∧ 1[ ] t − s( )2H ≤E SHt − SHs( )2[ ]
≤ 2 − 22H−1( ) ∨ 1[ ] t − s( )2H. (1.6)

More works for sub-fBm and related processes can be found in
Bojdecki et al. [17–20], Li [21–24], Shen and Yan [25, 26], Sun
and Yan [27], Tudor [28–31], Ciprian A. Tudor [32] Yan et al
[33–35] and the references therein.

In this present paper, we consider the linear self-interacting
diffusion

XH
t � SHt − θ∫t

0
∫s

0
XH

s −XH
u( )duds + ]t, t≥ 0 (1.7)

with θ < 0 and XH
0 � 0, where SH is a sub-fBm with Hurst

parameter 1
2≤H< 1. Our main aim is to show that the solution of

(1.7) diverges to infinity and obtain the speed diverging to
infinity, as t tends to infinity. The object of this paper is to
expound and prove the following statements:

(I) For θ < 0 and 1
2<H< 1, the random variable

ξH∞ � ∫∞

0
se

1
2 θs

2
dSHs

exists as an element in L2.

(II) For θ < 0 and 1
2<H< 1, as t → ∞, we have

JH0 t; θ, ]( )dte
1
2 θt

2
XH

t → ξH∞ − ]
θ

in L2 and almost surely.

(III) For θ < 0 and 1
2<H< 1, define the

processes JH(n, θ, ]) � {JHt (n, θ, ]), t≥ 0}, n≥ 1 by
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JHn t; θ, ]( )dθt2 JHn−1 t; θ, ]( ) − 2n − 3( )‼ ξH∞ − ]
θ

( )( ),
n � 1, 2, . . . ,

for all t ≥ 0, where (−1)!! � 1. We then have

JHn t; θ, ]( ) → 2n − 1( )‼ ξH∞ − ]
θ

( )
holds in L2 and almost surely for every n ≥ 1, as t → ∞.

This paper is organized as follows. In Section 2 we present
some preliminaries for sub-fBm and Malliavin calculus. In
Section 3, we obtain some lemmas. In Section 4, we prove the
main result. In Section 5 we give some numerical results.

2 PRELIMINARIES

In this section, we briefly recall the definition and properties of
stochastic integral with respect to sub-fBm. We refer to Alós et al
[16], Nualart [36], and Tudor [31] for a complete description of
stochastic calculus with respect to Gaussian processes.
Throughout this paper we assume that SH � SHt , t≥ 0{ }
denotes a sub-fBm defined on the probability space (Ω,F , P)
with indexH. As we pointed out before, the sub-fBm SH is a rather
special class of self-similar Gaussian processes such that SH0 � 0,
E[SHt ] � 0 and

RH t, s( )dE SHt S
H
s[ ] � s2H + t2H − 1

2
s + t( )2H + |t − s|2H[ ]

(2.1)

for all s, t ≥ 0. For H � 1/2, SH coincides with the standard
Brownian motion B. SH is neither a semimartingale nor a Markov
process unless H � 1/2, so many of the powerful techniques from
stochastic analysis are not available when dealing with SH. As a
Gaussian process, it is possible to construct a stochastic calculus
of variations with respect to SH. The sub-fBm appeared in
Bojdecki et al [17] in a limit of occupation time fluctuations
of a system of independent particles moving in Rd according a
symmetric α-stable Lévy process, and it also appears in Bojdecki
et al [18] in a high-density limit of occupation time fluctuations of
the above mentioned particle system, where the initial Poisson
configuration has finite intensity measure.

The estimate (1.6) and normality imply that the sub-fBm
t1SHt admits almost surely a bounded 1

H−ϑ-variation on any
finite interval for any sufficiently small ϑ ∈ (0, H). That is, the
paths of t1SHt admits a bounded pH-variation on any finite
interval with pH > 1

H. As an immediate result, one can define the
Young integral of a process u � {ut, t ≥ 0} with respect to sub-
fBm Ba,b

∫t

0
usdS

H
s

as the limit in probability of a Riemann sum. Clearly, the integral
is well-defined and

utS
H
t � ∫t

0
usdS

H
s + ∫t

0
SHs dus

for all t ≥ 0, provided u is of bounded qH-variation on any finite
interval with qH > 1 and 1

pH
+ 1

qH
> 1 (see, for examples, Bertoin

[37] and FöIllmer [38]).
Let H be the completion of the linear space E generated by

the indicator functions 1[0,t], t ∈ [0, T] with respect to the inner
product

〈1 0,s[ ], 1 0,t[ ]〉H � RH t, s( )
for s, t ∈ [0, T]. When 1

2<H< 1, we can show that

‖φ‖2H � ∫T

0
∫T

0
φ t( )φ s( ) z2

ztzs
RH t, s( )dsdt

� ∫T

0
∫T

0
φ t( )φ s( )ψH t, s( )dsdt, ∀φ ∈ H,

where

ψH t, s( ) � z2

ztzs
Ra,b t, s( ) � H 2H − 1( ) |t − s|2H−2 − |t + s|2H−2( )

for s, t ∈ [0, T]. Define the linear mapping E ∋ φ1SH(φ) by

1 0,t[ ]1SH 1 0,t[ ]( ) � ∫T

0
1 0,t[ ] s( )dSHs ≡ SHt

for all t ∈ [0, T] and it can be continuously extended toH and we
call the mapping Φ is called the Wiener integral with respect to
SH, denoted by

SH φ( ) � ∫T

0
φ s( )dSHs

and

‖φ‖2H � E ∫T

0
φ s( )dSHs( )2

(2.2)

for any φ ∈ H.
For simplicity, in this paper we assume that 12<H< 1. Thus, if

for every T > 0, the integral

∫T

0
φ s( )dSHs

exists in L2 and

∫∞

0
∫∞

0
φ t( )φ s( )ψH t, s( )dsdt<∞,

we can define the integral

∫∞

0
φ s( )dSHs

and

E ∫∞

0
φ s( )dSHs( )2

� ∫∞

0
∫∞

0
φ t( )φ s( )ψH t, s( )dsdt.

Denote by S the set of smooth functionals of the form

F � f SH φ1( ), SH φ2( ), . . . , SH φn( )( ),
where f ∈ C∞

b (Rn) and φi ∈ H. The Malliavin derivative D of a
functional F as above is given by
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FIGURE 1 | A path of XH with θ � − 1 and H � 0.7.

FIGURE 2 | A path of XH with θ � − 10 and H � 0.7.

FIGURE 3 | A path of XH with θ � − 100 and H � 0.7.

FIGURE 4 | A path of XH with θ � − 1 and H � 0.5.

FIGURE 5 | A path of XH with θ � − 10 and H � 0.5.

FIGURE 6 | A path of XH with θ � − 100 and H � 0.5.
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DF � ∑n
j�1

zf

zxj
SH φ1( ), SH φ2( ), . . . , SH φn( )( )φj.

The derivative operator D is then a closable operator from
L2(Ω) into L2(Ω;H). We denote by D1,2 the closure of S with
respect to the norm

‖F‖1,2d
��������������
E|F|2 + E‖DF‖2H

√
.

The divergence integral δ is the adjoint of derivative operator
DH. That is, we say that a random variable u inL2(Ω;H) belongs to
the domain of the divergence operator δ, denoted by Dom(δS), if

E 〈DF, u〉H
∣∣∣∣ ∣∣∣∣≤ c‖F‖L2 Ω( )

for every F ∈ D1,2, where c is a constant depending only on u. In
this case δ(u) is defined by the duality relationship

E Fδ u( )[ ] � E〈DF, u〉H (2.3)

TABLE 1 | The data of XH
t with θ � − 1 and H � 0.7.

t XH
t T XH

t t XH
t

0.0000 0.0000 0.3438 −0.1077 0.6875 −0.0995
0.0156 −0.0167 0.3594 −0.1190 0.7031 −0.1091
0.0313 −0.0178 0.3750 −0.1153 0.7188 −0.1163
0.0469 −0.0320 0.3906 −0.1116 0.7344 −0.1165
0.0625 −0.0338 0.4063 −0.0965 0.7500 −0.1122
0.0781 −0.0420 0.4219 −0.0937 0.7656 −0.1205
0.0938 −0.0492 0.4375 −0.0971 0.7813 −0.1170
0.1094 −0.0496 0.4531 −0.0974 0.7969 −0.1192
0.1250 −0.0564 0.4688 −0.0997 0.8125 −0.1180
0.1406 −0.0590 0.4844 −0.0976 0.8281 −0.1316
0.1563 −0.0682 0.5000 −0.0956 0.8438 −0.1245
0.1719 −0.0692 0.5156 −0.0983 0.8594 −0.1202
0.1875 −0.0834 0.5313 −0.0959 0.8750 −0.1241
0.2031 −0.0886 0.5469 −0.0877 0.8906 −0.1212
0.2188 −0.0969 0.5625 −0.0919 0.9063 −0.1250
0.2344 −0.0983 0.5781 −0.0818 0.9219 −0.1219
0.2500 −0.0961 0.5938 −0.0757 0.9375 −0.1199
0.2656 −0.1022 0.6094 −0.0717 0.9531 −0.1191
0.2813 −0.1120 0.6250 −0.0834 0.9688 −0.1223
0.2969 −0.1182 0.6406 −0.0894 0.9844 −0.1089
0.3125 −0.1094 0.6563 −0.0923 1.0000 −0.1023
0.3281 −0.1042 0.6719 −0.0996 — —

TABLE 2 | The data of XH
t with θ � − 10 and H � 0.7.

t XH
t t XH

t t XH
t

0.0000 0.0000 0.3438 −0.1597 0.6875 −0.5552
0.0156 0.0087 0.3594 −0.1729 0.7031 −0.5943
0.0313 0.0113 0.3750 −0.1912 0.7188 −0.6439
0.0469 0.0040 0.3906 −0.2051 0.7344 −0.7019
0.0625 −0.0153 0.4063 −0.2130 0.7500 −0.7595
0.0781 −0.0239 0.4219 −0.2342 0.7656 −0.8345
0.0938 −0.0234 0.4375 −0.2494 0.7813 −0.9066
0.1094 −0.0279 0.4531 −0.2654 0.7969 −0.9868
0.1250 −0.0348 0.4688 −0.2820 0.8125 −1.0919
0.1406 −0.0372 0.4844 −0.2980 0.8281 −1.2177
0.1563 −0.0395 0.5000 −0.3156 0.8438 −1.3507
0.1719 −0.0530 0.5156 −0.3363 0.8594 −1.5050
0.1875 −0.0587 0.5313 −0.3543 0.8750 −1.6776
0.2031 −0.0648 0.5469 −0.3694 0.8906 −1.8811
0.2188 −0.0835 0.5625 −0.3865 0.9063 −2.1081
0.2344 −0.0942 0.5781 −0.4093 0.9219 −2.3699
0.2500 −0.1100 0.5938 −0.4204 0.9375 −2.6701
0.2656 −0.1213 0.6094 −0.4368 0.9531 −3.0170
0.2813 −0.1317 0.6250 −0.4620 0.9688 −3.4144
0.2969 −0.1365 0.6406 −0.4810 0.9844 −3.8989
0.3125 −0.1418 0.6563 −0.5086 1.0000 −4.4510
0.3281 −0.1541 0.6719 −0.5258 — —

TABLE 3 | The data of XH
t with θ � − 100 and H � 0.7.

t XH
t t XH

t t XH
t

0.0000 0.0000 0.3438 −1.0056 0.6875 −2.29E+07
0.0156 0.0132 0.3594 −1.6439 0.7031 −6.63E+07
0.0313 0.0093 0.3750 −2.7733 0.7188 −1.97E+08
0.0469 0.0070 0.3906 −4.8028 0.7344 −5.99E+08
0.0625 0.0103 0.4063 −8.5377 0.7500 −1.87E+09
0.0781 0.0116 0.4219 −15.5941 0.7656 −5.98E+09
0.0938 0.0092 0.4375 −29.2598 0.7813 −1.96E+10
0.1094 0.0066 0.4531 −56.3669 0.7969 −6.59E+10
0.1250 0.0081 0.4688 −111.4786 0.8125 −2.27E+11
0.1406 0.0049 0.4844 −226.2866 0.8281 −8.02E+11
0.1563 0.0094 0.5000 −471.3711 0.8438 −2.91E+12
0.1719 −0.0029 0.5156 −1.01E+03 0.8594 −1.08E+13
0.1875 −0.0114 0.5313 −2.21E+03 0.8750 −4.10E+13
0.2031 −0.0279 0.5469 −4.97E+03 0.8906 −1.60E+14
0.2188 −0.0484 0.5625 −1.15E+04 0.9063 −6.40E+14
0.2344 −0.0557 0.5781 −2.72E+04 0.9219 −2.62E+15
0.2500 −0.0837 0.5938 −6.59E+04 0.9375 −1.10E+16
0.2656 −0.1240 0.6094 −1.64E+05 0.9531 −4.75E+16
0.2813 −0.1834 0.6250 −4.19E+05 0.9688 −2.10E+17
0.2969 −0.2706 0.6406 −1.10E+06 0.9844 −9.48E+17
0.3125 −0.4085 0.6563 −2.95E+06 1.0000 −4.40E+18
0.3281 −0.6332 0.6719 −8.12E+06 — —

TABLE 4 | The data of XH
t with θ � − 1 and H � 0.5.

t XH
t t XH

t t XH
t

0.0000 0.0000 0.3438 0.2713 0.6875 0.6225
0.0156 0.0711 0.3594 0.3234 0.7031 0.7483
0.0313 0.0168 0.3750 0.2698 0.7188 0.9047
0.0469 −0.1326 0.3906 0.3765 0.7344 0.7963
0.0625 −0.1887 0.4063 0.4725 0.7500 0.8221
0.0781 −0.1911 0.4219 0.2156 0.7656 0.7416
0.0938 −0.0792 0.4375 0.1224 0.7813 0.6743
0.1094 −0.0320 0.4531 0.0691 0.7969 1.0655
0.1250 −0.1853 0.4688 0.0377 0.8125 1.0480
0.1406 −0.0827 0.4844 0.1668 0.8281 0.9146
0.1563 −0.0861 0.5000 0.3344 0.8438 0.9478
0.1719 0.0616 0.5156 0.2866 0.8594 1.0125
0.1875 0.1014 0.5313 0.1759 0.8750 1.0931
0.2031 0.1542 0.5469 0.0739 0.8906 1.2403
0.2188 0.2224 0.5625 0.2168 0.9063 0.9036
0.2344 0.2205 0.5781 0.3676 0.9219 0.8949
0.2500 0.3345 0.5938 0.3904 0.9375 0.8626
0.2656 0.3581 0.6094 0.3878 0.9531 0.9140
0.2813 0.2635 0.6250 0.3985 0.9688 1.0247
0.2969 0.4084 0.6406 0.4900 0.9844 1.1976
0.3125 0.2820 0.6563 0.4769 1.0000 1.0780
0.3281 0.4043 0.6719 0.6713 — —
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for any F ∈ D1,2. We have D1,2 ⊂ Dom(δ) and for any u ∈ D1,2

E δ u( )2[ ] � E‖u‖2H + E〈Du, Du( )p〉H⊗H

� E‖u‖2H + E∫
0,T[ ]4

DξurDηusϕH η, r( )ϕH ξ, s( )dsdrdξdη,

where (DSu)p is the adjoint ofDu in the Hilbert spaceH ⊗ H. We
will denote

δ u( ) � ∫T

0
usδS

H
s

for an adapted process u, and it is called Skorohod integral. Alós
et al [16], we can obtain the relationship between the Skorohod
and Young integral as follows

∫T

0
usdS

H
s � ∫T

0
usδS

H
s + ∫T

0
∫T

0
Dsutψ t, s( )dsdt,

provided u has a bounded q-variation with 1≤ q< 1
H and

u ∈ D1,2(H) such that

∫T

0
∫T

0
Dsutψ t, s( )dsdt<∞.

Theorem 2.1. (Alós et al [16]). Let 0 < H < 1 and let f ∈ C2(R)
such that

max |f x( )|, |f′ x( )|, |f″ x( )|{ }≤ κeβx2 , (2.4)

where κ and β are two positive constants with β< 1
4T

−2H. Then we
have

f SHt( ) � f 0( ) + ∫t

0
f′ SHs( )dSHs +H 2 − 22H−1( )

∫t

0
f″ SHs( )s2H−1ds

for all t ∈ [0, T].

3 SOME BASIC ESTIMATES

Throughout this paper we assume that θ < 0 and 1
2<H< 1. Recall

that the linear self-interacting diffusion with sub-fBm SH defined
by the stochastic differential equation

XH
t � SHt − θ∫t

0
∫s

0
XH

s −XH
u( )duds + ]t, t≥ 0 (3.1)

with θ < 0. Define the kernel (t, s)1hθ(t, s) as follows

hθ t, s( ) � 1 − θse
1
2 θs

2 ∫t

s
e−

1
2 θu

2
du, t≥ s,

0, t< s

⎧⎪⎪⎨⎪⎪⎩ (3.2)

for s, t ≥ 0. By the variation of constants method (see, Cranston
and Le Jan [1]) or Itô’s formula we may introduce the following
representation:

XH
t � ∫t

0
hθ t, s( )dSHs + ]∫t

0
hθ t, s( )ds (3.3)

for t ≥ 0.
The kernel function (t, s)1hθ(t, s) with θ < 0 admits the

following properties (these properties are proved partly in Sun
and Yan [12]):

• For all s ≥ 0, the limit

lim
t→∞

te
1
2 θt

2
hθ t, s( )( ) � se

1
2 θs

2
(3.4)

for all s ≥ 0.

TABLE 5 | The data of XH
t with θ � − 10 and H � 0.5.

t XH
t t XH

t t XH
t

0.0000 0.0000 0.3438 0.3643 0.6875 1.0084
0.0156 0.1112 0.3594 0.3489 0.7031 1.0312
0.0313 0.1668 0.3750 0.2532 0.7188 1.1722
0.0469 0.1353 0.3906 0.2453 0.7344 1.2474
0.0625 0.2259 0.4063 0.4297 0.7500 1.1783
0.0781 0.0764 0.4219 0.3837 0.7656 1.1997
0.0938 0.0025 0.4375 0.4639 0.7813 1.3114
0.1094 0.2166 0.4531 0.3663 0.7969 1.5335
0.1250 0.2593 0.4688 0.5287 0.8125 1.3820
0.1406 0.2412 0.4844 0.5164 0.8281 1.5679
0.1563 0.5773 0.5000 0.4502 0.8438 1.4858
0.1719 0.4322 0.5156 0.4488 0.8594 1.6145
0.1875 0.4384 0.5313 0.4538 0.8750 1.6282
0.2031 0.2872 0.5469 0.2729 0.8906 1.7043
0.2188 0.3078 0.5625 0.5069 0.9063 1.9432
0.2344 0.3761 0.5781 0.6164 0.9219 1.8384
0.2500 0.1896 0.5938 0.9359 0.9375 2.1171
0.2656 0.1558 0.6094 0.8222 0.9531 2.3878
0.2813 0.3807 0.6250 0.7422 0.9688 2.5204
0.2969 0.3637 0.6406 0.9326 0.9844 2.7823
0.3125 0.3641 0.6563 1.0095 1.0000 3.1237
0.3281 0.3580 0.6719 1.0371 — —

TABLE 6 | The data of XH
t with θ � − 100 and H � 0.5.

t XH
t t XH

t t XH
t

0.0000 0.0000 0.3438 2.1870 0.6875 5.26E+07
0.0156 −0.1749 0.3594 3.5867 0.7031 1.52E+08
0.0313 −0.3397 0.3750 6.3084 0.7188 4.52E+08
0.0469 −0.4106 0.3906 11.0159 0.7344 1.37E+09
0.0625 −0.3348 0.4063 19.5047 0.7500 4.29E+09
0.0781 −0.3567 0.4219 35.6469 0.7656 1.37E+10
0.0938 −0.3936 0.4375 66.9024 0.7813 4.50E+10
0.1094 −0.3411 0.4531 129.1499 0.7969 1.51E+11
0.1250 −0.2522 0.4688 255.5964 0.8125 5.21E+11
0.1406 −0.1583 0.4844 518.9528 0.8281 1.84E+12
0.1563 −0.1543 0.5000 1.08E+03 0.8438 6.66E+12
0.1719 0.0877 0.5156 2.31E+03 0.8594 2.47E+13
0.1875 −0.1242 0.5313 5.07E+03 0.8750 9.42E+13
0.2031 −0.0522 0.5469 1.14E+04 0.8906 3.67E+14
0.2188 0.1336 0.5625 2.63E+04 0.9063 1.47E+15
0.2344 0.0243 0.5781 6.23E+04 0.9219 6.02E+15
0.2500 0.1665 0.5938 1.51E+05 0.9375 2.53E+16
0.2656 0.2096 0.6094 3.77E+05 0.9531 1.09E+17
0.2813 0.4085 0.6250 9.62E+05 0.9688 4.81E+17
0.2969 0.5852 0.6406 2.52E+06 0.9844 2.18E+18
0.3125 0.8397 0.6563 6.76E+06 1.0000 1.01E+19
0.3281 1.3366 0.6719 1.86E+07 — —
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• For all t ≥ s ≥ 0, we have

1≤ hθ t, s( )≤ e−1
2 θ t2−s2( ).

• For all t ≥ s, r ≥ 0, we have

hθ t, 0( ) � hθ t, t( ) � 1, ∫t

s
hθ t, u( )du � e

1
2 θs

2 ∫t

s
e−

1
2 θu

2
du.

Lemma 3.1. Let θ < 0 and define function

Iθ t( ) � −θte12 θt2 ∫t

0
e−

1
2 θu

2
du − 1.

We then have lim
t→∞

t2Iθ(t) � −1
θ and

lim
t→∞

t2 1 + θte−
1
2 θt

2 ∫∞

t
e
1
2 θu

2
du( ) � −1

θ

Proof. This is simple calculus exercise.

Lemma 3.2. (Sun and Yan [12]). Let θ < 0 and define the functions
t1Iθ(t, n), n � 1, 2, . . . as follows

Iθ t, 1( ) � −θt2Iθ t( ), Iθ t, n + 1( ) � −θt2 Iθ t, n( ) − 2n − 1( )‼[ ].

Then we have

lim
t→∞

Iθ t, n( ) � 2n − 1( )‼. (3.5)

for every n ≥ 0, where (−1)! � 1.

Lemma 3.3. Let θ < 0. Then the integral

Δ H( ) � ∫∞

0
∫∞

0
xye

1
2 θ x2+y2( )ψH x, y( )dxdy (3.6)

converges and as t → ∞,

lim
t→∞

t2e−θt
2
E XH

t( )2 � Δ H( ).

Proof.An elementary may show that (3.6) converges for all θ < 0.
It follows from L’Hôspital’s rule that

lim
t→∞

t2eθt
2
E XH

t( )2 � lim
t→∞

t2eθt
2 ∫t

0
∫t

0
hθ t, x( )hθ t, y( )ψH x, y( )dxdy

� lim
t→∞

θ2

t−2e−θt
2 ∫t

0
dx∫t

0
xye

1
2 θ x2+y2( )ψH x, y( )dy∫t

x
du∫t

y
e−

1
2 θ u2+v2( )dv

� 2 lim
t→∞

θ2

t−2e−θt
2 ∫t

0
du∫u

0
dx∫u

0
dv∫v

0
dyxye

1
2 θ x2+y2−u2−v2( )ψH x, y( )

� lim
t→∞

−θ
t−1e−

1
2 θt

2 ∫t

0
dx∫t

0
e−

1
2 θv

2
dv∫v

0
xye

1
2 θ x2+y2( )ψH x, y( )dy

� lim
t→∞

−θ
t−1e−

1
2 θt

2 ∫t

0
e−

1
2 θv

2
dv∫t

0
dx∫v

0
xye

1
2 θ x2+y2( )ψH x, y( )dy

� lim
t→∞

−θ
t−1e−

1
2 θt

2 ∫t

0
e−

1
2 θv

2
dv∫v

0
dx∫v

0
xye

1
2 θ x2+y2( )ψH x, y( )dy

� ∫∞

0
dx∫∞

0
xye

1
2 θ x2+y2( )ψH x, y( )dy,

where we have used the following fact:

lim
t→∞

1

t−1e−
1
2 θt

2 ∫t

0
e−

1
2 θv

2
dv∫t

v
dx∫v

0
xye

1
2 θ x2+y2( )ψH x, y( )dy

� lim
t→∞

1

t−1e−
1
2 θt

2 ∫t

0
dx∫x

0
e−

1
2 θv

2
dv

∫v

0
xye

1
2 θ x2+y2( )ψH x, y( )dy � 0.

This completes the proof.

Lemma 3.4. Let θ < 0. Then, convergence

lim
t→∞

1
t2−2H

e−θt
2 ∫∞

t
∫∞

s
sre

1
2 θ s2+r2( )ψH s, r( )dsdr

� 1
4
−θ( )−2HΓ 2H + 1( ). (3.7)

holds.

Proof. It follows from L’Hôspital’s rule that

lim
t→∞

1

t2−2Heθt
2 ∫∞

t
ue

1
2 θu

2 ∫∞

u
ve

1
2 θv

2
ψH u, v( )dv( )du

� − 1
2θ

lim
t→∞

1

t2−2He
1
2 θt

2 ∫∞

t
ve

1
2 θv

2
ψH t, v( )dv

� − lim
t→∞

H 2H − 1( )
2θt2−2H

∫∞

t
ve

1
2 θ v2−t2( ) v − t( )2H−2 − v + t( )2H−2( )dv

for all θ < 0 and 1
2<H< 1. By making the change of variable

1
2 θ(v2 − t2) � x, we see that

lim
t→∞

1

2θt2−2H
∫∞

t
ve

1
2 θ v2−t2( ) v − t( )2H−2 − v + t( )2H−2( )dv

� lim
t→∞

1

2θ2t2−2H
∫∞

0
e−x{ ������

t2 + 2x
−θ

√
− t( )2H−2

− �����
t2 + x

√ + t( )2H−2}dx
� lim

t→∞

1

2θ2t2−2H
∫∞

0
e−x

2x
−θ( )2H−2 ������

t2 + 2x
−θ

√
+ t( )2−2H

dx

− lim
t→∞

1

2θ2t2−2H
∫∞

0
e−x

�����
t2 + x

√ + t( )2H−2
dx

� 1
2
−θ( )−2H−1Γ 2H − 1( )

for all θ < 0 and 1
2<H< 1. This completes the proof.

Lemma 3.5. Let θ < 0 and 0 ≤ s < t ≤ T. We then have

c t − s( )2H ≤E XH
t −XH

s( )2[ ]≤C t − s( )2H (3.8)

Proof. Given 0 ≤ s < t ≤ T and denote

X̂
H

t � ∫t

0
hθ t, r( )dSHr , t≥ 0.
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It follows that

E X̂
H

t − X̂
H

s( )2[ ] � E ∫s

0
hθ t, x( ) − hθ s, x( )[ ]dSHx( )2

+E ∫t

s
hθ t, x( )dSHx( )2

+2E ∫t

s
hθ t, y( )dSHy ∫s

0
hθ t, x( ) − hθ s, x( )[ ]dSHx( ).

(3.9)

Now, we estimate the three terms. For the first term, we
have

0≤E ∫s

0
hθ t, x( ) − hθ s, x( )[ ]dSHx( )2

� ∫s

0
∫s

0
hθ t, x( ) − hθ s, x( )( )

hθ t, y( ) − hθ s, y( )( )ψH x, y( )dxdy
� θ2 ∫t

s
e−

1
2 θu

2
du( )2 ∫s

0
∫s

0
xye

1
2 θ x2+y2( )ψH x, y( )dxdy

≤ θ2s2 t − s( )2e−θt2 ∫s

0
∫s

0
ψH x, y( )dxdy

� θ2s2 t − s( )2e−θt2E SHs( )2 ≤CH,T t − s( )2

for all θ < 0 and 0 < s < t ≤ T. For the second term, we have

E ∫t

s
hθ t, x( )dSHx( )2

� ∫t

s
∫t

s
hθ t, x( )hθ t, y( )ψH x, y( )dxdy

≤ e−θt
2 ∫t

s
∫t

s
xye

1
2 θ x2+y2( )ψH x, y( )dxdy

≤ t2e−θt
2 ∫t

s
∫t

s
ψH x, y( )dxdy

≤CH,T t − s( )2H.
for all θ < 0 and 0 < s < t ≤ T. Similarly, for the third term, we also
prove

0≤E ∫t

s
hθ t, y( )dSHy ∫s

0
hθ t, x( ) − hθ s, x( )[ ]dSHx( )

� ∫t

s
∫s

0
hθ t, y( ) hθ t, x( ) − hθ s, x( )[ ]ψH x, y( )dxdy

≤ θ2e−
1
2 θt

2 ∫t

s
e−

1
2 θu

2
du( )∫t

s
ye

1
2 θy

2
dy∫s

0
xe

1
2 θx

2
ψH x, y( )dx

≤ θ2e−θt
2
t − s( )∫t

s
ye

1
2 θy

2
dy∫s

0
xe

1
2 θx

2
ψH x, y( )dx

≤CH,T t − s( )2

for all θ < 0 and 0 < s < t ≤ T. Thus, we have obtained the following
estimate:

E X̂
H

t − X̂
H

s( )2[ ]≤CH,T|t − s|2H

for all θ < 0 and 0 < s < t ≤ T.
On the other hand, elementary calculations may show that

∫s

0
hθ t, r( ) − hθ s, r( )[ ]dr � θ∫t

s
e−

1
2 θu

2
du∫s

0
re

1
2 θr

2
dr≤CH,T t − s( )

and

∫t

s
hθ t, r( )dr � e−

1
2 θs

2 ∫t

s
e
1
2 θr

2
dr≤CH,T t − s( )

for all θ < 0 and 0 < s < t ≤ T. It follows that

∫t

0
hθ t, r( )dr − ∫s

0
hθ s, r( )dr( )2

� ∫s

0
hθ t, r( ) − hθ s, r( )[ ]dr( )2

+ ∫t

s
hθ t, r( )dr( )2

+ 2∫t

s
hθ t, r( )dr∫s

0
hθ t, r( ) − hθ s, r( )[ ]dr

≤CH,T t − s( )2

for all θ < 0 and 0 < s < t ≤ T, which implies that

E Xa,b
t −Xa,b

s( )2[ ] � E X̂
a,b

t − X̂
a,b

s( )2[ ]
+ ]2 ∫t

0
hθ t, r( )dr − ∫s

0
hθ s, r( )dr( )2

≤CH,T t − s( )2H

for all θ < 0 and 0 < s < t ≤ T. Noting that the above calculations
are invertible for all θ < 0 and 0 < s < t ≤ T, one can obtain the left
hand side in (3.8) and the lemma follows.

4 CONVERGENCE

In this section, we obtain the large time behaviors associated with
the solution XH to Eq. 3.1. From Lemma 3.5 and Guassianness,
we find that the self-repelling diffusion {XH

t , t≥ 0} is H-Hölder
continuous. So, the integral

∫t

0
sdXH

s

exists with t ≥ 0 as a Young integral and

tXH
t � ∫t

0
sdXH

s + ∫t

0
XH

s ds

for all t ≥ 0. Define the process Y � {Yt, t ≥ 0} by

Yt: � ∫t

0
XH

t −XH
s( )ds � tXH

t − ∫t

0
XH

s ds � ∫t

0
sdXH

s

� ∫t

0
sdSHs − ∫t

0
θsYsds + 1

2
]t2.

By the variation of constants method, one can prove

Yt � e−
1
2 θt

2 ∫t

0
se

1
2 θs

2
dSHs − ]

θ
e−

1
2 θt

2 − 1( )
for all t ≥ 0. Define Gaussian process ξH � {ξHt , t≥ 0} as follows

ξHt d∫t

0
se

1
2 θs

2
dSHs , t≥ 0.
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Lemma 4.1. Let θ < 0 and 1
2<H< 1. Then, the random variable

ξH∞d∫∞

0
se

1
2 θs

2
dSHs

exists as an element in L2. Moreover, ξH is H-Hölder
continuous and ξHt → ξH∞ in L2 and almost surely, as t tends
to infinity.

Proof. This is simple calculus exercise. In fact, we have

E ∫∞

0
xe

1
2 θx

2
dSHx( )2

� ∫∞

0
∫∞

0
xye

1
2 θ x2+y2( )ψH x, y( )dxdy

� 2∫∞

0
xe

1
2 θx

2
dx∫x

0
ye

1
2 θy

2
ψH x, y( )dy

� 2H 2H − 1( )∫∞

0
xe

1
2 θx

2
dx

∫x

0
ye

1
2 θy

2
x − y( )2H−2 − x + y( )2H−2( )dy

≤ 2H 2H − 1( )∫∞

0
xe

1
2 θx

2
dx

∫x

0
x − y( )2H−2 − x + y( )2H−2( )ydy

� 2H 2H − 1( )CH ∫∞

0
x2H+1e

1
2 θx

2
dx

� Cθ,HΓ 2H + 2( )
for all θ < 0 and 1

2<H< 1, which shows that the random variable
ξH∞ exists as an element in L2.

Now, we show that the process ξa,b is Hölder continuous.
For all 0 < s < t by the inequality e−x2x≤C for all x ≥ 0, we
have

E ξHt − ξHs( )2 � E ∫t

s
xe

1
2 θx

2
dSHx( )2

� ∫t

s
∫t

s
xye

1
2 θ x2+y2( )ψH x, y( )dxdy

� 2∫t

s
xe

1
2 θx

2
dx∫x

s
ye

1
2 θy

2
ψH x, y( )dy

� 2H 2H − 1( )∫t

s
xe

1
2 θx

2
dx∫x

s
ye

1
2 θy

2
x − y( )2H−2(

− x + y( )2H−2)dy
≤ 2HCθ 2H − 1( )∫t

s
dx∫x

s
x − y( )2H−2dy

� Cθ,H t − s( )2H.
Thus, the normality of ξH implies that

E ξHt − ξHs( )2n ≤Cθ,H,n t − s( )2nH

for all 0 ≤ s < t, 1
2<H< 1 and integer numbers n ≥ 1, and the

Hölder continuity follows.

