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Background: Emerging pieces of evidence demonstrated that the solute carrier family 39
(SLC39A) members are critical for the oncogenic and immune infiltrating targets in multiple
types of tumors. However, the precise relationship between the SLC39A family genes and
clinical prognosis as well as the pan-cancer tumor cell infiltration has not been fully
elucidated.

Methods: In this study, the pan-cancer expression profile, genetic mutation, prognostic
effect, functional enrichment, immune infiltrating, and potential therapeutic targets of the
SLC39A family members were investigated by analyzing multiple public databases such as
the Oncomine, TIMER, GEPIA, cBioPortal, KM-plotter, PrognoScan, GeneMANIA,
STRING, DAVID, TIMER 2.0, and CellMiner databases.

Results: The expression levels of most SLC39 family genes in the tumor tissues were
found to be significantly upregulated compared to the normal group. In mutation analysis,
themutation frequencies of SLC39A4 and SLC39A1were found to be higher among all the
members (6 and 4%, respectively). Moreover, the overall mutation frequency of the
SLC39A family genes ranged from 0.8 to 6% pan-cancer. Also, the function of the
SLC39A highly related genes was found to be enriched in functions such as zinc II ion
transport across the membrane, steroid hormone biosynthesis, and chemical
carcinogenesis. In immune infiltration analysis, the expression level of the SLC39A
family genes was found to be notably related to the immune infiltration levels of six
types of immune cells in specific types of tumors. In addition, the SLC39A family genes
were significantly related to the sensitivity or resistance of 63 antitumor drugs in a variety of
tumor cell lines.

Conclusion: These results indicate that the SLC39 family genes are significant for
determining cancer progression, immune infiltration, and drug sensitivity in multiple
cancers. This study, therefore, provides novel insights into the pan-cancer potential
targets of the SLC39 family genes.
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INTRODUCTION

Cancer has gradually emerged as the leading threat to public
health worldwide, as estimated by GLOBOCAN 2020, stating
19.3 million newly confirmed cancer cases and nearly 10 million
cancer-related deaths (Ferlay et al., 2021; Sung et al., 2021).
Indeed, efforts for cancer prevention, screening, diagnosis, and
comprehensive treatment have met with tremendous success in
various tumors. However, studies on the clinical outcome of most
cancers need further improvisation (Chen et al., 2021). The
current promising targeted therapy particularly confirms that
exploring the mechanism of pan-cancer initiation, maintenance,
and development will unfurl new avenues for fighting various
malignant tumors (Loomans-Kropp and Umar, 2019). Therefore,
identification of the hub tumor-related genes is very urgent and
necessary to develop new diagnostic and prognostic biomarkers
and therapeutic targets. Presently, massive high-throughput data
and multiple available big data online public databases are greatly
helpful for finding the tumorigenic genes and conducting pan-
cancer studies in multi-omics (Loomans-Kropp and Umar, 2019;
Xiao et al., 2021).

The SLC39A family genes encode a family of proteins
belonging to the Zrt- and Irt-like protein (ZIP) transport
proteins, having 14 family members (SLC39A1-14). It controls
the transportation and influx of zinc, with important roles in
multiple signaling pathways and physiological processes, like
gene transcription, endocrine regulation, cell growth, cell
differentiation, and the immune response process (Kimura and
Kambe, 2016; Baltaci and Yuce, 2018). Emerging pieces of
evidence indicate that the mutation or functional change in
the SLC39A family genes leads to the development and
progression of multiple malignancies, such as colorectal
cancer, breast cancer, esophageal cancer, hepatocellular
carcinoma, pancreas cancer, gastric cancer, prostate cancer,
and lung cancer (Hoang et al., 2016; To et al., 2020; Prasad,
2012). Besides, recent multi-omics studies have confirmed certain
SLC39A family genes to have differential expression and
prognostic value in breast, gastric, and lung cancers, acting as
potentially promising clinical markers for these cancers (Liu et al.,
2020; Zhou et al., 2021; Ding et al., 2019). Some basic studies have
demonstrated the targeted regulation of the SLC39A family genes
to be capable of changing the biological characteristics of some
tumor cells. For example, Jin et al. found that knockdown of
SLC39A5 expression significantly inhibits the invasion,
proliferation, and migration of esophageal tumor cells (Jin
et al., 2015). In addition, Zhu et al. demonstrated the
knockdown of SLC39A11 to attenuate the cellular proliferation
of the pancreatic cancer Capan-1 with decreased activation of the
ERK1/2 pathway (Zhu et al., 2021). Fan et al. have found
SLC39A4 gene knockout to inhibit the malignant behavior of
the ovarian tumor cells both in vitro and in vivo (Fan et al., 2017).
More importantly, the growing studies have shown that SLC
transporters not only directly bring the anticancer drugs into
cancer cells but also serve as a medium for the uptake of essential
nutrients for the growth and survival of the tumor, thereby
regulating the sensitivity and resistance of the
chemotherapeutic drugs (Li and Shu, 2014). Nevertheless, the

underlying mechanism and biological functions of the SLC39A
family genes in the tumor progression and as the potential
therapeutic target have not been fully elucidated.

This study systematically performed an in-depth analysis on
the expression of the SLC39A family genes and their impact on
the prognosis, to explore the relationship between the SLC39A
family genes and pan-cancer immune cell infiltration. In addition
to utilizing the multi-omics and large sample data analysis, the
genetic mutation, function enrichment, and drug sensitivity of the
SLC39A family genes were investigated across different cancer
types. These analyses could provide a new direction for a
promising biomarker and potential targeted therapy for
treating cancer.

MATERIALS AND METHODS

Expression Profiles Analysis
Three online databases (Oncomine, TIMER, and GEPIA) were
applied to investigate the differential expression profiles of the
SLC39A family genes between the normal and the tumor tissues
in various cancer types. The website of the Oncomine online
platform is www.oncomine.org (Rhodes et al., 2007), the
website of the TIMER online platform is https://cistrome.
shinyapps.io/timer/ (Li et al., 2017), and the website of the
GEPIA online platform is http://gepia.cancer-pku.cn/ (Tang
et al., 2017). Among them, the p-value was set to 0.01; fold
change was set to 1.5; the gene level was set to all, and data type
was set to mRNA in the Oncomine database, and the relevant
parameters of the TIMER and GEPIA databases were set by
default.

Mutation Profiles Analysis
The cBioPortal (http://www.cbioportal.org) (Gao et al., 2013) was
exploited for detecting the mutation landscape (amplification,
deep deletion, and missense mutations) and general mutation
count of the SLC39A family genes in 33 types of tumors from the
TCGA database. In addition, the impact of gene mutations in the
SLC39A family on the clinical outcomes was surveyed using the
cBioPortal database.

Survival Analysis
The relationship between the expression of the SLC39A family
gene and the overall survival (OS) and progression-free survival
(PFS) in the pan-cancer patients was investigated using the pan-
cancer module of the KM-plotter database (http://www.kmplot.
com/) (Nagy et al., 2021). In addition, the PrognoScan database
(http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html)
(Mizuno et al., 2009) was further utilized to confirm the
relationship between the expression of the SLC39A family
genes and clinical outcome in the different cohorts. Multiple
types of survival parameters, including OS, PFS, relapse-free
survival (RFS), disease-free survival (DFS), distant
recurrence–free survival (DRFS), distant metastasis–free
survival (DMFS), and disease-specific survival (DSS) were
represented in the current analysis. The hazard ratio (HR),
log-rank p-value, and 95% confidence interval were directly
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displayed on the online platform, and the p-value cut-off value
was set to 0.05.

Enrichment Analysis
To seek out the highly related genes of SLC39A family genes, the
GeneMANIA database (http://www.genemania.org) (Warde-
Farley et al., 2010) and the STRING database (https://string-
db.org) (Szklarczyk et al., 2019) were exploited. Then, the DAVID
database (Database for Annotation, Visualization, and Integrated

Discovery, https://david.ncifcrf.gov) (Huang et al., 2009) was
used to conduct the GO (gene ontology) annotation and
KEGG (Kyoto Encyclopedia of Genes and Genomes)
enrichment analysis of the SLC39A family highly related genes.

Immune Infiltration Analysis
The TIMER 2.0 (http://cistrome.shinyapps.io/timer) (Li et al.,
2020) was used to evaluate the relationship between the SLC39A
family gene expression levels and the infiltration of six common

FIGURE 1 |mRNA expression profiles of the SLC39A family genes in pan-cancer. (A) Transcriptome expression profile of SLC39A family members in pan-cancer
was explored in the Oncomine database. In the graph, red represents statistically significant mRNA overexpression of SLC39A family gene mRNA between the tumor
and the corresponding normal tissue, blue represents down-expression, and the number represents the number of data sets. p value is set to 0.01; fold change is set to
1.5; gene level is set to all; and data type is set to mRNA in the Oncomine database. (B) Transcriptome expression profiles of SLC39A family genes in pan-cancer
were explored in the GEPIA database. The red boxes represent higher SLC39A family gene expression in tumor tissues, while the green boxes represent the lower
SLC39A family gene expression in tumor tissues. The inspection standard is set to p-value < 0.05. (C) Expression level of SLC39A family genes in 33 tumors and their
normal controls in the match TCGA normal and GTEx data using GEPIA. The data in the figure represents average mRNA expression of SLC39A family genes in different
tumors. The colors from blue to red represent the range of values in the figure.
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FIGURE 2 | Differential expression of the SLC39A family genes in pan-cancer and corresponding normal tissues. (A) Transcriptome expression of SLC39A1 was
explored in the TIMER database. (B) Transcriptome expression of SLC39A2 was explored in the TIMER database. (C) Transcriptome expression of SLC39A3 was
explored in the TIMER database. (D) Transcriptome expression of SLC39A4 was explored in the TIMER database. (E) Transcriptome expression of SLC39A5 was
explored in the TIMER database. (F) Transcriptome expression of SLC39A6was explored in the TIMER database. (G) Transcriptome expression of SLC39A7was
explored in the TIMER database. (H) Expression of SLC39A8 was explored in the TIMER database. (I) Transcriptome expression of SLC39A 9 was explored in the

(Continued )
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immune cells, including the B cells, CD4+ T cells, CD8+ T cells,
Treg T cells, macrophages, and neutrophils.

