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Editorial on the Research Topic

Systems modeling: Approaches and applications–volume II

Introduction

The development of modeling tools has permitted an increased understanding of how

components in different systems interact and behave. Thus, systems modeling has led to

critical advances in several areas, such as medicine, biotechnology, and engineering.

Applications include the study of ecological models, diseases and the impact of

treatments, microorganism responses to specific environments, and the interactions

between biomolecules.

The main goal of this Research Topic (Systems Modeling: Approaches and

Applications–Volume II) was to bring together novel biological applications and

studies on systems modeling. We were thrilled to witness the great interest in the field

and the high number of manuscripts submitted. Broadly, works published in this

section could be classified in four main categories: biomedicine, metabolic

engineering, microbial biochemistry, and theoretical approaches and novel

applications.

Among the biomedical articles of the number, Ponce-de-Leon et al., expanded a

hybrid multi-scale model including time and space variables of fibroblast spheroids,

which could be useful for addressing cancer cell resistance by including time,

geometric and population variability. Prybutok et al. extended an agent-based

modeling framework to design alternatives in Chimeric antigen receptor (CAR)

T-cell therapy. This approach might accelerate the discovery of novel strategies
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against solid tumors. Later, Ordaz-Arias et al. presented a

regulatory network of macrophages, in order to study their

plasticity, adaptability, and heterogeneity, and finding

oscillations derived from the network structure. Zinovyev

et al. developed a model of the cell cycle at the single cell

level including internal dynamical cycles and switches. It

predicted with great accuracy cell doubling times. Lecca

and Ihekwaba-Ndibe et al. focused on DNA repair

mechanisms, developing a mathematical model of the gene

regulatory network of this biological process. Applications of

the model include evaluation of the effect of certain mutations

and control of participating genes. Gupta et al. studied the

molecular mechanisms involved in the response of macaques

to malaria using transcriptomics and metabolic modeling.

Gupta et al. focused on pathogen detection pathways and

inflammasome assembly, developing a comparative analysis

identifying points of control for maintaining immune balance.

Finally, Gil et al. developed a 3D model of calcium signaling

pathways in T-cells to investigate how calcium microdomains

occurred and included the role of ryanodine receptors in TCR/

CD3 stimulation.

Microbial biochemistry articles include a study of Spolaor

et al., who developed a mathematical model of the effect of

hypotonic shock on calcium homeostasis and signaling

pathways in Saccharomyces cerevisiae. The model included

mechanosensitive channels, and provided an interpretation of

regulatory processes in wild type and mutant yeasts. Verhagen

et al. addressed resource limitations on optimal proteome

allocations developing a resource-dependent kinetic model of

S. cerevisiae. The model predicted proteome adaptations to

multiple conditions with changing resources, and could be

useful for industrial yeast applications. Rajeshkannan et al.

presented a mathematical model of the GAL regulon in S.

cerevisiae, which showed that binding affinities between

regulatory proteins modulate gene expression at the single

cell and population levels. Finally, Posada-Reyes et al.

analyzed polymorphic interactions in the genomes and

pangenome of Mycobacterium tuberculosis. They presented

an epistatic network for this microorganism and identified

targets of co-selection, contributing to our understanding of

M. tuberculosis pathogenesis.

Metabolic engineering manuscripts included Landon et al.

, developing an analysis pipeline to interpret metabolic

reaction fluxes, integrating machine learning,

dimensionality reduction and network analysis. The work

presented by Landon et al. focused on the Mycoplasma

genitalium whole-cell model and the contribution of the

model to understand gene knock-outs in a minimal

genome. Doan et al. presented a coarse-grained

mathematical model, comprising a micromolecular and a

macromolecular component, aimed to represent a cell

proteome during microbial growth in a bioprocess. Köbis

et al. developed a constraint-based model that considers a

time-optimal control problem, which allows to determine the

fastest possible adaptation of a system to a cellular state. Boada

et al. used multiobjective optimization for tuning gene circuits

composed of a controller and a biosensor controlling

metabolic pathways. This study might contribute to

optimizing microbial cell processes and system robustness

and stability. Finally, Lazaro et al. constructed a mathematical

model that integrates two major steps in bioprocessing: single

cell growth captured by a genome-scale metabolic model with

bioreactor dynamics. This work used production of

citralamate in Escherichia coli as case study, and

might have important applications in biotechnological

processes.

At last, other articles presented theoretical approaches,

code and novel applications. Stoll et al. introduced a

framework modeling dynamic population of interacting

cells, based on probabilistic simulations and using TNF-

induced cell death as case study. Litwin et al. addresses the

task of determining model parameters in an ODE-based

model, proposing a 2D likelihood approach to aid in

optimal experimental design for parameter determination.

Selvaggio et al. addressed the need of quantitative data

required for calibrating model parameters. They proposed a

hybrid model integrating ODE and logical formalities to

describe biological complexity in layers and their

communication. Medina-Ortiz et al. maximized the

performance of predictive models in protein engineering,

generalizing property-based encoders. This work

contributes to predictive protein engineering without

increasing model complexity. Massing et al. reviews

generalized modeling, an approach to conventional

dynamic modeling, highlighting recent advances and

providing an application guide for this approach. Voit and

Olivença focused on the Biochemical Systems Theory, an

ODE-based approach for biochemical reaction

analysis and simulation, expanding this theory

to include stochasticity, discreteness and addressing time

delays.

We consider that the field of systems modeling is in

expansion, supported by the great quality and number of

manuscripts included in this special issue. We appreciate

the great interest and reception of the community, and

hope that this special number is of interest for

researchers in the field of computational

biology, biochemistry, biomedicine, bioengineering and

mathematics.
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Whole-cell modelling is a newly expanding field that has many applications in lab
experiment design and predictive drug testing. Although whole-cell model output
contains a wealth of information, it is complex and high dimensional and thus hard to
interpret. Here, we present an analysis pipeline that combines machine learning,
dimensionality reduction, and network analysis to interpret and visualise metabolic
reaction fluxes from a set of single gene knockouts simulated in the Mycoplasma
genitalium whole-cell model. We found that the reaction behaviours show trends that
correlate with phenotypic classes of the simulation output, highlighting particular cellular
subsystems that malfunction after gene knockouts. From a graphical representation of the
metabolic network, we saw that there is a set of reactions that can be used as markers of a
phenotypic class, showing their importance within the network. Our analysis pipeline can
support the understanding of the complexity of in silico cells without detailed knowledge of
the constituent parts, which can help to understand the effects of gene knockouts and, as
whole-cell models become more widely built and used, aid genome design.

Keywords: whole-cell modelling, machine learning, networks, snorkel, time series, weak learning

INTRODUCTION

Recent years have seen a significant increase in the availability of high-throughput biological data
(Gomez-Cabrero et al., 2014). The integration of data frommethods that are becoming cheaper andmore
accessible (Wetterstrand, 2010) reveals interactions between cellular processes (Manzoni et al., 2018),
aiding analysis (Zampieri et al., 2019). Leaps in the scale and capabilities of biological modelling give great
scope for in silico data generation, and though mathematical models cannot fully replicate living cells,
their output can help to understand biologicalmechanisms and inform experimental design to improve in
vivo data collection. Thesemodels can formalise processes at a specific level (e.g., translation) or construct
a trans-omic network of the relationship between different cellular processes (Yugi et al., 2019) and couple
metabolism with gene expression (O’brien et al., 2013).Whole-cell models simulate every cellular process
throughout the life cycle of a cell—only two are published, which model the life cycle of Mycoplasma
genitalium (Karr et al., 2012) and Escherichia coli (Macklin et al., 2020). We focus on theM. genitalium
model. This consists of 28 submodels that use multiple mathematical methods (linear programming and
differential equations) to represent processes such as metabolism and cytokinesis, which integrate
together at every time step.

The model is highly complex, is computationally expensive, and generates huge amounts of time
series data relating to thousands of variables. Interpreting whole-cell model in silico data can be
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difficult, but large-scale analysis is possible. Tools are required to
automatically process and consolidate the output so they can be
viewed and clarified, even by those with little computational
expertise. Existing software tools that visualise whole-cell model
output (Lee et al., 2013; Karr and Pochiraju, 2018) have limited
capacity for processing large and varied datasets—they focus on
visualisation of different output streams, so all analyses are done
by eye, and there is no dimensionality reduction or statistical
methodology.

A whole-cell model, with appropriate analysis software to process
its output, could be a powerful predictive tool for gene editing.
Genetic modifications can be trialled in a model before being
physically made to save time and resources, and whole-cell
models can be coupled with algorithms to predict genetic
modifications intended to produce a chosen phenotype
(Haimovich et al., 2015). Machine learning methods are suitable
for whole-cell model analysis as they are data-driven, so they can
identify correlations and classify data with few assumptions and little
biological knowledge. Metabolism is one of the most widely
modelled cellular subsystems; a stoichiometric matrix is used to
create a constraint-based metabolic model (CBM), which can be
used to predict steady-state fluxes (Bordbar et al., 2014). There have
been applications of machine learning to CBMs, consolidated by
Zampieri (Zampieri et al., 2019). Many have coupled CBMs with
discriminative classifiers (Ho, 1995; Noble, 2006; Yegnanarayana,
2009), to predict or classify gene essentiality, drug side effects, and
protein functions. Others have used unsupervised learning to explore
patterns and pathways inmetabolic systems (You et al., 2006). These
methods of prediction and analysis can be scaled to whole-cell
models. However, whole-cell model output is composed of time
series—contrary to CBM output, which is steady-state rates—and
the labelling of these types of data is becoming a barrier to large-scale
machine learning. As computational power increases and new data
analysis algorithms are developed, the availability of fully labelled
datasets to train and validate models is a limiting factor, and so new
methods are being formed to automatically label data.

Time series data come from all physical systems. Difficulty in
interpreting it arises from the importance of ordering of different
events, meaning that attributes of the data are dependent on each
other in complex ways (Hannan, 2009). Of the various machine
learning methods for time series classification, deep learning has
emerged as the most reliable (Wang et al., 2017; Fawaz et al.,
2019), although accuracies of each method vary with different
datasets. There are also other factors that affect the performance
of an algorithm, such as feature selection, feature engineering,
and data pre-processing.

Many of these methods are supervised, meaning that they
require labelled data in order to train a model. Historically, these
labels would be manually generated by an expert to capture the
ground truth of the problem, but labelling data manually is time-
consuming and unfeasible for huge datasets. A solution to this
problem is weak supervision, which uses weak labels (that do not
express the ground truth) created from a model designed to map
labels onto instances of the data (Zhou, 2018). Snorkel is a
methodology that creates a generative model (a statistical
model of the joint probability of a variable and target label) to
automatically produce weak labels, after collating metrics from

multiple manually defined labelling functions using features from
the data (Ratner et al., 2019; Ratner et al., 2017).

Feature extraction is one of the most important aspects of
building a machine learning model and can be the difference
between failure and success (Domingos, 2012). It is also generally
based on expert knowledge about the physical system (Barandas
et al., 2020), as the most relevant features for analysis will vary
depending on the objective of the machine learning model and
the behaviour of the time series. The issue of time series analysis
of whole-cell model generated metabolic flux is that there is very
little experimental data for dynamic flux in bacterial cells, so the
features that best define the flux behaviour are not intuitive. There
has been previous work on dynamic metabolic fluxes, where
reactions rates were calculated from derivatives of measured
external metabolite concentration, or using dynamic metabolic
flux analysis (DMFA) (Kuriya and Araki, 2020). For DMFA, a
metabolic flux analysis process was used to minimise the sum of
squared residuals between the actual and predicted flux rates.
Then, the DMFA process was used to fit linear functions between
consecutive time points. The methods were computationally
inexpensive, due to the linear fit, and it was found that a
lower number of time points produced a fit with smaller
confidence intervals, suggesting that linear fits are suitable for
approximating metabolic fluxes. Another method used dynamic
flux balance analysis (dFBA) and polynomial fitting to find
functions for reaction rates (Leighty and Antoniewicz, 2011).
Polynomial functions were fitted to experimental data from
metabolite concentrations, which were then differentiated to
find functions for growth rate. These were used as boundaries
for dFBA, enabling accurate simulations of reaction behaviour in
time. Both of these methods deal with relatively smooth data, and
estimation of fluxes from concentration derivatives also involves a
smoothing process, which results in loss of information (Lequeux
et al., 2010). As some of the flux behaviour we see from the M.
genitalium model oscillates significantly in time (as in
Supplementary Figure S1), to analyse this, we must extract
features that can capture some of the variation. Analysis of
oscillatory time series is relatively common, but this is usually
within the context of understanding the physical system—for
example, oscillatory time series decomposition has been carried
on the phase dynamics of well-understood systems (Matsuda and
Komaki, 2017).

It is important to consider that most machine learning
algorithms are treated as black boxes, so results are created
without context. For explanations of the functions of
underlying structure in complex systems, network science can
be used (Gosak et al., 2018). Network science is an area that has
long been applied to the analysis of biological systems: protein
interactions, metabolic reactions, and transcription regulation
can be formalised as networks, leading to discoveries regarding
properties of their interactions (Barabasi and Oltvai, 2004).
Network structure has been used to predict metabolic
functions and find pathways for metabolite flow (Stelling et al.,
2002) and to find control loops within gene networks (Wong
et al., 2012).

The complexity of genomic interactions, even in cells as small
as M. genitalium, is such that there is not a clear path from the
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genome after knockouts to the end phenotype. Even with
functional annotations, the genomic context of the genome
(which will be several hundred genes after a single gene
knockout) cannot be disregarded, as there may be redundancy
in the genome, or unprecedented gene product interactions. The
removed gene/s will not tell the full story, but zooming out to
examine a large set of different genotypes through their metabolic
fluxes can show us the trends across the full set of knockouts,
providing a different angle than that of focusing on a single gene.

Here, we present a novel analysis pipeline that combines
whole-cell model simulations of wild-type and gene knockout
cells with time series classification and network analysis. The
main steps include automatic labelling of metabolic fluxes as
normal or abnormal (where normality refers to the behaviour of a
reaction flux from a knockout simulation with respect to the
behaviour of that reaction in a wild-type simulation),
dimensionality reduction of the reactions for visualisation, and
network analysis of the reactions. This analysis—looking at
intermediate steps that connect genotype to phenotype—aims
to increase our understanding of cellular processes and provides
foundations for in silico genome design.

MATERIALS AND METHODS

Description of the Data
We began with two sets of data—one to train the machine
learning models and one to apply them and analyse the
output. The simulations were generated from running the M.
genitalium whole-cell model on a supercomputer cluster, with
each gene singly knocked out. The model requires 8 GB of RAM
for each simulation and was run on BlueGem, a 900-core
supercomputer at the University of Bristol, using MATLAB
R2013b. It is available at https://github.com/CovertLab/
WholeCell. The raw metabolic flux time series was then
converted to Pandas DataFrames and stored in a pickle format
to save space. The training set consisted of time series of reaction
fluxes for three repetitions of every possible single knockout from
the M. genitalium model, of which there are 359, plus 200 wild-
type simulations. Each time series is 50,000 s in total, and we used
the time series of 279 reactions from each simulation. There was
1,270 simulations in total. The dataset that we applied to the
analysis consisted of 10 repetitions of all of the single gene

knockouts, with the same reaction time series, and so this
dataset has 3,411 simulations in total. One knockout, MG_
469, consistently caused the model to crash and the
simulations to terminate, and a few simulations did not
complete due to errors on the supercomputer cluster. The
metabolic flux data are about 200 Mb per simulation after
processing, so the training dataset (three repetitions of each
single knockout) is ≈200 Gb, and the analysis dataset ≈700 Gb.
More repetitions of each knockout would make for a more
accurate dataset, but due to the size of the data, we were
limited by storage space.

Labelling
Snorkel is a system that takes input data points and manually
defined labelling functions and collates these into a generative
model that outputs probabilistic labels for the data. The labelling
functions will produce noisy labels, which are then used as weak
supervision for a stronger predictive function by combining three
measures—the labelling propensity (whether the data point has
been assigned a label or not), the accuracy of each label, and the
correlations of the multiple labelling functions. The label matrix
generated from these measures is then used to define an
exponential distribution that can predict probabilistic training
labels. The normality of 10 reactions was manually labelled by
visual inspection of the time series, comparing features of the
plots such as smoothness and linearity with wild-type time series
from the same reactions (Correll et al., 2012; Correll and Heer,
2017), and used to validate Snorkel’s weak labels, the accuracies of
which are shown in Table 1. The algorithm was implemented
using the Snorkel library in Python.

The manual labelling was done based on the phenotypic
classes defined by the original publication of the M. genitalium
model, which used the production capacity of various features
from the model output to classify a simulation (Karr et al., 2012).
The combinations of these features that contribute to a particular
class are detailed in Table 2, and the simulations used in the
analysis dataset were all labelled by manual inspection of the
model output.

TABLE 1 | Accuracies of Snorkel’s weak labels for 10 manually labelled reactions.

Accuracy

Aas4 99.6%
AceE 99.1%
Adk3 90.2%
Apts_Asp 95.8%
Apts_Trp 83.1%
ArcC 77.8%
DcdK 97.0%
Pyk_DADP 85.0%
Pyl_GDP 69.2%
TX_AROP22 94.3%

TABLE 2 | Manual labels of phenotypic classes (shown on the left-hand column)
and their corresponding combinations of substance production (the column
headings).

DNA RNA Protein Growth Division

Metabolic × × × × ×
RNA ✓ × × × ×
Protein ✓ ✓ × × ×
Slow growing ✓ ✓ ✓ ✓ ×
DNA × ✓ ✓ ✓ ×
Septum ✓ ✓ ✓ ✓ ×
Non-essential ✓ ✓ ✓ ✓ ✓

Note. A cross means that there is no active production of that substance in the case of
DNA, RNA, and protein; and in the case of growth and division, these things do not
occur. A tick means that opposite—so, for example, in a simulation classified as “non-
essential,” we see production of DNA, RNA, and protein, as well as both growth and
division; and in a simulation classified as “metabolic,” we see none of these things. In the
case of the “slow growing” phenotype, division begins at the end of the simulation but
does not complete.
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Training and Tuning the Neural Networks
Once the data are fully labelled, a standard discriminative model can
be trained for classification. In this case, we chose to use a neural
network, implemented with the Python library tensorflow (version
2.0.0-rc0). With the use of the data labelled by the generative model,
a neural network was trained for each reaction. Each neural network
had four hidden layers and used a softmax activator function and
Adam optimiser. Different combinations of hyperparameters (epoch
size, batch size, and number of nodes in a layer) were tested, so that
an optimal combination could be used for each network to find the
highest accuracy. Generally, the combination of hyperparameters
can have a significant effect on the neural network output, so these
factors are important. Epoch size refers to the number of rounds of
back-propagation performed by the network, batch size means the
number of training data samples input before the model updates,
and number of nodes refers to number of nodes of the network in
each hidden layer. Epoch size will leave the data underfitted if too
small and overfitted if too large; batch size is generally optimised for
processing time (in that larger batch sizes will train the network
faster, whereas a smaller batch size may help the weights converge
faster); and the number of nodes is usually taken to be some number
between the amount of input nodes and the amount of output nodes.
There is no setmethod for selecting hyperparameters for neural nets,
and it is frequently taken to be a trial-and-error process (Sarle, 1994).
We tuned our neural networks via a brute-force approach, where
different parameters within a set range were trialled to increase the
accuracy of the network. Epoch size was kept relatively low; as after
some testing, many of the neural networks converged to accuracies
> 95% after only five epochs, and so we tested epoch values of 5, 10,
and 15. Batch sizes of 50, 100, and 150 used, and node numbers of
750, 1,500, and 2,250 were tried, where we selected the network with
hyperparameters that gave the highest accuracy. The reactions from
neural networks that gave accuracy of less than 70% were removed,
leaving 267 reactions and neural networks with a mean accuracy of
93.6%. K-fold cross-validation was performed to check if overfitting
was an issue, using the sklearn Python library (version 0.21.3), with
10-fold. The accuracies across the folds are shown in Supplementary
Figure S2 and averaged across the folds for each reaction. As the
averaged accuracies across the folds do not differ significantly from
accuracies recorded, we conclude that the data have not been
overfitted.

Network Formation and Features
After the neural networks were trained and fluxes classified across
the dataset, we turned to network analysis. With the
stoichiometric matrix for the metabolism, S, taken from the
M. genitalium model knowledge base, we reduced it to its
binary format (as we were focusing on the topology of the
metabolic network rather than the exact stoichiometry) to
form a metabolic adjacency matrix A from the relationship

A � StS, (1)

which can create a widely used graphical representation of a
metabolic network, where the reactions form nodes of the graph,
and the substrates form edges that connect them (Palsson, 2006).
We were able to find a set of driver nodes (the set of nodes that

must be controlled in order to fully control the network) using the
maximal_matching function in Python’s NetworkX library
(version 2.4). This function takes an undirected graph and
greedily finds a matching by iterating over pairs of edges in
the graph to see whether the node that connects them is in the
matching. The pathways associated with the driver nodes were
found via the Enzyme Commission numbers from the
supplementary material of the M. genitalium model (Karr
et al., 2012), where the Python library bioservices was used to
look up the pathways for each EC number from Kyoto
Encyclopedia of Genes and Genomes (KEGG).

The metabolic sub-networks were plotted in python-igraph
where, for each class across the dataset, the affected reactions are
shown as a sub-network with a colour gradient corresponding to
how frequently that reaction behaves abnormally. A threshold for
“noisy” reactions was found from wild-type simulations, where
an exponential distribution was fitted to the frequencies of
reactions classified as behaving abnormally by the neural
networks. For a wild-type simulation, in theory, all reactions
should be classified as normal, but as the M. genitalium model is
stochastic, there can be a range of different behaviours, depending
on the initial conditions of the simulation and other random
processes (e.g., radiation and DNA damage). The interval under
which 95% of the data were contained was found, and this value
was selected as a rate parameter, which was used as the threshold
of significance for whether a reaction was considered to be
behaving abnormally consistently.

We then performed principal component analysis (PCA)
using the SciPy library (version 1.3.1) to reduce the data to
two dimensions and plot the data on a scatter plot using
Seaborn (version 0.9.0). After the reduction, 84% of the
variance in the full dimensions of the data was conserved, so
there was no significant information loss after this operation.
After having found the driver nodes, we trained a linear support
vector machine (SVM) for the normality of each one to separate
the data points on the PCA plot, selecting those that could divide
the data with > 95% accuracy. For the SVM, we used the sklearn
Python library (version 0.21.3).

RESULTS

A schematic of our pipeline is shown in Figure 1, with the main
steps of weak labelling, neural network classification, and network
analysis shown. We began with two datasets: one for training and
testing the neural network and one for analysis of single
knockouts. The training dataset contained three repetitions of
all 359 possible single gene knockouts, plus 200 wild-type
simulations, giving 1,270 simulations in total. Each simulation
had 279 dynamic reactions out of the total 645 (over half of the
reactions were consistently at steady state throughout the cell life
cycle, which does not require a complex classifier to identify),
with up to 50,000 timesteps. Although the exact steady-state
values may vary across simulations, we focused specifically on the
reactions that have behaviours that change in time, assuming that
they are more likely to show the most sensitive components of the
metabolism. Given that metabolic networks are formulated with
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FIGURE 1 | Step-by-step workflow of the analysis pipeline, beginning with the metabolic fluxes from the whole-cell model output. Steps 1–4 are applied to a
training dataset of gene knockout simulations, where the end result is a trained neural network for each reaction. (1) For each reaction flux time series, four features are
extracted and reduced to two dimensions through principal component analysis (PCA). (2, 3) The extrema of these data are used to define boundaries for normal and
abnormal behaviours, which are then used to create a generative function to map labels onto the reactions. (4) Neural networks are trained using these labelled data
to classify reactions as normal or abnormal. Steps 5–8 are applied to a separate analysis dataset of gene knockout simulations. (5) The neural networks are used to
classify the analysis dataset and create a flux profile for each simulation. (6) The flux profiles are reduced to two dimensions and plotted. (7, 8) Network analysis of the
reactions reveals nodes that control the metabolic network and correlate with different phenotypes after gene knockouts.
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steady-state behaviours in mind, reactions that deviate from this
seemed to be the most interesting to analyse, with regard to
understanding the cell phenotype. The analysis dataset consisted
of 10 repetitions of the 359 gene knockouts, with the same
number of reactions and timesteps, totalling 3,411 simulations.
There are some gaps in the dataset, as some files were corrupted,
and one knockout consistently caused the model to crash.

The M. genitalium whole-cell model has drastically varying
fluxes through different reactions (see Supplementary Figure
S1). Furthermore, it is not always clear how the removal of a
particular gene will affect cellular processes or cell viability. For
each reaction, we presume there is a range of normal behaviours
over which the cell can produce all necessary compounds for
division, and dynamics outside of that range result in negative
effects (e.g., build-up or depletion of certain metabolites) that
affect the rest of metabolism and disrupt other processes,
potentially causing cell death. The normality of reaction fluxes
in a simulation can be used to understand the effects of gene
knockouts through the cell cycle, and howmetabolism is affected.
This can help with predicting and explaining the effects of gene
knockouts and looking at patterns across different simulations.
We visualised the reaction flux behaviour across our entire
dataset, and we looked at the topology of the metabolic
network (in particular, how the network can be controlled by
input nodes) to help explain the role of different reactions.

Implementation of Snorkel for Weak
Labelling
Manual labelling was impractical with such a large dataset, so we
implemented Snorkel, which has previously been shown to
perform as accurately as hand labelling (Ratner et al., 2019).
There are other methods of weak supervision available, but they
use either inaccurate labels (which still require a manually
labelled dataset) or locate incorrect labels within a previously
labelled dataset Northcutt et al. (2019). Inaccurate labels are those
that are known to be incorrect, and imprecise labels are those that
contain some high level information about the data, but do not
show the ground truth. Snorkel is the main approach that uses
imprecise labels for time series (Robinson et al., 2020), as other
approaches have used imprecise labels for semantic similarity in
words, which is not applicable to time series (Saunshi et al., 2019).

Snorkel requires manually defined labelling functions, which
are an important heuristic for the basis of the methodology. The
underlying patterns are used to form probabilistic labels, so
together they need to capture some approximation of ground
truth. In this case, we created labelling functions by amalgamating
four key features extracted from each reaction flux time series.
There is very little information in the literature about what
normal behaviours for metabolic fluxes should look like, so we
must make an assessment of the most important features from
time series inspection.

As Snorkel is designed to work with noisy and sometimes
conflicting labels, we used a simple method to define the labelling
functions. A linear regression function was fitted to each time
series; and the intercept, gradient, coefficient of determination
(R2), and mean squared error were found (Figure 2). These

captured the variation observed and shown in Supplementary
Figure S1: smoothness/oscillation in the mean squared error, the
increasing or decreasing nature in the gradient, and the linearity
in the coefficient of determination. These were features that we
chose based on manual inspection of the reaction behaviour, with
the intent of describing the important aspects of the time series, so
in choosing them we aimed to capture the most relevant
information. Fitting non-linear functions to the data may have
provided more accurate labelling functions, but due to the
complexity and variety of the time series, this would have
required a many visual analyses and likely a broad set of
different non-linear functions.

The results were reduced through PCA (where 82.9% of the
variance was conserved across the reactions), leaving a two-
dimensional space over which boundaries of different thresholds
could be drawn, which was much simpler and faster to visualise
and compute in two dimensions than it would have been before the
dimensionality reduction (Figure 2). Using two dimensions
allowed us to easily verify visually the efficacy of this labelling
method while approximately dividing the data for the weak
labelling. Loosely, the boundaries were defined by the extrema
of the wild-type simulations, which were taken to be the edges of
normal behaviours for each reaction (Figure 2). Any simulations
outside these boundaries were classified as abnormal. Other shapes
could also be used at this stage.

Three different boundaries were defined for different labelling
schemes, as different confidence thresholds performed better or
worse depending on the reaction. Boundaries at the extrema and
then at 99% and at 95% were selected as the three labelling
functions after comparison of their performance and then
combined to form the generative model. We then
implemented Snorkel, leaving us with 1,270 weakly labelled
time series for each reaction. Ten reactions were manually
labelled as normal or abnormal to test the accuracy of
Snorkel’s labels, where characteristics like smoothness or the
increasing or decreasing nature of the time series were used as
comparison features to decide whether the behaviour of a
reaction was normal or abnormal. The majority of the Snorkel
labels gave over 90% accuracy, with the lowest at 69.2% (see the
Materials and Methods and Table 1).

Training of Neural Networks and Flux
Profiling
The Snorkel results were used to train a neural network for each
reaction, as artificial neural networks are some of the most
effective classification algorithms (Caruana and Niculescu-
Mizil, 2006; Raczko and Zagajewski, 2017). Neural networks
consist of layers of nodes, representing artificial neurons with
assigned weighted connections. The weights are adjusted through
rounds of backpropagation or epochs until they predict correct
classes for different types of input (Kröse et al., 1993).

Once trained and assessed for accuracy using k-fold cross-
validation to verify that they had not been overfitted (see the
Materials and Methods section and Supplementary Figure S2),
the neural networks were used to classify the normality of
reactions for the analysis dataset. From this, we generated a “flux
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profile” for each simulation: a binary string for each reaction within
that simulation, where 0 means normal behaviours and 1 means
abnormal. Reactions for neural networks with less than 70%
accuracy were removed (of which there were 12 in total), leaving
267 reactions with a mean accuracy of 93.6%. We applied PCA to
reduce the flux profiles to two dimensions while retaining most of
the variance and visualised, as shown in Figure 3. Each point is the
flux profile of a simulation, and the principal components
correspond to the reduced dimensions of the reaction flux
profiles. As PCA preserves global and pairwise distances between
all data points, unlike other dimensionality reduction processes that
focus on local distance (such as t-Distributed Stochastic Neighbor
Embedding (Van der Maaten and Hinton, 2008) and Uniform
Manifold Approximation and Projection (McInnes et al., 2018)),
this enables us to see not only the relationship between data points
but the relationship between the different clusters, leading to clearer
interpretability.

The analysis dataset simulations were previously hand-
labelled by phenotype according to differences in cell
behaviours of the simulation output. The labelling classes were
non-essential, DNA disruption, RNA disruption, metabolic
disruption, protein disruption, or septum disruption (Rees-
Garbutt et al., 2020)—see the Materials and Methods for
details. The non-essential class is defined by whether the cell
divides or not, in keeping with current definitions of gene
essentiality (Zhang and Zhang, 2008), and the other classes are
defined by what is indicated by the output data to be the root
cause of cell death.

In Figure 3, several clusters of flux profiles are visible. To
validate their significance, we coloured the flux profile points
according to manual labels of the phenotype that has occurred
after the knockout; it can be seen (Figure 3) that these clusters
correspond to the manually defined phenotypic classes. This
suggests (intuitively) that different sets of reactions behave
abnormally for each different class of phenotype, with
different scales in the proportion of reactions affected, which
will separate the different classes in the PCA space. We expect the
majority of reactions in a simulation labelled as non-essential to
be classified as normal and the non-essential simulations to be
clustered together in the PCA space, as their flux profiles will be
similar. Then, for simulations with greater disruption (e.g., the
metabolic phenotypic class, where there is no growth and no
DNA, RNA, or protein is created (see theMaterials and Methods
section), where many reactions are behaving abnormally), these
will be placed much further away from the non-essential cluster.

Analysis and Biological Context Within the
Metabolic Network
The clustering analysis is useful to show the big picture across the
entire dataset but does not suggest much biological insight that
could be applied to lab experiments. In order to make sense of the
data in a way that can be used in an experiment, we need to
understand these results at the scale of groups of genes or
reactions. To ascribe biological meaning to trends seen across

FIGURE 2 | Method of feature extraction and normality classification shown graphically. The features shown in plot (A) were taken, and principal component
analysis (PCA) was applied for each reaction flux in each simulation across the dataset to create plot (B), retaining 82.9% of the variance. The wild-type simulations are
shown in blue, and then three boundaries are shown (extrema, 99% confidence intervals, and 95% confidence intervals), which are used to form three labelling schemes.

FIGURE 3 | Principal component analysis (PCA) plot of the flux profiles
(binary strings of normal vs. abnormal classifications for each flux in a
simulation) from 3,411 gene knockout simulations, reduced to two
dimensions (while retaining 84.5% of the variance) and then shown in
different colours that correspond to manual labels. The classes are defined by
the presumed root cause of lack of cell division; or if the cell divides, the
simulation is classified as non-essential.
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the dataset, we analysed the topology of the metabolic network, as
this is a representation of the relationships between different
reactions, and so we can see how it is affected by reactions
behaving abnormally after knockouts. It has been shown that
the modularity of the E. coli metabolic network corresponds to
metabolic functions (Ravasz et al., 2002), and so, from a graphical
perspective, we aimed to explain some of the biology behind the
phenotypic classes and the flux profiles. The M. genitalium
metabolic network is significantly smaller than many bacterial
metabolisms (645 reactions vs., e.g., 2,382 in E. coli (Feist et al.,
2007)), due to its genome size—however, analysis is not trivial.
We used a graphical representation of the network, where each
reaction is a node, and substrates that connect reactions are edges,
as in the stoichiometric matrix of the metabolism in the
knowledge base of the M. genitalium model. We visualised the
reactions affected across each class in individual graphs, shown in
Supplementary Figure S3.

There are multiple ways to gauge the importance of a node
within a network. Most commonly used are centrality measures
(Freeman, 1977), but for dynamic networks, we can focus on the
control of the network via the nodes. From the graphical
representation, we used a maximal matching algorithm to find
driver nodes. Driver nodes are the set of nodes in the network that
need to be managed in order to have full control over the system,
which can be found for both directed and undirected networks
(Liu et al., 2011; Nacher et al., 2019)—therefore, in terms of input
into the metabolism and flow through the metabolic pathways,
their behaviours affect other reactions downstream, and they
could be indicators of phenotypes after gene knockouts. The
driver nodes of the network are shown and named in
Supplementary Figure S4. For each driver node, the pathways
associated with that reaction were found from KEGG (Kanehisa
and Goto, 2002) or (if there was no annotation for that reaction)

the pathways associated with reactions that were one degree away
from the driver, as shown in Table 3.

Metabolic networks are known to be robust (Smart et al., 2008;
Holme, 2011), so many reactions can be individually removed
without causing adverse effects. However, within M. genitalium
metabolism, very few metabolites are organically synthesised
(Dybvig and Voelker, 1996). Transport reactions for essential
substrates such as amino acids are far more important than they
might be in a larger cell that has the capabilities to synthesise
these things itself. Within the metabolic network for the most
widely used constraint-based E. coli model [iAF1260 (Feist et al.,
2007)], 75% of the driver nodes are transport reactions, compared
with 95% in the M. genitalium metabolic network.

We found several driver nodes that can be individually used as
features to divide the data into separate classes (referred to in the text
using their reaction identifiers from the model). For all driver nodes,
we modelled a linear SVM across the 2D data of the analysis dataset.
We then selected those that could separate the data into normal vs.
abnormal behaviours with over 95% accuracy as good and simple
indicators of metabolic behaviours, shown in Figure 4. Of the driver
nodes, 83% could linearly separate the data with greater than 95%
accuracy (listed in Supplementary Table S4), compared with only
60% of the non-driver nodes, demonstrating their significance.
Additionally, we can use individual driver nodes to mark
phenotypic classes—normal behaviours for TX_NAC, the
reaction that transports nicotinamide into the cell, correlate
strongly with the simulations classified as non-essential, with a
phi coefficient [a measure of correlation between binary variables
(Ekström, 2011)] of 92%. Behaviours of TX_RIBFLV can split the
dataset into the classes where we see growth (non-essential, septum,
and DNA phenotypes) and the classes where there is no growth
(metabolic, RNA, and protein phenotypes) with a phi coefficient of
95%. Equally, we can see that abnormal behaviours for Upp

TABLE 3 | List of all of the driver nodes, whether they can linearly separate different phenotypic classes in the PCA space, and their associated pathways (if available).

Driver Pathways Linearly separable

TX_CO2 Glycolysis, TCA cycle, pyruvate metabolism, carbon metabolism Yes
TX_COA Glycolysis, TCA cycle, pyruvate metabolism, carbonmetabolism, pantothenate and CoA biosynthesis, methanemetabolism Yes
TXPYDX Vitamin B6 pathway Yes
TX_ACAL Pentose phosphate pathway No
TX_CAP Purine metabolism, carbon metabolism No
TX_DDCA Glycerolipid metabolism n/a
TX_FOR One carbon pool by folate, carbon metabolism n/a
TX_H2O2 n/a Yes
TX_HDCA Glycerolipid metabolism Yes
TX_HDCEA Glycerolipid metabolism Yes
TX_LIPOATE n/a Yes
TX_NAC Nicotinate and nicotinamide metabolism Yes
TX_O2 Purine metabolism, pyrimidine metabolism Yes
TX_OA Pyruvate metabolism, carbon metabolism, methane metabolism No
TX_OCDCA Glycerolipid metabolism Yes
TX_OCDCEA Glycerolipid metabolism Yes
TX_RIBFLV Riboflavin metabolism, biosynthesis of secondary metabolites Yes
TX_THF One carbon pool by folate, folate biosynthesis Yes
TX_TTDCA Glycerolipid metabolism n/a
TX_TTDCEA Glycerolipid metabolism n/a
Upp Pyrimidine metabolism Yes

Note. PCA, principal component analysis; TCA, tricarboxylic acid.
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(dephosphorylation of uracil) are strongly indicative of a metabolic
phenotype and can be used as a feature to separate metabolic
disruption phenotypes from other types of phenotype, with a phi
coefficient of 97%. Overall, the driver node analysis showed that it is
possible to identify important reactions within the network that
correlate with certain cell behaviours, meaning that we can focus on
these to understand the end phenotype rather than the entire set of
reactions.

DISCUSSION

We have shown multiple analysis methods that take a large
high-dimensional dataset and distill it into visualisations that

are easy to interpret. The pipeline of weak labelling followed
by neural network classification is applicable to any system
that outputs time series, although the features used for the
initial labelled schema may have to be changed, according to
what the researcher intends to look for, and the type of time
series that is being analysed. As discussed previously, it is
particularly useful for where “normal” behaviours for a system
is not well defined, and the mechanisms that underlie the
system cannot be distilled into a form that is understood. We
have shown that it is applicable for black-box models, but it
could also be used for data from complex physical systems
where we do not understand the fundamental structure, such
as meteorological phenomena. Additionally, the driver node
analysis is applicable to any system where there is input,

FIGURE 4 | Scatter plots of all flux profiles reduced to a 2D feature space. On the left [plots (A,C, E)], each point is labelled with the behaviour (normal or abnormal)
of a single reaction that is a driver node. The lines shown decision boundaries for support vector machines (SVMs); models that form a hyperplane to linearly separate
different classes of data, where in this case the classes will be flux profiles where the specified reaction behaves normally, and flux profiles where the specified reaction
behaves abnormally. The reactions are referred to using their identifiers that are used in themodel. On the right [plots (B, D, F)], each point shows themanual label of
the phenotypic classes that correlate with the behaviour of the reactions on the left—the simulations that show normal behaviours of TX_NAC have a 92%correlation with
those that are manually classified as non-essential; those that show normal behaviours of TX_RIBFLV show a 95% correlation with those that are manually classified as
non-essential, DNA, or septum phenotypes (which all show cell growth), and those that show abnormal behaviours for Upp show a 97% correlation with those that are
manually classified as metabolic.
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output, and internal structure, as it can highlight the most
important parts of a high-dimensional system.

The processing of complex data is imperative to understand
whole-cell model output, and this method demonstrates how the
behaviours of specific reactions can be used as a marker of a
particular phenotypic class and their importance to the
corresponding cellular process.

Understanding the effects of single gene knockouts is a
deceptively difficult task, as the domino effect of gene removal
can cause large changes in the behaviour of a cell through its
life cycle. Visualising and analysing thousands of time series is
a challenge faced by many branches of research. These two
problems come together in the context of whole-cell models.
Using Snorkel and neural networks, we have been able to
classify metabolic fluxes as normal or abnormal and visualise
them in two dimensions, meaning that the dataset separates
into groups that can be interpreted. Whole-cell model data
must be understood in the context of controllable biological
mechanisms to be relevant to genome design: in order to use
knowledge gained from modelling in real cells, we must
understand the internal operations as well as the output.
The flux behaviour across different gene knockouts, and in
particular the driver nodes, can show the links between
genotype and phenotype, plus unprecedented effects that a
gene may have on reactions seemingly unrelated to its
functional annotation, on a scale that is only possible in a
whole-cell model. As this analysis gives an overview of the
entire metabolism, we can approach the problem of
understanding gene knockouts in a way that includes the
genomic context of the remaining genes and the behaviour
of their associated reactions, rather than examining the
phenotype with regard to the single gene that has been
removed.

The driver nodes can also give insight into the essentiality
of Mycoplasma functions. Most of the driver reactions are
not associated with annotated genes, as many transporter
proteins are putative—however, given that M. genitalium
synthesises very few compounds and gains most from its
surrounding media, this is an important knowledge gap. The
external media for Mycoplasma culture is generally
undefined rich media, so knowledge of exactly which of
the media components are essential for growth would be
valuable for lab use and simplify Mycoplasma production
(Gaspari et al., 2020). This may also help with linking un-
annotated genes with modelled functions, leading to better
understanding of theM. genitalium genome. For example, an
essential protein in JCVI-syn3A [one of the first synthetic
organisms; designed to function as a minimal cell (Breuer
et al., 2019)] has recently been classified as a riboflavin
transporter protein, showing that vitamin transport is an
essential function for a minimal organism (Zhang et al.,
2021). As M. genitalium does not synthesise riboflavin, this
suggests that one of its un-annotated genes must be a
riboflavin transporter. As more wet lab work is done with
M. genitalium, it will be interesting to compare it to the
model results and the importance of different driver nodes.
The essentiality of similar transport reactions could also be

looked at in other organisms, as these results may be
applicable to other Mycoplasmas.

For genome design, there has long been an idea of
“modularity” in cells, at different scales and abstractions
(Papin et al., 2004). Cellular subsystems that use a unique set
of molecules and rules to perform a function such as DNA
replication or glycolysis use chemical specificity to keep their
processes separate from other functional modules (Hartwell et al.,
1999). It has been proposed recently that the future of genome
design may be in minimal cells, combined with different
functional modules to create cells for specific purposes
(Gibson, 2014). This would require a detailed understanding
of not only how a genome maps to its phenotype and how the
genes themselves can form functional modules but also
concerning the ways in which these modules interact. This is
one of the main advantages of using a whole-cell model rather
than a constraint-based model—from observing the behaviour of
reactions, we can see how other mechanisms in the cell (e.g., DNA
production) are affected, which we would not in a constraint-
based model.

The metabolism submodel in the M. genitalium model is a
central hub of activity and an integral stepping stone for
substance transfer between cellular processes. Although
internal mechanisms and local rules for the model were
gathered from experimental data and are biologically valid, the
complexity that arises from so many parameters being integrated
together means that the model has to be treated as a black box.
Analysing the behaviour of the model could ultimately lead to
better biological understanding of the connections between
cellular processes. If the way that two processes are coupled
together in silico in the whole-cell model yields output that
matches experimental data, this can help to develop insight
into how these processes are linked in a real cell. This could
aid genome design, where insights from modelling can rationally
guide in vitro experiments and gene editing (Landon et al., 2019;
Rees-Garbutt et al., 2020, Rees-Garbutt et al., 2021).

We can see from Figure 3 that the knockouts that cause DNA
and septum disruptions cause similar behaviours in the flux
profiles to non-essential gene knockouts, likely because most
of their reaction behaviours were classified as normal.
Supplementary Figure S3 shows that fewer than 10 reactions
were consistently affected across the simulations within these
phenotypic classes, so we can infer that these reactions might be
the bridge between the metabolism process and the DNA
replication or cytokinesis process. Limitations of the M.
genitalium model mean that the results presented here do not
include multiple cell divisions, and it is possible that more
widespread effects on metabolism would be revealed in future
work with more generations.

The interactions between the metabolism and the other
phenotypic classes (protein and RNA) are less simple, as there
are significantly more reactions that are consistently behaving
abnormally. This is not surprising, as there are two main
functions for a cell to perform: growth and replication.
Growth occurs consistently through the cell cycle and requires
constant synthesis and degradation of different proteins and
RNAs. There is also a temporal element, as cascades of
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reactions that form different proteins may need to occur in a
specific order. Any disruption to an aspect of this process during
the life cycle will filter down to other processes, whereas if DNA
replication is disrupted, it is primarily cell division that will be
halted. In future studies, it would be interesting to see if dividing
the proteins into functional groups and pathways for further
analysis leads to a better understanding of their roles and how
they interact with each other.

It is hard to draw solid conclusions about cell behaviours,
as M. genitalium is an organism where not all of the genes
are classified, and the data that the model was built upon are
from many different sources and organisms. In terms of
the network analysis, there are some reactions that have
been observed in M. genitalium but do not have known
enzymes to catalyse them, which leaves gaps within the
model. There may be unexpected and unusual behaviours
that are not captured in the training data as well, leading to
misclassifications; for example, the reactions that performed
badly in the neural network classifications may be sensitive to
small changes in the metabolic network, meaning that their
behaviours are inconsistent and unpredictable. However, it is
useful to flag these reactions and, in the future, to use different
approaches to understand their behaviours. There is also the
possibility that, after applying the machine learning processes,
the results show more about the internal features of the model
itself than the actual biology, which is a good starting point for
lab work.

As whole-cell models become more widely used, analysis
software will become more important. The most recent whole-
cell model is of E. coli (Macklin et al., 2020), which is a better-
understood organism thanM. genitalium, with significantly more
data available to validate and add to it, so this is an important
development for the field. However, the complexity of models will
increase hugely with the size of the genome of the organism, and
as E. coli has an order of magnitude more genes than M.
genitalium (Blattner et al., 1997), analysis tools that can
provide data processing and dimensionality reduction will be
even more important for enhancing understanding and
ultimately genome design.
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Mathematical modeling allows using different formalisms to describe, investigate, and
understand biological processes. However, despite the advent of high-throughput
experimental techniques, quantitative information is still a challenge when looking for
data to calibrate model parameters. Furthermore, quantitative formalisms must cope with
stiffness and tractability problems, more so if used to describe multicellular systems. On
the other hand, qualitative models may lack the proper granularity to describe the
underlying kinetic processes. We propose a hybrid modeling approach that integrates
ordinary differential equations and logical formalism to describe distinct biological layers
and their communication. We focused on a multicellular system as a case study by
applying the hybrid formalism to the well-known Delta-Notch signaling pathway. We used
a differential equation model to describe the intracellular pathways while the cell–cell
interactions were defined by logic rules. The hybrid approach herein employed allows us to
combine the pros of different modeling techniques by overcoming the lack of quantitative
information with a qualitative description that discretizes activation and inhibition
processes, thus avoiding complexity.

Keywords: hybrid modeling, logic modeling, ordinary differential equations (ODEs), computational systems biology,
simulation algorithms

INTRODUCTION

Computational models have become a cornerstone of modern biology as a tool for data
interpretation and serving in parallel with experimental techniques to disentangle process
complexity (Markowetz, 2017). Depending on the available information and the addressed
questions, we can model the processes with different approaches, in function of model
granularity and abstraction level (Ideker and Lauffenburger, 2003). Biological processes for
which are available high-throughput omics data can be described using interaction networks
(Danaher et al., 2014; Hawe et al., 2019); these can be integrated with other experimental
evidences (such as knock-out experiments) to provide directed graphs (Gross et al., 2019). By
increasing the biological knowledge of the processes involved, providing the sign of the interactions,
we can obtain a regulatory graph that together with a set of rules for each component defines a logic
model (Abou-Jaoudé et al., 2016).

The logic formalism is the simplest way to model interactions among entities, in a parameter-free
fashion, and has been used since the 1970s to qualitatively describe biological pathways (Kauffman,
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1969), and intracellular and intercellular signaling networks
(Gonzalez et al., 2008; Morris et al., 2010) up to collective cell
behaviour (Varela et al., 2018). In the case that the pathways and
their components are thoroughly characterized, ordinary and
partial differential equations (ODEs and PDEs) can be used
instead (Aldridge et al., 2006). If the number of molecules
involved in the processes does not meet the Continuum
hypothesis requirements, then the stochastic methods allow to
overcome the problem (Simoni et al., 2019).

Selecting the appropriate mathematical formalism to describe
the biology is thus a trade-off between the a priori available
knowledge (e.g., parameters, concentrations etc.) and the
required granularity to address the biological problem.

Another important aspect to consider in systems biology is
the interplay between different biological layers, as most
models focus on a single scale. Progresses have been made
in implementing hierarchical representations to study how
local variations may affect the dynamics at other levels. An
example of this approach is the work of Uluseker et al. (2018)
in which the authors built an ODE model that integrates in a
holistic framework the glucose homeostasis together with
other regulatory hormones at different levels: gut, liver,
and adipose tissue. However, models that span over
different levels (e.g., from subcellular to tissue) are difficult
to parametrize and implement. Model combination (Palsson
et al., 2013) can be a solution but it is a challenging task due to
the non-modular implementation of these mathematical
frameworks, and goes beyond simple coupling of the
equations.

The technical difficulties of model integration, arising from the
different modeling formalisms, have been tackled by recasting the
mathematical descriptions to a single approach. Ryll et al. (2014),
with their model of hormonal regulation of glucose homeostasis,
proposed a strategy to integrate a logic model of signaling
network with an ODE model of metabolic processes: the
Boolean representation was converted into a set of logic-based
ODEs. The integration required a calibration step in which the
added parameters and the missing ones of the kinetic model were
fitted to experimental data.

As outlined in Uluseker et al. (2018), biological phenomena
interlay different abstraction levels, where interconnected
modules form complex collective behaviour. Hierarchical
models, as mentioned previously, are used to provide a
structured holistic representation of complex biological
systems. Single models communicate, through feedbacks, at
the systemic level producing the macroscopic behavior. Often,
for these interactions, only limited knowledge or qualitative
measurements are available and thus a complete ODE
description is hindered. Here, we propose an integrative
approach that leverages on different formalisms (ODE and
logic), with a fine-grained ODE representation of the bottom
layer to properly describe the variable dynamics, and the logic
formalism to represent in a coarse-grained fashion the regulative
interactions. This approach does not require a model re-
parametrization or recasting to a common description thus
enabling model reuse.

Although the modeling approach is the focus of the present
work, we decided to convey our strategy by presenting a case
study: the Delta-Notch signaling pathway.

Delta-Notch signaling is among the most conserved pathways
in tissue development based on the negative-feedback loop
between the two elements (Artavanis-Tsakonas et al., 1999).
Upon Delta ligand binding to the Notch receptor of another
cell, a response is triggered leading the receiving cell to repress
Delta, governing fate selection. Several examples of Delta-Notch
salt-and-pepper patterning are present in nature like in
Drosophila (Renaud and Simpson, 2001; De Joussineau et al.,
2003), as well as in the mouse inner ear (Hartman et al., 2010),
and mouse and zebrafish retina (Del Bene et al., 2008).

One of the first models investigating the Delta-Notch
signaling pathway, developed by Collier et al. (1996), used
the ODE formalism to qualitatively describe the dynamics of
active Notch and Delta between adjacent cells. The input of a
generic cell was modeled as the average of all neighbor Deltas.
The intracellular Notch activation and consequent fate
decision were described using a phenomenological Hill
function. Agrawal et al. (2009) adopted a fine-grained
approach describing with an ODE system the intracellular
processes of cleavage, transcription, translation, transport,
and degradation, after Notch activation. The work focused
on the analysis of the single cell fate decision, rather than the
pattern formation, highlighting the possibility of a phenotypic
switch from bistable system to oscillatory, by tuning a single
parameter. Mjolsness et al. (1991) and Marnellos and
Mjolsness (1998) modeled neuroblasts and sensory organ
precursor cell differentiation in Drosophila, as nodes in a
recurrent neural network. Cells are represented as discrete
entities, which can interact with neighbors. A minimal two-
gene network was used, allowing interaction with other gene
products from within the same cell or from neighboring ones.
Varela et al. (2018) developed a 2D logical model of lateral
inhibition, using the software Epilog. Each cell of the discrete
tissue contains a two-component logic model that responds to
the input coming from the neighboring cells. Both Varela et al.
and Marnellos et al. approaches allow to simulate pattern
formation at the tissue level without in depth knowledge of
the kinetic parameters or species concentrations. Also, agent-
based models (ABM) have been employed to address how
complex behaviors arise from the cell–cell interactions
(Reynolds et al., 2019) or cell–environment interaction (Yu
and Bagheri, 2020). In particular, Reynolds et al. (2019)
developed an ABM that recreates Delta-Notch patterns
using for each agent a set of rules that define the increment
of each species, thus providing a more abstract view.

The hybrid strategy we propose defines a semi-quantitative
framework optimal to simulate tissue level dynamics with fixed
interacting cells. The implementation, at the lower level, of an
ODE-based model generates a quantitative time that allows to
better appreciate the grid evolution. Complex behavior and
spatial effects can be implemented including in the logical
rules more than the first line of neighbors and by changing
the geometry of the grid (i.e., cylindrical, toroidal etc.).
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Materials and Methods
The intracellular signaling cascade model parameterization is
provided in Supplementary Material S1. All computations were
implemented and performed in MATLAB (R2019b); simulations
were performed with an Intel Core i7-8700T processor, CPU 2.40
GHz and installed RAM 16.00 GB. Numerical integration of the
ODE system was made using the ODE solver ode15s.

RESULTS

Hybrid Modeling Approach
In this work, we propose a hybrid modeling approach to describe
complex biological phenomena where the lack of kinetic
parameters, species concentrations, or mechanistic knowledge
hinders a complete ODE description.

The model is built hierarchically in a bottom-up fashion
(Figure 1). At the lower level, there is a matrix of quantitative
single modules (i.e., signaling pathways, cells) described by a system
of ordinary differential equations characterized by a set of variables.
Each module can receive two types of inputs: independent (II) or
dependent (ID) from the other modules. The latter is a logical
variable (Boolean or multivalued) which describes the interactions
between the single modules or environmental feedbacks
(i.e., pathway crosstalk, extracellular signaling) and encodes
through a logical rule the contribution of the neighboring
modules’ output variables (V). The independent input, II, is used
instead to portrait those signals that are only position dependent, as
diffusive molecules or other environmental cues.

The hybrid approach we propose thus puts into
communication the two layers (intracellular and tissue) and
can be simulated as illustrated by the pseudo-code of Figure 2.

While II is uniquely defined by the cell position, ID is locally
defined by the variable V of the neighboring modules. To define
each module’s ID, we first threshold V for all the modules,
generating the logic matrix V’; we compute ID by applying the
logical rule f on V’, considering a specific neighborhood of the
module of the grid in exam. Given the planar representation and
the finite number of grid elements, border cells may have a lower
number of neighbors when compared with the others; it is thus
important to define boundary conditions to mitigate artifact
effects. Possible strategies that we also apply in the context of
the case study, are cylindrical conditions, where two borders of
the grid are put in contact by a single fold of the grid or toroidal
conditions, where a double fold of the grid put in pairwise contact
the grid borders. The modules are then integrated until the
variable V crosses the quantization threshold (tthreshold).

The process is then repeated until the break condition is met;
this can be grid equilibrium, maximum allowed simulation time,
or other ad hoc constrains.

CASE STUDY: DELTA-NOTCH

Delta-Notch is a highly conserved cell–cell communication
pathway present in most animals; it allows cells to select
different fates based upon the neighborhood consensus. In
Drosophila, during the neuronal development phase, cellular
differentiation gives rise to salt-and-pepper patterns with cells
either reaching neuronal fate or not (Campos-Ortega, 1995;
Bertrand et al., 2002). The phenomenon of lateral inhibition
among adjacent cells, mediated by Delta-Notch signaling
pathway, has a major role in this kind of pattern formation.
Depending on the interconnectivity of the network, different

FIGURE 1 | Hybrid model approach. The tissue is composed by a grid of quantitative modules described by an ODE system depending on two types of inputs ID
and II, respectively dependent and independent from the other modules. The former is usually cast as a function of the internal variable (V ) of neighboring cells.
Thresholding the Vs of all cells will generate a logical matrix (V ’), which is then used to compute ID by applying a logical rule f . II identifies instead those inputs that are only
dependent from the spatial position.
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patterns can arise, and since cells are observed to extend
protrusions, even non-adjacent cells can interact (Renaud and
Simpson, 2001; Hadjivasiliou et al., 2016).

In the following sections, we will describe how we developed
and integrated the intracellular ODE model and the intercellular
logic model.

Intracellular Signaling Cascade
We developed a mathematical model describing the Notch
intracellular pathway, building upon the computational work
of Agrawal et al. (2009) (for details see Supplementary
Material S1). A set of ordinary differential equations
quantitatively trace the different components involved in
the processes, following the Delta-Notch binding on the
outer membrane (Figure 3).

The cell is modeled with two compartments: cytoplasm
(volume VC) and nucleus (volume VN). Every cell receives as
external input the ligand Delta (DE) from other cells; we
considered it binary: either present (DE � Dmax

E ) or not
(DE � 0). Upon binding of DE with free Notch (Notchfree),
Notch intracellular domain is cleaved and released in the
cytoplasm (NC) with a rate kcl. Assuming that Notch
expression is maintained constant (Ntot) the free amount of
Notch on the membrane as function of the other species is:

Notchfree � Ntot −NC −NN · VN

VC

NC has a molecular weight of 110 kDa, thus it can permeate the
nuclear envelope in two modalities: passive and active transport.
The former is due to concentration gradient (NN −NC) and

FIGURE 2 | Hybrid model simulation pseudo-code, an extended version of the code is available in Supplementary Material S1.

FIGURE 3 | Graphical representation of the model describing the Delta-Notch pathway. Upon binding to the Delta ligand (DE ) from another cell (yellow rectangle)
the Notch receptor releases its intracellular domain in the cytoplasm (NC ). After entering the nucleus, either due to passive or active transport, Notch (NN ) acts as
transcription factor inducing the expression of HesmRNA (HmRNA

N ) and its translation into Hes protein (Hp
C ).H

p
C migrates into the nucleus (Hp

N ) where it acts as repressor of
Delta expression (D) leading to a decrease in Delta protein at the membrane. Coupling this system with its counterpart in a neighbor cell will lead to having a Delta+

cell and a Delta− cell, respectively expressing or not the protein. The model consists of two cell compartments: nuclear (red) and cytoplasmatic (violet).
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occurs at rate kPtr. Active transport is modeled with a first-order
kinetic (see Supplementary material) with transport rate kAtr. The
differential equations describing NC and NN are:

dNC

dt
� kcl ·Notchfree ·DE + kPtr

VC
· (NN −NC) − kAtr

VC
·NC − μN

·NC

dNN

dt
� kPtr
VN

· (NC −NN) + kAtr
VN

·NC − μN ·NN

HmRNA
N represents the concentration of Hes-mRNA in the

nucleus, while Hp
C and Hp

N are Hes protein concentrations in
the cytoplasm and in the nucleus, respectively. We described their
dynamics as follows:

dHmRNA
N

dt
� ktH ·N2

N

N2
N +K2

H

− μHmRNA ·HmRNA
N ,

dHp
C

dt
� kHp ·HmRNA

N · VN

VC
+ kPtr
VC

· (Hp
N −Hp

C) − μHp ·Hp
C,

dHp
N

dt
� −k

p
tr

VN
· (Hp

N −Hp
C) − μpH ·Hp

N

Transcription of Hes-mRNA was modeled with an activation
Hill function ktH ·N2

N

N2
N+K2

H
, with coefficient equal to 2, and a maximal

transcription rate ktH. Hes-mRNA nuclear export was assumed to
occur instantaneously and translation into Hes protein occurs at
rate kHp . Hes1 has a molecular weight of ∼30 kDa, hence we
model nuclear permeation only due to concentration gradient
(Hp

N −Hp
C), with rate kPtr.

Delta transcription is inhibited by Hp
N, thus we modeled it

with a repression Hill function ktD ·K2
D

K2
D+H2

pN
, with a maximal

transcription rate ktD. To simplify our system, we considered
Delta mRNA as the final read out, implying that the translation
process and protein maturation will simply add a delay to the
transcriptional response.

dD

dt
� ktD · K2

D

K2
D +H2

pN

− μD · D.

All components face degradation, with rates μN, μHmRNA , μ
p
H,

and μD, where subscripts indicate the respective species.

Intercellular Signal Communication
The logic formalism was used to describe cell–cell
communications during the lateral inhibition process. The
epithelium was represented by a two-dimensional grid of cells
(Ci), characterized by the intracellular concentration of Delta (D)
binarized accordingly to a fixed threshold (Th):

Ci � { 1 if D≥Th
0 if D<Th.

Delta positive cells influence the neighbors’ fate, activating
their Notch pathway. The presence of Delta ligand (DE) for the
cell Ci is a logical function of N neighboring cells.

DE(C1, . . . , CN) �
⎧⎪⎨⎪⎩ Dmax

E if∑N
j�1
Cdist

j ≥ ϑ,

0 otherwise.

where ϑ represents the minimum number of the N neighboring
cells required to be Delta positive, and dist indicates the integer
distance at which a cell is considered neighbour.

Model Integration and Simulations
To simulate the pattern development, we integrated the two
models. The tissue is represented by a two-dimensional grid of
hexagonal cells, each containing the fine-grained kinetic model of
Figure 3. Cell–cell communication is instead implemented with
logical rules.

To bridge the two representations, for each cell the input of the
ODE model (DE) is defined according to the state of the
neighboring cells via a logical rule. To replicate the salt-and-
pepper pattern observed in biological contexts like theDrosophila
neuronal development, we used the following rule:

DE �
⎧⎪⎨⎪⎩ Dmax

E if∑6
i�1
C1

i ≥ 1,

0 otherwise.

This implies that a cell receives as input DE � Dmax
E if at least

one of the six most proximal neighbors (dist � 1) is delta positive.
After initializing the variables of each cell (Figures 4A), the
simulation follows the steps described previously until the
equilibrium of the grid is reached. To simulate the pattern
emergence, we started from random initial conditions, and we
selected independently for each cell the species concentrations
from their biological range.

Interestingly, in our simulation when starting with random
initial conditions (Figures 4A) the grid evolves first toward a
naïve state, with no fate decided (Figures 4B), then it
converges to the salt-and-pepper pattern accordingly to the
selected rule.

Moreover, as illustrated in Figure 5, since the single ODE
systems are responsible for the evolution of the epithelial grid, it is
possible to observe the dynamics of each module. This approach
thus provides multiple levels of information in function of the
investigation objectives, allowing to pass from the collective cell
behavior to the single intracellular dynamics.

Different rules for DE can include more than one circle of
neighbors (distance greater than one), giving rise to a variety of
different patterns (Figure 6).

In a cell, several signaling pathways concur to fate decision, in
addition to Delta-Notch (ID) we can consider the positional input
Wnt (II). This soluble protein can affect Notch signaling during
fate decisions by diffusing in the tissue and activating a
concentration-dependent inhibition of the Notch intracellular
domain transcriptional activity (Collu et al., 2012). Wnt was
integrated with a fixed concentration dependent on the cell
position on the grid (Figure 7). This test case also provides an
example of our modeling approach considering an external input
not dependent on neighbors.
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DISCUSSION

The description of amulticellular system is always a trade-off between
complexity and tractability. Using a fine-grained approach as ODEs
(or PDEs) provides a detailed representation of the system, which can
be quantitatively used to understand the underpinningmechanism at
the core of the biological processes. However, to be able to simulate
such models, a large number of parameters are required, eventually
leading to parametrization issues. Moreover, moving from a single
cell model to a multicellular one will generate a rapid increase in the
differential equation number, thus opening the door to integrability
and running time problems. On the other hand, parameter-free
approaches (such as logic modeling), although able to overcome
information gaps, allow only for a qualitative representation of the
system behavior. This kind of interpretation can be sometimes
insufficient to provide useful insights on biological problems or
help to analyze experimental evidence. Here, we introduce a new
hybrid approach that leverages on these two formalisms to produce a
semi-quantitative representation of a multicellular/tissue
environment. Our approach can be also employed to describe
interactions among pathways, as bridging signaling cascades by
representing the kinase activity as a Boolean variable, or between
organs as describing with an ODE system the glucose metabolism
and with a logical variable the insulin presence.

To showcase the hybrid formalism, we selected Delta-Notch
signaling pathway (Artavanis-Tsakonas et al., 1999) and the

consequent cell fate selection in an epithelium (Renaud and
Simpson, 2001; De Joussineau et al., 2003). As previously
mentioned, different approaches and different granularities have
been used to investigate this problem: from coarse-grained
intercellular models as the one of Collier et al. (1996) to fine
detailed intracellular models as the one of Agrawal et al. (2009).
The latter provided an in-depth quantitative description of the Notch
signaling pathway, which can be used to investigate the change in
phenotypic behavior of the network (from bistable to oscillatory)
through sensitivity analysis. However, representing cell–cell
communication without embedding the model into a multicellular
system may oversimplify important dynamics. Furthermore, fine-
grained representation cannot be indefinitely scaled up by simply
adding other ODEs for each cell of the epithelium because this would
eventually lead to stiffness and numerical instability. The progressively
granularity reduction can help to overcome these issues although it
provides just a qualitative representation of the system behavior that
focuses on the pattern generation: qualitative ODEs (Collier et al.,
1996), agent-based systems (Reynolds et al., 2019), and logical models
(Varela et al., 2018). These approaches allow to simulate pattern
formation at the tissue level but, due to their nature, they either lack
quantitative time or information about the species concentrations. To
bridge these two levels, we suggest, analogously to hierarchical models
(Uluseker et al., 2018), to connectmultiple single quantitativemodules
through the logic formalism. We selected an ODE formalism to
describe the intracellular kinetics of the different species which allows

FIGURE 4 | Pattern evolution of a 20 × 20 grid with cylindrical boundary conditions (lateral borders are in contact) using the logical rule DE � Dmax
E if ∑6

i�1 C1
i ≥ 1,

encoding that the input is present if at least one of the six neighbors at distance one are Delta positive. Colors indicate the intracellular delta concentration according to the
color bar. (A) Initial values of the variables are set randomly within the biological boundaries. (B) All cells in the grid become Delta negative. (C) Delta-positive cells start to
emerge and affect their neighbour’s fate. (D) Equilibrium grid is reached. The hours reported above each grid indicates the quantitative time obtained from the ODE
systems.
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to quantitatively trace the system variables for each cell and provide a
quantitative time. The rationale to use ODEs for the intracellular
pathway hinges on the amount of data and the availability of
experimental techniques apt to investigate missing gaps at this
level, while cell–cell interaction and tissue dynamics are harder to
explore and quantitatively characterize. As represented in Figure 1,
each cell can receive two types of input: ID or II; the former being
used to encode cell–cell communication. The system is simulated
following the pseudo-code of Figure 2 until the break condition
is met.

In our formalism, the tissue is composed of a grid of cells, each
uniquely identified by their position and neighbors. We used a
structure made by a 2D single cell layer of hexagonal cells, and the
number of neighboring cells varies depending on the distance we
consider (6 at distance 1, 12 at distance two etc.). The boundary
condition of the grid, important for the evolution, was assumed to
be cylindrical (folding the epithelium along the vertical axis)
enabling the study of periodic patterns over a larger domain.

The hybrid strategy we propose tries to overcome the
conundrum of providing a detailed enough description of the
problem while keeping the model complexity under control, each
formalism fulfilling a different purpose. The ODE system, being a
modular quantitative representation of the intracellular cascade,
can be expanded or substituted without major requirements
(beside parameter calibration). Furthermore, multicellular logical

models of Delta-Notch, as the case study presented by Varela et al.
(2018), lack quantitative time and are simulated with a
synchronous/asynchronous update of the grid. In our approach,
the ODE system provides a quantitative time to the tissue system
based on which the cellular grid is updated, allowing for a closer
biological interpretation of the resulting dynamics. The internal
species dynamics, stored along the simulation, can be instrumental
to evaluate the biological processes at different scales.

The logic layer connecting the different single modules is used
to describe qualitatively the receptor binding processes between
adjacent cells. In addition, it is possible to encode biological
information in the system using multilevel inputs; this, together
with the logic rule complexity, can account for the receptor binding
properties, although at a descriptive level. It is also possible to
combine logical dependent inputs, ID, with continuous
independent input, II. This possibility, in the particular case of
the Delta-Notch, can be used to model the intestinal crypt, where
the soluble factor WNT controls part of the Notch intracellular
cascade according to its concentration modulating the cell
stemness (Demitrack and Samuelson, 2016). The hybrid strategy
can thus be applied to the crypt system, considering Delta as a
dependent input coming from the neighboring cells and WNT as
continuous input with a concentration gradient (Figure 7).

The hybrid approach we propose in this work, despite the
qualitative representation of some model components, can be

FIGURE 5 | alt-and-pepper pattern of a 6 × 6 grid with cylindrical boundary conditions obtained by applying the rule DE � Dmax
E if ∑6

i�1 C1
i ≥ 2. Each cell contains a

plot of the computed intracellular variables dynamics; black dashed vertical lines indicate when the cell has generated an event by crossing the Delta threshold. The color
of the cell indicates if the dominant variable is Delta or Notch (in agreement with the intracellular dynamics).
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FIGURE 6 | Pattern evolution of a 20 × 20 grid with cylindrical boundary conditions (lateral borders are in contact) using the logical rule DE � Dmax
E if ∑18

i�1 C3
i ≥ 10,

encoding that the input is present if at least ten neighbors out of the 18 at distance three are Delta positive. Colors indicate the intracellular Delta concentration according to the
color bar. (A) Initial values of the variables are set randomlywithin the biological boundaries. (B)All cells in the grid becomeDelta negative. (C)Delta-positive cells start to emerge
and affect their neighbor’s fate. (D) Equilibrium grid is reached. The hours reported above each grid indicates the quantitative time obtained from the ODE systems.

FIGURE 7 | Pattern evolution of a 20 × 20 grid with cylindrical boundary conditions (lateral borders are in contact) using the logical ruleDE � Dmax
E if ∑6

i�1
C6
i ≥1, encoding

that the input is present if at least one of the six neighbors at distance one are Delta positive. A positional gradient simulates Wnt concentration over the grid. Colors indicate
the intracellular Delta concentration according to the color bar. (A) Initial values of the variables are set randomly within the biological boundaries. (B)Cells in the upper part of
the grid become Delta negative, while on the bottom Wnt inhibition starts to manifest its effect. (C) A clear separation between differentiated (Delta + or Delta −) and
undifferentiated cells (Wnt) emerges. (D) Equilibrium grid is reached. The hours reported above each grid indicates the quantitative time obtained from the ODE systems.
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used to investigate areas in which there are still uncertainties on the
underlyingmechanism or a lack of the system characterization. This
can be used to pave the road toward a more modular representation
of biological problems, progressively expanding the current models
by replacing the logic parts with more quantitative modules as soon
as the necessary information are available.
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Cell cycle is a biological process underlying the existence and propagation of life in time and
space. It has been an object for mathematical modeling for long, with several alternative
mechanistic modeling principles suggested, describing in more or less details the known
molecular mechanisms. Recently, cell cycle has been investigated at single cell level in
snapshots of unsynchronized cell populations, exploiting the new methods for
transcriptomic and proteomic molecular profiling. This raises a need for simplified semi-
phenomenological cell cycle models, in order to formalize the processes underlying the cell
cycle, at a higher abstracted level. Herewe suggest amodeling framework, recapitulating the
most important properties of the cell cycle as a limit trajectory of a dynamical process
characterized by several internal states with switches between them. In the simplest form,
this leads to a limit cycle trajectory, composed by linear segments in logarithmic coordinates
describing some extensive (depending on system size) cell properties. We prove a theorem
connecting the effective embedding dimensionality of the cell cycle trajectory with the
number of its linear segments. We also develop a simplified kinetic model with piecewise-
constant kinetic rates describing the dynamics of lumps of genes involved in S-phase and
G2/M phases. We show how the developed cell cycle models can be applied to analyze the
available single cell datasets and simulate certain properties of the observed cell cycle
trajectories. Based on our model, we can predict with good accuracy the cell line doubling
time from the length of cell cycle trajectory.

Keywords: cell cycle, mathematical modeling, molecular switches, transcription epoch, single cell data

1 INTRODUCTION

Progression through the cell cycle represents a complex dynamical process, regulated at multiple
levels including transcriptome and proteome. The major components of it have been characterized
(Hunt, 1991; Hunt et al., 2011), and a complex molecular machinery has been revealed (Tyson,
1991). Nevertheless, many aspects of cell cycle functioning remain to be elucidated (Giotti et al.,
2019).
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Progression through the cell cycle can be seen as a trajectory in
multidimensional space of all possible cellular states, similar to
other processes such as differentiation or ageing. However, this
trajectory is characterized by special properties because it
represents a periodic process. From an oversimplified
perspective, at the end of this trajectory, a cell splits into two
daughter cells twice as small, where each daughter cell has a state
identical to the initial state of its parent. This requirement
imposes certain constraints on the geometry and underlying
mechanisms of the cell cycle trajectory (CCT), which could be
reproduced with a mathematical model.

Cell cycle process has been a subject of mathematical modeling
for many decades (Chen et al., 2004a; Ingolia and Murray, 2004;
Sible and Tyson, 2007). Most of the existing models focused on
reproducing the regulatory logics at the level of protein expression,
protein-protein interactions and post-translational modifications.
Multiple modeling formalisms have been used such as chemical
kinetics (Tyson, 1991; Chen et al., 2004b), logical modeling (Fauré
et al., 2006; Deritei et al., 2019), Petri nets (Kotani, 2002), or
approaches based on tropical algebra (Noel et al., 2012; Radulescu
et al., 2012). A hybrid approach, combining discrete, governed by
Boolean dynamics, and continuous, governed by chemical kinetics,
variables was suggested to model cell cycle (Singhania et al., 2011;
Noël et al., 2013). The mathematical description of the cell cycle
transcriptional dynamics has not yet been thoroughly addressed,
though.

High-throughput omics measurements gave rise to a number
of molecular studies with the objective to characterize each cell
cycle phase in terms of their associated molecular changes,
i.e., sets of specifically expressed genes (Dominguez et al.,
2016; Giotti et al., 2019). The appearance of single cell
technologies reinforced the interest towards the description of
the molecular organization of the cell cycle for several reasons.
First, it allows the visualization of the cell cycle trajectory
explicitly without synchronizing individual cells, which can be
problematic, especially in vivo. Then, recent single cell
transcriptomic and proteomic studies provide molecular
description of progression through the cell cycle in a
continuous fashion. Such representation attempts to delineate
the cell cycle phase borders and also characterizes each cell for its
precise progression position within each phase (Leng et al., 2015;
Liu et al., 2017; Hsiao et al., 2020; Mahdessian et al., 2021).

A thorough understanding of cell cycle functioning is of
utmost importance for cancer research, where the deviation
from the normal cell cycle progression is expected. A number
of questions can be raised: What is the normal pattern of the
events comprising a cell cycle, and to what extent does it vary in
normal physiology? What deviations from a normal cell cycle are
characteristic for a tumor cell? What processes trigger these
changes and are they specific to a cancer type? and many others.

Some mathematical models of the cell cycle try to tackle these
questions. For example, agent-based or cellular automaton cell cycle
models focus on the optimization of cancer drug delivery (Altinok
et al., 2007), competition of fast and slow cell cycles within a tumor
under treatment (Tzamali et al., 2020), or cell confluence and
elongation of the G1 phase (Bernard et al., 2019). However, most
of the existing models remain limited to describe the behavior of cell

cycle during tumorigenesis at full complexity because of the existing
discrepancy between the nature of the available molecular data and
the level of the details of these models. Thus, the most
comprehensive data source currently available is at the level of
transcriptomic changes in single cells, while the existing modeling
efforts focus on protein players. The data reveal the role of hundreds
of genes and proteins in cell cycle dynamics, while the models
include a tiny fraction of this number. Therefore, we believe that the
development of mathematical models matching the scale and the
nature of the abundant available data is still highly needed. In
particular, even a simple mechanistic model of cell cycle
transcriptome dynamics, capturing its main features, is lacking in
the field. It appears that using dynamical variables representing
relatively large lumps of genes (e.g., all genes involved in DNA
replication) might be a useful coarse-grained approach to model
cellular transcriptomes, which is one motivation of this study.

Single cell studies of cell cycle trajectories in snapshots of actively
proliferating cells represent a unique opportunity to formulate the
most general principles of cell cycle functioning. A recent study has
introduced the principle of minimizing transcriptomic acceleration
(Schwabe et al., 2020), which suggests that the transcriptomic cell
cycle trajectory represents a spiral, or, after neglecting the relatively
slow drift unrelated to cell cycle progression, a shape close to “a flat
circle”. This type of trajectories was indeed phenomenologically
observed in the HeLa cell line profiled with scRNASeq technology,
after deconvoluting the transcriptomic dynamics connected to the
cell cycle from other sources of transcriptional heterogeneity. In
particular, the absence of cell cycle-related transcriptional epochs
was deduced from this model.

In the current study, we suggest an extended and different point
of view on the properties of transcriptomic cell cycle trajectory
which, in our opinion, in some cases better matches its observed
properties in various cellular systems, when sufficiently good quality
data can be collected. We propose a formal model of CCT as a
sequence of epochs of growth during each of which the trajectory is
approximately linear in the space of logarithmic coordinates.
Therefore, CCT can be modeled as a piecewise linear trajectory
in the space of logarithms of some extensive cell properties, followed
by a shift at the vector with coordinates −log 2 which represents the
cell division event. This model explicitly assumes existence of well-
defined transcriptional epochs in CCT.

Movement along linear trajectory in the space of logarithms of
the values of some cellular properties means that along the
trajectory any two such properties xi, xj are connected through
a power law dependence xi � αxβ

j , α, β � const. Such dependencies
are known as allometric in many fields of biology (Holford and
Anderson, 2017; Packard, 2017; White et al., 2019; Pretzsch, 2020;
Zhou et al., 2021). Some approaches in mathematical chemistry
and theoretical biology, dealing with systems in stable non-
equilibrium, exploit the linear relations between chemical
potentials which can be expressed as logarithms of species
concentrations (Bauer, 1935; Gorban, 2018).

Particular cases of allometric dependencies are when all the
quantities grow linearly with physical time, or when all the
quantities follow exponential growth or decay xi � bi exp(ait).
The model of movement along piecewise linear trajectories with
an event of cell division represents the simplest scenario, easy to
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simulate and analyse theoretically. Nevertheless, the most
important conclusions derived from this analysis will stay valid
for the trajectories that do not deviate too much from linearity.

Using the model of piecewise linear growth with division, we
formulate a fundamental statement about correspondence
between the number of linear segments in the cell cycle
trajectory m, which corresponds to a number of the most
important states of the cell cycle-related transcriptional
machinery, and its effective embedding dimension n. The first
part of the statement, m ≥ n, can be described as a strict theorem
with formal proof, whereas the second part, m ≤ n, can be
formulated as a feasible hypothesis, that can be validated using
available data. The correspondence m � n suggests that the
embedding dimensionality of the transcriptomic cell cycle
trajectory is larger than 2, since the number of segments we
can observe can be as high as four or five. This allows us to state
that the shape of the cell cycle trajectory is essentially not flat.

The type of models discussed here was partly introduced by
Shkolnik (a pseudonym for a collective authorship), including
authors of this manuscript (Shkolnik, 1989). Here, we
significantly extend the previous effort and adapt it to the
description of the cell cycle trajectory in single cell datasets.

In order to connect the geometric properties of cell cycle
trajectory to interpretable mechanistic parameters, we extended
the model of piecewise linear growth in logarithmic coordinates, to
a simple kinetic model with rates depending on time as piecewise
constant functions. In this case, some of the segments of the
trajectory become nonlinear but remain smooth and do not
deviate from linearity too far. Therefore, the suggested model is
conceptually similar to previously suggested hybrid discrete-
continuous models, but conceptualizes them, addresses the
transcriptional dynamics and can be fit to multiple available
scRNASeq datasets (Singhania et al., 2011; Noël et al., 2013).

The suggested cell cycle modeling framework and the
representation of the cell cycle progression as a system of
switches allows us to 1) determine which genes play the most
important role in each transcriptional epoch, in a concrete system
under study, 2) compare the genes related to the same
transcriptional epoch between two biological systems or
conditions, 3) predict the ratios between physical time
durations of the transcriptional epochs, 4) predict the effect of
shortening of certain transcriptional epochs on the shape of the
cell cycle trajectory and transcriptional dynamics of the related
groups of genes, and 5) predict the doubling time of proliferating
cell populations from the length of the cell cycle trajectory
observed in single cell scRNASeq data. The suggested
framework can be exploited to study the cell cycle in various
systems, from cell lines to tumors.

2 METHODS AND MATERIALS

2.1 Single Cell Data Used in This Study
We made a screening of available single cell sequencing of cancer
cell lines in order to identify datasets with sufficient number of
good quality single cell transcriptomic profiles and in which the
principal source of transcriptomic heterogeneity would be

progression through the cell cycle. We identified publicly
available scRNASeq data on CHLA9 Ewing sarcoma cell line,
produced with 10x Genomics sequencing technology (Miller
et al., 2020), which contained more than 4,000 cells with total
number of unique molecular identifiers (UMIs) varying from
10 ,000 to 50 ,000 per cell, after applying the standard quality
criteria and filtering cells containing a large fraction (>20%) of
reads in mitochondrial genes. For this dataset, we reanalyzed the
raw sequencing data using Kallisto mapper (Bray et al., 2016)
resulting in a loom file that could be used for obtaining the gene
expression levels and for quantifying RNA velocity vectors (La
Manno et al., 2018).

In addition, we used a recently published collection of 200
scRNASeq profiles of cancer cell lines from Cancer Cell Line
Encyclopedia (CCLE) collection (Kinker et al., 2020). We also
analyzed several scRNASeq datasets by downloading them
directly from Gene Expression Omnibus (GEO).

The estimation of cell line doubling times, when available were
obtained from Cellosaurus database (Bairoch, 2018).

2.2 Definition of Cell Cycle Genes
We systematically tested several existing definitions of cell cycle
gene sets and verified that our results remain qualitatively
invariant even if the choice of cell cycle gene set can vary. In
our experiments, we used the following cell cycle gene set
definitions:

• Standard “Regev’s set”: markers of S- and G2/M cell cycle
phases used in scanpy tutorials (Tirosh et al., 2016)

• Set of cell cycle genes annotated in Reactome pathway
database (Jassal et al., 2020)

• Set of top-contributing genes, extracted from application of
independent component analysis (ICA) to the dataset under
study, from those components whose top-contributing
genes were strongly associated with the cell cycle. In
particular, similar to our previous work (Aynaud et al.,
2020), two independent components were significantly
enriched with the markers of S- and G2/M cell cycle
phases in all single cell cell line datasets we analyzed.

Cell cycle phase scores were computed as an average
expression of marker genes for the corresponding cell cycle
phase in log scale, which roughly corresponds to the geometric
mean of the raw count measures.

2.3 Pooling Reads From Neighbouring Cells
for Compensating the Technical Drop-Out
We found out that the cell cycle trajectories appear less noisy and
more tractable by trajectory inference methods when standard
pooling approach was applied to the raw count data, using an
initial estimate of cell-to-cell proximity. More precisely, we used
the initial standard data normalization and dimensionality
reduction in order to compute the distances between cells and
construct the initial kNN graph, which was used to pool row reads
from a cell and all its k nearest neighbours. In our experiments, we
used k � 10 and n � 30 components for reducing the data
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dimensionality during normalization. Pooled read counts were
used for final normalization, but the initial total read counts per
cell measure were kept for visualization and further analysis.

2.4 Cell Cycle Trajectory-Based Single Cell
Data Normalization
Total number of reads in a cell represents a strong signal in
proliferating cell populations. By itself, it is an extensive value
such that it should be divided (approximately) by half in the
process of cell division. In our modeling approach, we needed a
description of the cell state in terms of extensive values of gene
expression levels measured such that they would be also divided
approximately by two on average after the moment of cell
division. Therefore, the widely used global library size
normalization did not suit our purposes, since after global
library size normalization, cell division does not lead to
halving the total number of reads.

At the same time we observed that without any library size
normalization, the cells presumably located at similar stages of
cell cycle progression could be characterized by a wide range of
total number of reads, probably caused by technical variability
factors. Therefore, library size normalization was required but not
at the global cell population level. We hypothesized that the total
number of reads should increase in the course of cell cycle
progression on average such that the cells characterized by
similar value of pseudotime along the cell cycle trajectory
could be normalized to the same local library size. As usual,
this poses a chicken-or-egg problem because for reconstructing
the cell cycle trajectory one needs normalized data, and for
normalization of the library size one needs a reconstructed
trajectory. This problem is similar to those approaches which
use normalization locally conditioned on clusters in single cell
datasets (Azizi et al., 2018).

We used a simplified two-stage approach for library size
normalization which preserved both the geometric structure of
CCT and the trend of increasing the total number of reads
along CCT.

1. The row count data have been normalized to the global
median number of counts and ln(x+1)-transformed, using
standard functions of scanpy. 10,000 most variable genes have
been selected, the dimensionality was reduced to 30 by PCA.
In the reduced space, a kNN graph has been computed using
the standard Euclidean distance for k � 10. This graph was
used for pooling reads from neighbor cells as described above.

2. For such initially normalized dataset, we computed closed cell
cycle trajectory in the subspace of cell cycle genes, by fitting a
principal closed curve, using the Python implementation of
ElPiGraph (Albergante et al., 2020). The data points were
partitioned according to the proximity to the nodes of the
elastic principal curve.

3. In each partition, we analyzed the distribution of the total
number of reads across cells. We performed correction of cell-
to-node assignment by splitting an anomalously wide partition
between two neighboring partitions. The anomalously wide
partition corresponded to the moment of cell division since it

contained both cells at the very end of cell cycle progression
with the largest number of reads and cells just after cell
division event containing the minimal number of reads.
Splitting this distribution allowed us to distinguish cells just
before and just after the cell division into distinct partitions.

4. The median total number of counts in each resulting corrected
partition was computed. The median values of the total
number of reads in the cells of each partition have been
smoothed by univariate spline or a piecewise-linear
function of pseudotime, taking into account the cyclic
boundaries of the trajectory.

5. Each cell’s library size was normalized to the smoothed local
median value of the total number of reads.

6. The newly normalized pseudocount data matrix passed
through the same pre-processing as described in 1), namely
a) Pooling reads from neighbour cells using the kNN graph
obtained with trajectory-based normalized data, b) ln(x+1)
transformation, selecting most variable 10 ,000 genes.

The cell cycle trajectory-based normalization procedure is
illustrated in the Jupyter notebook at https://github.com/
auranic/CellCycleTrajectory_SegmentModel, which can be
easily reused for other cell lines.

2.5 Computing the Cell Cycle Trajectory and
Quantifying Pseudotime
We used the ElPiGraph Python package to fit elastic principal
curves or closed elastic principal curves (principal circles) to
single cell data distributions (Albergante et al., 2020). ElPiGraph
was applied in the data space defined by the set of 10 ,000 most
variable genes or by the cell cycle-related genes, after
dimensionality reduction by PCA (first 30 principal
components were retained). In order to compute open elastic
principal curve with q nodes, first a closed curve was fit with q/2
nodes, then a node with the least number of data points projected
onto it was removed from the principal graph, and this
configuration was used as an initialization to compute the
elastic principal graph without branching and having q nodes.

The pseudotime si for a data point xi was computed as a
continuous geodesic distance measured from the root node to the
projection of xi onto the principal curve, quantified in the units of
the number of edges. Therefore, the value of the pseudotime was
in the range [0, q − 1], where q is the number of nodes. The root of
the principal curve was chosen as one of its ends, such that the
value of the initial total number of reads would increase as a
function of pseudotime.

2.6 Curvature Analysis of the Cell Cycle
Trajectory
In order to compute the Riemannian curvature of the principal
curve defined by the position of its nodes in the multi-
dimensional space yi ∈ Rn, i � 1, . . . , q, the node coordinates
were first represented as n functions of the natural parameter
(pseudotime) s, yk

i � yk
i (si), i � 1, . . . , q, k � 1, . . . , n. The value si

for each node was taken as a number of edges of the elastic
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principal curve connecting the node i to the root node. Each set of
numbers yk

i (si), i � 1, . . . , q was interpolated by a cubic
univariate spline yk(s). In each node i of the curve the
curvature was evaluated as Ri � ∑n

k�1(d
2yk(s)
ds2 |s�si)2.

2.7 Estimating the Effective Dimensionality
of a Set of Vectors
In order to estimate the effective dimensionality of CCT, we used
scikit-dimension Python package (Bac et al., 2021). We used
linear estimators of global intrinsic dimensionality, based on
application of PCA and various approaches to select the
significant number of eigenvalues from the scree plot.

In order to compute the effective rank of a rectangular matrix,
we looked at the distribution of its singular values, and selected
such a number of them that the ratio between the largest and the
smallest number would not exceed 10, such that the reduced
matrix is well-conditioned.

3 RESULTS

3.1 Example of a Cell Cycle Trajectory
Extracted From Single Cell Data
The current study is motivated by the observation that after
appropriate pre-processing of single cell RNA-Seq data (see
Methods), one can observe the cell cycle trajectory (Figure 1)
which can be approximated by a piecewise linear curve, with a gap
between the beginning and the end of the trajectory
corresponding to the cell division moment.

Here we use the example of Ewing sarcoma cell line CHLA9
sequenced at single cell level using the Chromium 10x technology
(Miller et al., 2020). The distinguishing feature of this dataset was
that it contained a significant number of proliferating cells with
single cell transcriptomes of good quality (more than 4,000 cells
with the total number of Unique Molecular Identifiers (UMIs)
between 10 ,000 and 50 ,000). Also, the proliferation signal in this
dataset seems to explain the largest fraction of transcriptomic
heterogeneity, since in the plane of the first two principal
components one can clearly observe the cyclic trajectory. In
other cell line single cell datasets, the proliferative signal can
be masked by other sources of transcriptomic heterogeneity,
requiring special procedures of data treatment to reveal it
(Aynaud et al., 2020; Liang et al., 2020; Schwabe et al., 2020).

The scRNA-Seq data have been normalized in order to
preserve the pattern of dynamics of the total number of
counts (UMIs) along the CCT, see Methods section. The
normalized gene expression levels are represented at the
logarithmic scale, following the standard practice. The multi-
dimensional distribution of single cell transcriptomic profiles
projected into the space of the first 30 principal components
has been approximated by a principal curve (see Methods). The
curvature of the principal curve has been estimated using the
standard formulas of differential geometry, which revealed the
existence of curvature peaks, and reflecting the rapid turning
points of the trajectory. We hypothesized that these turning
points correspond to the large-scale changes in the

transcriptional programs of the cell cycle process. The pattern
of momentary velocities of the transcriptomic changes, estimated
with RNA velocity, was compatible with this hypothesis
(Figure 1A).

The pseudo-temporal dynamics of the known cell cycle-
related genes confirmed that the trajectory curvature peaks
delineate biologically meaningful transcriptional epochs. The
epoch 0-A-B can be understood as an early G1 phase of the
cell cycle, B-C as significantly overlapping with late G1-and
S-phases, and C-D as overlapping with S- and G2-phases. The
epoch D-E can presumably reflect the relatively short M phase
(mitosis). Analysis of pseudotemporal gene expression dynamics
inferred for this cell cycle trajectory shows that known cell cycle
genes such as different cyclin types or E2F transcription factors
have behaviour compatible with our interpretation (Figure 1C).
We denote the identified transcriptional epochs as T1, T1s, T2s
and Tm.

The switches between transcriptional epochs should not be
confused with the action of cell cycle checkpoints that delineate
cell cycle phases. The connection between the known molecular
checkpoint mechanisms involving mainly protein-protein
interactions and post-translational protein modifications and
the transcriptional epochs might not be trivial or direct: partly,
due to the delay between the gene and protein expression, and
partly due to different parameters and constraints on the
transcriptional and protein-protein interaction dynamics.

We can clearly observe the existence of the restriction point at
the level of single cell transcriptome. In our notations, it belongs
to the A-B segment of the cell cycle trajectory shown in
Figure 1A,right. This transcriptional epoch separates post-
mitotic (denoted as T1) and pre-replication parts of G1 phase,
which corresponds to the classical definition of the R-point (e.g.,
from (Zetterberg et al., 1995)). Interestingly, in Figure 1A,right,
one can observe that RNA velocity vectors reflect cells exiting
from cell cycle and re-entering the cell cycle in the epoch between
A and B turning points. Just after this transcriptional epoch, the
expression of E2F transcription factors and Cyclin E start to
increase as expected (Figure 1C).

We can also observe how, during each particular epoch, the
components of a specific checkpoint mechanism are
transcriptionally produced “just in time”. For example,
components of the G1 DNA damage checkpoint (e.g.,
CDC25A, CDKN1A) are produced during the T1s epoch of
the cell cycle trajectory where the S phase starts, the
components of G2 DNA damage checkpoints (e.g., CDC25B,
CDC25C, CHEK2) are produced in the late part of the C-D epoch
(T2s), and spindle checkpoint components (e.g., CDC20) are
transcriptionally abundant during the mitosis-related epoch D-E
(Tm) and after the cell division in T1 (Figure 1C). In this sense,
the transcriptional dynamics prepare the correct ground for a
proper succession of post-transcriptional events but the exact
borders of the transcriptional epochs do not have to match the
precise checkpoint timing.

Remarkably, within each of the identified transcriptional cell
cycle epochs, the global dynamics of the transcriptome remain
close to linear in the logarithmic scale. This allows us to suggest a
simple model which can, for example, represent the collective
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dynamics of the genes related to the S-phase and G2/M phases
(see below).

3.2 Model of Cell Cycle as a Trajectory of
Allometric Growth With Switches and
Divisions
Based on the observations of the properties of the cell cycle
trajectory in several scRNASeq datasets, we hypothesized that it

can be recapitulated by a formal model of linear growth in
logarithmic coordinates with switches and a cell division event.
The suggestedmodel is hybrid in nature, similar to some previously
published models (Singhania et al., 2011; Noël et al., 2013).
Namely, we distinguish the extrinsic observable cell state,
characterized by continuous variables, and the intrinsic hidden
cell state, characterized by discrete variables. The intrinsic state of a
cell determines the parameters of the extrinsic dynamic process as
in (Singhania et al., 2011).

FIGURE 1 | Cell cycle trajectory (CCT) of CHLA9Ewing sarcoma cell line in the single cell transcriptomic space. (A)Each cell is represented by an arrow reflecting themomentary
direction and the speedof transcriptomic changes, estimatedwithRNAvelocity. Twoprojections are shown, in the first twoprincipal components and in theplaneofS-phase andG2-M
scores. The color of the arrows signifies either the total amount of RNA counts in the single cell profile (blue to yellow scale) or the cells in non-proliferative state (shown in grey). Red line
shows an approximation of the cell cycle trajectory with a principal curve computed with ElPiGraph, directly in the 30-dimensional space of the first principal components of the
dataset. Several particular positionsalong the trajectory (A,B,C,D)mark either thepeaksof theRiemanniancurvatureof theprincipal curve (also shown inB)panel) or thebeginning (0) and
the end (E) of the trajectory. (B) Pseudotemporal transcriptomic dynamics of several cell cycle-related genes along CCT, shown relatively to themaximum value units. The pseudotime
range is from 0 to 49, corresponding to the number of nodes in the approximation of the principal curve (50 nodes). In black, an estimation of the Riemannian curvature of the principal
curve is shown, with peaks indicated by letters (A,B,C,D). (C) Pseudotemporal dynamics of genes whose expression is relatively high in one of the transcriptional epochs (trajectory
segment) compared to other epochs. For each epoch thegenes are ranked accordingly to the fold changeof themean expressionof the gene in the epochandoutside the epoch.Only
the genes having relatively large total variance across all cells are shown, and only top 20 genes maximum are shown per epoch for readability.
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Let the extrinsic state of a proliferating cell be determined by n
substances quantified by their amounts, not their concentrations.
Instead of their natural units (such as RNA counts), let us use the
logarithms of these amounts. The cell is represented as an n-
dimensional vector, and all possible combinations of these vector
components define the cell configuration space. For our model, it
is important that the considered n quantities are extensive
measures, not intensive ones. Extensiveness here means that
the total amount of a substance is a sum of the amounts
found in different parts of a cell. A division (for two almost
equal) daughter cells is formalized as a shift by the vector with all
components equal −log 2 in this space. A relevant example of
extensive quantity is the total amount of RNA molecules present
in a cell, or the amount of any specific subset of RNA molecules,
i.e., representing mRNAs of the genes involved in a particular
process (such as mitosis or S-phase).

We assume that there exists a finite discrete set of intrinsic cell
states. In each of these states, the cell follows a linear trajectory in
the extrinsic and continuous cell state space. This trajectory
extends until the cell meets a condition, where a switch into
another intrinsic state of the cell happens, which changes the
direction of the trajectory. For simplicity, we assume that the
conditions of a switch can be described by a linear function. The
cell movement continues until a particular condition is met in
which the cell division event is triggered leading to the
aforementioned translation of the vector representing the
extrinsic cell state.

Let us introduce some mathematical notations and consider a
deterministic automaton A whose complete state is represented
by a pair (x, s), where x ∈ Rn is a vector in n-dimensional
continuous space (extrinsic state), and s ∈ S is an integer
number from a finite set S � {S1, ‥, Sm} (intrinsic state). In
the rest of the study, we will call x a position ofA and s an intrinsic
state of A. We will denote the automaton A in position x and in
the intrinsic state s as A(x|s).

Each intrinsic state Sk is parameterized by a vector ak ∈ Rn, k �
1‥m and by a linear manifold Dk of dimensionality n − 1
embedded in Rn (hyperplane), which we will call “the cell
division hyperplane”. Dk can be undefined, in this case, we
denote Dk � null.

Let us also introduce a set of p functions G � {g1, . . . , gp}, gi:
S→ S, which we will call switches. Each switch gi is a map which
converts an intrinsic state sj ∈ S into another intrinsic state sr ∈ S.
Each switch gi is parametrized by a hyperplane Li existing in Rn

and inducing the switch function gi each time the trajectory of the
automaton intersects Li (see Figure 2A).

Finally, we introduce the cell division event ϕ which is a map
between two states ofA, such that ϕ((x, s))→ (x + d, sd), where d ∈
Rn− is a vector with negative components, and sd ∈ S is one of the
possible intrinsic states of A.

We will characterize any hyperplane here by a linear
functional f (x|b, c) � b + < c, x >, b ∈ R, c ∈ Rn, where < , >
denotes the standard scalar product between two vectors. Using
such a functional, for any pair of vectors xi, xj ∈ Rn we can
determine if the linear segment connecting xi and xj intersects the
hyperplane or not. If the segment intersects the hyperplane then
f (xi)f (xj)< 0, and if it does not intersect then f (xi)f (xj)>0. f (xi)f (xj)� 0

is satisfied only in a non-general position when either xi or xj is
located exactly on the hyperplane.

The update rules for the automaton A are described as follows.
The automaton is in some initial position x0 and the intrinsic state
s0. It starts to move along the linear trajectory described by the
equation x � x0 + a0t, where a0 is the vector of movement
associated with the state s0. This movement continues unless
one of the two events happens. In the first case, A reaches the
corresponding cell division planeD0 (in caseD0 is not null). Then,
the cell division event is triggered, A (x|s) → A (x + d|sd). In the
second case, x reaches a switch hyperplane Lj and then a switch of
the intrinsic state of A happens without changing its position,
A(x|s0) → A(x|gj(s0)). The movement continues along a new
trajectory, corresponding to the new cell state, following the same
rules: either the trajectory hits the cell division hyperplane or any
of the switch planes.

To summarize, the automaton A is characterized by its
position and the intrinsic state, see Figure 2A. The asymptotic
(in the infinite time limit) temporal dynamics of A is
parameterized by a set of cell division planes D � Di, i � 1,...,k, a
set of switch functions G � {gi}, i � 1, . . . , p, the corresponding
switch hyperplanes L � {Li}, i � 1, . . . , p, and the parameters
of the cell division event (namely, the translation vector d and
the state after cell division sd).

It is convenient to encode the state s as a binary sequence of
length r representing the on-off states of r triggers. In this case, a
switch can be thought of as changing only one particular trigger
from on to off or vice versa. In many situations, this makes the
description of switch functions g: S→ S quite natural as explained
below. Also, the state of the trigger might not be strictly binary but
characterized by several discrete positions, for example {0, 1, 2},
just as it is the case in modeling multi-level discrete dynamics,
where each discrete variable can take a value from a pre-defined
finite set of levels.

The exact asymptotic trajectory of the automaton A can, in
principle, depend on the initial position x0 and the initial intrinsic
state s0 of A.

3.3 Simple Example of Dynamics With
Switches and Cell Division Events
In the above-described switch-like dynamics, one can find
examples of relatively complex behaviors even for simple
model settings (Figure 2,B-E). As an illustration, we
modeled a simple dividing automaton characterized by a
position vector x with only two coordinates x1, x2. The
automaton intrinsic state s encoded by only one binary
trigger, so the automaton can be in two states s � 0 and s �
1, characterized by two vectors of movement a0 and a1,
respectively. In order to be able to modify the trigger in
both directions, we have to introduce two switch
hyperplanes L(+) and L(−) with corresponding switch
functions g(+) � 1 (switch trigger on) and g(−) � 0 (switch trigger
off). Note that in this case the switch functions are constant, i.e., they
map any state (which can be either 0 or 1) to a particular state. Let us
also assume that the division event changes the automaton position
but does not change its intrinsic state.
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In this simple toy example, by slightly varying parameters of
the switching hyperplanes and the movement vectors, one can
observe several interesting scenarios. Firstly, we observe that the
automaton can approach and stay on a limit cycle trajectory, or
it can diverge, meaning that one of the coordinates of the vector
x goes to infinity or zero (Figure 2,B-C). Convergence or
divergence to a limit cycle depends on the initial intrinsic
state and the initial position of the automaton on the birth
hyperplane.

In a more complex scenario, the switching dynamics
trajectory can be characterized by two limit cycles that can
be achieved from different initial intrinsic states and positions
(Figure 2D).

By varying the positions of the switching hyperplanes in this
toy example, one can observe the effect of non-trivial sensitivity to
the initial conditions (Figure 2E). In this case, the birth
hyperplane can be split into a sequence of alternating intervals
of equal length such that starting from one interval, the dynamics

finally converges to the limit cycle, and starting from another
interval, the dynamics diverges to infinity.

3.4 Two-Dimensional Model of Cell Cycle
Progression, Fitted to the Single Cell
Transcriptomic Data
Let us denote the aggregate signal related to the activation of
genes associated with the S-phase of the cell cycle program as S,
and the signal related to the activity of genes in G2 and M phases
as M. Therefore, we will characterize the position of the
automaton by a vector (xS, xM), just as it is presented in
Figure 1A, right panel. Let us denote the position of the
turning points in the trajectory as (x(i)

S , x(i)
M ), where i ∈ {0, A,

B, C, D, E}.
We will encode the state of the system by the levels of two

triggers, one associated with the S signal and another associated
with the M signal. The three levels are denoted as a set

FIGURE 2 | General schema of switch-like dynamics and application to a toy model with a single trigger. (A) Schematic two-dimensional example of a limiting
trajectory with division. The division hyperplane D is shown in purple, solid line. The birth hyperplane B is obtained from D by translation at vector d, shown in cyan (the
most natural is to assume all the components of d to be –log 2). Two switch hyperplanes L1 and L2 are shown by dotted grey lines. The limiting cycling trajectory is
represented by blue arrows. (B,C) Example of single limiting cycle in the switching dynamics. Depending on the initial state of the automaton and the initial position,
the trajectory enters into the limit cycle or degenerates (goes to infinity). For the same parameters, four initial conditions are shown. The trajectory is plotted with semi-
transparent blue color such that the intense blue line designates the trajectory cycling multiple times on top of itself. (D) Example of existence of two limit cycles.
Depending on the initial state and position, the automaton ends up in one of the two possible limit cycles. (E) Example of non-trivial dependence of the switching
dynamics on the initial position of the automaton. The trajectories drawn by different colors from three closely located initial positions are shown, with two leading to
degenerated dynamics and one located in between the first two, leading to the limit cycle. In (B–E) panels, the initial position of the automaton is always shown at the birth
hyperplane B (shown by dashed purple line), therefore, it is characterized by a single number.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 8 | Article 7939128

Zinovyev et al. Modeling Cell Cycle as Switches

38

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


{2 � synthesis, 1 � decay, 0 � degradation}. Intuitively, these levels
correspond to the state of active transcription of the
corresponding set of transcripts (“synthesis”), absence of active
transcription in which the transcripts are passively degraded
according to some base rate (“decay”), and the process of
active degradation when the transcripts are degraded more
rapidly than the base rate (“degradation”). The state of the
system is thus encoded by a pair of 3-level variables i, j ∈ {0,
1, 2}. The 2D vectors of linear movement aij are encoded by six
rates kvj, i ∈ {0, 1, 2}, v ∈ {s, m}, such that aij � (ksi , kmj ). Following
the intuition behind the introduced trigger levels, we assume
constraints kv2 > 0, kv1 < 0, kv0 < 0, kv0 < kv1 < kv2.

Let us introduce three switches. The first switch g1 turns on the
synthesis of both variables, i.e., g1 (•, •) → (2, 2), where •
designates any level of the trigger. The second switch turns off
the synthesis of genes in S-phase: g2 (2, •) → (1, •). The third
switch turns off all the transcription, g2 (•, •)→ (1, 1). We assume
that the division is possible only in the state (1, 1) with
transcription switched off, and that after the division event,
the cell enters into the state of active degradation of the cell
cycle genes (0, 0).

The three introduced switches will be characterized by the
corresponding switching hyperplanes. The first switch is
triggered when the sum of the collective aggregated levels
of expression of the genes involved in S and G2/M phases
reaches some minimum cmin, therefore, the linear functional
associated with the first switch hyperplane is f1 (xs, xm) � xm +
xs − cmin. The second switch is triggered whenever the
collective aggregated level of expression of S phase-
associated genes reaches some maximum value Smax,
therefore, the linear functional associated with the second
switch hyperplane is f2 (xS, xM) � xS − Smax. Finally, the third
switch is triggered when the collective aggregated level of
expression of G2/M phase-associated genes reaches some
maximum value Mmax, therefore, the linear functional
associated with the third switch hyperplane is f3 (xS, xM) �
xM − Mmax.

In the end, the cell division event is triggered when the
collective aggregated level of expression of G2/M phase-
associated genes crosses some threshold Me, therefore, the
linear functional associated with the division event is fd (xS,
xM) � Me − xM.

Let us define the number of parameters in this simple
switching model. Three introduced switches are characterized
by 4 parameters cmin, Smax, Mmax, Me. There exist six rates kvi
characterizing the movement vectors in the 9 � 32 possible states,
corresponding to all possible combinations of trigger levels.
However, qualitatively, the dynamics in each automaton state
is determined only by the direction of the corresponding vector
and not its amplitude: therefore, one parameter per state visited is
needed during the progression through the cell cycle. Under
certain constraints on the rates formulated above, and also on the
switch parameters (namely, cmin < Smax, Mmax, Me < Mmax), the
suggested model is constructed such that along the cell cycle
trajectory only four states will be visited in a predefined order (0,
0) → (2, 2) → (1, 2) → (1, 1). Therefore, the total number of
parameters equals 8.

Knowing the position of four characteristic points along
the cell cycle trajectory, namely
(x(B)

S , x(B)
M ), (x(C)

S , x(C)
M ), (x(D)

S , x(D)
M ), (x(E)

S , x(E)
M ), it is possible

to completely parameterize the automaton. The starting and
the ending point of the cell cycle trajectory must be connected
by the relation (x(0)

S , x(0)
M ) � (x(E)

S , x(E)
M ) + d, where d is the vector

with components (−log 2 102, −log 2 102).
Therefore, we put Smax � x(C)

S ,Mmax � x(D)
M ,Me � x(E)M .

Instead of using directly the B point, we will use the position
of the non-proliferating cell with the maximum sum of the
coordinates in the S, M plane, and we designate it as xB′

S , x
B′
M

(other choices are also possible). Then cmin � x(B′)S + x(B′)
M . Then

we define rates:

kv2 �
x C( )
v − x

B′( )
v

‖xC − xB′‖ , k
S
1 �

x C( )
S − x D( )

S

‖xC − xD‖ , k
M
1 � x E( )

M − x D( )
M

‖x E( ) − x D( )‖, k
v
0

� x
B′( )

v − x 0( )
v

‖x 0( ) − xB′‖
The resulting steady state cell cycle trajectory is shown in

Figure 3.
We denote the linear segments of the trajectory shown in

Figure 3 as T1, Ts, T2, Tm, assuming that they have significant
overlap with G1, S, G2 and M phases correspondingly.

The suggested model describes 2D dynamics of the signals S,
M which are empirically shown to explain most of the variance of
all cell cycle genes in scRNASeq data (see below). However,
higher-dimensional generalization of the suggested model is
always possible. Also, in the model, we simplified the observed
dynamics in Figure 1A, left which seems to contain five segments,
with an additional curvature peak in point A. The segment A-B
seems to contain non-proliferating cells, and might correspond to
the transcriptional epoch most similar to the quiescent cell state,
when the active degradation of the mitotic transcripts is
completely finalized. The existence of this epoch is less
pronounced in the S, M projection (Figure 1A,right), therefore
we merged segments 0-A and A-B’ as the first order
approximation.

3.5 Connection Between the Effective
Embedding Dimensionality of Cell Cycle
Trajectory and the Number of Intrinsic
States
The introduced cell cycle modeling framework is a simple and
empirical model, lacking mechanistic details. Its main advantage
is the possibility of analytical treatment of the most general
geometrical cell cycle trajectory properties. In this section, we
use this framework to prove a theorem connecting the number of
the intrinsic states of the cell cycle trajectory and its intrinsic
dimensionality.

This geometry is embedded into a space of omics
measurements, whose dimensionality might be very high (e.g.,
expression of thousands of genes). However, we can assume that
the intrinsic dimensionality (ID) of CCT is much smaller and that
the extrinsic state of the cell progressing through the cell cycle can
be characterized by n extensive variables, where n is relatively
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small. We will refer to n as CCT embedding dimensionality.
Empirically, it can be estimated by studying the snapshot of
dividing single cells profiled with a particular technology, and
computing its global intrinsic dimensionality (ID), provided that
other non cell cycle-related sources of heterogeneity could be
dismissed in measurements. Estimating ID can be done using one
of the many existing methods for ID estimation (Albergante et al.,
2019; Bac and Zinovyev, 2020; Bac et al., 2021).

Let us establish the expected relation between n and the
number of intrinsic states m of the automaton approximating
CCT. We intend to claim that theoretically n should match m
under some natural assumptions.

We first state thatm cannot be smaller than n. In the theory of
allometric growth with switches this statement has a character of
strict theorem (see below), m ≥ n. Secondly, we state that n is
expected to be at least equal to m. Both statements are based on
argumentation using “general position” statements. However, the
former one is strictly necessary, while the latter one represents a
feasible hypothesis.

Theorem on the number of intrinsic cell cycle states. The
number of segments m in the cell cycle trajectory modeled by the
automaton with switches and linear growth in logarithmic
coordinates is not less than the cell cycle trajectory intrinsic
dimensionality n, or m ≥ n.

Proof. Let us consider the CCT dynamics in its n coordinates
each of which represents an extensive variable. The variable
extensiveness means, in particular, that its value, after the cell
division moment, is divided by two. In logarithmic scale the cell
division corresponds to the shift by vector d ∈ Rn with n
coordinates each of which equals −log 2. Each intrinsic state
is associated with a growth vector ai ∈ Rn, i � 1‥m. All non-
negative linear combinations of ai form a convex cone
Q � {∑m

i�1λiai}, λi ≥ 0. If m < n then the set of vectors {d, {ai,

i � 1‥m}} is almost always linear independent and −d∉Q. Hence,
−d is linearly separable from Q, according to the standard
separability theorems. Linear separability of a point from a
convex cone can be expressed as that for any non-zero x ∈ Q
we can find a linear function l () such that l(d) � 0 and l(x) > 0.
This makes the periodic cell cycle model impossible, because the
function l(x) increases along any growth direction, since for any i
and λ > 0 we have l (x + λai) � l(x) + λl(ai) > l(x), and after cell
division l() does not change since l(x + d) � l(x) + l(d) � l(x).
Therefore, the necessary condition of existence of stable cell cycle
trajectory is m ≥ n, when the set of vectors {d, {ai, i � 1‥m}} is
linearly dependent, and also such choice of ai that −d ∈Q. Only in
this case one can satisfy the cyclic condition ∑m

i λiai + d � 0 in
general position of vectors {d, {ai, i � 1‥m}}.□

In simple words, this means that if m < n then in a general
position, each cell division (shift by d) moves a cell state out of the
subspace defined by the growth vectors. The only way to make the
trajectory stay in this subspace is to make the cell division vector d
belong to this subspace that can be guaranteed only if m ≥ n (see
Figure 4). The conditionm ≥ n is necessary but not sufficient for a
model to converge to a limit cycle. For example, in Figure 7, m �
n � 2 (the theorem condition is satisfied) but the limit cycle in the
model can be achieved only from some initial conditions and for
some choice of vectors a0, a1.

Note that the proven Theorem is more general than the model
of allometric growth with switches itself since it does not assume
any particular shape of the switching surfaces Lk: they can be
linear or nonlinear. Another generality consists in that the
vector d can have any non-zero coordinates, not necessarily equal
to −log 2.

Examples in Figures 2, 3 shows the case n � 2,m > n. The cell
cycle trajectory modeled in Figure 3 contains m � 4 segments in
2D, which makes the vectors ai ∈ R2, i � 1, . . . 4 linearly

FIGURE 3 |Modeling transcriptomic cell cycle trajectory by an allometric growth with switches. (A) Piecewise linear cell cycle trajectory fit to the single cell RNASeq
data (cell cycle trajectory, shown in Figure 1A,right). The model contains three switching planes L1, L2, L3, and is characterized by four states. The states are encoded
with two triggers, each possessing three possible levels 0,1,2, the biological meaning of which is specified in B). (B) The growth vectors associated with each state are
encoded by rates kSi , k

M
j , such that the components of the growth vectors equal (kSi , kSj ), where i and j are the levels of the corresponding triggers.
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dependent, and, of course, d ∈ R2. The cell cycle model based on
allometric growth is not contradictory in this case.

Now let us formulate our second statement. We can recall that
vectors ai are confined to the n-dimensional intrinsic subspace of
CCT by projection from the multi-dimensional ambient space of
all elementary measurements. The choice of n depends on our
estimate of the CCT intrinsic dimensionality. However,
movement along vectors ai can be also seen in the complete
space with thousands of coordinates. In this space, for sufficiently
small m, any m vectors will almost always be linearly
independent. Only projection into smaller than m-dimensional
space will guarantee that these vectors are linearly dependent.
This makes us hypothesize: if m segments are observed in CCT
piecewise linear approximation in any linear projection then the
most natural choice for n is at least m, i.e., n ≥ m. Combining the
two statements (m ≥ n and n ≥ m) allows us to state that the
correspondence m � n is the most natural expectation for a cell
cycle trajectory.

We explicitly verified this correspondence for the trajectory
shown in Figure 1. The curvature analysis suggests the existence
of five segments for the cell cycle trajectory reconstructed in the
subspace of 30 first principal components of the complete dataset.
However, some of these components might correspond to the
variance not related to the progression through the cell cycle. In
order to diminish the possible role of this variance, we considered
a reduced version of the dataset confined to cell cycle-related
genes only. We estimated the global intrinsic dimensionality,
using six different linear ID estimators from scikit-dimension
Python package (Bac et al., 2021), and it varied from 2 to 7, with
average value 4.0. The scree plot shows existence of two dominant
eigenvalues explaining 83% of total variance, indicating that the
trajectory is relatively flat and located close to a 2D linear
manifold. However, the residual variance demonstrated visible
patterns related to transcriptional epochs in at least the first four
principal components (Figure 5). The distribution of projections
on the first four principal components well separated some
transcriptional epochs (Figure 5,diagonal). Also, projections in

higher dimensions highlighted the existence of sharp turning
points between the segments which were less clear in the 2D
projection on the first two principal components.

In addition, we split the data points into five classes according
to projection on five segments of the principal curve (0-A, A-B,
B-C, C-D, D-E), each of which is approximately linear. For each
of this class, we computed the unity vector corresponding to the
direction of the first principal component in the space of cell cycle
genes with 198 dimensions. Afterwards, we estimated the effective
rank of the matrix composed of five vectors representing the
directions of the transcriptional epochs in the multi-dimensional
space (see Methods), and it appeared to be 4, which indicates to
that at least four out of five vectors determining the trajectory
segments can be considered linearly independent.

As a result, we concluded that the embedding dimensionality
for the transcriptomic cell cycle trajectory can be estimated as
close to four. Therefore, restricting the trajectory to the plane of
aggregate collective expressions of genes associated with S phase
and G2/M phase (which roughly corresponds to the first two
principal components) is a useful but incomplete approximation
of CCT dynamics. Our reasoning suggests searching for
additional biologically meaningful and statistically independent
scores describing the progression through the cell cycle. The
concrete gene expression dynamics shown in Figure 1B provides
a hint in this direction, but a careful and complete investigation of
this question should be a subject of a separate study. As an
additional argument, we can mention that some mathematical
cell cycle models based on a fit to real data are four-dimensional
(Singhania et al., 2011).

3.6 Extending the Modeling Formalism to
Piecewise Smooth Trajectories: Simple
Kinetic Model of Cell Cycle at
Transcriptomic Level
The piecewise-linear model of automaton with switches
described in the previous sections is phenomenological

FIGURE 4 | Condition of existence of stable cell cycle trajectory in the model of allometric growth with switches. For illustration, only two growth vectors a1, a2 are
considered, and 2D or 3D embedding space. Stable piecewise linear trajectory is possible only if the negative of the cell division vector −d belongs to the convex cone
Q � ∑m

i λi ai , λi ≥ 0. Only in this case, the cyclic equality ∑m
i λi ai + d � 0 is possible. In general position, the condition can be met only when m ≥ n, where n is the

dimensionality of the trajectory space (see text for the formal proof).
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and lacks any notion of physical time and connection to the
underlying kinetics of the lumped expression of genes
involved in S phase and G2/M phases. A simple way to
make it more concrete but still analytically tractable
consists in introducing explicit processes of synthesis and
degradation of the corresponding quantities, with kinetic
rates changing in time. The simplest form of such

dependence is piecewise-constant, with changes in the value of
kinetic rates corresponding to the observed switches between
transcriptional epochs of cell cycle progression.

Assuming the same epochs of cell cycle progression as above,
and the same notations for variables (S,M, lumped expression of
genes involved in S and G2/M phases correspondingly), their
dynamics can be expressed as:

FIGURE 5 | Visualizing the transcriptomic cell cycle trajectory of CHLA9 cell line in projections on the first eight principal components, computed in the subspace of
known cell cycle genes. The data points are partitioned according to the segmentation of the CCT into five transcriptomic epochs, also shown in Figure 1, 0-A (blue), A-B
(orange), B-C (green), C-D (red), D-E (purple).
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dS

dt
� kSt t( ) − kSd t( )S

dM

dt
� kMt t( ) − kMd t( )M

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (1)

These equations must be accompanied by circular boundary
conditions

S T( ) � SfS 0( )
M T( ) � MfM 0( ){ , (2)

where Sf, Mf > 1 are some numbers describing the drop of the
lumped cell cycle variables after the moment of cell division. The
most natural choice for them is Sf,Mf � 2, as before: however, here
we prefer not to fix these parameters and rather fit them from the
actually observed trajectory.

There exist several reasons for which Sf and Mf might
appear in the range 1 ≤ Sf, Mf ≤ 2 and not be equal. The
most important of them is the technical biases introduced by
sampling a limited amount of RNA, in the process of single cell
transcriptome sequencing. It can lead to the situation when
after cell division, the amount of RNA decreases non-
uniformly between molecular processes. In particular, in all
our experiments, we do observe the total amount of RNA reads
does not decrease exactly by 2.0 and is rather close to 1.7-1.8.
The decrease of the individual gene expression after cell
division in terms of the number of reads, forms a bell-
shaped distribution around this value with standard
deviation close to 0.2.

Equation 1 with piecewise-constant in time kinetic rates and
the boundary conditions 2) can be solved analytically for arbitrary
number of levels in the piecewise-constant functions kt(t), kd(t).
The resulting dynamics in the plane log S(t), log M(t) represents
a cell cycle trajectory parameterized by physical time, which
consists of piecewise-smooth segments of three types. If a
segment is characterized by kSt(t) � kMt (t) � 0 then the
corresponding segment is linear in the logarithmic coordinates
(since the underlying dynamics is exponentially decaying). If a
segment is characterized by kSd(t) � kMd (t) � 0 then the
corresponding segment is also linear in both logarithmic and
initial coordinates. For a segment where at least one degradation
kpd and one production kinetic rate kpt are positive, the dynamics
follows a nonlinear curve in the logarithmic space, which remains
monotonous (each of the coordinates does not change the
derivative sign). The nonlinearity of the segment becomes
important when one of the variables is in a stage exponentially
increasing or decreasing, while the other is in a linear or close to
saturation stage. Otherwise, the segment remains close to a line in
logarithmic coordinates.

In order to choose the number of constant levels of the
kinetic rates, we studied the averaged RNA velocity values
along the cell cycle as a function of pseudotime (see Figures
6A,B). For the S variable, we decided to keep only one non-
zero level of kSt(t) during the transcriptional epoch Ts, and two
levels of kSd(t), one for the exit from mitosis epoch and one for
the rest of the dynamics. The choice was similar forM variable,
but we took into account that a boost of expression of the

lumped G2/M genes is visible in the beginning of the
transcriptional epoch T2s, just after switching off the S
phase genes. During mitosis we assumed that all production
rates are zero, corresponding to the lack of transcription in the
M phase. The resulting choice of levels for the kinetic rates is
shown in Figure 6C.

The advantage of the proposed simple model of cell cycle
trajectory is that it is fully analytically tractable and its
parameters can be uniquely fit to the cell cycle trajectory
observed in single cell data, given some biologically
meaningful constraints. Thus, assuming that the duration of
mitosis is by order of magnitude faster than the T1s epoch, for
CHLA9 cell line one estimates the ratio between transcriptional
epochs T2s and T1s close to 1.0 and the value of transcriptional
boost of G2/M genes in T2s epoch close to 2.5-fold (Figure 6C).
The determined values of all other parameters can be found in
the Jupyter notebook at https://github.com/auranic/
CellCycleTrajectory_SegmentModel.

3.7 Fitting Parameters of the Simple Kinetic
Cell Cycle Model
Using the choice of levels for piecewise constant kinetic rates
shown in Figure 6C, we could derive the dependence of the initial
state of the cell cycle from the kinetic rates and the durations of
four transcriptional epochs T1, T1s, T2s, Tm:

S 0( ) � kSt
kS,2d

ek
S,2
d
T1s − 1

Sfe
kS,2
d

T1s+T2s+Tm( ) − e−k
S
dT1

M 0( ) � kMt
kM,2
d

p · ekM,2
d

T1s+T2s( ) − p − 1( )ekM,2
d

T1s − 1

Mfe
kM,2
d

T1s+T2s+Tm( ) − e−k
M
d T1

.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

Starting from the initial point of the trajectory S (0), F (0) it is
possible to analytically write down the coordinates of all other
borders of the transcriptional epochs:

S T1( ) � S 0( )e−kSdT1

M T1( ) � M 0( )e−kMd T1

S T1 + T1s( ) � kSt
kS,2d

1 − 1 − kS,2d
kSt

S T1( )( )e−kS,2d T1s( )
M T1 + T1s( ) � kMt

kM,2
d

1 − 1 − kM,2
d

kMt
*M T1( )( )e−kM,s

d
T1s( )

S T1 + T1s + T2s( ) � S T1 + T1s( )e−kS,2d T2s

M T1 + T1s + T2s( ) � p · kMt
kM,2
d

1 − 1 − kM,2
d

p · kMt
*M T1 + T1s( )( )e−kM,2

d
T2s( )

S T( ) � S T1 + T1s + T2s( )e−kS,2d Tm

M T( ) � M T1 + T1s + T2s( )e−kM,2
d

Tm ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where T � T1 + T1s + T2s + Tm is the full duration of the cell cycle.
One can estimate the position of these points from the analysis of
observed cell cycle trajectory curvature ((s0, m0), (s1, m1), (smax,
ms), (sm, mmax), (st, mt), shown by red points in Figure 6D)) by
requiring that the model trajectory should pass as close as
possible to them. This defines an optimization problem which
can be easily solved numerically by iterations, using the simplest
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FIGURE 6 | Simple kinetic model of cell cycle transcriptome dynamics. (A)Mean RNA velocity values for S-phase and G2/M genes. (B) Pseudotemporal dynamics
of S-phase and G2/M scores (shown with more intense color) and mean RNA velocity values (shown with semi-transparent color). (C) Description of the simple kinetic
model of cell cycle transcriptome. Model equations are shown on the left and the changes in the values of kinetic rates (degradation, in red, and synthesis, in green). (D)
Result of fitting the model dynamics to cell cycle transcriptome dynamics observed in CHLA9 cell line. (E,F) Inferred physical time and pseudotemporal dynamics of
cell cycle transcriptome in CHLA9 cell line.
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fixed-point algorithm. The details of parameter fitting are
provided in the Jupyter notebook at https://github.com/
auranic/CellCycleTrajectory_SegmentModel.

We note that this optimization does not allow us to determine
all the model parameters uniquely, since they enter in the
aforementioned optimization functional as certain

combinations (as simple rational functions), namely, kSt
kS,2
d

, kMt
kM,2
d

,

kSdT1, k
M
d T1, k

S,2
d T1s, k

M,2
d T1s, k

S,2
d T2s, k

M,2
d T2s, k

S,2
d Tm, k

M,2
d Tm.

Two other parameters M
f
, S

f
define the observed cell division

vector in (2). One extra parameter p denotes transcriptional
production acceleration of G2/M genes during the
transcriptional epoch T2s compared to the transcriptional
epoch T1s (Figure 6C). Not all these quantities are
independent, some of them are connected through nonlinear
relations:

kS,2d · T2s

kS,2d · T1s

� kM,2
d · T2s

kM,2
d · T1s

,
kS,2d · Tm

kS,2d · T1s

� kM,2
d · Tm

kM,2
d · T1s

, (5)

which overall gives 11 independent combinations of parameters
provided 10 measurable coordinates of cell trajectory turning
points in Figure 6D.

Altogether, this means that 1) one needs to introduce at least
one additional constraint in order to make the trajectory
reconstruction unique and 2) physical time of the epochs T1,
T1s, T2s, Tm can not be uniquely computed from the cell cycle
trajectory observed in the plane of S-, G2/M-phase scores. From
the analysis of Eq. 5 it follows that the model can be uniquely
parameterized if one will constrain one of the three quantities
p, T2s

T1s
, Tm
T1s
. Finally, it is convenient to fix the durations T1, T1s to

some arbitrary values which allows to determine parameters
kSd, k

M
d and the ratios T2s

T1s
, Tm
T1s
.

In our numerical experiments, we fixed the values of T1 and
T1s to their corresponding pseudotemporal durations (as the
corresponding fractions of the total length of the cell cycle
trajectory). We also fixed the ratio Tm

T1s
� 10, assuming that the

mitosis must be fast in physical time compared to the
transcriptional epoch including activating the expression of the
genes involved in the S-phase.

3.8 Simulating Cell Cycle Trajectories With
Various Durations of Temporal
Transcriptional Epochs
After fitting the kinetic parameters for an observable in the
S-phase vs G2/M score plane cell cycle trajectory, one can
perturb the parameters and investigate how the trajectory
geometry depends on them.

In real life scRNASeq datasets, we observe that CCT geometry
can appear very different in various biological systems. When
projecting onto the plane of standard scores of S-phase and G2/M
phase genes, scRNASeq datasets might not always reveal the
circular nature of CCT. In some cases, the circular structure is not
at all detectable via this projection, (Figure 7), and the two scores
might be connected via a strong positive or negative correlation.
Also, in some systems we observed co-existence of several CCT
shapes, like it is the case in the U2OS cell line dataset

(GSE146773). The univariate histograms of two score
distributions might be characterized by bi- or uni-modal
character.

Quite strikingly, we were able to reproduce these patterns
qualitatively by fitting the kinetic parameters to the CHLA9
scRNASeq dataset, and then by manipulating the durations of
T1, T1s and T2s transcriptional epochs and producing computer-
simulated trajectory examples. Thus, significant reduction in the
duration of both T1 and T1s epochs led to the negative correlation
pattern between S-phase and G2/M scores. This could be
interpreted as drastic reduction of the G1 cell cycle phase. In
real life datasets, such pattern has been observed in human
embryonic stem cells (dataset GSE85917).

If both T1 and T2s were shortened then this led to the increase
of the positive correlation between two scores, (Figure 7). This
pattern was indeed observed in human bone marrow and human
neural epithelial stem cell-related single cell datasets (GSE99095
and GSE81475).

3.9 Predicting Cell Line Doubling Time From
the Geometrical Properties of Cell Cycle
Trajectory
The developed simple kinetic model leads to a simple prediction
which can be validated: the total length of the transcriptomic cell
cycle trajectory must diminish in rapidly dividing cells. This can
be interpreted as a consequence of the fact that in a rapid
proliferation process, during the post-mitotic G1 phase (T1
transcriptional epoch), there is not enough time to degrade all
mitotic transcripts produced before the cell division moment, so
they are reused in the consequent cell cycle phases, shortening the
subsequent G1 phase.