Nextly, we check the ξa,bt converges to ξH∞ in L2. This follows
from the next estimate:

E ξHt − ξH∞( )2�∫∞

t
∫∞

t
xye

1
2θ x2+y2( )ψH x,y( )dxdy

� 2∫∞

t
∫x

t
xye

1
2θ x2+y2( )ψH x,y( )dxdy

≤2e
1
2θt

2 ∫∞

t
xe

1
2θx

2
dx∫x

t
yψH x,y( )dy

≤2e
1
2θt

2 ∫∞

t
xe

1
2θx

2
dx∫x

0
yψH x,y( )dy

≤2H 2H−1( )e12θt2

·∫∞

t
xe

1
2θx

2
dx∫x

0
y x−y( )2H−2(

− x+y( )2H−2)dy
≤2H 2H−1( )e12θt2 ·∫∞

t
xe

1
2θx

2
dx∫x

0
y x−y( )2H−2dy

� 2H 2H−1( ) ∫1

0
u 1−u( )2H−2du( )e12θt2

∫∞

t
x2H+1e

1
2θx

2
dx→ 0, (4.1)

as t tends to infinity.
Finally, we check the ξa,bt converges to ξH∞ almost surely. By

integration by parts we see that

ξHt − ξH∞ � ∫∞

t
se

1
2 θs

2
dSHs � −te12 θt2SHt − ∫∞

t
1 + θs2( )e12 θs2SHs ds

(4.2)

for all t ≥ 0. Elementary may check that the convergence

ηHt d∫∞

t
1 + θs2( )e12 θs2SHs ds→a.s0

holds almost surely, as t tends to infinity. In fact, by
inequality

∫∞

t
sαe

1
2 θs

2
ds≤Ctα−1e

1
2 θt

2
, α> − 1,

with t ≥ 0, we may show that

E sup
n≤t<n+1

ηHt
∣∣∣∣ ∣∣∣∣2( )≤ ∫∞

n
∫∞

n
1 + θs2( )

1 + θr2( )e12 θ s2+r2( )E|SHs ‖SHr |drds

≤C ∫∞

n
s2+He

1
2 θs

2
ds( )2

≤Cn2+2Heθn
2
,

for all integer numbers n ≥ 1, and hence
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∑∞
n�0

P sup
n≤t<n+1

ηHt
∣∣∣∣ ∣∣∣∣2 ≥ ε( )≤Cε−2 ∑∞

n�0
n2+2Heθn

2 <∞.

Thus, Borel-Cantelli’s lemma implies that ηHt converges to
zero almost surely as t tends to infinity, and the lemma follows
from (4.2).

Corollary 4.1. For all c > 0, we have

tc ξHt − ξH∞( ) � tc ∫∞

t
se

1
2 θs

2
dSHs → 0,

in L2 and almost surely, as t tends to infinity.

Lemma 4.2. Let θ < 0 and 1
2<H< 1. Then, we have

Λc t, θ( )dtc+1e
1
2 θt

2 ∫t

0
e−

1
2 θu

2
ξa,b∞ − ξa,bu( )du → 0

in L2 and almost surely for every c ≥ 0, as t tends to infinity.

Proof. Given 0 < s ≤ t, θ < 0 and denote

Yθ s, t( )d∫t

0
e−

1
2 θv

2
dv∫∞

v
re

1
2 θr

2
ψH s, r( )dr

� ∫t

0
re

1
2 θr

2
ψH s, r( )dr∫r

0
e−

1
2 θv

2
dv

+ ∫t

0
e−

1
2 θv

2
dv( )∫∞

t
re

1
2 θr

2
ψH s, r( )dr

≤C∫t

0
rψH s, r( )dr + C

t
e−

1
2 θt

2 ∫∞

t
re

1
2 θr

2
ψH s, r( )dr

≤C ∫t

0
rψH s, r( )dr + t − s( )2H−2t−1( ),

where we have used the fact

∫x

0
e−

1
2 θv

2
dv≤

C

x
e−

1
2 θx

2
, ∀x≥ 0

and estimates

∫∞

t
re

1
2 θr

2
ψH s, r( )dr � H 2H − 1( )∫∞

t
r r − s( )2H−2(

− s + r( )2H−2)e12 θr2dr
≤H 2H − 1( )∫∞

t
r r − s( )2H−2e

1
2 θr

2
dr

≤H 2H − 1( ) t − s( )2H−2 ∫∞

t
re

1
2 θr

2
dr

� H 2H − 1( )
−θ t − s( )2H−2e

1
2 θt

2
.

It follows that

E Λc t, θ( )∣∣∣∣ ∣∣∣∣2 � t2c+2eθt
2 ∫t

0
∫t

0
e−

1
2 θ u2+v2( )

·E ∫∞

u
se

1
2 θs

2
dSHs( ) ∫∞

v
re

1
2 θr

2
dSHr( )dudv

� t2c+2eθt
2 ∫t

0
∫t

0
e−

1
2 θ u2+v2( )dudv

∫∞

u
∫∞

v
rse

1
2 θ r2+s2( )ψH s, r( )drds

� t2c+2eθt
2 ∫t

0
e−

1
2 θu

2
du∫∞

u
se

1
2 θs

2
Yθ s, t( )ds

� t2c+2eθt
2 ∫t

0
se

1
2 θs

2
ψH s, θ( )ds∫s

0
e−

1
2 θu

2
du

+ t2c+2eθt2 ∫∞

t
se

1
2 θs

2
Yθ s, t( )ds∫t

0
e−

1
2 θu

2
du

≤ t2c+2eθt
2 ∫t

0
s2Yθ s, t( )ds

+ t2c+1e
1
2 θt

2 ∫∞

t
se

1
2 θs

2
Yθ s, t( )ds

→ 0 t → ∞( ),
which shows that Λc(t, θ) converges to zero in L2.

Now, we obtain the convergence with probability one. Noting
that

ξH∞ − ξHu � ∫∞

u
se

1
2 θs

2
dSHs

for all u ≥ 0, we get

|Λc t,θ( )|≤tc+1e12θt2 ∫t

0
e−

1
2θu

2 ∫∞

u
se

1
2θs

2
dSHs

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣du
≤tc+1e

1
2θt

2 ∫t

0
e−

1
2θu

2
u|SHu |e

1
2θu

2 +∫∞

u
|SHs 1−θs2( )|e12θs2ds( )du

� tc+1e12θt2 ∫t

0
u|SHu |du+ tc+1e

1
2θt

2 ∫t

0
e−

1
2θu

2
du

∫∞

u
|SHs 1−θs2( )|e12θs2ds

� tc+1e
1
2θt

2 ∫t

0
u|SHu |du

+ tc+1e12θt2 ∫t

0
|SHs 1−θs2( )|e12θs2ds∫s

0
e−

1
2θu

2
du

+tc+1e12θt2 ∫∞

t
|SHs 1−θs2( )|e12θs2ds∫t

0
e−

1
2θu

2
du

≤tc+1e
1
2θt

2 ∫t

0
u|SHu |du+ tc+1e

1
2θt

2 ∫t

0
|SHs 1−θs2( )|sds

+Cθt
c∫∞

t
|SHs 1−θs2( )|e12θs2ds

→ 0

almost surely for all c ≥ 0, θ < 0 and 1
2<H< 1, as t tends to

infinity. This completes the proof.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 79521010

Gao et al. Self-Interacting Diffusion Driven by SubfBm I

74

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The objects of this paper are to prove the following theorems
which give the long time behaviors for XH with 1

2<H< 1.

Theorem 4.1. Let θ < 0 and 1
2<H< 1. Then, as t → ∞, the

convergence

JH0 t; θ, ]( )dte
1
2 θt

2
XH

t → ξH∞ − ]
θ

holds in L2 and almost surely.

Proof. Given t > 0 and θ < 0. Simple calculations may prove

JH0 t; θ, ]( ) � te
1
2 θt

2
XH

t

� te
1
2 θt

2 ∫t

0
hθ t, s( )dSHs + ]te

1
2 θt

2 ∫t

0
hθ t, s( )ds

� te
1
2 θt

2
SHt − θt2e

1
2 θt

2 ∫t

0
se

1
2 θs

2 ∫t

s
e−

1
2 θu

2
du( )dSHs

+]te12 θt2 ∫t

0
e−

1
2 θs

2
ds

� te−
1
2 θt

2
SHt − θte

1
2 θt

2 ∫t

0
e−

1
2 θu

2 ∫u

0
se

1
2 θs

2
dSHs( )du

+ ]te
1
2 θt

2 ∫t

0
e−

1
2 θs

2
ds

� te
1
2 θt

2
SHt − θte

1
2 θt

2 ∫t

0
e−

1
2 θu

2
ξHu du

+ ]te
1
2 θt

2 ∫t

0
e−

1
2 θs

2
ds. (4.3)

It follows from Lemma 4.1, Corollary 4.1, and Lemma 4.2 that

JH0 t; θ, ]( ) − ξH∞ − ]
θ

( ) � te
1
2 θt

2
XH

t − ξH∞ − ]
θ

( )
� te

1
2 θt

2
SHt − θte

1
2 θt

2 ∫t

0
e−

1
2 θu

2
ξHu − ξH∞( )du

+ ξH∞ − ]
θ

( ) −θte12 θt2 ∫t

0
e−

1
2 θu

2
du − 1( ) → 0 t → ∞( )

(4.4)

in L2 and almost surely for all θ < 0 and 1
2<H< 1, as t tends to

infinity.

Theorem 4.2. Define the processes JH(n, θ, ]) �
{JHt (n, θ, ]), t≥ 0}, n≥ 1 by

JHn t; θ, ]( )dθt2 JHn−1 t; θ, ]( ) − 2n − 3( )‼ ξH∞ − ]
θ

( )( ),
n � 1, 2, . . . ,

for all t ≥ 0, where (−1)!! � 1. Then, the convergence

JHn t; θ, ]( ) → 2n − 1( )‼ ξH∞ − ]
θ

( )
holds in L2 and almost surely for every n ≥ 1, as t → ∞.

Proof. From the proof of Theorem 4.1, we find that the
identities

JH0 t; θ, ]( ) − ξH∞ − ]
θ

( ) � te
1
2 θt

2
SHt + θte

1
2 θt

2 ∫t

0
e−

1
2 θu

2
ξHu − ξH∞( )du

+ ξH∞ − ]
θ

( ) θte
1
2 θt

2 ∫t

0
e−

1
2 θu

2
du − 1( ),

JHn t; θ, ]( ) � ξH∞ − ]
θ

( )In t, θ( ) + t θt2( )ne−1
2 θt

2
SHt

+θt θt2( )ne12 θt2 ∫t

0
e
1
2 θu

2
ξHu − ξH∞( )du.

holds for all t > 0, n ≥ 1 and θ < 0, where In(t, θ) is given in Lemma
3.2. Thus, the theorem follows from Lemma 4.1, Corollary 4.1,
Lemma 4.2 and Theorem 4.1.

5 SIMULATION

We have applied our results to the following linear self-repelling
diffusion driven by a sub-fBm SH with 1

2<H< 1:

dXH
t � dSHt − θ ∫t

0
XH

t −XH
s( )ds( )dt + ]dt, XH

0 � 0,

where θ < 0 and ] ∈ R are two parameters. We will simulate the
process with ] � 0 in the following cases:

• H � 0.7 and θ � − 1, θ � − 10, and θ � − 100, respectively
(see, Figure 1, Figure 2, Figure 3, and Table 1, Table 2,
Table 3);

• H � 0.5 and θ � − 1, θ � − 10, and θ � − 100, respectively
(see, Figure 4, Figure 5, Figure 6, and Table 4, Table 5,
Table 6);

Remark 1. From the following numerical results, we can find that
it is important to study the estimates of parameters θ and ].
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Large Time Behavior on the Linear
Self-Interacting Diffusion Driven by
Sub-Fractional Brownian Motion II:
Self-Attracting Case
Rui Guo1, Han Gao2*, Yang Jin3 and Litan Yan3

1College of Information Science and Technology, Donghua University, Shanghai, China, 2College of Fashion and Art Design,
Donghua University, Shanghai, China, 3Department of Statistics, College of Science, Donghua University, Shanghai, China

In this study, as a continuation to the studies of the self-interaction diffusion driven by
subfractional Brownian motion SH, we analyze the asymptotic behavior of the linear self-
attracting diffusion:

dXH
t � dSHt − θ ∫t

0
(XH

t −XH
s )ds( )dt + ]dt, XH

0 � 0,

where θ > 0 and ] ∈ R are two parameters. When θ < 0, the solution of this equation is
called self-repelling. Our main aim is to show the solution XH converges to a normal random
variable XH

∞ with mean zero as t tends to infinity and obtain the speed at which the process
XH converges to XH

∞ as t tends to infinity.

Keywords: subfractional Brownian motion, self-attracting diffusion, law of large numbers, Malliavin calculus,
asymptotic distribution

1 INTRODUCTION

In a previous study (I) (see [12]), as an extension to classical result, we considered the linear self-
interacting diffusion as follows:

XH
t � SHt − θ∫t

0
∫s

0
(XH

s −XH
u )duds + ]t, t≥ 0, (1)

with θ ≠ 0, where θ and ] are two real numbers, and SH is a sub-fBm with the Hurst parameter
1
2≤H< 1. The solution of Eq. 1 is called self-repelling if θ < 0 and is called self-attracting if θ > 0.
When θ < 0, in a previous study (I), we showed that the solution XH diverges to infinity as t tends to
infinity and

JH0 (t; θ, ])dte
1
2 θt

2
XH

t → ξH∞ − ]
θ

and

JHn (t; θ, ])dθt2 JHn−1(t; θ, ]) − (2n − 3)‼ ξH∞ − ]
θ

( )( ) → (2n − 1)‼ ξH∞ − ]
θ

( )
in L2 and almost surely, for all n � 1, 2, . . ., where ( − 1)!! � 1 and
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ξH∞ � ∫∞

0
se

1
2 θs

2
dSHs .

In the present study, we consider the case θ > 0 and study its
large time behaviors.

Let us recall the main results concerning the system (Eq. 1).
When H � 1

2, as a special case of path-dependent stochastic
differential equations, in 1995, Cranston and Le Jan [8]
introduced a linear self-attracting diffusion (Eq. 1) with θ > 0.
They showed that the process Xt converges in L2 and almost
surely as t tends infinity. This path-dependent stochastic
differential equation was first developed by Durrett and Rogers
[10] introduced in 1992 as a model for the shape of a growing
polymer (Brownian polymer). The general form of this kind of
model can be expressed as follows:

Xt � X0 + Bt + ∫t

0
∫s

0
f(Xs −Xu)duds, (2)

where B is a d-dimensional standard Brownian motion and f is
Lipschitz continuity. Xt corresponds to the location of the end of
the polymer at time t. Under some conditions, they established
asymptotic behavior of the solution of the stochastic differential
equation. The model is a continuous analog of the notion of edge
(respectively, vertex) self-interacting random walk (see, e.g.,
Pemantle [22]). By using the local time of the solution process
X, we can make it clear how the process X interacts with its own
occupation density. In general, Eq. 2 defines a self-interacting
diffusion without any assumption on f. We call it self-repelling
(respectively, self-attracting) if, for all x ∈ Rd, x · f(x)≥ 0
(respectively, ≤ 0). More examples can be found in Benaïm
et al. [2, 3], Cranston and Mountford [9], Gan and Yan [11],
Gauthier [13], Herrmann and Roynette [14], Herrmann and
Scheutzow [15], Mountford and Tarr [20], Sun and Yan [26,
27], Yan et al [34], and the references therein.

In this present study, our main aim is to expound and prove
the following statements:

(I) For θ > 0 and 1
2<H< 1, the random variable

XH
∞ � ∫∞

0
hθ(s)dSHs + ]∫∞

0
hθ(s)ds

exists as an element in L2, where the function is defined as follows:

hθ(s) � 1 − θse
1
2 θs

2 ∫∞

s
e−

1
2 θu

2
du, s≥ 0

with θ > 0.

(II) For θ > 0 and 1
2<H< 1, we have

XH
t → XH

∞

in L2 and almost surely as t → ∞.

(III) For θ > 0 and 1
2<H< 1, we have

tH����
λH,θ

√ XH
t −XH

∞( ) → N(0, 1)

in distribution as t → ∞, where

λH,θ � 1
2
Γ(2H + 1)θ−2H.

(IV) For θ > 0 and 1
2<H< 1, we have

YH
t � ∫t

0
(XH

t −XH
s )ds, t≥ 0.

Then the convergence

1
T3−2H ∫T

0
(YH

t )2dt →
H

3 − 2H
θ−2HΓ(2H)

holds in L2 as T tends to infinity.
This article is organized as follows. In Section 2, we present

some preliminaries for sub-fBm and Malliavin calculus. In
Section 3, we obtain some lemmas. In Section 4, we prove the
main results given as before. In Section 5, we give some numerical
results.

2 PRELIMINARIES

In this section, we briefly recall the definition and properties of
stochastic integral with respect to sub-fBm. We refer to Alós et al
[1], Nualart [21], and Tudor [31] for a complete description of
stochastic calculus with respect to Gaussian processes.

As we pointed out in the previous study (I) (see [12]), the sub-
fBm SH is a rather special class of self-similar Gaussian processes
such that SH0 � 0 and

RH(t, s)dE SHt S
H
s[ ] � s2H + t2H − 1

2
(s + t)2H + |t − s|2H[ ] (3)

for all s, t ≥ 0. For H � 1/2, SH coincides with the standard
Brownian motion B. SH is neither a semimartingale nor a
Markov process unless H � 1/2, so many of the powerful
techniques from stochastic analysis are not available when
dealing with SH. As a Gaussian process, it is possible to
construct a stochastic calculus of variations with respect to
SH. The sub-fBm appeared in Bojdecki et al [4] in a limit of
occupation time fluctuations of a system of independent
particles moving in Rd according a symmetric α-stable Lévy
process. More examples for sub-fBm and related processes can
be found in Bojdecki et al. [4–7], Li [16–19], Shen and Yan [23,
24], Sun and Yan [25], C. A. Tudor [32], Tudor [28–31], C. A.
Tudor [33], Yan et al [33, 35, 36], and the references therein.

The normality and Hölder continuity of the sub-fBm SH imply
that t1SHt admits a bounded pH variation on any finite interval
with pH > 1

H. As an immediate result, one can define the Young
integral of a process u � {ut, t ≥ 0} with respect to a sub-fBm SH

∫t

0
usdS

H
s

as the limit in probability of a Riemann sum. Clearly, when u is of
bounded qH variation on any finite interval with qH > 1 and
1
pH

+ 1
qH
> 1, the integral is well-defined and
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utS
H
t � ∫t

0
usdS

H
s + ∫t

0
SHs dus

for all t ≥ 0.
LetH be the completion of the linear space E generated by the

indicator functions 1[0,t], t ∈ [0, T] with respect to the inner
product:

〈1[0,s], 1[0,t]〉H � RH(t, s)
for s, t ∈ [0, T]. For every φ ∈ H, we can define theWiener integral
with respect to SH, denoted by

SH(φ) � ∫T

0
φ(s)dSHs

as a linear (isometric) mapping fromH onto SH by using the limit
in probability of a Riemann sum, where SH is the Gaussian
Hilbert space generating by SH and

‖φ‖2H � E ∫T

0
φ(s)dSHs( )2

(4)

for any φ ∈ H. In particular, when 1
2<H< 1, we can show that

‖φ‖2H � ∫T

0
∫T

0
φ(t)φ(s)ψH(t, s)dsdt, ∀φ ∈ H,

where

ψH(t, s) �
z2

ztzs
RH(t, s) � H(2H − 1) |t − s|2H−2 − |t + s|2H−2( )

FIGURE 1 | Path of XH with θ � 1 and H � 0.7.

FIGURE 2 | Path of XH with θ � 10 and H � 0.7.
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for s, t ∈ [0, T]. Thus, when 1
2<H< 1 if for every T > 0, the integral∫T

0
φ(s)dSHs exists in L2 and

∫∞

0
∫∞

0
φ(t)φ(s)ψH(t, s)dsdt<∞,

we can define the integral as follows:

∫∞

0
φ(s)dSHs

and

E ∫∞

0
φ(s)dSHs( )2

� ∫∞

0
∫∞

0
φ(t)φ(s)ψH(t, s)dsdt.

Let now D and δ be the (Malliavin) derivative and divergence
operators associated with the sub-fBm SH. And letD1,2 denote the
Hilbert space with respect to the norm as follows:

‖F‖1,2d
��������������
E|F|2 + E‖DF‖2H

√
.

Then the duality relationship

E Fδ(u)[ ] � E〈DF, u〉H (5)

holds for any F ∈ D1,2 and D1,2 ⊂ Dom(δ). Moreover, for any
u ∈ D1,2, we have

E δ(u)2[ ] � E‖u‖2H + E〈Du, (Du)*〉H⊗H

� E‖u‖2H + E∫
[0,T]4

DξurDηusψH(η, r)ψH(ξ, s)dsdrdξdη,

FIGURE 3 | Path of XH with θ � 100 and H � 0.7.

FIGURE 4 | Path of XH with θ � 1 and H � 0.5.
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where (Du)p is the adjoint of Du in the Hilbert space given as
follows: H ⊗ H. We denote

δ(u) � ∫T

0
usδS

H
s

for an adapted process u, and it is called the Skorohod integral. By
using Alós et al [1], we can obtain the relationship between the
Skorohod and the Young integral as follows:

∫T

0
usdS

H
s � ∫T

0
usδS

H
s + ∫T

0
∫T

0
DsutψH(t, s)dsdt,

provided u has a bounded q variation with 1≤ q< 1
H and u ∈ D1,2

such that

∫T

0
∫T

0
DsutψH(t, s)dsdt<∞.

3 SOME BASIC ESTIMATES

For simplicity, we throughout letC stand for a positive constant which
depends only on its superscripts, and its value may be different in
different appearances, and this assumption is also suitable to c. Recall
that the linear self-attracting diffusion with sub-fBm SH is defined by
the following stochastic differential equation:

XH
t � SHt − θ∫t

0
∫s

0
(XH

s −XH
u )duds + ]t, t≥ 0 (6)

FIGURE 5 | Path of XH with θ � 10 and H � 0.5.

FIGURE 6 | Path of XH with θ � 100 and H � 0.5.
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with θ > 0. The kernel (t, s)1hθ(t, s) is defined as follows:

hθ(t, s) � 1 − θse
1
2 θs

2 ∫t

s
e−

1
2 θu

2
du, t≥ s,

0, t< s

⎧⎪⎪⎨⎪⎪⎩ (7)

for s, t ≥ 0. By the variation of constants method (see, Cranston
and Le Jan [8]) or Itô’s formula, we may introduce the following
representation:

XH
t � ∫t

0
hθ(t, s)dSHs + ]∫t

0
hθ(t, s)ds (8)

for t ≥ 0.
The kernel function (t, s)1hθ(t, s) with θ > 0 admits the

following properties (these properties are proved partly in
Cranston and Le Jan [8]):

• For all s ≥ 0, the limit

TABLE 1 | Data of XH
t with θ � 1 and H � 0.7

t XH
t t XH

t t XH
t

0.000 0 0.000 0 0.343 8 −0.121 6 0.687 5 −0.097 9
0.015 6 0.008 7 0.359 4 −0.129 0 0.703 1 −0.096 8
0.031 3 0.011 3 0.375 0 −0.140 6 0.718 8 −0.101 7
0.046 9 0.003 9 0.390 6 −0.146 7 0.734 4 −0.109 0
0.062 5 −0.015 3 0.406 3 −0.145 9 0.750 0 −0.108 8
0.078 1 −0.023 8 0.421 9 −0.157 9 0.765 6 −0.118 8
0.093 8 −0.022 9 0.437 5 −0.162 4 0.781 3 −0.116 3
0.109 4 −0.027 0 0.453 1 −0.166 6 0.796 9 −0.112 5
0.125 0 −0.033 5 0.468 8 −0.170 1 0.812 5 −0.123 1
0.140 6 −0.035 3 0.484 4 −0.171 7 0.828 1 −0.140 0
0.156 3 −0.037 0 0.500 0 −0.173 8 0.843 8 −0.146 5
0.171 9 −0.049 8 0.515 6 −0.177 4 0.859 4 −0.155 4
0.187 5 −0.054 4 0.531 3 −0.176 6 0.875 0 −0.160 4
0.203 1 −0.059 3 0.546 9 −0.171 3 0.890 6 −0.170 9
0.218 8 −0.076 5 0.562 5 -0.166 7 0.906 3 −0.174 3
0.234 4 −0.085 0 0.578 1 −0.166 4 0.921 9 −0.178 1
0.250 0 −0.098 1 0.593 8 −0.152 1 0.937 5 −0.179 4
0.265 6 −0.106 2 0.609 4 −0.142 2 0.953 1 −0.180 3
0.281 3 −0.112 7 0.625 0 −0.139 5 0.968 8 −0.175 8
0.296 9 −0.113 2 0.640 6 −0.128 2 0.984 4 −0.193 5
0.312 5 −0.114 0 0.656 3 −0.123 4 1.000 0 −0.198 0
0.328 1 −0.121 4 0.671 9 −0.105 4

TABLE 2 | Data of XH
t with θ � 10 and H � 0.7

t XH
t t XH

t t XH
t

0.000 0 0.000 0 0.343 8 −0.098 3 0.687 5 −0.110 9
0.015 6 −0.006 4 0.359 4 −0.110 4 0.703 1 −0.112 1
0.031 3 −0.010 4 0.375 0 −0.110 8 0.718 8 −0.112 6
0.046 9 −0.010 1 0.390 6 −0.109 8 0.734 4 −0.103 4
0.062 5 −0.017 9 0.406 3 −0.111 9 0.750 0 −0.099 1
0.078 1 −0.017 7 0.421 9 −0.110 6 0.765 6 −0.090 1
0.093 8 −0.024 2 0.437 5 −0.112 6 0.781 3 −0.089 0
0.109 4 −0.031 9 0.453 1 −0.117 0 0.796 9 −0.089 4
0.125 0 −0.030 6 0.468 8 −0.118 5 0.812 5 −0.090 9
0.140 6 −0.041 6 0.484 4 −0.120 5 0.828 1 −0.085 7
0.156 3 −0.052 3 0.500 0 −0.113 1 0.843 8 −0.085 1
0.171 9 −0.057 7 0.515 6 −0.106 8 0.859 4 −0.095 1
0.187 5 −0.063 7 0.531 3 −0.106 7 0.875 0 −0.090 9
0.203 1 −0.069 0 0.546 9 −0.113 7 0.890 6 −0.089 0
0.218 8 −0.070 8 0.562 5 −0.110 5 0.906 3 −0.094 0
0.234 4 −0.067 0 0.578 1 −0.110 1 0.921 9 −0.097 6
0.250 0 −0.063 0 0.593 8 −0.107 8 0.937 5 −0.100 6
0.265 6 −0.074 4 0.609 4 −0.107 8 0.953 1 −0.099 8
0.281 3 −0.083 1 0.625 0 −0.106 9 0.968 8 −0.094 1
0.296 9 −0.086 5 0.640 6 −0.105 9 0.984 4 −0.093 3
0.312 5 −0.088 1 0.656 3 −0.108 5 1.000 0 −0.092 8
0.328 1 −0.096 2 0.671 9 −0.110 7

TABLE 3 | Data of XH
t with θ � 100 and H � 0.7

t XH
t t XH

t t XH
t

0.000 0 0.000 0 0.343 8 0.015 3 0.687 5 0.001 5
0.015 6 −0.004 7 0.359 4 0.013 5 0.703 1 0.011 6
0.031 3 −0.021 0 0.375 0 0.000 5 0.718 8 0.014 8
0.046 9 −0.024 1 0.390 6 −0.002 0 0.734 4 0.002 7
0.062 5 −0.029 0 0.406 3 0.002 5 0.750 0 -0.000 8
0.078 1 −0.020 0 0.421 9 0.002 3 0.765 6 -0.008 6
0.093 8 −0.014 3 0.437 5 0.011 6 0.781 3 -0.006 9
0.109 4 −0.012 9 0.453 1 0.003 8 0.796 9 0.000 1
0.125 0 −0.020 6 0.468 8 −0.007 4 0.812 5 0.006 0
0.140 6 −0.015 7 0.484 4 −0.010 5 0.828 1 0.016 0
0.156 3 0.004 7 0.500 0 −0.012 4 0.843 8 0.006 2
0.171 9 0.013 6 0.515 6 −0.009 0 0.859 4 0.011 1
0.187 5 0.011 0 0.531 3 −0.009 4 0.875 0 0.009 0
0.203 1 0.006 7 0.546 9 −0.016 0 0.890 6 0.000 3
0.218 8 0.020 0 0.562 5 −0.011 4 0.906 3 -0.003 2
0.234 4 0.016 2 0.578 1 −0.006 7 0.921 9 0.010 5
0.250 0 0.002 4 0.593 8 −0.002 8 0.937 5 -0.001 1
0.265 6 0.002 5 0.609 4 0.002 8 0.953 1 0.001 0
0.281 3 0.008 2 0.625 0 0.000 9 0.968 8 0.005 6
0.296 9 0.007 6 0.640 6 −0.006 2 0.984 4 0.001 9
0.312 5 0.008 3 0.656 3 −0.015 8 1.000 0 -0.004 6
0.328 1 0.008 6 0.671 9 −0.005 1

TABLE 4 | Data of XH
t with θ � 1 and H � 0.5

t XH
t t XH

t t XH
t

0.000 0 0.000 0 0.343 8 0.939 3 0.687 5 1.188 3
0.015 6 −0.176 1 0.359 4 0.991 3 0.703 1 0.992 1
0.031 3 0.009 9 0.375 0 1.036 3 0.718 8 0.956 4
0.046 9 −0.040 0 0.390 6 1.218 0 0.734 4 0.994 3
0.062 5 0.019 0 0.406 3 1.204 2 0.750 0 0.885 2
0.078 1 0.088 3 0.421 9 1.122 9 0.765 6 0.861 1
0.093 8 0.020 0 0.437 5 1.111 0 0.781 3 0.688 6
0.109 4 0.274 4 0.453 1 1.021 1 0.796 9 0.653 8
0.125 0 0.231 7 0.468 8 1.066 0 0.812 5 0.731 2
0.140 6 0.246 1 0.484 4 1.007 0 0.828 1 0.750 8
0.156 3 0.200 4 0.500 0 1.099 5 0.843 8 0.866 3
0.171 9 0.172 3 0.515 6 1.149 7 0.859 4 0.746 9
0.187 5 0.233 2 0.531 3 1.162 0 0.875 0 0.608 0
0.203 1 0.485 9 0.546 9 1.222 9 0.890 6 0.618 4
0.218 8 0.697 4 0.562 5 1.435 0 0.906 3 0.655 0
0.234 4 0.684 8 0.578 1 1.447 4 0.921 9 0.632 1
0.250 0 0.627 5 0.593 8 1.453 5 0.937 5 0.610 1
0.265 6 0.777 4 0.609 4 1.479 4 0.953 1 0.623 8
0.281 3 0.825 0 0.625 0 1.276 4 0.968 8 0.406 6
0.296 9 0.775 4 0.640 6 1.281 4 0.984 4 0.389 3
0.312 5 0.878 3 0.656 3 1.284 8 1.000 0 0.234 5
0.328 1 0.838 0 0.671 9 1.168 9
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hθ(s)d lim
t→∞

hθ(t, s) � 1 − θse
1
2 θs

2 ∫∞

s
e−

1
2 θu

2
du (9)

exists.

• For all t ≥ s ≥ 0, we have hθ(s) ≤ hθ(t, s), and

0≤ hθ(s)≤Cθ min 1,
1
s2

{ }, e−
1
2 θ(t2−s2) ≤ hθ(t, s)≤ 1; (10)

• For all t ≥ s, r ≥ 0 and θ ≠ 0, we have

hθ(t, 0) � hθ(t, t) � 1, ∫t

s
hθ(t, u)du � e

1
2 θs

2 ∫t

s
e−

1
2 θu

2
du

and

|hθ(t, s) − hθ(s)‖hθ(t, r) − hθ(r)|≤ 1
t2
sre

1
2 θ(s2+r2)e−θt

2
; (11)

• For all t > 0, we have

∫t

0
[hθ(t, s) − hθ(s)]ds

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣≤ 1
θt
. (12)

Lemma 3.1. Let 1
2<H< 1 and θ > 0. Then the random variable

XH
∞ � ∫∞

0
hθ(s)dSHs + ]∫∞

0
hθ(s)ds

exists as an element in L2.