Drug Sensitivity Analysis
The CellMiner database (https://discover.nci.nih.gov/cellminer/)
(Shankavaram et al., 2009) was exploited to evaluate the
relationship between the SLC39A family gene expression levels
and the compound sensitivity or resistance through the NCI-60
analyses tools. Data processing and Pearson correlation analysis
visualization used the limma and ggplot2 package, and the scatter
plot showed significant correlations sorted by p-value from small
to large, and the p-value cut-off value was set to 0.05.

RESULTS

The Expression Profiles of the SLC39A
Family Genes in Pan-Cancer
Subsequently, the expression profiles of the SLC39A family genes
were explored in various cancer types. The Oncomine, GEPIA,
and TIMER databases were exploited to examine and verify the
expression levels of the SLC39A family genes in the tumor tissues
and the corresponding non-tumor tissues. The Oncomine
database reported an increase in the mRNA expression level of
other SLC39 family genes in the tumor tissues compared to the
normal control group, except for SLC39A8 (Figure 1A). The
median expression of the SLC39A family genes in the tumor
tissues of all types of tumors was further compared, revealing that
most of the SLC39A family genes show relatively high expression
in the specific tumor types, such as lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), head and neck squamous cell
carcinoma (HNSC), rectum adenocarcinoma (READ), and
thymoma (THYM) (Figure 1B). In addition, the expression
level of the SLC39A family genes was detected in 33 tumors,
and their normal controls match TCGA normal and GTEx data
using GEPIA. Similar to the results of the other studies, the
SLC39A family genes have notably increased the expression in
most tumors compared to the normal controls (Figure 1C and
Supplementary Table S1). As shown in Figure 2, the TIMER2.0
database results demonstrated that the transcriptional expression
levels of the SLC39A family genes are inconsistent between the
tumor tissues and corresponding normal tissues, and most
SLC39A families were over-regulated in the tumor tissues,
extremely so in the bladder urothelial carcinoma (BLCA),
breast invasive carcinoma (BRCA), cholangiocarcinoma
(CHOL), colon adenocarcinoma (COAD), HNSC, kidney renal
papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD),
stomach adenocarcinoma (STAD), and thyroid carcinoma
(THCA) tumor types.

The Genetic Mutation of the SLC39A Family
Genes in Pan-Cancer
The cBioPortal and TCGA database was employed to probe the
mutation status of the SLC39A family genes in 10,967 samples in
32 studies of the pan-cancer atlas. Results showed that the
mutation frequencies of SLC39A4 and SLC39A1 were higher
than those of all the other members, 6 and 4%, respectively,
and the overall mutation frequency of the SLC39A family genes
ranged from 0.8 to 6% (Figure 3A). As shown in Figure 3B, the
mutation frequency of the SLC39A family genes in ovarian serous
cystadenocarcinoma (OV), liver hepatocellular carcinoma
(LIHC), ESCA, uterine corpus endometrial carcinoma
(UCEC), LUAD, skin cutaneous melanoma (SKCM), BLCA,
uterine carcinosarcoma (UCS), lung squamous cell carcinoma
(LUSC), STAD, and BRCA was relatively higher by more than
30%, and the other types of tumors all exhibited a very low
alteration in mutation (<30%). In addition, the Kaplan–Meier
plotter results demonstrated that the combined mutation of the
SLC39A family genes has no significant effect on OS (p-values,
0.0664) (Figure 3C). However, there are statistical differences in
the DSS, PFS, and DFS between the mutation group and the non-
mutation group of the SLC39A family genes (p-values, 0.0308,
4.11e-5, and 7.94e-11, respectively) (Figures 3D–F).

The Prognostic Value of SLC39A Family
Genes in Pan-Cancer
The association between the mRNA expression of the SLC39A
family genes and the clinical outcomes in pan-cancer patients
were analyzed using the KM-plotter and PrognoScan databases.
As shown in Figure 4, the KM-plotter database revealed that the
expression of the SLC39A family genes was significantly related to
the OS and RFS in some tumor types. Among them, the high
expression of most of the SLC39A family genes presents the risk
factor for the OS of BLCA, CESC, HNSC, LIHC, LUAD, LUSC,
and PAAD, as well as for the protection factors for OS of BRCA,
ESCA, OV, PAAD, STAD, TGCT, and THCA. Similarly, for RFS,
the high expression of most SLC39A family genes was
significantly related to the inferior survival of BLCA, CESC,
KIRP, LUAD, LUSC, PAAD, and TGCT, as well as the better
prognosis of BRCA, OV, PCPG, and STAD (Figures 4A,B and
Supplementary Tables S2, S3). As shown in Figures 4C–R, the
increase in the expression of SLC39A1, SLC39A 3, SLC39A 5,
SLC39A 8, SLC39A 10, SLC39A 13, and SLC39A 14 was
associated with poor OS, and the upregulation of SLC39A1,
SLC39A 4, SLC39A 7, SLC39A 9, and SLC39A 10 was found
to lead to poor RFS in the patients with CESC.

Then, the PrognoScan platform was used to further assess and
verify the prognostic value of the SLC39A family genes in pan-

FIGURE 2 | TIMER database. (J) Transcriptome expression of SLC39A10 was explored in the TIMER database. (K) Transcriptome expression of SLC39A11 was
explored in the TIMER database. (L) Transcriptome expression of SLC39A12 was explored in the TIMER database. (M) Transcriptome expression of SLC39A13 was
explored in the TIMER database. (N) Transcriptome expression of SLC39A14was explored in the TIMER database. (*p < 0.05, **p < 0.01, ***p < 0.001. The red box and
the green box represent tumor tissue and normal control tissue, respectively. The middle line of the box represents the median and the lower and upper bounds
represent the 25th and 75th percentiles, respectively.)
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cancer, based on public datasets. The results of PrognoScan
indicated that the expression level of the SLC39A family genes
was significantly related to the clinical survival of 12 types of

tumors, such as colorectal cancer, breast cancer, bladder cancer,
lung cancer, ovarian cancer, blood cancer, brain cancer, skin
cancer, eye cancer, soft tissue cancer, prostate cancer, and head

FIGURE 3 |Mutation landscape of the SLC39A family genes in pan-cancer derived from the cBioPortal platform. (A) OncoPrint summary of alteration on SLC39A
family genes in 10,967 numbers of samples in 32 studies of the pan-cancer atlas. The mutation frequency was shown as green for mutations, red for fusions, blue for
sions, and black for multiple mutations. (B) Rectangular graph of the general mutation counts of SLC39A family genes in the pan-cancer atlas. The X- and Y-axis
represent the mutation frequency of SLC39A family genes and cancer type, respectively. It was shown as green for missense mutations, violet for fusions, deep
blue for truncating, and blue for no mutations. (C) Kaplan–Meier chart of OS of pan-cancer with and without SLC39A family gene mutation. (D) Kaplan–Meier chart of
DDS of pan-cancer with and without SLC39A family gene mutation. (E) Kaplan–Meier chart of PFS of pan-cancer with and without SLC39A family gene mutation. (F)
Kaplan–Meier chart of DFS of pan-cancer with and without SLC39A family gene mutation. The red line and the blue line represent high and low expression, respectively.
The Cox p-value cut-off value was set to 0.05.
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FIGURE 4 | Survival analysis of the prognostic value of the SLC39A family genes in pan-cancer derived from the KM-plotter dataset. (A) Heat map shows the
hazard ratio (HR) value of the OS in pan-cancer calculated using the KM-plotter database. (B) Heat map shows the hazard ratio (HR) value of the RFS in pan-cancer
calculated using the KM-plotter database. (The colors from blue to red represent the range of HR values in the figure. HRs over 5 were replaced with “high.”) (C) Forest
plot quantitatively synthesizes the HR and 95% confidence interval of the OS of the SLC39A gene family in CESC. (D) Forest plot quantitatively synthesizes the HR
and 95% confidence interval of the PFS of the SLC39A gene family in CESC. (E) Forest plot quantitatively synthesizes the HR and 95% confidence interval of the OS of
the SLC39A gene family in BLCA. (F) Forest plot quantitatively synthesizes the HR and 95% confidence interval of the PFS of the SLC39A gene family in BLCA. (G)
Survival curve of SLC39A1 on the OS in CESC. (H) Survival curve of SLC39A2 on the OS in CESC. (I) Survival curve of SLC39A3 on the OS in CESC. (J) Survival curve of
SLC39A4 on the OS in CESC. (K) Survival curve of SLC39A6 on the OS in CESC. (L) Survival curve of SLC39A8 on the OS in CESC. (M) Survival curve of SLC39A10 on
the OS in CESC. (N) Survival curve of SLC39A12 on the OS in CESC. (O) Survival curve of SLC39A13 on the OS in CESC. (P) Survival curve of SLC39A14 on the OS in
CESC. The red line and the blue line represent high and low expression, respectively. The Cox p-value cut-off value was set to 0.05.
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and neck cancer (Supplementary Table S4). Interestingly, most
of the studies and data sets were previously focused on breast,
colorectal, lung, and ovarian cancer. The results of the
quantitative synthesis of related studies showed that higher

expression of the SLC39A family genes indicated a worse
survival prognosis for RFS ([HR] � 1.30, 95% confidence
interval [CI] � 1.10 to 1.53) and DSS (HR � 1.60, 95% CI �
1.27 to 2.02) in breast cancer (Figures 5A,B). However, the

FIGURE 5 | Survival analysis of the prognostic value of the SLC39A family genes in pan-cancer derived from the PrognoScan dataset. (A) Forest plot of DDS shows
the effect of SLC39A family gene expression on the clinical prognosis of breast cancer. (B) Forest plot of RFS shows the effect of SLC39A family gene expression on the
clinical prognosis of breast cancer. (C) Forest plot of OS shows the effect of SLC39A family gene expression on the clinical prognosis of colorectal cancer. (D) Forest plot
of DFS shows the effect of SLC39A family gene expression on the clinical prognosis of colorectal cancer. (E) Forest plot of OS shows the effect of SLC39A family
gene expression on the clinical prognosis of lung cancer. (F) Forest plot of DFS shows the effect of SLC39A family gene expression on the clinical prognosis of lung
cancer.
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FIGURE 6 | Function enrichment of the SLC39A family genes in pan-cancer. (A) Protein–protein interaction of SLC39A family in the STRING dataset. (B)
Gene–gene interaction network among SLC39A family members in the GeneMANIA dataset. (C)Bubble chart showing the BP of SLC39A family highly correlated genes.
(D)Bubble chart showing the CC of SLC39A family highly correlated genes. (E)Bubble chart showing theMF of SLC39A family highly correlated genes. (H)Bubble chart
showing the KEGG of SLC39A family highly correlated genes.
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higher expression of the SLC39A family genes was associated with
a better prognosis for OS (HR � 0.62, 95% CI � 0.44 to 0.88) and
DFS (HR � 0.75, 95% CI � 0.62 to 0.90) in colorectal cancer
(Figures 5C,D). In addition, the upregulation of the SLC39A
family gene expression was significantly associated with poor OS
(HR � 2.12, 95% CI � 1.45 to 3.05) and RFS (HR � 1.79, 95% CI �
1.26 to 2.54) in lung cancer.