We verified this prediction in a relatively large collection of cell
line scRNASeq datasets. Using the data from Cellosaurus
database, we identified those few ones for which the cell line
doubling time has been estimated, and for which the number of
available good quality single cell profiles exceeded 300.

We used the total length of the principal circle fit in the 2D
plane of the scaled tomaximum equals 1 cell cycle phase scores, as
a proxy to quantify the level of CCT contraction (see Methods).
This measure was correlated with cell line doubling time in hours.
Two cell lines CHLA10 and SCC25 appeared to be strong outliers
from otherwise significant positive regression line (Pearson
correlation 0.931, p-value � 10–5) (Figure 8). When this
regression line was used as a predictor, CHLA10 cell line was
predicted to have doubling time around 64 h (instead of
determined by database search of around 32 h) and for SCC25
around 78 instead of 50 h. It is known that cell line doubling time
can vary depending on the growth conditions, so we hypothezised
that this variability could explain the appearance of two outliers.
If two of them were kept in the regression calculation, it remained
significant but less strong (Pearson correlation 0.67,
p-value � 0.01).

3.10 Code Availability
The Python notebooks allowing the reader to reproduce all the
computations presented in this manuscript are freely available
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from https://github.com/auranic/CellCycleTrajectory_
SegmentModel.

4 DISCUSSION

This paper provides a framework for analyzing the cell cycle
trajectories using single cell omics measurements such as
scRNASeq data. Unlike the previously suggested model of the
trajectory as a flat circle, we provide arguments that at least in
some conditions the piecewise-linear in logarithmic coordinates
approximation appears to fit the single cell transcriptomic data
and to be biologically tractable. In particular, it allows us to
delineate transcriptional epochs of cell cycle at which the
corresponding segment of the trajectory remains close to
linear in logarithmic coordinates which corresponds to locally
allometric changes of the transcriptome.

We suggest two modeling formalisms to recapitulate the cell
cycle transcriptomic dynamics as a sequence of switches. The first
one is purely phenomenological and describes the dynamics as a
change of states of a hidden automaton, leading to the switches of
parameters of allometric growth, followed by a shift representing
the cell division event. The advantage of this formalism is that it
allows us to treat most general properties of cell cycle trajectory
geometry.

In particular, we could prove a fundamental theorem on the
number of intrinsic cell cycle states, which connects the number
of linear segments in the trajectory and the embedding
dimensionality of the cell cycle trajectory. The nature of this
theorem, relying on “general position”-type arguments, is
reminiscent of the well-known results imposing constraints on
the number of the system’s internal states and the effective
dimensionality of its environment, in several fields of science.
For example, the Gause’s law of competitive exclusion and its

FIGURE 7 | Studying the effect of shortening the durations of transcriptional epochs T1 and T1s or T1 and T2s on the geometry of cell cycle trajectory projected
onto the S-phase and G2/M-phase scores plane. The simulated trajectories (in the lower part of the figure) are produced by taking the parameters of the CHLA9 fit of
model dynamics (red plot) and changing the durations of T1 and T1s epochs (violet plot) or the durations of T1 and T2s epochs (blue plot). Each simulation shows the
trajectory (black line) sampled with Laplacian noise added, with score distribution histograms shown at the plot margins. The upper part of the plot shows six real-
life cell cycle trajectories observed in different systems, with GEO identifiers indicated. In each plot title either cell line name is provided, or hNPC means human neural
precursor cells, hESC - human embryonic stem cell, hBM - human bone marrow, hNESC - human neural epithelial stem cell.
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generalizations states that the number of competing species is
limited by the effective number of resources, characterizing the
environment (Gauze, 1934; Gorban, 2007). The famous Gibbs’
phase rule in thermodynamics connects the effective number of
the intensive variables with the number of components and
phases in a system at thermodynamic equilibrium (Gibbs,
1961; Alper, 1999). All these results are also similar in terms
of practical difficulties related to determining the effective
system’s dimensionality.

From the physico-chemical point of view, the effective
dimensionality is the number of the substances “lumps” in the
cell cycle kinetics. Lumping-analysis produces a partition of all
chemical species into a few groups and then considers these
groups (“lumps”) as independent entities (Wei and Kuo, 1969).
“Amounts” of these lumps are the combinations of the amounts
of the chemical species (Li and Rabitz, 1989; Li and Rabitz, 1990).
The theorem on the number of intrinsic cell cycle states that the
number of lumps n does not exceed the number of the internal
states of the cell cycle transcription machinery. This means that
kinetics allows reduction of the huge-dimensional space of all
components to n ≤ m number of aggregated lumps.

The second modeling formalism that we suggested connects
the geometric properties of the cell cycle trajectory to the
underlying transcriptional kinetics and physical time. It uses
the simplest chemical kinetics equations with kinetic rates
represented as piecewise-constant functions of time. We show

that the suggested model is fully analytically tractable and, under
some biologically transparent assumptions, allows unique
determination of its independent parameter combinations.
This type of modeling allowed us to explicitly study the
relation between pseudotime and physical time.

The precise connection between physical time and pseudotime
(geometric time) in the cell cycle is worth studying in more detail
since this is the central question in the dynamic phenotyping
approach in general (Golovenkin et al., 2020). Some of these
relations can be potentially quantified from exploring the
variations of point density along the inferred trajectories
(Chen et al., 2019). Related to this, one can expect non-trivial
phenomena in studying the cell cycle trajectory, such as effects of
partial cell population synchronization under assumption of
equal cell cycle durations in individual cells. This effect can
lead to the appearance of density peaks in the reconstructed
cell cycle trajectories that cannot be explained by nonlinear
relation between physical time and pseudotime (Gorban, 2007).

As one of the applications of the suggested modeling formalism,
we performed several numerical experiments on changing the
durations of the transcriptional epochs overlapping with G1 or
G2 cell cycle phases.We observed that these parametersmight have
a drastic effect on the shape of the CCT geometry and the form of
the univariate variable distributions. This model prediction can be
qualitatively confirmed by observing CCT properties of several
in vitro and in vivo systems. The effect of CCT shrinkage might be

FIGURE 8 | Dependence of cell line doubling time (DT) on the length of the principal circle (LP) approximating the cell cycle trajectory in the 2D plane of scaled
(divided by the maximum value) S-phase and G2M scores. On the left two examples of principal circles are shown in red, and cells in green. On the right the linear
regression line with confidence intervals is shown connecting the length of the principal circle with cell line doubling time (Pearson correlation 0.931, p-value � 10–5). The
regression formula is shown on the plot in top left corner. Two cell lines indicated by red crosses were eliminated from the regression as evident outliers.
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relevant in characterizing the cell cycle properties in various
conditions: for example, when one can manipulate the activity
of an oncogene (Aynaud et al., 2020). We show that the CCT
geometry can be predictive to estimate the cell line doubling time
which can be a proxy of cell cycle duration.

The relation between transcriptomic dynamics and the
established definitions of cell cycle phases and cell cycle
checkpoints has been discussed and even quantified using
standard molecular biology techniques (Giotti et al., 2019; Hsiao
et al., 2020). In this study, we deliberately leave open the question
on defining the exact cell cycle phase borders from the
transcriptomic CCT geometry. We found that this relation can
not be the exact match: one of the reasons for this is delayed
production of proteins, and dependence of the cell cycle
progression from post-translational protein modifications. The
transcriptomic dynamics is relatively slow, and activation of
protein synthesis is switched on in advance, leaving time for
producing enough proteins needed at a certain stage of the cell
cycle molecular program. Same is true for the process of
degradation of RNAs involved in cell cycle: a cell needs enough
time after mitosis to degrade all cell cycle-related transcripts.

The suggested formalism is not limited to transcriptomic data.
It looks promising to analyze the geometrical properties of cell
cycle trajectory measured in unsynchronized cell populations
profiled at various levels of molecular description, including
epigenetics and protein expression, when the datasets of
sufficient volume and quality will become available.

A more mechanistic description of the cell cycle has been
already proposed in the context of yeast or mammalian cells
(Tyson, 1991; Novák and Tyson, 2004). The mathematical
models can be based on chemical kinetics or on discrete or
hybrid frameworks but in all cases, the difficulty when
constructing these models is to select the genes that can
capture the main features of the cell cycle and the different

events that allow the switch from one phase to another. We
anticipate that the type of analyses presented here could orient the
choice of these genes and inform on their dynamics.
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Dynamic Control Balancing Cell
Proliferation and Inflammation is
Crucial for an Effective Immune
Response to Malaria
Anuj Gupta1, Mary R. Galinski 2† and Eberhard O. Voit 1*†

1The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta,
GA, United States, 2Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of
Infectious Diseases, Emory University, Atlanta, GA, United States

Malaria has a complex pathology with varying manifestations and symptoms, effects on
host tissues, and different degrees of severity and ultimate outcome, depending on the
causative Plasmodium pathogen and host species. Previously, we compared the
peripheral blood transcriptomes of two macaque species (Macaca mulatta and
Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi.
Although these two species are very closely related, the infection in M. mulatta is fatal,
unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable
infection in the blood. As a reason for this stark difference, our analysis suggests delayed
pathogen detection in M. mulatta followed by extended inflammation that eventually
overwhelms this monkey’s immune response. By contrast, the natural host M.
fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M.
fascicularis limits cell proliferation pathways during the log phase of infection, presumably
in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-
mediated adaptive immune response. Here, we focus on molecular mechanisms
underlying the key differences in the host and parasite responses and their
coordination. SICAvar Type 1 surface antigens are highly correlated with pattern
recognition receptor signaling and important inflammatory genes for both hosts.
Analysis of pathogen detection pathways reveals a similar signaling mechanism, but
with important differences in the glutamate G-protein coupled receptor (GPCR) signaling
pathway. Furthermore, differences in inflammasome assembly processes suggests an
important role of S100 proteins in balancing inflammation and cell proliferation. Both
differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the
kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher
inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic
modeling provides a functional method for evaluating these changes and
understanding downstream changes in NAD metabolism and aryl hydrocarbon
receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and
stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes
like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be
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established due to complicated regulatory feedback mechanisms associated with the AhR
repressor (AhRR). A complete understanding of the exact dynamics of the immune
response is difficult to achieve. Nonetheless, our comparative analysis provides clear
suggestions of processes that underlie an effective immune response. Thus, our study
identifies multiple points of intervention that are apparently responsible for a balanced and
effective immune response and thereby paves the way toward future immune strategies for
treating malaria.

Keywords: Plasmodium knowlesi, Macaca fascicularis, Macaca mulatta, kynurenine metabolism, tryptophan
metabolism, AhR signaling, antigenic variation, surface antigens

HIGHLIGHTS

• Macaca mulatta and Macaca fascicularis are closely related
macaque species that respond very differently to infection
with the malaria pathogen Plasmodium knowlesi.

• Early detection, sensing of the pathogen with associated
signaling, and balance between inflammation and cell
proliferation are the most important differences in the
immune response of the two hosts.

• Pathogen surface antigens of SICAvar Type 1 are most
highly correlated with host immune and pathogen
sensing mechanisms.

• Pre-infection differences in neutrophils and naïve CD4+
T cells result in differences in Ca2+ homeostasis, which
ultimately balances inflammation and cell proliferation
during the expansion log phase of the parasitemia.

• Dysregulation of ribosomal protein assembly in Macaca
fascicularis causes p53-dependent growth arrest, which is
essential for balancing the immune response and
inflammation.

• Tryptophan metabolism and its key control gene KMO
balance downstream energy metabolism and inflammation
pathways through NAD+ metabolism and AhR signaling,
hence playing an important role in the balance of cell
proliferation, immune response and inflammation.

INTRODUCTION

Malaria is one of the world’s deadliest infectious diseases, with an
estimated 229 million cases and 409,000 deaths reported in 2019
(World malaria report 2020, 2020). It is caused by parasites of the
genus Plasmodium. Ethical reasons render investigations of
molecular host-responses in malaria difficult in humans,
because treatment of patients is obligatory as soon as they are
diagnosed. Rodent malaria models have been widely used to
expand our understanding of these infections, but present
drawbacks due to major differences in human and mouse or
rat genetics and physiology. By contrast, nonhuman primates
(NHPs) are much closer to humans, and the clinical presentation
of malaria and consequent immune responses are quite similar in
humans and macaques (Coatney et al., 1971; Aikawa et al., 1992;
Coatney et al., 2003; Gardner and Luciw, 2008; Craig et al., 2012;
Joyner et al., 2015; Pasini et al., 2018).

Here, we contrast the drastically different responses of two
evolutionarily close macaque species (Morales and Melnick, 1998;
Tosi et al., 2000), the kra monkey (Macaca fascicularis, Mf) and the
rhesus monkey (Macaca mulatta, Mm), to infection with the same
pathogen, Plasmodium knowlesi. These two hosts are the most-
studied model NHPs and their infections with various pathogens is
studied as it is often comparable to those in humans (Van
Binnendijk et al., 1995; El Mubarak et al., 2007a; Baroncelli
et al., 2008; Sasseville and Mansfield, 2010; Salguero et al.,
2021). They are evolutionarily so close (3.7 MYA) (Hedges
et al., 2015) that one might expect a similar immune response
to a common pathogen. Long before P. knowlesi became a zoonotic
concern, Knowles and Gupta (1932) identifiedMf as a natural host
for P. knowlesi infection. Since then, numerous infection
experiments have demonstrated that the two macaques respond
very differently to infection (Garcia et al., 2004; El Mubarak et al.,
2007b; Maiello et al., 2018; Lu et al., 2020). Whereas Mf develops a
chronic infection that it tolerates relatively well, the P. knowlesi
infection in Mm is fatal, unless the monkey is subjected to
aggressive treatment. This outcome is somewhat surprising, as it
is widely accepted that Mm typically outcompetes other macaque
species, including Mf. A likely explanation is that Mf co-evolved
with P. knowlesiwithin a large geographical area of Southeast Asia,
whereas the distribution of Mm overlaps with that of P. knowlesi
only slightly (Street et al., 2007; Singh and Daneshvar, 2013; Moyes
et al., 2014; Gupta et al., 2021). Studies analyzing these differences
have begun to show that Mf generally launches a more effective
immune response (Waag et al., 1999; El Mubarak et al., 2007a;
Pinski et al., 2021). However, a better understanding of the control
of the biological programs that differentiate the immune responses
is of utmost importance, because it will not only offer insights into
the details of these responses but may also point to molecular
targets thatmight lead to improvedmalaria treatments for humans.

In a recent transcriptomics study (Gupta et al., 2021), we
analyzed the gene programs with which Mm and Mf respond to a
P. knowlesi infection, initiated with infectious sporozoites. This
comparative analysis revealed numerous transcriptomic
similarities, but also notable differences. In particular, Mf, but
not Mm, apparently detects this pathogen as early as the liver
phase of the infection, prior to the parasite infecting the blood,
and this correspondingly activates beneficial signaling pathways
early on. Later in the infection, significant differences arise in each
monkey’s immune responses, which in Mm lead to extended
inflammatory activities and prolonged inflammation. By contrast,
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Mf contains the infection and controls inflammation by
undergoing a transcriptional makeover toward cell
proliferation that accompanies its recovery.

The goal of the present study is to shed light on some of the
molecular mechanisms governing the different gene programs
and thus the ultimate fates of the two macaque species. In
particular, the study identifies and quantifies: differences in the
detection of the pathogen, associated differences in the immune
response, differences in cell proliferation that directly affect the
immune response and indirectly inflammation and, finally,
differences in pathways that regulate inflammation.

The detection of malarial parasites by the host immune system
is driven by parasite-encoded surface proteins, including among
others the Schizont-Infected Cell Agglutination (SICA) variant
proteins (Lapp et al., 2009) that are expressed from the SICAvar
gene family (al-Khedery et al., 1999; Wahlgren et al., 1999; Pain
et al., 2008; Lapp et al., 2018; Galinski et al., 2018). The
antigenicity and variability provided by these various proteins
stimulates the production of antibody repertoires and
immunogenicity that have been widely studied in the context
of vaccine development (Ferreira et al., 2004; Ouattara et al., 2015;
Rénia and Goh, 2016; França et al., 2017). The Plasmodium
pathogen multiplies within infected red blood cells (iRBCs)
and once matured these cells burst releasing new merozoite
progeny that infect other RBCs. This process generates
pathogen- and damage-associated molecular patterns (PAMPs
and DAMPs), which in turn stimulate various pattern recognition
receptor (PRR) signaling pathways in macrophages, monocytes,
neutrophils and dendritic cells, and execute various immune
mechanisms via protein kinase cascades (Alberts, 2002;
Schroder and Tschopp, 2010). Co-expression analysis has been
shown to be instrumental in determining these host-pathogen
interactions (Lee et al., 2018). The neutrophils and macrophages
not only target foreign content for phagocytosis but also trigger
the inflammatory and adaptive immune response. Our previous
analysis showed much stronger inflammation in Mm compared
to Mf, which launches extensive measures to control cell
proliferation. The balance between these pro- and anti-
inflammatory mechanisms appears to be the key to resilience,
and a deeper understanding of the underlying mechanisms is
therefore of utmost importance (Cicchese et al., 2018). The
energy-intensive nature of these processes makes metabolic
processes like glycolysis and tryptophan (Trp) metabolism
close accomplices in regulating the overall physiological
dynamics. Furthermore, the feedback loop of Trp metabolism
and Aryl hydrocarbon Receptor (AhR) signaling in controlling
inflammatory cytokines is essential for this balance.

The complete dynamics of the entire immune response is
obviously difficult to comprehend in full detail, as this response is
systemic and involves uncounted facets, some evident but others
subtle. Thus, while our comparative analysis clearly cannot
convey a complete picture of all chains of causes and effects
governing the responses by the two macaque species, it offers a
first glimpse into some of the same and some of the differentiating
processes evoked by the two monkey species. The study thereby
opens a new avenue toward potential future strategies of
immune-based malaria treatments and provides multiple

promising candidates for interventions targeting a balanced
and effective immune response.

RESULTS

Our analysis is based on data that were obtained with an
experimental design (Supplementary Figure S18) recently
detailed in (Peterson et al., 2021) and (Gupta et al., 2021). In
this longitudinal study of P. knowlesi infections in Mm and Mf,
peripheral blood and bone marrow samples were collected at
various time points (TPs), including baseline (before infection),
pre-patent (TP3 or 3 days post inoculation; dpi), log-phase (TP4
or eight dpi) and peak-phase (TP5 or 10 dpi). The first signs of
parasitemia were observed six dpi, and the infection increased
exponentially thereafter. The Mm subjects were euthanized by 10
dpi, at the time parasitemias were escalating to dangerous levels,
to carry out necropsies and characterize the infected tissues. We
previously observed that Mf shows very early signs of parasite
detection by three dpi (Gupta et al., 2021). Even though the
immune response was found to be similar between the hosts
during the log-phase of the blood infection, Mf was found to
switch its response near peak infection towards cell proliferation,
which we concluded is a sign of recovery. In the current study we
address these and other findings to shed additional light on the
molecular mechanisms governing these processes.

Correlated Nonhuman Primate Host and P.
Knowlesi Transcripts Suggest Common
Signaling Mechanisms and the Expression
of Key Pathogenic Proteins, Including SICA
Antigens
It is to be expected that amammalian host senses the presence of a
parasite based on the detection of pathogenic macromolecules or
signals from infected erythrocytes, which trigger signaling
pathways in the host that in turn control the gene programs
governing a systemic immune response (Figure 1A). In this
section, we analyze the sensing-signaling process by means of
co-expression networks, functional annotation, and logistic
regression analysis.

Co-Expression Networks of Host and Parasite Genes
Genes with similar functionality often have correlated expression
profiles, which may be identified using co-expression network
analysis (Fuller et al., 2007). We adapted this approach by
combining both host and pathogen transcripts in a weighted
correlation network analysis (WGCNA) (Langfelder and
Horvath, 2008) in order to identify modules of host and
pathogen genes that act in synchrony. We refer to these
modules based on their “hub genes.” Specifically, the analysis
resulted in three types of modules: (A) Host modules consisting
exclusively of host genes; (B) Host majority modules with both
host and parasite genes, but with a majority of host genes; and (C)
P. knowlesi majority modules with both host and parasite genes,
but with a majority of P. knowlesi genes (Supplementary
Figure S2).
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Genes involved with essential functions form well-defined
modules (Supplementary Table S1A). It is not surprising that
most of the differentially expressed genes (DEGs) during the
parasitemic log phase belong to the TOP1 module (immune
response), followed by C1D and ATAD3A modules (with
insignificant functional annotation) for both hosts. It is worth
noting that the NF2 (tRNA metabolic process), SNRPD2
(ribosomal assembly) and RACGAP1 (mitotic cell cycle)
modules are most highly correlated with the TOP1 module
(Pearson correlation between eigengenes with p < 0.01,
corrected for false discovery rate (FDR)), suggesting close
orchestration between these essential functions. The
interactions of host and pathogen genes are most evident
through interactions between Type C modules and Type A or
Type B modules. Significantly high correlations between host and
P. knowlesi genes (Supplementary Table S1B) are found in
modules ATAD3A (Type B) and PKNOH_S08507800 (Type
C). Interestingly, 23 out of the 26 highly correlated P. knowlesi
transcripts belong to Schizont-Infected Cell Agglutination variant
antigen (SICAvar) Type 1 genes (al-Khedery et al., 1999; Pain
et al., 2008; Lapp et al., 2018) (Supplementary Table S1C). The
corresponding SICA variant antigens, which are expressed on the
surface of infected erythrocytes (Howard et al., 1983) and
associated with virulence (Galinski et al., 2018), show high
correlations with several important host genes, including IL10,
ELK4 and HSPA6. This suggests that SICAvar Type 1 transcripts
play a role in regulating inflammation in the host, for example,

directly through IL10 expression and indirectly by regulating
stress signals through HSPA6 expression.

Parasite Gene Expression Affecting Host
Co-Expression Modules
In order to create more functionally robust host modules, we used
WGCNA with all host samples (including Baseline and TP3),
while excluding P. knowlesi genes (Supplementary Table S2).
Logistic regression followed by functional enrichment identified
key modules changing during infection in both host species. The
defense response module FBXO6, and modules GFRA2 and
RASGEF1A (with insignificant functional annotation), were
the most different during the log phase. Modules that were
different included RPS19 (SRP-dependent co-translational
protein targeting to membrane) and NR1H3 (cell activation
involved in immune response). Integrating module
membership data with host-pathogen transcripts correlation
data (see Section on co-expression networks) highlighted
Plasmodium proteins that affected each module. Most
noticeable are SICAvar Type 1 (Pain et al., 2008; Lapp et al.,
2018), Trp-rich antigen (Wang et al., 2015) and KIR-like proteins
(Pain et al., 2008) affecting modules RPS19 and NR1H3, which
differentiated the two hosts. Additionally, high correlation of
hemoglobin complex module EPB42 with several pathogenic
ribosomal proteins suggests a possible mechanism for
digesting hemoglobin as an essential nutrition source for the
pathogen (Counihan et al., 2021). Host specificWGCNA revealed

FIGURE 1 |Chain of events during the blood phase ofP. knowlesi infection. (A) Pathogen and RBCs: Once released from the liver into the blood stream,merozoites
invade uninfected RBCs leading to Infected RBCs (iRBC) with exposed surface antigens (schizont-infected cell agglutination antigens—SICA; black). The iRBCs are
partially eliminated by macrophages, a process that triggers the production of pathogen/danger-associated molecular patterns (PAMPs/DAMPs). These PAMPs/
DAMPs are sensed by other immune cells through Pathogen Sensing Mechanisms (PRR signaling), which activate various protein kinase signaling pathways.
These signaling pathways are responsible for immune response activation that is mediated through various leukocytes. (B) Among several protein kinase signaling
mechanisms, GPCR signaling pathways are enriched in both hosts. While purinergic nucleotide GPCRs are similarly enriched, glutamate GPCRs are noticeably different
in the two hosts. (C) Glutamate GPCRs are responsible for calcium sensing and functionally expressed in neutrophils, monocytes, macrophages and T cells. (D)
Comparative cell population deconvolution at baseline (i.e., before infection) shows these populations to be different, which might reflect an innate difference in Ca2+

signaling in the two host species.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 8 | Article 8007214

Gupta et al. Immune Response to Malaria

53

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


similar results with SICAvar Type 1 being most correlated to host
immune modules (Supplementary Notes).

Pattern Recognition Receptor Signaling
The co-expression network analysis is able to detect important
host-pathogen relationships that appear to be crucial for the two
hosts. In order to focus on detection of the pathogen by a host, we
modified the analysis to create a customized module of PRR
signaling related genes, which allowed us to identify Plasmodium
proteins that interact with their products. The most positively
correlated pathogen proteins include KIR-like protein (Pain et al.,
2008) and thioredoxin-like protein (Wang et al., 2018a; Yindom
et al., 2012). Among the genes that negatively co-express with the
PRR module are SICAvar Type II, AP-1 complex subunit sigma
and histones H2A/H2B. The host genes most highly correlated
with P. knowlesi genes include pathogen detection genes like
IFIT3, PLA2G4C, MX1, OASL, DDX60, OAS2, RSAD2, MX2,
DHX58, IFIH1, STAT1, FAS and TLR4 (for functional
annotations (Huang et al., 2009), see Supplementary Table
S3A). As reported before (Gupta et al., 2021), it is worth
noting that most of these signaling genes are upregulated in
Mf at TP3, which further supports the hypothesis of earlier
pathogen detection in Mf than in Mm.

For many mammalian hosts, the PRR signaling pathway has
been credited for detecting PAMPs or DAMPs, DNAs, and other
large molecules (Figure 1A) (Mogensen, 2009; Roh and Sohn,
2018; Amarante-Mendes et al., 2018). In our case, the activity of
this pathway is consistent with expression of PRR-related genes in
both hosts during the appropriate infection time points (TPs;
Supplementary Table S3B). Here we concentrate on the log
phase of infection because this phase is associated with the most
similar features between the two hosts, and any observed
differences might highlight critical processes. It is interesting
to note that many of the PRR signaling genes are in fact different
between Mm and Mf. This difference implies that even though
the more general PRR signaling pathway is activated in response
to the detected pathogen, the specifics of the pathway operation
are apparently different, which could be due either to the detected
pathogenic content or the interpretation of the signaling event by
the host’s immune responses. The major genes differentiating the
specifics of PRR signaling include TLR5, NLRP6, TNIP3,
SLC15A4, SLC15A3, CD36 and CD300A. We had reported
enriched pathways before, but the specific differences are not
as easy to deduce (Supplementary Table S4). Such differences are
evident in subsets of the TLR signaling cascade, especially in
TICAM1/RIP1 mediated IKK complex recruitment. Higher
expression of corresponding ubiquitination genes (UBE2D1,
UBA52, RPS27A and BIRC2) in Mm suggests activation of
NFκB (Festjens et al., 2007), which might be responsible for
stronger inflammation.

These differences between hosts are carried forward toward
responses by networks of protein kinases. We examined
enrichment of several protein kinase cascades including
mitogen-activated protein kinase (MAPK), G protein-coupled
receptor (GPCR) systems and p21-activated cascades. Both host
species exhibit higher activation of atypical cytokine activated
MAPK4/6 signaling involving PAK (p21 activated kinases) (De

la Mota-Peynado et al., 2011; Déléris et al., 2011) in comparison to
the typical stress activated p38/MAPK signaling pathway
(Supplementary Figure S3A). Major differences in protein
kinase activities are associated with higher inhibition activity in
Mm, which is probably due to peptidyl tyrosine
dephosphorylation. Although not fully understood, this pathway
has been implicated in both pro- and anti-cell proliferation roles
(Kostenko et al., 2012) and might be responsible for downstream
differences in p53 and HSP27 related cell cycle activity. Differential
regulation of protein kinase C activity (Supplementary Figure
S3B) might explain these differences (Saha et al., 2014).

Probably the most notable difference between the two species
is observed in their GPCR signaling (Figure 1B). Although both
species show similar positive enrichment of purinergic
nucleotide GPCR signaling, differences in glutamate GPCR
signaling highlight their differences in inflammation
(Figure 1B). Purinergic nucleotide GPCR activity explains
the upregulation of purine metabolism in malaria and points
to a potential role of macrophages (Barberá-Cremades et al.,
2016). Macrophage production is significantly upregulated in
both hosts during log phase (Supplementary Tables S5A,B),
with the same direction of fold change as the purinergic
nucleotide GPCR signaling. In contrast to these similarities,
glutamate GPCRs, which are Ca2+ sensing receptors, show clear
differences between the two hosts in both binding and
subsequent signaling pathways, thus suggesting downstream
implications of calcium homeostasis (Figure 1C). As
discussed later in the section discussing the effects of
inflammation, Ca2+ homeostasis plays a crucial role in
inflammation. Ca2+ sensing glutamate GPCRs are
functionally expressed on neutrophils, monocytes,
macrophages and T lymphocytes. An innate difference
between the two hosts is their difference in these cell
populations at baseline (Figure 1D, Supplementary Table
S5C). Some of these differences have been corroborated in
the literature (Koo et al., 2019).

Ribosomal Proteins Control p53 Pathway
Our previous work (Gupta et al., 2021) had suggested control over
the p53 pathway during the log phase of the infection as a crucial
difference between the immune responses of the two host species.
Binding of p53 to its target response element leads to the
expression of a multitude of genes with a spectrum of
functions, including cell cycle growth arrest, DNA repair,
cellular senescence and apoptosis (Haupt et al., 2002)
(Figure 2). An active p53 pathway also protects cells against
reactive oxygen species (ROS) through antioxidant genes like
TP53INP1 (Sablina et al., 2005) (Supplementary Figure S4).
Indeed, the early response of this pathway in Mf (at TP4) might
be crucial in saving cells from apoptosis via PIG3 (TP53I3 gene)
(Lee et al., 2010). Co-expression analysis, discussed in the earlier
section on parasite gene expression, revealed several closely
regulated modules controlling DNA binding, the
mitochondrial envelope, and the mitotic cell cycle, all of which
are more strongly enriched in Mf (Supplementary Table S2).

As observed in the previous section, certain MAPK signaling
mechanisms potentially regulate the p53 pathway. Generically,
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the p53 pathway is operational in the presence of molecular
stresses and depends on their severity as well as other factors.
Cellular stress signals that activate a p53 response include
hypoxia, DNA damage, ribosomal and oxidative stresses,
among others (Joerger and Fersht, 2016). These stresses are, of
course, not independent of each other and manifest in an
interrelated manner. In the case of a P. knowlesi infection, this
interdependence can be seen in the enrichment of associated
genes. In particular, the enrichment analysis demonstrates that
ribosomal stress is a differentiating factor between the two host
species, with stress caused by substantial downregulation of the
ribosomal assembly complex in Mf (Figure 2C). This
downregulation is achieved through the activity of various
RNA polymerases (Supplementary Figure S5), and the
significant downregulation of PLOR1C, POLR2E, POLR2A,
POLR2J and POLR2L in Mf at TP4 suggests that these genes
might be crucial for the control of p53.

The downregulation of associated ribosomal proteins (RPs) in
Mf at TP4 (Figure 2B, Supplementary Figure S6) is indicative of
alterations in ribosomal biosynthesis that results in unassembled
RPs and 5S rRNA, which binds to the p53 inhibitors MDM2 and
MDM4 and thereby prevents p53 degradation (Golomb et al.,
2014; Haupt et al., 2019). As a consequence, p53 facilitates
translation from its mRNA internal ribosome entry site
(IRES). Indeed, the co-expression network analysis reveals
high correlation of MDM4 with SICAvar Type 1 transcripts,

which suggests direct control that might be crucial in this
regulation.

As a consequence of RP downregulation, the p53 pathway in
Mf is upregulated, which is reflected in higher levels of
enrichment. However, the less pronounced changes in cell
cycle arrest and DNA repair appear to be the strongest
differentiating factors between the two species. The
important genes involved in these processes include
CDKN1A (p21), E2F7, PML and MDM2 (upregulated) and
TP73 (downregulated).

Another facet of p53 pathway activation and control is
provided by the transcription factor HSF1 (heat shock factor
1). Dysregulation of ribosomal biosynthesis processes leads to
proteotoxic stress and a balance between these processes must be
maintained (Albert et al., 2019). In comparison to Mf, Mm has
higher ribosomal biosynthesis and senses higher proteotoxic
stress during the log phase of infection, and these processes
are further increased near the peak (Supplementary Figure
S7). Of note in this context is the differential expression of
chaperone-mediated protein folding genes—HSPA1A, HSPA8,
DNAJB1 and FKBP4. This expression results in upregulation of
HSF1 target genes in Mm. p53 has been shown to form multi-
chaperone complexes with HSPA1, DNAJB1 or HSPA8, while
FKBP4 is essential for its transport to the nucleus (Toma-Jonik
et al., 2019). Among the apoptotic targets, ATF3 enrichment at
both TP4 and TP5 in Mm highlights differences with Mf.

FIGURE 2 | Involvement of the p53 pathway. (A) Schematic of cause, regulation, and effect of p53 pathway activation during the log phase of a malarial infection.
The overall process includes key stress signals that engage the p53 regulation pathway and result in regulation of downstream events. (B) Barplot for log2 fold-changes
in the expression of ribosomal proteins between TP4 and baseline, comparing the two hosts. (C) Barplot for normalized enrichment scores (NESs) of stress signals
involved in p53 activation. (D) Barplot for normalized enrichment scores of p53 related downstream events.
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Finally, the control over cell proliferation in Mf is eased near
the peak, which leads to upregulation of adaptive immune cells
and, in particular CD4 memory activated and follicular helper
cells (Supplementary Table S7F), both of which enhance the
adaptive immune response by supporting B cells and CD8 T cells
(MacLeod et al., 2009; Crotty, 2014).

Effects of Inflammation on Immune
Response and Cell Proliferation
Control of cell proliferation in Mf during the log phase of
infection constitutes a stark contrast to the elevated
inflammatory response in Mm. This difference can be seen
clearly in the enrichment of several inflammatory pathways,
elevated expression of inflammatory genes, inflammasomes
and inflammatory biomarkers like the kynurenine (Kyn)/Trp
ratio (see Supplementary Figures S8–S10 and next section).
Co-expression analysis revealed that most of the inflammatory
genes are part of the innate immune module (FBX06 module).
Not surprisingly, this module is most significantly changed
(according to logistic regression) in both hosts during log
phase. Although the fold-change for this module is similar
between the hosts, the lower adjusted p value (q) and higher
log-odds (B) suggest a stronger role of this module in the innate
immune response in Mf (q < 3e-17/B > 32) in comparison to Mm
(q < 1e-10/B > 17). This module further highlights the differences
between the hosts near peak infection as Mm (q < 7e-7/B > 8)
maintains its immune response while Mf (q < 4e-5/B > 1) does
not. The neutrophil activation and intracellular vesicle transport
(FYB) module is most highly correlated to the innate immune
module (FBX06). Also, worth noting is that both these modules
are negatively correlated to ribosomal biosynthesis and
localization modules RPS19, ZNF395, CHD6 and RASGEF1A.
This finding implies an important, sustained balance between
immune related inflammation and control over the cell cycle.

Several similarities in inflammation gene sets are found
between the hosts, especially with respect to an LPS-like
inflammatory response, which probably is a symptom of the
NLRP3 inflammasome (Supplementary Figure S8A). This
phenomenon might be attributed to significant upregulation of
monocytes and monocyte-derived pro-inflammatory M1
macrophages (Supplementary Tables S7A,B), which are the
first-line cells expressing inflammasome genes (Awad et al.,
2017) (Supplementary Figure S10). Important differences are
detected in the inflammatory response cytokine production and
an antigenic stimulus (Supplementary Figure S8B). Even though
the positive regulation of these functions is similarly enriched in
the two hosts, as seen in the important genes NOD2, GPX1 and
IL12B, the negative regulation shows a distinct and opposing
enrichment. The main distinguishing genes include IL10, NLRP6
and ABCD1.

The two hosts show similar enrichment of the chronic
inflammatory response; however, Mm has a higher acute
inflammatory response (Supplementary Figure S8B),
reaffirming the stronger inflammation in Mm during log
phase. The chronic inflammation changes near the peak and is

mostly driven by crucial genes like IL10, IDO1, TNF, TNFAIP3
and CXCL13 (Supplementary Figure S9).

Exploration of innate immune components of inflammation
reveals a crucial difference in S100 proteins (Figure 3). Ca2+

sensing S100 proteins have a wide range of functionality that
includes cell apoptosis, proliferation and inflammation
(Figure 3B) (Fox and Man, 2019). Differential upregulation of
S100A8, S100A9, S100A16 and S100P in Mm suggests a potential
role of Ca2+ in inflammation (Wang et al., 2018b), while
upregulation of S100A4, S100A2 and S100A3 in Mf suggests
possible regulation of p53 (Figure 3D) (Pan et al., 2018; Boye and
Mælandsmo, 2010). Since neutrophils release S100A8/A9 during
inflammation, their differential expression mediates Ca2+

signaling, which positively regulates NLRP3 inflammasome
assembly and pro-inflammatory activity of NFκB (Figures
3B,C) (Wang et al., 2018c; Xia et al., 2018). This
inflammatory activity is further exacerbated by master
regulator DDX3X (Fox and Man, 2019). Further enrichment
of processes specifically associated with innate and adaptive
immune processes reveals an interesting pattern that succinctly
differentiates the responses of the two hosts. Namely, TLR4
signaling is stimulated by Ca2+ via S100 proteins (S100A8 and
S100A9), which enhances the inflammatory activity of the NLRP3
inflammasome. These inflammatory pathways are responsible for
IFNβ regulation and IL6 production. This finding directly
complements earlier findings of differential Ca2+ glutamate
GPCR activity (Section PRR signaling), which directly affects
the inflammasome assembly.

Further exploration of differences in immunological
signatures reveals several important similarities and differences
between the two hosts (Supplementary Figure S11). Both hosts
show significant enrichment towards FOXP3+ CD4+ naïve T-reg
cells (GSE37533 (Cipolletta et al., 2012), GSE42021 (Toker et al.,
2013)), with gene sets pointing to the strongest enrichment of a
thymic T-reg subset of intermediate maturation, CD24int. A
related important difference appears between the two hosts:
Mf has a higher mature (CD24low) subset while Mm has a
higher immature (CD24hi) subset. Both hosts have enriched
naïve B cells (GSE42724 (Covens et al., 2013)), even though
this change could not be confirmed by deconvolution analysis.
Differences can be seen in gene sets derived from IL6 and IL10
stimulation as well. Taken together, these signatures suggest
downregulation of key genes in Mf, which is not observed in
Mm. Important genes that seem to be regulating this process in
both Mm and Mf include IL6, IL6R, TGFB3, IL23A, IL10 and
SOCS3.

Although not conclusive, pre-infection state differences in cell
populations point to eventual differences in the immune
response. For instance, at baseline, Mm has significantly more
naïve CD4+ T cells while Mf has higher levels of neutrophils (Koo
et al., 2019) (Figure 1D, Supplementary Table S5C). Although
there is no significant relative difference in cell populations
during the log phase of infection between the hosts
(Supplementary Table S5E), these initial pre-infection
differences persist (Supplementary Table S5D) and may be a
key differentiating factor in the immune response.
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Changes in Tryptophan Metabolism
Suggests Higher NAD+ Metabolism
Metabolomic and transcriptomic analysis of the Mf and Mm
hosts revealed prominent differences in the expression of genes
associated with Trp metabolism at TP4 and TP5 (Figure 4). Trp
metabolism can coarsely be divided into pathways responsible for
serotonin and melatonin, Nicotinamide Adenine Dinucleotide
(NAD+) and Kyn synthesis. Serotonin and related compounds are
not of interest in the present context, and their concentrations in
blood are very low. NAD+ metabolism plays a crucial role in
cellular energy regulation as well as the handling of ROS. The Kyn
pathway is responsible for the biosynthesis of several metabolites
that play key roles in immunomodulation and inflammation.

Both hosts had lower Trp and higher Kyn levels in the
peripheral blood during the log and peak phases of infection
in comparison with baseline levels (TP1 and TP2), as observed
previously with P. coatneyi infection of rhesus macaques (Cordy
et al., 2019; Colvin and Joice Cordy, 2020). Of special note here,
however, is that the Kyn/Trp ratio, a known inflammatory
biomarker, is reduced in Mf near peak infection, whereas it
remains at the same level as during the log phase in Mm
(Figure 4).

IFNγ signaling is responsible for upregulating the expression
of IDO (Taylor and Feng, 1991; Sarkar et al., 2007; Banzola et al.,
2018), which converts Trp into Kyn (Figure 4A). Even though
IFNγ signaling is upregulated in both hosts, a higher degree of
signaling inMf near the log and peak phases results in higher IDO
expression, which thereby leads to a higher conversion of Trp to
Kyn in Mf than in Mm (Figure 4C). One might expect that this
increased activity should lead to a higher level of Kyn. Yet, we
observe lower levels of Kyn and a lower Kyn/Trp ratio in Mf
(Figure 4A), which however is easily explained by the increased
activity of the subsequent enzymes KYNU and KMO in the Kyn
utilization pathway, which ultimately lead to higher NAD+

biosynthesis and immunomodulatory activities. In addition,
earlier downregulation of AhR and AADAT in Mf suggests
potential differences in AhR signaling (see next section).

In order to elucidate the role of Trp andKyn levels in the blood and
then understand changes in Trp-Kyn metabolism in white blood cells
(WBCs) during the infection, we adopted existingmetabolicmodels of
Trp metabolism in brain and liver (Stavrum et al., 2013) and adapted
them to reflect Trpmetabolism inWBCs.With this adaptedmodel we
can clearly differentiate Trp-Kynmetabolism in blood from brain and
liver (Supplementary Figure S12). Themodel confirms that over 90%
of Trp in whole blood is channeled toward Kyn through the activity of

FIGURE 3 | (A) Schematic of the inflammasome assembly process. Various host and pathogen derived stimuli are responsible for initiation of the inflammasome
assembly process. This process is very closely regulated by various signals and processes including ROS and Ca2+. Several effectors execute important processes like
inflammation and apoptosis. Different effectors are activated during acute and chronic phases. (B) Detailed schematic of NLRP3 inflammasome signaling including the
initiation and regulation of the assembly process, followed by pro-inflammatory effectors. (C) Heatmap of genes involved with NLRP3 inflammasome assembly
process are similarly enriched between the two hosts. (D) Balance and cross-regulation of p53 and NFκB showing importance of Ca2+ homeostasis.
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IDO, compared to tryptophan-2,3-dioxygenase (TDO) in the liver
model. Kyn itself is the substrate for different reactions, and flux
control analysis (Fell, 1992; Fell, 2007) reveals that KMO is the most
important control point for Kyn utilization. Extension of the blood
model during the log phase of the infection shows for both host species
that the transport of both Trp and Kyn through the cell membrane is
lowered in comparison to the baseline (Figure 4). This finding is
interesting as it potentially leads to serum levels of Trp and Kyn in
both hosts that change significantly during this phase and lead to a
higher Kyn/Trp ratio (Figure 4). At the same time, these increases are
accompanied by a major reshuffling of fluxes, which affects the
metabolite concentrations inside the cells.

Specifically, Trp can be metabolized through six reactions,
among which the pathway toward Kyn is most important, based
on relative fluxes (Figure 4A). Indeed, if the Trp concentration
inside the cells is decreased, the effluxes out of the Trp pool are
also decreased, with the notable exception of the Kyn pathway,
which receives essentially a normal influx from Trp. This flux is
important, because the pathway later leads to the formation of
quinolinic acid, which is a precursor of NAD+ and thus affects
energy metabolism and redox handling. At this juncture, the
differential expression of KMO becomes even more important as
a control point for Trp metabolism: here, it causes a higher flux in
Mf toward NAD+ synthesis (Figure 4C). This enhanced flux from
Trp to Kyn is compensated in both species by decreased fluxes
from Trp toward protein synthesis and serotonin production
(Supplementary Figure S13).

Near the peak of infection, the differences in the two hosts are
particularly pronounced, with Trp and Kyn transported through the
cellmembrane at higher rates inMf than inMm.As a result, the fluxes
through the Kyn pathway are higher in Mf (Supplementary Figure
S14). At the same time, the Kyn/Trp ratio is lower in Mf during this
phase of the infection, presumably due to the enhanced activity of
KMO (Figure 4A). It is also worth noting that the higher flux toward
NAD+ metabolism persists in Mf (Figure 4C). Furthermore, the
concentrations of other Kyn compounds remain high, and these are
potential ligands of the AhR (see next section), which ultimately serves
as a transcription factor for numerous genes (Figure 4B).

Among the other effluxes out of Trp, the indole-pyruvate and
tryptamine pathways are also responsible for AhR activation
(Hubbard et al., 2015; Roager and Licht, 2018) (next section).
Trp is incorporated into proteins via tryptophanyl-tRNA
synthestases (WARS proteins), a process that directly links
Trp sensing to p53 activation (Yu et al., 2021). Changes in
these fluxes during infection further show the central role of
Trp metabolism (Supplementary Figures S16A,B).

Aryl Hydrocarbon Receptor Signaling and
the Role of the Aryl Hydrocarbon Receptor
Repressor in Controlling Aryl Hydrocarbon
Receptor and HIF1A Signaling
AhR belongs to the basic helix–loop–helix-PER-ARNT-SIM
(bHLH-PAS) superfamily of transcription factors where

FIGURE 4 |Metabolomics (LC-MSmeasurements) andmodel predictions for tryptophanmetabolism. (A) LC/MSmeasurements for Trp, Kyn and the Kyn/Trp ratio
across infection timepoints, comparing Mm and Mf. (B) Fluxes predicted by Trp model for Trp consumed and Kyn produced by blood cells. (C) Flux towards NAD
metabolism predicted by the Trp model.
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multiple other members interact with each other and therefore
affect each other’s functionality. Prominent members include
AhRR, ARNT and HIF1α (Supplementary Figure S15).

Most of the biologically active intermediates of the Kyn
pathway, as well as several other compounds, can act as
ligands for AhR (Murray et al., 2014; Gutiérrez-Vázquez and
Quintana, 2018) (Figure 4B, Supplementary Table S6), which
makes this receptor a central control point for multiple
physiological changes, e.g., in heme degradation, hypoxia and
Trp metabolism. Once a ligand binds, AhR can form a complex
with the nuclear transporter ARNT, which is translocated to the
nucleus. Once in the nucleus, the AhR-ARNT complex binds to
the ARE promoter region of numerous genes.

Different Kyn derivatives may act as ligands for AhR, and their
dynamics differentiates the Mf and Mm hosts during infection.
Additionally, IL4I1 activity leading to indole-pyruvate derivatives
from Trp synthesis activates AhR (Zhang et al., 2020). Similarly,
multiple other ligands have been associated with AhR activity,
and some of these may constitute further differences between the
two host responses (Supplementary Figures S16C–F). For
instance, Plasmodium’s consumption of hemoglobin releases
heme, which is metabolized (Supplementary Figure S17).
Certain AhR ligands that are derived from heme metabolism
(Kapitulnik and Gonzalez, 1993; Phelan et al., 1998) may point to
additional differences between the two hosts.

Another level of control of AhR signaling occurs through the
competition between AhR, AhRR and HIF1α for ARNT and thus
for transport into the nucleus and binding to their corresponding
response elements. Given the molecular similarity of the
competitors, it is not surprising that most of the downstream
genes are simultaneous targets of both the AhR-ARNT and the
HIF1α-ARNT complexes (Supplementary Table S7A).

Exploring these targets through an enrichment analysis shows
that both complexes act quite similarly during log phase
(Supplementary Figure S18B, TP4). Yet, several differences
emerge near the peak of infection (Supplementary Figure
S18B, TP5). The most pronounced differences emerge with
respect to higher upregulation of AhR targets and HIF1α
targets in Mf, while targets of the AhR repressor AhRR are
downregulated in Mf. It appears that the relative hypoxia
stress is quite different between the two hosts (Supplementary
Figure S19), but it is unclear how the balance is achieved between
these complexes and their corresponding genes.

To shed light on the interference among these complexes, many
of which share numerous common targets, we calculated
enrichment of each subset of these targets (Supplementary
Figure S18). Specifically, we divided the targets into three major
groups (AhR targets, HIF1α targets, and AhR and HIF1α targets)
and compared them with and without the AhRR binding site to
account for repressor activity (Supplementary Figure S18A).

The effect of AhRR on AhR targets is quite clear in Mf, with
lower enrichment of targets at both TP4 and TP5, as opposed to
almost no effect in Mm. Corresponding effects of AhRR on
HIF1α targets are not easily identified. At TP4, HIF1α targets
with the AhRR binding site are more enriched than without
AhRR. At TP5, AhRR containing HIF1α targets are enriched
more in Mm and less in Mf.

As there are multiple levels of regulation, it is difficult to predict
the activity of these targets without further experimentation.
However, one may try to elucidate the specific functionality of
these targets by identifying the key genes along with their
functional annotation. The transcription factor complexes in
question are associated with a wide range of genes with diverse
functionality (Figure 4). Functional annotation of AhR and HIF1α
targets shows their involvement in key process like the p53
pathway, heme metabolism, cell cycle related pathways, and
immune related IFNγ and NFκB pathways (Supplementary
Table S7B). The complex nature of this response makes it
difficult to elucidate the specifics and differences during a P.
knowlesi infection, but the activity of individual genes suggests
potential outcomes. Their roles in immune and inflammatory
processes are evident in the activity of genes like OASL, STAT3,
IRF5, IL6, DDIT4, NRF2, REL, and LAG3. These IFNγ signaling
genes create a positive feedback loop, because IFNγ directly
regulates IDO expression, which leads to enhanced levels of the
AhR ligand Kyn. The control over cell proliferation is evident in the
operation of p53 and other cell cycle related genes likeMXD1, FOS,
BCL6, GADD45A, and CREBRF. Another possible contributor
with respect to malarial infection is heme metabolism with target
genes including CCND3, BLVRB, and KLF1.

DISCUSSION AND CONCLUSION

Malaria has haunted mankind throughout its history. Even after
several decades of active research, malaria continues to be a severe
global health concern with over 400,000 fatalities and about 3.2
billion people at risk annually. Among the six species of
Plasmodium known to cause malaria in humans, P. knowlesi
has become recognized as a major zoonosis in Southeast Asia
(Cox-Singh, 2012; Barber et al., 2017; Zaw and Lin, 2019; Raja
et al., 2020). A P. knowlesi infection in humans may range from
mild to severe, with 6–10% of the cases considered severe (Singh
et al., 2004; Daneshvar et al., 2009). A deeper knowledge of the
details of P. knowlesi infections can be expected to provide a
crucial basis for understanding the immune responses in general
and for comparing resilient and severe malarial responses in
particular. As a zoonotic species, P. knowlesi has the advantage
that it can be studied in different NHP species (Pasini et al., 2018;
Peterson et al., 2021). Among these NHP models, Macaca
mulatta (Mm) and M. fascicularis (Mf) provide unique
advantages specifically for comparing P. knowlesi infections
with different disease progression. Namely, even though Mm
and Mf are evolutionarily very close, Mm, once infected, suffers
from increasing parasitemia, which is in almost all cases fatal if
not treated, whereas Mf controls parasitemia and escapes death
without treatment (Knowles and Gupta, 1932; Napier and
Campbell, 1932; Peterson et al., 2021). These dramatic
differences provide unparalleled opportunities to study the
details of host physiology and immune responses in the
context of host-parasite interactions and explore mechanisms
of resilience in human malaria, and to potentially relate the
findings to other diseases that may also show drastically
different possible outcomes.
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In previous work, we had established crucial differences in the
transcriptomics of the two hosts that ultimately determines the
outcome in terms of susceptibility and resilience (Gupta et al.,
2021). As also noted in the clinical assessment by Peterson et al.
(Peterson et al., 2021), transcriptomics analysis showed that Mf
detects the pathogen earlier than Mm, and even though both host
species mount a similar immune response, Mf starts controlling
inflammation as early as the log phase of infection (Gupta et al.,
2021). Subsequently, Mf switches the immune response towards
cell proliferation pathways, which presumably aids recovery
(Gupta et al., 2021). The current analysis explores the key
findings further and explains the molecular functions that
determine the mild or fateful outcome. Interestingly as well,
early detection of the parasites by the Mf animals is also
consistent with a rise in temperature in this species
immediately upon patency, by seven dpi (Peterson et al., 2021).

The current results show consequential differences in signaling
mechanisms beginning with the early detection of the presence of P.
knowlesi pathogens by Mf. Once the merozoites invade the RBCs,
they transform the iRBC and express different antigenic forms of
surface molecules in an attempt to escape the immune response
(Brown and Brown, 1965; Howard et al., 1983; Biggs et al., 1991).
Specifically, antigenic variation of P. knowlesi SICA proteins is a
main factor responsible for chronicity in Mm (Brown and Brown,
1965) (reviewed in Galinski et al. (2018)). Moreover, expression of
SICAvar genes in P. coatneyi have been shown to change as chronic
rhesus monkey infections are established, also suggesting a role for
metabolites in regulating these changes (Cordy et al., 2019). Our
correlation analysis of host and pathogen transcripts sheds light on
possibly involved SICAvar Type 1 genes (al-Khedery et al., 1999;
Pain et al., 2008; Lapp et al., 2018) along with correlated host genes.
The specific correlations of individual transcripts from this large
pathogen gene family—with 136 SICAvar members (Lapp et al.,
2018)—could shed light on its transcripts and their variable gene
expression, which may trigger different antibody responses.
Additionally, correlations with host genes, especially the
differentially responding IL10 and HSPA6 genes, can help
associate parasite markers with the host immune response.

On the host side, differences in the mechanisms for pathogen
detection and PRR signaling pathways are surprisingly subtle.
However, these differences are magnified downstream with
MAPK signaling. There is a close relation of these signaling
cascades, especially the GPCR activity with the p53 pathway and
cell cycle (Zhang and Liu, 2002; Goldsmith and Dhanasekaran,
2007; New and Wong, 2007). Ca2+ drives intracellular
communication and interacts with GPCR to regulate various
aspects of the cell cycle, and by extension, regulates
inflammation and apoptosis during infection. This regulation is
even further augmented by inflammasome activity (Figure 5).
Specifically, some of the Ca2+ binding S100 proteins (S100A8,
A9 and A4) might be differentiating factors between the two
hosts. While S100A8 and S100A9 aid the inflammasome
assembly, S100A4 assists with the regulation of the p53 pathway.
Additionally, the inflammasome assembly process is regulated by
multiple other factors including ROS, IL10 and transcription factor
AP-1. These factors do not only relay the stress response but also
seem to be important in regulating the p53 pathway.

The most strongly differentiating factor between the two
species appears to be the control of cell proliferation by Mf
during log phase via the p53 pathway, along with subsequent
inhibition that leads to recovery. Similar stresses can trigger
both inflammation and cell proliferation, but it appears that it is
the stress related to fundamental ribosomal assembly that causes
the inhibition of cell proliferation in Mf through the p53
pathway. Several upstream kinases have been shown to cause
this stress. Since ribosomal assembly is one of the most energy
intensive functions, inhibition of this fundamental function to
conserve energy seems likely (Albert et al., 2019). Of course, that
is not the sole purpose. In particular, we observe that ribosomal
assembly leads to differences in p53 based cell cycle arrest and
DNA repair in Mf. The interrelatedness of this pathway with
p21, AP-1 and HSF1 activity provides additional regulators that
might be responsible for balancing cell proliferation with
inflammation.

Another known inflammation biomarker, the Kyn/Trp ratio,
shows surprisingly deep integration with these processes. Even
though the induction of IDO in malarial infection is quite often
discussed (Sanni et al., 1998; Hansen et al., 2000; Tetsutani et al.,
2007; Colvin and Joice Cordy, 2020; Santos et al., 2020), its biological
significance for the immune response is in general poorly
understood. Nonetheless, a mathematical model of the direct
upregulation of IDO through IFNγ signaling quite clearly shows
how the Kyn/Trp ratio changes during the infection (Figure 5). This
metabolic model is able to shed light on several important, although
indirect implications, such as the importance of KMO and KYNU in
regulating fluxes, redirection of fluxes towards NAD+ metabolism,
and metabolite pools of kynurenine compounds as ligands for AhR.
In summary, Trp metabolism diverts the fluxes towards the essential
functions, and especially NAD+ metabolism and protein synthesis.
The higher activity in Mf also indicates that this host maintains
essential functions in spite of the inflammation. Further analysis into
the kynurenines shows an impactful control of AhRR in regulating
both AhR and HIF1α related signaling. This process includes a
competitive effect ofmultiple stresses, hypoxia and infection induced
damage and cytokine response in determining the overall outcome.

Although this analysis dives deep into multiple molecular
mechanisms that play crucial roles in permitting resilience of the
host, it only paints a crude image of the immune response over time.
For example, a more detailed longitudinal and immunologically
based analysis of SICAvar gene expression and switching of SICA
proteins in each host (and with different parasite species (Cordy
et al., 2019)) is likely to advance our understanding of the different
antibody responses and immune evasion mechanisms (reviewed in
Galinski et al. (2018)). The combined analysis of immune response,
inflammation and cell proliferation also seems to reveal Ca2+ as a
crucial factor, which is known to play a role in iRBC egress
(Glushakova et al., 2013). If this general finding can be validated
and cross referenced with other bacterial and viral infections (Tran
Van Nhieu et al., 2018; Chen et al., 2019; Crespi and Alcock, 2021),
improved understanding of Ca2+ homeostasis might lead to novel
targets that could naturally aid the immune response against
Plasmodium infection. Similarly, the metabolic model we
employed, adjusted for transcriptional changes during the
infection, provides a deeper appreciation of the mechanisms of
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Trp metabolism and could possibly be extended to identify targets
that could predictably adjust metabolism to aid in resilience.

Overall, this work interprets transcriptional data and
integrates them in a manner that provides deeper
understanding of Plasmodium infections. It is hoped to suggest
new avenues of studying malaria and identifying valid candidates
for future drug development.

METHODS

Experimental Setup and Data
Pre-Processing (Ribonucleic Acid Seq/
LC-MS)
The analysis described here expands on previously published
studies (Gupta et al., 2021) with details about individual
processes. Briefly, four male Mm and seven male Mf were
infected with P. knowlesi sporozoites. Peripheral blood samples
were extracted before (baseline) and after inoculation with
sporozoites (pre-patent—TP3, log-phase—TP4 and peak-
phase—TP5). These blood samples were used for
transcriptomics and metabolomics analysis (Supplementary
Figure S1).

To assess the transcriptome, samples were sequenced using
Illumina Hi-seq 3,000, mapped using STAR and normalized
using DESeq2. Details of the process were previously
published in Gupta et al. (2021).

For metabolomics analyses, plasma samples were quantified
using the AbsoluteIDQ p180 kit (Biocrates Life Sciences AG).
Specifically, the metabolites were quantified using SCIEX Exion
LC and a QTRAP 5500 mass spectrometer in only positive

ionization mode with each sample injected using a separation
column. Specific details of the process can be found with the
corresponding submissions of MaHPIC data to PlasmoDB
(https://plasmodb.org/plasmo/app/static-content/PlasmoDB/
mahpic.html) with the Mm dataset available at MTBLS824 and
the Mf dataset at MTBLS822 from the MetaboLights repository.

Enrichment Analyses
Differential expression (DE) of genes was calculated using
DESeq2. Genes with low read counts were removed from
analysis. The genes were modeled using the design—Species +
TimePoint + Species:TimePoint and DE was calculated using
Wald’s test.

Gene set enrichment analysis was performed using the GSEA
toolkit (version 4.0) of the Broad Institute. The gene sets used for
the analysis were Hallmark (Liberzon et al., 2015), Reactome
(Jassal et al., 2020), ImmuneSigDB (Godec et al., 2016) and Gene
Ontology (Ashburner et al., 2000; Gene, 2021). The pre-ranked
GSEA module of the toolkit (Subramanian et al., 2005) was used
for the analysis, and all genes were ranked based on inverse of
adjusted p-values and the sign of fold changes. Files of custom
gene sets (gmt files) were created using R to contrast enrichment
scores between comparable data sets. To compare gene sets across
the two species and account for representation bias in individual
gene sets, rank scores for all genes were used to calculate
enrichment scores (ES), which were adjusted by normalization
of gene set sizes. Gene sets with small (<15) and large (>500)
overlaps were filtered out. This normalized enrichment score
(NES) was used to contrast various gene sets.

Enrichment analysis for targets of AhR, AHRR and HIF1A
was performed similarly to the method described above. The gene

FIGURE 5 | Tryptophan metabolism. (A) Schematic showing key features of tryptophan metabolism. (B) Schematic showing AHR signaling. (C) Heatmap of
differential expression of significant genes involved in tryptophan metabolism comparing the two hosts across TP4 and TP5.
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sets for target genes for each were created using ChIP-Atlas (Oki
et al., 2018) with ±5 Kb overlap with the transcription start site.
NES values for each subset described in the Results were
calculated with the method described above.

Weighted Gene Co-Expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA) was
performed using the WGCNA package (version 1.70–3) (Zhang
and Horvath, 2005; Langfelder and Horvath, 2008) in R to
describe correlation patterns among genes. The analysis was
performed in multiple ways to serve different purposes. The
differences arose in the subsets of samples in datasets used for
each analysis. First, for co-expression networks with both host
and pathogen genes, only infection TPs (TP4 and TP5) were used
for both hosts, as there are no pathogen transcripts at baseline and
TP3. Next, to differentiate host-specific differences, subsets of
each host for different infection TPs were used. Finally, all TPs for
both hosts were used with host-only genes to form co-expression
networks among host genes.

WGCNA analysis begins with creation of a Pearson
correlation matrix of the expression of all gene pairs. These
were used to filter highest correlated pairs where required.
This step was followed by the creation of an approximately
scale-free adjacency matrix, using a power function. The soft
threshold parameter (B) for the power function in each case was
determined based on the criterion of approximate scale-free
topology, as described in the software manual (Langfelder and
Horvath, 2008). The topological overlap matrix (TOM) was
calculated to quantify the degree of overlap in shared
neighbors. Finally, modules were created using a dynamic tree
cut algorithm in WGCNA. To characterize each of the modules,
module eigengenes and GO annotations were calculated. To
calculate the similarities between various modules, Pearson
correlation between eigengene vectors was used.

Deconvolution of Cell Populations
Cibersortx (Newman et al., 2019) was used to analyze gene
expression data to obtain an estimation of abundances of
individual cell types from mixed cell populations in the
various blood samples. The LM22 signature matrix (Newman
et al., 2015) was used as a cell type reference profile. Previously
DESeq2 normalized expression data for all samples were used to
estimate the abundances of the 22 cell types from whole blood.

To contrast various groups, the lmFit function (limma package)
in R was used to model the cell populations as Species + TimePoint
+ Species:TimePoint and the eBayes function was used to compute
log fold changes, t statistics, p-values and adjusted p-values, using
the Benjamini–Hochberg method.

Dynamic Modeling of Tryptophan
Metabolism
To understand the implications of transcriptomic changes during
P. knowlesi infection, we used a well-established tryptophan
metabolic model (Stavrum et al., 2013) and adjusted its

parameters to represent changes in enzymatic activities in
accordance to changes in the expression of corresponding
genes (Tang et al., 2018).

The model was originally developed for liver tissue and had to
be adapted for blood. Due to the lack of tissue specific enzyme
concentration data, we used gene expression data for individual
tissues (in this case blood vs liver data from the GTEx project
(Consortium, 2013)) to form a crude estimate of enzymatic
concentration. Each reaction rate v in the model is described
with the Michaelis-Menten rate function

v � Vmax. S
Km + S

(1)

where Vmax is the maximum reaction rate, S is the substrate
concentration andKm is theMichaelis constant. According to our
assumption of proportionality between gene expression and
enzyme activity (Tang et al., 2018), Vmax is a function of
enzyme concentration and enzymatic turnover Kcat. Since
enzyme concentration is difficult to calculate, mRNA levels
were used as approximate quantities:

Vmax � F.mRNA.Kcat (2)
Here, F is a factor that converts expression values into enzyme
concentrations and mRNA is the measured expression.

Once the parameters were updated, the model was simulated
to a steady state to obtain baseline metabolite concentrations and
fluxes for the blood model.

Next, the kinetic parameters were updated by a factor
corresponding to the fold change in gene expression in order
to obtain the appropriate enzymatic activity, similar to Eqs. 1 and
2. For each case, the model was simulated to the steady state of all
metabolite concentrations and fluxes were used for comparison of
different scenarios.

For flux control analysis (Wildermuth, 2000) (Eq. 3), the
control coefficients were calculated as

CS
vi
� d ln J

d ln vi
(3)

whereCS
vi
is the flux control coefficient for the pathway flux Jwith

small changes in enzyme activity vi of step i.
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Three-Dimensional Model of
Sub-Plasmalemmal Ca2+

Microdomains Evoked by T Cell
Receptor/CD3 Complex Stimulation
Diana Gil 1, Björn-Philipp Diercks1, Andreas H. Guse1 and Geneviève Dupont2*

1The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany, 2Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles
(ULB), Brussels, Belgium

Ca2+ signalling plays an essential role in T cell activation, which is a key step to start an adaptive
immune response. During the transition from a quiescent to a fully activated state, Ca2+

microdomains of reduced spatial and temporal extents develop in the junctions between the
plasma membrane and the endoplasmic reticulum (ER). These microdomains rely on Ca2+

entry from the extracellular medium, via the ORAI1/STIM1/STIM2 system that mediates store
operated Ca2+ entry Store operated calcium entry. The mechanism leading to local store
depletion and subsequent Ca2+ entry depends on the activation state of the cells. The initial,
smaller microdomains are triggered by D-myo-inositol 1,4,5-trisphosphate (IP3) signalling in
response to T cell adhesion. T cell receptor (TCR)/CD3 stimulation then initiates nicotinic acid
adenine dinucleotidephosphate signalling,which activates ryanodine receptors (RYR).Wehave
recently developed amathematicalmodel to elucidate the spatiotemporal Ca2+ dynamics of the
microdomains triggered by IP3 signalling in response to T cell adhesion (Gil et al., 2021). This
reaction-diffusion model describes the evolution of the cytosolic and endoplasmic reticulum
Ca2+ concentrations in a three-dimensional ER-PM junction and was solved using COMSOL
Multiphysics. Modelling predicted that adhesion-dependent microdomains result from the
concerted activity of IP3 receptors and pre-formed ORAI1-STIM2 complexes. In the present
study, we extend this model to include the role of RYRs rapidly after TCR/CD3 stimulation. The
involvement of STIM1, which has a lower KD for Ca2+ than STIM2, is also considered. Detailed
3D spatio-temporal simulations show that these Ca2+ microdomains rely on the concerted
opening of ~7 RYRs that are simultaneously active in response to the increase in NAADP
induced by T cell stimulation. Opening of these RYRs provoke a local depletion of ER Ca2+ that
triggers Ca2+ flux through the ORAI1 channels. Simulations predict that RYRs are most
probably located around the junction and that the increase in junctional Ca2+ concentration
results from the combination between diffusion of Ca2+ released through the RYRs and Ca2+

entry through ORAI1 in the junction. The computational model moreover provides a tool
allowing to investigate how Ca2+ microdomains occur, extend and interact in various states of
T cell activation.

Keywords: T cells, ER-PM junctions, ryanodine receptors, NAADP, COMSOL, computational model, store operated
calcium entry, ca2+ signalling
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INTRODUCTION

Calcium signaling plays a crucial role in the activation of T cells
and the adaptative immune response. In particular, it controls
transcriptional activation, proliferation, differentiation or
secretion of cytokines (Feske, 2007; Trebak & Kinet, 2019).
Increases of the free cytosolic Ca2+ concentration rely on Ca2+

release from the endoplasmic reticulum (ER) and on Ca2+ entry
from the extracellular medium. Mobilization of internal Ca2+

follows the increase in D-myo-inositol 1,4,5-trisphosphate (IP3)
and in nicotinic acid adenine dinucleotide phosphate (NAADP),
via IP3 receptors (IP3R) and type 1 ryanodine receptor (RYR1),
respectively (Streb et al., 1983; Wolf et al., 2015). Ca2+ entry relies
on the ORAI/STIM system that allows Ca2+ entry in the cytosol,
at a rate that is regulated by the concentration of Ca2+ in lumen of
the ER (Putney, 2009). When Ca2+ dissociates from the Ca2+

sensors stromal interaction molecules 1 (STIM1) and 2 (STIM2)
located in the ER membrane, STIM molecules aggregate and
move to so-called “junctional spaces”. These regions correspond
to the narrow cytosolic spaces between the ER and PM
membranes, at locations where these membranes are separated
by distances smaller than 20 nm. There, STIM molecules can
recruit ORAI1 to form Ca2+ channels allowing Ca2+ to enter into
the cytoplasm. This process is known as capacitative or store
operated Ca2+ entry (SOCE). The relation between SOCE and ER
Ca2+ concentration is nonlinear, with a KD for half activation of
the order of 200 μM when it depends on the dissociation of Ca2+

from STIM1 and of 400 μM when it depends on the dissociation
of Ca2+ from STIM2 (Stathopulos et al., 2006; Brandman et al.,
2007; Luik et al., 2008).

Upon TCR/CD3 stimulation, second messengers create a
substantial release of Ca2+ from the ER which, together with
the resulting activation of SOCE, leads to a rise in the free
cytosolic Ca2+ concentration in the whole T cell. This global
Ca2+ increase contrasts with the locally restricted, sub-
plasmalemmal Ca2+ increases of short duration (~50 ms) that
can be observed as a consequence of adhesive interactions (Weiss
and Diercks, unpublished results), or in the first seconds
following TCR/CD3 stimulation (Wolf et al., 2015; Diercks
et al., 2018). The two types of events are known as Ca2+

microdomains and have similar spatio-temporal
characteristics. Yet, they have different molecular origins. The
adhesion dependent Ca2+ microdomains rely on a pathway
involving focal adhesion kinase (FAK), phospholipase C (PLC)
and IP3Rs (Weiss and Diercks, unpublished results). Due to
IP3R-mediated Ca2+ release and subsequent SOCE, they also
rely on ORAI1-mediated Ca2+ entry. Computational
simulations of the interplay between ORAI1 and IP3R in a 3D
configuration simulating an ER-PM junction have confirmed that
the local depletion of ER Ca2+ created by the opening of a few
IP3R can trigger the opening of ORAI1 in the junction, even in
conditions of a full ER (Gil et al., 2021). Interestingly, these non-
TCR/CD3 dependent Ca2+ microdomains require the existence of
pre-formed complexes of ORAI1 and STIM2 that were
demonstrated experimentally (Diercks et al., 2018). Ca2+

microdomains characterized by somewhat larger amplitude
(340 ± 11 nM vs 290 ± 12 nM) are observed during the first

~15 s following TCR/CD3 stimulation (Wolf et al., 2015; Diercks
et al., 2018; reviewed in Guse et al., 2021). As the non-TCR/CD3
dependent microdomains, these signals also involve ORAI1, but
in addition they require NAADP signaling and RYR1 dependent
Ca2+ release from ER (Wolf et al., 2015; Diercks et al., 2018). As
another difference, at this stage, pre-formed ORAI1/STIM
complexes involve both STIM1 and STIM2 isoforms (Ahmad
et al., 2021).

Ca2+ microdomains represent a crucial step for the successful
activation of T cells. Reported durations of the signals triggered
by cell adhesion and by formation of NAADP in the first seconds
upon TCR/CD3 stimulation are 44 ± 4 ms and 64 ± 3 ms,
respectively (Diercks et al., 2018). They extend on 0.216 ±
0.004 μm2. Because of these limited temporal and spatial
extents, the investigation of Ca2+ microdomains is technically
limited by the resolution of the microscopic imaging system used.
The spatial and temporal resolution of the imaging system used to
characterize T cell Ca2+ microdomains is approx. 368 nm and
20–25 ms, respectively (Wolf et al., 2015). Mathematical
modelling thus represents a useful complementary tool to
investigate their molecular origin, in the line of the numerous
studies devoted to small scale Ca2+ events (Solovey et al., 2008;
Swaminathan et al., 2009; Thul et al., 2009; Rückl & Rüdiger,
2016; Walker et al., 2017).

In a previous study (Gil et al., 2021), we adapted the realistic
three-dimensional mathematical description of the ER-PM
junction proposed by McIvor et al. (2018) to simulate
adhesion-dependent Ca2+ microdomains arising in T cells.
This model describes Ca2+ dynamics in a confined 3D
configuration corresponding to a junctional cytosolic space
and the adjacent sub-PM ER, taking into account Ca2+ influx
through ORAI1 and IP3R, Ca

2+ pumping into the ER through
SERCA, and diffusion within the cytosolic and ER compartment.
The IP3Rs are supposed to be located close to the junctional space
(Thillaiappan et al., 2017). Simulations using COMSOL
Multiphysics showed that the spontaneous activity of ~3 IP3Rs
create a local depletion of ER Ca2+ that suffices to trigger the
opening of ORAI1 channels located in the junction and thus, the
onset of a microdomain. Because of the presence of pre-formed
complexes of ORAI1 and STIM2 in unstimulated cells, opening of
ORAI1 indeed rapidly follows the dissociation of Ca2+ from
STIM2. Predictions of this model are in agreement with recent
observations in HEK293 cells reporting that constitutive STIM2
clusters in ER-PM junctions sense decreases in local ER Ca2+

mediated by IP3Rs (Ahmad et al., 2021). Moreover, IP3R channel
activity near the junctions was shown to favour STIM2 clustering
in the junction.

In this study, we modified our previous model of the T cell
junctions to address the molecular mechanism that underlies the
TCR/CD3-evoked and NAADP and RYR-dependent Ca2+

microdomains occurring in the first ~15 s that follow TCR/
CD3 stimulation. We first used modeling to find out whether
RYR1 are located inside or around the ER-PM junctions. The
analysis was based on comparisons between simulated and
experimental results both in WT and ORAI1−/− T cells. The
next issue related to the number of RYR1 involved in the
formation of the junctional Ca2+ microdomains, which cannot
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be directly inferred from experimental observations. By contrast,
modeling can determine the number of RYR1 that must open
simultaneously to create the local depletion of ER Ca2+ triggering
the appropriate level of SOCE activation. Conclusions about this
number were next validated by an independent estimation of the
increase in the RYR1 open probability triggered by the NAADP
formation in TCR/CD3 stimulated T cells. Finally, we took
advantage of the great flexibility provided by computational
modeling to investigate the respective roles played by the ER
Ca2+ channels (IP3R or RYR) and the Ca2+ sensors (STIM1 and
STIM2) in shaping the characteristics of the Ca2+ microdomains
created by the openings of the related ORAI1 channels. This
analysis allowed us to propose a unifying description of the
molecular mechanism underlying T cells Ca2+ microdomains
from adhesion to early TCR/CD3 stimulation.

Description of the Mathematical Model
Because the model was fully described in Gil et al. (2020), we
provide a concise description of its main features in this section.
The spatial geometry is shown in Figure 1. The junction is a
15 nm-wide (Wu et al., 2006; Hogan, 2015) three-dimensional
space between the PM and an ER portion located close to it. The
junction communicates with the adjacent cytoplasm, a portion of
which is modelled explicitly. The free cytosolic Ca2+

concentration, defined by CC, is initially set at 30 nM (Diercks

et al., 2018). In the rest of the cytoplasm, which is not modelled
explicitly, CC is fixed at this same value. Similarly, the evolution of
ER Ca2+ concentration (CS) is simulated in the sub-PM ER, which
is in contact with the bulk of the ER where Ca2+ concentration is
fixed at 400 μM (Lewis, 2011). The PM portion located in the
junction contains five ORAI channels and the ER membrane, 10
SERCA and nine RYR1s as reported (Hogan, 2015; McIvor et al.,
2018; Jayasinghe et al., 2018; Yin et al., 2008). Seen from above
(Figure 1C), SERCA pumps form a ring surrounding ORAI1
channels and RYR1s are arranged on a square lattice. Given the
large size of these channels (Lanner et al., 2010), the 31 nm
distance between the pores of the channels considered in Figure 1
corresponds to a close packing of RYR1.

Membranes, schematized as simple full lines in Figure 1A,
correspond to no flux boundary conditions, except across
channels and pumps where corresponding fluxes are
simulated. The flux through ORAI channels is given by

JORAI � f(Cloc
S ) IORAI

F · z · Ao
(1)

with IORAI the maximal single channel current, F the Faraday
constant, z the charge of a Ca2+ ion and AO the surface of the
channel pore. f(Cloc

S ) is a function of the average local
concentration of ER Ca2+ around the pore of the closest
RYR1s. This step-wise function determines the level of ORAI1

FIGURE 1 | Schematic representation of the model geometry of the ER-PM junction and sub-PM ER used to investigate the origin of the Ca2+ microdomains in
T cells with nine RYR1 inside the junction (A) Frontal diagram showing the dimensions of the cone that represents the sub-PM ER, of the junction and of the portion of the
cytosol considered in the simulations. ORAI1 channels are in blue, SERCA pumps in orange and RYR1 in green. Plain lines represent membrane boundaries; dashed
lines, fictitious limits between the junction and the cytosol and double lines indicate the limits of the simulated system. The resting Ca2+ concentrations considered
as initial conditions and boundary conditions in the two compartments are indicated. (B) 3D view of the model geometry (C) Upper view of the positions of the ORAI1
channels on the PM, in blue, and of the SERCA pumps and RYR1 (in a chessboard manner) on the ERM, in orange and green respectively. Not to scale. This geometry is
based on McIvor et al. (2018). See text for details.
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activation that can take four values depending on the amount of
bound Ca2+-free STIM. In the first phase after TCR/CD3
stimulation of T lymphocytes, preformed complexes of
ORAI1, STIM1 and STIM2 have been detected by FRET
experiments and super-resolution microscopy (Weiss and
Diercks, unpublished results). We thus consider the activation
of ORAI1 by heterotetramers of STIM1 and STIM2 (STIM1/2)
and modified f(Cloc

S ) accordingly. See Supplementary
Information for a detailed explanation.

In the ER membrane, Ca2+ flux from the ER to the cytosol
through the RYR is given by

JRyR � IRyR
F · z · ARyR

· (Cs − CC)(Cs,0 − CC,0) (2)

with IRYR the current through the RYR, which takes the value of
0.35 pA (Guo et al., 2012). ARYR is the surface of the channel pore.
The second factor in Eq. (2) allows to scale the current to take the
actual gradient across the channel pore into account, where CS,0

and CC,0 represent resting concentrations of Ca
2+ in the ER and in

the cytosol (Mazel et al., 2009).
Finally, SERCA pumps are considered as bidirectional as in

McIvor et al. (2018) and described by

JSERCA � Q

AS
pVmaxp

⎡⎢⎢⎢⎢⎣ (CC
KF
)n2 − (CS

KR
)n2

1 + (CC
KF
)n2 + (CS

KR
)n2

⎤⎥⎥⎥⎥⎦ (3)

with Vmax its maximal velocity, n2 the Hill coefficient and KF and
KR the pump affinity for cytosolic (CC) and ER (CS) calcium,
respectively. As is the surface of the pore and Q is a temperature
coefficient initially introduced by McIvor et al. (2018). To
approximate the partial differential equations (PDE), we used
the finite element method (FEM) and simulation software
COMSOL Multiphysics 5.5 (http://www.comsol.com), more
specifically the Transport of Diluted Species interface that is
used to compute the concentration field of a dilute solute in a
solvent. We chose a backward differentiation formula (BDF) to
compute the time steps with a relative tolerance of 0.005 that
controls the relative error in each step. The system is solved using
the iterative linear solver GMRES (Generalized Minimum
Residual). For further details regarding the system
discretization and the use of COMSOL Multiphysics, please
refer to the authors.

RESULTS

Ca2+ Microdomains Simulated by the
Opening of Type 1 Ryanodine Receptors
Localized in the ER-PM Junction do Not
Rely on ORAI1 Opening
Upon TCR/CD3 stimulation, NAADP-evoked Ca2+ release
through RYR1 acts in concert with Ca2+ entry through
ORAI1/STIM complexes to create Ca2+ microdomains.
These microdomains last for 64 ± 3 ms and reach
amplitudes of 340 ± 11 nM (Diercks et al., 2018). Although
it is known that ORAI1 and STIM are arranged in pre-formed

complexes in the ER-PM junctions of T cells, the exact
location of the RYR1s responsible for the decrease in
[Ca2+]ER in the sub-PM ER remains to be determined. As
described in the presentation of the model and schematized in
Figure 1, in the model we first considered that RYR1s are
located in the junction, facing the PM as in cardiac dyadic
clefts (Jones et al., 2018). In this section, we evaluated if this
arrangement allows to reproduce experimental observations.

We simulated the junction schematized in Figure 1
considering an increasing number of open RYR1s during
64 ms. A few milliseconds after RYR1 opening, a stable profile
of Ca2+ increase in the junction is observed (Figures 2A–F,
Supplementary Figure S2). Although Cc can locally reach
concentrations close to 20 μM, the average Ca2+ concentration
in the junction ranges from 340 to 2,500 nM depending on the
number of open RYR1 (Anim. S1a,b in the Supplementary
Information). Thus, in this configuration, opening of a single
RYR1 allows to reach the experimentally observed microdomain
amplitude in the junction. To assess the relative contributions of
Ca2+ entry through ORAI1 and Ca2+ release from the ER through
RYR1, we performed the same simulations in the absence of
ORAI1 in the PM. As visible in Figure 2H in which Ca2+

microdomains with and without activated ORAI1 are seen to
have nearly the same amplitude, the relative contribution of Ca2+

entry is very limited in these conditions. In agreement with this
observation, the increase in the amplitude of the Ca2+ signal in the
microdomain is not related to significant changes in the opening
states of ORAI1 (Figure 2I). For example, when three RYR1s
open simultaneously, all five ORAI1 channels are still in their
lower state of activity as in the absence of any RYR1 opening.
These computational observations indicate that the geometry
depicted in Figure 1 does not reflect the situation encountered
in T-lymphocytes early after TCR activation, since the number of
microdomains decreases significantly in ORAI1−/− T cells
(Diercks et al., 2018).

Ca2+ Microdomains Observed Soon After
T Cell Stimulation Are due to the Opening of
Type 1 Ryanodine Receptors Localized on
Conic ER Around the ER-PM Junction
Because of the small size of the junction, actual Ca2+

concentrations are expected to be highly sensitive to the ER-
PM distance. Thus, results obtained in the previous section may
depend on this junctional depth, which led us to investigate the
influence of this distance on the Ca2+ profile in the junction. Data
indicate that the ER-PM spacing is typically 10–20 nm (Hogan,
2015), but we investigated distances up to 50 nm that might be
reached locally. As visible in Figure 3, although the amplitude of
the Ca2+ microdomain is inversely proportional to the height of
the junction, the experimental average is reached with less than
three RYR1 simultaneously open even for the largest junction
considered (50 nm). Moreover, the amplitudes are not much
affected by the absence of ORAI1, as visible by the fact that
the Ca2+ microdomain amplitudes without ORAI1 (dashed lines)
are close to those with ORAI1 (plain lines). This does not agree
with experimental observations showing that in cells that do not
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FIGURE 2 | Simulated Ca2+ microdomains resulting from the opening of RYR1 inside the junctions, which in turn induces the opening of ORAI1 channels in the
junctions as a result of local depletion of ERCa2+ (A)Upper view of the arrangement of the ORAI1 channels on the PM of the junction (yellow dots) and of the RYR1 on the
ERM (red dots) using COMSOL (B–F) Steady-state Ca2+ profiles in the junction when opening 1, 2, 4, 6 and 9 RYR1 simultaneously (B) to (F) respectively. Shown are the
profiles 22 ms after opening of the RYR1, but these stabilize very rapidly, after a few ms (G) Extended colour code with marking of the average amplitude of a
microdomain in unstimulated T cells (Diercks et al., 2018) (H) Evolution of the amplitude of the simulated Ca2+ microdomains with the number of simultaneously open

(Continued )
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express ORAI1, the frequency of occurrence of junctional
microdomains is reduced by ~10, while their amplitude is
lowered by ~25% (Diercks et al., 2018). We thus concluded
that RYR1 located inside the junction, whatever its height,
cannot account for experimental observations.

Another possibility would be that RYR1s are located outside
the junction, but close to it, in such a way that they affect sub-PM
ER Ca2+ concentration. Thillaiappan et al. (2017) reported
clusters of immobile IP3Rs surrounding the ER-PM junctions,
with the mouths of the IP3Rs directed towards the PM. In our
previous computational study of the IP3R-dependent, adhesion-
induced Ca2+ microdomains, we found that simulations based on
this configuration agree with experimental observations (Gil
et al., 2021). We investigated the possibility that RYR1s are
similarly localized around the junction. In this configuration,
schematized in Figure 4, a ring of RYR1s located in the sub-PM
ER membrane and spaced by 90 nm, are releasing Ca2+ in the
cytosolic space adjacent to the junction. The Ca2+ microdomains
simulated under this configuration are shown in Figure 5,
considering 1 (Figure 5B, Supplementary Figure S2) to 8
(Figure 5I) open RYR1. To reach the experimentally observed
average amplitude of around 340 nM, seven or eight RYR1 must
open simultaneously (Figure 5J). This number is slightly affected
by the distance between the RYR1 and the junction. If a 45 nm
distance is considered, instead of 90 nm as considered in
Figure 5, opening of five RYR1s simultaneously is sufficient to
reach the experimentally observed amplitude in the junction

(Supplementary Figure S4). Indeed, a larger amount of the
Ca2+ released by RYR1 can diffuse into the junction in this
configuration. In the absence of ORAI1, the increase in Ca2+

in the junction due to RYR1 opening is much below the
experimentally observed amplitude of the microdomains.
Thus, when the RYR1 located in the membrane of the sub-PM
ER are not releasing Ca2+ directly in the junctions, the model
reproduces the experimental observation that NAADP-induced
Ca2+ microdomains rely on both RYR1 and ORAI1 (Diercks
et al., 2018).

Observations in T cells indicate that Ca2+ signals in the
junction are rather stereotypic, with a relatively constant
amplitude (Diercks et al., 2018). It is thus expected that the
microdomain characteristics are not very sensitive to the
numbers of RYR1 present around the junction. We next
investigated the influence of the number of open RYR1 in
more detail, considering the possibility that up to 16 RYR1 are
located around the junction. This was done in the simulations
by considering another ring of eight receptors 90 nm below
the first one. As visible in Figure 6A, the relation between the
amplitude of the simulated microdomains and the number of
open RYR1 is non-linear with a marked stepwise behaviour.
From one to three open RYR1, the increase in amplitude is
linear. All five STIM1/2 bound ORAI1 channels are in their
lowest conductance state (Figure 6B) and the Ca2+ increase in
the junction is due to diffusion from the adjacent cytosol.
From four open RYR1 on, local ER Ca2+ depletion is sufficient
to further activate ORAI1 creating changes in the slope of the
relation between the amplitude of the Ca2+ signal and the
number of open receptors. If more than eight RYR1 open
simultaneously, additional ones do not activate ORAI1
further. As seen in Supplementary Figure S1, the 54%
opening state is reached when the value of CS in the close
vicinity of STIM1/2 bound to ORAI1 reaches 260 μM. This
would require a Ca2+ decrease at the ER lumen close to RYR1
channel that is not reached under localised Ca2+ signaling
because of fast diffusion-mediated replenishment. From 8 to
16 open RYR1, local depletion is not much affected, with a
minimal ER Ca2+ concentration that remains around 340 μM
as visible in Figure 7 that shows a cross-sectional view of the
Ca2+ concentrations in the sub-PM ER and in the cytoplasmic
space including the junction (see also Supplementary Figure
S3 for cross-sections). Noticeably, Ca2+ concentrations at the
cytosolic side of RYR1 slightly decrease with the number of
open receptors, from 17.5 to 15.9 μM for 2 and 16 open
receptors, respectively. The slight decrease in the Ca2+

gradient at the channel pore indeed reduces the flux
through the RYR1. Thus, increasing the number of RYR1
leads to a decrease in the ER Ca2+ concentration around
STIM1/2, but this decrease is not sufficient to provoke the
passage of ORAI1 channels to a higher conductance state.

FIGURE 3 | Influence of the value of the distance between the PM and
the ERM on the Ca2+ microdomains in the ER-PM junction. The green curve
(15 nm) corresponds to the situation considered in Figure 2. Larger
distances, blue curve (30 nm) and orange curve (50 nm) do not influence
the low contribution of the opening of the ORAI1 to the Ca2+ concentration
increase in the junction. Dotted lines represent junctional Ca2+ concentration
reached in the absence of ORAI1 channels.

FIGURE 2 | RYR1 in the junction, showing that experimentally observed microdomains do not agree with the opening of the RYRs inside the junction given the low
contribution of the opening of the ORAI1 in conditions of a full ER (see text). Dotted line represents junctional Ca2+ concentration reached in the absence of ORAI1
channels (I) Individual evolution of 1–5 ORAI1 channels open state (Li et al., 2011) as a result of 0–9 RYR1 opening simultaneously. See Supplementary Information
and Anim. S1a,b for details.
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NAADP-induced Ca2+ microdomains observed early after
T cell stimulation thus rely on the simultaneous opening of
an average of seven–eight RYR1 located around the ER-PM
junction.

Predicted Type 1 Ryanodine Receptors
Involvement in the Formation of
Microdomains Agree With Type 1
Ryanodine Receptors Open Probabilities in
the Presence of NAADP
Simulation results obtained in the previous section indicate that
best agreement between modelled and experimentally observed
microdomains occur when most of the eight RYR1 located near
the preformed ORAI1/STIM1/STIM2 complexes are open
simultaneously during 64 ms. This conclusion stems from a
direct comparison between the simulated and experimentally
observed Ca2+ signals. To further validate this result, some
reasoning based on RYR1 open probability can be proposed.
The 64 ms duration of a Ca2+ microdomain corresponds to the
average duration of the NAADP-evoked Ca2+ signals arising in
the first 15 s after TCR activation (Diercks et al., 2018).

Interestingly, 64 ms also fits in the range of the reported
durations of Ca2+ sparks (Jaggar et al., 2000). It is thus likely
that in response to the TCR/CD3 stimulation-induced NAADP
increase, RYR1 undergo repetitive openings maintained by Ca2+-
induced Ca2+-release, a process that generates a small amplitude
Ca2+ increase in the cytosol, called “spark”. The decrease of ER
Ca2+ that accompanies the spark is in turn responsible for the
opening of ORAI1, and thus for the Ca2+ microdomain in the
junction.

We thus investigated if our conclusions about the molecular
mechanism underlying TCR/CD3-induced Ca2+

microdomains are compatible with the dynamics of RYR1
during spark-like activity. Upon TCR/CD3 stimulation,
global NAADP concentration in T cells increases from
4.1 ± 1.5 nM to 33.6 ± 7.2 nM (Gasser et al., 2006). Because
RYR1 are activated by NAADP in T cells (Wolf et al., 2015;
Diercks et al., 2018; Roggenkamp et al., 2021), their Ca2+-
releasing activity will increase. Indeed, Hohenegger et al.
(2002) have shown that the open probability of these
receptors is a highly nonlinear function of NAADP
concentration, with an EC50 of 31.2 ± 6.9 nM. Because
NAADP synthesis occurs near the ER-PM junctions (Gu

FIGURE 4 | Schematic representation of the model geometry of the ER-PM junction and sub-PM ER used to investigate the origin of the Ca2+ microdomains in
T cells with eight RYR1 around the junction (A) Frontal diagram showing the dimensions of the cone that represents the sub-PM ER, of the junction and of the portion of
the cytosol considered in the simulations. ORAI1 channels are in blue, SERCA pumps in orange and RYR1 in green. Plain lines represent membrane boundaries; dashed
lines, fictitious limits between the junction and the cytosol and double lines indicate the limits of the simulated system. The resting Ca2+ concentrations considered
as initial conditions and boundary conditions in the two compartments are indicated. (B) 3D view of the model geometry (C) Upper view of the positions of the ORAI1
channels on the PM, in blue, and of the SERCA pumps and RYR1 on the ERM, in orange and green respectively. Not to scale. This geometry is based on McIvor et al.
(2018). See text for details.
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FIGURE 5 |Simulated Ca2+microdomains resulting from the opening of the RYR1 adjacent to the junctions, which in turn induces the opening of ORAI1 channels in
the junctions as a result of local depletion of ER Ca2+ (A) Upper view of the arrangement of the ORAI1 channels on the PM of the junction (red dots) and of the adjacent
RYR1 (yellow lines) using COMSOL (B–I) Steady-state Ca2+ profiles in the junction when opening 1 (B) to 8 (I) RYR1 simultaneously. Shown are the profiles 22 ms after
opening of the RYR1. Upon depletion of local Ca2+ in the ER, which is quasi-instantaneous, ORAI1 channels open to an extent that depends on this local
concentration, as defined by the function f2/1 (see Supplementary Information). ORAI1 opening is assumed to occur immediately after depletion because ORAI1-
STIM1/2 aggregates are pre-formed (Weiss and Diercks, unpublished results). (J) Evolution of the amplitude of the simulated Ca2+ microdomains with the number of

(Continued )
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et al., 2021), local concentrations in the vicinity of RYR1 are
certainly larger than the average values mentioned above and
likely exceed the EC50. Thus, the open probability of RYR1
near the junctions must be of the order of 0.7, which is the
maximal value measured at 20 μM Ca2+. Given that the mean
open time of RYR1 is ~2 ms (des Georges et al., 2016; Sato &
Bers, 2011), the mean closed time in these conditions can be
estimated to be 0.86 ms. On the basis of these data, one can
obtain a rough approximation of the number of
simultaneously open receptors in a spark site when RYR1s

are maximally activated by NAADP. Straightforward
stochastic simulations of opening and closing of eight RYR1
with average opening and closing times equal to 2 and 0.86 ms,
respectively, indicate that most of the time, six receptors are
simultaneously open (Figure 8A). This result was obtained by
performing 64 ms long stochastic simulations of eight
independent RYR1 and determining at each time step how
many receptors are open. The maximal frequency at six open
receptors is in accordance with the three-dimensional spatio-
temporal simulations indicating that best agreement between

FIGURE 6 | Simulated Ca2+ microdomains resulting from the opening of up to 16 RYR1 adjacent to the junctions (A) Evolution of the amplitude of the
simulated Ca2+ microdomains in the presence (green curve) and in the absence of ORAI1s (dotted green curve) in the junction. Both green curves, up to eight
simultaneously open RYR1, correspond to the situation considered in Figure 5. The theoretical situation of a junction that does not contain ORAI1 channels
(dotted green curve) allows to appreciate that the contribution of Ca2+ released through the RYR1 to the Ca2+ microdomain is linear and rather limited. At
eight simultaneously open RYR1 (green curve), the complete cluster of five ORAI1 channels reach their maximum open state possible, in conditions of a full ER
(B) Individual evolution of 1–5 ORAI1 channels open state (Li et al., 2011) as a result of 1–16 RYR1 opening simultaneously. See Supplementary Information
for details.

FIGURE 5 | simultaneously open RYR1 in the junction, showing that experimentally observed microdomains can in principle result from the opening of ORAI1 channels
induced by the spontaneous opening of a few RYR1 near the junction, in conditions of a full ER. Dotted line represents junctional Ca2+ concentration reached in the
absence of ORAI1 channels. See Anim. S2a,b,c,d and S3 in Supplementary Information.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 9 | Article 8111459

Gil et al. Model of Stimulation-Induced Ca2+ Microdomains

75

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


experimental observations and computational results is
obtained when seven to eight RYR1 are simultaneously
open during a 64 ms Ca2+ spark, considering the existence
of pre-formed STIM1/2 and ORAI1 complexes (Figure 5). In
contrast, the same calculations predict that for basal NAADP
concentrations, when the open probability of RYR1 equals 0.4,
the highest frequency corresponds to three RYR1 open
simultaneously (Figure 8B). In the above simulations
(Figure 5), this corresponds to a Ca2+ microdomain with an
amplitude well below the experimental average. Similar
stochastic simulations (Supplementary Figure S5 and
related text in the SI) indicate that for the IP3-mediated
microdomains corresponding to pre-stimulation conditions,
the maximal frequency corresponds to two receptors open
simultaneously, in qualitative agreement with our previous
results (Gil et al., 2021).

In summary, by combining previous observations about
NAADP increase upon TCR/CD3 stimulation of T cells and
RYR1 open probability, we conclude that the NAADP-induced
increase in the open probability of RYR1 triggers the opening
of most of the eight RYR1 located around the ER-PM junction.
This is in agreement with the spatio-temporal simulations
shown in the previous section, which indicate that Ca2+

microdomains observed early after T cell stimulations rely
on the simultaneous opening of seven to eight RYR1 located
around the junction.

The Isoforms of STIM That Are Bound to
ORAI1 Determine the Characteristics of the
Ca2+ Microdomains
In the previous sections, we found that the microdomains
occurring during the first 15 s after TCR/CD3 stimulation
involve a larger number of ER Ca2+ releasing channels than
those observed before stimulation. Indeed, the local depletion
induced by the opening of six–seven RYR1 is needed to activate
ORAI1 and reproduce experimentally observed NAADP-
dependent microdomains (Figure 5) while three to six IP3R
are involved in the creation of the adhesion-mediated, IP3-
dependent microdomains (Gil et al., 2021). At first sight, this
is paradoxical as the conductance of RYR1 is about 5 times larger
than that of IP3Rs.

We thus studied the characteristics of the Ca2+ increases
created by the simultaneous opening of either eight IP3Rs or
eight RYR1 (see Table 1). For the two Ca2+ channel types, we
considered two possible preformed ORAI1/STIM complexes:

FIGURE 7 | Cross-section of the Ca2+ profiles in the junction, in the cytosol adjacent to the junction and in the sub-PM ER during microdomain formation (A–D)
microdomains created by the opening of 2, 4, 6 and 8 RYR1. Local depletion of ER Ca2+ provokes the opening of the nearby ORAI1s. This situation corresponds to the
one shown in Figure 5. (E,F)microdomains created by the opening of 12 and 16 RYR1, respectively. The second cluster of eight RYR1 is located directly underneath the
first cluster. Local depletion of ERCa2+ is not enough to provoke additional opening of the nearby ORAI1s. This situation corresponds to the one shown in Figure 6.
For all panels, the upper right bar indicates the colour code of Ca2+ concentration in the cytosol while the lower right bar indicates the colour code of Ca2+ concentration in
the ER. See Anim. S4.
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STIM2 homotetramers (STIM2/2) and STIM1 and STIM2
heterotetramers (STIM1/2). Simulation results indicate that
the nature of the ER Ca2+ release channel does not much
influence the characteristics of the Ca2+ microdomains.
Indeed, the Ca2+ signal in the junction is determined by
the opening state of ORAI1, which is the same when Ca2+

release from the ER is mediated by IP3Rs or RYR1. The Ca
2+

concentration sensed by the ORAI1/STIM complex is nearly
the same in the two situations. As shown in Figure 9C, once
the steady state gradients are established, the fluxes are nearly
identical. Because of the slow replenishment around the pore
of the receptor channel with DS = 10 μm2/s, the concentration
gradient around the two extremities of the pore does not

changes drastically and hence the flux remains of the same
order for IP3R and RYR1. In contrast, the nature of the STIM
isoforms bound to ORAI1 has a drastic influence on the
characteristics of the Ca2+ microdomain since it determines
their Ca2+ sensitivity, and hence the opening state of ORAI1.
Because STIM1/2 has a lower sensitivity to ER Ca2+ depletion
than STIM2/2, the open state of ORAI1 is lower and the
increase in Ca2+ in the junction has both a smaller amplitude
and spatial extent (compare blue to green lines in Figure 9A,B
to Figure 6B and Table 1).

Based on these computational observations, the
prototypical evolution of Ca2+ microdomains from
adherent to TCR/CD3 stimulated T cells is proposed to
obey the following scenario. Upon adhesion to proteins of
the extracellular matrix, integrin evoked IP3 signaling
provokes an increase in the frequency of Ca2+ puffs arising
from the clusters of IP3R located near the ER/PM junction.
These puffs typically last ~44 ms during which, in average,
two IP3Rs are open simultaneously. On the other hand, five
ORAI1 channels are located in the PM of the junction and
bound to STIM2/2 homotetramers. In response to the
decrease in ER Ca2+ created by the puff, the ORAI1
channels open to ~21% of their maximal conductance and
create the Ca2+ microdomain (Figures 10A, 1st row of
Table 2). After the Ca2+ puff, Ca2+ is rapidly replenished
in the sub-PM ER and ORAI1 channels shift to their lowest
conductance state (~7% opening) that corresponds to basal
Ca2+ entry, but not to a detectable Ca2+ microdomain
(Figure 10B, 2nd row of Table 2) when bound to the
STIM1/2 isoform, and stay at 21% when bound to STIM2/
2. TCR/CD3 stimulation initiates NAADP signaling, which
increases the open probability of the RYR1 located around the
junction and thus the frequency of Ca2+ sparks (Figure 10C,
3rd row of Table 2). During these events, ~6 RYR1 are open
simultaneously. At this stage, ORAI1 channels are preferably
bound to STIM1/2 heterotetramers, which decreases their
sensitivity to ER Ca2+ depletion. Thus, as in the case of the
IP3-dependent microdomains, they open at ~21% of their full
capacity. However, because more Ca2+ is released in the
cytosolic space just around the junction by six RYR1 than
by two IP3R, the Ca2+ microdomain in the junction is a bit
larger because of diffusion.

DISCUSSION

Activation of T cells is an essential step to start an adaptive
immune response. At this particular point a highly important
decision is made: whether a T cell stays quiescent or may
develop into an effector T cell carrying out immune effector
functions to destroy pathogens, or in case of autoimmune
reactions, to attack our own body. Among several signaling
processes involved, Ca2+ signaling is fundamental for T cell
activation. In a previous study, we resorted to mathematical
modeling to gain insight into the early, small scale Ca2+

increases that follow adhesive interactions of T cells, which
play a crucial role in T cell migration to inflamed tissue (Weiss

FIGURE 8 | Frequency of simultaneously open receptors in a cluster of
eight RYR1 during 64 ms that corresponds to the duration of a Ca2+ spark (A)
During a spark when RYR1 are maximally activated by NAADP, there are most
of the time around five to six simultaneously open RYR1, with a single
receptor open probability of 0.7 (Hohenegger et al., 2002). This is in
agreement with the results seen in Figure 5. (B) At basal NAADP
concentration, the single receptor open probability is around 0.4, and there
are continuously around three to four simultaneously open RYR1, which is not
enough to reach the experimental Ca2+ amplitude. In the two panels, the
stochastic simulations of opening and closing of individual receptors are
performed during 64 ms.
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and Diercks, unpublished results; Mezu-Ndubuisi &
Maheshwari, 2021). Here, we extend this model to
investigate the molecular mechanism underlying the early
phase of activation following TCR/CD3 stimulation.
Although both types of Ca2+ microdomains largely rely on
Ca2+ entry through preformed ORAI1/STIM complexes, the
former response relies on IP3 signaling while the latter
involves NAADP and RYRs. Interestingly, a progressive
change in STIM isoforms, from mainly STIM2
homotetramers to STIM1/2 heterotetramers, also
accompanies this transition (Figure 11). Computational
modeling of the spatio-temporal Ca2+ dynamics in the ER-
PM junctions allowed us to reproduce the observation that the
microdomains triggered by cell adhesion or by TCR/CD3
stimulation at its early phase appear rather similar, despite
the different underlying mechanisms.

Simulations of the NAADP dependent microdomains quite
forwardly predict that RYR1 are most probably located
outside the junction, in a region of the ER membrane that
is directly adjacent to the junction. This view contrasts with
the well-known arrangement of RYR2 in cardiac cells, where
they are facing the PM in dyadic clefts (Jones et al., 2018). In
principle, a few RYR1 could be located in the ER-PM junction
of T cells because the dimensions of its cytoplasmic part
(approx. 28 nm × 28 nm × 12 nm, see Lanner et al., 2010)
do not exceed the dimensions of the junction. However, Ca2+

microdomains simulated with such a spatial arrangement are
no longer dependent on ORAI1, since the increase in Ca2+

concentration due to the influx mediated by a single RYR into
the junction suffices to create a Ca2+ signal of the amplitude
observed experimentally, which does not agree with
experimental results. It is thus most probable that in
T cells RYR1 are arranged around the junction, in the same
way as IP3R (Thillaiappan et al., 2017; Taylor and Machaca,
2019).

Computational results indicate that the influx through ORAI1
channels much depends on the STIM isoforms to which it is
bound. In the case of local signaling investigated here, the same
opening state of ORAI1 is reached after local Ca2+ depletion
induced by three IP3R when it is bound to STIM2/2 as after local

Ca2+ depletion induced by seven RYR1 when it is bound to
STIM1/2. Thus, the change in the nature of the ORAI1/STIM
complexes that follow TCR/CD3 stimulation is expected to play a
crucial role in maintaining Ca2+ signaling localized despite the
stimulation of RYR by NAADP. Along this line, Ahmad et al.
(2021) have recently shown in HEK293 cells that while clusters of
STIM2 represent the sites of SOCE initiation, STIM1 molecules
are progressively recruited when cells are exposed to low
stimulation.

In contrast, the nature of the ER-releasing Ca2+ channel
that creates the local depletion in the sub-PM ER,
subsequently triggering ORAI1 opening does not have a
significant effect. This result is a priori surprising given
that the RYR1 has a conductance ~5 times larger than the
IP3R. Simulations indicate that the flux is limited by the
replenishment of ER Ca2+ at the mouth of the channel
rather than by its conductance. Thus, the extent of local
depletion is imposed by the value of the diffusion
coefficient of Ca2+ in the ER. This computational
observation agrees with the major role played by
intraluminal diffusion of Ca2+ in setting the responsiveness
of Purkinje cells to synaptic inputs (Okubo et al., 2015). It
should be kept in mind that the peculiar geometry of the
junctional ER is expected to play an important role in
decreasing the value of the effective Ca2+ diffusion
coefficient because of the tortuosity of the tubular network
of the ER (Schaff et al., 1997; Oloveczky and Verkman, 1998).
In our simulations, diffusion is however fast enough to avoid
decreases in local ER Ca2+ that would trigger the passage of
ORAI1 channels in a highly active state. Simulations indicate
that during localized Ca2+ signaling in T cells, ORAI1
channels never exceed 21% of their maximal activity.

Together with experimental observations (Diercks et al.,
2018; Weiss and Diercks, unpublished results), our
computational model ascribes the evolution of Ca2+

microdomains from the adherent/pre-stimulated to the
TCR/CD3 early stimulated state as a passage from puff-to
spark-triggered SOCE. Indeed, while the two types of localized
Ca2+ signaling rely on ORAI1-mediated Ca2+ entry, cell
adhesion triggers the synthesis of IP3, and TCR/CD3

TABLE 1 | Characteristics of the simulated microdomains relying on the simultaneous opening of eight IP3Rs for 44 ms (first two lines) or of eight RYR1 for 64 ms (lines three
and 4). For each case, two situations are considered: the existence of pre-formed clusters of ORAI1 with STIM2/2 homotetramers (lines 1 and 3) and the existence of pre-
formed clusters of ORAI1 with STIM2/1 heterotetramers (lines two and 4). Maximal concentrations denote the maximal local concentrations reached in the domains
indicated. Spatial extent refers to the area of the junction’s portion in which Ca2+ concentration exceeds 300 μM. The ER [Ca2+] felt by ORAI is the average local concentration
of luminal Ca2+ around the mouth of the IP3R or RYR1, computed in a 108 nm3 volume.

Eight Open
Receptors

Max[Ca2+] in the
junction(μM)

Max[Ca2+] around
the junction(μM)

Average[Ca2+] in the
junction(μM)

Spatial
extent (μM2)

ER[Ca2+] at
channel
pore(μM)

ER[Ca2+] felt by
ORAI(μM)

ORAI mean
open state

IP3R
44 ms

STIM2/
2

10 17 0.755 0.049 11 331 54%

STIM2/
1

354 17 0.396 0.024 11 331 21%

RyR
165 ms

STIM2/
2

11 18 0.762 0.049 12 328 54%

STIM2/
1

4.57 18 0.402 0.024 12 328 21%
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FIGURE 9 | Influence of the nature of the ER Ca2+ channel inducing the local depletion of ER Ca2+ (IP3R or RYR1) and of the STIM isoforms bound to ORAI1 on the
characteristics of Ca2+ microdomains (A) Evolution of Ca2+ microdomains amplitude with the number of simultaneously open RYR1 in the junction. The microdomains
observed in conditions of full ER can be induced by the spontaneous opening of a few RYR1 near the junction that in turn trigger the opening of ORAI1 channels bound to
STIM2/2 (blue curve) or to STIM1/2 (green curve). ORAI1 channels open to an extent that depends on local ERCa2+ concentration, as defined by the corresponding
function f2 or f2/1 (see Supplementary Information) (B) Individual evolution between the 5 open states of the ORAI1 (Li et al., 2011), as a result of 1–8 RYR1 opening
simultaneously. (C) Comparison of Ca2+ fluxes through open IP3Rs and RYR1. Because of the slow replenishment around the pore of the receptor channel with DS =
10 μm2/s, the concentration gradient around the two extremities of the pore does not changes drastically and hence the flux remains of the same order for IP3Rs and
RYR1.
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stimulation initially that of NAADP. The respective durations
of the two types of Ca2+ microdomains (44 ± 4 ms and 64 ±
3 ms) are in the ranges of those reported for puffs (Bootman
et al., 1997) and sparks (Jaggar et al., 2000), respectively. In

the two cases, the local depletion in ER Ca2+ created by the
puff or the spark can trigger ORAI1 opening, with a resulting
simulated Ca2+ increase in the ER-PM junction that matches
experimental observations. Moreover, straightforward

FIGURE 10 | Simulated most probable Ca2+ microdomains resulting from a T cell transition between quiescent to early activation. (A) Non TCR/CD3-dependent
Ca2+ microdomains formed by the opening of two IP3Rs adjacent to the junction and further opening of ORAI1 channels bound to STIM2/2 (B) Basal opening of five
ORAI1 channels, one inherently co-localized with STIM2/2 and four inherently co-localized with STIM1/2 leading to small microdomains arising from nano-scale [Ca2+]
fluctuations in the sub-PM ER. Artificial construction (C) TCR/CD3-dependent Ca2+ microdomains formed by the opening of six RYR1 adjacent to the junction and
further opening of ORAI1 channels bound to STIM1/2. See Anim. S5a,b,c in the Supplementary Information. (D) Ca2+ profiles along the yellow dotted line shown in A
that traverses the middle of the junction at a 7.5 nm distance from the PM, corresponding to panels A, B and C.

TABLE 2 |Characteristics of the simulated microdomains corresponding to IP3-dependent Ca
2+ signaling stimulated by T cell adhesion (line 1), to a spontaneous opening of

ORAI in the absence of stimulation (line 2) or to NAADP-dependent Ca2+ signaling in response to TCR/CD3 stimulation (line 3)

— Average[Ca2+] in the junction(μM) Spatial extent (μm2) ER[Ca2+] felt by ORAI(μM) ORAI mean open state

Puff,2 IP3R; STIM2/2 0.293 0.0078 350 21%
ORAI,STIM2/2 to STIM2/1 0.236 — 400 7%
Spark,6 RYR1; STIM2/1 0.307 0.0123 335 21%
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stochastic simulations of channel opening and closing taking
into account the channels open probabilities in the presence of
ligand and high Ca2+ concentration indicate a number of
simultaneously open receptors matching with the results of
the 3D spatiotemporal simulations. In the future, more
realistic 3D simulations should be performed to take into
account the stochastic nature of puffs and sparks to simulate
microdomains, instead of the simplified deterministic
description of stereotypic IP3R- or RYR1-mediated release
of ER Ca2+ used in the present study.

As another perspective, the present model could be used to
investigate how the increase in frequency of RYR1 opening
observed ~15 s after TCR/CD3 stimulation affects the
spatiotemporal dynamics of junctional Ca2+ during the
transition of T cells towards full activation. In these longer
time scales, additional aspects of SOCE regulation should be
considered, such as slow Ca2+ dependent inactivation (Dagan
and Palty, 2021) or the dynamic nature of the ER-PM
junctions (Okeke et al., 2016). The extension of the model
to several junctions would enable to investigate how

FIGURE 11 | Schematized representation of the proposed mechanism underlying the spontaneous formation of Ca2+ microdomains in T cells during its
transition from quiescent to early activation (A) In an otherwise unstimulated cell, non TCR/CD3 dependent short, spontaneous activation of one or a few
IP3Rs close to the junction, releases Ca2+ from the sub-PM ER into the cytosol, leading to further opening of ORAI1 channels most likely bound to STIM2/2 at
this stage (Weiss and Diercks, unpublished results) (B) During the first 15 s following TCR/CD3 stimulation, and NAADP driven activation of several
RYR1 close to the junction, slightly larger amount of Ca2+ is released from the sub-PM ER into the cytosol. The resulting local Ca2+ depletion close to the
RYR1 pore provokes the unbinding of Ca2+ from STIM1/2 heterotetramers, which further activates ORAI1 channels (Diercks et al., 2018). Red spots
represent Ca2+ ions.
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microdomains spread and interact to propagate Ca2+ signals
deeper into the cell and promote full activation.
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Optimal Experimental Design Based
on Two-Dimensional Likelihood
Profiles
Tim Litwin1,2,3*, Jens Timmer2,3,4 and Clemens Kreutz1,2,4

1Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg,
Freiburg, Germany, 2Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg,
Germany, 3Institute of Physics, University of Freiburg, Freiburg, Germany, 4Centre for Integrative Biological
Signall ing Studies (CIBSS), University of Freiburg, Freiburg, Germany

Dynamic behavior of biological systems is commonly represented by non-linear models such
as ordinary differential equations. A frequently encountered task in such systems is the
estimation of model parameters based on measurement of biochemical compounds. Non-
linear models require special techniques to estimate the uncertainty of the obtained model
parameters and predictions, e.g. by exploiting the concept of the profile likelihood. Model
parameterswith significant uncertainty associatedwith their estimates hinder the interpretation
of model results. Informing thesemodel parameters by optimal experimental designminimizes
the additional amount of data and therefore resources required in experiments. However,
existing techniques of experimental design either require prior parameter distributions in
Bayesian approaches or do not adequately deal with the non-linearity of the system in
frequentist approaches. For identification of optimal experimental designs, we propose a two-
dimensional profile likelihood approach, providing a design criterion which meaningfully
represents the expected parameter uncertainty after measuring data for a specified
experimental condition. The described approach is implemented into the open source
toolbox Data2Dynamics in Matlab. The applicability of the method is demonstrated on an
established systems biologymodel. For this demonstration, available data has been censored
to simulate a setting in which parameters are not yet well determined. After determining the
optimal experimental condition from the censored ones, a realistic evaluation was possible by
re-introducing the censored data point corresponding to the optimal experimental condition.
This provided a validation that our method is feasible in real-world applications. The approach
applies to, but is not limited to, models in systems biology.

Keywords: experimental design, profile likelihood, systems biology, mathematical model, parameter uncertainty,
prediction uncertainty, confidence distribution

1 INTRODUCTION

With Fisher’s pioneering work on optimizing the design of agricultural experiments lying a century
in the past, the design of informative experiments has long since become a foundation for most
quantitative sciences. While there are undeniably practical aspects of conducting an experiment to
generate the data used for analysis, planning a successful experiment requires consideration of
statistical concepts even before any data is collected as this can help to develop the “logic of
experimentation” (Bishop et al., 1982).
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In systems biology, the underlying models used for analyses
become increasingly complex. This is due to the fields aspiration
to provide holistic descriptions of biological systems which are
able to capture not only static properties of a system but the
dynamic interactions of the system’s components (Kitano, 2002;
Nurse andHayles, 2011). For these systems, mathematical models
are established to reduce the complexity of the biological
components to their relevant features. The process of
“building a model” is an intertwined process of finding a
model which adequately describes the observed dynamics
given the existing biological knowledge and providing the
quantitative inputs for this model through experimentation
(Kreutz and Timmer, 2009). The aim of systems biology is to
construct “useful” models (Wieland et al., 2021), i.e. models that
yield biological insights. Assessing whether a model is useful can
be “notoriously difficult” (Liepe et al., 2013), even more so if the
data obtained from experiments is insufficient to inform the
model. Therefore, close cooperation of experimenters and
theoreticians throughout the process increases the chance of
generating data that is suitable for this task.

Biochemical processes can often be represented as ordinary
differential equations (Nurse and Hayles, 2011; Liepe et al., 2013;
Raue et al., 2013) which are often adequate representations of
molecular dynamics. In general, this means that the observed
biochemical compounds will be non-linearly related to the model
parameters. Although such models are able to describe the system
realistically, non-linearity proves to be a challenge in the analysis
of the models properties. One consequence of non-linearity is the
frequent absence of analytical solutions to the differential
equations which determine the time-evolution of the biological
states involved. Consequently, estimation of model parameters by
optimization of the objective function, which measures the
deviation of the model predictions to the measured data, is
limited to numerical approaches (Raue et al., 2013). The
difficulty of this “inverse problem” (Liepe et al., 2013) of
determining the model parameters which describe the
observed data the best is exacerbated in biological systems.
Characterization of these systems can lead to a model with
many parameters and biological states with the available data
being noisy (Kreutz and Timmer, 2009). Additionally, the system
is generally only partially observable, i.e. not all biochemical
compounds in the model can be measured (Raue et al., 2009).

A major task in developing experiments in this defined setting
is to propose practically feasible experiments which decrease the
uncertainty about the value of parameters of interest. A well-
known result from the classical theory of non-linear experimental
design is that the optimal design depends on the “true model
parameters,” i.e. the parameters that govern the true evolution of
the system (Busetto et al., 2013), e.g. illustrated for the setting of
Fisher’s dilution series experiments (Cochran, 1973). However,
we are interested in inferring exactly these unknown parameters.
A solid initial guess about the parameter values would solve the
problem, but given the complex nature of the modeled systems,
prior knowledge is usually sparse (Kreutz and Timmer, 2009;
Bazil et al., 2012). A natural approach is then to design
experiments sequentially (Cochran, 1973; Ford et al., 1989),
i.e. measure the data in batches, updating the knowledge about

the initial parameter values for each experimental design
iteration.

Much of the classical literature on designing the optimal
experiment is based on the Fisher information matrix (Ford
et al., 1989; Atkinson and Donev, 1992; Fedorov, 2010). This
is a natural approach in linear systems, as the inverted Fisher
information matrix determines the covariance matrix of the
estimated model parameters. Appropriate characteristics of
this covariance matrix are then optimized by a suitable
experimental design (Atkinson and Donev, 1992; Faller et al.,
2003). However, application of the Fisher information matrix is
known to be troublesome in non-linear systems if the amount of
data is limited and statistical properties are far from asymptotic.
The Wald confidence intervals implied by the Fisher information
matrix might then only crudely reflect the existing uncertainty.
Confidence intervals generated by the profile likelihood approach
have more desirable properties in the finite sample case (Meeker
and Escobar, 1995) and allow for the conceptional and
operational definition of practical identifiability (Raue et al.,
2009). Experimental planning in frequentist statistics should
therefore make use of this powerful concept of quantifying
parameter uncertainty and identifiability.

Approaches to the experimental design problem have also been
developed in a Bayesian framework. The conceptual foundation of
updating prior parameter knowledge given the newly measured data
in Bayesian statistics provides natural solutions to the problem of
experimental design. The information gain of an experiment can be
reasonably quantified bymeans of the Shannon information (Lindley,
1956) and application of this theory to Bayesian experimental design
provides a tool to plan optimal experiments for parameter inference
(Huan and Marzouk, 2013; Liepe et al., 2013) and model
discrimination (Busetto et al., 2013). However, we focus on a
frequentist approach as it is usually not feasible to provide
reasonable priors for all model parameter in the systems biology
context.

There exist frequentist methods for experimental design if it is
infeasible to provide prior information for all model parameters.
If sets of parameters which are compatible with existing data
about the system were known, the corresponding set of model
trajectories would indicate for which observables and for which
time points the model prediction is not yet reasonably
constrained; such experimental conditions would then be
“experimentally distinguishable” (Bazil et al., 2012). This set
was previously constructed from efficient sampling of the
parameter space (Bazil et al., 2012) or exploring the
parameters along the likelihood profiles (Steiert et al., 2012).
The latter method was applied in the DREAM6-Challenge
(Dialogue for Reverse Engineering Assessments and Methods)
and has been awarded as the best performing approach (Steiert
et al., 2012). However, this approach assesses the impact of
different sets of model parameters on the model predictions.
In order to optimally design experiments which decrease
parameter uncertainty, the logic of the design scheme has to
be reversed: Instead of assessing the impact of different model
parameters on the model prediction, the impact of different
measurement outcomes on the parameter estimate of interest
has to be assessed.
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We propose a frequentist approach for optimal experimental
design which realizes the full potential of the profile likelihood
approach by extending the previously best-performing method
(Steiert et al., 2012). For a specified experimental condition, we
quantify the expected uncertainty of a targeted parameter of
interest after a possible measurement. The parameter uncertainty
after any specific measurement outcome is determined by the
respective profile likelihood, effectively yielding a two-
dimensional likelihood profile when accounting for different
possible measurement outcomes. The range of reasonable
measurement outcomes given the current data available before
the measurement is quantified via the concept of validation
profiles (Kreutz et al., 2012). The two-dimensional likelihood
profile provides both the range of reasonable measurement
outcomes of an intended experiment and their impact on the
parameter likelihood profile. Hence, this allows for a definition of
a design criterion which represents the expected average width of
the confidence interval after measuring data for a certain
experimental condition. The two-dimensional likelihood
profiles therefore provide quantitative information usable for
sequential experimental design and additionally serve as an
intuitive tool to visualize the impact of an experiment on the
uncertainty of the parameter of interest.

2 MATERIALS AND METHODS

2.1 Mathematical Model
We introduce the concept of ordinary differential equation
models, because they are frequently used for modeling of the
dynamics of biological systems. However, we want to
emphasize that the introduced method for experimental
design is generic and only requires specification of a
suitable likelihood function.

Biological quantities such as the concentration of a molecular
compound are represented by mathematical states x(t) and are
assumed to follow a set of ordinary differential equations

_x(t) � f(x, p, u) (1)

which generates the trajectories according to the unknown
underlying true dynamic model parameters p0. The function f
is typically defined by translating biochemical interactions, e.g. by
the rate equation approach. The trajectories depend on the
specific experiment conducted which is denoted by the
experimental perturbations u, representing interventions such
as external stimulation of the system or knockout of specific
genes. The set of model parameters will usually include the initial
values x0 of the model states.

Estimation of the true parameters typically requires
measurement of time-resolved data on these states. However,
some states in the considered system might not be observable at
all or only indirectly accessible, e.g. if only a sum of different states
can be observed (Raue et al., 2009). Additionally, measured data
will usually be subject to random errors. Therefore, the set of
observables

y(t) � g(x(t), sobs) + ϵ (2)

defines the types of data that can be measured. In this equation, ϵ
describes the random error of the measurement which is usually
assumed to be normally distributed, i.e. N (0, σ2(x(t), serr)), but
not necessarily homogeneous across measurements, i.e. the
magnitude of the noise might depend on parameters serr.
Random variations in biological systems usually occur on a
relative scale (Limpert et al., 2001) and are thus proportional
to the current value of the state. This implies that errors are
frequently normally distributed if the observables are considered
on a logarithmic scale. The observation function g determines
how the states are mapped unto the observables. This mapping
will on many occasions introduce new unknown parameters sobs
such as scale parameters. The set of all parameters is denoted by
θ = {p, x0, sobs, serr}.

The measured data of the system provides a set of scalar values
yi which each corresponds to an experimental condition Di

containing all information necessary to interpret the value yi.
The experimental condition is uniquely defined as the measured
observable, the time point of measurement and the
corresponding experimental perturbation.

The objective function which indicates the agreement of
experimental data with the model prediction given some
parameters θ and measured data Y = {y1, . . ., yn} is the
likelihood function

L(θ|Y) � ∏
i

ρ(yi|Di, θ) (3)

with ρ indicating the probability density for the considered
data point. Maximizing this likelihood leads to the maximum
likelihood estimate θ̂(Y) which indicates the parameters for
which the fit between data and model predictions is optimal.
Numerical optimization of this function is preferably
performed by minimizing the monotonously transformed
function LL = − 2 ln(L) to improve numerical stability. If
the data is independently normally distributed and
variances are known, this transformation has the
advantageous properties that the optimization of the
objective function is equivalent to least squares optimization.

2.2 Profile Likelihood
2.2.1 Parameter Profile Likelihood
The task of parameter inference is not completed with the
identification of the maximum likelihood estimate. In general,
other parameter estimates may provide other model trajectories
which might fit similarly well to the given data. Additionally,
replications of the same experiment will lead to different
measurement results and therefore also different parameter
estimates due to variance in the biological samples and the
measurement process. From a frequentist standpoint, methods
are required to construct confidence intervals for either individual
parameters or multiple parameters jointly, which have a pre-
defined coverage probability of containing the true parameter
value if the experiment were to be replicated. Within the context
of this paper, we focus exclusively on confidence intervals for
individual parameters.

The commonly encountered Wald confidence intervals are
based on a quadratic approximation of the likelihood and fail if
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the model features non-linear dynamics (Meeker and Escobar,
1995; Raue et al., 2009). The quadratic approximation of the
likelihood depends on the parametrization of the model, may not
respect boundaries of the parameter space and cannot capture
global behavior such as the existence of local optima.

A more refined tool which reduces the high-dimensional
likelihood onto the one-dimensional parameter of interest pi is
the profile likelihood

PLpi(β|Y) ≔ − 2 ln
L(β, ω̂(β)|Y)
L(β̂, ω̂|Y)( ) (4)

with the parameter vector θ = {β, ω} being split into the parameter
of interest pi = β and the nuisance parameters pi≠j = ω. The hats
indicate maximum likelihood estimates, i.e.

ω̂(β) � argmax
ω

L(β,ω|Y) (5)

are the nuisance parameters which maximize the likelihood if β is
fixed to a specific value. The parameter profile likelihood is
invariant under one-to-one parameter transformations and can
accurately reduce complex shapes of the underlying likelihood
function to an adequate one-dimensional representation.
Confidence intervals can be constructed from the parameter
profile by Wilks’ Theorem (Wilks, 1938) and take the form

CIα � {β|PLpi(β|Y)< icdf(χ21, α)}. (6)

with icdf representing the inverse cumulative distribution
function. Note that high values of the profile likelihood
defined in Eq. 4 correspond to lower values of the likelihood.
This implies that parameter values β associated with a large
profile likelihood value PLpi(β|Y) are less likely to correspond
to the true parameter value. Therefore, only parameter values
with a profile likelihood value below a certain confidence
threshold are included in the corresponding confidence interval.

Informally, Wilks’ theorem implies that asymptotically, these
confidence intervals will attain the correct coverage probability α
as they become equivalent to the Wald approximation. However,
the finite sample properties of the profile likelihood intervals are
superior. The notion of parameter profiles allows identifiability
analyses on the parameters (Raue et al., 2009). Parameters can be:
1) Identifiable, in which case the width of the defined confidence
interval is finite. 2) Structurally non-identifiable, in which case the
profile likelihood is flat. This implies that any change of the
parameter of interest can be compensated by changing other
model parameters. 3) Practically non-identifiable, in which case
the profile likelihood is not completely flat, but does not cross the
confidence threshold to both sides such that the size of the
confidence interval is infinite. While structural non-
identifiability can only be resolved either by reparametrization
of the model or qualitatively new experiments, practically non-
identifiability can usually be resolved by providing higher quality
data from similar experiments. Identifiability is distinct from the
frequently encountered concept of sloppiness (Chis et al., 2016)
which plays no role for the experimental design as discussed
within this study. Due to the advantageous theoretical as well as
practical properties of the profile likelihood, parameter

uncertainties in this study are exclusively discussed in terms of
their corresponding likelihood profile.

2.2.2 Validation Profile Likelihood
The parameter profile likelihood allows for the evaluation of the
uncertainty of parameters given the current data. For some
applications, assessing the “prediction uncertainty,” i.e. the
uncertainty about the outcome of measuring at a certain
experimental condition, might be more relevant. In a
frequentist setting, one can readily extend the concept of the
parameter profile likelihood to this setting in the form of the
“validation profile likelihood” (Kreutz et al., 2012), also called
“predictive profile likelihood” (Bjornstad, 1990), in which case the
likelihood is reduced to the dimension of the measurement
outcome of interest. Formally, this profile is defined by

VPL(z|y) ≔ − 2 ln
L(θ̂(Y, z)|Y, z)

L(θ̂(Y)|Y, F(θ̂(Y)|Dz))
( ) (7)

with z defined as the outcome of measuring at experimental
condition Dz and F(θ̂(Y)|Dz) defined as the respective model
prediction given parameters θ̂(Y). The interpretation of this
validation profile likelihood is completely analogous to the
parameter profile likelihood since the same coverage statement
as in Eq. 6 holds (Kreutz et al., 2012) if the random variable z is
normally distributed. It should be remarked that the statement
about the coverage is slightly adapted in the sense that the
coverage probability is true if Y and z are repeatedly drawn.
Just as parameter uncertainty is reasonably quantified by the
parameter profile likelihood, uncertainty of the measurement
outcome for an experimental condition of interest is specified
by the validation profile likelihood.