Proof. This is a simple calculus exercise. In fact, we have

E ∫∞

0
hθ(s)dSHs( )2

� ∫∞

0
∫∞

0
hθ(s)hθ(r)ψH(s, r)dsdr

� 2H(2H − 1)∫∞

0
∫s

0
hθ(s)hθ(r) (s − r) − s|2H−2 − (r + s)2H−2( )drds

� 2H(2H − 1)∫1

0
∫s

0
hθ(s)hθ(r) (s − r)2H−2 − (r + s)2H−2( )drds

+ 2H(2H − 1)∫∞

1
∫1

0
hθ(s)hθ(r) (s − r)2H−2 − (r + s)2H−2( )drds

+ 2H(2H − 1)∫∞

1
∫s

1
hθ(s)hθ(r) (s − r)2H−2 − (r + s)2H−2( )drds

for all θ > 0 and 1
2<H< 1. Clearly, Eq. 10 implies that

∫1

0
∫s

0
hθ(s)hθ(r) (s − r)2H−2 − (r + s)2H−2( )drds

≤ (Cθ)2 ∫1

0
∫s

0
(s − r)2H−2 − (r + s)2H−2( )drds

� (Cθ)2 ∫1

0
∫1

0
s2H−1 (1 − x)2H−2 − (1 + x)2H−2( )dxds<∞,

and

∫∞

1
∫1

0
hθ(s)hθ(r) (s − r)2H−2 − (r + s)2H−2( )drds

≤ (Cθ)2 ∫∞

1
∫1

0
s−2 (s − r)2H−2 − (r + s)2H−2( )drds

≤ (Cθ)2 ∫∞

1
s−2 (s − 1)2H−2 − s2H−2( )ds<∞.

and

TABLE 5 | Data of XH
t with θ � 10 and H � 0.5

t XH
t t XH

t t XH
t

0.000 0 0.000 0 0.343 8 −0.024 7 0.687 5 −0.492 7
0.015 6 −0.054 8 0.359 4 −0.366 6 0.703 1 −0.589 4
0.031 3 0.122 7 0.375 0 −0.452 2 0.718 8 −0.689 0
0.046 9 0.167 9 0.390 6 −0.690 7 0.734 4 −0.507 9
0.062 5 0.151 5 0.406 3 −0.915 4 0.750 0 −0.370 3
0.078 1 −0.217 7 0.421 9 −0.954 1 0.765 6 −0.283 2
0.093 8 0.041 1 0.437 5 −1.020 5 0.781 3 −0.445 5
0.109 4 −0.061 7 0.453 1 −0.906 9 0.796 9 −0.551 5
0.125 0 −0.069 7 0.468 8 −0.855 3 0.812 5 −0.579 9
0.140 6 −0.359 2 0.484 4 −0.820 1 0.828 1 −0.509 3
0.156 3 −0.348 9 0.500 0 −0.735 7 0.843 8 −0.556 1
0.171 9 −0.481 8 0.515 6 −0.822 0 0.859 4 −0.589 2
0.187 5 −0.296 6 0.531 3 −0.785 2 0.875 0 −0.501 7
0.203 1 −0.471 7 0.546 9 −0.814 6 0.890 6 −0.458 0
0.218 8 −0.417 5 0.562 5 −0.823 9 0.906 3 −0.689 5
0.234 4 −0.169 3 0.578 1 −0.833 7 0.921 9 −0.784 6
0.250 0 −0.126 5 0.593 8 −0.735 3 0.937 5 −0.825 7
0.265 6 −0.017 8 0.609 4 −0.539 7 0.953 1 −0.903 4
0.281 3 −0.053 6 0.625 0 −0.515 2 0.968 8 −0.736 4
0.296 9 −0.071 4 0.640 6 −0.524 5 0.984 4 −0.669 2
0.312 5 −0.115 8 0.656 3 −0.489 9 1.000 0 −0.506 1
0.328 1 −0.132 2 0.671 9 −0.525 8

TABLE 6 | Data of XH
t with θ � 100 and H � 0.5

t XH
t t XH

t t XH
t

0.000 0 0.000 0 0.343 8 −0.207 4 0.687 5 -0.149 3
0.015 6 −0.012 9 0.359 4 −0.373 2 0.703 1 −0.230 8
0.031 3 −0.134 8 0.375 0 −0.464 9 0.718 8 0.164 4
0.046 9 0.069 7 0.390 6 −0.292 5 0.734 4 −0.050 0
0.062 5 0.111 5 0.406 3 −0.244 5 0.750 0 −0.131 7
0.078 1 0.002 9 0.421 9 −0.246 7 0.765 6 −0.218 2
0.093 8 −0.058 9 0.437 5 0.062 8 0.781 3 −0.313 7
0.109 4 −0.288 8 0.453 1 −0.091 7 0.796 9 −0.069 1
0.125 0 −0.195 6 0.468 8 −0.307 2 0.812 5 −0.239 1
0.140 6 −0.046 9 0.484 4 −0.216 2 0.828 1 −0.306 2
0.156 3 −0.139 1 0.500 0 −0.241 8 0.843 8 −0.147 8
0.171 9 −0.183 3 0.515 6 −0.159 3 0.859 4 −0.203 4
0.187 5 −0.117 5 0.531 3 −0.250 9 0.875 0 −0.219 3
0.203 1 −0.261 6 0.546 9 −0.344 2 0.890 6 −0.376 9
0.218 8 −0.156 8 0.562 5 −0.129 5 0.906 3 0.051 5
0.234 4 −0.221 5 0.578 1 −0.113 0 0.921 9 −0.107 6
0.250 0 −0.173 6 0.593 8 −0.191 5 0.937 5 −0.117 3
0.265 6 −0.198 5 0.609 4 −0.131 3 0.953 1 −0.274 6
0.281 3 0.067 4 0.625 0 −0.175 8 0.968 8 −0.155 6
0.296 9 −0.163 3 0.640 6 −0.100 8 0.984 4 −0.223 2
0.312 5 −0.121 9 0.656 3 −0.104 9 1.000 0 −0.232 0
0.328 1 −0.161 0 0.671 9 −0.270 3
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∫∞

1
∫s

1
hθ(s)hθ(r) (s − r)2H−2 − (r + s)2H−2( )drds

≤ (Cθ)2 ∫∞

1
∫s

1
(rs)−2 (s − r)2H−2 − (r + s)2H−2( )drds

≤ (Cθ)2 ∫∞

1
∫∞

r
(rs)−2 (s − r)2H−2 − (r + s)2H−2( )drds

� (Cθ)2 ∫∞

1
∫∞

1
r2H−5x−2 (x − 1)2H−2 − (1 + x)2H−2( )dxdr<∞

for all θ > 0 and 1
2<H< 1. These show that the random variable

XH
∞ exists as an element in L2.

Lemma 3.2. Let θ > 0. We then have

lim
t→∞

te
1
2 θt

2 ∫t

0
hθ(t, s)ds − ∫∞

0
hθ(s)ds( ) � −1

θ
. (13)

Proof. This is a simple calculus exercise. In fact, we have

∫t

0
hθ(t, s)ds − ∫∞

0
hθ(s)ds � ∫t

0
hθ(t, s) − hθ(s)[ ]ds − ∫∞

t
hθ(s)ds

� ∫t

0
θse

1
2 θs

2 ∫∞

s
e−

1
2 θu

2
du − ∫t

s
e−

1
2 θu

2
du( )ds − ∫∞

t
hθ(s)ds

� e
1
2 θt

2 − 1( ) ∫∞

t
e−

1
2 θu

2
du − ∫∞

t
hθ(s)ds.

for all t ≥ 0 and θ > 0. Noting that

lim
t→∞

t e
1
2 θt

2 − 1( )∫∞

t
e−

1
2 θu

2
du � lim

t→∞

1

t−1e−1
2 θt

2 ∫∞

t
e−

1
2 θu

2
du � 1

θ

and

lim
t→∞

t∫∞

t
hθ(s)ds � lim

t→∞

1

t−1
∫∞

t
hθ(s)ds

� lim
t→∞

t2hθ(t) � lim
t→∞

t2 1 − θte
1
2 θt

2 ∫∞

t
e−

1
2 θu

2
du( ) � 1

θ
,

(14)

we see that

lim
t→∞

te
1
2 θt

2 ∫t

0
hθ(t, s)ds − ∫∞

0
hθ(s)ds( )

� lim
t→∞

1

t−1e−
1
2 θt

2 e
1
2 θt

2 − 1( ) ∫∞

t
e−

1
2 θu

2
du − ∫∞

t
hθ(s)ds{ } � −1

θ
.

by L’Hopital’s rule.

Lemma 3.3. Let θ > 0. We then have

d

dt
hθ(t)

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣≤Cθ min 1,
1
t3

{ } (15)

for all t ≥ 0.

Lemma 3.4. Let θ > 0 and 1
2<H< 1. We then have

lim
t→∞

1
t2−2H

e−θt
2 ∫t

0
∫s

0
sre

1
2 θ(s2+r2)ψH(s, r)dsdr �

1
4
θ−2HΓ(2H + 1).

(16)

Proof. By L’Hopital’s rule and the change of variable
1
2 θ(t2 − r2) � x, it follows that

lim
t→∞

1

t2−2Heθt
2 ∫t

0
∫s

0
sre

1
2 θ(s2+r2)ψH(s, r)dsdr

� lim
t→∞

1

2θt2−2He
1
2 θt

2 ∫t

0
e
1
2 θr

2
ψH(t, r)rdr

� lim
t→∞

H(2H − 1)
2θt2−2H

∫t

0
e−

1
2 θ(t2−r2) (t − r)2H−2 − (t + r)2H−2( )rdr

� lim
t→∞

H(2H − 1)
2θ2t2−2H

∫1
2 θt

2

0
e−x t −

������
t2 − 2x

θ

√( )2H−2
dx

� lim
t→∞

H(2H − 1)
2θ2t2−2H

∫1
2 θt

2

0
e−x

2x
θ

( )2H−2
t +

������
t2 − 2x

θ

√( )2−2H
dx

� 1
2
θ−2HH(2H − 1)Γ(2H − 1) � 1

4
θ−2HΓ(2H + 1),

where we have used the equation

lim
t→∞

1

t2−2He12 θt2
∫t

0
e
1
2 θr

2(t + r)2H−2rdr � 0.

This completes the proof.

Lemma 3.5. Let θ > 0 and 1
2<H< 1. We then have

c(t − s)2H ≤E XH
t −XH

s( )2[ ]≤C(t − s)2H (17)

for all 0 ≤ s < t ≤ T, where C and c are two positive constants
depending only on H, θ, ] and T.

Proof. The lemma is similar to Lemma 3.5 in the previous
study (I).

Lemma 3.6. Let θ > 0 and 1
2≤H< 1. Then the convergence

∫∞

t
hθ(s)dSHs → 0 (18)

holds in L2 and almost surely as t tends to infinity.

Proof. Convergence (18) in L2 follows from Lemma (3.1). In fact,
by Eq. 10, we have

E ∫∞

t
hθ(s)dSHs

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 ≤ ∫∞

t
∫∞

t
|hθ(s)‖hθ(r)‖ψ(s, r)|dsdr

≤C∫∞

t
∫∞

t
min 1,

1

s2
{ }min 1,

1

r2
{ }|ψ(s, r)|dsdr

� CH(2H − 1)∫∞

t
∫∞

t
|s − r|2H−2 − |s + r|2H−2( ) dsdr(sr)2→ 0,

as t tends to infinity.
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On the other hand, by Lemma (3.5), 3.3 and the
equation SHt

t → 0 almost surely as t tends to infinity, we
find that

∫∞

t
SHs dhθ(s)

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣≤Cθ ∫∞

t
|SHs |

ds

s3
→ 0,

as t tends to infinity. It follows from the integration by parts that

∫∞

t
hθ(s)dSHs � −hθ(t)SHt − ∫∞

t
SHs dhθ(s) → 0

almost surely as t tends to infinity.

4 SOME LARGE TIME BEHAVIORS

In this section, we consider the long time behaviors for XH with
1
2<H< 1 and θ > and our objects are to prove the statements
given in Section 1.

Theorem 4.1. Let θ > 0 and 1
2≤H< 1. Then the convergence

XH
t →

a.s
XH

∞ (19)

holds in L2 and almost surely as t tends to infinity.

Proof. When H � 1
2, the convergence is obtained in Cranston-Le

Jan [8]. Consider the decomposition

XH
t −XH

∞ � ∫t

0
[hθ(t, s) − hθ(s)]dSHs + ∫∞

t
hθ(s)dSHs

+] ∫t

0
hθ(t, s)ds − ∫∞

0
hθ(s)ds( )

≡ YH
t + ∫∞

t
hθ(s)dSHs + ]ΔH

t (θ)

(20)

for all t ≥ 0.
We first check that Eq. 19 holds in L2. By Lemma 3.6 and

Lemma 3.2, we only need to prove YH
t converges to zero in L2. It

follows from the equation

∫∞

t
e−

1
2 θu

2
du ∼

1
θt

e−
1
2 θt

2

for all θ > 0 as t tends to infinity and Lemma 3.4 that

E YH
t

∣∣∣∣ ∣∣∣∣2 � ∫t

0
∫t

0
|hθ(t, s) − hθ(s)‖hθ(t, r) − hθ(r)|ψH(s, r)dsdr

� ∫∞

t
e−

1
2 θu

2
du( )2 ∫t

0
∫t

0
θ2sre

θ
2 (s2+r2)ψH(s, r)dsdr

∼
1

t2
e−θt

2 ∫t

0
∫s

0
sre

θ
2 (s2+r2)ψH(s, r)dsdr

� H(2H − 1)
t2

e−θt
2 ∫t

0
∫s

0
sre

θ
2 (s2+r2) |s − r|2H−2 − |s + r|2H−2( )

dsdr → 0

for all θ > 0 and 1
2<H< 1 as t tends to infinity, which implies that

Eq. 19 holds in L2.

We now check that Eq. 19 holds almost surely as t tends to
infinity. By Lemma 3.6, we only need check that YH

t converges to
zero almost surely as t tends to infinity. We have

YH
t � ∫t

0
[hθ(t, s) − hθ(s)]dSHs

� ∫∞

t
e−

1
2 θu

2
du( )∫t

0
θse

1
2 θs

2
dSHs ∼

1
t
e−

1
2 θt

2 ∫t

0
se

1
2 θs

2
dSHs

for all θ > 0 and 1
2<H< 1 as t tends to infinity. To obtain the

convergence, we define the random sequence

Zn,k � YH
n+k

n
, k � 0, 1, 2, . . . , n

for every integer n ≥ 1. Then {Zn,k, k � 0, 1, 2, . . ., n} is Gaussian
for every integer n ≥ 1. It follows from Lemma 3.4 that

σ2(n)dE (Zn,k)2[ ] ∼ 1

n + k

n
( )2 e

−θ n+k
n( )2E ∫n+k

n

0
se

1
2 θs

2
dSHs

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣2⎡⎢⎣ ⎤⎥⎦

≤
1

n + k

n
( )2 e

−θ n+k
n( )2 ∫n+k

n

0
∫n+k

n

0
sre

1
2 θ(s2+r2)|ψH(s, r)|dsdr ∼

C

n2H

for every integer n ≥ 1 and 0 ≤ k ≤ n, which implies that

P(|Zn,k|> ε) � ∫∞

ε

1���
2π

√
σ(n)e

− x2

2σ2(n)dx≤
1
ε
∫∞

ε

x���
2π

√
σ(n)e

− x2

2σ2(n)dx

� σ(n)
ε

∫∞

ε/σ(n)
y���
2π

√ e−
y2

2 dy≤
σ(n)
ε

e
− ε2

4σ2(n) ∫∞

ε/σ(n)
y���
2π

√ e−
y2

4 dy

≤
C

εnH
exp −C1ε

2n2H{ }
for any ε > 0, every integer n ≥ 1 and 0 ≤ k ≤ n.

On the other hand, for every s ∈ (0, 1), we denote

Rn,k
s � YH

n+k+s
n
− YH

n+k
n
.

Then {Rn,k
s , 0≤ s≤ 1} also is Gaussian for every integer n ≥ 1

and 0 ≤ k ≤ n. It follows that

E (Rn,k
s − Rn,k

s′
)2[ ]≤ C

n2H
E (SHs − SHs′ )2[ ]

for all s, s′ ∈ [0, 1]. Thus, for any ε > 0, by Slepian’s theorem and
Markov’s inequality, one can get

P sup
0≤s≤1

|Rn,k
s |> ε( ) ≤P

C

nH
sup
0≤s≤1

|SHs |> ε( )
≤

C

ε6n6H
E sup

0≤s≤1
|SHs |6[ ]≤

C

ε6n6H

for every integer n ≥ 1 and 0 ≤ k ≤ n. Combining this with the
Borel–Cantelli lemma and the relationship

{ sup
n+k

n<t<n+k+1
n

|YH
t |> ε} ⊆ {|Zn,k|> ε/2} ∪ sup

0≤s≤1
|Rn,k

s |> ε/2{ },
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we show that YH
t → 0 almost surely as t tends to infinity. This

completes the proof.

Theorem 4.2. Let θ > 0 and 1
2≤H< 1. Then the convergence

tH XH
t −XH

∞( ) → N 0, λH,θ( ) (21)

holds in distribution, where N is a central normal random
variable with its variance

λH,θ � 1
2
Γ(2H + 1)θ−2H.

Proof. When H � 1
2, this result also is unknown. We only

consider the case 1
2<H< 1 and similarly one can prove the

convergence for H � 1
2. By Eq. 20, Slutsky’s theorem, and

Lemma 3.2, we only need to show that

tH ∫∞

t
hθ(s)dSHs → 0 (t → ∞) (22)

in probability and

tHYH
t → N(0, λH,θ) (t → ∞). (23)

in distribution.
First, Eq. 22 follows from Eq. 10 and

t2HE ∫∞

t
hθ(s)dSHs

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 � t2H ∫∞

t
∫∞

t
hθ(s)hθ(r)ψH(s, r)dsdr

≤
4t2H

θ2
∫∞

t
∫∞

t

1

(sr)2ψH(s, r)dsdr

� 4t4H−4

θ2
∫∞

1
∫∞

1

1

(xy)2ψH(x, y)dxdy → 0

for all θ > 0 and 1
2<H< 1 as t tends to infinity.

We now obtain convergence (23). By the equation

∫∞

t
e−

1
2 θu

2
du ∼

1
θt
e−

1
2 θt

2
,

as t tends to infinity and Lemma 3.4, we get

t2HE YH
t

∣∣∣∣ ∣∣∣∣2 � t2H ∫t

0
∫t

0
hθ(t, s) − hθ(s)[ ] hθ(t, r) − hθ(r)[ ]ψH(s, r)dsdr

� t2H ∫∞

t
e−

1
2 θu

2
du( )2 ∫t

0
∫t

0
θ2sre

θ
2 (s2+r2)ψH(s, r)dsdr

∼
2

t2−2H
e−θt

2 ∫t

0
∫s

0
sre

θ
2 (s2+r2)ψH(s, r)dsdr→

1
2
Γ(2H + 1)θ−2H

for all θ > 0 and 1
2<H< 1 as t tends to infinity. Thus, convergence

(23) follows from the normality of tHYH
t for all 12<H< 1 and the

theorem follows.
At the end of this section, we obtain a law of large numbers.

Consider the process YH defined by

YH
t � ∫t

0
(XH

t −XH
s )ds, t≥ 0.

Then the self-attracting diffusion XH satisfies

XH
t � SHt − θ∫t

0
YH

s ds + ]t, t≥ 0 (24)

and

YH
t � tXH

t − ∫t

0
XH

s ds � ∫t

0
sdXH

s

by integration by parts. It follows that

dYH
t � −θtYH

t dt + tdSHt + ]tdt (25)

for all 12≤H< 1 and t ≥ 0. By the variation of constant method, we
can give the explicit representation of YH as follows:

YH
t � e−

1
2 θt

2 ∫t

0
se

1
2 θs

2
dSHs + ]

θ
1 − e−

1
2 θt

2( ), t≥ 0. (26)

Lemma 4.1. Let 1
2≤H< 1 and θ > 0. Then we have

1
T
∫T

0
YH

t dt →
]
θ

(27)

almost surely and in L2 as T tends to infinity.

Proof. This lemma follows from Eq. 24 and the estimates

E
1
T
∫T

0
YH

t dt −
]
θ

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣2( ) � 1

θ2
E

SHT
T

− XH
T

T

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣2( )
≤
2

θ2
E(SHT )2
T2 + E(XH

T )2
T2( ) → 0,

as T tends to infinity.

Theorem 4.3. Let 1
2≤H< 1 and θ > 0. Then we have

1
T3−2H ∫T

0
(YH

t )2dt →
H

3 − 2H
θ−2HΓ(2H) (28)

in L2 as T tends to infinity.

Proof. Given 1
2<H< 1 and θ > 0,

Δt � ]
θ

1 − e−
1
2 θt

2( ), ηHt � e−
1
2 θt

2 ∫t

0
ue

1
2 θu

2
dSHu

for all t ≥ 0. Then

YH
t � ηt + Δt

for all t ≥ 0. We now prove the lemma in three steps.

Step I. We claim that

1
T3−2H ∫T

0
E (YH

t )2[ ]dt → H

3 − 2H
θ−2HΓ(2H), (29)

as t tends to infinity. Clearly, we have

lim
T→∞

1
T3−2H ∫T

0
Δ2
t dt � 0.

Thus, 29 is equivalent to
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1
T3−2H ∫T

0
E (ηHt )2[ ]dt → H

3 − 2H
θ−2HΓ(2H). (30)

By L’Hôspital’s rule and Lemma 3.4, it follows that

lim
T→∞

1

T3−2H ∫T

0
E (ηHt )2[ ]dt

� lim
T→∞

1

T3−2H ∫T

0
e−θt

2 ∫t

0
∫t

0
uve

1
2 θ(u2+v2)ψH(u, v)dudv( )dt

� lim
T→∞

e−θT
2

(3 − 2H)T2−2H ∫T

0
∫T

0
uve

1
2 θ(u2+v2)ψH(u, v)dudv

� 1
2(3 − 2H) θ

−2HΓ(2H + 1) � H

3 − 2H
θ−2HΓ(2H)

for all 1
2<H< 1.

Step II. We claim that

1
T6−4H E ∫T

0
Δtη

H
t dt( )2

� 1
T6−4H ∫T

0
∫T

0
ΔtΔsE(ηHt ηHs )dsdt → 0,

(31)

as T tends to infinity. We have that

E ηHt η
H
s( ) � e−

1
2 θ(t2+s2 )E ∫t

0
ue

1
2 θu

2
dSHu · ∫s

0
ve

1
2 θv

2
dSHv( )

� e−
1
2 θ(t2+s2 ) ∫t

0
∫s

0
uve

1
2 θ(u2+v2 )ψH(u, v)dvdu

� H(2H − 1)e−1
2 θ(t2+s2 ) ∫t

s
ue

1
2 θu

2 ∫s

0
ve

1
2 θv

2 (u − v)2H−2 − (u + v)2H−2{ }dv( )du
+H(2H − 1)e−1

2 θ(t2+s2 ) ∫s

0
∫s

0
uve

1
2 θ(u2+v2 ) (u − v)2H−2 − (u + v)2H−2{ }dvdu

≡ H(2H − 1) Λ1(H; t, s) + Λ2(H; t, s)[ ]
(32)

for all t > s > 0. An elementary calculation may show that

Λ1(H; t, s) ≤ e−
1
2 θ(t2+s2) ∫t

s
u(u − s)2H−2e

1
2 θu

2 ∫s

0
ve

1
2 θv

2
dv( )du

≤
1
θ
e−

1
2 θ(t2+s2) e

1
2 θs

2 − 1( )∫t

s
u(u − s)2H−2e

1
2 θu

2
du

� 1
θ
e−

1
2 θ(t2−s2) 1 − e−

1
2 θs

2( ) ∫t

s
u(u − s)2H−2e

1
2 θ(u2−s2)du

≤
1
2θ

e−
1
2 θ(t2−s2) ∫t2−s2

0

�����
s2 + x

√ − s( )2H−2
e
1
2 θxdx

≤
1
2θ

e−
1
2 θ(t2−s2) ∫t2−s2

0
x2H−2 �����

s2 + x
√ + s( )2−2He12 θxdx

≤
1
2θ
(t + s)2−2He−1

2 θ(t2−s2) ∫t2−s2

0
x2H−2e

1
2 θxdx

for all t > s > 0. It follows from the equation∫x

0
yβeydypxβ(1 ∧ x)ex with x ≥ 0 and β > − 1 that

Λ1(H; t, s)≤C(t − s)2H−2 1 ∧ (t2 − s2)( )
≤C(t − s)2H−2 1 ∧ (t2 − s2)( )α (33)

for all t > s > 0 and 0 ≤ α ≤ 1. For the term Λ2(H; t, s), by the proof
of Lemma 3.4, we find that

lim
s→∞

1
s2−2Heθs2

∫s

0
∫u

0
uve

1
2 θ(u2+v2)(u − v)2H−2dvdu

� 1
4
θ−2HΓ(2H + 1)

for all 1
2<H< 1. Combining this with the equation

lim
s→0

1
s2+2Heθs2

∫s

0
∫u

0
uve

1
2 θ(u2+v2)(u − v)2H−2dvdu � C ∈ (0,∞)

and the equation e−x ≤ 1
1+x≤

1
x9 with x > 0 and 0 < 9 < 1, we get

Λ2(H; t, s) � 2e−
1
2 θ(t2+s2) ∫s

0
∫u

0
vue

1
2 θ(u2+v2)(u − v)2H−2dvdu

≤Ce−
1
2 θ(t2+s2) s2−2H(1 ∧ s)4Heθs2( )

� Cs2−2H(1 ∧ s)4He−1
2 θ(t2−s2) ≤

Cs2−2H

1 + 1
2
θ(t2 − s2)

≤
Cs2−2H

(t2 − s2)2−2H−c ≤C(t2 − s2)c(t − s)2H−2

(34)

for all t > s > 0, 1
2<H< 1 and 0 ≤ c ≤ 2 − 2H. Thus, we have

showed that the estimate

E ηHt η
H
s( )≤CH,θ(t − s)2H−2 1 ∧ (t2 − s2)( )α

+ (t2 − s2)c(t − s)2H−2. (35)

holds for all t > s ≥ 0. In particular, we have

E ηHt η
H
s( )≤CH,θ|t − s|2H−2 (36)

for all t, s ≥ 0. As a corollary, we get

1

T6−4H E ∫T

0
Δtη

H
t dt( )2

� 1

T6−4H ∫T

0
∫T

0
ΔtΔsE(ηHt ηHs )dsdt

≤
Cθ,H

T6−4H ∫T

0
∫T

0
|t − s|2H−2 � Cθ,H

T6−6H → 0,

as T tends to infinity.

Step III. We claim that

1
T6−4H E ∫T

0
(YH

t )2dt( )2[ ] → H

3 − 2H
θ−2HΓ(2H)( )2

, (37)

as t tends to infinity. By steps I and II, we find that Eq. 37 is
equivalent to

1
T6−4H E ∫T

0
(ηHt )2dt( )2[ ] → H

3 − 2H
θ−2HΓ(2H)( )2

, (38)

as t tends to infinity. Noting that the equation

E (ηHt )2(ηHs )2( ) � E (ηHt )2( )E (ηHs )2( ) + 2 E(ηHt ηHs )( )2 (39)
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for all t, s > 0, we further find that convergence (38) also is
equivalent to

Λ(H;T)d 1
T6−4H E ∫T

0
(ηHt )2 − E(ηHt )2( )dt( )2

� 2
T6−4H ∫T

0
∫t

0
EηHt η

H
s( )2dsdt → 0, (40)

as T tends to infinity. We now check that convergence (40) in
two cases.

Case 1. Let 3
4<H< 1. Clearly, by Eq. 36, we have to

Λ(H;T)≤Cθ,H
1

T6−4H ∫T

0
∫t

0
(t − s)4H−4dsdt

≤Cθ,HT
8H−8 → 0 (T → ∞). (41)

Case 2. Let 1
2<H≤ 3

4. By Eq. 36, we have that

∫T

1
∫ ���

t2−1√

0
E(ηHt ηHs )[ ]2dsdt≤Cθ,H ∫T

1
∫ ���

t2−1√

0
(t − s)4H−4dsdt

≤Cθ,HT
4H−2

with 1
2<H< 3

4 and

∫T

1
∫ ���

t2−1√

0
E(ηHt ηHs )[ ]2dsdt≤ ∫T

1
∫ ���

t2−1√

0

1
t − s

dsdt≤CT logT

with H � 3
4 for all T > 1. Similarly, by Eq. 35, we also have

∫T

1
∫t ���

t2−1√ E(ηHt ηHs )[ ]2dsdt
≤Cθ,H ∫T

1
∫t ���

t2−1√ (t − s)4H−4+2α(t + s)2αdsdt

≤Cθ,H ∫T

1
∫t ���

t2−1√ t2α(t − s)4H−4+2αdsdt

� Cθ,H ∫T

1
t2α t − �����

t2 − 1
√( )4H−3+2α

dt

� Cθ,H ∫T

1

t2α

t + �����
t2 − 1

√( )4H−3+2α dt≤CT
4−4H

for all T > 1 and 3
2 − 2H< α � c< 2 − 2H since 0 < t2 − s2 < 1 for

(s, t) ∈ (s, t)|1≤ t≤T, �����
t2 − 1

√
< s< t{ }. Thus, we have shown

that

Λ(H;T) � 1

T6−4H ∫T

1
∫ ���

t2−1√

0
E(ηHt ηHs )[ ]2dsdt

+ 1

T6−4H ∫T

1
∫t ���

t2−1√ E(ηHt ηHs )[ ]2dsdt + 1

T6−4H ∫1

0
∫t

0
E(ηHt ηHs )[ ]2dsdt

≤
Cθ,H

T6−4H T4H−2 + T4−4H + 1( )≤ Cθ,H

T2 → 0

(42)

with 1
2<H< 3

4 and

Λ 3
4
;T( )≤ Cθ,H

T3
T logT + T + 1( )#Cθ,H(logT + 1) 1

T2
→ 0, (43)

as T tends to infinity. This shows that convergence (40) holds for
all 1

2<H< 1. Similarly, we can also show the theorem holds for
H � 1

2 and the theorem follows.

Remark 1. By using the Borel–Cantelli lemma and Theorem 4.3,
we can check that convergence (28) holds almost surely.

5 SIMULATION

We have applied our results to the following linear self-attracting
diffusion driven by a sub-fBm SH with 1

2<H< 1 as follows:

dXH
t � dSHt − θ ∫t

0
(XH

t −XH
s )ds( )dt + ]dt, XH

0 � 0,

where θ > 0 and ] ∈ R are two parameters. We will simulate the
process with ] � 0 in the following cases:

• H � 0.7: θ � 1, θ � 10 and θ � 100, respectively (see,
Figures 1–3, Tables 1–3);

• H � 0.5: θ � 1, θ � 10 and θ � 100, respectively (see,
Figures 4–6, Tables 4–6).

Remark 2. From the following numerical results, we can find that
it is important to study the estimates of parameters θ and ].
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The sandpile cellular automata, despite the simplicity of their basic rules, are adequate
mathematical models of real-world systems, primarily open nonlinear systems capable to
self-organize into the critical state. Such systems surround us everywhere. Starting from
processes at microscopic distances in the human brain and ending with large-scale water
flows in the oceans. The detection of critical transitions precursors in sandpile cellular
automata will allow progress significantly in the search for effective early warning signals for
critical transitions in complex real systems. The presented paper is devoted to the
detection and investigation of such signals based on multifractal analysis of the time
series of falls of the cellular automaton cells. We examined cellular automata in square
lattice and random graphs using standard and facilitated rules. It has been established that
log wavelet leaders cumulant are effective early warning measures of the critical transitions.
Common features and differences in the behavior of the log cumulants when cellular
automata transit into the self-organized critical state and the self-organized bistability state
are also established.

Keywords: early warning signals, sandpile cellular automata, self-organized criticality, selforganized bistability,
wavelet leaders method, log-cumulants, multifractal formalism

INTRODUCTION

Open complex systems usually operate in a nonequilibrium state, which can lead to the appearance of
fluctuations in them, induced by external influence. When the initial structureless state is lost, which
is an extrapolation of the equilibrium state to nonequilibrium conditions, a critical transition occurs
in the system, leading to the emergence of new stationary states. In addition to the specified critical
transition that occurs as a result of bifurcations (the so-called bifurcation-induced critical transition),
noise-induced critical transition and rate-induced critical transition can occur in systems. An
important feature of such critical transitions is the fact that such transitions have common features,
despite the differences in the details of the elements interactions of each system. Due to this reason,
many common (unifying) quantitative and qualitative precursors of critical transitions or early
warning signals (EWS) in the critical transitions have been proposed (see the papers [1–5]). Despite
this, we assume that there should be differences in the EWS for different types of critical transitions,
at least in the neighborhood of the critical transition point. Finding such differences is one of the
objectives of our research.

The justification for the use of most early warning measures is associated with an increase in the
time that needed to return to a stable state with small disturbances in the neighborhood of the critical

Edited by:
Ming Li,

Zhejiang University, China

Reviewed by:
Alexander Shapoval,

University of Łódź, Poland
Victor Popov,

Lomonosov Moscow State University,
Russia

*Correspondence:
Andrey Dmitriev

a.dmitriev@hse.ru

Specialty section:
This article was submitted to

Interdisciplinary Physics,
a section of the journal

Frontiers in Physics

Received: 19 December 2021
Accepted: 10 January 2022
Published: 31 January 2022

Citation:
Dmitriev A, Kornilov V, Dmitriev V and
Abbas N (2022) Early Warning Signals

for Critical Transitions in Sandpile
Cellular Automata.

Front. Phys. 10:839383.
doi: 10.3389/fphy.2022.839383

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 10 | Article 8393831

ORIGINAL RESEARCH
published: 31 January 2022

doi: 10.3389/fphy.2022.839383

90

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.839383&domain=pdf&date_stamp=2022-01-31
https://www.frontiersin.org/articles/10.3389/fphy.2022.839383/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.839383/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.839383/full
http://creativecommons.org/licenses/by/4.0/
mailto:a.dmitriev@hse.ru
https://doi.org/10.3389/fphy.2022.839383
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.839383


point. These EWS include autocorrelation, variance, skewness
and kurtosis, power spectral density, and Hurst exponents. These
measures are estimated for the time series characterizing changes
in some parameters of the systems. For example, the order
parameter can be used as such parameter, if the critical
transition is the first or the second order phase transition.
Other EWS are recurrence measures such as determinism,
laminarity and entropy (see the paper [6]).

Complex systems surround us everywhere. Starting from
processes at microscopic distances in the human brain and
ending with large-scale water flows in the oceans. In the
complex systems, the interaction of individual elements with
each other is so complex that the entire system acquires
completely new and unexpected properties that cannot be
reduced to the properties of individual parts. Controlling such
parameters as temperature or magnetization, it is possible to
provide a phase transition—a transition through a critical point,
which is characterized by power laws. However, there are various
examples of processes and systems (see the papers [7–9]), which
are characterized by power laws that have arisen without any
parameters’ tunning: seismic activity with destructive
earthquakes, neural and social networks, financial markets,
forest fires, etc. P. Bak, C. Tang, and K. Wiesenfeld [8]
discovered self-organized criticality (SOC) phenomena in
1987. They built a mechanism that explains how a system
reaches the critical state without tunning of any parameters.
Their model, called the sandpile or BTW model, is
implemented on a square lattice on which grains of sand fall.
Sandpile cellular automata have simple rules that lead to complex
critical behavior. A detailed description of sandpile models is
provided in Time Series Data Generation using Sandpile Cellular
Automata. The self-organized critical transition corresponds to
the second order phase transitions. It was recently found (see the
papers [10–13]) that in real complex systems the self-organized
bistable (SOB) transition is possible, which corresponds to the
first order phase transition. A sandpile cellular automata with
facilitated rules has also been proposed (see the paper [13]),
which is capable to demonstrate the SOB transition. At this
moment, we are not aware of papers that present the results
of the study of time series features generated by systems when
they approach the SOC state and the SOB state. To close this gap,
we conducted a study on discovering the EWS of the critical
transitions and the features of the critical transitions for sandpile
cellular automata. Our study is based on the results of multifractal
time series analysis generated by the automata. Research results
are presented in this paper.