The Function Enrichment of the SLC39A
Family Genes in Pan-Cancer
To investigate the potential mechanism of the SLC39A family
genes affecting the prognosis and progression of tumors, the
protein–protein interactions (PPIs) of the SLC39A family highly
related genes were conducted by using the STRING and
GeneMANIA platforms. The STRING web was used to
conduct the protein–protein interaction (PPI) network analysis
of the SLC39A family genes. As expected, 54 nodes and 410 edges

were obtained in the PPI network, and the 10 top-ranked node
genes were CBR4,MCAT, CYP17A1, HSD17B6, HEPH, SRD5A1,
HSD17B3, CYP11B2, CYP11B1, and CYP19A1 (Figure 6A;
Supplementary Table S5 and Supplementary Figure S1). In
addition, the GeneMANIA results revealed that a total of 34 genes
(including the SLC39A family genes) are associated with co-
expression, genetic interactions, physical interactions, and shared
protein domains. Among them, relationships of co-expression
were predicted between SLC39A1 and SLC39A13, SLC39A1 and
SLC39A7, SLC39A4 and SLC39A14, SLC39A5 and SLC39A14,
SLC39A5 and SLC39A4, SLC39A6 and SLC39A10, and SLC39A8
and SLC39A14. Genetic interactions were predicted between
SLC39A9 and SLC39A8, SLC39A9 and SLC39A3, SLC39A11
and SLC39A13, and SLC39A11 and SLC39A14. Moreover,
SLC39A1 and SLC39A2, SLC39A5 and SLC39A10, SLC39A5
and SLC39A6, and SLC39A9 and SLC39A2 were found to
share physical interactions. Most of the SLC39A family genes
were found to share protein domains (Figure 6B).

TABLE 1 | Top 10 GO and KEGG functional enrichment of SLC39A family highly related genes in pan-cancer derived from STRING, GENEMAIN, and DAVID datasets.

Category GeneSet Term description % p-value FDR

BP GO:0071577 Zinc II ion transmembrane transport 21.43 2.30E-31 8.15E-29
BP GO:0006882 Cellular zinc ion homeostasis 15.71 1.13E-20 1.99E-18
BP GO:0055114 Oxidation-reduction process 35.71 2.84E-18 3.35E-16
BP GO:0006702 Androgen biosynthetic process 11.43 4.23E-15 3.74E-13
BP GO:0071578 Zinc II ion transmembrane import 10.00 2.45E-14 1.74E-12
BP GO:0006694 Steroid biosynthetic process 12.86 4.60E-13 2.72E-11
BP GO:0006829 Zinc II ion transport 8.57 5.20E-11 2.63E-09
BP GO:0010043 Response to zinc ion 11.43 9.89E-11 4.38E-09
BP GO:0061088 Regulation of sequestering of zinc ion 8.57 1.17E-10 4.59E-09
BP GO:0006703 Estrogen biosynthetic process 8.57 4.25E-10 1.50E-08
CC GO:0016021 Integral component of membrane 68.57 7.68E-12 7.14E-10
CC GO:0005789 Endoplasmic reticulum membrane 25.71 1.49E-08 6.93E-07
CC GO:0031090 Organelle membrane 10.00 9.36E-07 2.90E-05
CC GO:0016023 Cytoplasmic, membrane-bounded vesicle 8.57 1.76E-04 0.004101
CC GO:0005783 Endoplasmic reticulum 15.71 0.001061 0.019736
CC GO:0005794 Golgi apparatus 14.29 0.005088 0.078862
CC GO:0005887 Integral component of plasma membrane 18.57 0.006431 0.085435
CC GO:0048471 Perinuclear region of cytoplasm 11.43 0.008955 0.104104
CC GO:0005886 Plasma membrane 35.71 0.014211 0.146847
CC GO:0043231 Intracellular membrane-bounded organelle 10.00 0.01889 0.175682
MF GO:0005385 Zinc ion transmembrane transporter activity 30.00 9.28E-48 1.13E-45
MF GO:0046873 Metal ion transmembrane transporter activity 15.71 5.26E-24 3.21E-22
MF GO:0008324 Cation transmembrane transporter activity 8.57 3.84E-10 1.56E-08
MF GO:0004303 Estradiol 17-beta-dehydrogenase activity 7.14 4.67E-08 1.43E-06
MF GO:0016712 Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen,

reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
7.14 2.99E-07 7.30E-06

MF GO:0019825 Oxygen binding 8.57 1.14E-06 2.01E-05
MF GO:0020037 Heme binding 11.43 1.15E-06 2.01E-05
MF GO:0047035 Testosterone dehydrogenase (NAD+) activity 5.71 2.07E-06 3.15E-05
MF GO:0005506 Iron ion binding 11.43 2.41E-06 3.27E-05
MF GO:0016705 Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen 8.57 3.02E-06 3.65E-05
KEGG hsa00140 Steroid hormone biosynthesis 30.00 5.49E-34 1.92E-32
KEGG hsa04913 Ovarian steroidogenesis 11.43 4.26E-09 7.45E-08
KEGG hsa01100 Metabolic pathways 28.57 1.85E-06 2.16E-05
KEGG hsa04978 Mineral absorption 7.14 7.39E-05 6.47E-04
KEGG hsa00830 Retinol metabolism 5.71 0.004406 0.030844
KEGG hsa00980 Metabolism of xenobiotics by cytochrome P450 5.71 0.006615 0.038587
KEGG hsa05204 Chemical carcinogenesis 5.71 0.008206 0.041031
KEGG hsa01212 Fatty acid metabolism 4.29 0.025834 0.113026
KEGG hsa00061 Fatty acid biosynthesis 2.86 0.065993 0.233413
KEGG hsa04925 Aldosterone synthesis and secretion 4.29 0.066689 0.233413

FDR, false discovery rate; GO, gene ontology; BP, biological processes; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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The functional enrichment of the SLC39A family’s highly
related genes was predicted by analyzing the GO annotation
and KEGG pathway via the DAVID platform. According to the
results (Figures 6C–F and Table 1), the function of the SLC39A
highly related genes was enriched in the zinc II ion
transmembrane transport, cellular zinc ion homeostasis,
oxidation-reduction process, androgen biosynthetic process,
and zinc II ion transmembrane import in biological processes
(BPs). As for the cellular component (CC), the SLC39A family
highly related genes were enriched in the integral components of
the membrane, endoplasmic reticulum membrane, organelle
membrane, cytoplasmic, membrane-bounded vesicle, and
endoplasmic reticulum. Moreover, the SLC39A family
influenced molecular functions through histone
methyltransferase binding. With respect to the molecular
function (MF), the SLC39A family of highly related genes was
enriched in the zinc ion transmembrane transporter activity,
metal ion transmembrane transporter activity, cation
transmembrane transporter activity, estradiol 17-beta-
dehydrogenase activity, and oxygen binding. Meanwhile, in the
KEGG analysis, 10 pathways were significantly enriched,
including the steroid hormone biosynthesis, ovarian
steroidogenesis, metabolic pathways, mineral absorption,
retinol metabolism, metabolism of xenobiotics by cytochrome
P450, chemical carcinogenesis, fatty acid metabolism, fatty acid
biosynthesis, and aldosterone synthesis and secretion.

The Immune Infiltration of the SLC39A
Family of Genes in Pan-Cancer
To explore whether the SLC39A family genes affect the tumor
immune infiltrating and microenvironment in pan-cancer, the
TIMER 2.0 was used to evaluate the relationship between the
SLC39A family gene expression levels and the infiltration of six
common immune cells, including B cells, CD4+ T cells, CD8+

T cells, Treg T cells, macrophages, and neutrophils. The results
confirmed a positive correlation between B-cell infiltration in
ACC, KICH, KIRP, LIHC, PCPG, and PRAD but found a
negative relation to B-cell immunity in COAD, DLBC, HNSC,
KIRC, OV, SKCM, TGCT, TKYM, UCEC, and UVM
(Figure 7A). For the CD4+ T cell, most of the SLC39A family
members were positively related to immune infiltration in ESCA,
GBM, HNSC, LIHC, and TCGT, while most of the SLC39A family
genes were negatively correlated with the immune infiltration in
BRCA and THYM (Figure 7B). For the CD8+ T cell, most of the
SLC39A family genes were positively correlated with immune
infiltration in the ACC, BLCA, DLBC, KICH, PRAD, and UVM,
while most of the SLC39A family genes were negatively correlated
with the immune infiltration in the HNSC, THYM, and UCEC
(Figure 7C). Besides, a positive correlation was observed in most
SLC39A family genes and Treg cell infiltration in TGCT and
UVM, and a negative correlation was observed in the DLBC and
THYM (Figure 7D). Particularly, a negative correlation was
observed in most SLC39A family genes and macrophage cell
infiltration in the BRCA, DLBC, UCEC, and UVM (Figure 7E).
In addition, a positive correlation was observed in most of the
SLC39A family genes and neutrophil infiltration (Figure 7F). It is

noteworthy that the SLC39A2, SLC39A3, SLC39A3, and SLC39A5
showed a significant negative correlation with the macrophages
and neutrophil cell infiltration in most tumor types.