2.3 Experimental Design Task
Understanding the task of designing an informative experiment
requires clarification. We start by introducing the common
terminology of the theory of optimal experimental design. The
design regionK is the set of all experiments that can be conducted
and a design point (or experimental condition) D within this
design region labels a possible experiment which returns a data
point (Fedorov, 2010). In our context, the design region K is
designed as the set of all admissible triples of measurable
observables g, possible time points of the experiment t as well
as all external perturbations u considered. A design point D is
then defined as the triple D = {g, t, u} (Kreutz et al., 2012). The
collective of all conducted experiments can therefore be
represented as the set of corresponding design points which is
called the design of the experiment. This design is more
commonly represented by a probability measure ξ on the
design space K which compactly specifies all design points for
which measurements outcomes are available. (Ford et al., 1989;
Fedorov, 2010).

The problem we are concerned with is the reduction of
uncertainty for a single parameter by conducting an
experiment at an informative design point. This means that
given a set of admissible design points, we want to decide
which of these experimental designs will best reduce the
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existing uncertainty about a pre-specified parameter. To put this
into a more formal framework, we are looking for a design
criterion Φ: K → R which quantifies the most informative
experiment in this context. Note that the optimal experimental
design will usually depend on the unknown true parameters of the
system. Additionally, we want to emphasize that we are
concerned only with a single best experiment and not a batch
of parallel experiments conducted at the same time.

2.4 Measuring Parameter Uncertainty
2.4.1 Classical Theory
The optimal experimental design depends on the choice of a
reasonable design criterion. Classical design theory solves this
problem by applying the Fisher information matrix as the
appropriate measure of information and establishing design
criteria based on this matrix M(θ, ξ), i.e. the design criterion
takes the formΦ(M(θ, ξ)) (Ford et al., 1989; Atkinson and Donev,
1992; Fedorov, 2010). The Fisher information matrix is
concerned with the local behavior of the likelihood function
around a specified parameter, which in application usually
means in the neighborhood of the current maximum
likelihood estimate of the parameters (Faller et al., 2003). For
the same reasons discussed earlier, we propose that it is more
adequate to utilize the profile likelihood of the parameter of
interest pi to construct a measure of information which we can
use to design an optimal experiment.

2.4.2 Confidence Distribution
There is no unique way to define the information available in the
likelihood profile {(β, PLpi(β))|β ∈} of the parameter of interest
pi. Instead of thinking in terms of the available information about
the parameter, it is instructive to think in terms of existing
uncertainty which we want to minimize by the experiment. In
practical applications it is common that profile likelihoods are
evaluated to obtain the respective 95%-confidence intervals
CI0.95(pi) which serve as a measure of existing uncertainty.
This comes with two notable issues: The 95%-interval might
not be finite, which complicates the interpretation of existing
uncertainty. This can be resolved in the definition of the model’s
parameter space, which is constrained by parameter boundaries
which span orders of magnitude and thus only weakly constrain
the possible parameter values. On a more conceptual level,
working with arbitrary fixed confidence levels is discouraged
(Wasserstein and Lazar, 2016) and uncertainty is more
comprehensively assessed if all confidence levels are
considered simultaneously.

This issue can be resolved by confidence distributions (Xie and
Singh, 2013) which can be thought of simultaneously containing
the information about the confidence intervals to all levels. This
concept allows the construction of an object that has the form of a
distribution estimator for the parameter of interest pi in the realm
of frequentist statistics. The corresponding confidence density
ρparpi

(β) has the property that each interval [β1, β2] which satisfies

∫β2
β1
ρparpi

(β)dβ � α is an α%-confidence interval for the parameter pi.
Conceptually, we can derive the confidence density ρparpi

(β) for a
parameter from the set of confidence intervals {CIα(pi)|α ∈ [0, 1]}

obtained from its likelihood profile. However, we will not use the
concept explicitly andwe remark that in the case offinite sample size,
the obtained confidence distributions are not exact. By associating
the parameter of interest pi with their corresponding confidence
distribution ρparpi

, we have a theoretically well-founded quantity on
which the uncertainty of the parameter can be quantified.

2.4.3 Uncertainty as a Scalar Quantity
Ranking different experiments by their information content
requires a way to order their corresponding design criterion
values. A necessary step to achieve this is to reduce the
confidence distribution of a parameter to a scalar value. We
suggest utilizing the average confidence interval width

�w(pi|Y, z) � ∫
1

0

w(CIα(pi|Y, z))dα (8)

to summarize the information content of the confidence
distribution. The function w assigns the width to the
corresponding confidence interval. Different confidence
interval widths are averaged by weighting with their respective
confidence measure dα. The measure dα specifies the confidence
that the true parameter value is covered by the interval CIα+dα(pi),
but not by CIα(pi). Evaluation of this average confidence interval
width does not require the explicit confidence distribution but
only the individual confidence intervals. Thus, it can be directly
calculated from the profile likelihood. In practice, we will only
consider confidence intervals up to the 95%-level to ensure
practical feasibility.

2.5 Two-Dimensional Profile Likelihood as a
Design Criterion
In the previous sections, we proposed to quantify parameter
uncertainty via the profile likelihood approach by definition of an
average profile width in Eq. 8, which summarizes the existing
uncertainty about the parameter of interest. Optimal
experimental design aims at minimizing this measure of
uncertainty by choosing an experimental condition for the
next measurement which optimizes a suitable design criterion.
However, for a given experimental condition D it is a priori
unknown which value will result from a future measurement.
This implies that the parameter profile likelihood PLpi(β|Y, z)
and therefore the average profile width �w(pi|Y, z) depends on the
measurement outcomes z. In Figure 1A, the original parameter
profile before the measurement (black line) is practically non-
identifiable at the 95%-level for the parameter of interest.
Depending on the measured data point zi, the uncertainty
about the parameter of interest is reduced to different degrees
as indicated by the corresponding parameter profiles (blue lines).
Since the measurement outcome is unknown, it is unclear what
the uncertainty will be after the measurement.

The plausibility of different possible measurement outcomes
can be accounted for by weighting the average profile widths for
different measurement outcomes by their likelihood of occurrence.
As discussed in Section 2.2.2, this plausibility measure is implied by
the validation profile likelihood. Figure 1B shows the validation
profile for the specified design: z2 corresponds to the current
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maximum likelihood prediction for this experimental condition and
is therefore the most likely measurement outcome given the current
evidence, while z3 has a higher validation profile value than z1 and is
therefore less likely. Therefore, the validation profile likelihood
implies a predictive distribution which can be defined in analogy
to the confidence distribution derived from the parameter profile
likelihood. The corresponding predictive density ρpred(z|Y) associates
different measurement outcomes with our confidence that the
specific outcomes occur.

The concept of summarizing parameter uncertainty for a
fixed measurement outcome and subsequent aggregation of
different possible measurement outcomes based on the
predictive density can be combined to construct a design
criterion for an experimental condition of interest. To this
end, each expected parameter profile width �w(pi|Y, z) is
weighted with the certainty ρpred(z|Y) of observing

measurement outcome z and the expected average profile
width follows as

W(pi|Y,D) � ∫ �w(pi|Y, z)ρpred(z|Y)dz. (9)

W(pi|Y, D) exclusively depends on the given data Y and the
experimental condition D of a subsequent experiment and thus
by definition constitutes a design criterion. This quantity can be
interpreted as the expected average profile width after
measuring at the experimental condition D, where the
average is taken over different parameter confidence levels
and the expectation is taken over different possible
measurement outcomes, weighted by their predicted
plausibility. Given a set of experimental conditions {D1, . . .,
Dn}, the optimal experiment D* to inform parameter pi is the
one which minimizes W(pi|Y, D) given the current data Y, i.e.

FIGURE 1 | (A): Likelihood profiles of a hypothetical parameter of interest. Different measurement outcomes z1, z2, z3 for the same experimental condition lead to
different updated parameter profiles which assess uncertainty about a parameter of interest. (B): Validation profile of the considered hypothetical experimental condition.
This profile assesses the likelihood of a newmeasurement: The smaller the validation profile value, themore likely the respective outcome (C): 2D-Likelihood profile for the
parameter of interest under some given experimental condition. The vertical axis corresponds to different possible measurement outcomes. If the outcome on the
vertical axis would be observed, the profile likelihood after the measurement is given by the corresponding horizontal cross-section through the two-dimensional profile.
In this example, lower values of the measurement outcome lead to narrow parameter confidence intervals after the measurement. (D): 2D-Likelihood profile on a
confidence scale. Intervals of the same size on the y-axis hold equal confidence that a measurement will yield a data point in the corresponding interval. The prediction
confidence levels on the vertical axis illustrate that the sampled two-dimensional likelihood profile covers most of the plausible measurement outcomes.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 9 | Article 8008566

Litwin et al. Experimental Design by 2D-Profiles

89

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


D* � arg min
D∈{D1 ,...,Dn}

W(pi|Y,D). (10)

The information necessary to evaluate the design criterion in
Eq. 9 is summarized by a two-dimensional likelihood profile,
defined as

PL2D(z, β|Dz) ≔ − 2 ln
L(β, ω̂(β|Y, z)|Y, z)

L(θ̂(Y)|Y, F(θ̂(Y)|Dz))
( ). (11)

For any fixedmeasurement outcome z, the resulting parameter
profile likelihood can be extracted from this quantity.
Simultaneously, the two-dimensional likelihood profile
contains information about the plausibility of different
measurement outcomes. Figure 1C illustrates this relationship:
The profiles in Figure 1A are horizontal cross-sections from the
two-dimensional likelihood profile (blue lines). The minimal
profile value of each horizontal cross-section defines the path
of the validation profile in Figure 1B (solid red line). The
confidence intervals (dashed red lines) depend on the different
possible measurement outcomes: Some measurement outcomes
lead to more information about the parameter of interest than
others as indicated by narrower confidence intervals.

The process of averaging confidence interval widths over the
various parameter confidence levels and taking the expected value
over the possible plausible data realizations is visualized in
Figure 1D. The displayed two-dimensional profile is based on
the same data as depicted in Figure 1C, but it has been
transformed onto a different scale. The minimum of each
horizontal cross section is shifted to the common null value,
but still represents the trajectory of the validation profile. For the
transformed two-dimensional likelihood profile, the vertical axis
is proportional to the prediction confidence levels, i.e. intervals
with the same length correspond to an equal confidence of
yielding a measurement value in the given intervals. This
transformation reveals that the interval [z1, z3] is a 83%-
prediction interval for a future measurement outcome given
the experimental condition. The horizontal gray patches at the
top and the bottom of Figure 1D correspond to all the
measurement outcomes for which the original two-
dimensional profile likelihood was not sampled, because they
are unlikely to occur. The trend of different parameter confidence
intervals as a function of different data points is illustrated for five
discrete confidence levels (shades of red). On this scale, the
expected average profile width W(β|Y, D) is equal to the
average of all the colored areas, where the smaller confidence
intervals are included in the larger ones.

2.6 Experimental Design Workflow
Utilization of two-dimensional likelihood profiles as a tool for
experimental design requires a ready-to-use workflow in
applications. We provide an example for this workflow in a
fully sequential experimental design scheme to put the
previous definitions into a more practical context. Figure 2
shows a flowchart of the steps involved in this workflow.
Starting from an initial data set, the model parameters are
estimated and the profile likelihood is calculated for all model
parameters to obtain information about existing parameter

uncertainties. The likelihood profiles are calculated by
numerical evaluation of Eq. 4 for a finite set of profile
parameters. If there are non-identifiable parameters, the
biologically most relevant parameter is targeted for
improvement by the experimental design scheme.

After a representative set of experimental conditions has
been defined, the design criterion in Eq. 9 needs to be
evaluated for each of the experimental conditions by the
following steps. First, a validation profile is calculated for
the experimental condition. This validation profile provides
the range of relevant measurement outcomes for the respective
experimental condition. Therefore, the space on which the
two-dimensional likelihood profile needs to be sampled is
finite. This space is sampled by evaluating the parameter
profile likelihood for a representative set of measurement
outcomes. The expected average profile width is calculated
from the two-dimensional likelihood profile by employing the
discrete counterparts of all expressions appearing in Eq. 9. At
this point the details are more of technical than conceptual
relevance and we want to emphasize that an automated
implementation of this algorithm is available and referred
to at the end of this manuscript. The final step of the
workflow is now to choose the experimental condition
which provides the minimal value for the design criterion
as the target for the next measurement. This workflow can be
repeated after a new data point has been generated to
determine a sequence of informative measurements.

3 RESULTS

We illustrate the process of choosing the best experimental design
for a parameter of interest by two examples. The first example is
based on simulated data for a simple model with two consecutive
reactions in which compound A is converted to compound B
which is then converted to compound C and is therefore termed
as ABC model in the following. This example will serve to
illustrate the interpretation of the two-dimensional profile
likelihood. The second example is based on the published
experimental data for a model of erythropoietin (EPO)
degradation (Becker et al., 2010) for which data has been
censored in order to mimic a setting in which experimental
design can be applied. This example serves to explain the full
workflow of the sequential experimental design scheme in an
application setting and illustrates the practical feasibility of our
approach.

3.1 Experimental Design in the ABC-Model
The ABC model describes a simple case of a model in which the
model predictions non-linearly depend on the model parameters.
The reactions are illustrated in Figure 3A: State A is converted to
state B with the rate p1 and B is subsequently converted into
compound C with rate p2. In a biochemical setting, these three
states might represent three conformations of three activation
states in terms of different phosphorylations. The dynamics of
this system are determined by the following differential
equations:
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_A � −p1A
_B � p1A − p2B
_C � p2B.

In order to illustrate the two-dimensional likelihood profile
approach on a simple model for which we know the true
underlying parameters, we defined the true model parameters
and simulated data from this model. In this true model, the initial
concentrations of state B and state C were set to zero which was
assumed to be known for inference, such that the system is
characterized by the three parameters {p1, p2, A0} which were
assumed to be unknown and have to be estimated from data. The
data set simulated from the true model parameters is sparse: state
A has been assumed to not be observable and the two data points
available for each state B and C have been generated with an
initial concentration log(A0) = 0 from log-normal distributions
with a standard deviation σlog = 0.2 After simulation of the data,
the model parameters {p1, p2, A0} are optimized to estimate their
values and the corresponding state trajectories.

The true as well as the estimated state trajectories are
illustrated in Figure 3B: While the model predictions fit the
data well, there is still considerable disagreement of the
underlying true model and the best model fit. This is
especially true for state A, considering that the differences
between trajectories are analyzed on a log-scale, which
measures relative differences. An analysis of parameter
uncertainty reveals that parameter p2 is identifiable, as
information for state B and C suffices to inform this rate. By
similar reasoning, there is less information available for

parameter p1 and the corresponding profile likelihood reveals
that the parameter is practically non-identifiable over the whole
considered parameter space, as illustrated in Figure 3C.

In our example, we want to inform this practically non-
identifiable parameter p1 by choosing a measurement out of
three possible experimental conditions. For demonstration
purposes, the three experimental conditions of measuring
either state A, B or C at the time point t = 40 are considered.
The corresponding two-dimensional likelihood profiles are
illustrated in Figure 3D. If it was possible to measure
observable A, this would be highly informative and in fact
guarantees that the parameter p1 is identifiable no matter the
outcome of the measurement. This is intuitive, since the
measurement of the yet unobserved quantity A highly
constrains the possible dynamics. It should be noted that
possible outcomes for the observable A vary across orders of
magnitudes which can be attributed to the fact that the dynamics
for A are poorly constrained given the current data set. The two-
dimensional profiles associated with observable B and C reveal
that the parameter p1 will likely not be identifiable even after the
measurement. However, the magnitude of outcomes will yield at
least an upper or a lower bound for the parameter of interest:
Large values of B and C put an upper limit on p1, as this means
that the reaction can not be arbitrarily fast, while low values of B
and C put a lower limit of p1 because the reaction can not be
arbitrarily slow. A not immediately obvious result from the two-
dimensional profiles is that measuring observable B is more
informative than measuring observable C as seen from the
calculated design criterion. This example illustrates that two-

FIGURE 2 | Workflow for the sequential experimental design scheme. Starting from the current data set (top left), the target parameter is chosen and relevant
experimental conditions are specified. Calculating the two-dimensional profile likelihood and evaluating the expected average profile width for each experimental
condition (box) reveals the optimal condition for the next measurement. Dotted rectangles specify the state of the for loop, while text without rectangles correspond to the
experimental design steps involved.
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dimensional likelihood profiles provide qualitative as well as
quantitative information about how experiments impact
parameter uncertainty.

3.2 Experimental Design in the
Erythropoietin Degradation Model
The modeled system for the degradation of erythropoietin (EPO)
(Becker et al., 2010) is an example of a non-linear model with
intertwined reactions of biochemical states. EPO acts as a ligand
by binding to the corresponding cell receptor to form a complex.
This complex is internalized and then EPO is degraded. The
mathematical model provided the insight that a combination of
EPO receptor turnover and recycling guarantees that biochemical
response to a broad range of ligand concentrations is possible
(Becker et al., 2010).

A scheme of reactions in the biological system is illustrated
in Figure 4A. The model features six dynamic states: EPO
(Epo) and degraded EPO (dEpoe) outside of the cell, EPO
receptors (EpoR) and EPO–EPO receptor complexes
(EpoEpoR) on the cell membrane, and internalized
EPO–EPO receptor complexes (EpoEpoRi) and degraded

EPO (dEpoi) inside of the cell. The reactions illustrated in
the figure can be translated into the following set of differential
equations (Becker et al., 2010):

d

dt
EpoR � kt · (EpoR0 − EpoR) − kon · Epo · EpoR + koff · EpoEpoR + kex · EpoEpoRi

d

dt
Epo � −kon · Epo · EpoR + koff · EpoEpoR + kex · EpoEpoRi

d

dt
EpoEpoR � kon · Epo · EpoR − koff · EpoEpoR − ke · EpoEpoR

d

dt
EpoEpoRi � ke · EpoEpoR − kde · EpoEpoRi − kdi · EpoEpoRi − kex · EpoEpoRi

d

dt
dEpoi � kdi · EpoEpoRi

d

dt
dEpoe � kde · EpoEpoRi .

There are seven dynamic parameters (kt, kon, koff, kex, ke, kde,
kdi) and two unknown initial conditions (Epo0, EpoR0) in the
model which are biologically interpretable as well as six further
parameters which appear only in the observation function and
not in the dynamic model. Because EPO can be traced with a
radioactive marker, the concentration of EPO can be measured
outside of the cell (EPOexternal), on the cell membrane
(EPOmembrane) and inside of the cell (EPOinternal). This
provides us with three different observables for the six
dynamic states, i.e. the model is only partially observable.

FIGURE 3 | (A): States and parameters in the ABC-model. The model has three parameters: Two rate constants p1 and p2, and the initial concentration A0. The
initial concentrations of B and C are assumed to be zero. (B): Trajectories of the ABC-Model. The dots correspond to the sparse data simulated from the true model. In
this example, state B and C were assumed to be observable, but have only been observed at early time points. The true trajectory of state A yet differs considerably from
the estimated trajectory. (C): Likelihood profile of the practically non-identifiable parameter p1. Because the initial concentration of state A is unknown, this
parameter is difficult to estimate without information about state A. (D): 2D-Likelihood profiles for the three states A, B and C if measured at time point t = 40. The
illustrated profiles are presented on a confidence scale according to Figure 1D. If state A was observable, the finite width of the 2D-profile to the 95% level indicates that
any measurement outcome will make the parameter p1 identifiable. Note that possible values for A scatter across six orders of magnitude because the predictions for A
are barely informed. Measuring state B or C will likely put an lower or upper limit on the parameter p1.
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The parameters of the model are identifiable except for one
parameter given the complete data set of the study. In order to
illustrate experimental design considerations, a model which is
not yet well informed by data is required. Thus, we censored one

half of the complete data set for all observables which respectively
correspond to the later stages of the dynamics. This serves two
purposes: First, we reduced the information content of the data,
thus creating non-identifiabilities for some parameters. Second,

FIGURE 4 | (A): Scheme of the biological dynamics in the EPO degradation model (Becker et al., 2010). There are six model states (black text) which interact
through different biological reactions (gray arrows) and three observables (colored text). EPO is transported into the cell and degraded there. (B): Model trajectories for
the observables of the EPO-model. The plotted curves are the best fit trajectories for three different data sets: the censored data set used at the start of the experimental
design analysis, the data set after adding three sequentially proposed data points, and the uncensored published data set. The numbers indicate the order of the
sequentially measured data points. (C): Change of parameter likelihood profiles during the sequential experimental design procedure. The targeted parameter always
became identifiable after data for the optimal experimental condition proposed by the two-dimensional likelihood approach was added into the model. Incorporating the
three optimal data points into the model already produces results of similar accuracy compared to the published data set with 36 additional data points.
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we gain access to biological data for 3 (observables) x 4 (time
points) = 12 experimental conditions which can be used to mimic
real measurements.

The best fit model trajectories for the three observables are
illustrated in Figure 4B for three sets of data (shades of gray). One
set of trajectories corresponds to the censored data set, the next
set corresponds to an optimal sequential experimental design
with three additional measurements and the last set of trajectories
corresponds to the original full data set with 3 (observables) x 4
(time points) x 3 (replications) = 36 additional data points. The
predictions change significantly when adding the three optimal
data points to the censored data set, while adding the rest of the
data only changes the model trajectories slightly.

The three optimal data points were determined by applying
the workflow for the sequential experimental design scheme
shown in Figure 2. The iterative improvement of the
likelihood profiles of the non-identifiable parameters by this
workflow is illustrated in Figure 4C. Starting with the
censored data set, five parameters are non-identifiable. This
comprises the external and internal EPO degradation rate kde
and kdi, the complex dissociation constant koff, the receptor
turnover rate kt and the complex recycling rate kex.

The internal EPO degradation rate kde was targeted by the first
experiment, and has been made identifiable after measuring
EPOexternal at a late stage of the dynamics. Note that
retrospectively, this choice was highly tailored to the
identification of kde, as the profile likelihood for the other
parameters only changed slightly. This underlines that
experiments proposed by our approach aim specifically at
improving the knowledge about the targeted parameter of
interest.

In the second experiment, the internal EPO degradation rate
kdi was targeted. The corresponding optimal experiment is a
measurement of EPOmembrane at a late time point. Because this
design is optimal at an earlier time point than the first
measurement, this suggests that the first measurement of
EPOexternal already carries information which could have been
obtained from measuring EPOmembrane at the same time point,
highlighting that model dynamics are highly intertwined.
Imitating the measurement for the proposed experimental
design again shows that the targeted parameter is identifiable
after the experiment, while the others are still practically non-
identifiable.

The third iteration of experimental design targeted the
complex dissociation constant koff and revealed that measuring
EPOexternal at an earlier time point is now more informative than
measuring the observable EPOinternal, for which late time
measurements are still not available. This highlights the fact
that determination of the optimal experimental design is
difficult by intuitive considerations and experimental design
approaches provide non-trivial insights. This measurement
removed the non-identifiability of both the targeted parameter
koff and also the turnover rate kt which was not considered when
planning the experiment.

A fourth iteration of the sequential experimental design was
not conducted because the two-dimensional likelihood profiles
for the last non-identifiable parameter kex indicate that a single

additional data point for any of the remaining experimental
conditions does not provide enough information to make the
parameter identifiable. In fact, this is in line with the results of the
final model with all data available, as the parameter is still
practically non-identifiable given the complete data set. The
two-dimensional likelihood profiles corresponding to the four
experimental design iterations are illustrated in the
Supplementary Figures S1–S4.

The comparison of parameter likelihood profiles for the design
with three optimally chosen measurements with the full data set
design of 36 new data points is shown in the last two rows of
Figure 4C. The similarity of all profiles across all parameters
indicates that three optimally chosen experimental conditions
already yield much of the information contained in the set of all
36 data points. This underlines the ability of optimal
experimental design to reduce the amount of data needed to
remove non-identifiabilities for the parameters of interest.
Therefore, application of the optimal sequential experimental
design on a realistic biological model demonstrated the feasibility
and merits of the two-dimensional likelihood profiles as an
approach for experimental design.

4 DISCUSSION

4.1 Experimental Design by
Two-Dimensional Likelihood Profiles
A well-planned experiment can save time and resources.
Therefore, optimal experimental design aimed at reducing the
amount of data needed to inform the model is desirable in any
context, but this task is often non-trivial for complex models such
as those encountered in systems biology. We established a
method for optimal experimental design aiming at reducing
parameter uncertainty for a single parameter of interest in a
frequentist setting. To this end, we define two-dimensional
likelihood profiles which contain information about the likely
parameter uncertainty after a measurement. Our approach for
experimental design employs the theoretically appealing concept
of likelihood profiles, which can serve as a measure for
uncertainty in parameter estimates but also for a measure of
uncertainty of measurement outcomes. These measures can be
conceptually understood to imply confidence densities for
parameters or predictive densities for measurement outcomes
with strictly frequentist concepts. The presented approach allows
for the evaluation of the impact of an experiment in a qualitative
as well as in a quantitative manner.

The two-dimensional profile likelihood approach for
experimental design was employed in two examples to
illustrate its properties and establish feasibility of the method.
The ABC reaction model features a non-linear relationship
between model states and parameters and served to illustrate
the features of two-dimensional likelihood profiles. In order to
show practical feasibility of the approach in a realistic setting, an
established erythropoietin degradation model (Becker et al.,
2010) was investigated. To this end, half of the full data set
has been censored to simulate a realistic setting for experimental
design in which some model parameters were practically
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non-identifiable. A fully sequential experimental design
procedure indicated that only 3 of the 36 censored data points
were required to successfully remove all possible parameter non-
identifiabilities.

4.2 Implementation and Limitations
The numerical implementation is provided as part of the
Data2Dynamics (Steiert et al., 2019) modeling environment in
MATLAB. The algorithm exploits the existing one dimensional
profile likelihood calculation in order to construct the two-
dimensional profile likelihood. Computationally, this amounts
to about ~1,000 local optimizations per two-dimensional
likelihood profile, where local optimization is to be understood
as deterministic optimization from a good initial guess for the
parameters. Robustness of these fits is generally easier to obtain if
the available data is appropriate for the size of the model, such
that the model dynamics are constrained to some degree.

Problems associated with limited data availability go beyond
numerical issues and are rooted in the structure of our approach.
As a frequentist method, all information used in our experimental
design scheme must stem from the data already measured. We
have not assessed how much data needs to be initially available
before a systematic experimental design procedure is practically
feasible. However, the issue of lacking prior knowledge is not
exclusive to our approach and amore general theme in non-linear
experimental design. For the application in systems biology,
initial data is often needed in proposing a suitable model, such
that there will usually be data to start off with.

A practical limitation induced by insufficient data occurs if
the range of reasonable measurement outcomes can not be
predicted by the model, i.e. the validation profile reveals a
practical non-identifiability of the model prediction. The
existence of this non-identifiability complicates the
estimation of the expected parameter uncertainty in the
two-dimensional profile likelihood approach, because it
relies on the prediction of the measurement outcomes given
the model and current data. On the one hand, this fully utilizes
the information available in the model, but on the other hand
this constrains the applicability of the approach if the
prediction for the measurement outcome is insufficiently
constrained by the available model data. In case the model
prediction of interest is not identifiable, a weak quadratic prior
can be added to the validation profile in order to guarantee a
finite sample space. This heuristic approach increases the
scope of possible application settings. We emphasize that
our experimental design procedure works best from a
computational as well as methodical point of view if enough
data is available such that model predictions are at least loosely
constrained.

The usual assumption of the correctness of themodel structure
is especially important in our proposed method because it utilizes
the model for predicting likely outcomes of the experiment and
for calculating existing parameter uncertainties. This assumption
is usually implicitly contained in any design strategy, but we
emphasize that the full exploitation of the likelihood in our
approach implies that the proposed experimental design will
benefit greatly from solid prior knowledge about the model

structure. This does not apply to prior knowledge about model
parameters, because likelihood profiles account for parameter
uncertainties.

The relationship between confidence intervals and likelihood
profiles critically depends on the distributional assumption for
the corresponding likelihood profile in Eq. 6. The implicit
assumption that these likelihood ratios are χ21 distributed for
the true parameter set in general holds only asymptotically.
However, as this is general practice in the interpretation of
likelihood profiles, we follow this procedure and underline
that improving upon this assumption offers opportunities for
improving the assessment of parameter uncertainties.

4.3 Comparison to Existing Methods
There are two conceptually different methods in the literature
which we want to discuss, neglecting approaches based on the
Fisher information matrix as reasoned before. One branch of
methods deals with a Bayesian approach to experimental design
which utilizes the Shannon information of the posterior
distribution to plan optimal experiments. The other branch of
methods discusses the concepts of frequentist approaches which
find experimental designs by sampling relevant regions of the
parameter space in order to assess the sensitivity of model
predictions with respect to these parameters.

The Bayesian approach (Busetto et al., 2013; Huan and
Marzouk, 2013; Liepe et al., 2013) is conceptually similar to
our approach, but only applicable if suitable prior parameter
distributions are available. The posterior parameter distribution
after a possible measurement depends on unknownmeasurement
outcomes which can be resolved by averaging the posterior
distribution over the Bayesian predictive density. Similarly, our
proposed frequentist method utilizes a predictive density for the
measurement outcomes and a confidence density for the
parameter estimates, eliminating the need for prior
distributions. These “distributional estimators” (Xie and Singh,
2013) are implicitly derived from the likelihood profiles. This
theoretical framework suggests the use of confidence and
predictive densities in quantifying the confidence that an
interval of parameter values or measurement outcomes
contains the true parameter value or, respectively, a future
measurement outcome.

Our method explicitly determines the impact of different
plausible measurement outcomes of an experimental design on
the parameter estimate of interest in order to derive a design
criterion. This is different to existing frequentist approaches
(Bazil et al., 2012; Steiert et al., 2012) which consider the
sensitivity of model predictions to the different parameters
which are consistent with the current data. Predictions which
largely vary under these acceptable parameters indicate
experimental conditions which are likely informative as they
constrain the set of possible model dynamics. This approach
has been awarded as best performing in the DREAM6 challenge
(Steiert et al., 2012), although the feedback of the possible
measurement results on the model parameter is not
considered directly. This hinders intuitive interpretation of
how a possible experiment feeds back into the parameter of
interest and lacks a quantitative assessment of what constitutes
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a large variation of model predictions. Reversing the logic of this
approach by considering the impact of likely model predictions
on the parameter of interest leads to our refined approach,
although this requires a higher computational cost.

4.4 Implications for Research
Our proposed approach can be used to select the most
informative experimental design for a targeted parameter of
interest. This is often relevant if there are certain biological
parameters of interest which are not identifiable given the
current data. We want to emphasize that although we
discussed reduction of uncertainty for a single target
parameter of interest, generalization to reducing the
uncertainty for a model prediction, i.e. for a function of model
parameters, is straightforward. The detailed quantitative and
qualitative information gain by comparing two-dimensional
profiles for the different experimental conditions comes with a
higher computational cost compared to other approaches. As
such, the detailed information provided by our method might be
especially useful if experimental measurements require
considerable time and resources and as such accuracy is
favored over computational efficiency.

The experimental design approach only requires the existence
of a suitable likelihood function and is therefore applicable in a
broad spectrum of applications. We emphasize the novelty of our
approach in employing confidence and predictive distributions as
frequentist distributional measures for the confidence in
parameter and measurement outcomes, which serve a similar
function as Bayesian probabilities. Exploring the interaction of
these concepts provides a point of interest for further research in
frequentist experimental design.

4.5 CONCLUSION

To summarize, we established an experimental design procedure
which aims at reducing the uncertainty for a parameter of
interest. This design procedure reduces the likelihood function
to a two-dimensional likelihood profile: One dimension informs
our confidence of observing a certain measurement outcome for
the given experimental condition, while the other dimension
informs our confidence in the model parameter corresponding
to the underlying true parameter. Testing our experimental
design procedure on a simple model with simulated data and
on a real model with experimental data revealed that our
approach accurately predicted relevant experimental designs.

Our method provides detailed information about possible
experimental conditions on an easily interpretable quantitative
as well as qualitative level.
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Mathematical modeling aims at understanding the effects of biological perturbations,
suggesting ways to intervene and to reestablish proper cell functioning in diseases such as
cancer or in autoimmune disorders. This is a difficult task for obvious reasons: the level of
details needed to describe the intra-cellular processes involved, the numerous interactions
between cells and cell types, and the complex dynamical properties of such populations
where cells die, divide and interact constantly, to cite a few. Another important difficulty
comes from the spatial distribution of these cells, their diffusion and motility. All of these
aspects cannot be easily resolved in a unique mathematical model or with a unique
formalism. To cope with some of these issues, we introduce here a novel framework,
UPMaBoSS (for Update Population MaBoSS), dedicated to modeling dynamic
populations of interacting cells. We rely on the preexisting tool MaBoSS, which
enables probabilistic simulations of cellular networks. A novel software layer is added
to account for cell interactions and population dynamics, but without considering the
spatial dimension. This modeling approach can be seen as an intermediate step towards
more complex spatial descriptions. We illustrate our methodology by means of a case
study dealing with TNF-induced cell death. Interestingly, the simulation of cell population
dynamics with UPMaBoSS reveals a mechanism of resistance triggered by TNF treatment.
Relatively easy to encode, UPMaBoSS simulations require only moderate computational
power and execution time. To ease the reproduction of simulations, we provide several
Jupyter notebooks that can be accessed within the CoLoMoTo Docker image, which
contains all software and models used for this study.

Keywords: stochastic simulation, cell interactions, heterogeneous cell population, logical model, pathwaymodeling

1 INTRODUCTION

One of the key challenges in cell biology or in biochemistry is to understand how perturbations of
genes, proteins or metabolites affect cellular behavior. For that, the construction and analysis of
mathematical models constitute a powerful approach, which can help formalize and reason on the
complex phenomena governing the functioning of the cell. At the cellular level, the relations between
single entities can be described as signaling, biochemical, or metabolic pathways, and transcribed into
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mathematical terms to predict the impact of specific
perturbations on cellular processes. The difficulty grows when
considering inter-cellular signals and their effect at the organ level
or the role of the micro-environment on the cell fate. Ideally, the
mathematical model should include not only detailed pathway
descriptions for every cell, but also key events occurring at the
population level, e.g., extra-cellular diffusion, cell motility, inter-
cellular communications, death or division of cells.

Multi-cellular systems models have already been studied in
developmental biology (Cartwright et al., 2009). Most often, cell
populations are considered as a large set of single entities (cells),
diffusing and moving throughout the environment, giving rise to
reproducible spatial organizations. Formal frameworks borrowed
from physics are often used, such as partial differential equations.
These approaches allow detailed and accurate temporal and
spatial descriptions of collective cellular behaviors (Cowan
et al., 2012).

In the field of cancer and immunology, many published
models considered a generic cell (e.g., an epithelial cell, a T
lymphocyte cell, a macrophage, etc.) to represent the behavior of
cell populations. An extension of this simplistic view relies on
stochastic simulations to estimate the evolution of
desynchronized cell populations. Although such studies do not
consider explicitly individual cells (Shmulevich et al., 2002; Albert
et al., 2008; Stoll et al., 2017), the outputs of these simulations can

be interpreted as the composition of a population of non-
interacting cells.

In both cancer (Anderson et al., 2006) or auto-immune
diseases (El-Badri et al., 2007), there are different cell types
that need to be considered. In this respect, agent-based
approaches associate an agent with each cell, which activity
depends on that of its neighbors (Bonabeau, 2002; Altinok
et al., 2011). Powerful tools have been developed to define and
analyze such models, including CellSys (Drasdo and Hoehme,
2010), CompuCell3D (Swat et al., 2012) or PhysiCell
(Ghaffarizadeh et al., 2018).

However, these models usually do not explicitly take into
account intra-cellular signaling pathways, or the specific
deregulations that may occur in these signaling pathways
for good reasons. First, adding some internal dynamics
to each agent increases considerably the level of complexity
and the number of parameters to tune. Second, it can
be computationally costly depending on the formalism
used for modeling the signaling pathways inside each agent,
such as ordinary differential equations (ODEs) (Clairambault,
2006) or logical formulae (Letort et al., 2018; Varela et al.,
2019).

Integrating a proper description of intra-cellular pathways to
agent-based models is a challenge, but it becomes crucial when
studying the response to a drug that targets specific pathways,
even though the effects are often observed at the level of the
population (e.g., survival). Indeed, signaling pathways are
organized in complex networks encompassing numerous
cross-talks and feedbacks. Hence, the deregulation of one
specific pathway often leads to non-intuitive effects at the
population level.

Mathematical modeling of such complex and intricate
networks can help understand and predict experimental results
(Cohen et al., 2013; Ferrell, 2015; Kolch et al., 2015; Remy et al.,
2015; Abou-Jaoudé et al., 2016). However, the choice of the most
appropriate mathematical formalism to model such intra-cellular
processes depends on the biological question and the available
data (Le Novère, 2015).

Here, we present UPMaBoSS (Update Population MaBoSS), a
modeling framework focusing on the dynamics of populations of
interacting cells and based on stochastic simulations of a
discrete model.

As MaBoSS (Stoll et al., 2012; Stoll et al., 2017)), UPMaBoSS
relies on a logical formalism applied to signaling pathways and
regulatory circuits. Logical models can be viewed as a coarse grain
approximation of more refined and precise modeling approaches,
and it proved to be efficient in several studies for which details of
the chemical reactions is poorly known (Collombet et al., 2017;
Eduati et al., 2017). In this framework, each cell type has its own
dynamics and relies on a qualitative model of intra-cellular
signaling networks using MaBoSS grammar, thereby enabling
probabilistic simulations of cellular models. UPMaBoSS
alternates the simulation of intra-cellular models with regular
updates of estimates of cell population sizes and environmental
signals. These updates are based on the values of key network
nodes (receptors and ligands) and processes accounting for cell
division and cell death. The whole population can be considered

FIGURE 1 | Generic cell. A generic cellular network is constructed by
assembling all the signaling pathways that can be activated in different cell
types (here 3 cell types are considered: Type I, II, and III), including ligand-
receptor interactions. Cells can die, divide or interact through ligand-
receptor interactions.
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as an heterogeneous cell population, with different cell types, or
with cells in different states.

The extension of pathway models constructed in MaBoSS is
easy, and the additional computational cost of simulations
remains comparable to that of simulations of original MaBoSS
models. UPMaBoSS enables the description of complex cellular
networks encompassing relatively large numbers of components
(up to a few hundreds), interacting through positive and negative
influences. Some previous works have already developed a similar
algorithm, but based on chemical kinetics (Charlebois et al., 2011;
Charlebois and Kærn, 2013).

UPMaBoSS can be used to address biological questions
involving interactions between cell types, when signaling
pathways are known. As for many approaches considering
intra-cellular details, the main application of UPMaBoSS is to
explore the effects of perturbations that occur at the level of
individual cells in order to understand how these
perturbations impact cell populations. Such explorations
constitute a first step towards the use of multi-scale
modeling for clinical applications (Wolkenhauer et al.,
2014; Viceconti and Hunter, 2016).

This modeling approach is illustrated with a simple toy model
of cell-cell interaction, and with a case study dealing with the
effect of the Tumor Necrosis Factor (TNF) on the cell fate
decisions triggered by the engagement of death receptors.

To foster the reproducibility of our results, we provide several
notebooks in a dedicated GitHub at https://github.com/sysbio-
curie/UPMaBoSS-docker, with examples of models in MaBoSS
language, as well as in the more standard SBML-Qual format
(Chaouiya et al., 2013). Noteworthy, published logical models
of cellular networks (Helikar et al., 2012; Naldi et al., 2018) can
be easily adapted and extended by adding cell death, division,
and cell-cell interactions. The definition of an UPMaBoSS
model then enables the integration of these effects at the
population level.

2 MATERIALS AND METHODS

MaBoSS is a tool to simulate continuous time Markov processes
on Boolean networks (Stoll et al., 2012; Stoll et al., 2017). It was
built as a middle term between the detailed yet complex
description of signaling pathways using a chemical kinetics
approach and the simpler coarse-grain description using a
discrete formalism. To compare these three views (ODE,
logical and MaBoSS), models for two network motifs are
provided in the Supplementary Material (section 4).

Models of single cell types can each be built using MaBoSS.
However, creating a comprehensive model of a dynamic
population of these cell types requires following a
protocol that can be summarized in two steps: 1) the
construction of a single network that encompasses all
pathways in all cell types, and 2) the implementation of
this network within UPMaBoSS framework. For the latter
part, details on the algorithm of UPMaBoSS are given in the
Supplementary Section S1.2). For the practical aspects of the

UPMaBoSS model construction, we describe the procedure
below.

2.1 Connecting Cell Population Pathways
Into a Single Influence Network
The starting point for an UPMaBoSS model is a set of influence
networks that each represents signaling pathways of the cell type
they describe. These pathways should contain receptors that are
activated by ligands to model properly the interactions between
the cell types. The translation of these networks into an
UPMaBoSS model requires the following steps, recapitulated
in Figure 1:

1 Collect all networks of each cell type and integrate them into a
single network (lower panel in Figure 1). Note that it is
possible that the obtained integrated network is
disconnected. In the case that two pathways belonging to
2 cell types have identical entities, e.g., TGFb, there are two
possibilities: either the two networks are merged through the
entity or the entity is renamed to specify in which cell type it
belongs (i.e., TGFb_Tumor and TGFb_TCell, see
Supplementary Section S1.6 for a detailed explanation).

2 Add a node for each cell type (T-Cell, Tumor, etc.), and
connect them to the appropriate entities in their associated
pathways. For instance, for a protein A activated by B and C in
tumor, the network will have ProtB → ProtA, ProtC → ProtA
and also Tumor → ProtA.

3 Add two nodes, one that represents cell division and another
one that accounts for cell death. The readouts of the model that
are related to these phenotypes can then be connected to these
new nodes; for example, CyclinB can be connected to division
and caspase three to death.

As a result, all possible signaling pathways described in all cell
types are gathered into a unique UPMaBoSS model, where the
extracellular interactions are represented a feedback loops
(Figure 1). This unique network could be understood either as
an undifferentiated cell ready to be differentiated into different cell
types, or as a population composed of different cell types. This
formalism is very flexible and allows the characterization of various
cell types present in the micro-environment, as illustrated in the
examples in section 3 of the Supplementary Material.

2.2 Constructing a Model in UPMaBoSS
From an Influence Network
UPMaBoSS relies on MaBoSS software and extends it by adding
some important functionalities to model interacting cell
populations (Stoll et al., 2012; Stoll et al., 2017).

Every population state is represented by a set of Boolean values
associated with the network nodes (including the division node,
the death node, the ligand and the receptors, cell type nodes, etc.).
The UPMaBoSS framework enables the computation of the time-
dependent probabilities of states, allowing an interpretation of the
dynamics at the cell population level, considering that:
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(Number of cells in state S) � (Number of cells)
× (Probability of S)

The definition of the model components assumes that each
node of the network represents a gene, protein, complex,
phenotype or cell type. The UPMaBoSS model gathers the
pathways and entities potentially active in the different cell
types. It is derived from an influence network by applying the
following procedure:

• For every node, except receptors, two transition rates are
defined, rate_up for activation and rate_down for
inhibition, with triggering rules formulated in the
language of MaBoSS (see the Results section for an
example of the grammar used for writing logical rules
and transition rates).

• For receptors, the rates associated with the update of their
state must contain term(s) that depend on the population
state probabilities.

• The initial conditions for all the entities of the model need to
be set with the same formalism as in MaBoSS: a probability
can be associated with each node of the model (e.g., [A].
istate = 0.2 [0], 0.8 [1] means that the node A will start with
80% of the trajectories with A in state 1) or to a vector of
nodes (e.g., [A,B]. istate = 0.2 [0,0], 0.5 [0,1], 0.1 [1,0], 0.2
[1,1] means that 20% of the trajectories will start with both
nodes at 0, 50% with B active only, 10% with A active only
and 20% with both nodes active).

For each time step, UPMaBoSS computes the relative
population size (with respect to the initial size), and the
distribution of state probabilities in the population
(including the status of death, division, and cell type nodes)
(Figure 2).

UPMaBoSS launches several consecutive MaBoSS runs (the
number of runs being defined by the user). At the end of each run,
the population is updated synchronously: new model states are
produced according to the parameters influencing the population
status (death, division, receptor activity), setting a novel initial
condition for the next MaBoSS run (see section 1 of
Supplementary Material for more details).

2.3 Tuning Parameters
AnUPMaBoSSmodel contains a set of parameters that need to be
calibrated. They can be separated into two families: parameters
with a biological interpretation versus those modulating the
simulations.

The first family of parameters include the rates of activation or
inactivation of a variable, which can be derived from experiments.
They can correspond to the mean time necessary to achieve
transcription, (de)phosphorylation, synthesis or degradation.
These transition rates can be separated into fast or slow
variables. If such information is not available, the default value
1.0 is used. Other parameters can account for the initial
conditions or the duration of the experiment (total time of
simulation is reached when (total time) = (number of steps) ×
(length of MaBoSS run)).

FIGURE 2 | Inputs and Outputs of an UPMaBoSSmodel. The notation is related to Figure 1: A, B, C, K, L, M represent genes/proteins; T_I, T_II, T_III represent cell
types. (A) Inputs of UPMaBoSS: Transition rates for nodes: for each node (here K and L of Figure 1), a logical rule, the rate up and rate down are written; Formulas for
updating receptors rates values: the update rules, starting by u = . . ., depend on the population state and regulate the value of the external variable $Receptor_rate of cell
type I and II; and initial states: they can be defined such that cell types, proteins, etc. can be characterized as present (+) or absent (−) with a probability for this model
state to be active initially. Colors correspond to cell types of Figure 1. Note that names starting with a $ correspond to external variables, specific to MaBoSS/
UPMaBoSS, listed in bnd file, set up in cfg file and updated in upp file. (B)Ouputs of UPMaBoSS: time-dependent probabilities of cell types (upper panel, example of cell
type II from Figure 1), with the corresponding model states (middle panel), and the time-dependent population size (lower panel).

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8001524

Stoll et al. UPMaBoSS for Cell Population Modeling

101

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


The second family of parameters corresponds to the number
of trajectories to include in the computation, and the length of
one MaBoSS run (ensuring that transitory behaviors are
observable, see an example below).

An exhaustive list of these parameters is provided in the
Supplementary Section S1.5, including default values and
guidelines for choosing their values. In some cases, a
sensitivity analysis may be needed to select the appropriate
range of parameter values. We provide an example with a
variation of the length of one MaBoSS run (max_time) and
analyze its impact on the expected results in a python
notebook included in the GitHub folder (https://github.com/
sysbio-curie/UPMaBoSS-docker/tree/master/CellFate).

3 RESULTS

We illustrate the use of UPMaBoSS with two examples, the first
one focusing on cell-cell interactions, and the second one
extending a published model of cell fate decision in response
to the activation of death receptors (Calzone et al., 2010).

3.1 Toy Model
First, we present a simplified model to highlight important
dynamical differences occurring when considering a unique
cell model to represent a population of non interacting cells

(MaBoSS simulation) versus considering a dynamic population of
interacting cells (UPMaBoSS simulation). This simple model
implements a differentiation mechanism leading to two cell
types, T1 and T2. This differentiation process is initiated by a
trigger I. When I activates A, A is able to drive the T1 cell type
differentiation. At the same time, A is also able to activate the
ligand L, which itself activates a receptor R leading to T2 cell type
differentiation, but only in the absence of A. The activation of T2
is then irreversible (no degradation rate).

We compare the behavior of a population of independent cells
with that of a population of interacting cells (through ligands and
receptors). The difference between these two situations lies in the
logical rule associated with the receptor variable R (R = innerOn ?
L : outerL in the model file, which reads as if innerOn = 1 then L
else outerL). In the case of a single cell model, when cell-cell
interaction is not considered, R is activated by L (innerOn = 1 in
the parameter file) (Figure 3A). In the case of a populationmodel,
when cells can interact, R is activated by a function of the
probability for L to be active (innerOn = 0 and outerL = 5*p
[(L) = (1)] defined in the population file) (Figure 3B).

When a population of independent cells is considered, A is
always present when R is active, which continuously inhibit T2,
ultimately leading to the T1 phenotype (Figure 3A).

When a population of interacting cells is considered, R is
updated according to the population state of L. Consequently, R
can be activated in some cells independently of the activity of A,

FIGURE 3 | Simple cell differentiation model. (A) Definition of the toy model with logical rules (upper panel) and conditional rule for R depending on the value of the
external parameter innerOn. If innerOn is equal to 1, then A is able to activate L in all cells (middle panel). If innerOn is set to 0, then the value of R will depend on the
population status of L (lower panel). (B)Model simulations of the two cases: when innerOn = 1, only T1 cell type can be reached; when innerOn = 0, a proportion of cells
can differentiate into T2 cell type.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8001525

Stoll et al. UPMaBoSS for Cell Population Modeling

102

https://github.com/sysbio-curie/UPMaBoSS-docker/tree/master/CellFate
https://github.com/sysbio-curie/UPMaBoSS-docker/tree/master/CellFate
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


allowing differentiation in the T2 cell type with a non-zero
probability (Figure 3B). In other words, with I active, we
obtain about 87% of T1 cells (where I, A, L, R, and T1 are
active) and 13% of T2 cells (where I, A, L, R, and T2 are active). A
can eventually reactivate in those cells, but we assumed the T2
phenotype to be irreversible (self loop).

This simple example highlights a mechanism occurring only
when cells are allowed to interact. When integrating data into a
model, fitting parameters, or constructing a Boolean model
from experimental data, these considerations might be of
importance.

We provide a Jupyter notebook for this example, including the
UPMaBoSS model (with the three corresponding files) and an
explanation of how to build an interacting cell population model
from a standard cell model [defined with the bnet format (Müssel
et al., 2010)] (see GitHub at https://github.com/sysbio-curie/
UPMaBoSS-docker/tree/master/ToyModelUP).

3.2 A Model of Cell Fate Decision
This case study provides an example of the use of UPMaBoSS to
model the response of a cell population to different drug
treatments. In this respect, the model integrates pathways
controlling cell proliferation and death, which has a direct
impact on the size of the cell population.

3.2.1 Description of the Model
We start with a model initially built to understand how the same
signal can lead to three different cell phenotypes depending on
the cellular context. The activation of the death receptors TNFR
or Fas by their respective ligands can trigger a cascade of events
leading to either survival with the activation of NFκB pathway, or
to non-apoptotic cell death (referring to necrosis or to a
programmed necrosis called necroptosis) with the loss of ATP,
or to apoptosis with the cleavage of caspase 3 (Calzone et al.,
2010). This generic model was built on the basis of data collected
from the literature, focusing on the main components influencing
the cell fate decision between death and survival. The model can
be found in the GINsim repository: http://ginsim.org/node/227.
The original analysis explored which components contribute to
each phenotype, as well as the cross-talks between the three
pathways, enforcing mutual exclusion of the three
alternative fates.

In the present study, we extend this analysis by considering the
impact of the timing and duration of TNF treatments. To this
end, a feedback from NFκB pathway to TNFα was added to the
model (Figure 4A). Indeed, it has been showed that TNFα is a
target of NFκB, and that constitutive activation of NFκB leads to
systemic inflammation through TNFα activation (Shakhov et al.,
1990; Drouet et al., 1991; Liu et al., 2000; Dong et al., 2010). We

FIGURE 4 |Cell fate model for TNFα resistance. (A) This model is an extension of the model reported in (Calzone et al., 2010). Some nodes representing the mRNA
of cIAP, ROS and XIAP family members have been added. The ellipsoid nodes represent genes, mRNA, proteins, or complexes, while the rectangular nodes denote
phenotypes. Green and red arrows represent positive and negative influences, respectively. The thick green arrows denote activating interactions added to the initial
model: a feedback from NFκB to TNFα encodes the ligand-receptor activation, while the “Division” and “Death” nodes have been introduced specifically for
UPMaBoSS population updates. (B) Simulation of the cell fate model with MaBoSS for 48 h. (C) Simulation of the model with UPMaBoSS: temporal evolution of
population sizes with (black) and without (blue) the TNF paracrine signaling.
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further decided to focus on the role of TNFα and thus kept Fas
OFF for all our simulations.

We explored the effect of sequential treatments of TNFα at a
cell population level. Interestingly, several studies showed that
prolonged treatments of low doses of TNF can lead to resistance
in prostate cancer patients (Smyth et al., 2004), and that TNF
exhibits a dual impact on tumor progression: at low doses, it
triggers angiogenesis (Wang et al., 2017), whereas at high doses, it
induces cell death, mainly through necrotic effects (Bertazza and
Mocellin, 2010).

3.2.2 Biological Questions
In a first in silico experiment, we simulated the model for a period
corresponding to 48 h of cell culture (unit time set to 1 hour).
Experimentally, there is no consensus for time duration of TNF
effect in vitro; nevertheless, key events are known to require over
24 h to occur (Udommethaporn et al., 2016), which justifies the
choice of 48 h. Indeed, in our simulations (Figure 4), stability is
reached after 48 h. For a transient treatment of TNF, we
considered a TNF half-life of 4 h (degradation rate of 1/4).
Although TNF degradation rate varies extensively depending
on experimental conditions, 4 h seems a reasonably small
interval compared to 48 h.

We first simulated the model with MaBoSS, which is
particularly important in order to define the time step for each
MaBoSS run when using UPMaBoSS. Indeed, the chosen time
window (i.e., max_time) must be such that the population is in a
transient state. The best value for the parameter max_time turned
out to be around 1 h (just before the peak of activation of
Figure 4B). To simulate the population dynamics, we
proceeded to compute 48 MaBoSS runs with max_time equal
to one for each run. We further studied the sensitivity to this
parameter and included online (Jupyter notebook
TimeStepDependency.ipynb, https://github.com/sysbio-curie/
UPMaBoSS-docker/tree/master/CellFate).

In the MaBoSS simulation, we noticed that non-apoptotic cell
death first decreases, before increasing to reach a steady state

solution after t = 15 h. This dynamics is due to the activity of ATP,
itself dependent on that of RIP1. RIP1 increases until CASP8 is
activated and able to inhibit it. It takes longer to activate CASP8
than RIP1. This behavior is typical of incoherent feedforward
loops (Jin, 2013).

For this biological application, we focused on two questions:

1 What is the effect of the feedback from NFκB to TNFα at the
population level when treated by a transient activation of
TNFα?

2 What is the effect of TNFα sequential treatments on the
population dynamics?

To address the first question, two model variants were
considered: with and without the NFκB → TNF paracrine
loop, with a transient TNF treatment (Figure 4C). For the
second question, we selected the model with the paracrine
loop and further studied the two following scenarios in which
cells are treated with: 1) a transient TNF treatment at time 0
(“TNF Pulse”), followed by a constant TNF treatment at 48 h
(“TNF”) and 2) no TNF treatment at time 0 (“NoTNF”), followed
by a constant TNF treatment at 48 h (“TNF”) (Figure 5).

3.2.3 TNF Treatments in Wild Type Conditions
Simulations of the temporal evolution of cell populations are
displayed in Figure 4C in presence or absence of the
feedback and in Figure 5 for two different TNF treatment
scenarios.

In Figure 4C, following a pulse of TNF at t = 0, the comparison
of population growth curves in the absence (blue curve) or in the
presence (black curve) of the feedback from NFκB to TNFα
indicates that the TNF paracrine loop leads to a decrease of the
population size (from 43% to 20% of the initial population size of
100%) confirming the stronger effect of the feedback in TNF-
treated cells.

Remarkably, when a sustained treatment is applied, the impact
on the population size differs depending on whether the
population has already been treated or not, in a non-intuitive
way. Indeed, as shown in Figure 5, after 48 h, the population
initially untreated (blue + green curves) decreases faster than the
cell population initially treated with a pulse of TNF (black + red
curves). This difference could be interpreted as a resistance
mechanism: cells that have already been exposed to TNF, even
transiently, do not respond as well to a second TNF treatment
compared to cells that have never been treated with TNF.
Noteworthy, this “resistance” results purely from network
dynamics, in the absence of any genetic modifications and
could be related to network motifs, as proposed in (Charlebois
et al., 2014; Camellato et al., 2019). Intuitively, this behavior
arises from the mutual inhibitory connections between
survival and death pathways. Indeed, the first TNF
treatment selects the cells that have activated genes of the
survival pathway, and therefore cannot activate their death
pathway upon a second TNF treatment. In the following
section, we further investigate which parts of the network
contribute to drug resistance by comparing wild-type and
various mutant simulations.

FIGURE 5 | Growth curves for different TNF treatment scenarios. The
first scenario corresponds to the simulation of cells initially treated by a pulse of
TNF (black segment), followed by a constitutive TNF treatment at t = 48 h (red
segment). The other scenario corresponds to the simulation of cells
initially untreated (blue segment), but receiving a constitutive TNF treatment at
t = 48 h (green segment).
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3.2.4 TNF Treatments in Mutant Conditions
In the clinics, the various mutations found in patients may affect
the efficacy of the response to treatments. To explore the potential
roles of the different model components in the observed TNF
resistance, we simulated the effects of all possible single mutants
(Jupyter notebook CellFateModel_upmaboss at https://github.
com/sysbio-curie/UPMaBoSS-docker/tree/master/CellFate).

For each single mutant, we measured the population ratio at t
= 96 h for four possible scenarios: “No TNF” + “No TNF”
(control, dashed green curve), “No TNF” + “TNF” (late
treatment, plain green curve), “Pulse of TNF” + “No TNF”
(single early treatment, dashed red curve), and “Pulse of TNF”
+ “TNF” (consecutive treatments, plain red curve).

Here, we focus on the results obtained for three genetic
backgrounds: wild type, IKK knock-down, and RIP1K knock-
down (Figure 6). For sake of simplicity, we focus on the response
after t = 48 h, and to ease the comparison, we normalized the
population ratio found in Figure 5. Note that two conditions were
added to those shown on Figure 5, where only two of the four
scenarios were simulated (i.e., we added the cases when there is no

treatment after 48 h, no matter what the cells receive at t = 0,
dashed lines).

The wild type model clearly exhibits a resistance: when the
cells have received a first treatment, they do not respond, whether
they receive a second treatment or not (Figure 6A, for
TNFPulse_TNF and TNFPulse_noTNF). The resistance effect
is lost for IKK knock-down (Figure 6B), as the mutated cells
respond to the treatment whether they received a first treatment
or not (plain and dashed lines coincide). In the case of the RIP1K
knock-down, the decrease of the population size after TNF
treatments is milder than for wild type model, but the
resistance mechanism is still observed (Figure 6C).

IKK belongs to the NFκB pathway that induces survival. This
pathway introduces a positive feedback at the cell population level,
which may explain why IKK knock-down shuts down the resistance
to TNF by blocking this feedback loop. RIP1K induces non-apoptotic
cell death by blocking ATP, which explains the reduction of the
apoptotic effect of TNF observed for the RIP1K knock-down.

The effects of double mutations can also be simulated.
However, for our example, the double mutant simulations do
not result into additional insight because the single mutations are
already informative.

All results and figures of this analysis can be reproduced
with the Jupyter notebook provided online in the folder
usecases in the CoLoMoTo Docker image (https://colomoto.
github.io/colomoto-docker/), as well as on github: https://
github.com/sysbio-curie/UPMaBoSS-docker/tree/master/CellFate).

4 DISCUSSION

UPMaBoSS is a novel modeling framework enabling the exploration
of cell population dynamics. It considers the division, the death
and interactions of cell populations and relies on stochastic
simulations with regular synchronous updating of cell populations.

Using a simple toy model, we first showed that the results of the
simulations are different if we consider a homogeneous, non-
interacting cell population compared to a dynamic population of
interacting cells. We further applied our approach to a model of
TNF-induced cell fate. We show that the paracrine loop involving
NFκB enhances cell death. Surprisingly, our simulation revealed an
intriguing resistance mechanism: once the cells have been treated by
TNF transiently, they can resist to a second treatment, an effect not
attributable to genetic selection. One limitation of our approach lies
in the setting of population update time. However, the case study
presented here suggests that results are moderately sensitive to
changes of this parameter within a reasonable interval. Finally, an
application of this modeling framework to a concrete example
describing events of the immunogenic cell death was recently
published (Checcoli et al., 2020). In this study, the main steps of
the immunogenic cycle and the relative timing of the events were
reproduced: the parameters were chosen so that some processes such
as the migration of the dendritic cells to the tumor micro-
environment would take the expected time (around 12 h).

Simulations and predictions obtained with UPMaBoSS could be
validated experimentally using different techniques: the probabilities
of the nodes corresponding to proteins/mRNA can be compared to

FIGURE 6 | Population ratio at from t = 48–96 h for three models.
Population ratios for the four conditions in (A) wild type, (B) IKK knock-down,
and (C) RIP1K knock-down.
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their experimental relative concentrations (measured by western
blot, immunofluorescence, qPCR, etc.). This can be done by
considering positive and negative controls, since what we are
most interested in with this approach is to compute the change
of probabilities between two experiments or 2 cell conditions rather
than compare exactly the model probabilities with quantitative
experimental measures. This comparison can be facilitated by
normalizing experimental measures between 0 and 1. The
probabilities of the network states could be validated using flow
cytometry or microscopic images, using thresholds that separate
active/inactive states. Single-cell transcriptomic (with CRISPR/Cas9
genetic engineering) and flow cytometry (on cell population
markers), in principle, can be used to estimate the sizes of
different cell sub-populations: once thresholds have been applied
on the quantitative markers defining cell populations, the
experimental data can be translated in terms of cell sub-populations.

There are, of course, a number of limitations with our framework.
First, UPMaBoSS is not meant to answer precise biological questions
on diffusion, localization, or drug dosage. More quantitative
modeling frameworks would be more appropriate to address
such questions. However, previous studies suggested that the
presence, rather the precise localization, of immune infiltrates in
tumors constitute good prognostic biomarkers (Baxevanis et al.,
2019), which could be modeled with UPMaBoSS.

Another limitation is that UPMaBoSS is not optimal to model
metabolic networks, which involve reactions consuming reactants.
In practice, metabolites could be included in UPMaBoSSmodels, in
particular if they play a role in signaling pathways. Metabolites are
then represented by Boolean nodes, implying and requiring a
proper discretization of their levels (multilevel variables can
then be encoded by multiple Boolean nodes).

We think that this approach is appropriate to model many
processes in cell biology, including cell differentiation, innate/
adaptive immune system activation, cancer micro-environment,
and tissue homeostasis. The fact that the spatial dimension is not
taken into account might appear as a limiting factor for clinical
applications. In this respect, it is possible to extend the model
using PhysiBoSS, a multi-agent modeling tool in which each
agent is a cell running an intracellular MaBoSS model, but which
requires to tune more parameters (Letort et al., 2018).

In the future, we plan to apply UPMaBoSS to model the effect
of the micro-environment on cancer cell fate. UPMaBoSS
simulations are based on consecutive runs of MaBoSS. While
MaBoSS generates tens of thousands trajectories, UPMaBoSS
parses and writes probability distributions for each population
updates. Consequently, computational cost increases moderately
(less than an order of magnitude) compared to prior MaBoSS
models. Moreover, because UPMaBoSS can be run directly on a
conda environment or within a simple pair of python and C++
scripts, simulations can be launched on High Performance
Computers, with a natural parallelization for tasks such as
parameter variations and gene mutations.

Finally, on the practical side, the implementation of
UPMaBoSS in a docker image and in a conda package should
greatly facilitate its use, whereas the reproducibility of the
analyses can be enforced by the use of Jupyter notebooks.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, and on a GitHub repository
(https://github.com/sysbiocurie/UPMaBoSS-docker). Further
inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

All authors have read and approved the manuscript. GS and EV
conceived the algorithm and the tool. VN, EV, and AN
participated in the development of the tool. GS, AN, DT, and
LC worked on the examples. DT, EB, GK, GS, and LC designed
and supervised the study. GS and LC wrote the article but all co-
authors contributed to the writing and agree on the content.

FUNDING

VN and LC were partially funded by ANR-FNR project
“AlgoReCell” (ANR-16-CE12-0034) and VN was partially
funded by the European Union’s Horizon 2020 Programme
under the PerMedCoE Project (www.permedcoe.eu), grant
agreement n° 951773. The project received financial support
from Inserm Cancer (ModICeD, ITMO MIC 2020).

ACKNOWLEDGMENTS

We would like to thank I. Martins. GK is supported by the Ligue
contre le Cancer (équipe labellisée); Agence National de la
Recherche (ANR)—Projets blancs; ANR under the frame of
E-Rare-2, the ERA-Net for Research on Rare Diseases;
AMMICa US23/CNRS UMS3655; Association pour la
recherche sur le cancer (ARC); Association “Le Cancer du
Sein, Parlons-en!”; Cancéropôle Ile-de-France; Chancelerie des
universités de Paris (Legs Poix), Fondation pour la Recherche
Médicale (FRM); a donation by Elior; European Research Area
Network on Cardiovascular Diseases (ERA-CVD,
MINOTAUR); Gustave Roussy Odyssea, the European
Union Horizon 2020 Project Oncobiome; Fondation
Carrefour; Institut National du Cancer (INCa); Inserm
(HTE); Institut Universitaire de France; LeDucq
Foundation; the LabEx Immuno-Oncology (ANR-18-IDEX-
0001); the RHU Torino Lumière; the Seerave Foundation; the
SIRIC Stratified Oncology Cell DNA Repair and Tumor
Immune Elimination (SOCRATE); and the SIRIC Cancer
Research and Personalized Medicine (CARPEM).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.800152/
full#supplementary-material

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8001529

Stoll et al. UPMaBoSS for Cell Population Modeling

106

https://github.com/sysbiocurie/UPMaBoSS-docker
www.permedcoe.eu
https://www.frontiersin.org/articles/10.3389/fmolb.2022.800152/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.800152/full#supplementary-material
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


REFERENCES

Abou-Jaoudé, W., Traynard, P., Monteiro, P. T., Saez-Rodriguez, J., Helikar, T.,
Thieffry, D., et al. (2016). Logical Modeling and Dynamical Analysis of Cellular
Networks. Front. Genet. 7, 94. doi:10.3389/fgene.2016.00094

Albert, I., Thakar, J., Li, S., Zhang, R., and Albert, R. (2008). Boolean Network
Simulations for Life Scientists. Source Code Biol. Med. 3, 16. doi:10.1186/1751-
0473-3-16

Altinok, A., Gonze, D., Lévi, F., and Goldbeter, A. (2011). An AutomatonModel for
the Cell Cycle. Interf. Focus. 1, 36–47. doi:10.1098/rsfs.2010.0009

Anderson, A. R. A., Weaver, A. M., Cummings, P. T., and Quaranta, V. (2006).
Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure
from the Microenvironment. Cell 127, 905–915. doi:10.1016/j.cell.2006.09.042

Baxevanis, C. N., Sofopoulos, M., Fortis, S. P., and Perez, S. A. (2019). The Role of
Immune Infiltrates as Prognostic Biomarkers in Patients with Breast Cancer.
Cancer Immunol. Immunother. 68, 1671–1680. doi:10.1007/s00262-019-
02327-7

Bertazza, L., and Mocellin, S. (2010). The Dual Role of Tumor Necrosis Factor
(TNF) in Cancer Biology. Curr. Med. Chem. 17, 3337–3352. doi:10.2174/
092986710793176339

Bonabeau, E. (2002). Agent-Based Modeling: Methods and Techniques for
Simulating Human Systems. Proc. Natl. Acad. Sci. 99, 7280–7287. doi:10.
1073/pnas.082080899

Calzone, L., Tournier, L., Fourquet, S., Thieffry, D., Zhivotovsky, B., Barillot, E.,
et al. (2010). Mathematical Modelling of Cell-Fate Decision in Response to
Death Receptor Engagement. PLoS Comput. Biol. 6, e1000702. doi:10.1371/
journal.pcbi.1000702

Camellato, B., Roney, I. J., Azizi, A., Charlebois, D., and Kaern, M. (2019).
Engineered Gene Networks Enable Non-Genetic Drug Resistance and
Enhanced Cellular Robustness. Eng. Biol. 3, 72–79. doi:10.1049/enb.2019.0009

Cartwright, J. H. E., Piro, O., and Tuval, I. (2009). Fluid Dynamics in
Developmental Biology: Moving Fluids that Shape Ontogeny. HFSP J. 3,
77–93. doi:10.2976/1.3043738

Chaouiya, C., Berenguier, D., Keating, S. M., Naldi, A., van Iersel, M. P., Rodriguez,
N., et al. (2013). SBML Qualitative Models: A Model Representation Format
and Infrastructure to foster Interactions between Qualitative Modelling
Formalisms and Tools. BMC Syst. Biol. 7, 135. doi:10.1186/1752-0509-7-135

Charlebois, D. A., Balázsi, G., and Kærn, M. (2014). Coherent Feedforward
Transcriptional Regulatory Motifs Enhance Drug Resistance. Phys. Rev. E
Stat. Nonlin Soft Matter Phys. 89, 052708. doi:10.1103/PhysRevE.89.052708

Charlebois, D. A., Intosalmi, J., Fraser, D., and Kærn, M. (2011). An Algorithm for
the Stochastic Simulation of Gene Expression and Heterogeneous Population
Dynamics. Commun. Comput. Phys. 9, 89–112. doi:10.4208/cicp.280110.
070510a

Charlebois, D. A., and Kærn, M. (2013). An Accelerated Method for Simulating
Population Dynamics. Commun. Comput. Phys. 14, 461–476. doi:10.4208/cicp.
130612.121012a

Checcoli, A., Pol, J. G., Naldi, A., Noël, V., Barillot, E., Kroemer, G., et al. (2020).
Dynamical Boolean Modeling of Immunogenic Cell Death. Front. Physiol. 11,
1320. doi:10.3389/fphys.2020.590479

Clairambault, J. (2006). Physiologically Based Modelling of Circadian Control on
Cell Proliferation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 173–176. doi:10.
1109/IEMBS.2006.260855

Cohen, D., Kuperstein, I., Barillot, E., Zinovyev, A., and Calzone, L. (2013). From a
Biological Hypothesis to the Construction of a Mathematical Model. Methods
Mol. Biol. 1021, 107–125. doi:10.1007/978-1-62703-450-0_6

Collombet, S., van Oevelen, C., Ortega, J. L. S., Abou-Jaoude, W., Di Stefano, B.,
Thomas-Chollier, M., et al. (2017). Logical Modeling of Lymphoid and Myeloid
Cell Specification and Transdifferentiation. Proc. Natl. Acad. Sci. U S A. 114,
5792–5799. doi:10.1073/pnas.1610622114

Cowan, A. E., Moraru, I. I., Schaff, J. C., Slepchenko, B. M., and Loew, L. M. (2012).
Spatial Modeling of Cell Signaling Networks. Methods Cel. Biol. 110, 195–221.
doi:10.1016/B978-0-12-388403-9.00008-4

Dong, J., Jimi, E., Zeiss, C., Hayden, M. S., and Ghosh, S. (2010). Constitutively
Active NF-κB Triggers Systemic TNFα-Dependent Inflammation and Localized
TNFα-Independent Inflammatory Disease. Genes Dev. 24, 1709–1717. doi:10.
1101/gad.1958410

Drouet, C., Shakhov, A. N., and Jongeneel, C. V. (1991). Enhancers and
Transcription Factors Controlling the Inducibility of the Tumor Necrosis
Factor-Alpha Promoter in Primary Macrophages. J. Immunol. 147,
1694–1700.

Eduati, F., Dolde-Martelli, V., Klinger, B., Cokelaer, T., Sieber, A., Kogera, F., et al.
(2017). Drug Resistance Mechanisms in Colorectal Cancer Dissected with Cell
Type-specific Dynamic Logic Models. Cancer Res. 77, 3364–3375. doi:10.1158/
0008-5472.CAN-17-0078

El-Badri, N. S., Hakki, A., Ferrari, A., Shamekh, R., and Good, R. A. (2007).
Autoimmune Disease: Is it a Disorder of the Microenvironment? Immunol. Res.
41, 79–86. doi:10.1007/s12026-007-0053-8

Ferrell, J. E. (2015). Bistability, Bifurcations, and Waddington’s Epigenetic
Landscape. Curr. Biol. 22, 11. doi:10.1016/j.cub.2012.03.045

Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., and Macklin,
P. (2018). Physicell: An Open Source Physics-Based Cell Simulator for 3-d
Multicellular Systems. Plos Comput. Biol. 14, e1005991. doi:10.1371/journal.
pcbi.1005991

Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A.,
et al. (2012). The Cell Collective: Toward an Open and Collaborative Approach
to Systems Biology. BMC Syst. Biol. 6, 96. doi:10.1186/1752-0509-6-96

Hoehme, S., and Drasdo, D. (2010). A Cell-Based Simulation Software for Multi-
Cellular Systems. Bioinformatics 26, 2641–2642. doi:10.1093/bioinformatics/
btq437

Jin, G. (2013). Feed Forward Loop. New York, NY: Springer New York, 737–738.
doi:10.1007/978-1-4419-9863-7_463

Kolch, W., Halasz, M., Granovskaya, M., and Kholodenko, B. N. (2015). The
Dynamic Control of Signal Transduction Networks in Cancer Cells. Nat. Rev.
Cancer 15, 515–527. doi:10.1038/nrc3983

Le Novère, N. (2015). Quantitative and Logic Modelling of Molecular and Gene
Networks. Nat. Rev. Genet. 16, 146–158. doi:10.1038/nrg3885

Letort, G., Montagud, A., Stoll, G., Heiland, R., Barillot, E., Macklin, P., et al. (2018).
Physiboss: A Multi-Scale Agent-Based Modelling Framework Integrating
Physical Dimension and Cell Signalling. Bioinformatics 35, 1188–1196.
doi:10.1093/bioinformatics/bty766

Liu, H., Sidiropoulos, P., Song, G., Pagliari, L. J., Birrer, M. J., Stein, B., et al. (2000).
TNF-alpha Gene Expression in Macrophages: Regulation by NF-Kappa B Is
Independent of C-Jun or C/EBP Beta. J. Immunol. 164, 4277–4285. doi:10.4049/
jimmunol.164.8.4277

Müssel, C., Hopfensitz, M., and Kestler, H. A. (2010). Boolnet—an R Package for
Generation, Reconstruction and Analysis of Boolean Networks. Bioinformatics
26, 1378–1380. doi:10.1093/bioinformatics/btq124

Naldi, A., Hernandez, C., Abou-Jaoude, W., Monteiro, P. T., Chaouiya, C., and
Thieffry, D. (2018). Logical Modeling and Analysis of Cellular Regulatory
Networks with Ginsim 3.0. Front. Physiol. 9, 646. doi:10.3389/fphys.2018.00646

Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F., and Calzone, L.
(2015). A Modelling Approach to Explain Mutually Exclusive and Co-
occurring Genetic Alterations in Bladder Tumorigenesis. Cancer Res. 75
(19), 4042–4052. doi:10.1158/0008-5472.CAN-15-0602

Shakhov, A. N., Collart, M. A., Vassalli, P., Nedospasov, S. A., and Jongeneel, C. V.
(1990). Kappa B-Type Enhancers Are Involved in Lipopolysaccharide-
Mediated Transcriptional Activation of the Tumor Necrosis Factor Alpha
Gene in Primary Macrophages. J. Exp. Med. 171, 35–47. doi:10.1084/jem.
171.1.35

Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. (2002). Probabilistic
Boolean Networks: A Rule-Based Uncertainty Model for Gene Regulatory
Networks. Bioinformatics 18, 261–274. doi:10.1093/bioinformatics/18.2.261

Smyth, M. J., Cretney, E., Kershaw, M. H., and Hayakawa, Y. (2004). Cytokines in
Cancer Immunity and Immunotherapy. Immunol. Rev. 202, 275–293. doi:10.
1111/j.0105-2896.2004.00199.x

Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., et al. (2017).
Maboss 2.0: An Environment for Stochastic Boolean Modeling. Bioinformatics
33, 2226–2228. doi:10.1093/bioinformatics/btx123

Stoll, G., Viara, E., Barillot, E., and Calzone, L. (2012). Continuous Time Boolean
Modeling for Biological Signaling: Application of gillespie Algorithm. BMC
Syst. Biol. 6, 116. doi:10.1186/1752-0509-6-116

Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D., and
Glazier, J. A. (2012). Multi-scale Modeling of Tissues Using Compucell3d.
Methods Cel. Biol. 110, 325–366. doi:10.1016/b978-0-12-388403-9.00013-8

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 80015210

Stoll et al. UPMaBoSS for Cell Population Modeling

107

https://doi.org/10.3389/fgene.2016.00094
https://doi.org/10.1186/1751-0473-3-16
https://doi.org/10.1186/1751-0473-3-16
https://doi.org/10.1098/rsfs.2010.0009
https://doi.org/10.1016/j.cell.2006.09.042
https://doi.org/10.1007/s00262-019-02327-7
https://doi.org/10.1007/s00262-019-02327-7
https://doi.org/10.2174/092986710793176339
https://doi.org/10.2174/092986710793176339
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1049/enb.2019.0009
https://doi.org/10.2976/1.3043738
https://doi.org/10.1186/1752-0509-7-135
https://doi.org/10.1103/PhysRevE.89.052708
https://doi.org/10.4208/cicp.280110.070510a
https://doi.org/10.4208/cicp.280110.070510a
https://doi.org/10.4208/cicp.130612.121012a
https://doi.org/10.4208/cicp.130612.121012a
https://doi.org/10.3389/fphys.2020.590479
https://doi.org/10.1109/IEMBS.2006.260855
https://doi.org/10.1109/IEMBS.2006.260855
https://doi.org/10.1007/978-1-62703-450-0_6
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1016/B978-0-12-388403-9.00008-4
https://doi.org/10.1101/gad.1958410
https://doi.org/10.1101/gad.1958410
https://doi.org/10.1158/0008-5472.CAN-17-0078
https://doi.org/10.1158/0008-5472.CAN-17-0078
https://doi.org/10.1007/s12026-007-0053-8
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1186/1752-0509-6-96
https://doi.org/10.1093/bioinformatics/btq437
https://doi.org/10.1093/bioinformatics/btq437
https://doi.org/10.1007/978-1-4419-9863-7_463
https://doi.org/10.1038/nrc3983
https://doi.org/10.1038/nrg3885
https://doi.org/10.1093/bioinformatics/bty766
https://doi.org/10.4049/jimmunol.164.8.4277
https://doi.org/10.4049/jimmunol.164.8.4277
https://doi.org/10.1093/bioinformatics/btq124
https://doi.org/10.3389/fphys.2018.00646
https://doi.org/10.1158/0008-5472.CAN-15-0602
https://doi.org/10.1084/jem.171.1.35
https://doi.org/10.1084/jem.171.1.35
https://doi.org/10.1093/bioinformatics/18.2.261
https://doi.org/10.1111/j.0105-2896.2004.00199.x
https://doi.org/10.1111/j.0105-2896.2004.00199.x
https://doi.org/10.1093/bioinformatics/btx123
https://doi.org/10.1186/1752-0509-6-116
https://doi.org/10.1016/b978-0-12-388403-9.00013-8
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Udommethaporn, S., Tencomnao, T., McGowan, E. M., and Boonyaratanakornkit,
V. (2016). Assessment of Anti-TNF-α Activities in Keratinocytes Expressing
Inducible TNF- α: A Novel Tool for Anti-TNF-α Drug Screening. PloS one 11
(7), e0159151. doi:10.1371/journal.pone.0159151

Varela, P. L., Ramos, C. V., Monteiro, P. T., and Chaouiya, C. (2019). EpiLog: A
Software for the Logical Modelling of Epithelial Dynamics. F1000Research 7,
1145. doi:10.12688/f1000research.15613.2

Viceconti, M., and Hunter, P. (2016). The Virtual Physiological Human: Ten Years
after. Annu. Rev. Biomed. Eng. 18, 103–123. doi:10.1146/annurev-bioeng-
110915-114742

Wang, Y., Xu, J., Zhang, X., Wang, C., Huang, Y., Dai, K., et al. (2017). Tnf-alpha-
induced Lrg1 Promotes Angiogenesis andMesenchymal Stem Cell Migration in
the Subchondral Bone during Osteoarthritis. Cell Death Dis 8 (3), e2715. doi:10.
1038/cddis.2017.129

Wolkenhauer, O., Auffray, C., Brass, O., Clairambault, J., Deutsch, A., Drasdo, D.,
et al. (2014). Enabling Multiscale Modeling in Systems Medicine. Genome Med.
6, 21. doi:10.1186/gm538

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Stoll, Naldi, Noël, Viara, Barillot, Kroemer, Thieffry and Calzone.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 80015211

Stoll et al. UPMaBoSS for Cell Population Modeling

108

https://doi.org/10.1371/journal.pone.0159151
https://doi.org/10.12688/f1000research.15613.2
https://doi.org/10.1146/annurev-bioeng-110915-114742
https://doi.org/10.1146/annurev-bioeng-110915-114742
https://doi.org/10.1038/cddis.2017.129
https://doi.org/10.1038/cddis.2017.129
https://doi.org/10.1186/gm538
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Applications of Coarse-Grained
Models in Metabolic Engineering
Dieu Thi Doan1*, Manh Dat Hoang2, Anna-Lena Heins2 and Andreas Kremling1

1Systems Biotechnology, TUM School of Engineering and Design, Technische Universität München, Garching, Germany,
2Biochemical Engineering, TUM School of Engineering and Design, Technische Universität München, Garching, Germany

Mathematical modeling is a promising tool for better understanding of cellular processes.
In recent years, the development of coarse-grained models has gained attraction since
these simple models are able to capture and describe a broad range of growth conditions.
Coarse-grained models often comprise only two cellular components, a low molecular
component as representative for central metabolism and energy generation and a
macromolecular component, representing the entire proteome. A framework is
presented that presents a strict mass conservative model for bacterial growth during a
biotechnological production process. After providing interesting properties for the steady-
state solution, applications are presented 1) for a production process of an amino acid and
2) production of a metabolite from central metabolism.

Keywords: mathematical modeling, resource allocation, kinetic model, metabolic engineering, systems
biotechnology, metabolic and gene regulatory networks, microbial growth

1 INTRODUCTION

To gain a full understanding of cellular processes, the usage of mathematical modeling and the
analysis of those have become a standard in metabolic engineering, systems biology, and process
engineering. Predictive models which can describe relevant cellular processes can be used as a basis
for process observation and process design with the intention to optimize the properties and
behavior of the cells. Even though bacteria are very diverse, the basic principles of their metabolism
are quite similar. In general, every bacterial population has to cope with its environment, scavenge for
nutrients, and then coordinate its central metabolism accordingly for growth and survival. The
underlying regulatory networks are very densely intertwined, large, complex, and not fully known or
incompletely understood, thus providing a big challenge to understand the processes in its entirety.
Mathematical models trying to describe all these processes in detail are challenging and nearly
impossible because of the huge number of variables and uncertain parameters.

Coarse-grained models have been used in the recent years and are now frequently used to get a
better understanding on cellular control strategies, gene expression, and resource allocation
Bollenbach et al. (2009), Scott et al. (2010). In this type of model, levels of cellular organization
with similar functions are “lumped” together into a small number of modules Maitra and Dill (2015),
Giordano et al. (2016), Pandey and Jain (2016), Sharma et al. (2018), Molenaar et al. (2009). In
contrast to whole-cell models with hundreds of individual reactions and components, the number of
state variables in coarse-grained models is very low, and kinetic parameters are obtained by either a
rough estimation from literature data or by regression from experimental data. An important
hallmark of coarse-grained models is allocation of cellular resources. This is expressed, for example,
by linking biochemical reactions to the available fraction of the proteome for the respective module.
In this way, a reaction can only take place if enough resources are available. The goal can be achieved
by efficient proteome allocation in a way where no resources are wasted. Using this fundamental
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assumption, many coarse-grained models have been proposed to
analyze certain metabolic effects such as metabolic overflow
Basan et al. (2015), production of heterologous protein Scott
et al. (2010), or applications in synthetic biology Weiße et al.
(2015).

Typically, coarse-grained models are written down as a set of
differential equations for the components of the model, whose
unit, for example, is the number of molecules per cell or mol/g dry
cell weight. However, mass balance equations must fulfill the
conservation of mass as dictated by the first fundamental theorem
of thermodynamics, and often, a consistent transfer from mass
balance equations to differential equations for the concentrations
of the model components is faulty or inadequate. Therefore, we
start by a brief recapitulation of the structure of the ordinary
differential equations for coarse-grained models that are
combined with models for the environment, for example, in a
bioreactor process system. Here, a new relationship for the
specific growth rate in dependence on the exchange reactions
of the entire network is given. This equation is fundamental since
it guarantees strict mass conservation for the complete system.
Conventionally, the growth rate is an empirical function and,
therefore, strict mass conservation is not ensured. In a second
step, we analyze the model and show interesting properties of the
steady-state behavior. We provide a general steady-state solution
for biochemical networks and compare outcomes of a traditional
flux balance analysis with our new approach. Finally, various
applications and extensions for a broad spectrum of problem
formulations in biotechnology are provided: 1) an
L-phenylalanine production process and 2) the production of
a metabolite from central metabolism. Hereby, problems of
resource allocation as well as problems of parameter
estimation are addressed.

2 MASS CONVERSATION IN MODELS FOR
MICROBIAL SYSTEMS

From thermodynamic principles, mass conversion is crucial and
plays the major role of determining the time course of selected
quantities of interest (system volume, concentration of reaction
partners, and temperature) which are called state variables. From
a static view on the biochemical reaction equations alone,
however, it is not possible to infer on the time course of the
state variables. A mass balance equation that describes the change
of a compound over time and sums up the material flow in and
out of the system comes into play here. It is a differential
equation. Since we are interested in the mass mi of a
component i, the mass balance reads as

dmi

dt
� J + P. (1)

In this general equation, J describes the mass flow into the
system while P describes conversion inside the system, for
example, by biochemical reactions. Both summands depend on
other state variables in the system. In the current form, the
equation cannot be applied. The reason is as follows: for
biochemical reaction networks, P describes mass conversion by

reactions, and the reaction velocity strongly depends on the
concentration of a compound given by ci = mi/V of the
reaction partners and not on the mass mi of the reaction
partners alone. For applications in systems biology, synthetic
biology, and biotechnology, a different convention is used for the
definition of the concentration of the cellular components (but
not for environmental compounds). Since it is much easier to
determine the entire biomass mX than the cellular volume, the
following definition is used, instead, for the concentration of an
intracellular metabolite: ci = mi/mX.

To avoid inconsistencies, it is recommended to always start
from the mass balance and reformulate the mass balance into an
equation for the concentration (the resulting equation is not a
mass balance in the strict sense, but in literature, we often find this
term). For a cellular network, the basic differential equation then
reads1

_c � N r − μ c , (2)
for the vector c , for the concentration of all components, a
reaction system given by the stoichiometric matrix N and a
rate vector r (c ) that is dependent on c as well. The specific
growth rate μ is an integral parameter that—in a strict sense—is
determined by the mass exchange of the population with its
environment. Therefore, it is defined as

μ � _mX/mX. (3)

The specific growth rate is related to the doubling time τ of the
population in the relationship τ = ln 2/μ. For the biomass itself,
also, a mass balance is set up that takes into account the changes
of biomass concentration due to removal from the bioreactor and
biomass formation due to growth. However, a different approach
can be used as shown in the Supporting Information that describes
the changes of biomass based on the changes of all compounds
representing the biomass. Therefore, from a formal point of view,
the specific growth rate μ only depends on the rate vector r that
describes internal processes as well as mass exchange with the
surrounding and is given with the vector of all molecular weights
of the components w

μ � wT N r . (4)
Plugging Eq. 4 into Eq. 2, the latter can be rewritten as

_c � N r − wT N r c � Id − c w T( ) N r � W N r ,

(5)
with W representing the mass matrix. Together with the
equations for the concentration for a substrate S and biomass
X in a bioreactor system with feeding rate qin, feed concentration
Sin, and stoichiometric vector n S

_S � qin
V

Sin − S( ) − n T
S rX, (6)

1Please note that underlined symbols are used for vectors.
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_X � μ − qin
V

( ) X, (7)

the system is completely described. The first term of Eq. 6
accounts for the feeding substrate, the second the dilution due
to the feed, and the last term the substrate uptake of the biomass.
The second term of Eq. 7 represents the growth and a dilution
due to the feed.

3 STEADY-STATE ANALYSIS

3.1 Flux Analysis
In classic flux balance analysis, the equation for a cellular network
only consists of the stoichiometric matrix N. Solutions for rate
vector r are investigated by determining the kernel of N,
providing possible fluxes through the cellular network Orth
et al. (2010). With the proposed approach, in addition,
properties of the mass matrix W has to be taken into account
as well, and the steady-state solution for the intracellular network
is obtained from the relationship

0 � W N r , (8)
which is obtained from Eq. 5 by setting the left side to zero. The
solution of this equation is determined by not only the kernel ofN
as in the classic flux balance analysis but also by the kernel of
matrix W, which is determined by the molecular composition of
the cell. The determinant of W is given by

det W( ) � 1 − ∑
i

wi ci. (9)

The addends of the second term are the mass fractions of
cellular component i, and given the strict mass conservation, the
sum over all mass fractions equals one. Therefore, the
determinant of W is always zero, and W is nonsingular.
Additionally, one can show that the kernel of W is in fact
one-dimensional (the proof can be found in Supplementary
Information). The complete solution r 0 of the relationship
given in Eq. 8 comprises two terms: the kernel of N, denoted
by r n,0, and second, the product of the Moore–Penrose inverse of
N, denoted by N+, and the kernel of W, denoted by c w,0

r 0 � r n,0 + N+c w,0. (10)

The two summands in the solution are not given in a unique
way and can be written with scalar factor s and an arbitrary vector
a with the same dimension as the rate vector r 0 as follows:

c w,0 � c s , s ∈ R (11)
r n,0 � Id −N+N( ) a . (12)

This principle holds true for all types of cellular networks
independently of its size and form, which can range from whole-
cell models to, in this case, coarse-grained models as shown in
Figure 1.

A typical minimal reaction system as shown in Figure 1 is
considered with a cellular network that represents the entire
biomass (the sum of all components in the network weighted with
their molecular weight) and only one anabolic reaction. The
scheme is given as follows2:

S( ) → α M
γ M → β P
M → by − product( ). (13)

It is to be noted that an extension to two or more anabolic
reactions can be performed easily since, in general, the mass
fractions of the macromolecules are well-known. The reaction
systems, therefore, consist of a pool of metabolitesM, proteins P,
and reactions ri that connect the pools with each other and the
environment. Rate rT describes the transport of the substrate into
the cell, while rate rO describes overflow metabolism. Proteins P
are synthesized with rate rP Maitra and Dill (2015), Giordano
et al. (2016), Pandey and Jain (2016)) The vector of components
reads c � (M,P), and the stoichiometric matrix for this system is
as follows:

N � α −γ −1
0 β 0

( ). (14)

Thus, the intracellular network for this minimal model can be
written as

_M
P

( ) � N
rT
rP
rO.

⎛⎜⎝ ⎞⎟⎠ − μ
M
P

( ). (15)

FIGURE 1 |General scheme of a coarse-grainedmodel with partitioned proteome (ribosomal proteins R, proteins linked with the central metabolism T, and residual
protein fraction Q) as the self-replicator system Scott et al. (2014); it consists of two components, indicated as blue boxes; (metabolite, low molecular weight), protein;
and residual biomass (high molecular weight; protein is assumed to be 50% of total biomass). The pools are connected by a minimal set of reactions, indicated by yellow
boxes, for substrate uptake, overflow metabolism, and protein synthesis.

2Stoichiometric coefficients are given with Greek symbols.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8062133

Doan et al. Coarse-Grained Modeling in Metabolic Engineering

111

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


For the basic structure, with Eq. 4, the specific growth rate is
given by

μ � α rT − rO( ) wM + rP β wP − γwM( ), (16)
wherewM andwP are the molecular weights of metabolitesM and
proteins P, respectively. With the observation from Eq. 10, the
solution of the rate vector reads

r �

1

α2 + 1
0
α

α2 + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ a + N+ c s (17)

with the first term representing the solution from the
stoichiometry of the system and the second term the
solution determined by the molecular composition of the
cell. With a closer look at solution Eq. 17, the rate
connecting only intracellular components of the system,
which is the protein synthesis rate rP, is only defined by the
second term. Thus, for the assumption of the known specific
growth rate μ and molecular composition of the cell, this rate is
fixed, while the remaining rates, meaning the substrate uptake
rate rT and the overflow metabolism rate rO, are coupled
through one degree of freedom a. If one of these rates is
known, the degree of freedom a can be determined and,
therefore, the last remaining rate.

3.2 Flux Analysis in Comparison to a
Constraint-Based Method
To illustrate the different outcomes when applying the new
approach with strict mass conservation as seen in Eq. 5 in
comparison to a standard analysis with a constraint-based

method, a small network with four metabolites and five
reactions is considered (Figure 2A).

Substrate S is taken up and four metabolites are generated
which in the conventional approach are consumed in reaction r5
to produce biomass. To make it realistic, we assume that the
stoichiometric coefficient for biomass is 100, that is, 100 small
molecules are used to get 1 mol protein/ biomass. The reaction
system is given as follows:

S( ) → M1

M1 → 2 M2 + M4

M2 → M3

M3 →
100M2 + 100M3 + 100M4 → protein/biomass( ).

(18)

In the case of constraint-based models that are used, for
example, for flux balance analysis or by Bollenbach et al.
(2009), the stoichiometric matrix noted by N1 for the internal
network has four rows and five columns:

N1 �
1 −1 0 0 0
0 2 −1 0 −100
0 0 1 −1 −100
0 1 0 0 −100

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (19)

Hence, the null space of N1 is one-dimensional, and the only
possible solution, when providing 1 unit flux of substrate uptake,
results in 0.01 unit of biomass (it is to be noted that in reaction 2,
2 mol ofM2 are produced). The situation becomes different when
strict mass conservation is taken into account. Here, we consider
the formation of protein/biomass. Therefore, the overall biomass
composition dictates the flux distribution in this case. From the
depicted scheme, we infer the molecular weight for the
components as follows (it is to be noted that these numbers
are not unique, but used here for demonstration purposes)

FIGURE 2 | Example network with metabolites Mi and reactions ri; conventional representation (A), new approach with one component representing protein/
biomass sector (C). On the right side (B,D), output data from the calculations are shown; it is to be noted that for the new approach, the dilution term must be taken into
account which is not shown in the plot.
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w � (w1, w1/4, w1/4, w1/2, 100w1). Given the stoichiometric
matrix N2 (extension of N1 by one component for the protein,
that is, one additional row) and the vector of molecular weights,
the specific growth μ can be calculated as mentioned before with
Eq. 4 with a possible flux vector r to be

μ � w1 0 0 −w1/4 0( ) r . (20)
It is to be noted that here only reactions that exchange with the

environment (here r1 and r4) appear. In the case at hand, the
stoichiometric matrix N2, taking into account the protein/
biomass fraction as additional component, has five rows and
five columns and has full rank. However, the null space ofW · N2

withW given in Eq. 5 is one-dimensional and represents the only
possible flux distribution. Matrix W strongly depends on the
cellular composition; the composition itself is the steady-state
solution, if the system is given in the standard form (Eq. 2), and
all reaction kinetics are known and well-parameterized. However,
for the example, we choose a different way and start with a
possible composition for biomass and back-calculate the fluxes
for this case. Taking the following composition vector (mass
fraction) f � (0.1, 0.1, 0.1, 0.1, 0.6) as an example, the resulting
flux vector (scaled to 1 for the uptake rate) is
r � (1, 8/9, 2/3,−4/9, 2/300). In this case, to fulfill all steady-
state equations, an additional input flux is necessary (r4 is
negative, that is, a second substrate is needed). This flux
vector is very different from the solution not considering strict
mass conservation.

3.3 Differential Algebra System
In the case of regulated systems, that are also named self-
replicator systems, a superimposed control structure (shown in
red in Figure 1) determines the allocation of protein resources in
the individual reactions. The division of the entire proteome in
fractions results in additional algebraic equations representing
conservation conditions. This is shown exemplarily in Figure 1
with three fractions; fraction R represents ribosomes, fraction T
represents transport and catabolism, and fraction Q represents
the remaining proteins. The dependency of the rate for protein
synthesis rp on the ribosomal fraction R of the proteome is
common to many approaches Scott et al. (2014). To derive a
consistent system that can be used for numerical simulation, the
resource allocation problem must be formulated in mathematical
terms; here, we will describe two different approaches that result
in a differential algebra system or in an optimization program.

First, the rate vector r of the minimal coarse-grained model is
fixed with kinetic rate laws. For the rates involved in central
metabolism, a dependency to the T fraction is applied, while rate
rP will depend on the R fraction. Furthermore, the drain from
central metabolism will depend on metabolite M, while the
transport reaction will depend on the main substrate S. The
following rates are taken as examples for the case study:

rT � kT
S

S +KT
T

rP � kP
M

M +KP
R

rO � kO M T.

(21)

The dependencies of T and R from the entire proteome P are
exploited from a data set that was published by Schmidt et al. (2016).
The fraction of the T and R fractions is given in dependence on the
specific growth rate μ. From the data, a linear relationship can be
deduced. However, a direct implementation of functions T, R = f(μ)
is not possible since μ itself depends on R and T. Therefore, we
proceed as follows: for the case at hand, an algebraic system could be
set up for the steady-state solution of the differential equation
system. The system reads

0 � N
rT
rP
rO

⎛⎜⎝ ⎞⎟⎠ − μ
M
P

( )
0 � μ − wT N r
0 � T − f1 μ( )
0 � R − f2 μ( ).

(22)

Thereby, the last two equations are determined by experimental data.
From the solution for a broad range of the input variable, in our case,
substrate concentration S, relationships of the formT= g1(M, P), and
R = g2(M, P) are determined. In this way, also the dynamical system
could be simulated. In addition, in this format, the system for the
intracellular network consists only of two independent variables M
and P. Figure 3 shows the dependencies of sectors T and R from the
specific growth rate asmeasured experimentally (Figure 3A) and the
kinetics for T and R as a function of metabolite M (Figure 3B).

3.4 Optimization Program
The first approach with fixed reaction kinetics is compared with
an optimization program to check if the given experimental data
for fractions T and R are optimal for the given specific growth
rates. For this, we omit the determined dependencies given in the
last subsection, and the following program is formulated:

maxR Φ, Φ � μ
s.t.

0 � N r − μ c
μ � wT N r
0 � P0 − T − R.

(23)

The program is simplified to only one design variable R and
the constraint that the sum of R and T is fixed to a constant value
P0. The kinetic rate laws are taken as given above. Figure 4
compares the steady-state output of both approaches for a given
range of the substrate concentration S (kinetic expressions and
kinetic parameters are the same in both cases).

A comparison of the growth rate indicates that only a slightly
higher growth rate could be achieved in the optimal case. This is
based on the observation that the protein fraction that is allocated
to the T fraction is always higher than that for the R fraction
which is not the case in Figure 3B.

4 L-PHENYLALANINE PRODUCTION WITH
ESCHERICHIA COLI

The proposed coarse-grained model approach can be used to
model a biotechnological production process. In the scope of this
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FIGURE 3 | Relationship between the sectors T and R as a function of the specific growth rate μ. Experimental data are taken from the study by Schmidt et al.,
(2016) with protein representing 50% of the biomass (A). Estimated kinetics of first order for T/P and R/P as a function of variable M (B).

FIGURE 4 | Specific growth rate μ as a function of substrate S, where the solid line represents the optimal case (A). Fractions R (red) and T (blue) as a function of the
growth rate μ, where the solid line represents the optimal case, and dashed lines are from presented data in Figure 3B.

FIGURE 5 | Scheme of the coarse-grained model expanded to include the formation of L-phenylalanine, respiration rC, and residual biomass U.
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research, we consider an L-phenylalanine producing Escherichia
coli strain with glycerol as the substrate and decoupled biomass
and product formation due to L-tyrosine auxotrophism, meaning
biomass is only formed if L-tyrosine is available (Sprenger (2007),
Weiner et al. (2014)). A more detailed description of the strain
used can be found in the Material and Methods section. The
L-phenylalanine production process is considered here as an
example for a bioreactor production process. Due to the
nature of coarse-grained models, the resulting model can
easily be adapted to depict other production processes. The
basic model is extended to include an additional rate rF
describing L-phenylalanine formation and a corresponding
protein sector F as seen in Figure 5. Furthermore, we consider
respiration implemented as rate rC and the residual biomass
fraction U.

The system (Eqs 2–4) is represented as follows:

N �
α −γ −1 −δ −2 −1
0 β 0 0 0 0
0 0 0 ϵ 0 0

⎛⎜⎝ ⎞⎟⎠ (24)

with the differential equations

_M
P
U

⎛⎜⎝ ⎞⎟⎠ � N

rT
rP
rO
rU
rF
rC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− μ

M
P
U

⎛⎜⎝ ⎞⎟⎠. (25)

The next step is to determine the reaction rates. The rates
concerning the central metabolism and overflow remain the same
as in the basic model (Eq. 21). The L-phenylalanine production
rate is dependent on the F fraction and the respiration rate rC on
the T fraction as it is part of the central metabolism. In order to
incoporate the L-tyrosine auxotrophism, the protein synthesis
rate rP and synthesis rate of residual biomass rU are modified to be
multiplied with a function which is 1 if L-tyrosine is available and
otherwise set to a low value of 0.1, corresponding to a low biomass
formation during this phase, since it cannot be practically ensured
that no L-tyrosine is available during this phase. This leads to the
following set of reaction rates

rT � kT
S

S + KT
T

rP � kP
M

M +KP
R τ A( )

rO � kO M T

rU � kU
M

M + KU
R τ A( )

rF � kF M FP

rC � kC M T,

(26)

where A is the available L-tyrosine and

τ A( ) � 1, A> 0
0.1, A≤ 0.{ (27)

As the reaction rates are determined by the composition of the
proteome, we can take advantage of the observations from the
previous section. The allocation of T and R in the proteome is

given by the estimated linear function ofM as seen in Figure 4. A
part of the proteome is allocated to fraction F after induction,
which is accomplished through the shift of biomass production to
product formation due to lack of L-tyrosine in the feed at time tind
with delay as follows:

FP � ϕ t( ) Fmax P, (28)
where

ϕ t( ) � t − tind
t − tind( ) + tϕ

. (29)

The remaining protein fraction Q is not of further interest.

Now that we have formulated a system for the intracellular
components forming the total biomass X, equations can be set up
to model a complete bioprocess consisting of two process phases:
a biomass production phase, followed by a batch phase, followed
by two fed-batch phases with two different feeding solutions, and
an L-phenylalanine production process phase which was initiated
with induction of the cells with IPTG. For the process, we assume
ideal mixing conditions in a bioreactor of the volume V with
feeding rate qin as seen in Figure 6

_V � qin (30)
and only one feeding substrate (glycerol) S in [g/l] with feed
substrate concentration Sin

_S � qin
V

Sin − S( ) − rT X wS, (31)

where the first term represents the ingoing substrate and dilution
due to volume change and the second term the substrate uptake
by the cells. The equation for the biomass X is given by

_X � μ X − qin
V

X, (32)
and the product equations are

_F � rF X wF − qin
V

F, (33)
_O � rO X wO − qin

V
O, (34)

with acetate O as the exemplary byproduct. Feeding profiles
(Figure 6) determining the variables qin and Sin and L-tyrosine
concentrations during the process and initial values for the
differential Eqs 30–34 are obtained from experimental data
(see Supplementary Material). The bioprocess has been run in
a stirred-tank bioreactor with a starting volume of V0 = 1 l; thus,
we can that assume the environment in the bioreactor is well-
mixed, and the description of the biomass by an average cell, as in
the model presented, is sufficient. Experimental data suggest a
stop in both biomass and product formation and a high
accumulation of by-products after process time point t = 71 h
(experimental data for the full process can be found in
Supplementary Material). As reasons for this behavior have
not been investigated at this point, the mechanistics to depict
this are not incorporated in the model. Using Eqs 25–34, a
numerical simulation up to process time t = 71 h was performed
using MATLAB R2020a with ode15s as ordinary differential
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equation solver and was compared to experimental results
(Figure 7). Analogous to the experiments, the simulation is
divided into different process phases, and slightly different
parameter sets were used for the biomass and L-phenylalanine
production phase. The parameter set for the product formation
phase contains higher reaction constants for byproduct formation
and respiration. After each process phase, the solution of the end
point was used as the initial value for the differential equations for
the next process phase. Parameter values used for this simulation
can be found in Supplementary Materials. Figure 7 shows good
agreement between the simulated concentrations of substrate S,
biomass X, L-phenylalanine F, and the experimental data. The
peak of substrate concentration S during the fed-batch phase can

be explained by the change of substrate concentration in the feed.
The simulation of acetate concentration O shows the right trend,
although not the exact behavior, of the by-products. Nevertheless,
for the given parameter sets, the model can reproduce the overall
dynamics of the L-phenylalanine production process. Besides the
measurable quantities, the model can provide the intracellular
concentrations as seen in Figure 8B, where the macromolecules P
and U make up most of the biomass with both occupying nearly
half of the biomass, and the mass fraction of the metabolites is
negligible compared to that of the macromolecules, especially in
the product formation phase. With a closer look at the allocation
of the proteome, the fraction R follows the behavior of the
metabolites M, decreases over the course of the process, and

FIGURE 6 | Feeding profile of the process. Bioeactor volume V (A) and substrate concentration (glycerol) of the feed Sin (B) over the time course of the process,
where vertical lines indicate the three process phases (batch phase, fed-batch phase, and production phase with constant feeding).

FIGURE 7 | Comparison of the simulated quantities (solid blue line) against the experimental data (points) of the L-phenylalanine production process up to t = 71 h.
Time course of the following concentrations: glycerol S (A), biomass X, L-tyrosine A (B), L-phenylalanine F (C), and acetateO as representative of the by-products of the
process (D). The data points of L-tyrosine, which are negative due to insufficient measurement sensitivity, are set to zero.
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FIGURE 8 | Time course of intracellular concentrations of the L-phenylalanine process: metabolitesM (A), mass fractions of proteinsP (violet), and residual biomass
U (orange) and metabolitesM (blue), where M becomes negligible in the last process phase (B). Mass fractions of T (blue), R (red), and F (yellow) over the course of the
process (C).

FIGURE 9 | Time course of the simulated specific growth rate μ (blue) and the point-wise calculated specific growth rate obtained from experimental data indicated
as orange dots (A), substrate transport rate rT (B), protein synthesis rate rP (C), overflowmetabolism rate rO (D), residual biomass synthesis rate rU (E), product formation
rate rF (F), and respiration rate rC (G).
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remains at a constant level during the product formation phase
with fraction T forming the counterpart. The fraction for product
formation F follows the description of Eqs 28, 29.

In addition, the specific growth rate μ and the different
reaction rates can be obtained from the model (Figure 9). The
simulated growth rate μ roughly follows the trend of the growth
rate pointwise calculated from the experimental data of biomass
as seen in Figure 9A. The calculated growth rate has to be taken
with caution as each point is calculated from two consecutive
points with a large time difference and can heavily deviate from
the actual growth rate. One can observe that due to the
dependency of all rates on the metabolites M and the constant
protein fraction T, all reaction rates follow the course of the
metabolites during the biomass production phase (Figures
9B–D). In the product formation phase, the rates for the
synthesis of all macromolecules deviate from the course of the
metabolites as it is determined by the L-tyrosine auxotrophism
(Figures 9C,D).

5 OPTIMAL BY-PRODUCT SECRETION

The second example considers the optimal production of a
metabolite (in this case M) that is excreted into the medium
via reaction r3 (see Figure 1). Since M represents a metabolite
from central metabolic pathways, it could stand for ethanol,
acetate, or succinate which are all interesting biotechnological
products. The stoichiometry and parameters are the same as in
Eqs. 16–19. For the simulation study, and for a fair comparison of
the outcoming results, the following conditions are fixed:

• A fed-batch process in a bioreactor is considered with a
flexible input profile for the incoming substrate feed rate
qin(t) as a function of time and a fixed-end time tend = 20 h.
With the feed, the substrate concentration can be adjusted
in such a way that the metabolite is excreted at best. In
contrast to a batch process, the substrate is fed into the
medium and, therefore, high sugar concentrations in the
beginning (as for the batch process) are avoided. Since a
continuous process requires much more time, a steady state
is reached normally first after five times the respective time
constant (in our case approx. 20 h); this type of process
design is also not considered here.

• The initial conditions are set fix for all model state variables.
• The bioreactor has a maximumworking volume of 5 l, while
in the beginning, the experiment starts with 1 l.

• The objective function is the amount of product expressed
in mole at tend: Mex V.

For the study, three different profiles are investigated. 1) A
standard procedure, often applied in bioprocess engineering tries
to feed the substrate in an exponential way to keep the specific
growth rate μ constant. This requires that the substrate
concentration in the bioreactor is nearly constant. The
differential equation for the substrate S with function qin and
feed concentration Sin reads as follows:

_S � qin
V

Sin − S( ) − r1 X, (35)

and after setting this equation to zero, a function for qin can be
obtained:

qin � r1 X V

Sin − S
; (36)

with mX = X V and a constant growth rate μ0 for this condition,
we get

qin � r1 mX0 eμ0 t

Sin − S
. (37)

Typically, r1 is estimated given the biomass yield coefficient Y
during the batch phase and since the current substrate
concentration is low (due to a small half-saturation value for
substrate uptake), we finally obtain

qin � μ0 mX0 eμ0 t

Y Sin
. (38)

The feeding profile is applied after the end of the batch phase.
2) The second profile uses a polynomial function of time for

the feeding rate:

qin � ∑4
i�1

ai t
i, (39)

with four parameters ai to optimize.
3) The last profile is a piecewise linear profile with six fixed

switching points tk:

qin � qkin � const. for tk−1 ≤ t ≤ tk. (40)
Here, the values qkin are the parameters that have to be optimized.

First, a typical outcome for the standard case is shown in
Figure 10. After 3.5 h, the substrate runs out and the feeding
starts. The batch phase is characterized by very low productivity
while the growth rate is at its maximum. In addition, during this
phase, the R fraction is high (as already shown above) and,
therefore, due to the coupling to the T fraction, the rate of
byproduct formation is low. After starting the feeding, the
intracellular system switches to high values for the T fraction
Next, a comparison of the feeding profiles and the final value of
the objective function is shown in Figure 11. Although the
profiles are different, the final values of the objective function
are comparable.

The simulation studies are based on a fixed set of kinetic
parameters and, so far, did not consider any uncertainties with
respect to the quality of these. Typically, kinetic parameters are
obtained by parameter identification and subsequent
parameter estimation and analysis. For our example at
hand, in the next step, the uncertainty of the kinetic
parameters is taken into account during the optimization
procedure. Important parameters of the model are the
maximal reaction velocities rmax for all reactions. To
consider these uncertainties, an ensemble of 20 models is
generated during each iteration step of the optimization.
This results also in an ensemble for the values of the
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FIGURE 10 | Simulation outcome for the standard fed-batch process. Time course of substrate (blue) and product (red) in the medium (A). Growth rate μ (B). Time
course of the protein sectors R (red) and T (blue) (C).

FIGURE 11 |Comparison of the outcome of the three strategies. Time course for the feeding qin as a function of time (A); value of the objective function (from left to
right: standard feeding, polynomial function, and piece-wise function) (B).

FIGURE 12 | Robust optimization. Input profile (red) for the robust case in comparison to the standard case (A). Product course of time for 100 simulations (in gray)
with the variation in the maximal rate of the enzymatic processes and simulation with standard parameter (blue). (B). Pareto front for two objective functions: product
amount at time tend and total amount of the substrate needed to produce the product. Thin lines indicate the cost change for an increase in product amount as described
in the text (C).
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objective function Φ, following the approach proposed by
Nimmegeers et al., (2016), and the objective function in this
case is given by

max E Φ[ ] − α Var Φ[ ], (41)
with a weighting factor α, expectation E, and variance Var. With
this formulation, stronger variations in the values of the objective
function, expressed in the variance of Φ, are penalized. Since the
feeding profile is geared to the growth rate, a much more
conservative output is expected; if the substrate uptake, for
example, would be higher than expected, more biomass would
be produced, and few byproducts will be released. As can be seen
in left of Figure 12, the input function (red curve) (and with this
also the bioreactor volume) is lower than that in case of the
standard procedure (blue curve). On the right side, different
outcomes (in gray) for the variable product Pr are shown for 100
simulation runs, together with a simulation of the nominal values
(blue curve).

Besides the optimization of the product at tend, also the cost of
substrate is of interest. In a fed-batch process, the total amount of
substrate Stot fed, considering the substrate concentration at the
beginning S0, can be calculated by

Stot � ∫
tend

t1

qin t( ) Sin dt + S0. (42)

The outcome of having two objective functions, maximization
of product at tend, and minimization of the substrate cost for the
entire process can be presented with a Pareto front that is shown
in Figure 12. As can be seen, a nearly perfect linear relationship is
detected (it is to be noted that both objective functions have unit
mole); increasing the product, for example, for 0.05 mol units
results in cost for the substrate of 0.13 mol. In this way, an
economic assessment of the process is possible.

6 DISCUSSION

In bioprocess engineering, the design of experiments often is based
on a mathematical description. While simple growth models taking
into account only biomass, substrate, and product often are
insufficient to describe the observed dynamics, whole-cell models
are cumbersome and are difficult to calibrate. A good model
comprises coarse-grained models because they are simple in the
model structure but take into account the most important cellular
processes. In this study, we propose an approach to use coarse-
grained models based on a strict mass conservation to model
bacterial growth as a basis for metabolic engineering applications.
In this way, classical flux analysis could be extended to take into
account fluxes into macromolecules such as the proteome.
Additional solutions are provided by the null space of the mass
matrix W that requires information on the mass fraction of the
components of the model. With a simple example, we could show
that depending on the mass composition of the cell, larger
differences in the flux distribution in comparison to the standard
approach could appear. With the condition of strict mass

conservation, we are also able to provide a general solution for a
cellular network independently of its internal structure.

As the focus of this research is coarse-grainedmodels, we provided
a formulation for a minimal model whose structure is in accordance
with that in previous studies Sharma et al. (2018), Bertaux et al. (2020).
Steady-state solutions are determined based on measured data
(Schmidt et al., 2016) for the molecular composition of the cell.
Especially, we consider two main protein fractions, an R fraction
representing the transcription and translation apparatus and a T
fraction, taking into account metabolic and transport enzymes. The
outcome of these simulation studies is compared with that of a model
where the R fraction is an adjustable quantity in an optimization
program (the sum of the R fraction and T fraction is taken as
constant). The results of the optimization program show that an
optimal allocation of proteins led to a slightly higher growth rate with
a comparable course of the R fraction as a function of the specific
growth rate, and we conclude that the measured data are in good
agreement with the expectation of an efficient and optimal acting
organism.

Many studies have dealt with the derivation of growth laws
under various conditions Klumpp et al. (2013), Bosdriesz et al.
(2015), Hui et al. (2015). Based on the structure of the minimal
model, we have expanded the model to include the dynamic
environment in a bioreactor system that allows us to realize also
different process design strategies such as feeding or continuous
culture. Experimental data from an L-phenylalanine production
process are taken as an example for parameter identification and
estimation, and a good agreement between simulation and
experimental data is obtained. A different design problem was
addressed by finding optimal input profiles if the production of a
metabolite from central pathways is of interest. Here, also,
parametric uncertainties can be taken into account that leads
to amuchmore conservative input profile. To summarize, coarse-
grained models are a sound basis for the development of
bioprocesses due to their simple structure with only a minor
number of parameters and the flexibility to simulate and optimize
different biotechnological process designs.

MATERIAL AND METHODS FOR
EXPERIMENTAL CULTIVATION OF TRIPLE
REPORTER STRAIN
Strain
For the L-phenylalanine production process, in a stirred-tank
bioreactor of 3.6 l working volume, a recombinant Escherichia coli
FUS4 (pF81kan) strain was used as described by Gottlieb et al. (2014).
This is a genetically modified strain with auxotrophies for
L-phenylalanine and L-tyrosine by deletion of the chromosomal
genes aroF, pheA, and tyrA (decoding for a DAHP synthase,
bifunctional chorismate mutase / prephenate dehydratase, and a
t-protein, respectively) along the aromatic biosynthesis pathway.
Simultaneously, it harbors the pF81kan plasmid decoding for the
genes aroF, pheA, aroB (3-dehydroquinate synthase), and aroL
(shikimate kinase 2) under the control of an inducable tac
promoter. Furthermore, kanamycin resistance is integrated as the
selection marker Gottlieb et al. (2014), Weiner et al. (2014).
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Cultivation Media
The cells were cultivated in a defined minimal medium with
glycerol as the sole carbon source. All the components with their
corresponding concentrations as well as its production protocol
were adapted from the study by Weiner et al. (2014).

Preculture Strategy
Provision of cell biomass for the inoculation for the cultivation in a
stirred-tank bioreactor was realized by a two-step preliminary
cultivation in shake flasks. First, a single colony of cells grown
on minimal medium agar plates (> 66 h at 37°C) was picked for
inoculation of a single 100-ml shake flask with 10ml minimal
medium and cultivated at 37 °C and 150 rpm in an orbital shaker
(Multitron, Infors HT, Switzerland) for 24 h. Afterward, the cells
were transferred for further cultivation in two 500-ml shake flasks
with 100 ml minimal media each and a starting optical density at
600 nm (OD600) of 0.01. After incubation at 37°C and 250 rpm for
at least 24 h, the cells were centrifuged (4,500 rpm, 10 min) and
resuspended in fresh minimal medium. These cell suspensions
were used for inoculation of cultivations in the stirred-tank
bioreactor with a starting OD600 of 0.1.

Bioreactor Cultivation
For laboratory-scale cultivation of recombinant E. coli FUS4 (pF81kan)
for L-phenylalanine production, a 3.6 glass stirred-tank bioreactor was
used (Infors HT, Switzerland). The bioreactor was equipped with two
six-bladed flat-blade turbines and three equidistant baffles. The
minimal medium for cultivation was prepared ex situ and pumped
into the bioreactor under sterile conditions to a starting volume of 1 l.
The temperature was kept at 37 °C. 42% phosphoric acid and 25%
ammonia were used as titration solutions to keep the pH at 7 ± 0.1.
Dissolved oxygen levels above 30%were provided by step-wise increase
of either stirrer speed or aeration rate up to 1,500 rpm and 5 l/min,
respectively. Furthermore, an antifoam probe was used for controlled
titration of antifoam solution, if necessary (AF204, 1:10 diluted, Sigma
Aldrich, United States). The cultivation started with an initial batch
phase. After depletion of glycerol, an exponential feedingwas set for the
biomass production phase with a defined growth rate of μset = 0.1 1/h.
Two fed-batch media were used with either 120 g/l glycerol, 2.5 g/l
L-phenylalanine, 3.6 g/l L-tyrosine, 60 g/l ammonium sulfate, and
0.1 g/l kanamycin (fed-batch medium 1) or 400 g/l glycerol, 1.11 g/l
L-phenylalanine, 3.8 g/l L-tyrosine, 25 g/l ammonium sulfate, and
0.1 g/l kanamycin (fed-batch medium 2). The former and the latter
were titrated with 25% ammonia or 5M potassium hydroxide to allow
complete dissolution of L-tyrosine. After a sufficiently high biomass
concentration of at least 20 g/l was provided, the cells were induced
with 0.3mMIPTG. Fed-batchmedium3with the components 800 g/l,
8 g/l ammonium sulfate, 8 g/l ammonium phosphate, and 0.1 g/l
kanamycin was then constantly provided with a rate of
0.18 gglycerol/gBiomassh. At the start of each fed-batch media supply,
the concentrated media components calcium chloride dihydroxide
(15 g/l) and iron(II) sulfate heptahydrate with sodium citrate dihydrate
(22.5 g/l and 200 g/l), magnesium sulfate heptahydrate (300 g/l), and
thiamine hydrochloride (7.5 g/l) were mixed in a 1:5:1:1 ratio and
injected to the fermentation broth via a septum. For the start of fed-
batch phase 1, 2, or 3, a mixture of 4.8, 9.6, and 8.8ml were injected,
respectively Weiner et al. (2014).

Analytics
Cell dry weights were measured gravimetrically. Pre-weighted dried
2-ml microcentrifuge tubes (80 °C for at least 24 h) were used for
centrifugation of 2 ml of the cell suspension (21130 × g, 20 min,
4°C). The supernatant was further used for sample preparation for
high-performance liquid chromatographies (HPLCs) or discarded.
The cell pellet was dried again at 80°C for at least 24 h. The biomass
concentration was calculated by the difference of weight between the
microcentrifuge tube with dried cell pellets and the empty
microcentrifuge tube. For the quantification of the amino acid
concentrations of L-phenylalanine and L-tyrosine as well as for
the organic compounds glycerol, acetate, lactate, succinate, pyruvate,
malate, and ethanol, two different HPLCs were used. The samples
for HPLC analysis were prepared by filtration of the supernatant of
each sample through a 0.2-μm filter and were stored at 4°C upon
measurement. The quantification method for both amino acids is
already described by Weiner et al. (2014) and was adapted from
there. The organic compounds were quantified using a HPLC
(Prominence-i LC-2030C, Shimadzu, Japan) with an ion-
exchange column (Aminex HPX-87H 300mm × 7.8 mm, Bio-
Rad, CA, United States) and a refractive index detector (RID-
20A, Shimadzu, Kyoto, Japan). 10 μl of samples was injected to
an isocratic flow of 0.6 ml/min and 5mM sulfuric acid as mobile
phase with a constant temperature of 60°C. The quantification of
each component was realized bymeasurement of external standards.
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GAL Regulon in the Yeast S. cerevisiae
is Highly Evolvable via Acquisition in
the Coding Regions of the Regulatory
Elements of the Network
Rajeshkannan†, Anjali Mahilkar† and Supreet Saini*

Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India

GAL network in the yeast S. cerevisiae is one of the most well-characterized regulatory
network. Expression of GAL genes is contingent on exposure to galactose, and an
appropriate combination of the alleles of the regulatory genes GAL3, GAL1, GAL80, and
GAL4. The presence of multiple regulators in the GAL network makes it unique, as
compared to the many sugar utilization networks studied in bacteria. For example,
utilization of lactose is controlled by a single regulator LacI, in E. coli’s lac operon.
Moreover, recent work has demonstrated that multiple alleles of these regulatory
proteins are present in yeast isolated from ecological niches. In this work, we develop
a mathematical model, and demonstrate via deterministic and stochastic runs of the
model, that behavior/gene expression patterns of the cells (at a population level, and at a
single-cell resolution) can be modulated by altering the binding affinities between the
regulatory proteins. This adaptability is likely the key to explaining the multiple GAL
regulatory alleles discovered in ecological isolates in recent years.

Keywords: S. cerevisiae, galactose, GAL regulon, gene expression kinetics, evolvability

INTRODUCTION

Genetic circuits are evolvable. Depending on the precise environmental niches, acquisition of a
mutation could alter gene expression dynamics more suited for survival and growth. The changes in
the network dynamics could be facilitated by two types of mutations. First, mutations which change
processes like transcription and translation, and hence, shape regulatory networks (Wray, 2007; Kim
and Przytycka, 2012; Hill et al., 2021). These mutations change the timing and levels of transcription
and translation. On the other hand, mutations could also change protein activity, and as a result the
affinity of a protein with DNA or another protein; resulting in downstream changes in gene
expression (Golding and Dean, 1998). While several examples of the first kind are known, relatively
fewer examples of changes in expression patterns by protein modifications are known (Lewontin,
2002; Rodriguez-Trelles et al., 2003).

The GAL regulon in the yeast Saccharomyces cerevisiae (S. cerevisiae), which enables the organism to
utilize and grow on galactose, is one of the most well-studied regulatory networks in yeast (Bhat and
Murthy, 2001). The regulatory network, is briefly explained below (Figure 1). All genes involved in
utilization of galactose are under the control of a transcriptional regulator, GAL4p. Gal4p binds to and
drive expression from several promoters, which control expression of the GAL regulon (Chasman and
Kornberg, 1990). In the absence of galactose, Gal80p binds Gal4p, leading to formation of a Gal80p-Gal4p
protein complex. This sequestration of Gal4p thus switches OFF expression from promoters of the

Edited by:
Alberto Jesus Martin,

Universidad Mayor, Chile

Reviewed by:
Mikael Molin,

Chalmers University of Technology,
Sweden

Sandeep Choubey,
Institute of Mathematical Sciences,

Chennai, India

*Correspondence:
Supreet Saini

saini@che.iitb.ac.in

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 24 October 2021
Accepted: 22 February 2022
Published: 14 March 2022

Citation:
Rajeshkannan, Mahilkar A and Saini S
(2022) GAL Regulon in the Yeast S.

cerevisiae is Highly Evolvable via
Acquisition in the Coding Regions of the
Regulatory Elements of the Network.

Front. Mol. Biosci. 9:801011.
doi: 10.3389/fmolb.2022.801011

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8010111

ORIGINAL RESEARCH
published: 14 March 2022

doi: 10.3389/fmolb.2022.801011

123

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.801011&domain=pdf&date_stamp=2022-03-14
https://www.frontiersin.org/articles/10.3389/fmolb.2022.801011/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.801011/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.801011/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.801011/full
http://creativecommons.org/licenses/by/4.0/
mailto:saini@che.iitb.ac.in
https://doi.org/10.3389/fmolb.2022.801011
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.801011


GAL regulon. In the presence of galactose, however, the signal
transducer Gal3p, binds galactose and in its activated form
(Gal3p*) binds Gal80p, forming the complex Gal3p*-Gal80p.
The Gal3p*-dependent sequestration of Gal80p, thus frees,
Gal4p to activate gene expression from the GAL regulon
promoters (Bram et al., 1986; Johnston, 1987). Galactose is
brought into the cell via the galactose-specific transporter,
Gal2p (Chiang et al., 1996; Hawkins and Smolke, 2006). Upon
entry, galactose is first activated upon by the galactokinase,
Gal1p (Zenke et al., 1996).

Laboratory work in the 1970s led to isolation of several alleles
of GAL regulatory proteins (Douglas and Hawthorne, 1966; Nogi
and Fukasawa, 1984; Salmeron et al., 1990). More recently,
analysis of yeast isolated from ecological niches has revealed
that several alleles of the regulators in the GAL system are present
in nature (Wang et al., 2015; Lee et al., 2017). Analysis of several
thousands of these isolates was used to reveal that distribution of
these alleles is non-random; and certain combinations of alleles
confer a greater fitness than others (Boocock et al., 2021).

In this study, we develop a quantitative model to study gene
expression dynamics in the GAL system. Several existing models to
study this system exist. However, we use the model to ask the
following question: how does changing the allelic combinations
make to the dynamics of gene expression of the GAL network?
Are there specific regulatory elements in the GAL network which
control the system’s sensitivity, evolvability than others? We
particularly focus on the Gal4p-Gal80p and Gal3*-Gal80p
interaction. Towards this, we first develop a quantitative model,
and study the system’s behavior at a population as well as at a single-
cell resolution. We then validate our model through analysis of the
wild type laboratory strain S. cerevisiae, and two distinct regulatory
mutants. Thereafter, we analyze our model for studying the

regulatory evolvability of the network. Our analysis reveals that in
the regulatory structure of the GAL network, the gene expression
behavior is highly evolvable via acquisition of mutations among the
several regulatory elements in the network, thus, suggesting that the
GAL network is highly evolvable, and suggesting an explanation
regarding the high allelic diversity among its regulatory elements in
yeast isolated from ecological isolates.

MATERIALS AND METHODS

Mathematical Modeling of the GAL Network
In S. cerevisiae, enzymes encoded in the GAL regulon control
metabolism of galactose. Seven proteins play a role in the
metabolism of galactose. Among them, there are three enzymes
involved in the catalytic pathway to convert galactose to glucose-6-
phosphate and there are four other enzymes involved in transportation
of galactose and activation of GAL genes (Sellick et al., 2008). Figure 1
shows the schematic diagram of the utilization of glucose and galactose
to produce biomass through glycolysis process.

Both glucose and galactose have specific transporter through
which those sugars are imported into the cell. Glucose is
transported by HXT proteins and galactose is imported through
Gal2p. Glucose represses the metabolism of other sugar through
global carbon catabolic repression. Therefore, once glucose entered
into the cell, the galactose gene network shuts off because of the
repression by glucose molecules. Once glucose is completely utilized,
the repression is relieved and the galactose gene regulatory network
resumes the production of GAL genes. The GAL genes include
GAL1, GAL2, GAL3, GAL80, GAL7, and GAL10.

Gal1p, Gal7p, Gal10p constitute the enzymatic pathway (Leloir
pathway) involved in the process of converting galactose into

FIGURE 1 | Schematic of galactose and glucose metabolic pathway in Yeast. Blue box highlighted the regulatory network pathway of GAL genes. Glucose as a
primary carbon resource, suppress the GAL genes through Mig1 protein. In the presence of galactose and in the absence of glucose, GAL4 protein activates the GAL
genes.
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glucose-1-phosphate (Sellick et al., 2008). The Gal1p and Gal3p
proteins become active in their signal transduction role only when
they bind galactose. While Gal3p is exclusively a signal transducer,
Gal1p is a galactokinase but also retains some signal transduction
activity (Lohr et al., 1995; Platt et al., 2000).

Modeling of GAL Regulatory System
The modeling of GAL regulatory network based on the
deterministic approach adopted in (Venturelli et al., 2012).
The rate equations for all the GAL proteins are given below
for a single cell. We assume that the environment is a chemostat,
and that the extracellular concentration of sugars is constant with
time. The rate equation for GAL1 protein is given as follow,

d[G1]
dt

� α0G1 + αG1( [G4]n1
[G4]n1 +Kn1

G1

)( KnG1
R1

[R]nG1 + KnG1
R1

)
− kf1[G1][Bi] + kr1[G1p] − γG1[G1] (1)

The above equation contains the production rate of Gal1p
through basal expression and induced expression through
transcription factor Gal4p, which has multiple binding sites
and the binding mechanism is modeled as Hill function with
coefficient, n1 equal to 2. The glucose repression is also modeled
using the Hill equation for repressor with Hill coefficient, nG1
equal to 1. The third and fourth terms describe the activation of
Gal1p protein when binding with galactose. The last term in the
equation describes the degradation of Gal1p.