The paper is structured as follows. Methods provides
descriptions of local sandpile cellular automata rules in square
lattice and random graphs—time series generators for the
number of collapsed cells, and the wavelet leader method for
time series analysis. In the Result and Their Discussion, the results
of EWS detection for the critical transitions and multifractal
features of the automata being in the subcritical phase and the
critical state are presented and discussed. The Result and Their
Discussion is devoted to the discussion of obtained results, as well
as the discussion of possible practical applications obtained by
EWS for detecting critical transitions.

METHODS

This Section describes the rules for the operation of sandpile
cellular automata - time series generators for number of the falls
(xt, t ∈ {0} ∪ Z+, where t is the iteration step). The rules of
automata capable to self-organize into a critical state and the
rules of automata capable to self-organize into a bistable state are
considered. A brief description of wavelet leader method in the
context of multifractal formalism is presented, as well as the role
of log wavelet leaders cumulant in the analysis of multifractal time
series.

Time Series Data Generation Using
Sandpile Cellular Automata
To date, isotropic sandpile cellular automata (SCA) with a
variety of local rules have been developed (see the reviews [14,
15]). To generate the time series data, we used the standard
rules of the Bak—Tang—Wiesenfeld (BTW) [8], Feder—Feder
(FF) [16] and Manna (M) [17] models. SCA with standard
rules (SR) are capable to self-organize into a critical state. We
also looked at facilitated sandpile cellular automata or
facilitated rules (FR) automata. Such automata are capable
to self-organize into a bistable state. A modification of the
Manna model as a facilitated SCA model is presented in the
paper [13]. Finally, we investigated the dynamics of sand
grains not only on square lattice (SL), but also on random
networks grown using the Erdos—Renyi (ER) model and the
Barabasi—Albert (BA) model (see the papers [18, 19]). The
introduced abbreviations will further be used to denote a
cellular automaton. For example, FF-ST-BA matches
sandpile cellular automata with standard Feder—Feder
rules on Barabasi—Albert (BA) network.

The basic operating principle of any SCA is quite simple. Let
us describe it in the form of an algorithm, at each step of which
the similarities and differences of each of the automata are
indicated. First of all, if cellular automata on random graphs
are considered, then it is necessary to grow these graphs. A
description of cultivation is provided at the end of this Subsection.

Step 1. Randomly selected cells (x, y) of a square lattice or a
grown random graph are filled randomly, one particle at a time.
As a result, the number of particles in these cells is zi (x,y)→
zi (x,y)+1.

Step 2. The critical value of particles (zc) is determined for each
cell. For square lattices zc = 4, for random graphs zc is equal to the
number of connections of the vertex (x, y).

Step 3. Collapse of cells and redistribution of particles
between cells.

The stability condition for each of the cells of the automaton
for a model with standard rules is checked. If zi (x, y) ≥zc, then the
given cell (x, y) crumbles with the distribution of particles into
neighboring cells. After the cell is overturned, grains of sand are
distributed equally to each neighboring cell in deterministic
models (FF- and BTW-model); a grain of sand falls into a
randomly selected neighboring cell in the stochastic M-model.
On nodes with degree 1 of random graphs, the collapse of a cell
(node) can only lead to the escape of particles from these nodes.
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For the model with facilitated rules, the stability condition for
each of the cells of the automaton is also checked. If zi (x, y) ≥zc or
fi-1 (x, y) ≥2 (f is the number of falls into a cell on the previous
move), then cell (x, y) collapses into neighboring cells in
accordance with rules of the model. Also, shedding can be
deterministic and random.

Step 4. The number of collapsed cells is calculated, which
corresponds to the value of the time series at a certain step.

In conservative models (M- and BTW-model) on the SL, when
the unstable cell is overturned, the value in it decreases by the
value zc, as a result the number of sand grains is preserved. In
such models, sand grains can leave the RSL only through the
boundaries of the lattice. In the dissipative FF-model on the RSL,
after overturning, the number of sand grains sand in the unstable
cell becomes zero. In this case, a supercritical number of sand
grains z(x, y)> zc occurs, which are also capable to leave the
system through the lattice.

The sandpile cellular automata on the RSL are very
approximate models of real systems, which are characterized
by self-organization into a critical and bistable states. First of all,
the approximation of the models is associated with a fixed and
limited number of nearest neighbors of each node of the
automaton. Therefore, the study of critical transitions in SCA
on ER- and BA-networks is under particular interest. For
example, although the ER model does not reproduce some of
the typical properties of real networks, on average, the model is a
good model for transportation networks, contagion and diffusion
(see the paper [19]). The BA model is a good model for complex
networks, and therefore has a much wider application area (see
the papers [20, 21]). Random graphGER(V, E) in the ER model is
grown as a result of joining any two vertices vi and vj (v ∈ V),
using edge eij ∈ E with some probability p ∈ [0, 1] regardless of
all other pairs of vertices ekm ∈ E, the number of which is C2

n − 1.
In other words, edges are grown according to the standard
Bernoulli scheme with a fixed number of vertices equal to n.
Random graph GBA(V, E) in the BA model is grown from an
initial graph with the number of vertices n≥ 2 and degree of
vertices k≥ 1. Each new vertex i joins the existing vertices with
probability ki/∑ kj. The network built using the BA model is a
scale-free network with a power-law probability distribution for
the degree of vertices. The total number of the edges for the BA
graph and ER graph is the same and equals 2,500. The total
number of edges in the square lattice is 4,900.

Below, we consider the formal rules of all studied sandpile
cellular automata.

Sandpile Cellular Automata on the Square Lattice
LetsN is the number of the square lattice nodes, K is the number
of nearest neighbors of the node, Ne � (x, y ± 1;x ± 1, y)
denotes the nearest neighbors of the node.

Then the formal rules for BTW-ST-SL automata will take the
following form.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc
zi+1(x, y) → zi+1(x, y) − zc
zi+1(Ne) → zi+1(Ne) + 1

. (1)

BTW-FA-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc ∨ fi(x, y)≥ 2
zi(x, y)≥ zc: ⎧⎪⎨⎪⎩ zi+1(x, y) → zi+1(x, y) − zc

zi+1(Ne) → zi+1(Ne) + 1
fi+1(Ne) → fi+1(Ne) + 1

zi(x, y)< zc: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zi+1(x, y) → zi+1(x, y) − zi(x, y)

zi+1(Ne) → zi+1(Ne) + δk,∑K
k�1

(δk ≥ 0) � zi(x, y)
fi+1(Ne) → fi+1(Ne) + 1, δk > 0

.

(2)
FF-ST-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc
zi+1(x, y) → zi+1(x, y) − zi(x, y)

zi+1(Ne) → zi+1(Ne) + 1
. (3)

FF-FA-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc ∨ fi(x, y)≥ 2
zi(x, y)≥ zc: ⎧⎪⎨⎪⎩ zi+1(x, y) → zi+1(x, y) − zi(x, y)

zi+1(Ne) → zi+1(Ne) + 1
fi+1(Ne) → fi+1(Ne) + 1

zi(x, y)< zc: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zi+1(x, y) → zi+1(x, y) − zi(x, y)

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zi(x, y)

fi+1(Ne) → fi+1(Ne) + 1, δk > 0

.

(4)
M-ST-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc
zi+1(x, y) → zi+1(x, y) − zc

zi+1(Ne) → zi+1(Ne) + δk,∑K
k�1

(δk ≥ 0) � zc
. (5)

M-FA-SL automata.

zc � 4, x, y ∈ [1, N], zi(x, y)≥ zc ∨ fi(x, y)≥ 2
zi(x, y)≥ zc: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zi+1(x, y) → zi+1(x, y) − zc

zi+1(Ne) → zi+1(Ne) + δk,∑K
k�1

(δk ≥ 0) � zc

fi+1(Ne) → fi+1(Ne) + 1, δk > 0

zi(x, y)< zc: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zi+1(x, y) → zi+1(x, y) − zi(x, y)

zi+1(Ne) → zi+1(Ne) + δk,∑K
k�1

(δk ≥ 0) � zi(x, y)
fi+1(Ne) → fi+1(Ne) + 1, δk > 0

.

(6)

Sandpile Cellular Automata on the Random Graphs
Let Kn is the number of nearest neighbors for each node n of the
graph, Ne � (x, y ± 1;x ± 1, y) denotes the nearest neighbors of
the node.

Then the formal rules for BTW-ST automata will take the
following form.
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zcn � Kn, zi(n)≥ zcn
zi+1(n) → zi+1(n) − zcn

zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
. (7)

BTW-FA automata.

zcn � Kn, zi(n)≥ zcn ∨ fi(n)≥ 2

zi(n)≥ zcn:
⎧⎪⎨⎪⎩ zi+1(n) → zi+1(n) − zcn

zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
fi+1(Ne) → fi+1(Ne) + 1, zcn > 1

zi(n)< zcn:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zi+1(n) → zi+1(n) − zi(n)

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zi(n), zcn > 1

fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

.

(8)
FF-ST automata.

zcn � Kn, zi(n)≥ zcn
zi+1(n) → zi+1(n) − zi(n)

zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
. (9)

FF-FA automata.

zcn � Kn, zi(n)≥ zcn ∨ fi(n)≥ 2

zi(n)≥ zcn:
⎧⎪⎨⎪⎩ zi+1(n) → zi+1(n) − zi(n)

zi+1(Ne) → zi+1(Ne) + 1, zcn > 1
fi+1(Ne) → fi+1(Ne) + 1, zcn > 1

zi(n)< zcn:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zi+1(n) → zi+1(n) − zi(n)

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) �

zi(n), zcn > 1
fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

. (10)

M-ST automata.

zcn � Kn, zi(n)≥ zcn
zi+1(n) → zi+1(n) − zcn

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zcn, zcn > 1

. (11)

M-FA automata.

zcn � Kn, zi(n)≥ zcn ∨fi(n)≥ 2

zi(n)≥ zcn:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

zi+1(n) → zi+1(n) − zcn

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zcn

fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

zi(n)< zcn:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zi+1(n) → zi+1(n) − zi(n)

zi+1(Ne) → zi+1(Ne) + δk,∑Kn

k�1
(δk ≥ 0) � zi(n), zcn > 1

fi+1(Ne) → fi+1(Ne) + 1, δk > 0, zcn > 1

. (12)

Wavelet Leaders Multifractal Analysis of
Time Series Generated by Self-Organizing
Cellular Automata
Multifractal analysis, being a method of local investigation of the
temporal structure of a signal, allows to evaluate its correlation
properties even with a relatively short signal registration. This is
an undoubted advantage of this method (see the papers [22–24]).

There are several methods of multifractal time series analysis,
which have their own capabilities and limitations. The most
common are multifractal detrended fluctuation analysis
(MFDFA) [25, 26], wavelet transform maxima modules
(WTMM) [27], and wavelet leader method (WLM) [28, 29],
which is the development of the WTMM method. We used the
WLM to estimate the multifractal singularity spectrum. One of
the obvious advantages of WLM in relation to the MFDF method
is the absence of the need to detrend the initial time series data,
because the wavelets are not sensitive to the trend. In addition, the
MFDFA method gives good estimates only for positive values of
Holder exponents; at the same time, the accuracy of determining
the values of h(q) significantly decreases as h(q) → 0.

Without consideration technical details ofWLM, let us consider
the main features of the method in the context of the multifractal
formalism. A detailed description of the method is presented in the
papers [30–32]. After the discrete wavelet transform, the time series
is decomposed into discrete wavelet coefficients of different levels,
which are presented in the form of a matrix. After that, this matrix
is analyzed: the coefficient and its neighbors (right and left) are
analyzed at each level. The largest of them is selected. Thus, a set of
the largest coefficients is obtained. These are the wavelet leaders
defined for each wavelet expansion level.

Next, the standard procedure for multifractal analysis will be
considered. Structural functions are found that have the following
form:

S(j, q) � 1
nj

∑nj
k�1

Lx(j, k)q ≃ jζ(q), (13)

where j is the scale, q is the moment, Lx(j, k) are the wavelet
leaders for the time series xt, ζ(q) denotes the scaling exponent,
nj denotes the number of Lx(j, k) available at scale 2j.

The scaling exponent ζ(q) usually represented as the following
decomposition:

ζ(q) � c1 + c2
q2

2
+ . . . , (14)

where ci is the ith log-cumulant.
The singularity spectrum D(h) also allows quadratic

expansion in the following form:

D(h) � d + c2
2!
(h − c1

c2
)2

+ . . . , (15)

where h is the Holder exponent.
Expressions (14) and (15) allow to represent ζ(q) andD(h) as

a series with degrees of q with coefficients cp. The first two log-
cumulants have the following interpretation. The log cumulant c1
corresponds to the position of the singularity spectrummaximum
D(h), and therefore c1 � h(q � 0); c2 characterizes the spectrum
width. Indeed, a typical singularity spectrum D(h) has the shape
of a bell and is characterized by the width of the spectrum and the
position of the maximum. Also, the log cumulant c1 characterizes
the slope of the scaling exponents τ(q); c2 characterizes the
deviation from linearity ζ(q).
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If c1 ≠ 0 at c2 → 0, then ζ(q) is a linear function
corresponding to a monofractal time series. For such time
series, the spectrum D(h) is narrow and degenerates into a
single point in the limit, while the Holder exponent h is equal
to the Hurst exponent (H).

Thus, the doublet c1, c2 contains the main part of multifractal
information obtained from real data.

RESULTS AND THEIR DISCUSSION

In this Section, we consider the features of the time series for number
of falls (xt)—the presence of long-range dependences and
multifractal properties for fragments of time series corresponding
to the subcritical (SubC) phase (t ∈ [0, tC]) and critical state
(t ∈ [tC, 10000]). Here tC is the time of the cellular automaton
reaching the critical state. The results of consideration of the first two
log cumulants behavior (c1, c2) as early warning identifiers for critical
transitions are also presented. We generated fifty time series for each
cellular automaton. Thus, we got fifty realizations for each random
process. Obtaining such a number of realizations is due to the need to
obtain interval estimates, in particular, for log cumulants.

Long-RangeDependence in the Time Series
for the Sandpile Cellular Automata
Figure 1 shows the time series xt, t ∈ [0,10000], for the BTW
automata on the square lattice. These figures also show the
autocorrelation functions and Holder exponents (h(q)),
corresponding to the SubC phase and the critical state for the
sandpile cellular automata on the lattice square. Critical state is

considered either as the self-organized critical state (the SOC state),
implemented using standard rules, or as the self-organized bistability
state (the SOB state) implemented using facilitated rules. By the
SubC phase, we mean the phase in which the cellular automaton
occurs until it reaches one of the critical states at the time moment
corresponding to the critical iteration step (tC). The time series for
automata on random graphs has a qualitatively similar form, so we
limited ourselves to visualizing time series for automata on square
lattices Despite this, in Supplementary Table S1, we presented the
first two log cumulants (c1, c2) for all cellular automata, which are
both in the SubC phase, as well as in one of two critical states.

It has been established (Figure 1) that for all cellular automata the
rate of decrease of the autocorrelation function in the SubC phase
(t ∈ [0, tC]) is much greater than the rate of decrease of the
autocorrelation function in the critical phase (t ∈ [tC, 10000]) for
the automata with the standard rules. This phenomenon is typical
for all cellular automata, regardless of the graphs’ structure. The
shape of the curves h(q) indicates that the SubC phase and critical
state of cellular automata are characterized by time series xt with
multifractal properties, i.e. are described by a set of exponents h(q)
depending on the moment q. A feature of time series corresponding
to the SubC phase is the predominant influence of weak fluctuations
(at q< 0), while at strong fluctuations (at q> 0) the values of h are
close to zero. First of all, this is due to the presence of a large number
of zero values in the time series. In the critical state, the influence of
strong fluctuations increases, and the influence of weak fluctuations
decreases in comparison with the SubC phase. In the critical state,
the stochastic dynamics of falls becomes both anticorrelated (at
h< 0.5) for strong fluctuations, and correlated (at h> 0.5) for weak
fluctuations for the automata with the standard rules. Thus, the
transition of the standard cellular automaton into the critical state is

FIGURE 1 | Time series of falls for a standard (left) and facilitated (right)BTWautomaton, and the corresponding autocorrelation functions (log-log plot) and Holder
exponents.
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accompanied by a significant decrease of the correlated dynamics
corresponding to weak fluctuations, and an insignificant increase in
the uncorrelated dynamics corresponding to strong fluctuations. In a
critical state, facilitated automata correspond to Holder exponents
greater than 0.5.

The value c1 and its change during a critical transition,
presented in Supplementary Table S1, indicate an increase in
c1 during the transition of the facilitated cellular automaton from
the SubC phase to the critical state.

Thus, the first two log cumulants can be used as precursors of
critical transitions in the sandpile cellular automata. The next
Subsection is devoted to a discussion of this problem.

Early Detection of Critical Transitions Based
on Time Series for Log Wavelet Leaders
Cumulant
In a previous Subsection, we showed that c1 and c2 can be used as a
system of independent quantitative indicators for early detection of
critical transitions in the sandpile cellular automata. Indeed, these
indicators sufficiently describe the multifractal properties of the
time series for the number of falls (xt). And their change makes it
possible to determine the presence or absence of the critical
transition in the sandpile cellular automata. If we consider the
sandpile cellular automata as time series generators xt, recorded in
real time, then it is quite possible to identify the approach of the
automaton to the critical state based on the analysis results of the
time series for the log cumulants c1t(xt) and c2t(xt). This
Subsection is devoted to this analysis.

Figure 2 shows the time series c1t and c2t for cellular automata
on square lattices. Time series for automata on random graphs
have a similar form. The early warning time (tEW) for the critical
transitions is the same for all sandpile cellular automata, except for
automaton on the BA graph, and takes the value tEW � 4087.
Despite this, the time until a decision is made (Δt � tC − tEW)
depends on the structure and rules of the automaton. Thus, the
time Δt � 1413 for the standard BTWmodel on the square lattice;
the time Δt � 413 for facilitated BTW model on the square lattice.
The Δt values for all cellular automata are presented in
Supplementary Table S2, from which the following conclusions
can be made. The Δt values for automata with Manna stochastic

rules (M-ST-SL, M-FA-SL, M-ST-BA, M-FA-BA, M-ST-ER, and
M-FA-ER) less than for other automata. This empirical
phenomenon has a simple explanation. In automata with
Manna rules, the critical state occurs earlier than in automata
with the BTW model and FF model rules. This is because of the
Manna model rules are stochastic and, therefore, when some cells
overturn, it is possible to quickly bring neighboring cells to an
unstable state. Also, Δt for automata with facilitated rules is less
than Δt for automata with standard rules. This is due to the fact
that automata with facilitated rules transit into the critical state
earlier than automata with standard rules. The reason for this is
additional stochastic components in facilitated rules.

All cellular automata show the same behavior c1t and c2t, when
approaching to tEW (Figure 2). A decrease in the value of c1t by the
value Δc−1 is observed, accompanied by a sharp increase by the value
Δc+1 . For example, for BTW-ST-SL automaton Δc−1 � 0.0776 and
Δc+1 � 0.0343. An increase in the value of c1t by the value Δc+2 is
observed, accompanied by a sharp decrease by the value Δc−2 . For
example, for BTW-ST-SL automaton Δc+2 � 0.2935 and
Δc−2 � 0.5586. Consequently, the approach to tEW is accompanied
by an increase in the width of the singularity spectrum, and only at
time tEW a sharp decrease in the spectrum occurs. The considered
values Δc are presented in Supplementary Table S2 for all cellular
automata. In general, the behavior of the log cumulants is
independent of the structure and rules of the automata.

DISCUSSION

This Section presents a discussion of linking of our research
results to some recent results from the theory of early warning
indicators for critical transitions. Also, a discussion of possible
practical applications of proposed early warning measures for
detection of critical transitions is presented.

We will start by considering the main similarities and differences
in the stochastic dynamics of the number of unstable cells (xt) of
automata located in the SubC phase and in one of the critical states
(the SOC state and the SOB state), summarizing the discussions from
Result andTheirDiscussion. Common to automatawith standard and
facilitated rules is the multifractal structure xt in the SubC phase, and
the monofractal (more precisely, a weak multifractal) structure xt in

FIGURE 2 | Time series of the log cumulants for the standard (left) and facilitated (right) BTW automaton.
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the SOC state (for the standard models) and in the SOB state (for the
facilitated models). Such a transition into the critical state
corresponds to the multifractal-monofractal transition (see the
paper [33]). Another common feature is the long-range
dependence (LRD) in the time series (c1 > 0.5) for cellular
automata in the SubC phase. Therefore, this multifractality is due
to the existence of long-term correlations of small and large
fluctuations [34]. The only fundamental difference between the
SOC state and the SOB state is the presence of the short-range
dependence (SRD) in the xt in the first case (c1 < 0.5), and the
presence of the LRD in the xt in the second case.

As it is shown in the paper [35], the average magnetization
time series in the Ising model are multifractal in the SubC phase
and in the critical state. Moreover, the structure of the time
series is more heterogeneous in the critical state, than in the
SubC phase. The increase of the memory in time series as the
system approaches the critical point is also shown. In our
opinion, a significant difference between the indicated results
and those obtained by us lies in the fundamental difference
between the rules for the Ising model and the rules for the
sandpile cellular automata. In the paper [36], the results of the
study of changes in the temporal autocorrelation at lag 1 and the
power spectral density (PSD) as the system approaches to the
critical point are presented. There was a significant increase in
the autocorrelation in the neighborhood of the critical point,
which is associated with the critical slowing down, as well as an
increase in the parameter β of the power law for PSD
(S(ω)∝ω−β). These results are consistent with our results
for the facilitated model. Similar results are presented in
[37–39], but obtained using fractal analysis methods. The
results we obtained for facilitated models are also fully
confirmed by the results presented in the papers [40–43].
However, the results similar to the one obtained by us for
the standard models have not been presented yet.

The time series generated by real systems have a more complex
structure than the time series generated by the sandpile cellular
automata. However, we believe that the main features of c1t and
c2t behavior, when the automata approach the critical state, will
also be observed for real complex systems (see the papers [44,
45]). Let us take social media as an example. Recent studies have
shown that most social networks are capable to self-organize into
the critical state (see the papers [7, 46–51]). The mechanisms
(local rules) for online social networks (for example, Twitter) for
transition into the SOC state are similar to the standard rules of
the sandpile cellular automaton on the BA graph. It is known (see
the paper [52]) that the graph structure of user interactions in
online social networks corresponds to BA graphs. Indeed, the
information distribution is carried out by users who are in the
state of high-level reflection (unstable state). It manifests itself in
the form of reposts to their subscribers (neighboring nodes of the
graph). These subscribers, being in the unstable state, send
reposts to their subscribers, etc. As a result, starting from the

moment tC avalanche-like distribution of information in the
network is observed. On the contrary, the SubC phase
(t ∈ [0, tC]) of the online social network is characterized by
stochastic fluctuations in repost activity with a relatively small
amplitude. In most of such situations, it becomes necessary to
evaluate tEW, which is of undoubted interest for all specialists in
social networks monitoring. Obtaining of such estimates for real
time series of retweets relevant to various topics is one of the goals
of our further studies.

Finally, we look at the limitations and possible further research
in the analysis of critical transition precursors in sandy cellular
automata.

We have established only one limitation of the proposed
approach associated with the length of the analyzed time
series and the large number of zero values in it. To obtain
reliable results, the length of the time series must be at least
2000 steps. Otherwise, significant fluctuations in the value of the
log cumulants are observed, in which it is impossible to determine
their smoothed behavior.

From the point of view of the prospects for further research, in
our opinion, one should focus on the interpretation of jumps in
the values of log-cumulants, which are characteristic of critical
states of all cellular automata. An explanation of this empirical
phenomenon is possible by analyzing the time series obtained
under various initial conditions and sizes of all investigated
cellular automata.
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Deep neural networks (DNNs) with long-range dependence (LRD) have attractedmore and
more attention recently. However, LRD of DNNs is proposed from the view on gradient
disappearance in training, which lacks theory analysis. In order to prove LRD of foggy
images, the Hurst parameters of over 1,000 foggy images in SOTS are computed and
discussed. Then, the Residual Dense Block Group (RDBG), which has additional long
skips among two Residual Dense Blocks to fit LRD of foggy images, is proposed. The
Residual Dense Block Group can significantly improve the details of dehazing image in
dense fog and reduce the artifacts of dehazing image.

Keywords: long-range dependence, residual dense block, residual dense block group, deep neural network, image
dehazing, Hurst parameter (H)

INTRODUCTION

The single image dehazing based on deep neural networks (DNNs) refers to restoring an image from
a foggy image using DNNs. Although some efforts on dehazing have been proposed recently [1–6],
foggy image modeling is still an unsolved problem.

The early image model is Gaussian or Mixture Gaussian [7], but it cannot properly fit with foggy
images. In fact, the foggy images seem to show long-range dependence. That is, the gray levels
seemed to influence pixels in nearby regions. In our framework, each foggy image withm rows and n
columns in SOTS is reshaped as is an m×n column vector by arranging the elements of the image
column by column. Thus, we can fit the images by fractional Gaussian noise (fGn) [8–12] and discuss
dependence of an image by its Hurst parameter. The main conclusion of the Hurst parameter of a
fGn is as follows.

The auto-correlation function (ACF) of fGn is as follows:

CfGn(τ) � VH

2
[(|τ| + 1)2H + (|τ| − 1)2H − 2|τ|2H] (1)

where

VH � Γ(1 − 2H) cos πH
πH

(2)

is the strength of fGn and 0 < H < 1 is the Hurst parameters [8–10].
If 0.5 < H < 1, one has the following:

∫∞
0

CfGn(τ)dτ � ∞ (3)
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Thus, the fGn is of long-range dependency (LRD) when 0.5
<H < 1.

When 0 <H < 0.5, one has the following:

∫∞
0

CfGn(τ)dτ <∞ (4)

The above fGn is of short-range dependence (SRD) [8–12].
Recently, some deep neural networks (DNN) with LRD are

proposed [4–6, 13], whose motivation is mainly from avoiding
gradient disappearance in training. However, the LRD of these
DNNs has never been discussed and proven in theory. In this
study, the Hurst parameters of test images in SOTS datasets [14]
are computed and LRD of foggy images is proven. Motivated by
LRD of foggy images, we proposed a new network module, the
Residual Dense Block Group (RDBG) composed of two bundled
Residual Dense Block Groups (DRBs) proposed in reference [13].
The RDBG has additional long skips between two DRBs to fit
LRD of foggy images and can be used to form a new dehazing
network. This structure can significantly improve the quality of
dehazing images in heavy fog.

The remainder of this article is as follows: the second section
introduces the preliminaries of fGn; the third section gives the
case study; then a framework based on LRD of foggy images is
presented; finally, there are the conclusions and
acknowledgments.

PRELIMINARIES

Fractional Brownian Motion
The fBm of Weyl type is defined by [8].

BH(t) − BH(0) � 1
Γ(H + 0.5)

⎧⎪⎨⎪⎩∫0
−∞
[(t − u)H−0.5

− (−u)H−0.5]dB(u) + ∫t
0

(t − u)H−0.5dB(u)
⎫⎪⎬⎪⎭
(5)

where 0 <H < 1, and B(t) is Gaussian.

fBm has stationary increment: BH(t + τ) − BH(t)
� BH(τ) − BH(0) (6)

and self -af f inity property: BH(at) � aHBH(t), a> 0 (7)

Fractional Gaussian Noise
Let x(t) be the gray level of the tth pixel of an image and be a
fGn [8–12].

x(t) � BH(t) − BH(0) (8)
Its ACF follows Eqs 1, 2.
An approximation of CfGn (τ) is as follows:

CfGn(τ)∝ |τ|2H−2 (9)

CASE STUDY

Data Set
Synthetic data set RESIDE: Li et al. [16] created a large-scale
benchmark data set RESIDE composed of composite foggy
images and real foggy images.

Synthetic data set: the SOTS test data set is used as the test set.
The SOTS test set includes 500 indoor foggy images and 500
outdoor foggy images.

Real data set: it includes 100 real foggy images in the SOTS
data set in the RESIDE and the real foggy data collected on the
Internet.

Calculate Hurst Parameter
Rescaled range analysis (RRA) [15] for foggy images is closely
associated with the Hurst exponent, H, also known as the
“index of dependence” or the “index of long-range
dependence.” The steps to obtain the Hurst parameter are
as follows:

1. Preprocessing: An image with m row and n column is
concatenated column by column to form an m×n column
vector. For better understanding, a simple example is
presented: the size of the foggy image in Figure 4A is
348×248, and then it is concatenated column by column to
form an 86,304-column vector.

2. Rescale vector: The original vector can be divided equally into
several ranges for further RRA, as follows. The first range at
the first layer is defined as RS11, representing the originalm×n
vector, and then it can be divided into two parts, RS21 and
RS22, at the second layer, whose dimension equals to (m×n/2)
where (.) represents the floor integer. Repeat the above process
until the vector dimensions at a specific layer are less than
(m×n/26).

Layer 1. RS11: original m×n vector.
Layer 2. RS21: (m×n/2), RS22: (m×n/2).
Layer 3. RS31: (m×n/4), RS32: (m×n/4), RS33: (m×n/4),
RS34: (m×n/4).
Thus, the dimensions of ranges of the foggy image are as follows:
Layer 1. RS11: 86,304.
Layer 2. RS21: 43,152, RS22: 43,152.
Layer 3. RS31: 21,576, RS32: 21,576, RS33: 21,576, RS34: 21,576.

3. Calculate the mean for each range.

mij � 1
nij

∑nij

kij�1 Xkij (10)

where nij represents the number of the elements in the
jth range of the ith layer; Xkij represents the value of
the kij

th element in the jth range of the ith layer; mij

represents the mean value of the elements in the jth range
of the ith layer.

4. Calculate the deviations of each element in every range. The
deviation can be calculated as follows:
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Ykij � Xkij −mij (11)
where Ykij represents the deviation of the kij

th element in the jth
range of the ith layer.

5. Obtain the accumulated deviations for each element in the
corresponding range.

yij,N � ∑N

kij�1Ykij, N � 1, . . . nij (12)

where yij,N represents the accumulated deviation for N elements
in the jth range of the ith layer.

6. Calculate the widest difference of the deviations in each range.

Rij � max(yij,1, yij,2 . . .yij,N) −min(yij,1, yij,2 . . .yij,N),
N � 1, . . . , nij (13)

where Rij represents the widest difference for the jth range of the
ith layer.

7. Calculate the rescaled range for each range.

Rescaled range � (R
S
)
ij
� Rij

σ ij
(14)

where R/S represents the rescaled range for the jth range of the ith
layer, while σij represents the standard deviation of the
accumulated deviations for the jth range of the ith layer.

8. Obtain the averaged rescaled range values for each layer.

(R
S
)
i
� 1
2l−1

∑[m×n/2l−1]
j�1 (R

S
)
ij

(15)

where l is the layer of the ranges with the identity size. The R/S is
calculated using Eq. 15 and the R/S of the example image is
shown in Table 1.

9. Obtain the Hurst exponent. Plot the logarithm of the size (x
axis) of each range in the ith layer versus the logarithm of the
average rescaled range of the corresponding layer using Eq. 15
(y axis) (Figure 1), and the slope of the fitted line is regarded
as the value of the Hurst exponent, that is, the Hurst
parameter.

Hurst Parameters H of Foggy Images
The plots of four image sets in SOTS, 500 indoor images, 500
outdoor, 1,000 outdoor and indoor images, and 100 real foggy
images, are shown in Figure 2. The x axis represents the serial
numbers of the test images while the y axis is the Hurst
parameters of the images. That is, the ith point in Figure 2
represents the Hurst parameter of the ith image. Thus, we can
know the Hurst parameters of over 1,000 foggy images by
observing y values of the points in Figure 2.

From Figure 2, we can observe that the least y values of
subfigures in Figure 2 are 0.6 or 0.65, which means that the Hurst
parameters of four image data sets are all above 0.6. Thus the
foggy images are of LRD, which can help us design some novel
dehazing methods.

Moreover, although the Hurst parameter for each image is a
constant, the different images have different Hurst parameters
because of their different contents. For example, the Hurst
parameter of a complex image with more colors and objects
(Figures 5A,B) is bigger than a simple image (Figure 5C).

Based on the LRD of the foggy images, the Residual Dense
Block Group (RDBG) based on RDB is proposed. The RDBG,

TABLE 1 | Some intermediate results of calculating the Hurst parameter of the foggy image in Figure 5A.

Layer Numbers of
ranges in
layers

Numbers of
data points
in ranges

(x)

Log(x) R/S Log (R/S) Slope of
the fitted

straight line
(i.e., the value

of Hurst
parameter)

1 1 86,304 10.6725 25,754 15.3667 0.990
2 2 43,152 9.9793 16,445 14.9181
3 4 21,576 9.2862 7,367 14.1151
4 8 10,788 8.5930 3,567 13.3899
5 16 5,394 7.8999 1784 12.6969

FIGURE 1 |Data in the third column (x axis) and the fifth column (y axis) in
Table 1 and their fitting straight line whose slope is 0.990.
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which has additional long skips between two RDBs to fit LRD of
foggy images, can significantly improve the details of
dehazing image in dense fog and reduce the artifacts of
dehazing image.