Drug Sensitivity Analysis of the SLC39A
Family Genes in Pan-Cancer
To explore the potential sensitization or the effects of drug
resistance of the SLC39A family genes on the drug response of
different human cancer cell lines, a Pearson correlation analysis
was performed between the mRNA expression of the SLC39A
family genes in the NCI-60 cancer cell line and the drug activity of
263 antitumor drugs (Figure 8; Table 2; and Supplementary
Figure S2). The results demonstrated the upregulation of
SLC39A1 expression to reduce the drug sensitivity of imisone,
oxaliplatin, ifosfamide, eribulin mesylate, palbociclib, and
paclitaxel but enhanced the drug sensitivity of Irofulven. An
increase in the SLC39A2 expression enhanced the drug
sensitivity of Isotretinoin, and the sensitivity of cladribine was
found to increase by SLC39A. Various tumor cells with high
expression of SLC39A4 were found to be more resistant to the
okadaic acid and are more sensitive to 8-chloroadenosine and
allopurinol. An increase in the SLC39A5 expression enhanced the
drug sensitivity of tegafur, fluorouracil, and BML-277. Notably, the
upregulation of SLC39A6 expression was found to increase the
sensitivity of raloxifene and fulvestrant. High SLC39A7 expression
was found to increase the drug resistance of oxaliplatin, palbociclib,
dexrazoxane, entinostat, carfilzomib, epirubicin, and teniposide.
However, an elevation in the SLC39A8 gene expression was found
to enhance the drug sensitivity of nelarabine, fluphenazine,
chelerythrine, fenretinide, imexon, hydroxyurea,
cyclophosphamide, and pipobroman. In addition, the SLC39A10
gene expression was found to increase the drug sensitivity of
gefitinib, afatinib, erlotinib, lapatinib, vandetanib, ibrutinib, and
bosutinib and also increased the tolerance of cell lines to
elesclomol, paclitaxel, tyrothricin, and vinorelbine. The
SLC39A12 gene expression increased the drug sensitivity of PD-
98059, vemurafenib, selumetinib, hypothemycin, and dabrafenib
and also increased the tolerance of the cell lines to dasatinib. The
expression of SLC39A13was found to reduce the drug sensitivity of
the by-product of CUDC-305, vinorelbine, eribulin mesilate,
paclitaxel, oxaliplatin, actinomycin D, nilotinib,
homoharringtonine, LDK-378, vinblastine, dolastatin 10,
tamoxifen, imatinib, AFP464, tanespimycin, crizotinib,
palbociclib, and carfilzomib and enhance the drug sensitivity of
simvastatin. At last, the expression of the SLC39A14 gene was also
found to increase the resistance of multiple drugs, including
AFP464, panobinostat, cyclophosphamide, palbociclib, lificguat,
and fulvestrant. On the other hand, the SLC39A14 gene expression
was found to increase the drug sensitivity of entinostat.

DISCUSSION

Zinc, as an essential trace element, participates in various
physiological events, such as growth, differentiation,
development, immunity, apoptosis, and other physiological
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processes (Kimura and Kambe, 2016). Previous studies have
reported that zinc is required for over 300 enzymes’ activity
and 2,000 transcription factors to work (Prasad, 2012). Thus, zinc
metabolism and homeostasis regulate the normal cell functions in
a complex manner. Aberrant Zn transporters have been reported
to contribute to specific diseases, including endocrine diseases,
neurodegenerative diseases, metabolic diseases, cardiovascular
diseases, immune deficiencies, and cancers (Prasad, 2012;
Kambe et al., 2014). In particular, current evidence suggests

that zinc deficiency and dysregulation of the zinc metabolism
are risk factors for tumorigenesis, and zinc is considered a tumor-
suppressive agent and a potential tumor treatment target
(Grattan and Freake, 2012; Pan et al., 2017; Zhang et al.,
2021). In addition, the two groups of zinc transporters, the
ZnT transporter (SLC30A) and the ZIP channel (SLC39A),
exert strict control over the concentration of zinc in cells, and
the SLC39A are known to operate in the influx of zinc across the
cytoplasm from the extracellular environment into the cytosol

FIGURE 7 | Immune cell infiltration of the SLC39A family genes in pan-cancer derived from the TIMER2.0 dataset. (A) Correlation coefficient between SLC39A
family gene expression and B-cell infiltration score in pan-cancer. (B)Correlation coefficient between SLC39A family gene expression and CD4+ T-cell infiltration score in
pan-cancer. (C) Correlation coefficient between SLC39A family gene expression and CD8+ T-cell infiltration score in pan-cancer. (D) Correlation coefficient between
SLC39A family gene expression and Treg T-cell infiltration score in pan-cancer. (E) Correlation coefficient between SLC39A family gene expression and
macrophage cell infiltration score in pan-cancer. (F) Correlation coefficient between SLC39A family gene expression and neutrophil cell infiltration score in pan-cancer.
The association was generated with tumor purification adjusted.
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(Hojyo and Fukada, 2016; Pan et al., 2017; Brito et al., 2020). The
available data suggest that the mutation or functional change of
the SLC39A family of genes develops various diseases such as the
tumors of the digestive system, urinary system, and reproductive
tract (Prasad, 2012; Hoang et al., 2016; To et al., 2020).
Interestingly, the SLC39A family gene knockout animals have
revealed many unique phenotypes and the possibility of the
clinical targeted application and the possibility of discovery
and development of the SLC39A family inhibitors as
anticancer drugs and modulators regulating the sensitivity or
resistance of chemotherapeutic drugs (Geng et al., 2018; Hu,
2020; Mohammadinejad et al., 2020; Cheng et al., 2021).
However, the precise function of the SLC39A family genes in
pan-cancer has not been comprehensively determined.

In the current study, compared to the normal control group,
the expression levels of most of the SLC39 family genes in the
tumor tissues were found to be significantly upregulated. The

high expression of SLC39A6 is a dependable marker for breast
cancer (luminal A subtype), and elevated SLC39A10mRNA levels
were evident in the cancer cell lines of the highly aggressive breast
cancer (Kagara et al., 2007; Hogstrand et al., 2013). Cheng et al.
(2017) have found the ESCC tissues to possess an increased
mRNA expression level of SLC39A6 compared to the non-tumor
tissues. Studies by Li et al. (2007) reported that compared to the
human pancreatic ductal epithelium (HPDE) cells, the expression
of the SLC39A4 mRNA was significantly increased in the human
pancreatic cancer cells. In addition, a bioinformatics study also
found increased expression levels of the SLC39A family genes
with significant upregulation in the breast cancer, gastric cancer,
and lung cancer tissues compared to the normal breast tissues
(Ding et al., 2019; Liu et al., 2020; Zhou et al., 2021). There are not
many studies on the genetic mutations of the SLC39A family in
tumor tissues. Our study reported that the mutation frequencies
of the SLC39A4 and SLC39A1 were the highest among all the

FIGURE 8 | Association of the SLC39A family gene expression with the drug sensitivity derived from the NCI-60 cell line data. (A) Scatter plot of negative correlation
between SLC39A13 expression and the sensitivity of the by-product of CUDC-305. (B) Scatter plot of negative correlation between SLC39A4 expression and the
sensitivity of okadaic acid. (C) Scatter plot of positive correlation between SLC39A8 expression and the sensitivity of nelarabine. (D) Scatter plot of positive correlation
between SLC39A8 expression and the sensitivity of fluphenazine. (E) Scatter plot of positive correlation between SLC39A4 expression and the sensitivity of 8-
chloro-adenosine. (F) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of chelerythrine. (G) Scatter plot of positive correlation
between SLC39A4 expression and the sensitivity of vinorelbine. (H) Scatter plot of positive correlation between SLC39A10 expression and the sensitivity of gefitinib. (I)
Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of eribulin mesilate. (J) Scatter plot of negative correlation between SLC39A7
expression and the sensitivity of oxaliplatin. (K) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of paclitaxel. (L) Scatter plot of
positive correlation between SLC39A1 expression and the sensitivity of Irofulven. (M) Scatter plot of negative correlation between SLC39A13 expression and the
sensitivity of oxaliplatin. (N) Scatter plot of negative correlation between SLC39A14 expression and the sensitivity of AFP464. (O) Scatter plot of positive correlation
between SLC39A8 expression and the sensitivity of fenretinide. (P) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of actinomycin
D. Z-score from test by Pearson’s correlation using NCI-60 cell line data.
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TABLE 2 | Relationship between SLC39A family gene expression and drug sensitivity based on the NCI-60 cell line.