The rate equation of Gal2p is as follows,

d[G2]
dt

� α0G2 + αG2( [G4]n2
[G4]n2 +Kn2

G2

) − γG2[G2] (2)

The rate equation of Gal3p consists of production,
transformation, and degradation term. The production terms
depend on the basal rate and induced expression rate with glucose
repression. The active form of Gal3p, Gal3p* (represented as G3*
in the equation) forms when Gal3p binds with galactose. The
induction and the repression rates are modeled using the Hill
equation with coefficients n3 equal to 2, and nG3 equal to 1.

d[G3]
dt

� α0G3 + αG3( [G4]n3
[G4]n3 +Kn3

G3

)( KnG3
R3

[R]nG3 + KnG3
R3

)
− kf3[G3][Bi] + kr3[G3p] − γG3[G3] (3)

The rate of formation of Gal4p has basal expression and
glucose repression term that modeled as Hill equation with
Hill coefficient, nG4 equal to 2.

d[G4]
dt

� αG4( KnG4
R1

[R]nG4 + KnG4
R4

) − kf84[G4][G80] + kr84[C84]

− γG4[G4] (4)
The rate equation for GAL80 is given as,

d[G80]
dt

� α0G80 + αG80( [G4]n80
[G4]n80 +Kn80

G80

)( KnG80
R80

[R]nG80 +KnG80
R80

) − kf81[G1p][G80] + kr81[C81]

−kf83[G3p][G80] + kr83[C83] − kf84[G4][G80] + kr84[C84] − γG80[G80]
(5)

The above equation includes the production rate
Gal80p with basal and induced expression, interaction
with Gal1p, Gal4p, Gal3p, and the degradation of Gal80p.
The active form of Gal1p (GAL1p*) has weak affinity
towards Gal80p. The following equation gives the
dynamics of Gal1p.

d[G1p]
dt

� kf1[G1][Bi] − kr1[G1p] − kf81[G1p][G80]
+ kr81[C81] − γG1p[G1p] (6)

The active form of Gal3p (Gal3p*) is formed as the result of
galactose and Gal3p binding. Gal3p* interacts with Gal80p and
form Gal80p-Gal3p* complex that prevents Gal80p Gal4p
binding. The binding affinity between Gal3p* and Gal80p is
stronger than Gal1p* and GAL80.

d[G3p]
dt

� kf3[G3][Bi] − kr3[G3p] − kf83[G3p][G80]
+ kr83[C83] − γG3p[G3p] (7)

The following equation describes the formation of
intermediate complex molecules formed between Galp1*-
Gal80p, Gal3p*-Gal80p, and Gal4p-Gal80p,

d[C81]
dt

� kf81[G1p][G80] − kr81[C81] − γC81[C81]
d[C83]

dt
� kf83[G3p][G80] − kr83[C83] − γC83[C83]

d[C84]
dt

� kf84[G4][G80] − kr84[C84] − γC84[C84]

(8)

Transport Processes of Glucose and
Galactose
The following equations describe the transport processes
of glucose and galactose across the cell membrane. The
rate change of the internal concentration of galactose
molecules depends on the formation of biomass
from galactose, the concentration of galactose transporter
Gal2p and the formation of active protein Gal1p* and
Gal3p*.

dBi

dt
� λgal
G2max

( [Be]
[Be] +KλB

)[G2] − (μB,max

G1max
)( [Bi]

Bi +KB
)[G1][X]

− kf3[G3][Bi] + kr3[G3p] − kf1[G1][Bi] + kr1[G1p]
(9)

The rate of intake of galactose molecules also depends on the
concentration of Gal2 transporter protein.

dBe

dt
� − λgal

G2max
( [Be]
[Be] +KλB

)[G2][X]

dAe

dt
� −λglu( [Ae]

[Ae] + KλA
)[X]

(10)
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Here, A and B represent the glucose and galactose concentration
respectively. The subscript e refers to extracellular concentration.

Repression of Gal Network Through Mig1
Protein
The following equations are the rate equations for the Mig1p
concentration (R). Mig1 protein becomes activated in presence of
glucose.

d[R]
dt

� αR − kfR[R][Ai] + krR[Rp] − γR[R]
d[Rp]
dt

� kfR[R][Ai] − krR[Rp] − γRp[Rp]
(11)

Modelling of Mutant Strain
The rate equation ofGal3p for the gal3Δmutant ismodified as follow,

d[G3]
dt

� 0

d[G3p]
dt

� 0

(12)

The epistatically altered strain was modelled by changing the
appropriate parameter values in the model. The Gal3*-Gal80p
interaction is weakened by a factor of 4, and the Gal80p-Gal4p
interaction is weakened by a factor of 5, compared to the
magnitude of these interactions in the ancestral strain.

The above equations are simulated simultaneously using
Matlab ODE functions. Table 1 lists the values of the
parameters used in the simulations.

Stochastic Modelling of GAL Network
We use the Gillespie algorithm to implement the stochastic model
for the GAL network (Gillespie, 1976). The dynamic reactions
with their corresponding stochastic rates are listed in the Table 2.
Galactose units are represented as A.U. in the model. These
numbers closely match with the system’s response to galactose,
when A.U. is replaced by nM. However, we note that different S.
cerevisiae strains exhibit quantitatively different response to
exposure to galactose (Lee et al., 2017). Hence, in this work,
we focus on capturing the qualitative response of the system, to
exposure to galactose.

Experimental Methods
The ancestor, epistatically-altered strain, and the gal3Δ strains
used in this study are as described previously (Johnston and
Hopper, 1982; Das Adhikari et al., 2014). To measure GAL1
promoter activity in these three strains GAL1-lacZ fusions were
integrated at the ura3 locus, as described previously (Das
Adhikari et al., 2014).

Growth Kinetics
Glycerol-lactate pre-grown strains were plated onto SCM agar
plates (containing 2% glucose). The plates were thereafter
incubated at 30°C for 2–3 days. Colonies were randomly
selected from the agar plates and subjected to two rounds of
serial passage in appropriate media [1% glucose, or 1% galactose,
or glycerol/lactate (gly/lac)]. The resulting cultures were then
washed with SCM and then growth curves were initiated with an
initial optical density of 0.1 in SCM containing the appropriate
carbon source (glucose, galactose, or gly/lac at the concentrations
mentioned above). Three replicates of culture were transferred to
a 96-well plate and OD was measured periodically until the
cultures reach stationary phase. The plates were overlaid with
a Breathe Easy membranes (Sigma) to prevent evaporation.

GAL1 Expression Levels
GAL1-lacZ levels were determined in the three strains, ancestor,
the epistatically altered strain, and the gal3Δ as described
previously (Das Adhikari et al., 2014).

Cell-Cell Heterogeneity (2-Deoxygalactose
Experiments)
2DG-induced toxicity has been used previously to observe the
metabolic state of a population (Platt, 1984; Das Adhikari et al.,
2014). Cells were inoculated into gly/lac medium and incubated
at 30 deg C for 48–72 h with shaking. These gly/lac pregrown
cultures were inoculated into 5 ml of CSM containing 1%

TABLE 1 | Parameters value used in both deterministic and stochastic model to
simulate GAL network. Parameter values taken from (Venturelli et al., 2012),
unless otherwise noted with a * in column 1.

Parameters Value Unit

α10 - GAL1 basal expression rate* 0.001 nM.min−1

α80 - GAL80 basal expression rate 0.6 nM.min−1

α30 - GAL3 basal expression rate* 0.001 nM.min−1

α4 - GAL4 basal expression rate 0.5 nM.min−1

α1 - GAL1 induced expression rate 15 nM.min−1

KG1 - GAL1 transcriptional feedback threshold 50 nM
n1 - GAL1 Hill coefficient 2 no unit
α8 - GAL80 induced expression rate 0.9 nM.min−1

KG80 - GAL80 transcriptional feedback threshold* 20 nM
n80 - GAL80 Hill coefficient 2 no unit
α3 - GAL3 induced expression rate 2 nM.min−1

KG3 - GAL3 transcriptional feedback threshold 50 nM
n3 - GAL3 Hill coefficient 2 no unit
kf1 - GAL1-galactose forward binding rate* 0.001 (nM.min)−1
kf3 - GAL3-galactose forward binding rate* 1 (nM.min)−1
kr1 - GAL1-galactose unbinding rate* 3 min−1

kr3 - GAL3-galactose unbinding rate* 10 min−1

kf81 - GAL1-GAL80 forward binding rate* 1 (nM.min)−1
kf83 - GAL3-GAL80 forward binding rate* 1 (nM.min)−1
kf84 - GAL4-GAL80 forward binding rate* 0.8 (nM.min)−1
kr81 - GAL1-GAL80 unbinding rate* 0.1 min−1

kr83 - GAL3-GAL80 unbinding rate* 0.1 min−1

kr84 - GAL4-GAL80 unbinding rate* 1 min−1

γG1 - GAL1 decay rate 0.004 min−1

γG80 - GAL80 decay rate 0.004 min−1

γG3 - GAL3 decay rate 0.004 min−1

γG4 - GAL4 decay rate 0.004 min−1

γG1p - GAL1p decay rate 0.004 min−1

γG3p - GAL3p decay rate 0.004 min−1

γC81 - Complex C81 decay rate 0.004 min−1

γC83 - Complex C83 decay rate 0.004 min−1

γC84 - Complex C84 decay rate 0.004 min−1
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galactose, such that the starting OD of the culture was equal to
0.01. Cells were harvested from this growing culture, serially
diluted with PBS and thereafter, plated onto gly/lac solid media
containing 2-Dexoygalactose (2DG) (0.3 μM). As a control, cells
were also plated on media with gly/lac and no 2DG. The two sets
of plates were incubated at 30 deg C for 3–4 days. The number of
colonies that grew on gly/lac plates and those containing 2DG
were counted and the percentage of Gal-positive cells calculated.
All experiments were repeated three times. A minimum of 500
colonies on gly/lac plates were counted in each experiment.

RESULTS

Experimental Characterization of the GAL
Regulon/Network in Wild-Type and Mutant
S. cerevisiae
We first start by experimentally characterizing the growth
kinetics of cells in a galactose medium. In this work, we focus
on three different strains. First, the ancestral wild type; second, an
epistatically-altered strain in which the Gal3*-Gal80p interaction
is weakened by a factor of four, and the Gal80p-Gal4p interaction

is weakened by a factor of five (Das Adhikari et al., 2014). These
changes in the interaction strengths are due to the strain having
mutant alleles of Gal80p and Gal4p.

We first study the growth kinetics of the wild type strain, as the
cells are brought to a galactose environment from the same/
different carbon source environment. As shown in the Figure, the
populations exhibits a lag phase duration which is a function of
the environment from which the cells are brought into the
galactose media. At a single-cell resolution, the transition from
a GALOFF to a GALON state is heterogeneous; and the wild type
strain exhibits a characteristic gene expression levels, when
exposed to a certain galactose concentration. (Figure 2;
Supplementary Figure S1). As shown in the Figure, as cells
are brought to a media containing galactose, the initial lag phase
duration is a function of the environment the cells are brought
from. The lag phase is the longest when cells are brought from
repressing conditions (glucose), medium when brought from
non-inducing non-repressing (NINR) conditions (glycerol/
lactate), and shortest when brought from inducing conditions
(galactose). In the time region when the cells transition from lag
to log phase, the single-cell behavior of the gene expression levels
was characterized. For this purpose, we withdrew cells at regular
intervals, and plated an equal volume on gly/lac plates, and on

TABLE 2 | Reaction events and reaction rate used to simulate stochastic model.

Reaction ID Reaction Rate

R1: GAL1 basal expression φ ���������→α10 Gal1 α10

R2: GAL80 basal expression φ ���������→α80 Gal80 α80

R3: GAL3 basal expression φ ���������→α30 Gal3 α30

R4: GAL4 basal expression φ ��������→α4 Gal4 α4

R5: GAL1 expression by GAL4 induction φ ��������→α1 Gal1 α1( G4n1

G4n1+Kn1
G1
)

R6: GAL80 expression by GAL4 induction φ ��������→α8 Gal80 α8( G4n80

G4n80+Kn80
G80
)

R7: GAL3 expression by GAL4 induction φ ��������→α3 Gal3 α3( G4n3

G4n3+Kn3
G3
)

R8: GAl1 binding with galactose Gal1 + gal ���������→kf1 Gal1p
kf1(G1)(gal)

R9: GAL3 binding with galactose Gal3 + gal ���������→kf3 Gal3p
kf3(G3)(gal)

R10: Unbinding of GAL1-galactose Gal1p ���������→kr1 Gal1 + gal kr1(G1p)
R11: Unbinding of GAL3-galactose Gal3p ���������→kr3 Gal3 + gal kr3(G3p)
R12: Binding of GAL1p and GAL80 Gal1p +Gal80 �����������→kf81 Gal81 kf81(G1p)(G80)
R13: Binding of GAL3p and GAL80 Gal3p +Gal80 �����������→kf83 Gal83 kf83(G3p)(G80)
R14: Unbinding of GAL4-GAL80 Gal4 +Gal80 �����������→kf84 Gal84 kf84(G4)(G80)
R15: Unbinding of GAL1p-GAL80 Gal81 �����������→kr81 Gal1p +Gal80 kr81(C81)
R16: Unbinding of GAL3p-GAL80 Gal83 �����������→kr83 Gal3p +Gal80 kr83(C83)
R17: Unbinding of GAL4-GAL80 Gal84 �����������→kr84 Gal4 +Gal80 kr84(C84)
R18: decaying of GAL1 Gal1 ���������→γG1

θ γG1(G1)
R19: decaying of GAL80 Gal80 �����������→γG80 θ γG80(G80)
R20: decaying of GAL3 Gal3 ���������→γG3

θ γG3(G3)
R21: decaying of GAL4 Gal4 ���������→γG4 θ γG4(G4)
R22: decaying of GAL1p Gal1p ����������������→γG1p

θ
γG1p(G1p)

R23: decaying of GAL3p Gal3p ����������������→γG3p
θ

γG3p(G3p)
R24: decaying of Complex C81 Gal81 �����������→γC81 θ γC81(C81)
R25: decaying of Complex C83 Gal83 �����������→γC83

θ γC83(C83)
R26: decaying of Complex C84 Gal84 �����������→γC84 θ γC84(C84)
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gly/lac plates containing 2DG. All cells expressing Gal1p only
grow on the gly/lac plates. This assay thus allows us to quantify, at
a single-cell resolution, how cells transition from a GALOFF state
to a GAL ON state. As shown in the Figure, the wild-type strain

exhibits a heterogeneous induction kinetics in the window of
transition from lag to log phase. On the other hand, the
epistatically-altered mutant exhibits a kinetics where the
induction is homogeneous and faster, as compared to the wild

FIGURE 2 | Experimental characteristics of the GAL network in S. cerevisiae. (A) Growth kinetics in galactose is contingent on the conditions in which the cells are
introduced from. The lag is the longest in the cells introduced from glucose, and shortest in those introduced from galactose. (B) During transition from gly/lac to
galactose, the percent cells which are expressing GAL1 is heterogeneous in the initial phase of the growth. (C) Same as (B). The transition from lag to log phase in the
epistatically-altered strain (left) and the gal3Δ strain (right) is qualitatively different. (D) Steady state GAL1 expression in ancestral strain, when cells are grown in
different galactose concentrations. (E) Same as (C) but for the epistatically-altered strain (left) and the gal3Δ strain (right). The nature of galactose gene expression in the
three strains is qualitatively different from each other. All experiments were performed in triplicate. The average and standard deviations are reported.
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FIGURE 3 | (A) Activation of GAL network in galactose [concentration, 30 (A.U)]. GAL1 profile of wildtype pre-cultured in gly/lac (dashed blue line), glucose (solid red
line), and galactose (dashed green line). (B) Steady state concentration of GAL1 protein at different concentrations of galactose in wild type S. cerevisiae. Note that the
system exhibits a threshold-like activation. (C) Dynamic GAL1 response at galactose concentration of 30 (A.U) for 1000 wild-type cells pre-grown in gly/lac. Histograms
of GAL1 expression at 30 min, 5 h, and 50 h. (D) Steady state concentration of GAL1 under different concentration of galactose for wild type.
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type. On the other hand, in the gal3Δ, the induction kinetics are
considerably slower, and heterogeneous, even at long durations of
time. Note that in the gal3Δ, the signal transduction activity is
carried out by the kinase, Gal1p, which is a bifunctional protein is
capable of weak signal transduction activity also (Meyer et al.,
1991).

The steady state Gal1p levels, when studied via a proxy of a
promoter fusion reporter indicate that GAL genes are turned ON,
when the concentration of galactose in the media exceeds a
threshold. These thresholds and the nature of induction are
qualitatively different in the three strains being analyzed in
this study. Thus, we establish that the nature of response to a
galactose environment in S. cerevisiae is strongly influenced by
the protein-protein interactions in the regulatory network.

GAL Regulon Model Captures the Kinetics
of Gene Expression
Kinetics of GAL System Induction are Strongly
Dependent on the Initial Conditions
The GAL system in S. cerevisiae is induced in the presence of
galactose, and is actively repressed in the presence of glucose. On
the other hand, the system is in a Non-Induced Non-Repressed
conditions (NINR), when cells are grown in gly/lac media. This
aspect of the system is captured in the model (Figure 3A). When
cells are transferred to a media containing galactose, the duration
of the lag phase is contingent on the pre-existing state of the
system. The lag phase is the longest in the cells which are
introduced into galactose-containing media from glucose, and
is shortest in the cells which come from galactose.

Switch-Like Induction of GAL Genes
Next, we simulate the steady state concentration of GAL1 levels
when cells are grown in different galactose concentrations. As
shown in the Figure 3B, GAL gene induction follows a step-like
behavior. For small concentrations of galactose in the media, the
increase in GAL gene induction is small and linear in nature.
Beyond a threshold, however, the GAL1 gene expression levels
increases in a step function manner to their maximal levels.
Thereafter, the steady state concentrations of GAL1 do not
change with further increase in galactose.

Positive Feedback, and Cell-Cell Heterogeneity in the
GAL System
Sugar utilization systems are a combination of positive and
negative feedback loops. The GAL4p-encoded positive
feedback leads to rapid induction of the system. As cells
transition from the GAL OFF to a GAL ON state, there is

FIGURE 4 | Dynamics of gene expression for the epistatically-altered
strain. (A) Activation of GAL network in galactose [concentration, 30 (A.U)].
GAL1 profile when cells are pre-cultured in gly/lac (dashed blue line), glucose
(solid red line), and galactose (dashed green line). (B) Steady state
concentration of GAL1 protein at different concentrations of galactose. Note
that the system exhibits a behaviour which is qualitatively different than the
wild type behavior. The threshold of galactose concentration is no longer

(Continued )

FIGURE 4 | present. (C) Dynamic GAL1 response at galactose concentration
of 30 (A.U) for 1000 cells pre-grown in gly/lac. Histograms of GAL1 expression
at 30 min, 5 h, and 50 h. (D) Steady state concentration of GAL1 under
different concentration of galactose. (E) The dynamics of transition from ON to
OFF state in the ancestor and the epistatically altered strain. Note that even
after long times, the epistatically altered strain has a non-zero residual GAL1
expression. The GAL1 profile for the gal3Δ is shown as control.
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FIGURE 5 | Dynamics of gene expression for gal3Δ strain. (A) Activation of GAL network in galactose [concentration, 30 (A.U)]. GAL1 profile when cells are pre-
cultured in gly/lac (dashed blue line), glucose (solid red line), and galactose (dashed green line). (B) Steady state concentration of GAL1 protein at different concentrations
of galactose. Note that the system exhibits a behaviour which is qualitatively different than the wild type behavior. The threshold of galactose concentration is no longer
present. (C)Dynamic GAL1 response at galactose concentration of 30 (A.U) for 1000 cells pre-grown in gly/lac. Histograms of GAL1 expression at 30 min, 5 h, and
50 h. (D) Steady state concentration of GAL1 under different concentration of galactose.
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cell-cell heterogeneity in the system (Figure 3C). At intermediate
times, a fraction of the cells are in the ON state, and the rest of the
population is in the OFF state. This heterogeneous induction

kinetics are characteristic of sugar utilization systems in bacteria.
At a steady state level, the GAL network exhibits cell-cell
heterogeneity at steady state in low concentrations of galactose
(Figure 3D).

Altering the GAL Network Architecture
Two aspects of the GAL network stand out. The first, GAL system
in S. cerevisiae comprises of GAL1 and GAL3, two genes which
resulted from a whole genome duplication event (Marcet-
Houben and Gabaldon, 2015; Wolfe, 2015). Gal3p is a signal
transducer, which dictates the kinetics of the system; and Gal1p is
a galactokinase, which also has limited signal transduction
activity. Therefore, a gal1Δ strain cannot grow on galactose,
whereas a gal3Δ strain can exhibit growth on galactose.
Second, ecological isolates of S. cerevisiae exhibit a wide range
of growth kinetics, when grown on a mixture of glucose and
galactose. The glucose-dependent repression of the GAL system is
strain specific, and as a result, the transition from glucose to
galactose varies from strain to strain. Interestingly, this behavior
was found to be largely dictated by the allelic variation at the
GAL3 locus (Lee et al., 2017). In a recent study, evolution on
melibiose was studied, and interestingly, alternate GAL3 alleles
were reported discovered (Anjali et al., 2021). Additionally,
alternate GAL80 alleles were isolated which exhibit different
kinetics of induction, when introduced to a galactose
environment (Nogi and Fukasawa, 1984; Salmeron et al., 1990;
Douglas and Hawthorne, 1966). This change in kinetics is due to
the altered GAL80 allele exhibiting altered binding behavior with
GAL4 and GAL3* (GAL3* is GAL3 bound to galactose).
Alternate alleles have been isolated in short term evolution
experiments. We next use the model to study these two
aspects of the network. We mimic the gal3Δ mutant by
putting GAL3 amounts in the cell equal to zero at all times.
We mimic alternate GAL3 alleles by changing the strength of
GAL3 interaction with GAL80.

Epistatically-Altered Strain of the GAL Network
Mutant of GAL4 which exhibited constitutive GAL network
induction was isolated a long time back. This mutant allele
(GAL4c) does not interact with GAL80, and thus, cells
containing this altered allele have the GAL network in the ON
state, independent of the environmental conditions. To restore
galactose-dependent induction of the GAL network, Mutants of
GAL80 were isolated (e.g., GAL80s−1). The GAL80s−1 allele
interacts with GAL4c, and thus restores galactose-dependent
induction. However, the mutant alleles (GAL4c and GAL80s−1)
exhibit altered binding behavior between Gal3*-Gal80p, Gal1*-
Gal80p, and Gal80p-Gal4p. The biochemical interactions
between Gal4c-Gal80s−1 and that between Gal80s−1-Gal3* have
been previously characterized (Das Adhikari et al., 2014). When
we make these changes in the model to reflect altered binding
kinetics, we predict that the behavior of the system at a 1)
population level, and 2) single-cell resolution changes from
that of the wild type. As shown in the Figure, our model
predicts that the epistatically-altered strain exhibits 1) faster
induction of the GAL system, 2) higher steady state levels of
the GAL proteins, 3) a qualitatively different induction kinetics at

FIGURE 6 | Coefficient of variation in GAL1 expression levels, shown for
(A) wild type, (B) Epistatically-altered strain, and (C) gal3Δ strain when grown
in different environmental conditions.
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a single-cell resolution, and 4) a slower transition from the ON to
the OFF state, when cells are moved from a galactose- to a
glucose-containing media (Figure 4).

GAL3 Mutant Exhibits Altered Gene Expression
Kinetics, Including Bistability at Intermediate
Galactose Concentrations
GAL1 and GAL3 are homologous genes, resulting from a whole
genome duplication event about a 100 million years ago (Marcet-
Houben and Gabaldon, 2015; Wolfe, 2015). The ancestral gene

sequence presumably had both kinase and the signal transduction
activity. Since duplication and divergence, Gal3p has lost the
kinase activity in S. cerevisiae and has evolved to become a better
signal transducer than the ancestor. On the other hand, Gal1p has
evolved to become a specialist galactokinase, while still retaining
small signal transduction activity. This adaptive divergence is
thought to have resolved an adaptive conflict where one gene
sequence was coding for two activities (Hittinger and Carroll,
2007). Since Gal3p does not have any kinase activity, a gal1Δ does
not exhibit any growth in galactose. On the other hand, a GAL3Δ

FIGURE 7 | Steady state GAL1 concentration plotted against the binding affinity between GAL3-GAL80 for different GAL4-GAL80. In (A) the change in GAL3-GAL80
interaction is represented on the x-axis. Different curves represent different strengths of GAL4-GAL80 interaction, as indicated in the legend. In (B), the change in GAL4-
GAL80 interaction is represented on the x-axis. Different curves represent different strengths of the GAL3-GAL80 interaction, as indicated in the legend. In both (A) and (B),
the five panels represent a galactose concentration of 5, 10, 15, 20, and 25 A.U. (from left to right). (C) Time taken to reach maximal GAL1p production rate, as cells
transition from glucose to galactose.
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exhibits growth, albeit with delayed kinetics, when grown in the
presence of galactose. Our model successfully captures this facet
of growth on galactose (Figure 5). Loss of GAL3 manifests in not
only lower Gal1p activity, but also the switch-like induction of the
GAL regulon takes place at a significantly higher concentration.
At a single-cell resolution, a gal3Δ strain exhibits exaggerated
heterogeneity as the population transitions from a GAL OFF to a
GAL ON state. In addition, steady state levels of Gal1p also
exhibit bistability at intermediate concentrations of galactose.
Note that this bistability was not observed in the ancestral strain
(Figure 2), or in the epistatically-altered strain (Figure 3). Thus, a
gal3Δ strain exhibits significantly altered growth kinetics, both at
a population level, and at a single-cell resolution.

While the steady state response of the three strains is within a
factor of 1.2 for the three strains examined above (ancestor,
epistatically-altered strain, and gal3Δ), the kinetics of gene
expression vary widely. This difference can also be seen from
analyzing the coefficient of variation between the expression levels
of the members of the populations as cells are transitioned from a
given culture conditions to galactose (Figure 6). Cell-cell
heterogeneity among isogenic populations is now known to
manifest itself in a number of ways—often providing adaptive
value to the population. Hence, from the prospect of a population
to move towards higher fitness levels, the cell-cell variability in a
population is an evolutionarily important marker.

Evolution via Changes in the Coding
Regions of the Regulatory Genes of the GAL
Network
Adaptive changes are largely studied as a result of changes in gene
expression, which are obtained via changes in one or more of the
following: promoter activity, mRNA stability, translation rate. In
all these mutations, adaptive benefit takes place as a result of
changes in expression levels of the protein. However, as
mentioned above, a large number of alleles of GAL regulatory
genes, with altered biochemical interactions, have been identified
in both, laboratory studies as well as analysis of ecological isolates
(Peng et al., 2015; Roop et al., 2016; Lee et al., 2017). These alleles
confer qualitatively different growth dynamics, depending on the
environmental context. Thus, we hypothesize that the population
level and the single-cell behavior of the GAL network can be
tuned to a large extent via changes in the protein coding sequence
which change the protein function rather than levels. This is
indicated in Figures 7A, B. On changing the interaction strengths
between the Gal3*-Gal80p and Gal4p-Gal80p binding
propensities, the steady-state induction levels of Gal1p levels
are highly tunable. This tuning of gene expression is achieved
by simply changing one/two binding coefficients between the
regulatory proteins. On the other hand, if the same change made
in the gal3Δ, the corresponding change in Gal1p protein levels are
not observed. Note that a gal3Δ strain is able to exhibit growth in
galactose, because its regulatory function is compensated by the
signal transduction activity of Gal1p.

On the other hand, kinetics of growth on glucose and galactose
are also strongly influenced by the parameters. We examine the
change in the diauxy lag when cells growing on glucose are

introduced to a media containing galactose. As shown in
Figure 7C, the duration of lag is highly tuned by changing the
affinity of protein-protein interactions in the regulatory network,
or by changing the half-maximum concentration of the proteins.
Interestingly, our simulations show that changing the GAL3p-
GAL80p (GAL1p-GAL80p) interaction strength has the least effect
on the duration of the lag phase. This is in contrast to changing the
interaction strength of GAL4p-GAL80p, which controls the lag
phase duration much more strongly. The duration of the lag phase
as yeast transition from glucose to galactose has been attributed
to several genetic loci (Peng et al., 2015; Roop et al., 2016; Lee
et al., 2017), thus indicating a distributed control strategy.
Among these interactions, our results demonstrate that
GAL4p-GAL80p interaction is the key major determinant
of the lag-phase duration, as cells transition from glucose
to galactose; and the GAL3p-GAL80p is a fine-tuning
interaction of the lag phase duration during this transition.

DISCUSSION AND CONCLUSION

The GAL system in the yeast S. cerevisiae is, along with the lac
system in E. coli, perhaps the most well studied and well
characterized gene regulation and sugar utilization systems.
Interestingly, while the lac system has been studied in
thousands of reports, our understanding of allelic variation
resulting in changes in kinetics or levels of gene expression are
limited. On the other hand, several alleles of regulators are
known. The reasons for this difference are not clear.

S. cerevisiae exists primarily as a diploid in its ecological
niches. In fact, several laboratory experiments have
conclusively demonstrated that propagation of a haploid for a
few hundred generations leads to self-diploidization (Gerstein
et al., 2006; Venkataram et al., 2016; Harari et al., 2018). This
process is accelerated in conditions of stress (Gerstein et al.,
2006). Presumably, doubling the genome size allows for a faster
adaptation to the prevailing stressful conditions. In the context of
the GAL network, S. cerevisiae has several mutational targets to
change the kinetics of gene expression. These include the signal
transducer GAL3, the repressor GAL80, the transcriptional
activator GAL4, and the galactokinase (which has small
regulatory activity) GAL1. This diversity in the mutational
targets, presumably allows the organism to tune gene expression
and physiology which is most appropriate for the surrounding
environmental conditions. This is also suggested by a recent
analysis of the GAL network, where specific combinations of
regulatory alleles were found to confer high fitness; and others
found to lead to unfit individuals (Boocock et al., 2021). In fact,
analysis of the GAL network from several experimental studies has
indicated that the tuning of the GAL gene expression is primarily
controlled by modifications in the regulatory proteins, and not by
changes in the promoter regions driving expression of the GAL
enzymes or regulatory proteins (Wang et al., 2015; Lee et al., 2017).

Towards this end, recent evidence has indicated that
mutations in regulatory proteins are likely significant
contributors of gene expression evolution (Brem et al., 2002;
Yvert et al., 2003; Bustamante et al., 2005). Interestingly, among
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these mutations, gene duplication is an important driver of
changing regulatory behavior in a gene network (Voordeckers
et al., 2012; Baker et al., 2013; Perez et al., 2014; Pougach et al.,
2014), resulting in GAL1 and GAL3. Gene duplication and the
consequent divergence has been suggested to be involved in
ecological adaptation in yeast, in another context (Thomson
et al., 2005).

Comparing the GAL network with well-characterized sugar
utilization systems in bacteria, we note that the GAL network in
yeast is distinct in its structure. While most sugar utilization
systems in E. coli employ only one regulaor (AraC for arabinose;
XylR for xylose; LacI for lactose) (Aidelberg et al., 2014)
[however, one exception, in the form of rhamnose utilization
system does exist (Kolin et al., 2008)], the GAL system employs a
cascade of three. We speculate that the additional number of
regulators in the GAL network help individual strains to adapt to
their precise ecological niche. Evolution experiments to test the
relationship between complexity of regulatory structures and
adaptive response of populations can shed more light on this
aspect of cellular physiology and adaptation.
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Modeling and Optimization of a
Molecular Biocontroller for the
Regulation of Complex Metabolic
Pathways
Yadira Boada, Fernando N. Santos-Navarro, Jesús Picó and Alejandro Vignoni*

Synthetic Biology and Biosystems Control Lab, Institut d’Automàtica i Informàtica Industrial, Universitat Politècnica de València,
Valencia, Spain

Achieving optimal production in microbial cell factories, robustness against changing
intracellular and environmental perturbations requires the dynamic feedback regulation of
the pathway of interest. Here, we consider a merging metabolic pathway motif, which
appears in a wide range of metabolic engineering applications, including the production of
phenylpropanoids among others. We present an approach to use a realistic model that
accounts for in vivo implementation and then propose a methodology based on
multiobjective optimization for the optimal tuning of the gene circuit parts composing
the biomolecular controller and biosensor devices for a dynamic regulation strategy. We
show how this approach can deal with the trade-offs between the performance of the
regulated pathway, robustness to perturbations, and stability of the feedback loop. Using
realistic models, our results suggest that the strategies for fine-tuning the trade-offs among
performance, robustness, and stability in dynamic pathway regulation are complex. It is not
always possible to infer them by simple inspection. This renders the use of the
multiobjective optimization methodology valuable and necessary.

Keywords: metabolic pathway, dynamic regulation, biomolecular antithetic controller, extended biosensor, tuning,
gene circuit parts, multiobjective optimization, modeling biological systems

1 INTRODUCTION

Microbial cell factory development using metabolic engineering seeks to obtain high levels of
products of interest through genetic modification of microorganisms. Natural cells use complex
regulatory networks to preserve robust growth and endure environmental changes by dynamically
adapting cell metabolism (Liu et al., 2018). These regulation strategies are the long-term result of
evolution. In most cases, they are not compatible with the addition of exogenous genes highly
expressed to reach the production levels demanded by the industry. Constraint-based steady-state
models of metabolism using only stoichiometric information and some basic information about the
enzyme regulation have proved very valuable in providing predictions on maximum theoretical
yields, optimal flux distribution to maximize flux towards some metabolite reaction bottlenecks and
required ways of intervention on gene expression, leading to fluxes towards final products that
achieve specified levels in productivity, titer and yield (Otero-Muras and Carbonell, 2021). This
approach seeks the careful optimal selection of the constant expression levels of the exogenous genes
in the pathway of interest and the endogenous ones with relevant interactions. Yet, as it is a static
regulation approach, it fails to address the problem’s dynamic and highly uncertain nature. Indeed,
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the static strategy to regulate a metabolic pathway relies on an
optimization process that is tailor-made for a particular situation,
and therefore it is not able to respond to cell and environmental
changes occurring during fermentation in a bioreactor (Wehrs
et al., 2019).

Considering the metabolic network dynamics allows better
analysis of the sensitivity of the metabolites or fluxes of interest to
the optimal enzymatic intervention points under different
environmental situations. Dynamic network models, from
grey-box to black-box ones, of scales ranging from a subset of
pathways to genome-scale, have been used to this end (Otero-
Muras and Banga, 2017; Li et al., 2018; Yang et al., 2019; Lo-
Thong et al., 2020). The optimal intervention points and
intervention strategies (required up- or down-regulation) can
be assessed using sensitivity analysis methods like metabolic
control analysis (Lo-Thong et al., 2020) dynamic optimization
(Otero-Muras and Banga, 2017; Li et al., 2018; Yang et al., 2019)
and optimal control principles (Tsiantis and Banga, 2020). Thus,
these methods address the fundamental problem of determining
the structure of (optimal) control intervention points in complex
metabolic networks. Yet, there are no generally applicable
algorithms for designing metabolic dynamic feedback
regulation systems to date. The regulation topology is
generally pathway-specific, depending on both the potential
presence of toxic pathway intermediates and the pathway
topology (Hartline et al., 2020). Several typical metabolic
topology motifs are usually considered: linear, branched, and
merging (Blair et al., 2012). Most existing work has dealt with the
dynamic regulation of linear pathways (Oyarzún and Stan, 2013;
Liu and Zhang, 2018) or branched ones (Liu et al., 2018).

Once the optimal signals to be feedback and the intervention
points are obtained, the problem of designing and tuning the
proper dynamic feedback regulation biomolecular controller
remains. Achieving robust optimal production in microbial
cell factories requires considering the dynamic regulation of
the pathway of interest. Dynamic feedback regulation
constitutes a very interesting strategy to construct pathways
with the ability to self-tune upon changing environmental
conditions and to overcome many of the ongoing challenges
faced in metabolic engineering (Liu and Zhang, 2018; Hartline
et al., 2020). For example, it is often challenging to find the proper
enzyme levels that maximize production while avoiding pathway
bottlenecks or the accumulation of toxic intermediates.
Feedback control circuits can solve these problems by
dynamically changing enzyme expression in response to
metabolic inputs and continuously regulating the activity in
the pathway in response to either intracellular or bioreactor
perturbations. This enables the industry to attain higher
process performance indices than static regulation (Stevens
and Carothers, 2015).

Despite the growing number of reported successful cases,
engineering dynamic feedback control strategies in biological
applications remains a major challenge (Gao et al., 2019).
Model-based design, which leverages control engineering
principles, can provide a powerful formalism to design
dynamic feedback regulation circuits. This, together with the
tools of synthetic biology, can lead to robust and efficient

microbial production at the industrial level (Liu et al., 2018;
Segall-Shapiro et al., 2018).

Here, we consider the design and tuning of a biomolecular
controller for the dynamic feedback regulation of a merging
metabolic pathway. Since we restrict to a single metabolic
pathway, determining the dynamic regulation topology,
i.e., the feedback variable and the intervention point, could be
made by simple inspection and previous knowledge of the system.
In this metabolic motif, two substrates, the primary precursor and
an essential metabolite, are converted to an intermediate product
which is subsequently transformed into a target product. The
secondary essential metabolite plays an additional role in cell
metabolism inmany practical situations. Therefore, it is subject to
environmentally-induced fluctuations. Over-expressing the
enzyme that synthesizes this secondary metabolite or
redirecting the flux towards it is not feasible in cases where its
accumulation is toxic for the cell, leading to growth inhibition.
This is the situation encountered in applications like the
production of phenylpropanoids of industrial interest, e.g.,
naringenin (Sheng et al., 2020).

In previous work, we considered the problem of designing a
dynamic regulation topology for the production of naringenin
while coping with fluctuations in malonyl-CoA, the secondary
essential metabolite (Boada et al., 2020). This work considers a
detailed model of the whole system, including the metabolic
pathway, the extended biosensor, and the molecular
biocontroller. We address the problem of optimal choice
(tuning) of the biocontroller and the biosensor components in
the dynamic regulation topology. In particular, we considered a
realistic model for the antithetic controller together with an
extended biosensor based on the QdoR Transcription Factor
(TF) that accounts for a straightforward in vivo
implementation of the system. This gives us more information
than the simplistic models of the antithetic biocontroller used in
the literature that do not consider fundamental aspects like:

• non-linearities in the promoters. In the simplest models, the
expression of proteins and sigma factors is always
proportional to the number of transcription factors,
i.e., there is no saturation of the promoters.

• formation of the antithetic complex, and the unbinding
reaction of the complex.

• dilution rate of all the species due to cell growth. It is known
that the dilution destroys the perfect adaptation property of
the antithetic biocontroller, introducing a steady-state error.
As we comment later, this forces us to use more than one
objective to optimize.

Multiobjective optimization has already been demonstrated to
be an appropriate tool for characterization of gene circuit parts
(Boada et al., 2019a; Boada et al., 2019b), and for the design of
gene circuits with the desired behavior (Boada et al., 2016; Boada
et al., 2017b; Boada et al., 2021). Here, we present an approach to
use multiobjective optimization for the optimal tuning of the gene
circuit parts composing the biocontroller and biosensor in a
dynamic metabolic regulation feedback loop. We show how
this approach can deal with the trade-offs between the
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performance of the regulated pathway and robustness to
fluctuations in the secondary metabolite. We also highlight
that performance indices must include the standard steady-
state industrial ones (e.g., titer) and indices related to the
time-response transient (i.e., stability). As the complexity of
the dynamic biocontrollers and biosensors integrated into the
feedback loop regulation increases, the stability and transient
performance issues that high order dynamics introduce must be
taken into account. In this work, we consider, on the one hand,
the case where having transcription factor (TF) based biosensors
of the target product is not always possible. As an alternative,
extended TF-based biosensors can be used, where an additional
pathway is introduced from the target product to be regulated to a
measurable metabolite (Boada et al., 2020). Yet, these extended
biosensors present extra dynamics in the feedback loop. On the
other hand, to regulate the amount of enzyme that catalyzes the
conversion from the two precursor substrates into the product
naringenin, we consider the use of the antithetic controller, a
biomolecular integral feedback controller that achieves quasi-
perfect adaptation (Briat et al., 2016; Aoki et al., 2019).

We first show our approach using a simple illustrative pathway
that captures the essential topological features of merging
metabolic pathways. We use a feedback regulation strategy

encompassing a simple TF-based biosensor to obtain readouts
of the product and a simplified model of the biomolecular
antithetic controller. In this case, the final titer of the target
product and the robustness to fluctuations in the secondary
metabolite are evaluated. Then, we consider a detailed model
of the metabolic merging pathway of naringenin, the
biocontroller, and the extended biosensor of naringenin
production that we previously introduced in (Boada et al.,
2020). In this case, we use a more realistic model of the
antithetic biocontroller. The extra dynamics introduced by
both the extended biosensor and the biocontroller force us to
consider the transient dynamics of the regulated feedback loop in
the design process. A library of designs is obtained, each one
corresponding to a different trade-off.

2 RESULTS

2.1 Tuning the Dynamic Regulation of a
Merging Metabolic Pathway
To illustrate our approach’s broad scope and usefulness, we first
study a basic metabolic pathway that contains the main common
features of a typical merging motif. As shown in Figure 1A (black

FIGURE 1 | Illustrative model system. (A)Metabolic pathway for the production of metabolite P. Themain substrate S1 and the secondary oneS2 are converted into
the product P by the catalyst enzyme E. In the static regulation strategy (black lines), the expression level of the enzyme E remains constant in time. Conversely, in the
dynamic regulation strategy (orange line), the expression of the enzyme E depends on the amount of product P. (B) Objective functions employed in this work for the
maximization of the production up to a target value (J1) together with the minimization of the production loss after perturbations (J2) as defined in Eq. 9, 10 (C)
Biosensor and antithetic controller configuration for dynamic pathway regulation. The amount of free σmolecule determines the expression of the enzyme E. A TF-based
biosensor detects the product levels and counteracts expressing the anti-σmolecule. When the amount of P decreases, the controller reduces the amount of expressed
anti-σ, thus increasing the amount of free σ to up-regulate the enzyme E. (D) Pareto front of optimal solutions for the dynamical pathway regulation case. Solutions on the
right side have large titer target error J1 (i.e., lower titer) and a small production loss after perturbation J2 (i.e., higher titer after the perturbation). Moving along the Pareto
front towards the left, the titer target error decreases, and the production loss increases. Solutions in the middle of the Pareto front have the best trade-off between the
competing objectives J1 and J2.
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lines), we consider the production of a product metabolite P from
a precursor substrate S1 and a secondary substrate S2. The
reaction is catalyzed by the enzyme E. This metabolic pathway
can be described using the following model:

dS1
dt

� VS1 − VS1 ,S2 − μS1 (1)
dP

dt
� VS1 ,S2 − μP (2)

dX

dt
� μX 1 − X

Xmax
( ) (3)

Where Si and P are the amount of substrates and product. X is
the number of cells in the population. S1 is the primary substrate,
and S2 is the secondary substrate. The first order dilution term
represents the effect of cell growth on the amount of substrates
and products, being μ the specific growth rate. Xmax accounts for
the maximum growing capacity of the population. The metabolic
fluxes are given by the kinetic terms:

VS1 � KS1 (4)
VS1 ,S2 � kcatE

S1S2
KmS1 KmS2 + KmS2S1 + KmS1S2 + S1S2

(5)

Where we assume that the uptake of the precursor S1 has constant
rate KS1 (4), and the substrate S2 is normally available at non-
limiting amount. The flux VS1 ,S2 is described by means of the
Michaelis-Menten kinetics in Eq. 5, where E is the amount of
enzyme catalyzing the pathway, kcat is the enzyme catalytic rate
and KmSi are the Michaelis-Menten constants for the substrates.

In the case of static pathway regulation (Figure 1A, black line),
the flux VS1 ,S2 has a constant maximum value determined by the
amount of the constitutively expressed heterologous enzyme E.
As its expression level is independent of any metabolite in the
pathway, the production of P is affected in the presence of a
sudden change in the availability of the secondary substrate S2, as
shown in the right plot of Figure 1B in dashed grey lines.

On the contrary, in the case of dynamic pathway regulation
(Figure 1A in orange line), the level of expression of the enzyme E
depends on the amount of the product metabolite. A biosensor
provides product metabolite readouts, and a biomolecular
controller changes the enzyme expression level as a function
of the difference between the current amount of product and the
target one encoded in the controller. Thus, when there is a change
in the secondary substrate, the production of the metabolite P is
affected but can recover (up to some extent) closer to its previous
value (Figure 1B, right plot, solid orange line).

Different control architectures can be implemented with
combinations of activation and repression feedback loops.
Here, we focus on a class of biomolecular controller, the
antithetic controller (Aoki et al., 2019), that allows for quasi-
perfect adaptation.

To gain an initial understanding of the design trade-offs in the
dynamic control of the merging metabolic pathway motif, we first
consider a simplified version of the antithetic controller
regulating the amount of enzyme E using a simple TF-based
biosensor to obtain readouts of P (Figure 1C).

The control action is encoded in the amount of free σ
molecules that activate the expression of the enzyme E
through its promoter Pσ. We modeled the promoter using a
generalized Hill function as in (Boada et al., 2020), including the
effect of the plasmid copy number on the promoter activation
function. The resulting dynamics of the amount of enzyme E is:

dE

dt
� CNa0 + CNa1

σ2

kd20C
2
N + σ2

− dE + μ( )E (6)

The acting molecule σ is constitutively expressed (thus
encoding for sort of a target set-point value) and binds the
anti-σ molecule to form an inactive complex, effectively
reducing the amount of free σ. The resulting dynamics of the
amount of free σ molecules is:

dσ

dt
� CNkσ − γσaσ − dσ + μ( )σ (7)

Next, a TF-based biosensor detects the product P expressing
the anti-σ molecule as a function of the product amount. A
constitutively expressed Transcription Factor (TF) (equation
omitted for brevity) binds to the product P inducing the
expression of the anti-σ molecule. The dynamics of the
amount of anti-σ molecules is:

daσ

dt
� CNaσkaσ

C2
N 1 + P

kdp
( )2

C2
N 1 + P

kdp
( )2

+ TF( )2
− γσaσ − daσ + μ( )aσ (8)

When the amount of P decreases, so does the amount of
expressed anti-σ, thus increasing the amount of free σ molecules
and, this way, up-regulating the expression of the enzyme E. Next,
we consider the optimal tuning of the gene circuit parts
composing the antithetic biocontroller and the TF-based
biosensor.

To characterize the trade-offs between reaching the desired
titer target for P together with reducing the production loss after a
perturbation on the level of the secondary metabolite S2, as
illustrated in Figure 1B, we considered two objective
functions. For the first one, we looked for the difference
between the titer of the product P in the bioreactor and the
desired target value (J1). For the second one, we focus on the
production loss (amount of product expressed per cell) after a
perturbation on S2 (J2). The corresponding expressions for both
objectives to be jointly minimized are:

J1 � Target −KPunperturbed T( )∣∣∣∣ ∣∣∣∣, target titer error( ) (9)
J2 � Punperturbed T( ) − Pperturbed T( )

Punperturbed T( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣, production loss after perturbation( ),
(10)

Where Punperturbed(T) is the product amount at the end of the
experiment (time T), K is a conversion constant from the amount
of product to titer, Pperturbed(T) is the amount of product after a
perturbation in the secondary metabolite. As J1 describes the
difference between the desired target titer and the actual one,
lower values of J1 correspond to larger titers. On the other hand, J2
is related to the loss in production after a perturbation. Therefore,
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small values of J2 correspond to low production loss after a
perturbation. That is a better rejection of the perturbation on the
secondary metabolite.

Next, we selected the biosensor and biocontroller set of
parameters to be tuned. We took into account to what extent
these parameters can be changed in the biological
implementation of the system at the lab. Thus, we considered
the set: expression strength for the enzyme E, a1; the dissociation
constant between σ and the enzyme promoter, kd20; and the
expression strength for anti-σ, kaσ. Additionally, the specific
growth rate, μ, was included as a decision parameter to
account for the dependency of the results on cell growth.

The goal is to obtain a library of possible designs, each one
corresponding to a different trade-off between the cost indices J1,
J2. The resulting solutions are all equally optimal in the sense of
Pareto (Boada et al., 2019b). When one of the objectives
improves, the others necessarily deteriorate, so selecting the
most appropriate solution depends on the designer.

We computed the values of the selected parameters as the
solution of the multiobjective optimization problem min (J1, J2)
subject to biologically plausible bounds on the values of the
parameters (see Supplementary Table S1 for a list of the
solutions). Thus, for example, we set a growth rate
corresponding to doubling times between 25 and 90 min, an
upper bound for the dissociation constant of the promoter kd20 <
3.5 μM and an upper bound on the maximum enzyme level of
180 μM. The optimization problem was solved using a
multiobjective optimization genetic algorithm based on
differential evolution. The detailed statement of the
optimization problem is described in the Methods section, and
the parameters used are in Supplementary Table S2
(Supplementary Material).

The resulting Pareto front, Figure 1D, has three distinct
regimes: 1) large titer target error and low production loss, 2)
small titer target error and high production loss, and 3) the
best trade-off regime between the two competing objectives.
The convexity of the Pareto front indicates that the
optimization problem is well-posed, in the sense that both
objective functions oppose each other across the whole space
of optimal solutions. We selected five solutions that represent
the mentioned regimes. These solutions are highlighted in the
Pareto front in Figure 1D. The achieved objective values of

the selected solutions are shown in Figure 2A and the
corresponding tuned optimal values for the controller and
biosensor parameters and the growth rate are shown in
Figure 2B (see Supplementary Figure S1, for details on
the temporal responses of the selected solutions). Thus, the
set of solutions of the optimization constitutes a library of
optimally tuned controller-biosensor pairs.

A detailed inspection of the library of controller and biosensor
pairs obtained (Figure 2B) reveals that the relations between
parameters and objectives are not necessarily monotonous
(Supplementary Table S1, Supplementary Material). For
example, the dissociation constant kd20 must be chosen
smaller to reduce the production loss after perturbation (J2).
Yet, there is no monotonous trend in neither the anti-σ
expression strength kaσ nor in the E enzyme expression
strength a1.

Altogether these results suggest that strategies for fine-tuning
the trade-off between target titer error and production loss in
dynamic pathway regulation are complex and impossible to
obtain by simple inspection even for a simplified case,
rendering the use of the multiobjective optimization
methodology not only helpful but necessary.

2.2 Model of the Dynamic Regulation of the
Naringenin Metabolic Pathway
Naringenin is a flavonoid compound predominantly found in
grapefruits and oranges. It has been reported to have many
pharmacological properties, including anti-dyslipidaemic,
anti-obesity and anti-diabetic (Liu et al., 2008; Zygmunt
et al., 2010; Rahigude et al., 2012). Flavonoids are an
essential subclass of phenylpropanoids, an important family
of plant natural products with diverse uses as food
supplements, antioxidants, flavoring and flavoring agents,
pharmaceuticals, insecticides and colorants. Significant
market opportunities clearly exist for flavonoids with
enhanced bioavailability and bioactivity profiles that are
used, among others, as flavorings and bioactive compounds
for nutraceutical applications.

The naringenin pathway has four enzymatic steps from the
L-tyrosine precursor (see Figure 3). The third step, catalysed
by the naringenin chalcone synthase enzyme (CHS) requires

FIGURE 2 | Pareto solutions. Pareto front and Pareto set of selected solutions. (A) Pareto front showing the solutions of themultiobjetive problem. The values of the
objectives J1 and J2 (x-axis) are represented for different solutions (y-axis). (B) The Pareto set represented with a plot for each tuned parameter. The tuned values of the
parameters (x-axis) are shown for each selected Pareto solution (y-axis). The set of solutions constitutes the library of biocontrollers and biosensors obtained with the
multiobjective optimization tuning process.
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the co-substrate malonyl-CoA, an essential metabolite that is
used in fatty acid production and plays an important role in
cell metabolism. Intracellular concentrations of malonyl-CoA
are typically low (4–40 μM in E. coli) (Xu et al., 2014; Johnson
et al., 2017). Moreover, its concentration is subject to
fluctuations caused by cell environmental heterogeneity.
Accumulation of malonyl-CoA is toxic for the cell, so that
over-expressing it is not a feasible solution.

We considered a detailed model of the naringenin pathway by
obtaining the mass balance equations of the enzyme-catalyzed
reactions of the metabolic pathway from L-tyrosine to naringenin
(see Figure 3). From the mass balance equations, we obtained the set
of rate Eq. 11. The rate equations include the dilution effect of cell
replication at a specific growth rate μ.

dLt

dt
� V0 − VLt − μLt

dpC

dt
� VLt − VpC − μpC

dpA

dt
� VpC − VpA,Ma − μpA

dNc

dt
� VpA,Ma − VNc − μNc

dN

dt
� VNc − VN − μN

(11)

For each reaction, the corresponding flux is Vj (molecules
min−1). Lt is the number of molecules of L-tyrosine, pC is p-
coumaric acid, pA is p-coumaroyl-CoA, Nc is naringenin
chalcone, and N is the target metabolite naringenin. Next, we
assumed that the fluxes Vj follow the Michaelis-Menten kinetics
(Michaelis and Menten, 1913), and the flux V0 from the
L-tyrosine precursor is kept as a constant, obtaining the
equations:

V0 � KLt

VLt � kcatTALTAL
Lt

KmLt + Lt

VpC � kcat4CL4CL
pC

KmpC + pC

VpA � kcatCHSCHS
pAMa

KmpA KmMa + KmMapA + KmpAMa + pAMa

VNc � kcatCHICHI
Nc

KmNc +Nc

VN � kcatF3HF3H
N

KmN +N

(12)
Where Ma is the number of malonyl-CoA molecules naturally
available inside the cell, kcatj is the catalytic rate of each enzyme
(min−1), and Kmj is the Michaelis-Menten constant for each
substrate. The enzyme kinetic parameters, detailed in
Supplementary Table S4 (Supplementary Material) were
obtained from Brenda (Schomburg et al., 2017) and optimized
according to the requirements for the pathway implementation in
the lab.

Malonyl-CoA is one of the major building blocks for cell
metabolism. Its intracellular concentration is tightly regulated
and maintained at small amounts (Yang et al., 2015).
Therefore, our system, the exogenous naringenin pathway,
will compete for this resource. Thus, from the point of view of
our system, any variation in theMa level caused by changes in
the cell will act as a perturbation signal. We considered a basal
value of Ma in the mid-range of values reported in the
literature (Takamura and Nomura, 1988; Xu et al., 2014;
Wu et al., 2015), and avoiding the accumulation of large
amounts of intermediate metabolites that may lead to
growth inhibition.

FIGURE 3 |Dynamic pathway regulation scheme for the naringenin pathway. The target metabolite naringenin is produced from L-tyrosine in four enzymatic steps,
including a merging step catalysed by the enzyme naringenin chalcone synthase (CHS) which incorporates the secondary metabolite malonyl-CoA. The production level
of naringenin is readout using a metabolic extended TF-based biosensor through the downstream metabolite kaempferol. This is sensed using the QdoR TF-based
biosensor and feeds back to an antithetic biomolecular controller. The controller can be activated upstream by means of the external inducer AHL. Its actuating
signal overdrives the basal constitutive expression of the CHS enzyme in the pathway in order to compensate for malonyl-CoA depletion.
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The amounts of the enzymes TAL, 4CL, CHI, CHS, and F3H
involved in the naringenin pathway were previously optimized so
that the flux of precursor L-tyrosine can yield the targeted 1 g/L of
naringenin (see Supplementary Table S4, Supplementary
Material). Compared to other models, we are explicitly
modeling the amount of the enzymes of interest (CHS) as
variables of our model to capture the interaction between the
genetic control level and the metabolic pathway level.

2.2.1 Feedback Regulation via a Metabolic Biosensor
and Biocontroller for the Naringenin Pathway
For the naringenin pathway, we implemented a dynamic regulation
strategy including an extended biosensor to obtain the readout of
naringenin and a biomolecular controller. On the one hand, the TF-
based biosensor provides readouts of the amount of naringenin via a
short metabolic pathway from naringenin to kaempferol (see
Figure 3). Kaempferol is the effector flavonoid measured by the
biosensor promoter region PqdoI and the QdoR transcription factor
(TF) (Siedler et al., 2014).When kaempferol capturesQdoR, the TF is
inactivated, and repression of the PqdoI promoter becomes weaker
while leading to an increase of anti-σ factor production. In contrast,
lower concentrations of kaempferol allow higher amounts of QdoR
transcription factor, which inhibits anti-σ expression.

For every i—cell in the population, the kinetics of the enzyme-
catalyzed reactions involved in this extended pathway were
modeled using the set of rate Eq. 13:

d Di

dt
� VN − VDi − μDi

dKa

dt
� VDi − μKa

d Q

dt
� pQCNkQ
dmQ + μ

− dQ + μ( )Q
(13)

Where Di is the number of molecules of Dihydrokaempferol, Ka
is kaempferol, the flux VDi obeys the Michaelis-Menten kinetics
VDi � kcatFLSFLS Di

KmDi+Di, and Q is the constitutively expressed
QdoR protein. All the parameters are listed in Supplementary
Tables S4, S5 (SupplementaryMaterial) and optimized according
to the lab implementation and characterization in (Boada et al.,
2019b; Dunstan et al., 2020).

The antithetic controller used for the dynamic regulation of
naringenin production is depicted in Figure 3. The antithetic
motif relies on the annihilation mechanism between both σ and
anti− σ factor proteins. The σ factor activity is controlled by the anti−
σ factor that binds to and keeps the σ factor sequestered. The anti − σ
is only released and de-repressed in response to the QdoR
transcription factor. The dimer formed by the LuxR protein and
AHL lactone activates the PLuX promoter, inducing the synthesis of σ
factor. The externally added concentration of AHL acts as the desired
reference input for naringenin production. We do not assume the
AHL concentration needed to set the desired value for naringenin
must be equal to this one—implying an unnecessary metabolic
burden—but simply proportional. Free σ factor binds to the P20
promoter to activate expression of the naringenin chalcone synthase
CHS, which subsequently converts p-Coumaroyl-CoA and malonyl-
CoA into the naringenin precursor. In other words, the CHS enzyme
represents the controller output signal.

Considering the same assumptions as those to derive the TF-
based biosensor model, the dynamics of the antithetic controller
for every cell is given by the following set of equations:

dσ · aσ
dt

� k−c
kdc

σ aσ − k−cσ · aσ − dc + μ( )σ · aσ

dσ

dt
� pσCNkσ
dmσ + μ

α + 1 − α( )A2

kdlux
kd2CN

R
( )2

+ A2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − k−c

kdc
σ aσ + k−cσ · aσ − dσ + μ( )σ

daσ

dt
� paσCNaσkaσ

dmaσ + μ
α + 1 − α( ) kdqCN( )2 kdk + Ka( )2

kdqCN( )2 kdk +Ka( )2 + kdkQ( )2
⎛⎝ ⎞⎠ − k−c

kdc
σaσ

+k−cσ · aσ − daσ + μ( )aσ
dCHS

dt
� β

pHc
CNhkH

dmH + μ
+ pHCNhkH
dmH + μ

α + 1 − α( )σ2
kd20 kdσCNh( )2 + σ2

( ) − dH + μ( )CHS

(14)

Where σ · aσ is the amount of molecules from the generated
complex after σ sequestration, σ and aσ are the factor and its
cofactor, respectively. All the parameters are listed in
Supplementary Table S5 (Supplementary Material).

As in (Boada et al., 2020), the desired naringenin set-point is
regulated by the external addition of AHL and the constitutive
expression of the LuxR protein. The passive diffusion of
extracellular AHL inside the cell was modeled as a reversible
pseudo-reaction using mass-action kinetics (Boada et al., 2017a).
This resulted in the set of Eq. 15:

dR

dt
� pRCNkR
dmR + μ

− dR + μ( )R
dA

dt
� D VcAe − A( ) − dA + μ( )A

dAe

dt
� D −xVcAe +∑x

i�1
A⎛⎝ ⎞⎠ − dAeAe

dx

dt
� μ 1 − x

xmax
( )x

(15)

Where R is the number of molecules of LuxR, A and Ae are the
intra and extracellular AHL molecules, respectively, the term
Vc � Vcell

Vext
is the ratio between the cellular and the culture volumes;

and x is the number of cells. The parameters are also listed in
Supplementary Table S5 (Supplementary Material).

Using the set of preliminary parameters in Supplementary Table
S5, we ran computational simulations to obtain the temporal
response of the system to perturbation in Malonyl-CoA. Once
the production of the target metabolite naringenin reached
steady-state, we introduced a perturbation in the availability of
Malonyl-CoA at 65 h of 60%. After that, the amount of σ factor
increases leading to an increased expression of the enzyme CHS.
This results in a slight increase in the naringenin production.
However, as seen in Figure 4, there is room for improvement.
This will be the goal obtained in the next section by means of the
optimal tuning of the regulation strategy.

2.3 Optimal Tuning of the Dynamic
Regulation for Naringenin Production
Having developed a detailed and realistic model of the pathway
dynamic regulation, we optimally tuned the controller and

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8010327

Boada et al. Molecular Biocontroller Modeling and Optimization

143

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


biosensor components of the dynamically regulated metabolic
pathway that produces naringenin in Escherichia coli (E. coli).

We first established a baseline production pathway for
naringenin, with the basal level of the CHS enzyme provided
by a constitutive promoter. On top of this, the feedback control
loop regulates the total level of expression of CHS to give a robust
response to the fluctuations in the secondary co-substrate
malonyl-CoA availability and drive the production of
naringenin up to the target industrially relevant value of 1 g L−1.

Next, we used our multiobjective optimization approach to
find a library of optimal biocontroller and biosensor pairs for the
dynamic regulation of the naringenin pathway. As in the previous
example, we aim to determine controller and biosensor designs
that allow reaching a target titer of naringenin production while
minimizing the production loss after perturbations in the
secondary metabolite. However, the extra dynamics introduced
by the extended biosensor used in this case and the ones
introduced by using a more realistic model of the
biomolecular antithetic controller must be considered. These
extra dynamics force us to consider the transient behavior of
the regulated feedback loop in the design process to evaluate the
overall stability properties of the designed system. Thus, we
defined the following three objective functions to be minimized:

J1 � Target −KNunp T( )∣∣∣∣ ∣∣∣∣, target titer error( ) (16)
J2 � Nunp T( ) −Npert T( )

Nunp T( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣, production loss after perturbation( ),
(17)

J3 � Number of oscillations in σ( ), (18)

Where Nunp and Npert are the amount of naringenin before and
after the malonyl perturbation at the time T, respectively, and J3 is
an indirect measure of the frequency and damping factor of the
transient in the antithetic biocontroller (see Methods for a
detailed description).

A preliminary parameter sensitivity analysis of the biological
parts from the biocontroller and the biosensor revealed six
parameters to be tuned in the optimization process (Boada
et al., 2020): the translation rates of both anti-σ and the CHS
enzyme, paσ and pH; the plasmid copy numbers CNaσ and CNh; the
σ anti-σ complex dissociation rate, k−c; and the dissociation
constant between σ and the CHS enzyme promoter kd20. The
majority of these parameters are also easy to tune in the real
implementation in the lab. Additionally, as in the simplified
example before, we also considered the growth rate, μ, as a
decision parameter. We computed them as the optimal

FIGURE 4 | Temporal response of the system including the dynamic pathway regulation scheme for the naringenin pathway. Time-course variation in the
biocontroller species (σ and Anti-σ), malonyl-CoA secondary substrate, CHS enzyme, naringenin, and cellular growth (OD) before (white background) and after 60%
reduction in malonyl-CoA availability (grey background). After the perturbation, the amount of naringenin begins to decline until it recovers steadily thank to the transient
increase in the amount of the CHS enzyme. This increase is generated by the activation of factor when the perturbation occurs.
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solutions of the multiobjective problemmin (J1, J2, J3). The details
of the optimization problem can be found in the Methods section
and details on the obtained solutions can be found in the
Supplementary Material, including the list of the solutions in
Supplementary Table S3, the representation of the Pareto front
in Supplementary Figure S2, the Pareto set in Supplementary
Figure S3 and the temporal responses in Supplementary
Figure S4.

The Pareto front resulting from the optimization is shown in
Figure 5A. Several interesting aspects arise from it. First, all the
solutions found are better than the preliminary configuration that
was not optimized. They have either smaller titer target error or
lower production loss after perturbation or both. Second, the
relevance of considering the objective J3, related to the transient
characteristics, can be clearly seen. This objective is represented
by the size of the circles that correspond to each of the solutions in
the Pareto front. Notice that reducing the production loss can be
achieved at the cost of increasing the titer error as also seen before
in the previous example. But in this case, an increased capacity to
reject perturbations also increases the number of oscillations in
the response, and thus corresponds to a less marginally stable
configuration of the controller.

However, unlike in the previous example, in which the
oscillations were no taken into account in the optimization
process, now it is possible to obtain a compromise design (see
solution a in Figure 5) that has small titer error and low number
of oscillations (a lightly under-damped response in Figure 5B) at
a fairly low production loss cost. Notice that the apparent best
trade-off without considering J3 (with solution b as
representative) has too an under-damped and lengthy
transient, which could be unacceptable in some cases. Extreme
solutions like (c) which has the lowest production loss or (d) with
the smallest titer error may be of interest in particular cases when
one objective has more practical importance than the others.

The trade-off is evident in the case of solutions b,c and d when
only looking at the first two objectives. In this situation, solution b
is the obvious best trade-off between titer error and production
loss as it also clearly seen in Figure 5C. However, taking into
account for the transient response of the biocontroller (J3) shown
in Figure 5B, solution a arises as a better compromise with less
under-damped response. A detailed inspection of the library of
controller and biosensor pairs obtained (Figure 6) again reveals
the complex non monotonous relationship between parameters
and objectives.

FIGURE 5 | Optimal controller and biosensor tuning in the naringenin dynamic pathway regulation. (A) Pareto front of the optimal solutions. The x-axis is the
objective J1 (titer target error), the y-axis is the objective J2 (production loss after perturbation), and the size of the circles represent the objective J3 (number of oscillations)
that take into account the transient response of the controller to a perturbation. Solutions along the Pareto front are identified with color ranging from dark green to dark
violet as the values of objective J1 increase. Green solutions have smaller target error than pink/purple/violet ones. The black triangle represents the preliminary not
optimized configuration. Solutions a-d are representative of the different zones along the Pareto front. (B) Time response of the selected solutions. Top plot: response of
the CHS enzyme after a perturbation in the secondary metabolite Malonyl-CoA. Bottom plot: time response of the production loss after perturbation with respect to the
level achieved before the perturbation for the four selected solutions. In both plots the black dashed line corresponds to the preliminary not optimized solution. (C)
Naringenin titer before and after perturbation of each one of the Pareto solutions. The color codes are common to all the plots in the figure.
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Taking a deeper look into the obtained library, we can also
make an interesting observation: different combinations of
parameters result in similar performances. This is nothing
more than another evidence of the inherent robustness
obtained with negative feedback control. For example, devices
5, 6, and 7 from the library (Figure 6, see Supplementary Figures
S2–S4 in the Supplementary Material for more details) have an
approximately equivalent performance regarding the three
objectives. Still, they significantly differ in their parameter
values. Device 6 works in a faster-growing culture without
losing titer, with a higher CHS translation rate than the other
two devices, but needs a higher biding rate for the (σ ·aσ) complex.
Depending on the available biological parts, one implementation
can be more feasible than another, increasing the importance of
having such a variety of elements in the library.

3 DISCUSSION

Dynamic regulation of metabolic pathways is a crucial strategy to
achieve optimal production in microbial cell factories while coping
with cell and environmental fluctuations. The appropriate dynamic
regulation topology will be particular to the topology and
characteristics of the metabolic pathway to be regulated. Yet, on
the one hand, some basic metabolic motifs that often appear in
practical industrial applications and their appropriate dynamic
regulation topology can be identified. On the other hand, all
dynamic regulation schemes share a set of common features that
determine to a great extent the appropriate methodological tools
required for the optimal selection of the gene circuit parts composing
them. In particular, there is the common need to address a set of
multiple goals related to the system’s performance in terms of both
the production of the targeted product and the rejection of
perturbations affecting it. In addition, the stability issues that arise
as a result of using feedback regulation strategies must be addressed.
This is even more important as we use complex biomolecular
controllers and metabolic extended biosensors that introduce extra
dynamics that may compromise the regulated system’s transient time
response and stability.

In this work, we have shown the application of a general
approach based on multiobjective model-based optimization for
building libraries of gene circuit parts that achieve optimal
performance of a dynamically regulated merging metabolic
pathway. This metabolic motif appears in many situations of
practical interest and, in particular, is a pervasive motif in
producing phenylpropanoid-derived natural products.

The multiobjective optimization approach obtains devices
within resulting libraries with different combinations of
parameter values but similar performances. This is another
sign of the inherent robustness obtained with negative
feedback control. Interestingly, depending on the available
biological parts, one implementation can be more feasible than
another, increasing the importance of having such a variety of
elements in the library.

We used detailed models of the metabolic kinetics and the
biosensor and biocontroller dynamics constituting a sort of in
vivo construction guidelines, as some of the model parameters
can be directly related to biological parts or devices in the
laboratory. Our results show that using this type of model
with enough granularity also forces us to consider the
transient and stability issues that are often disregarded.

The need for enough detailed models arguably includes the use
of host-aware models. Indeed, the library of designs we obtained
might suffer some modifications in case we considered the
interactions between the regulated metabolic pathway and the
host cell caused by competition for cell resources (Santos-
Navarro et al., 2021). Our goal in this work was to present the
general multiobjective optimization approach, emphasizing the
tuning of the biomolecular controller and biosensor. In any case,
the use of host-aware models will not change the general
framework; it will only change the obtained solutions.

Altogether our results suggest that strategies for fine-tuning
the trade-offs between target performance, robustness, and
stability in complex dynamic pathway regulation topologies
are intricate and not possible to obtain by simple inspection,
rendering the use of the multiobjective optimization
methodology not only helpful but necessary. As a
consequence, it will not be generally possible to obtain widely

FIGURE 6 | Library of optimal controller-biosensor devices for the dynamic regulation of the naringenin pathway. Pareto set representing the optimal tuned values
of the controller-biosensor parameters (decision variables). On the x-axis we show the optimal values of the parameters for each solution. Each one of the solutions (in the
y-axis) constitutes an element of the controller-biosensor library. The color code is the same as the one used in Figure 5.
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applicable optimal simple rules for the design. Instead, the
expected outcome of the tuning process should be libraries of
gene circuit components that achieve specific trade-offs and
specific nominal environmental situations.

4 MATERIALS AND METHODS

4.1 Multiobjective Optimization
Generally, a multiobjective problem is faced by building an aggregate
function in order to assemble the objectives in a unique index that
contains a weighting vector for each objective. However, the solution
obtained is determined by the selection of the weighting values. An
alternative option is to use a multiobjective optimization design
(Miettinen, 1999). In multiobjective optimization all objectives are
important, therefore all of them are optimized simultaneously. Instead
of one rarely unique solution, we obtain a set of the best solutions
known as Pareto Front. In this front, all solutions are Pareto-optimal
and only differ from each other in the trade-off of objectives each one
represents. Multiobjective optimization requires at least three
fundamental steps (Miettinen et al., 2008): 1) the multiobjective
problem definition (MOP), 2) the optimization process, and 3) the
multicriteria decision making process (MCDM). The overall
multiobjective optimization design enables us to analyze current
trade-offs between the objectives and select the most suitable
solutions (Reynoso-Meza et al., 2013) that reaches all of our objectives.

4.2 Multiobjective Problem Definition
As referred in (Miettinen et al., 2008), a Multiobjective Problem
(MOP), can be stated as follows:

min
θ

J θ( ) � J1 θ( ), . . . , Jm θ( )[ ]
subject to: K θ( )≤ 0

θi ≤ θi ≤ θi, ∀i � 1, . . . , n[ ]
(19)

Where θ = [θ1, θ2, . . ., θn] is the decision vector that contains the
decision variables for multiobjective optimization; J(θ) is the
objective vector and K(θ), L(θ) are the inequality and equality
constraint vectors, respectively, θi , θi are the lower and upper
bounds in the decision variables spaceΘ. The MOP (4.2) has a set
of solutions whose values in the Pareto front are function of the
decision variables defined as the Pareto Set ΘP. Each solution in
this set corresponds to an optimal objective vector in the Pareto
Front JP. All solutions in the the Pareto Set are Pareto-optimal
non dominated solutions, that is, they differ from each other in
the objectives trade-off each one represents.

4.3 Multiobjective Problem of the Merging
Pathway
Here, the objective vector J(θ) has to be defined to solve the
problem presented in 2.1. We maximized the desired target titer
for product P while minimizing the perturbation effects on the
substrate S2 dynamics. The objective functions J1 and J2 were
defined before in Eqs. 9, 10, and the decision variables θ used for
our optimization are θ = [a1, kd20, kaσ, μ] with their corresponding
lower and upper bounds as detailed in Table 1.

Hence, the MOP in (4.2) can be stated as:

min
θ∈R4

J θ( ) � J1 θ( ), J2 θ( )[ ] ∈ R2

subject to : equations 1 − 8( ) (20)

4.4 Naringenin Pathway as a Multiobjective
Problem
For the dynamic regulation of the naringenin pathway, we
defined three objective functions to tune both antithetic
controller together with the biosensor:

J1 � Target −KNarNunp T( )∣∣∣∣ ∣∣∣∣, mg/L target titer error( ) (21)
J2 � Nunp T( ) −Npert T( )

Nunp T( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣, %production loss after perturbation( )
(22)

J3 � 1
2
∑N
k�1

X k( ) −X k − 1( )( )2, number of oscillations( ) (23)

Where KNar � mw·x(T)
Av

is a constant that converts amounts of
naringenin into grams per liter the titer units, mw = 272.25 (g/
mol) is the naringenin’s molecular weight, Av is the Avogadro’s
number, x(T) is the number of cells at time T, and X(k) �
2 sign((mean(σunp(k))−σunp(k))+1))

2 is the clipped binary version of σ
factor used to detect its zero-crossing and obtain the number
of oscillations of the σ before the malonyl perturbation at the
position k. Additionally, the constraints vector K(θ) set two
significant limitations for the antithetic controller performance
in this pathway:

σ[ ]≥ 4.5μM (24)
σ ≥ aσ, (25)

As we said in Section 2.3, seven decision variables from the
biocontroller and biosensor kinetics in Eqs. 13, 14 were selected.
Particularly, we considered the ones that are prone to be modified
in the wet-lab:

θ � paσ , CNaσ , ph, CNh
, kcσ , kd20, μ[ ], (26)

Table 2 defines the lower and upper limits of the parameters
selected for tuning within standard ranges for the chosen
biological parts. Therefore, altogether can state the MOP of
the naringenin pathway as follows:

min
θ∈R7

J θ( ) � J1 θ( ), J2 θ( ), J3 θ( )[ ] ∈ R3

subject to : equations (11) − (15)
constraints (24) − (25)

(27)

TABLE 1 | Lower and upper bounds for the merging pathway MOP.

Bound kaσ (min−1) kd20 (molec) a1 (min−1) μ (min−1)

Lower 700 100,000 90 0.005
Upper 1,500 350,000 160 0.01
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For the rest of the parameters, a sensitivity analisys was
performed in previous work. Evidently, using different values
of the these parameters may have an impact on the resulting
behavior of the system, however this does not invalidate the whole
methodology we are presenting here.

4.5 Multiobjective Optimization Process
The multiobjective optimization process finds the best
parameters θP* producing the best Pareto front
approximation JP(θP)* for each MOP. Evolutionary
algorithms are one of the suggested optimization
techniques to address optimization problems generally
present in systems and synthetic biology (Moles et al.,
2003). We used a multiobjective evolutionary algorithm
based on differential evolution, which uses a spherical
pruning to approximate the Pareto front. The
implementation comes from the sp-MODEx1 algorithm
that improves: 1) convergence by using an external file to
store solutions and include them in the evolutionary process,
2) spreading by using the spherical pruning mechanism, and
3) pertinency of solutions via a basic bound mechanism in the
objective space (Reynoso-Meza et al., 2014).

4.5.1 Multicriteria Decision Making Process
Choosing the preferable solution according to designer’s
criteria takes place in an a-posteriori multicriteria decision
making stage of the Pareto front obtained. It is desirable to
have tools that simplify the visualization as well as the analysis
of the trade-off among competing objectives. This could be a
non-trivial task when the number of objectives is larger than
three and/or the number of decision variables in the Pareto set
is large enough, like in our case. We used the Level Diagrams
Toolbox (Blasco et al., 2017) from Matlab (LD-Tool2) as the
Pareto front visualization tool, which is freely available for
designers. LD-Tool correlates the design objectives JP(θ) with
their decision variables θ by illustrating two graphs. The first
graph contains each objective, where its Y-axis is the p-norm
‖J(θ)‖p of the objectives vector, and the X-axis corresponds to
each objective value Ji(θ). The second graph shows ‖J(θ)‖p
with respect to every θ, so a given solution will have the same
y-value in all graphs.

4.6 Computational Simulations
All simulations of both the merging metabolic pathway and the
naringenin pathway were performed in Matlab, using a 4 Core

processor, 16 GB RAM @ 3.80 GHz. First, we defined two sets
of model parameters known as nominal parameters for each
system. Then, we computed the number of molecules of each
species from every i − cell in the population over time. These
data allow us to obtain the performance, robustness and
stability of the biosensor and the antithetic controller from
each system. Finally, we tuned the biosensor and the
biocontroller for optimal dynamic pathway regulation
following the multiobjective approach. For the merging
metabolic pathway, the sp-MODEx evolutionary algorithm
evaluated 1,000 the cost function, using 125 generations and
taking 1 h for a simulation time. For the naringenin pathway
dynamic regulation, the sp-MODEx evaluated 10,000 times the
cost function, using 199 generations over 8 h of
simulation time.

All the scripts of the simulations and optimization can be
found in the Github repository https://github.com/sb2cl/
molecular-biocontroller-tuning.

DATA AVAILABILITY STATEMENT

The datasets generated and analyzed for this study can be found
in the Github repository https://github.com/sb2cl/molecular-
biocontroller-tuning.

AUTHOR CONTRIBUTIONS

YB JP, and AV conceived the study. YB and AV designed the
experiments. YB and FS-N implemented the method and
performed the experiments. YB and FS-N worked in the analysis
and data visualization. AV and YB wrote the initial version of the
manuscript. JP and AV provided funding and resources. All the
authors edited and approved the final manuscript.

FUNDING

This research was funded byMCIN/AEI/10.13039/501100011033
grant number PID 2020-117271RB-C21.

ACKNOWLEDGMENTS

YB thanks to Universitat Politècnica de València (Grant PAID-10-21
Acceso al Sistema Español de Ciencia e Innovación), and Secretaría
de Educación Superior, Ciencia, Tecnología e Innovación-Ecuador
(Scholarship Convocatoria Abierta 2011). FS-N is grateful to grant
PAID-01-2017 from Universitat Politècnica de València.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.801032/
full#supplementary-material

TABLE 2 | Lower and upper bounds for the naringenin pathway MOP.

Bound pa CNa ph CNh kc kd20 μ

(min−1) (copies) (min−1) (copies) (min−1) (molec) (min−1)

Lower 0.1 1 0.1 1 0.01 1e − 2 0.006 9
Upper 20 15 20 15 20 1e4 0.023 1

1Available in http://www.mathworks.com/matlabcentral/fileexchange/65145
2Available at http://www.mathworks.com/matlabcentral/fileexchange/24042
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Optimizing Dosage-Specific
Treatments in a Multi-Scale Model of a
Tumor Growth
Miguel Ponce-de-Leon1*, Arnau Montagud1, Charilaos Akasiadis2, Janina Schreiber1,
Thaleia Ntiniakou1 and Alfonso Valencia1,3

1Barcelona Supercomputing Center (BSC), Barcelona, Spain, 2Institute of Informatics and Telecommunications, NCSR
“Demokritos”, Agia Paraskevi, Greece, 3ICREA, Pg. Lluís Companys, Barcelona, Spain

The emergence of cell resistance in cancer treatment is a complex phenomenon that
emerges from the interplay of processes that occur at different scales. For instance,
molecular mechanisms and population-level dynamics such as competition and cell–cell
variability have been described as playing a key role in the emergence and evolution of cell
resistances. Multi-scale models are a useful tool for studying biology at very different times
and spatial scales, as they can integrate different processes occurring at the molecular,
cellular, and intercellular levels. In the present work, we use an extended hybrid multi-scale
model of 3T3 fibroblast spheroid to perform a deep exploration of the parameter space of
effective treatment strategies based on TNF pulses. To explore the parameter space of
effective treatments in different scenarios and conditions, we have developed an HPC-
optimized model exploration workflow based on EMEWS. We first studied the effect of the
cells’ spatial distribution in the values of the treatment parameters by optimizing the supply
strategies in 2D monolayers and 3D spheroids of different sizes. We later study the
robustness of the effective treatments when heterogeneous populations of cells are
considered. We found that our model exploration workflow can find effective
treatments in all the studied conditions. Our results show that cells’ spatial geometry
and population variability should be considered when optimizing treatment strategies in
order to find robust parameter sets.

Keywords: multi-scale modeling, model exploration, treatment optimization, TNF, cell resistance, multi-scale
modeling and simulation, agent-based model, optimization via simulation

1 INTRODUCTION

Optimizing drug treatment and efficiently screening the effect of drugs is key to improving clinical
treatments and ultimately extending patients’ life expectancy (Kessler et al., 2014). The emergence of
resistant cancer cells is a complex phenomenon due to the inherent complexity of biological (Shaffer
et al., 2017), the interplay of processes that occur at different scales, and an environment with an
active role in this resistance (Lee et al., 2012; Goldman et al., 2015). Molecular mechanisms and
population-level dynamics such as competition and cell–cell variability have been described as
playing a key role in the emergence and evolution of cell resistances (Kim et al., 2018). For instance,
high gene expression variability has been linked to aggressiveness in chronic lymphocytic leukemia
(Ecker et al., 2015). Genetic heterogeneity and phenotype variability have also been related to the
emergence of cell resistance (McGranahan and Swanton, 2015; Brady et al., 2017; Shaffer et al., 2017).
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Furthermore, the environment has been described to have an
effect on the cells’ response to drugs: 2D-cultured cell line screens
failed in clinical studies (Horvath et al., 2016) as cell cultures do
rarely recapitulate the heterogeneity and drug sensitivity of the
original tumor (Jabs et al., 2017).

Multi-scale models (MSM) are a useful tool for studying
biology at very different time (no s) and spatial scales, as they
can integrate different processes occurring at the molecular,
cellular, and intercellular levels (Metzcar et al., 2019;
Montagud et al., 2021). In the domain of cancer biology,
MSMs have been used to connect cellular mechanisms
underlying cancer drug resistance to population-level patient
survival (Sun et al., 2016), study the role of physiologic
resistance due to diffusion gradients of different nutrients and
drugs (Frieboes et al., 2009), and quantitatively characterize
pressure for invasion (Anderson et al., 2006), among many
other applications (Metzcar et al., 2019). In general, multi-
scale models provide a genotype-to-phenotype simulation
framework, which is ideal for the study of in silico drug
screenings (Flobak et al., 2015), the optimization of treatment
regimens (Akasiadis et al., 2021), and the exploration of genetic or
environmental perturbations (Letort et al., 2018).

Multi-scale simulation can be used to conduct in silico
experiments and generate new experimentally testable
hypotheses, accelerating the discovery of new potential
treatment strategies (An, 2010). Nevertheless, due to the
hybrid approaches used to describe multi-scale models (e.g.,
discrete, continuous, and stochastic), these models cannot be
studied using formal analytical tools, and thus the analysis and
exploration of simulated trajectories require complex workflows
to guide the exploration of the parameter spaces associate with
these models (Ozik et al., 2016). For this reason, distributed
workflows to perform parallel optimization via simulation and
model exploration are critical tools for exploiting the full
potential of simulations (Ozik et al., 2018b; Reuillon et al.,
2013). Model exploration workflows are required to efficiently
fit parameters for which there are no available experimental
measurements (Akasiadis et al., 2021; Ozik et al., 2019),
explore complex and vast parameter spaces, and optimize user
desirable goals, such as the space of optimal treatment strategies
for a given cancer model. Optimization methods such as
evolutionary algorithms have proven their usefulness in such
studies for fitting unknown parameters (Akasiadis et al., 2021), as
well as high-throughput hypotheses testing in cancer research
(Ozik et al., 2018a).

In previous work, Letort et al. (2018) developed the multi-scale
model of 3T3 fibroblast spheroids that integrates the Cell Fate
Boolean network Calzone et al. (2010) inside individual cell
agents. The Boolean network rules the phenotype of the cells
(e.g., proliferation and apoptosis) based on the environmental
conditions (e.g., drugs presence and oxygen concentration). The
authors used the model to investigate the tumor response to
different regimes with tumor necrosis factor supplies (TNF) and
reported complex behaviors in the simulated conditions. While a
set of values of pulse period, pulse duration, and TNF
concentration was optimal to reduce the number of alive
tumor cells, different sets of values turned the cells resistant to

TNF (Letort et al., 2018). The effects of TNF in the Booleanmodel
reported by Calzone et al. (2010) are multifaceted: TNF triggers
cells to go from a naive to a proliferative state and commits cells to
necrosis and apoptosis. Once the cells are committed to either
survival, necrosis, or apoptosis, they cannot go back, causing
resistance due to phenotypic variability. Interestingly, it has been
described that prolonged TNF exposure causes the cells to be
resistant to the effect of the cytokine (Lee et al., 2016).

In the present work, we use an extended hybrid multi-scale
model to perform a deep exploration of the parameter space of
effective treatment strategies based on TNF pulses to unravel the
mechanistic details behind the complex emergent dynamics of the
TNF pulses in in silico experiments and guide the optimization of
effective treatments. We extended the multi-scale model of 3T3
fibroblast spheroid by integrating an explicit kinetic description
of the TNF-receptor dynamics based on the molecular biology of
the TNF receptor (Fischer et al., 2011; Li et al., 2013; Sedger and
McDermott, 2014). Furthermore, we couple the TNF-receptor
kinetic model with the cancer cell Boolean model from Calzone
et al. (2010) to simulate the downstream propagation of the signal
that induced the binding of the TNF. To explore the parameter
space of effective treatments in different scenarios and conditions,
we have developed an HPC-optimized model exploration
workflow based on EMEWS (Ozik et al., 2018b). Our
workflow includes two previously used model exploration
strategies, sweep search and genetic algorithm (Akasiadis et al.,
2021; Ozik et al., 2019), together with a new approach named the
Covariance Matrix Adaptation Evolutionary Strategy, which
exhibited good convergence in global optimization problems
with continuous variables (Hansen and Ostermeier, 2001).

We applied our framework to characterize the space of
effective treatments in different experimental scenarios by
simulating the treatment outcome with our multi-scale model
of tumor growth. We first studied the effect of the cells’ spatial
distribution in the values of the treatment parameters by
optimizing the supply strategies in 2D monolayers and 3D
spheroids of different sizes. We found that our model
exploration workflow can find non-trivial in silico drug
scheduling strategies that minimize the tumor below 1% of its
initial size while avoiding the emergence of resistant cells. Our
results also show that effective treatment strategies can be found
in the two different cell geometries studied. We also found that
the parameter spaces of effective treatments for the 2Dmonolayer
and 3D spheroid exhibit different distributions for the
parameters. We later study the robustness of the effective
treatments when heterogeneous populations of cells are
considered. Specifically, we model population heterogeneity by
introducing different levels of cell-based variability into the
kinetic parameters of the TNF-receptor models. The
parameters’ variability aims to mimic population-level
variability in the kinetic parameters of the receptor, as well as
different levels of expression in the receptor, among different
cells. We found that effective treatment strategies are robust to a
low level of variability, whereas, with a high level of variability,
those treatment strategies optimized for populations with no
variability cannot reduce tumor growth. However, when the
treatments are optimized directly on a heterogeneous
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population, we observe that the optimization algorithms can
retrieve effective treatment.

Altogether, we found that ourmodel exploration workflow can
find effective treatments in all the studied conditions, showing
that multi-scale simulations andmodel exploration are promising
tools for in silico exploring treatment strategies. Finally, our
results also show that cells’ spatial geometry and population
variability should be considered when optimizing treatment
strategies to find robust parameter sets. In future work, we
plan to extend these results by studying other experimental
setups and different cancer models.

2 MATERIALS AND METHODS

2.1 Hybrid Multi-Scale Model of Cancer
Cells With Signaling
Herein, we present a multi-scale model of tumor growth that
considers, at the individual cell level, the dynamics of the tumor
necrosis factor (TNF) receptor and its downstream effect using a
hybrid approach (Figure 1). Our model was implemented using
PhysiCell (Ghaffarizadeh et al., 2018) together with the
PhysiBoSS add-on (Ponce-de-Leon et al., in preparation). The
microenvironment is simulated in both the 2D and 3D domains,
and it accounts for the presence of oxygen and the cytokine tumor
necrosis factor (TNF). On the contrary, cells are simulated as
individual agents, including intracellular submodels that account
for the cell cycle, the different death models (i.e., necrosis and
apoptosis), a model for TNF receptor dynamics, and a gene
regulatory network.

For the cell cycle, we use PhysiCell live cell cycle with a
doubling time of 22h, and for the death models, we used
PhysiCell standard ones with default parameters. The

binding of the TNF to its receptor is modeled using mass-
action kinetics in which TNF binds to a cell receptor TNFR at a
given rate kbind; the complex TNF-TNFR is internalized at a
rate of kendo where the TNF is degraded and the receptor
recycled at a rate of krecycle (see Supplementary Figure S1).
The TNF-receptor submodel was developed based on the
known molecular biology of the molecular system (Fischer
et al., 2011; Li et al., 2013; Sedger and McDermott, 2014). The
equation below describes the submodel for the TNF-receptor
dynamics:

Re[ ]
dt

� −kbind Re[ ] TNF[ ] + krecycle Rp
i[ ]

Rp
e[ ]

dt
� kbind Ri[ ] TNF[ ] − kendo Rp

e[ ]
Rp
i[ ]

dt
� kendo Rp

e[ ] − krecycle Rp
i[ ]

(1)

where [R], [TNF], and [R*] are the concentrations of the receptor,
TNF, and TNF-TNFR complex, respectively. Furthermore, the
TNF-TNFR complex [R*] can be found in two states, in the cell
membrane (Re*) or internalized (Ri′).

The gene regulatory model used is an extended version of the
Boolean network (BN) reported in Calzone et al. (2010) and is
simulated using the MaBoSS algorithm. The BN is coupled to
the agent in two different ways (see Supplementary Figure S2).
The BN has an input node that represents the presence of TNF
and is coupled to the amount of active TNF-TNFR complex
(Re*) through a transfer function that converts the continuous
value of Re* into a Boolean one. Additionally, the BN has three
mutually exclusive output nodes representing three alternative
cell fates: proliferation, apoptosis, and NonAD (non-apoptotic
death or necrosis). The fate or phenotype of each cell agent is
ruled by the current state of the fate nodes of its internal

FIGURE 1 | Diagram representing the intracellular submodels of the multi-scale model of tumor growth. Each individual cell agent has a kinetic model of the TNF
receptor dynamics connected to the microenvironment through the presence of surrounding TNF and coupled to the Boolean network through a transfer function. The
Boolean network has three readout nodes (proliferation, NonACD, and apoptosis), which rule the fate of the cell agent.
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regulatory network. For instance, if the proliferation node is
active, the cell will grow and divide, whereas if the apoptosis
becomes active, the cell agent will commit to apoptosis (see
Supplementary Figure S2).

2.2 Model Exploration Framework
2.2.1 Workflow Overview
The parallel simulation framework used in our evaluation is a
workflow that follows the Extreme-scale Model Exploration
with Swift (EMEWS) paradigm. It uses the spheroid_TNF_v2
as an example model and is publicly available in our online
repository1. An overview of our model exploration workflow
is shown in Figure 2. We have integrated three different
search strategies: 1) a sweep search approach that evaluates a
predetermined set of candidate parameters (generated from
uniform sampling, or a regular grid), 2) a Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES), and 3) a
genetic algorithm (GA). For the cases of CMA-ES and GA,
we use the available implementations provided by the DEAP
package (version 1.3.1), a mature and widely used package for
evolutionary optimization (Fortin et al., 2012). Using
EMEWS queues, multi-scale simulation instances are
configured with the specific parameter values
corresponding to the points that each exploration
procedure targets and are then submitted for parallel
execution in an HPC environment.

The number of each “batch” of points is relative to the number
of computational nodes available in the HPC. The multi-scale
simulator incorporates PhysiCell (v1.7) (Ghaffarizadeh et al.,
2018) together with the PhysiBoSS 2.0 extension (Ponce-de-
Leon et al., in preparation), which is an add-on version of
PhysiBoSS. We merged our mass-action kinetics model, as
explained in Section 2.1, with the multi-scale model proposed
by Letort et al. (2018) that used the Boolean model from Calzone
et al. (2010). Finally, the simulation results are returned, the
points are evaluated according to the performance of the
particular drug treatment, and the workflow iterates over the
next “batch” of points. Each point is a three-dimensional vector
that configures the following simulation parameters: 1) the
duration of the TNF pulse; 2) the TNF pulse period; and 3)
the concentration of TNF. The exploration space ranges from 5 to
800 min for the pulse period, from 5 to 200 min for the pulse
duration, and from 0.001 to 1 ng/L for the TNF concentration.

We checked the number of alive tumor cells at the last time
point of each simulation to evaluate the results of each particular
treatment and used these values as the fitness or objective of the
optimization algorithms. Note that, to ensure that the
characterization is robust and not a subject of extreme
randomness accruing from inherent PhysiBoSS stochasticity,
we perform three replicate simulations with the same
configuration parameters, using a different seed to initialize
the random number generator, and calculate the average value
of the final alive tumor cells count over the replicates as the final
score. We now proceed to describe the different search methods
we use in detail.

FIGURE 2 | Workflow overview. The diagram depicts the structure of the model exploration workflow. EMEWS communicates to the different search strategies
using a queue system. The search strategy generates candidate parameters, and the treatments to be evaluated via PhysiBoSS simulations are distributed as parallel
jobs to the HPC infrastructure. Upon completion, the simulation outcomes are returned to EMEWS, which, in the case of the GA and CMA-ES, sends the fitness of the
evaluated parameters, so the algorithm can update its internal state and generate new candidate parameters.

1https://github.com/bsc-life/spheroid-tnf-v2-emews

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8367944

Ponce-de-Leon et al. Optimizing Drug Treatments

154

https://github.com/bsc-life/spheroid-tnf-v2-emews
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2.2.2 Sweep Search
The sweep search comprises a simple exhaustive approach that
requires the user to specify a predetermined number of points to
be evaluated. Our code offers a points generating script, which
can be configured to choose among different distributions. In
other words, points can either be selected to belong on a grid, with
equal distances between each point along the dimensions, or a
second option is to select random points by sampling particular
probability distributions. For the purposes of the experimentation
presented in this study, we have implemented the uniform
distribution point selection, though this can be easily
configured to use other types, such as Gaussian and Beta.

2.2.3 Covariance Matrix Adaptation Evolutionary
Strategy
Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) is a stochastic, derivative-free method for numerical
optimization for black-box optimization functions (Hansen
and Ostermeier, 2001). This method requires, as input, a set
of points, σ value that controls the range of exploration,
covariance matrix C used to guide the search, the number
of points population to execute the algorithm upon, and a
total number of iteration or stop criteria. In a nutshell, CMA-
ES generates an initial population sampling from a
multivariate normal distribution, evaluates each generated
point, and then calculates mutation steps of the best points to
form the mutation distribution. By this, a new population of
points is generated and evaluated, and the iterative process
continues up to a user-defined number of times. Note that, for
every update of the mutation distribution in each algorithm
iteration, all past paths from previous iterations are also
considered, and the most favorable points are granted a
larger probability for being selected by the evolutionary
strategy. This way, the length of each mutation step can be
adapted to be longer in cases of greater fitness score
improvement or shorter for the opposite case.

2.2.4 Genetic Algorithm
Genetic algorithm (GA) is a widely known and tested
metaheuristic approach, also belonging to the family of
evolutionary strategies algorithms, which mimics the evolution
principles of biological organisms and operates directly on the
values of points (Holland, 1975; Whitley, 1994). Similar to CMA-
ES, an initial population of points is generated and evaluated, and
then, following an iterative approach, a series of genetic operators
are applied to each of them in order to produce the next evolved
population of points. More specifically, the GA applies the
selection, crossover, and mutation operators. Typically, the
first operator selects the evaluated individuals in a weighted
manner so that the ones with better fitness scores have an
increased probability of being selected to proceed to the next
generation, compared to fewer fit points. Then, the crossover
mixes the point values in a principle similar to that of the gene
propagation from parents to offspring as it happens in organisms.
Finally, the mutation operator changes a point value (e.g., one of
its dimensions) with a small probability, similarly to the process

that has been observed in DNA sequences. The main idea is that
combinations of points with good fitness scores would lead to
even better ones, especially if the search domain is smooth.
However, because the algorithm considers only the previously
observed fitness scores, without having any other domain-specific
knowledge, as a consequence, its search may be constrained
around locally optimal points, never managing to reach the
global optimal ones. Despite these shortcomings, GAs have
been shown to work very well for non-smooth search spaces
(Fitzpatrick and Grefenstette, 1988; Tang et al., 1996).

3 RESULTS

3.1 Multi-Scale Simulations and Model
Exploration Setup
Herein, we use a multi-scale model of tumor growth to investigate
different treatment strategies. The model, which is also used in
Akasiadis et al. (2021), simulates the dynamics of a population of
cancer cells growing under different drug treatment conditions. A
treatment strategy consists of the supply of periodic pulses of the
cytokine tumor necrosis factor (TNF) with fixed duration and
concentration (see Section 2). At the molecular level, when the
TNF binds to the cell’s receptor TNFR forming a complex, and
the TNF-TNFR complex concentration reaches a given threshold,
the signal is propagated through the Boolean regulatory network,
inducing cell death. However, if the stimulus is sustained for a
longer period of time, cells activate the NFkB node and the
survival node, becoming resistant to the death induced by the
TNF. For this reason, optimal treatments should expose the cell
for a sufficient time to induce death but not too much as to
become resistant to it (Letort et al., 2018).

To explore the parameter space associated with the treatment, we
have extended our model exploration workflow based on EMEWS
(Akasiadis et al., 2021). In each in silico experiment, we simulate the
growth of a population of cancer cells for 4,640 min (i.e., three days)
subject to a given treatment strategy. In order to account for the
inherent stochasticity of the model, each simulation is always run in
three replicates and the average behavior is considered (see Section
2). We evaluate the effect of the treatment strategies by analyzing the
total number of alive cells at the end of the simulations relative to the
initial population size and use these values as the score or cost
function associated with a treatment strategy. We define, as effective
treatments, those strategies that reduce the number of the alive cell
below 1% of its initial numbers in the three replicates. Based on this
definition, we investigate the parameter space of the effective
treatments in two different spatial arrangements of cells: a
monolayer disc of radius 100 μm (151 cells) and a 3D spheroid
of radius 100 μm (1,173 cells).

3.2 Effective Treatment Parameters Differs
for 2D and 3D Cell Arrangements
To investigate the structure of the parameter space of the
effective treatments, we perform a uniform sampling of
10,000 candidate sets of parameters corresponding to
different treatment strategies. We use these sets of
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parameters (sweep search) as inputs for multi-scale
simulations and evaluate each treatment effect on the
growth of the cancer cells in the 2D and 3D arrangements.
From the 10,000 evaluated parameter sets in each condition,
the results show that 113 strategies are effective treatments
for the 2D setup, whereas, in the 3D case, only 11 strategies
are effective treatments (see Supplementary Table S1). This
indicates that the region containing the effective treatments
for the 3D spheroid is more constrained than in the 2D disc
arrangement.

Interestingly, if we restrict the definition of effective
treatments to kill all cancer cells at the end of the simulation
and in the three replicates, only eight sets of parameters can reach

the goal for the 2D cases, whereas no effective parameter sets are
found for the 3D setup (see Supplementary Table S1 and
Supplementary Figure S3).

We compared the distributions and summary statistics of
the parameters of the effective treatments in the two
arrangements (Figure 3). The comparison shows that the
distribution values for the evaluated parameters indicate that
the effective treatments of the 3D arrangement are notably
more constrained than those that work in the 2D
arrangement, in particular regarding the concentration of
TNF and the pulse duration. In general, the effective
treatments in 2D arrangements exhibit bigger values and
larger ranges in the three parameters (Table 1).

FIGURE 3 | Effective TNF treatment parameters distribution from uniform random sampling. The distribution of the three parameters of the pulse treatment,
sampled from a uniform distribution and filtered to belong to the feasible region that can reduce the tumor size below 1% of its initial size.

TABLE 1 | Summary statistics for the parameters from the effective treatments found by sampling 10,000 random candidates.

Parameter Layout Mean Std. Min Median Max

Pulse duration (min) 2D 34.66 24.54 5.00 30.17 127.21
3D 19.97 12.31 9.37 14.99 46.66

Pulse period (min) 2D 440.83 128.53 161.44 438.86 738.09
3D 343.28 113.64 171.28 398.79 487.19

TNF (ng/L) 2D 0.14 0.16 0.02 0.10 0.99
3D 0.05 0.03 0.02 0.04 0.11
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We also found that some parameters’ combinations exhibit
correlations (see Supplementary Figure S4). On the one hand, we
observe that the Pulse period positively correlates with TNF in the 2D
and 3D but only correlates with pulse duration in the 2D case. On the
other hand, TNF shows a negative correlation with pulse duration
only for the 2D case. Altogether, these correlations indicate that the
treatment parameters can compensate each other: a shorter pulse
might be as effective as a longer one if it carries more TNF.

Although herein we are considering a spheroid composed only
of tumor cells, more complex scenarios will also contain healthy
cells. In such cases, effective treatments will also need to consider the
cytotoxic effect of the drug on the healthy cells. To address this issue,
we have also calculated the total concentration of TNF supplied
during each treatment based on the pulse parameters as follows:

TNFtotal = Pulseduration*Pulseconcentration*n,
where n is the total number of pulses supplied calculated by

dividing the total treatment (simulation) duration (min) over the pulse
period (min). Using the calculated values, we ranked the feasible
solutions to find the ones that minimize the total concentration of
TNF used during the whole treatment (see Supplementary Table S1).
The results show that the distribution of total TNF is biased to lower
values of the total TNF supplied in both the 2D and 3D (see
Supplementary Figure S5). Strikingly, when we analyze the
effective treatments that minimize the total amount of TNF
supplied in the 2D and 3D, we found a very similar value of 5 ng/L.

3.3 Optimal Treatment Parameters Differs
for 2D and 3D Cell Arrangements
To further investigate the structure of the parameter space of the
effective treatments, we conducted an optimization via

simulation to find the set of treatment parameters that
minimizes the number of alive cells at the end of the
application of the treatment. We performed the parameter
optimization in both cell arrangements (i.e., 2D disc and 3D
spheroid of radius 100 μm), focusing on the same parameters as
in Section 3.2: pulse duration, pulse period, and TNF. These
optimizations were run using two evolutionary algorithms:
Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) and genetic algorithm (GA) (see Section 2 for details).

The results showed that both algorithms converge to optimal
(leaving no remaining cells) or near-optimal sets of parameters
for the 2D and 3D case, respectively (Figure 4). Interestingly, in
both cases, the GA found effective treatments after two iterations,
whereas the CMA-ES only does after 15 iterations. Nonetheless,
both algorithms are capable of finding effective treatments. In
addition, the CMA-ES algorithm also estimated a multivariate
normal distribution for the region of effective treatments
parameters that is updated at each iteration. In the last
iteration, the population sampled by the CMA-ES showed a
very low variance (Figure 4) in the 2D and the 3D
arrangements, indicating that the estimated distribution
captures, at least, part of the structure of the parameters
associated with the effective treatments.

We compared the parameter sets for the effective treatments
predicted by both algorithms and uncovered that each one
converges to different regions of the parameter space (see
Supplementary Figure S6). The CMA-ES found effective
treatments parameter distributions different for the 2D and
3D. In both cases, the parameter ranges were narrower than
those found in uniform sampling. Moreover, the CMA-ES
converged to distributions for the pulse period different for

FIGURE 4 | Algorithmic convergence for the optimization of treatment parameters. The average% of alive cells at the end of each iteration step of the CMA-ES and
GA optimization algorithms. Panels (A) and (B) show the convergence of the algorithms for simulations considering a population of cancer cells arranged in a 2D disc
and a 3D spheroid, respectively.
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the 2D and the 3D arrangement. In addition, the parameters
corresponding to effective treatments found by the GAwere more
scattered showing wider ranges of values. In both cases, the pulse
duration seemed to be the less critical or constrained parameter.

We analyzed the time course of the total number of alive,
apoptotic, and necrotic cells for one of the optimal treatments
found. Furthermore, for this simulation, we also checked the
internal state of the TNF-receptor model (i.e., the values for Re,
Re*, Ri′ variables) at each time step of the simulation and averaged
these values over all the cells to investigate the coarse grain
dynamics of the submodel. Figure 5A shows how the number of
alive cells periodically drops until it reaches zero as a consequence
of the TNF pulses. When analyzing the average dynamics of the
TNFR receptor model in effective treatments, we found that the
TNF pulse needs to trigger the activation of the receptor of 50% of
the population for short periods of time to be effective (5b). If the
average number of cells that got activated is lower than this
threshold, then the rate of cells entering necrosis will be lower
than the population growth rate, and therefore the number of
alive cancer cells will steadily grow. On the contrary, if the average
number of activated cells is above this threshold for extended
periods of time, many cells will become resistant to the treatment.
We found similar results for the case of the 3D spheroid (data not
shown).

3.4 Robustness Analysis of the Effective
Treatments in Heterogeneous Populations
In the previous section, we showed that effective treatments could
be found for 2D and 3D cell arrangements, using either the CMA-
ES or the GA algorithms. Nonetheless, those treatments were
optimized on monoclonal or homogeneous tumors, that is, the
population of cells with identical parameters. In this section, we
study the robustness of effective treatments by studying

heterogeneous populations of cells. We forced the population
heterogeneity by introducing variability into the three kinetic
parameters of the TNF receptor, that is, the TNFR binding rate,
the TNFR endocytosis rate, and the TNFR recycling rate. The
variability is applied by considering a normal distribution
centered in each parameter’s default value and with a standard
deviation, the control parameter that varies from zero
(homogeneous population) to one (almost uniformly
distributed random parameters). Then, when the population is
initialized, the kinetic parameters of each cell are sampled from
the corresponding distribution.

To evaluate the robustness of the effective treatments in
heterogeneous populations, we considered the top 30
effective treatments parameter sets that had no final tumor
cells in any of their replicates for the 2D and for the 3D cell
arrangements. Then, for each set of parameters, we run the
simulations with different levels of variability from 0 to 1. As
expected, we observed that, for low values of the variability
control parameter (< 0.2), most of the evaluated effective
treatments still can reduce the initial tumor size to the 1% of
the initial size. However, for higher variability values (> 0.2),
most of the evaluated treatments could not reduce the tumor
size below its initial size (Figure 6). This indicates that, as the
level of variability on the TNFR receptor kinetic parameters
increases, the effectiveness of the treatments dramatically
decreases (Figure 6).

Interestingly, the critical value at which most effective treatments
were no longer effective is different for the 2D and the 3D cell
arrangements. In the case of the 2D disc, the critical value is close to
0.25, whereas, in the 3D spheroid cases, this value is around 0.15
(Figure 6).When the variability value is above this threshold, some of
the sampled kinetic parameters make the cell insensitive to the
treatment, and thus it can grow even in the presence of TNF. The
differences in the critical threshold were possibly due to the different

FIGURE 5 | Time course for effective treatment in 2D cell arrangement. Panel (A) shows the time course for the number of alive, apoptotic, and necrotic cells. The
light grey curve shows the TNF pulses. Panel (B) shows the average state of the TNFR receptor model across all the alive cells. The horizontal line indicates the threshold
at which the signal induced by the binding of the TNF propagates downstream to the Boolean network.
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number of initial cells considered in the 2D and the 3D cell
arrangements. To assess this, we tested the effect of the radius size
of the 2D simulations in this robustness analysis.

We evaluated radius sizes of 50, 275, and 500 μm
corresponding to initial tumor sizes of 37, 1,069, and 3,559
cells, respectively. We tested three levels of variability with
each radius size in three replicates and averaged their results.
As already discussed, we can observe that the more variability, the
worse the outcome (see Supplementary Figure S7). Interestingly,
we did not see a clear correlation between the radius length and
the decrease of the effectiveness of the treatments, with the 50 μm

being the one with worse outcomes with the higher
variability level.

3.5 Optimization via Simulation Can Find
Effective Treatments in Heterogeneous
Populations of Cancer Cells
To evaluate the performance of model exploration workflow in
more complex scenarios, we investigated the optimization of
treatment strategies in tumors with different levels of
heterogeneity. This use case was considered as a way to

FIGURE 6 | Evaluation of the top 30 best effective treatments in heterogeneous populations of cancer cells with different degrees of variability in the kinetic
parameters of the TNFR. For a given value kinetic parameters’ variability (x-axis), each pair of boxes depicts the distribution % of alive cells at the end of the simulations
obtained after evaluating the top 30 best effective treatments founded when zero variability was considered.

FIGURE 7 | Time course for effective treatment in the 2D cell arrangement with variability of 0.25. Panel (A) shows the time course for the number of alive,
apoptotic, and necrotic cells. The light grey curve shows the TNF pulses. Panel (B) shows the average state of the TNFR receptor model across all the alive cells. The
horizontal line indicates the threshold at which the signal induced by the binding of the TNF propagates downstream to the Boolean network.
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evaluate what would happen when using this methodology in a
less ideal situation as it can be the drug screens in cell lines or
tumors with heterogeneous non-clonal cells. For this purpose, we
conducted the optimization via simulation to find effective
treatments in two conditions with different degrees of
variability in the kinetic parameters.

At first, we set the variability value on the kinetic parameters of
the TNFR receptor model to 0.25 and then run the GA and CMA-
ES to find treatments that minimize the total number of alive
cells. We found that, with this level of variability, neither of the
algorithms could converge (see Supplementary Figure S8).
Nonetheless, this did not prevent the algorithms from finding
effective treatments for both arrangements: the 2D disc and the
3D spheroid. While, for the 2D disc, several candidate sets of
parameters were found, only a few candidate effective treatments
were found by the CMA-ES for the 3D spheroid.

Interestingly, for the 2D cell arrangement, the CMA-ES
algorithm was able to find two optimal treatment strategies,
that is, a set of parameters for the TNF pulse that kills every
tumor cell in all three replicates. These two sets of treatment
parameters are similar to those effective treatments that worked
when variability was not introduced (see the previous section).
Figure 7A shows the time course for the effective treatments
optimized in the 2D cell arrangement. The plot shows how the
number of alive cells steadily decreases until zero (Figure 7B). It
also shows the average internal dynamic of the receptor model
exhibiting some noisy behavior due to the heterogeneity present
in the population.

We also performed a similar experiment with a higher
variability value (0.50) on the kinetic parameters of the TNFR
receptor model. We ran the treatment optimization using the GA
and CMA-ES and found that, as expected, with this level of
variability, the convergence of both algorithms was even worse
than for the case of 0.25 (see Supplementary Figure S9).
Furthermore, the algorithms could only find effective
treatments for the 2D disc arrangement. Nevertheless, the
number of different parameter sets found were fewer than in
the previous scenario, with a variability value of 0.25, as expected
for a more complex landscape. For the 3D spheroid case, the best
treatment reduced the initial tumor size to 1.05% of its initial size
when averaged over the three replicates. If we relax the definition
of effective treatment to a threshold of 2% and compare the
distribution of the effective parameters between the cases with
variability set to 0.25 and 0.50, we found that the ranges of values
were wider in the second case. Altogether the results presented in
this section indicate that the higher the variability in the
population, the harder to find effective treatments.
Nonetheless, the results also show that even with high values
of parameters variability, it is still possible to find very effective
treatment strategies.

4 DISCUSSION

In this work, we used a hybrid multi-scale model that merges a
mass-action kinetics model of the TNF receptor with a cancer cell
Boolean model of different signaling pathways. Moreover, these

models are embedded in an agent-based framework that allows
considering populations of cells in a defined microenvironment.
By performing a model exploration, we have shown that the
effective treatments parameter can be found in different cells’
geometries, including 2D monolayers and 3D spheroids.
Furthermore, by performing a uniform random sampling of
the effective treatment spaces, we found that the parameters
for 2D and 3D arrangements exhibit different distributions.
These differences are more pronounced in the case of the TNF
concentration and the pulse duration, where the effective
treatments for the 3D spheroid case are notably more
constrained than those found for the 2D disc. We hypothesize
that the 3D configuration imposes spatial constraints in the
diffusion of the TNF, which restraint the space of values for
the candidate’s effective treatment.

We also found that some parameters’ combinations exhibit
correlations, indicating that one parameter change can be
compensated by adjusting another one. For instance, we
observe that the pulse period positively correlates with TNF in
the 2D and 3D. This means that increasing the period between
pulses can be compensated by increasing the pulse concentration.
Interestingly, the correlation between these two parameters is
stronger in the 3D spheroid than in the 2D monolayer, showing
how the former case is more constrained than the latter. For the
3D spheroid, we also found a strong positive correlation between
the pulse period and its duration, showing that these two
parameters can also compensate for each other. Nonetheless,
the correlation between these two parameters is very low and does
not show statistical significance in the 2D monolayer. Finally, we
found a negative correlation between the pulse concentration and
its duration in the 2D monolayer showing that, in these cases, an
increase in the concentration of the pulse can be compensated by
a reduction of its duration. Altogether these results indicate that
the structure of parameters spaces of effective treatment depends
on the spatial cell distribution. Therefore, treatment strategies
that work in a 2D monolayer may not work in a 3D spheroid.

Although our model only considers tumor cells, the total drug
supplied will be critical when healthy cells are also present. For
this reason, we analyzed the total TNF supplied during each
experiment as a way to estimate the cytotoxicity associated with
the effective treatments. Our results showed that, in general, the
distribution of this value tends to be skewed to lower values. We
also found that the minimum value of the total TNF for the 2D
and 3D are quite similar. Nonetheless, the specific treatment’s
parameters are very different; in the 2D case, the effective
treatments that use the minimum TNF values has a period
around twice times larger than the one in 3D, but the
duration of the pulse has half of the duration; the pulse
concentration is around four times higher in the 2D case. This
analysis also indicates that spatial cell distribution is important
for the design of efficient strategies.

We later investigate treatment optimization using two different
evolutionary algorithms: GA and CMA-ES. Our results showed that
both algorithms could quickly converge to effective treatments, but
while the GA can find candidates in the first iteration, the CMA-ES
converge to a more robust region of the parameter space.
Furthermore, the CMA-ES also finds a statistical distribution for
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the region of effective treatments. Strikingly, both algorithms converge
to slightly different regions of the parameter space in both the 2D and
the 3D arrangements. This suggests that the fitness landscape of
effective treatments is very rough, exhibiting several valleys of effective
treatments regions.

In order to unravel the molecular mechanism behaving like the
effective treatments, we analyzed the coarse-grained dynamics of the
TNF receptor models for working and none working treatment
strategies. The non-working strategies can be grouped into two
classes. On the one hand, there are those sets of treatment
parameters that do not allow the receptor to reach the threshold
needed to propagate the signal downstream of the Booleanmodel. On
the other hand, there are treatment strategies that keep the activation
of the receptor for long periods enough to induce cell resistance. In this
context, if we define drug resistance as the inability of a cell to respond
to a given drug, we find that resistance can come from two aspects:
from the dynamics of the Boolean model in response to TNF and
from the characteristics of the TNF receptors. The effects of TNF in
this Booleanmodel reported by Calzone et al. (2010) are multifaceted:
TNF triggers cells to go from a naive to a survival state but to commit
cells to necrosis and apoptosis. Once the cells are committed to either
survival, necrosis, or apoptosis, they cannot go back, causing a
resistance that can be due to phenotypic variability. As this model
was studied using a stochastic Boolean simulator (Stoll et al., 2012), it
was possible to capture its dynamics and see that these commitments
were not equally fast, or even, that there was a window of activation
that allowed controlling the commitment to survival and commiting
the cells to necrosis (Letort et al., 2018).

In addition to the Boolean model, our hybrid model also has a
mass-action kinetics model that can cause another type of
resistance. As we see in Section 3.2 and Section 3.3, there are
values for the receptor’s kinetic parameters that prevent the cell
from the regulatory effects produced by the binding of TNF.
Therefore, when we consider heterogeneous populations by
introducing variability in the kinetic parameters of the TNF
receptor, we observed that beyond a critical value of the
parameter that controls variability, most of the effective
treatments that work in the homogeneous population fail to
reduce tumor growth. Our hypothesis is that, with high
variability, some of the cells could have kinetic parameters
that make them insensitive to the treatment, and thus they
will produce the relapse after the sensitive ones have been
killed by the treatment. We found that this is the main cause
of the non-optimal parameters sets found by the optimization
techniques within heterogeneous populations.

Regarding the critical value for the control parameter, it is
different for the 2D and the 3D cell arrangements, with a lower
value in the latter case. We hypothesize that this difference may be
due to two factors. The first is because the space of effective
treatments strategies is more constrained in the 3D case. The
second reason we propose is due to the differences in the total
number of cells simulated in the 2D and 3D.While we set the same
radius for the disc and the spheroid, the numbers of initial cells are
~150 and ~1,000, respectively. Because variability is generated by
the sampling of random parameters, a larger number of cells
increases the probability of getting a set of kinetic parameters
that make the cell insensitive to the TNF. We have shown that

population variability can cause resistance. The higher the
variability, the harder to find effective treatments. However,
even in the cases of the maximum variability analyzed, the
algorithms can find a few sets of candidate effective treatments.

5 CONCLUSION

Multi-scale modeling allows for gaining mechanistic insights in
dynamic drug dosages and predicting novel strategies for
treatments. Even though, in the last few years, it has been great
progress in the field (Montagud et al., 2021), it is known that virtual
drug screens seldommatchwith clinical trials results. Thus, we need to
acknowledge that we are far from using these models at the patient’s
bedside (Horvath et al., 2016). One of the improvements that would
help close this gap would be to have simulations and optimizations
that account for and embrace uncertainty. We have hereby presented
a free-to-use, open-source framework that allows optimizing
treatment strategies with varying levels of uncertainty. We tested
the framework using amulti-scalemodel of cancer growth in different
cell arrangements introducing population variability to show that
population heterogeneity is critical, either caused by the cells’ state,
their parameters, or the population size, affecting the optimal
parameter sets. We found that our model exploration workflow
can find effective treatments in all the studied conditions. Most
importantly, our results show that cells’ spatial geometry and
population variability should be considered when optimizing
treatment strategies to find robust parameter sets.
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Cyclic Attractors Are Critical for
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Heterogeneity, and Plasticity
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Adaptability, heterogeneity, and plasticity are the hallmarks of macrophages. How
these complex properties emerge from the molecular interactions is an open question.
Thus, in this study we propose an actualized regulatory network of cytokines, signaling
pathways, and transcription factors to survey the differentiation, heterogeneity, and
plasticity of macrophages. The network recovers attractors, which in regulatory
networks correspond to cell types, that correspond to M0, M1, M2a, M2b, M2c,
M2d, M2-like, and IL-6 producing cells, including multiple cyclic attractors that are
stable to perturbations. These cyclic attractors reproduce experimental observations
and show that oscillations result from the structure of the network. We also study the
effect of the environment in the differentiation and plasticity of macrophages, showing
that the observed heterogeneity in macrophage populations is a result of the
regulatory network and its interaction with the micro-environment. The
macrophage regulatory network gives a mechanistic explanation to the
heterogeneity and plasticity of macrophages seen in vivo and in vitro, and offers
insights into the mechanism that allows the immune system to react to a complex
dynamic environment.

Keywords: boolean network, macrophage, oscillation, cycles, differentiation, heterogeneity, plasticity, regulatory
network

INTRODUCTION

The balance between inflammatory and anti-inflammatory immune responses is crucial to maintain
homeostasis in the face of the diverse immune challenges an organism meets. Macrophages are cells
essential to immunity. They recognize pathogens and pathogen-derived molecules, collaborate with
other cells of the innate and adaptive immune system, and are critical players both in chronic
inflammation and in tissue regeneration (Sica and Mantovani, 2012; Varol et al., 2015; Vannella and
Wynn, 2017; Li et al., 2019; Locati et al., 2020). Macrophages are characterized by their diversity and
plasticity. Depending on the signals received, non-polarizedM0macrophages can be polarized into two
main types: classically activated macrophages or M1, characterized by a pro-inflammatory profile, and
alternatively activatedmacrophages orM2, which promote proliferation and repair (Mendoza-Coronel
and Ortega, 2017; Funes et al., 2018).
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M0 macrophages are usually monocytes differentiated into
M0 macrophages in the presence of GM-CSF that have not been
exposed to any pro or anti-inflammatory stimulus or
environment that promotes their activation, cytokine
production, and functional polarization (Kumar, 2019). M1
polarization is generally triggered by the stimulation of TLRs,
or by cytokines such as IFNγ and GM-CSF, which lead to high
production of pro-inflammatory cytokines such as IL-1β, IL-6,
IL-12, and IL-23, in addition to a low expression of IL-10
(Lehtonen et al., 2002; Park et al., 2009; Weber et al., 2010;
At et al., 2011; Lawrence and Natoli, 2011; Liu et al., 2014; Bally
et al., 2015; Funes et al., 2018; Hamilton, 2019; Wang et al., 2019;
Petrina et al., 2021). M2 polarization has been subdivided into
M2a, M2b, M2c, and M2d macrophages, due to diverse
transcriptional programs and stimuli involved (Huang et al.,
2018). The M2a macrophages are derived from M0 cells
stimulated by IL-4 and IL-13, they release high levels of IL-
10 and TGF-β using transcriptional factors (TFs) such as STAT6
and IRF4, and are involved in proliferation and tissue repair
functions (Bouhlel et al., 2007; Chawla, 2010; Gordon and
Martinez, 2010; Ma et al., 2015; Arora et al., 2018; Wang
et al., 2019). A combination of TRL ligands generates M2b
macrophages and immune complexes (IC) as well as IL-1R
ligands, yielding both pro-inflammatory cytokines, such as IL-
1β, IL-6, TNF-α, and IL-12, and anti-inflammatory cytokines
such as IL-10. The signaling pathways stimulated involve
MAPKs, PI3K/Akt, and, ultimately, NF-κB. M2b
macrophages have a role in the regulation of inflammatory
responses (Lucas et al., 2005; Park et al., 2009; Zhang et al.,
2009; Luo et al., 2010; Weber et al., 2010; Foey, 2014; Liu et al.,
2014; Bally et al., 2015; Wang et al., 2019). M2c macrophages
arise upon IL-10 stimulation. They express high levels of IL-10,
which induces the phosphorylation of STAT3, thus negatively
regulating the production of pro-inflammatory cytokines
(Hutchins et al., 2013; Ma et al., 2015; Wang et al., 2019).
M2d macrophages are induced by the costimulation of the
adenosine A2 receptor and TLR, expressing levels of IL-10 as
well as IL-12, and characterized by presenting properties of
tumor-associated macrophages that carry out angiogenesis and
tumor progression (Leibovich et al., 2002; Grinberg et al., 2009;
Park et al., 2009; Colin et al., 2014; Arora et al., 2018; Wang et al.,
2019; Anders et al., 2021). However, these are not the only
possible expression patterns, as variations have been found
in vitro and in vivo.

Given th e plasticity, heterogeneity, and adaptability of
macrophages and their role in the immune system, it is
important to understand their phenotypic landscape, the
conditions in which they originate, and the possible
transitions between subsets. Macrophage differentiation can
be seen as a continuum between M1 and M2 phenotypes,
where these cells can express different profiles and
concentrations of cytokines, receptors, and transcription
factors (Sica and Mantovani, 2012; Palma et al., 2018). At the
same time, not all combinations of key molecules like IL-12, IL-
10, IL-6, or VEGF are possible. For example, the IFNγ-induced
and IL-4-induced programs inhibit each other in the cell,
leading to heterogeneous populations in environments with

mixed signals (Munoz-Rojas et al., 2021). Furthermore, it is
known that the signaling pathways have inhibitory mechanisms
that lead to self-regulation, causing oscillations in the expression
of cytokines like IL-6, which are expected as part of the
physiological behavior of macrophages, but that can also act
against the host in pathological scenarios (Wang et al., 2013).

Regulatory networks are a valuable tool to bridge the
molecular regulation of a cell with its phenotype and have
been used to study the differentiation of hematopoietic cells
(Saez-Rodriguez et al., 2007; Naldi et al., 2010; Martinez-
Sanchez et al., 2015; Liquitaya-Montiel and Mendoza, 2018;
Ramırez and Mendoza, 2018; Palma et al., 2018; Ramirez et al.,
2019; Avila-Ponce de León et al., 2021) and the plasticity of
macrophages (Palma et al., 2018; Ramirez et al., 2019; Avila-
Ponce de León et al., 2021). Boolean networks integrate
qualitative data about the interactions between cytokines,
signaling pathways, and transcription factors to predict
differentiation and plasticity. They allow testing different
hypotheses and determine how the regulatory structure
impacts complex cellular behaviors, all of this, with only a
few parameters (Kauffman, 1969; Albert and Thakar, 2014).

This paper presents a Booleanmodel of the regulatory network
that underlies macrophage differentiation, extending previous
approaches (Palma et al., 2018; Ramirez et al., 2019). The model
recovers the M0, M1, M2a, M2b, M2c, M2d, and other M2-like
cell types, including several cyclic attractors that reproduce
known experimental data. Then, we use the model to study
how the classic polarizing environments and mixed
combinations of extrinsic signals affect the stability of these
cells. We show that the plasticity, heterogeneity, adaptability,
and variable levels of expression of key cytokines in macrophages
result from the structure of the regulatory network.

MATERIALS AND METHODS

All the datasets, scripts, tables, and images used in this study can
be found in the repository https://github.com/mar-esther23/
Macrophage_Differentiation.

A Boolean network consists of nodes representing molecular
components (i.e., cytokines, signaling pathways, transcription
factors) and edges representing the interactions between them.
The value of the nodes is a discrete variable: one if the node is
functional and 0 if it is not functional. The value of a node i at
the time t+1 depends on the value of its regulators at time t,
according to a logical function that recapitulates available
biological information. The state of the network at x(t)
depends on the values of all its nodes and will evolve
through time as the regulatory functions are evaluated.
Eventually, the system will arrive at an attractor, which
corresponds to a cell type. These attractors can be steady
states when xt = xt+1 or cycles when xt = xt+τ (Kauffman,
1969; Albert and Thakar, 2014).

We constructed the macrophage regulatory network
according to previous models (Palma et al., 2018) and
available information (Leibovich et al., 2002; Yoshimura
et al., 2007; Chang et al., 2013; Wang et al., 2013; Liu et al.,
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2014; Wilson, 2014) among others which can be seen in
(Supplementary Table S1, Figure 1A). The dynamical
analysis of the network was done using the packages BoolNet
(Mussel et al., 2010) and BoolNetPerturb (Martinez-Sanchez
et al., 2018). Synchronous updating was used in all simulations.

We determined attractors of the network and classified
them depending on the expression of both the characteristic
transcription factor and cytokine. In every case, we focused on
the presence and absence of the nodes that correspond to
common cell type markers, and ignored the value of the other
nodes (Kauffman, 1969; Albert and Thakar, 2014; Martinez-
Sanchez et al., 2015). The basin of attraction of a network is the
set of states that lead to an attractor (steady state or cycle) in
the simulation.

To determine the effect of the micro-environment, we first
determined the cytokines present in each polarizing
environment (Kauffman, 1969; Albert and Thakar, 2014;
Martinez-Sanchez et al., 2015), then, we fixed the
corresponding input nodes according to the cytokines
present or absent in that environment and then determined
the resulting attractors (Figure 1B). This is modeled by
changing the input function it+1 = it to it+1 = = 0 or it+1 = 1
depending on the presence or absence of the cytokines in the
environment.

To further verify the model, we simulated the knock-out and
overexpression of target nodes by setting their values to 0 or 1

and comparing the resulting attractors with known mutants
(Kauffman, 1969; Albert and Thakar, 2014; Martinez-Sanchez
et al., 2015) (Figure 1C). Furthermore, we checked that the
attractors found with synchronous updating could be found
using asynchronous updating.

The expression pattern of a cell can change in response to
changes in both internal and environmental factors. We
focused on the effect of small transient perturbations. For
example, due to stochastic effects, a transcription factor
may not be activated because the polymerase fails to bind to
its DNA sequence for a time, even if the rest of the regulators
are present. This can be modeled as the corresponding node
having a value of zero for a time step, and then the perturbation
will be relaxed and the node will acquire a new value depending
on its regulators (Figure 1D). On the other hand, a cell may be
subjected to a small peak of a cytokine in its environment. This
can be modeled as the extrinsic cytokine node having a value of
one for a time step and then returning to its original value. The
attractor of the system, which corresponds to the cell type, may
change or not depending on the regulatory network, the
original state of the network, and the perturbed node. To
study the stability and plasticity of the system for each
microenvironment we took its attractors and modified for
one time step the value of the node (bitflip), then the
perturbation was relaxed, and the resulting attractor was
determined (Martinez-Sanchez et al., 2018, 2015).