DEHAZING BASED ON RESIDUAL DENSE
BLOCK GROUP

Dependence in Neural Network
The neural network can be considered as a hierarchical graph
model whose nodes are connected by weighted edges. The
weights of edges are trained according to some predefined cost
functions. Generally, the value of the ith node in the kth layer is
decided by the nodes in the (k-1)th layer connected to the ith
node [18–24]. That is,

x(k)(i) � f(W(k−1,k)(i)x(k−1)(i)) (16)

where x(k)(i) is the value of the ith node in the kth layer, f is an
activation function, W(k−1,k) is a vector of weights of edges to
connect nodes in the (k-1)th layers and the ith node, and x(k−1)(i)
are values of nodes in the (k-1)th layers connected to the ith node.

Thus, the value of the ith node is only influenced by its
directly connected nodes. This assumption may be correct in
some cases, but it is not true in images since we have proved
the LRD of foggy images. Thus, we should design a new
module of the neural network to fit the LRD of the foggy
images.

Residual Dense Block Group
Just as discussed in the above subsection, the most straight
method to design a structure fitting LRD of images is to
connect a node to nodes with longer distance to it directly.
Thus, the information of faraway nodes is introduced
to help us to recover the real gray level from foggy
observations.

FIGURE 2 | Plots of H of four foggy image datasets.
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Following this intuitive explanation, the length of a skip
(connection edge between two nodes) which is defined as the
number of crossing nodes can be used to measure the dependence
of a time series approximately.

In this context, motivated by the LRD of foggy images, a
new residual module RDBG is proposed by two bundled
resident dense blocks (RDBs). As shown in Figure 3A, the
RDB is a module with dense connections only in the block. In
Figure 3, the features which are values of nodes in different
layers of the RDB form a time series. Thus, an RDB only with
dense connections in blocks cannot fit the LRD well, especially
in dense fog, while the proposed RDBG which adds an
additional long skip from the beginning of the first block
to the end of the second block can fit the LRD better than the
RDB. In heavy fog, since the RBDG fits LRD of images to
utilize more information of images, it can obtain a better
dehazing image.

As shown in Figure 3C, Yang Aiping [16] et al. and X Liu [17]
et al. used consecutive RDBs in a cascade manner. Since
connections are also in blocks, in essence, it cannot fit LRD of
images well.

Experimental Results and Discussions
The method proposed in this article will be compared with four
state-of-the-art dehazing methods: DehazeNet, AOD-Net, DCP,
and GFN.

Three metrics: PSNR, SSIM, and reference-less FADE are used
to evaluate the quality of dehazing images. Our proposed method
gets the best PSNR and SSIM among all methods (Table 2), which
means that our method has the largest similarities between the
original images and the dehazing images in both image gray levels
and image structures. It also has satisfied results in FADE
(Table 2; Figure 4), which means that our method is robust
and stable in dehazing.

The dehazing examples are given in Figures 5, 6, and their
Hurst parameters are given under the foggy images.

FIGURE 3 | Comparison of RDB, CRDB, and RDBG. (A) RDB: it is a module with dense connections in the block. (B) RDBG (proposed method): it is composed of
two RDBs. RDBG forms the LRD between blocks. (C) CRDB: the RDB is cascaded to form a network.

TABLE 2 | PSNR, SSIM, and FADE between the dehazing results and original
images of synthetic image in SOATS. The best results are marked by bold.

Dataset Metric DCP DehazeNet AOD-net GFN OURS1

Indoor PSNR 16.16 19.82 20.15 24.91 28.479
SSIM 0.8546 0.8209 0.8162 0.9186 0.9665
FADE 0.7792 0.7943 0.8052 0.5364 0.5602

Outdoor PSNR 19.14 24.75 24.14 28.29 30.033
SSIM 0.8605 0.9269 0.9181 0.9621 0.9714
FADE 0.5941 0.7671 0.7677 0.8238 0.7442

FIGURE 4 | Average FADE of test results of different algorithms in real
fog images collected in SOAT and the Internet.
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FIGURE 5 | Some dehazing images and their image quality metrics of synthetic foggy data in SOATS.
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CONCLUSION

Assuming the foggy images are of fGn and calculating
their Hurst parameters, the LRD of over 1,000 foggy

images are proven by the fact that their Hurst parameters
are all more than 0.6. Motivated by the LRD of foggy
images, the Residual Dense Block Group (RDBG) with
additional long skips between two RDBs is proposed. The

FIGURE 6 | Some dehazing images and their image quality metrics of real foggy data in SOATS and on the Internet.

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8288047

Yuan et al. Dehazing Based on LRD

105

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


RDBG utilizes information of LRD foggy images well and can
obtain satisfied dehazing images.
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Characteristic Sequence Analysis of
Giant Panda Voiceprint
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Computer Science, Sichuan Normal University, Chengdu, China, 3Chengdu Research Base of Giant Panda Breeding, Sichuan
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By analyzing the voiceprint characteristics of giant panda’s voice, this study proposes a
giant panda individual recognition method based on the characteristics of the composite
Mel composite frequency cepstral coefficient (CMFCC) and proves that the characteristic
sequence of the CMFCC has long-range dependent characteristics. First, the MFCC (Mel
composite frequency cepstral coefficient) with a low frequency resolution is obtained by
the Mel filter bank; then, the inverse Mel frequency cepstral coefficient (IMFCC) features of
giant panda calls are extracted. The CMFCC characteristic sequence of giant panda voice
composed of the MFCC and IMFCC improves the resolution of high- and low-frequency
resolution characteristics of giant panda voice. Finally, the first-order difference
characteristic parameters of the MFCC are integrated to obtain the difference
characteristics between frames. Through experiments, the improvement of the system
recognition effect is verified, and the recognition accuracy meets the theoretical
expectation.

Keywords: MFCC, long-range dependent, individual recognition, voiceprint, Gaussian mixture model

1 INTRODUCTION

Voiceprint is a collection of various common acoustic feature maps. It is a sound feature measured by
special acoustic instruments. The core of voiceprint recognition is to extract its unique speech
features from the collected speech information. The feature template is formed after recognition
training. During recognition, the speech used is matched with the data in the template library, and
the score is calculated to judge the speaker’s identity [1]. Since 1930, there has been a basic research
study on speaker recognition [2]. In 1962, the term “voiceprint” officially appeared as a sound texture
feature [3]. After that, S. Pruzansky proposed a matching method based on probability value
estimation and correlation calculation [4]. At the same time, the focus of recognition has become to
select and extract the corresponding feature recognition parameters. Since 1970, voiceprint features
such as the short-term average energy feature, linear prediction cepstral coefficient LPC (linear
prediction coefficient), and Mel frequency cepstral coefficients MFCC (Mel frequency cepstral
coefficients) have emerged. At the same time, some methods have also been used to extract feature
parameters by using cepstral coefficients or introducing first- and second-order dynamic differences
[5]. After the 1980s, characteristic parameters such as time domain decomposition, frequency
domain decomposition, and wavelet packet node energy also gradually appeared and were widely
used [6]. Jinxi Guo et al. studied the recognition system in the noise environment [7] and made some
achievements and progress.

Voiceprint feature is a key link in human voiceprint recognition technology and related
applications. Considering the similarity of the way of sound production between giant pandas
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and humans, as well as the universality and wide application of
voiceprint recognition technology, the voice of giant pandas can
be analyzed and studied. At present, there is no case of research
on individual recognition of giant pandas based on voiceprint
features, especially because of the precious voice data of giant
pandas, and the giant pandas and their call waveforms are shown
in Figure 1.

Voiceprint feature extraction algorithms mainly include the
following [5]: the strong representation ability of the speech
signal, good recognition effect, good self-specificity and feature
exclusivity, simple operation, and convenient calculation.

In 2021, Li Ming proposed the mmfGn (modified
multifractional Gaussian noise) theorem of long-range
dependence (LRD) and short-range dependence and used
the time-varying Hurst parameter to describe the time-
varying sea level of LRD [8]. A new generalized fractional
Gaussian noise (gfGn) is introduced. The study uses gfGn to
model the actual traffic trace exhibition. The gfGn model is
more accurate than the traditional fractional Gaussian noise
(fGn) traffic modeling [9].

In 2021, Junyu used the Bayesian maximum entropy (BME)
method to represent the internal spatiotemporal dependence of
sea surface chlorophyll concentration (SSCC) distribution [10].
The Hurst index value of chlorophyll on the ocean surface ranges
from 0.6757 to 0.8431. A high Hurst index value represents strong
LRD, which may be a common phenomenon of daily sea surface
chlorophyll [11].

This study focuses on the analysis and optimization of the
Mel frequency cepstral coefficient of giant panda voice,
discusses the long-range–dependent characteristics of
feature sequence, analyzes the voiceprint feature sequence
suitable for the giant panda individual recognition system,

and realizes the individual recognition algorithm based on the
giant panda voiceprint.

2 MEL FREQUENCY CEPSTRAL
COEFFICIENTS

Mel frequency cepstral coefficients (MFCCs) are voiceprint
features extracted by combining the auditory perception
characteristics of human ears with the generation mechanism
of speech [12]. The sensitivity of the human ear to sound is not
linear, but it changes with the change in frequency. It is more
sensitive to low-frequency sound than high-frequency sound.
According to the perceptual characteristics of the human auditory
system, the Mel cepstral coefficient is widely used in voiceprint
recognition.

2.1 Mel Frequency Cepstral Coefficients of
Giant Panda
The frequency corresponding to the MFCC is the Mel frequency,
which is recorded as fmel, and its functional correspondence with
frequency f is as follows:

fmel � 2595 × log10(1 + f

700
) (2.1)

The following is the extraction process of the Mel frequency
cepstral coefficient:

1) First, the original speech signal s(n) is sampled at the sampling
frequency of 44.1 KHz and quantized in the 16bit mode, and then,
the background noise and high-frequency noise are eliminated by
using a bandpass filter. Finally, the time domain signal x(n) is

FIGURE 1 | Giant panda and its sound waveform.
FIGURE 2 | Mel scale filter bank.
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obtained by using a pre emphasis technology to compensate the
high-frequency loss of sound. Then, it is transformed by formula
Eq. 2.2 to obtain the corresponding linear spectrum X(k), where
k is the time domain frequency corresponding to each point of the
original speech signal.

X(k) � ∑N−1

n�0
x(n)e−j2πnk/N(0≤ n, k≤N − 1) (2.2)

2) The Mel frequency filter bank composed of a group of
triangular filters is used to filter the linear spectrum to
obtain the Mel spectrum, and then, its logarithmic energy
is calculated to obtain the logarithmic energy S(m) of the
original giant panda sound signal.

A group of triangular bandpass filter combinations constitute
Mel filter banks, where, 0≪m≪M, andM is the total number of
triangular filters in Mel filter banks. The center frequency of these

filters is f(m). Considering the logarithmic conversion
relationship between the Mel frequency and ordinary
frequency, it can be seen that the center spectrum of each
filter with an equal interval linear distribution in the Mel
frequency is dense in the low-frequency band and sparse in
the high-frequency band. The schematic diagram of the Mel
frequency filter bank is shown in Figure 2.

The transfer function of each bandpass filter is as follows:

Hm(k) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (k<f(m − 1))
k − f(m − 1)

f(m) − f(m − 1) (f(m − 1)≤ k≤f(m))
f(m + 1) − k

f(m + 1) − f(m) (f(m)< k<f(m + 1))
0 (k>f(m + 1))

(2.3)
The formula for obtaining the logarithmic spectrum S(m) is as

follows:

S(m) � ln⎛⎝ ∑N−1

k�0
|X(k)∣∣∣∣2Hm(k)⎞⎠, 0≤m<M (2.4)

3) By substituting the above logarithmic energy into the discrete
cosine transform (DCT), the Mel cepstral parameters C(n) of
order L can be obtained, as shown in Eq. 2.5, where L is the
order of MFCC coefficients, usually is 12–16, and M is the
number of Mel filters.

C(n) � ∑M−1

m�1
S(m) cos⎛⎝π(m + 1

2)
M

⎞⎠, n � 1, 2,/L (2.5)

Figure 3 is a 12-order MFCC characteristic diagram of a giant
panda voice, in which the X-axis represents the order of the
MFCC coefficient, the Y-axis represents the number of frames of
voice, and the Z-axis represents the corresponding cepstral
parameter value.

FIGURE 3 | 12th order MFCC characteristic diagram.

FIGURE 4 | 12th order MFCC and its ΔMFCC characteristic diagram. (A) MFCC characteristic diagram and (B) ΔMFCC characteristic.
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2.2 First-Order Differential Mel Frequency
Cepstral Coefficients of Giant Panda
Sound
The standard MFCC parameters reflect the static
characteristics within each frame of speech, while the
difference of the MFCC reflects the dynamic characteristics.
The Furui experiment shows that adding dynamic
characteristics to the features can greatly improve the
system performance [13]. The introduction of differential
features has a wide range of applications and good results
in the field of human voice recognition. Therefore, this method
is also first used in the processing of giant panda voice.

After obtaining the MFCC parameters, use Eq. 2.5 to extract
the MFCC first-order differential parameter ΔMFCC.

Dt �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ct+1 − Ct t< θ∑Θ
θ�1

θ(Ct+θ − Ct−θ)/⎛⎝2∑Θ
θ�1

θ2⎞⎠ else

Ct − Ct+1 t≥T − Θ

(2.6)

where Dt represents t-th ΔMFCC, T is the order of the cepstral
coefficient, Θ is the time difference of the first derivative, and the
values of 1 and 2 represent the first cepstral coefficient [14].

Figure 4 shows the characteristics of the MFCC of order 12
and ΔMFCC of order 12 of the same giant panda voice.

3 COMPOUND MEL FREQUENCY
CEPSTRAL COEFFICIENT OF GIANT
PANDA SOUND
3.1 The Inverse Mel Frequency Cepstral
Coefficient
The IMFCC feature can compensate the high-frequency
information and improve the system recognition rate through
its integration with the traditional MFCC. The structure of the
IMFCC filter bank is shown in Figure 5.

Corresponding to the Mel domain of the traditional filter
structure, we call this domain as the inverted Mel domain, which
is recorded as IMEL, and the corresponding frequency is recorded
as Fimel. The relationship with the time domain is as follows:

Fimel(f) � 219.268 − 2595log10(1 + 4031.25 − f

700
) (3.1)

The inverted filter response becomes

EHi(k) � Hp+i+1(N2 − k + 1) (3.2)

where EHi(k) is the filter response in the MEL domain.
Figure 6 shows the 12th order MFCC and the 12th order

IMFCC characteristic diagram of a giant panda sound, in which
the X axis represents the order of theMFCC , the Y axis represents

FIGURE 5 | Inverted Mel filter bank.

FIGURE 6 | 12th order characteristic diagram of giant panda sound. (A) MFC and (B) IMFCC.
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the number of voice frames, and the Z axis represents the
corresponding cepstral parameter values.

3.2 Composite Mel Composite Frequency
Cepstral Coefficient
MFCC characteristic parameters are obtained through the Mel
filter bank and a series of operations. Accordingly, the

characteristic coefficients obtained after a series of operations
through the Mel filter bank and composite filter bank of the
inverted Mel filter bank are called composite Mel frequency
cepstral coefficients, which are recorded as the CMFCC
(compound Mel frequency cepstral coefficient).

Therefore, we fuse the 12th order MFCC characteristic
diagram and 12th order IMFCC characteristic diagram in
Figure.7 to obtain the corresponding 24th order CMFCC
characteristic parameter diagram, as shown in Figure 8.

3.3 Hurst Exponent of the Composite Mel
Composite Frequency Cepstral Coefficient
Feature Sequence
Assuming that the sequence composed of CMFCC features
satisfies the fractional Brownian motion distribution, we can
calculate H according to the following method [13, 15, 16].

Let n be the number of data of CMFCC-modified
multifractional Gaussian noise (mmfGn) [8, 9]. Let 1< k<N
be the length of the neighborhood used for estimating the
function parameter. We will estimate H(t) only for
t in [ kN, 1 − k

N].
Without loss of generality, we assume m � N/k to be an

integer. Then, our estimator of H(i) is the following:

Ĥi � −log[ �
π
2

√
Sk,N(i)]

log(N − 1) , (3.3)
where

FIGURE 7 | 24th order CMFCC characteristic diagram.

FIGURE 8 | Original sound signal of the giant panda and the CMFCC characteristic sequence. (A) Original sound signal of the giant panda, (B) the CMFCC
characteristic sequence extracted from the sound.
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Sk,N(i) � m

N − 1
∑

j∈[i−k
2,i+k

2]
∣∣∣∣Xj+1,N −Xj,N

∣∣∣∣ (3.4)

Figure 8 shows the original sound signal of giant panda and the
CMFCC characteristic sequence. Figure 9 shows the H-index

distribution of two CMFCC characteristic sequences of the giant
panda sound. In Figure 9A, the giant panda sound duration time
T � 2s, sampling frequency fs � 192kHz, n � 7608, and k � 512.
In Figure 9B, the giant panda sound duration T � 9s, sampling
frequency fs � 44.1kHz, n � 7940, and k � 512. The experimental
results show that the CMFCC characteristic sequence of the giant
panda voice has long-range dependent characteristics.

4 DISCUSSION

We applied the CMFCC feature sequence with LRD to giant panda
individual recognition. Considering that this feature is the feature
information obtained within the speech frame, the △MFCC of the
MFCC feature parameter is introduced. The two features of CMFCC
and ΔMFCC are fused to obtain a new feature parameter.

There are 20 individual giant pandas. Each individual has 10s
sounds, including 4s for training and 6s for testing. The ratio
between the number of correctly recognized test sounds and the
total number of test sounds is the correct recognition rate. The
final result is the average of the recognition rates of the three
experiments, as shown in Figure 10 and Table 1.

The order of CMFCC andMFCC features are 8, 12, 16, and 20,
respectively, and the order of △MFCC also corresponds to 8, 12,
16, and 20. From Table 1, we can see that the higher the order of
features, the higher is the recognition rate, indicating that the
correlation of feature sequences is also stronger.

The final individual identification of giant panda is shown in
Table 1. Figure 10 is a broken line diagram of three feature
recognition results.

It can be seen from Figure 10 and Table 1 that the characteristic
parameters obtained by flipping the Mel filter bank can improve the
resolution of the high-frequency part. Therefore, after using CMFCC
features, the recognition rate of giant panda individuals is higher than
that under the MFCC. At the same time, this is because the ΔMFCC
feature considers the difference between frames and improves the
feature performance of the CMFCC. Therefore, the recognition rate

FIGURE 9 | H-index distribution of two CMFCC characteristic sequences of giant panda sound, (A) T � 2s, fs � 192kHz, n � 7608, k � 512, (B) T � 9s,
fs � 44.1kHz, n � 7940, k � 512.

TABLE 1 | Recognition rate of giant panda individual recognition.

Order\Type 8 12 16 20

MFCC 56.67(68) 71.67(86) 79.17(95) 80.83(97)
CMFCC 65(78) 77.5(93) 83.33(100) 85.83(103)
CMFCC+ΔMFCC 67.5(81) 80.83(97) 86.67(104) 88.33(106)

FIGURE 10 | Line chart of the individual recognition rate of the
giant panda.
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of the CMFCC and ΔMFCC combination feature is better, and the
theoretical results are consistent with the experimental expectations.

5 CONCLUSION

This study mainly presents the characteristics of the Mel
composite cepstral coefficient of giant panda sound (CMFCC)
for individual recognition. It is verified that the CMFCC feature
sequence conforms to the distribution characteristics of fractional
Brownian motion, which has long-range dependence. This
feature sequence makes use of the memory characteristics of
the giant panda voice in time and can obtain the characteristics of
the giant panda sound in low- and high-frequency resolution at
the same time. Through experimental verification, it has the best
effect on individual recognition of the giant panda and improves
the efficiency of the giant panda. The recognition rate has reached
the expected effect of individual recognition of the giant panda.
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Giant Panda Video Image Sequence
and Application in 3D Reconstruction
Shaoxiang Hu1, Zhiwu Liao2, Rong Hou3 and Peng Chen3*

1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China, 2School of
Computer Science, Sichuan Normal University, Chengdu, China, 3Chengdu Research Base of Giant Panda Breeding, Sichuan
Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China

Giant panda 3D reconstruction technology plays an important role in the research of giant
panda protection. Through the analysis of giant panda video image sequence (GPVS), we
prove that it has the long-range–dependent characteristics. This article proposes an
algorithm to accurately reconstruct the giant panda 3D model by using the long-
range–dependent characteristics of GPVS. First, the algorithm uses a skinned multi-
animal linear model (SMAL) to obtain the initial 3D model of giant panda, and the 3D model
of the single-frame giant panda image is reconstructed by controlling shape parameters
and attitude parameters; then, we use the coherence information contained in the long-
range–dependent characteristics between video sequence images to construct a smooth
energy function to correct the error of the 3D model. Through this error, we can judge
whether the 3D reconstruction result of the giant panda is consistent with the real structural
characteristics of the giant panda. The algorithm solves the problem of low 3D
reconstruction accuracy and the problem that 3D reconstruction is easily affected by
occlusion or interference. Finally, we realize the accurate reconstruction of the giant panda
3D model.

Keywords: time series, long-range dependent, 3D reconstruction, SMAL, Hurst

1 INTRODUCTION

In recent years, in the field of animal protection, computer three-dimensional reconstruction
methods are more and more used in the study of animal morphology. Giant pandas are China’s
national treasures and first-class protected animals. China has established giant panda breeding
research bases in many places for the protection and research of giant pandas. Through the research
on the three-dimensional reconstruction of giant pandas, we can not only carry out non-contact
body size measurement of giant pandas, including the measurement of giant pandas’ body height,
body length, chest circumference, and weight, but also the protection workers can better understand
the growth status of giant pandas, such as height, obesity, weight gain and loss, and body length
increase and decrease, so as to further analyze the living environment and health status of giant
pandas and to better protect giant panda species and improve the protection level of giant pandas. At
the same time, through flexible and diversified forms such as rapid three-dimensional reconstruction
and three-dimensional display, people can have a more intuitive and comprehensive understanding
of the species of giant panda and further enhance people’s awareness of animal protection. This is not
only helpful for animal protection but also beneficial to the whole society.

Since the giant panda is a nonrigid target, the traditional rigid body–based 3D reconstruction
algorithm (Structure-from-Motion-SFM [1], etc.) is not suitable for its 3D modeling. NRSFM (non-
rigid structure-from-motion) is an extended SFM method. In 2000, Bregler first proposed the
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scientific question of how to recover the 3D nonrigid shape model
[2] from the video sequence of single view. In 2013, Grag, Ravi,
and other scholars used a variant algorithm for dense 3D
reconstruction of nonrigid surfaces from monocular video
sequences [3], which formulate the nonrigid structure of
NRSFM into a global variational energy minimization
problem. This method can reconstruct highly deformed
smooth surfaces. In reference [4], a method for observing the
dynamic motion of nonrigid objects from long monocular video
sequences is adopted. This method makes use of the fact that
many deformed shapes will repeat over time and simplifies
NRSFM to a rigid problem.

In 2015, Matthew Loper and other scholars proposed a three-
dimensional SMPL (skinned multi-person linear) model of
human body using human shape and position [5]. In 2018,
Angjoo Kanazawa et al. utilized a network framework for
recovering a 3D human model from a 2D human image by
the end-to-end method [6]. This method directly infers 3D-mesh
parameters from image features and combines the 3D
reconstruction method with deep learning.

Due to the uncontrollable behavior of giant pandas and other
animals, the three-dimensional modeling algorithm suitable for
human body cannot obtain high three-dimensional modeling

accuracy. In 2017, Silvia Zuff et al. designed a 3D modeling
method of animals based on a single image, using the 3D shape
[7] and pose of animals to build the same statistical shape model as
SMPL, called SMAL (skinned multi-animal linear model) [8, 9]. At
present, themodel has achieved satisfactory results in the application
of three-dimensional reconstruction of several kinds of quadrupeds,
such as three-dimensional reconstruction of dogs, horses, and cattle.

In the study, we found that the accuracy of the 3D giant panda
model based on the single image is related to the results of 3D
giant panda pose modeling based on the SMAL model. Because
the temporal relationship between frames is not considered in the
giant panda 3D model of single frame image data, the motion
sequence composed of the results of single-frame pose modeling
will be uneven and not smooth. Such errors are difficult to be
automatically corrected in the single-frame algorithm. Therefore,
the 3D reconstruction effect is usually unsatisfactory.

This article is organized as follows: in Section 2, we define the
autocorrelation coefficient of GPVS (giant panda video image
sequence) and discuss the long-range dependent of GPVS by
analyzing the H index. In Section 3, we propose the giant
panda 3D model. In Section 4, we took advantage of the new
motion smoothing constraint to improve 3D accuracy by using
frame-to-frame relationships. In Section 5, the experimental

FIGURE 1 | Giant panda video image sequence. (A) First frame, (B) 60th frame, and (C) 1800th frame.

FIGURE 2 | Pixel value and ACF value of GPVS. (A,C) GPVS of (300,400) and (B,D) GPVS of (600,800).
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results of 3Dmodeling are presented, and in Section 6, we give the
conclusion.

2 LONG-RANGE DEPENDENT OF GPVS

2.1 ACF of GPVS
If the ACF value of a sequence is not zero or has a tailing
phenomenon, we believe that the sequence may be long-
range–dependent sequence [10].
Theorem: Let X(i, j) be a sequence composed of pixel values at
the coordinates of each image (i, j) in GPVS, and let
xt (t � 1, 2,/, n) is the gray value of the coordinates of frame
t picture (i, j) in sequence X, then,

acf (k) � n
n − k

×
∑n

t�k+1(xt − μ)(xt−k − μ)∑n
t�1(xt − μ)(xt − μ) , (2.1)

where k is the lag order (k � 0, 1,/, n − 1), and μ is the mean of
sequence X.
Proof. Let the mean μ of sequence X be:

μ � Ε(X). (2.2)
Let the autocovariance ck of sequence X be:

ck � 1
n − k

∑n
t�k+1

(xt − μ)(xt−k − μ), (2.3)

where k is the lag order (k � 0, 1,/, n − 1).
The ACF of sequence X is:

acf (k) � ck
c0
. (2.4)

Bring Eq. 2.3 into Eq. 2.4, we get

acf (k) � n
n − k

×
∑n

t�k+1(xt − μ)(xt−k − μ)∑n
t�1(xt − μ)(xt − μ) . (2.5)

This finishes the proof.
Figure 1 is a first frame, a 60th frame, and a 1,800th frame image

in the GPVS. Figure 2 shows that the ACF value of the GPVS is not
equal to 0, and the ACF curve has a tailing effect, which indicates that
the GPVS may be the long-range–dependent sequence.

FIGURE 3 | Hurst exponent. (A) Hurst exponent of GPVS1 (300,400), (B) Hurst exponent of GPVS1, (C) Hurst exponent of GPVS2 (600,800), and (D) Hurst
exponent of GPVS2.
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2.2 Hurst Exponent of GPVS
A Hurst exponent (H) is an index established by H.E. Hurst, a
British hydrologist. Its essence is a judgment index, which can be
used to judge whether the time series data are a random walk
form or a biased random walk process.

When 0.5<H< 1, according to the model of fractional Gaussian
noise, the time series data has long-range dependent (persistence),
indicating that the time series has the characteristics of long-range
dependent. If the sequence goes up in the previous period, it will
continue to go up in the next period. When theH value is close to 1,
this trend is stronger [11, 12].

Through the analysis in Section 2.1, we can see that the GPVS
sequence may have long-range–dependent characteristics. Next,
we use the H exponent to further judge that the GPVS has long-
range–dependent characteristics, and use the H exponent

analysis method of [13] to calculate the H exponent. The
calculation process is as follows:

(1) Divide the sequence X into G groups of nonoverlapping
subsequences with length n:

x11, x12, . . . , x1rx21, x22, . . . , x2r . . . xg1, xg2, . . . , xgr .

(2) Calculate the mean value �xi of each group of
subsequencesxg1, xg2, . . . , xgr (i � 1, 2,/, g).

�xi � 1
n
∑n
j�1
xij i � 1, 2, . . . , g j � 1, 2, . . . , n. (2.6)

(3) Calculated deviation yij:

yij � xij − �xi i � 1, 2, . . . , g j � 1, 2, . . . , n. (2.7)

(4) Calculate cumulative deviation zij:

zij � ∑j
k�1

yik i � 1, 2, . . . , g j � 1, 2, . . . , n. (2.8)

(5) Calculate range Ri:

Ri � max(zij) −min(zij) i � 1, 2, . . . , g j � 1, 2, . . . , n. (2.9)

(6) Calculate standard deviation Si:

Si �
���������
1

n − 1
∑n
j�1
y2ij

√√
i � 1, 2, . . . , g . (2.10)

(7) Get value RSi:

RSi � Ri

Si
i � 1, 2, . . . , g . (2.11)

The average value RS of each subsequence was obtained:

RS � 1
g
∑g
i�1
RSi. (2.12)

Finally, logRS as the explained variable Y and logn as the
explanatory variable X, the data pair (logn, logRS) is obtained

FIGURE 4 | Giant panda skeleton. (A) Giant panda skeleton system. (B) Differences between giant panda skeleton and other animals.

TABLE 1 | Joint description of the giant panda skeleton.

Serial number Joint Description

0 Root Roots (pelvis)
1 Pelvis0 Pelvis0
2 Spine Spine
3 Spine0 Spine 0
4 Spine1 Spine 1
5 Spine2 Spine 2
6 Spine3 Spine 3
7 L-Leg1 Left leg 1
8 L-Leg2 Left leg 2
9 L-Leg3 Left leg 3
10 L-Foot Left foot
11 R-Leg1 Right leg 1
12 R-Leg2 Right leg 2
13 R-Leg3 Right leg 3
14 R-Foot Right foot
15 Neck Neck
16 Head Head
17 L-Leg-Back1 Left back leg 1
18 L-Leg-Back2 Left back leg 2
19 L-Leg-Back3 Left back leg 3
20 L-Foot--Back Left back foot
21 R-Leg-Back1 Right back leg 1
22 R-Leg-Back2 Right back leg 2
23 R-Leg-Back3 Right back leg 3
24 R-Foot-Back Right back leg
25 Tail Tail
26 Mouth Mouth
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for each grouping Xn(k � 1, 2,/,m), and the slope H is
estimated by linear regression, that is, the Hurst index.

Figure 3A shows the sequenceH value composed of the values
of (300,400) in 190 giant panda video images, H � 0.906348.
Figure 3B shows theH value distribution of all pixels in 190 giant
panda video images.

Figure 3C shows the sequenceH value composed of the values
of (600,800) in 127 giant panda video images, H � 0.840534.
Figure 3D shows the H distribution of all pixels in 127 giant
panda video images.

From Figure 3, we can see that the H value of the giant panda
video image sequence is far greater than 0.5, close to 1, indicating
that GPVS has long-range–dependent characteristics.

3 GIANT PANDA 3D MODELING

3.1 Giant Panda Skeleton
The structure formed by a series of joints and bones is called the
skeleton. Each joint can correspond to one or more bones and can
have multiple subjoints. A correct skeleton structure can ensure
that the giant panda has a real and correct motion structure after

three-dimensional modeling, which is one of the important links
of the giant panda model.

The selection of bones and joints will affect the deformation of
the three-dimensional model of the giant panda. Therefore, the
analysis of the skeleton structure of the giant panda plays a very
important role in the three-dimensional model of the giant panda.
Figure 4A shows the detailed skeleton systemof the giant panda. In
the SMALmodel, we usually use 33 joints to represent five kinds of
quadrupeds with different attributes, such as cats, dogs, equines,
cattle, and hippopotamuses [9, 14]. Compared with these five kinds
of quadrupeds, the giant panda has certain similarities, so most of
the bones and joints in the whole skeleton can be used for reference,
such as head, spine, and leg bone structures.

However, the characteristics of giant panda and other
quadrupeds are also different in the skeleton structure, as
shown in Figure 4B. The tail of the adult giant panda is very
short. The body length of the giant panda is about 120–180 cm,
while the tail length is only about 10–12 cm. Some tails are shorter
than the tail of the rabbit, so we cannot feel the existence of the tail
of the giant panda intuitively. In the whole movement
structure, we combined the structural characteristics of the
giant panda and combined the seven joints of the tail. We used

FIGURE 5 | 3D model of a giant panda is bound by a giant panda skeleton. (A) Side view, (B) top view, (C) front view, and (D) oblique view.

FIGURE 6 | Giant panda SMAL model. (A) Giant panda shapes obtained by SMAL. (B) Panda poses obtained by SMAL.
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FIGURE 7 | 3D reconstruction of GPVS in frame 10. (A) Original image, (B) contour silhouette after segmentation, (C) reconstruction effect of the 3D model of the
giant panda without skin texture, and (D) reconstruction effect of the 3D model of the giant panda with skin texture.

FIGURE 8 | 3D reconstruction of GPVS in frame 30. (A) Original image, (B) contour silhouette after segmentation, (C) reconstruction effect of the 3D model of the
giant panda without skin texture, and (D) reconstruction effect of the 3D model of the giant panda with skin texture.
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27 joints as the basic skeleton structure of the giant panda, as
shown in Table 1.

3.2 Giant Panda SMAL Model
Since it is impossible to obtain the three-dimensional model of giant
panda by scanning the living body of giant panda, this article uses the
designed three-dimensional model of giant panda to bind the
skeleton [15], as shown in Figure 5. The SMAL model is shown
in Formula 3.1. Linear blending skinning (LBS) is used to generate
giant pandamodels with different shapes and postures, so as to build
the giant panda shape data set and attitude data set, as shown in
Figure 6.

{ S(β) � �S + BSβ
T′

p � �Tp + Bp(θ) , (3.1)

where S(β) is the deformation shape parameter of giant panda, �S
is the giant panda average model, β is the shape parameter, and BS

is the shape basis matrix of the eigenvector.
P is a matrix composed of 243 attitude vectors Pi, T ’

P is a giant
panda posture model, �TP is the average posture model, θ is the
joint rotation angle, and BP(θ) is the vertex offset between the
posture model at angle θ and the average attitude model.