Gene Drug cor p-value NSC# PubChem SID

SLC39A13 By-product of CUDC-305 −0.488 7.51E-05 761390 -
SLC39A4 Okadaic acid −0.478 0.000113 677083 516878
SLC39A8 Nelarabine 0.476 0.000122 755985 144074932
SLC39A8 Fluphenazine 0.463 0.000194 92339 398387
SLC39A4 8-chloro-adenosine 0.459 0.000226 354258 464177
SLC39A8 Chelerythrine 0.456 0.000254 36405 544923
SLC39A13 Vinorelbine −0.453 0.000274 760087 144076280
SLC39A10 Gefitinib 0.447 0.000338 759856 144076186
SLC39A13 Eribulin mesilate −0.431 0.000579 707389 529374
SLC39A7 Oxaliplatin −0.430 0.000602 266046 569872
SLC39A13 Paclitaxel −0.427 0.000661 758645 144075668
SLC39A1 Irofulven 0.425 0.000704 683863 520035
SLC39A13 Oxaliplatin −0.417 0.00091 266046 569872
SLC39A14 AFP464 −0.417 0.000911 710464 530822
SLC39A8 Fenretinide 0.416 0.000953 760419 144076412
SLC39A13 Actinomycin D −0.414 0.001015 755841 144074852
SLC39A10 Afatinib 0.413 0.00103 750691 131407778
SLC39A13 Nilotinib −0.411 0.001111 747599 91148446
SLC39A1 Imexon −0.411 0.001115 714597 532526
SLC39A6 Raloxifene 0.411 0.00112 747974 91148450
SLC39A14 Panobinostat −0.409 0.001172 761190 -
SLC39A13 Homoharringtonine −0.407 0.001261 758253 -
SLC39A13 LDK-378 −0.405 0.00134 777193 -
SLC39A13 Vinblastine −0.403 0.001413 757384 144075282
SLC39A4 Allopurinol 0.403 0.001424 1,390 68199
SLC39A10 Erlotinib 0.397 0.001684 718781 534851
SLC39A1 Oxaliplatin −0.394 0.001825 266046 569872
SLC39A10 Lapatinib 0.393 0.00192 745750 91147938
SLC39A8 Imexon 0.391 0.001991 714597 532526
SLC39A1 Ifosfamide −0.390 0.002069 109724 301170
SLC39A7 Palbociclib −0.389 0.002157 758247 -
SLC39A12 PD-98059 0.381 0.002652 679828 518213
SLC39A13 Dolastatin 10 −0.380 0.002743 376128 469333
SLC39A13 Tamoxifen −0.378 0.002902 180973 447264
SLC39A10 Vandetanib 0.377 0.002996 760766 131408693
SLC39A12 Vemurafenib 0.375 0.003169 761431 131408691
SLC39A6 Fulvestrant 0.374 0.003201 719276 534986
SLC39A10 Elesclomol −0.372 0.003428 174939 445356
SLC39A10 Ibrutinib 0.370 0.003626 761910 -
SLC39A10 Bosutinib 0.370 0.003646 765694 -
SLC39A12 Selumetinib 0.366 0.003978 741078 91146061
SLC39A7 Dexrazoxane −0.366 0.004008 169780 442425
SLC39A13 Imatinib −0.366 0.004011 743414 91146949
SLC39A5 Tegafur 0.366 0.004025 148958 430704
SLC39A13 AFP464 −0.365 0.004084 710464 530822
SLC39A13 Tanespimycin −0.364 0.004255 330507 574817
SLC39A10 Paclitaxel −0.361 0.004571 758645 144075668
SLC39A1 Eribulin mesilate −0.358 0.004949 707389 529374
SLC39A13 Crizotinib −0.358 0.005009 756645 131408690
SLC39A5 Fluorouracil 0.357 0.005048 757036 144075048
SLC39A13 Palbociclib −0.357 0.005157 758247 -
SLC39A8 Hydroxyurea 0.355 0.00534 32065 90752
SLC39A1 Palbociclib −0.354 0.005531 758247 -
SLC39A14 Cyclophosphamide −0.354 0.005552 26271 87150
SLC39A10 Tyrothricin −0.354 0.005564 757363 144075261
SLC39A5 BML-277 0.353 0.005734 741899 91146360
SLC39A7 Entinostat −0.351 0.00593 706995 529250
SLC39A8 Cyclophosphamide 0.351 0.006 26271 87150
SLC39A10 Vinorelbine −0.348 0.006518 760087 144076280
SLC39A13 Carfilzomib −0.347 0.006546 758252 -
SLC39A14 Palbociclib −0.345 0.006897 758247 -
SLC39A13 Simvastatin 0.345 0.006942 758706 144075729
SLC39A14 Lificguat −0.344 0.007171 728165 48427734
SLC39A12 Hypothemycin 0.343 0.007328 354462 576295

(Continued on following page)
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members and were 6 and 4%, respectively. The overall mutation
frequency of the SLC39A family genes was in the general range of
0.8–6.0% in pan-cancer. Moreover, the mutations in the SLC39A
family genes were found to have a significant impact on the DSS,
PFS, and DFS of the malignant tumor.

For prognostic analysis, the expression of SLC39A family
genes was found to be significantly related to the OS and RFS
in multiple types using the KM-plotter database. Most SLC39A
family genes showed protective effects in BLCA, CESC, HNSC,
BRCA, ESCA, and OV. Simultaneously, the PrognoScan results
indicated that the SLC39A family gene expression levels were
significantly correlated with the prognosis of the colorectal,
breast, bladder, lung, ovarian, blood, brain, skin, eye, soft
tissue, prostate, and head and neck cancers. Our findings were
consistent with those of the previous study, in that high mRNA
expression levels of SLC39A6 and SLC39A14 indicated favorable
OS, but upregulated SLC39A2-5, SLC39A7, and SLC39A12-13
were associated with poor OS in the patients with breast
carcinoma (Liu et al., 2020). Higher expression of SLC39A1,
5–7, and 9 indicated better OS, FPS, and PPS, and increased
SLC39A2–4, 8, and SLC39A10 expression indicated poor OS, FP,
and PPS in the patients with gastric cancer (Ding et al., 2019). In
addition, an increase in the SLC39A7 expression was related to
better OS, while the upregulated level of SLC39A3 and SLC39A4
were associated with inferior OS in patients with LUSC (Zhou
et al., 2021). Consistent with previous research, the GO function
enrichment indicated the SLC39A family genes and their highly
related genes to contribute to zinc transport– and homeostasis-
related biological processes, such as zinc II ion transmembrane
transport, cellular zinc ion homeostasis, oxidation-reduction,
androgen biosynthesis, and zinc II ion transmembrane import.
The KEGG analysis showed SLC39A family genes to be involved
in the hormone regulation, metabolic pathways, mineral
absorption, and chemical carcinogenesis pathways (Ding et al.,
2019; Zhou et al., 2021). Therefore, the prognostic effect of the
SLC39A family genes can be speculated to be closely related to
zinc transfer, metabolism, and function (Guo and He, 2020).

Increasing studies have shown that zinc is involved in a variety
of important functions of immune cell activation and initiation of
immune response in the process of innate immunity and adaptive
immunity; thus, zinc deficiency can lead to immune dysfunction

(Bin et al., 2018). Given the close relationship between the
SLC39A family and zinc transport, the regulatory relationship
between the SLC39A family genes and immune infiltration
deserves more attention. SLC39A6 and SLC39A10 are the first
zinc transporters reported to regulate immune cell functions in
mammals. Subsequent studies have confirmed the role of
SLC39A8 in regulating various immune cells and playing an
irreplaceable role in the process of innate immunity (Kitamura
et al., 2006; Liu et al., 2013). The study of Hojyo et al. (2014)
reported the SLC39A10 expression to be upregulated in pro-B
lymphocytes and SLC39A10 to participate in B-cell immunity by
leading the homeostasis and the function of the B cells. Our
findings suggested a significant correlation between the SLC39A
family gene expression and B-cell infiltration in broad cancer
types and CD4+ T cells, CD8+ T cells, Treg T cells, macrophages,
and neutrophils in specific tumors. These results provide new
possibilities for immunotherapy to improve the prognosis by
modulating the SLC39A family genes on the tumors or immune
cells. Presently, there have been a few attempts of
transformational application research using the SLC39A family
to treat or alleviate diseases in animals or cell models. One study
showed that in an in vivo xenograft model, the overexpression of
the SLC39A1 leads to an increased zinc uptake, reducing the
tumor growth (Golovine et al., 2008). Utilizing the characteristics
of the zinc SLC39A6 transporter widely expressed in all breast
cancer subtypes, Seattle Genetics has designed and constructed a
new antibody–drug conjugate called SGN-LIV1A to treat
metastatic breast cancer through the targeted regulation of
SLC39A6 (Sun et al., 2011). In our study, the Pearson
correlation analysis was performed between the mRNA
expression of the SLC39A family genes in the NCI-60 cancer
cell line and the drug activity of 263 antitumor drugs. The results
showed that SLC39A family genes are significantly related to the
sensitivity or resistance of 63 antitumor drugs in a variety of
tumor cell lines. Among them, SLC39A13 and the by-product of
the CUDC-305, SLC39A4, okadaic acid, SLC39A8, and
nelarabine are the three most likely connections. Based on
these results, the detection and targeted regulation of the
expression of the SLC39A family gene have been found to
have special potential value for the clinical selection of
antitumor drugs.

TABLE 2 | (Continued) Relationship between SLC39A family gene expression and drug sensitivity based on the NCI-60 cell line.

Gene Drug cor p-value NSC# PubChem SID

SLC39A7 Carfilzomib −0.342 0.007394 758252 -
SLC39A12 Dabrafenib 0.340 0.007788 764134 -
SLC39A3 Cladribine 0.339 0.008008 105014 405818
SLC39A14 Fulvestrant −0.339 0.008077 719276 534986
SLC39A2 Isotretinoin 0.338 0.008346 122758 416403
SLC39A14 Zoledronate 0.336 0.008774 721517 536160
SLC39A1 Paclitaxel −0.333 0.009309 758645 144075668
SLC39A7 Epirubicin −0.333 0.009424 759195 144075933
SLC39A14 Entinostat −0.332 0.009669 706995 529250
SLC39A7 Teniposide −0.331 0.009681 758667 144075690
SLC39A12 Dasatinib −0.331 0.009702 759877 144076207
SLC39A8 Pipobroman 0.331 0.009745 25154 86412

cor, correlation coefficient; NSC#, Cancer Chemotherapy National Service Center number; PubChem SID, PubChem Substance IDs.
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Despite being the first one to perform a multidimensional and
multi-omics analysis of the SLC39A family genes in pan-cancer,
this study has some shortcomings worth considering. First, the
bioinformatics analysis was carried out through multiple online
big data databases, and further in vitro and in vivo experiments
are required to verify the prediction results. Second, multiple
databases are not completely consistent in the expression and
survival prognosis of the SLC39A family genes in certain tumors.
Large samples, different populations, and multicenter clinical
studies need further clarification. Third, although we have
confirmed that the SLC39A family gene expression was
significantly related to the immune infiltration and survival
outcome of a variety of tumors, the causal relationship
between the immune infiltration and prognosis remains
elusive. Fourth, analyzing the level of immune infiltrating cells
at the tumor tissue level may be error-prone, and hence, single-
cell sequencing may be required for further exploration.

CONCLUSION

This pan-cancer study performed a comprehensive and
systematic investigation of the expression patterns, genetic
mutation, prognostic value, function enrichment, immune
infiltrating, and potential therapeutic targets of the SLC39A
family of genes. Our results proved that most of the SLC39
family genes’ expression was significantly increased in the
tumor tissues and was associated with clinical prognosis in
pan-cancer. Moreover, the SLC39A family gene expression was
significantly related to the immune cell infiltration levels of six

types of immune cells and contributed to the sensitivity or
resistance of the drugs in specific types of tumors. Thus, we
concluded that the SLC39A of family genes may be crucial for
tumorigenesis, the tumor microenvironment, and drug
sensitivity, providing novel ideas to develop new targeted
therapy for malignant tumors.
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Background: RNA-binding proteins (RBPs) act as important regulators in the progression
of tumors. However, their role in the tumorigenesis and prognostic assessment in multiple
myeloma (MM), a B-cell hematological cancer, remains elusive. Thus, the current study
was designed to explore a novel prognostic B-cell-specific RBP signature and the
underlying molecular mechanisms.