FIGURE 1 | Pipeline for the analysis of Boolean networks. (A) The network is constructed using available experimental information. The state of the network
depends on the values of each node. The value of each node depends on its regulators. (B) The attractors of the network are calculated using BoolNet, the attractors
depend on the inputs or environment and the functions. (C) Mutants are obtained by fixing the value of the target node for the whole simulation. (D) In transient
perturbations, the target node is changed (bitflip) for one time step, and then the perturbation is relaxed. Eventually, the network may stay, return to the original
attractor, or reach a different one.
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RESULTS

Macrophage Differentiation Patterns
Emerge From Feedback Between
Transcription Factors, Cytokines, and
Signaling Pathways
We expanded the previously published macrophage regulatory
networks (Palma et al., 2018; Ramirez et al., 2019). In this
network, we included multiple molecules like transcription
factors, STAT proteins, cytokine receptors, SOCS proteins, and
cytokines, among others. We only included direct interactions
that have been experimentally validated (Supplementary
Table S1, Supplementary Table S2) to include Ie IL6
(Chang et al., 2013; Wang et al., 2013; Liu et al., 2014;
Wilson, 2014), NECA (Leibovich et al., 2002), EGFR (Wang
et al., 2013), and SOCS3 (Yoshimura et al., 2007; Wang et al.,
2013; Wilson, 2014). Then, we simplified the network using
GINSIM(Gonzalez et al., 2006). The resulting network has 29
nodes and 52 interactions (Figure 2, Supplementary Table
S3). We assumed that different pathways mediate IL-6 and IL-
10 signaling by STAT3 and marked them as STAT3 for IL-6
dependent signaling and STAT3* for IL-10 dependent
signaling. The state of a node represents whether the
biological component is active 1) or inactive (0). A node is
active if it can alter the regulation of other nodes.

Then, we determine the macrophage cell types by calculating
the attractors, steady states, and cycles of the network (Kauffman,
1969) and label them. An attractor corresponds to a cell type if the
characteristic signaling pathways, transcription factors, and
produced cytokines are present (Supplementary Table S4).
The network recovers 44 steady-state attractors and 358 cyclic
attractors of size 2, 3, and 6 which correspond to ‘M1’, ‘M2b’,
‘M2a’, ‘M2c’, ‘M2d’, ‘M2’ (M2-like), ‘M0’, and ‘il6’ cell types
(Figure 3, Supplementary Figure S2, Supplementary Table S5).

M1 macrophages produce IL-12 and may produce IL-6 and
activate the pathways for STAT1, STAT5, or NFKB. M0 and
cyclic M0* macrophages do not produce any cytokines and
correspond to naive macrophages. They are usually found in
simulated environments with neither extrinsic cytokines nor
contradictory extrinsic signals that inhibit each other through
SOCS proteins. The attractors labeled ‘il6’ produce IL-6 but no
other extrinsic cytokines. The steady states il6 macrophages are
only found when there is EGFR_e in the microenvironment and
may correspond to inflammatory pathogenic states as those seen
in cancer (Wang et al., 2013) and severe COVID-19 (Matsuyama
et al., 2020; Merad and Martin, 2020). In contrast, the cyclic il6*
attractors may correspond to pathogenic states or be non-fully
differentiated macrophages.

M2 macrophages produce IL-10 or VEGF, and they can be
classified into different subtypes depending on the cytokines
produced and active signaling pathways. The M2a subtype

FIGURE 2 |Macrophage regulatory network. The network includes cytokines in the environment (_e) and produced by the macrophage (_out), signaling pathways,
and transcription factors (ellipses). Activations are represented with black arrows, and inhibitions with red dotted arrows. We use STAT3 for IL-6 dependent signaling and
STAT3* for IL-10 dependent signaling. The color of the node corresponds to the associated cell type.
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produces IL-10 and activates the STAT6 pathway, M2b
produces IL-10 and IL-6, M2c produces IL-10 and activates
the IL-10 dependent STAT3* pathway, M2d macrophages
produce VEGF, IL-10 and no IL-12. The model recovers
steady states corresponding to these cell types, including
cyclic attractors for M2b with an IL-6 dependent STAT3
oscillation. We also recover M2-like subsets that produce IL-
10 and VEGF or IL-6.

Most cyclic attractors present oscillations in the IL6/STAT3/
SOCS3 circuit, which may affect the downstream production of
IL6_out. The self-inhibition of the IL6 pathway causes these
oscillations: STAT3 induces SOCS3 expression, which inhibits
IL6R and STAT3 phosphorylation, causing a repressed circuit
and oscillations. The IL10/STAT3* pathway also presents
oscillations that may affect SOCS1, NFKB, and STAT5. These
oscillations can be caused by inhibition by other pathways, for
example, IL6. The self-inhibition caused by SOCS3 and the other
cycles may have a role in limiting the production of IL-6 by
macrophages and the associated hyperinflammation. Given the
hypothesis that macrophage differentiation is a continuum (Sica
and Mantovani, 2012; Palma et al., 2018) these M2-like and cyclic
states may be a mechanism to regulate the production of
cytokines by macrophages.

The number of attractors associated with a cell type does not
necessarily correspond to the number of states that reach the
attractors of that cell type (basin of attraction). The biggest basin
is M0, followed by M2, M2a, and M1, while il6, M0*, and il6* had
the smaller basins. In general, the cell types labeled as cyclic (*)
had smaller basins.

To validate the model we verified whether the attractors were
robust to asynchronous updating. All the steady states were robust
to the change in update schema. While most of the attractors of
sizes 2 and 3 were unstable we found asynchronous attractors of
size 6 or more that correspond to M0*, il6*, M2b*, and M2*, but
lost the M1* and M2d*.

To further validate the model, we compared the knock-out and
over-expression simulations with experimental data
(Supplementary Figure S3, Supplementary Table S6). In
general, the predictions made by the model correspond to the
observed biological data (Supplementary Table S7). For
instance, in STAT1-null macrophages stimulated with IFN-γ
and Pam3CSK4, a dose-dependent decrease in IL-12 has been
experimentally observed compared to wild-type macrophages
(Kim et al., 2015). This phenomenon is recovered by a
network simulation of a STAT1 knock-out, where we see that
attractors completely lose IL-12 production, causing the
disappearance of M1. In the same way, it has been
experimentally obtained that inhibition of PPARγ-dependent
gene expression significantly decreases the production of IL-10
mediated by LPS, which is recovered in the simulations in which a
knock-out of PPARγ was set, obtaining a decrease in IL-10-
producing attractors (Majai et al., 2007). Furthermore, regarding
overexpression, there is the experimental case where in vitro
STAT6 has been overexpressed, causing a promotion of M2
macrophages (Gong et al., 2017). An overexpression
simulation in STAT6 recovers this last, which causes a higher
proportion ofM2 attractors and a decrease inM1. However, these
simulations do not recover the expected behavior in the case of
the NFkB mutant. The NF-kB pathway is a highly complex
protein, but our network simplifies it to a single node, so this
discrepancy is probably the result of the modeling decisions. In
this mutations experiments, the most stable states were the M0*,
il6*, and M2d macrophages. On the other hand, the more
sensitive cell types are M0 and M1. The nodes that tended to
cause more changes in differentiation if mutated are IL12_out
and IL10_out, which affect the cytokine profile, followed by
STAT1, STAT6, and IL-10 mediated STAT3 activation
(STAT3*). Furthermore, this analysis predicts the effect of
knock-out and over-expression mutants that have not been
tried experimentally.

FIGURE 3 | Selected macrophage regulatory attractors. The attractors of the macrophage regulatory network correspond to cell types. Each column corresponds
to key nodes of a state; attractors are separated by white spaces and cell types by black bars. We include the cyclic attractors as narrow columns that represent the
oscillation. Each node can be active (green) or inactive (red), or active or inactive (yellow). The network recovers the attractors corresponding to M1, M2a, M2b, M2c,
M2d, and M2-like cell types.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8072285

Ordaz-Arias et al. Cyclic Attractors in Macrophages

168

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Role of the Micro-Environment in
Macrophage Differentiation and Stability
Macrophage differentiation does not occur in a vacuum but in
response to the micro-environmental signals (Supplementary
Table S8). To determine the role of the microenvironment, we
determined the attractors associated with a cell type and their
combined basin size in different microenvironments (Figure 4,
Supplementary Table S9). The pro-M1 microenvironment
contains IFNG_e, GMCSF_e, and LPS_e, and the model
mainly recovers the presence of M1 attractors with a small
number of M1*, M0, il6, il6* attractors. The pro-M2a
environment contains IL4_e, and the model recovers only
M2a attractors. The pro-M2b environment contains LPS_e,
IC_e, and IL1B_e, and the model recovers M2, M2b, and
M2b*. The pro-M2c environment contains IL10_e, and the
model recovers only M2c attractors. The pro-M2d
environment contains IC_e, IL4_e, and IL10_e, and the model
recovers M2d, M2d*, M2, and M2* attractors. The mixed
environment contains LPS_e, IFNG_e, and IL4_e, which are
associated with M1 and M2a polarization, and recovers M0,
M1, M1*, and M2a attractors, which are in accordance with
the heterogeneity observed in macrophage populations subjected
to in vitro co-stimulation with these same cues (Munoz-Rojas
et al., 2021).

Macrophage differentiation is not a wholly deterministic
process, but it can be affected by transient changes in the
environment, stochastic noise during transcription, traduction
and signaling events, and other types of noise. Furthermore, the
environment and the internal state of the cell can have small
changes in response to the progress of a pathological state. To
study this for each of the six environments, we took the recovered

attractors and perturbed each node one by a time step, and
determined if that changed the resulting attractor and cell type
(Figure 5, Supplementary Table S10). In the pro-M1
environment, most of the transitions are between M1 and
M1*, with a bias towards the cyclic M1* attractors. Most M1*
attractors have oscillations in the IL6/STAT3/SOCS3 pathway,
and some of them have oscillations in IL6_out. There is a small
number of transitions towards M0 and il6/il6* that increase in
percentage, which may have a role in vivo by limiting the
production of IL-12 as the infection progresses toward
resolution. In the pro-M2b environment, there is a small
number of transitions between M2 and M2b/M2b*, with a
slight bias towards M2. In the pro-M2d environment, there
are also transitions between M2/M2* and M2d/M2d*. In the
pro-M2a and pro-M2c environments, there are only M2a and
M2c attractors, so these are stable. In the mixed environment,
there are transitions from M0 to and from all differentiated
environments but not between M1 and M2a attractors, which
may indicate that the plasticity between these cell types requires
longer signals, especially in mixed environments, and that a
temporal cease of cytokine production precedes a transition
between M1 and M2 cell types.

In general, we can say that each microenvironment favors the
differentiation and stability of the associated cell type, even in
some cases where there is a small number of attractors associated
with an additio’nal cell type. The exceptions are the pro-M2b and
pro-M2d environments, where there is a strong presence of M2-
like attractors; however, this can be seen as part of the phenotypic
plasticity of macrophages. If we consider all possible
combinations of cytokines, most of the cell types were highly
stable, with only a small proportion of transitions between
subsets. The cyclic attractors associated with a cell type were
highly stable, as the oscillations seem to be the result of the
network topology and not a dynamical artifact.

To determine the key nodes for the dynamic stability of the
model, we determined which nodes caused more changes
between cell types when transiently perturbed (Figure 6,
Supplementary Table S10). The nodes that caused more
transitions between cell types were STAT1, IL-10 mediated
STAT3*, and STAT6, which are associated with the signaling
pathways of key cytokines in macrophage differentiation. IC_e
and FCGR also had an essential role in the stability of the model,
as they regulate both NFKB, STAT3*, and IL10_out. STAT1,
STAT3*, STAT6, and FCGR have a higher number of out-going
edges and directly or indirectly modulate the activation and
inhibition of different circuits of the network. The activation
of SOCS1 also has a relevant role, as its activation inhibits the
STAT1, STAT5, and STAT6 nodes. The nodes that cause fewer
transitions between cell types are IL12_out, VEGF_out, NECA_e,
IL1R, and TLR4.

In general, of the single state transient perturbations 21%
resulted in a change of cell type and 2.96% were transitions
between M1 and M2 states. We also simulated all possible double
node perturbations 34.44% resulted in a change of cell type and
5.02% were transitions between M1 and M2 states. We also
realized a Derrida curve (Derrida and Pomeau, 1986) to
determine how sensible the system was to perturbations in the

FIGURE 4 | Macrophage differentiation in response to the micro-
environment. Cell types recover depending on the cytokines in the micro-
environment. The rows correspond to the environment and the columns to the
cell type. The color corresponds to the basin size of the attractors that
correspond to each cell type. If a cell type was not recovered on a
microenvironment, it is represented with white.
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value of the states. For perturbations of Hamming distance 1 on
average the change was of 4.18 nodes and increased towards 8.47
nodes on average as the number of perturbed nodes increased

(Supplementary Figure S3). It is worth taking into account that
the high number of input nodes, that represent the micro
environment, heavily influence these results. For example, on a

FIGURE 5 |Macrophage stability in response to the microenvironment. For each environment we calculated the attractors, then, for each attractor, we transiently
perturbed every node independently for one time step to determine the stability of the different cell types. Each stability experiment is represented by a flux diagram,
where the colored boxes correspond to each cell type. The initial state is on the left of the diagram, and the final state is on the right. The height of the bar corresponds to
the basin size of the attractor. The width of the lines between boxes represents the transitions between attractors.

FIGURE 6 | Transitions caused by node perturbation. Each bar corresponds to the percentage of perturbations of a node that caused a transition between cell
types. Activation of the nodes is represented with green and inhibitions with red. https://github.com/mar-esther23/Macrophage_Differentiation/blob/master/images/
MP_transitionnode_clean.png.
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micro-environment with only M2 attractors it is impossible for
there to be a transition towards M1, as the cell type is not stable.
Furthermore, not all possible micro-environments can be found
in vivo, which implies that while a transition may be possible in
the system it might not be observed in vivo.

DISCUSSION

In this paper, we propose an actualized regulatory network of
cytokines, signaling pathways, and transcription factors to study
the differentiation, heterogeneity, and plasticity of macrophages.
This network allows us to give a mechanistic explanation of the
dynamic behavior of these cells in response to different micro-
environments. Furthermore, the network recovers multiple cyclic
attractors that are both stable to perturbations and in accordance
with previous experimental observations (Wang et al., 2013),
showing that these oscillations are the result of the structure of the
network and suggesting that they may have a biological function.
In fact, the biological relevance of oscillatory behavior seems to lie
in exquisitely regulated phenomena like the activation and
nuclear translocation of NFKB. Cheng et al. (2021) recently
demonstrated that macrophages respond to different
proinflammatory micro-environments with oscillatory or non-
oscillatory activity of NFKB. ChIP-seq data and computational
modeling analysis reveal that NFKB presents oscillatory behavior
in the majority of stimulated cells, however, only non-oscillatory
behavior leads to sufficiently prolonged chromatin accessibility,
favoring gene expression. This phenomenon is regulated by the
NFKB inhibitor IkBa, which may allow sensing of the micro-
environment while refraining the cell from secreting
inflammatory mediators until the concentration of a certain
cue reaches a specific threshold. All of it without changing the
cell phenotype. Therefore, we can also speculate that
inflammatory disorders may arise or be sustained by
macrophages whose oscillation is skewed towards non-
oscillatory behavior. The macrophage regulatory network
recovers steady state and cyclic attractors that correspond to
M0, M1, M2b, M2d, M2-like, and IL-6 producing macrophages.
Cyclic attractors represent 89% of the total attractors, but their
combined basins of attraction are only 11% of the total state
space. However, it is worth noting that most of these attractors are
stable, and when perturbed, most perturbations lead to a cycle of
the same cell type. Oscillatory activation of STAT3 with its
downstream effect in IL-6 production in macrophages has
been previously reported (Wang et al., 2013). The oscillations
in the macrophage regulatory network are the result of the IL-6R/
STAT3/SOCS3 pathway, and the crosstalk with other signaling
pathways, like those mediating the activation of STAT3* via
STAT6, STAT5, or IL-10, which are circuits commonly
observed in immune cell regulatory networks.

In vivo and in vitro macrophages express marker molecules
and cytokines in an expression range, which can be observed in a
flow cytometric analysis as the spread of the population on a dot
plot or the width of a histogram (Munoz-Rojas et al., 2021). The
expression range can vary depending on the cell type, the
molecule being measured, and the pathological state. For

example, the levels of IL-6 produced by macrophages in
cancer and COVID-19 are associated with the severity of the
disease (Wang et al., 2013; Matsuyama et al., 2020; Merad and
Martin, 2020). How do macrophages, and other immune cells,
generate and regulate the expression range is an open question.
Oscillations, and their associated cyclic attractors, could be a
mechanism to create variability in the expression range of a
molecule. For example, when averaged over time, the oscillations
in STAT3 activation, and their downstream targets in M1
macrophages could create diverse expression levels that
depend on the structure of the network. These oscillatory
circuits could be further finely tuned by other mechanisms
like the induction of signaling pathways, transcriptional
regulation or stochastic effects like variations in local cytokine
concentration, noise in signaling pathways, transcription factors
binding, etc. Cyclic attractors are usually ignored when studying
Boolean dynamics in hematopoiesis (Alvarez-Buylla Roces et al.,
2018), but the relevance of the oscillatory dynamics in vivo and in
this network (Wang et al., 2013; Munoz-Rojas et al., 2021)
indicates that more methods should be developed to study
cyclic attractors and determine when and how they have a
functional role.

The macrophage regulatory network also allows us to study
the effect of the environment on the heterogeneity and plasticity
of macrophages. All the polarizing environments favor the
attractor associated with it, for example, in a pro-M2a
environment, we found M2a attractors. At the same time, in
most of the environments we studied (pro-MI, pro-M2b, pro-
M2d, and mixed), there was more than one possible cell type,
which implies that the heterogeneity in macrophages populations
is a result of the regulatory network. This was especially notable in
the mixed environment (LPS + IFNγ + IL4), where we recover
M0, M1, and M2a macrophages (Munoz-Rojas et al., 2021). The
specific differentiation pathway a cell follows is also a result of the
regulatory network, the internal state of the cell, and stochastic
events. Studying the basins of attraction of the different cell types
and their sensibility to stochastic events may allow us to
understand the heterogeneity of macrophage populations
better. For example, in vitro stimulation with a combination of
LPS, IFN-γ and IL-4 produces heterogeneous populations with
M1 and M2 sub-populations (Munoz-Rojas et al., 2021). In this
study Muñoz-Rojas et al. use a combination of molecular and cell
biology techniques, including single-cell RNA sequencing
(scRNA-seq), to ascertain the global transcriptional programs
that lead to the observed heterogeneity. Similar results have been
observed in vivo, where scRNA-seq of macrophage populations
has also shown the coexistence of two clearly defined
subpopulations in adipose tissue that do not follow the classic
M1/M2 paradigm and whose proportions vary depending on the
micro-environment (Grosjean et al., 2021). The differentiation of
each individual cell depends on the initial state of the cell
(transcription factors expressed and active signaling pathways)
and stochastic events (local cytokine concentration, noise in
signaling pathways, transcription factors binding, etc.), which
generates an initial variability. Such variability determines which
pathways of the regulatory network activate and which to inhibit,
to polarize the individual cells into clearly defined
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subpopulations, thus maintaining a heterogeneous population.
These results coincide with our findings that in mixed
environments M0, M1, and M2 macrophages coexist, implying
that the design and performance of our network are appropriate
to recover the outcomes of complex scenarios reported in vivo
and in vitro after extensive analyses.

The model also allowed us to study macrophage plasticity. The
environment determines plasticity because it limits the accessible
cell types and modulates the effect of perturbations. In general,
most perturbations did not cause changes in the labeled cell type.
However, transitions between a steady state and a cyclic attractor
of the same cell type were common, which means that cells that
may be classified as the same cell type given their membrane
markers may have different internal states, creating a hidden
source of heterogeneity to respond to changes in the micro-
environment. In polarizing environments (pro-M1 and pro-M2),
most of the transitions were towards the favored cell type. There
was a high level of transitions among the different subtypes of M2
attractors but limited transitions towards M1. This seems to
indicate that M2 attractors are more closely related to one
another than to M1 attractors, fine tuning their regulatory
activity and creating a continuum of M2-like states. The
multiple inhibitions between M1 and M2 transcriptional
programs help the system maintain a stable inflammatory or
regulatory program, making these the two poles of macrophage
differentiation. This is especially relevant when taking into
account the key role of macrophage differentiation and
plasticity in COVID-19 and cancer (Wang et al., 2013; Li
et al., 2019; Matsuyama et al., 2020; Merad and Martin, 2020).
Perturbations that favor M2 macrophages can favor transitions
towards more aggressive cancers, even in situations where
perturbing the cancer cells may not be enough to change the
steady state behavior of the system (Li et al., 2019). This seems to
imply that there are a series of feedback loops between the tissues,
the environment, and immune cell populations that are crucial to
understanding complex diseases. Understanding these feedback
loops will require us to conceive disease as a system where the
cytokine and cellular environment play a key role.

The mixed environment (LPS + IFN-γ + IL4) had a high
number of non-differentiated M0 attractors, because the mixed
signals most likely inhibited each other, as reported by Munoz-
Rojas et al. (2021), where LPS + IFN-γ, and IL-4 give rise to
orthogonal global transcriptional programs We observed only
M0-M1 and M0-M2a transitions but no M1-M2a direct
transitions. M1-M2a transitions are possible if they pass
through an intermediate M0-like state with no cytokine
production and require more than one perturbation. Such a
phenomenon was indeed described by Tarique et al. (2015) for
LPS + IFN-γ (M1), and IL-4 + IL-13 (M2) polarized
macrophages, where the depletion of cytokines in the culture
medium causes the cells to revert to the M0 phenotype, and by
supplying the appropriate stimuli the macrophages can be re-
polarized to the alternative phenotype. This could be a
mechanism to warrant stability in the different cell types while
allowing for plasticity if the environment changes past a certain
time threshold. It also shows once more the power of
experimental recapitulation of our network.

Traditionally, differentiation of hematopoietic cells has been
considered a hierarchical process with clear differentiation
pathways and well-defined cellular types, for example, M1
and M2 macrophages. However, as our understanding of
macrophages in particular, and immune cells in general, has
advanced, it is becoming increasingly clear that this is a highly
dynamic process. Attempts to classify macrophages in
subpopulations have proven intricate, as they seem to be
both a continuum and a heterogeneous mix of
subpopulations that do not always coincide with the M1/M2
paradigm (Sica and Mantovani, 2012; Wang et al., 2013;
Mendoza-Coronel and Ortega, 2017; Grosjean et al., 2021;
Munoz-Rojas et al., 2021). The analysis of our regulatory
network suggests that there are independent circuits
composed of receptors, transcription factors, and cytokines
that activate in response to the signals in the environment.
Some of these circuits inhibit each other (IFN-γ and IL-10),
others are mostly independent (VEGF and IL-10), and others
have more complex relationships (IL-6). Furthermore, these
circuits can have dynamically stable oscillations, which affect
not only the production of downstream cytokines, but also the
crosstalk with other pathways. We propose that, on the one
hand, when the circuits inhibit each other, we can expect a clear
separation in the expression levels of the molecules involved
(IL-12 and IL-10) and almost no plasticity, which creates
pseudo-populations for those specific markers. On the other
hand, when the circuits are independent or modulate each other
in context-specific ways, the result is a continuum of expression
for those markers, as seen in the M2-like family of attractors. In
this case, given that the circuits are mostly independent, we
should expect a higher level of “plasticity” as the circuits are
activated or inhibited depending on the environmental signals.
These circuits are further modulated by the microenvironment,
the initial state of the cell, and stochastic effects. Focusing on the
active regulatory circuits could give us a framework to
comprehend the biological functions of macrophages in
specific conditions while considering the environment,
heterogeneity, and plasticity of these cells. This could have a
profound impact on our understanding of the pathogenic
mechanisms in certain diseases. For example, in patients with
Crohn’s disease there is a clear difference between macrophage
populations from the intestinal mucosa and from the mesenteric
fat tissue. In the former, TLR-4, IL-1b and IL-6 protein levels are
higher compared to those in patients with non-inflammatory
disease; while in the latter there is no such increase. The authors
of the study attribute these differences to the micro-
environment, which in the case of intestinal macrophages is
largely determined by the interaction with the microbiota. As a
consequence, there is an anomalous up-regulation of the
signaling pathways that result in the production of
inflammatory mediators. Hence, a network like the one we
devised could be of great value to understand this type of
heterogeneous scenarios, helping improve medical care
towards the design of treatments with side effects noticeably
reduced in comparison to the ones currently prescribed.

The model also allowed us to determine the key nodes of the
network. When subjected to knock-out or over-expression
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experiments, IL12_out, IL10_out, STAT1, STAT6, and IL-10
mediated STAT3 activation (STAT3*) had the most notable
effect, especially IL-12 and IL-10, as they are cell type
markers. Also, in vivo cells are subjected to transient changes
in extrinsic cytokine levels or stochastic effects in signaling
pathways and transcriptional regulation, which we simulated
as transient perturbations. The nodes that caused more
transitions between cell types were: STAT1, STAT3*, STAT6,
IC_e, FCGR, and SOCS1. On the other hand, IL12_out,
VEGF_out, NECA_e, IL1R, and TLR4 had the least effect.
STAT1, STAT6, and STAT3* activation has a higher number
of out-going edges and directly or indirectly modulates the
activation and inhibition of different network circuits, which
explains their key roles within the network dynamics.

While the Boolean nature of the model favors the study of how
the structure of the regulatory network determines cellular
behavior, it also limits the scope of the analysis. The model
uses discrete values for the nodes, severely restricting our
understanding of how the range of expression levels observed
in macrophages is generated. Furthermore, the model uses
discrete time steps and synchronous actualization for very
different processes like signaling, which can take minutes, and
transcription, which can take hours. Most cyclic attractors of size
two or three were unstable, but we did recover asynchronous
cyclic attractors of size six or bigger, however understanding their
biological implications is still an open question. The model is also
deterministic, and the perturbation analysis, while sufficient to
determine the possible transitions, is not a true stochastic
analysis. This is particularly important as the internal state of
the cell and random noise probably have an important role in the
emergence of heterogeneous populations. Further models using
differential equations or stochastic methods are warranted.

The model also oversimplifies the NF-kβ pathway to a degree
where the predicted and experimental mutants are not in
accordance. Additionally, our network would benefit from the
inclusion of multiple molecules like TNF-ɑ, TGF-β, TLRs, NODs,
and MyD88. In fact, it will be necessary to incorporate these
molecules to integrate the model to other cell types and create
integrative immune models. Finally, the number of environments
used was limited to reported polarizing conditions and mixed
environments (Sica and Mantovani, 2012; Wang et al., 2013;
Mendoza-Coronel and Ortega, 2017; Grosjean et al., 2021;

Munoz-Rojas et al., 2021). Thus, it will be interesting to see if
the model can be extended to study diseases with complex
immune profiles, like cancer, tuberculosis, or COVID-19.
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Models and Bioreactor Dynamics to
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The current production of a number of commodity chemicals relies on the exploitation
of fossil fuels and hence has an irreversible impact on the environment.
Biotechnological processes offer an attractive alternative by enabling the
manufacturing of chemicals by genetically modified microorganisms. However, this
alternative approach poses some important technical challenges that must be tackled
to make it competitive. On the one hand, the design of biotechnological processes is
based on trial-and-error approaches, which are not only costly in terms of time and
money, but also result in suboptimal designs. On the other hand, the manufacturing of
chemicals by biological processes is almost exclusively carried out by batch or fed-
batch cultures. Given that batch cultures are expensive and not easy to scale, technical
means must be developed to make continuous cultures feasible and efficient. In order
to address these challenges, we have developed a mathematical model able to
integrate in a single model both the genome-scale metabolic model for the
organism synthesizing the chemical of interest and the dynamics of the bioreactor
in which the organism is cultured. Such a model is based on the use of Flexible Nets, a
modeling formalism for dynamical systems. The integration of a microscopic (organism)
and a macroscopic (bioreactor) model in a single net provides an overall view of the
whole system and opens the door to global optimizations. As a case study, the
production of citramalate with respect to the substrate consumed by E. coli is
modeled, simulated and optimized in order to find the maximum productivity in a
steady-state continuous culture. The predicted computational results were consistent
with the wet lab experiments.
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1 INTRODUCTION

Methyl methacrylate (MMA) is a volatile synthetic chemical used
mainly in the preparation of acrylic emulsion and extrusion
resins. Polymers and co-polymers containing methyl
methacrylate are used as solvents, adhesives, sealants, leather
and paper coatings, inks, textiles, dental prothesis, etc.

There are 17 different routes widely used in industry that end
up synthesizing MMA. The main problem with these routes is
that all the precursor molecules (ethylene, propyne, propylene,
tert-butyl alcohol, isobutene and isobutane) have their origin in
non-renewable sources such as petroleum and natural gas whose
extraction is highly damaging for ecosystems (Sugiyama et al.,
2009).

An alternative approach consists of considering citramalate, a
precursor for the synthesis of MMA, which is produced by
Methanocaldococcus jannaschii. The production of citramalate
in M. jannaschii is due to the presence of the gene cimA which
encodes the enzyme citramalate synthase (EC: 2.3.1.182). This
enzyme catalyses the reaction in which one molecule of acetyl-
CoA, one molecule of pyruvate and onemolecule of water react to
produce one molecule of (3 R)-citramalate, one molecule of CoA
and liberating a proton (UniProt Consortium, 2019):

acetyl − CoA + pyruvate +H2O → 3R( )citramalate + CoA

+H+

(1)
One of the most difficult tasks when carrying out the design of

a biological experiment is setting the conditions and parameters
that have to be tracked during the experiment. Computational
models can help overcome these difficulties by providing the
researchers with guidance when designing experiments in the wet
lab, thus avoiding costly trial-and-error approaches.

In Webb et al. (2018), researchers could reach an efficient
bioproduction of citramalic acid by a genetically engineered E. coli
strain which included the gene CimA. The fact that the cell culture
operated in fed-batch mode suggests that the production could be
optimized by changing to continuous culture. In a continuous culture,
a steady state is reached when the macroscopic variables of the tank
remain constant over time. The complexity of continuous cultures lies
in the fact that identical macroscopic conditions may trigger multiple
steady states. The potential steady states of an E. coli continuous
culture are characterized in Fernandez-de Cossio-Diaz et al. (2017).

Flux Balance Analysis (FBA)Orth et al. (2010) has proven to be an
extremely useful approach to analyze steady states of genome-scale
constraint-basedmodels. FBA assumes the attainment of a steady state
of intracellular metabolite concentrations to compute reactions fluxes
by means of a linear programming problem. In addition to analyzing
the potential steady states, a challenging problem when modeling and
optimizing a continuous culture consists of linking the microscopic
variables of the genome-scale model with themacroscopic variables of
the bioreactor, e.g., metabolite concentrations out of the cells.

A variation of the FBA approach, calledDynamic Flux Balance
Analysis (DFBA) (Mahadevan et al., 2002a), can be used to couple
intracellular metabolism with the dynamics of the extracellular
metabolite concentrations. DFBA has been applied for the production

of several metabolites. In Flassig et al. (2016), the production of β-
carotene in green microalgae was optimized for a fed-batch
continuous culture. The work in Hanly et al. (2013) validated and
optimized a yeast dynamic flux balance model in order to determine
the optimum conditions that maximize the production of ethanol in a
batch culture of S. cerevisiae. Two approaches to predict batch growth
of E. coli based on DFBA are introduced in Mahadevan et al. (2002b).
DFBA was applied as well in (Meadows et al. (2010)) with the aim of
simulating simultaneous acetate and glucose consumption and
evaluate the behaviour of E. coli cells in different types of media.
Although DFBA has been applied successfully in many areas, it has
some limitations as it assumes quasi-steady-state conditions (Reimers
and Reimers,2016) and has been used almost exclusively on batch and
fed-batch cultures.

Other methods not based on DFBA, such as k-OptForce, have
been used to integrate kinetics in constraint-based models. For
instance, the optimization of the production of L-serine inmutant
E. coli and triacetic acid lactone in mutant S. cerevisae were
performed in Chowdhury et al. (2014). K-OptForce uses kinetic
rate expressions to redistribute fluxes in the metabolic network,
instead of relying on surrogate fitness functions such as biomass
maximization. For additional information on this topic, a review
of efforts to integrate kinetic information in constraint-based
models can be found in Kim et al. (2018).

In contrast to the previous works, we propose the use of
Flexible Nets (FNs) Júlvez et al., 2018), a modeling framework that
produces analytical models that can be represented graphically and
that are well suited for analysis and optimization, in order to design an
overall computational model that combines both the bioreactor
dynamics and the metabolic network of the cultured organism. In
addition to facilitating the integration of a macroscopic and a
microscopic model, FNs can accommodate uncertain parameters
and can approximate non-linear dynamics. In particular,
constraint-based models Sigmarsdóttir et al. (2020) of metabolic
networks can be straightforwardly mimicked and analyzed by FNs.
Notice that such models do not account for the concentration of
species, and loose flux bounds are usually associated with the
reactions. Moreover, FNs can also model the differential equations
that determine the dynamics of the bioreactor variables, e.g., cell
density, nutrient supply, and metabolite concentration. In this way,
FNs can integrate, in a seamless model, both the genome-scale model
of the culturedmicroorganism and the bioreactor dynamics.We show
how such an integrated model can be developed and exemplify the
process through the modeling and simulation of a system that
produces citramalate by a genetically modified E. coli culture. The
optimization of the model obtained with respect to citramalate
productivity provides the optimal settings, i.e., intracellular fluxes
and bioreactor parameters, that maximize the productivity of
citramalate in a steady-state continuous culture.

2 MATERIALS AND METHODS

2.1 Flexible Nets
Flexible Nets (FNs) is a modeling formalism for dynamic
systems inspired by Petri Nets, see Murata (1989); Silva,
1993) for a gentle introduction. FNs aim to capture the
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relationship between the state and the processes of a given
dynamic system by means of two interconnected nets: the
event net and the intensity net. On the one hand, the event net
models how the processes modify the state variables. On the
other hand, the intensity net models how the state variables
determine the speeds of the processes. In contrast to Petri nets,
both the event and the intensity nets are tripartite graphs
which have three types of vertices: places, transitions and
handlers. The handlers of the event net are called event
handlers, and the handlers of the intensity net are called
intensity handlers. Places (which are depicted as circles) are
associated with metabolites and transitions (which are
depicted as rectangles) are associated with reactions. Event
handlers (which are depicted as dots) capture the change of
concentration of metabolites produced by reactions. Intensity
handlers (also depicted as dots) model how the concentrations
of metabolites determine the speeds of reactions. Although
event and intensity handlers can be distinguished by the net
elements to which they are connected, for clarity the arcs and
edges of event handlers will be drawn in black and those of
intensity handlers in blue.

As an example, the event net in Figure 1A has four places {A,
B, C, D}, two reactions {R1, R2} and two event handlers {v1, v2}.
Such a net models the following reactions:

R1: A → 2 C
R2: 2A + B → D

The stoichiometry of the reactions is modeled by the equalities
associated with the event handlers. In particular, the equalities a = x
and c = 2x of v1 imply that each occurrence of reaction R1 consumes
one unit of metabolite A and produces two units of metabolite C
(such units usually refer to concentrations). On the other hand, the
equalities a = 2x, b = x, and d = x of v2 mean that each occurrence of
R2 consumes 2 units of A, 1 unit of B and produces 1 unit of D.

The event net in Figure 1A does not establish any dynamics, it
just models the stoichiometry. The dynamics of reactions can be
specified by the intensity net. For instance, the intensity net in
Figure 1B specifies the speed of reaction R1 as twice that of the
concentration of A, see equation r = 2a associated with the
intensity handler s1. In addition to equalities, intensity
handlers can be associated with inequalites to model

uncertainty, e.g., if 1.8a ≤ r ≤ 2.2a was associated with s1 then
the speed of R1 could be any value in the interval [1.8 [A], 2.2 [A]]
where [A] is the concentration of A.

Moreover, several sets of equalities and inequalities can be
associated with the same intensity handler. If this is the case, the
set of inequalities that rules the reaction dynamics is determined by
the concentrations of the system. The intensity net in Figure 1C
associates three different equalities with the intensity handler s2
which imply that the speed of R2 is 0 if [A] is below 10, 2 [B] if [A] is
between 10 and 30, and 4 [B] otherwise. Intensity handler s2 is said to
be guarded, it has three guards (or regions) that can determine the
speed of R2. Guarded handlers can be exploited to approximate non-
linear kinetics of reactions.

The event net (Figure 1A) can be combined with the intensity nets
(Figure 1B and Figure 1C) to produce an FN (Figure 1D) which
models both the stoichiometry and dynamics of the system.

2.2 FNs to Model Constraint-Based Models
A constraint-based model (Varma and Palsson, 1994) can be
expressed as a tuple {R, M, S, L, U} where R is the set of
reactions, M is the set of metabolites, S ∈ R|M|×|R| is the
stoichiometric matrix, and L,U ∈ R|R| are lower and upper
flux bounds of the reactions (notice that very loose flux
bounds can be assigned when no kinetic information is
available). The concentrations of metabolites are usually
disregarded in constraint-based models, being the main focus
of most analyses on the fluxes of reactions. This section shows
how constraint-based models can be expressed graphically and
analyzed numerically in a straightforward way by FNs.

Consider the constraint-based model defined by Table 1. It
consists of four reactions together with their corresponding flux
bounds. The FN in Figure 2 models such a constraint-based
model. The net has one place per metabolite, one transition per
reaction, and one event handler per reaction. The equalities associated
with the event handlersmodel the stoichiometry of the reactions. Since
constraint-based models do not account for the concentrations of
metabolites, the fluxes of reactions cannot depend on concentrations.
Hence, the corresponding FN does not have intensity handlers. The
range of potential fluxes of reactions ismodeled by a parameter λ0 that
is associated with each transition, e.g. λ0 [R1] = 5 in R1 means that the
flux of R1 will always be equal to 5mmol gDW−1h−1, and 0 ≤ λ0 [R2] ≤

FIGURE 1 | (A) Event net modeling the stoichiometry of reactions R1: A →2 C and R22A+ B → D. (B) Intensity net producing a speed in R1 proportional to the
concentration [A]. (C) Guarded intensity net producing a speed in R2 equal to 0 if [A] is below 10, 2 [B] if [A] is between 10 and 30, and 4 [B] otherwise. (D) Flexible net
combining the event net in (A) and the intensity nets in (B) and (C).
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20 in R2 implies that the flux of R2 can be any quantity between 0 and
20mmol gDW−1h−1.

The fluxes of transitions must be non-negative in FNs. Thus,
the modeling of reversible reactions like R3 requires its unfolding
into two reactions, a forward reaction R3f and a backward reaction
R3b with appropriate limits for their parameters λ0 (Júlvez and
Oliver, 2020b). If no λ0 is explicitly associated with a reaction r,
then it is assumed that λ0 [r] = 0. In general, the speed of r is equal
to λ0 [r] plus the intensities provided by the intensity handlers to
which it is connected (see Figure 1B).

FNs can be analyzed by building a set of mathematical constraints
that the state of the systemnecessarily satisfies (Júlvez et al., 2018). The
association of such constraints with an objective function of interest
results in a programming problem whose solution yields a theoretical
optimum. For instance, if the objective function for the FN in Figure 2
is the maximization of the flux of R4 in the steady state, then the
solution of the programming problem would be 10mmol gDW−1h−1

which is the theoretical maximum steady-state flux of R4. In addition
to the flux of R4, fluxes for the rest of reactions are obtained. In this
particular case, this approach is equivalent to performing Flux Balance
Analysis (FBA) Orth et al. (2010) on the constraint-based model.

For the production of citramalate, the constraint-based model of
the organism Escherichia coli strain K-12MG1655 (Webb et al. (2018)
was considered. The model is named iJO1366 in the BiGG repository
database (Orth et al. (2010)) and has 1805metabolites, 2,583 reactions,

and 1,367 genes. The reaction in Eq. 1 was added to this model,
simulating a transgenicE. coli strain capable of synthesizing citramalate.

The transformation of the resulting constraint-based model
into an FN can be carried out by following the approach to obtain
the net in Figure 2. Such an approach is performed automatically
by the cobra2fn module of the Python tool fnyzer (Júlvez and
Oliver, 2020a).

2.3 FNs to Model Bioreactor Dynamics
The macroscopic model of the bioreactor consists of three parts
(see Figure 3) the “Reservoir”, which contains the fresh sterile
medium and supplies the cell culture with the essential nutrients
for cell survival; the “Tank”, where the cell culture is placed, and
the “Effluent” which clears away the accumulated products and
some of the cells in the tank.

The dynamics of the bioreactor variables, which are named
macroscopic variables, are determined by differential
equations (Fernandez-de Cossio-Diaz et al., 2017). The
equation that expresses the evolution of the cell density in
the tank is:

dX
dt

� μ −D( )X (2)

where X (gDWL−1) is the cell density in the tank, μ is the effective
cell growth rate (h−1), andD is the dilution rate (h−1), which is the

TABLE 1 | Simple constraint-based model of four reactions with lower and upper flux bounds (mmol gDW−1h−1). The model is represented graphically by the FN in Figure 2

Reaction Lower bound Upper bound

R1: ∅ → A 5 5
R2: ∅ → C 0 20
R3: A ↔ 2B −500 1,000
R4: B+ C → ∅ 0 1,000

FIGURE 2 | FNmodeling the constraint basedmodel expressed by the reactions in Table 1. The flux bounds of the reactions are modeled by the default intensities
(or speeds) λ0 of transitions. Reversible reactions like R3 are unfolded into a forward and a backward reaction with non-negative flux.
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rate at which culture fluid is replaced divided by the culture
volume.

The evolution of the concentration of a given metabolite, i, in
the tank is given by:

dsi
dt

� ci − si( )D − uiX (3)

where ci is the concentration of the metabolite s in the medium
(mM), si is the concentration of themetabolite in the tank (mM),D is
the dilution rate (h−1), ui is the specific uptake rate of the metabolite
by the cells (mmol gDW−1 h−1), and X is the cell density in the tank
(gDWL−1). If ui> 0 themetabolite is consumed by the cell, otherwise
(ui < 0) the metabolite is secreted from the cell.

For the particular case of a system in which glucose, denoted as
metabolite g, is consumed by an E. coli culture, Eq. 3 for the
concentration of glucose in the tank becomes:

dsg
dt

� cg − sg( )D − ugX (4)

where cg is the concentration of glucose in the supply medium, sg
is the concentration of glucose in the tank and, ug is the glucose
uptake flux by the cell (which is a positive value).

The variation of a given product, e.g., citramalate, denoted as c,
is derived from Eq. 3 as:

dsc
dt

� −scD − ucX (5)

where sc is the citramalate concentration in the tank, and uc is
the citramalate secretion flux. Notice that, since citramalate is
secreted from the cell, uc is negative, and hence, − ucX is a
positive contribution of citramalate to the tank.

The above differential equations can be modeled by FNs.1 For
instance, Eq. 4 can be modeled by the FN in Figure 4 where place

FIGURE 3 | Sketch of a bioreactor in continuous culture mode. The nutrient supply and the removal of toxic and cell products are executed at the same time
uninterruptedly. The three main compartments are: reservoir, tank and effluent.

FIGURE 4 | FN modeling the differential Eq. 4

1For clarity, it is assumed that if the labels and equations of a handler are omitted
(see handlers vgfromtank and vgtocell in Figure 4), then an equality among all the
connected elements holds. For instance if the labels b, c, x and the equation b = c = x
are omitted in v4 in Figure 2, the implicit meaning is that the stoichiometric
weights of all metabolites involved in reaction R4 are 1.
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G accounts of the concentration of glucose in the tank. As
established by Eq. 4, place G has one input flux and two
output fluxes. The input flux comes from the reservoir, it is
modeled by transition tgin, and it is equal to D · cg. As this is a
constant amount, no intensity handlers are needed, and the flux is
modeled by the λ0 associated with tgin. The output flux modeled
by tgfromtank represents the uptake rate of glucose by the cell
culture, and it is equal to ugX where ug is the specific uptake rate
and X is the cell biomass. This flux is produced by the intensity
handler sug. Such an intensity handler scales by X the amount of
glucose that is consumed by the cells, see equation ut = uX
associated with sug. The output flux modeled by tgout represents
the glucose that leaves the tank without being captured by the
cells. Such an output flux is equal to the dilution rate times the
concentration of glucose in the tank, see equation Dsg associated
with sgout: r = Dsg.

Eq. 5 can be modeled similarly by FNs, see place C and the
elements connected to it in Figure 5. In this case, there is one
input flux and one output flux. The input flux comes from the cell
(citramalate is produced by the culture), it is modeled by
transition tct and it is equal to ucX, see equation associated
with hc. The output flux corresponds to the amount of
citramalate in the tank, once it has been released by the cell,
that forms part of the effluent. Such a flux is modeled by tcout and
it is equal to scD, see equation associated with scout.

Finally, Eq. 2 is modeled by the place X and the net elements
connected to it. The input flux of X, i.e. the rate at which X
increases, is modeled by txt and it is equal to the specific growth
rate of the culture times the cell density, rX, see equation
associated with hr. The output flux of X, i.e. the rate at which
X decreases, corresponds to the cells that are cleared away in the
continuous culture, it is modeled by txout and is equal to Dx, see
equation associated with sgout.

2.4 Model Integration
The merger of the FNs that model the dynamics of metabolite
concentrations in the bioreactor, see Section 2.3, and the FNs that
model the constraint-based model of the metabolic network of
the cultured organism, see Section 2.2, results in a single FN that
models the overall production system, see Figure 5. The nutrients
in the medium can be introduced by the transitions located in the
reservoir compartment. In this compartment, as many transitions
as metabolites in the medium are required. For example,
transition tgin accounts for the presence of glucose in the
medium, and transition tsin represents the presence of a given
metabolite s in the medium.

The concentrations of metabolites in the bioreactor are
modeled by the places in the tank compartment. In a general
system, there will be as many places in the tank compartment as
there are metabolites being tracked. In Figure 5, place S
represents a generic nutrient, i.e., it is provided by the
medium, it is consumed by the culture (see arrow going from
S to vst) and forms part of the effluent. On the other hand, place P
represents a generic product, i.e., it is not provided by the
medium, it is produced by the culture (see arrow going from S
to vst) and forms part of the effluent. Although the cell density, X,
is not a metabolite, its evolution, see Eq. 2, can be modeled exactly
as it was a product of the culture, see place X and the net elements
connected to it (the increase of X is due to the biomass production
which is determined by the growth rate).

For the particular system that produces citramalate by a
genetically modified E. coli culture, glucose-limited conditions
are assumed. Thus, in addition to the cell density modeled by
place X with units gDWL−1, the focus will be on the
concentration of one nutrient (glucose which is modeled by
place G with units mM), and the concentration of one product

FIGURE 5 | FN modeling the overall production system by integrating the macroscopic model of the bioreactor and the microscopic model of the constrained-
based model, MODEL1108160000 Orth et al. (2011) of the BioModels database Malik-Sheriff et al. (2020), of the cultured organism.
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(citramalate which is modeled by place C with unitsmM). Recall
that the dynamics of X is ruled by Eq. 2, while G and C are ruled
by Eqs 4 and 5, respectively. The microscopic model,
i.e., constrained-based model, for the citramalate production
system is given by the genome-scale metabolic model of E. coli
strain K-12 (iJO1366), MODEL1108160000 Orth et al. (2011) of
the BioModels database (Malik-Sheriff et al., 2020). This model
was converted to an FN by the fnyzer tool (Júlvez and Oliver,
2020a).

The integration of the macroscopic and the microscopic
models was possible thanks to the elements involved in the
interface between the tank and the cell compartments. The
main elements taking part in this connection are the intensity
handlers hu, hr and hc. These intensity handlers relate the
macroscopic variables of the bioreactor with the exchange
fluxes of the cell in such a way that each macroscopic flux
equals X times the exchange flux of the cell, X being the cell
density in the tank. The equations which model the interface
between the cell and the tank are: ut = ugX, rt = μX, and ct = ucX,
which are associated with the intensity handlers hu, hr and hc,
respectively.

The aforementioned intensity handlers are graphically
located at the interface between the cell and tank
compartments, and each one acts as a bridge between two
transitions: hu connects tGlucose_in and tut, hr connects tgrowth
and txt, and hc connects tExCit and tct. In our model, which
contains all the metabolic reactions of E. coli strain K-12
(iJO1366) combined with the reactions that allow
citramalate production, tGlucose_in represented the glucose
exchange reaction, tgrowth is used for the biomass reaction
and tExCit defined the citramalate exchange reaction.

2.5 Model Optimization
This section discusses the approximations that must be applied to
the FN in Figure 5 prior to its optimization (Subsection 2.5.1), as
well as the type of objective function that is considered
(Subsection 2.5.2).

2.5.1 Tackling Non-linearities
Notice that the equations associated with the intensity
handlers at the interface between the macroscopic model
of the tank and the microscopic model of the cell are not
linear. For instance, the equation associated with hu is ut =
ugX where both ug (the uptake rate of glucose) and X (the cell
density) are real variables. The optimization of a non-linear
system is, in general, very demanding from a computational
point of view. To overcome such a computational burden,
non-linear equations can be approximated by piece-wise
linear inequalities that are associated with intensity
handlers. This approximation results in a guarded FN (see
Section 2.1).

A non-linear equation such as ut = ugX of hu can be
approximated piece-wise linearly by partitioning the state
space of one of the real variables, e.g., X, into a number of
regions and associating a linear inequality with each of the
regions. Thus, hu: ut = ugX can be approximated by:

hu:

Xmin · ug ≤ ut ≤X1 · ug if Xmin ≤X<X1

X1 · ug ≤ ut ≤X2 · ug if X1 ≤X<X2

X2 · ug ≤ ut ≤X3 · ug if X2 ≤X<X3

. . . ,
Xn−1 · ug ≤ ut ≤Xmax · ug if Xn−1 ≤X≤Xmax

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

where Xmin and Xmax are lower and upper bounds for the cell
density, i.e., the cell density is known to be in the
interval [Xmin, Xmax] (notice that these bounds do not need
to be tight).

The above approximation considers n regions, the first
region is active if the cell density X is in the interval [Xmin,
X1] (in general, the ith region is active if the cell density X is in
the interval [Xi−1, Xi]). The values X1, . . . , Xn−1 do not need to
be evenly separated, the only condition they must satisfy is
Xmin < X1 < . . ., < Xn−1 < Xmax. This way, one and only one
region is active at any particular time. The region that is active
determines the linear inequality that is used to produce
intensity, i.e., if region i is active then the intensity
produced by hu can be any value in the interval [Xi−1 · ug,
Xi · ug]. Clearly, the higher the number of regions (and hence,
the smaller the regions), the better the approximation to the
original non-linear equation. Since a higher number of regions
involves a longer run time, there is a trade-off between
accuracy and computational cost. As discussed below, the
number of regions was determined experimentally so that
both the computational burden and the obtained precision
are acceptable.

Notice that the previously defined regions can also be used
to approximate the non-linear equations of the other handlers
in the interface between the macroscopic and microscopic
models because all include X in their equations. Given that
the number of regions has a direct impact on the complexity of
the programming problem which needs to be solved (the
number of binary variables is linear in the number of
regions), partitioning X instead of ug is advantageous from
a computational point of view.

The overall procedure to optimize an FN that integrates a
bioreactor and a metabolic network is outlined in Figure 6. After
integrating both models in a single FN, a set of mathematical
constraints that represent necessary reachability conditions for
the state of the system are derived. Such a set of constraints can be
derived automatically by the Python tool fnyzer (Júlvez and
Oliver, 2020a). The addition of an objective function to the
constraints results in a mixed-integer linear programming
(MILP) problem whose solution represents the theoretical
optimum state that the system can achieve.

In order to speed up the model optimization, a non-guarded
FN has been defined for each of the above regions, and each of
these nets has been solved separately. For instance, region i
determines an FN in which the value of X is constrained to
the interval [Xi−1, Xi] (this constraint will be part of the
programming problem) and the inequalities X2 · ug ≤ ut ≤ X3 ·
ug are associated with hu (similar inequalities are associated with
the rest of handler in the interface). The programming problem
associated with each of these nets is linear, and hence, can be
solved very efficiently. The optimum solution of the original
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guarded FN can be obtained straightforwardly by taking the
maximum of all the computed objective values of the
particular non-guarded FNs.

In order to partition the cell concentration X in an appropriate
number of regions, the productivity on substrate (PS), see
Subsection 2.5.2, was calculated repeatedly for different
number of regions, ranging in the interval [10, 200], and fixed
values of glucose concentration in the medium, 10 gL−1, and
dilution rate, 0.23 h−1. The obtained maximum PS are shown in
Figure 7 and the CPU run-times are reported in Supplementary
Data S3. Notice that after an initial sharp decrease, the
productivity converges to a given value. On the other hand,
the run-time of the simulations increases linearly with the
number of regions (see reported run-times). Based on these

results, it was decided to set the number of regions for the
optimizations to 100, as this number provided a good trade-
off between accuracy and run-time (the run-time to optimize the
FN for a given glucose concentration and a given dilution rate is
564 s (9.4 min), see hardware features in Supplementary
Data S3.

2.5.2 Optimizing the Productivity
Among the different objective functions that can be considered,
we focus on two measures for the productivity of a culture in
continuous mode: 1) volumetric productivity, and 2) productivity
on substrate.

The volumetric productivity, a. k.a. space-time yield, accounts
for the amount of product produced per liter and per hour, it will

FIGURE 6 | Pipeline showing the steps performed to optimize the integrated model. (1) The metabolic model and the bioreactor dynamics are combined to
generate a Flexible Net that integrates the macroscopic (dilution rate, substrate concentration, cell density) and microscopic variables (intracellular metabolite fluxes). (2)
A set of mathematical constraints is derived from the net specification and (3) the objective function is selected. The tool fnyzer performs the generation of amixed-integer
linear programming problem according to the set of constraints and the objective function. (4) Finally, the MILP problem is easily solved by using a solver (e.g.,
CPLEX, Gurobi, GLPK) that computes the mathematical solution.

FIGURE 7 | Theoretical maximum productivity on substrate PS with respect to the number of regions in which the biomass is partitioned. The glucose
concentration is set to 10 g L−1 and the dilution rate to 0.23 h−1.
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be denoted VP and is expressed in grams of product per liter per
hour, i.e., g · L−1 · h−1. In terms of the FN in Figure 5, the
volumetric productivity corresponds to the outgoing flux of
product flux(P), i.e. intensity of transition tpout, expressed in
g · L−1 · h−1. The volumetric productivity would be the
primary concern of a chemical engineer designing an
industrial process, which needs to be both feasible and
economically viable.

The productivity on substrate takes into account both the
specific growth rate of the culture, μ (units h−1), and the product
yield coefficient, YP/S, where YP/S denotes the number of grams of
product that are produced per Gram of substrate fed into the
tank, i.e. YP/S � Product (g)

Substrate (g), and hence YP/S is unitless. In
particular, the productivity on substrate, which will be denoted
PS, for a given net N is defined as:

PS N( ) � μ · YP/S (7)
given that YP/S is unitless, PS(N ) is expressed in h−1. Notice
that Eq. 7 entails a trade-off between biomass formation and
product production. Although the productivity on substrate
is usually a secondary concern, it becomes more relevant as
the cost of the substrate increases with respect to the selling
price of the product. The productivity on substrate is also a
useful metric for a synthetic biologist comparing the
performance of different genetically engineered microbial
strains.

In the following, the mathematical relation between
volumetric productivity and productivity on substrate is
explored. In a continuous culture, the yield YP/S is equal to the
grams of product produced per Gram of substrate per time unit,
i.e. it can be expressed as flux(P)

flux(S) where flux(P) is the flux of
produced product in g · L−1 · h−1, and flux(S) is the flux of
provided substrate in g · L−1 · h−1. Notice that flux(S) is equal to
Dcs where D is the dilution rate in h−1 and cs is the concentration
of the substrate in the fresh medium in g · L−1. This way, the yield
can be expressed as:

YP/S �
flux P( )
flux S( ) �

flux P( )
D · cs (8)

On the other hand, the cell density is assumed to be constant in
a continuous culture, i.e., dXdt � 0, and hence, Eq. 2 implies that μ =
D. Thus, Eq. 7 can be rewritten as:

PS N( ) � μ · YP/S � D · flux P( )
D · cs � flux P( )

cs
� VP N( )

cs
(9)

Thus, the volumetric productivity is equal to the productivity
on substrate times the concentration of substrate in the medium.
Therefore, for a given fixed concentration of substrate in the
medium, cs, optimizing the model to maximize productivity on
substrate is equivalent to optimizing the model to maximize
volumetric productivity. Moreover, for a given cs, the linear
objective function flux(P) can be used to perform such an
optimization. For the particular case of citramalate production,
flux(P) is given by the value of λ[tcout] (see Figure 5), and hence,
the objective function will be the maximization of λ[tcout].

2.5.3 Fermentation Experiments
Continuous cultures were grown in a DASbox® Mini Bioreactor
System (Eppendorf, Stevenage, UK). The E. coli strain used for all
fermentation experiments was BW25113 ΔldhA pET29a-Cer-
BBaJ23119-RFP-cimA3.7. The E. coli ldhA deletion prevents
lactate formation, improving flux towards citramalate (Webb
et al. (2018)). The plasmid contains both the cimA gene, to
enable citramalate production, and the cer gene to reduce loss
of the plasmid through mis-segregation (Green et al. (2018)).
Glucose-limited chemostat cultures (150 ml working volume)
were grown at 37°C, with pH controlled to 7 and dissolved
oxygen to > 30%, in modified MS (Stephens and Dalton
(1987)) medium (2 g L−1 KH2PO4, 2 ml L−1 trace metals
solution (Vishniac and Santer (1957), 0.25 ml L−1 antifoam
polypropylene glycol, 4 g L−1 NH4Cl, 0.4 g L−1 MgSO4.7H2O).
Biomass concentrations were determined by centrifuging
measured samples from the fermenter into pre-weighed tubes,
washing the pellets, and drying to constant weight at 100°C for
48 h. The supernatants from these samples were used to measure
glucose, citramalate, and acetate concentrations. These analyses
were performed using an UltiMate 3000 HPLC system (Thermo
Fisher Scientific, Loughborough, UK) equipped with an Aminex
HPX-87H ion-exclusion column (Bio-Rad, Hertfordshire, UK)
and a RefractoMax520 RI detector (Knauer, Berlin, Germany).
The mobile phase used was 0.1% (v/v) trifluoroacetic acid (TFA)
in Milli-Q water.

3 RESULTS

The validation of the model was carried out by comparing several
simulation runs of the designed FN, see Figure 5, to previously
obtained experimental results. These experiments were carried
out under glucose-limited conditions, using three different
concentrations of glucose in the supplied medium (5, 10 and
50 gL−1), and different dilution rates.

Table 2 reports the numerical results obtained both in vivo,
and in silico by the FN model. The columns of the table are
divided in three parts: the first part sets the experimental
parameters, i.e., the glucose concentration in the medium
and the dilution rate for the glucose-limited continuous
cultures; the second part reports the in vivo experimental
results; and the third part reports the in silico results. For
each pair of experimental parameters (glucose in medium and
dilution rate), the columns corresponding to the “In vivo
results” report the cell density (column “Biomass”), the
concentration of citramalate (column “Citramalate in
tank”), and the concentration of glucose (column “Residual
glucose”) measured in the tank. In order to validate the model,
the concentrations of citramalate and glucose in the tank are
computed for each set of experimental parameters (glucose in
medium and dilution rate) and measured biomass. The
columns corresponding to the “In silico results” report the
computed concentration of citramalate in the tank (column
“Citramalate in tank”), the relative error of such predicted
concentrations with respect to the measured in vivo
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TABLE 2 | Data obtained after running the code that simulates the FN model implementing the experimental conditions and previous results.

Experimental parameters In vivo results In silico results

Glucose in
medium (gL−1)

Dilution
rate (h−1)

Biomass
(gDWL−1)

Citramalate in tank
(in vivo) (gL−1)

Residual glucose
(in vivo) (gL−1)

Citramalate in tank
(in silico) (gL−1)

Citramalate
relative error (%)

Residual glucose
(in silico) (gL−1)

5 0.1 1.88 1.79 0.0 1.32 35.60 0.0
10 0.03 3.22 2.49 0.0 1.87 33.16 0.0
10 0.1 3.41 3.09 0.0 3.46 −10.7 0.0
10 0.17 3.54 3.34 0.0 3.55 −5.92 0.0
10 0.23 3.55 3.32 0.0 3.67 −9.54 0.0
50 0.17 16.32 13.27 0.0 20.75 −36.05 0.0
50 0.23 16.86 13.11 0.0 20.22 −35.16 0.0

FIGURE 8 | Heatmap reporting the maximum volumetric productivities (VPs) for each glucose concentration and dilution rate.
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concentrations (column “Citramalate relative error”), and the
computed concentration of glucose in the tank (column
“Residual glucose”).

For a specific concentration of glucose and dilution rate, the
biomass and the citramalate concentration reached the values
showed in columns “Biomass” and “Citramalate in tank in
vivo” of Table 2. From these results, it can be confirmed that
the higher the concentration of glucose and dilution rate, the
greater the amount of citramalate and biomass that will be
produced.

The results obtained for a set of experiments (column
“Citramalate in tank in vivo”) are consistent with the results
obtained by the simulation of the FN model (column

“Citramalate in tank in silico”) for the production of
citramalate. The most similar outcome occurs when the
glucose concentration was 10 gL−1 as shown in the
“Citramalate relative error” column in Table 2.

Notice that, in all cases, the supplied glucose is used up by
the culture, i.e. the concentration of residual glucose is 0 gL−1

(column “Residual glucose (in vivo)”). This fact is correctly
predicted by the FN model (column “Residual glucose (in
silico)”).

Once the model was validated, it was exploited to estimate the
theoretical maximum productivity (see Subsection 2.5.2) of
citramalate as well as the optimum biomass that produces its
associated productivity.

FIGURE 9 | Heatmap reporting the maximum productivities on substrate (PS) for each glucose concentration and dilution rate.
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The theoretical maximum volumetric productivity (VP) and
productivity on substrate (PS) of citramalate are reported in the
heatmaps in Figure 8 and Figure 9, respectively. The cell densities,
or biomass concentrations, for which the productivity is optimized
are reported in the heatmap in Figure 10. For the explored glucose
concentrations and dilution rates, the highest VP was reached when
the glucose concentration was 11.0 gL−1 and the dilution rate was
0.51 h−1, such a productivity is obtained with a biomass of 3.14 gDW
L−1. With respect to PS, the highest value was obtained for a glucose
concentration of 1.0 gL−1 and a dilution rate of 0.51 h−1, such a
productivity is obtained with a biomass of 0.275 gDW L−1. It is
important to note that the maximum productivities for all
concentrations of glucose are obtained when the dilution rate is

0.51 h−1. As expected, the amount of biomass necessary to maximize
the productivity increases as the dilution rate and the glucose
concentration increase, Figure 10.

The reported in silico results were obtained by fnyzer (Júlvez
and Oliver, 2020a) which transforms the FN in Figure 5 into a
mixed-integer programming problem, and calls the CPLEX
solver (IBM, 2010) to compute the numerical values.

4 DISCUSSION

The mass production of commodity chemicals from fossil fuels
can entail a serious negative impact in the environment. As a

FIGURE 10 | Heatmap reporting the optimum biomass concentrations associated with each of the maximum productivities in Figures 8, 9.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 85573512

Lázaro et al. Models to Optimise Bioproduction of Chemicals

187

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


consequence, alternative approaches are being designed in
order to redirect chemical production to more sustainable
methods. However, the implementation of these novel
approaches at an industrial scale requires optimization
before they can replace traditional methods. To achieve this,
biotechnology needs to exploit the advantages offered by
computational models. Models can provide guidance for the
design of experiments, give insights about the underlying
mechanisms of the system, perform predictions and rule out
infeasible hypotheses. Given the speed at which models can be
simulated and optimized, they can save significant amounts of
time, effort, and money in the wet lab.

In the last 2 decades, different modeling approaches have been
developed, and particular attention has been paid to models of
metabolism. In this work, it has been proven that the modeling
formalism of FNs can integrate genome-scale constraint-based
models, which lack detailed kinetic information, and kinetic
models, which account for the concentration of the
compounds of the system and are expressed as differential
equations. Furthermore, FNs can also accommodate
uncertainties inherent to the model, for example, partially
unknown parameters.

An FN is represented as the combination of two nets: the
event net and the intensity net. The event net models the
stoichiometry, whilst the intensity net models the system
dynamics. Such a graphical representation produces an
overall view of the whole system. The analysis of an FN
relies on the solution of a programming problem derived
from the FN. If all the reaction rates are linear, i.e., the FN
does not have guards, then the resulting programming
problem includes only real variables with linear and
quadratic constraints that can be solved very efficiently. As
a consequence, FNs can handle efficiently genome-scale
metabolic networks whose kinetic information is given by
flux bounds and linear expressions that define the quantity
of metabolites.

In contrast, if the reaction rates are not linear, they need to be
approximated by piecewise linear functions, i.e. a guarded FN,
which results in programming problems with real and binary
variables. The complexity of the algorithms to solve mixed-
integer programming problems is exponential in the number
of binary variables. In order to obtain a balance between
computational burden and accuracy of the model, the number
of regions, and hence the number of binary variables, can be
modified.

In Section 3, it was shown that FNs are a useful tool to predict
the behavior of a complex system, such as a continuous culture in
a bioreactor. The predictions of the citramalate production for a
specific dilution rate and biomass were reliable in comparison to
the experimental results obtained in the in vivo experiments,
especially, the ones in which the glucose concentration in the
medium was 10 gL−1.

Although the simulations were highly predictive, the model
could be improved further by adding some additional
information, such as more components in the culture
medium, or constraining the uptake of glucose depending
on the glucose import rate, and similarly with the

citramalate export rate. Both rates depend on protein
transporters that can be saturated. Furthermore, the
implementation of omics data could improve the model as
well (Sánchez et al., 2017).

Not only was this method useful to reproduce the results of
the in vivo experiments, but it can also help guide these
experiments and optimize the conditions without wasting
time and resources. The optimization performed in Section
3 showed that it is of special interest to explore in vivo the
conditions that maximized the productivity in the
computational simulations.
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Supplementary Data | 1. Maximum_Productivities.xlsx: This
spreadsheet reports the computed theoretical maximum productivities
and their associated cell densities for dilution rates ranging in the interval
[0.01, 0.81] h−1 and glucose concentrations in the medium ranging in the
interval [1, 11] gL−1.

2. EcolicitFN.xlsx: This spreadsheet reports the fluxes and
concentrations for a system with dilution rate D = 0.25 h−1, glucose
concentration in the medium glc = 7.0 gL−1 and cell density X = 0.5

gDWL−1. For clarity, only positive fluxes are reported and reactions with null
flux are omitted.

3. Regions_and_Runtime.xlsx: This spreadsheet reports the maximum
productivity on substrate (PS), optimum biomass, and run-time for a
dilution rate of 0.23 h−1, a glucose concentration of 10 gL−1, and a
number of regions in the interval [10, 200]. All the simulation results
were obtained on a 4 x Intel i5-7200 CPU, 2.50 GHz running Ubuntu
19.10 with 7.7 GB of RAM.
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Many current challenges involve understanding the complex dynamical interplay between the
constituents of systems. Typically, the number of such constituents is high, but only limited
data sources on them are available. Conventional dynamical models of complex systems are
rarelymathematically tractable and their numerical exploration suffers both from computational
and data limitations. Here we review generalized modeling, an alternative approach for
formulating dynamical models to gain insights into dynamics and bifurcations of uncertain
systems. We argue that this approach deals elegantly with the uncertainties that exist in real
world data and enables analytical insight or highly efficient numerical investigation. We provide
a survey of recent successes of generalized modeling and a guide to the application of this
modeling approach in future studies such as complex integrative ecological models.

Keywords: generalized modeling, nonlinear dynamics, biological networks, stability, bifurcation

1 INTRODUCTION

Much of the power of mathematics comes from its ability to describe unknown objects. Consider the
number π: almost everybody knows some of its digits, but nobody knows its exact value. Our
ignorance of the value, however, does not impinge on its utility in calculations, nor does it prevent us
from exploring its properties.

The ability of mathematics to work with unknown objects is not limited to numbers. In modeling
we can exploit this ability, by writing models in terms of unspecified functions. This is particularly
useful in social or biological models where actual laws realized in nature are only
approximately known.

In mathematics, working with unknown functions is the rule rather than the exception. For
example, we do it every time we write the definition of a derivative

_x � d
dt

x t( ) � lim
δ→0

x t + δ( ) − x t( )
δ

, (1)

where x is an arbitrary variable and t is time. In models unspecified functions have been used to a
lesser extent, but still the examples of such models are plentiful.

In the present paper we examine the method of GeneralizedModeling (GM), which is a formalism
by which specific types of insights can be extracted from models containing unspecified functions.
Although the approach has been extended tomany different contexts, GM hasmostly been applied to
explore systems of ordinary differential equations (ODEs). For this class of systems, GM can provide
insights into the dynamics, identify conditions for the stability of steady states, explore the response
of steady states to perturbations, identify parts of the system that are particularly vulnerable to
perturbations, etc. Perhaps most importantly, GM generates these insights highly efficiently. It thus
enables the exploration of large complex many-variable systems with comparatively little effort.
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In the following we explain the basic idea of GM in Section 2.
After this philosophical introduction, we provide a comprehensive
review of previous works that used GM in Section 3. This is done
partly to point the reader to specific variants and applications that
may suit their particular needs, but also partly to illustrate the power
of GM, which played a crucial rule in several discoveries leading to
high-profile publications. We then provide an introductory example
for the GM procedure in Section 4. In our experience, seeing this
procedure leads to a set of specific questions, which we address in a
frequently-asked-question section, Section 5. We then discuss the
GM approachmore extensively in Section 6, while paying particular
attention to some decisions that need to be made during the
modeling process. Different ways in which GM can be analyzed
are then discussed in Section 7, before a concluding discussion in
Section 8.

2 BASIC IDEA OF GENERALIZED
MODELING

GM is best understood by contrasting it against conventional
stability analysis of steady states. The conventional approach can
be regarded as a 3-step process.

1) Parameterization: Restrict the model to equations that are
specified except for a number of unknown parameters.

2) Steady States: Find the steady states of the ODE.
3) Linearization: Compute the Jacobian matrix, which provides a

linearization of the dynamics around the steady state.

Once the Jacobian has been obtained it can be used to explore
the stability of steady states, find their bifurcations, gain insights
into non-stationary dynamics, etc.

It is interesting to note that the three steps of this basic
program above involve very different difficulties: The first is
not technically difficult, but it involves “artistic freedom”: it is
easy to come up with some model but it may require much
experience to find the best model for a given phenomenon, and
sometimes it is not even clear what constitutes the best model. By
contrast, the second step has a clear-cut answer, but we need to
find the roots of an equation system, a task that is prohibitively
difficult for all but the simplest systems. We are thus often forced
to turn to numerics, but even then, no algorithms with guaranteed
convergence are known. Finally, the third step only involves
differentiation of functions, which is generally easy. In the worst
case we can compute the derivatives by finite difference methods.

In terms of the actual technical difficulty step 2, the computation
of steady states clearly stands out. In return for braving these
difficulties we obtain the number of steady states and their
locations. This can be valuable information for some systems, but
in many other cases we know the steady states from observation of
the system and thus the prediction from the model is often merely
used to eliminate some unknown parameters by setting them such
that the predicted states from the model match up with their
observed counterparts.

Given that the computation of steady states can introduce
significant difficulties in the modeling process, but reveals only

limited information, it is interesting to ask if we can circumvent
this step. For example random matrix models achieve this by
directly formulating a model for the Jacobian matrix, rather than
deriving the Jacobian matrix from ODEs (Wigner, 1955; May,
1972; Allesina and Tang, 2012). The power of random matrix
models is illustrated impressively by Robert May’s seminal work
(May, 1972), where he formulated a random matrix model for
complex food webs. Exploiting the power of the random matrix
May was able to prove mathematically that large random food
webs are unlikely to be stable. The model thus proved decisively
that the large food webs observed in nature must have some
special features that lends them their stability. At the same time
the abstract random matrix formulation gave researchers very
little intuition as to what these features might be. Random matrix
models are powerful because they give us direct access to Jacobian
matrices in a sufficiently simple form to allow rigorous
mathematical and highly efficient numerical exploration.
However, as they lack the underlying layer of differential
equations, these models tend to be more abstract and hence
are often not easily interpretable.

GMs are situated at the halfway point between conventional
and random matrix models. They have almost the full power and
efficiency of random matrix models while being almost as
interpretable as conventional ODE-based models. To
understand how this is possible let us consider the three steps
of the modeling process again. In GM we do not restrict the
processes in the model to specific functional forms, and thus we
cannot meaningfully compute the steady states of the model. This
means in the GM the steady states are unknown quantities.
However even though the steady states are unknown we can
still formally linearize the dynamics around them, which yields
Jacobian matrices. At first glance the elements of these Jacobian
matrices sound intimidating: They are derivatives of unknown
functions in unknown steady states. However, these elements can
be expressed in terms of a small set of parameters that have a clear
and intuitive interpretation in the context of the model.

In GM the three steps of the modeling procedure are thus
reordered and slightly modified.

1) Steady states: Consider a class of models that is general enough
that steady states must exist in this class. Define symbols to
denote the variables in these unknown steady states.

2) Linearization: Formally compute the derivative of the
processes with respect to variables to compute the Jacobian.

3) Parameterization: Identify the quantities that appear in the
Jacobian as parameters of the model.

The result is a prescription for generating the Jacobian of a
steady state as a function of a number of possibly unknown but
interpretable parameters. In other words, we directly get the
Jacobian matrix in a steady state, which is reminiscent of a
random matrix model. However, simultaneously our
interpretation of this matrix profits from the underlying layer
of differential equations almost as if it were a conventional model
(see Table 1).

The heart of the GM procedure and the feature that sets GM
apart from other models containing unknown functions, is the
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parameterization step, where we use a specific mathematical
identity to give meaning to the parameters. This is explained
in more detail in Section 4.

In the next section we are reviewing some of the past successes
of GM. Readers who are eager to see an example of the procedure
first may want to skip ahead to Section 4.

3 GENERALIZED MODELS IN THE
LITERATURE

Since its inception 12 years ago, GM has been applied to a wide
range of subjects. In this section we review the areas where GM
has made an impact and the ways in which the methodology has
been adapted to suit to the various fields.

3.1 Food Web Models
The first GM was a simple predator-prey model proposed by
Wolfgang Ebenhöh in 2003. An analysis of this model was
eventually published in Gross and Feudel (2004). The
predator-prey model was subsequently expanded into a
general food-chain model. Analysis of this model revealed
minor details in the shape of the functions used in
conventional food-chain models can have a strong impact on
stability properties (Gross et al., 2004), the same insight was
discovered almost simultaneously in a different way in Fussmann
and Blasius (2005). A similar GM setting, exploring the so-called
paradox of enrichment, was recently studied in Awender et al.
(2021).

While GM was initially viewed as a trick that worked in one
particular model, the subsequent extensions implemented in
Gross et al. (2005) made clear that the approach is generally
applicable. This led to an early paper that presented the GM as a
general methodology (Gross and Feudel, 2006). This paper
concluded by deriving a general food-web model, but did not
analyze it in any detail.

Around 2006 GMs were still studied mostly by analytical
computation of the bifurcations (Gross, 2004). Although the
bifurcation had been computed in food chains of up to ten
levels, the structural complexity of food-web topology, still
presented a serious obstacle. Instead GM approach was
extended to predator-prey systems in space, modeled by
partial differential equations (Baurmann et al., 2007) and was
applied to study the effect of predator interference (van Voorn
et al., 2008) and the dynamics of ecoepidemic models (Stiefs et al.,

2009) and to explore the impact of nutrient content on predator-
prey systems (Stiefs et al., 2010). The latter paper resolved a
controversy that arose because different previous models for
nutrient content predicted very different bifurcation diagrams.
Analysis of the GM showed that all of these diagrams were
projections of the same bigger picture and identified the
specific assumptions that explained the differences in the
respective projections.

By 2009 work in metabolic models (Steuer et al., 2006) had
established numerical procedures for the investigation of GMs.
This step provided an efficient method for the exploration of the
food-web model formulated in Gross and Feudel (2006). The first
application of this model focused on food-web stability. Since
May’s work, described above, identifying the properties that lend
large food webs their stability had been a persistent challenge in
ecology. Previous work had made progress by simulating systems
of ODEs (Williams and Martinez, 2004; McCann et al., 2005;
Brose et al., 2006; Neutel et al., 2002), however numerical
limitations meant that only on the order of some thousand

TABLE 1 | Comparison of modeling approaches.

Approach Information Needed Most difficult step Insights gained

Conventional model
(specified ODEs)

State variables and processes, specific
functional forms for processes

Steady state computation or
numerical simulation

Simulated time-series, number and stability of steady states, . . .

Random matrix model Statistics of matrix elements Analytical solution or
eigenvalue computation

Stability conditions, nature of bifurcations

Generalized model State variables and processes Analytical solution or
eigenvalue computation

Stability conditions, nature and location of bifurcations, response
to perturbations, identification of interesting parameters and
parameter regions

FIGURE 1 | Stability of complex food webs. Color coded is the
probability that a steady state in a niche-model (Williams and Martinez, 2000)
food web is stable, PSW. The result confirms May’s random matrix result that
large complex food webs are typically unstable. Tomake this figure aGM
was used to analyze 35 billion different networks. The paper in which it
appeared used 1011 niche-model food webs. Figure reprinted from Gross
et al. (2009).
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randomly generated food webs could be considered. By contrast,
the higher numerical efficiency of the generalized food-web
model allowed to study ca. 100 billion (1011) randomly
generated food webs within a month (Figure 1). Building on
this data several previous insights on food web stability were
confirmed, although evidence for the very popular weak link
hypothesis (McCann et al., 1998) was only seen in smaller webs,
instead a new topological pattern that contributed strongly to
stability was identified (Gross et al., 2009). In response to these
results there was a sharp increase in the interest in GM and the
methodology was adopted by several labs.

Barbara Drossel and coworkers carefully examined the
generalized food-web model and its relationship to
conventional food-web models. They were thus able to narrow
down the ranges for generalized parameters and as a result found
that this increased the proportion of stable states that were found
in the food webs (Plitzko et al., 2012).

Because generalized ecological models yield tractable Jacobian
matrices even for relatively complex systems, they were used as a
platform for a number of methodological developments. For
example Stiefs et al. (2008) employed the approach to develop
a method to visualize bifurcations, Lade and Gross (2012)
proposed a new type of warning signal for critical transitions
based on GM and Höfener et al. (2011, 2013) used GM to study a
delay-coupled network of populations. The latter work led to an
algorithms for designing dynamic motifs, small subgraphs of a
network that exhibit specific dynamical instabilities regardless of
the networks that they are embedded in (Do et al., 2012).

The GM approach was further refined in Yeakel et al. (2011),
which carefully examined the modeling procedure, and Kuehn
et al. (2013) which first supported GM by rigorous mathematical
work and then went on to extend the approach to the analysis on
non-local dynamics (Kuehn and Gross, 2013).

Another extension is found in the work of Helge Aufderheide,
who considered eigenvector localization in GM. He was able to
explain why certain food webs have a different structure but the
same generalized bifurcation diagram (Aufderheide et al., 2012), a
phenomenon first noticed in Gross (2004). In a subsequent work
eigenvector methods were used to propose an approach for
identifying the species in a food web that are most susceptible
to perturbations and those that have the strongest impact on the
dynamics of the system (Aufderheide et al., 2013; Doizy et al.,
2018).

Aufderheide’s approach was subsequently used by Yeakel and
coworkers to analyze a 6,000 years time-series of Egyptian food
webs (Yeakel et al., 2014). Yeakel had reconstructed an ensemble
model of mammalian food webs from depictions in Egyptian art
history. This dataset was then fed into the GM, which showed that
extinctions from climate change events and the human
population growth at the beginning of the 20th century
reduced the stability of the web leaving it more and more
vulnerable to further perturbations. It was also confirmed that
vulnerable species, identified by GM in the initial network, were
among the first to go extinct.

The utility of the GM approach for combining complex social
and ecological dynamics in a common social-ecological model
was highlighted in Lade et al. (2015). Using GM, the authors

explored the impact of human behavior on ecological systems
(Lade et al., 2013), showing that social dynamics have a strong
impact on tipping points. A subsequent review discussed the use
of GM in socio-ecological systems more generally (Lade and
Niiranen, 2017). Other environmental applications of GM
include the analysis of a climate model by Knopf et al. (2006)
and stock recruitment by Yeakel and Mangel (2014).

More recently GM was used by different labs to study meta-
food webs, a class of models where food webs in different spatial
patches are coupled by dispersal (Leibold et al., 2004). After initial
works considered a single population model on a spatial network
(Tromeur et al., 2016) and food webs on two patches (Gramlich
et al., 2016), the dynamics of complex food webs in large spatial
networks were studied in Brechtel et al. (2018). In this work
methods from algebra were used to show that it is possible to
derive master stability functions (Segel and Levin, 1976; Pecora
and Carroll, 1998), which then govern the food-web stability in
any spatial network.

Anderson and Fahimipour (2021) used GM to study the effects
of positive body size scaling of dispersal on the stability of
heterogeneous metacommunities. Their results cast doubts on
the widely held opinion that the ability of large bodied predators
to migrate farther than small bodied species is crucial for stability.

3.2 Models of Metabolism
A second area where GM has been frequently applied is studies of
metabolism. This line of work was started by Ralf Steuer in his
PhD thesis. The metabolic version of GM is also known as
structural kinetic modeling after the title of his first publication
on the subject (Steuer et al., 2006). In this paper Steuer and
coworkers demonstrate that GM can be applied to metabolic
systems such as glycolysis in yeast and the photosynthetic Calvin
cycle. For the case of glycolysis it was shown that the GM
approach could be used to exactly predict one of the
parameters in the system, based on stability considerations.
These and other findings were later confirmed in Gehrmann
et al. (2011), who used GM to analyze a more complex model of
glycolysis. Carbonaro and Thorpe (2017) applied structural
kinetic modeling to determine metabolic components that are
major contributors to network stability in complex metabolic
networks associated with glycolysis and pentose phosphate
pathway and to predict the impact of perturbations on these
components.

In a subsequent paper Steuer et al. (2007) analyzed the TCA
cycle in mitochondria (also reviewed in (Steuer, 2007)). To deal
with this more complex network they proposed a numerical
sampling procedure, explained in detail in the next section.
This procedure allowed Steuer to explore the model efficiently.
A specific biological question driving this research was why the
mitochondria under consideration hardly utilized pyruvate as an
energy source. This was resolved when the GM identified
pyruvate import into the mitochondrion as one of the main
drivers of instability.

The sampling procedure of Steuer greatly increased the scope
of GM and turned it into a highly efficient tool for the analysis of
large networks. A matlab toolbox for metabolic GMs facilitating
this analysis was published by Girbig et al. (2012b). The
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methodology was further refined by a careful exploration of
various measures to reveal important regulators (Grimbs et al.,
2007). They combine GM and machine learning (ML) techniques
to identify bifurcations in large systems (Girbig et al., 2012a) and
incorporate thermodynamic constraints (Childs et al., 2015). The
review by Srinivasan et al. (2015) highlights the potential of this
GM + ML approach to scale to whole cell models.

GMs were also used to study the inhibitory feedbacks in the
sucrose cycle (Henkel et al., 2011) or in designing drugs. The
latter is done by comparing two different metabolic states (e.g. the
healthy and non-healthy system) and their responses to
perturbation with each other (Murabito et al., 2011; Murabito,
2013). In addition, structural kinetic models are also used to set
up more complex models of huge metabolic networks, i.e. hybrid
models. Hybrid models describe central processes in high detail,
while others are roughly approximated. The central processes can
be identified using structural kinetic models (Bulik et al., 2009).

Reznik and Segrè (2010) applied GM in the analysis of further
metabolic cycles and showed short cycles to be highly stable. This
is particularly true for non-autocatalytic cycles (Reznik et al.,
2013b). Extending the methodology to metabolic genetic circuits
showed that timescale separation between subsystems has a
stabilizing effect (Reznik et al., 2013a). Subsequent works
explored the dynamics of common regulatory motifs
(Gehrmann and Drossel, 2010; Zumsande and Gross, 2010;
Ackermann et al., 2012), systems of interacting compartments
(Fürtauer and Nägele, 2016), and applied GM in a metabolic
engineering application (Ye et al., 2015). Recently, Frandi et al.
(2022) explored the emergence of oscillations in the cell cycle
regulatory network of an Alphaproteobacteria via structural
kinetic modeling.

3.3 Other Applications and Similar
Approaches
In the medicine, GMwere used to identify an early warning signal
for critical transitions in systemic inflammation (Scheff et al.,
2013). Moreover, Zumsande et al. (2011) proposed a GM of bone
remodeling, leading to the identification of dynamical
instabilities, which explain certain physiological and
pathological dynamics of bones.

GMs were also applied to study questions in social dynamics
and management. Gross and Feudel (2006) used a model of the
Chinese Dynastic cycle as one of its examples, and the dynamics
of manufacturing supply networks is analyzed in Ritterskamp
et al. (2018); Demirel et al. (2019).

A similar approach to GM is the analysis applied in Kisdi et al.
(2013), that uses unspecified evolutionary trade-off curves to
identify trade-off functions that lead to stable limit cycles in eco-
evolutionary models. Another related method is the general
structural sensitivity analysis proposed by Adamson and
Morozov (2014b), that considers the infinite-dimensional
neighborhood of model functions to determine the sensitivity
with regards to the local stability of steady states. Thereby, they
provide a method to conduct bifurcation analysis under
uncertainty in model functions and to determine probabilities
of certain bifurcations (Adamson and Morozov, 2014a). Building

on this, they also propose a method for analyzing structural
sensitivity by using partially specified models and approximating
the projection from the space of valid functions into the
generalized bifurcation space via methods of optimal control
theory (Adamson et al., 2016). They also address sensitivity
analysis of these partially specified models in (Adamson and
Morozov, 2020). Their framework shares the use of unspecified
functions, the steady-state treatment and the incorporation of the
values of unknown functions as parameters in the Jacobian with
the GM approach.

4 AN INTRODUCTORY EXAMPLE

Consider a system where a variable, X, changes dynamically in
response to gains and losses. We can write the differential
equation

_X � G X( ) − L X( ), (2)
where the dot denotes a time derivative, and G and L are
unknown functions representing the gain and the loss terms.
We have so far not constrained these functions in any way, so the
only assumption is that gain and loss are in principle describable
by mathematical functions.

In conventional modeling we would now proceed by
parameterizing the gain and loss functions, i.e. restricting
them to specific functional forms. Thereafter we could
compute steady states and then launch into deeper analysis,
computing stability, bifurcations etc. GMs build on the insight
that most of these deeper analyses do not actually require us to
restrict the processes to specific functional forms.

For example the stability of steady states is captured by the so-
called Jacobian matrix J, defined as

Jij � z

zXj

_Xi

∣∣∣∣∣∣∣∣
p

, (3)

where we used |p to indicate that the expression is evaluated at the
steady state under consideration. For our one-dimensional
example system the Jacobian is a 1 × 1 matrix and its only
element is

J11 � G′ Xp( ) − L′ Xp( ), (4)
where the dash denotes a partial derivative and Xp is the steady
state under consideration. Without further assumptions G′(Xp) is
the derivative of an unknown function evaluated at an unknown
point. However, we know that terms such as G′(Xp) represent
numbers. We can therefore think of G′(Xp) as an unknown
parameter of the system. However, defined in this way, the
parameter does not have an intuitive interpretation in the
context of the application.

GM (in the narrow sense) is a particular way of parameterizing
models such that we avoid restricting the processes to specific
functional forms while capturing the uncertainty about the
system in easily interpretable parameters.

To parameterize the Jacobian in an interpretable way we need
to make one more assumption: All variables and process rates
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have positive values. In many applications this is very intuitive as
variables describe quantities that are naturally non-negative, and
process rates have positive values by design (e.g. a gain would not
be a gain if it were negative). The special case of one variable or
process becoming exactly zero is discussed below.

Let’s return to the specific example of Eq. 2. The equation
describes a class of models in which positive steady states are
bound to exist. This is not an additional assumption but merely
the effect of working with a broad class of models rather than one
particular parameterization. We denote these steady states as Xp

and denote the rates of processes in the steady state as Lp = L(Xp)
andGp =G(Xp), respectively. Although we use Xp as a placeholder
for every positive steady state in the system, we can formally
normalize the equations with respect to Xp,

x � X

Xp
, (5)

such that X = xXp. Likewise, we can define normalized

g x( ) � G xXp( )
Gp

, l x( ) � L xXp( )
Lp

. (6)
Here we followed the GM convention of using lower-case
variables for normalized quantities and upper-case variables
for unnormalized quantities. We can write a differential for
the normalized variable as

_x � d
dt

X

Xp
� _X

Xp
� G X( ) − L X( )

Xp
� Gp

Xp
g x( ) − Lp

Xp
l x( ). (7)

By normalizing we have moved from a system in which we did
not know the steady state to a system where we know it: In the
normalized system the steady state is xp = 1 and in the steady state
all processes run at rate 1. The price that we have to pay for this
convenience is the appearance of the two factorsGp/Xp and Lp/Xp.
Because these factors are unknown scalars we can interpret them
as unknown parameters of the system.

Note that Gp/Xp is the per-capita gain per X in the steady state.
If X is a biological population we would call it the birth rate, and
Lp/Xp would be the per-capita death rate. Even in other systems
such per-unit turnovers are generally well interpretable.

Another interesting observation about the two parameters is
that they must be equal as Gp = Lp must hold in all steady states.
This allows us to define

α � Gp

Xp
� Lp

Xp
. (8)

Such parameters are known as scale parameters in GM. Our
system now becomes

_x � α g x( ) − l x( )( ). (9)
The identity of the two fractions is a double-edged sword. We
essentially used the stationarity property of the steady state to
reduce the number of parameters, which generally leads to
welcome simplifications. However, if we forget to exploit this
simplification we may end up investigating steady states which
cannot exist in the real world (say those with Gp ≠ Lp). This is the
one risk in GM that we need to steer clear of. Below we present a

simple procedure for larger models that takes care of this point
almost automatically.

Having successfully normalized the model we are now ready to
launch into the stability analysis of the steady state Xp. For our
small example the Jacobian is

J � α g′ 1( ) − l′ 1( )( )[ ], (10)
where the one appears because xp = 1. Since we still haven’t
constrained the functions g and l we don’t know their derivatives,
hence they are also unknown parameters of the system.We define

gx � g′ 1( ) lx � l′ 1( ). (11)
To understand the interpretation of these parameters, consider
what would happen if, say, the loss were a linear function, L(X) =
aX, with a > 0. In this case the normalization would result in l(x) =
x, regardless of a, and hence lx = 1. So every linear relationship
results in a parameter value of 1. Furthermore, any power law,
L(X) = aXp results in lx = p. So a quadratic relationship would be
signified by a parameter value of 2, a square root by 1/2, and a
reciprocal relationship, e.g. L(C) = a/Xp by a parameter value
of -p.

Parameters such as gx and lx are called elasticities. In the
context of GM they are also called exponent parameters. One can
show that they are the logarithmic derivatives of the original
functions. For example

lx � d ln L
d lnX

∣∣∣∣∣∣∣
p

. (12)
We could have saved ourselves some work by using the
mathematical identity

zL

zX

∣∣∣∣∣∣∣
p

� Lp

Xp

z ln L
z lnX

∣∣∣∣∣∣∣
p

� αlx, (13)

however explicit normalization is generally felt to be the saner
and safer way to a GM.

Elasticity parameters were originally introduced in economic
theory (Reilly, 1940), where they remain in wide use. In biology,
elasticities are central parameters studied by metabolic control
theory (Fell and Sauro, 1985). Besides their convenient
interpretation, elasticities provide a measure of nonlinearity
that can be very robustly estimated based on limited and
noisy data.

Returning to our example system, we can say that Eq. 10
captures the dynamics around all steady states in all models of the
form of Eq. 2 by three intuitive parameters: the elasticity of gain
and loss, and a turnover rate.

A steady state is stable if all eigenvalues of the Jacobian have
negative real parts. In our one-dimensional example the Jacobian
is a 1 × 1 matrix and thus has only one eigenvalue which is
identical to the matrix element itself,

λ � α gx − lx( ). (14)
Hence, a steady state under consideration is stable (i.e. λ < 0) if

gx < lx. (15)
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Even in this very simple example the analysis reveals a concrete
result. For all steady states in all systems where a single positive
variable is subject to gains and losses (systems of the form of Eq.
2) the following is true:

• Turnover rate does not directly impact stability. (It may
however indirectly impact stability, for example if losses
experience stronger nonlinearity under increased turnover.)

• A steady state is stable if the elasticity of loss is greater than
the elasticity of gain in the steady state.

To readers with experience in modeling, these results will be
hardly surprising. Consider however, that in this small example
we have given the GM only very little structural information to
work with. We show below that the same procedure can be
applied to models of almost arbitrary complexity. If we provide
more information, e.g. by specifying complex food-web
topologies or metabolic networks, GM can reveal deeper, more
detailed insights.

5 FREQUENTLY ASKED QUESTIONS

Our introduction to GM continues in Section 6, below. However,
in our experience researchers frequently have specific questions
after seeing the first introductory example. We therefore seize on
this opportunity to answer the most common ones in this
frequently asked questions section.

What if there are multiple steady states?

The general model captures the stability of all of them, but
because the normalization is done with respect to the steady state,
different steady states will be described by different parameter
values.

It seems too easy. Does it actually work?

Yes it does, the procedure, as it has been spelled out here has
been supported by rigorous mathematical proofs (Kuehn et al.,
2013). Perhaps more importantly the papers cited in Section 2
provide plenty of evidence that valuable information can be
gained by GM.

Are there some things you can’t do with generalizedmodels?
Why doesn’t everybody use them?

There are a lot of things that cannot be donewithGM, for example
you can never compute where a steady state actually is. Also, you
cannot simulate a GM, but you can explore it with other analysis
methods that are safer, more efficient and often more powerful than
simulation. GMs are not meant to replace conventional modeling,
instead they are an additional tool by which some information can be
gained very cleanly and efficiently. In practice they are used to explore
model structures and to narrow down on parameter regions that are
feasible, plausible and interesting before exploring in more detail with
conventional models.

Is this limited to analysis of steady states?

In principle, no, in practice mostly yes. Christian Kühn has
developed a method by which GMs can be used to explore the
stability of other attractors (Kuehn and Gross, 2013). While
mathematically sound, this extension requires to parameterize
the shape of the attractor, which increases the size of the
parameter space. Moreover, instead of the comparatively
simple stability analysis we have to analyze the model using
Floquet theory. In practice an easier alternative is often to change
the way the system is modelled. For example, instead of modeling
a differential equation system that has a limit cycle we can directly
model the Poincaré map, in which the cycle appears as fixed point
and can hence be explored by local analysis.

Is this only useful for stability analysis?

Kind of, but not entirely. Stability analysis and its downstream
products (bifurcations, robustness, identification of sensitive or
influential variables) are currently the best tools in the GM
toolbox. But some other analysis can be done as well (see
Section 7).

Can I have processes that become negative?

No, if your processes become negative, it breaks the
normalization. In practice, there is an easy fix to this: Instead
of having a process that can run in both directions define two
processes that run antagonistically. For example, in a chemical
reaction we would treat forward and reverse reactions as two
different processes, which may be differently regulated. When
modeling ecological dispersal between habitat patches, we model
emigration as a separate process from immigration. In most cases
this leads to better and more interpretable models.

How about variables or processes becoming zero?

In general this is not a big problem. Suppose you have an
ecological model in which some species can go extinct. If you
analyze the full GM of the system then the results will apply to
steady states where all species coexist. Also, we can verify that the
steady states under consideration is a state where all species are
present as this information is reflected in the generalized
parameters. If we are particularly interested in the case where
one of the species goes extinct then we can make another model
where that species is absent. We might also be interested in the
transition where the extinction occurs, and in general the GM can
find it. Consider that the model in which the species is present
remains valid as we approach the point of extinction. Validity in
this limit is sufficient to detect the transition in which the
extinction occurs.

What about conversation laws? Other peculiarities of my
system?

Conservation laws present us with similar issues as the
stationarity conditions discussed above. Such additional
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constraints provide an opportunity to narrow down the
parameters space. However, we must ensure that we seize this
opportunity to avoid parameterizing systems that violate the
conservation law and hence cannot exist in the real world. In
the context of GMs conservation laws and also some other
knowledge that we might have about the real system can be
taken into account in the form of algebraic equation. This is
described in the next section.

6 GENERAL MODELING PROCEDURE

We now turn to the procedure by which complex GMs are
formulated. For this purpose we follow the example of a
simple predator-prey system from Yeakel et al. (2011), but
discuss it in greater detail.

6.1 Identification of State Variables
The first step in this process is to identify the state variables that
we want to describe. Deciding what state variable should be
included is often easy, but can become complicated in models
including human behavior.

In GM introducing additional state variables often pays off in
terms of interpretability and does not incur a high cost in terms
of tractability. Hence, it is generally advisable to include a
candidate variable rather than leaving it out. This will
typically lead to large but sparse Jacobians that are often
preferable to small dense ones.

6.2 Identification of Processes
Once our state variables are in place we have to identify the
processes that change them. Each state variable needs at least one
gain and one loss process, but there can be multiple of these
processes. For example a simple predator-prey model could look
like this

_X � S X( ) − F X, Y( ) − L X( ) (16)
_Y � G X,Y( ) −M Y( ), (17)

where S describes the reproduction of the prey X, F is the loss of
prey due to predation, L is the loss of prey due to other causes
than predation, G is the gain by predation of predator Y, andM is
the predator’s mortality.

At this point we could ask why it is necessary to include for
example the L term at all. After all, since S and F are general
functions we could easily merge L into F summarizing all the losses,
or we could evenmerge L into S forming an effective growth term (as
for example in logistic growth). However, in GM we extract insights
mainly from the structure of the model. The more detailed we can
specify the structure the more insights we gain. In the example
merging S and L into one term would be a bad idea, because the
exponent parameter of the merged term is far less interpretable than
the two individual exponent parameters of S and L.

Similarly merging F and L would be a bad idea. As this is a
predator-prey model we probably want to discuss predation
losses separately from other losses. Splitting the processes
preserves this ability. Moreover, it allows us further

elaboration of the relationship between F and G,
shown below.

6.3 Normalization
We now define normalized variables and processes following the
same procedure as in the introductory example, i.e. for every
variable X we define

x � X

Xp
, (18)

where Xp is an unspecified stationary state, and for every process
P(X) we define

p x( ) � P xXp( )
Pp

, (19)

where Pp = P(Xp). Processes of multiple variables can be dealt
with analogously. For our example system this leads to the
normalized differential equations

_x � Sp

Xp
s x( ) − Fp

Xp
f x, y( ) − Lp

Xp
l x( ) (20)

_y � Gp

Yp
g x, y( ) − Mp

Yp
m y( ). (21)

Our next goal is to capture the prefactors in meaningful scale
parameters while taking the stationarity condition of the
steady state into account. Although there is some freedom
in the way we specify our scale parameters, it is often a good
idea to use one parameter per variable to denote the total
turnover and then define additional parameters as needed to
specify how much the individual gains and losses contribute to
the turnover.

To introduce parameters in an organized fashion we proceed
as follows: We start by considering our normalized differential
equations in the steady state, where the time derivative vanishes
and all process rates are 1,

0 � Sp

Xp
− Fp

Xp
− Lp

Xp
(22)

0 � Gp

Yp
− Mp

Yp
. (23)

These equations state that for each of the variables the sum of the
loss terms is identical to the sum of the gain terms,

Sp

Xp
� Fp

Xp
+ Lp

Xp
(24)

Gp

Yp
� Mp

Yp
(25)

hence we define

αx � Sp

Xp
� Fp

Xp
+ Lp

Xp
(26)

αy � Gp

Yp
� Mp

Yp
. (27)

Where αx and αy are now our turnover parameters for the two
species. Using these parameters, we can now write our differential
equations as
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_x � αx s x( ) − 1
αx

Fp

Xp
f x, y( ) − 1

αx

Lp

Xp
l x( )( ) (28)

_y � αy g x, y( ) −m y( )( ). (29)
We are almost done here, but we still need to take care of the
prefactors in front of the f and l terms. Note that by pulling the
turnover rates out of these factors we created some interesting
expressions. Let’s use ρ to denote the factor in front of the F-
term. We can write

ρ � 1
αx

Fp

Xp
� Fp

Fp + Lp
, (30)

which shows that ρ is the proportion of the prey’s loss in the
steady state that is due to predation. Likewise, we can define

�ρ � 1
αx

Lp

Xp
� Lp

Fp + Lp
, (31)

which is the proportion of the loss in the steady state that occurs due
to other sources of mortality. Such scale parameters that describe the
branching ormerging offlowswithin the system are called branching
parameters. When we introduce such parameters, we have to keep in
mind that they are not independent as the branching parameters for
the gains or losses of a particular variable always add up to one. In
our example we can quickly verify that ρ and �ρ must obey

ρ + �ρ � Fp

Fp + Lp
+ Lp

Fp + Lp
� 1. (32)

Keeping this constraint in mind we can now write our model as

_x � αx s x( ) − ρf x, y( ) − �ρl x( )( ) (33)
_y � αy g x, y( ) −m y( )( ) (34)
�ρ � 1 − ρ. (35)

In general, it will not be necessary to go through the normalization in
such detail as the outcomes always follow the same pattern. We can
thus quickly see that for example the equation

_Z � A X( ) + B Y( ) + C Z( ) − Q Z( ) − R Z, Y( ) − S Z, Y,X( )
(36)

normalizes to

_z�α βaa x( )+βbb y( )+βcc z( )−σqq z( )−σrr z,y( )−σss z,y,x( )( )
(37)

1 � βa + βb + βc (38)
1 � σq + σr + σs. (39)

6.4 Timescale Normalization and Jacobian
Before we calculate the Jacobian, we can always remove one of our
turnover parameters by rescaling time. For example, if we
measure in terms of multiples of the turnover time of the prey
1/αx, both equations are rescaled by this factor. As a result, we can
write the system as

_x � s x( ) − ρf x, y( ) − �ρl x( ) (40)
_y � α g x, y( ) −m y( )( ) (41)
�ρ � 1 − ρ, (42)

where α = αy/αx is the parameter that tells us the relative rate of
predator turnover to prey turnover. If the currency of our model
is abundance this factor is the prey life expectancy divided by the
predator life expectancy. If the currency of the model is biomass,
the turnover ratio is the ratio of metabolic rates which is typically
governed by allometric scaling laws (Yeakel et al., 2018).

To construct the Jacobian matrix of our predator-prey
example we compute the derivatives

z _x

zx

∣∣∣∣∣∣∣1 � sx − ρfx − 1 − ρ( )lx (43)
z _x

zy

∣∣∣∣∣∣∣∣1 � −ρfy (44)
z _y

zx

∣∣∣∣∣∣∣1 � αgx (45)
z _y

zy

∣∣∣∣∣∣∣∣1 � α gy −my( ) (46)

where we defined the exponent parameters sx, fx, fy, lx, gx, gy,my as
needed and substituted �ρ � 1 − ρ. We can now write the
Jacobian as

J � ( sx − ρfx − 1 − ρ( )lx −ρfy

αgx α gy −my( )). (47)

Compared to Jacobians that we typically find in conventional
models this is a relatively simple and neat matrix, nevertheless
it captures many insights into the structure of the system. Note
in particular that we were not forced to make assumptions on
aspects of the system that we are typically uncertain about,
such as the exact form of predator-prey kinetics. By contrast
many structural features that we can be certain about are
represented. For example, net growth is the differences
between gains and losses, independent processes add up,
prey reproduction is assumed to be independent of the
predator, etc.

6.5 Additional Constraints and Auxiliary
Variables
In our example system the gain of the predator is still
disconnected from the loss of the prey. Surely the functions F
and G in our original model are not independent. But they are
also not necessarily identical. As a basic approach we could
assume that the predator gain is a function of the prey loss, e.g.

G X,Y( ) � H F X,Y( )( ). (48)
At this point one may wonder if it is useful at all to write a
relationship where an unspecified function G depends on an
unspecified function F in an unspecified way H. In GM the
answer is generally yes, because all of these functions correspond
to well defined elements of our mental model: predation loss F,
conversion efficiency H, predation gain G. By representing these
elements separately, we make them tangible in the equations, or, in
other words, the equations become a better representation of what
we have in mind when we consider the system.
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Imposing such additional constraints on a GM, typically
results in additional constraints on the scale and or exponent
parameters. In this example we can quickly verify that there is no
impact on the scale parameters: In the steady state our new
condition just reads Gp = Hp, which does not impose any
condition on existing scale parameters that would constrain
their values.

To find the implications of the condition for the exponent
parameters we normalize the condition using the same procedure
that we applied to the differential equations. In this case, we start
by defining

h f( ) � H Fpf, Ypy( )
Hp

. (49)

Then we can start from the normalization of G and write

g x, y( ) � G Xpx, Ypy( )
Gp

� H Fpf, Ypy( )
Hp

� h f x, y( )( ). (50)
We can then compute the exponent parameters

gx � z

zx
h f x, y( )( )∣∣∣∣∣∣∣1 � hffx (51)

gy � z

zy
h f x, y( )( )

∣∣∣∣∣∣∣∣1 � hffy. (52)

These equations now fix two of our exponent parameters, while a
new parameter hf appears that captures the elasticity of predator
gain with respect to prey loss. If we are willing to assume a
constant conversion efficiency as most models do, H is a linear
function and hence hf = 1.

The biomass conversion example presented here is still a
very basic case. In other papers the same approach has been
used to build significantly more complex relationships into
GM. For example, Gross and Feudel (2006) show such
auxiliary constraints can be used to build realistic prey-
switching behavior into GMs.

For an intermediate illustration, let us think a bit deeper
about biomass conversion. Ecological intuition suggests that
conversion efficiency should depend on the per-capita
consumption of prey by predators. Building this ecological
insight into the GM gives us more structure to work with
and hence offers potentially deeper insights. So, let’s consider
an alternative version of H:

G X,Y( ) � H F,C( ), (53)
where C is the per-capita consumption

C F, Y( ) � F X, Y( )
Y

. (54)
Even this form of the constraint does not constrain our scale
parameters further. To find the constraints on the exponent
parameters we define normalized forms of the auxiliary
variables

h f, c( ) � H Fpf, Cpc( )
Hp

c f, y( ) � C Fpf, Ypy( )
Cp

(55)
and then verify

g x, y( ) � G xXp, yYp( )
Gp

� H fFp, cCp( )
Hp

� h f, c( ). (56)

We can now compute the derivatives, keeping in mind that the
auxiliary variables (h, c) are just short hand notations that need to
be differentiated using the chain rule

gx � hffx + hccffx (57)
gy � hffy + hc cffy + cy( ). (58)

In the solution we interpret the exponent parameters as partial
derivatives such that for example cy denotes only the derivative of
c with respect to the second argument, the indirect impact of y on
c via f is accounted for in the independent term cffy.

Let’s try to interpret the parameters that appear here, hf is
the partial derivative of h with respect to x, and since c now
appears as an explicit argument of h it means that this is a
derivative at constant c. So ecologically speaking this parameter
is asking how does the growth of the predator population
change if more predators are feeding but the per capita
amount stays constant. This is almost certainly a linear
relationship so we can assume hf = 1 with much better
confidence than before. The parameter hc corresponds to the
question what happens if every predator consumes a greater
amount per capita. In this case the efficiency of conversion can
go up or down in complex nonlinear ways depending on the
ecological situation, so we keep this as a tunable parameter,
whose effect can be explored with the GM. Finally, cf and cy
describe the elasticities of the per-capita consumption. Since we
specified C explicitly we can compute

cf � z

zf
c f, y( )

∣∣∣∣∣∣∣∣1 �
z

zf

C Fpf, Ypy( )
C Fp, Yp( )

∣∣∣∣∣∣∣∣1 �
z

zf

Fpf

Ypy

Yp

Fp

∣∣∣∣∣∣∣∣1 �
z

zf

f

y

∣∣∣∣∣∣∣∣1
� 1,

(59)
which we could have guessed straight away because we defined C
to be linear in F. Similarly,

cy � z

zy

f

y

∣∣∣∣∣∣∣∣1 � −1, (60)
which is consistent with the inverse relationship we assumed.
Summarizing these calculations we can write

gx � 1 + hc( )fx (61)
gy � fy + hc fy − 1( ). (62)

We have included this slightly more difficult example in this
review because we feel that it illustrates very well that GMs have
the ability to incorporate information that we are confident about
(e.g. hf = 1) while not forcing us to constrain our options where we
do not have such information (e.g. hc).

We can now substitute the results into the Jacobian matrix,
which would remove the now redundant parameters gx and gy but
insert the elasticity of conversion efficiency with respect to per
capita consumption Hc. We could then for example explore how
this parameter impacts the stability of the system, or changing it
affects the predator-prey ratio (see Section 7.2).
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6.6 Conservation Laws
Conservation laws can be imposed on a GM in a similar way as
the conditions, discussed above. However, there are two different
ways in which a conservation law can be used, leading to slightly
different notions of stability.

For the purpose of illustration consider that we have a two-
dimensional system subject to one conservation law. We could then
use the conservation law to reduce the number of variables to one
even before normalization. Subsequently the normalization can be
carried out normally. Alternatively, we can normalize the system and
the conservation law and then interpret the conservation law as a
constraint on the generalized parameters.

Both of these approaches are valid, but in the first case we
arrive at a Jacobian of size 1 × 1, whereas in the latter case we
arrive at a Jacobian of size 2 × 2. Both of these Jacobians describe
the stability of steady states in the system, but in the former case
only perturbations that respect the conservation law are allowed
(hence the one-dimensional eigenspace), whereas in the latter
also those perturbations are considered that violate the
conservation law, leading to a slightly stricter notion of stability.

For most systems the second alternative provides the better
notion of stability, unless the system is fundamentally closed and
no perturbation from the outside is imaginable. The second
alternative is also often simpler to implement as the simpler
internal structure more than compensates for the slightly larger
size of the Jacobian.

Even if we take the second route, conservation laws will
impose some constraints on scale parameters, which is
normally harmless, but can become complicated if we have to
deal with many such constraints. This happens for example in
metabolic models where the number of atoms of different
elements are conserved. In such a case some additional
machinery is needed to help us manage our scale parameters.
A convenient solution is to represent the scale parameters as a
linear combination of a set of fundamental flux modes that obey
all constraints. This is explained in detail in Steuer et al. (2007).

6.7 Derivative Conditions and Optimality
As a final remark in this section let us briefly mention that we can
also impose additional constraints in the form of derivatives. This
makes no sense in the context of our ecological example, but,
abstractly speaking, we could demand

zP X( )
zX

∣∣∣∣∣∣∣
p

� 0, (63)

where P is some process and X is some state variable. Again, we
can normalize

0 � zP X( )
zX

∣∣∣∣∣∣∣
p

� zPpp x( )
zx

zx

zX

∣∣∣∣∣∣∣
p

� Pp

Xp
px (64)

This illustrates that sometimes scale parameters such as Pp/Xp can
appear in the normalization of additional constraints. They are often
easily dealt with as they can typically be replaced by already defined
symbols (e.g. αx). In this example the appearance of the scale
parameter is of no consequence as the outcome stipulates px = 0,
fixing one of the exponent parameters.

The ability to specify conditions on the derivatives is
interesting because it provides us with a way to demand that a
variable must be in a local maximum or minimum of some
function. This is useful for example if we study biological
evolution in an adaptive dynamics model (Allen et al., 2013)
and want to force the species to remain in locally evolutionary
stable states. The same approach can also be used in governance
or cooperation models to demand that agents allocate their
resources optimally.

7 ANALYZING GENERALIZED MODELS

The analysis of GMs is fundamentally more constrained than the
analysis of conventional models as we lack the ability to simulate
the model or compute the steady states. Nevertheless, GMs can be
analyzed in a variety of ways.

7.1 Numerical Stability Analysis
Themain output of GM are Jacobian matrices. Hence the analysis
of GMs is generally based on the analysis of Jacobians. The most
direct application of these matrices is stability analysis. Given a
specific set of generalized parameters, we can substitute the
parameters into the Jacobian and then check the stability of
the corresponding steady state by numerically computing the
leading eigenvalue.

Leading eigenvalues can be computed highly efficiently using
iterative eigensolvers. We can take advantage of this efficiency to
explore the parameter space spanned by the generalized
parameters by random sampling. For this purpose, we
constrain all parameters to plausible ranges, which is possible
as the parameters are generally easy to interpret. For example, we
may decide to set the parameter fx to cover the whole range from
constant to quadratic response, i.e. the same range of possibilities
that would be covered by a Holling type-III functional response in
conventional models (Holling, 1959).

Once every parameter is thus constrained we can draw an
ensemble of random parameter sets and evaluate their
stability. We can then get a first impression of the behavior
of a system by correlating the individual parameters with a
stability. Suppose we have a system with P generalized
parameters and we draw M sets of values for these
parameters. We can then denote the m’th realization of
parameter i as pm

i where i ∈ [1, P] and m ∈ [1, M].
Furthermore, we can denote the stability of the steady state
described by the parameter set m as sm.

It is tempting to define sm as − Re(λ0), where λ0 is the leading
eigenvalue of the Jacobian. However, this can be misleading in
large networks as instabilities can often arise on very different
timescales, such that the eigenvalue that is the leading one in most
of the parameter space is not the one that causes the instability
once stability is lost.

Instead we can define

sm � 1 Re λ0( )< 0
0 otherwise

{ (65)
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so sm is one if the parameter set m is stable and zero otherwise.
Once we know the stability of all parameter sets we can estimate
the impact of the individual parameters on stability as

ci � Covm pm
i , sm( ). (66)

If stability is completely explained by a particular parameter the
result will be ci = 1 if the parameter is stabilizing or ci = −1 if it is
destabilizing. In general, many parameters will correlate with
stability and typical values of important parameters in large
networks are around 0.1 (see Figure 2).

Let us emphasize that these correlations are not independent of the
sampling. Sampling generalized parameters uniformly often results in
a sensible sampling of the parameter space. Nevertheless, sampling
parameters from wider ranges will result in stronger correlations.
Therefore, it is essential to choose the ranges such that they reflect
reasonable assumptions about the plausible values of the parameters.

Once we have identified a set of parameters of particular interest
we can explore the effect of these parameters on stability in more
detail. A commonprocedure is to vary one parameter x systematically,
while all other parameters are randomized. We can then plot the
proportion of randomly drawn parameter sets that are stable over the
value x. For historical reasons this measure is commonly called the
probability of stable webs. The same procedure can also be used with
two parameters to produce two-dimensional histograms (Figure 1).

7.2 Response to Parameter Change
In addition to stability against short-term (pulse) perturbations,
we can also ask how a dynamical system responds to a permanent
change of parameters, i.e. a press perturbation.

By the implicit function theorem one can show (see
Aufderheide et al., 2013) that a sufficiently small press

perturbations induces a shift in the steady states
described by

δ � −J−1p. (67)
where δ is the induced shift in the steady state, J−1 is the inverse of
the Jacobian matrix, and p is a vector containing the direct
impacts of the perturbations on the individual equations.

If we apply this equation to a GM then the vector δ will
contain the impact on the steady state in the
normalized variables, e.g. an element of 0.05 would
correspond to a 5% increase. Similarly, p contains the direct
impact on the differential equations in units of normalized
turnover.

For example let us again consider the predator-prey system
from Section 6. We can now ask, how switching on an additional
loss term for the prey, say, from harvesting, impacts the steady
state.We assume that a small fraction ϵ of the total turnover of the
prey is harvested, hence

p � ϵ
0

( ). (68)

Substituting this relationship and the Jacobian into Eq. 68 we
arrive at

δ � − 1
det J

α gy −my( ) ρfy

−αgx sx − ρfx − 1 − ρ( )lx( ) −ϵ
0

( ), (69)

where

det J � α sx − ρf x − 1 − ρ( )lx( ) gy −my( ) + gxρf y( ), (70)

FIGURE 2 | Illustration of stability sampling. The map kinase cascade (left) is a motif that appears in gene regulation. Numerical stability analysis of a GM reveals the
impact different generalized parameters have on stability of different versions of the cascade that occur in biology: single layer (A), double layer (B), and triple layer (C).
The results reveal stabilizing (positive) and destabilizing (negative) parameters. This numerical result is based on the analysis of 10million steady states, which reduces the
error bars to less than the line width of the plot. Using GM this number of states can be analyzed in seconds onmodern computers. Figure adapted from Zumsande
and Gross (2010).
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We can now examine the two components of the resulting impact
on the steady state

δprey �
α gy −my( )

det J
ϵ, δpred � − αgx

det J
ϵ. (71)

If there is no strong interference or social interaction between
predators we can assume that predation is linear in predator
abundance, gy = 1. Moreover, in the absence of diseases and

overcrowding the mortality of the predator can be assumed to
be linear my = 1. We can now see that in this case

δprey �
α gy −my( )

det J
ϵ � 0 (72)

So the prey is not impacted by a small amount of harvesting at
all. This happens because the prey population is still
controlled by the predator and any additional losses of the

FIGURE 3 | Impact of a (virtual) insectivore on the Flat Holm island food web. The impact is assessed with a GM of the empirically observed food web (left). This
network contains 227 species (23 birds, 2 reptiles, 133 invertebrates, 68 plants and 1 fungus). GM impact analysis predicts which species would profit and which
species would suffer from a typical insectivore invasion (right). This reveals a general pattern of responses but can also be used to identify indicator species for the
detection of bioinvasions. Figure adapted from Doizy et al. (2018).

FIGURE 4 | Sensitivity in a luxury goods supply network. GMwas used to study the sensitivity (colors) of firms (nodes) and products (links) in a luxury goods supply
network. Figure adapted from Demirel et al. (2019).
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prey are in the long run compensated by reduced predation.
Even though the prey abundance does not change, we can see
from δpred that the predator population is impacted by the
harvesting of its prey, and at low harvesting rates responds
with a proportional loss. An example for GM impact analysis
in a larger network is shown in Figure 3.

In some applications we are not interested in the impact of a
specific perturbation, but in the response to general
perturbations. For this purpose Aufderheide et al. (2013)
propose two measures

Sei � log −∑
n

|vi| n( )

λn
⎛⎝ ⎞⎠, Ini � log −∑

n

|wi| n( )

λn
⎛⎝ ⎞⎠, (73)

where λn is the nth eigenvalue of J, and vn and wn are the
corresponding left and right eigenvectors. For example, w1|

(2) is
the first element in the right eigenvector of J corresponding to the
second eigenvalue.

Among the two measures Sei indicates how sensitive variable i
will react to typical perturbations of the network, whereas Imi

indicates how strongly a perturbation of node i will propagate to
typical nodes in the network. This former is illustrated in a
manufacturing network in Figure 4. If desired dynamical
importance of a variable can be defined as the product of
these measures.

7.3 Mathematical Stability Analysis and
Bifurcation Theory
Because GM avoids the computation of steady states, the
elements of the matrix are often simple expressions, which
are convenient for pen and paper math. Hence GM is
sometimes used to create Jacobians for
methodological studies that need example Jacobians with
certain properties. A recent example is Barter et al. (2021)
which proposed a method for inferring causality (in the form
of the Jacobian matrix) from correlations and used GMs to
create suitable examples. Other examples for this use of GMs
include Höfener et al. (2011), Höfener et al. (2013); Do et al.
(2012).

The most common mathematical use of the Jacobian is
bifurcation analysis, the study of the transitions between
dynamical regimes in the system. In a system of differential
equations local bifurcations of stationary states occur when a
change in parameters causes at least one eigenvalue of the
Jacobian to change sign (Guckenheimer and Holmes, 1983;
Kuznetsov, 2004). Crossing the threshold where such a
bifurcation occurs typically leads to qualitative transition in
the system.

There are only two generic ways in which bifurcations
appear in GMs. Either a single real eigenvalue becomes zero
or a complex conjugate eigenvalue pair crosses the imaginary
axis (saddle-node bifurcation and its variants). The former
scenario corresponds to bifurcations in which the number of
steady states changes, whereas the latter typically marks the
onset of oscillations (Hopf bifurcation) (Guckenheimer et al.,
1997).

The saddle-node-type bifurcations can be easily computed in
GMs of any size. Here the task is to find the combinations of
generalized parameters that lead to a zero eigenvalue of the
Jacobian. Because the determinant of a matrix is the product
of its eigenvalues (Gantmacher, 2000) the Jacobian has a zero
eigenvalue if and only if its determinant is zero. In contrast to the
eigenvalues of a matrix which can only be computed for very
small systems the determinant can be computed straight
forwardly for systems of any size.

For the Hopf bifurcation, we need to locate combinations of
the generalized parameters that lead to a complex conjugate pair
of purely imaginary eigenvalues. To find such pairs a determinant
based method was proposed originally by Guckenheimer et al.
(1997) and rediscovered independently in Gross and Feudel
(2004). Using this method Hopf bifurcations can in principle
be located in systems of any size, however the resulting equations
become too complicated to be useful if the system has more than
ca. 10 variables.

Once we have located the bifurcations in a system, they can be
visualized in bifurcation diagrams. In particular, several analyses
of GMs have used three-parameter bifurcation diagrams, which
can be created by the method described in Stiefs et al. (2008) (see
Figure 5). Each point in the volume spanned by these diagrams
corresponds to a particular steady state. All steady states located
in the same volume share qualitatively similar local dynamical
properties, whereas qualitative transitions take place at the
surfaces, which mark bifurcation points.

A de facto convention in GM is to orient three-parameter
diagrams such that the steady states that are stable are located in
the top-most volume of parameter space, whereas the steady
states in all other volumes are typically unstable.

Three parameter bifurcation diagrams allow the researcher to
quickly get an overview of the interaction of up to three relevant
parameters. Moreover, they allow to quickly identify parameter
regions where different bifurcations meet and intersect. This is
particularly interesting because the intersections can reveal other
dynamical features that are otherwise harder to discover. For
example, it is known that a region of chaotic dynamics must exist
close to the intersection of two Hopf bifurcation surfaces
(Kuznetsov, 2004) (Figure 6). This approach was used for
example in Zumsande et al. (2011) to identify a region of
chaotic dynamics in the MAP Kinase cascade, a common
regulatory motif in cell biology.

7.4 Return to Conventional Models
GMs are especially helpful in systems where large uncertainties
exist. In these systems they can greatly speed up the initial
exploration identifying interesting parameter regions and
phenomena, based on limited information. However, as we
progress beyond the initial exploration of the system we
typically gain additional insights and/or data that we want to
reflect in the model. Some of these additional insights can be used
to restrict generalized parameter ranges. Others may lead to
deeper understanding that results in changes to the model.

One nice feature of GMs is that they can be iteratively
expanded to reflect new insights into the system. For example,
in our initial exploration we may model a given process simply by
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a single unknown function F(X, Y) and the resulting Jacobian will
contain parameters such as fx and fy. Once we understand this
process in more detail we may want to replace this completely
unconstrained function by a formulation that uses some newly
gained insights. For example we may realize that F is the product
of some independent factors F(X, Y) = A(X)Y. We can now
normalize this additional equation and use it to simply replace the
old parameters in our Jacobian by new ones (in this example, fx =
ax, fy = 1). In this way additional detail can be added to models

iteratively without redoing the complete normalization
procedure. This is discussed in more detail in Yeakel et al. (2011).

As we understand our model better we may eventually want to
restrict more and more functions to specific functional forms.
This can lead to hybrid models where some equations are
completely specified, whereas others still contain generalized
terms. In this we need to solve manually for the steady states
of fully specified equations, the resulting stationarity conditions
then typically act as additional constraints on the generalized

FIGURE 5 |Comparison of bifurcation diagrams in conventional and generalized studies of food quality in a producer-grazer system. In the conventional model (top
left) the steady state in which grazers survive emerges from a transcritical bifurcation (TC1), as a conventional parameter is increased the steady state loses stability in a
Hopf (H) bifurcation, where a limit cycle (thin line) is created. The steady state subsequently reacquires stability by going through two saddle-node bifurcations (S1, S2),
before vanishing in another transcritical bifurcation (TC2). The stability of all steady states is captured by the GM (shown in two projections: right, bottom left). In the
GM the bifurcation points form surfaces (red: Hopf, blue saddle node) and the states visited by the conventional example model corresponds to a trajectory through the
volume spanned by the GM. The surface on which the transcritical bifurcations occur is the identical to the front left face of space shown in the right diagram and is
omitted to avoid occlusion. Figure adapted from Stiefs et al. (2010).

FIGURE 6 | Chaos in a four-trophic food chain. A GM reveals that the steady states are stable in the topmost volume of the parameter space shown in the two-
parameter bifurcation diagram (left). When parameters are changed, steady states can lose their stability by crossing either of two Hopf bifurcations (lines). At the
intersection of these lines a codimension-2 double-Hopf bifurcation point is located. Observing this bifurcation in the GM points to a chaotic parameter region nearby.
Indeed, this region can be discovered by numerical calculation of Lyapunov exponents in a conventional model (right). In the region where the GM predicts stability
of the steady state the conventional model is stationary (dashed), in the unstable regions we observe oscillations (dark grey), quasi-periodicity (light andmedium grey) and
chaos (black). Figure adapted from Gross et al. (2005).
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parameters. An example of such an hybrid model is the laser
system discussed in Gross and Feudel (2006).

Quite commonly, GM will identify parameter regions of
particular interest. To explore the dynamics in these regions it
is often desirable to run some numerical simulations. This means
that we need a way to construct conventional models that are
consistent with a given set of generalized parameters. In general,
there will be many models that match the desired parameter set
and many different ways to find them. However, the easiest and
fastest procedure is to replace the general functions in the model
by specific functions that obey the normalization condition F(1) =
α, where α is the desired turnover rate. This guarantees that the
specific model that we are constructing still has a steady state at
X* = 1 which saves us the work of computing the steady state.

For illustration consider again our introductory example

_X � G X( ) − L X( ), (74)
we know already that the Jacobian after timescale
normalization is

J � α gx − lx( ). (75)
Let’s say we are interested in a steady state that is characterized by
α = 1, gx = 1/2 and lx = 2. The challenge is now to find specific
functions G(X) and L(X) such that there is a steady state that
matches these parameter values. One class of functions that meet
our condition F(1) = 1 are the power laws F(X) = Xp. Computing
the exponent parameter corresponding to such a power law,
yields p. Thus, G(X) = X1/2 and L(X) = X2 meet the stationarity
condition and match the desired parameters. Hence one possible
example model is

_X � X1/2 −X2. (76)
This is already a solution, but let’s say the first term X1/2 would be
unrealistic in the context of our application. Instead we want a
term of the form

G X( ) � AX

X + K
. (77)

To make this work, we first enforce the normalization conditions
G(1) = 1, by setting A = 1 + K. Then we choose K such that

p � 1
2
� z

zX

1 +K( )X
K +X

∣∣∣∣∣∣∣1 �
K

K + 1( ) (78)

which required K = 1. Hence, also

_X � 2X
1 +X

−X2 (79)

is a specific model that is consistent with the desired parameter
values. The same approach can be used to construct specific
realizations of complex GMs. Therefore this method can serve as
a constructive proof that each point in the generalized parameter
space corresponds to a realizable steady state in a plausible
conventional model (Kuehn et al., 2013).

A small caveat regarding the procedure above is that the
specific construction results in degeneracy in certain

bifurcations. For simulation studies this is normally not a
concern, but may cause peculiar results in bifurcation analyses.

8 SUMMARY AND DISCUSSION

In the present paper we summarized the state of the art in
generalized modeling. In the past generalized modeling has
been used in more than 50 publications in diverse areas of
Science, Engineering, Mathematics and Medicine (see
references cited above). As a result, the method has seen
increasing adoption by labs around the world.

Although generalized modeling is mathematically straight
forward, its philosophy differs in important ways from
conventional modeling. In our experience, these differences
mean that young researchers with limited experience in
dynamics find it easier to adopt generalized modeling than
seasoned modelers, for whom it takes greater cognitive effort
to switch to a different mental framework.

Conventional modeling is very much grounded in the belief
in an ultimate truth: At least within the model, the variables are
governed by precise and exact rules and equations that given
some initial conditions permit only one possible outcome. This
is even true for stochastic models, which postulate micro-scale
randomness, but work with precisely defined laws on the level
of distributions.

By contrast, generalized models, acknowledge that we have a
limited view of reality and may hence be unable to perceive the
exact laws that are at work in the system. Instead of postulating
one definite reality, generalized models work with the whole
infinite ensemble of possible realities that are consistent with the
available structural knowledge. They explore dynamical
implications within this ensemble, allowing the researcher to
further narrow down the set of possible worlds.

As we have shown, some questions can be answered very
efficiently by analyzing the whole ensemble of possible worlds
captured by the generalized model. These questions include
the analysis of dynamical stability and bifurcations of steady
states, prediction of responses to different types of
perturbations, and identification of important parameters
and parameter regions.