4 MOTION SMOOTHING PROCESS

The 3D model of giant panda reconstructed from a single-frame
video image does not take into account the time relationship

between frames and the long-range–dependent characteristics of
the video image sequence. When the target is obscured or has
large noise, there will be relatively large 3D reconstruction errors,
such as left leg matching to right leg and right leg matching to left
leg. Moreover, the motion sequence composed of the results of
single-frame 3D modeling will be not smooth [16].

For video image sequences, the long-distance dependent
between data is used to capture the correlation between pixels
of distant frames in the sequence, which is more conducive to the
recognition and judgment of image information. In Section 2.2,
we have analyzed that the GPVS has long-distance–dependent
characteristics, so we will use the characteristics of the GPVS to
improve the giant panda 3D modeling.

In order to improve the accuracy of the single-frame pose
modeling algorithm, we fully consider that the RGB video
sequence has long-range–dependent characteristics. That is,
the movement and limb rotation angle of the giant panda in
the video sequence shall not change too much. We use this
characteristic to correct the error of 3D modeling results, so as to
make the 3D modeling results of giant panda more smooth and
accurate.

First, the body shape parameters β and attitude parameters θ
of giant pandas in each frame of the video are solved by Eq. 3.1.
Then, the energy function formula 4.1 is used to construct the
time-smoothing term to improve the motion fluency and 3D
reconstruction accuracy.

En(β, θ) � λ3dE3d(β, θ) + λsmEsm(β, θ), (4.1)

FIGURE 9 | 3D reconstruction of GPVS in frame 60. (A) Original image, (B) contour silhouette after segmentation, (C) reconstruction effect of the 3D model of the
giant panda without skin texture, and (D) reconstruction effect of the 3D model of the giant panda with skin texture.
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where λ3d λsm is the weight parameter of the corresponding
energy term, E3d is the three-dimensional error energy, and
Esm is the motion-smoothing energy.

(1) 3D attitude error

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E3d � ∑

n

wndist(θn, θ̂n)
wn � exp(−δn)

δn � ∑
j

Cn,j

����xn,j − x̂n,j
����22 , (4.2)

where dist is the distance between the SMAL 3D model and the 3D
model after rotation. xn,j andCn,j is the two-dimensional coordinates
of the joint in the nth frame of the video and its confidence, and xn,j is
the two-dimensional joint coordinates projected from the three-
dimensional joint of the model to the image.

The main function of this item is to slightly adjust the first
three-dimensional vector of the attitude parameters of the SMAL
model to adjust the rotation angle of the model while maintaining

the consistency between the projection of the three-dimensional
attitude of the model and the results of the two-dimensional joint
points, so as to improve the accuracy of attitude modeling and
restrain some problems of incorrect pose estimation of the model,
so as to ensure the accuracy of the attitude modeling algorithm.

(2) Motion smoothing

Esm � ∑
n

∑
j

����Ji(βn, θ) − Ji(βn+1, θ)���� 2

2
, (4.3)

where Ji is the function of the coordinates of the three-
dimensional joint numbered I of the SMAL model given the
shape and attitude parameters of the SMAL model.

This item uses the similarity of giant panda actions in adjacent
frames of the video to constrain the changes of three-dimensional
bone joints of the model. The greater the change of model posture
from the previous frame, the greater the energy value of this item.
In case of large errors, due to image feature mismatch or over-
fitting, this item can be constrained to correct some large errors
such as leg exchange or posture inversion.

5 DISCUSSION

Our experimental work is based on the prior information of the giant
panda SMAL model. According to two-dimensional images of the
giant panda, the algorithm uses Formula 3.1 to obtain the shape,
pose, and other parameters of the three-dimensional model of the

FIGURE 10 | 3D reconstruction of GPVS in frame 100. (A)Original image, (B) contour silhouette after segmentation, (C) reconstruction effect of the 3Dmodel of the
giant panda without skin texture, and (D) reconstruction effect of the 3D model of the giant panda with skin texture.

TABLE 2 | PCK results table of different thresholds.

Sample PCK PCK PCK PCK PCK Number of
visible key

points
@0.01 @0.02 @0.05 @0.10 @0.15

image1 4.32 14.13 45.01 76.17 83.16 23
image2 4.01 13.15 43.38 74.23 81.24 18
image3 3.35 10.37 38.35 70.34 77.15 16
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giant panda and reconstructs a 3D model of the giant panda. Then,
the 3D reconstruction accuracy is improved by Eq. 4.1, and the
motion fluency of the 3D model is improved, and the 3D
reconstruction results of giant panda are shown in Figures 7–10.

Figures 7–10 show the experimental results of the algorithm in
restoring the SMAL giant panda 3D model from the image. The
upper left figure of each group of images is the original image, the
upper right figure is the segmented contour silhouette, and the lower
left corner and lower right corner are the reconstruction effects of the
giant panda 3D model without skin texture and with skin texture,
respectively. It is obvious that there is a good fit between the image
and the restored three-dimensional model of giant panda.

Table 2 shows the PCK indicators under different thresholds for
some image examples. Figure 11 shows the visualization results of
the mean value of the evaluation index PCK between the projection
key points obtained after the restoration of the three-dimensional
model of the giant panda and the truly marked key points of the
input image. When the threshold of key point detection is PCK@
0.15 (corresponding to 0.15 times of image pixels), the accuracy can
reach 80.51%. Therefore, experiments show that our method can
also obtain a 3D model of giant panda with a good reconstruction
effect in the presence of occlusion or insufficient key points.

6 CONCLUSION

Through the analysis of GPVS, we prove that it has the long-
range–dependent characteristics [17, 18]. We propose a

method to use the coherent information contained in the
long-range–dependent characteristics between video
sequence images to construct a smooth energy function to
correct the 3D model error. Through this error, we can judge
that the 3D reconstruction result of giant panda is different
from the real structure of giant panda. Finally, the
experimental results show that our algorithm can obtain a
more accurate 3D reconstruction model of giant panda.
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Dependence Research on Multi-Layer
Convolutions of Images
Zhiwu Liao1*, Yong Yu2 and Shaoxiang Hu3*

1School of Computer Science, Sichuan Normal University, Chengdu, China, 2School of Mathematics and Computers (Big Data
Science), Panzhihua University, Panzhihua, China, 3School of Automation Engineering, University of Electronic Science and
Technology of China, Chengdu, China

Convolutions are important structures in deep learning. However, theoretical analysis on the
dependence amongmulti-layer convolutions cannot be found until now. In this paper, the image
pixels before, in, and after multi-layer convolutions are of modifiedmultifractional Gaussian noise
(mmfGn). Thus, their Hurst parameters are calculated. Based on these, we applied mmfGn
model to analyze the dependence of gray levels of multi-layer convolutions of the image pixels
and demonstrate their short-range dependence (SRD) or long-range dependence (LRD), which
can help researchers to design better network structures and image processing algorithm.

Keywords: fraction Brownian motion, Hurst parameter, time-varying Hurst parameter, long-range dependence
(LRD), modified multifractional Gaussian noise, fractional Gaussian noise (fGn)

1 INTRODUCTION

Deep learning models are composed of multiple convolution layers to learn features of images [1, 2].
However, so far, the theoretical analysis on dependence among multi-layer convolutions have not
been reported.

Fractional Brownian motion (fBm) is commonly used in modeling fractal time series. The fBm of
the Weyl type is defined by [3–5]

BH(t) − BH(0) � 1
Γ(H + 0.5)

⎧⎪⎨⎪⎩∫0

−∞
[(t − u)H−0.5 − (−u)H−0.5]dB(u) + ∫t

0
(t − u)H−0.5dB(u)

⎫⎪⎬⎪⎭ (1)

where 0 <H < 1 is the Hurst parameters.
Its auto-correlation function (ACF) of the Weyl type is

CfBm(t, s) � VH

(H + 0.5)Γ(H + 0.5) [∣∣∣∣t∣∣∣∣2H + ∣∣∣∣s∣∣∣∣2H − ∣∣∣∣t − s
∣∣∣∣2H] (2)

where

VH � Γ(1 − 2H) cosπH
πH

(3)

The fBm is nonstationary, but it has a stationary increment. The process fBm reduces to the
standard Brownian motion when H = 0.5.

Based on the dependence theory, the main contributions of this paper are:

1) Discuss dependence of image multi-layer convolutions by assuming that gray levels of multi-layer
convolutions of an image pixel are of modified multifractional Gaussian noise (mmfGn).

2) Calculate the time-varing Hurst parameters by point-by-point basis to discuss the dependence of
different pixels.
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The remainder of this paper is as follows: the second section
introduces the preliminaries on fractional Gaussian noise (fGn)
and mmfGn; the third section gives a case study. Finally, the
conclusions and acknowledgments are given.

2 PRELIMINARIES

2.1 Fractional Gaussian Noise
The fGn is the derivative of the fBm. Its ACF is:

CfGn(τ) � VH

2
[(|τ| + 1)2H + (|τ| − 1)2H − 2

∣∣∣∣τ∣∣∣∣2H] (4)

where

VH � Γ(1 − 2H) cosπH
πH

(5)

fGn is of long-range dependence (LRD) for 0.5 <H < 1 and is of
short-range dependence (SRD) for 0 <H < 0.5. If H = 0.5, fGn
reduces to the white noise [5–7].

FIGURE 1 | The 64-dimensional column vectorG = [G(1),G(2),...,G(63),G(64)]Twhose components are the gray levels of multi-layer convolutions on pixel (75, 80).
Top: the components of the 64-dimensional column vector on pixel (75, 80). Left bottom: the plot of the 64-dimensional vector whose x-axis represents the convolution
layers and y-axis represents the gray levels of convolution layers on pixel (75, 80). Right bottom: time-varying Hurst parameters H(t) of mmfGn of the 64-dimensional
column vector of pixel (75, 80) using Eqs 7 and 8 where n = 64, k = 16.

FIGURE 2 | Left: the test image and the selected pixel (70, 171). Right: the time-varying Hurst parameters H(t) of pixel (70, 171).
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2.2 Modified Multifractional Gaussian Noise
Let G(t) be the mmfGn. The ACF of mmfGn is [6]

CmmfGn(τ) � VH(t)
2

[(|τ| + 1)2H(t) + ∣∣∣∣∣∣∣∣τ∣∣∣∣ − 1
∣∣∣∣2H(t) − 2

∣∣∣∣τ∣∣∣∣2H(t)]
(6)

The condition of mmfGn to be of LRD is 0.5 <H(t) < 1, while
to be of SRD is 0 <H(t) < 0.5.

Based on the local growth of the increment process, Peltier and
Levy-Vehel gave H(t) estimator in Eqs 7 and 8 [8–11].

Let n be the number of data of a sample mmfGn and G(i) be
the ith sample point. Let k (1 < k < n) be the length of the
neighborhood used for estimating the functional parameter
H(i). The H(i) will be estimated only for i = [k/2] + 1, [k/
2] + 2, ..., n − 1 where [k/2] is the integral part of k/2. Let
m = [n/k] be the integral part of n/k. Then the estimator of
H(i) is [8]:

Ĥ(i) � −log[ �
π
2

√
Sk(i)]

log(n − 1) (7)
where

Sk(i) � m

n − 1
∑j�i+[k/2]

j�i−[k/2]

∣∣∣∣∣∣∣∣∣∣G(j + 1) − G(j)∣∣∣∣∣∣∣∣∣∣ (8)

3 CASE STUDY AND DISCUSSION

3.1 Data in Case Study
Tire.tif in matLab is chosen as test data. The image is
convoluted 64 times by randomly generated 3 × 3 masks
whose sum is equal to 1. Thus, the normalized gray levels
in [0 1] of multi-layer convolutions on each pixel in the image
will form a 64-dimensional column vector G = [G(1), G(2),...,
G(63), G(64)]T; see top image of Figure 1. We will discuss the
dependence among the components of each 64-dimensional
vector.

3.2 H(t) of mmfGn
We now study the dependence of samples among multi-layer
convolution by computing H(t) of mmfGn for each 64-
dimensional vector. That is, the 64-dimensional vector is of
mmfGn; the time-varying Hurst parameter H(t) of samples
should be calculated to feature the local similarity of the
vectors.

The H(t) is calculated using Eqs 7 and 8: the sample number
n = 64, and the length of the neighborhood k = 16. Thus, the
Hurst parameter H(t) will be estimated only for t = 9, 10, ..., 55.
H forms a 55-dimensional vector with 8 zeros on the 1st to 8th
positions.

Tire.tif in MatLab is used to discuss the dependence of 64-
dimensional vectors of a pixel. Since gray levels of multi-layer
convolution of each of image pixel form a 64-dimensional vector
whose time-varying Hurst parameter H(t) is a 55-dimensional
vector, we can obtain a 3-dimensional matrix to record H(t) of
image pixels with W × L × 55 where W is the width of the image
and L is the length of the image.

The condition of mmfGn to be of LRD is 0.5 <H(t) < 1, while
to be of SRD it is 0 <H(t) < 0.5.

DISCUSSION

In order to discuss the dependence of different pixels of 64-
dimensional vector G, two pixels are selected, and their time-
varying Hurst parameter H(t) of mmfGn is shown in the bottom
right of Figure 1 and the right of Figure 2. In Figure 1, the Hurst
parameter H(t) of pixel (75, 80) is less than 0.5 for t = 1,...,55.
Thus, G of pixel (75, 80) is of SRD. But the Hurst parameter H(t)
of pixel (70, 171) is larger than 0.5 for t = 9,..., 55 in Figure 2. It is
of LRD.

From the above discussion, the dependence of 64-dimensional
vectors of some pixel are of LRD, while for other pixels, they are
of SRD.

We think the above dependence of image multi-layer
convolution coincides with the nature of images and is a very
promising character in designing a deep neural network. Maybe,
we can design more powerful algorithms and networks with
smaller computation cost.

CONCLUSION

The dependence of samples of multi-layer convolutions has been
discussed. Based on the model of mmfGn, we found that each
pixel with a 64-dimensional vector has the statistical dependence
of either LRD or SRD on a pixel-by-pixel basis, relying on the
value of H(t) of image pixels.
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Two Novel One-Way Delay Clock
Skew Estimators and Their
Performances for the Fractional
Gaussian Noise/Generalized
Fractional Gaussian Noise
Environment Applicable for the IEEE
1588v2 (PTP) Case
Yehonatan Avraham and Monika Pinchas*

Department of Electrical and Electronic Engineering, Ariel University, Ariel, Israel

Papers in the literature dealing with the Ethernet network characterize packet delay
variation (PDV) as a long-range dependence (LRD) process. The fractional Gaussian
noise (fGn) or the generalized fractional Gaussian noise (gfGn) belong to the LRD process.
The IEEE1588v2 is a two-way delay (TWD) protocol that uses the messages from the
Forward (Master to Slave) and the Reverse (Slave to Master) paths. Suppose we have a
significant difference between the PDV variances of the Forward and the Reverse paths.
Thus, if we can use only the path with the lowest PDV variance (namely, only the one-way
delay (OWD) technique), we might get a better clock skew performance from the mean
square error (MSE) point of view compared with the traditional TWD method. This paper
proposes two OWD clock skew estimators, one for the Forward path and one for the
Reverse path applicable for the white-Gaussian, fGn and gfGn environment. Those OWD
estimators do not depend on the unknown asymmetry between the fixed delays in the
Forward and Reverse paths and nor on the clock offset between the Master and Slave. We
also supply two closed-form approximated expressions for the MSE related to our new
proposed OWD clock skew estimators. In addition, we supply some conditions,
summarized in a table, guiding us whether we should use the OWD clock skew
estimator for the Forward path or for the Reverse path, or just use the TWD algorithm.
Simulation results confirm that our new proposed OWD clock skew estimators achieve
better clock skew performances from the MSE point of view, compared with the TWD
clock skew estimator recently proposed by the same authors and compared with two
literature known OWD methods (the maximum likelihood and Kalman clock skew
estimators).
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1 INTRODUCTION

The Precision Time Protocol (PTP), named also as the IEEE
1588v2 standard [1] is a TWD exchange scheme where the Slave
exchanges a series of synchronization packets with its Master so
the packet timestamps can be employed to estimate the clock
skew relative to the Master. In other words, the PTP as a TWD
algorithm uses messages received from the Forward (Master to
Slave) and from the Reverse (Slave to Master) paths in order to
estimate the clock skew relative to the Master. The
synchronization packets can encounter several intermediate
switches and routers along the network path between the
Master and the Slave [2]. Networks often suffer large
unpredictable queuing delays at switches and routers (thus
having heavy PDV in the network) due to the presence of
background traffic [3]. This background traffic may be a real
traffic or one caused by a cyber attack [2] where a malicious
intermediate node deliberately delays the transmission of
synchronization messages. A heavy PDV can be seen in the
Forward path, in the Reverse path or in both paths. Usually,
the PDV in the Forward path is different from the PDV in the
Reverse path. The problem is that the PDV of the Forward and
Reverse paths can significantly hamper the accuracy of the clock
skew estimation [3]. A lower PDV will lead to a more accurate
clock skew estimation compared to a higher PDV. Thus, if the
difference in the PDVs encountered in Forward and Reverse
paths is high, the clock skew estimation accuracy obtained with
the TWD technique is mainly decreased due to the path with the
higher PDV. Thus, if we could use for the clock skew estimation
task only the path with the lowest PDV (namely, using the OWD
technique), the clock skew performance from the MSE point of
view might be improved compared with the case where we have
also to consider the path with the higher PDV (the TWD
approach). Since the lower PDV path may occur in the
Forward path as well as in the Reverse path, two different
OWD clock skew estimators are needed (one for the Forward
path and the other one associated with the Reverse path). So far
we have seen that for the clock skew estimation task, the OWD
technique may be more useful compared with the TWD approach
in cases where the Forward PDV variance is very different from
the Reverse PDV variance. According to [4], PTP (which is a
TWD exchange scheme) has more unknown parameters than
available equations. Thus, in order to solve the problem, a
symmetric path is usually assumed. Namely, the fixed delay in
the Forward path is usually assumed to be the same as the fixed
delay for the Reverse path. But, in practical scenarios, this is not
the case. Thus, for an asymmetrical path, when the symmetric
path assumption is applied, a degradation in the clock skew
estimation may be obtained when the TWD approach is applied.
Now, the OWD technique relies only on one path, on the Reverse
path or on the Forward path. Thus, the symmetric assumption is
not needed in the OWD technique which can be considered here
as an advantage compared with the TWD approach. Suppose for
a moment that we have three clock skew estimators applicable for
the PTP case. Namely, we have one OWD clock skew estimator
for the Forward path, one OWD clock skew estimator for the
Reverse path and a TWD clock skew estimator. Next we wish to

know which of the three clock skew estimators should be taken
for the clock skew estimation task given a network where different
PDV variances are seen on both Forward and Reverse paths but
the fixed delay of the Forward path is equal to the fixed delay of
the Reverse path. It is quite reasonable to think that when the
Forward path PDV variance is equal or close to equal to the
Reverse path PDV variance, the TWD clock skew estimator is
preferable over the OWD clock skew estimator due to the
“averaging” effect of the variances in the TWD clock skew
estimator. But, when the PDV variances of the Forward and
Reverse paths are different and on the same time the difference in
the variances is not very high, it is not clear if the OWD clock
skew estimator for the Forward path or the OWD clock skew
estimator for the Reverse path or maybe the TWD clock skew
estimator should be applied for the clock skew estimation task.
Thus, some guiding lines (closed-form expressions, conditions)
are needed here, telling us which approach should be applied in
order to get the best clock skew performance in the MSE point of
view. Namely, which clock skew estimator should be taken: the
OWD clock skew estimator for the Forward path or the OWD
clock skew estimator for the Reverse path or perhaps the TWD
clock skew estimation approach. Recently [4], we proposed a new
TWD clock skew estimator for the PTP case that has the best
clock skew performance in the MSE point of view compared to
the relevant literature known estimators [5–7]. This clock skew
estimator [4] is suitable for the white-Gaussian and fGn/gfGn
cases and does not depend on the asymmetric fixed delay between
the Forward and the Reverse paths, nor on the offset between the
Master and the Slave clocks. This paper is a direct continuation of
our previous work [4]. Thus, please refer to [4] in order to find a
detailed overview of the existing TWD and recently proposed
OWD approaches for the PTP case. Please note that the two
recently proposed OWD clock skew estimators [6,7], are both
OWD clock skew estimators associated with the Forward path.
Thus, if the Forward path PDV variance is much higher
compared with the Reverse path PDV variance, [6,7] may not
get better clock skew performance from the MSE point of view
compared with the TWD approach and compared with the OWD
clock skew estimator associated with the Reverse path. As already
was mentioned, this paper is a direct continuation of our previous
work [4] where we proposed a novel TWD clock skew estimator
applicable for the PTP case. In this paper we propose:

1. A novel OWD clock skew estimator for the Forward path
based on [4], applicable for the white-Gaussian and fGn/gfGn
environment.

2. A novel OWD clock skew estimator for the Reverse path based
on [4], applicable for the white-Gaussian and fGn/gfGn
environment.

3. A closed-form-approximated expression for the clock skew
performance (MSE) related to our OWD proposed clock skew
estimator for the Forward path.

4. A closed-form-approximated expression for the clock skew
performance (MSE) related to our OWD proposed clock skew
estimator for the Reverse path.

5. Guiding lines (closed-form expressions, conditions),
summarized in a table (please refer to Table 1), telling us if

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8678612

Avraham and Pinchas OWD Clock Skew Estimator - PTP

129

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


we should use the OWD clock skew estimator for the Forward
path or the OWD clock skew estimator for the Reverse path or
perhaps the TWD clock skew estimator proposed by [4] in
order to get the best clock skew performance from the MSE
point of view.

The clock skew performances (MSE) of our new proposed
OWD clock skew estimators were compared via simulation with
the clock skew performances (MSE) obtained with two TWD
clock skew estimators [4,5] and with the literature known OWD
clock skew estimators [6,7]. Simulation results will show the
advantage in performance (MSE) of our new proposed OWD
clock skew estimators compared to [4–7]. Simulation results will
also show the effectiveness of our closed-form-approximated
expressions for the clock skew performance (MSE) associated
to the Forward and Reverse paths as well as the effectiveness of
our proposed guiding lines, leading us to the right choice of the
clock skew estimator from the MSE point of view.

The paper is organized as follows. Section 2 briefly introduces
the system under consideration and the assumptions we applied
for our algorithm. Section 3 proposes the OWD clock skew
estimators for the Forward and Reverse paths. Section 4 suggests
the closed-form approximated expressions for the MSE related to
our new proposed OWD clock skew estimators where the PDV is
a white-Gaussian process. Section 5 suggests the closed-form
approximated expressions for the MSE related to our new
proposed OWD clock skew estimators where the PDV is an
fGn/gfGn process. In Section 6, we derive some guiding lines
(conditions), summarized in Table 1, telling us under what
condition should we prefer the OWD for the Forward path
over the OWD for the Reverse path or should just prefer the
TWD clock skew estimator obtained in [4]. Section 7 presents
simulation results, and in Section 8, a conclusion is given.

2 SYSTEM DESCRIPTION

As already was mentioned earlier, this paper is a direct
continuation of our previous work [4]. Thus, the system
description is the same as in [4]. Please refer to [4], for having
a detailed description of the message exchange flow between the
Master and the Slave. Let us recall Figure 1 from [4] where based
on [8–10] we may write:

t1 j[ ] + dms + ω1 j[ ] � t2 j[ ] 1 + α( ) + Q (1)
t4 j[ ] − dsm − ω2 j[ ] � t3 j[ ] 1 + α( ) + Q (2)

where Q is the time difference between the Master and the Slave
clocks (offset) and α is the clock skew. The Forward and the
Reverse fixed delays are denoted as dms, dsm respectively. The
Forward PDV is denoted as ω1[j] and the Reverse PDV is denoted
as ω2[j]. The total number of the Sync messages periods is
denoted as J, where j = 1, 2, 3, . . . , J. At timestamp t1, the
Master sends a Sync message to the Slave. The Slave receives this
Sync message at timestamp t2 and sends back to the Master a
Delay Req message at timestamp t3. The Master receives
this Delay Req message at timestamp t4. Please note that t1[j],
t2[j], t3[j], t4[j] are the timestamps of t1, t2, t3 and t4 respectively at
the jth Sync message period.

We consider two different models for the PDV, as was done in [4]:

1. The PDV is modeled as a white-Gaussian noise with zero
mean and the variance E[ωn[j],ωn[m]] is σ2ωn

when j =m and
zero when j ≠ m

where E [.] denotes the expectation operator on (.) and n = 1, 2.

2. The PDV is modeled as an fGn/gfGn process with zero mean.
Based on [11–13] we have:

TABLE 1 | Summary of the conditions where the suggested estimator have the possible lower MSE.

Zσ2ω1
� σ2ω2

Z � 1 (σ2ω1
� σ2ω2

� σ2) Z ≠ 1

white-Gaussian if (σ2 ≥ ~σ2) when Z > 1: if (Z ≥ ~Z)
then we use OWD in Eq. 62 then we use OWD in Eq. 61
otherwise, we use TWD in Eq. 60 otherwise, we use TWD in Eq. 60

~σ2 � 2 A
BT

2
syn

when Z < 1: if (Z ≤ �Z)
then we use OWD in Eq. 62
otherwise, we use TWD in Eq. 60

~Z � 3(1 + B
A

σ2ω1
T2
syn
)

�Z � 1
3 (1 + B

A
σ2ω1
T2
syn
)

fGn/gfGn if (σ2 ≥ ~σ2fGn/gfGn) when Z > 1: if (Z ≥ ~ZfGn/gfGn)
then we use OWD in Eq. 62 then we use OWD in Eq. 61
otherwise, we use TWD in Eq. 60 otherwise, we use TWD in Eq. 60

~σ2fGn/gfGn � 2 A
B

C+D
C T2

syn
when Z < 1: if (Z ≤ �ZfGn/gfGn)
then we use OWD in Eq. 62
otherwise, we use TWD in Eq. 60

~ZfGn/gfGn � 3(1 + C
C+D

B
A

σ2ω1
T2
syn
)

�ZfGn/gfGn � 1
3 (1 + C

C+D
B
A

σ2ω1
T2
syn
)
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a. When j = m: E[ωn[j],ωn[m]] � σ2ωn
.

b. When j ≠ m: E[ωn[j],ωn[m]] � σ2ωn
2 [‖(j −m)a| − 1|2H−

2(|(j −m)a|)2H + (|(j −m)a| + 1)2H].
where a = 1 is the fGn case.
In addition, we use also the same assumptions as were made

in [4]:

1. The Forward and the Reverse PDVs are independent. Thus, we
have: E[ω1[j],ω2[m]] � 0 ∀ j,m.

2. In the Slave clock the time between t2 [j] to t3 [j] is constant
and is denoted as X. Thus, we have: t3 [j] − t2 [j] = X.

In this paper we propose two novel OWD clock skew
estimators, one for the Forward path and one for the Reverse
path. Both OWD clock skew estimators are based on our
previously TWD clock skew estimator [4] given by:

α̂ � 1
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T1,j i( )
T2,j i( ) +

T4,j i( )
T2,j i( )( ) − 1 (3)

where

T1,j i( ) � t1 j + i[ ] − t1 j[ ], T2,j i( ) � t2 j + i[ ] − t2 j[ ],
T4,j i( ) � t4 j + i[ ] − t4 j[ ] (4)

3 THE OWD CLOCK SKEW ESTIMATORS

In the following, we present in Theorem 1 our new proposed OWD
clock skew estimator for the Forward path and in Theorem 2 our
new proposed OWD clock skew estimator for the Reverse path.

3.1 Theorem 1
The clock skew estimator for the OWD in the Forward path
(Master to Slave) can be written as:

α̂F � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T1,j i( )
T2,j i( )( ) − 1 (5)

where α̂F is the is the clock skew estimator that based only on
timestamps from the Forward path.

Proof of Theorem 1
In order to avoid the fixed delay, we can subtract between two
timestamps from different Sync periods. Therefore, based on Eq.
1 we have:

T1,j i( ) + Ω1,j i( ) � T2,j i( ) 1 + αF
j,i( ) (6)

where αFj,i is the clock skew between the (j + i)-th and ith Sync
period, and Ω1,j(i) is:

Ω1,j i( ) � ω1 j + i[ ] − ω1 j[ ] (7)
Based on Eq. 6 the clock skew can be written as:

αFj,i �
T1,j i( )
T2,j i( ) +

Ω1,j i( )
T2,j i( ) − 1 (8)

The OWD clock skew in the Forward path can be defined as:

αF � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

αFj,i (9)

By putting Eq. 8 into Eq. 9 we define the clock skew in the
Forward path as:

αF � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T1,j i( )
T2,j i( )( ) + Ω1,j i( )

T2,j i( )( )( ) − 1

� α̂F + 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

Ω1,j i( )
T2,j i( )( ) (10)

This completes our proof.

FIGURE 1 | PTP messaging timing diagram.
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3.2 Theorem 2
The skew clock estimator for the OWD in the Reverse path (Slave
to Master) can be written as:

α̂R � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T4,j i( )
T2,j i( )( ) − 1 (11)

where α̂R is the is the clock skew estimator that based only on
timestamps from the Reverse path.

Proof of Theorem 2
In order to avoid the fixed delay, we can subtract between two
timestamps from different Sync periods. Therefore, based on Eq. 2
we have:

T4,j i( ) − Ω2,j i( ) � T3,j i( ) 1 + αR
j,i( ) (12)

where αRj,i is the clock skew between the (j + i)-th and ith Sync
period, and

T3,j i( ) � t3 j + i[ ] − t3 j[ ] ; Ω2,j i( ) � ω2 j + i[ ] − ω2 j[ ] (13)
Based on the definition that t3 [j] − t2 [j] = X, as mentioned

in the section of System Description (assumption 2), we can
write:

T3,j i( ) � t3 j + i[ ] − t3 j[ ] � t2 j + i[ ] +X − t2 j[ ] +X( ) � T2,j i( )
(14)

By using Eq. 14, we can write Eq. 12 as:

T4,j i( ) − Ω2,j i( ) � T2,j i( ) 1 + αR
j,i( ) (15)

Therefore, based on Eq. 15 the clock skew can be written as:

αRj,i �
T4,j i( )
T2,j i( ) −

Ω2,j i( )
T2,j i( ) − 1 (16)

The OWD clock skew in the Reverse path can be
defined as:

αR � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

αRj,i (17)

By putting Eq. 16 into Eq. 17 we define the clock skew in the
Reverse path as:

αR � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T4,j i( )
T2,j i( )( ) − Ω2,j i( )

T2,j i( )( )( ) − 1

� α̂R − 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

Ω2,j i( )
T2,j i( )( ) (18)

This completes our proof.

4 THE CLOCK SKEW PERFORMANCE FOR
THE WHITE-GAUSSIAN CASE

In the following, Theorems 3 and 4 present the closed-form
approximated expressions for the MSE related to our new

proposed OWD clock skew estimator for the Forward path
and Reverse path, respectively. According to [4], the MSE for
the TWD clock skew estimator for the Gaussian case is
given by:

E e2[ ] ≈ 1
J J − 1( )( )2 σ2ω1

+ σ2
ω2

( )
T2
syn

A 1 + 1
P

( )⎡⎣ ⎤⎦ (19)

where P is:

P � A

B

σ2
ω1
+ σ2ω2

σ4ω1

( )T2
syn (20)

and A, B are given by:

A � 2∑J−1
i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

B � 12∑J−1
i�1

J − i

i4
+ 6∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k
m�j+i
m�j−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j−k

1

ik( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

4.1 Theorem 3
For |Ω1,j(i)

T1,j(i)|≪ 1, the closed-form-approximated expression for the
MSE related to the OWD clock skew estimator (for the Forward
path), can be defined as:

E e2F[ ] ≈ 2
J J − 1( )( )( )2 σ2ω1

T2
syn

A 1 + 1
PF

( )⎡⎣ ⎤⎦ (23)

where PF is:

PF � A

B

T2
syn

σ2
ω1

( ) (24)

where A and B are defined in Eq. 21, 22 respectively.

Proof of Theorem 3
Based on Eq. 10 the error of the OWD clock skew estimator (for
the Forward path) is:

eF � αF − α̂F � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

Ω1,j i( )
T2,j i( )( ) (25)

Now, according to Eq. 6 we can write T2,j(i) as following:

T2,j i( ) � T1,j i( ) +Ω1,j i( )
1 + αF

j,i( ) (26)

Based on Eq. 26 we may write the expectation of Eq.
25 as:
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E eF[ ] � 2 1 + αF( )
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

E
aj,i

1 + aj,i( )⎡⎢⎣ ⎤⎥⎦ (27)

where

aj,i � Ω1,j i( )
T1,j i( ) (28)

For |Ω1,j(i)
T1,j(i)|≪ 1 we can write Eq. 27 as:

E eF[ ] ≈ 2 1 + αF( )
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

E aj,i 1 − aj,i( )[ ][ ] (29)

Based on Eq. 29 the approximated MSE related to the OWD
clock skew estimator (for the Forward path) can be define as:

E e2F[ ] ≈ 4 1 + αF( )2
J J − 1( )( )2 ∑J−1i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
j�m

E aj,iam,k[ ] − E a2j,iam,k[ ] − E aj,ia
2
m,k[ ] + E a2j,ia

2
m,k[ ][ ]

(30)
According to [4], we can write T1,j(i) and T1,m(k) as:

T1,j i( ) � t1 j + i[ ] − t1 j[ ] � iTsyn

T1,m k( ) � t1 m + k[ ] − t1 m[ ] � kTsyn
(31)

where Tsyn is the Sync messages period.
Based on Eq. 28 and on Eq. 31 we can simplify the expressions

in Eq. 30:

E aj,iam,k[ ] � E
Ω1,j i( )
T1,j i( )

Ω1,m k( )
T1,m k( )[ ] � E Ω1,j i( )Ω1,m k( )[ ]

ikT2
syn

(32)

E a2j,iam,k[ ] � E
Ω2

1,j i( )
T2
1,j i( )

Ω1,m k( )
T1,m k( )⎡⎣ ⎤⎦ � E Ω2

1,j i( )Ω1,m k( )[ ]
i2kT3

syn

(33)

E aj,ia
2
m,k[ ] � E

Ω1,j i( )
T1,j i( )

Ω2
1,m k( )

T2
1,m k( )[ ] � E Ω1,j i( )Ω2

1,m k( )[ ]
ik2T3

syn

(34)

E a2j,ia
2
m,k[ ] � E

Ω2
1,j i( )

T2
1,j i( )

Ω2
1,m k( )

T2
1,m k( )

⎡⎣ ⎤⎦ � E Ω2
1,j i( )Ω2

1,m k( )[ ]
i2k2T4

syn

(35)

Since the PDV has zero mean Eqs 33 and 34 can be set to zero.
Now, by putting Eqs 32 and 35 into Eq. 30, we can write the
following expression:

E e2F[ ] ≈ 2 1 + αF( )
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦ (36)

Based on [4] we can write the two summation parts in Eq.
36 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2
ω1
A

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2 � σ4

ω1

T2
syn

B

(37)

where A and B are defined in Eq. 21, 22 respectively.
Based on Eq. 37 we may write (36) as:

E e2F[ ] ≈ 2 1 + αF( )
J J − 1( )( )Tsyn

( )2

σ2ω1
A + σ4ω1

T2
syn

B⎛⎝ ⎞⎠ (38)

For practical systems, the two clocks (Master and Slave) operate at
almost the same frequency. Therefore we can write that (1 + αF) ≈ 1.