Methods: Data used in the current study were obtained from the Gene Expression
Omnibus (GEO) database. Significantly upregulated RBPs in B cells were defined as B cell-
specific RBPs. The biological functions of B-cell-specific RBPs were analyzed by the
cluster Profiler package. Univariate and multivariate regressions were performed to identify
robust prognostic B-cell specific RBP signatures, followed by the construction of the risk
classification model. Gene set enrichment analysis (GSEA)-identified pathways were
enriched in stratified groups. The microenvironment of the low- and high-risk groups
was analyzed by single-sample GSEA (ssGSEA). Moreover, the correlations among the
risk score and differentially expressed immune checkpoints or differentially distributed
immune cells were calculated. The drug sensitivity of the low- and high-risk groups was
assessed via Genomics of Drug Sensitivity in Cancer by the pRRophetic algorithm. In
addition, we utilized a GEO dataset involving patients with MM receiving bortezomib
therapy to estimate the treatment response between different groups.

Results: A total of 56 B-cell-specific RBPs were identified, which were mainly enriched in
ribonucleoprotein complex biogenesis and the ribosome pathway. ADAR, FASTKD1 and
SNRPD3 were identified as prognostic B-cell specific RBP signatures in MM. The risk
model was constructed based on ADAR, FASTKD1 and SNRPD3. Receiver operating
characteristic (ROC) curves revealed the good predictive capacity of the risk model. A
nomogram based on the risk score and other independent prognostic factors exhibited
excellent performance in predicting the overall survival of MM patients. GSEA showed
enrichment of the Notch signaling pathway and mRNA cis-splicing via spliceosomes in the
high-risk group. Moreover, we found that the infiltration of diverse immune cell subtypes
and the expression of CD274, CD276, CTLA4 and VTCN1 were significantly different
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between the two groups. In addition, the IC50 values of 11 drugs were higher in the low-
risk group. Patients in the low-risk group exhibited a higher complete response rate to
bortezomib therapy.

Conclusion: Our study identified novel prognostic B-cell-specific RBP biomarkers in MM
and constructed a unique risk model for predicting MM outcomes. Moreover, we explored
the immune-related mechanisms of B cell-specific RBPs in regulating MM. Our findings
could pave the way for developing novel therapeutic strategies to improve the prognosis of
MM patients.

Keywords: multiple myeloma, tumor-infiltrating B lymphocyte, RNA-binding protein, prognostic signature, immune-
related signature, immunotherapy

1 INTRODUCTION

Multiple myeloma (MM) is a B-cell hematological malignancy. The
proliferation of plasma cells further induces end organ dysfunctions,
including anemia, hypercalcemia, bone lesions and renal failure
(Palumbo and Anderson, 2011). The incidence rate of MM has
rapidly increased by 126% globally over the past 2decades (Cowan
et al., 2018). The rapidly increasing incidence rate has underscored
the urgent need for treatment improvement. Although the overall
survival of multiple myeloma has been rapidly improved by the
widespread application of stem cell transplantation and novel drugs
represented by proteasome inhibitors and immunomodulatory
drugs (Attal et al., 2017; Facon et al., 2019; Mikkilineni and
Kochenderfer, 2021), MM remains incurable. The highly
heterogeneous clinical outcomes of MM patients depend on the
tumor burden, tumor cell characteristics, and especially genetic
abnormalities. Currently, a risk classification model based on
more detailed genetic and molecular information was created by
the International Multiple Myeloma Working Group in 2015
(Palumbo et al., 2015). This staging system is widely used in
clinical practice. Approximately 75% of patients who present
without cytogenetic abnormalities are considered as low risk.
These patients present heterogenous clinical outcomes (Binder
et al., 2017). There remains a group of patients who are divided
into low-risk groups characterized by therapy resistance, rapid
refractory periods and short overall survival. Meanwhile, existing
classification model fail to identify some of patients with 1q21
amplification and del 17p for very poor outcome. However, no
attempts have been made to further sub-stratify such amount of
patients (Walker et al., 2018). In light of the limitations of the current
staging system, it is necessary to identify novel biomarkers and
establish a prognostic model based on cytogenetic characterization
to distinguish good prognosis from poor prognosis patients, thereby
improving patients’ final prognosis.

The highly heterogeneous outcome of MM is mainly ascribed
to the complex genomic landscape, including chromosomal gains
or losses, structural variations, and cancer driver gene mutations
(Manier et al., 2017). These genomic instabilities contribute to the
clonal expansion of disease. As a result of the rapid development
of high-throughput sequencing, posttranscript regulation
(PTGR) has gained attention throughout the whole process of
tumors (Gerstberger et al., 2014). RNA-binding proteins (RBPs)
play key roles in posttranscript regulation by affecting gene

expression and cellular metabolism (Yan et al., 2021). Studies
have found that RBPs are functionally associated with tumor
progression in different types of cancers, including multiple
myeloma (Konishi et al., 2021; Wang et al., 2021).

The crucial role of the complex bone marrow microenvironment
in MM progression and therapeutic response has been well
established. The interactive relationship between tumor cells and
the bonemarrow environment is critical in promoting chromosomal
instability in MM(Neuse et al., 2020). Single-cell RNA-sequencing
datasets revealed in-depth interactions of stomal cells, myeloma cells
and immune cells within the bone marrow microenvironment.
These analyses found bone marrow mesenchymal stromal cells,
accompanied by immune cells and aberrant genes involved in
immune modulation and tumorigenesis (de Jong et al., 2021).

It has been gradually recognized that the success of
chemotherapy and immunotherapy relies on the anticancer
immune response (Fridman et al., 2017). The correlation
between tumor-infiltrating lymphocytes and the clinical
outcomes of cancers has been investigated (Fridman et al., 2012).
The prognostic value of infiltrating T lymphocytes has been widely
accepted. In contrast to T cells, the effects of infiltrating B cells in
tumorigenesis and treatment are far from clear.

Growing evidence has indicated that Tumor-infiltrating B
(TIL-B) cells contribute to the prognostic effect of tumors by
inducing CD4+ T cells and CD8+ T cells, which help to regulate
tumor invasion and metastasis (Wouters and Nelson, 2018).

Multiple myeloma is a plasmocytic disease. The core biological
process of MM is genetic dysfunction throughout the multistep
progression of B cell development (Pawlyn and Morgan, 2017). In
the present study, we investigated the TIL-B-related RBP signature
in MM. Furthermore, we propose a B-cell-specific RBP prognostic
model of MM for the first time by combining immune, RBP and
clinical characteristics. This model enables us to predict the clinical
prognosis and therapeutic response of MM patients.

2 MATERIALS AND METHODS

2.1 Patient and Tumor Cell Line Data
Preparation
Transcriptional data of MM patients were downloaded from
GSE24080, GSE4204 and GSE39754. GSE24080, including 559
newly diagnosed patients with MM(Mitchell et al., 2016), was
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used as the training set. GSE4204, including 538 newly diagnosed
MM patients (Driscoll et al., 2010), was used as the validation set.
These samples were analyzed on platforms GPL570, Affymetrix
Human Genome U133 plus 2.0 array. GSE39754, including gene
expression profiling of 170 newly diagnosed MM patients
receiving bortezomib therapy (Chauhan et al., 2012), was used
to compare the treatment response between different groups. A
total of 1,542 RBPs were obtained from a previous study
(Gerstberger et al., 2014). Expression data of RBPs in different
cell types were downloaded from GSE42058 (4 samples of CD11c
+ cells), GSE49910 (4 samples of B cells, four samples of
neutrophils, 24 samples of T cells, six samples of monocytes,
eight samples of erythroblasts and a sample of bone marrow and
progenitors), GSE51540 (9 samples of T cells), GSE59237 (10
samples of dendritic cells), GSE6863 (3 samples of dendritic
cells), GSE8059 (3 samples of NK cells), GSE13906 (2 samples
of gamma-delta T cells and two samples of lymphocytes),
GSE23371 (12 samples of dendritic cells), GSE25320 (11
samples of mast cells), GSE27291 (12 samples of T cells),
GSE27838 (16 samples of NK cells), GSE28490 (10 samples of
monocytes, five samples of B cells, 10 samples of T cells, five
samples of NK cells, four samples of eosinophils, five samples of
mDCs, three samples of neutrophils and five samples of pDCs),
GSE28726 (10 samples of NKT cells, eight samples of CD1d-aGC
+ Va24- T cells and eight samples of CD4 T cells), and GSE37750
(8 samples of plasmacytoid dendritic cells) and GSE39889 (16
samples of neutrophils). Each dataset was normalized, and all
subsequent analyses were performed on normalized datasets.

2.2 Identification and Functional Analysis of
Robust Prognostic B-Cell Specific RBP
Signatures in MM
The Limma package (Ritchie et al., 2015) was used to screen
differentially expressed RBPs among B cells and other cell types
by following model: design < - model.matrix (∼group+0). Genes
with FDR-corrected p-values below 0.01 were considered
differentially expressed genes. Significantly upregulated RBPs
in B cells were defined as B cell-specific RBPs. Gene ontology
(GO) (Ashburner et al., 2000) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000) enrichment
analyses of B-cell-specific RBPs were applied by clusterProfiler in
the R package (Yu et al., 2012; Wu et al., 2021). K-M analysis was
performed to screen B-cell-specific RBPs associated with survival
(p < 0.05). Then, univariate and multivariate Cox regressions
were performed to further obtain a robust prognostic B-cell-
specific RBP signature in MM (p < 0.05).

2.3 Construction of the Risk Model and
Nomogram
The calculation formula for the risk score was defined as follows:

ExpGene1*Coef1 + ExpGene2*Coef2+ ExpGene3*Coef3.where
Coef indicates the regression coefficients of genes, and Exp is the
normalized expression value of each prognostic B cell-specific RBP
signature. According to the median value of the risk score, MM
patients in the training set were grouped according to the value of

the risk score. K-M analysis was performed to identify the overall
survival of all risk groups. ROC curves were plotted to evaluate the
effectiveness of the risk model using the “survivalROC” routine in
the R package. The risk model was tested in the validation set.
Thereafter, Cox regression analyses were performed to identify
independent prognostic factors for MM patients. The risk
predictive model was plotted as a nomogram based on
independent prognostic factors. The performance of the
nomogram was evaluated by calibration and decision curves.