In summary generalized modeling offers a highly efficient
approach to extract types of insights from limited information.
This efficiency of generalized modeling is not limited to
numerical efficiency, but also allows mathematical solutions in
systems of intermediate complexity, and perhaps most
importantly saves the researcher time. Formulating a
generalized model involves considerably less work than a
comparable conventional model. It avoids extensive research
and considerations which may be necessary in a conventional
model to fix rate constants and parameterize kinetic laws.

Once a researcher is familiar with the general procedure and,
more importantly, has adapted to its philosophy, generalized models
can typically be formulated, analyzed and adapted within just a few
hours. We hope that this review will help many new researchers to
discover this exciting and entertaining modeling approach.
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Discrete Biochemical Systems Theory
Eberhard O. Voit * and Daniel V. Olivença

TheWallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
United States

Almost every biomedical systems analysis requires early decisions regarding the choice of
the most suitable representations to be used. De facto the most prevalent choice is a
system of ordinary differential equations (ODEs). This framework is very popular because it
is flexible and fairly easy to use. It is also supported by an enormous array of stand-alone
programs for analysis, including many distinct numerical solvers that are implemented in
the main programming languages. Having selected ODEs, the modeler must then choose
a mathematical format for the equations. This selection is not trivial as nearly unlimited
options exist and there is seldom objective guidance. The typical choices include ad hoc
representations, default models like mass-action or Lotka-Volterra equations, and generic
approximations. Within the realm of approximations, linear models are typically successful
for analyses of engineered systems, but they are not as appropriate for biomedical
phenomena, which often display nonlinear features such as saturation, threshold
effects or limit cycle oscillations, and possibly even chaos. Power-law approximations
are simple but overcome these limitations. They are the key ingredient of Biochemical
Systems Theory (BST), which uses ODEs exclusively containing power-law
representations for all processes within a model. BST models cover a vast repertoire
of nonlinear responses and, at the same time, have structural properties that are
advantageous for a wide range of analyses. Nonetheless, as all ODE models, the BST
approach has limitations. In particular, it is not always straightforward to account for
genuine discreteness, time delays, and stochastic processes. As a new option, we
therefore propose here an alternative to BST in the form of discrete Biochemical
Systems Theory (dBST). dBST models have the same generality and practicality as
their BST-ODE counterparts, but they are readily implemented even in situations where
ODEs struggle. As a case study, we illustrate dBST applied to the dynamics of the aryl
hydrocarbon receptor (AhR), a signal transduction system that simultaneously involves
time delays and stochasticity.

Keywords: canonical model, delay, discrete event, generalized mass action system, power-law approximation,
system, stochastic event, aryl hydrocarbon receptor

INTRODUCTION

Arguably the greatest challenge of systems modeling in the biomedical sciences is the choice of
optimal process representations. Often the true magnitude of this challenge is ignored and the
modeler either constructs an ad hocmodel or chooses a default, such as a Lotka-Volterra system for
describing the interactions among competing populations (Volterra, 1926; Lotka, 1956; May, 1973)
or a mass action formulation or some variation of the Michaelis-Menten rate law for enzyme
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catalyzed processes (Michaelis and Menten, 1913; Voit et al.,
2015). These default representations may be further extended or
refined with the inclusion of environmental variables in a
population model (Stein et al., 2013; Dam et al., 2020) or the
inclusion of modulating effects, such as the regulation of a
biochemical reaction through competitive or allosteric
inhibition (Cornish-Bowden, 2012). Because there are no iron-
clad rules for choosing a model, researchers often arrive at rather
different formulations even for the same phenomenon. An
illustrative example is the phosphofructokinase reaction in
glycolysis, for which numerous rate functions of drastically
different complexity have been proposed (Voit, 2017a). The
choice of optimal representations becomes even more
challenging at the intersections of typical biological domains,
such as the combination of genetics, metabolism, and organismal
physiology, because the default models of the various
subdisciplines are different, thereby creating the need of
multiscale models that operate at different temporal, spatial
and organizational scales.

One could argue that biological processes must obey the laws
of physics and that, therefore, optimal—or at least
adequate—representations are prescribed. While this is true in
a fundamental sense, most biological processes are so convoluted
that exact physical representations of all contributing aspects
become infeasible (Voit, 2008). As an example, consider the
generation of two daughter cells from a bacterial mother cell.
At a high level, one bacterium becomes two, two become four,
and so on, and it is easy to formulate an exponential function that
describes the progression well. However, if it is necessary to
account for more details, for instance, in order to understand a
mutant with aberrant behavior, it becomes clear that the cell
division process is immensely complicated (Schafer, 1998;
Carlton et al., 2020). It is multifaceted and involves so many
different aspects at the molecular level that it is hardly possible to
formulate the governing processes, proceeding in time and space,
with elementary functions that are directly derived from the first
principles of physics.

A second aspect of the challenge of biomedical systems
modeling is the fact that it is usually difficult to capture the
dynamics of a molecular or cellular component directly. Even the
simple Michaelis-Menten rate law of enzyme kinetics does not
prescribe the changing concentration of a substrate or product as
the reaction progresses, but expresses the speed of the reaction as
a function of the substrate concentration. By contrast, it is often
feasible to characterize all influences that lead to an increase or
decrease in a system component over time (Voit, 2020). Indeed,
the literature contains uncounted articles about “the effect of . . .
on . . .,” which explicitly or implicitly describe how a target
variable changes in response to some input. Thus, this view
focuses on the change in a component, rather than the state of
this component, and this change is driven by the totality of all
contributing factors. A natural mathematical formulation of this
situation is a system of ordinary differential equations (ODEs)
which, after all, equate the instantaneous change in a variable to
all processes affecting this variable. Consequently, the
biomathematical literature contains an enormous body of
work using ODEs to analyze biological systems [for

introductory texts, see (Keshet, 2005; Klipp et al., 2016; Voit,
2017b)]. Even so, it must be kept in mind that ODEs are
approximations of natural processes, which are often
genuinely discrete (see Supplementary Data S1, S2).

While ODEs have become the standard modeling default, the
conundrum of determining the best possible model structure
persists. Two generic solutions are 1) the use of ad hoc
representations that are often chosen simply for convenience
and match the natural processes sufficiently well and 2) suitable,
unbiased approximations. Among the latter, linear systems are
most straightforward but are often at odds with the genuine
nonlinearities of biomedical systems. A prominent alternative is
Biochemical Systems Theory (BST) (Savageau, 1976; Voit, 2000;
Torres and Voit, 2002; Voit, 2013), which uses power-law
representations for all processes, thereby creating highly
structured nonlinear models in immutable, predefined formats
(Supplementary Data S1).

Independent of what representations are chosen to design
ODE models, the ODE format in itself faces a number of
challenges. Of particular prominence among these are time
delays and stochastic effects (Supplementary Data S2).
Sometimes, these can be addressed with sophisticated
numerical ODE solvers, but the formulation and
implementation can quickly become convoluted and often
requires intimate knowledge of the inner workings of these
solvers.

An illustrative example for the crucial role of delays is a
situation that arose when we analyzed the dynamics of anemia
during malaria, a disease that is caused by Plasmodium parasites
that invade red blood cells and eventually cause them to burst.
Red blood cells furthermore disappear in large numbers due to a
so-called bystander effect, in which many non-infected red blood
cells perish for reasons that are not well understood. One difficult
challenge that arose during our modeling attempts was the fact
that red blood cells naturally have a narrowly determined life
span with rather small variation; in humans, it is about 115 days ±
15% (Franco, 2012). The modeling challenge becomes apparent
in the assessment of howmany cells are expected to disappear at a
given time point during the infection (Fonseca and Voit, 2015;
Fonseca et al., 2016). Some disappear due to the infection or the
bystander effect, but many are removed by the spleen because
they have reached the end of their natural life. To account for the
latter aspect, one needs to know the age of each cell at any given
point in time. However, ODEs do not recount the ages of
individual cells. Thus, the disappearance of cells from the
blood stream must be based on averages, which are adequate
under steady-state conditions, but not for dynamic changes
caused by the growing parasite population. Even the use of
delay differential equations (DDEs) is inconvenient in this
case, whereas a discrete, recursive modeling approach is
straightforward (Fonseca and Voit, 2015; Fonseca et al., 2016).
Other pertinent examples of delays and stochasticity are
presented in Supplementary Data S2.

This article proposes an alternative to BST models that
facilitates the modeling of genuine discreteness, delays, small
numbers of components, stochastic events and combinations of
these complicating factors. This alternative consists of a discrete,
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recursive version of BST, here dubbed “dBST,” which is
straightforwardly constructed and implemented.

RESULTS

For the practicing computational modeler in the biosciences, a
partial solution to the drawbacks of ODEs can be the use of
systems of discrete-time, recursive equations, where the
changes in variables are represented on the basis of power-
law functions, as is the case in BST. This replacement of ODEs
with recursive equations raises the immediate question
whether any genuine features of ODE models are lost. The
answer can be approached in two ways. First, it is rather
evident that the recursive equations converge to the ODEs
if the step size decreases to 0 in the limit. In fact, computer
algorithms for solving ODEs use small discrete step sizes.
Second, one may test whether representative nonlinear
phenomena that are typically represented with ODEs, such
as saturation, limit cycles, and deterministic chaos, can also be
represented through recursive equations with a reasonable step
size. Supplementary Data S3 discusses mathematical
similarities between BST and dBST systems. Here, we focus
on the response repertoire of dBST systems and their features.
We also present a case study illustrating the de novo design of a
dBST system that simultaneously accounts for both, delays and
stochasticity.

Response Repertoire of Discrete
Biochemical Systems Theory Models
Simple Introductory Example of a Linear Pathway
The 2-variable BST system

_X1 � 2X0 − rX0.8
1

_X2 � rX0.8
1 − 2.5X0.5

2 (1)

X0 = 1
X1(t0) = 1.18
X2(t0) = 0.64

represents a simple linear pathway with constant input X0 = 1
and rate r = 1.75 for the conversion of X1 into X2. The pathway is
shown in Figure 1:

As an illustration, the system is initiated very close to its steady
state (1.181653, 0.64). At t = 5, the input X0 is persistently
increased by 20%. Solving the equations shows that the system

responds to the changed input by approaching a new steady state
(1.484, 0.922) (Figure 2).

The corresponding dBST system in standard notation
(Supplementary Data S3) is

X1,q·ϑ � X1,(q−1)·ϑ + ϑ[2X0 − rX0.8
1,(q−1)·ϑ]

X2,q·ϑ � X2,(q−1)·ϑ + ϑ [rX0.8
1,(q−1)·ϑ − 2.5X0.5

2,(q−1)·ϑ] (2a)

To simplify this notation for easier reading, we rename ~Xi �
Xi,q·ϑ and Xi � Xi,(q−1)·ϑ, for i = 1, 2, which simplifies the
appearance of Eq. 2a to

~X1 � X1 + ϑ [2X0 − rX0.8
1 ]

~X2 � X2 + ϑ[ rX0.8
1 − 2.5X0.5

2 ] (2b)
Choosing as step size ϑ = 0.5 reveals output that is quite

similar to that of the BST system, although one notes that the
responses, especially of X2, are slightly different immediately
following the switch in input (t = 5). Importantly, both
formulations exhibit essentially the same dynamics and
approach exactly the same steady state (Figure 2). Other
step sizes yield similar results.

Limit Cycles
Limit cycles are representations of oscillations that are stable in a
sense that, when perturbed by external influences, return to the
original frequency and amplitude. Limit cycles are ubiquitous in
biology (Keshet, 2005).

It has been proposed that many disease patterns can be seen
mathematically as shifts from physiological to pathological limit
cycles (Claude, 1995).

FIGURE 1 | Simple linear pathway with constant input X0.

FIGURE 2 | Comparison between the results of corresponding 2-
variable BST (lines) and dBST (dots) models (Eqs 2, 10).
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Like BST systems, dBST systems can capture the dynamics of
stable limit cycles (Lewis and Voit, 1991; Yin and Voit, 2008). An
example is the stable oscillator

_X1 � 0.011 [X2
1X

3
2 −X1X2]

_X2 � 0.01[X−1
1 X4

2 −X3
1X

5
2] (3)

which in standard dBST format reads

X1,q·ϑ � X1,(q−1)·ϑ + ϑ · 0.011 · [X2
1,(q−1)·ϑ X3

2,(q−1)·ϑ
−X1,(q−1)·ϑ X2,(q−1)·ϑ]

X2, q·ϑ � X2,(q−1)·ϑ + ϑ · 0.01 · [X−1
1,(q−1)·ϑX4

2,(q−1)·ϑ
−X3

1,(q−1)·ϑX5
2,(q−1)·ϑ] (4a)

To the human eye, this format may look rather unwieldy,
but it is easily implemented into computer code.
Furthermore, using the simplified notation introduced in
Eq. 2, we obtain

~X1 � X1 + ϑ · 0.011 · [X2
1X

3
2 −X1X2]

~X2 � X2 + ϑ · 0.01 · [X−1
1 X4

2 −X3
1X

5
2] (4b)

Solving the system with step size ϑ = 0.1 confirms that the
system indeed has a stable limit cycle. Namely, initial
conditions inside the limit cycle, like (X1,0, X2,0) = (1, 1.3),
lead to increasing oscillations, while conditions outside, such
as (X1,0, X2,0) = (1.1, 1.8), generate damped oscillations;
starting essentially on the limit cycle, e.g., (X1,0, X2,0) =
(0.7249193, 0.8685822) demonstrates constant amplitudes.
In the phase plane, the corresponding plots are outward
and inward spirals, as well as the stable orbit (Figure 3). If
we use the step size ϑ = 1, the system still displays a limit cycle
of similar shape, but with larger amplitudes (not shown).
Much larger step sizes eventually become too coarse and
destroy the features of the limit cycle.

Deterministic Chaos
Discrete BST systems are also rich enough to permit
deterministic chaos. While a rigorous proof is difficult, an
example is a discrete system gleaned from the well-known
Lorenz oscillator (Lorenz, 1963), which mathematician and
meteorologist Edward Lorenz developed as a simplified
representation of atmospheric convection, which had been
modeled previously as a fluid layer for which the
temperatures at the top and the bottom were kept constant

FIGURE 3 | The dBST system in Eq. 4models a stable limit cycle, as confirmed by simulations starting inside (A), outside (B) and essentially on the limit cycle (C).
Panel (D) displays a typical phase-plane plot with superimposed oscillations spiraling out (dark green) or in (light green) toward the limit cycle, as well as starting very close
to the limit cycle itself (cyan); the initial locations are indicated by circles. The trajectories appear to be smooth because the step size is rather small. The ODE model
produces essentially the same solutions, even though the maximal amplitudes are slightly different.
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at different values (Saltzman, 1962). The ODE format of this
system reads:

_X1 � 0.2 ·X2 − 0.2 ·X1

_X2 � 0.6 ·X1 − 0.02 ·X2 − 0.02 ·X1 ·X3 (5)
_X3 � 0.02 ·X1 ·X2 − 0.05 ·X3

The reformulation into recursive equations is
straightforward, and the dBST in simplified notation (see
Eq. 2) reads

~X1 � X1 + ϑ · 0.2 · [X2 −X1]
~X2 � X2 + ϑ · [0.6 ·X1 − 0.02 ·X2 − 0.02 ·X1 ·X3] (6)

~X3 � X3 + ϑ · [0.02 ·X1 ·X2 − 0.05 ·X3]
Solving the system with step size ϑ = 1 and initial conditions

(10, 10, 30) reveals dynamics similar to that of the chaotic Lorenz
equations in ODE format, both in the time domain and in phase
plane (Figure 4), although the numerical details of the results are
different, which is not surprising, as chaotic systems are
extremely sensitive to all numerical settings, such as parameter
values, initial conditions, and the step size for solving the ODEs or
the discrete equations. One also notes that the maximum
amplitudes of the BST system are somewhat higher than in
the ODE model.

Typical Simulations in dBST That Are More
Intuitive Than in ODE Models
The simulations described in this section are straightforwardly
implemented in dBST, and while it is possible to implement some
of them in ODEs, such an implementation is sometimes
cumbersome or difficult to intuit. Indeed, one may have to be
creative if some of these issues are to be included into ODE
solutions and understand the inner workings of the numerical
solution algorithms. For example, the widely used Runge-Kutta
method averages the slope for each solution step, and additional
statements, such as if-conditions, can influence this average or
cannot be taken into consideration, depending on how the solver
was coded. Furthermore, using numerical solvers with variable
step size requires care so that the choice of the optimal step size is
not affected.

In the following, we focus on different types of stochastic
events and the dependence of the system dynamics on thresholds
for dependent variables. Details regarding delays are discussed in
Supplementary Data S2 and in the later Case Study Aryl
Hydrocarbon Receptor Signal Transduction.

Stochastic Variations in Rates
Returning to the introductory at the beginning of the Results
section, it is easy in dBST to replace the constant rate r of the
process converting X1 into X2 with a rate that stochastically varies

FIGURE 4 | The dBST system in Eq. 6 captures deterministic chaos, similar to the ODE system proposed by Lorenz. The top panel shows results in the time
domain, in comparison to the corresponding ODE system (thin grey lines). The BST and dBST systems diverge quickly (top panel), which is a genuine feature of chaotic
systems. The bottom panel displays phase-plane plots of the two models, showing the discrete nature of the system in the form of connected straight lines. The initial
locations are indicated with circles. Note that the maximal amplitudes of the dBST system are larger.
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within a range of, say, ± 10% of the nominal value in the example.
For this illustration, we randomly sampled a rate from this range
at every iteration. Two solutions are shown in Figure 5.
Variations on this theme are also readily implemented. For
instance, it is possible to sample a new rate less frequently
than at every step.

EventsWhere System Variables Affect External Events
Suppose a signaling system responds stochastically to an
environmental trigger, which is a ubiquitous situation in
biological systems, especially if the concept of an
“environment” includes the biophysical surroundings of cells.
We develop this example in several steps, because some cases are
easily addressed with ODEs, whereas others are not. In the
simplest case of a stochastic environmental input it is possible
to include if-statements into a numerical solver, such as the
deSolve R package (Soetaert et al., 2010), which was designed
to solve various initial-value problems, differential algebraic
equations and partial differential equations. However, if one or
more of the system variables influence the random variable, the
situation is much more complicated, as the random variable must
be adressed inside the solver, which is difficult for a ODE solver
but straightforward in the discrete case.

Suppose at first that the environmental trigger is present or
absent for stochastically long time periods that begin at random

time points and whose magnitude affects the response of the
signaling system. As a specific example, consider the lac operon of
the bacterium E. coli, where external lactose triggers changes in
gene expression (Lewis, 2005). Savageau (2001) proposed a model
of the system in the form of the diagram in Figure 6 and
represented it with S-system equations. In this model, X1 is
the concentration of mRNA of the lac operon, X2 is the
concentration of the enzyme β-galactosidase, which catalyzes
the conversion of lactose into galactose and glucose, and X3

and X4 are the intracellular and extracellular concentrations of
lactose, respectively. X4 is considered an independent variable
and therefore that does not require its own differential equation.

Savageau discussed the kinetic orders (g and h parameters) but
did not provide specific parameter values for them or for the rate
constants (α and β parameters). We use this example for a series
of demonstrations, specifying the parameter values as shown in
Eq. 7.

_X1 � 0.2X2
3 − 0.1X1

_X2 � 0.5X1 −X2 (7)
_X3 � 0.1X4 − 0.1X2X3

For the first demonstration, suppose that the stimulus,
external lactose (X4), is available in irregular time periods and
concentrations that vary randomly within reasonable ranges. If

FIGURE 5 | Comparison of results from the deterministic and two instances (A and B) of stochastic models (ϑ = 0.5) of the simple pathway in Figure 2. The two dBST
simulations were obtained with a stochastically varying rate r in Eq. 1 (dots), starting from different seeds, while the solid lines are the results of Eq. 2 with constant rate r.

FIGURE 6 | Diagram of the lac operon and corresponding equations, as proposed by Savageau (2001).
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the switch points and magnitudes of X4 are known beforehand,
the simulation of the ODE system is straightforward. For
instance, if the system starts at its steady state (0.43, 0.22,
0.46) with X4 = 0.1 and the stimulus changes according to
Table 1, one directly obtains the output in Figure 7A.

If the timing and magnitudes are stochastic, a simulation with
a standard ODE solver can be cumbersome as one needs to know
how to evaluate functions of time inside the algorithm.
Nonetheless, this situation can still be addressed, for instance,
with deSolve or in Matlab. This case is again straightforwardly
implemented in a dBST system. One set of results is shown in
Figure 7B for event times sampled from an exponential
distribution with a rate of 1/60. The magnitude of the signal
at every event was sampled from a normal distribution with mean
μ = 0.5 and standard deviation σ = 0.25.

As the next phase of the example, we analyze the situation
discussed by in Savageau (2001), where the format of the first
ODE in Figure 6 depends on the current value of X3. Specifically,
the author defined

_X1 �
⎧⎪⎨⎪⎩

α1L − β1X1 ifX3 <X3L

α1X
g13
3 − β1X1 ifX3L ≤X3 ≤X3H

α1H − β1X1 ifX3 >X3H

(8)

where X3L and X3H are threshold values and the corresponding
“low” and “high” rate constants α3L and α 3H are different. While
it is possible to address this task by embedding if-conditions
into an ODE solver, these situations of thresholds are much
more easily called up in dBST: The If-statements are directly
implemented in the recursive step for variable X1. As a
demonstration, suppose again that the external trigger
changes in unpredictable patterns, which we assume to be
random in terms of timing and magnitude, as before, and that
the thresholds are in effect. Two typical results are shown in
Figures 7C,D.

As the most complicated variation of the example, let us
now suppose that both the magnitude and frequency of the
stochastic events depend on the state of the system. For
instance, the amount of external lactose X4 to be imported
into the cell could stochastically depend on the current mRNA
prevalence X1 and also the internal lactose concentration X3,
which together could have an effect on the characteristics of
the import transporters. This situation cannot easily be
addressed with an ODE solver, if at all, as one can no
longer first calculate the current level of X4 and then
present it to the solver as a time-dependent function.
Instead, such a situation mandates that the stochastic
variables be evaluated inside the solver, a process that can
interfere with the ODE solution. By contrast, the discrete
version is easily implemented. An example is presented in
Figure 7E.

Parameter Estimation
Much has been written about the estimation of parameter values
of ODE systems from time series data [e.g., see reviews
(Gennemark and Wedelin, 2007; Chou and Voit, 2009;
Gennemark and Wedelin, 2009; Gábor and Banga, 2015)]. In
order to make typical gradient methods and evolutionary

TABLE 1 |A priori known schedule of switches in stimulus in the lac operonmodel.

Time 0 10 60 110 160 210 260 310

Stimulus 0.1 1 0.5 0.1 1.2 0.4 1 0.1

FIGURE 7 | Comparison of responses of BST (faint grey lines) and dBST
models (dots) to perturbations in external lactose concentraion (solid lavendar
line). (A) Timing and magnitudes are known a priori (Table 1). (B) Signaling
events occur in a stochastic manner and signal magnitudes are random
within a given range (see Text for details). (C,D) Two sets of responses, where
switches in the equation of X1 depend not only on the stochastic input X4, but
also on the value of X3. (E) The value of X3 is used to generate a success
probability for a Bernoulli random variable. Specifically, if the Bernoulli process
returns 1, the new value for X4 is given by a truncated normal with mean 0.5
and a standard deviation equal to the value of X1.
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algorithms more efficient, it has been suggested to smooth the
time series data, use points from the smoothed trends, and
estimate slopes of the time trends corresponding to the chosen
points (Varah, 1982; Voit and Savageau, 1982; Voit and Almeida,
2004). Substituting these quantities in the ODE system converts
the task of estimating parameter values for ODEs into an
estimation from algebraic equations. Thus, for estimation
purposes, the ODE for each variable Xi,

_Xi � Fi(X1, . . . , Xn) i � 1, ..., n (9)
is converted into a system of K algebraic equations of the
format

Si(t1) � Fi(X1(t1), . . . , Xn(t1))
Si(t2) � Fi(X1(t2), . . . , Xn(t2)) (10)
Si(tK) � Fi(X1(tK), . . . , Xn(tK))

Here, each equation corresponds to one chosen time point.
The X values are either the raw data or the corresponding data
from the smoothed time trend, while S indicates the
corresponding slope of the time course.

This method of using estimated values and slopes tends to be
computationally much more efficient than parameter inferences
directly from ODEs, for instance with a gradient method or an
evolutionary algorithm (Voit and Almeida, 2004). One drawback
is that the estimation of slopes exacerbates noise in the data
(Knowles and Renka, 2014; Voit, 2017b). To some degree, this
problem is alleviated by smoothing the data appropriately.

For the discrete system, no slopes need to be estimated as the
difference to be used instead,Xi,q·ϑ −Xi,(q−1)·ϑ, is directly obtained
from the data. Thus, given measurements for all Xi at different
time points, and possibly a smoothing step, the estimation of the
parameters of a dBST system is straightforward.

As an example, consider the branched pathway in Figure 8, for
which we pretend to have experimental measurements that had
been smoothed, for instance, with a spline. For the illustration, we
actually created synthetic “data” from a GMA (BST) model in
ODE format and did not worry about noise, in order to assess
most clearly to what degree BST and dBST models correspond
and reflect the synthetic data. Analogously to the BST model, the
format of the dBST equations is dictated directly by the flow
structure and regulation of the pathway. In the simplified
notation of Eq. 2b, the dBST equations take the form

~X1 � X1 + ϑ · [a1 ·Xg1
3 − b1 ·Xh11

1 − c1 ·Xh12
1 ·Xh13

3 ]
~X2 � X2 + ϑ · [b1 ·Xh11

1 − b2 ·Xh2
2 ]

~X3 � X3 + ϑ · [b2 ·Xh2
2 − b3 ·Xh3

3 ] (11)
~X4 � X4 + ϑ · [c1 ·Xh12

1 ·Xh13
3 − c2 ·Xh4

4 ]
and we suppose that the values of the parameters are unknown.
We analyze datasets with different densities of observation time
points. For each parameter optimization, we use the optim
function in R (R Core Team, 2018), which is based on the
Nelder-Mead method (Nelder and Mead, 1965). Multiple
sequential optimizations were performed for each example and
the process was stopped when the difference of consecutive errors
was less than 10–3.

For the first illustration, we suppose that data had been
obtained in intervals of τ =1, that is, for t = 0, 1, 2, ..., 60, and
define ϑ = 1. The estimation result, shown in Figure 9A, captures
the data well. The associated residual error, divided by the total
number of data in the four time courses (4 n) is SSE/4 n =
0.1007525/(4 * 61) = 4.13 × 10–4. Fitting the same data, but with
step size ϑ = 0.5 (results not shown), the fitting error is roughly
halved, with SSE/4 n = 0.0443176/(4 * 61) = 1.81 × 10–4.

As a second illustration, we assume that the data are much
sparser (τ =3), that is, with measurements obtained at time points
t = 0, 3, 6, 9, . . . , 60; we again define ϑ = 1. The result is shown in
Figure 9B. The model still fits the data well, with a residual error,
divided by the total number 4 n of data, of SSE/4 n = 0.03697914/
(4*21) = 4.40 × 10–4, which is slightly, but not substantially higher
than for the denser dataset. The estimated parameter values are
slightly different from those obtained for the denser dataset,
which is not surprising. However, it is interesting that the
sparsity of the data hardly seems to affect the estimation.

Quasi as a baseline for comparison, we also fit the synthetic
data with ODE equations in GMA format. They also recapture
the data well (Figure 9C), even though the estimated
parameter values are not identical to those used to create
the data (Table 2), indicating some numerical redundancy
among the parameters. The residual error, divided by the
number of data is SSE/4 n = 0.03966285/(4*61) = 1.62 ×
10–4, which is again in the same range as for the discrete
model. The parameter values are slightly different from those
estimated with the dBST model. This result is to be expected
because the meaning of each multiplicative parameter is,
strictly speaking, not identical for BST and dBST models, as
the former represent instantaneous rates and the latter
stepwise changes.

Case Study: Aryl-Hydrocarbon Receptor
Signal Transduction
The aryl-hydrocarbon receptor (AhR) is a highly conserved
sensor for specific cues during development and normal
physiology (Stockinger et al., 2014; Brinkmann et al., 2019;
Zhu et al., 2019), as well as for external, xenobiotic
compounds (Stevens et al., 2009; Simon et al., 2015) or danger
signals derived from the invasion of parasites, which are mediated
through compounds like the tryptophan-derivative kynurenine

FIGURE 8 | Simple branched feedback with dual regulation by X3.
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(Julliard et al., 2014; Gupta et al., 2022). In response to such
signals, the AhR signal transduction system triggers the
upregulation of a host of genes, most prominently those
coding for cytochrome P450 enzymes that metabolize toxicants.

The generic functionality of the AhR-system is depicted in
Figure 10. Once a ligand (L) binds to AhR, the activated AhR
forms a complex with the AhR nuclear translocator ARNT. This
complex translocates to the nucleus, where it serves as a
transcription factor that binds to the xenobiotic response
element XRE—or a non-canonical XRE analog—within the
promotor regions of numerous inducible target genes (Huang
and Elferink, 2012). The AhR repressor AhRR competes with
AhR for ARNT (Evans et al., 2008). Intriguingly, the gene
coding for AhRR is itself under the control of the AhR-ARNT
transcription factor, thereby creating a negative feedback loop that
eventually stops the expression of AhR-ARNT controlled genes
(Zudaire et al., 2008). As one might expect, reality is more
complicated, for instance, due to compounds like the hypoxia

inducible factor-1α (HIF1α) that compete with AhR and AhRR
for ARNT (Spence et al., 1970) and to several cofactors modulating
the process (Simon et al., 2015), but the AhR-ARNT-AhRR system
by itself contains enough interesting complexity for the present
illustration.

One issue in setting up an ODE model is the substantial time
delay between transcription factor binding, the actual availability of
AhRR, and the resulting repression of target gene expression
(Koussounadis et al., 2015). In yeast and mouse, this type of
delay was found to be at the order of 3–6 h (Fournier et al.,
2010) (Liu et al., 2016). A delay of this magnitude is crucial in
the AhR system, as it noticeably delays the inhibitory effect of AHRR
on target gene expression.

A second issue is the fact that transcription and translation are
known to be stochastic processes (Raj and van Oudenaarden, 2008).
In fact, at least in some cases, activation of a promotor causes the
production of proteins to occur in short bursts and yields variable
protein amounts that occur at random time intervals (McAdams and

FIGURE 9 | Data fits with dBST [τ = 1 (A) and τ = 3 (B)] and BST (C) models.
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Arkin, 1997). Delays and stochasticity of course are not mutually
exclusive but occur at the same time (Gedeon and Bokes, 2012). A
model of this stochasticity for the case of AhR, using a discretemodel
based on the Gillespie algorithm, was presented by Simon et al.
(2015). However, it did not explicitly account for the time delays
between AhR binding and target protein expression and the role of
AhRR as repressor.

Taken delays and stochasticity into account, we can formulate
a dBST model that allows us to test the effects of delay and
stochasticity. In mass-action and power-law format, and with
simplified notation (see Eq. 2b),such a model has the following
format:

The variable names are defined in Figure 10. For this
illustration, we choose reasonable rate constants as shown in
Table 3 and set the inhibition parameter as g = −4; to avoid
numerical issues for X6 = 0, we define the inhibition as (X6 + 1)g.

FIGURE 10 | Diagram of the AhR signal transduction system. AhR is activated by a ligand L and binds to the nuclear translocator ARNT. The complex serves as a
transcription factor of genes whose promoter regions contain the xenobiotic response element XRE. These genes code for a variety of target proteins (TP) including,
notably, the AhR repressor AhRR. AhRR competes with AhR for ARNT, and the complex inhibits gene expression. Transcription and translation incur delays (τ1, τ2) and
are stochastic in nature (σ1, ..., σ4). L is also considered to be stochastic.

TABLE 2 | Parameter estimates obtained for different settings of the dBST model in Eq. 11 and the corresponding BST model.

Parameter Value for “data” generation dBST (τ =1) ϑ = 1 dBST (τ =1) ϑ = 0.5 dBST (τ = 3) ϑ = 1 BST

X0 1 0.981337 0.826518 0.951492 1.553729
a1 0.25 0.263397 0.279577 0.263219 0.15743
b1 0.08 0.166199 0.132337 0.159418 0.140825
b2 0.2 0.276071 0.245437 0.265376 0.249848
b3 0.3 0.395566 0.355906 0.386093 0.351592
c1 0.15 0.091586 0.091028 0.089742 0.097641
c2 0.25 0.169922 0.172505 0.166313 0.173117
d1 0.1 4.775786 10.00496 8.298336 −0.02349
g1 −2 −1.71411 −1.94822 −1.76486 −2.03513
h11 1 0.55773 0.677036 0.56065 0.625422
h12 2 1.736943 2.072465 1.794026 2.459446
h13 0.5 −0.29347 0.072883 −0.24301 0.619297
h2 0.4 0.327098 0.355548 0.345685 0.358772
h3 0.6 0.498803 0.531523 0.525627 0.504745
h4 0.8 0.935483 0.968566 0.950606 1.038234
SSQ/n 4.13 × 10–4 1.81 × 10–4 4.40 × 10–4 1.62 × 10–4
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The simulations start at the steady state in the absence of ligand
(L = 0), which is (X10, ..., X90) = (10, 0, 10, 0, 0, 0, 0, 0, 0). The
shaded terms are subject to delay, stochasticity, or both (see
Figure 10). Time is roughly in hours. The step size was taken as
ϑ = 0.1.

We show the result of three scenarios. In the first, the time
delays and any stochasticity are simply ignored (Figure 11A).
The second scenario accounts for two types of delays
(Figure 11B), one for transcription and one for translation
and activation of protein, and the third incorporates both,
delays and noise (Figure 11C). For simplicity, we assume the
same delay for the transcription (τ1 = 3 h) and translation and
activation (τ2 = 4 h) of AhRR and a representative target protein
(TP), even though these delays are in reality protein-specific
(Koussounadis et al., 2015). Also for simplicity, we assume the
same stochastic structure for σ1 and σ2 and for σ3 and σ4 (see
Figure 10). Specifically, these stochastic events are modeled with
values from the normal distribution N (1, 0.1), which are
multiplied to the affected fluxes. We also added stochasticity
to the ligand availability; it did not have much effect but shows up
in the dynamics of X1, ..., X4.

Both simulations start at the steady state without ligand
(L = 0). At time t = 2, the ligand concentration is set to 2,
and at t = 12 it is returned to 0. The result of the first scenario
simulation (Figure 11A) reveals that the production of target
protein (TP) very briefly peaks, but that not much TP is
produced, due to the immediate onset of inhibition by AhRR.
By constrast, accounting for time delays yields a dramatically
different dynamics (Figure 11B): Critically, the time delays
permit transcription and translation to occur unabatedly until
the repression sets in. Specifically, after 3 h, mRNA becomes
available, and after an additional 4 h, proteins emerge, including
AhRR, which quickly binds to ARNT and begins repressing
transcription, resulting soon after in decreased protein
production. If the ligand is available beyond time t = 12, the
production of protein oscillates, and as soon as the ligand is no
longer present, the system returns to the original steady state (not
shown). The results for an ODE model without delays and
stochasticity are essentially the same as in Figure 11A, and a
delay differential equation model, ignoring stochasticity,
produces more or less the same results as in Figure 11B. The
combination of delays and stochasticity is difficult to capture with
differential equations, but it is easily implemented in dBST
Figure 11C.

DISCUSSION

Modeling approaches utilizing the framework of Biochemical Systems
Theory (BST) have proven powerful in biomedical systems analysis

TABLE 3 | Parameter values for the AhR signal transduction system.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 g τ1 τ2

1 2 1 1 1 2 2 2 10 10 10 10 6 −4 3 4

FIGURE 11 | Simulation results of three scenarios. (A) Time delays
and stochasticity are simply ignored. (B) Delays for transcription and
for translation and activation of protein are taken into account. Note
that the dynamics of X7 and X8 is the same. (C) Ligand availability,
transcription and translation are considered stochastic. See Text for
further details.
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for over seven decades (Savageau, 1969a; Savageau, 1969b; Savageau,
1970). Our goal in the present article was a demonstration that
discrete BST (“dBST”) models are noteworthy alternatives to ODE-
based BST systems and that they can shed light on complex
biomedical phenomena in a similar manner. Discrete dBST
models are arguably also more intuitive to newcomers coming
from the field of biology, for whom differential equations are
often an obscure and dreaded domain of insider mathematics.

The proposal of using dBST is most certainly not a call for
abandoning systems of ODEs in biomedical models. ODEs have
proven immensely beneficial in all of science, and biomedical
applications are no exception. Nonetheless, there are situations
that are difficult to align with the concept of instantaneous
change. Examples include genuinely discrete events, delays, and
stochastic phenomena affecting the phenomenon under study. For
instance, we showed elsewhere, in the context of red blood cell death
duringmalarial anemia, that the precise dynamics of blood infections
is very difficult to capture with ODEs, but straightforward to
implement in a discrete-recursive model (Fonseca and Voit, 2015;
Fonseca et al., 2016). Similarly, we demonstrate here and in the
Supplementary Data S2 that delays and internal or external
stochastic influences affecting a dynamical system are often more
easily incorporated into discrete rather than differential equations.

Many of the advantages of BST as a tool for model selection and
analysis translate directly into its discrete analog, dBST.Whereas it is
generally difficult to choose the most appropriate mathematical
formats for representing ill-characterized phenomena a priori,
BST and dBST offer guidance at the very beginning of the
modeling process, where it is most urgently needed. At the very
least, the use of power-law functions offers a viable, unbiased starting
point. The power-law format used in BST and dBST is no panacea,
but it is a local approximation of mathematically guaranteed quality
that typically has a wider range of validity than linear formulations
and, embedded into ODEs, is provenly rich enough to permit the
inclusion of any differentiable nonlinearities (Voit and Savageau,
1986; Savageau and Voit, 1987).

The use of dBST instead of BST does not create practical design or
implementation problems per se, and paradigmatic nonlinearities,
such as limit cycles and chaos, can be captured in dBST, as we
demonstrated here. If the goal of a dBST model is to mimic a
corresponding ODE system as closely as possible, a small step size
may have to be chosen. For instance, in the example of limit cycles, a
larger step size retained the basic structure and shape of the limit cycle
system, but the numerical features were clearly affected. However, the
typical task in practical applications is not to create an analog of an
ODE system but to convert observed data, together with contextual

information, into a computable structure. This inference process is
actually simpler in dBST than BST, as most biomedical phenomena
are naturally discrete and the determination of optimal parameter
values does not require the estimation of slopes.

We demonstrated the ease of designing a dBSTmodel with several
small examples and with a moderately complex signal transduction
system that triggers changes in gene expression following an exposure
to specific toxicants or internal ligands. This phenomenon is difficult
to capture with an ODE model because it is critically affected by
substantial time delays, which are comingled with the well-known
stochastic nature of gene transcription and translation. Our analysis
makes it evident that these aspectsmust not be ignored lest erroneous
results are obtained. It also shows how straightforward it is to
incorporate these aspects into a dBST model.
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Predicting Metabolic Adaptation
Under Dynamic Substrate Conditions
Using a Resource-Dependent Kinetic
Model: A Case Study Using
Saccharomyces cerevisiae
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Exposed to changes in their environment, microorganisms will adapt their phenotype,
including metabolism, to ensure survival. To understand the adaptation principles,
resource allocation-based approaches were successfully applied to predict an optimal
proteome allocation under (quasi) steady-state conditions. Nevertheless, for a general,
dynamic environment, enzyme kinetics will have to be taken into account which was not
included in the linear resource allocation models. To this end, a resource-dependent
kinetic model was developed and applied to the model organism Saccharomyces
cerevisiae by combining published kinetic models and calibrating the model
parameters to published proteomics and fluxomics datasets. Using this approach, we
were able to predict specific proteomes at different dilution rates under chemostat
conditions. Interestingly, the approach suggests that the occurrence of aerobic
fermentation (Crabtree effect) in S. cerevisiae is not caused by space limitation in the
total proteome but rather an effect of constraints on the mitochondria. When exposing the
approach to repetitive, dynamic substrate conditions, the proteome space was allocated
differently. Less space was predicted to be available for non-essential enzymes (reserve
space). This could indicate that the perceived “overcapacity” present in experimentally
measured proteomes may very likely serve a purpose in increasing the robustness of a cell
to dynamic conditions, especially an increase of proteome space for the growth reaction as
well as of the trehalose cycle that was shown to be essential in providing robustness upon
stronger substrate perturbations. The model predictions of proteome adaptation to
dynamic conditions were additionally evaluated against respective experimentally
measured proteomes, which highlighted the model’s ability to accurately predict major
proteome adaptation trends. This proof of principle for the approach can be extended to
production organisms and applied for both understanding metabolic adaptation and
improving industrial process design.
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dynamic conditions, feast/famine
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INTRODUCTION

The ability of microorganisms to adapt to changing extracellular
environmental conditions is essential for their survival and leads
to metabolic robustness and competitive fitness (Gerosa and
Sauer, 2011; Chubukov et al., 2014). Depending on the
environmental conditions, different metabolic functions and/or
flux distributions are needed that require a different proteome
composition (Litsios et al., 2018). The proteome adaption is
triggered by not yet fully unraveled protein signaling cascades
and further mechanisms (Zhao et al., 2016). An intuitive example
of this adaption is described for Saccharomyces cerevisiae (S.
cerevisiae) when shifting from growth under minimal to rich
medium conditions; cells grown under rich nutrient conditions
require a significantly smaller proteome fraction for biosynthesis
genes (de Godoy et al., 2008; Nagaraj et al., 2012; Liebermeister
et al., 2014) than cells grown in the mineral medium, in which
amino acids and other biomass precursors are not present but
have to be synthesized from glucose.

On the other hand, next to optimization of proteome
resources, cells do maintain metabolic fitness and/or
robustness (Basan, 2018), especially under substrate limiting
conditions cells seem to invest in proteins that may not be
required yet, for example, to quickly utilize alternative
substrates without delays in growth (Dekel and Alon, 2005).
However, any additional increase in protein abundance also
results in higher costs due to occupation of ribosomes,
resource consumption, and potentially additional protein
misfolding. Different hypotheses have been formulated and
respective models were developed to understand the
optimization and trade-offs.

Constraint-based modeling approaches are essential to
analyze putative properties of metabolic networks. The well-
established and frequently used method for the analysis of
(large genome-scale) metabolic networks is flux balance
analysis (FBA) (Varma and Palsson, 1994; Orth et al., 2010).
This method calculates feasible solutions under steady-state
conditions, depending on a defined objective function
(biomass or ATP maximization) (Schuetz et al., 2007).
However, this method cannot be applied to dynamic
cultivation conditions and does not consider gene regulation
or protein expression. To overcome these limitations, dynamic
flux balance analysis (dFBA) was developed to maximize biomass
growth over time, with changing extracellular conditions
(Mahadevan et al., 2002). To include the synthesis costs of
proteins and ribosomes, resource balance analysis (RBA) was
developed, allowing for the prediction of the optimal allocation of
intracellular resources for steady-state growth (Goelzer et al.,
2015). Looking at cellular behavior in terms of resource allocation
has also been used to explain overflow metabolism (Basan et al.,
2015; Nilsson and Nielsen, 2016). In this paradoxical
phenomenon, cells use catabolic pathways with low ATP
yields per substrate such as alcoholic fermentation when
growing at high growth rates, even when a high-yield pathway
such as respiration is available. Following the current hypothesis,
the answer is that these fermentative pathways are much cheaper
in terms of proteome space cost, meaning that the ATP

production rate per protein mass is larger (Nilsson and
Nielsen, 2016).

Combining approaches from both dFBA and RBA leads to
conditional FBA (cFBA) (Rügen et al., 2015; Reimers et al., 2017),
which combined both temporal changes in the extracellular
environment with constraints on intracellular resource
allocation. These powerful tools are able to reproduce and
predict metabolic phenotypes beyond steady-state conditions
and extend our understanding of microbial physiology.
Nevertheless, short-term dynamics require yet another
mechanism: kinetics instead of a quasi-steady state of the
intracellular metabolites to capture the rapid intracellular
changes of metabolites as well as kinetic regulation.

Experimentally, S. cerevisiae cultures have a different
metabolic response to substrate perturbations depending on
the cultivation condition, especially cells cultured under
repetitive dynamic substrate conditions, the so-called “feast/
famine” regime showed a different response compared to
cultures grown under steady-state limitations (Suarez-Mendez
et al., 2014). Ethanol production after a substrate pulse was
observed for cultures originating from a chemostat (Wu et al.,
2006), while no ethanol was observed for cells under a repetitive
excess/limitation regime (Suarez-Mendez, 2015). Furthermore,
the intracellular response to substrate excess has significantly
different properties: while the ATP concentration dropped after a
pulse originating from a chemostat culture (Wu et al., 2006), a rise
was observed for a feast/famine culture. Moreover, the biomass
yield of a feast/famine culture was lower than that of a chemostat
culture. Last, chemostat-grown cells showed short- and long-term
accumulation of glycolytic intermediates after a substrate pulse,
while this was not observed for feast/famine cultures. Storage
synthesis and degradation leads to “wasting” of ATP (futile cycle)
which was shown to rescue cellular metabolism, that is, balance
pathway capacities in case of sudden perturbations (van Heerden
et al., 2014).

The observed differential metabolic response implies an
adaptation during the prior dynamic growth condition. Similar
differences in adaptations have been observed earlier, for
example, the lag phase before exponential growth (Brejning
and Jespersen, 2002; Jõers and Tenson, 2016), upon a change
in the substrate (Chu and Barnes, 2016), and in the period just
after switching to a different dilution rate in a chemostat (Abulesz
and Lyberatos, 1989).

There are three levels of metabolic regulation commonly
assumed to be dominant (Wegner et al., 2015): 1) allosteric
regulation, in which enzyme activity is modified by non-
covalent binding with other molecules. The response time of
this type of regulation is almost instant (Pincus et al., 2017), and it
is often used for local fine-tuning in metabolism, and thus it is
unlikely to cause this adaptation effect. 2) Post-translational
modifications (PTMs), in which enzyme activity is altered by
the addition of covalent attachments. The timescale of this
response is a matter of seconds to minutes (Karim et al.,
2014), and it is often part of short-term responses to stress
situations (e.g., sudden changes in the environment). 3)
Translational regulation, which influences the composition of
the proteome. This regulation has a response time of hours
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(Cohen et al., 2008), which is in the same order of magnitude as
the generation time, and thus the choices made at this level are
important for the long-term strategy. It is also considered the
most expensive regulatory level: degradation and synthesis of
proteins requires significant amounts of ATP.

Recent studies have shown that the amount of protein in a cell is
limited due to macromolecular crowding, the kinetics of protein
synthesis, and degradation (Vazquez et al., 2008; Molenaar et al.,
2009). When all the proteome space is occupied, increasing the
concentration of one protein is only possible at the cost of another
(Pareto Frontier) (Mori et al., 2019).

We were curious to study the impact of short-term vs. long-
term adaptations to substrate perturbations encountered in
natural and laboratory environments. Therefore, we developed
a resource-dependent kinetic model and exposed this to different
dynamic environments to evaluate the impact of the allocation of
proteins in the cellular proteome on the metabolic fitness of a
yeast cell under short-term extracellular substrate dynamics.

MATERIALS AND METHODS

Proteome-Dependent Kinetic Yeast Model
The proteome-dependent kinetic yeast model is based on a
system of ordinary differential equations (ODEs) that describe
the mass balances of all intra- and extra-cellular metabolites. This
system of ODEs is solved with the ode15s function in MATLAB
2020b, for which the absolute tolerance is set to 1e-4, and all
variables are constrained to be higher than zero with the
“nonnegative” setting. A detailed description of the final
proteome-dependent kinetic yeast model used is given in
Supplementary Material S1.

To predict which proteome composition is the most
competitive for defined environmental conditions, a Monte
Carlo approach is used. The metabolic behavior of 1,000
random proteomes, generated around a seed proteome, is
compared based on an objective function. Under steady-state
conditions, the minimization of the residual substrate
concentration was used as an objective function. Under
dynamic conditions, the minimization of a time-weighted
average substrate concentration was used, to promote fast
consumption of the available substrate, therefore selecting for
competitive proteomes:

∫tcycle

0
cs · t dt

∫tcycle

0
t dt

.

Subsequently, it is determined whether the solution is
balanced. If the objective function is optimized and the
solution is balanced, the objective function and the seed
proteome are updated. In the next iteration, the proteome is
then generated around this new seed proteome, with a maximum
deviation of 25% per sector.

Proteome Allocation to Model Sectors
All proteins from experimental datasets are sorted in the same
nine protein sectors that are used in the model, to allow for a

direct comparison of the experimental proteomes and the
optimized proteomes. The proteins are categorized per sector
based on either the protein name or the description in the KEGG
database (Goffeau et al., 1996; Kanehisa et al., 2016)
(Supplementary Material S7). The whole dataset is sorted
with the MATLAB 2020b functions “strcmp” and “contains,”
which are used to search the dataset for specific names or
keywords to group the proteins.

Parameter Optimization
The proteome cost parameters are estimated by optimization
with the MATLAB 2020b function fmincon. For all parameter
optimizations, a multi-start approach is used. This approach
minimizes the risk of reaching a local minimum in the
solution space by starting the optimization from different
initial guesses. The tolerance of the function is set to 1e-12 for
all optimizations. For the estimation of the kcat parameters, the
difference between the experimental and simulated fluxes is
minimized. Additional weight in the objective function was
applied for the growth rate, as kcat parameters have to be
rejected if the maximum growth rate is not reached.

Overcapacity Simulations
The amount of overcapacity in the yeast proteome is determined
by introducing a 10th protein sector. This new protein sector does
not have a function for the cells, and hence, only takes up space in
the proteome. Therefore, the fraction of the proteome that can be
allocated into the extra sector without altering the metabolic
fluxes is defined as overcapacity. The overcapacity is estimated for
each sector separately, to minimize the changes in each step. The
sectors are sorted in a decreasing order and then optimized for
overcapacity in this order. The amount of overcapacity in each
sector is determined in a step-wise approach. Per iteration, one
percent of the specific protein sector is removed and allocated
into the extra sector. Subsequently, the fluxes of the adapted
proteome are compared to the reference fluxes, and only if the
change in the fluxes remains within the boundaries, the seed
proteome is updated. This new seed proteome is then used for the
next iteration, in which the sector size is again decreased by 1%.
By decreasing the sector size by 1% of the current size, the step
size is reduced with each iteration. If the flux profile deviates more
than the threshold value, the adapted proteome allocation is
rejected. The fluxes are evaluated based on the following criterion:
the average value of the uptake and growth fluxes should not
deviate more than 1% from the reference flux, to ensure that the
same substrate uptake and growth rates are achieved.

RESULTS

Construction of a Proteome-Dependent
Kinetic Model
We wanted to construct a proteome-dependent kinetic model,
which was small, but still able to reproduce the main phenotypes
observed for S. cerevisiae. Furthermore, it should be calibrated
with available experimental data. We constructed the model
based on the kinetic model of yeast glycolysis (Teusink et al.,
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2000) which we extended with reactions for the trehalose cycle
and respiration pathway as well as a growth reaction (see
Figure 1). Each (lumped) reaction has been associated with a
proteome fraction resulting in a proteome-dependent kinetic
model of yeast central carbon metabolism and growth.

The Embden–Meyerhof glycolytic pathway has been
implemented as three lumped reactions (uptake, upper, and
lower glycolysis) with three intermediates: G6P, FBP, and
pyruvate. The stoichiometry of the growth reaction was based
on Suarez-Mendez et al. (2016). The NADPH requirement was
assumed to be met by using the pentose phosphate pathway,
which in sum (together with PGI) converts one G6P to six CO2

and 12 NADPH. The required NADPH flux was balanced by a
respective consumption of G6P. The ATP demand for growth has
been derived from Della-Bianca et al. (2014) taking into account
that the demand was expressed as catabolized glucose amounts.
Furthermore, the trehalose cycle was included as two lumped
reactions, based on an existing kinetic model of the trehalose cycle
(Smallbone et al., 2011) (see Supplementary Material S1 for
details).

Due to a lack of kinetic models of yeast TCA cycle and
oxidative phosphorylation, the two respiratory reactions (from
cytosolic NADH and pyruvate, vNDE, and vTCA, respectively) have
been implemented using general Michaelis–Menten kinetics.
However, the two reactions are interdependent—both connect
to the electron transport chain—and consequently, the rate is
determined by the same proteome fraction. Amaximum value for
the rate of the two reactions combined is defined, reflecting the
capacity in the electron transport chain, limited by the provided
proteome sector size (see Supplementary Material S1).

The biomass reaction contains many complex reactions, and
the kinetics of the full process currently cannot be derived from
basic principles. Therefore, a holistic approach based on
experimental observations was chosen, i.e., the growth rate has
been found to correlate with the energy charge (Boer et al., 2010).

Here, the growth rate is described by a sigmoid function that is
the most sensitive within the range of an energy charge between
0.7 and 0.9 as observed for growing cells (Boer et al., 2010).

Calibration of Model Parameters Using
Available Experimental Data
The specific activity for the defined pathways has a major impact
on model predictions. To obtain realistic values, the specific
enzyme activities (kcat) were estimated from experimental
omics datasets. In the proposed model, the kcat,i for each
reaction i is defined as the maximum reaction rate per fraction
of proteome (mol/Cmolx/h), where 100% proteome reflects
500 mg protein per gX (Ertugay and Hamamci, 1997). Hence,
the maximum rate of the reaction i (Vmax,i) with a given sector
fraction φi is:

Vmax ,i � φi · kcat,i.
From this, �c enzymatic rate Vi is calculated by multiplying the
Vmax ,i with the function f i( �c ) describing the effects on the
enzymatic rate due to substrate and product concentrations as
well as effects by allosteric activators and inhibitors (see
Supplementary Material S1 for specification of f i( �c ) for each
reaction):

Vi � Vmax ,i · f i( �c ).
The kcat parameters have been estimated by combining the

proteome and fluxome measurements under batch conditions.
The proteome fractions were taken from de Godoy et al. (2008)
using S. cerevisiae grown under batch conditions with a defined
glucose minimal medium and aligned according to the protein
classification in the KEGG database. Specifically, grouping all
proteins with the KEGG BRITE label “Genetic Information
Processing” and all proteins with the “Metabolism” label that
were not classified as “Central Carbon Metabolism” or “Energy
Metabolism” being assigned to the “growth protein sector,”
assuming that their size is growth rate-dependent in the
minimal medium. Furthermore, for the calculations, it was
assumed that the whole proteome sector of cells grown under
excess substrate at the maximal growth rate was used.

The corresponding flux distribution, i.e., under batch
conditions was obtained from Heyland et al. (2009) with the
exception of fluxes for the trehalose cycle—these were obtained
from the feast/famine experiments conducted by Suarez-Mendez
et al. (2017). For both trehalose synthesis and degradation, the
maximum value of the flux reached in one feast/famine cycle was
used, which was 5.10·10−3 mol/CmolX/h for trehalose synthesis
and 4.09·10−3 mol/CmolX/h for the degradation of trehalose. The
kcat value for maintenance was set to 0.0155 mol/CmolX/h, which
is the maintenance requirement measured at near-zero growth
rates (Vos et al., 2016).

To obtain the kcat parameters, parameter optimization was
performed, estimating the parameters which produced the
smallest deviation between the simulated and experimental
fluxes (Heyland et al., 2009), using the batch proteome
composition taken from de Godoy et al. (2008) (see

FIGURE 1 | Map showing the metabolic network used in this model.
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Supplementary Material S2 for details). Using this approach, the
proteome-dependent kinetic model was able to largely reproduce
the experimental flux distribution (Table 1), and this kcat
calibration was used in all further calculations.

Prediction of the Steady-State Growth
Phenotype Under Carbon-Limited
Steady-State Conditions
S. cerevisiae is a Crabtree-positive yeast, and thus fermentation is
observed next to oxidative phosphorylation at substrate uptake
rates above an observed “critical” rate (Barford and Hall, 1979).
The ability of the model to reproduce the Crabtree effect is
assessed by optimizing proteomes for dilution rates in the
range from 0.05 h−1 to 0.4 h−1. The proteome optimization was
started at the dilution rate of 0.4 h−1 using the experimental batch
proteome as a starting value. The most competitive proteome out
of 1,000 randomly generated proteome allocations was selected
using minimization of the residual substrate concentration as an
objective function. Subsequently, this procedure was repeated for
the next lower dilution rate. The optimal proteome allocation of
the previous dilution rate was used as a starting value. To validate
the model, the predicted fluxes and metabolite concentrations
were compared with a flux and metabolome dataset (Suarez-
Mendez et al., 2016) at different dilution rates under chemostat
conditions. This comparison of predicted and measured fluxes
and metabolite concentrations can be found in Supplementary
Material S3 and in Supplementary Figures S2, S3, respectively.

The experimental data for ethanol production and oxygen
consumption in Figure 2 show that the ethanol production starts
at a dilution rate of 0.28 h−1 (Rieger et al., 1983; Van Hoek et al.,
1998). Above this critical dilution rate, the oxygen consumption
rate decreases, while ethanol production keeps increasing.
Ethanol production is first predicted by the model for a
dilution rate of 0.25 h−1, which is a lower rate than the
experimental data. Furthermore, there is no decrease in the
oxygen consumption rate above a dilution rate of 0.28 h−1 for
the optimized proteomes, which was observed in experimental
studies (Van Hoek et al., 1998). From the model, this can be
explained by the proteome-specific ATP production “cost”:
Respiration has a high yield compared to fermentation
(Table 2.). Hence, reducing the size of the respiration
proteome sector will not be predicted by the model as it is not
beneficial. The predicted plateau originates from a constraint that
was introducedmanually (12% of the proteome for respiration) to
reflect the maximum oxygen consumption rate measured by
Rieger et al. (1983) after long-term evolution. The continuous
increase in the ethanol production rate can then be explained by
the increasing need for ATP with an increasing growth rate while
respiration is at its maximum.

This result conflicts with the discussed dataset of Van Hoek
et al. (1998) as well as the model predictions of Nilsson and
Nielsen (2016), which was partly based on this experimental
dataset. This mismatch and conclusions will be discussed in more
detail later. Notably, there is also experimental evidence from
previous studies that the predicted plateau is reasonable. It was

TABLE 1 | Comparison of the predicted fluxes of a chemostat experiment at a dilution rate of 0.4 h−1 with the experimental flux distribution of Heyland et al. (2009). Upt,
uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; Ferm, fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration; Trsn, trehalose synthesis; Trdg,
trehalose degradation; Grwt, growth.

Upt Uglc LGlc Ferm Esnk Resp Trsn Trdg Grwt

Predicted flux (mol/Cmolx/h) 0.504 0.4669 0.8251 0.7391 0.0898 0.0719 0.0072 0.0072 0.4
Experimental flux (mol/Cmolx/h) 0.4753 0.4373 0.8745 0.7272 0.0428 0.0808 0.0051 0.0041 0.4
Deviation +6% +7% -6% +2% +110% -11% +41% +76% 0%

FIGURE 2 | Comparison of predicted and observed phenotypic rates (ethanol excretion, oxygen uptake rate, and biomass yield) at different dilution rates. Blue
represents the best proteome out of 1,000 randomly generated proteomes; red represents the best proteome out of 100 randomly generated proteomes (limited
evolution with adaptation from the batch proteome). For the experimental data similarly–red represents data from Van Hoek et al. (1998) (seven generations at steady-
state starting from batch), and blue represents a respiration-adapted culture (Rieger et al., 1983).
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shown that the respiratory repression observed by VanHoek et al.
(1998) could be negated upon long-term adaptation (Barford and
Hall, 1979; Rieger et al., 1983; Postma et al., 1989), and a stable
maximum oxygen uptake rate above a dilution rate of 0.28 h−1

was found.
To test the hypothesis of short- vs. long-term evolution, the

proteome optimization approach was performed with a reduced
number of generated proteomes and compared to the
experimental data of Van Hoek et al. (1998) (Figure 2, red
line). With a high number of generated proteomes for the
optimization, the experimental findings of long-term
chemostats could be reproduced. From these predictions, we
hypothesize that cells not exposed to long-term glucose-
limited conditions did not yet reach the “optimal” proteome
allocation and respective metabolic phenotype. This set number
of 1,000 simulations was chosen because only very limited further

optimization of the objective function was observed after this
number of simulations. As such, 1,000 simulations were
concluded as sufficient to reach the optimum. Work on
adapted glucose-grown cultures, at which point glucose
repression on respiration disappears, is cultivated for at least
50 generations at the same dilution rate (Barford and Hall, 1979).
A work by Van Hoek et al. (1998) describes the Crabtree effect
with its typical glucose repression of respiration, by cultivating
cultures at the same dilution rate for seven generations.
Therefore, a set number of 100 simulations was chosen to
reflect this state of limited adaptation of the proteome from
batch growth conditions.

Looking into the global trends in the fully evolved proteome
allocation at different dilution rates (Figure 3, see
Supplementary Material S4 for sensitivity analysis), an
increase in the dilution rate can be seen for nearly all sectors

TABLE 2 | Comparison of the proteome-specific ATP yield for fermentation and respiration obtained by Nilsson and Nielsen( 2016) and this study. Values of this study were
derived from simulations performed at a growth rate of 0.4 h−1.

Fermentation (molATP/gprot/h) Respiration (molATP/gprot/h)

Nilsson and Nielsen (2016) 0.40 0.21
This study 0.18 0.20

FIGURE 3 | Predicted proteome fractions at steady-state as a function of the dilution rate. Blue represents the best proteome out of 1,000 randomly generated
proteomes; red represents the best proteome out of 100 randomly generated proteomes. The values shown are averaged over 40 optimization runs, and the single
results are displayed in the Supplementary Figure S4. Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; Ferm, fermentation; Esnk, electron sink/glycerol
pathway; Resp, respiration; Grwt, growth; Ocap, overcapacity. The trehalose sector was decreased to zero in all instances of the overcapacity simulation, and
therefore not shown in the figure.
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leading to the unused space (in the following called overcapacity
sector, last panel). The overcapacity sector accounts for the
fraction of the proteome which remains unused within the
optimized proteomes. Before discussing specific trends, the
high dilution rates will be highlighted. Even close to the
maximal growth rate, the model predicts a small overcapacity
sector. Nevertheless, please note that the batch and very high
dilution rate might still have different optimization criteria; here,
in the model, minimal substrate concentration was applied as the
objective function. Because of the optimization approach, some
robustness is required that was not further tuned as the fraction is
rather small (7%) and does not change trends. Additionally, the
algorithm samples from an enumerated number of randomly
generated proteomes and therefore requires some buffer for
robustness.

A major difference between this model and earlier studies
(Nilsson and Nielsen, 2016) is that the proteome space limit is not
reached at the critical growth rate (D = 0.28 h−1). At the critical
dilution rate (D = 0.28 h−1), the overcapacity sector still has a
significant fraction (21%). As briefly discussed earlier, Nilsson
and Nielsen (2016) postulated that the Crabtree effect could be
explained by the catalytic efficiency of the fermentation and
respiration pathways expressed as ATP per amount of protein
used in the pathway (Table 2). To estimate these catalytic
efficiencies, Nilsson and Nielsen (2016) used the fluxes and
specific enzyme activities for fermentation and respiration,
under the assumption that all enzymes operate at half of their
maximum specific activity , whereas in this model, the estimation
of the catalytic efficiency is based upon the proteome and fluxome
dataset, using dynamic saturation of enzymes. The estimation
proposed by Nilsson and Nielsen (2016) subsequently produced a
proteome composition in which the mass of all respiration
proteins is 19 times larger than the protein mass of all
glycolysis enzymes , while from proteome measurements it
was observed that the mass of all respiration proteins is
0.3 times the size of the mass of all glycolysis proteins (de
Godoy et al., 2008; Elsemman et al., 2022). This large
difference in proteome allocation between glycolysis and
respiration causes the catalytic efficiency of fermentation to be
overestimated. The conclusion that the proteome is fully allocated
after the critical growth rate is reached leads to the prediction that
the “optimal” endpoint of proteome allocation is reached, which
cannot explain datasets by Barford and Hall (1979); Rieger et al.
(1983). Additional modeling studies by Elsemman et al. (2022)
suggest that the decrease in oxygen consumption at higher
growth rates observed by Van Hoek et al. (1998) is not caused
by a limitation in proteome capacity but rather by a maximum
rate of mitochondria biogenesis, in which long-term adaptation
could overcome the described glucose repression of respiration.

Prediction of Proteome Allocation Under
Dynamic Conditions
The proteome compositions, especially at low dilution rates were
characterized by a significant overcapacity sector. The kinetic
proteome allocation approach could not yet answer why the cells
maintained such an excess proteome. As discussed earlier, the

hypothesis for a proteome overcapacity is competitiveness and
robustness including dynamic environmental conditions.
Overcapacity could enable faster substrate uptake rates and
enable a competitive advantage and outcompete slower
consuming microbes (Jannasch, 1967). Furthermore, excess
capacity could enable a robust, balanced functioning of
pathways such as glycolysis (van Heerden et al., 2014) under
dynamic substrate conditions.

To test these hypotheses, we studied the predicted proteome
allocation under different repetitive substrate-feeding regimes
using the proteome-dependent kinetic model, using the
minimization of the time-weighted residual substrate
concentration as the objective function. With this approach,
we were able to select competitive proteomes with fast
substrate uptake rates. As a reference dynamic condition, an
experimentally explored feeding regime was chosen, i.e., a cycle
length of 400 s of which 20 s was used to feed the culture (D =
2 h−1), leading to the average dilution rate of D = 0.1 h−1 over the
complete cycle (Suarez-Mendez et al., 2014).

Proteome allocations and respective metabolic phenotypes
were then compared to the steady-state at the same (average)
growth rate. First, we studied the maximum, minimum, and
average enzyme saturation (V/Vmax) under dynamic
conditions compared to the enzyme saturation under
chemostat conditions (Table 3). Under dynamic conditions,
the maximal enzyme saturation is much higher (up to 92% for
the respiration reaction) than that under chemostat conditions
(77% for respiration). Nevertheless, the average enzyme
saturation over the whole cycle is actually lower than that
under the reference chemostat state (for respiration, 25%
compared to 77% at steady-state). This indicates that the
proteome optimization to some extent focuses on the
“peak” flux, especially for the large sectors of respiration
and growth, indicating high usage of the available flux
capacity while on average leaving a large overcapacity over
the whole cycle. This enables a rapid consumption of the
substrate as soon as it becomes available, which was the
optimization criteria.

We were now curious to see how the perturbation strength
would influence the proteome allocation. Therefore, the length of
the feeding period was varied at the same average dilution rate,
resulting in different substrate perturbation intensities. The
respective predicted proteome allocations were calculated and
compared (Figure 4) for the different ratios of feeding time over
cycle time (TF/TC). TF/TC values were chosen as log2
increments from the experimentally used TF/TC value of 1/20
(Suarez-Mendez et al., 2014).

The growth sector fraction increased with the perturbation
intensity, suggesting that this strategy was the most effective
measure to survive the higher substrate concentration variations
(from faster feeding) and consequently high flux dynamics. The
growth reaction seemed to act as an efficient and fast sink for
substrate and ATP. However, in reality, the growth sector does
not consist of a single reaction and may not be able to provide a
rapid response upon glucose influx. For this reason, two other
scenarios were additionally evaluated: 1) the regulation of the
trehalose cycle upon repeated substrate pulses and 2) the
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regulation of the ratio between upper and lower glycolysis (see
Supplementary Material S6).

Impact of the Proteome Fraction on the
Trehalose Cycle
The trehalose cycle has been described to function as a “safety
valve” upon large changes in the glycolytic flux (Thevelein and
Hohmann, 1995; Blomberg, 2000; van Heerden et al., 2014;
Vicente et al., 2018). Under dynamic conditions in yeast, it
was found that a significant amount of imported glucose was

recycled through the trehalose cycle, especially during periods of
high flux changes (Suarez-Mendez et al., 2017). To evaluate the
effect of storage metabolism activity under dynamic conditions,
the reference condition [D = 0.1 h-1, TF/TC = 0.05, (Suarez-
Mendez et al., 2014)], was further analyzed. We varied the
trehalose sector size between 0 and 1% (Figure 5) and
compared the response of metabolism using FBP and Pi as
indicators. A balanced metabolic response will lead to
repetitive cycles in FBP and Pi. Such repetitive response was
observed for proteomes with a trehalose sector larger than 0.1%.
Increasing the trehalose sector above 0.1% leads to reduced

TABLE 3 | Enzyme saturation, i.e., v/vmax under dynamic feeding conditions compared to steady-state (both at a dilution rate of D = 0.1 h-1). For dynamic conditions, v/vmax

is calculated at the maximum rate during the cycle and the minimum as well as the average over the cycle. Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis;
Ferm, fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration; TrSn, trehalose synthesis; TrDg, trehalose degradation; Grwt, growth.

Upt Uglc LGlc Ferm Esnk Resp TrSn TrDg Grwt

Max V/Vmax ratio under FF 6% 19% 8% 25% 46% 92% 79% 11% 100%
Min V/Vmax ratio under FF <1% <1% <1% <1% <1% 1% <1% 4% <1%
Average V/Vmax ratio under FF 1% 3% 1% 4% 7% 25% 10% 7% 24%
V/Vmax ratio under chemostat <1% 2% 6% - 13% 77% - - 74%

FIGURE 4 | Proteome allocation as a function of the ratio of feeding time over cycle time (TF/TC). Further proteome sector fractions are shown in Supplementary
Material S5.

FIGURE 5 |Concentration time course over repetitive cycles (D = 0.1 h−1, TF/TC = 0.05) for different trehalose sector fractions (blue = 0.1 red 1%). Shown are FBP
and Pi as representative metabolites. For trehalose sector fractions <0.1%, no stable cycles were obtained.
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fluctuations in G6P/FBP and Pi, suggesting a more robust
metabolic response. Simulated changes in FBP and Pi are in
line with results from previous work by van Heerden et al. (2014).

Comparison of the Model Predictions to
Experimental Proteomes
To evaluate the prediction accuracy and trends of the predicted
proteomes under dynamic conditions, the simulated proteome
adaptation from chemostat to feast/famine conditions was
compared with the experimentally measured proteome fold
changes between chemostat and feast/famine conditions
(Verhagen et al., 2022) (Figure 6). Proteins of trehalose/
glycogen storage, ribosomes, and oxidative phosphorylation
were used as proxies for the storage, growth, and respiration
sectors, respectively (proteins categorized in the same way as
calibration approach, see Methods).

The model predicted the experimentally observed changes in
upper and lower glycolysis (Figure 6). The enzyme TDH
catalyzes the glyceraldehyde dehydrogenase reaction (TDH),
which forms ATP using Pi. However, if upper and lower
glycolysis reactions are imbalanced during high fluxes, this
reaction becomes a bottleneck, leading to the accumulation of
FBP and subsequently to an imbalancedmetabolism. Therefore, it
was expected that TDH had to be upregulated under substrate-
fluctuating conditions to facilitate balanced intermediates, which
was reflected in both the model predictions as well as in the

experimental dataset. The predicted change in lower glycolysis is
larger than that in the experimental data. This is likely caused by
the fact that simulated proteomes for chemostat conditions
contain no overcapacity in the lower glycolysis sector, whereas
experimental proteomes under chemostat conditions appear to
contain more overcapacity in this proteome sector. As such, the
fold change between measured and simulated values is higher.
Furthermore, the model reproduced the average change observed
for the uptake sector, although it should be noted that effects of
individual iso-enzymes (especially with regard to HXK/GLK,
which catalyzes the first step of glycolysis) were not taken into
account in the current model.

Significant deviations between experimental and predicted
fractions were observed for the storage sector. This was
significantly decreased experimentally, while the resource-
dependent kinetic model predicted an increase.
Experimentally, a decrease of 28%, from 0.25 to 0.2% of the
proteome, was observed, while an increase to 0.2% of the
proteome was predicted in the model. Possible reasons for this
difference in sector size could be: 1) the synthesis of trehalose has
additional functions in the cell which are not represented in the
model—it is described that trehalose plays an important role in
different stress responses, including severe substrate limitation at
low dilution rates (see also Supplementary Figure S3). 2) The
measured and predicted proteomes do not include neither post-
translational modifications, which are known to significantly
affect the kcat’s of enzymes in the trehalose cycle (Sengupta

FIGURE 6 | Protein concentration fold change from chemostat to feast/famine cultivation. The experimental fold change individual proteins are displayed as dots.
Proteins of trehalose/glycogen storage, ribosomes, and oxidative phosphorylation were used as proxies for the storage, growth, and respiration sectors, respectively.
Simulation fold changes for each sector are shown as vertical bars. The simulated storage sector for steady-state conditions was 0 and increased under simulated feast/
famine conditions. As such, no fold change could be calculated, and therefore this fold change is not shown.
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et al., 2011), nor changes that could occur during cell-cycle
progression.

Furthermore, there could also be a bias from the experimental
setup–the differences in the trehalose sector, combined with the
observed increase of the lower glycolysis sector, suggest that the
experimental chemostat proteome is potentially already primed
for dynamic environments, compared to experimental
conditions, and as such is more robust than the predicted
optimized chemostat proteomes.

CONCLUSION AND OUTLOOK

In this work, we developed a proteome-dependent kinetic
modeling framework that predicts the optimal proteome
composition for defined extracellular dynamic conditions. The
approach could reproduce observed complex metabolic
phenomena, such as the Crabtree effect, including long-term
adjustments under chemostat conditions.

Analysis of the predicted proteomes showed that under
substrate-limiting conditions (i.e., low dilution rates) with close
to constant extracellular concentrations, a significant part of the
optimized proteome is not required (thus a lot of overcapacity).
With increasing substrate availability and/or concentration
fluctuations, this overcapacity is shown to decrease. Cells
optimized for steady-state conditions were not able to survive
these substrate perturbations. This suggests that in reality, when
conditions are never as ideal and “optimal” as presented in the
model simulations, cells already possess proteome adjustments to
create a more robust metabolism, allowing them to cope effectively
with external perturbations such as substrate gradients.

Such adjustments to perturbations were found when
comparing steady-state and feast/famine condition predictions.
The approach generated a stable phenotype and the predicted
changes in proteome allocation, i.e., downregulation of uptake
and upper glycolysis sectors and upregulation of the lower
glycolysis sector were also found experimentally. This complex
and strongly kinetics-dependent prediction highlights the
relevance of kinetic properties also for the regulation of
protein expression. Nevertheless, to achieve this prediction,
some constraints, which had to be derived from experimental
observations, had to be included: the maximum mitochondrial
fraction and the glucose repression on fermentation. These
boundaries seemed to be only stretched after very long-term
evolution, as observed by Barford and Hall (1979). Following this

observation, the model was used to predict the proteome
composition and metabolic behavior of cells at different stages
of adaptation, able to simulate differences in cultivation history.
Thus, the modeling approach was able to cover a large range of
conditions and evolution outcomes, which could be specifically
relevant for the prediction of production process regimes running
over a long time span.
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Calcium homeostasis and signaling processes in Saccharomyces cerevisiae, as well as in
any eukaryotic organism, depend on various transporters and channels located on both
the plasma and intracellular membranes. The activity of these proteins is regulated by a
number of feedback mechanisms that act through the calmodulin-calcineurin pathway.
When exposed to hypotonic shock (HTS), yeast cells respond with an increased cytosolic
calcium transient, which seems to be conditioned by the opening of stretch-activated
channels. To better understand the role of each channel and transporter involved in the
generation and recovery of the calcium transient—and of their feedback regulations—we
defined and analyzed a mathematical model of the calcium signaling response to HTS in
yeast cells. The model was validated by comparing the simulation outcomes with calcium
concentration variations before and during the HTS response, which were observed
experimentally in bothwild-type andmutant strains. Our results show that calcium normally
enters the cell through the High Affinity Calcium influx System and mechanosensitive
channels. The increase of the plasma membrane tension, caused by HTS, boosts the
opening probability of mechanosensitive channels. This event causes a sudden calcium
pulse that is rapidly dissipated by the activity of the vacuolar transporter Pmc1. According
to model simulations, the role of another vacuolar transporter, Vcx1, is instead marginal,
unless calcineurin is inhibited or removed. Our results also suggest that the
mechanosensitive channels are subject to a calcium-dependent feedback inhibition,
possibly involving calmodulin. Noteworthy, the model predictions are in accordance
with literature results concerning some aspects of calcium homeostasis and signaling
that were not specifically addressed within the model itself, suggesting that it actually
depicts all the main cellular components and interactions that constitute the HTS calcium
pathway, and thus can correctly reproduce the shaping of the calcium signature by
calmodulin- and calcineurin-dependent complex regulations. The model predictions also
allowed to provide an interpretation of different regulatory schemes involved in calcium
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handling in both wild-type and mutants yeast strains. The model could be easily extended
to represent different calcium signals in other eukaryotic cells.

Keywords: calcium signaling, hypotonic shock response, mathematical model, Saccharomyces cerevisiae,
calmodulin-calcineurin pathway

1 INTRODUCTION

Calcium ions (Ca2+) have many physiological functions and are
ubiquitously used by prokaryotic and eukaryotic unicellular
organisms, as well as by multicellular eukaryotes (Plattner and
Verkhratsky, 2015b; Plattner and Verkhratsky, 2015a; Giorgi
et al., 2018; Bagur and Hajnóczky, 2017). Ca2+ represents a
universal intracellular messenger that modulates a plethora of
processes, such as the control of cell proliferation, programmed
cell death, neurotransmission, secretion, vesicular transport,
cytoskeleton rearrangement, and transcription (Berridge et al.,
2000). Ca2+ sequestration in different cellular compartments is
the key to maintaining appropriate concentration gradients,
which are required to generate the temporal and spatial
patterns exploited by cells to encode signals about their own
status or the extracellular environment (Berridge et al., 2003;
Dupont et al., 2007; Purvis and Lahav, 2013). Specific Ca2+ signals
are triggered only upon an intra- or extra-cellular stimulus; in the
absence of such events, the cell must maintain properly low and
non-signaling Ca2+ concentrations, in a narrow range of
50–200 nM in eukaryotic cells. This feature is implemented by
an extensive and well conserved cellular toolkit comprised of
Ca2+-sensing proteins, buffers, channels, pumps, and exchangers
(Plattner and Verkhratsky, 2015b). Although Ca2+ signals could
possibly be generated in all cell compartments, they are mainly
studied in the cytosol, and are the result of the release from
intracellular stores or the influx from the extracellular
environment, or both. The disruption of Ca2+ homeostasis
system can potentially lead to unwanted (in)activation of
signaling cascades, and in turn cause cell defects or even cell
death (Carafoli, 2004; Sammels et al., 2010).

To help unraveling the role of channels and transporters in
maintaining Ca2+ homeostasis, in this work we provide a
mathematical model of the hypotonic shock (HTS) response
in budding yeast cells. HTS consists in a sudden variation of
the osmotic pressure, due to a consistent dilution of the solution
concentration to which the cell is exposed. Following a HTS,
water flows into the cell, causing an increase in cell volume and
turgor pressure that might induce the cell burst. To avoid
cytolysis, yeasts have evolved mechanisms to sense and
respond to HTS, by rapidly triggering at least three different
mechanisms: 1) the cytosolic Ca2+ concentration is transiently
increased; 2) the osmolyte glycerol is released to the medium in
order to relieve osmotic pressure; 3) phospholypase C hydrolizes
PI(4,5)P2 generating the major second messengers, diacylglycerol
(DAG) and inositol-(3,4,5)-tris-phosphate (IP3). In mammalian
cells, DAG is well-known as a protein kinase C activator, while
IP3 is involved in triggering the release of Ca2+ from intracellular
compartments such as endoplasmic reticulum or Golgi (Pinton
et al., 1998; Berridge et al., 2000); it is not clear if this applies to

yeast as well, but a role for inositol phosphate in calcium release
was previously reported (Belde et al., 1993; Tisi et al., 2002, 2004).

The yeast S. cerevisiae has evolved a cell wall that, having less
elasticity than the plasma membrane, prevents the cell from
excessive expansion (Aguilar-Uscanga and Francois, 2003;
Alsteens et al., 2008; Orlean, 2012). The adaptation of the cell
wall to the environmental challenges is controlled by the cell wall
integrity (CWI) signaling pathway, which shows a complex
interrelationship with Ca2+ signaling (Hohmann, 2002; Levin,
2011).

The mathematical model presented in this work was defined
by integrating well-established experimental evidences with
plausible hypotheses on the functioning of HTS response. The
main components of the model comprise: 1) the Ca2+ membrane
transporters, namely, the High Affinity Calcium influx System
(HACS) and mechanosensitive channels (MS); 2) the vacuolar
transporters Pmc1 and Vcx1; 3) the Ca2+-binding messenger
protein calmodulin (CaM), and the Ca2+-CaM-dependant
phosphatase calcineurin (CaN). The model is formalised as a
system of coupled Ordinary Differential Equations (ODEs), and it
can be conceptually divided in twomodules: a biophysical module,
describing the physical properties of yeast cells (e.g., volume,
turgor pressure, and membrane tension), and a biochemical
module, describing the changes in the concentration of protein
and molecules involved in Ca2+ signaling upon HTS, and
including the feedback regulation via the calmodulin-
calcineurin pathway.

The model simulations are in accordance with published
experimental results, suggesting that the biophysical and the
biochemical modules are able to explain the role and interplay
among the essential components involved in the HTS response.
Our analysis shows that calcium enters the resting cell through
the HACS and the MS channels. However, upon HTS, the
increase of the plasma membrane tension amplifies the
opening probability of MS channels, thus causing a sudden
Ca2+ pulse. The rapid recovery of the basal Ca2+ levels in the
cytosol primarily involves Pmc1, differently than in other
signalling processes where massive amounts of Ca2+ enter the
cytoplasm requiring Vcx1 to engage in the recovery (Miseta et al.,
1999b). According to our simulations, the involvement of Vcx1 is
actually marginal, unless Vcx1 inhibition by calcineurin is
removed. Our results also suggest that the MS channels are
subject to a calcium-dependent feedback inhibition, possibly
involving calmodulin, since it is not relieved by calcineurin
removal. This suggests that the very sharp signature of HTS-
induced calcium peak would be obtained by the rapid closure of
the MS channels triggered by this feedback loop.

The paper is organized as follows: Section 2 provides a
detailed description of the cellular components and processes
that were taken into account in the HTS response model; in
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Section 3 we explain how the two modules of the model were
formalised and simulated; Section 4 provides a detailed
description of the modules and their parameters; Section 5
shows the results we obtained by comparing experimental data
with our model simulations; finally, we discuss these results in
Section 6 and draw final conclusions in Section 7.

2 BIOLOGICAL BACKGROUND

The main cellular components appearing in the mathematical
model are represented in Figure 1. Their biological function and
mutual regulation in controlling Ca2+ homeostasis and signaling,
especially upon HTS, are described in the following sections.

2.1 Calcium Transport and Homeostasis
2.1.1 Membrane Transporters
The High Affinity Calcium influx System (HACS) is composed of
Cch1 and Mid1. Cch1 is a homolog of the pore-forming α1
subunit of mammalian voltage-gated Ca2+ channels (Fischer
et al., 1997), while Mid1 is a stretch-activated Ca2+-permeable
nonselective cation channel whose secondary structure is similar
to the non-pore-forming α2δ subunit that associates with the
mammalian α1 (Iida et al., 1994). Cch1 and Mid1 cooperate in
many yeast processes, such as mating pheromone-induced Ca2+

uptake (Paidhungat and Garrett, 1997), store-operated Ca2+ entry
(Locke et al., 2000), ER stress-induced Ca2+ uptake (Bonilla et al.,
2002), and hyperosmotic stress-induced increase of cytosolic
Ca2+ (Matsumoto et al., 2002). Cch1 seems to respond to
membrane depolarization, as the HACS is dependent on the
presence of Kch1 and Kch2, two putative potassium transporters
that mediate K+ influx and, likely, plasma membrane
depolarization in pheromone-induced conditions (Stefan C. P.
et al., 2013), as well as upon ER stress (Stefan and Cunningham,
2013) or glucose addition (Ma et al., 2021). Some lines of evidence
suggest that Mid1 and Cch1 can also function independently
from each other (Kanzaki et al., 1999), in different compartments

(Yoshimura et al., 2004) or upon different stimuli (Courchesne
and Ozturk, 2003).

Besides other yet poorly characterized Ca2+ influx systems in
the plasma membrane (Eilam and Othman, 1990; Muller et al.,
2001; Muller et al., 2003; Groppi et al., 2011), the presence of
another plasma membrane Ca2+ influx system was implied based
on the fact that the hypotonic stress-induced [Ca2+]cyt increase
was not inhibited by removing all known transporters (Rigamonti
et al., 2015). Its molecular identity is unknown but it is likely to
include a Transient Receptor Potential (TRP)-like protein, Flc2,
which provides the channel with a [Ca2+]ext-dependent
inhibition. Flc2 is a member of the fungal spray family, which
comprises TRP-like poly-cystic-kidney-disease (PKD)-related
calcium channels (Tisi et al., 2016). TRP channels are well
conserved and their regulation is polymodal. Almost all TRP
channels appear to function as homo- or hetero-tetramers. TRP
channels are regulated by a very large spectrum of chemical and
physical stimuli such as phosphoinositides, Ca2+, cyclic
nucleotides, temperature, voltage, osmotic stress, and
membrane shearing. A single TRP channel can exhibit
sensitivity to multiple types of stimuli and thus mediates
integrated responses (Zheng, 2013).

Differently than in plant and animal cells, Ca2+ efflux proteins
have not been detected on the plasma membrane of yeast cells.
However, Ca2+ is presumably excluded from the cytoplasm by yet
unknown Ca2+ transport mechanisms. Early experiments showed
that the presence of potassium or sodium in the medium—and
their consequent influx in the cells—induces efflux of Ca2+

(Eilam, 1982b). Analogous results were obtained with low
external pH, suggesting the presence of a Ca2+/H+ antiport
located on the plasma membrane (Eilam, 1982a; Hong et al.,
2013).

2.1.2 Vacuolar Transporters.
Ca2+ is massively stored in the vacuole by two active transporters:
Pmc1, a high affinity low capacity Ca2+-ATPase (Cunningham K.
and Fink G., 1994), and Vcx1, a low affinity high capacity Ca2+/
H+ exchanger. Vcx1 has a major role in shaping the calcium
signal, since its high capacity can rapidly attenuate a large burst of
cytosolic Ca2+ concentration (Miseta et al., 1999b). The free Ca2+

concentration in the budding yeast vacuole is estimated to be of
about 30 μM, although larger amounts are stored as inorganic
phosphates (Dunn et al., 1994). The vacuolar membrane of S.
cerevisiae also contains Yvc1, a TRP-like calcium channel (Palmer
et al., 2001; Denis and Cyert, 2002). Proper Ca2+ concentration in
the endoplasmic reticulum (ER) organelle is critical to its
functions; in S. cerevisiae it is maintained at 10 μM (Strayle
et al., 1999), well below the concentration found in this
compartment in higher eukaryotes, where it is the main
internal storage for calcium ions (Stefan C. J. et al., 2013).
Cls2/Csg2, an ER-localized protein, was originally proposed to
play a role in Ca2+ efflux from the ER (Beeler et al., 1994; Tanida
et al., 1996). However, Csg2 is likely implicated in the
mannosylation of the inositol-phosphoceramide (IPC),
corroborating the evidences about the sphingolipid roles in
regulating ionic channels (Birchwood et al., 2001; Montefusco
et al., 2014). Although initially underestimated, the central role of

FIGURE 1 | Graphical schematization of the role and localization of the
Ca2+ signaling components included in the model, and their mutual
regulations. Abbreviations: ER = endoplasmic reticulum, HACS = High Affinity
Calcium influx System, CaN = calcineurin, CaM = calmodulin, MS =
mechanosensitive.
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the Golgi apparatus in calcium homeostasis and signaling is now
well appreciated in eukaryotic cells (Pizzo et al., 2011), also in
yeast cells (Miseta et al., 1999a; Wuytack et al., 2003). Pmr1, the
budding yeast Golgi P-type Ca2+/Mn2+-ATPase, was the first
member of the secretory pathway Ca2+-ATPase (SPCA)
subfamily identified (Rudolph et al., 1989; Antebi and Fink,
1992; Sorin et al., 1997); its role is pivotal for the maintenance
of proper Ca2+ levels in both the Golgi apparatus (Halachmi and
Eilam, 1996; Miseta et al., 1999a), and the ER (Durr et al., 1998;
Strayle et al., 1999). Early reports suggested that yeast
mitochondria have little, if any, role in accumulating Ca2+

(Carafoli et al., 1970; Balcavage et al., 1973), and their Ca2+

levels appear to be comparable to those of cytosol (Jung et al.,
2004; Niedzwiecka et al., 2018).

2.1.3 The Calmodulin-Calcineurin Pathway
Calmodulin (CaM) is a highly conserved and ubiquitous Ca2+-
binding protein that modulates the activity of many target
enzymes, mainly in response to increasing intracellular Ca2+

concentrations (Cyert, 2001), which trigger distinct structural
rearrangements, andmodes of target activation (Nakashima et al.,
2012; Ogura et al., 2012b; Ogura et al., 2012a; Ishida et al., 2002).
The number of identified target proteins for mammalian CaM is,
according to the Calmodulin Target Database, nearly 300 (Yap
et al., 2000), whereas far fewer are known for the yeast CaM
(Cyert, 2001). During stress responses, the yeast CaM functions
primarily through the activation of a small fraction of its targets:
the calmodulin-dependent protein kinases (encoded by CMK1,
CMK2), and calcineurin. Calcineurin is a Ca2+/calmodulin-
dependent serine/threonine-specific protein phosphatase, and
represents the major Ca2+ signaling effector (Cyert and
Thorner, 1992; Groppi et al., 2011; Li et al., 2011). Calcineurin
regulates Ca2+ homeostasis and signaling both at the
transcriptional level, for example by regulating the
transcription of the Pmc1 encoding gene, and via the
transcription factor Crz1 (Yoshimoto et al., 2002; Cyert, 2003),
and at the post-translational level, for example by direct
dephosphorylation of Vcx1. Some calcineurin targets involved
in Ca2+ homeostasis are the HACS and the vacuolar Ca2+/H+

exchanger Vcx1 (Cunningham and Fink, 1996; Miseta et al.,
1999b; Kingsbury and Cunningham, 2000).

2.2 Hypotonic Shock Response
Upon HTS, after the transient osmotic swelling, mammalian cells
re-adjust their volume by a mechanism known as regulatory
volume decrease (RVD) (Okada et al., 2001). In some cell types,
RVD is accomplished by means of stretch-activated Ca2+

channels which mediate a rapid increase of the cytosolic Ca2+

concentration due to both Ca2+ influx and Ca2+ release from
intracellular stores, which in turn is often the signal that triggers
release of osmolytes, reducing osmotic gradients and helping
volume regulation (Jakab et al., 2002). In addition, the HTS-
induced activation of ion conducting pathways leads to profound
changes in the plasmamembrane potential, which determines the
direction of the ion fluxes depending on the respective
equilibrium potentials and the modulation of voltage-gated
ionic channels.

Upon HTS, a large fraction of glycerol, an intracellular
osmolyte, is released in yeast cells to the extracellular
environment within 2–3 min through the activation of Fps1
channels (Tamas et al., 1999), which is inhibited neither by
gadolinium, which instead completely blocks Ca2+ increase
(Batiza et al., 1996), nor by membrane potential alterations
(Kayingo et al., 2001). Fps1 was proposed as a
mechanosensitive channel directly activated by the induced
membrane stretch, whereas the known post-translational
modifications probably fine-tune its activity under basal
conditions (Ahmadpour et al., 2014).

Phosphoinositides are negatively charged membrane lipids
that serve as versatile molecules involved in protein regulation,
assembly of actin cytoskeleton, vesicle trafficking and Ca2+

signaling. Several phosphoinositides are substrates for
phospholipases, thereby generating a number of products that
serve as second messenger with biological functions on their own
(Strahl and Thorner, 2007). For example, the plasma membrane
lipid phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P2) can
be depleted by activation of phospholipase C (PLC), producing
diacylglycerol (DAG) and the diffusible molecule Ins (1,4,5) P3
(IP3), which in mammals is a fundamental signaling molecule. In
budding yeast, as in all eukaryotic cells, different
phosphoinositide species are generated in a compartment-
specific manner and, hence, can be regarded as distinct
markers for each organelle (Odorizzi et al., 2000; Strahl and
Thorner, 2007; Balla, 2013) and contribute to specific regulation
of protein activity, such as ion channels (Hille et al., 2015). Upon
HTS, S. cerevisiae cells hydrolyze plasma membrane PtdIns (4,5)
P2 with a mechanism dependent on Plc1 but independent on the
extracellular Ca2+ concentration. This process liberates IP3, which
is then rapidly phosphorylated in IP6. In addition, another
phosphoinositide, PtdIns4P, and is rapidly synthesized and
then progressively consumed in the next minutes (Perera
et al., 2004). Although a link between these dynamics and
Ca2+ signaling has not been explored yet, it is tempting to
suggest one. In fact, the rapid depletion of the plasma
membrane signature lipid PtdIns-(4,5)-P2 could influence the
activity of some channels. Flc2 is the best candidate, since it
resides on plasma membrane and contains a putative lipid-
binding domain. Channels localized on Golgi or ER could also
be influenced by changes in phosphoinositides abundances:
PtdIns4P transient increase could regulate Golgi channels,
since PtdIns4P is the signature lipid of this organelle. Some
Ca2+ regulation seems to be at stake in HTS because PLC1
gene deletion, which abolishes PtdIns-(4,5)-P2 depletion and
IP6 production, causes a greater increase in calcium influx
after HTS compared to a wild type strain (Tisi et al., 2002). It
is worth noting, however, that PLC1 deletion does not affect
PtdIns4P dynamics upon HTS (Perera et al., 2004).

The immediate and transient (~2 min) cytosolic Ca2+ pulse
(Batiza et al., 1996; Rigamonti et al., 2015) triggered by HTS in S.
cerevisiae cells is generated both by influx from the extracellular
medium and efflux from intracellular stores. An early study on
yeast cells grown in synthetic medium reported that this increase
was mediated by an instantaneous release of Ca2+ from
intracellular stores and then sustained by influx of
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extracellular calcium. In fact, addition of an extracellular Ca2+

chelator, BAPTA, affected later stages of the response without
affecting the initial, and rapid cytosolic Ca2+ rise (Batiza et al.,
1996). Moreover, the same study showed that the HTS-induced
Ca2+ response was dependent on both intensity of the shock and
type of growth medium, the latter affecting also the pre-stimulus
baseline [Ca2+]cyt. The increase of Ca

2+ was inhibited in a dose-
dependent manner by pre-treatment with gadolinium, a blocker
of stretch-activated channels, and suggesting that the membrane
stretching that occurs following HTS-induced cell swelling is
directly sensed by Ca2+ channels (Batiza et al., 1996). In yeast cells
grown in YPD—a complex, nutrient-rich medium—and
challenged with HTS by diluting the medium with distilled
water, an estimate of the initial rate of calcium increase at
micromolar [Ca2+]ext could be fitted by a Hill function,
suggesting that the calcium increase in response to HTS was
caused by the activation of a single channel or transporter located
on the plasma membrane (Rigamonti et al., 2015).

The HTS response was also measured for mutants lacking
proteins known to be involved in calcium signaling and
homeostasis. cch1Δ mutants, lacking a functional HACS
channel on the plasma membrane, responded to HTS with a
higher calcium peak at all [Ca2+]ext considered, suggesting a
negative regulatory role for this protein during HTS. Mutants
in other known influx pathways, on the other hand, and had a
response similar to the wild-type. Calcium levels are affected in
calcineurin mutants, suggesting that this Ca2+-dependent effector
shapes the calcium signal during HTS through
dephosphorylation of target transporters and/or by modulating
their long-term expression. In addition to display altered resting
calcium levels, mutants lacking calcineurin respond to HTS with
a dramatically reduced peak. Flc2 was found to be involved in the
HTS-induced calcium response, since deletion of FLC2 increases
the initial rate of the Ca2+ increase compared with wild-type,
suggesting an inhibitory role of this protein on the channel that is
activated by the HTS. Based on the experimental evidences
described above, a model is proposed that includes only the
essential players in the HTS-induced calcium response. In non
signaling conditions, Ca2+ enters the cell through HACS channel
and other unidentified influx pathways. A still unidentified
mechanosensitive calcium channel is located on the plasma
membrane and activated by the increased membrane tension
caused by HTS. In addition, this channel appears to be negatively
regulated by Flc2. Since the elevation of [Ca2+]cyt is transient,
some intracellular transporters must restore the steady-state
levels of cytosolic Ca2+. This signal attenuation is probably
performed by the Golgi-localized Pmr1, together with
vacuolar-localized Pmc1 and Vcx1.

3 METHODS

3.1 Model Definition and Simulation
The mathematical model of HTS response in S. cerevisiae was
defined on the basis of available experimental evidences
(Rigamonti et al., 2015), and can be conceptually divided in
two modules:

1 the biophysical module describes the changes in volume and
other cell parameters, such as turgor pressure and membrane
tension. This module allows for quantitatively following all
changes in the physical state of the cell depending on cytosolic
and extracellular osmolarities. Such parameters, in turn,
regulate the activity of some components of the biochemical
module. In particular, stretch-activated channels open
following a sudden increase of membrane tension,
promoting Ca2+ diffusion through them;

2 the biochemical module describes all the relevant reactions that
take place in the cell—or between the cell and the extracellular
environment—during the HTS response. This module
comprises two compartments: the cytosol and the
extracellular environment.

The model was formalized as a system of coupled ODEs. Mass-
action kinetics was used tomodel the physical interactions between
Ca2+, calmodulin, and calcineurin. Most transport reactions were
modeled by means of the Michaelis-Menten kinetics, as
substantiated by previous studies (Ohsumi and Anraku, 1983;
Wei et al., 1999; Takita et al., 2001; Teng et al., 2008).

Stretch-activated channels weremodeled differently: they can be
viewed as pores, whose opening probability depends on membrane
tension. In particular, the opening probability of mechanosensitive
channels was shown to follow a Boltzmann distribution (Gustin
et al., 1988; Sukharev et al., 1999; Jiang and Sun, 2013). For the sake
of simplicity, in this work the Boltzmann equation employs turgor
pressure (note that membrane tensions can be calculated from
turgor pressure using Laplace’s law for a thin-walled sphere (Gustin
et al., 1988; Sackin, 1995)). The opening probability (Popen) of
mechanosensitive channels was thus formally defined as:

Popen � 1 − 1

1 + e
P−PMS
gMS

(1)

where P is turgor pressure, PMS is the value of turgor pressure at
which Popen is equal to 0.5, and gMS is a slope parameter.

Since ions pass through the channel pore down their electrochemical
gradient, we assume that calcium ions flow according to their
concentration gradient. The calcium flux j is then given by:

j � Popen · k · Δc (2)
where k is a rate parameter and Δc is the Ca2+ concentration
gradient across the membrane.

The model was simulated with COPASI (version: 4.19)
(Hoops et al., 2006), using the LSODA algorithm (Petzold,
1983) with default settings. Simulation outputs consist in time
traces of species concentrations over a period of 160 s, in line with
the stress response duration of yeast cells. The model is available
as an SBML Level 2 Version 5 file (IDMODEL2112030001) in the
BioModels repository (Malik-Sheriff et al., 2020): https://www.
ebi.ac.uk/biomodels/MODEL2112030001.

3.2 Parameter Estimation
Unknown parameters were estimated with COPASI (Hoops et al.,
2006), using the available implementation of the Particle Swarm
Optimization (PSO) algorithm (Kennedy and Eberhart, 1995).
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PSO is a global optimization algorithm based on the concept of
“swarm intelligence”, which was shown to be effective in solving
optimization problems characterized by multi-modal and noisy
fitness landscapes, such as the ones related to the parameter
estimation problem of biochemical systems (Nobile et al., 2018;
Tangherloni et al., 2019; Besozzi et al., 2020).

To estimate the unknown parameters, simulations were fitted
against available experimental time traces of [Cacyt], measured in
different experimental conditions in Rigamonti et al. (2015),
including deletion mutants in key proteins of the HTS response
and a wide range of extracellular Ca2+ concentrations. It is worth
mentioning that, in the parameter estimation process, we took into
account the well known fact that the intracellular calcium levels are
kept in a narrow range despite wide variations in external conditions,
thanks to calcium buffering and sensing and feedback mechanisms
(Cunningham K. W. and Fink G. R., 1994). Thus, while reaction
constants must be the same across different experiments, the
concentrations of proteins bound to Ca2+ can vary. According to
this line of reasoning, these parameters were not forced to be the same
for all experiments. Since themodel describes a stimulus response, the
steady-state pre-stress conditions were also included in the parameter
estimation process. Search ranges for all unknown parameters were
set to be within biologically plausible numeric intervals.

4 MODEL DEFINITION

4.1 Definition of the Biophysical Module
The biophysical module describes the variation of the physical
parameters of the cell, such as the cell volume and turgor
pressure. The following mathematical description of volume
regulation under osmotic stress is a simplified version of a
previously published model, which was carefully parameterized
using hyperosmotic shock data (Schaber and Klipp, 2008).

4.1.1 Volume
Assuming that volume changes are only due to water flow and not
to solute flow, the total cell volume V (in L) can be defined as the
sum of an osmotically active volume (water volume) Vos and an
osmotically inactive volume (solid volume) Vb:

V � Vos + Vb, (3)
with Vb assumed to be constant. The extracellular volume, Vex, is
much greater than the volume occupied by the cell. Therefore, for
the sake of simplicity, we assume that Vex = V (0) · 1,000, where V
(0) is the initial cell volume.

The water flow is driven by gradients of water potential and
hydrodynamic potential (Griffin, 1981; Kleinhans, 1998), which
can be formalized as:

dV

dt
� d

dt
Vos + Vb( ) � dVos

dt
� −LpA P + ΔΠn − σΔΠs( ), (4)

where Lp is the hydraulic conductivity (in dm·MPa−1·s−1), A is the
cell surface area (in dm2) and P is the intracellular hydrostatic
pressure exerted on the cell wall—i.e., the turgor (in MPa)—
which equilibrates ΔΠ under steady-state conditions (dVdt � 0).

ΔΠ is the osmotic pressure difference (in MPa) between the
outside and the inside of the cell (subscripts n and s denote non-
permeable and permeable solutes, respectively), while the
dimensionless parameter σ is the reflection coefficient, which
depends on the solute permeability (Kedem and Katchalsky,
1958). In S. cerevisiae, the main permeable solute is glycerol
(Reed et al., 1987), which is released by Fps1 channels (Luyten
et al., 1995). When water and solutes are transported by different
channels, the reflection coefficient has been shown to be:

σ � 1 − ks �V

RTLp
, (5)

where �V is the partial molar volume (in m3·mol−1) of the solute, ks
is the membrane solute permeability (in dm·s−1), R is the gas
constant (in J·mol−1·K−1) and T is the temperature (in K) (Kedem
and Katchalsky, 1958; Kleinhans, 1998). Since the only solute
considered here is glycerol, σ is approximately equal to 1 at room
temperature1, and thus:

dVos

dt
� −LpA P + ΔΠn − ΔΠs( ), (6)

with A ≔ A(t) � (36π)13V(t)23, since the cell has a roughly
spherical shape.

The van’t Hoff law can be used to express the osmotic pressure
in terms of concentration of osmotically active molecules: ΔΠ =
cPCRTΔc, where Δc is the concentration and cPC is a conversion
factor relating concentrations in M to pressures in MPa. Thus,
Eq. 6 can be written as:

dVos

dt
� −LpA P + cPCRT Osme[ ] − Osmi[ ]( )( ), (7)

where Δc is substituted with [Osme] − [Osmi], where [Osme] and
[Osmi] are extracellular and intracellular concentration (in
μmol·L−1) of osmotically active molecules, respectively. If Eq.
7 is initially at steady-state (dVos

dt � 0), the internal osmolarity can
be estimated as a function of the initial turgor pressure P0 and the
initial external osmolarity Osme (0) as:

Osmi[ ] 0( ) � Osme[ ] 0( ) + P0

cPCRT
. (8)

Both intracellular and extracellular osmolarities are the sum of
concentrations of permeable solutes (glycerol) and non-
permeable solutes. The extracellular osmolarity is thus:

Osme[ ] � cen + Glye[ ] − Glye[ ] 0( ), (9)
where cen is the extracellular concentration of non-permeable
solutes, which varies in time according to the applied stimulus
(explained below), while [Glye] is the extracellular glycerol
concentration. The initial extracellular glycerol concentration
([Glye](0)) is assumed to be 1,000 times lower than the initial
intracellular glycerol concentration (that is, [Glye](0) = [Glyi](0)/
1,000), providing a gradient for glycerol efflux from the cell. All
concentrations are expressed in μmol·L−1.

1 �V for glycerol is 0.071 · 10−3 m3/mol
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The intracellular osmolarity, accounting for cell volume
variation, is defined as:

Osmi[ ] � Glyi[ ] + cinVos 0( )
Vos

, (10)

where [Glyi] is the intracellular glycerol concentration, cin �
[Osmi](0) − [Glyi](0) is the concentration of non-permeable
solutes, while Vos and Vos(0) are, respectively, the cytosolic
volume and the cytosolic volume at t = 0. Concentrations are
expressed in μmol·L−1, while volumes are expressed in μm3.

4.1.2 Turgor Pressure
The water potential gradient maintained by all cells across their
membrane is balanced by a hydrostatic pressure called turgor. In
walled cells, turgor pressure causes the cell membrane to exert a
force on the cell wall, which expands due to its elasticity. The
elastic-theory of turgor pressure states that the change in turgor
pressure P is proportional to a relative change in cell volume:

dP � −ϵdV
V
, (11)

where the proportionality factor ϵ is called volumetric elastic
modulus, or Young’s modulus (in MPa).

The dependence of turgor pressure on volume can be deduced
by integration:

∫V

V0

dP V( ) � −∫V

V0

ϵ 1
V

5 P V( ) − P V0( ) � −ϵ ln V

V0
( ). (12)

By defining V0 as the volume when turgor becomes zero, the
turgor pressure can be expressed as a function of volume:

P V,V0, ϵ( ) � −ϵ ln V

V0
( ) for V≥V0,

0 for V<V0.

⎧⎪⎪⎨⎪⎪⎩ (13)

It is known that glycerol efflux and synthesis is tightly
regulated according to environmental conditions (Talemi
et al., 2016). However, given the small time-scales considered
here, internal glycerol concentration is assumed to be constant.

4.1.3 Hypotonic Shock
Hypotonic shock is applied to the cell by diluting the medium
with distilled water, thus decreasing its osmolarity. This dilution
is modeled as follows:

cen � ce0 for t< toff,

cen � ce0 −
ce0
d

( )etoff−t
tm + ce0

d
otherwise,

⎧⎪⎪⎨⎪⎪⎩ (14)

where ce0 is the initial extracellular osmolarity (in μmol·L−1), d is
the diluting factor, t is the simulation time instant (in s), toff (in s)
is the instant when dilution is applied, and tm is the mixing time
(in s) that regulates the speed of dilution.

4.2 Definition of the Biochemical Module
The concentration of calcium ions in the cytosol changes due
to fluxes across different channels and transporters. The

cytosol is also provided with calmodulin—a protein
involved in the binding and sensing of calcium ions (Cyert,
2001)—that can activate calcineurin, the main calmodulin
effector. HTS is applied by diluting the medium in which
cells grow with distilled water, which has also the effect of
reducing the availability of calcium ions. Since the
extracellular volume is way larger than the volume occupied
by all cells, the reduction of extracellular calcium ions caused
by the cell uptake can be neglected. Therefore, the extracellular
Ca2+ concentration depends only on dilution factor and
mixing time (see Eq. 14):

Caex[ ] � Caex[ ] 0( ) for t< toff,

Caex[ ] � Caex[ ] 0( ) − Caex[ ] 0( )
d

( )etoff−t
tm + Caex[ ] 0( )

d
otherwise,

⎧⎪⎪⎨⎪⎪⎩
(15)

with all concentrations expressed in nM, and t, toff and tm
expressed in seconds.

The rate of change of the Ca2+ concentration in the cytosol can
be written as the sum of fluxes of the relevant channels and
transporters (described below):

d Cacyt[ ]
dt

� jIN + jCch1 + jMS − jPmr1 − jVcx1 − jPmc1, (16)

where the js are Ca2+ fluxes (in nM·s−1) across calcium channels
and transporters.

Very often, channels and transporters show kinetics that can
be described with the Michaelis-Menten equation (i.e. the
transporter saturates at high substrate concentrations)
(Christopher, 2002; Weijiu, 2012; Fridlyand et al., 2003).
Indeed, this is the case for the intracellular transporters
Pmr1, Vcx1, Pmc1 (see references in Table 2). Pmr1
indirectly replenishes the endoplasmic reticulum with Ca2+,
while Vcx1 and Pmc1 are responsible for its sequestration
into the vacuole. Ca2+ enters the cell through the plasma
membrane-located HACS channel and other transporters
whose molecular identities are yet unknown (Batiza et al.,
1996; Locke et al., 2000; Tisi et al., 2002; Cui et al., 2009a).
Here, the influx associated with this unknown transport is
simply called jIN—to recall its function—and is assumed to
have a Michaelis-Menten kinetics.

Experimental evidences strongly suggest that the increase of
cytosolic Ca2+ in cells challenged with HTS is caused by the
opening of a MS channel on the plasma membrane (Batiza et al.,
1996; Rigamonti et al., 2015). This calcium influx pathway has not
been molecularly identified yet, and it is here denoted by jMS. The
equations describing the fluxes are:

jIN � vIN Caex[ ]
kIN + Caex[ ], (17)

jPmr1 �
vPmr1 Cacyt[ ]
kPmr1 + Cacyt[ ], (18)

j0Vcx1 �
vVcx1 Cacyt[ ]
kVcx1 + Cacyt[ ], (19)
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jPmc1 �
vPmc1 Cacyt[ ]
kPmc1 + Cacyt[ ], (20)

j0MS � Popen kMS Caex[ ] − Cacyt[ ]( ), (21)
j0Cch1 � kCch1 Caex[ ] − Cacyt[ ]( ), (22)

where Popen is the opening probability of the MS channel (see
below), kCch1 and kMS are rate parameters (in s−1), vs. are rate
constants (in nM·s−1), and all other ks are Michaelis constants
(in nM).

The opening probability of MS channels follows a Boltzmann
distribution (Gustin et al., 1988; Sukharev et al., 1999; Jiang and
Sun, 2013). MS channels are gated by membrane tension (Gustin
et al., 1988; Sackin, 1995) but here, for the sake of simplicity,
turgor pressure is used instead (see Section 3.1 and Eq. 1 for a
justification). The opening probability of the MS channel is then:

Popen � 1 − 1

1 + e
P−PMS
gMS

, (23)

where P is the cell turgor pressure in MPa (see Eq. 13), PMS is the
turgor pressure (in MPa) at which Popen is equal to 0.5, and gMS is
a slope parameter (in MPa).

4.2.1 Feedback Regulation
Inside the cytosol, yeast calmodulin binds three Ca2+ ions with
high cooperativity (Davis et al., 1986; Nakashima et al., 1999):

CaM + 3Ca2+ ⇋
k+m

k−m
CaMCa. (24)

By using the law of mass action, the rate equation for Ca2+-bound
calmodulin can be formalized as:

d CaMb[ ]
dt

� k+m CaMt[ ] − CaMb[ ]( ) Cacyt[ ]3 − k−m CaMb[ ], (25)

where [CaMb] is the concentration of Ca2+-bound calmodulin (in
nM), CaMt is the total calmodulin concentration (in nM), k+m and
k−m are the forward and backward rate constants (in nM−4·s−1 and
s−1, respectively).

Calcineurin, a protein phosphatase, is activated upon binding
with the Ca2+-bound calmodulin. By the law of mass action we
can state that:

d CaNb[ ]
dt

� k+n CaNt[ ] − CaNb[ ]( ) CaMb[ ] − k−n CaNb[ ], (26)

where [CaNb] is the concentration of calmodulin-bound
calcineurin (in nM), CaNt is the total calcineurin
concentration (in nM), k+n and k−n are the forward and
backward rate constants (in nM−2·s−1 and s−1, respectively).

Following HTS, calcium ions enter the yeast cell through MS
channels located on the plasmamembrane. After the initial rise in
Ca2+, the signal dissipation observed in the successive seconds
must be the result of either an increased activity of one of the
intracellular transporters or a feedback inhibition on the MS
channels. Since no positive regulation is known for any of the
relevant transporters, in the present model the latter mechanism
is assumed. This assumption is supported by circumstantial

evidence suggesting that the yeast MS channel interacts with a
homologous of TRP proteins (Rigamonti et al., 2015). TRP
proteins form tetrameric ion channels which frequently
interact with—and are inhibited by—calmodulin (Rhoads and
Friedberg, 1997; Zhu, 2005). It is also known that activated
calcineurin post-transcriptionally inhibits Vcx1 and HACS
activity (Cunningham and Fink, 1996; Miseta et al., 1999b;
Locke et al., 2000). The following equations are thus used to
model the feedback inhibition:

jCch1 � j0Cch1
1 + kICch1 CaNb[ ], (27)

jMS � j0MS

1 + kIMS CaMb[ ], (28)

jVcx1 � j0Vcx1
1 + kIVcx1 CaNb[ ], (29)

where kICch1, kIMS and kIVcx1 are inhibition constants (in nM−1).

4.3 Estimation of the Unknown Parameters
Unknown parameters of the model were fitted against time traces
of cytosolic Ca2+ measurements from HTS experiments
conducted by Rigamonti et al. (2015) and by R. Tisi,
unpublished results (Figure 2), as described in Materials and
Methods. In these experiments, wild-type S. cerevisiae cells were
grown in YPD medium, which has an estimated osmolarity of
0.26 Osm/L (Schaber et al., 2010). Specifically, the parameters of
the biophysical module (Table 1) were set to reflect those
experimental conditions.

In addition to the wild-type strain, we simulated three mutant
strains: cnb1Δ, lacking functional calcineurin; flc2Δ, lacking a
putative TRP-like channel subunit; and cch1Δ, lacking a
functional HACS channel. Within the model, a mutant can be
simulated by setting to zero the parameter associated with the
function carried out by the removed gene. Hence, the cnb1Δ
strain was obtained by setting to zero the total amount of
calcineurin in the cell (CaNt), and the cch1Δ by setting to zero
the rate parameter kCch1. However, these parameter settings were
not sufficient to reproduce the behavior displayed by the three
mutants. Thus, we performed additional parameter estimations
exploiting available experimental time traces of the mutant
strains (from Rigamonti et al. (2015) and R. Tisi, unpublished
results, Figure 2).

In particular, PMC1 expression strongly depends on
calcineurin (Cunningham and Fink, 1996), but the model can
not automatically adjust PMC1 expression in the cnb1Δ mutant,
since it lacks any description of transcriptional processes. To take
into account the reduction of PMC1 expression in this mutant, we
performed a separate parameter estimation to infer the value of
the vPmc1 parameter (i.e., the Vmax parameter of a Michaelis-
Menten equation (Eq. 20), which is proportional to the enzyme
abundance) in the cnb1Δ model. By doing so, it was possible to
assess the reduction of Pmc1 transporters in this mutant with
respect to the wild-type. We argue that the estimated value of
vPmc1 for the cnb1Δ mutant could be regarded as an estimate of
the basal expression level of the Pmc1 protein, when Cnb1 is not
stimulating the PMC1 gene transcription. Thus, we used the same
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value of vPmc1 to simulate the cch1Δ model. In fact, in order to
maintain a physiological Ca2+ level when the Ca2+ income is
lower, a novel steady state balance has to be achieved, where
Pmc1 abundance has to be adjusted so that Ca2+ remains
available to be provided to the secretory pathway as well. This
is achieved by finely tuning the homeostasis regulatory circuit,
through calcineurin transcriptional control on PMC1 gene,
leading to a Pmc1 activity nearby the basal level estimated for
the cnb1Δ mutant.

Adopting a similar approach to the one described above, we
estimated the value of kMS for the flc2Δ strain, in order to
account for the observed increased activity of the MS channel
in this strain (Rigamonti et al., 2015). It is not known whether
the increased activity of this channel is due to an increased
channel abundance or simply to an increased channel activity.
In any case, the rate parameter kMS is—like the Vmax of a
Michaelis-Menten equation—proportional to the number of
channels.

Analysis of the parameter estimation results led to the
conclusion that the model could be simplified without
affecting the simulations. In particular, removal of (a) the
feedback inhibition on the HACS channel, mediated by
calcineurin (Eq. 27), and of (b) the influx pathway that was
called “IN” (Eq. 17), did not cause any significant difference on
the simulation outcomes. Therefore, the feedback on HACS and
the jIN influx were removed and all simulations and parameter
values reported here are related to this simplified model. Table 2
lists all the parameters used for the wild-type model, while
Table 3 contains only the values that changed depending on
the strain.

5 RESULTS

5.1 Model Simulations
The simulations of the full model of HTS response correctly
reproduce the dynamics of the Ca2+ transients (Figures 3A–D),
as well as the steady-state levels and peak values of cytosolic Ca2+

(Figures 3E,F) of both wild-type and all mutant strains.
The results of the simulations for the wild-type strain are

shown in Figure 4. According to the model, after the HTS the
HACS activity decreases due to the sudden shortage of the
extracellular Ca2+ (Figure 4A), while the MS channels on the
plasma membrane open rapidly (Figure 4B, inset). The
cytosolic Ca2+-dependent inhibition on the MS channels
provides a way to decrease the activity of this channel, thus
helping to restore low intracellular calcium levels after the
stimulus. In fact, the dynamics reported in Figure 4B shows
that only in the presence of feedback inhibition the flux through
this channel is still decreasing at time t > 280s. These outcomes
also suggest that the main pump responsible for signal
attenuation is Pmc1, the Ca2+-ATPase located on the
vacuole, while Pmr1 and Vcx1 have a negligible role in this
respect (Figures 4C,D). In particular, while the predicted rate of

FIGURE 2 | Example of time traces of cytosolic Ca2+ concentration in S. cerevisiae cells challenged with HTS. HTS was applied by diluting the growth medium with
four volumes of distilled water at t =60. The final concentration of Ca2+ in the medium was 5.9 μM. Time traces were taken from Rigamonti et al. (2015) and from Tisi R.,
unpublished results.

TABLE 1 | List of parameters of the biophysical module.

Parameters Value Unit References

Vb 20.5 · 10–15 L Schaber et al. (2010)
V (0) 50 · 10–15 L
Vex 1,000 · V (0) L
Vos(0) V (0) − Vb L
Lp 1.3 · 10–7 dm·MPa−1·s−1 Talemi et al. (2016)
P0 0.61 MPa Schaber et al. (2010)
cPC 10–9 –

R 8.314 J·mol−1·K−1

T 303.15 K
ce0 260,000 μmol · L−1 Schaber et al. (2010)
D variable – Rigamonti et al. (2015)
toff 30 s Rigamonti et al. (2015)
tm 10 s
[Glyi] 180,000 μmol · L−1 Schaber et al. (2010)
ϵ 14.3 MPa
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Ca2+ sequestration by Pmr1 is predicted to be consistently slow,
the Vcx1 activity is kept down by the feedback inhibition
mediated by calcineurin (Figure 4D).

As described above, the peak response of cch1Δ
mutants—lacking functional HACS—is considerably
higher than in the wild-type strain (Figure 3F). According
to the model, the peak difference is not ascribable to an
increased activity of the MS channels in this strain with
respect to the wild-type. In fact, in this mutant, Ca2+ fluxes
through both MS channels and Pmc1 are considerably lower
than both wild-type and flc2Δ strains (Figures 5A,C). This
behaviour is the result of the reduced PMC1 expression
(Table 3):

Since Pmc1 is the main transporter responsible for Ca2+

sequestration from the cytosol, reducing its activity increases the
level of Ca2+, which in turn inhibits the MS channels through
the activated calmodulin (Figure 5B). This feedback process
ensures that the steady-state calcium levels are comparable to
those of the wild-type. However, the reduced activity of Pmc1
causes a higher peak when the MS channels open following
HTS. Rigamonti et al. suggested that the increased Ca2+ peak in
flc2Δ is caused by the removal of an inhibitory effect on the MS

channels (Rigamonti et al., 2015). To test this hypothesis, during
the parameter estimation process we let the kMS parameter of
flc2Δ mutant assume different values compared to other strains
(Table 3). The simulations show that, in line with this, a
difference in the MS channels rate compared to the wild-type
is sufficient to explain the increased peak observed during HTS
(Figure 5A).

The cnb1Δ mutants show an increased steady-state level of
cytosolic Ca2+ and a lower peak compared to all other strains
(Figure 3). As described in Section 4.3, for this mutant cells we
estimated the reduction of PMC1 expression. Our model predicts
that Pmc1 abundance is about 16 times lower compared to the
wild-type, which is counterbalanced by the increased activity of
Vcx1 that is no longer inhibited by calcineurin. This compensation
mechanism, however, fails to fully replace the decreased activity of
Pmc1, and thus the mutant displays higher steady-state calcium
levels. The higher calcium levels result in more activated
calmodulin (Figure 5B), which in turn inhibits the MS
channels leading to a lower peak (Figure 5A).

Figure 6 shows a prediction of HTS response in not yet tested
experimental conditions, since the technical difficulty in
achieving a tight control of the speed of dilution could not be
overcome. Variability in the speed and shape of the signal was
observed in different experiments, particularly when an
automatic injector was not applied, thus we decided to
investigate the effect of this parameter variation with in silico
experiments. The tm parameter of the model defines the mixing
time, i.e. the speed of dilution. The simulations of the wild-type
strain with different mixing times produces an unexpected
pattern (Figure 6A). In particular, while the speed of the
response turns out to be linearly dependent on the mixing
time (Figure 6B, red curve), the peak Ca2+ value is not. The

TABLE 2 | List of parameters of the wild-type calcium model.

Parameters Value Range Unit References

[Cacyt](0) 100 nM Cunningham and Fink, (1994a)
[Caex](0) 29,500 nM Rigamonti et al. (2015)
tm 9.1 1—10 s
vVcx1 2,820,420 100—5 · 106 nM · s−1
vPmc1 280,870 100—5 · 105 nM · s−1
vPmr1 813 100—5 · 105 nM · s−1
kMS 132,184 0.1—106 s−1

kCch1 0.37 0.1—106 s−1

kPmr1 70 nM (Sorin et al., 1997; Wei et al., 1999)
kVcx1 100,000 nM Ohsumi and Anraku, (1983)
kPmc1 4,300 nM Takita et al. (2001)
PMS 0.76 0.6—0.8 MPa
gMS 0.039 0.00001—1 MPa
k+m 1.8 · 10−14 10−20—0.01 nM−4·s−1
k−m k+m· 9,000 s−1 Starovasnik et al. (1993)
k+n 0.1 10−8—10 nM−2·s−1
k−n 1,000 10−4—104 s−1

[CaMt] 2,600 nM Ho et al. (2018)
[CaNt] 310 nM Ho et al. (2018)
kIMS 26,395 100—108 nM−1

kIVcx1 9,348,540 100—108 nM−1

Known parameters were fixed, while parameters that needed to be estimated were allowed to change inside the values shown in the “Range” column. Simulations of the mutant strains
were done with the parameters listed here, except for those listed in Table 3.

TABLE 3 | List of parameters that change depending on the modeled mutant
strain. All other parameters were kept as in the wild-type model (Table 2).

vPmc1 (nM·s−1) kCch1 (s−1) kMS (s−1) [CaNt] (nM)

wild-type 280,870 0.37 132,184 310
flc2Δ 280,870 0.37 238,519 310
cch1Δ 41,079 0 132,184 310
cnb1Δ 41,079 0.37 132,184 0

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 85603010

Spolaor et al. Modeling Calcium Signaling in Yeast

244

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


peak values grow with the mixing time until a maximum at tm =
15s, before decreasing again (Figure 6B, blue curve).

The model also predicts that the inactivation of the MS
channels—simulated by setting to zero the parameter
kMS—would reduce the steady-state cytosolic Ca2+

concentration from 215 to 160 nM.

6 DISCUSSION

S. cerevisiae cells have to adapt to changes in growth conditions
that arise both naturally, in the environment where they live,
and artificially, during human exploitation. All cells sense
extracellular osmolarity and fine-tune their biophysical

FIGURE 3 | Comparison of simulation outcomes and experimental measurements. In Figures (A–D) the dotted lines represent experimental measurements and
different colours indicate replicates, while the black lines represent model simulations. (A) Wild-type. (B) cnb1Δ. (C) cch1Δ. (D) flc2Δ. (E) Baseline cytosolic Ca2+

concentration (nM). (F)Max peak cytosolic Ca2+ concentration (nM). HTS was applied to the cells at 235 s by adding four volumes of distilled water to the medium (E,F)
Plots constructed using the same data shown in (A–D); bars represent standard deviations.
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parameters to ensure survival (Pedersen et al., 2011).
Generation of a Ca2+ transient in response to HTS seems to
be an ubiquitous phenomenon shared by yeast, plant and
mammalian cells, and it is caused by the opening of MS
channels (Sachs and Morris, 1998; Cox et al., 2013). In the
yeast S. cerevisiae, many proteins involved in Ca2+ handling
have been identified (Cui et al., 2009b; Tisi et al., 2016).
However, only recently the specific roles of each channel or
transporter in building, attenuating and shaping the observed
Ca2+ dynamics are being investigated. The model presented here
can help in bridging the gap between genetic analyses and
phenotypic observations regarding Ca2+ signaling in yeast cells.

Simulations of the biophysical module alone showed that the
volume of yeast cells increases only by a few percent relative to the
pre-stress volume. This is in contrast to non-walled cells, whose
volume can increase up to 50% (Weskamp et al., 2000). This
difference is not surprising, as yeast cells must face harsher and
unpredictable osmotic conditions than single cells inside a

multicellular organism, and have therefore evolved a rigid
cell wall.

In S. cerevisiae cells the vacuole is the main organelle for Ca2+

storage (Dunn et al., 1994), while in mammalian cells this role is
played by the ER (Montero et al., 1995; Strayle et al., 1999). In fact,
our simulations shows that most of the Ca2+ is transported into
the vacuole. In all modeled strains, with the exception of cnb1Δ,
Pmc1 appears to be the main vacuolar transporter. As expected,
removal of calcineurin have opposite effects on vacuolar
transporters: it reduces the expression of PMC1, but it
increases the activity of Vcx1. However, our simulations
suggest that the loss of Pmc1 activity is not entirely
counterbalanced by Vcx1, and thus the cytosolic calcium level
is higher than in the wild-type. These results are in accordance
with calcium accumulation measurements showing that pmc1Δ
mutants accumulate only 20% calcium compared to wild-type
(Cunningham and Fink, 1996). In addition, the predictions made
by our model—namely, that Vcx1 has a small role in calcium

FIGURE 4 | Fluxes involved in the HTS response of the wild-type strain. (A) HACS flux. (B) Effect of calmodulin inhibition on MS channels. (C) Pmc1 and Pmr1
fluxes. (D) Effect of calcineurin inhibition on Vcx1 (A–D)Ca2+ fluxes through channels and transporters as predicted by the model (parameters are given in Table 2) (B,D)
Fluxes with or without inhibition are depicted by plotting jMS and j0MS for MS channel, and jVcx1 and j0Vcx1 for the Vcx1 transporter. Inset in (B) shows how the opening
probability of MS channels changes with time (note that it is not equal to zero before the stimulus). Fluxes in (B) are normalised to their steady-state values to better
appreciate the long-term effect of channel inhibition.
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accumulation unless calcineurin is removed—are supported by
the fact that vcx1Δ mutants accumulate the same amount of
calcium as the wild-type, and that Vcx1 has a larger role in Ca2+

sequestration in cnb1Δ mutants (Cunningham and Fink, 1996).
Pmr1 is important for the maintenance of proper calcium levels
in the ER, where the steady-state free concentration is only 10 μM
(Strayle et al., 1999). Our simulations suggest also that Pmr1 has a
marginal role during the HTS response, as well as in maintaining
low steady-state calcium level into the cytosol. However, no
definitive comparison can be drawn between model
predictions and experimental results because pmr1Δ mutants
display pleiotropic defects that are probably direct
consequences of ER calcium depletion (Rudolph et al., 1989;
Antebi and Fink, 1992).

Yeast cells are equipped with a variety of calcium influx
pathways, each with seemingly different functions (Eilam and
Othman, 1990; Iida et al., 1994; Fischer et al., 1997; Muller et al.,
2003). Our model initially included three calcium entry pathways:
HACS (the high affinity calcium system composed of at least
Cch1 and Mid1), MS channels, and another calcium influx of

unknownmolecular identity. The presence of MS channels on the
yeast plasma membrane was demonstrated by patch-clamp
experiments (Gustin et al., 1988), but their molecular identities
are still unknown. Parameter estimation revealed that the
additional influx (here called “IN”) was unnecessary in this
model, and that HACS, and the MS channels alone are
sufficient to explain the observed data. The removal of “IN”,
which was the only active transporter on the plasma membrane
introduced in the model, implies that in the simulations Ca2+

enters the cell only by passive transport, driven by the gradient in
concentration and by the membrane potential. In fact,
experiments demonstrated that in energy-depleted cells, where
maintenance of membrane potential is defective, there was no
Ca2+ influx (Eilam and Chernichovsky, 1987).