After rearranging Eq. 38 we can write:

E e2F[ ] ≈ 2
J J − 1( )( )Tsyn

( )2

σ2ω1
A 1 + σ2

ω1

T2
syn

B

A
⎛⎝ ⎞⎠ (39)

Now, it can be easily seen that based on Eq. 39 we can write
Eq. 23, and this completes our proof.

4.2 Theorem 4
For |Ω1,j(i)

T1,j(i)|≪ 1, the closed-form-approximated expression for the
MSE related to the OWD clock skew estimator (for the Reverse
path), can be defined as:

E e2R[ ] ≈ 2
J J − 1( )( )( )2 σ2

ω2

T2
syn

A⎡⎣ ⎤⎦ (40)

where A is defined in Eq. 21.

Proof of Theorem 4
Based on Eq. 18 the error of the OWD clock skew estimator (for
the Reverse path) is:

eR � αR − α̂R � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

−Ω2,j i( )
T2,j i( )( ) (41)

Let us recall (26):

T2,j i( ) � T1,j i( ) +Ω1,j i( )
1 + αF

j,i( )
Based on Eq. 26, we may write the expectation of Eq. 41 as:

E eR[ ] ≈ 2 1 + αF( )
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

−E bj,i

1 + aj,i( )⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦ (42)

where

aj,i � Ω1,j i( )
T1,j i( ) bj,i � Ω2,j i( )

T1,j i( ) (43)

As mentioned before for practical systems, the two clocks
(Master and Slave) operate at almost the same frequency.
Therefore, we can write (1 + αF) ≈ 1.

For |Ω1,j(i)
T1,j(i)|≪ 1 we can write Eq. 42 as:

E eR[ ] ≈ 2
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

−E bj,i − aj,ibj,i[ ][ ] (44)

Based on the assumption of independence of the Forward and
the Reverse messages (as mentioned in assumption 1 in section
2), we may write Eq. 44 as:

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8678616

Avraham and Pinchas OWD Clock Skew Estimator - PTP

133

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


E eR[ ] ≈ 2
J J − 1( )( ) ∑J−1i�1

∑J−i
j�1

−E bj,i[ ][ ] (45)

Based on Eq. 45 the closed-form-approximated expression for
the MSE related to the OWD clock skew estimator (for the
Reverse path) can be define as:

E e2R[ ] ≈ 4

J J − 1( )( )2 ∑J−1i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
j�m

E bj,ibm,k[ ][ ] (46)

Based on Eq. 43 and on Eq. 31 we can rewrite the expression
E[bj,ibm,k] as:

E bj,ibm,k[ ] � E
Ω2,j i( )
T1,j i( )

Ω2,m k( )
T1,m k( )[ ] � E Ω2,j i( )Ω2,m k( )[ ]

ikT2
syn

(47)

Now, based on Eq. 47 the closed-form-approximated
expression for the MSE related to the OWD clock skew
estimator (for the Reverse path) is:

E e2R[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦
(48)

According to [4], we can write the summation part in Eq.
48 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦ � σ2
ω2
A (49)

where A is defined in Eq. 21.
Now, it can be easily seen that by putting Eq. 49 into Eq. 48we

get Eq. 40, and this completes our proof.

5 THE CLOCK SKEW PERFORMANCE FOR
THE LRD CASE

In this section we applied the fGn/gfGn model for the LRD
process. This model has the Hurst exponent in the range of 0.5 ≤
H < 1 and the a parameter in the range of 0 < a ≤ 1, where for a =
1 we have the fGn case. In the following, Theorems 5 and 6
present the closed-form approximated expressions for the MSE
related to our new proposed OWD clock skew estimator for the
Forward path and Reverse path, respectively. According to [4] the
closed-form-approximated expression for the MSE related to the
TWD clock skew estimator [4] is given by:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2

ω1
+ σ2ω2

T2
syn

⎛⎝ ⎞⎠ 1 + 1
P

( )C +D( ) (50)

where C and D are given by:

C � ∑J−1
i�1

J − i

i2
2 − fGH i,H( )( )

+∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

1 + 1
2

fGp

H
i − k,H, a( ) − fGp

H i,H, a( ) − fGp
H k,H, a( )( )( )

−∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

1 − 1
2

fGp
H i,H, a( ) − fGp

H k,H, a( ) + fGp
H i + k,H, a( )( )( )

(51)

D � ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
2ik

fGp
H j −m,H, a( ) − fGp

H j + i −m,H, a( )(
−fGp

H j −m − k,H, a( ) + fGp
H j + i −m − k,H, a( ))

(52)
the function fGp

H(.) is:
fGp

H x,H, a( ) � ‖xa| − 1|2H − 2 |xa|( )2H + |xa| + 1( )2H[ ] (53)
and P is defined in Eq. 20.

5.1 Theorem 5
The closed-form approximated expression for the MSE related to
our new proposed OWD clock skew estimator (for the Forward
path) can be defined as:

E e2F[ ] ≈ 2
J J − 1( )( )( )2 σ2ω1

T2
syn

⎛⎝ ⎞⎠ 1 + 1
PF

( )C +D( ) (54)

where C, D and PF are defined in Eq. 51, 52 and 24 respectively.

Proof of Theorem 5
The MSE for the fGn/gfGn case is based on the MSE of the OWD
clock skew estimator for the Forward path defined in Eq. 36.
Based on the fact that 1 + αF ≈ 1, we can write Eq. 36 as:

E e2F[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦ (55)

According to [4], we can write the first part in Eq. 55 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

⎡⎣ ⎤⎦ � σ2
ω1

C +D( ) (56)

where C and D are defined in Eq. 51, 52 respectively.
The calculation of the second expression in Eq. 55 is quite

difficult to carry out for the fGn/gfGn case. Therefore, following
[4] we can write:
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∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦
� σ2

ω1
C 1 + 1

PF
( ) +D( ) (57)

Now, by putting Eq. 57 into Eq. 55, we get Eq. 54 and this
completes our proof.

5.2 Theorem 6
The closed-form approximated expression for the MSE related to
our new proposed OWD clock skew estimator (for the Reverse
path) can be defined as:

E e2R[ ] ≈ 2
J J − 1( )( )( )2 σ2

ω2

T2
syn

C +D( ) (58)

where C and D are defined in Eq. 51, 52.

Proof of Theorem 6
The MSE for the fGn/gfGn case is based on the MSE of the OWD
clock skew estimator for the Reverse path defined in Eq. 48. Let as
recall Eq. 48:

E e2R[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦
We can write the summation part in Eq. 48 as was done in

[4] as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦ � σ2
ω2

C +D( ) (59)

Now, by putting Eq. 59 into Eq. 48, we get Eq. 58 and this
completes our proof.

6 THE PREFERRED CLOCK SKEW
ESTIMATOR FOR EACH SCENARIO

In this paper we proposed two OWD clock skew estimators (Eqs
5, 11). Thus, we can consider now two OWD clock skew
estimators and one TWD clock estimator proposed by [4]. Let
us recall the three estimators.

At first, we recall the TWD clock skew estimator from [4]:

α̂ � 1
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T1,j i( )
T2,j i( ) +

T4,j i( )
T2,j i( )( ) − 1 (60)

The OWD clock skew estimator for the Forward path is given
by Eq. 5:

α̂F � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T1,j i( )
T2,j i( )( ) − 1 (61)

The OWD clock skew estimator for the Reverse path is given
by Eq. 11:

α̂R � 2
J J − 1( ) ∑J−1i�1

∑J−i
j�1

T4,j i( )
T2,j i( )( ) − 1 (62)

It would be very helpful for the system designer if he could
know which of the above listed clock skew estimators (Eqs
60–62) he should choose in order to achieve the best clock
skew performance in the MSE point of view. In this section we
will give the system designer guidelines (conditions) that will
help him to choose wisely the best clock skew estimator in
order to achieve the best clock skew performance from the
MSE point of view.

Please note, in this section we define Z as:

Z � σ2
ω2

σ2
ω1

(63)

Thus we have:

a. when Z> 1 → σ2ω1
< σ2ω2

,
b. when Z< 1 → σ2ω1

> σ2ω2
,

c. when Z � 1 → σ2ω1
� σ2ω2

.

In the following we have Theorem seven supplying us
guidelines for choosing the preferable clock skew estimator
from the above listed clock skew estimators (Eqs 60–62)
leading to the best clock skew performance from the MSE
point of view for the white-Gaussian case. Theorem 8 supplies
us guidelines for choosing the preferable clock skew estimator
from the above listed clock skew estimators (Eqs 60–62)
leading to the best clock skew performance from the MSE
point of view for the fGn/gfGn case.

6.1 Theorem 7
For the white-Gaussian process we have the following conditions:

Case a: For Z > 1:
If Z≥ ~Z, then we use the OWD clock skew estimator in the

Forward path (Eq. 61).
where

~Z � 3 1 + B

A

σ2ω1

T2
syn

⎛⎝ ⎞⎠ (64)

Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case b: For Z < 1:
If Z≤ �Z, then we use the OWD clock skew estimator in the

Reverse path (Eq. 62),
where

�Z � 1
3

1 + B

A

σ2
ω1

T2
syn

⎛⎝ ⎞⎠ (65)

Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case c: For Z = 1 (σ2ω1

� σ2ω2
� σ2):

If σ2 ≥ ~σ2, then we use the OWD clock skew estimator in the
Reverse path (Eq. 62),

where
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~σ2 � 2
A

B
T2
syn (66)

Otherwise, we use the TWD clock skew estimator (Eq. 60).

Proof of Theorem 7
We rewrite the closed-form-approximated expression for the MSE
related to the TWD clock skew estimator (Eq. 19), and the closed-
form-approximated expressions for the MSE related to our new
proposed OWD clock skew estimators (Eqs 23, 40) with the help of
Z (Eq. 63).

The closed-form approximated expressions for the MSE related
to the TWD clock skew estimator (Eq. 19) can be written as:

E e2[ ] ≈ 1
J J − 1( )( )2 σ2

ω1
1 + Z( )
T2
syn

A 1 + 1
P

( )⎡⎣ ⎤⎦ (67)

The closed-form approximated expression for the MSE related
to the OWD clock skew estimator for the Forward path (Eq. 23)
can be written as:

E e2F[ ] ≈ 2
J J − 1( )( )( )2 σ2ω1

T2
syn

A 1 + 1
PF

( )⎡⎣ ⎤⎦ (68)

The closed-form approximated expression for the MSE related
to the OWD clock skew estimator for the Reverse path (Eq. 40) can
be written as:

E e2R[ ] ≈ 2
J J − 1( )( )( )2 Zσ2ω1

T2
syn

A⎡⎣ ⎤⎦ (69)

where A, B, P and PF are defined in Eqs 21, 22, 20 and 24
respectively.

In the following, we define MSET
G, MSEF

G and MSER
G as the

MSE of the TWD case (Eq. 67), OWD in the Forward path case
(Eq. 68) and OWD in the Reverse path case (Eq. 69) respectively.

For Z > 1, we wish to find the value for Z where we have
MSET

G ≥MSEF
G. Thus, we may write with the help of Eqs 20, 24:

1
J J − 1( )Tsyn

( )2

σ2
ω1

1 + Z( )A + B
σ4ω1

T2
syn

⎡⎣ ⎤⎦≥
1

J J − 1( )Tsyn
( )2

4 σ2
ω1
A + B

σ4ω1

T2
syn

⎡⎣ ⎤⎦ (70)

where Eq. 70 can be written also as:

σ2ω1
1 + Z( )A + B

σ4
ω1

T2
syn

⎡⎣ ⎤⎦≥ 4 σ2
ω1
A + B

σ4ω1

T2
syn

⎡⎣ ⎤⎦ (71)

After rearranging Eq. 71 we can write:

Zσ2ω1
A≥ 3 σ2

ω1
A + B

σ4ω1

T2
syn

⎛⎝ ⎞⎠ (72)

We can divide Eq. 72 byAσ2ω1
(Aσ2ω1

>0) and then we canwrite:
Z≥ ~Z (73)

where ~Z is defined in Eq. 64.

This completes our proof of Theorem 7, case a.
Now, we continue the proof of case b. For Z < 1, we wish to

find the value for Zwhere we haveMSET
G ≥MSER

G. Thus, with the
help of Eq. 20 we may write:

1
J J − 1( )Tsyn

( )2

σ2
ω1

1 + Z( )A + B
σ4ω1

T2
syn

⎡⎣ ⎤⎦≥
1

J J − 1( )Tsyn
( )2

4 Zσ2ω1
A[ ] (74)

where Eq. 74 can be written also as:

σ2ω1
1 + Z( )A + B

σ4
ω1

T2
syn

≥ 4Zσ2ω1
A (75)

After rearranging Eq. 75 we can write:

σ2
ω1

A + B
σ2ω1

T2
syn

⎛⎝ ⎞⎠≥ 3Zσ2ω1
A (76)

We can divide Eq. 76 by 3Aσ2ω1
(3Aσ2ω1

> 0) and then we can
write:

Z≤ �Z (77)
where �Z is defined in Eq. 65.

This completes our proof of Theorem 7, case b.
Now we can continue the proof of case c of Theorem 7. For Z =

1, we defined that σ2ω1
� σ2ω2

� σ2. We wish to find the value for Z
where we have MSET

G ≥MSER
G (please note that for Z = 1:

MSET
G <MSEF

G ∀ j, since B has only positive values). Thus,
with the help of Eq. 20 we can write:

1
J J − 1( )Tsyn

( )2

2σ2A + B
σ4

T2
syn

⎡⎣ ⎤⎦≥
1

J J − 1( )Tsyn
( )2

4 σ2A[ ] (78)

where Eq. 78 can be written also as:

2σ2A + B
σ4

T2
syn

≥ 4σ2A (79)

After rearranging Eq. 79 we can write:

σ2 ≥ ~σ2 (80)
where ~σ2 is defined in Eq. 66. Now, we have completed our proof
of Theorem 7.

6.2 Theorem 8
For the fGn/gfGn process we have the following conditions:

Case a: For Z > 1:
If Z≥ ~ZfGn/gfGn, then we use the OWD clock skew estimator

in the Forward path (Eq. 61),
where

~ZfGn/gfGn � 3 1 + C

C +D

B

A

σ2ω1

T2
syn

⎛⎝ ⎞⎠ (81)
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Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case b: For Z < 1:
If Z≤ �ZfGn/gfGn, then we use the OWD clock skew estimator

in the Reverse path (Eq. 62),
where

�ZfGn/gfGn �
1
3

1 + C

C +D

B

A

σ2ω1

T2
syn

⎛⎝ ⎞⎠ (82)

Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case c: For Z = 1 (σ2ω1

� σ2ω2
� σ2):

If σ2 ≥ ~σ2fGn/gfGn, then we use the OWD clock skew estimator
in the Reverse path (Eq. 62),

where

~σ2
fGn/gfGn � 2

C +D

C

A

B
T2
syn (83)

Otherwise, we use the TWD clock skew estimator (Eq. 60).

Proof of Theorem 8
We rewrite the closed-form-approximated expression for the MSE
related to the TWDclock skew estimator (Eq. 50), and the closed-form-
approximated expressions for the MSE related to our new proposed
OWD clock skew estimators (Eqs 54, 58 with the help of Z (Eq. 63).

The closed-form approximated expressions for the MSE related
to the TWD clock skew estimator (Eq. 50) can be written as:

E e2[ ] ≈ 1
J J − 1( )( )2 σ2ω1

1 + Z( )
T2
syn

C 1 + 1
P

( ) +D( )⎡⎣ ⎤⎦ (84)

The closed-form approximated expressions for the MSE
related to the OWD clock skew estimator for the Forward
path Eq. 54 can be written as:

E e2F[ ] ≈ 2
J J − 1( )( )2 σ2ω1

T2
syn

C 1 + 1
PF

( ) +D( )⎡⎣ ⎤⎦ (85)

The closed-form approximated expressions for the MSE
related to the OWD clock skew estimator for the Reverse path
Eq. 58 can be written as:

E e2R[ ] ≈ 2
J J − 1( )( )2 Zσ2

ω1

T2
syn

C +D( )⎡⎣ ⎤⎦ (86)

where C, D, P and PF are defined in Eqs 51, 52, 20 and 24
respectively.

In the following, we define: MSET
fGn/gfGn, MSEF

fGn/gfGn and
MSER

fGn/gfGn as the MSE of the TWD case (Eq. 84), OWD in the
Forward path case (Eq. 85) and OWD in the Reverse path case
(Eq. 86) respectively.

For Z > 1, we wish to find the value for Z where we have
MSET

fGn/gfGn ≥MSEF
fGn/gfGn. Thus, we may write:

1
J J − 1( )Tsyn

( )2

σ2ω1
1 + Z( ) 1 + 1

P
( )C +D( )[ ]≥

1
J J − 1( )Tsyn

( )2

4 σ2
ω1

( ) 1 + 1
PF

( )C +D( )[ ] (87)

where Eq. 87 can be written also as:

1 + Z( ) 1 + 1
P

( )C +D( )≥ 4 1 + 1
PF

( )C +D( ) (88)

Based on the definition of P and PF in Eqs 20, 24 respectively,
we can write:

P � A

B

1 + Z( )T2
syn

σ2ω1

, PF � A

B

T2
syn

σ2
ω1

→

P � PF 1 + Z( )
(89)

Based on Eq. 89 we can write Eq. 88 as:

1 + Z( ) 1 + 1
PF 1 + Z( )( )C +D( )≥ 4 1 + 1

PF
( )C +D( ) (90)

After rearranging Eq. 90 we can write:

Z≥ 3
1 + 1

PF
( )C +D

C +D
⎛⎝ ⎞⎠ (91)

By putting the definition of PF Eq. 24 into Eq. 91 we can write:

Z≥ 3
C +D + BC

A

σ2ω1
T2
syn

C +D
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ → Z≥ ~ZfGn/gfGn (92)

where ~ZfGn/gfGn is defined in Eq. 81.
This completes our proof of Theorem 8, case a.
Now we continue the proof of case b. For Z < 1, we wish to find

the value for Z where we haveMSET
fGn/gfGn ≥MSER

fGn/gfGn. Thus,
we may write:

1
J J − 1( )Tsyn

( )2

σ2ω1
1 + Z( ) 1 + 1

P
( )C +D( )[ ]≤

1
J J − 1( )Tsyn

( )2

4 Zσ2ω1
( ) C +D( )[ ] (93)

where Eq. 93 can be written also as:

1 + Z( ) 1 + 1
P

( )C +D( )≤ 4Z C +D( ) (94)

By using the definition of P in Eq. 20 into Eq. 95wemay write:

1 + Z( ) 1 + B

A

σ2
ω1

1 + Z( )T2
syn

⎛⎝ ⎞⎠C +D⎛⎝ ⎞⎠≤ 4Z C +D( ) (95)

After rearranging Eq. 95 we can write:

Z≤
1
3

C +D + CB
A

σ2ω1
T2
syn

C +D
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ → Z≤ �ZfGn/gfGn (96)

where �ZfGn/gfGn is defined in Eq. 82.
This completes our proof of Theorem 8, case b.
Now we can continue the proof of case c of Theorem 8. For Z =

1, we defined that σ2ω1
� σ2ω2

� σ2. We wish to find the value for Z
where we have MSET

fGn/gfGn ≥MSER
fGn/gfGn. Note that for Z �
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1 MSET
fGn/gfGn <MSEF

fGn/gfGn ∀j since, A, B and C have only
positive values. Thus, we can write:

1
J J − 1( )Tsyn

( )2

2σ2 C 1 + 1
P

( ) +D( )[ ]≥
1

J J − 1( )Tsyn
( )2

4σ2 C +D( )[ ] (97)

where Eq. 97 can be written also as:

2σ2 C 1 + 1
P

( ) +D( )≥ 4σ2 C +D( ) (98)

By using the definition of P in Eq. 20, we may write Eq. 98 as:

2σ2 C 1 + B

A

σ2

2T2
syn

⎛⎝ ⎞⎠ +D⎛⎝ ⎞⎠≥ 4σ2 C +D( ) (99)

After rearranging Eq. 99 we can write:

σ2 ≥ ~σ2fGn/gfGn (100)
where ~σ2fGn/gfGn is defined in Eq. 83. Now, we have completed our
proof of Theorem 8.

7 SIMULATION RESULTS

In this section, we first start to test our guidelines (conditions) from
Theorem 8, summarized in Table 1. Figures 2, 3 show the
simulated clock skew performance (MSE) comparison between
the OWD clock skew estimator for the Forward path (Eq. 61) with
the TWD clock skew estimator proposed by Avraham and Pinchas
[4] for the fGn case. Figures 4–6 show the simulated clock skew
performance (MSE) comparison between the OWD clock skew
estimator for the Reverse path (Eq. 62) with the TWD clock skew
estimator proposed by Avraham and Pinchas [4] for the fGn case.
Figure 7 shows the simulated clock skew performance (MSE)
comparison between the OWD clock skew estimator for the
Forward path (Eq. 61) with the TWD clock skew estimator
proposed by Avraham and Pinchas [4] for the gfGn case.
Figure 8 shows the simulated clock skew performance (MSE)
comparison between the OWD clock skew estimator for the
Reverse path (Eq. 62) with the TWD clock skew estimator
proposed by Avraham and Pinchas [4] for the gfGn case. In
Figures 2, 3 and Figure 7, the Forward PDV variance was set
lower than the Reverse PDV variance (Z > 1). Now, according to
test case a of Theorem 8, if Z≥ ~ZfGn/gfGn we should choose the
OWD clock skew estimator for the Forward path over the TWD
clock skew estimator, else we should choose the TWD clock skew
estimator. Namely, if Z≥ ~ZfGn/gfGn, a better clock skew
performance from the MSE point of view can be obtained with
the OWD clock skew estimator for the Forward path compared
with the TWD clock skew estimator proposed by Avraham and
Pinchas [4]. In Figure 2 and Figure 7, we haveZ≥ ~ZfGn/gfGn while
in Figure 3 we have Z< ~ZfGn/gfGn. Indeed we can see that in
Figure 2 and Figure 7 a lower MSE is obtained with the OWD
clock skew estimator for the Forward path compared with the
TWD clock skew estimator proposed by Avraham and Pinchas [4]

which clearly demonstrates that the OWD clock skew estimator for
the Forward path should be chosen for the clock skew estimation
task. In Figure 3 a lowerMSE is obtained with the TWD clock skew
estimator compared with the OWD clock skew estimator for the
Forward path which means that the TWD clock skew estimator
should be chosen for the clock skew estimation task. Thus, we may
say that according to Figures 2, 3 and Figure 7, test case a of
Theorem 8 works correctly. In Figures 4, 5 and Figure 8, the
Reverse PDV variance was set lower than the Forward PDV
variance (Z < 1). Now, according to test case b of Theorem 8,
if Z≤ �ZfGn/gfGn we should choose the OWD clock skew estimator
for the Reverse path over the TWD clock skew estimator, else we
should choose the TWD clock skew estimator. Namely, if
Z≤ �ZfGn/gfGn a better clock skew performance from the MSE
point of view can be obtained with the OWD clock skew estimator
for the Reverse path compared with the TWD clock skew estimator
proposed by Avraham and Pinchas [4]. In Figure 4 and Figure 8,
we have Z≤ �ZfGn/gfGn while in Figure 5 we have Z> �ZfGn/gfGn.
Indeed we can see that in Figure 4 and Figure 8 a lower MSE is
obtained with the OWD clock skew estimator for the Reverse path
compared with the TWD clock skew estimator proposed by
Avraham and Pinchas [4] which clearly demonstrates that the
OWD clock skew estimator for the Reverse path should be chosen
for the clock skew estimation task. In Figure 5 a lower MSE is
obtained with the TWD clock skew estimator compared with the
OWD clock skew estimator for the Reverse path which means that
the TWD clock skew estimator should be chosen for the clock skew
estimation task. Thus, we may say that according to Figures 4, 5
and Figure 8, test case b of Theorem 8works correctly. In Figure 6,
the Reverse PDV variance was set equal to the Forward PDV
variance (Z = 1). Now, according to test case c of Theorem 8, if
σ2 ≥ ~σ2fGn/gfGn we should choose the OWD clock skew estimator
for the Reverse path over the TWD clock skew estimator, else we
should choose the TWD clock skew estimator. Namely, if
σ2 ≥ ~σ2fGn/gfGn a better clock skew performance from the MSE
point of view can be obtained with the OWD clock skew estimator
for the Reverse path compared with the TWD clock skew estimator
proposed by Avraham and Pinchas [4]. According to Figure 6, up
to approximately J = 80 we have that σ2 < ~σ2fGn/gfGn. Thus, up to
approximately J = 80 we see according to Figure 6 that a lower
MSE is obtained with the TWD clock skew estimator proposed by
Avraham and Pinchas [4] compared with the OWD clock skew
estimator for the Reverse path. But, for J > 80, σ2 > ~σ2fGn/gfGn thus a
lower MSE is obtained with the OWD clock skew estimator for the
Reverse path compared with the TWD clock skew estimator
proposed by Avraham and Pinchas [4]. Figure 6 clearly
demonstrates the effectiveness of test case c of Theorem 8.
According to Figures 2–8, our guidelines (conditions) from
Theorem 8 indeed may help the system designer to choose
wisely the preferred approach among Eqs 60–62 that should be
applied for the clock skew estimation task in order to get the best
clock skew performance from theMSE point of view. According to
Figures 2–8 we can also see the advantage of having two OWD
clock skew estimators (one for the Forward path and one associated
with the Reverse path) that can supply better clock skew
performance from the MSE point of view compared to our
recently proposed TWD clock skew estimator Avraham and

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 86786111

Avraham and Pinchas OWD Clock Skew Estimator - PTP

138

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pinchas [4], when complying with our proposed guidelines
(conditions) from Theorem 8.

In Figures 9–12 we compared the clock skew performance
(MSE) of our new proposed OWD clock skew estimators (Eqs 61,
62) with the clock skew performance (MSE) that is obtained from
three clock skew algorithms: a.) TWD clock skew estimator, named
as the ML-like estimator (MLLE) proposed by Noh et al. [5], b.)

OWD clock skew estimator, named as the maximum likelihood
estimator proposed by Levy and Pinchas [7], c.) OWD clock skew
estimator, named as the Kalman estimator proposed by Chaloupka
et al. [6]. According to Noh et al. [5] we have:

β̂ � T2,1 J − 1( )2 + T3,1 J − 1( )2
T1,1 J − 1( )T2,1 J − 1( ) + T3,1 J − 1( )T4,1 J − 1( ) − 1 (101)

FIGURE 2 | Test case a of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Forward path (Eq. 61) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 4e − 8[sec2],

σ2ω2
� 6.4e − 7[sec2], Z = 16, ~ZfGn/gfGn(J � 500) � 3.233 (for J < 500, ~ZfGn/gfGn <3.233). The results were obtained for 100 Monte-Carlo trails.

FIGURE 3 | Test case a of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Forward path (Eq. 61) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 1e − 8[sec2],

σ2ω2
� 1.44e − 8[sec2], Z = 1.44, ~ZfGn/gfGn(J � 500) � 3.058 (for J < 500, ~ZfGn/gfGn <3.058, ~ZfGn/gfGn(J � 10) � 3.004). The results were obtained for 100 Monte-Carlo

trails.
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where

β̂ � 1
α̂ + 1

− 1 (102)
T2,1 (J − 1) = t2 [J] − t2 [1], T1,j(i), T2,j(i), T3,j(i) and T4,j(i) are
defined in Eqs 4, 13.

According to Levy and Pinchas [7] we have:

FIGURE 4 | Test case b of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 6.4e − 7[sec2],

σ2ω2
� 4e − 8[sec2], Z = 0.0625, �ZfGn/gfGn(J � 500) � 0.748 (for J < 500, �ZfGn/gfGn < 0.748, �ZfGn/gfGn(J � 10) � 0.36). The results were obtained for 100Monte-Carlo trails.

FIGURE 5 | Test case b of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 1.44e − 8[sec2],

σ2ω2
� 1e − 8[sec2], Z = 0.69, �ZfGn/gfGn(J � 500) � 0.342 7 (for J < 500, �ZfGn/gfGn <0.3427). The results were obtained for 100 Monte-Carlo trails.
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FIGURE 6 | Test case c of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.6, dms = 2.5 ms, dsm = 3 ms, σ2ω1
� σ2ω2

� 4e − 6[sec2], Z =
1, ~σ2fGn/gfGn(J � 500) � 1.03e − 6 (for J < 500: ~σ2fGn/gfGn >1.03e − 6, ~σ2fGn/gfGn(J � 100) � 3e − 6, ~σ2fGn/gfGn(J � 60) � 4.3e − 6, ~σ2fGn/gfGn(J � 10) � 1.72e − 5). The results
were obtained for 100 Monte-Carlo trails.

FIGURE 7 | Test case a of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Forward path (Eq. 61) and the TWD clock
skew estimator (Eq. 60). The PDV is an gfGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ),H = 0.95, a = 0.08, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 1e − 8[sec2],

σ2ω2
� 9e − 8[sec2], Z = 9, ~ZfGn/gfGn(J � 500) � 3.02 (for J < 500, ~ZfGn/gfGn < 3.02). The results were obtained for 100 Monte-Carlo trails.
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FIGURE 8 | Test case b of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an gfGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ),H = 0.95, a = 0.08, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 9e − 8[sec2],

σ2ω2
� 1e − 8[sec2], Z = 0.111, �ZfGn/gfGn(J � 500) � 0.356 (for J < 500, �ZfGn/gfGn < 0.356, �ZfGn/gfGn(J � 10) � 0.337). The results were obtained for 100Monte-Carlo trails.

FIGURE 9 | Performance (MSE) comparison between the OWD clock skew estimator for the Forward path (Eq. 61), likelihood clock skew estimator proposed by
Noh et al. [5] and maximum likelihood clock skew estimator proposed by Levy and Pinchas [7]. The PDV is an gfGn process. α = 50ppm, Q = 5 ms,
Tsyn � 15.6ms (64 packet

sec ), H = 0.95, a = 0.08, dms = 5.5 ms, dsm = 5 ms, σ2ω1
� 4e − 8[sec2], σ2ω2

� 1.6e − 7[sec2]. The results were obtained for 100 Monte-Carlo trails.
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FIGURE 10 | Performance (MSE) comparison between the OWD clock skew estimator for the Reverse path (Eq. 62), likelihood clock skew estimator proposed by
Noh et al. [5] and maximum likelihood clock skew estimator proposed by Levy and Pinchas [7]. The PDV is an fGn process. α = 50ppm, Q = 5 ms,
Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5.5 ms, dsm = 5 ms, σ2ω1
� 1.6e − 7[sec2], σ2ω2

� 4e − 8[sec2]. The results were obtained for 100 Monte-Carlo trails.

FIGURE 11 | Performance (MSE) comparison between the OWD clock skew estimator for the Forward path (Eq. 61), likelihood clock skew estimator proposed by
Noh et al. [5] and Kalman clock skew estimator proposed by Chaloupka et al. [6]. The PDV is an gfGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ),H = 0.95,
a = 0.08, dms = 5.5 ms, dsm = 5 ms, σ2ω1

� 4e − 8[sec2], σ2ω2
� 1.3e − 7[sec2], L = 100, QKAL = 0, δσ = δμ = 1e − 4, μ̂[1] � 0. The results were obtained for 100 Monte-

Carlo trails.
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FIGURE 12 | Performance (MSE) comparison between the OWD clock skew estimator for the Reverse path (Eq. 62), likelihood clock skew estimator proposed by
Noh et al. [5] and Kalman clock skew estimator proposed by Chaloupka et al. [6]. The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7,
dms = 5.5 ms, dsm = 5 ms, σ2ω1

� 3.6e − 7[sec2], σ2ω2
� 4e − 8[sec2], L = 100, QKAL = 0, δσ = δμ = 1e − 4, μ̂[1] � 0. The results were obtained for 100 Monte-Carlo trails.

FIGURE 13 | case 1: Performance comparison for the fGn case, between our new proposed clock skew estimator for the Forward path (Eq. 61) with the
performance results for our new proposed expression for the MSE (Eq. 54). σω1 � 0.8e − 3[sec]. Case 2: Performance comparison for the fGn case, between our new
proposed clock skew estimator for the Reverse path (Eq. 62) with the performance results for our new proposed expression for the MSE (Eq. 58). σω2 � 0.1e − 3[sec].
For both cases: α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.6, dms = 5.5 ms, dsm = 5 ms. The results were obtained for 100 Monte-Carlo trails.
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ε̂ � 2∑J
i�1

∑J
j�1

∑min i,j( )−1

k�1
Amax J, i, j, k,H( ) △Ts1.i −△Ts2.i( ) △Ts1.j −△Ts2.j( )[ ]⎛⎜⎝ ⎞⎟⎠

∑J
i�1

∑J
j�1

∑min i,j( )−1

k�1
Amax J, i, j, k,H( ) △Tm.j △Ts1.i −△Ts2.i( )[[⎛⎜⎝

+△Tm.i △Ts1.j −△Ts2.j( )]])−1 − 1

(103)
where Amax (J, i, j, k, H) is:

Amax J, i, j, k,H( ) � Γ J( )
Γ −H + 0.5( )Γ J −H + 0.5( )[ ]2

Γ i − k −H + 0.5( )(
Γ J −H + 0.5 − i + k( )Γ j − k −H + 0.5( )Γ J −H + 0.5 − j + k( ))
Γ J − i + k( )Γ J − j + k( )Γ i − k( )Γ j − k( )( )−1

1
i − k( )

1
j − k( ) − 1

J − i + k( )
1

J − j + k( )[ ]
(104)

and ε̂ is:

ε̂ � 1
α̂ + 1

− 1 (105)

Γ(.) denotes the Gamma function, △ denotes the difference
between two consecutive timestamps. Tm. i is the timestamp in
the ith period when the Master sends the Sync message. Ts1. i is
the timestamp in the ith period when the dual-Slave receives the
Sync message. Ts2. i is the timestamp in the ith period when the
Slave receives the Sync message.