2.4 Immune Microenvironment of MM
Patients in High- and Low-Risk Groups
Twenty-nine immune-related gene sets were used to perform
ssGSEA (Subramanian et al., 2005) to calculate the enrichment
infiltration of immune cells, pathways or functions in the MM
samples. The 29 gene sets represented all types of subtypes of
immune cells, potential functions, and related pathways
described in a previous study (He Y. et al., 2018). Moreover,
the correlations between the risk score and differentially enriched
immune cells, pathways or functions and the correlations
between the prognostic B-cell specific RBP signature and
differentially enriched immune cells, pathways or functions
were calculated. At the same time, the expression of immune
checkpoints, including CD274 (also named PD-L1), CD276,
CTLA4, PDCD1 and VTCNA, was compared between
different groups. Additionally, the correlations between the
risk score and differentially expressed immune checkpoints
were calculated. Correlations were evaluated using Pearson tests.

2.5 Observation of Chemotherapeutic
Response in Different Risk Groups
The IC50 values of 20 common chemotherapeutic drugs in the low-
and high-risk groupswere calculated by the pRRophetic algorithmvia
the GDSC database (Yang et al., 2013; Geeleher et al., 2014), while the
percentages of complete response (CR), very good partial response
(VGPR), no response, progression-free (NR) or progression and no
response (Prog) were calculated to evaluate the treatment response to
bortezomib therapy in the low- and high-risk groups.

2.6 Statistical Analysis
All of the data were analyzed by R software (version 4.0.0).
Comparisons between low- and high-risk groups were
calculated using Wilcoxon’s test.

3 RESULTS

3.1 Identification and Functional Analysis of
56B-cell-specific RBPs
By comparing the expression of RBPs among B cells and other cell
types, we found a total of 56 significantly upregulated RBPs (p <
0.01) and defined them as B cell-specific RBPs. Heatmap
displaying differential gene expression in B cells and other
cells (Figure 1A). GO enrichment analysis indicated that these
B cell-specific RBPs were enriched in ribosome-related and RNA
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metabolism- and catabolism-associated BP, CC and MF,
including ribonucleoprotein complex biogenesis, ribosome
biogenesis, mRNA catabolic process, ribosomal subunit and
catalytic activity, and acted on RNA. The top 10 BP, CC and
MF are shown in Figure 1B. Similar to the GO results, we found
that these B cell-specific RBPs were significantly enriched in
KEGG pathways of ribosome and ribosome biogenesis in
eukaryotes (Figure 1C).

3.2 Identification of ADAR, FASTKD1 and
SNRPD3 as Prognostic Signatures in MM
3.2.1 Purified Immune Cell Data
Thereafter, we investigated the prognostic value of these B cell-
specific RBPs. First, according to the expression of each RBP, we
divided MM patients into low- and high-RBP expression groups.
K-M analysis revealed that patients in the groups with lower
expression of FASKD1, SNRPD3, DDX21, MRPL3, ADAR,
CPSF3, DROSHA, and CAPRIN2 and higher expression of
SART1 had better survival (Figure 2), suggesting that
FASKD1, SNRPD3, DDX21, MRPL3, ADAR, CPSF3,
DROSHA, CAPRIN2 and SART1 might play important roles

in the prognosis of MM patients. Next, univariate Cox regression
analysis showed that FASKD1, SNPPD3, DDX21, MRPL3,
ADAR, CPSF3 and DROSHA were closely related to the
outcomes of patients (p < 0.05, Table 1). To further obtain a
robust prognostic signature, we performed multivariate Cox
regression algorithm analysis and found that ADAR, FASKD1
and SNRPD3 were significantly correlated with prognosis (p <
0.05, Table 2), and all of them acted as risk factors (HR > 1,
Figure 3). Thus, ADAR, FASKD1 and SNRPD3 were identified as
prognostic B cell-specific RBP signatures in MM and were used
for subsequent construction of the risk model.

3.2.2 Construction of the Risk Score Model and
Nomogram Based on the Prognostic B-Cell Specific
RBP Signature in MM
The risk scores of each patient were calculated according to the
expression levels and coefficients of ADAR, FASKD1 and
SNRPD3. Patients in the training set were divided into high-
and low-risk groups according to the median risk score
(Figure 4A). The distribution of all patients’ survival status in
the training set is shown in Figure 4B. Patients in the low-risk
group had a survival advantage over patients in the high-risk

FIGURE 1 | Identification of TILB-RBP related mRNAs. (A). Heatmap of differential RPB gene expression in B cells and other immune cells. (B). GO enrichment
analysis of TILB-RBP-related mRNAs. (C). KEGG pathway of TILB-RBPs-related mRNAs.
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group (Figure 4C). The areas under the ROC curves for 1-
,3–5 years survival were 0.648, 0.642 and 0.626, respectively,
suggesting good performance of the risk model in the training
set (Figure 4D). The risk model was further tested in the
validation set, and similar results were obtained (Figures 5A–D).

Next, we conducted univariate andmultivariate analyses to detect
independent prognostic factors. The univariate results showed that
age, B2M, BMPCand risk score were significantly associatedwith the
overall survival of MM patients (Figure 6A). Age, B2M, BMPC and

risk score were then included in the multivariate analysis, and we
found that the risk score was remarkably related to prognosis
(Figure 6B), indicating that the risk score was an independent
prognostic factor for poor prognosis in MM.

Thereafter, we constructed a nomogram with a C-index of
0.667 to predict the 1-, 3–5 years survival of MM patients,
combined with independent prognostic factors (age, B2M and
risk score) obtained by the above multivariate analysis
(Figure 7A). The slopes of the calibration curves for 1-,
3–5 years survival were close to 1 (Figure 7B), indicating the
high accuracy of the nomogram. In addition, the decision curves,
which displayed the clinical utility of each model, indicated that
the nomogram had better survival prediction performance than
the risk model (Figure 7C).

3.3 Functional Analysis of Prognostic
B-cell-specific RBP Genes by GSEA
To better understand the underlyingmechanisms of the prognostic
B cell-specific RBP signature in regulating MM, we first analyzed
the functions of genes byGSEA.We found that the Notch signaling
pathway, prespliceosome, mRNA cis-splicing via spliceosome and

FIGURE 2 | K-M analysis of nine differential genes regarding survival. (A–G). Kaplan-Meier survival curves of Multiple myeloma with different expression levels of
ADAR, CAPRIN2, CPSF3, DDX21, FASKD1, DROSHA, MRPL3, SART1, and SNRPD3.

TABLE 1 | Univariate Cox regression analysis results of differential RBPs.

Gene Hazard ratios CL95 p-value

ADAR 1.76 1.28–2.41 0.000
CPSF3 1.83 1.29–2.60 0.001
DDX21 1.58 1.17–2.11 0.002
DROSHA 1.64 1.12–2.39 0.010
FASTKD1 1.74 1.32–2.31 0.000
MRPL3 1.73 1.18–2.54 0.001
SNRPD3 1.48 1.19–1.84 0.000
CAPRIN2 0.82 0.58–1.16 0.262
SART1 0.79 0.58–1.06 0.118
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U5 snRNP were notably enriched in the high-risk group (p < 0.01),
while olfactory receptor activity, sensory perception of smell,
response to amphetamine, establishment of pigment granule
localization, regulation of renal system process, pigment granule
localization, olfactory transduction, mating, and odorant binding
were enriched in the low-risk group (p < 0.01, Figure 8).

3.4 Immune Microenvironment of Low- and
High-Risk Groups
Next, we performed ssGSEA to detect the enriched distribution of
different immune cells, pathways or functions. We analyzed the
expression of immune checkpoints further to evaluate the immune
microenvironment differences between the two groups. The
ssGSEA results showed that the enrichment level of Tfhs was
lower in the low-risk group, and other immune cells, including
B cells, CD8+ T cells, T cell coinhibition, T cell costimulation, Th1
cells and type II IFN response, DCs, iDCs, APC costimulation,
CCR, checkpoint, HLA, inflammation-promoting, macrophages,
mast cells, MHC class Ⅰ, and neutrophils, were more highly
enriched in the low-risk group (Figure 9A). All of the
enrichment levels of the immune cells, except Tfh and MHC
class I, were negatively correlated with the expression of ADAR,

FASKD1 and SNRPD3 (p < 0.05, Figure 9B). We also found that
the risk score was negatively correlated with enrichment levels of
the immune cells (p < 0.05, Figure 9C). Consistent with the
ssGSEA results, we observed that the expression of immune
checkpoints, including CD274, CD276, CTLA4 and VTCN1,
was remarkably higher in the low-risk group (p < 0.01,
Figure 9D), while the risk score was negatively correlated with
the expression of CD274, CD276, CTLA4 and VTCN1 (p < 0.01,
Figure 9E). All of these results suggested that the prognostic B-cell-
specific RBP signature influenced the immune microenvironment
of MM patients, and a higher risk score could indicate lower
antitumor immunity in MM patients.

3.5 Validation of the Prognostic Value of
TBIL-RBPs in the Chemotherapeutic
Response of MM
Given the different immune microenvironments between the
low- and high-risk groups, we hypothesized that the response
to drugs might be different between the two groups. The IC50 of
A.443,654, A.770,041, ABT.888, AG.014699, AICAR, AKT.
inhibitors VIII, ATRA, AUY922, axitinib, AZ628 and
AZD7762 were significantly higher in the low-risk group

FIGURE 3 | Forest plot visualizing the HRs of univariate Cox analysis of the TILB-RBPs and prognosis.

TABLE 2 | Multivariate Cox regression algorithm analysis of ADAR, FASKD1 and SNRPD3 gene expression with prognosis.

Gene Coef HR HR.95L HR.95H p-value

ADAR 0.40216328 1.49505543 1.07431169 2.08057937 0.01707585
FASTKD1 0.44163922 1.55525453 1.17418704 2.05999263 0.00207,193
SNRPD3 0.25941536 1.29617207 1.03397688 1.62485454 0.02446633
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FIGURE 5 | Validation of the risk score model based on the prognostic B-cell specific RBP signature in MM. (A). Patient distribution by different risk scores in the
validation set. (B). Survival status of all patients in the validation set. (C). Kaplan-Meier survival curves of patients in the high-risk and low-risk groups. (D). ROC curve
analysis according to the 1–5 years survival of the area under the ROC curve value in the validation set.