According to our simulations, even during steady-state
conditions, and Ca2+ enters the cell through unstimulated MS
channels. Indeed, most channels are known to be “leaky”,
i.e., they stochastically open even in non signaling conditions.
Since the flux through a single channel can be several orders of
magnitude higher than that of a single transporter (Milo et al.,

FIGURE 5 | Simulations showing the main differences among the considered strains. (A)MS influx. (B) Calmodulin activation. (C) Pmc1 flux. (D) Vcx1 flux (A,C,D)
Fluxes through the most relevant channels. (B) Calmodulin activation, shown relative to the wild-type level, before HTS is applied. Time traces of calcineurin are similar
and are not shown for the sake of figure readability. (D) Vcx1 fluxes of all mutants but cnb1Δ are overlapping and therefore are coloured black.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 85603013

Spolaor et al. Modeling Calcium Signaling in Yeast

247

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2010), even brief channel openings can theoretically supplement
the cytosol with a significant amount of Ca2+. It has been shown
that treatment with gadolinium, a blocker of stretch-activated
channels, eliminates the Ca2+ rise in response to HTS without
significantly affecting the steady-state Ca2+ concentration (Batiza
et al., 1996). Accordingly, removing MS channels from our model
decreases steady-state calcium levels from 215 to 160 nM, a value
which is still well within the physiological range (Cunningham K.
W. and Fink G. R., 1994). During model definition, a feedback
inhibition was introduced on MS channels, mediated by
calmodulin. This is the only assumption made in the model
that is not yet supported by strong experimental evidence. We
suggest that some kind of calcium-dependent feedback must
exist, which either increases the activity of intracellular
transporters or decreases the activity of MS channels. Many
ion channels are inhibited by calmodulin (Saimi and Kung,
2002) and performing a parameter estimation with the model
lacking this feedback inhibition produced poor results, in
particular for the cnb1Δ mutant.

HACS channel has been shown to be activated following a
number of external stimuli, such as alkaline stress and mating
pheromone (Iida et al., 1994; Viladevall et al., 2004), but it is also
involved in calcium uptake during normal growth, as evidenced
by long-term calcium accumulation studies (Muller et al., 2001).
In addition, HACS seems to physically interact with, and be
inhibited by, calcineurin (Muller et al., 2001; Bonilla and
Cunningham, 2003). After the parameter estimation process, it
emerged that in our model the equation describing this negative
regulation was unnecessary to reproduce the experimental data.
This result suggests that, in the growth conditions considered
here, feedback inhibition by calcineurin does not change
significantly, since calcineurin activity is low in the chosen
cultural conditions (Groppi et al., 2011).

Flc2 belongs to a TRP-like fungal family of putative yeast
calcium transporters, together with Yor365c, Flc1, and Flc3 (Tisi

et al., 2016). This raises the possibility that also the MS channels,
with which Flc2 seems to interact, might belong to the
aforementioned family. Our simulations support the
hypothesis that Flc2 exerts an inhibitory role on the MS
channels located on the plasma membrane (Rigamonti et al.,
2015). In fact, the observed increase of calcium response and
calcineurin hyperactivation in the flc2Δmutant (Rigamonti et al.,
2015) could be reproduced with the model just by increasing the
activity of the MS channels. Flc2 may directly or indirectly
influence the MS channel by affecting its stability, function or
localization.

Most of the model predictions are in accordance with
experimental results that were not used for the parameter
estimation process, suggesting that the model provides an
accurate description of the HTS response in yeast cells as
well as the most relevant transcriptional and post-
transcriptional regulations involved in calcium handling. In
particular, the model suggests the following regulatory
scheme (Figure 7). Normally, Ca2+ enters the cell via HACS
and MS channel leak. Pmc1 is the main intracellular transporter
that keeps Ca2+ cytosolic level within the physiological range by
pumping it into the vacuole. In the wild-type, Vcx1 is almost
completely inhibited by calcineurin (Figure 7A). Mutants
defective in HACS channel are still able to maintain
physiological levels of cytosolic Ca2+ because calcineurin-
dependent expression of Pmc1 is decreased. For the same
reason, when this strain is challenged with HTS, the sudden
Ca2+ influx is more slowly attenuated by Pmc1 (Figure 7C). In
flc2Δ mutants, the flux through the MS channels is increased by
removal of the inhibitory effect of Flc2 (Figure 7B). Lastly,
mutants lacking calcineurin express less Pmc1, but the
inhibitory effect on Vcx1 is relieved. Vcx1 only partially
compensates for the reduced Pmc1 activity and the resulting
higher Ca2+ levels activate calmodulin, that in turn inhibits MS
channels (Figure 7D).

FIGURE 6 | Behaviour of the system depending on the speed of the HTS. (A) Ca2+ peaks in response to different dilution speeds. (B) Maximum Ca2+ values and
time of maximum Ca2+ values depending on the dilution speed. The tm parameter is inversely proportional to the speed of dilution. Increasing the speed of dilution
increases the speed of response but not necessarily the peak height.
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The function of the Ca2+ transient is still unclear. Calcineurin
regulates gene expression by promoting Crz1 movement into
the nucleus (Stathopoulos and Cyert, 1997; Cai et al., 2008).
During HTS, Crz1 stays in the nucleus for about 5 mins (Oh
et al., 2012), but its activity is only slightly increased (Rigamonti
et al., 2015). In mammalian cells, calcium is often required for
regulatory volume decrease (Jakab et al., 2002), while in yeast
cells it could be implicated in the regulation of the cell wall
integrity pathway (Levin, 2011; Rigamonti et al., 2015). In
addition to the transient increase of Ca2+, HTS rapidly
stimulates the Plc1-dependent hydrolysis of
phosphatidylinositol 4,5-bisphosphate (Perera et al., 2004), an
event that in many cell types elicits complex calcium responses
(Hille et al., 2015). However, yeast plc1Δmutants are still able to
generate the Ca2+ signal during HTS (Tisi et al., 2002) and,
conversely, Plc1 activity is independent from calcium
availability in the medium (Perera et al., 2004), suggesting
that in yeast these events might be independent.

7 CONCLUSION

As extensively described, the simulations of our model are in
agreement with the experimental data, suggesting that the cellular
components included in the model and their interactions are
sufficient to explain the biological data in our hands. The model
was defined on the basis of experimental evidences from the
literature, and the parameter estimation process was performed
against data from both the wild-type and mutant cells, in order to
maximise the prediction’s reliability. The model presented in this
work could be extended to include the response to several other

stimuli known to elicit a calcium signal in yeast (Iida et al., 1990;
Courchesne and Ozturk, 2003; Groppi et al., 2011). Such
extensions of the model can be achieved either by modifying
the current system of ODEs, or by adopting hybrid modeling
approaches (Spolaor et al., 2019b; Nobile et al., 2020), in order to
include other functional modules in the model that can better
describe the different cellular processes involved in Ca2+

signalling (including, e.g., gene regulation and expression).
Extended versions of the model could be useful for
understanding the role of known channels and transporters,
suggesting novel putative regulatory mechanisms and gaining
new insights on Ca2+ signaling that can be further investigated
experimentally.

Being Ca2+ an essential signaling ion, proteins involved in
its homeostasis are increasingly studied as potential targets of
antifungal drugs (Kwun et al., 2021; Li et al., 2021; Wang
et al., 2021). A model of Ca2+ signaling could be used to
predict the outcomes of the inhibition of a particular protein
on the calcium physiology of fungal cells, thus helping to
identify the best drug targets. Moreover, such models could
be used to study in silico the relationships between
pathogenic fungi and human cells (Spolaor et al., 2019a),
accelerating the discovery of new antifungal treatments. Since
Ca2+ signaling is well conserved among fungi (Tisi et al.,
2016), a model of S. cerevisiae would require only slight
modifications to describe what happens in other,
pathogenic fungi.

Finally, as a future development, we plan to perform a large-
scale sensitivity analysis of the model, in order to determine the
most relevant parameters governing the response to hypotonic
shock. Global sensitivity analysis requires a massive amount of

FIGURE 7 | Scheme depicting the main predictions of the model. (A)Wild-type. (B) flc2Δ. (C) cch1Δ. (D) cnb1Δ. Activation is indicated by arrows, inactivation by
T-bar arrows. Plain and dashed lines indicate post-transcriptional and transcriptional regulations. Line thickness represents the strenght of fluxes/(in)activations. Inactive
components of the pathway are greyed-out.
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independent simulations, which can lead to a huge computational
effort (Nobile and Mauri, 2017). In order to make this analysis
feasible, we will re-implement the model using the Python library
ginSODA (Nobile et al., 2019), which provides the possibility of
offloading a massive number of simulations of an ODE-based
model to the GPU, thus strongly reducing the overall
running time.
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An Epistatic Network Describes oppA
and glgB as Relevant Genes for
Mycobacterium tuberculosis
Ali-Berenice Posada-Reyes1,2*, Yalbi I. Balderas-Martínez3, Santiago Ávila-Ríos3,
Pablo Vinuesa4 and Salvador Fonseca-Coronado2*

1Posgrado en Ciencias Biológicas, UNAM, Mexico, Mexico, 2Facultad de Estudios Superiores Cuautitlán, UNAM, Estado de
Mexico, Mexico, 3Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Ciudad de Mexico, Mexico, 4Centro
de Ciencias Genómicas, UNAM, Cuernavaca, Mexico

Mycobacterium tuberculosis is an acid-fast bacterium that causes tuberculosis worldwide.
The role of epistatic interactions among different loci of theM. tuberculosis genome under
selective pressure may be crucial for understanding the disease and the molecular basis of
antibiotic resistance acquisition. Here, we analyzed polymorphic loci interactions by
applying a model-free method for epistasis detection, SpydrPick, on a pan–genome-
wide alignment created from a set of 254 complete reference genomes. By means of the
analysis of an epistatic network created with the detected epistatic interactions, we found
that glgB (α-1,4-glucan branching enzyme) and oppA (oligopeptide-binding protein) are
putative targets of co-selection in M. tuberculosis as they were associated in the network
with M. tuberculosis genes related to virulence, pathogenesis, transport system
modulators of the immune response, and antibiotic resistance. In addition, our work
unveiled potential pharmacological applications for genotypic antibiotic resistance inherent
to the mutations of glgB and oppA as they epistatically interact with fprA and embC, two
genes recently included as antibiotic-resistant genes in the catalog of the World Health
Organization. Our findings showed that this approach allows the identification of relevant
epistatic interactions that may lead to a better understanding of M. tuberculosis by
deciphering the complex interactions of molecules involved in its metabolism, virulence,
and pathogenesis and that may be applied to different bacterial populations.

Keywords: glgB, oppA, epistatic network, co-selection, Mycobacterium tuberculosis, tuberculosis

1 INTRODUCTION

In humans, tuberculosis (TB) is a chronic and highly contagious disease that causes more than 10
million human infections and 1.8 million deaths worldwide every year. The constant arrival of drug-
resistant strains complicates its control and eradication (Gupta et al., 2018). This disease is mainly
caused by members of the Mycobacterium tuberculosis complex (MTBC) (Coscolla and Gagneux,
2014) via aerosolized bacteria released by patients with TB (Lerner et al., 2015).

Mycobacterium tuberculosis (Mtb) lineages L1–L4 and L7 form a large group of human-adapted
strains responsible for the vast majority of global human TB cases, whereas Mycobacterium
africanum lineages (L5 and L6), which are restricted to humans from West Africa, are
phylogenetically linked with the eighth lineage, which comprises various animal-adapted strains
(Gonzalo-Asensio et al., 2014).
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The first complete genome sequence of Mtb was described in
1998 (Cole et al., 1998). Since then, whole-genome sequencing
(WGS) has been applied to a wide range of clinical scenarios, with
the potential to revolutionize TB diagnosis, outbreak
investigation, development of drugs and vaccines, and to assist
in understanding the evolution and pathogenicity of MTBC
(Satta et al., 2018). The increase in genomic data in this new
era of big data can be considered a great opportunity to continue
with the epidemiological surveillance of Mtb associated with the
evaluation of genotypic antibiotic resistance. Moreover, it may
allow us to unveil new genes with characteristics that lead us to a
better understanding of TB.

Recent advances in the scale and diversity of population genomic
data for Mtb provide the potential for revealing whole-genome
genetic patterns. Statistical methods combined with recent
advances in computational structural biology have identified the
polymorphic loci (positions inside a genome) under the strongest
co-evolutionary pressures or epistatic interactions (Skwark et al.,
2017). Such epistatic interactions describe a functional relationship
between genes or polymorphic loci (Sackton andHartl, 2016). Studies
of interactions between mutations in Mtb that result in resistance to
diverse drugs have suggested that epistasis may be related to
multidrug resistance (Trauner et al., 2014; Kavvas et al., 2018).
However, the role of epistatic interactions among many regions of
the genome under selection in Mtb remains unknown, and further
study will contribute to improving our knowledge of TB.

In this study, we analyzed polymorphic loci interactions for
epistatic detection in a set of 254 complete reference genomes
from Mtb by the use of the model-free method, SpydrPick
(Pensar et al., 2019). SpydrPick is based on calculating the
mutual information between two polymorphic loci. This well-
annotated reference collection integrates genome annotation,
gene characterization, and a sequence variation report with a
high certainty of genomic location. First, a pan-genome was
created using Roary (Page et al., 2015). Then, using AMAS, a
pan–genome-wide alignment was obtained by concatenating
individual gene alignments. This pan–genome-wide alignment
was the input for SpydrPick.

The application of the method to this data set allowed us to
reconstruct an epistatic network. The analysis of this network
revealed two putative targets of co-selection (glgB and oppA)
associated with Mtb genes related to virulence, pathogenesis,
transport system modulators of the immune response, and
antibiotic resistance. This work may have relevant applications
in the characterization of new genes involved in the worldwide
problem of Mtb drug resistance (WHO, 2021).

2 MATERIALS AND METHODS

An overview of our approach is depicted in Figure 1. The steps
are described in the following subsections.

FIGURE 1 | Pipeline for the study of epistatic interactions in Mtb.
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2.1 Data Set
We gathered 254 reference strains of Mtb from the NCBI Refseq
database that was available as of 4 November 2020. The list of
strains is provided as Supplementary Data S1.

2.2 Creating Pan–Genome-Wide Alignment
Following the strategy of Pensar et al. (2019), we created a
pan–genome-wide alignment of the 254 strains. First, we
employed Prokka (Seemann, 2014) to annotate genes and
features of interest in the set of strains. This genome
annotation (GFF3 format) was the input to create a pan-
genome of the strains with Roary (Page et al., 2015).

This tool extracts the gene sequences from the input and then
identifies clusters to obtain gene alignments. Roary considers two
categories of genes: core and accessory. A gene is considered
“core” if it is in at least a certain percentage of strains (isolates)
defined by the user. In our study, we followed the approach of
Pensar et al. (2019), who set this percentage on 95% strains. The
output of Roary is a set of files with individual gene alignments,
with one file per gene. These files are concatenated in a matrix
using the Alignment Manipulation and Summary (AMAS) tool
(Borowiec, 2016). This matrix is formed by gene 1 joined on the
right with gene 2 and so on with the rest of the genes [see the
example “A: concatenation” from Figure 1 in Borowiec (2016)].
Thus, the columns of the output matrix are the genes, and the
number of rows is the number of strains used to generate the
pan–genome-wide alignment (254 in this case).

2.3 Global Diversity Evaluation
The pan–genome-wide alignment was evaluated for global
diversity by estimating a phylogeny using RAxML Next
Generation (Kozlov et al., 2019). A standard nonparametric
bootstrap of 1,000 replicates was performed. Phylogenies were
visualized using iTOL v. 6.4.1 (Letunic and Bork, 2021).

2.4 Genetic Prediction of Antibiotic
Resistance
We predicted a resistome for the 254 strains using the Resistance
Gene Identifier (RGI) tool v. 5.1.1 (Alcock et al., 2020). RGI uses
the Comprehensive Antibiotic Resistance Database (CARD) as
reference data. Using the output of RGI, we annotated strains for
two genotypic characterizations of antibiotic resistance:
multidrug-resistant (MDR) strains for those strains with genes
resistant to isoniazid and rifampicin and extensively drug-
resistant (XDR) strains if they have genes resistant to
isoniazid, rifampicin, fluoroquinolone, and at least one of the
following three antibiotics: kanamycin, amikacin, or
capreomycin. These annotations were incorporated for
visualization into the phylogeny displayed by iTOL.

2.5 Computational Detection of Epistatic
Interactions
2.5.1 Epistatic Interaction Detection
We utilized SpydrPick (Pensar et al., 2019) to detect the epistatic
interactions in the pan–genome-wide alignment. SpydrPick is a

model-free method whose computational efficiency enables
analysis at the scale of pan-genomes of bacteria. This method
facilitates the detection of targets of co-selection related to
virulence and antibiotic resistance. The potential of this
method is the detection of epistatic interactions in the absence
of phenotypic data.

The approach of SpydrPick is based on calculating the mutual
information (MI) between two polymorphic loci. MI is an
information-theoretic measure of the amount of information
that one random variable, X, contains about another random
variable, Y. MI is also defined as the reduction in uncertainty in X
after observing Y; in other words, MI manifests the reduction in
uncertainty of X due to the knowledge of Y (Cover and Thomas,
2006). MI gives a measure of association or correlation between X
and Y (Chanda et al., 2020); if the two variables, X and Y, are
independent, then the MI is zero. MI is formally defined as
follows:

MI X,Y( ) � ∑
x∈ X( )

∑
y∈ Y( )

p x, y( )log p x, y( )
p x( )p y( )( ), (1)

where p (x, y) is the joint probability and p(x) and p(y) are the
marginal probabilities of X and Y. MI has been successfully used
for detecting co-selection in bacterial population genomics at a
genome-wide scale. Another relevant feature introduced by
SpydrPick’s approach is the correction for the population
structure. This is applied by a sequence reweighting strategy
based on how different are the sequences in the pan–genome-
wide alignment (Pensar et al., 2019).

SpydrPick detects direct and indirect interactions between
loci. A direct interaction occurs between two positions (P1 →
P2), whereas an indirect interaction occurs when the two
positions (P1 and P2) are also linked through a third position
(P1 → P3 → P2). In the case of indirect interactions (P1 → P2),
SpydrPick removes the interaction if the MI is not larger than the
other two interactions (P1 → P3 and P3 → P2).

In addition, SpydrPick performs an analysis to detect outlier
interactions. A first criterion to filter outliers is that the distance
(bp) between the positions of polymorphic loci must be greater
than a linkage disequilibrium (LD) parameter. In this case, a
strong LD refers to a close genetic distance between two
nucleotide positions. Due to a strong LD hiding a prospective
signal of shared co-evolutionary selection pressure, SpydrPick
filters out pairs of positions with strong LD to select outlier
interactions. According to the SpydrPick’s documentation
(https://github.com/santeripuranen/SpydrPick), for bacterial
genomes, the typical values of the LD are in the
500–20,000 bp range, and the default approach to filtering out
strong LD pairs is using a simple distance-based cut-off (20,000 in
our case). The second criterion is that theMImust be greater than
a threshold obtained from Tukey’s outlier test Q3 + 1.5 × (Q3 −
Q1) (Tukey, 1977).

The output of SpydrPick is a table of epistatic interactions that
includes the pair of positions of two interacting polymorphic loci
in the pan–genome-wide alignment, the genome distance
between the two positions, the type of interaction (direct/
indirect), and the MI score. When SpydrPick detects outliers,
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they are reported in another table, including three additional
fields: the MI score without gaps, the gap effect, and if the outlier
is considered an extreme outlier (MI > Q3 + 3 × (Q3—Q1)). From
the input alignment, SpydPick categorizes any character different
from A, C, G, and T as a gap. Gaps are considered in the default
MI calculation, so X and Y have an outcome space of five
categories. As the gaps may not be informative, SpydrPick
calculates for each pair of positions in the outliers another MI
score considering only those strains without gaps in either of the
two positions. This MI score is named mutual information
without gaps (MI_wo_gaps). Using the MI score without gaps,
the gap effect is calculated as (1—MI_wo_gaps/MI) × 100 to
quantify the positive or negative effect on the MI by discarding
strains with gaps in the two positions.

Comparing MI scores without gaps in a meaningful way is
difficult due to the fact that the set of strains without gaps in the
two positions varies between pairs of positions (Pensar et al.,
2019). However, a high value of the gap effect for a given pair of
positions may indicate a gap-driven interaction, and a manual
analysis of the pair should be required. Thus, following the
analysis performed by Pensar et al. (2019), we used the default
MI, leaving the analysis of the MI_wo_gaps for a future in-
depth study.

The loci of epistatic interaction were annotated with gene id
and gene name. Gene names were obtained from the partitions
generated by AMAS using an R script. Afterward, using another R
script (https://github.com/biotb/epitb-net) and the R Biomartr
library (Drost and Paszkowski, 2017), we retrieved the ENTREZ
gene id by searching the gene name in the GFF file of the Mtb
H37Rv reference genome (GCF_000195955.2).

If there is no gene name detected by Roary during the pan-
genome creation, then Roary gives a unique generic name formed
by the prefix group and a consecutive number. These generic
names also appear in partitions of AMAS; however, no ENTREZ
id could be associated with these generic names as these names
did not exist in the reference genome GFF file.

On the other hand, Prokka was indicated by a numeric suffix
different annotation for the same gene, such as carB_1 and
carB_2 (carbamoyl-phosphate synthase large chain). These
names were also not found in the reference genome GFF file.
In these cases, we eliminated the numeric suffix to find the gene
name in the reference genome file. For example, we were able to
find the gene id 886,253 for carB.

2.5.2 Functional Enrichment Analysis
We used the database for annotation, visualization, and
integrated discovery (DAVID) v6.8 (Huang et al., 2009) to
obtain a functional annotation of Gene Ontology (GO) terms
and KEGG pathways of the genes participating in the epistatic
interactions. Specifically, we used the DAVID Web Service
Python Script (Jiao et al., 2012) to generate a chart report.

2.5.3 Network of Epistatic Interactions
The set of epistatic interactions can be seen as a model of complex
epistatic relations that may be analyzed and displayed as a
network. Here, we used Cytoscape (Kohl et al., 2011) to study
our set of epistatic interactions. This tool has been utilized for

studying diverse types of genetic networks. Cytoscape includes an
Analyze Network Tool that calculates several network
parameters, such as node degree and betweenness centrality.
Another useful tool of Cytoscape is the set of layout
algorithms based on the yFile Layout Algorithm App. These
algorithms visually organized a network by aligning and rotating
groups of nodes.

2.5.4 Highly Connected Nodes Analysis and
Visualization
We focused on the most highly connected genes (the highest
degree) for analyzing our epistatic network. Functional
characterization of these genes was performed by literature
curation and showing enriched GO terms for genes interacting
with them. In addition, we used the R package SeqinR (Gouy
et al., 1985) to upload the pan–genome-wide alignment and
extract the allele distribution at loci involved in their epistatic
interactions. We used the interactive web tool Phandango, which
is used to visualize phylogenetic trees and associated genomic
information (Hadfield et al., 2017), to show the estimated
phylogeny and allele distribution of loci.

3 RESULTS AND DISCUSSION

3.1 Pan–Genome-Wide Alignment
A total of 6,205 individual genes were aligned by Roary, including
3,659 core genes. After concatenating all individual genes with
AMAS, a pan–genome-wide alignment of 6,751,593 bp was
obtained.

3.2 Estimated Phylogeny and Antibiotic
Resistance Prediction
Based on Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), which are theoretical information
criteria to penalize complex models, we selected the estimated
phylogeny using a GTRmodel with four free rates (GTR-R4-FO).
The comparison of models is provided in Supplementary Table
S1. Convergence using the extended majority rule (MRE)
criterion (Pattengale et al., 2010) with a 3% cutoff for the
bootstrapping was reached after 400 trees.

The prediction of antibiotic resistance by RGI reported that 100%
of the 254 strains were MDR (Figure 2) and, within this, 15% were
XDR. This result indicates that bacterial strains, perhaps currently
circulating, present a high level of resistance to first-line treatments,
hindering the successful response to treatment and facilitating the
dissemination of strains with drug resistance mutations. Thus,
detecting epistatic interactions to elucidate polymorphic loci under
the strongest co-evolutionary pressure is of utmost importance for
molecular surveillance with bioinformatic tools that help us
characterize them promptly. Currently, it is reported that 3.4% of
the newTBpatients and 20%of the patients with a history of previous
treatment for TB were diagnosed with MDR TB worldwide (WHO,
2021).

The phylogenetic tree (Figure 2) shows the nucleotide
diversity of Mtb (254 strain collection). In this study, there is
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heterogeneity of submitters, 100% of the strains present genes
linked to antibiotic resistance and with respect to the H37Rv
strain (reference), and most of the strains present greater genetic
diversity.

3.3 Detected Epistatic Interactions
SpydrPick detected 10,573 outlier epistatic interactions (5,484
directed and 5,089 indirect). These interactions describe
polymorphic loci under the strongest co-evolutionary pressure.
A table with the complete list of outliers is provided as
Supplementary Data S2. This table includes the fields
described in subsection 2.5.1, that is, the pair of positions of
the two interacting polymorphic loci in the pan–genome-wide
alignment, genome distance between the two positions, type of
interaction (direct/indirect), MI score, MI score without gaps, gap
effect, and whether the outlier interaction is considered an
extreme outlier.

After gene annotation, we generated a new table of epistatic
interactions that excluded the generic gene names given by Roary.

The new table of outliers included 1,940 epistatic interactions
among 107 unique genes. From this set of genes, we only found 70
in the reference genome GFF file, and they were associated with
their ENTREZ id. Filtering only those interactions, including
these 70 genes, we obtained a final table with 890 outlier
interactions. The remaining interactions that were not
considered in our study will be included in a future analysis.

The final table of outlier interactions includes the two
positions of the two interacting polymorphic loci in the
pan–genome-wide alignment, gene ENTREZ id and gene
name for each position, distance between the two positions
(bp), type of interaction (direct = 1, indirect = 0), MI score of
the interaction, and if the interaction outlier is an extreme outlier
(yes = 1, no = 0). This final table of outliers (Supplementary Data
S3) was used for enrichment analysis, network reconstruction,
and analyses.

SpydrPick was able to find long-distance interactions
surpassing the two million bp (Table 1). This fact confirms
that our study has a whole-genome scale. However, because

FIGURE 2 | Phylogenetic tree pan-genomeMtb is an iTOL circular visualization with the branch length and the bootstrap values displayed. The tree is based on the
Maximum Likelihood topology of 254 strains representative of Mtb diversity and shows that length is proportional to nucleotide topology. Bootstrap values for clades
corresponding to the main Mtb clades are shown. The colors correspond to the different genotypic characterizations of antibiotic resistance (MDR =Multidrug Resistant;
XDR = Extensively Drug-Resistant).
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we identified epistatic interactions from a pan–genome-wide
alignment constructed by concatenating individual gene
alignments, the positions are not straightforward whole-
genome loci. The minimum distance (bp) between the
positions of the two interacting polymorphic loci nearly
surpassed the LD criterion of 20,000 bp. The mean of the
distance between polymorphic loci in the outlier interactions
was 846,454 bp; considering that it is greater than the median
(721,980 bp), there may be a slight skewness to distances lower
than the mean. On the other hand, the range of MI scores was
short, from 0.4130 to 0.5020 (Table 1). TheMI scores might show
a skewness to low values as the mean (0.4509) was higher than the
median (0.4202).

All loci in the 890 interactions were found in the described
single-nucleotide polymorphisms (SNPs) when we used the
pan–genome-wide alignment with the tool SNP-sites v. 2.5.1,
which can rapidly identify SNPs from a multi-FASTA alignment
(Page et al., 2016). This additional step was developed to identify
polymorphisms involved in the detected epistatic interactions.

3.4 Epistatic Network Analysis
3.4.1 glgB and oppA as Putative Targets of
Co-selection
The network of epistatic interactions was analyzed to figure out
those genes with a high node degree (the number of edges), that
is, a high level of connectivity of the gene with other genes. The
most highly connected genes were glgB (ENTREZ:886,893,
degree = 56), a α-1,4-glucan branching enzyme (GlgB), and
oppA (ENTREZ:886,985, degree = 37), an oligopeptide-binding
protein (OppA) (Figure 3).

These two genes also have the highest value of betweenness
centrality (glgB = 0.493, oppA = 0.219). Betweenness centrality is
higher for those nodes that join subnets (communities) than
those located inside the subnets. Here, we observed three subnets
connected by these two genes. An interesting pattern is that each
subnet has a different distribution of values of MI (see gradient
color of edges in Figure 3). The subnet at the bottom has higher
MI values (medianMI = 0.502) than the other two, the top subnet
has a median MI of 0.463, and the subnet at the middle has lower
values (median MI = 0.420). A further study is required to
elucidate the cause of this pattern. In addition, future analysis
will be required to identify the patterns associated with the
isolated subnets (mmpL1-mmpS4 and lipR-ponA1).

Thus, we consider these two genes as relevant putative targets
of co-selection because they may be associated with several genes
related to potential pharmacological applications. The GlgB
enzyme (encoded by Rv1326c) is the key enzyme involved in
the biosynthesis of α-glucan, which plays a significant role in the
virulence and pathogenesis of Mtb. Recently, enzymes that
participate in the biosynthesis of trehalose have gained major
attention as drug targets, especially in Mtb (Dkhar et al., 2015), as
capsular polysaccharides of bacteria have been found to modulate
the host immune response. The importance of the metabolism of
GlgB has been described (De Smet et al., 2000), but the epistatic
interactions with other genes remain unknown.

On the other hand, the gene oppA (oligopeptide-binding
protein) works as a substrate-binding protein for the
oligopeptide transport system (Opp), which is responsible for
peptide importation. The Opp system is an ATP-binding cassette
transporter. This helps in peptide absorption, giving pathogens
the essential nutrients as a source of carbon, nitrogen, and amino
acids. The Opp system affects many cellular processes, including
internalization of quorum-sensing peptides, biofilm production,
cell surface modification, and antibiotic resistance (Hopfe et al.,
2011). The relevance of the characterization of the peptide
transporter system has been described by Dasgupta et al.
(2010). Previous studies uncovered the novel observation that
this peptide transporter modulates the innate immune response
of macrophages infected (Cassio Barreto de Oliveira and Balan,

TABLE 1 | Statistics of the distance between positions of the two interacting
polymorphic loci and statistics of the MI scores, both for the final outlier
interactions.

Statistic of the final outlier interactions Values

Minimum distance (bp) 20,870
Maximum distance (bp) 2,328,291
Median distance (bp) 721,980
Mean distance (bp) 846,454
Minimum MI score 0.4130
Maximum MI score 0.5020
Median MI score 0.4202
Mean MI score 0.4509

FIGURE 3 | Network of outlier epistatic interactions. The gradient color
of nodes depicts the node degree. The gradient color of edges depicts values
of MI.
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2020) with Mtb, but the epistatic interactions of oppA with other
loci remain unknown.

A bacterium is able to adapt its response to host conditions,
such as intracellular residence in phagocytic cells, oxidative stress,
hypoxia, and carbon and nitrogen source. For this reason,
evaluating interactions by bioinformatics experiments is
necessary for the identification of new epistatic interactions in
genes that have been previously reported in databases, such as the
catalog of the WHO, or for the understanding of the epistatic
interactions in Mtb before the development of new therapies.

3.4.2 Enriched GO Terms for the Epistatic Network
The list of ENTREZ ids of the genes of the network was used to
perform a functional enrichment analysis with DAVID. From the
DAVID chart report, we only considered those terms as relevant
with p-value < 0.05 (see Supplementary Data S4 for details of
the functional enrichment analysis). Biological processes of
pathogenesis (GO:0009405) and cell wall organization (GO:
0071555) were enriched in a subset of genes (Figure 4). The
cell wall (GO:0005618), plasma membrane (GO:0005886),
cytosol (GO:0005829), and integral components of the plasma
membrane (GO:0005887) were the more abundant cellular
components; in this case, 63% of the genes are in the plasma
membrane. Regarding molecular functions, we obtained
enrichment for ATP binding (GO:0005524) and
phosphoprotein phosphatase activity (GO:0004721) for
some genes.

Recently, the biomarkers of Mtb that regulate immune
response have been identified to potentially develop drugs for
TB. It has been previously described that the functionality of
cellular components was associated with infection and verified
the regulation of these cellular components as relevant regulators
of the immune response in the host (Li et al., 2020). Thus,
describing the genes involved in cellular components is crucial

for understanding the interactions of bacteria with host molecules
that regulate immune response.

In recent studies, the relevance of the structure and biogenesis-
related genes of Mtb encoding glycoconjugates has been
confirmed, with particular emphasis on the molecules across
the different layers of the cell envelope (Angala et al., 2014).
In addition, it has been previously stressed that ATP production
is crucial for antibiotic resistance in bacteria (Black et al., 2014).

We show the enriched GO terms of genes interacting with glgB
(Figure 5B) and oppA (Figure 5F) using circular layouts. In
addition, Supplementary Data S5 also contains in table format
the genes interacting with glgB, their product, and enriched GO
terms; the same information is provided for oppA in
Supplementary Data S6. The layouts were generated using the
start and end positions of genes reported in partitions generated
by AMAS, so the arrangement and size of genes in the layout and
positions of interactions reflect the pan–genome-wide alignment.
We have highlighted the interactions of glgB and oppA in red to
distinguish them from the interaction of other genes (shown in
gray).

Both glgB and oppA epistatically interact with genes enriched
with the biological processes of pathogenesis and cell wall
organization (Figures 5D,H). One of these genes is embC,
which codifies for an arabinosyltransferase involved in the
biosynthesis of a major component of the mycobacterial cell
wall lipoarabinomannan (LAM). The characteristic manosse-
capped LAM of Mtb acts as a pathogen-associated molecular
pattern (PAMP), modulating the activation of phagocytic cells to
control the strength of the host inflammatory immune response,
while representing one of the main components in the cell wall
organization. In addition, it has been described that embC is
expressed as part of a polycistronic mRNA controlled by a
promoting region differentially expressed depending on the
stationary or hypoxia-induced persistence phase of the bacilli,

FIGURE 4 | Enriched GO terms for outliers. The p-value is indicated for each term. BP = Biological process; CC = Cellular Component; MF = Molecular function.
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highlighting the important role of this protein in the biological
functions of Mtb and the complex interaction involved in cell wall
regulation. Whether or not a direct interaction of embC with glgB
and/or oppA exists remains an exciting question to be addressed
(Goude et al., 2008).

About molecular functions, oppA and glgB interact with
several genes enriched with ATP binding and with three genes
enriched with phosphoprotein phosphatase activity (Figures 5E,
I). From these genes, bacA is another gene found to be interacting
at the highest scores with both glgB and oppA in the network, and
bacA encodes for a protein of the type IV family of ABC
transporter–type exporters; despite the structure, their function
as an importer of multi-solute hydrophilic compounds, such as
vitamin B12, bleomycin, and aminoglycosides, has been
demonstrated due to a large occluded water-filled cavity that
spans across the whole lipid membrane. In addition, it has also
been demonstrated that this transporter is implicated in the
maintenance of chronic infection in murine models by
mediating the transport of a molecule that can directly or
indirectly modulate the proinflammatory host response.
Despite having different structures, BacA and OppA shared
their ability to transport a wide range of substrates; in
particular, the shared capacity of import peptides related to
the innate immune response suggests a complex regulation
and interaction of these transporters, guaranteeing the need to
carry out studies at the level of gene regulation and function in the
near future (Domenech et al., 2009; Cassio Barreto de Oliveira
and Balan, 2020; Rempel et al., 2020).

The enriched GO terms that may be related to those associated
with ATP synthase in mycobacteria are of particular interest
because they contribute to efficient ATP production, and this
enzyme has been validated as a target for potential
pharmacological applications. In addition, mycobacterial ATP
synthase and its characteristics may provide information on
adaptations of bacterial energy metabolism. Mtb can survive in
human macrophages for an extended time. For Mtb and other
pathogenic mycobacteria strains, the blocking of ATP hydrolysis
is relevant as it may represent an adaptation to its internal and
external human phagosomes, where ATP, once produced, must
not be used (Lu et al., 2014). Thus, the importance of epistatic
interactions associated with ATP production in pathogenic
bacteria may face exceptional challenges as a variety of
pathogens need to deal with low energy conditions, such as
low oxygen tensions or nutrient limitation inside the host.

Regarding gene interactions enriched with phosphoprotein
phosphatase activity, both oppA and glgB established epistatic
interaction with the pstP gene, which encodes the Serine/
Threonine Protein Phosphatase PstP of Mtb. Signal sensing
and transduction via phosphorylation and dephosphorylation
of specific target proteins are essential for the survival of both
eukaryotic and prokaryotic organisms. In the case of Mtb, 11
serine/threonine protein kinases have been described, but only
the serine/threonine phosphatase, PstP, has been identified,
highlighting the central role of this protein in the control of
vital processes as a negative regulator of kinase activity and global
serine and threonine phosphorylation (Iswahyudi et al., 2019).

FIGURE 5 | Enriched GO terms of genes that interact with glgB and oppA. The arrangement and size of genes and positions of interactions reflect the
pan–genome-wide alignment. Red lines indicate interactions of glgB and oppA, whereas gray indicates the interaction of other genes. (A) Epistatic network. (B) glgB
interactions (subnet). (C) Enriched cellular components of genes interacting with glgB. (D) Enriched biological processes of genes interacting with glgB. (E) Enriched
molecular functions of genes interacting with glgB. (F) oppA interactions (subnet). (G) Enriched cellular components of genes interacting with oppA. (H) Enriched
biological processes of genes interacting with oppA. (I) Enriched molecular functions of genes interacting with oppA.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8562128

Posada-Reyes et al. Epistatic Network for Mycobacterium tuberculosis

261

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Recently, other functions of PstP as a regulator of cell wall
synthesis and cell division by dephosphorylation of key substrates
implicated in both pathways have been described (Sharma et al.,
2016). PstP is co-transcribed in an operon with genes involved in
peptidoglycan synthesis, with protein kinases PknA and PknB
that regulate cell growth and cell division and with fhaA and fhaB,
which encode phosphothreonine recognition proteins that also
regulate cell growth and cell division. The involvement of pstP
with elements necessary for cell wall biosynthesis and their strict
dependence on Mn2+ for function suggests that the interaction

encountered by the computational approach could serve as a
starting point for initiating investigations into the molecular
interactions that regulate these common processes.

PstP is present as a transmembrane phosphatase and contains
a 240–amino acid intracellular catalytic domain, tethered via a
single transmembrane helix to the 196-amino acid-long
extracellular domain (Boitel et al., 2003); it remains to be
elucidated if during infection and activation of the innate
immune responses (e.g., respiratory burst activation), the
degraded bacteria retain the phosphatase activity in the

FIGURE 6 | Allele distribution at the loci of genes interacting with glgB. Labels of the column indicate gene name and locus. Estimated phylogeny is included on the
left. Interacting loci are organized in sections with borders. The border color corresponds to the color of the sections in Supplementary Data S7. GAR = Genotypic
Antibiotic Resistance.

FIGURE 7 | Allele distribution at the loci of genes interacting with oppA. Labels of the column indicate gene name and locus. Estimated phylogeny is included on the
left. Interacting loci are organized in sections with borders. The border color corresponds to the color of the sections in Supplementary Data S8. GAR = Genotypic
Antibiotic Resistance.
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membrane fragments, and these could contribute to the
dephosphorylation of the signaling pathways of the innate
system, contributing to the evasion of the immune response.

Four cellular components were enriched for genes interacting
with glgB (Figure 5C) and oppA (Figure 5G). The majority of
genes encode proteins in the plasma membrane. For example,
four genes of the group of mycobacterial membrane protein large
(MmpL), mmpL2, mmpL3, mmpL5, and mmpL8 have epistatic
interactions with glgB and oppA. MmpL proteins export cell
envelop components (such as virulence-associated lipids and
siderophores) to the periplasmic space, contributing at a high
level to the persistence of Mtb in the host (Melly and Purdy,
2019). A further study will be required to investigate the fine
regulation between the import and export systems of genes
identified under epistatic interaction by our approach in order
to establish their relevance and biological implications.

3.4.3 Allele Distribution at Loci of Genes Interacting
With glgB and oppA
To observe the patterns of alleles of the interacting polymorphic
loci, we show the allele distribution at interacting loci with the loci
of glgB and oppA using Phandango (Hadfield et al., 2017).
SpydrPick detected that three loci of glgB (837,764, 839,047,
and 839,053) interact with 57 polymorphic loci of 56 genes.
For oppA, two polymorphic loci (5,934,914 and 5,936,231) were
found interacting with 38 loci of 37 genes. Tables with loci and
genes are available in the Supplementary Datas S7, S8.

Interacting loci and gene names are displayed as labels of
columns in Figure 6 for glgB and in Figure 7 for oppA. Interacting
loci are organized in sections with borders. Each section includes
the interactions for each interacting locus. The border color for
each section corresponds to the color of the sections in
Supplementary Data S7, S8. In Figure 6, the first section
starts with the loci 837,764 and 839,047 of glgB (glgB_837764
and glgB_839047) followed by the 29 polymorphic loci that
interact with them, that is, these two loci epistatically interact
with each one of the 29 loci.

By observing the allele distribution of pairs of loci, we confirm
that SpydrPick is able to detect, using the MI score, predictable
patterns of alleles at the two loci. See, for example, the second
section in Figure 6, which only depicts the allele distribution of
the locus 839,047 of glgB (glgB_839047) and the interacting locus
818,177 of gcvH (gcvH_818177). It can be noticed that when there

is a C in the locus glgB_839047, there is an A in the locus
gcvH_818,177, and when there is a T in the locus glgB_839047,
there is a C in the locus gcvH_818,177. This predictability is
quantitatively depicted by the value of MI = 0.4201. The third
section in Figure 6 exposes the allele distribution of interactions
between the locus 839,053 of glgB (glgB_839053) and 27 loci of 26
genes (two loci of the gene mmpL3 interact with the locus
glgB_839053). In this section, we observe gaps (-) in the allele
distribution of the interacting locus 5,762,846 of mprB (two
component histidine-protein kinase/phosphatase MprB, MI =
0.4743), locus 5,711,087 of mmpL5 (transmembrane transport
protein MmpL5 MI = 0.4670) and locus 5,715,652 of mmpL8
(integral membrane transport protein MmpL8 MI = 0.4435).

In Figure 7, we present the allele distribution of loci
interacting with loci 5,934,914 and 5,936,231 of the gene oppA.
The first section contains the interactions with the locus
oppA_5,934,914. We notice the presence of gaps in the
positions ctpV_375337 (MI = 0.4516) and
eccB3_562,698 (MI = 0.417). Figure 7 also presents well-
defined patterns of allele distribution between interacting loci.

The first column in both figures indicates the submitter
institution (we included institutions with less than six submitted
strains in the category other), and the second column points to
genotypic antibiotic resistance (GAR) predicted with RGI. Estimated
phylogeny is included on the left to show the diversity of the strain
collection that we analyzed. For example, a clade at the bottom of the
tree stands out due to its change of nucleotide in relation to the rest
of the strains.

The application of this methodology also allowed the
identification within the network of various loci in genes
associated with resistance. Recently, the WHO published the first
catalog of resistance-associated genetic variants for predicting
relevant resistance phenotypes based on more than 38,000 WGS
phenotyped isolates (WHO, 2021). This has allowed the
identification of multiple positions associated with resistance and
their classification into five groups.We use this recent classification to
find antibiotic-resistant genes in the epistatic network (Table 2).

In our network, an interaction was found between glgB and
katG; mutations conferring monoresistance to isoniazid (INH)
are common due to INH having been in clinical use since the
1950s. Nevertheless, INH resistance testing is only recently
included in some specialized cartridges (e.g., Xpert MTB/XDR)
and is not routinely available in such a way that if INH resistance

FIGURE 8 | Epistatic interactions between the antibiotic-resistant genes
fprA and embC, and the putative targets of co-selection genes glgB and
oppA.

TABLE 2 | Antibiotic-resistant genes reported by the WHO catalogue are found in
the epistatic network.

Gene Antibiotic-resistant gene (drug)

glgB and oppA fprA (AMI)
glgB and oppA fprA (CAP)
glgB and oppA embC (EMB)
glgB katG (INH)
glgB fgd1 (DLM)
glgB mmpL5 (BDQ)
glgB mmpL5 (CFZ)

aAMI = amikacin; BDQ = bedaquiline; CAP = capreomycin; CFZ = clofazimine; DLM =
delamanid; EMB = ethambutol; INH = isoniazid WHO (2021).
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is not detected, patients are treated as pan-suceptible, which
represents a high risk of treatment failure and a greater
propensity to acquire further resistance (Sulis and Pai, 2020).

From the antibiotic-resistance genes that we found in the
WHO catalog, we observed that fprA (resistant to amikacin and
capreomycin) and embC (resistant to ethambutol) interact with
both genes glgB and oppA (Table 2). Moreover, they interact
between them, forming a clique of four genes (Figure 8). A clique
depicts a network where all nodes are fully connected to each
other, creating a strong interaction mechanism. This kind of
epistatic interactions motivated us to visualize future studies to
test new experimental hypotheses to elucidate their biological and
pharmacological explanations, and the MI score seems to be a
very successful approach to drive so.

4 CONCLUSION

Here, we have presented the reconstruction and analysis of an
epistatic network for Mtb from a pan–genome-wide alignment by
using the model-free method SpydrPick. Our approach allowed us
identifying new epistatic interactions with implications in virulence,
pathogenesis, transport system modulators of the immune response,
and genotypic antibiotic resistance. By the analysis of the epistatic
network, we identified glgB and oppA as putative targets of co-
selection. These two genes epistatically interact with fprA and embC,
two antibiotic-resistant genes reported in the catalog of theWHO, as
resistant to ethambutol (embC) and amikacin and capreomycin
(fprA). Our results highlight the importance of implementing
computational approaches to elucidate new genes associated to
putative epistatic interactions in Mtb.
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Chimeric antigen receptor (CAR) T-cell therapy shows promise for treating liquid cancers
and increasingly for solid tumors as well. While potential design strategies exist to
address translational challenges, including the lack of unique tumor antigens and the
presence of an immunosuppressive tumor microenvironment, testing all possible design
choices in vitro and in vivo is prohibitively expensive, time consuming, and laborious. To
address this gap, we extended the modeling framework ARCADE (Agent-based
Representation of Cells And Dynamic Environments) to include CAR T-cell agents
(CAR T-cell ARCADE, or CARCADE). We conducted in silico experiments to
investigate how clinically relevant design choices and inherent tumor features—CAR
T-cell dose, CD4+:CD8+ CAR T-cell ratio, CAR-antigen affinity, cancer and healthy cell
antigen expression—individually and collectively impact treatment outcomes. Our
analysis revealed that tuning CAR affinity modulates IL-2 production by balancing
CAR T-cell proliferation and effector function. It also identified a novel multi-feature
tuned treatment strategy for balancing selectivity and efficacy and provided insights into
how spatial effects can impact relative treatment performance in different contexts.
CARCADE facilitates deeper biological understanding of treatment design and could
ultimately enable identification of promising treatment strategies to accelerate solid
tumor CAR T-cell design-build-test cycles.

Keywords: agent-based model, CAR T-cell, simulation, cell population dynamics, model-guided design, emergent
dynamics

1 INTRODUCTION

Chimeric antigen receptor (CAR) T-cell therapy combines advances in cellular engineering and
personalized medicine for patient-specific, targeted cancer treatment (Barrett et al., 2014; Jackson
et al., 2016). This therapy involves collecting, purifying, and genetically modifying a patient’s own
T-cells to express a CAR that specifically targets the patient’s tumor(s) (Barrett et al., 2014; Jackson
et al., 2016). These engineered cells are expanded ex vivo and then re-infused into the patient where
the CAR T-cells target and kill antigen-expressing tumor cells. The six FDA-approved CAR T-cell
therapies and many studies expanding CAR designs exclusively target “liquid” cancers that typically
derive from CD19+ B-cells (Jackson et al., 2016; Castellarin et al., 2018; Yanez-Munoz and Grupp,
2018; NCI, 2022). CD19 CAR T-cell therapies have shown great success in the clinic with response
rates between 70–90% reported (Lim and June 2017). In contrast, response rates for solid cancers are
significantly lower at 4–16% (Hou et al., 2019).
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CAR T-cells are currently less effective for treating solid
tumors due unique complexities of both the tumor
microenvironment (TME) and tumors themselves. First, TME
barriers prevent CAR T-cell infiltration (Castellarin et al., 2018).
These barriers include the intricate influence of both tumor-
suppressing and tumor-promoting cells on the TME (Whiteside,
2008; Galluzzi et al., 2018), immune-evading cell markers
promoting tumor escape (Maus and June 2016; Galluzzi et al.,
2018), and physical and chemical barriers that impact spatial
dynamics and nutrient availability (Whiteside, 2008; Castellarin
et al., 2018). Thus, developing CAR T-cells that remodel the
immunosuppressive TME has been an active area of research
(Cherkassky et al., 2016; Liu et al., 2016; Lim and June 2017;
Huang et al., 2018; Rafiq et al., 2018). Second, solid tumors often
lack unique tumor antigens for selective targeting (Kakarla and
Gottschalk, 2014). Cross-reactivity with healthy tissues present
harmful or fatal off-tumor effects (Bonifant et al., 2016; Lim and
June 2017). Cellular engineering efforts have focused on
increasing CAR specificity by tuning the affinity of receptor-
antigen interactions to avoid healthy cells (Caruso et al., 2015;
Johnson et al., 2015; Liu et al., 2015; Castellarin et al., 2018).
Similarly, creating CAR T-cells that perform Boolean logic can
enhance tumor recognition specificity (Wilkie et al., 2012; Lanitis
et al., 2013; Wu et al., 2015; Castellarin et al., 2018; Cho et al.,
2018). Designing CAR T-cells that target multiple antigens
simultaneously can also prevent formation of antigen escape
variant tumors (Hegde et al., 2013; Hegde et al., 2016; Cho
et al., 2018). Finally, additional factors that have not proven
problematic for “liquid” cancers, such as the need for site-specific
trafficking of CAR T-cells to solid tumors and tumor antigen
heterogeneity, further complicate solid-tumor CAR T-cell
therapy design (Lim and June, 2017).

In combination with the array of engineering design choices
presented by addressing the constraints above, additional design
choices impact CAR T-cell effector functions and long-term
persistence regardless of tumor type. These features include
CD4+:CD8+ CAR T-cell ratios (Zhao et al., 2015;
Sommermeyer et al., 2016; Turtle et al., 2016), choice of
intracellular co-stimulatory domain (ICD) in the CAR
(Kawalekar et al., 2016; Guedan et al., 2018), and the stage of
T-cell differentiation (Sommermeyer et al., 2016). Collectively,
the vast number of design choices complicates interpreting and
comparing studies of and iteratively tuning CAR T-cell therapies.

Simultaneously tuning multiple features of a CAR T-cell
therapy and forecasting their impact on emergent population
dynamics remains a grand challenge. Exploring the
multidimensional design space becomes prohibitively
expensive and laborious in vitro and in vivo, particularly when
considering the time and resources required for mouse
experiments. Additionally, some design aspects and emergent
properties are difficult to interrogate experimentally, such as cell-
level behavioral states that impact treatment efficacy. Employing
in silico experiments has proven to be a resource-saving and
valuable way to understand how underlying biological processes
impact CAR treatment outcome and hypothesizing new design
features to improve efficacy. Recent CAR T-cell modeling efforts
have used ordinary differential equation (ODE) models to

understand factors influencing CAR T-cell receptor signaling
and downstream activation (Rohrs et al., 2018; Cess and
Finley, 2020a; Rohrs et al., 2020). Other CAR T-cell ODE
modeling efforts aim to optimize patient pre-conditioning with
chemotherapy (Owens and Bozic, 2021). However, these models
lack spatial resolution, test a limited set of features, and do not
assess emergent cell population dynamics; these important
contributions do not yet enable predictions of the sort needed
to guide the design of CAR T-cell therapies.

Agent-based models (ABMs) provide ideal in silico testbeds
for interrogating emergent population dynamics. ABMs are
bottom-up computational frameworks that describe the
behavior of autonomous agents through defined rules that
guide agent actions and interactions within their local
environment. The ABM framework provides single-cell spatial
and temporal resolution, incorporates quantitative and
qualitative experimental observations, and enables tuning and
measuring properties of interest through in silico experiments
(Chavali et al., 2008; Narang et al., 2012; Yu and Bagheri, 2016;
Vodovotz et al., 2017). Past ABMs have explored how cell
properties influence tumor growth (Zhang et al., 2009; Waclaw
et al., 2015; Norton et al., 2017; Yu and Bagheri, 2020),
vasculature and microenvironment dynamics (Anderson et al.,
2006; Yu and Bagheri, 2021), immune response to infection and
tumors (Folcik et al., 2007; Cess and Finley, 2020b), and tumor
response to checkpoint inhibitor therapy (Gong et al., 2017).
However, to our knowledge, no ABM reported to date has
characterized CAR T-cell dynamics in solid tumors or
explored how CAR T-cell and tumor features impact outcomes.

In this study, we systematically explore CAR T-cell therapy
designs in solid tumor contexts by adding CAR T-cell agents to an
established ABM (Agent-based Representation of Cells And
Dynamic Environments, or ARCADE) comprising tissue cell
agents (Yu and Bagheri, 2020) and dynamic vasculature (Yu
and Bagheri, 2021). We use this model—CAR T-cell ARCADE
(CARCADE)—to simulate CAR T-cell interactions with tissue
cells and analyze a multidimensional design space. We
demonstrate that CARCADE recapitulates known observations
and predicts responses to new designs for solid tumor CAR T-cell
therapies.

2 RESULTS

2.1 CARCADE Characterizes CAR T-Cell
Behavior, Metabolism, and Effector
Function
CARCADE provides a flexible framework for characterizing and
exploring hypothesized dynamics of population-level tumor
responses to CAR T-cell treatment by defining individual CAR
T-cell, cancer, and healthy cell features and rules.

2.1.1 CAR T-Cell Agents Recapitulate CAR T-Cell
Behavior
ARCADE comprises tissue cell agents with individual subcellular
metabolism and signaling modules that influence the cell-level
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FIGURE 1 | CARCADE structure and CAR T-cell agent design. (A) Depiction of CARCADE components. Subcellular modules guide underlying cellular function to
influence behavior (Gzm. B, granzyme B). Agents include tissue cell and CAR T-cell agents, each of which has separate rule sets and is depicted with surface ligands and
CARs (dark gray). Tissue cells include both healthy cells and cancer cells. Agents exist in an environment where diffusion is controlled by partial differential equations and
constant sources or vasculature provide nutrients. (B) Descriptions of each CAR T-cell agent state, separated by whether the state is desired or undesired for
efficacious treatment. (C) Diagram of CAR T-cell metabolism and inflammation module interactions with small molecules, proteins, and regulatory edges. The
inflammation module diagram is broken into two parts, showing differences between CD4+ CAR T-cells (light green, top) and CD8+ CAR T-cells (purple, bottom). All CAR
T-cells use identical metabolism modules. Regulatory edges (upregulation: green arrow, downregulation: red flathead arrow) result from IL-2 binding and antigen-
induced activation. G, glucose; O, oxygen; GB, granzyme B; OXPHOS, oxidative phosphorylation. Legend for cell color is consistent with panel B. (D) An example of a
single dish and tissue simulation of untreated cancer and healthy cells shown at select time points. For tissue, the dynamic vasculature architecture is overlaid.
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decision making rules and drive emergent population- and
environment-level dynamics (Figure 1A). Tissue cell agent
rules and parameters can be tuned to represent either cancer
or healthy cells. We introduce a new cell agent representing CAR
T-cells into this framework (Figure 1A). All cell agents are
simulated in a microenvironment that comprises either
constant nutrient sources (representing a dish context) or
vasculature (representing a vascularized tissue context). To
distinguish between simulation and experiment, we denote
simulated dish and tissue contexts as dish and tissue,
respectively.

Agents navigate through a set of defined, cell-type specific
states and rules derived from experimentally observed states and
transitions. Each tissue cell can be in one of six states—migratory,
proliferative, quiescent, senescent, necrotic, and apoptotic—at
each time step. CAR T-cell agents follow a unique rule set with
additional states designed to capture T-cell behaviors
(Figure 1B). There are two subtypes of CAR T-cell agents:
CD8+ T-cells that primarily provide cytotoxic functions and
CD4+ T-cells that primarily provide stimulatory functions
(Liadi et al., 2015; Golubovskaya and Wu, 2016;
Sommermeyer et al., 2016). Although both T-cell subtypes can
provide cytotoxic and stimulatory functions, for simplicity, we
specified that each of these T-cell subtypes would perform only
their primary function. CAR T-cell agents can enter ten different
subtype-dependent states, broadly categorized as desirable and
undesirable during treatment. Desired states include migratory,
proliferative, stimulatory (CD4+ only), cytotoxic (CD8+ only),
and paused. Undesired states include apoptotic, senescent,
exhausted, anergic, and starved. Cells change state according
to the rule set and to their current state (Supplementary
Figures S1, S2, Supplementary Methods Details). All new
model parameters are listed in Supplementary Table S1 (Kuse
et al., 1985; Lauffenburger and Linderman, 1993; Robertson et al.,
1996; Frauwirth et al., 2002; De Boer et al., 2003; Deenick et al.,
2003; Iwashima, 2003; Jacobs et al., 2008; Busse et al., 2010; Yoon
et al., 2010; Wang et al., 2011; Altman and Dang, 2012;
Robertson-Tessi et al., 2012; Stone et al., 2012; Cheng et al.,
2013; Hegde et al., 2013; Heskamp et al., 2015; Kinjyo et al., 2015;
Liu et al., 2015; Obst, 2015; Harris and Kranz, 2016; Hegde et al.,
2016; Arcangeli et al., 2017; Borghans and Ribeiro, 2017; Gong
et al., 2017; Gherbi et al., 2018; Guedan et al., 2018; Salter et al.,
2018; Yu and Bagheri, 2020; 2021).

Each agent utilizes subcellular modules to capture underlying
metabolic and signaling states. ARCADE tissue agents use two
subcellular modules that control metabolism and signaling. The
metabolism module uses stoichiometric equations to determine
cellular uptake of glucose and oxygen, which is then converted
to energy and cell mass. The signaling module uses an ODE
model with regulatory nodes to determine the influence of
tumor growth factor alpha (TGFα) on a tissue cell’s decision
to proliferate or migrate. CAR T-cell agents use the tissue cell
metabolism module with modifications to capture the influence
of IL-2 signaling and antigen-induced activation on T-cell
metabolism: 1) increased metabolic preference for glycolysis;
2) increased glucose uptake rate; and 3) increased fraction of
glucose used to produce cell mass (Figure 1C, Supplementary

Methods Details) (Frauwirth et al., 2002; Jones and Thompson,
2007; Pearce, 2010; Altman and Dang, 2012; Gerriets and
Rathmell, 2012; MacIver et al., 2013; Chang and Pearce,
2016; Mehta et al., 2017). CAR T-cell agents also contain an
inflammation module to capture the impact of IL-2 binding and
antigen-induced activation on IL-2 production in CD4+ CAR
T-cells (Malek and Castro, 2010; Liao et al., 2013; Rosenberg,
2014) and on granzyme production in CD8+ CAR T-cells (Liadi
et al., 2015) (Figure 1C, Supplementary Methods Details). For
both CAR T-cell subtypes, the inflammation module uses an
ODE model to determine the amount of IL-2 bound to various
IL-2 receptor species (Malek and Castro, 2010; Liao et al., 2013;
Ross and Cantrell, 2018).

2.1.2 In Silico Experiments Mimic In Vitro and In Vivo
Contexts
To provide an in silico testbed that can be related to physical
experiments, simulations were designed to represent two
experimental contexts: dish and tissue (Figure 1D). Each
configuration utilizes an environment in which four nutrient and
signaling molecules—oxygen, glucose, TGFα, and IL-2—diffuse.
Additionally, the environment contains distinct sources from
which oxygen and glucose are produced. Dish uses a
constant nutrient source environment to represent the well-
mixed cell media of an in vitro experiment. These simulations
are initialized with a defined number of tissue cells placed
randomly in the environment. CAR T-cells are introduced
after 10 min and simulated for 7 d of treatment. Tissue uses
vasculature to represent realistic hemodynamics of nutrients
diffusing through the environment to represent an in vivo
solid tumor experiment. Vasculature can be degraded and
collapse due to cancer cell crowding and movement. These
simulations are initialized with a confluent bed of healthy cells
and a small colony of cancer cells added to the center of the
simulation environment. The cancer cell colony grows for 21 d to
form a tumor before CAR T-cells are added and simulated for 9 d
of treatment. Untreated dish and tissue simulations
highlight how in silico experimental design leads to diverse
outcomes (Figure 1D).

2.2 Monoculture and Co-Culture
Simulations are Consistent With In Vitro
Observations
CAR T-cell agents were developed de novo based on
established cell-level observations; resulting emergent
dynamics of the simulation were used for model validation.
The comparison between in silico and in vitro/in vivo
experiments is a critical and common method for validating
ABMs. To confirm that emergent dynamics follow
experimental observations, we tested how outcomes vary as
a function of four CAR and tumor features—CAR T-cell dose
(Sampson et al., 2014), CD4+:CD8+ CAR T-cell ratio
(Sommermeyer et al., 2016; Turtle et al., 2016), CAR-
antigen affinity (Chmielewski et al., 2004; Hudecek et al.,
2013; Caruso et al., 2015; Johnson et al., 2015; Liu et al.,
2015; Ghorashian et al., 2019), and antigen density on
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FIGURE 2 | Impact of individual CAR T-cell and tumor features on cytotoxicity and CAR T-cell growth in dish. (A) Cell counts over time of untreated (black) and
treated conditions (graded hues) holding all but one feature constant. Each column shows the axis being changed, where all other features are held constant at indicated
intermediate values (indicated by asterisk, CAR T-cell dose = 500 CAR T-cells, CD4+:CD8+ ratio = 50:50, CAR affinity = 10−7 M, cancer antigens = 1000 antigens/cell),
while rows show the cell type being plotted. (B) Normalized percent lysis curves for in silico and published experimental in vitro data. Plot for simulated data shows
percent lysis for each set of CAR affinity values across normalized cancer antigen values. All other axes were held constant, and the data were averaged across
replicates. Simulations with negative percent lysis indicate cancer cell growth. Experimental data—representing an array of CAR types, effector to target (E:T) ratios,
ICDs, and cancer cell lines (Supplementary Table S6, Supplementary Data S5)—were normalized to maximum percent lysis and antigen levels with estimated error
bars. The plots show percent lysis for each set of CARs tested per paper, each with unique CAR affinity and tested across a range of antigen target values. (C) Volume
and cell cycle distributions for CAR T-cell populations at t = 4 d (filled) and t = 7 d (outline) holding all but CAR affinity constant at an intermediate value in monoculture.
Legend is consistent with panel B. The data for cancer cell populations and for all other features can be found in the Supplementary Material. (D)Cell counts over time
of untreated (black) and treated conditions (graded hues) holding all features constant at an intermediate value. Legend is consistent with panel B for both ideal and
realistic co-culture. Solid lines represent total cell counts, dashed lines represent live cell counts.
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cancer cells (Stone et al., 2012; Liu et al., 2015; Watanabe et al.,
2015; Majzner et al., 2020).

In a clinical setting, CAR T-cells necessarily interact with both
healthy and cancer cells, and healthy cell antigen expression can
impact off-target effects (Harris and Kranz, 2016). It is critical to
consider how these CAR and tumor features impact both cancer
and healthy cell populations. We simulated CAR T-cell treatment
in three different contexts—1) monoculture with only cancer
cells, 2) ideal co-culture with cancer cells and antigen-negative
healthy cells, and 3) realistic co-culture with cancer cells and low-
level antigen expressing healthy cells—modulating CAR T cells
and tumor features in each context to assess how in silico
dynamics compare to observations in vitro. Using dish
removes confounding effects of nutrient constraints and TME
factors. We simulated 10 replicates of each combination of
features (Supplementary Table S2 for monoculture,
Supplementary Table S3 for co-culture). In monoculture,
dish was randomly plated at t = 0 s with 2 × 103 antigen-
expressing cancer cells. At t = 10 min, treatment begins by adding
a dose of CAR T-cells, each expressing 5 × 104 CARs with a
defined CAR affinity and CD4+:CD8+ ratio. We simulated 7 d of
treatment. Co-culture is identical except initial plating uses
1 × 103 cancer cells and 1 × 103 healthy cells. Simulation
trajectories—including each cell’s location, state, volume, and
average cell cycle length—were collected every half day. The
input files used to generate dish simulations are described in
the Supplementary Material (Supplementary Data S1 and
Supplementary Table S4 for monoculture, Supplementary
Data S2 and Supplementary Table S5 for co-culture).

2.2.1 Cancer Cell and CAR T-Cell Dynamics Are
Independent of Context
We first consider the impact of individual features on cell counts
and behavior in dish (holding other features constant at
intermediate values). In all simulations, cancer cell and CAR
T-cell counts follow experimentally observed trends, including
conditions with effector-to-target (E:T) ratios less than one where
cancer cell killing occurs over several days (Figure 2A for
monoculture, Supplementary Figure S3A for ideal co-culture,
Supplementary Figure S3B for realistic co-culture)
(Chmielewski et al., 2004; Arcangeli et al., 2017). Increasing
CAR T-cell dose increases T-cell counts and accelerates cancer
cell killing (Sampson et al., 2014; Hamieh et al., 2019). Our
simulations mirror this trend; when E:T ratios are increased
beyond the initial range explored (i.e., to explore ratios greater
than one), substantial cancer cell killing occurred in monoculture
in half the time (all other features are held at intermediate values)
(Supplementary Data S3, Supplementary Figure S4A).
Increasing the E:T ratio brings closer parity in rate of cancer
cell killing between our simulations and experimental analyses,
but we acknowledge that there remains a discrepancy based on
time to complete elimination of cancer cells. This difference can
be attributed to unaccounted for contact-independent
mechanisms of killing, potentially including exosomes (Fu
et al., 2019); these additional mechanisms were not included
in the model for simplicity. Intermediate CD4+:CD8+ ratios
maximize cancer killing and increase CAR T-cell proliferation

(Sommermeyer et al., 2016; Turtle et al., 2016). Higher fractions
of CD8+ CAR T-cell treatments prove less effective because
cytotoxic CD8+ cells need the support of the cytokines
primarily produced by CD4+ cells (Liadi et al., 2015;
Golubovskaya and Wu, 2016). We tested an expanded range
of CD4+:CD8+ ratios to include 90:10 and 10:90 in monoculture
and co-culture; these extensions further validated observed trends
and provided no additional treatment benefit, and thus we do not
carry these conditions forward in subsequent analyses (see
Supplementary Note S1, Supplementary Data S4, and
Supplementary Figure S5). Increasing CAR affinity increases
the chances of CAR T-cell antigen binding and subsequent
activation, resulting in increased cancer cell killing
(Chmielewski et al., 2004; Liu et al., 2015; Hernandez-Lopez
et al., 2021). This increased activation also leads to increased
proliferation and thus increased T-cell count (Caruso et al., 2015).
Increased antigen expression on cancer cells increases cancer cell
killing (Chmielewski et al., 2004; Liu et al., 2015; Watanabe et al.,
2015; Arcangeli et al., 2017). Similarly, because CAR T-cells are
more likely to be activated by high antigen density cancer cells,
CAR T-cell proliferation, and thus counts, increase with
increasing antigen count (Hernandez-Lopez et al., 2021). CD8+

T-cells counts exceed CD4+ T-cell counts even when cells are
delivered at a 50:50 ratio, especially in conditions where cells are
more likely to be activated (Sommermeyer et al., 2016; Turtle
et al., 2016). The lowest CAR T-cell counts occur when we treat
with only one subset of CAR T-cells. Cancer cells cannot be killed
off without CD8+ cells. CD8+ cells have limited killing and
proliferative capacity without cytokines produced by CD4+

cells, and lack of cancer cell killing presents spatial limitations
on CAR T-cell proliferation. Overall, all dish simulations,
regardless of healthy cell context, support experimental
observations of cancer and CAR T-cell dynamics, suggesting
that healthy cell presence and antigen expression do not
strongly influence cancer and CAR T-cell dynamics or
individual feature trends in vitro.

2.2.2 Monoculture Data Qualitatively Recapitulate a
Range of In Vitro CAR T-Cell Studies
Quantifying percent lysis as a function of cancer antigen
density is a common experimental analysis. In monoculture,
percent lysis increases as a function of both antigen count and
CAR affinity. This qualitative trend and the general shape of
the data agrees with prior in vitro observations (Figure 2B)
(Chmielewski et al., 2004; Caruso et al., 2015; Liu et al., 2015;
Watanabe et al., 2015; Arcangeli et al., 2017; Ghorashian et al.,
2019; Hernandez-Lopez et al., 2021). Additionally, for
monoculture and most in vitro data, higher CAR affinities
promote higher percent lysis across all antigen expression
values. Our simulations reproduce general trends observed
across diverse in vitro studies varying in CAR, intracellular co-
stimulatory domain, effector to target ratio, and cell lines
(Supplementary Table S6, Supplementary Data S5).
Notably, CARCADE captures known experimental trends
relevant to many different experimental CAR T-cell
scenarios without being trained to any specific CAR T-cell
experiment. Consistency in these emergent dynamics provides
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baseline validation that supports our use of the model to
interrogate CAR T-cell design.

2.2.3 Trends in Cell-Level Features Support
Population-Level Observations and Model Validation
Treatment efficacy can be evaluated by volume (Jacobs et al.,
2008) and cell cycle length (Yoon et al., 2010) distributions, which
serve as proxies for CAR T-cell growth and proliferation resulting
from antigen-induced activation and IL-2 binding. As an
increasing number of CAR T-cells undergo antigen-induced
activation, CAR T-cell volumes increase and cycle lengths
decrease both over time and with increasing CAR affinity
(Figure 2C). In T-cells, antigen-induced activation and IL-2
binding influence metabolism to help T-cells rapidly
proliferate by increasing nutrient uptake, metabolic preference
for glucose, and flux of nutrients towards producing cell mass
(Frauwirth et al., 2002; Jacobs et al., 2008; Pearce, 2010; Altman
and Dang, 2012; Gerriets and Rathmell, 2012; Buck et al., 2015;
Chang and Pearce, 2016; Mehta et al., 2017). These internal
cellular changes increase cell growth rates, increase volumes, and
decrease cell cycle lengths (van Stipdonk et al., 2003; Jacobs et al.,
2008; Yoon et al., 2010; Altman and Dang, 2012; Kinjyo et al.,
2015). The cell cycle length observed in silico—an emergent
property of the simulations—ranged from around 6–24 h and
falls within the range of 2–24 h found in vitro, in vivo, and for
other in silico models (De Boer et al., 2003; van Stipdonk et al.,
2003; Yoon et al., 2010; Altman and Dang, 2012; Kinjyo et al.,
2015; Gong et al., 2017). Cancer cell volumes increase slightly and
cycle lengths decrease slightly with increasing CAR affinity and
over time, as cancer cells proliferate to compensate for cell death
(Supplementary Figure S6A). Similar trends in volume and cell
length distributions are observed across all other modulated
features, where conditions with more activated CAR T-cells
result in increased CAR T-cell volume and decreased cell cycle
lengths (Supplementary Figure S6B–D). Altogether, the model
recapitulates known in vitro observations, and furthermore, it
enables us to observe single cell-level properties that are non-
trivial to measure experimentally.

2.3 Varying Individual Features Highlights
Tradeoffs Within Co-culture
Due to the lack of unique tumor antigens, CAR T-cell designs
must rely on target antigens that are more highly expressed on
cancer cells than healthy cells (Harris and Kranz, 2016).
Investigating the difference in treatment outcomes—cancer cell
killing, healthy cell sparing, and CAR T-cell growth—between the
ideal co-culture (containing antigen-negative healthy cells) and
realistic co-culture (containing antigen-expressing healthy cells)
is critical for understanding successful CAR T-cell design (Caruso
et al., 2015).

2.3.1 Healthy Cell Antigen Expression and Tumor/CAR
T-Cell Features Impact Healthy Cell Killing
Healthy cell antigen density does not affect cancer cell killing,
CAR T-cell proliferation, or previously noted trends across
individual features for these populations (Supplementary

Figure S3). However, healthy cell antigen density
dramatically impacts healthy cell killing (Figure 2D)
(Arcangeli et al., 2017). The seeming lack of influence that
minimal healthy antigen expression has on CAR T-cell
proliferation is demonstrated by a lack of clear difference in
CAR T-cell volume and cell cycle length distributions
(Supplementary Figure S7) or fraction of cells in the
proliferative state (Supplementary Figure S8) between the
ideal and realistic co-culture. In general, we hypothesize that
the low healthy cell antigen level is too weak to impact these
other factors but enables the CAR T-cells to target healthy
cells. Thus, healthy cell antigen expression only needs to be
considered in avoiding healthy cell death and not in tuning
CAR T-cell behavior or cancer cell killing.

To further investigate the impact of healthy cell antigen
expression on feature trends, we directly compare cell counts
between the ideal and realistic co-culture along the CAR affinity
feature axis (Figure 3A). Cancer cell killing dynamics are nearly
identical in both contexts, increasing with increased CAR affinity.
In contrast, healthy cell dynamics differ dramatically between
contexts. When healthy cells do not express antigen, increasing
CAR affinity leads to increased healthy cell count as healthy cells
grow to fill the space left behind by targeted cancer cells.
However, when healthy cells do express antigen, healthy cell
killing increases with increasing CAR affinity. Additionally,
healthy cell counts begin to decrease at increasingly earlier
time points with increasing CAR affinity. Comparing cell
counts along other features exhibits similar trends: presence of
healthy cell antigen generally only impacts healthy cell dynamics,
resulting in varying degrees of healthy cell killing
(Supplementary Figure S3). These data are consistent with
experimental studies demonstrating a detrimental effect of
high CAR affinity designs on healthy cells (Caruso et al., 2015;
Harris and Kranz, 2016). Low affinity CARs successfully target
tumors that overexpress the desired antigen and produce minimal
off-tumor effects when healthy cells express low antigen levels
(Caruso et al., 2015; Johnson et al., 2015; Liu et al., 2015). When
healthy cells express antigen, it is not always desirable to have the
strongest affinity CAR T-cells.

2.3.2 Cell Dynamics Reveal Potential New Treatment
Strategy That Spares Healthy Cells
Comparing trends in cell dynamics between ideal and realistic co-
culture provides insight as to why each feature differentially
impacts healthy cell killing. In ideal co-culture, increasing
CAR affinity and cancer antigen expression level leads to
healthy cell growth beyond their original numbers. Increasing
CART-cell dose and CD4+:CD8+ ratio leads to healthy cell counts
similar to those in the untreated control (Supplementary Figure
S3). Interestingly, increasing CAR affinity results in more healthy
cell growth compared to the case in which cancer cell antigen
expression is increased. We hypothesize that this difference
occurs because cancer cell killing is more strongly impacted by
CAR affinity than cancer antigen density, providing healthy cells
more opportunity to grow as more cancer cells die. However, in
realistic co-culture, increasing cancer antigen level results in more
healthy cell growth before being killed off compared to the
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FIGURE 3 | Impact of individual CAR T-cell and tumor features on efficacy, selectivity, and cytokine production in monoculture vs co-culture. (A) Cancer and
healthy cell counts over time of untreated (black) and treated (graded hues) conditions holding all but CAR affinity, which is reported in units of M, constant at an
intermediate value and separating data by co-culture context. Column shows co-culture type, row shows cell type. Solid lines represent total cell counts, dashed lines
represent live cell counts (live, excludes necrotic and apoptotic states as in Figure 2). Intermediate values of other features indicated by asterisk in panel B: CAR
T-cell dose = 500 CAR T-cells, CD4+:CD8+ ratio = 50:50, cancer antigens = 1000 antigens/cell. (B) Scatter plots of normalized live healthy cell count (NH ) vs normalized
live cancer cell count (NC ) for untreated (black) and treated conditions (graded hues) holding all but one axis constant at an intermediate value. Upper left plot shows
quadrant meanings. Upper right plot shows scatter plot for different co-culture contexts. Columns show co-culture type, and each row indicates which feature is being
plotted. (C) IL-2 and glucose concentrations over time holding all but CAR affinity constant at an intermediate value in monoculture. Legend is consistent with panel B.
(D) IL-2 and glucose concentrations over time varying CAR affinity while holding all features constant at an intermediate value in ideal and realistic co-culture. Legend is
consistent with panel B. (E) Parity plot of IL-2 concentration at final time point (t = 7 d) for all conditions in realistic (y-axis) vs ideal (x-axis) co-culture colored by each
feature (column). Legend is consistent with panel B.
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scenario in which CAR affinity is increased. Cancer antigen
expression primarily impacts cancer cell killing, which gives
healthy cells the ability to grow before being targeted after
cancer cell populations decline. Meanwhile, CAR affinity
impacts both cancer and healthy cell killing, so healthy cells
are killed at the same time as cancer cells. These data highlight
how each feature differentially impacts the dynamics of this
system. A large difference in cancer and healthy cell antigen
levels can create a time delay between when cancer killing
completes and when healthy cell killing starts, whereas tuning
CAR affinity cannot create such a window. This time delay is an
emergent phenomenon that occurs in some scenarios—it is not a
trained, optimized, or hard-wired parameter in the model. One
can design a strategy to take advantage of this time delay in
scenarios when it occurs, for example, by deactivating CAR
T-cells with an antibody or small-molecule induced off-switch
that shuts down effector function after cancer cells are killed but
before lower antigen expressing healthy cells are targeted.

2.3.3 Individual Feature Analysis Highlights Tradeoffs
in a Pareto Curve
To quantify cancer and healthy cell killing, we use two metrics:
normalized live healthy and cancer cell counts. The normalized
count for each population (NP) is calculated as follows:

NP � nF
nT

where nF and nT are the total number of live cancer or healthy
cells at the final (t = 7 d) and treatment start (t = 0 d) timepoints,
respectively. Values below one indicate net killing, and values
above one indicate net growth. Together, these metrics place
treatment outcomes within quadrants that can be used as
guidelines for classifying efficacy (Figure 3B). Ideally,
treatment conditions would appear in the upper left quadrant
with maximal healthy cell sparing andmaximal cancer cell killing.
In both contexts, the trends match those of experimental
observations—more aggressive treatments with more overall
killing result from increasing CAR T-cell dose, intermediate
CD4+:CD8+ ratio, increasing CAR-antigen affinity, and
increasing cancer antigen density. These conditions allow for
healthy cell maintenance or growth in ideal co-culture, nearing or
entering the efficacious and selective treatment quadrant.
However, in realistic co-culture, there exists a dramatic
tradeoff between cancer cell killing and healthy cell killing,
presenting a Pareto curve across each feature. Aggressive
treatments exist toward the lower left quadrant (not selective
for cancer cells). This observation suggests that it is not possible
to optimize both efficacy and safety when healthy cells express
antigen, and the most useful strategies—typically less aggressive
treatments—balance these objectives (Caruso et al., 2015;
Johnson et al., 2015; Liu et al., 2015).

2.4 IL-2 Production Is More Strongly
Impacted by Tuned Features Than Context
IL-2 production is a standard in vitro measurement to quantify
T-cell activation (Liu et al., 2015; Sommermeyer et al., 2016;

Arcangeli et al., 2017). Similarly, glucose consumption can
quantify T-cell activation through nutrient usage and
competition (Frauwirth et al., 2002). We compare nutrient
consumption and cytokine production across features and
contexts to identify strategies for understanding, and
potentially controlling, IL-2 production.

2.4.1 Tuning CAR Affinity Modulates IL-2 Production
by Balancing CAR T-Cell Proliferation and Effector
Function
In dish (Figure 3C and Supplementary Figure S9A for
monoculture, Supplementary Figure S10A for co-culture), IL-
2 increases over time and with increasing values of CAR T-cell
dose, CD4+:CD8+ ratio, CAR affinity, and cancer antigen
expression level due to increased numbers of activated CD4+

CAR T-cells. Across all contexts and features, glucose decreases as
IL-2 increases, indicating that glucose consumption follows CAR
T-cell activation and proliferation (Figure 3D, Supplementary
Figure S9B, Supplementary Figure S10B).

Unintuitively, IL-2 concentration is not maximized at the
highest CAR-antigen affinity in monoculture where CAR
T-cell activation is maximized. At the highest CAR
affinity, more CAR T-cells spend time in effector, non-
proliferative states (Supplementary Figure S11), resulting
in fewer total CD4+ T-cells producing IL-2 (Figure 2A). This
decrease is not observed in co-culture where cancer cell
numbers are lower, reducing the likelihood that CAR
T-cells will be activated. Decreased activation in co-culture
produces lower IL-2 concentrations compared to
monoculture. Thus, CAR T-cells in co-culture remain
outside of the regime at which this tradeoff between
activated and proliferating T-cells is observed. We
hypothesize that maximum IL-2 production occurs at
intermediate CAR affinity where there exists a balance
between proliferation and frequent antigen binding.
Excessively high CAR affinity leads to frequent target
antigen binding, causing CAR T-cells to spend more time
in effector rather than proliferating states, leading to fewer
total CAR T-cells that can later produce cytokines. On the
other hand, very weak affinity CARs drive cells primarily into
states other than proliferative and effector states. Maximizing
CAR-antigen affinity can therefore prove counterproductive
for achieving CAR T-cell proliferation, survival, and cytokine
production at the tumor site; moderate CAR-antigen
affinities may be more effective.

2.4.2 IL-2 Production Is Independent of Healthy Cell
Antigen Expression
In co-culture, healthy antigen expression minimally impacts
IL-2 production and glucose consumption over time
(Figure 3D). We speculate that healthy antigen expression
is too low to strongly impact CAR T-cell proliferation and
thus IL-2 production. Comparing final IL-2 concentration in
all ideal versus realistic co-culture conditions reveal that IL-2
levels are independent of context for a given condition,
further supporting this hypothesis (Figure 3E). CAR T-cell
IL-2 production and overall glucose consumption are more
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strongly impacted by the higher level of antigen expression
on the cancer cells than by the low antigen expression on
healthy cells. When considering desired IL-2 levels produced
by CAR T-cells in patient treatment, IL-2 production can be
mostly attributed to and designed around cancer cells in
isolation as healthy cell antigen expression does have a
significant impact.

2.5 Multidimensional Data Analysis Reveals
Context-Specific Treatment Strategies
Since tuning individual features has different impacts on
treatment efficacy based on the type of dish, we rank-
ordered treatment outcomes across all individual simulated
conditions, tuning all features simultaneously, within each
context. Comparing the strongest treatments between

FIGURE 4 | Collective impact of CAR T-cell and tumor features on dish outcomes. (A) Heatmap showing values for each feature with line plots showing
normalized live cancer cell count (NC ) sorted from highest (left) to lowest (right). The dashed line indicates value of NC = 1, meaning no net change due to treatment.
Values of NC > 1 indicate net growth and values of NC < 1 indicate net killing. (B)Heatmap showing values for each feature with line plots showing normalized live cancer
cell count (NC ) and normalized live healthy cell count (NH ) (dashed line indicates normalized live cell count of 1) and the difference in normalized live healthy and
cancer cell counts (NH − NC ) for each ideal co-culture simulation individually (dashed line indicates NH − NC = 0). The heatmap has been sorted from lowest (left) to
highest (right) difference. All metrics were calculated at the final time point (t = 7 d). (C) Heatmap and normalized cell counts for realistic co-culture. Labels are consistent
with panel B. Each feature is reported in the following units: CAR T-cell dose = number of CAR T-cells, CD4+:CD8+ ratio = unitless, CAR affinity = M, cancer antigens =
antigens/cell.
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monoculture and co-culture will enable us to determine how
optimal treatments vary between contexts.

2.5.1 Aggressive Feature Choices Additively Benefit
Treatment in Monoculture
Formonoculture, outcome is sorted by normalized live cancer cell
count (Figure 4A). The best outcomes typically occur at the
highest CAR T-cell doses, at a 25:75 CD4+:CD8+ ratio, at
moderate to strong CAR affinity, and with high cancer cell
antigen density. These trends are consistent with individual
feature analyses in monoculture, and the same trends are
observed in scenarios in which we considered expanded CAR
T-cell doses (Supplementary Figures S4A,B) and CD4+:CD8+

ratios (Supplementary Figure S5F). Choosing aggressive values
for all features and using large E:T ratios yield cancer cell killing
rates that are comparable with those observed in most
experimental studies that use E:T ratios greater than one
(i.e., killing most cancer cells occurs within hours),
(Supplementary Figure S4A). Worse outcomes, in which
cancer cells grow beyond their initial plated count, occur at
low CAR T-cell doses, at 100:0 and 0:100 CD4+:CD8+ ratios,
with the weakest CAR affinity, or with lower cancer cell antigen
expression. Overall, combining aggressive choices for individual
features additively benefits treatment outcome in monoculture.
Effective CAR T-cell designs in the absence of healthy cells
combine design choices from individually optimized features.

2.5.2 Addressing Off-Target Effects Requires Tuning
Multiple Parameters
To identify general conclusions across diverse co-culture
conditions, we considered treatment outcomes across all
individual simulated conditions, sorted by the difference in the
normalized live healthy and cancer cell count at the endpoint
(Figure 4B for ideal co-culture, Figure 4C for realistic co-
culture). This difference is maximized when healthy cells are
spared and cancer cells are killed. We expect aggressive
treatments to be most effective in the ideal cases, as healthy
cells that do not express antigen cannot be killed. Trends in ideal
co-culture match those in monoculture, supporting the idea that
“invisible” healthy cells do not change observed trends.

However, the realistic co-culture where healthy cells express
antigen, and can therefore be targeted by CAR T-cells, is more
clinically relevant. In this context, there is a distinct tradeoff
between cancer cell killing and healthy cell sparing. Conditions
with the lowest normalized live cancer cell counts also show the
lowest normalized live healthy cell counts (Figure 4C).
Treatments with a positive difference all have some amount of
healthy cell killing, but this killing is minimal compared to other
conditions. Effective treatments have the highest doses of CAR
T-cells, weaker CARs, CD4+:CD8+ ratios of 25:75 or 50:50, and
higher cancer cell antigen count (Figure 4C). These observations
agree with experimental findings that optimization of CAR T-cell
therapy design yields different conclusions when balancing
cancer cell killing and healthy cell sparing, versus focusing on
the former objective alone (Caruso et al., 2015; Johnson et al.,
2015; Liu et al., 2015). Though choosing high doses of weak CAR
T-cells might seem unintuitive, using weak CARs minimizes the

probability of targeting healthy cells while the high dose
maximizes the probability that these weaker CARs successfully
interact with high antigen density cancer cells. These results
suggest that delivering higher doses of weaker CAR T-cells
with CD4+:CD8+ ratios of 25:75 or 50:50 kill more cancer cells
and spare more healthy cells for tumors where on-target off-
tumor killing is undesired or detrimental.

2.6 Spatial Dynamics Drive Vascularized
Tissue Treatment Efficacy
CAR T-cell therapy has great potential for use in solid tumor
contexts, which include a complex tumor microenvironment,
vasculature, spatial dynamics, and potentially antigen-expressing
healthy cells. Predicting how the in vitro behavior conferred by
various CAR T-cell designs corresponds to in vivo performance is
not straightforward. We investigate the translation and efficacy of
select treatment strategies in vascularized tissue where a solid
tumor exists in a bed of antigen-expressing healthy cells within a
dynamic microenvironment. We chose a subset of
simulations—the realistic co-culture conditions deemed
effective after averaging across replicates (Supplementary
Table S7)—to analyze in tissue. Effective treatments were
those that met the following two conditions: 1) cancer cells did
not grow beyond the initial number, and 2) no more than 50% of
the initial healthy cells were killed off.

A tissue is initialized with a bed of healthy cells in
vascularized tissue that was inoculated with cancer cells and
grown for 30 d. At t = 21 d, treatment began by adding a
specified total dose of CAR T-cells, each expressing 5 × 104

CARs with the given CAR affinity, and CD4+:CD8+ ratio. CAR
T-cells were spawned at locations adjacent to vasculature to
mimic intravenous trafficking to the tumor; they were not
spawned adjacent to vessels that are too small in diameter for
CAR T-cells to pass through. Files used to generate tissue
simulations are described in Supplementary Data S6 and
Supplementary Table S8.

2.6.1 Tested Treatments Are Effective in Tissue but
Differ in Healthy Cell Killing
All treated tumors resulted in far fewer cancer cells and somewhat
fewer healthy cells compared to untreated conditions, indicating
that all strategies identified as effective in realistic co-culture
proved effective in tissue (Figure 5A). As in dish, healthy
cell killing occurred primarily after most cancer cells were
removed. This again motivates treatment strategies in which
CAR T-cells include an inducible off-switch that shuts down
effector function after cancer cells are killed but before lower
antigen expressing healthy cells are targeted.

Comparing normalized live cancer and healthy cell counts at
treatment endpoint enables direct comparison of treatment
efficacy (Figure 5B). Notably, the primarily difference between
treatment strategies is in degree of healthy cell killing. CAR
affinity and cancer antigen expression, but not CAR T-cell
dose or CD4+:CD8+ ratio, dictate this difference. In general,
increasing CAR T-cell dose and using higher CD4+:CD8+ ratio
treatments results in increased CAR T-cell counts, but it has little
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FIGURE 5 | Dynamic, spatial, and ranked outcomes for selected promising treatment combinations in tissue. (A) Live cell counts over time of untreated (black)
and treated conditions (graded hues) normalized to cell count at start of treatment (t = 21 d), for all simulations, colored by cancer antigens (other features may be
changing as well). Cancer antigens reported in antigens/cell. The same data colored by other features are shown in Supplementary Figure S12 (B) Scatter plots of
normalized live cancer cell count (NC, x-axis) vs normalized live healthy cell count (NH, y-axis), each normalized to initial value at start of treatment (t = 21 d), for
untreated (black) and treated conditions (graded hues) for all simulations, colored by one feature at a time. Each feature is reported in the following units: CAR T-cell dose
= number of CAR T-cells, CD4+:CD8+ ratio = unitless, CAR affinity = M, cancer antigens = antigens/cell. (C)Normalized live cell counts over time (t = 21, 25, 28, and 30 d
shown) for untreated (black) and treated conditions (graded hues), normalized to locations per radius, for all simulations, colored by cancer antigens. The columns
indicate the timepoint in the simulation (day), while the rows indicate cell type plotted, and the x-axis for each plot shows the distance from the center. Legend is
consistent with panel B. (D)Heatmap showing values for each feature with line plots showing normalized live cancer and healthy cell counts and difference in normalized
live healthy and cancer cell counts (Np

H − NC, where healthy cell value is multiplied by the ratio of cancer to healthy cells at the start of treatment to ensure equal weighting
since initial cell population sizes are not equal; dashed line indicates value of 0) at final time point averaged across replicates. The heatmap is sorted from lowest (left) to
highest (right) difference. Feature legends are consistent with panels A and C. (E) Ladder plots of condition rankings in both dish and tissue, where condition
outcome (averaged across replicates) is colored by each corresponding feature.
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effect on cancer and healthy cell killing. Interestingly, most of the
simulations that show the highest CAR T-cell production use the
highest CAR T-cell doses and the weakest CAR affinity
(Supplementary Figure S12, Figure 5A), indicating that
designs with high doses of weak CAR T-cells result in the
highest CAR T-cell growth rate in vivo. Overall, these
observations reinforce the previously identified treatment
strategy: use weaker CARs and select antigens with the highest
differential between cancer and healthy cell expression. With this
strategy, even though the CAR is weaker, the cancer antigen
density is high enough to result in effective, selective treatment.

2.6.2 Cancer Cells With Higher Antigen Density Shield
Healthy Cells From CAR T-Cell Killing
Though changing multiple features simultaneously complicates
analysis, we noted an interesting pattern in which increasing
cancer cell antigen density spares more healthy cells in tissue,
representing a stark contrast to our dish findings. We thus
investigated the spatial dynamics of each cell type to probe
whether the mechanism by which CAR T-cells navigate within
the solid tumor gives rise to this observation. At t = 21 d, cancer
cells exist primarily in the center of the simulation, between the
center and a radius of about 0.39 mm, while healthy cells are
evenly spread across the simulation (Figure 5C). In untreated
conditions, cancer cells grow to cover a radius of 0.58 mm by t =
30 d and healthy cell count remains unchanged over time. In
treated conditions, cancer and healthy cell counts decrease over
time, primarily starting from the center where most CAR T-cells
are initially spawned and moving outward. Cancer cell counts
decrease with increasing cancer antigen density. CAR T-cell
counts increase as a function of time and cancer cell count,
but not as a function of cancer antigen density. Meanwhile, higher
cancer antigen levels result in decreased healthy cell killing. We
hypothesize that this phenomenon occurs when high antigen
density cancer cells effectively outcompete healthy cells for CAR
T-cell effector function due to large differences in the probability
of CAR-antigen binding between these two potential target cell
types. In such scenarios, CAR T cells that successfully traffic to a
tumor core are more likely to selectively target cancer cells even if
healthy cells are present.

2.6.3 Spatial Differences Between Dish and Tissue
Explain Treatment Performance
Comparing simulation rankings between dish and tissue
reveals how context impacts treatment efficacy. To rank
treatment strategies in tissue, we consider treatment outcomes
across simulations (averaged across replicates) sorted from best to
worst outcome in terms of difference in healthy and cancer cell
counts normalized to start of treatment (Figure 5D). Nearly all
highest ranked simulations use the highest CART-cell dose, a CD4+:
CD8+ ratio of 25:75, the lowest CAR affinity, and the highest cancer
antigen level. The four highest ranked treatment conditions in dish
remain the four highest ranked treatment conditions in tissue
(Figure 5E, Supplementary Table S9). The rankings for themid and
lower tier ranked simulations (5th-14th in tissue) are shuffled
from their original rankings in dish. One of the worst ranked
treatments in dish (11th) jumped to 5th in tissue, while a

middle-ranked simulation (7th) fell to 13th in tissue. These data
predict that the most effective treatment conditions in dish will
perform similarly in tissue assuming perfect CAR T-cell
trafficking. Even with perfect trafficking, performance in dish
does not exactly correlate with performance in tissue. Certain
conditions may outperform in vivo conditions compared to their
performance in vitro.

Trends in how each feature impacts relative rank reveal which
features most strongly dictate performance in tissue
(Figure 5E). There are no distinct trends as a function of
CD4+:CD8+ ratio. Most conditions that improve in rank use
the relatively higher (though still objectively moderate) CAR
affinity and higher CAR T-cell dose, and nearly all conditions
that decrease in rank (from dish to tissue) have higher
cancer antigen expression level. This finding is surprising
given earlier observations that lowest CAR affinity with
highest cancer antigen expression level combinations were
most effective.

We hypothesize the differences in dish and tissue trends/
rank result from differences in spatial dynamics. In dish, both
healthy and cancer cells are well-mixed across the simulation,
even after treatment, which results in an even spatial distribution
of CAR T-cells (Supplementary Figure S13). In tissue, cancer
cells sit in the center of the simulation surrounded by a large bed
of healthy cells, with few healthy cells in the tumor core. When
CAR T-cells are spawned with bias towards locations with more
cancer cells to mimic perfect trafficking, the probability that
spawn locations are adjacent to that of a healthy cell is higher
in dish compared to tissue. Analyzing CAR T-cell state
dynamics in both realistic co-culture dish and tissue for
the selected promising treatment strategies further informs this
spatial analysis. When we examine the distribution of CAR T-cell
states only considering T-cells that are adjacent to a cancer cell
(i.e., somewhat controlling for the local environment that a T-cell
experiences), we find similar distributions of cells in effector
states across dish and tissue simulations (Supplementary
Figure S14). Exhausted and anergic states are rare in both
contexts, which is unsurprising as they are expected to
accumulate over longer time courses than were used in these
experiments. Thus, CAR T-cells in proximity to cancer cells
exhibit similar behavior independent of experimental setup,
and differences in overall trends/rank between contexts result
from differences in collective cancer and healthy cell spatial
distributions. Overall, this spatial difference in cancer and
healthy cell distribution parallels comparisons between
physical in vitro and in vivo experiments, even if CAR T-cell
trafficking deviates from the perfect mechanism employed in our
simulations, reinforcing the key role that spatial dynamics play in
treatment outcome.

3 DISCUSSION

We developed CARCADE as an open-access in silico testbed that
enables systematic interrogation of the multidimensional design
landscape of cellular engineering strategies, therapeutic
optimization, and hypothesis generation. After verifying that

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 84936313

Prybutok et al. Agent-Based Model of CAR T-Cell Design

278

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


the developed model recapitulates known trends in vitro, we
explored design strategies in both dish and tissue contexts to
gain insight into CAR T-cell design.

Tuning individual features in dish revealed key insights as to
how these features impact CAR T-cell design. For example, we
determined that healthy cell antigen expression results in healthy
cell killing but has no impact on CAR T-cell or cancer cell
dynamics. Modulating individual features recapitulated known
tradeoffs between cancer cell killing and healthy cell sparing in
realistic co-cultures. A new observation uniquely enabled by our
model’s high resolution is that maximizing CAR affinity not only
increases healthy cell killing but can also be counterproductive to
CAR T-cell proliferation and cytokine production. In a related
finding, we observed that IL-2 production is influenced more by
tunable CAR T-cell design features than by healthy cell-related
context.

Multidimensional analysis revealed that the relative
performance of various treatment strategies is context
dependent. Aggressive treatments are more effective in
monoculture and ideal co-culture experiments, but effective
treatment in realistic co-culture requires balancing all tuned
features. We identified a particularly effective treatment
strategy that balances cancer cell killing and healthy cell
sparing when healthy cells express antigen. Specifically, we
identified that the use of high doses of weak CAR T-cells with
intermediate CD4+:CD8+ ratio and a maximized difference
between cancer and healthy cell antigen expression produces
the most effective treatments. By investigating these effective
treatments in tissue context, we determined that differences
in spatial distributions of cancer and healthy cells in dish and
tissue contexts explain differences in treatment performance
between contexts.

CARCADE is a first pass toward demonstrating the utility of
models for generating hypotheses and informing design strategies
for this class of problem, and it is important to consider that this
model makes several assumptions and simplifications. First, the
model is not tuned to a specific context. Results are general and
might not hold in specific tumor contexts. Amajor strength of the
model is that it can be easily tuned to a specific CAR and/or tumor
type, and to interrogate specific design questions of interest. For
example, CARCADE does not currently specify the CAR
construct’s intracellular co-stimulatory domain (ICD), which is
known to be an important factor in dictating CAR T-cell efficacy,
persistence, and dynamics; rather, we approximate CAR behavior
independent of ICD and find that broad trends hold despite not
accounting for this factor explicitly. The model could be tuned to
capture the effect of different ICD choices on CAR T-cell
function. Similarly, the analysis can be tuned to change the
definition of effective treatment outcomes to further penalize
healthy cell killing (e.g., when considering treatments in which
damage to CAR target antigen-expressing healthy cells is less
tolerable from a safety standpoint). When treating B-cell cancers,
off-tumor effects like B-cell aplasia are manageable with
treatment, and healthy cell killing is less of a concern. In
glioblastomas, EGFR is expressed on cancer cells, healthy
brain cells, and other tissues, making healthy cell killing a
greater risk of morbidity and mortality (Caruso et al., 2015).

Another assumption made in the current CARCADE model is
that there is no T-cell-mediated killing of bystander cells unless
those bystander cells express the target antigen, which represents
an ideal case. This assumption could easily be relaxed to
interrogate the consequences of various forms of non-ideal
T-cell killing. Additionally, the process by which CAR T-cells
traffic to the tumor has been simplified and idealized, as CAR
T-cells spawn at sites closest to cancer cells. The model could be
adjusted to contemplate other scenarios, such as spawning CAR
T-cells at the simulation edge while including CAR T-cell and
environmental features that influence CAR T-cell trafficking to
the tumor. An important limitation is that CAR T-cell exhaustion
and anergy are longer-term phenomena for which our
understanding is continually evolving; the current formulation
of CARCADE reflects an abstraction of the state of this
knowledge. Future development and use of CARCADE will
benefit by incorporating new insights from experiments or
clinical studies, and through corresponding simulations
focused on longer time scale phenomena. Such refinements
will improve our ability to address important properties
including CAR T-cell efficacy and persistence.

Expanding the agents, environment, or subcellular functions
included in CARCADE offers opportunities for future model
development and use in the field of CAR T-cell engineering. The
present model comprises CAR T-cells and cancerous and healthy
tissue cells; addition of macrophages, regulatory T-cells, natural
killer cells, and other regulatory or supporting cell types or
environmental factors could enable investigation of CAR
T-cell therapy in a more complete and complex immune
environment. In future studies, it may be particularly
important to include the cell and environmental factors that
contribute to immunosuppressive environments, as this is a
common issue faced with in vivo CAR T-cell therapy.
Additionally, while the current model was designed to
facilitate analysis of treatments for solid tumors, particularly
through the use of the tissue simulations, the dish
simulations could be adapted to investigate liquid cancer
treatment strategies. Future expansions could also incorporate
trogocytosis, a processes by which CAR T-cells pick up tumor
antigens from cancer cells and then experience fratricidal killing
by other CAR T-cells, to investigate how this phenomena affects
CAR T-cell persistence (Hamieh et al., 2019).

Overall, we believe that CARCADE will prove valuable for
CAR T-cell designers and enable cross-cutting collaborations
to facilitate further model development or tuning to specific
contexts and questions of interest. By further refining the
model using experimental data, CARCADE could help
suggest potential promising strategies for experimental
pursuit by testing strategies in dish and/or tissue
contexts. CARCADE is designed to enable interrogation of
questions and phenomena that are beyond the scope of the
current study. For example, future studies using the current
model could include a more granular consideration of CAR
T-cell trafficking within the tumor by removing the
assumption of perfect trafficking. Tumor immune escape
could be investigated by creating multiple tumor
subpopulations with variable antigen expression levels or
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susceptibly to killing. Additionally, inter- and intra-tumor
heterogeneity could be integrated by simulating tumors that
comprise multiple populations with different parameters and/
or differing levels of heterogeneity. Ultimately, integrating
CARCADE into the CAR T-cell design process could
accelerate the design-build-test cycle, saving resources and
time associated with new therapeutic development.

4 MATERIALS AND METHODS

CARCADE was developed by extending ARCADE, an existing
multi-scale, multi-class agent-based model that includes
tissue cells and hemodynamic environments. We used
CARCADE to generate in silico experiments where we
treated monoculture dish, ideal and realistic co-culture
dish, and tissue contexts with CAR T-cells. All model
details, including adaptation of tissue cell agents,
development of CAR T-cell agents, development and
adaptation of subcellular modules, development of dish
plating, and all simulation setups and analyses are
described in detail in the Supplementary Methods Details
section of the Supplementary Material (Kuse et al., 1985;
Lauffenburger and Linderman, 1993; Robertson et al., 1996;
Schwartz, 1996; Frauwirth et al., 2002; De Boer et al., 2003;
Deenick et al., 2003; Iwashima, 2003; Schwartz, 2003;
Chmielewski et al., 2004; Macian et al., 2004; Janas et al.,
2005; Jacobs et al., 2008; Busse et al., 2010; Malek and Castro,
2010; Pearce, 2010; Yoon et al., 2010; Akbar and Henson,
2011; Wang et al., 2011; Wherry, 2011; Altman and Dang,
2012; Gerriets and Rathmell, 2012; Robertson-Tessi et al.,
2012; Stone et al., 2012; Cheng et al., 2013; Crespo et al., 2013;
Hegde et al., 2013; Liao et al., 2013; MacIver et al., 2013;
Rosenberg, 2014; Buck et al., 2015; Heskamp et al., 2015;
Kinjyo et al., 2015; Liadi et al., 2015; Liu et al., 2015; Long
et al., 2015; Obst, 2015; Wherry and Kurachi, 2015; Chang and
Pearce, 2016; Cherkassky et al., 2016; Golubovskaya and Wu,
2016; Harris and Kranz, 2016; Hegde et al., 2016; Liu et al.,
2016; Maus and June 2016; Sommermeyer et al., 2016; Verbist
et al., 2016; Arcangeli et al., 2017; Borghans and Ribeiro, 2017;
Gong et al., 2017; Mehta et al., 2017; Gherbi et al., 2018;
Guedan et al., 2018; Huang et al., 2018; Kasakovski et al., 2018;
Rafiq et al., 2018; Ross and Cantrell, 2018; Salter et al., 2018;
Watanabe et al., 2018; Yost et al., 2019; Yu and Bagheri, 2020;
Hernandez-Lopez et al., 2021; Yu and Bagheri, 2021).

All source code for CARCADE is available on GitHub at
https://github.com/bagherilab/CARCADE. Scripts used to

process and analyze data are available on GitHub at https://
github.com/bagherilab/carcade_mapping_design_space.
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Generalized Property-Based
Encoders and Digital Signal
Processing Facilitate Predictive Tasks
in Protein Engineering
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Computational methods in protein engineering often require encoding amino acid
sequences, i.e., converting them into numeric arrays. Physicochemical properties are a
typical choice to define encoders, where we replace each amino acid by its value for a given
property. However, what property (or group thereof) is best for a given predictive task
remains an open problem. In this work, we generalize property-based encoding strategies
to maximize the performance of predictive models in protein engineering. First, combining
text mining and unsupervised learning, we partitioned the AAIndex database into eight
semantically-consistent groups of properties. We then applied a non-linear PCA within
each group to define a single encoder to represent it. Then, in several case studies, we
assess the performance of predictive models for protein and peptide function, folding, and
biological activity, trained using the proposed encoders and classical methods (One Hot
Encoder and TAPE embeddings). Models trained on datasets encoded with our encoders
and converted to signals through the Fast Fourier Transform (FFT) increased their precision
and reduced their overfitting substantially, outperforming classical approaches in most
cases. Finally, we propose a preliminary methodology to create de novo sequences with
desired properties. All these results offer simple ways to increase the performance of
general and complex predictive tasks in protein engineering without increasing their
complexity.

Keywords: protein engineering, predictive models, machine learning, digital signal processing, fourier transform,
numerical representation strategies

1 INTRODUCTION

Protein Engineering is one of the main research areas of biotechnology. It focuses on designing and
implementing strategies that allow or optimize the production of proteins with desired properties.
The main strategies used to achieve this objective are directed evolution and rational design. The first
focuses on emulating and accelerating the evolution process, evaluating mutations and selecting
those that show the desired trait, iterating the process until reaching an economically feasible
optimum. The second consists of applying existing knowledge about a protein system—both
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empirical and theoretical—to propose mutations or variants that
are likelier to exhibit the desired property.

However, predicting the outcome of replacing one (or more)
amino acids in a protein sequence is a central task in Protein
Engineering because it is unclear how the individual sequences
relate to higher-order properties, e.g., folding Khoury et al.
(2014). As protein function and properties are closely related
to their constitutive amino acids (Sadowski and Jones, 2009), it is
possible to design variants with enhanced functions by changing
the constitutive amino acids of a sequence. However, amino acid
sequences need to be encoded into numeric arrays in order to
facilitate their computational processing. In other words, every
amino acid has to be turned into a number.

Unsurprisingly, encoders play a fundamental role in the
quality of the outcome of predictive models (Yang et al., 2019;
Wittmann et al., 2021). However, while there is a wide variety of
encoding techniques, there is no general agreement on which one
to select for a specific task (Yang et al., 2018; Siedhoff et al., 2021).
The first encoding approaches represented amino acid sequences
in discrete manner (numeric-wise), using techniques such as One
Hot or Ordinal Encoder (Winter 1998; Pavelka et al., 2009;
Brownlee, 2020). However, these techniques struggle to handle
high-dimensional datasets and often lack biological
interpretation (Yang et al., 2018). Therefore, efficient encoding
strategies allowing handling high dimensional datasets while
capturing biological and physicochemical properties of the
sequences are required.

Researchers have intensively used physicochemical properties
of the constitutive amino acids to encode sequences (Potapov
et al., 2009; Broom et al., 2017; Ancien et al., 2018). One of the
open datasets summarizing these properties is the AAIndex
database (Kawashima and Kanehisa, 2000), with (to date)
566 different entries for the 20 canonical amino acids.
Property selection based on unsupervised machine learning
(ML) algorithms (Saha et al., 2012; Forghani and Khani, 2017)
often generates groups with mixed properties (Georgiev, 2009), in
the sense that they are not semantically or physically coherent.
Various studies have combined physicochemical properties and
digital signal processing in protein engineering (Cosic and Nesic,
1987; Hejase de Trad et al., 2000). An example of such digital
signal processing is the use of (Fast) Fourier Transforms (FFT) to
analyze encoded sequences’ spectra. Integral transforms (as the
FFT) have some interesting properties, as facilitating the
convolution of signals and, eventually, capturing the
interaction between amino acids. Consistently, in the context
of protein engineering, transforming encoded sequences and
training models in the frequency space instead allows
capturing the interactions between amino acids in the whole
range of the sequence (Siedhoff et al., 2020). Veljkovic et al. (1985)
were pioneers in the application of discrete Fourier Transforms to
analyze DNA and protein sequences. Other remarkable examples
find applications in cancer studies (Cosic et al., 2016), analysis of
conserved motif regions (Hejase de Trad et al., 2000), evaluation
of bioactivity (Cosic, 1994), and the prediction of secondary
structure and protein-protein interactions (Cosic et al., 2016).
Recently, researchers have combined with great success digital
signal processing with machine learning to develop predictive

models to evaluate—among other variables—enantioselectivity
and protein thermostability (Cadet et al., 2018a,b; Siedhoff et al.,
2021).

However, the use of integral transforms (as Fourier
transforms) dates further back on time (see, e.g., Eisenberg
et al. (1984); Rackovsky (1998); Cosic and Nesic, 1987).
Recently, Kieslich et al. aimed to generalize the property-based
encoding of sequences by applying a PCA to the AAIndex. They
select the 18 most explanatory principal components to define
encoders and use them for training Support Vector Machine
(SVM) models to predict antiviral activity on peptides, reaching
outstanding performance metrics (Kieslich et al., 2021). Thereby,
the authors showcase the benefits of extracting the full potential
of the AAIndex dataset by proper data preprocessing. Could it
then be possible to extract even more information from the
AAIndex database so that we could reach higher performance
metrics by employing even fewer independent encoders?

In this work, we aim to go one step beyond generalizing
property-based encoding strategies and improve the numerical
representation of amino acid sequences for predictive tasks in
protein engineering in a way that is both explainable and
consistent with previous findings. First, we applied text mining
techniques to the AAIndex database to define eight semantically
consistent groups of properties (i.e., groups of properties with
compatible physical meaning, which naturally arise). Then, using
the first component of a Kernel PCA (which is less restrictive than
classic PCA), we define eight encoders that we use to represent the
same protein sequence. After applying FFT, we train predictive
models using the complex modulus of the Fourier spectra as
input. Thereby, we facilitate the development of predictive
models using ML algorithms, outperforming classical encoding
strategies in the studied cases. Finally, we demonstrate the
usability of the proposed approach to enhance performance in
predictive tasks and to design proteins with desirable properties.

2 METHODS

2.1 Semantic Clustering of Properties in the
AAIndex Database
We sought to identify groups of physicochemical properties in the
AAIndex database (Kawashima and Kanehisa, 2000), maximizing
the separation between groups while conserving semantic
consistency within them (in the sense of all properties of the
same group having compatible descriptions). Our methodology
combined doc2vec strategies as document representation (Kim
et al., 2019) and several unsupervised learning algorithms. Below,
we describe each of the four stages involved in the proposed
methodology for semantic clustering and the derivation of
generalized property-based encoders.

2.1.1 Data Pre-Processing
We retrieved the AAIndex database records from its official site
https://www.genome.jp/ftp/db/community/aaindex/aaindex1.
Then, we processed the dataset generating two *.csv files to
facilitate its handling, one containing numeric values for the
properties and the other containing their description.
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2.1.2 Unsupervised Learning
As classical clustering methods based on unsupervised learning
using the values of the properties cannot ensure semantic
consistency within the partition generated, we designed a
staged process, combining them with doc2vec techniques to
generate autoencoders. We first train a doc2vec autoencoder
on the descriptions of the physicochemical properties in the
AAIndex database and apply it over the same dataset to
obtain embedding representations. We then explore different
classical unsupervised learning algorithms and combinations of
their hyperparameters (as described in the exploration stage in
Medina-Ortiz et al. (2020b,c)) to obtain several candidate
partitions of the dataset.

2.1.3 Selection of the Best Partition
We assessed the quality of each partition by obtaining their
Calinsky-Harabasz indexes and selecting the one with the
highest. Finally, we retrieve the original descriptions applying
the inverse encoder (decoder) and review whether the condition
of semantic consistency is met within the groups generated.

2.1.4 Encoder Creation
Using the partition generated in the previous step, we studied
how property values are distributed for the different amino acids.
We created a 20 × Ni matrix containing the values of the Ni

properties contained in the i − th group for each amino acid. We
then applied a kernel principal component analysis (kernel-PCA,
radial basis function RBF-kernel with default settings) to the
matrix representing each group. Noteworthy, a kernel-PCA
expands the traditional PCA’s limitations, such as requiring
the components (namely, columns of the matrix) to distribute
normally, and prevents the information loss that would cause
removing those properties that do not meet this condition.
Finally, we define encoders as the first component of each
intra-group kernel-PCA.

2.2 Numerical Representation of Protein
Sequences and Fast Fourier Applications
The general principle behind encodings is to map a categorical
variable into a numeric value. In the context of protein
engineering, encoding sequences of amino acids translates
them into vectors. However, distance-based algorithms
cannot capture the interactions between residues when
comparing different sequences (or variants of the same
sequence when replacing one or more of the constitutive
amino acids). As we expect changes in one residue to
impact the protein’s function depending on who the
neighbor residues were, we need a method to account for
the impact that each amino acid has on the whole sequence.
One way to capture this broad range of interactions is to use
Fourier transforms (Sneddon, 1995).

Alongside other integral transforms, Fourier transforms
search to represent functions (or vectors) as a superposition of
other functions or vectors that form a basis of the correspondent
space. For Fourier transforms, such a basis is all possible
sinusoidal functions. Although it was originally thought for a

continuously valued function, it is possible to define the Fourier
transform and its inverse for discrete distributions. In this case,
only a finite sample segment of the continuous data set is required
to reconstruct the frequency spectrum (Rao and Yip, 2014).

The Fast Fourier transform (FFT) algorithm enables the efficient
computation of the Fourier transform; Solving the problem directly
from the discrete Fourier Transform (DFT) yields a complexity of
O(N2), while using the FFT generates a complexity of O(N log N)
(Welch, 1967). In the context of the present work, we apply FFT to
each encoded sequence according to the following steps: 1) As
required to apply FFT, we complete every vector with zeros (zero
padding) such that the resulting dimension is (2n) − 1. 2) We apply
FFT to each resized vector independently, obtaining a n × m

2 matrix of
frequencies, where n is the number of sequences andm is the number
of points in the vector.We then use the obtained frequencies as input
to train predictive models.

2.3 Predictive Models Training
Throughout the different case studies presented in this work, we
use Random Forest predictive models due to their easy
implementation and interpretation. Hyperparameters are those
of the default configuration of DMAKit (Medina-Ortiz et al.,
2020b): n_estimatorsint = 100, criterion = gini,
min_samples_split = 2, min_samples_leaf = 1, and
n_jobs = −1 so that all available cores are used. After
preprocessing, each input dataset was divided into training
and testing datasets in an 80:20 ratio. For the performance
assessment experiment, we repeated the 80:20 split of the
dataset 1.000 times using different random seeds, aiming to
compensate for any potential selection bias. Thus, instead of
reporting a single value for model precision, we report, in this
case, a distribution. Model training involves a k cross-validation
stage, with k = 10. We also put forward a metric to assess
overfitting, the overfitting ratio, defined as the ratio between
model precision in the training and validation stages.

2.4 Testing Datasets and Case Studies
Here we describe the different datasets we evaluated in the case
studies to assess the proposed encoders and methodology.

2.4.1 DNA-Binding Protein
DNA-binding protein (DBP) classification is one of the most
exciting problems in biotechnology, mainly because of its
implications in protein engineering, synthetic biology,
molecular biology, and genetic engineering (Rahman et al.,
2018). Furthermore, it finds direct application in the
improvement of commercial DNA polymerases and restriction
enzymes (Wei et al., 2017). Different computational methods to
develop classification models for DNA-Binding protein have
been proposed, involving various sequence coding and
characterization strategies. Despite the enormous efforts
aiming to solve this problem, it remains open. The dataset for
this task was built using different previously reported datasets
(Wei et al., 2017; Rahman et al., 2018; Adilina et al., 2019). We
also removed all sequences without classification, generating a
balanced dataset with 504 examples of DNA binding protein and
523 non-DNA binding protein.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 8986273

Medina-Ortiz et al. Improving Predictions Through Better Representations

286

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2.4.2 Folding and Function Recognition
Two of the most common tasks in protein engineering are the
prediction of the folding of secondary structures and the classification
of protein function (Marchler-Bauer et al., 2017). Based on this, our
approach was based on solving two questions of interest. 1) Given a
set of proteins with the same folding, is it possible to recognize or
predict the functions of these proteins? 2) Given a set of proteins with
the same function, is it feasible to classify protein folding? First, we
used the Protein Data Base (PDB) to build these data sets. Then, for
each search, we applied the following filters: 1) Homo sapiens
organism, 2) X-Ray diffraction as the experimental method, 3)
Protein type as Polymer entity type, and 4) a resolution lower
than 3 Å. Next, we implemented a bash script to download the
protein sequences and save them in csv files for the different
applications. Remarkably, we developed balanced datasets to
reduce the possible problems in the training process in all cases.

2.4.3 Biological Activity Prediction for Peptide
Sequences
Antimicrobial peptides (AMPs) are known as host-defense peptides
(Sitaram andNagaraj, 2002). Thesemolecules play an essential role in
the innate immune response, thus having direct application in the
pharmaceutical, biotechnological, and industrial areas (Papagianni,
2003;Ma et al., 2018). Different computationalmethods based onML
have been developed to classify antimicrobial peptides (Xiao et al.,
2013; Chen et al., 2016; Zimmer et al., 2018; Yi et al., 2019; Yi et al.,
2019). In this case study, we used the peptide sequences reported in
PeptipediaDB (Quiroz et al., 2021) to develop classificationmodels of
AMPs peptides, generating a dataset with six types of biological
activities.

2.5 Implementation Strategies and Library
Developing
Scripts to develop, assess, and exemplify the usage of the proposed
encoders are written in Python v3.9, powered by libraries as
Pandas (McKinney, 2010), Numpy, Gensim (Řehřek and Sojka,
2011), and DMAKit (Medina-Ortiz et al., 2020b), among others.
The encoding library proposed in this work was designed under
the Object-Oriented Programming paradigm (Wegner, 1990),
which is advantageous for its modularity.

3 RESULTS AND DISCUSSION

3.1 Combining Text Mining and
Unsupervised Learning Reveal Semantic
Groups of Physicochemical Properties in
the AAIndex Database
Using a combination of doc2vec strategies and unsupervised learning
algorithms, we identified eight groups semantically-consistent groups
of physicochemical properties within the AAIndex database
(Kawashima and Kanehisa, 2000). By semantic consistency, we
refer to these groups representing the same physical aspect of
amino acids, such as general structural and thermodynamic
properties and indices. To determine them, we explored about

one million possible partitions of the dataset, changing the way of
generating embeddings of property descriptions, the clustering
algorithms, and their hyperparameters. We performed this using
the model exploration tools presented inMedina-Ortiz et al. (2020b).

The resulting eight groups of properties were obtained by training
autoencoders with hyperparameters of 500 epochs, a value of α =
0.025, and an embedding size of 2, and partitioning the dataset by
applying the k − means algorithm with k = 8. This was the best
performing algorithm found in the exploration stage, reaching a
Calinski-Harabasz index of 1,532.36 and a silhouette coefficient of
0.43. Finally, we assessed the semantic consistency of each group,
evaluating whether the properties within the group presented the
same contexts or specific words. As a result, only 17 descriptions were
reclassified from the group of Other indexes to the groups of α
structure and β structure.

One of the advantages of implementing a strategy based on
doc2vec is the semanticity generated by separating the properties
by their descriptions, which facilitates a simple visualization of the
existing contexts or topics in each group. On the other hand, applying
unsupervised learning algorithms to property values will generate
partitions that do not ensure semantic consistency within groups, as
clustering criteria will be numeric. In this way, the semantic clustering
methodology proposed in this work ensures that the random
selection of any member of a particular group will have the same
physical meaning, otherwise not possible.

We analyzed theAAIndex database from a numeric perspective to
test the statement above. We explored different combinations of
unsupervised learning algorithms and hyperparameters to partition
the dataset. The best performing algorithm was k − means (k = 2),
yielding a Calinski-Harabasz index of 1,527.81 and a silhouette
coefficient of 0.87. Although these results hint at an excellent
separation between the groups in the partition, not only is there
no relationship between the descriptions within the groups, but also
unbalanced divisions of properties between groups. Forcing the k −
means algorithm to produce eight groups generates a partition with a
Calinski-Harabasz index of 614.25 and a silhouette coefficient of
0.50. However, and as expected, no semantic consistency within the
groups was achieved.

Once the groups of descriptions were generated and corrected,
these were used to generate eight data sets with the property
values for each amino acid. We applied a kernel-PCA (Radial
Basis Function–RBF–kernel) to the numeric values of each group
and assessed how much of the variance was explained by the first
component. In all groups, the variance explained by the first
component of the kernel-PCA was higher than 85%.
Furthermore, the different groups resulted in being linearly
separable in the PCA1/PCA2 space, as their convex hulls are
disjoint (cf. Figure 1A). Therefore, we proposed to use the first
component of each semantic group of properties generated as an
encoder. These encoders are listed in Table 1.

3.2 Semantically-Consistent Encoders and
Fourier Transform Facilitate Predictive
Tasks in Protein Engineering
We used the proposed semantic encoders to tackle four
different predictive tasks in protein engineering (DNA-
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binding protein classification, protein folding, protein
function, and enzyme family determination) using Random
Forest algorithms. The datasets and hyperparameters are
described in the Methods section. First, input datasets were
split into training and validation datasets in an 80:
20 proportion. Then, aiming to prevent any stochastic
artifact induced by a favorable/unfavorable partition of the

dataset, we repeated this stage 1,000 times using different
random seeds. Thus, instead of obtaining a single value for the
performance of a model, we obtained a distribution of
performances (cf. Figures 1B,C). When comparing model
performance achieved using our encoders with that of models
trained with classical methods (e.g., One Hot Encoder (Broom
et al., 2017) and TAPE embeddings (Rao et al., 2019)), there is

FIGURE 1 | The AAIndex database of amino acid physicochemical properties can be split into eight semantically-consistent groups. (A) Combining doc2vec
strategies with unsupervised learning algorithms, we proposed a methodology to generate groups that preserve semantic consistency within the partition. Applying an
RBF kernel PCA on the whole dataset, we observe that the groups are linearly separable in the PCA1/PCA2 space, as their convex hulls are disjoint. (B,C)Combining our
encoders with FFT improves model performance and helps reducing overfitting in several predictive tasks. Here, boxplots summarize the distribution of
performances reached in each experiment across the 1,000 independent realizations of the 80/20 split of the input dataset for the task. Central circles represent
medians, bars the interquartile range, and whiskers the 95% CI. Complementary analyses of model performance, including other metrics (such as recall, F-Score, and
area under the receiver operating curves AUC), are presented in Supplementary Section S3 and summarized in Supplementary Tables S3–S6.
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no major difference (cf. Figure 1B). However, our models
reached over-fitting ratios (defined as the performance of
training divided by the performance in validation) closer to
one than classical approaches, suggesting that our encoders
are better suited for these predictive tasks (cf. Figure 1C).

We repeated the experiments above but applied the Fast
Fourier Transform (FFT) to the encoded sequences before
training predictive models. We then use the complex modulus
of the discrete Fourier transform as a feature to train our models.
By doing so, we aim to capture the influence of the position of
each amino acid within the sequence, which affects other amino
acids in different ranges of influence. We will provide further
details on the interpretation of the FFT-related variables in the
next section. While there is a drop in performance when
combining One Hot and embedding-based encoders and FFT,
the use of FFT increased the precision of predictive models
trained using the semantic encoders herein proposed.
Moreover, the over-fitting ratio decreases even further in this
case, suggesting a synergistic effect on the predictive performance
of trained models.

A possible interpretation of this effect relates to the Fourier
transform’s properties, which capture the influence of each
component of the input on the others, thereby incorporating
more information into the predictive systems. Amino acids
within a protein sequence influence each other. Thus, by
applying Fourier Transforms, we can capture, to some extent,
this spatial dependency. Furthermore, this property results
beneficial for any property-based encoding strategy, as
previously reported in Siedhoff et al. (2021), Cadet et al.
(2018b), and Cosic (1994). Based on the above, we propose
the combination of our encoders together with the application
of Fourier transforms in order to improve the performance of
predictive models.

We performed a complementary model evaluation analyzing
the whole spectra of performance metrics, including recall,

F-Score, and area under the receiver operating curves AUC.
We found a marked consistency between the precision and
recall obtained by trained models, and these metrics were
further increased when training models in the frequency space.
Furthermore, the high values reached for the AUC across
predictive tasks highlight the predictive power of our
approach. The reader is referred to Supplementary Section
S3, and Supplementary Tables S3–S6.

We compared the performance of our encoders and similar
approaches to assess whether we reached a sweet spot regarding
the number of proposed encoders and information contained
therein. In particular, we compare our results against 1) using all
properties in the AAIndex as independent encoders and 2)
applying a linear PCA directly on the AAIndex database and
using the most informative components as independent
encoders. The reader is referred to Supplementary Section S4.

3.3 The Combination of Our Encoders With
FFT Allow Detecting Profiles Related to
Folding and Protein Functions
Combining the encoders proposed in this work, the
interpretation of protein sequences as signals, and processing
them after applying FFT, facilitates the identification of profiles at
the folding and functional levels. To demonstrate this, we propose
the following case study. We encode the protein function dataset
employing the secondary structure-related encoder and apply FFT
on it to analyse its spectra. In particular, we sought to find
relations for the mean complex modulus of the transformed
signals of different families of enzymes (in this case, hydrolase
and ligase), and used their length to x-scale the frequency,
zoomed to the active site, and excluded extremes that could be
affected by either zero-padding or border conditions. We found a
clear difference between the mean complex modulus of the
Fourier spectra of ligases and hydrolases (cf. Figure 2A).

TABLE 1 | Generalized property-based encoders for amino acids.

Amino acid α structure β structure Hydrophobicity Volume Energy Hydropathy Secondary structure Other indexes

A 290.41 71.85 6.25 44.65 −107.79 15.33 56.16 92.92
R 172.57 −6.96 84.09 200.15 51.15 172.36 1.44 −37.39
N −38.37 −90.14 −21.73 −191.18 73.94 −259.13 −54.69 −77.74
D 159.43 −56.58 −28.96 −232.26 55.36 −216.01 −29.38 −7.42
C −4.24 15.67 −34.88 −156.21 −54.19 −242.01 10.07 40.04
Q −268.55 −32.61 38.46 179.88 31.44 145.73 -15.43 −45.52
E −0.02 21.03 −21.48 −170.44 −49.97 8.11 20.20 50.74
G −104.49 −62.33 53.16 250.66 92.25 256.52 -39.89 −95.41
H −159.87 31.27 −69.67 194.47 −39.54 455.61 34.12 43.37
I −34.08 164.64 −54.85 −88.56 −48.44 −274.76 25.05 52.40
L −91.11 −16.38 −64.98 −201.08 7.56 −257.27 −10.20 4.27
K 195.59 54.45 −52.92 −118.84 −109.99 −136.28 55.31 85.66
M 21.94 −18.77 −26.70 −227.61 −7.39 −139.71 −19.45 16.04
F 88.02 21.61 −21.46 −78.96 −56.97 80.68 30.31 46.42
P 317.10 115.37 −22.23 −44.80 −157.63 −126.45 95.69 136.09
S −314.20 −106.56 61.31 221.12 174.08 248.05 −85.57 −122.66
T −252.51 −23.99 13.72 −3.30 17.50 −153.13 −25.56 −31.46
W −118.15 −76.02 88.28 34.80 105.47 19.24 −59.91 −124.49
Y −10.20 −15.49 40.85 203.07 36.61 171.61 −4.25 −33.07
V 150.75 9.929 33.77 184.45 −13.45 231.50 15.99 7.21
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Furthermore, we also found differences in the mean complex
modulus of the Fourier spectra when analyzing two folding
classes within the same family (cf. Figures 2B,C).

We employ the same approach (secondary structure-related
encoder combined with FFT) to identify protein folding profiles
and sub-profiles related to protein function. Figure 2D shows the
average spectra for the α and β folds of enzymes with different
functions. Similarly, we found that isomerases and
oxidoreductases have slightly different mean Fourier spectra,
although sharing the α and β folding properties (cf. Figures 2E,F).

3.4 Towards a New Design Strategy for
Protein Sequences With Desirable
Properties
One of the most challenging problems in protein engineering is
protein design (Yang et al., 2019). Considering the advantages of
combining our semantic encoders and FFT, we put forward a
prospective methodology to design peptide sequences with
desired properties. In this case study, we illustrate the use of
this methodology to design peptides with antimicrobial activity.
Using the antimicrobial peptide dataset described in Methods, we
apply our encoders and FFT to the dataset and trained two
random forest predictive models. The first model is a binary
classification model for antimicrobial activity, while the second

corresponds to a multi-class model of various biological activities
for antimicrobial peptides. The latter include peptide classes such
as antibacterial, anti-viral, anti-cancer, anti-HIV, and anti-fungal.
The models had an accuracy of respectively 95.3% and 89.41%.
On the one hand, the clear separation between the spectra of
antimicrobial and non-antimicrobial peptides explains the high
performance reached by the binary classifier. On the other hand,
marked patterns for each biological activity facilitate the
generalization in the multi-class model (cf. Figure 3, where
panels A–I represent the different encoders proposed herein).
Altogether, when analyzing the distribution of values for each
position, we can define a latent space where, theoretically,
encoded signals with the same complex modulus would have
the same activity.