The Kalman estimator from Chaloupka et al. [6] depends on a
predefined parameter L that defines the sliding window’s length
in the algorithm. The L parameter impacts the performance
(MSE). As we increase L, it reduces the MSE. However, L also
depends on the total number of sync periods, which we set for the

frequency synchronization task as 500. Therefore, L must be
smaller than 500.

According to Chaloupka et al. [6] the Kalman’s measurement
equation is:

T1,j L( ) − T2,j L( ) � T2,j L( )α j[ ] +Ω1,j L( ) (106)
The Kalman’s state equation is:

α̂ j + 1[ ] � α̂ j[ ] + u j[ ]. (107)
where the variance of u[j] is QKAL. The estimate of the noise
measurement variance is given by Chaloupka et al. [6]:

R̂ j[ ] � 1 − δσ( )R̂ j − 1[ ] + δσ x j[ ] − μ̂ j[ ]( )2 (108)
where

μ̂ j[ ] � 1 − δμ( )μ̂ j − 1[ ] + δμx j[ ]; x j[ ] � T1,j L( ) − T2,j L( )
(109)

δμ and δσ are smoothing factors which are between zero
and one.

According to Figures 9, 10, our new proposed OWD clock
skew estimator for the Forward path (Eq. 61) (Figure 9) or for the
Reverse path (Eq. 62) (Figure 10) achieves a lower MSE
compared to the clock skew estimators proposed by Noh et al.
[5] and Levy and Pinchas [7]. Please note that for the simulation
results presented in Figure 10, the PDV for the Reverse path was
set lower than the PDV for the Forward path. Since the OWD
clock skew estimator proposed by Levy and Pinchas [7] is based
on the Forward path only, the clock skew accuracy with this
estimator Levy and Pinchas [7] is indeed decreased (Figure 10).

According to Figures 11, 12, our new proposed OWD clock
skew estimator for the Forward path (Eq. 61) (Figure 11) or for

FIGURE 14 | case 1: Performance comparison for the gfGn case, between our new proposed clock skew estimator for the Forward path (Eq. 61) with the
performance results for our new proposed expression for the MSE (Eq. 54). σω1 � 0.8e − 3[sec].Case 2: Performance comparison for the gfGn case, between our new
proposed clock skew estimator for the Reverse path (Eq. 62) with the performance results for our new proposed expression for the MSE (Eq. 58). σω2 � 0.1e − 3[sec].
For both cases: α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.95, a = 0.95, dms = 5.5 ms, dsm = 5 ms. The results were obtained for 100 Monte-Carlo
trails.
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the Reverse path (Eq. 62) (Figure 12) achieves a lower MSE
compared to the clock skew estimators proposed by Noh et al. [5]
and Chaloupka et al. [6]. Please note that for the simulation
results presented in Figure 12, the PDV for the Reverse path was
set lower than the PDV for the Forward path. Since the OWD
clock skew estimator proposed by Chaloupka et al. [6] is based on
the Forward path only, the clock skew accuracy with this
estimator Chaloupka et al. [6] is indeed decreased (Figure 12).

Next we tested our new proposed OWD clock skew estimators’
performances (MSE) for the Forward and Reverse paths (Eqs 61,
62) with our closed-form-approximated expressions for the MSE
for the LRD case (Eqs 54, 58) for the Forward and Reverse path,
respectively. Case 1 in Figures 13, 14 presents the clock skew
performance of our new proposed OWD clock skew estimator for
the Forward path (Eq. 61) compared with our closed-form-
approximated expression for the MSE in Eq. 54. Case 2 in
Figures 13, 14 presents the clock skew performance of our new
proposed OWD clock skew estimator for the Reverse path (Eq. 62)
compared with our closed-form-approximated expression for the
MSE in Eq. 58. According to Figures 13, 14 it can be clearly seen
that our new closed-form-approximated expressions for the MSE
in Eqs 54, 58 supply very close results to the simulated one.

8 CONCLUSION

In this paper we derived two novels OWD clock skew estimators for
the Forward and Reverse paths applicable for white-Gaussian
process and for the fGn/gfGn environment. Those estimators

do not depend on the unknown fixed paths nor on the clock
offset between the Master and Slave. In addition, we derived
also closed-form-approximated expressions for the clock
skew performance (MSE) for the new proposed OWD
clock skew estimators for the Forward and Reverse paths.
In order to help the system designer to choose the right
clock skew estimator that may get the best clock skew
performance from the MSE point of view, some guidelines
(conditions) were derived, helping choosing the right clock skew
estimator wisely. Simulation results has confirmed that our new
OWD clock skew estimators indeed achieve better clock
skew performance from the MSE point of view compared to the
literature known clock skew estimators. Simulation results have also
confirmed that our closed-form-approximated expressions for the
MSE related to our new proposed OWD Forward and Reverse
estimators are indeed efficient.
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On the fractional weibull process
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Engineering applications of the fractional Weibull distribution (fWd) are quite

limited because a corresponding stochastic process is not yet constituted and

completely analyzed of fundamental properties. In order to fill this gap, the

fractional Weibull process (fWp) is defined in this paper with the realization

algorithm. The self-similarity property as well as long range dependence (LRD)

are proven for the future research. The simulation is conducted by the actual

data. The fWd is utilized to fit the actual probability distribution and the

corresponding process is generated to reflect the stochasticity of the data.

The randomwalk based on the fWp expands the simulation to the planar space.

KEYWORDS

self-similarity, long range dependence, fractional Weibull distribution, fractional
Weibull process, random walk

1 Introduction

After the discovery of fractal geometry, there has been recently a growing interest for

the application of the fractional dimension processes in several fields. The fractional

process is often used in the modeling of the Internet traffic. An abstract model for

aggregated connectionless traffic, which is based on the fractional Brownian motion, is

presented in [1]. In [2], generalized fractional Gaussian noise is proposed and used in the

traffic modelling. The stochastic process with fractional dimension can also be used in the

field of remaining useful life prediction for the mechanical parts. The remaining useful life

is the remaining time for the mechanical parts before the next failure. The purpose of the

remaining useful life prediction is to schedule the maintenance of the system and improve

the reliability. The multi-modal fractional Lévy stable motion degradation model is

developed to predict the remaining useful life of a blast furnace [3].

The Weibull distribution was originally introduced for modeling the strength data of

material by Weibull in 1939, which is inspired by the works of the extreme value

distribution, and then extended to several fields [4]. The traditional applications of the

Weibull distribution is in the field of mechanical engineering, which is the lifetime

prediction. A new extended model is used in the lifetime prediction in [5]. The Weibull

distribution is combined with the artificial neural network to form a new predicting model

for the prediction of the remaining useful life of the bearing [6]. There are also a lot of
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applications of Weibull distribution in the power system. The

combining modified Weibull distribution model is proposed for

the forecast of the power system reliability [7]. Based on simple

and complex Weibull distributions, a hypothesis of the power

system reliability has been confirmed [8]. In [9] the upper-

truncated Weibull distribution has been used both for

modeling the wind speed data and estimating the wind power

density. Weibull distribution is combined with the artificial

neural network to establish an advanced wind speed

prediction model [10].

The versatility of Weibull distribution raises people’s

interests on the fractional transformation. In [11] the fWd

was proposed for modeling the wind speed data. The

researchers find out that the actual wind speed data contains

a lot of low wind speed values. By discarding the wind speed data

that is close to zero, the wind speed is fitted by the fWd with high

accuracy for the speed range suitable for wind power production.

The fractal parameter is the fraction of data extracted from the

wind speed data to make a better fit. Therefore, the essence of the

fWd is to improve the fitting results by an additional fractal

parameter.

In [12], the power load is modeled by the Weibull

distribution. The power load data resembles the wind speed

data because the power load is commonly be zero or approximate

to zero. In the power break, the load is zero. At night, the factories

are closed, therefore the total power load consumption in the area

is close to zero. Therefore, this paper proposes the fWd for the

modelling of the power load in wish of a better modelling result.

Probability distribution as fWd describes the time series in

the statistical sense. In order to express the temporal

characteristics of the time series conforming to fWd, the

corresponding stochastic process need to be defined and

studied. In this paper, the fWp is defined with respect to fWd.

At each of the time point, draw a value randomly from the fWd

will constitute the corresponding fWp temporally. If we count the

values of the fWp in a long enough time period, the frequency

distribution of the counted data will be the corresponding fWd.

Therefore, the fWd and fWp are strongly connected

mathematically.

As a stochastic process is defined, some fundamental and

crucial property for the process need to be studied. Random walk

characteristics is a common stochastic behavior for a process,

which is beneficial in the optimization and graph machine

learning. The random walk can be useful for the optimization

to avoid the local maximum and the graph machine learning to

simplify the graph. A lot of stochastic time series in the

application conveys the properties of the self-similarity and

LRD, which is useful for the study. Stochastic process with

self-similarity and LRD can be employed in the modeling and

prediction of the time series with the same properties. Therefore,

in this paper, the random walk characteristics, self-similarity and

LRD of the fWd are studied and illustrated to facilitate the future

engineering application of the proposed process.

A random walk is known as a random behavior, in which a

particle in space takes a succession of random steps to create a

trajectory of moving [13]. In each of the step, the direction is

random and the step length follows a certain distribution. If the

distribution is normal distribution, then the random walk is

called Rayleigh flight [14]. The random walk with the probability

distribution to be Lévy distribution is called the Lévy flight [15].

In this paper, the random walk based on the fWp is proposed, in

which the probability for the step length is the fWd.

Self-similarity means that the partial segment of the

stochastic process or distribution resembles the whole

stochastic process or distribution [16]. In [17], the Weibull

distribution is used in the modelling of the self-similar

Internet traffic and the formula of the self-similarity

parameter is derived in [18]. The Hurst parameter of the

Weibull distribution belongs to (0.5,1), which can be

confirmed from the formula in [18]. Moreover, the

mathematical definition of self-similarity contains the concept

of equality in distribution [19]. Two random variables X and Y

are said to be equal in distribution, if they have the same

probability distribution function. In [20] a proposition is

proven for the equivalent condition of the equality in

distribution. In this paper, the proposition is employed to

prove the self-similarity of the fWp.

LRDmeans that the value of the stochastic process is strongly

influenced by the previous values of the time series [21]. The

autocorrelation function of the long range dependent signal

cannot be integrated in the infinity range, instead it diverges

to infinity. The reason for the divergence is that the

autocorrelation decays to zero very slowly as the power

functional speed. In order to make the integration to

converge, the autocorrelation need to decay exponentially,

which corresponds to the short range dependence.

In [22] the following theorem about the connection between

the self-similarity and LRD has been proved so that we can prove

the LRD based on self-similarity:

If a process is self-similar with self-similarity parameter

belonging to the half unit interval of (0.5, 1) and the second

moments exist, then it can be shown that its incremental

stochastic process is characterized by LRD.

In this paper, fWp is defined with respect to the fWd and the

random walk characteristics is analyzed. The self-similarity

property and the existence of the second moments are proved,

therefore the incremental process of fWp is characterized by LRD

[22]. Furthermore, LRD of the fWp is derived. The simulation is

carried out with the real data.

The rest of the paper is arranged as follows: In Section 2, the

properties of fWd is elaborated and the corresponding fWp is

defined with the realization algorithm. In Section 3 and Section 4,

the self-similarity and LRD of the fWp are proven. In Section 5,

the simulation of the fWp is carried out with the analysis for the

corresponding random walk. The work of this paper is

summarized in the conclusion.
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2 The fWp as well as the
corresponding random walk

2.1 Data modeling with the fWd

The density function of the fWd is defined as:

fx(x|a, b, c, δ) � c

b
(1 − δ)(x − a

b
)c−1

exp{ − (x − a

b
)c}, x≥ a,

(2.1)
where δis the fractal parameter, a is the location parameter, b is

the scale parameter and c is the shape parameter.

The location parameter ais the origin where the probability

of the physical values is above zero. Changing the value of awill

cause a shift of curve horizontally. The shape parameter cis the

key parameter of the distribution because it can change the shape

of the density function dramatically. The density curve of the

fWd is L-shaped when the value of parameter cis not larger than

1. Otherwise, the density curve is single-peaked.

Changing the scale parameter b while the other parameters

are hold constants will cause the curve to shift both vertically and

horizontally (see e. g., Figure 1). With the increase of the scale

parameter, the dispersion of the distribution is larger. and the

skewness of the data is smaller.

The skewness is very important for the modeling of the real

physical quantities. The maximum and minimum of the data is

confined by the application background of the data. Therefore,

the data area with high probability is relatively small and the

probability for other areas are close to zero. This common

phenomenon introduces skewness to the actual density

function with its admissible range between zero and positive

infinity. The skewness of fWd makes it easier to describe this sort

of data distribution.

Comparing with the Weibull density function, the probability

density function of the fWd has a scaling factor (1 − δ)which is

smaller than 1 representing the reserved proportion of the data.

Therefore, the fWd can be considered as the generalization of the

Weibull distribution with an additional fractal parameter. If fractal

parameter δis zero, then the fWddegenerates toWeibull distribution.

Changing δwhile the other parameters are kept invariant will cause

the peak of the curve to move vertically. In Figure 2, some fWds

corresponding to different fractal parameters are depicted.

The physical meaning of δ is the discarding rate of the

original data. When the ratio of the low value samples is high,

a higher fractal parameter can reduce the modeling error. When

the fractal parameter is determined to be smaller, there will be

less of the original data to be discarded. The value of δcan

influence the accuracy of modeling, thus the fractal parameter

should be determined through experiment.

2.2 Definition and realization algorithm of
the fWp

Definition of the fWp:

The stochastic process is fWp if the following two conditions

are satisfied:

1. fWp(0) � 0 (2.2)

2. The increments of the fWp are

independent (2.3)

3. For given t> s≥ 0, the increment satisfies

fWp(t) − fWp(s) ~ fWd (2.4)

Set s to be 0 and combining Eq. 2.2 and Eq. 2.4, Eq. 2.5 can be

reached:

FIGURE 1
The influence of the change of scale parameter.
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fWp(t) ~ fWd (2.5)

Derivation of the realization algorithm for fWp

Select a minimum calculation step lengthΔin the interested

definition range of the distribution and then define the discrete

argument xiin the definition range.

xi � iΔ, (2.6)

where the argument iis the total number of the step lengths

pertaining to the value of the physical quantities.

Substitute the discrete argument to the density function of

the fWd:

p(xi) � p(iΔ)

� (1 − δ) c
b
(iΔ − a

b
)c−1

exp{ − (iΔ − a

b
)c}, iΔ≥ a (2.7)

The definition range of the stochastic time series is limited

by the physical law and there is only a proportion of the

definition range that can raise people’s research interests.

Therefore, the maximum value of the argument i, which is i*,

can be defined:

ip � max i � [maxx
Δ ] (2.8)

The maximum value of iis determined based on the types of

the physical values and the applications

Therefore, the finite valued and discretized density function

of the fWd:

pdf(iΔ) ~
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 00 Δ

p(Δ)
θ

...
iΔ
p(iΔ)
θ

...
ipΔ
p(ipΔ)

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i � 0, 1, 2, ..., ip, (2.9)

where

θ � ∑ip
i�1
p(iΔ), (2.10)

The parameter θis introduced to normalize the values in the

random variable Such that it can meet the basic requirements of a

discrete random variable.

Define another discrete random variable Xip

Xip ~

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0
1
ip

1
1
ip
...
i
1
ip
...
ip

1
ip

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.11)

The discrete random variableXipmeans that the integer value

i is equally distributed in the range of [0, ip].
The constitution of the stochastic process can be separated

into three steps. The.

First step is to draw an integer value of ifrom the discrete

random variable Xip with the uniform probability. The second

step is to calculate the probability value of pdf(iΔ). The third

step is to multiply the probability values of the two steps.

Therefore, we can define the fWp as follows:

fWp(t) ~
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0

0

Δ
1
ip
p(Δ)
θσ

...
iΔ
1
ip
p(iΔ)
θσ

...
ipΔ
1
ip
p(ipΔ)
θσ

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (2.12)

where σis introduced to meet the basic requirement of the

discretized random variable:

σ � ∑ip
i�1

1
ipθ

p(iΔ) � 1
ip
, (2.13)

Substitute the value of σto the definition of the discrete

random variable:

FIGURE 2
The influence of the change of fractal parameter.
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fWp(t) ~
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0

0

Δ
p(Δ)
θ

...
iΔ
p(iΔ)
θ

...
ipΔ
p(ipΔ)

θ

⎫⎪⎪⎪⎬⎪⎪⎪⎭, i � 0, ..., ip (2.14)

There are six different parameters in the fWp. Four of them

are the same as the fWd and are estimated by the actual data.

These four parameters can reflect the statistical characteristics of

the data. The other two parameters are determined based on the

physical background of the data. In this section, a trajectory of the

fWp and the corresponding random walk are depicted separately

in Figure 3 and Figure 4. The parameters are chosen randomly in

this section and in Section 5 the whole procedure for the

construction of the fWp as well as the corresponding random

walk is provided.

3 Self-similarity property

3.1 Self-similarity criterion for a general
stochastic process

Let Xk be a stochastic process, and kis the argument. Xk is

self-similar with self-similarity parameterH ∈ (0, 1) if and only if

X(λk) �d( )
λHX(k) ∀λ> 0, (3.1)

where �d( )
denotes equality in distribution, i. e., they have the same

probability distribution function.

In [20], the following proposition expressed by Eq. 3.2 and

Eq. 3.3 are proved. Equations 3.2 is the general form of the

equivalent condition for equality in distribution with respect to

FIGURE 3
An exemplary trajectory of the fWp.

FIGURE 4
An exemplary random walk based on the fWp.
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two different random variables. If the random variable is Weibull

distribution, then the specialized form is presented as Eq. 3.3.

Given two cumulative distribution functions F1(k)
andF2(k), and a fixed numberm, we have that F1(k) is equal

toF2(k) in distribution if and only if g4(F2(k), m)is equal

tog4(F1(k), m), where the function g4(F(k), m)is called the

discriminant function and is defined as:

g4(F(k), m) � F−1((F(k) − F(m))mod 1), (3.2)

where F−1is the inverse function of the cumulative function and

mod is the modular operation.

For the Weibull distribution, we can get the specialized

definition forg4(F(k), m):

g4
′(F(k), m) � ( − log[exp{ − (k − a

b
)c} − exp{ − (m − a

b
)c}]) 1

c

(3.3)

By combining the self-similarity definition (3.1) with Eq. 3.2,

we can get the criterion of the self-similarity for a general

stochastic process:

g4(F(λk), m) � g4(F′(k), m) (3.4)

where F(k) is the cumulative distribution function ofXk,F′(k) is
the cumulative distribution function ofλHXk.

F′(k) � P(λHXk ≤ k) � P(Xk ≤
k

λH
) � F( k

λH
) (3.5)

Substituting (3.5) into (3.4) we get

g4(F(λk), m) � g4(F( k

λH
), m), (3.6)

which is a practical criterion for the self-similarity of a stochastic

process

On the left side of Eq. 3.6, it is the discriminant function

g4(F(k), m)with argument λk, while on the right hand side, it is

the discriminant function g4(F(k), m)with argument k
λH
.

3.2 The discriminant function for the fWp

In the following, we will derive the discriminant function for

the fWp.

The following equations can be derived from the definitions:

fp(k) � (1 − δ)f(k), (3.7)

Fp(k) � ∫k
−∞

fp(t)dt � ∫k
−∞

(1 − δ)f(t)dt � (1 − δ)F(k), (3.8)

F−1p(k) � 1
1 − δ

F−1(k), (3.9)

where f(x) and fp(x)are the density functions of the Weibull

distribution and the fWp. F(x) and Fp(x) are the cumulative

density functions of the Weibull distribution and the

fWp. F−1(x) and F−1p(x) are the inverse cumulative density

functions of the Weibull distribution and the fWp.

From Eq. 3.2, we have:

gp
4(F(k), m) � F−1p((Fp(k) − Fp(m))mod 1)

� 1
1 − δ

F−1(((1 − δ)[F(k) − F(m)])mod 1) (3.10)

Besides the additional coefficient 1
1−δ, the only change between

(3.2) and (3.10) is the differenceF(k) − F(m), which is added by

a scaling factor(1 − δ). F(k) − F(m) in Eq. 3.2 results in a

exp{−(k−ab )c} − exp{−(m−a
b )c}proportion of Eq. 3.3 specialized

for the Weibull distribution. Thus we can conclude that the

discriminant function specialized for the fWp is:

gp
4(F(k), m) � ( − log[(1 − δ){exp{ − (k − a

b
)c}

−exp{ − (m − a

b
)c}}]) 1

c (3.11)

3.3 Self-similarity for the fWp

In this subsection we will show the self-similarity of

the fWp.

Theorem 1. The fWp is self-similar

Proof Combining Eq. 3.3 and Eq. 3.6, we can reach Eq. 3.12:

g4
′(F(λk), m) � ( − log[exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}]) 1

c

� g4
′(F( k

λH
), m) � −log exp −( k

λH
− a

b
)c}{[(

−exp{ − (m − a

b
)c}) 1

c − exp{ − (m − a

b
)c}] (3.12)

Eq. 3.12 can be simplified to be Eq. 3.13 by removing the

minus sign and the power.

log[exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}]

� log exp −( k
λH

− a

b
)c

−exp{ − (m − a

b
)c}]}{[ (3.13)

By considering the self-similarity condition (3.6) and Eq.

3.11, we have to show that the following Eq. 3.14 and Eq. 3.15 are

equal to prove the self-similarity of the fWp.

gp
4(F(λk), m) � ( − log[(1 − δ){exp{ − (λk − a

b
)c}

−exp{ − (m − a

b
)c}}]) 1

c (3.14)
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gp
4(F( k

λH
), m) � −log (1 − δ) exp −

k
λH

− a

b
)c

−exp{ − (m − a

b
)c}}}({{[(
(3.15)

In fact (3.14) and (3.15) can be transformed into (3.16) and

(3.17), respectively, as follows.

log[(1 − δ){exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}}]

� log(1 − δ) + log{exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}}
(3.16)

log (1 − δ) exp −
k
λH

− a

b
)c

−exp{ − (m − a

b
)c}}}({{[ (3.17)

Therefore, the equality of (3.16) and 3.17 can be transformed

into the equality of (3.18) and 3.19:

log{exp{ − (λk − a

b
)c} − exp{ − (m − a

b
)c}} (3.18)

log exp −( k
λH

− a

b
)c

−exp{ − (m − a

b
)c}}}{{ (3.19)

According to Eq. 3.13, the two functions (3.18) and (3.19) are

equal if we select the same self-similar parameter with the

Weibull distribution. Therefore, the self-similarity of the fWp

is proven because there exists a self-similar parameter to make

Eq. 3.1 to hold, which is within the interval of (0.5,1).

4 The second moments and LRD
property

4.1 The second moments of the fWp exists

For simplicity we give here only one kind of second moment,

since the derivation of other moments are similar. The second

moment about zero of the fWp can be easily obtained by a direct

computation as follows:

E(fWb(t)2) � ∫∞
0

x2fp
X(x |0, 1, c)dx � (1 − δ)∫∞

0

x2fX(x | |0, 1, c)dx

!!!!!!!!→u� xc

(1 − δ)∫∞
0

x2cxc−1 exp{−xc}dx

� (1 − δ)∫∞
0

u
2
c e−udu � (1 − δ)Γ(2

c
+ 1) (4.1)

Therefore, we have proven that the second moments of the

fWp exists.

4.2 The LRD of the fWp

The LRD means the slow decay of the auto-correlation

functionρ(k), which also means that the auto-correlation in

the process remains strong as the time lag goes to infinity. The

strong auto-correlation means that the value of the process is

influenced by other values of the process. With the slow decay

of the auto-correlation function, it cannot be integrated in the

infinite range.

ρ(k) ~ βk−α as k → ∞, (4.2)
where

ρ(k) � E(X(k)X(k − τ)) (4.3)

0< α< 1 and β is a given non-zero constant.

Eq. 4.2 summarizes the physical meaning of the LRD. The

slow decaying rate of the auto-correlation function does not

specify the exact decaying rate. By changing the values of constants

αandβ, the decaying rate of the auto-correlation changes accordingly.

The slower the decaying is, the stronger is the LRD. Therefore, the

proof of the LRD focuses on the existence of the slow decaying auto-

correlation.

LetX(k)be the fWp, then its incremental processY(k)fulfills:⎧⎪⎨⎪⎩ Y(k) � X(k) −X(k − 1) , k � 1, ..., n

Y(0) !!→def 0 , X(0) � 0
(4.4)

Based on the theorem in [22], we can show the incremental

process Y(k)is of LRD, which means the auto-correlation

function ofY(k) decays as a power function. In the following,

we can show the fWp is of LRD.

Theorem 2. The fWp is of LRD

Proof:According to the definition (4-4), we can expressX(k)
by the linear combinations ofY(k),k � 0, 1, ..., n. Moreover, the

auto-correlation function of X(k) can be expressed as the linear

combination of auto-correlation functions ofY(k), k � 0, 1, ..., n.

X(k) � Y(k) + Y(k − 1) + ... + Y(1) + Y(0) (4.5)

ρ(X(k)) � E(X(k)X(k − τ)) � E⎛⎝⎛⎝∑k
i�0
Y(k)⎞⎠⎛⎝∑k−τ

j�0
Y(j)⎞⎠⎞⎠

� ∑k
i�0

∑k−τ
j�0

E(Y(i)Y(j)) � ∑ ρ(Y(k))

(4.6)
From Eq. 4.6 and the law of infinitesimal substitution, there

follows that the auto-correlation function of X(k)decays in a

multinomial power law way. It also means that the auto-

correlation function of X(k) decays at the same speed as the

slowest decaying rate among auto-correlation functions ofY(k),
k � 0, 1, ..., n. The auto-correlation function of Y(k)that
processes the slowest decaying rate is the biggest one, in other

words, the one with the smallest power.

ρ(X(k)) � ∑ ρ(Y(k)) ~∑ βik
αi ~ max(βikαi) � βpk

−min(αi) (4.7)

Therefore, we have proven that the auto-correlation function

ofX(k) is decaying as the power function, which proves the LRD
of the fWp.
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5 Simulation on the fWp

5.1 Time series fitted with the fWd

In this paper, the power load data from the European

Network on Intelligent.

Technologies prediction contest is used in the validation of

the proposed process. In Figure 5, the actual power load

frequency distribution is plotted and the corresponding

probability density function is provided numerically

The power load data cannot be negative values, therefore

the Gaussian fit is not appropriate. Select fWd to fit the actual

power load distribution and can achieve a better fitting result

than the Weibull distribution because of the fractal

parameter. The location parameter a is set to be zero for

the power load are positive and the scale fractal parameter is

determined later through experiment. The scale parameter

and shape parameter are estimated by the maximum

similarity estimation.

The maximum likelihood function of the fWd:

L(x|b, c) � ∏n
i�1

fX(xi|b, c)

� ∏n
i�1

[(1 − δ)(c
b
)(xi

b
)c−1

exp{ − (xi

b
)c}]

� (1 − δ)n(cn
bn

)(1
b
)n(c−1)∏n

i�1
xc−1
i exp

⎧⎨⎩ − (1
b
)c∑n

i�1
xc
i

⎫⎬⎭
(5.1)

The logarithmic maximum likelihood function of the fWd:

ln L(x|b, c) � ln[(c
b
)n(1

b
)n(c−1)∏n

i�1
(xi)c−1 exp⎧⎨⎩ − (1

b
)c∑n

i�1
xc
i

⎫⎬⎭]
� n ln(1 − δ) + n ln(c

b
) + n(c − 1) ln(1

b
) + (c − 1)∑n

i�1
lnxi − (1

b
)c∑n

i�1
xc
i

(5.2)

FIGURE 5
The actual power load frequency distribution and density function.

FIGURE 6
The fitting results of fWd with different fractal parameters.
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Take the partial derivative of the logarithmic maximum

likelihood function with respect to the scale parameter b and

then make it equal to zero.

z lnL(x|b, c)
zb

� (−n
b

) − n(c − 1)(1
b
) + c∑n

i�1
xc
i(1b)c+1

� 0 (5.3)

Separate the scale parameter b and the shape parameter c:

b̂ �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
i�1
xc
i

nc

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
1
c

(5.4)

Take the partial derivative of the logarithmic maximum

likelihood function with respect to the shape parameter c and

then make it equal to zero.

z ln L(x|b, c)
zc

� n(1
c
) + n ln(1

b
) +∑n

i�1
ln xi − ⎡⎣(1

b
)c∑n

i�1

zxc
i

zc
⎤⎦

−⎡⎣∑n
i�1
xc
i(1b)c

ln(1
b
)⎤⎦

� n(1
c
) + n ln(1

b
) +∑n

i�1
ln xi − ⎡⎣(1

b
)c∑n

i�1
xc
i ln xi

⎤⎦
−⎡⎣∑n

i�1
xc
i(1b)c

ln(1
b
)⎤⎦ � 0 (5.5)

After performing some algebraic calculation, the equivalent

equation can be derived

ln(1
b
) + 1

n
∑n
i�1
ln xi + c

n2
− (1

b
)c∑n

i�1
xc
i ln(xib)
n

� 0 (5.6)

Substituting Eq. 5.4 to Eq. 5.6:

n
1
c c
(1

c+n)⎡⎣∑n
i�1
xc
i
⎤⎦(n−1

c)⎡⎣∏n
i�1

xi
⎤⎦−c − e

1
n3

n[∏n
i�1
xi] 1

n2

� 0 (5.7)

Therefore, the estimation of the scale parameter b and the

shape parameter c is reached. The scale parameter b is estimated

to be 748.4289 and the shape parameter c is estimated to be

15.7742.

The fractal parameter needs to be evaluated chosen by

the fitting results. The density function of the fWd with

different fractal parameters are depicted in Figure 6 as well as

the actual power load density function. The criterions of

goodness of fitting (GoF) are the sum of squared error (SSE)

and the root mean square error (RMSE) [23]. The formulas

are listed below. For both criterions, the smaller value means

better fitting results.

RMSE �
))))))))))))
1
n
∑n
i�1

(pi − fi)2
√

(5.8)

SSE � ∑n
i�1

(pi − fi)2 (5.9)

The calculations of the SSE and RMSE are listed in Table 1.

The density function of fWd with zero fractal parameter is

Weibull distribution. As we can see from Table 1, the delta

value of 0.05 is chosen in the end because both the values of SSE

and RMSE are the smallest.

After the parameter estimation and the experiment, the

power load is fitted with the fractional Weibull distribution in

Figure 7.

5.2 The construction of the fWp

On the purpose of generating the fWp conveying the

stochasticity of the stochastic time series, the other parameters

in the fWp need to be calculated.

The step length Δof the modeling can set to be 1 kWh

because the power load data are all positive integers. The

maximum value of the power load concerned in the research

is 900 kWh. Therefore, the maximum value of the argument i,

which is i*, can be calculated:

ip � max i � [max x

Δ ] � 900 (5.10)

where xis the value of the power load series for research

and the square bracket represents the integer valued

function.

Therefore, the fWp with the stochasticity of the time series is

depicted in Figure 8.

5.3 The simulated path for the random
walk of the fWp

After the construction of the fWp, the corresponding random

walk path can be simulated. As depicted in Figure 9, the particle

in the random walk starts from the origin. At each of the

iteration, the jump direction is random and the jump length

follows the fWd with parameters estimated from the actual data.

The simulation path of the random walk expands the dimension

of the fWp to a planar space with the same stochasticity coming

from the actual data.

TABLE 1 The evaluation of fitness for different fractal parameters.

delta = 0 delta = 0.05 delta = 0.1 delta = 0.15

SSE 0.3812E-0.4 0.3309E-0.4 0.3455E-0.4 0.4250E-0.4

RMSE 0.6174E-03 0.5753E-03 0.5878E-03 0.6520E-03
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FIGURE 8
The fWp based on the power load series.

FIGURE 9
The random walk characteristics of the fWp.

FIGURE 7
The fractional Weibull fit of the data.
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6 The potential engineering
applications of the fWp

Wind power generation is very unreliable because it relies

solely on the wind speed. The historical wind speed data can

be used to construct the fWp for representing its stochasticity

and the statistical wind speed prediction model can be

constructed. Once the wind speed variation tendency is

predicted in advance, the wind power generation can be

predicted with accuracy and the power system reliability

can be improved [24].

The power load prediction is very important for the

reliability of the power system. If there is surplus

electricity according to the power load prediction results,

the maintenance of the power facilities can be scheduled. If

the power consumption is difficult to guarantee, the

dispatching of electricity need to be carried out [25].

With the fWp conveying the stochasticity of the power

load, the power load statistical prediction model can be

established and the blackouts caused by the high

temperature can be reduced.

7 Conclusion

The fWd can be considered to be the generalization of the

Weibull distribution with a non-zero fractal parameter. In this

paper, the definition of the fWp is provided and the algorithm

of realization is derived. In order to facilitate the future

research, the self-similarity and LRD are proven. The actual

time series is employed for the simulation of the fWp. The

random walk characteristics for the fWp is analyzed in the

planar space. The future research can focus on the prediction

model for the potential engineering application areas of

the fWp.
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