After characterizing the classification mechanisms of the
models described above, we put forward the following
methodology to generate new sequences that would be
classified as “having an activity” by them. First, we collect
different peptide sequences with antimicrobial activity from
the Peptipedia database (Quiroz et al., 2021). These sequences
are new examples for the classifiers, as they were not used during
the model training step. Alternatively, another way to generate
new sequences for this stage is through deep generative models
(Wu et al., 2021). Note that we already know that these sequences
do have antimicrobial activity. These build up a m × n matrix,

FIGURE 2 | The combination of our encoders with FFT unveils frequency profiles associated to specific protein folding and functions. We used the encoder of
secondary structure combined with FFT to create profiles related to folding and protein functions. (A) Fourier spectra for two family enzymes (hydrolases and ligases) in a
dataset of enzyme families. (B,C) Fourier spectra of the same family separated by folding, showing that our methodology is sensitive to apparent differences between
alpha and beta folding types. (D) Fourier spectra for alpha and beta folding in a dataset of different protein families. (E,F) Fourier spectra of the same folding
separated by protein family, showing that our methodology is sensitive to proteins with the same folding but belonging to different families. N for frequency
normalization = 1,024.
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where m are the number of sequences and n the length of the
longest of those (all others are completed with zeros). Second, we
encode and transform the sequences using all the proposed
encoders in this work separately to obtain 8m × n matrices.
Third, we characterize the distribution of values column-wise for
each matrix, so we obtain confidence intervals for the encoded
values of each position. Fourth, we calculate the likelihood of new
sequences belonging to each category’s latent space for each
encoder. Precisely, for each residue in the sequence, we
calculate a probability. Assuming that all these are
independent, the t probability of belonging to the latent space
is the multiplication of the individual probabilities obtained for
each position. In this way, we have eight statistical tests where
belonging to a latent space could predict a unique biological
activity. Fifth, we used the trainedmodel to predict the category of
the proposal sequence. Finally, we evaluate the predictions and
check if the proposed sequences are classified in the class of
interest. A step-by-step, in-depth explanation of the proposed
methodology and a summary flowchart can be found in
Supplementary Section S4.

Using the proposed strategy, we randomly explored
10,000 sequences. We defined a selection criterion of 90%
probability of existing within the latent space of desirable
biological activity, in this case, antimicrobial peptides and
their different subcategories. Of the 10,000 sequences explored,
only 3,513 met the established probability criteria, and their
activity was predicted using the previously trained models.

Remarkably, because the biological activities of the sequences
were known in advance, the performance of the screening
methodology could be evaluated by comparing the predicted
rankings with the biological activities reported by each sequence.
Performance metrics are reported in Supplementary Table S3.
Notably, the sequences recognized as antimicrobial peptides
showed performance similar to the training result. However,
the rest of the biological activities evaluated showed a decrease
concerning the predictive model. This is not surprising since the
models were trained using sequences that only presented a
specific activity, while the evaluated sequences showed
primarily moonlight activity (which is why the sub-activities of
antimicrobial peptides do not add up to the total number of
antimicrobial peptides evaluated sequences). Despite these
results, the proposed methodology facilitates the exploration of
new sequences from a probabilistic point of view, being
enormously efficient for antimicrobial peptides and promising
for future applications.

CONCLUSION

The results presented in this work can be summarized as three
main contributions. First, we extend the traditional property-
based encoding strategy and propose eight new encoders that
represent semantically-consistent groups of physicochemical
properties of the AAIndex database. Second, we illustrate how

FIGURE 3 | Fourier spectra of encoded amino acid sequences with different activities are visually separated. Sub figures show the Fourier spectrum of different
sequences of peptides, encoded according to the groups of properties proposed in this article, represented in panels (A–I). We analyse two types of peptides:
Antimicrobial (AMPs) and non-Antimicrobial (nonAMP). AMPs are subsequently divided into five categories: Antibacterial Peptides (AB), Anticancer Peptides (AC),
Antifungal Peptides (AF), Anti-HIV Peptides (AHIV), and Antiviral Peptides (AV). The signals analyzed show a clear differentiation for AMPs concerning nonAMPs. N
for frequency normalization = 128.
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using these encoders together with Fourier transforms can
substantially improve the performance of machine learning
models in general predictive tasks in protein engineering.
Furthermore, we found a synergistic interaction between the
proposed encoders and the FFT that simultaneously increases
the precision of the trained models while reducing their
overfitting to the data. Finally, we put forward a simple and
preliminary statistically-based methodology to create de novo
peptide and protein sequences with desirable properties. We will
extend the modeling framework to simultaneously use the eight
encoders to tackle more complex predictive tasks in protein
engineering in future work. We expect these independent
descriptions of a sequence to interact synergistically and
increase model performance.
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Time-Optimal Adaptation in Metabolic
Network Models
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Berlin, Germany

Analysis of metabolic models using constraint-based optimization has emerged as an
important computational technique to elucidate and eventually predict cellular metabolism
and growth. In this work, we introduce time-optimal adaptation (TOA), a new constraint-
based modeling approach that allows us to evaluate the fastest possible adaptation to a
pre-defined cellular state while fulfilling a given set of dynamic and static constraints. TOA
falls into the mathematical problem class of time-optimal control problems, and, in its
general form, can be broadly applied and thereby extends most existing constraint-based
modeling frameworks. Specifically, we introduce a general mathematical framework that
captures many existing constraint-based methods and define TOA within this framework.
We then exemplify TOA using a coarse-grained self-replicator model and demonstrate that
TOA allows us to explain several well-known experimental phenomena that are difficult to
explore using existing constraint-based analysis methods. We show that TOA predicts
accumulation of storage compounds in constant environments, as well as overshoot
uptake metabolism after periods of nutrient scarcity. TOA shows that organisms with
internal temporal degrees of freedom, such as storage, can in most environments
outperform organisms with a static intracellular composition. Furthermore, TOA reveals
that organisms adapted to better growth conditions than present in the environment
(“optimists”) typically outperform organisms adapted to poorer growth conditions
(“pessimists”).

Keywords: constraint-based modeling, cellular metabolism, flux balance analysis, resource balance analysis,
dynamic enzyme-cost flux balance analysis, optimal control, overshoot metabolism, luxury uptake

1 INTRODUCTION

Over the past decades, various modeling frameworks have been proposed to understand the
organization and functioning of cellular metabolism and growth. Among the most popular
approaches are constraint-based methods, in particular flux balance analysis (FBA) (Orth et al.,
2010). Constraint-based methods typically make use of optimality principles that are motivated by
evolutionary arguments. That is, instead of requiring a detailed mechanistic understanding of the
underlying regulatory machinery, properties of cellular metabolism, such as exchange fluxes or
biomass accumulation, are predicted based on the assumption that metabolism has evolved
according to certain evolutionary optimality principles.

More recently, constraint-based methods have been extended to quantitatively account for the
synthesis costs of the biological macromolecules that are required for cellular metabolism and
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growth, giving rise to resource balance analysis (RBA) (Goelzer
et al., 2011) and integrated reconstructions of Metabolism and
macromolecular Expression (ME) (Lerman et al., 2012). While
the initial approaches were restricted to time-invariant
environments and subject to steady-state conditions, various
dynamic extensions have also been proposed, such as dynamic
FBA (dFBA)Mahadevan et al. (2002), dynamic enzyme-cost FBA
(deFBA) (Waldherr et al., 2015), conditional FBA (cFBA) (Rügen
et al., 2015; Reimers et al., 2017), dynamic RBA (dRBA) (Jeanne
et al., 2018), dynamic ME (Yang et al., 2019), and regulatory
dynamic enzyme-cost FBA (r-deFBA) (Liu and Bockmayr, 2020).
These dynamic frameworks are computationally more expensive
and allow predicting time courses over a given time interval, such
that the variables fulfil a given (linear) optimality principle.
Typically, within these frameworks, the time intervals over
which the solutions are considered are predefined.

In this work, we extend these existing approaches and propose
time-adaptation (TOA) as a new constraint-based modeling
framework that allows us to evaluate the fastest possible
adaptation to a pre-defined cellular state while fulfilling a given
set of dynamic and static constraints. If the underlying dynamics of
the biological system are governed by ordinary differential equations
(ODEs) subject to algebraic constraints such as positivity, that is, so-
called differential-algebraic equations (DAEs), time-optimal
adaptation falls into the mathematical problem class of time-
optimal control problems, which are optimal control problems
where the time-interval is part of the objective (Hermes and
Lasalle, 1969). In its general form, TOA can be applied in a very
broad sense and thereby extends most of the existing constraint-
based modeling frameworks.

Our approach allows us to compute feasible time courses to
simulate or predict adaptations of cellular metabolism to
environmental shifts. Potential applications include an analysis
of cellular doubling, i.e., to analyze the optimal metabolic
trajectory that results in a doubling of all cellular components
in the shortest time, as well as an analysis of the temporal
adaptation to changing nutrient availability.

We exemplify TOA using a coarse-grained self-replicator model
(Molenaar et al., 2009;Giordano et al., 2016; Yegorov et al., 2018; Yabo
et al., 2022) and demonstrate that TOA allows us to explain several
known experimental phenomena that are difficult to investigate using
existing static or dynamic constraint-based analysis methods. In
particular, we demonstrate that TOA can explain the
accumulation of storage compounds also in time-invariant
environments–a counterintuitive fact that cannot be predicted
using RBA and related methods. Likewise, we demonstrate that
“luxury uptake” of nutrients, i.e., the fact that microorganisms may
take up more of a limiting resource than strictly required for steady-
state growth, can be explained by TOA and does not necessarily
require competition within amicrobial community. Furthermore, our
analysis shows that organisms with internal temporal degrees of
freedom, such as storage, can in most environments outperform
organisms with a static intracellular composition. Finally, TOA shows
that in constant (or slowly changing) environments, organisms
adapted to better growth conditions (“optimists”) outperfom
organisms adapted to poorer growth conditions (“pessimists”)
when placed in the same environment.

The manuscript is organized as follows: Within Sections 2.1 and
2.2 we introduce notation and define a general constraint-based
framework to describe cellular metabolism and growth. This
framework captures most current examples of dynamic
constraint-based modeling, in particular dynamic FBA
(Mahadevan et al., 2002), dynamic enzyme-cost FBA (Waldherr
et al., 2015) and conditional FBA (Reimers et al., 2017). In Section
2.3, we formally introduce time-optimal adaptation (TOA) and
discuss two relevant applications in Section 2.4: cell doubling in
minimal time, as well as transition after a nutrient shift. The latter is
formulated as a two-objective optimization problem (in the sense of
Pareto) that considers a minimal time for the transition versus a total
increase in biomass. In Sections 2.5–2.7, we discuss numerical
aspects, variability analysis, and implementation, respectively.

Readers not interested in the mathematical details may skip most
ofMaterials and Methods and focus on Results. In Sections 3.1 and
3.2, we describe the coarse-grained self-replicator model and its
properties using RBA. In Section 3.3, we then apply TOA to describe
cell doubling in minimal time in a constant environment. In Section
3.4, we discuss the role of “expectation”, i.e., the consequences of
being mis-adapted to a given environment. In Section 3.5, we apply
TOA to simulate the metabolic response after a nutrient shift. In the
final Sections 4 and 5, we discuss the biological implications of our
results, and provide conclusions.

2 MATERIALS AND METHODS

2.1 Introduction and Notation
The dynamic simulation of metabolic networks by means of a
fully parameterized ODE/DAE model is an ideal scenario that, in
most cases, cannot be met due to the inherent incompleteness and
uncertainty of the description and the involved parameters.
Constraint-based modeling (Bordbar et al., 2014) has therefore
become an important paradigm for the computational
description of cellular metabolism and growth. The general
idea can be framed as follows: instead of making use of a fully
mechanistic description of biochemical dependencies by means
of reaction rate equations, the system is characterized by a set of
constraints/inclusions, typically defined by (in-)equalities that
constrain the dynamics over a time interval [t0, tend] of interest.

Before capturing our approach in mathematical terms in
Section 2.2, we introduce some notation, see also
Supplementary Appendix S1. The function y: [t0, tend] → Rny

is used to describe the cellular dynamics by the total amounts y(t)
of intracellular compounds at time t (typically measured in
number of molecules, mol), with _y(t) � d

dt y(t) denoting the
time-derivative. For simplicity, we focus on the dynamics of
intracellular compounds only, extracellular compounds (e.g.,
nutrient or waste product concentrations) are not included in
y. Our framework, however, can be readily adapted to include the
dynamics of extracellular compounds (see the Supplementary
Appendix S2.3 for details). Furthermore, our description is based
on the assumption of a well-stirred metabolism, i.e., the spatial
distribution of compounds is not considered.

We distinguish the total amounts of molecules y(t) from their
concentrations c(t), defined by
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c t( ) � y t( )
bio t( ), (2.1)

where the term bio(t)≔w⊤·y(t) denotes the total biomass of the
system (measured in Gram cellular dry mass). The vectorw ∈ Rny

denoting the molar masses of the entities of y (measured in gram
cellular dry mass per mol).

The time evolution of the state vector y(t) can be described by
means of ordinary differential equations.

_y t( ) � S · v t( ), (2.2a)
where S ∈ Rny×nv denotes the stoichiometric matrix and
v: [t0, tend] → Rnv the flux rates of the reactions. The flux
rates v(t) may in general also depend on the environment the
cells are exposed to. Typically, and specifically for large networks,

the stoichiometric matrix S � Sy
Sx

( ) is split up such that “fast”

and “slow” intracellular compounds, usually metabolites resp.
macromolecules, are described separately and (2.2a) is
replaced by.

_y t( ) � Sy · v t( ),
0 � Sx · v t( ), (2.2b)

where the fast compounds, corresponding to the rows of Sx, are
subject to a quasi steady-state approximation (QSSA) (Segel and
Slemrod, 1989). In this case, for simplicity of notation, the fast
components will be removed from the vector y(t). We note that
the splitting into “slow” and “fast” compounds is not a necessary
step and its validity has to be verified in any particular
application.

2.2 Constraint-Based Modeling
To capture the broad range of simulation frameworks that time-
optimal adaptation is able to cover, we abstractly denote the
constraints defining the specific constraint-based description of a
cell via.

for almost( ) all t: _y t( ), y t( ), u t( )( ) ∈ A t( ), (2.3a)
where the set A(t) ⊆ Rny × Rny × Rnu is typically defined
through (in-)equalities such as steady-state assumptions and/
or positivity requirements. The particular form of the set A(t)
usually depends on the chosen modeling framework and its
granularity. For the present work, we model the influence of
the external conditions via the explicit time-dependence of A(t).
The vector-valued function u � u(t): [t0, tend] → Rnu signifies
the degrees-of-freedom of the cell, i.e., quantities that are not
uniquely determined from the current state of the cell and its
environment. In the context of control theory, u(t) defines the
controls; on the biochemical level, it can for example stand for
flux rates v(t) but also for parameters within the model.

The formal statement (2.3a) is usually not enough to
sufficiently constrain the solutions, because the feasible region
is too large to obtain biochemical insight. To get biochemically
meaningful results, (2.3a) is therefore often accompanied by
boundary conditions and an optimality principle, i.e., a global
objective function f to be optimized:

ϕbndry y t0( ), y tend( ), u t0( ), u tend( )( )≤ 0, (2.3b)
min
y ·( ),u ·( )

f y, u( ) (2.3c)

The boundary conditions (2.3b) are defined by means of
inequalities to allow for more generality of this description.
Usually, the boundary conditions will only contain initial
values, provided by equality constraints, i.e., two
inequalities. In some cases, optimality principles are already
incorporated into the constraint set A(t), see the following
examples.

In the context of optimal control-based methods with ODE/
DAE constraints, the flux rates at any fixed point in time cannot
(mathematically) be determined as they enter the problem as
control variables (Gerdts, 2011). This is why (2.3a) technically
can only be enforced for almost all times. Numerically or with
respect to the biochemical reasoning, however, this has no further
implications. In the following, we illustrate how (2.3) provides an
abstract framework to describe established examples of
constraint-based modeling.

EXAMPLE 2.1. (Dynamic FBA, dFBA). Dynamic (or iterative) flux
balance analysis (Varma and Palsson, 1994; Mahadevan et al.,
2002), although one of the most commonly used dynamic
frameworks within constraint-based modeling, is not
consistently defined in the literature. Here, we refer to the
formulation in (Höffner et al., 2016), see also (Höffner et al.,
2012), for the characterization of dynamic FBA as a “dynamical
system with a linear program embedded.”

The control quantities u(t) can in this case be directly
identified with the flux rates in the metabolic network model,
i.e., v(t) = u(t). The overall dynamics are governed by (2.2a),
positivity requirements on y(t) and flux bounds lb, ub ∈ Rnv ,
which might be dependent on the time t:

_y t( ) � Sy · v t( ), dynamics, often just biomass( )
0 � Sx · v t( ), quasi steady − state( )
0 ≤ y t( ), positivity( )

lb t( ) ≤ v t( )≤ ub t( ), flux bounds, dependent on environment( )
with given initial conditions

y t0( ) � y0 ∈ Rny .

The flux rates are determined through optimization of a linear
functional (often the flux through the biomass reaction,
assembled in a vector wobj ∈ Rnv )

v t( ) ∈ argmin
v

w⊤
obj · v.

The quantities in (2.3) can be identified as:

A t( ) � _y, y, u( ):
_y � Sy · u,
0 � Sx · u,
0 ≤ y,

lb t( ) ≤ u≤ ub t( ),
u ∈ argminv w

⊤
obj · v

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

ϕbndry � y t0( ) − y0
y0 − y t0( )( ),
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while typically no additional (global) objective function is
present. Note that the defining condition on the fluxes
u ∈ argmin

v
w⊤

obj · v is an inclusion, such that the solutions to

dynamic FBA problems are, in general, not unique. To remedy
this, flux variability analysis (FVA) (Mahadevan and Schilling,
2003) was introduced as a computational tool to explore the range
of possible solutions of the static sub-problems.

EXAMPLE 2.2. (Dynamic enzyme-cost FBA, deFBA). Dynamic
enzyme-cost FBA (Waldherr et al., 2015) is a dynamic
extension of FBA that takes into account the temporal
development and function of the enzymes. This is modeled by
a system of linear inequalities

Hy t( ) · y t( ) +Hv t( ) · v t( )≤ h t( ), (2.4)
with

Hy ∈ Rnh×ny , Hv ∈ Rnh×nv . (2.5)
The model is usually formulated as an initial-value problem

y t0( ) � y0 ∈ Rny .

Similar to FBA, deFBA assumes that a certain objective function
is to be optimized. Since the framework entails a fully dynamic
model over the whole time range of interest, the objective
function contains “global” information, expressed as an
optimal control objective of Boltza-type (Gerdts, 2011),

min
y,u

∫tend

t0

ϕ⊤
y t( ) · y t( )dt + ϕ⊤

end · y tend( ), withϕy,ϕend ∈ Rny .

Like in dFBA, the control variables in deFBA can be identified
with the flux rates and the description in terms of (2.3) is given by

u t( ) � v t( ),

A t( ) � _y, y, u( ):
_y � Sy · u,
0 � Sx · u,
0 ≤ y

lb t( ) ≤ u≤ ub t( ),
h t( ) ≥ Hy t( ) · y +Hu t( ) · u

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ϕbndry � y t0( ) − y0

y0 − y t0( )( ),
f y ·( ), u ·( )( ) � ∫tend

t0

ϕ⊤
y t( ) · y t( )dt + ϕ⊤

end · y tend( ).

EXAMPLE 2.3. (Conditional FBA, cFBA). This framework (Rügen
et al., 2015; Reimers et al., 2017) is again a dynamic extension of
resource balance analysis (RBA) (Goelzer et al., 2011). Like in
deFBA, enzymatic constraints (potentially alongside further
constraints, e.g., on the cell’s density) are included via (2.4).
The boundary values in cFBA, however, are defined through a
periodicity condition that accounts for the growth of the cell:

c t0( ) � 1
bio t0( ) · y t0( ) � 1

bio tend( ) · y tend( ) � c tend( ). (2.6)

Instead of using the biomass production on all time points, the
objective in cFBA is the total growth of the cell until tend. In terms
of (2.3), cFBA can be summarized as

u t( ) � u1

u2:
( ) � α

v t( )( ), α ∈ R,

A t( ) � _y, y, u( ):
_y � Sy · u2: ,
0 � Sx · u2: ,
0 ≤ y,

lb t( ) ≤ u2: ≤ ub t( ),
h t( ) ≥ Hy t( ) · y +Hv t( ) · u2:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

ϕbndry � u1 · y t0( ) − y tend( )
y tend( ) − u1 · y t0( )( ),

f y ·( ), u ·( )( ) � −u1,

where u1 refers to the first component of the vector u and u2: to the
vector of the remaining entries. If no constraints on the cell density
are included in (2.4), the inequalities defining cFBA are often scale-
invariant in the sense that for each solution y(t) and each number β≥
0, the function β ·y(t) is also a solution. To exclude trivial solutions,
the boundary conditions are therefore often extended such that the
biomass at t0 is equal to one. Note that cFBA is inherently nonlinear
as the products u1·y in the boundary value constraints contribute
quadratically in the unknowns y and u. Like in RBA, the numerical
solution of cFBA problems therefore comprises a series of linear
programs that have to be solved after a discretization of the dynamics
by means of, for example, a collocation scheme.

EXAMPLE 2.4. (Iterative RBA, (Liu, 2020), see also dynamic ME
(Yang et al., 2019)). Just as dynamic FBA can be seen as a dynamic
extension of classical FBA by iteratively applying the algorithm
with constraints following the external conditions, resource
balance analysis (RBA, see Goelzer et al. (2011)) can also be
applied consecutively. In doing that, the limit case of
infinitesimally short sub-intervals leads to a fully dynamic
framework. Numerically, this limiting process is skipped and
one only solves RBA problems on a series of short—but
finite—time intervals. Note that, as cFBA, RBA uses
periodicity conditions like (2.6) which implies that, in
constant external conditions, only one RBA problem needs to
be solved. The full solution in this case is given by an exponential
curve for y(t). Note that there are fewer degrees-of-freedom for
the cell when compared to deFBA or cFBA, as the fixed
concentration values for the metabolites in the case of iterative
RBA also block internal dynamics of the metabolic network.

In the notation of the constraint-based framework (2.3),
iterative RBA can be written as

u t( ) � α
v0

( ) � u1

u2:
( ),

A t( ) � _y, y, u( ):

_y � Sy · v
0 � Sx · v
0 ≤ y

lb t( ) ≤ v ≤ ub t( )
h t( ) ≥ Hy t( ) · y +Hv t( ) · v

v � u2: · exp λ · t − t0( )( )
λ � ln u1( )/ tend − t0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

ϕbndry � y t0( ) − y0
y0 − y t0( )( ),

f y t( ), u( ) � −u1.
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Note that the control variables u are not time-dependent, i.e., they
enter the model as control parameters rather than functions that
need to be optimized in the sense of optimal control.

2.3 Time-Optimal Adaptation: Definition and
Forms
Previous frameworks for constraint-based optimization did not
explicitly include the time interval as part of the optimization
objective. In the following, we introduce Time-Optimal
Adaptation (TOA) as a framework to analyze transition
between different cellular states in the shortest possible time.
TOA is motivated by the assumption that under certain
environmental conditions, cells may have evolved to reach
target amounts ygoal in the shortest possible time, starting
from initial amounts yinit. This transition might either take
place in a variable environment, encoded by a time-dependent
set A(t), or in a constant environment. Likewise, the target and
initial amounts may either have to fulfill additional optimality
criteria, or may correspond to pre-defined or experimentally
measured states. Mathematically, we capture such a strategy in
the following way.

Time-Optimal Adaptation
Given an initial/current amount of molecules yinit ∈ Rny and a
target amount ygoal ∈ Rny , the optimization objective is to
transition from the former to the latter as quickly as possible.

min
y ·( ),u ·( ),T>t0

T (2.7a)

s. t.
y t0( ) � yinit,
y T( ) � ygoal

(2.7b)
and _y t( ), y t( ), u t( )( ) ∈ A t( ) for almost( ) all t ∈ t0, T[ ], see(2.3a)

(2.7c)
The constraints (2.7c) and (2.7b) can be framed within the

abstract constraint-based framework (2.3) by including yinit and
ygoal using

ϕbndry y t0( ), y tend( ), u t0( ), u tend( )( ) �
y t0( ) − yinit

yinit − y t0( )
y tend( ) − ygoal

ygoal − y tend( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

whereas the global objective function, cf. f in (2.3), does not
explicitly contain any of the variables y or u. Instead, the general
framework of constraint-based modeling (2.3) is extended
through time-optimal adaptation by using the end point of the
time interval of interest itself as the optimization objective
function. In contrast to the frameworks with non-time-
dependent objective function as defined in (2.3c), TOA
provides solutions (y(t), u(t)) only on the time interval [t0, T]
instead of (arbitrary) [t0, tend].

Remark 2.5. Within this work, we assume that the target
amounts ygoal are accessible. Specifically, we assume that a
time tend ≥ T exists such that all values within the
optimization problem defining TOA are well-defined. We note
that the accessibility of the target state is a classical problem in

time-optimal control, and accessibility is a prerequisite for
applying TOA. In practice, the target state will often be
defined by means of an RBA solution and we conjecture that
these target states will be accessible.

Remark 2.6. Within this work, we use the term “adaptation” in
a control-theoretic sense. That is, the term refers to changes in the
intracellular amounts or concentrations in response to the
environmental conditions, respecting the given constraints. In
an evolutionary context, such changes are typically considered as
“acclimation”.

Remark 2.7. We do not require the constraint set A(t) in
(2.3a) to have any specific form. This means that time-optimal
adaptation can be defined irrespective of the concrete modeling
paradigm underneath the simulation. Practically, even discrete
time/state systems fit well within TOA. To be concise, however,
we concentrate in the following on frameworks closely related to
deFBA and cFBA. In Example 2.8, we therefore introduce TOA
also in a simplified setting that directly builds upon d(e)FBA, cf.
(Waldherr et al., 2015; Höffner et al., 2016). From the viewpoint
of the general framework (2.3), this is a special case of deFBAwith
a modified objective function.

EXAMPLE 2.8. (TOA as an extension of deFBA). Assume that there
is no distinction between “fast” and “slow” components within
the metabolic network. In this case, the dynamics of its molecular
amounts can be described purely by ordinary differential
equations _y(t) � S · v(t). As for classical flux balance analysis,
the fluxes are constrained by upper and lower bounds lb, ub that
might depend on the possibly changing environment, i.e., ub(t) ≤
v(t) ≤ ub(t). If y contains compounds with enzymatic function,
the flux rates (or weighted sums thereof) may additionally be
constrained by (weighted sums of) components of y. Such bounds
can be collected into a single set of linear inequalities by
introducing suitable matrices/vectors Hy(t), Hv(t), h(t), i.e.,

Hy t( ) · y t( ) +Hv t( ) · v t( )≤ h t( ),
see (Waldherr et al., 2015, Section 2.3) for a detailed description.
To account for y being total amounts, y is constrained to positive
values, i.e., y(t) ≥0. As outlined above, TOA requires fixed initial
and terminal values for the molecular amounts, mathematically
captured by

y t0( ) � yinit, y T( ) � ygoal.

In summary, TOA can be aggregated in this simplified case to the
following constrained optimization problem

min
y ·( ),v ·( ),T>t0

T

s.t.

_y t( ) � S · v t( )
lb t( ) ≤ v t( )≤ ub t( )
h t( ) ≥Hy t( ) · y t( ) +Hv t( ) · v t( )
y t( ) ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
_y t0( ) � yinit

_y T( ) � ygoal
}

The notation “miny(·),v(·),T>t0” can be understood in the sense of
optimal control, i.e., one is searching for the optimal objective
value among all (differentiable) functions y(t), t ∈ [t0, T], and
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(measurable) functions v(t), t ∈ [t0, T]. The framework identifies
possible time courses for the fluxes v(t) and amounts y(t) such
that (i) stoichiometry, (ii) flux bounds, and (iii) enzyme activities
are included in the model and such that the transition from one
given amount to another is as fast as possible.

2.4 Applications and Case Studies
Next we introduce two particularly relevant applications of TOA.

APPLICATION 2.1. (Cell Doubling). A first natural application of
TOA is cell doubling, where the objective is to double all cellular
components in minimal time, such that

ygoal � 2 · yinit.
The resulting trajectory thus can be interpreted as one cell cycle.
Neither the initial, nor the target amount have to be optimal with
regard to other objectives. Within the TOA framework, cell
doubling can be considered either in a constant environment,
or with time-dependent external conditions. We note that
applications of constraint-based optimization of metabolism
typically do not distinguish between solutions for a single cell
vs. solutions for a homogeneous population of cells. Similarly, the
time courses for cell doubling predicted by TOA can either be
interpreted for a single cell or a homogeneous, synchronized
population of cells. If cells are not synchronized, that is each cell
within the population is at a different time point with respect to
its cell cycle, we have to average over the population or,
equivalently, over a full cell cycle, to obtain in silico
measurements of a population.

APPLICATION 2.2. (Transitions after a nutrient shift). A second
important application of TOA is to consider a sudden change
in the external conditions, i.e., from a given constant nutrient
availability for t < 0 to a different one for t ≥ 0. In this scenario,
TOA can be utilized to predict the transition of the
intracellular amounts yinit to new target amounts ygoal. The
new target amounts might either be optimal with respect to the
new environmental conditions (as defined by RBA), or be
provided otherwise (for example by experimental
observations). In both scenarios, the target amounts are
typically defined in terms of concentrations instead of
absolute amounts. Hence, we must also formulate the
boundary conditions in terms of c(t),

y t0( ) � yinit,

c T( ) � 1
bio T( ) · y T( ) � 1

w⊤ · ygoal · y
goal � cgoal. (2.8)

As shown in Supplementary Appendix S3, it is possible to
rearrange conditions (2.8) such that a linear equality system in
the unknowns (y(t0), y(T)) is obtained. Therefore, the
concentration-based definition has no immediate drawbacks
regarding the numerical solution.

We must further consider that an as-quick-as-possible
transition from one intracellular concentration to another

does not incorporate the overall (i.e., biomass-) growth of
the cell and thus might not represent an evolutionarily
plausible strategy. Rather, the transition to new external
conditions involves a balance between fast transition to a
(better adapted) novel state and the requirement to increase
(or not decrease) the total biomass of the cell. To obtain a
general framework, we therefore propose a two-objective
optimization problem:

min
y ·( ),u ·( ),T>0

T
−α( )

s.t. y 0( ) � yinit

y T( ) � α · ygoal
and _y t( ), y t( ), u t( )( ) ∈ A t( ) for almost( ) all t ∈ 0, T[ ],

(2.9)

where yinit denotes a normalized vector of intracellular amounts
which describe the cells for the environment t < 0. The
“normalization” here can, for example, be understood as w⊤·yinit
= 1. Accordingly, ygoal denotes a normalized vector for the
environmental conditions after the nutrient shift. “Minimality” in
(2.9) is to be understood in the sense of Pareto: a triple (y(t), u(t), T)
is optimal if T cannot be decreased without decreasing α such that
y(T) = α ·ygoal, and vice-versa if α cannot be increased without also
increasing the end time T. The set of all optimal solutions of (2.9)
describes the different compromises between fast adaptation and
continued growth.

Remark 2.9. Note that the boundary conditions (2.8) do
not entail any direct condition concerning bio(tend) =
w⊤·y(tend). If the metabolic network allows for a quick
degradation of compounds, it might be optimal (in the
sense of TOA) to shrink (in terms of absolute biomass)
before actually adapting to the new concentrations, or even
to completely disintegrate all metabolic compounds to zero.
Such a behavior would be in line with the description of time-
optimal time courses as induced by (2.8). To remedy this, a
linear inequality

bio tend( ) ≥ bio t0( )
or w⊤ · y tend( ) ≥w⊤ · y t0( )

can be added, illustrating again the power of constraint-based
modeling. Whenever necessary, this was done for the in silico
experiments in Section 3.

2.5 Numerical Solution
The optimization problem (2.7) of TOA contains a general
condition on the dynamics of y in the form of (2.7c). To
design an algorithm able to cope with this generality, we
assume that a numerical method is available that can simulate
this dynamic behavior subject to boundary conditions on a
given fixed time interval [t1, t2] ⊆ [t0, T] and/or to determine
whether such a solution exists. Provided this condition (and
tacitly assuming that the relevant feasible end time points T
lie in a connected set), the minimal value for T can be found
using any one-dimensional root finding algorithm. For its
simplicity and guaranteed convergence, we propose to use the
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following bisection method for the determination of T
in TOA:

For the initial time interval [tmin, tmax], one needs to assume
that (2.7b) and (2.7c) define an infeasible problem on [t0, tmin],
while the corresponding problem on [t0, tmax] is feasible. The
quick convergence of the bisection method entails that an already
very good initial guess is not crucial for an efficient
implementation, as long as the simulation task is not too
computationally expensive.

If there is legitimate doubt about the result, the algorithm can be
re-started with another initial interval or one can change to a more
fine-grained sampling for the evaluation of feasible and infeasible
points. The numerical results in Section 3 were preceded by an
exhaustive scan of end time points, which indicated that the set of
feasible end time points do indeed form a single interval (i.e., a
connected set) in all shown examples.

Remark 2.10. The bisection method was chosen here for several
reasons overmore “classical”methods in time-optimal control: firstly,
the “simplicity” aspect of the bisection method does not only refer to
it being easily applicable for various extensions of the framework (like
time- and/or state-discrete systems, or a framework that incorporates
heterogeneity within a community or in space) but also to the
implementation. Many existing toolboxes include interfaces to
(MI-)LP solvers. Algorithms for dynamic simulations are
moreover often highly optimized, such that checking for feasibility
over a given time range can be more efficient than implementing a
new interface to an optimal control library.

Secondly, the inherently linear structure of problems like deFBA
should be preserved. For time-dependent constraint setsA(t) this
is only possible if the time variable t is treated as the independent
variable in the optimal control algorithm. In existing optimal
control libraries like BOCOP (Bonnans et al., 2017), time-
optimal control problems are often transferred to optimal
control problems on a unit interval by introducing an artificial
independent variable. If the time-dependency of some of the
constraints is non-linear, this translates to the optimization
problems that need to be solved within the optimal control routine.

We note, however, that in the non-linear case the application
of “classical algorithms” for time-optimal control problems like
shooting-methods, or those based on the Pontryagin principle
might generally outperform the bisection approach taken here.

Remark 2.11. For the solution of the Pareto problem (2.9) it is
not necessary to implement algorithms for maximizing α,

i.e., optimizing the second objective. Instead, one can continue
using the algorithm for time-optimal adaptation while
simultaneously fixing feasible values of α. With respect to the
definition of Pareto-optimality, this means that for any feasible
value of one objective, the other one is optimized, corresponding
to the so-called ϵ-constraint method in multi-objective
optimization, cf. (Ehrgott, 2000).

2.6 Time-Optimal Adaptation Variability
Analysis
Minimizing T need not suffice to uniquely determine the time
courses in y. If this is the case, the variability over time can be
captured by enumerating possible time series once the optimal
end time point was found. We will refer to this procedure as
TOA-Variability Analysis (TOA-VA). In contrast to static flux
variability analysis (FVA), there are several ways to define
what such an enumeration means. One way would be to
determine the maximum and minimum possible value for
all components of y and separately at each time point. This,
however, would not only lead to time-consuming
computations, but would also be difficult to interpret: a
numerical solution that is constructed via putting together
maxima or minima y(~t) for all time instances ~t does not have to
fulfill the dynamics defined by the original model. Here, we
understand TOA-VA as the minimization and maximization
of the integral over all components of y, i.e., for all
i = 1, 2, . . ., ny:

min
u ·( ),y ·( )

± ∫T

t0

yi t( )dt (2.10)

subject to the dynamic and/or boundary constraints in the
original problem. Note that the overall time courses might still
not be uniquely defined from (2.10).

To explore the variability of the time courses for the
concentrations c(t), we use the following variant of TOA-VA,
which is called relative TOA-VA:

(i) Compute the optimal end time point T of time-optimal
adaptation.

(ii) For all i = 1, 2, . . . , ny: Use TOA-VA as in (2.10) to obtain a
minimal value Imin,i and a maximal value Imax,i for the
integral of yi over [t0, T].

(iii) Calculate for all i = 1, 2, . . . , ny the (maximal and minimal)
concentrations ci(t) as given by (2.1) where y(t) is
calculated from

max
y ·( ),u ·( )

∫T

t0

bio t( )dt s.t. ∫T

t0

yi t( )dt≤ Imin,i,

min
y ·( ),u ·( )

∫T

t0

bio t( )dt s.t. ∫T

t0

yi t( )dt≥ Imax,i

(again subject to the original constraints of the problem).
There is still no guarantee that the solutions to these problems

are unique. However, since the concentrations are defined as the
ratio of total amounts to the biomass, the above definition is
reasonable as one is maximized whilst minimizing the other.
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Note, that this definition implies that the weighted sum of all
(maximal or minimal) concentrations no longer needs to add to
the total biomass.

2.7 Implementation
The calculations for all experiments in Section 3 were done in
Python 3.8.1 on a laptop computer. Scripts that reproduce the
numerical experiments below are available on GitHub, https://
github.com/MarkusKoebis/StaticTOA_py The numerical
solutions were determined from a complete parameterization
(using the trapezoidal rule) of the compounds and fluxes over the
entire time range of interest using n = 100 steps on an equidistant
grid. This leads to a sparse LP problem which was solved using
gurobipy on Gurobi 9.0.1 solver (Gurobi, 2021) with standard
settings (concerning problem formulation and tolerances). Most
experiments were repeated (for verification) with tight error
tolerances without notable differences. For time-optimal
adaptation, no objective vector for the LPs is necessary, so we
used the null vector 0. For (relative) TOA-VA, the integrals in the
objective or constraints were approximated using the same time
grid and also the trapezoidal rule.

3 RESULTS

3.1 ACoarse-Grained Self-ReplicatorModel
We illustrate TOA by means of a coarse-grained self-replicator
model (Molenaar et al., 2009; Giordano et al., 2016; Yabo et al.,
2022). The model, cf. Figure 1, consists of three compounds: M
(intracellular metabolic precursor), Tr (transporter), and R
(ribosome), as well as five biochemical reactions, and the

external nutrient N. The uptake of the external nutrient N is
catalyzed by the transporter Tr and depends on the availability of
N via a Michaelis-Menten rate equation. Depending on the
application, the concentration of the external nutrient N may
either be constant or vary over time. The synthesis of the catalytic
macromolecules Tr and R is limited by the ribosome amount.
Within the model, macromolecules can be disassembled into the
precursor M. For energetic consistency, however, disassembly
results in fewer precursor molecules than required for synthesis,
reflecting the energy expenditure of protein synthesis and thereby
avoiding futile cycles. We note that within the model, no
compound is subject to the quasi steady-state assumption, and
the metabolic precursor M can accumulate over time. Hence M
also serves as a storage compound. All constraints of the model
can be formulated in terms of linear inequalities. A detailed
definition is provided in Supplementary Appendix S2.1.

3.2 Constant Environments and RBA
Before the dynamic behavior of the model is studied by means of
TOA, we summarize the steady-state properties of the model in a
constant environment using Resource Balance Analysis (RBA).
RBA provides a method to calculate the steady-state amounts of
the cell that maximize the growth rate under constant external
conditions, i.e., for a constant external nutrient concentration. In
the following, extracellular nutrient is measured relative to the
Michaelis constant KM of the uptake reaction, with N/KM as a
dimensionless parameter.

Figure 2A shows the maximal growth rate λ as a function of
the relative nutrient availability. The growth rate follows aMonod
equation with a maximum λmax ≈ 0.435 h−1 and an effective
(dimensionless) affinity constant KA ≈ 0.347, corresponding to
the value of the relative nutrient availability N/KM at which the
cell grows at half the maximal growth rate λmax.

Figure 2B shows the total amounts of the three intracellular
components M, Tr, and R as a function of the (relative) nutrient
availability. The amounts were scaled such that the total biomass
always equals one unit (e.g., 1 g cellular dry mass). As expected,
when maximizing the growth rate, the level of the precursor/
storage componentM is always zero. This reflects the fact that the
precursor M has no catalytic activity, and any non-zero amount
of M would consume resources that otherwise could be allocated
to transport or protein translation.

The amounts of the other intracellular components Tr and R
follow the well-known growth laws of microbiology (Scott and
Hwa, 2011). The concentrations are a function of the growth rate,
and hence the external nutrient availability, the well-known linear
relationship is shown in Supplementary Appendix S4. With
increasing nutrient availability, the relative amount of transporter
decreases, whereas the relative amount of ribosome increases.

3.3 TOA in Constant Environments
Our first case study using TOA is to consider the doubling of a
microbial cell in minimal time. We assume that the self-replicator
model in Figure 1 has pre-described initial amounts y(t0) = y0
which simultaneously identify the pre-defined initial state yinit.
The objective is to double all cellular components as fast as
possible, cf. Application 2.1. The environment is assumed to be

FIGURE 1 | A schematic illustration of the coarse-grained self-replicator
model; solid lines represent biochemical reactions between the nodes
(biochemical compounds), dashed dark-blue lines indicate that a reaction is
catalyzed by the respective compound. Abbreviations: N, external
nutrient; M, metabolic precursor/storage; Tr, transporter; R: ribosome; vN,
nutrient uptake reaction; vR, ribosome production reaction; vdR, ribosome
degradation reaction; vTr, transporter production reactions; vdTr, transporter
degradation reaction.
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constant with a relative (external) nutrient availability N/KM = 1.
The initial (and final) amounts are not assumed to be optimal for
the given environment. Instead, y(t0) is obtained by solving an
RBA problem corresponding to N/KM = 2.0. In other words, the
cell is assumed to be adapted to a higher nutrient level than is
present in the current environment. In the following, we will refer
to such cells as “optimists”.

Figure 3 shows the time course of intracellular
components for one cell doubling. The predicted time-
optimal amounts of metabolic compounds are shown as
solid lines (red, blue, and yellow), the total biomass is
shown in green. The dashed lines correspond to a solution
obtained by iterative RBA (cf. Example 2.4), which
corresponds to exponential growth of all cellular

components with no further internal degrees of freedom.
Figure 3B shows the respective flux rates over the simulated
time range. Solid lines again indicate the solution of TOA,
while dashed lines (exponential curves) correspond to the
solution found with iterative RBA.

Using TOA, the time for one cellular doubling is T = 2.17 h. In
contrast, the solution based on iterative RBA results in a slightly
longer doubling time of T = 2.34 h, showing that internal degrees
of freedom shorten the calculated division time. The time course
of y(t) over one cell doubling can be subdivided into four time
intervals (marked as I-IV in Figure 3A). At the beginning
(marked as interval “I”), cell growth is limited by the lack of
transporter Tr due to the “optimistic” initial configuration of the
cell. Hence, ribosome R is actively disassembled into precursorM
to increase the synthesis of Tr. In interval “II”, the cell is perfectly
adapted to the given nutrient environment and grows
exponentially, before the re-adaptation to the target
composition ygoal = 2 yinit begins in interval “III”. Within
interval “III”, the cell still has an overabundance of Tr, which
allows it to accumulate the precursorM. In the final interval “IV”,
synthesis of transporter Tr ceases and all resources are devoted to
the synthesis of the ribosome R, until the target amounts ygoal are
reached.

The biological plausibility of these time courses is discussed in
Section 4. Here we only summarize the following results: Given
the initial amounts yinit, cell doubling using TOA in time-
invariant environments gives rise to complex intracellular
dynamics different from solutions obtained by iterative RBA.
Importantly, these solutions involve a transient accumulation of
the precursor M as a storage compound–a phenomenon not
observed with iterative RBA. Theminimal division time predicted
by time-optimal adaptation is shorter than division times
obtained by iterative RBA.

So far, we considered a particular initial amount yinit such that
the cell was adapted to a higher nutrient availability than actually
present in the environment (“optimist”). To obtain a broader
view, we evaluated cell doubling using TOA in different time-
invariant environments with initial (and final) amounts adapted
to different external nutrient availability. The results are shown in
Figure 4. Solid lines correspond to intracellular amounts using
TOA, dashed lines correspond to a solution obtained with
iterative RBA (exponential growth without internal degrees of

FIGURE 2 | (A) Maximal growth rate λ as a function of the (relative) extracellular nutrient availability as predicted by RBA. (B) Cellular amounts of intracellular
compounds as functions of relative nutrient availability. Extracellular nutrient is measured relative to the Michaelis constant KM of the uptake reaction.

FIGURE 3 | Cell cycle of an “optimistic” cell; (A) amounts and biomass
as a function of time, (B) flux rates as a function of time; solid lines indicate the
solution of TOA, dashed lines indicate iterative RBA (exponential growth) with
the same “optimistic” initial values.
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freedom). Shaded areas correspond to variability in the sense of
TOA-VA (cf. Section 2.6), i.e., possible solutions that equally
satisfy all constraints and the optimality criterion. In this case, the
solid lines display a “nominal” solution, i.e., one that was
provided by the algorithm before an additional variability
analysis (we note that since the numerical solution is based on
a feasibility problem, the LP solver has no incentive to favor a
smooth solution to any other).

Columns in Figure 4 correspond to different relative
nutrient availability levels: the first column to a nutrient
availability N(t)/KM ≡ 0.5; the second column to N(t)/KM ≡
1.0, and the third to N(t)/KM ≡ 5.0. The rows in Figure 4
correspond to different “expectations” of the cells, that is,
which external nutrient availability the initial (and final)
amounts are adapted to. Specifically, the first row
corresponds to “pessimists”. That is, cells adapted to a
nutrient availability below the one present in the
environment, while retaining the objective to double all
cellular components in minimal time. The second row

corresponds to cells perfectly adapted to the environmental
nutrient availability. The final row corresponds to “optimists”,
i.e., cells adapted to a higher nutrient availability than present
in the environment.

The latter scenario corresponds to the example already
shown in Figure 3. We again observe an initial increase in the
transporter synthesis, followed by a delayed onset of
ribosome synthesis. Importantly, in each case, we can see a
transient accumulation of storage M(t) that is absent in
solutions obtained by iterative RBA. In the case of
perfectly adapted cells (middle row), solutions obtained by
TOA are equivalent to solutions obtained by iterative RBA.
For “pessimistic” cells (top row), we again observe complex
time courses. In particular, cells adapted to lower nutrient
levels than present in the environment exhibit an
overabundance of transporter. Hence, we observe an initial
rapid uptake of nutrient and transient accumulation of the
precursor M. In the initial interval, resources are primarily
allocated to the synthesis of ribosomes. Only in the later

FIGURE 4 | Time course solutions of time-optimal adaptation and a cell doubling experiment under different constant external nutrient conditions; solid lines: TOA,
shaded areas: TOA-VA, dashed lines: iterative RBA (simulated until cell doubling was achieved); upper row: pessimistically adapted, middle row: perfectly adapted
(recovery of iterative RBA), bottom row: optimistically adapted for constant relative nutrient availability of N/KM = 0.5 (left column), N/KM = 1.0 (middle column), and N/KM

= 5.0 (right column).
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interval, the transporter is synthesized to the required
amounts (even at the expense of ribosomes that may be
disassembled into precursors). The transient accumulation
of precursor M exhibits considerable variability and the
solutions of TOA are no longer unique.

A detailed discussion about the biological plausibility of these
time courses is again relegated to Section 4. Here we only note
that, despite the simplicity of the model, the solutions exhibit a
wide variety of qualitatively different complex temporal
behaviors, including the transient accumulation of the
precursor M.

3.4 The Role of Expectation: Optimists vs.
Pessimists
We further investigate two key observations obtained in the
previous experiments: the transient accumulation of precursor
M as a storage compound, as well as the impact of the initial
cellular state on the predicted doubling time.

Firstly, Figure 5 shows the average storage concentration
predicted for a population of cells adapted to different
nutrient availabilities (N/KM ∈ (0.2, 2.0), x-axis) in an
environment with an actual relative nutrient availability N/KM

≡ 1.0. To calculate the average storage concentration predicted by
TOA for a population of cells, we assume that the (in silico)
measurements are taken from a heterogeneous population of
unsynchronized cells that are (equidistributed) at various stages
of their cell cycle. To take this non-uniform age distribution into
account, the population average was computed, cf. (Powell,
1956), as

mean M( ) � 1
T
ċ∫T

0

M t( )
w⊤ · y t( ) dt, (3.1)

where y(t) is a solution obtained by relative TOA-VA, cf.
Section 2.6.

As shown in Figure 5, we observe (the possibility of) a nonzero
average storage concentration for all cellular states that are not
perfectly adapted to the respective environment. For optimistic
cells adapted to a higher nutrient availability than present in the
environment, the average storage concentration increases slightly

FIGURE 5 | Influence of optimistic and pessimistic goal states in cell doubling: Main plot: mean relative storage accumulation, see (3.1), as a function of nutrient
adaptation level. Bottom row: Three selected time courses, cf. Figure 4, for nutrient adaptation levelsN/KM of 0.2, 1.1, and 2.0. ForN/KM < 1, the quantitymean(M) is no
longer unique such that a shaded area indicates the possible range, as TOA-VA also predicts a range of possible solutions (shaded area in the bottom left plot).

FIGURE 6 | Growth rate of differently adapted cells as predicted by cell-
doubling experiments using TOA and iterative RBA in an environment with
relative nutrient availability N/KM = 1.0; λenv ≈ 0.32 h−1 denotes the maximal
growth rate as predicted by RBA.
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with the distance to the perfectly adapted state. The effect is more
pronounced for pessimistic cells adapted to a lower nutrient
availability than present in the environment. In this case, the
solutions of TOA are not unique and the range of average storage
is indicated as a shaded area. For “pessimist” cells, the large
average storage is due to a high abundance of transporter
molecules, which implies that uptake and accumulation of
precursor is not restricted.

Secondly, Figure 6 shows the predicted growth rate for cells
adapted to a different relative nutrient availability (N/KM ∈ (0.2,
2.0)) than present in the environment (N/KM ≡ 1.0). The straight
line indicates the growth rate of cells that are perfectly adapted,
resulting in a maximal growth rate λ = λenv ≈ 0.32 h−1. The
maximal growth rates for cells adapted to a different environment
(misadaptation) are shown as a solid green line for solutions
obtained with TOA and as a purple line for solutions obtained
with iterative RBA.

We observe that misadaptation always results in a reduced
growth rate, as compared to a perfectly adapted cell. However,
solutions obtained by TOA always outperform solutions obtained
by iterative RBA, demonstrating that internal degrees of freedom
and transient accumulation of storage shorten the predicted
doubling time. Furthermore, the decrease in growth rate is
more pronounced for “pessimistic” adaptation, that is, for cells
that are adapted to a lower nutrient level than present in the
environment. In contrast, “optimistic” adaptation, that is, cells are

adapted to a higher levels than present in the environment,
together with TOA results in growth rates close to perfectly
adapted cells–indicating that “optimistic” adaptation carries a
lower evolutionary cost than “pessimistic” adaptation.

3.5 Time-Optimal Adaptation at a Nutrient
Shift
As our second application, we consider a nutrient shift, i.e., a
sudden change in the external conditions from a given constant
nutrient availability for t < 0 to a different one for t ≥ 0. TOA is
utilized to predict the time-optimal transition of a cell perfectly
adapted to the initial state at t < 0 to a state perfectly adapted to
maximize growth in the new environment for t ≥ 0. As noted in
Section 2.4, the target state for the new environment is typically
defined in terms of concentrations rather than absolute amounts,
because it is unknown whether or how much the cells are able to
grow during adaptation.

Figure 7 shows the resulting time courses for the coarse-
grained self-replicator model used in the previous sections.
Shown are time-optimal shifts from a low nutrient availability
to a higher nutrient availability (left column in Figure 7), as well
as time-optimal shifts from a high nutrient availability to a lower
nutrient availability (right column in Figure 7). Non-unique
solutions are again displayed as shaded areas indicating the
maximum and minimum range in which solutions can be

FIGURE 7 | Adaptation to a single nutrient jump (shown as a dashed green line), left column: adaptations from poorer to richer medium, right column: adaptation to
scarcer environment; shaded areas: solutions in the sense of TOA-VA. We note that for t < 0, TOA makes no assumptions about y(t).
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found (TOA-FVA, see Section 2.6). We observe that the time-
optimal transition from lower to higher nutrient availability again
entails a transient accumulation of storage.

As detailed in Section 2.4, time-optimal adaptation alone is
not sufficient as an evolutionary principle to explain cellular
adaptation after a nutrient shift. Rather, we consider a two-
objective optimization (in the sense of Pareto) with the
conflicting objectives of a fastest possible adaptation to the
new state vs. a maximal increase in total cellular biomass.

Figure 8 (main panel) shows the resulting Pareto fronts for
different transitions in terms of the minimal time T* for
adaptation vs. the maximal increase in cellular biomass given
by the factor α, cf. (2.9). Panels A–D in Figure 8 show selected
time courses of intracellular amounts at different positions of the
Pareto front. In the subplots A and B, the shaded areas indicate
that the cell is perfectly adapted to the environment in the sense of
RBA, i.e., from the start of the shaded areas, the cell exhibits
balanced exponential growth at the maximal growth rate and no
further internal dynamics take place. The absence of internal
dynamics explains that, for larger values of α or T*, the lines in the
main plot become asymptotically parallel.

In the absence of a nutrient shift (i.e., the transitionN/KM: 1→
1, blue line in Figure 8), the minimal time for adaptation is T* = 0

with a growth factor α = 1, in this case the relationship between
transition times T* > 0 and increase in biomass is consistent with
exponential growth (note the logarithmic scale on the y-axis).

For a nutrient shift from high to low nutrient availability (N/
KM: 10→ 1, black line) the minimal transition time is T* � T1* ≈
0.44 h. Figures 8A–C show two representative transitions on the
Pareto front with panel A corresponding to a scenario that
prioritizes an increase in biomass (factor α) over the transition
time T*, and panel C corresponding to a scenario that prioritizes a
minimal transition time over the accumulation of biomass.

For a nutrient shift from low to higher nutrient availability (N/
KM: 0.2→ 1, green line) the minimal transition time is T* � T2* ≈
1.14 h. Figures 8B,D show two representative transitions on the
Pareto front with panel B corresponding to a scenario that
prioritizes an increase in biomass (factor α) over the transition
time T*, and panel D corresponding to a scenario that prioritizes a
minimal transition time over the accumulation of biomass. In
either case, the optimal transition involves a transient
accumulation of the storage compound M.

Consistent with results in the previous section, Figure 8 also
shows that “optimistic” adaptation carries a lower evolutionary
cost than “pessimistic” adaptation. A cell adapted to high nutrient
availability exhibits only a slightly reduced biomass increase when
transitioning into a low nutrient environment, as compared to a
cell already adapted to this environment. In contrast, a cell
adapted to a lower nutrient environment exhibits a more
pronounced reduction in accumulated biomass when
transitioning into higher nutrient availability, as compared to
either a cell that is already adapted to the higher nutrient
availability, or likewise as compared to a cell that was
previously adapted to even higher nutrient availability.

4 DISCUSSION

In this work we introduced TOA, a novel approach to
simulate and predict time-optimal adaptation of microbial
metabolism and growth. While time-optimal modeling has
been considered before, see, among others, (Klipp et al.,
2002) (temporal gene expression), (Pavlov and Ehrenberg,
2013) (fast proteome adaptation to environmental change),
(Waldherr et al., 2015) (maximize survival time under
nutrient depletion), (Basan et al., 2020) (minimization of
lag/response-time), and (Djema et al., 2020) (bio-reactor
applications), our work builds upon the recent advances in
dynamic constraint-based modeling, such as dFBA, deFBA
and cFBA, cf. Section 2.2. TOA is versatile and extends most
approaches currently employed in constraint-based
modeling of microbial metabolism and growth.

In particular, while the analysis of balanced steady-state
growth dominates current experimental and computational
studies, in most natural environments microbes have to
continuously adapt to perturbations and changes in nutrient
availability. TOA allows us to study such transitions in the
context of established constraint-based models of microbial
metabolism. Similar to other constraint-based methods, the
solutions obtained from TOA are not based on mechanistic

FIGURE 8 | Two-objective optimization of adaption time T* and total
biomass growth factor α for time-optimal adaptation at a nutrient shift. Main
plot: Pareto fronts for three different initial adaptations (measured in N/KM) of
0.2, 1.0 and 10. Subplots (A–D): Time courses at different points on the
Pareto fronts, cf. Figure 7. The shaded areas in subplots A and B indicate time
intervals where the cell is perfectly adapted (exponential growth).
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understanding of the regulatory system that governs the
respective transition, but are derived from the assumption
that, under certain conditions, a time-optimal transition may
be evolutionary beneficial. We emphasize that an application of
TOA does not necessarily imply that a time-optimal transition is
the only or most important evolutionary objective. Rather, and
again similar to other optimality-based methods, the solutions of
TOA provide a computational “gold standard”, (Giordano et al.,
2016), to which experimentally observed behavior can be
compared.

Within this work, we exemplified the use of TOA by
considering two prototypical applications: the doubling of a
cell in a constant environment (cf. Application 2.1), as well as
the time-optimal adaptation to a nutrient shift (cf. Application
2.2). Following previous works (Molenaar et al., 2009; Giordano
et al., 2016; Yabo et al., 2022), the application of TOA was
illustrated using a coarse-grained self-replicator model. The
results illustrate the utility of TOA to generate and explore
biological hypotheses.

The premise underlying the in silico experiments of our first
application, cell doubling in a constant environment, was that
microbial cells are not necessarily precisely adapted to the given
environment, but may nonetheless have evolved a regulatory
scheme that allows them to double their intracellular
composition in minimal time. Based on this premise, the
application of TOA gives rise to several predictions, we
observe 1) complex intracellular dynamics different from
solutions obtained by iterative RBA, 2) that transient
accumulation of storage compounds reduces the predicted
doubling time, and 3) that (mis-)adaptation to a higher
nutrient availability than actually present in the environment
carries a lower evolutionary cost than (mis-)adaptation to a
lower nutrient availability.

Due to the simplicity of the coarse-grained model, we do
not necessarily expect the specific time courses obtained for
the model to be exact predictions of biological reality. In
particular, we acknowledge that the coarse-grained model
lacks further intracellular constraints that affect progress
through the cell cycle (for example, checkpoints and a
detailed representation of DNA replication and
segregation) that also impact metabolic processes.
Nonetheless, we are confident that the results reveal
several insights that reflect biological reality. Specifically,
the role of storage compounds in cellular metabolism is
difficult to explore using existing constraint-based models.
Here, the application of TOA demonstrates that, beyond the
role of storage in diurnal oscillations, cf. (Rügen et al., 2015;
Reimers et al., 2017) and as a safeguard for periods of
nutrient scarcity, storage may play an important role even
under constant environmental conditions. As shown with
TOA, intracellular dynamics and transient accumulation of
nutrients may contribute to a reduction of doubling time.
Indeed, and different from typical steady-state solutions of
current constraint-based methods, cells do exhibit
coordinated metabolic dynamics over a cell cycle
(Papagiannakis et al., 2017).

The application of TOA was further exemplified by
simulations of time-optimal cellular adaptation to a nutrient
shift. Similar to the results obtained for constant
environments, TOA demonstrates that transient accumulation
of storage can reduce the time required for adaptation–a finding
supported by experimental evidence that storage compounds,
such as glycogen, indeed provide short-term benefits in changing
environments (Sekar et al., 2020).

In particular, the rapid uptake and storage of nutrients
following an upshift in nutrient supply (as shown in Figure 7,
left column) is reminiscent of “luxury uptake” or “over-
compensation”. The latter phenomenon is well known (Powell
et al., 2009) and occurs when cells are starved and re-exposed to a
limiting nutrient, such as phosphate. “Luxury uptake” and “over-
compensation” after starvation can be exploited, for example, for
nutrient removal from wastewater (Powell et al., 2009). Our
analysis shows that such “over-compensation” or “overshoot”
phenomena are readily explained using principles of (optimal)
cellular resource allocation, and do not necessarily require
explanations that invoke competition between individuals to
rationalize rapid nutrient uptake after starvation.

We conjecture that, while the specific trajectories of the
cellular response to environmental shifts might be different
under specific conditions, for example, due to additional
constraints not present in the model, many of the principles
revealed by TOA remain valid in more elaborate models of
cellular growth transitions–and thereby provide an important
reference to identify optimal vs. suboptimal behavior. Indeed, it
was previously shown that growth transition kinetics of E. coli are
indeed suboptimal under the studied conditions (Erickson et al.,
2017)–a finding that could only be obtained by comparison to an
optimal reference solution. As shown in this work, TOA can also
be readily incorporated into a multi-objective framework (in the
sense of Pareto) that allows us to incorporate additional
objectives.

Finally, the results of TOA demonstrate that the costs of
mis-adaptation to an environment are not symmetric,
neither for cell doubling in a constant environment
(Figure 6), nor for adaptation after a nutrient shift
(Figure 8). In either case, a cell that is adapted to a higher
level of (extracellular) nutrient than available in the
environment (“optimist”) has only a minor disadvantage
compared to an already perfectly adapted cell. Vice versa,
however, cells that are adapted to a lower level of
(extracellular) nutrient than available in the environment
(“pessimist”) have a pronounced disadvantage compared to a
perfectly adapted cell. This asymmetry indicates that
adaptation to a low nutrient environment is only
advantageous if the low nutrient state persists for an
extended period of time. This asymmetry is supported by
experimental evidence. For example, it has been suggested
that some microorganisms, such as Lactococcus lactis,
preserve a large overcapacity of ribosomes and glycolytic
enzymes to be ready to rapidly respond and grow when
conditions improve (Goel et al., 2015), and thereby
implement an “optimistic strategy”.
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5 CONCLUSIONS AND OUTLOOK

Constraint-based optimization plays an important role to
elucidate and eventually predict cellular behavior. As an
extension of previous modeling frameworks, we introduced
time-optimal adaptation. TOA is motivated by the assumption
that under certain conditions it is evolutionary favorable to adapt
to a new cellular state in minimal time. In its general form, TOA
can be applied in a very broad sense and thereby extends most of
the existing constraint-based modeling frameworks.

As shown in this work, TOA allowed us to obtain insight into
several biological phenomena, such as the accumulation of
storage in constant environments and “overshoot”
accumulation of nutrients after starvation, which cannot be
readily explained using existing methods–thereby
demonstrating the utility of TOA for future analysis.

While the examples discussedwithin thiswork focused on constant
environments and simple nutrient shifts, TOA can also be applied in
time-dependent environments and can be readily extended to include
further constraints. Likewise, as shown in this work, TOA can be
included within multi-objective optimization in the sense of Pareto.

Possible further extensions include “t-max adaptation”, i.e., to
maximize, for example, survival time under nutrient starvation,
as well as more general constraints on the target state (for
example, to attain a minimal amount of a specific intermediate
in minimal time, while the amounts other cellular components
are not specified).

We are therefore confident that TOA and its possible
extensions are a valuable contribution in the context of
constraint-based modeling with manifold applications beyond
the examples discussed in this work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the conceptualization of the
method, the writing and editing of the manuscript. MK
conducted the numerical experiments. RS provided
interpretations and discussion.

FUNDING

The work of MK was carried out during the tenure of an ERCIM
“Alain Bensoussan” Fellowship of the author at the Norwegian
University of Science and Technology. The work of RS is funded
by the grant STE 2062/2-1 of the German Research Foundation
(DFG). We acknowledge support by the German Research
Foundation (DFG) and the Open Access Publication Fund of
Humboldt-Universität zu Berlin.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.866676/
full#supplementary-material

REFERENCES

Basan, M., Honda, T., Christodoulou, D., Hörl, M., Chang, Y.-F., Leoncini, E.,
et al. (2020). A Universal Trade-Off between Growth and Lag in
Fluctuating Environments. Nature 584, 470–474. doi:10.1038/s41586-
020-2505-4

Bonnans, F., Martinon, P., and Grélard, V. (2017). BOCOP: An Open Source
Toolbox for Optimal Control.

Bordbar, A., Monk, J. M., King, Z. A., and Palsson, B. O. (2014). Constraint-based
Models Predict Metabolic and Associated Cellular Functions. Nat. Rev. Genet.
15, 107–120. doi:10.1038/nrg3643

Djema, W., Bernard, O., and Giraldi, L. (2020). Separating Two Species of
Microalgae in Photobioreactors in Minimal Time. J. Process Control 87,
120–129. doi:10.1016/j.jprocont.2020.01.003

Ehrgott, M. (2000).Multicriteria Optimization. Springer Berlin Heidelberg. doi:10.
1007/978-3-662-22199-0

Erickson, D. W., Schink, S. J., Patsalo, V., Williamson, J. R., Gerland, U., and Hwa,
T. (2017). A Global Resource Allocation Strategy Governs Growth Transition
Kinetics of Escherichia coli. Nature 551, 119–123. doi:10.1038/nature24299

Gerdts, M. (2011).Optimal Control of ODEs and DAEs. Berlin, Boston: De Gruyter.
Giordano, N., Mairet, F., Gouzé, J.-L., Geiselmann, J., and de Jong, H. (2016).

Dynamical Allocation of Cellular Resources as an Optimal Control Problem:
Novel Insights into Microbial Growth Strategies. PLoS Comput. Biol. 12 (28),
e1004802. doi:10.1371/journal.pcbi.1004802

Goel, A., Eckhardt, T. H., Puri, P., de Jong, A., Branco dos Santos, F., Giera, M.,
et al. (2015). Protein Costs Do Not Explain Evolution of Metabolic Strategies
and Regulation of Ribosomal Content: Does Protein Investment Explain an

Anaerobic Bacterial Crabtree Effect? Mol. Microbiol. 97, 77–92. doi:10.1111/
mmi.13012

Goelzer, A., Fromion, V., and Scorletti, G. (2011). Cell Design in Bacteria as a
Convex Optimization Problem. Automatica 47, 1210–1218. doi:10.1016/j.
automatica.2011.02.038

Gurobi (2021). Gurobi Optimizer Reference Manual. Tech. Rep. Beaverton, OR:
Gurobi Optimization LLC.

Hermes, H., and Lasalle, J. P. (1969). Functional Analysis and Time Optimal
Control. New York: Academic Press.

Höffner, K., Harwood, S. M., and Barton, P. I. (2012). A Reliable Simulator for
Dynamic Flux Balance Analysis. Biotechnol. Bioeng. 110, 792–802. doi:10.1002/
bit.24748

Höffner, K., Khan, K. A., and Barton, P. I. (2016). Generalized Derivatives of
Dynamic Systems with a Linear Program Embedded. Automatica 63, 198–208.
doi:10.1016/j.automatica.2015.10.026

Jeanne, G., Goelzer, A., Tebbani, S., Dumur, D., and Fromion, V. (2018).
Dynamical Resource Allocation Models for Bioreactor Optimization. IFAC-
PapersOnLine 51, 20–23. doi:10.1016/j.ifacol.2018.09.020

Klipp, E., Heinrich, R., and Holzhütter, H.-G. (2002). Prediction of Temporal Gene
Expression. Eur. J. Biochem. 269, 5406–5413. doi:10.1046/j.1432-1033.2002.
03223.x

Lerman, J. A., Hyduke, D. R., Latif, H., Portnoy, V. A., Lewis, N. E., Orth,
J. D., et al. (2012). In Silico method for Modelling Metabolism and Gene
Product Expression at Genome Scale. Nat. Commun. 3. doi:10.1038/
ncomms1928

Liu, L., and Bockmayr, A. (2020). Regulatory Dynamic Enzyme-Cost Flux Balance
Analysis: A Unifying Framework for Constraint-Based Modeling. J. Theor. Biol.
501, 110317. doi:10.1016/j.jtbi.2020.110317

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 86667615

Köbis et al. Time-Optimal Adaptation

308

https://www.frontiersin.org/articles/10.3389/fmolb.2022.866676/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.866676/full#supplementary-material
https://doi.org/10.1038/s41586-020-2505-4
https://doi.org/10.1038/s41586-020-2505-4
https://doi.org/10.1038/nrg3643
https://doi.org/10.1016/j.jprocont.2020.01.003
https://doi.org/10.1007/978-3-662-22199-0
https://doi.org/10.1007/978-3-662-22199-0
https://doi.org/10.1038/nature24299
https://doi.org/10.1371/journal.pcbi.1004802
https://doi.org/10.1111/mmi.13012
https://doi.org/10.1111/mmi.13012
https://doi.org/10.1016/j.automatica.2011.02.038
https://doi.org/10.1016/j.automatica.2011.02.038
https://doi.org/10.1002/bit.24748
https://doi.org/10.1002/bit.24748
https://doi.org/10.1016/j.automatica.2015.10.026
https://doi.org/10.1016/j.ifacol.2018.09.020
https://doi.org/10.1046/j.1432-1033.2002.03223.x
https://doi.org/10.1046/j.1432-1033.2002.03223.x
https://doi.org/10.1038/ncomms1928
https://doi.org/10.1038/ncomms1928
https://doi.org/10.1016/j.jtbi.2020.110317
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Liu, L. (2020). Unifying Metabolic Networks, Regulatory Constraints, and Resource
Allocation. Berlin, Germany: Freie Universität Berlin. Ph.D. thesis. doi:10.
17169/REFUBIUM-27061

Mahadevan, R., Edwards, J. S., and Doyle, F. J. (2002). Dynamic Flux Balance
Analysis of Diauxic Growth in Escherichia coli. Biophysical J. 83, 1331–1340.
doi:10.1016/s0006-3495(02)73903-9

Mahadevan, R., and Schilling, C. H. (2003). The Effects of Alternate Optimal
Solutions in Constraint-Based Genome-Scale Metabolic Models.Metab. Eng. 5,
264–276. doi:10.1016/j.ymben.2003.09.002

Molenaar, D., van Berlo, R., de Ridder, D., and Teusink, B. (2009). Shifts in Growth
Strategies Reflect Tradeoffs in Cellular Economics.Mol. Syst. Biol. 5, 323. doi:10.
1038/msb.2009.82

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What Is Flux Balance Analysis?
Nat. Biotechnol. 28, 245–248. doi:10.1038/nbt.1614

Papagiannakis, A., Niebel, B., Wit, E. C., and Heinemann, M. (2017). Autonomous
Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle.Mol. Cell 65,
285–295. doi:10.1016/j.molcel.2016.11.018

Pavlov, M. Y., and Ehrenberg, M. (2013). Optimal Control of Gene Expression for
Fast Proteome Adaptation to Environmental Change. Proc. Natl. Acad. Sci.
U.S.A. 110, 20527–20532. doi:10.1073/pnas.1309356110

Powell, E. O. (1956). Growth Rate and Generation Time of Bacteria, with Special
Reference to Continuous Culture. J. General Microbiol. 15, 492–511. doi:10.
1099/00221287-15-3-492

Powell, N., Shilton, A., Chisti, Y., and Pratt, S. (2009). Towards a Luxury Uptake
Process via Microalgae - Defining the Polyphosphate Dynamics.Water Res. 43,
4207–4213. doi:10.1016/j.watres.2009.06.011

Reimers, A. M., Knoop, H., Bockmayr, A., and Steuer, R. (2017). Cellular
Trade-Offs and Optimal Resource Allocation during Cyanobacterial
Diurnal Growth. Proc. Natl. Acad. Sci. U. S. A. 114, E6457–E6465.
doi:10.1073/pnas.1617508114

Rügen, M., Bockmayr, A., and Steuer, R. (2015). Elucidating Temporal Resource
Allocation and Diurnal Dynamics in Phototrophic Metabolism Using
Conditional FBA. Sci. Rep. 5 (16), 15247. doi:10.1038/srep15247

Scott, M., and Hwa, T. (2011). Bacterial Growth Laws and Their Applications.
Curr. Opin. Biotechnol. 22, 559–565. doi:10.1016/j.copbio.2011.04.014

Segel, L. A., and Slemrod, M. (1989). The Quasi-Steady-State Assumption: A
Case Study in Perturbation. SIAM Rev. 31, 446–477. doi:10.1137/
1031091

Sekar, K., Linker, S. M., Nguyen, J., Grünhagen, A., Stocker, R., and Sauer, U.
(2020). Bacterial Glycogen Provides Short-Term Benefits in Changing
Environments. Appl. Environ. Microbiol. 86. doi:10.1128/aem.00049-20

Varma, A., and Palsson, B. O. (1994). Stoichiometric Flux Balance Models
Quantitatively Predict Growth and Metabolic By-Product Secretion in Wild-
type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731. doi:10.
1128/aem.60.10.3724-3731.1994

Waldherr, S., Oyarzún, D. A., and Bockmayr, A. (2015). Dynamic Optimization of
Metabolic Networks Coupled with Gene Expression. J. Theor. Biol. 365,
469–485. doi:10.1016/j.jtbi.2014.10.035

Yabo, A. G., Caillau, J.-B., Gouzé, J.-L., de Jong, H., and Mairet, F. (2022). Dynamical
Analysis andOptimization of a Generalized ResourceAllocationModel ofMicrobial
Growth. SIAM J. Appl. Dyn. Syst. 21, 137–165. doi:10.1137/21m141097x

Yang, L., Ebrahim, A., Lloyd, C. J., Saunders, M. A., and Palsson, B. O. (2019).
DynamicME: Dynamic Simulation and Refinement of Integrated Models of
Metabolism and Protein Expression. BMC Syst. Biol. 13, 2. doi:10.1186/s12918-
018-0675-6

Yegorov, I., Mairet, F., and Gouzé, J.-L. (2018). Optimal Feedback Strategies for
Bacterial Growth with Degradation, Recycling, and Effect of Temperature.
Optim. Control Appl. Meth 39, 1084–1109. doi:10.1002/oca.2398

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Köbis, Bockmayr and Steuer. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 86667616

Köbis et al. Time-Optimal Adaptation

309

https://doi.org/10.17169/REFUBIUM-27061
https://doi.org/10.17169/REFUBIUM-27061
https://doi.org/10.1016/s0006-3495(02)73903-9
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1038/msb.2009.82
https://doi.org/10.1038/msb.2009.82
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.molcel.2016.11.018
https://doi.org/10.1073/pnas.1309356110
https://doi.org/10.1099/00221287-15-3-492
https://doi.org/10.1099/00221287-15-3-492
https://doi.org/10.1016/j.watres.2009.06.011
https://doi.org/10.1073/pnas.1617508114
https://doi.org/10.1038/srep15247
https://doi.org/10.1016/j.copbio.2011.04.014
https://doi.org/10.1137/1031091
https://doi.org/10.1137/1031091
https://doi.org/10.1128/aem.00049-20
https://doi.org/10.1128/aem.60.10.3724-3731.1994
https://doi.org/10.1128/aem.60.10.3724-3731.1994
https://doi.org/10.1016/j.jtbi.2014.10.035
https://doi.org/10.1137/21m141097x
https://doi.org/10.1186/s12918-018-0675-6
https://doi.org/10.1186/s12918-018-0675-6
https://doi.org/10.1002/oca.2398
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Dynamic Modelling of DNA Repair
Pathway at theMolecular Level: A New
Perspective
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DNA is the genetic repository for all living organisms, and it is subject to constant changes
caused by chemical and physical factors. Any change, if not repaired, erodes the genetic
information and causes mutations and diseases. To ensure overall survival, robust DNA
repair mechanisms and damage-bypass mechanisms have evolved to ensure that the
DNA is constantly protected against potentially deleterious damage while maintaining its
integrity. Not surprisingly, defects in DNA repair genes affect metabolic processes, and this
can be seen in some types of cancer, where DNA repair pathways are disrupted and
deregulated, resulting in genome instability. Mathematically modelling the complex
network of genes and processes that make up the DNA repair network will not only
provide insight into how cells recognise and react to mutations, but it may also reveal
whether or not genes involved in the repair process can be controlled. Due to the
complexity of this network and the need for a mathematical model and software
platform to simulate different investigation scenarios, there must be an automatic way
to convert this network into a mathematical model. In this paper, we present a topological
analysis of one of the networks in DNA repair, specifically homologous recombination
repair (HR). We propose a method for the automatic construction of a system of rate
equations to describe network dynamics and present results of a numerical simulation of
the model and model sensitivity analysis to the parameters. In the past, dynamic modelling
and sensitivity analysis have been used to study the evolution of tumours in response to
drugs in cancer medicine. However, automatic generation of a mathematical model and
the study of its sensitivity to parameter have not been applied to research on the DNA
repair network so far. Therefore, we present this application as an approach for medical
research against cancer, since it could give insight into a possible approach with which
central nodes of the networks and repair genes could be identified and controlled with the
ultimate goal of aiding cancer therapy to fight the onset of cancer and its progression.
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1 INTRODUCTION

DNA molecules packaged in our chromosomes carry our genetic
blueprint, and their preservation is essential for the coordination
of cellular function and organization of life (Branzei and Foiani,
2008). As DNA is the repository of our genetic information, we
would expect its structure to be highly stable. This is not the case
for the DNA (Reed and Waters, 2005). Damage to DNA is a
constant threat (Lindahl, 1993; Alberts, 2015). The DNA
molecule is intrinsically reactive, as it is very susceptible to
chemical and physical factors, which can lead to DNA lesions,
such as base loss, base modification, and double-strand DNA
breaks (Hoeijmakers, 2009; Çağlayan andWilson, 2015; Ross and
Truant, 2016; Yadav et al., 2020). Physiological conditions such as
oxygen-rich, aqueous, or pH 7.4 (Lindahl, 1993) as well as
chemical events such as hydrolysis and exposure to reactive
oxygen species (ROS) or other reactive metabolites can
damage DNA. Exogenous chemicals or endogenous metabolic
processes trigger chemical reactions. Although exogenous
stressors can be extremely powerful, endogenous threats are
constant and unabating. It is estimated that a single cell
experiences up to 105 spontaneous or induced DNA lesions
per day (Lindahl, 1993; Bont, 2004; Kovalchuk, 2016;
Chatterjee and Walker, 2017).

DNA damage has far-reaching consequences, such as
preventing RNA polymerase from transcribing the correct
messenger RNA sequence to produce the correct protein. In
the longer term, cellular malfunctions such as cancer
initiation, inborn defects, and ageing that result after damaged
DNA replicates are examples of unpredictable long-term
consequences of DNA damage; as base misincorporation
causes mutations which alter the genetic code (Reed and
Waters, 2005). Therefore, a coordinated response to DNA
damage is necessary in order to ensure cellular viability and
prevent diseases. Cells, fortunately, possess a robust system of
mechanisms that function together to reduce the adverse
consequences of DNA damage and ensure that their genetic
information is faithfully replicated, thus maintaining the
integrity of their genome (Ganai and Johansson, 2016). This
coordinated effort, known as DNA damage response (DDR)
operates by sensing and signalling the genotoxic events, and
the damage is then resolved either by DNA repair
machineries, or cell death if DNA cannot be repaired. DNA
repair functions as part of the DNA damage response (DDR)
(Liu, 2001; Chatterjee and Walker, 2017; Reed and Waters, 2005;
Hoeijmakers, 2001, 2009).

DNA repair has so far been shown to exist in both prokaryotic
and eukaryotic organisms, with over 150 proteins directly
involved in safeguarding the genome (Sancar et al., 2004;
Friedberg et al., 2005; Wood et al., 2005; Yousefzadeh et al.,
2021). DNA repair processes restore DNA back to its normal
sequence and structure after damage (Friedberg et al., 2006), and
are characterised traditionally by the type of damage they repair.
There are five major DNA repair pathways available to cells to
deal with DNA damage burdens. Each of these processes
recognises a particular type of DNA lesions, and together
work in preventing mutagenesis. They include 1) direct

reversal repairs that repairs lesion induced mainly by
alkylating agents, 2) Base excision repair (BER), for small base
modifications like single-strand breaks (SSBs) and non-bulky
damaged DNA bases, 3) Nucleotide excision repair (NER),
that corrects bulky, helix-distorting DNA lesions, 4) mismatch
repair (MMR), that repairs base-base mismatch and insertion or
deletion loops (IDLs), 5) Recombinational repair, which is
divided into non-homologous end joining (NHEJ) and
homologous recombination repair (HR), both of which repairs
DNA double-strand breaks (DSBs). Other types of DSB repairs
include alternative non-homologous end-joining (alt-NHEJ,
MMEJ) and translesion synthesis (TLS), which operates as a
tolerance mechanism for DNA damage (Jackson and Bartek,
2009; Hosoya and Miyagawa, 2014; Li et al., 2021).

For frequently occurring DNA damage, direct reversal of DNA
damage by specialised proteins is the most efficient and most
straightforward method of DNA repair. However, this approach
is only used by a small proportion of DNA repair types. Most
damage to DNA is repaired by the removal of damaged bases and
is followed by resynthesis of the removed/excised region
(replacement) (Cooper, 2000). The pathways involved in the
removal of base damage are base excision repair (BER),
nucleotide excision repair (NER) and mismatch repair (MMR)
(Cooper, 2000). The rest of the pathways repair damage to DNA
structure/backbone. DNA damage can cause breaks in the DNA
backbone, single-strand breaks in one strand, or double-strand
breaks on both strands. Single-strand breaks are repaired by
mechanisms sharing common steps in the BER pathway;
however, DSBs are especially harmful as, by definition, no
unbroken complementary strand exit which can serve as a
template for repair when both strands break (Bennett et al.,
1993; Friedberg et al., 2006). For cells with DNA already
replicated prior to cell division, the duplicate copy can easily
supply the missing information. So in these cells, DSBs can be
repaired by HR, involving the exchange of DNA strands.

Even so, very efficient repair mechanisms can sometimes fail
to provide a clean template for DNA synthesis. Replication errors
can make it past these mechanisms, as DNA repair can also
undergo mutations and become dysregulated. DNA repair gene
mutations have been known to cause a variety of rare inherited
human syndromes. Some of which include premature ageing
phenotypes, increased sensitivity to ionising radiation exposure,
and increased cancer risk (Friedberg et al., 2006; Lok and Powell,
2012; Carusillo and Mussolino, 2020). It has also been found that
inherited defects in each of the DNA repair pathways are
associated with distinct genome instability syndromes
(Yousefzadeh et al., 2021), syndromes characterised by
developmental defects (Bouwman and Jonkers, 2012; Ghosal
and Chen, 2013; Wolters and Schumacher, 2013; Wood, 2018).

The dysregulation of DNA repair gene networks underlies
many human genetic diseases that affect a wide range of body
systems but all share a common trait, predisposition to cancer
(Chatterjee and Walker, 2017). Almost all human cancers are
spontaneous, not inherited, and are caused by environmental or
genetic factors. It is of great public health interest to determine
which genetic variations increase cancer risk in normal
populations, and DNA repair genes are likely contenders.
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Therefore, elucidating the molecular mechanism behind DNA
repair defects may provide a framework for understanding the
complex pattern of genetic variations that contribute to
spontaneous human cancers.

In this study, we demonstrate how to translate a network
(mathematically definable as a hyper-graph) into a set of first-
order differential equations of the mass action law type. Once
the model has been established, we present its numerical
solution and carry out a sensitivity analysis of its kinetic
rates, whose numerical values are mostly unknown. The
results of the analysis of network dynamics complement
those produced by the calculation of centrality measures, and
together they produce a set of genes of similar biological interest,
and in perspective also of medical interest, due to their
characteristics of topological centrality and vulnerability to
stimuli. The paper is organized as follows: in Section 2 we
describe the mechanisms of double-strand break repair pathway
homologous recombination repair necessary to understand and
interpret the results of the computational analysis, in Section 3
we describe the rules on which the automatic translation of the
network into a rate equation system is based and the methods of
sensitivity analysis of the model. In Section 4 we present the
results of the analysis, and, finally, in Section 5, we draw some
conclusions.

2 DOUBLE-STRAND BREAK REPAIR
PATHWAY HOMOLOGOUS
RECOMBINATION REPAIR
DSBs are themost serious DNA damage, as both DNA strands are
impaired simultaneously. Therefore, due to the magnitude of
differing factors leading to DSBs, the effectiveness of their repair
is crucial for cell survival and the functioning and prevention of
DNA fragmentation, chromosomal translocation and deletion.
DSBs can be repaired in mammalian cells by NHEJ, HR, and
single-strand annealing (SSA). Unrepaired SSBs result in much
more cytotoxic DSBs formation during the S-phase progression
of the cell cycle (Kennedy and D’Andrea, 2006). Homologous
recombination is a process by which DSBs are repaired through
the alignment of homologous sequences of DNA (Dietlein and
Reinhardt, 2014) and occurs primarily during the late S to
G2 phase of the cell cycle (Cerbinskaite et al., 2012; Chatterjee
and Walker, 2017).

Homologous recombination is the second major DSB repair
pathway and requires a second, homologous DNA sequence to
function as donor template. There are two phases to this process,
the first phase triggered by sensor proteins that belong to the
MRN complex, and the second phase by the stimulation of
resection steps, initiated in the first phase and subsequently
extended. HR generally involves the following stages:

1. DSBs are recognised and sensed by the MRN complex (Kim
et al., 1994), which activates ATM kinase, initiating the DSB
end resection steps, where CtBP-interacting protein (CtIP)
and theMRN complex work together to generate single-strand
DNA (ssDNA) at the DSB ends ((Zhao et al., 2020).

2. The exposed ssDNA is recognised by and coated with DNA
replication protein A (RPA) complex, which recruits themajor
homologous recombination regulator RAD52 to the site to
facilitate HR repair (Maréchal and Zou, 2014; Rossi et al.,
2021).

3. The nucleoprotein filament RAD51, is then assembled,
mediated by BReast CAncer type 2 susceptibility protein
(BRCA2), to replace RPA on ssDNA to perform homology
sequence searching and strand invasion (Kowalczykowski,
2015).

4. DSBs are then restored by branch migration, DNA synthesis,
ligation, and resolution of Holliday junctions (Zhao et al.,
2020).

Following the recognition and sensing of DSBs, a process
known as DNA end resection is activated, a critical function in
HR (Liu and Huang, 2016; Zhao et al., 2020). DNA end
resection catalyses the nucleolytic degradation of the broken
ends of DSBs (by the CtIPMRN complex) in the 5′ to 3′
direction generating 3′ single-stranded DNA (ssDNA). The
3′ ssDNA then provides a platform for the recruitment of HR
repair-related proteins (Huertas, 2010; Liu and Huang, 2016;
Zhao et al., 2020). Following the generation of ssDNA,
downstream nucleases and helicases, such as exonuclease 1
(EXO1) or DNA replication ATP-dependent helicase/nuclease
DNA replication helicasenuclease 2 (DNA2) and Bloom
syndrome protein (BLM), are conscripted to extend the 3’
ssDNA for HR repair (Huertas and Jackson, 2009; Yun and
Hiom, 2009; Zhao et al., 2020). The identities of these DNA
helicases and nucleases are yet to be clearly defined in humans
(as in yeast), partly because there are many candidate proteins.
Although five RecQ helicase homologs have so far been
identified in yeast (Bloom helicase [BLM], Werner helicase/
nuclease [WRN], RECQ1, RECQ4, and RECQ5) (Chu and
Hickson, 2009; Lu and Davis, 2021), convincing evidence point
up BLM in resection (Gravel et al., 2008; Nimonkar et al.,
2008). Following resection, the exposed single-strand DNA
(ssDNA) is recognised and bound by RPA complex for
protection.

RPA plays a significant role in coordinating DNA resection
processes and simultaneously preserving the integrity of the
resultant ssDNA (Sun et al., 2019). RPA is a heterotrimeric
ssDNA binding protein essential to nearly all DNA processing
events and associates with ssDNA with very high affinity (Kd sim
109–1010 M) (Maréchal and Zou, 2014). It is comprised of three
protein subunits, RPA70, RPA32 and RPA14 and contains
multiple oligonucleotideoligosaccharide (OB)-folds that
interact with both ssDNA and proteins (Kim et al., 1994;
Fanning, 2006; Feldkamp et al., 2014; Maréchal and Zou,
2014). RPA is flexible (Brosey et al., 2013). Its versatile nature
allows it to coordinate the recruitment, activation and exchange
of many proteins whose combined activities allow for the
protection and propagation of eukaryotic genomes (Maréchal
and Zou, 2014). How multiple RPAs associate on ssDNA and
coordinate its vast array of processes remains to be determined
(Sun et al., 2019). However, a critical feature of RPA is that,
though it can bind nucleic acids with very high affinity, it can
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TABLE 1 | Interactive graphical user interface of NADS software showing the options and the task concerning the generation of ODE equations and their solution.
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easily be displaced by other enzymes for further downstream
processing (Sun et al., 2019).

When ssDNA length is sufficient for HR repair, the end
resection process is terminated (Zhao et al., 2015). Although
the regulation of DNA end resection termination are not yet
clearly understood, several studies suggest that under
physiological conditions, end resection is terminated by
RAD51-RPA switching (Zhao et al., 2015). This switching is
regulated by BRCA2-DSS1. DSS1 - SEM1 in yeast - is a small,

highly acidic protein that competes with ssDNA, by mimicking
ssDNA in order to remove RPA from the genuine ssDNA (Zhao
et al., 2015; Stefanovie et al., 2019; Le et al., 2020; Rossi et al.,
2021). The DSS1 then binds to BRCA2 in order to facilitate
RAD51 filament formation (Liu et al., 2010; Stefanovie et al.,
2019; Rossi et al., 2021). DSS1 does not seem to bind DNA on its
own but appears to enhance ssDNA binding activities of
BRCA2 and RAD52 to promote DSB repair (Zhao et al.,
2015). BRCA2 then recruits RAD51 to complete the switch

TABLE 2 | Interactive graphical user interface of NADS software showing the options and the task concerning the analysis of network topology.
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(Zhao et al., 2015; Rossi et al., 2021). For cells with DNA already
replicated prior to cell division, RAD51 will oligomerise and form
a nucleoprotein filament on the resected, single-stranded DNA
(ssDNA) end of the DSB, and search for the homologous DNA
sequence on the undamaged sister chromatid, performs strand
exchange (invasion), and produce a joint molecule called a
D-loop (Rossi et al., 2021). DNA polymerase will then use the
homologous DNA strand as a template from the D-loop, and
the 3′-end of the broken DNA strand as a primer to commence
DNA repair synthesis (Rossi et al., 2021). The other end of the
double-strand break is then apprehended by RAD52, joining it
to the D-loop, through the annealing process, causing the
displaced strand to act as a template for the second strand
synthesis (Rossi et al., 2021). When DNA synthesis is
complete, the D-loops are then dissociated by RAD54, a
protein that interacts with RAD51 to promote branch
migration, or interacts with helicases like BLM (van Brabant
et al., 2000; Bugreev et al., 2006; Kawale and Sung, 2020; Rossi
et al., 2021). DNA is further extended by DNA polymerase,
annealed to the ssDNA part of the second broken DNA, gap
filled and finally restored (Rossi et al., 2021). In Figure 1 we
summarise what is described in this section about the DSB
signalling mechanisms.

Homologous recombination is able to repair DSBs error-free
using the undamaged sister chromatid (Dietlein and Reinhardt,
2014). As the accuracy of homologous recombination repair is
important for DSBs (Sugiyama and Kantake, 2009), if it is
impaired, chemotherapeutic opportunities may arise (Huang
and Zhou, 2021).

3 GRAPH REPRESENTATION AND
MATHEMATICAL MODEL

We considered HDR through Homologous Recombination
(HRR) network as available in Pathways Commons (Cerami
et al., 2010) in the SIF (Simple Interaction Format) format at
the link in the reference (Orlic-Milacic, 2015). See these data also
reported in Supplementary Tables S1–S3.

We implemented an R script, that takes as input the HR
network and is able to.

• analyse the topology of the network through the
calculation of standard and new centrality measures.
The standard node centrality measures considered in
this study are the degree (in-, out- and total), the
betweenness, the clustering coefficient, the
eingenvector centrality, the vibrational centrality, the
subgraph centrality, and the information centrality (see
(Marsden, 2005; Koschützki and Schreiber, 2008;
Ghasemi et al., 2014; Wang et al., 2014; Fornito et al.,
2016; Jalili et al., 2016; Ashtiani et al., 2018) for a concise
but comprehensive report on the meaning and the use of
these measure in molecular biology). We considered also
a new centrality measures, such as vibrational centrality,
introduced by Estrada in (Estrada and Hatano, 2010) that
we will discuss in more detail in the next section (we also

refer the reader to (Lecca and Re, 2019) for a review on
vibrational centrality); for the reader’s convenience, we
list the definition of these centrality indices in
Supplementary Table S4, that are also extensively
covered in many textbooks on graph theory, and in
various articles in the applied sciences. We refer the
reader to Estrada’s numerous works, a comprehensive
compendium of which can be found in the book (Estrada
and Hatano, 2010; Estrada, 2011);

• automatically generate a system of rate equations,
specifically first order mass action differential equations,
describing the dynamics of the network.

and a R script implementing parametric sensitivity analysis of
the dynamics model.

In the dynamics model, by default the kinetic rate constants k a
well as the initial values of the proteins and molecules
concentrations are set equal to random values in fixed ranges.
Nevertheless these ranges can be modified by the user as shown
by the interactive console output reported in Table 1. However,
we note that the interval of definition of the uniform distribution
cannot exceed the maximal range of parameter variability within
which the system of rate equations has a solution. We refer the
reader to a previous work of us (Lecca et al., 2016) for more details
on this.

In a first experiment, the initial values of the proteins
concentration (not experimentally known) has been drawn
randomly in a range [1, 100] a. u., and the simulation time
interval was [0, 10] a. u. In a second experiment, the numerical
simulation of the model was performed by assigning an initial
quantity between 18 and 20 (expressed in arbitrary units a. u.)
to each node and for t ∈ [0, 1400] (in arbitrary units). The
solution of the system of 25 differential equations converges
for values of rate constants in the range []0, 0.01 a. u. in the first
experiment, and in the range []10−6, 10−5 a.u. in the second
experiment. To the best of our knowledge, the in vivo
concentrations of the proteins that are part of the HR
network are not known. Combined with the lack of
knowledge of the values of rate constants, this means that
we cannot assign units to these values that reflect in vivo
kinetics. However, the initial values of the protein
concentrations have been chosen from the order of
magnitude at which various in vitro experiments operate
and express these concentrations in nM and time in
seconds. The literature we have referred to includes the
works of (Yang et al., 2010; Nguyen et al., 2013; Foertsch
et al., 2019).

We changed the parameters one at a time while keeping the
values of the others fixed. Since for each parameter ph (h ranges
from 1 to the number of parameters in the equations), we
sampled NP values, and consequently we performed NP model
simulations. Let us denote with xs(t), (s = 1, 2, . . ., d) the time
series expressing the numerical solutions of the rate equations,
where d is the number of the proteins in the network. The
index of sensitivity of xs(t) with respect to the change of h-th
parameter from the value ph to the value ph′ is calculated as in
(Lecca et al., 2016) by
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FIGURE 1 | The signalling of a DSB is initiated via the binding of the MRN complex which initiates resection. During HR, the ends of the double-strand break (DSB)
are resected by nucleases, exposing single-strand DNA (ssDNA) that becomes bound by RPA. Themediator protein, BRCA2 initiates the loading of RAD51 onto ssDNA,
helping to displace RPA. RAD51 oligomerizes, forms a nucleoprotein filament, and then searches for the homologous DNA sequence on the intact chromosome.
RAD51 filament invades the intact dsDNA and forms a D-loop structure. It is further processed by DNA polymerases, chromatin remodelers (RAD54), nucleases,
and ligases to restore it back to its original sequences. (Adapted from (Rossi et al., 2021).
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SIish � 1
N

∑N
k�1

1
NP − 1

∑NP

r�1
x r( )
s tk|ph ← ph′( ) − xs

r( ) ph ← ph′( )( )2⎛⎝ ⎞⎠
1
2

(1)
where N is the length of the time series xs(t), and

xs ph ← ph′( ) � 1
NP

∑NP

k�1
xs tk|ph ← ph′( ). (2)

where “ph ← ph′” means “ph replaced by ph′”. The Eq. 1 defines
the mean of the standard deviations of the distributions of the
simulated values of a protein/gene abundance at time
points tk.

In case the user knows the values of the rate constants, he/she
can add them as an extra column to the SIF format of the input
files. At the moment of writing, for most interactions the values of
the kinetic constants are not known and there are no time-
resolved data from which it is possible to infer them. It is precisely
this context that justifies our choice to study the dynamics of the

system in a range of values of the model parameters and more
generally to provide a software that can be used as a platform for
in silico experiments.

We implemented Network Analyser and Dynamics Simulator
(NADS) consists of three modules written in R language:

FIGURE 2 | Conversion of the SIF format interactions into a (hyper-)graph structure.

TABLE 3 | Translation of BioPAX interactions into simple ordinary differential
equations. See in Figure 2 the (hyper-)graph representation of these
interactions.

Interaction Differential equation

A controls production of B dB
dt � kA, dA

dt � 0
B controls consumption of A dA

dt � −kB, dB
dt � 0

A interacts with B dA
dt � dB

dt � −kAB
A catalysis precedes B dB

dt � ± kA

A used to produce B dB
dt � kA

A chemical affects B dA
dt � 0, dB

dt � −kB � −dB*
dt
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• network_analysis_functions.R: this module implements the
functions that processes the SIF data-frames to make them
suitable to their conversion into a graph. This module also
implement the functions to rank the nodes according to
their centrality measures;

• graph_parser.R: this module converts the SIF format
network into an R script that solves the corresponding
ordinary differential equations;

• network_analysis.R: this module first calls
network_analysis_functions.R and performs the networks
analysis, and secondly it calls the module graph_parser.R
that generates the script dynamics.R containing the
differential equations of the network dynamics.

The user can launch the software simply by running in
RStudio the script network_analysis.R, and then by answering

FIGURE 4 | HR network and FANCM network. Colors vary from yellow to green according to increasing degree values. Node sizes grow as the betweenness
centrality of nodes.

FIGURE 3 | Distributions of the centrality measures of HR pathway (Orlic-Milacic, 2015). We observe that the majority of node have low betweenness, low
information centrality and high vibrational centrality.
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to the questions in the interactive interface as shown in
Table 2.

We provide also the fourth module implementing the
parametric sensitivity analysis, named sensitivity_analysis.R,
which takes as an input the system of equations automatically
generated by network_analysis.R.

The main module is the script network_analysis.R. As soon as
the user runs it from the R Studio GUI (R Studio, 2022) or from a
terminal, an interactive output is displayed as in Tables 2, 3. The
program asks the user to select the network to be analysed and
then.

• it calculates the centralities measures
• it translates the SIF network into a hyper-graph structure
according to the rules reported in Figure 2

• then, it translates the hyper-graph into a set of ordinary
differential equations, according to the rules reported in
Table 3,

• and, finally, it solves them.

The program returns also the execution times for the tasks
expected to be the most computationally demanding, such as
integrating the equation.

4 RESULTS

The HR network considered in this study has 25 nodes and
250 edges, as reported in Supplementary Tables S1–S3. The right
part of the Figure 4 shows the HR network in circular layout. The

network analysis phase of our study calculated the centrality
measures distributions show in Figure 3, and identified six genes,
as shown in Table 4:

1. BLM, scoring first for vibrational centrality
2. RAD50 scores first for sub-graph centrality
3. RAD52, scoring first for clustering coefficient
4. RPA1, scoring first for total degree and betweenness
5. RPA2, scoring first for in-degree and eigenvector centrality
6. RPA3, scoring first for out-degree, hub centrality, and sub-

graph centrality
7. RPA4, scoring first for clustering coefficient
8. SEM1, scoring first for clustering coefficient.

Of particular interest is the fact that BLM has the highest
vibration centre. The interpretation of this result is that BLM is
the node most sensitive to stresses and/or stimuli, i.e., according
to the vibrational centrality measure, it is the most vulnerable
node in the network (Estrada and Hatano, 2010). This result is of
particular interest in light of the crucial role this gene plays in the
HR network. Indeed, the key role of BLM is well know, and
alterations in this protein is linked to different diseases including
cancer (Kaur et al., 2021). BLM is a 3′-5′ ATP-dependent RecQ
DNA helicase. It is a genome stabilizer playing an essential role in
the DNA replication regulation, DNA recombination, and both
homologous and non-homologous pathways of DSB repair. The
high vulnerability of the BLM node to external stimuli and
conditions suggests the need to identify which conditions and/
or stimuli may be altering it, in order to preserve its proper
functioning and/or to understand how it can be restored if it is

TABLE 4 | Values of the centrality measures for the HR pathway in (Orlic-Milacic, 2015). In bold, we marked the genes/proteins with the highest scores.

Protein Total
degree

In-
degree

Out-
degree

Hub
centrality

Betweenness Clustering
coefficient

Eigenvector
centrality

Vibrational
centrality

Subgraph
centrality

Information
centrality

BLM 30 19 11 4.08E-01 39.5138622 0.2183908 0.81043641 1.0771148 7408.13084 0.08351073
EME1 13 0 13 5.21E-01 0 0.5384615 0.2589557 0.9579369 2709.62496 0.13185164
MRE11 26 16 10 3.69E-01 9.2926175 0.1969231 0.73968044 1.0587524 6020.65076 0.08957011
MUS81 13 1 12 5.18E-01 0 0.5384615 0.2589557 0.9547013 2291.00787 0.13177729
NBN 27 17 10 3.67E-01 9.2926175 0.1823362 0.76703983 1.0603542 6020.65076 0.08786049
POLD1 26 9 17 6.83E-01 7.8121197 0.36 0.67253587 0.9655278 7684.50086 0.08965382
POLD2 23 5 18 7.10E-01 5.8377525 0.4624506 0.57100865 0.9672104 9065.81813 0.09552092
POLD3 23 8 15 6.45E-01 5.8377525 0.4624506 0.57100865 0.961071 5521.89505 0.09524672
POLD4 23 7 16 6.66E-01 5.8377525 0.4624506 0.57100865 0.963361 6513.86378 0.09533952
RAD50 27 13 14 5.79E-01 10.2729789 0.2108262 0.75819149 1.0206621 11427.9652 0.08811688
RAD51 23 12 11 4.03E-01 30.3997662 0.4426877 0.49447273 0.9038147 1403.03278 0.09426237
RAD51B 14 12 2 8.58E-02 0.3636364 0.7032967 0.31841389 0.9960094 74.47586 0.12453711
RAD51C 21 9 12 4.96E-01 1.6614219 0.4095238 0.47619405 0.9027594 1911.88011 0.09955242
RAD51D 16 11 5 2.15E-01 0.5127787 0.7166667 0.3593928 0.9248884 282.05774 0.11524626
RAD52 4 2 2 1.01E-01 0 1 0.1247068 0.9567526 254.41809 0.30199153
RPA1 41 20 21 9.02E-01 93.2152627 0.1512195 0.89284007 0.9069973 8617.68902 0.0726257
RPA2 41 22 19 8.46E-01 32.6964097 0.1487805 1 0.9404821 8508.98841 0.07306925
RPA3 34 11 23 1.00E+00 25.979693 0.2174688 0.819185 0.9803911 14870.10272 0.07928594
RPA4 3 0 3 1.27E-01 0 1 0.10547581 0.9592952 700.52299 0.37822514
SEM1 3 1 2 9.14E-02 0 1 0.06803348 0.9398974 63.99639 0.37757664
TOP3A 24 12 12 4.64E-01 9.2926175 0.2318841 0.68062612 1.0251952 8739.44955 0.09349123
XRCC2 15 14 1 5.60E-02 0.8476272 0.7142857 0.34875334 1.0105203 55.0254 0.11916455
XRCC3 13 12 1 4.68E-02 0.3333333 0.8076923 0.2842042 0.5530372 0 0.13016119
BRCA2 16 16 0 1.40E-16 0 0.45 0.36198393 0 0 0.11465992
TOP3B 1 1 0 8.77E-18 0 NA 0.03472425 0 0 0.86898249
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TABLE 5 | This is the PART I of the table of ordinary differential equations of the dynamics of HR network, in R code formalism. The k followed by a number denote the kinetic
rate constant, and the letter “d” in front of the name of the proteins denote the temporal derivative of it concentration.
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altered. The high vulnerability of this node could also be
explained by a recent study by Kaur et al. (2021). These
authors report that BLM has a dual function both as a
tumour suppressor and possibly as a proto-oncogene, being
probably involved in the mechanisms of its deregulation in
tumours.

The analysis also correctly identifies the SEM1 gene as a node
with a high clustering coefficient. Indeed, as reported in (Safran
et al., 2021; GeneCard, 2022), SEM1 gene encodes for a protein

that is part of a 26S proteasome, which is a multiprotein complex
with a function in the ATP-dependent degradation of
ubiquitinated proteins. This complex contributes to the
maintenance of protein homeostasis by removing misfolded or
damaged proteins, which could jeopardize the healthy cellular
functions, and by removing proteins no longer need. Therefore,
26S proteasome is involved in numerous cellular processes,
including cell cycle progression, apoptosis, or DNA damage
repair (Sone et al., 2004).

TABLE 6 | This is the PART II (continuation) of the table of ordinary differential equations of the dynamics of HR network, in R code formalism. The k followed by a number
denote the kinetic rate constant, and the letter “d” in front of the name of the proteins denote the temporal derivative of it concentration.
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SEM1 was found also as a subunit in experiments of affinity
purification of the yeast 19S proteasome, and its human homolog,
DSS1, was found to copurify with the human 19S proteasome
(Krogan et al., 2004). DSS1 is associated with the tumour
suppressor protein BRCA2 involved in DNA DSBs repair. The
authors in (Krogan et al., 2004) proved that SEM1 is essential for
efficient repair of an HO-generated yeast DSB using both HR and
nonhomologous end joining (NHEJ) pathways. Moreover, they
showed that deletion of SEM1 contributes to cause defects in
(synthetic) growth and hypersensitivity to genotoxins when
combined with mutations in certain well-established genes
involved in the DNA DSB repair.

Similarly to SEM1, the result of a high clustering coefficient is
also expected for RPA4, as RPA4 is also part of a complex (Keshav
et al., 1995). RPA4 gene encodes a single-stranded DNA-binding
protein that is a subunit of the replication protein A complex
(GeneCard, 2022). Replication protein A is essential for DNA
DSB repair and plays a crucial role in the activation of cell cycle
checkpoints. As regards the RPA complex, we have already seen
in the previous sections that the RPA complex controls DNA
repair and DNA damage checkpoint activation as well. In
particular, the network analysis shows that RPA1 highly scores
by total degree and betweenness. These results reflect the fact that
RPA1 is an active route of communication exchanges between
various nodes in the network. RPA1 is part of the heterotrimeric
replication protein A complex (RPA/RP-A). It stabilizes single-

FIGURE 6 |Coefficient of variation of the sensitivity index distributions for
the proteins in HR network Orlic-Milacic, (2015). These results refer to
simulation in the time interval [0, 10] a.u., and initial values of the proteins
randomly sampled in the range [1, 100] a. u. and kinetics rates values
sampled in the interval [0, 0.01].

TABLE 7 | For each gene/protein in the HR pathway in (Orlic-Milacic, 2015) we
selected the kinetic rates whose sensitivity index belongs to the 98th
percentile of the sensitivity index distribution. The sensitity index is calculated using
the formula (1).

Gene Kinetic rate to which it is highly sensitive

BLM k12, k34, k107, k138, k222
BRCA2 k13, k58, k108, k139, k250
EME1 k24, k138, k140, k144, k227
MRE11 k14, k34, k109, k204, k223
MUS81 k24, k138, k140, k144, k227
NBN k15, k32, k34, k60, k110
POLD1 k72, k73, k89, k90, k91
POLD2 k72, k73, k89, k90, k91
POLD3 k72, k89, k90, k91, k122
POLD4 k73, k89, k90, k91, k122
RAD50 k16, k61, k78, k111, k137
RAD51 –

RAD51B k18, k63, k113, k140, k163
RAD51C k19, k64, k81, k114, k157
RAD51D k20, k65, k115, k141, k162
RAD52 k142, k168, k222, k227, k228
RPA1 k8, k29, k66, k83, k116
RPA2 k30, k33, k117, k144, k206
RPA3 k31, k68, k118, k222, k227
RPA4 k29, k227, k232, k233, k234
SEM1 k139, k145, k235, k236, k250
TOP3A k21, k69, k86, k119, k248
TOP3B k29, k66, k83, k116, k188
XRCC2 k22, k70, k120, k146, k149
XRCC3 k23, k121, k147, k166, k250

FIGURE 5 | Mean of the sensitivity index distributions for the proteins in
HR network (Orlic-Milacic, 2015). These results refer to simulation in the time
interval [0, 10] a.u., and initial values of the proteins randomly sampled in the
range [1, 100] a. u. and kinetics rates values sampled in the interval
[0, 0.01].
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stranded DNA intermediates, that form during DNA replication
or upon DNA stress In (Bass et al., 2016; Haahr et al., 2016;
Human Protein Atlas, 2022). It prevents the reannealing of
single-stranded DNA intermediates and recruits and activates
different proteins and complexes forming part of DNA
metabolism. Thereby, it is a key protein both in DNA
replication and in the cellular response to DNA damage (Lin
et al., 1998). RPA2 shows high score for in-degree and
eigenvevtor centrality, meaning that it is interacting with
protein also highly scoring by eigenvector centrality and
degree (Hansen et al., 2020), and thence with proteins which
have a great influence in the HR network. Indeed RPA 2 gene has
been found highly expressed in low grade carcinomas and its
expression has a gradual significant decrease from stage I to stage
IV carcinomas. All the three subunits RPA1, RPA2, and RPA3,
were more abundant (with statistical significance evidence) in
lymph node negative and earlier stage (stage I and II) gastric
carcinomas (Fourtziala et al., 2020). Finally, of particular interest
and the fact that RPA3 ranks first in terms of centrality out-
degree, hub-centrality and sub-graph centrality. Since subgraph
centrality of a node is the number of subgraphs a node

FIGURE 8 |Coefficient of variation of the sensitivity index distributions for
the proteins in HR network (Orlic-Milacic, 2015). These results refer to
simulation in the time interval [18, 20] a.u., and initial values of the proteins
randomly sampled in the range [10–5, 10–6] a. u.

FIGURE 7 | Mean of the sensitivity index distributions for the proteins in
HR network Orlic-Milacic, (2015). These results refer to simulation in the time
interval [0, 1400] a.u., and initial values of the proteins randomly sampled in the
range [18, 20] a. u. and kinetics rate values sample in [10–5, 10–6] a. u.
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participates in (weighted according to their size) (Estrada and
Rodríguez-Velázquez, 2005), it means that RPA3 take part into a
number of subgraphs of significant size relatively to the whole
network size. From our analysis it results that RPA3 versus
RPA1 and RPA2, although its roles are similar to those of
RPA2, has thus a great influence on pathways of crucial
importance more than on subset of unconnected nodes or
single nodes.

The analysis also highlights RAD50 that is a component of the
MRN complex The protein complex is involved in numerous

enzymatic activities required for nonhomologous joining of DNA
ends. It is protein is essential for DNA double-strand break repair,
cell cycle checkpoint activation, telomere maintenance, and
meiotic recombination. (Carney et al., 1998; de Jager et al.,
2001; Estrada and Ross, 2018; Bian et al., 2019; Beikzadeh and
Latham, 2021; National library of Medicine, 2022). This role is
reflected by th ehigh sungraph centrality that measures the
centrality of a node by taking into account the number of
subgraphs the node participates in. Specifically, the subgraph
centrality of a node is the number of closed loops originating at

TABLE 8 | Values of the centrality measures for the HR pathway in (Orlic-Milacic, 2015) merged with the FANCMpathway in (Pathways Commons, 2022). In bold, wemarked
the genes with the highest scores.

Protein Total
degree

In-
degree

Out-
degree

Hub
centrality

Betweenness Clustering
coefficient

Eigenvector
centrality

Vibrational
centrality

Subgraph
centrality

Information
centrality

BLM 32 19 13 4.83E-01 117.0805289 0.72058824 0.83056114 1.107752 7408.39241 0.1204394
EME1 15 0 15 5.92E-01 0 0.48351648 0.28101096 9.68E-01 2727.280253 0.1730775
MRE11 26 16 10 3.71E-01 9.2926175 0.82051282 0.73943396 1.08E+00 6025.93013 0.1319644
MUS81 13 1 12 5.18E-01 0 0.53846154 0.25936455 9.56E-01 2292.062046 0.1868928
NBN 27 17 10 3.69E-01 9.2926175 0.82051282 0.76658977 1.08E+00 6025.93013 0.1296602
POLD1 26 9 17 6.82E-01 7.8121197 0.76470588 0.67199489 9.86E-01 7688.630996 0.1322165
POLD2 23 5 18 7.10E-01 5.8377525 0.76470588 0.57047643 9.81E-01 9071.417868 0.1400556
POLD3 23 8 15 6.44E-01 5.8377525 0.76470588 0.57047643 9.78E-01 5524.141817 0.1396592
POLD4 23 7 16 6.65E-01 5.8377525 0.76470588 0.57047643 9.80E-01 6516.909994 0.1397968
RAD50 27 13 14 5.81E-01 10.2729789 0.81318681 0.75778635 1.04E+00 11437.382893 0.1300547
RAD51 23 12 11 4.02E-01 30.3997662 0.65497076 0.4937734 9.17E-01 1403.106256 0.1386277
RAD51B 14 12 2 8.53E-02 0.3636364 0.82051282 0.31833841 1.01E+00 74.55065 0.1774293
RAD51C 21 9 12 4.93E-01 1.6614219 0.81904762 0.47562207 9.12E-01 1911.911354 0.1453357
RAD51D 16 11 5 2.13E-01 0.5127787 0.81904762 0.3597479 9.38E-01 282.219746 0.1656386
RAD52 4 2 2 1.00E-01 0 1 0.12449815 9.63E-01 254.418337 0.3917785
RPA1 43 20 23 9.74E-01 215.4152627 0.49802372 0.91307865 9.47E-01 8620.183617 0.1074375
RPA2 41 22 19 8.45E-01 32.6964097 0.64210526 1 9.82E-01 8511.793141 0.1095086
RPA3 34 11 23 1 25.979693 0.64210526 0.81828849 9.98E-01 14877.81448 0.1182323
RPA4 3 0 3 1.27E-01 0 1 0.10543731 9.63E-01 700.745966 0.4815787
SEM1 3 1 2 9.07E-02 0 1 0.0682632 9.28E-01 64.063815 0.4810717
TOP3A 26 12 14 5.39E-01 43.5259509 0.73626374 0.70171805 1.04E+00 8739.804106 0.1322725
XRCC2 15 14 1 5.59E-02 0.8476272 0.82417582 0.3492084 1.03E+00 55.032467 0.1704502
XRCC3 13 12 1 4.65E-02 0.3333333 0.80769231 0.28356645 5.52E-01 0 0.1844967
BRCA1 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
CENPS 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
CENPX 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
EME2 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
FAAP100 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FAAP20 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
FAAP24 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
FANCA 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FANCB 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FANCC 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FANCD2 2 1 1 3.59E-02 0 NA 0.02248201 9.77E-01 3.563227 0.6504898
FANCE 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FANCF 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FANCG 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FANCI 3 1 2 7.17E-02 0 NA 0.03372301 9.77E-01 14.252907 0.4827827
FANCL 4 2 2 7.17E-02 0 NA 0.04496402 1.00E+00 14.252907 0.3943335
FANCM 66 44 22 4.35E-16 481 0.01811594 0.29119966 5.13E-01 131.839388 0.0955692
RMI1 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
RMI2 2 0 2 7.17E-02 0 NA 0.02248201 9.53E-01 15.252907 0.6489791
UBE2T 3 2 1 3.59E-02 0 NA 0.03372301 1.00E+00 3.563227 0.4815848
BRCA2 16 16 0 1.09E-16 0 0.69230769 0.36151501 -4.08E-18 0 0.1645300
TOP3B 1 1 0 6.80E-18 0 NA 0.03524702 0.00E+00 0 1.1169817
HES1 2 2 0 1.36E-17 0 NA 0.02248201 0.00E+00 0 0.6438225
MAX
SCORE

43 22 23 0.9743705 215.4152627 0.82417582 0.91307865 1.08361 14877.81448 0
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the node, where longer loops are exponentially downweighted.
Consequently, subgraph centrality measures how close a node is
to the other nodes in the network.

The results of this analysis reveal a correspondence between
the measure of centrality and the role of the protein. On the basis
of this, when the role of the protein is known, this information
can be used to work out the correctness of the computational
analysis. When, on the other hand, the role of the protein is not
known, knowledge of its centrality measurements can suggest the
type or set of types of possible roles.

In Tables 5, 6 we show the rate equations of the HR network
dynamics generated as the automatic translation of the network
(see the script dynamics.R in the GitLab repository of NADS
software). In file Simulations_of_Dynamics_HR_pathway.pdf
provided in the Supplementary Material, we show the time
evolution curves of each node of the HR network obtained as
a solution of the equations.

The parameter sensitivity analysis was conducted by
perturbing each parameter in the convergence range of the
solution and yielded the results shown in Table 7; Figures 5,
6. In Table 7 we report the kinetic rate constants for which the
sensitivity index belongs ot the 98th percentile of the sensitivity
index distribution. They correspond to the most sensitive
parameters, i.e. to the interactions whose alterations can
significantly alter the dynamics of the network. To find out
which interactions they refer to, the reader can refer to the
Supplementary Tables S1–S3. Figure 5 we shows that
MRE11, followed by POLD1, BLM has the highest average
sensitivity index. In Figure 6 we show the coefficient of
variation of each protein in the HR network. The coefficient
of variation, being the ratio of the standard deviation to the mean,

measures the extent of variability in relation to the mean of the
population. The higher the coefficient of variation, the greater the
dispersion. BLM, followed by MRE11 and RPA2 exhibits the
lowest coefficient of variation of the sensitivity index. This mean
that BLM, MRE11 and RPA2 have high sensitivity indices, and
that the distribution of the sensitivity indices is well shaped
around its mean, i.e. these protein exhibit almost the same
sensitivity for all the parameters of the model. In this study
we have therefore found that the BLM and RPA2 are sensitive
nodes and that their sensitivity has two components: a topological
sensitivity expressed by vibrational centrality, eigenvector
centrality and clustering coefficient, and a dynamic sensitivity
expressed by the parameter sensitivity index.

As with the BLM and RPA2 proteins, sensitivity analysis also
highlights the MRE11 protein, which is highly sensitive to kinetic
parameters, and its vibrational centrality is 1.0587524, very close
to the maximum value exhibited by BLM (see Table 4). Its
eigenvector centrality is 0.7397 which, although not the
maximum, is very close to it (see Table 4). Indeed, MRE11 is
an integral part of the protein complex of RAD50-MRE11A-
NBS1 known as the MRN complex (Porras, 2014; Shibata et al.,
2014; Mukherjee et al., 2019). It plays a key role in homologous
recombination, and it is generally believed that MRE11 initiates
double-strand breaks resection. In particular, the authors show
that the loss of MRE11 reduces the efficiency of homologous
recombination in human TK6 cells without affecting double-
strand breaks resection, indicating a role for MRE11 in
homologous recombination also at a post-resection step.

The high value of the eigenvector centrality fork BLM,
RPA2 and MRE11 confirms the crucial role of these proteins
in the network and expresses the fact that they are pointed by

FIGURE 9 | Distributions of the centrality measures of HR pathway (Orlic-Milacic, 2015) merged with FANCM pathway (Pathways Commons, 2022). We observe
that the majority of node have low betweenness, and high vibrational centrality.
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nodes that have a high value of the eigenvector centrality too.
Indeed, if a node is pointed to by many nodes (which also have
high eigenvector centrality) then that node will have high
eigenvector centrality (Fletcher and Wennekers, 2018). The
high sensitivity to the parameters characterising the dynamics
of the interactions between these proteins and the partners
pointing to them indicates the great influence that these
partner nodes have on these proteins. Interestingly,
RAD51 does not result sensitive to any parameter. The
RAD51 encodes a protein that is essential for repairing
damaged DNA. Recent findings have indicated RAD51 protein
is overexpressed in a variety of tumours Chen et al. (2017). The
overexpression of RAD51 causes improper and hyper-
recombination, and thus contributes to genomic instability and

FIGURE 11 | Coefficient of variation of the sensitivity index distributions
for the proteins in HR network (Orlic-Milacic, 2015) merged with FANCM
pathway (Pathways Commons, 2022). These results refer to simulation in the
time interval [18, 20] a.u., and initial values of the proteins randomly
sampled in the range [10–5, 10–6] a. u.

FIGURE 10 | Mean of the sensitivity index distributions for the
proteins in HR network Orlic-Milacic, (2015) merged with FANCM
pathway (Pathways Commons, 2022). These results refer to simulation in
the time interval [0, 1400] a.u., and initial values of the proteins
randomly sampled in the range [18, 20] a. u. and kinetics rate values
sample in [10–5, 10–6] a. u.
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genetic diversity. Genomic instability might, in turn, drive regular
cells towards neoplastic transformation or further contributes to
cancer metastatic progression (Chen et al., 2007). The
RAD51 protein binds to the DNA at the site of a break and
encapsulates it in a protein sheath, initiating the repair process
MedlinePlus (2022); Uniprot (2022). RAD51 protein interacts
with BRCA1 and BRCA2, to fix damaged DNA. The
BRCA2 protein regulates the activity of the RAD51 protein by
transporting it in the nucleus to sites of DNA damage. Although
the interaction between the BRCA1 protein and the
RAD51 protein has still to be elucidate, research suggests that
BRCA1 may also activate RAD51 in response to DNA damage
(Cousineau et al., 2005; Chappell et al., 2016). The result of the
sensitivity analysis found seems to contradict the important role
of this protein in these interactions. Indeed, for example, one
might expect a high sensitivity of RAD51 to the k139 due to its
interaction with BRCA2 (see Supplementary Table S2). One
explanation for this contradiction could be that since the
mechanisms of interaction of RAD51 with these proteins are
not fully known, the model used in this study could be an
oversimplification of the interaction of RAD51 with its
partners. If more accurate models in the future confirm the
low sensitivity of RAD51 to the parameters of the rate
equations describing the dynamics of the network, it will be
necessary to investigate the physical and biological characteristics
that make it so stable to perturbations. The fact that RAD51 has a
low value of vibrational centrality in this study is a factor in favour
of the possible confirmation of this case.

In Figures 7, 8 we report the results of the sensitivity analysis
obtained selecting different ranges of initial conditions and
parameters values. The plots highlights RAD51C, MRE11,
RAD50 and BRCA2 as the most sensitive nodes to the
parameters. We comment in the Section Remarks the expected
differences and similarities in the results of sensitivity analysis
when we change the intervals of initial conditions and
parameters.

4.1 Analysis of the HR PathwayMergedWith
FANCM Pathway
We repeated the analysis on the HR’s network extended by
adding the pathways of FANCM gene (Fanconi Anaemia
Group M Protein), obtained from Pathways Commons
(Pathways Commons, 2022) given its important role in
genome duplication, repair mechanisms and its involvement in
the development of Fanconi anaemia, which several studies
report to be a syndrome related to cancer predisposition
(Deans and West, 2009; Xue et al., 2015; Bhattacharjee and
Nandi, 2017; Pan et al., 2017; Wang et al., 2018). Finally, a
recent study of Panday et al. reports that FANCM regulates repair
pathway choice at stalled replication forks (Ling et al., 2016;
Panday et al., 2021). FANCM and BLM have a similar role and
cooperatively act in the DNA repair mechanisms (Panday et al.,
2021), and through this analysis we want to investigate on this
similarity.

The new network including HR and FANCM pathways is
made up of 46 nodes and 316 edges. The left part of Figure 4

shows the FANCM pathway and its connection with HR
network. As reported in Table 8, the calculation of
centrality measures led to the following results:

• BLM has the highest score in vibrational centrality
• FANCM has the highest score in total degree, in degree and
betweenness

• RAD50 scores first for subgraph centrality
• RAD52 scores first for clustering coefficient
• RPA1 scores first for out-degree
• RPA2 scores first for eigenvector centrality
• RPA3 scores first for hub centrality
• RPA4 scores first for clustering coefficient
• SEM1 scores first for clustering coefficient.

The distribution of the centrality measures on the entire
network is shown in Figure 9. These results not only re-
emphasise as central the genes/proteins already identified in
the analysis of the HR network alone in (Orlic-Milacic, 2015),
but also highlight the central role of FANCM and as a node of
particular relevance due to their high in-degree and high
betweenness. By assigning an initial quantity between 18 and
20 (expressed in arbitrary units) to each node, the solution of the
system of 46 differential equations converges for values of rate
constants in the range 10–4 and 10–5 a.u. In file
Simulations_of_Dynamics_HR_FANCM_pathway.pdf provided
in the Supplementary Material, we show the time evolution
curves (obtained as a solution of the equations) of each node
of the HR pathway merged with FANCM pathway. The
parameter sensitivity analysis was conducted by perturbing
each parameter in the convergence range of the solution and
yielded the results shown in Figures 10, 11. We found that the
nodes most sensitive to the parameters are RAD50, NBN,
BRCA2, MRE11 and RAD51B. Compared to what was
obtained in the analysis of the HR network alone, we find
here that BLM is no longer at the top in terms of parameter
sensitivity while still maintaining a central role in terms of
vibration centrality.

4.2 Remarks
The method provides a range of values for the rate constants
within which the solution to the problem exists at the given set of
initial values for the node concentration/abundance. We can
interpret this range as that of the ‘most probable’ range of
values if.

• the initial conditions are known
• the analysed network does not exclude important
interactions occurring in vivo and if the system is
subjected to the conditions of the real system in vitro
and in vivo. The network considered is only an extract of
a much more complex network (still not completely known)
that operates in vivo and in interaction with environmental
factors.

We also note that we do not dispose of experimental time
curves that can be used to calibrate the model. Calibration from
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experimental data rather than sensitivity analysis would be the
most appropriate method to use to obtain an estimated (even
interval) parameter estimate. In the absence of both experimental
data. We agree with the Reviewer that sensitivity analysis
provides information on the minimum set of parameters to be
inferred from experimental data, since the parameters to which
the model is less sensitive are less influential.

Finally, we also observe that having fixed a set of initial values
for the concentrations/abundances of the network components,
more than one set of intervals for the rate constants could
guarantee the convergence of the numerical method of solving
the system of differential equations. It is also true that by
changing the initial values of the concentrations, the range of
values of the rate constants for which the system converges could
change. The results that we report in this new version of the
manuscript show, for example, that if the range of the initial
concentration values is between 0 and 100, the numerical solution
is found for rate constant values between 0 and 0.01, whereas if
the range of the initial concentration values is a few tens, the
numerical solution is found for rate constant values between 10–6

and 106–5. A reduction of 10 in the order of magnitude of the
initial concentration values thus corresponds to a reduction of
10–3 in the order of magnitude of the rate constants. This is an
indication that the system is underdetermined, and in fact
consists of more parameters than the number of variables and
in the complete absence of experimental data. All this also shows
that calibrating the model in the light of experimental data is the
best way to hope for a set of ‘probable’ values of the rate constants.

The work shown in this study therefore does not so much
emphasise the numerical solutions, but, through a mathematical
model, wants to test the susceptibility of the network components
to the parameters and wants to integrate it with the role that the
network components have (estimated by the centrality
measurements).

5 CONCLUSION

This report presented an application of network analysis and
mathematical modelling to the double-strand break repair
pathway homologous recombination repair (HR). The
complexity of the network of repair mechanisms itself, as well
as the complexity of its interactions with the surrounding
environment (Li et al., 2009; Chatterjee and Walker, 2017;
Kusakabe et al., 2019; Poetsch, 2020; Roux et al., 2021), and
the mutations of its components make its mathematical
modelling particularly difficult, especially when based on rate
equations. It is therefore of great necessity to have a tool that can
implement these two important steps:

1. network analysis including standard centrality measures and
new measures to quantify the robustness and responsiveness
of the network to stimuli and stresses not dependent on the
network topology

2. automatic construction of a mathematical model, for its
analysis, and which allows to carry out refinements and

modifications, when new data and new experimental
knowledge make it necessary.

The implementation of these step is an innovative perspective
for the analysis of DNA repair mechanisms. So far in the
literature, there are many studies and analyses focused on the
genetic and genomic aspects of the pathways, but studies on the
mathematical modelling of its dynamics are absent. Our study
therefore aims to fill this gap, since the mechanisms of DNA
repair are governed by genes, proteins and pathways in
continuous communication with the environment. For this
reason, the analysis of the dynamics of the network is
particularly useful, since it can quantify the vulnerability of the
network and the modes of response to stimuli and exogenous
stress. To the best of our knowledge there are no schemes for
translating a graph associated with a biological network into a
set of dynamic equations. The main reason for this is that there
is no unambiguously defined semantics of a graphic
representation of a biological network, i.e. there is no
unambiguous definition of the graphic symbolism in terms of
the mathematical equation describing the interaction indicated
by that symbolism. The translation model we propose in this
study is a basic model that describes the interactions indicated
by the graph with linear first-order differential equations in the
parameters. The code that implements this translation, however,
gives the user the possibility to modify the model where he/she
deems it appropriate in the light of available biological
knowledge, or in the case he/she like to generate new
hypothetical scenarios. We believe that the availability of a
tool such as NADS can support the investigation of such a
complex network that is subject to continuous interaction with
external agents, not only to understand its dynamics, but also to
predict its evolution and identify points of vulnerability for the
benefit of the medical applications that this research may
provide.
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