FIGURE 4 |Construction of the risk score model based on the prognostic B-cell specific RBP signature in MM. (A). Patient distribution by different risk scores in the
training set. (B). Survival status of all patients in the training set. (C). Kaplan-Meier survival curves of patients in the high-risk and low-risk groups. (D). ROC curve analysis
according to the 1–5 years survival of the area under the ROC curve value in the training set.
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(Figure 10A), indicating that patients in the low-risk group were
more sensitive to these drugs. In addition, we compared the
treatment response to bortezomib therapy in different risk
classification groups. We found that a larger proportion of
patients (36.6%) in the low-risk group had CR to bortezomib
therapy than that (27.7%) in the high-risk group (Figure 10B),
suggesting that the TBIL-RBPs might be a potential biomarker of
bortezomib treatment response for MM patients.

4 DISCUSSION

Multiple myeloma is a B cell hematological malignancy with
insidious onset. Once diagnosed, most patients suffer from
multiorgan dysfunction. The incidence rate of MM has
increased rapidly over the last decade. Substantial strides have
been made in the treatment of MM. However, for some reasons,
including a lack of early detection and complex cytogenetic
abnormalities, the majority of MM patients continue to
relapse, and a minority of MM patients even suffer from early

relapse and resistance to chemotherapy and immunotherapy,
gaining little benefit from advances in therapy (Kumar et al.,
2017). The application of genomic technologies has led to a better
understanding of the underlying biology of MM(Lohr et al.,
2014). At the same time, it is widely accepted that
dysregulated immunological processes in the tumor
microenvironment are closely related to the progression of
MM(Nakamura et al., 2020; Botta et al., 2021). Thus, we
concentrated on the cytogenetic heterogeneity of MM and the
correlation between tumor immune cell infiltration and tumor
cells. Using RNA sequencing data and clinical data in GEO, we
constructed a novel prognostic model based on B cell-specific
RBP-associated genes, which are of remarkable importance in the
early diagnosis, prognosis prediction and therapeutic evaluation.
Subsequently, we verified the predictive value of the model in
validation datasets. Furthermore, a nomogram with high
accuracy for predicting the overall survival of MM patients
was constructed based on the TBIL-RBPs and other
independent prognostic factors, as evidenced by calibration
and decision curves.

FIGURE 6 | Independence of the TILB-RBPs. A. Forest plot visualizing the HRs of univariate Cox analysis of the TILBlncSig and clinicopathological factors in (A) the
TCGA discovery dataset (B) the TCGA testing dataset; and (C) the GSE31684 dataset.
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In the present study, we first conducted a comparison analysis
among different immune cell lines. Fifty-six highly specifically
expressed TILB-RBPs were preferentially observed in B cell lines
compared with other immune cell lines. Furthermore, functional
enrichment analysis revealed that these B cell-specific RBPs were
closely related to the immune response, ribosome biogenesis and
RNA metabolism. RBPs play key roles in posttranscriptional
regulation via genetic changes, epigenetic alterations, and
noncoding RNA mediation, which are essential in the
malignant transformation of cancers (Bitaraf et al., 2021).
RBPs are also essential in tumorigenesis in hematological
malignancies. Insulin-like growth factor 2 mRNA binding
proteins (IGF2BPs) are described as major regulators of stem
cells. IGF2BP1 and IGF2BP3 are overexpressed in translocation-
ETV6/RUNX1-positive B-ALL (Elcheva et al., 2020). Acute
myelocytic leukemia patients with high expression of IGF2BP2
had worse overall survival (He X. et al., 2018). Musashi-2 protein
(MSI2) is overexpressed in acute myeloid leukemia (AML) cell
lines, and high expression of MSI2 promotes proliferation and
inhibits apoptosis of AML cells. High expression of MSI2 in AML
patients correlates with poorer survival in patients, thereby
defining MSI2 as a prognostic biomarker for therapy in AML
(Kharas et al., 2010). There have also been several reports of
specific low-occurrence mutations in RPL5 and RPL10 and

overexpression of RPS9 in MM that were closely related to
tumorigenesis and clinical outcomes (Dabbah et al., 2021).
These studies were in accordance with our findings that RBPs
could be potential prognostic biomarkers.

To further define the role of the TILB-RBPs in the clinical
outcomes of MM, the relationship between TILB-RBPs and
overall survival was assessed. We identified 3B cell-specific RBP
genes -- ADAR, FASTKD1 and SNRPD3—which were
significantly correlated with the outcomes of MM patients.
ADAR-mediated A-to-I editing is a key form of
posttranscriptional regulation in human physiology (Vesely
and Jantsch, 2021). ADAR1 is the most abundant and active
RNA editing enzyme in MM and is recognized as an oncogenic
central driver of cancer cell proliferation (Teoh et al., 2018).
ADAR1 promotes malignant regeneration of MM by mediating
the recoding of the self-renewal agonist GLI1, which activates
the Hh pathway and promotes the production of cancer stem
cells (Lazzari et al., 2017). FASTK family proteins have been
verified to be linked to mitochondrial diseases by regulating
mitochondrial RNA homeostasis (Boehm et al., 2017). Some
studies have confirmed that FASTKD1 is related to the
occurrence of tumors. For example, FASTKD1 was associated
with poor prognosis of ALL in children and adults (Wang et al.,
2015). FASTKD1 could also be used as a biomarker of primary

FIGURE 7 | Construction and verification of the nomogram (A) A nomogram combining clinical signatures and prognostic factors to predict the 1–5 years survival
rate of MM patients (B) The 5 years calibration chart verifies the predictive ability of the nomogram (C) The 5 years decision curve analysis of the clinical benefit rate.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7787159

Zhang et al. TILB-RBPs Prognostic Value of Myeloma

29

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


endometrial tumors (Colas et al., 2011). SNRPD3, also called
SMD3, binds to small nuclear RNA to affect the formation of
small nuclear ribonucleoprotein particles (Camasses et al.,
1998). Studies have revealed that silencing of SNRPD3 causes
overexpression of p53 levels, thereby modulating CDKN1A
expression and further influencing the cell cycle arrest and
cell death of NSCLC cells (Siebring-van Olst et al., 2017). In
addition, a study also found that SNRPD3 might be a novel
breast cancer-related biomarker (Zhang et al., 2015). In our
study, we found for the first time that FASTKD1 and SNRPD3
are related to the prognosis of multiple myeloma, and the

specific function and mechanism of these genes in
tumorigenesis in multiple myeloma require further study. At
the same time, we calculated the risk score and constructed a
predictive model based on these three genes. The results of the
ROC curve analysis showed that the model has good predictive
effects. In addition, univariate and multivariate regression
analyses indicated that the risk score was an independent
prognostic factor. At the same time, a nomogram was
constructed for predicting the survival of patients with
multiple myeloma at 1, 3 and 5 years. The C index and
correction curve of the nomogram showed that the

FIGURE 8 | Functional analysis of genes in the low- and high-risk groups by GSEA. (A). Notch signaling pathway, (B). prespliceosome, (C). mRNA cis-splicing via
spliceosome, (D). U5 snRNP.
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prediction model has high prediction accuracy for 1, 3 and
5 years and has clinical value.

To further clarify the role of the TILB-RBPs in stratifying
survival, the association of the TILB-RBPs and survival in MM
was assessed. Patients were grouped based on the risk score. First,
GSEA functional enrichment analysis was performed for all genes
in different groups. The results revealed that the Notch signaling
pathway and biological processes and cellular components related
to RNA splicing were significantly enriched in the high-risk
groups. The Notch pathway is crucial to cell cycle regulation.
Accumulating evidence has shown that the Notch pathway
deregulates MM in tumorigenesis and drug resistance,
especially in proteasome inhibitor resistance (Colombo et al.,
2013). Deregulation of Notch signaling inMM occurs throughout
the pathogenesis of plasma cells (Saltarella et al., 2019). Notch

receptors and their ligands affect not only MM cells but also bone
marrow stroma to further regulate the adhesive behavior of MM
(Nefedova et al., 2004). In addition, the Notch pathway plays a
vital role in immune regulation by stimulating the proliferation of
T regulatory cells and upregulating TGF-β receptor II to suppress
antitumor T-cell responses (Hue et al., 2012). An increasing
number of studies have shown that the RNA spliceosome
pathway is a major factor in cancer progression. A study
revealed that aberrant RNA splicing patterns were relevant to
worse survival outcomes of MM patients, which could be used for
the risk stratification of patients (Bauer et al., 2021). Moreover, a
study showed that inhibition of the spliceosome could synergize
with proteasome inhibitors to potentiate antitumor effects. This
unreported mechanism of the spliceosome suggests that
spliceosome targeting could serve as a potential therapeutic

FIGURE 9 | Immune microenvironment of the low- and high-risk groups. (A). Boxplots of the immune cell infiltration cluster in the high- (red)- and low- (green)-risk
groups stratified by the TILB RBP prognostic model. (B). Correlation between the expression of ADAR, SNRPD3 and FASTKD1 and the immune cell infiltration cluster.
(C). Correlation between the risk score and immune cell infiltration cluster. (D). The differential expression of immune checkpoints, including CD274, CD276, CTLA4 and
VTCN1, in the low-risk and high-risk groups. (E). Association between the risk score and the expression of CD274, CD276, CTLA4 and VTCN1.
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target in myeloma (Huang et al., 2020). The above results are in
accordance with our findings that prognostic characteristic genes
could affect the prognosis of patients with multiple myeloma by
regulating the splicing of precursor mRNA, activation of the
Notch pathway and RNase L and ribosomal nucleoprotein
synthesis.

Subsequently, we also compared the immune
microenvironment in different groups. We found that there
were significant differences in immune cell infiltration,
immune-related functions, immune-related pathways and the

expression of immune checkpoint genes between the two
groups. Several single-cell transcriptional studies have revealed
that transcriptional programs are associated with aggressive
myeloma progression and immune evasion (Ryu et al., 2020;
Liu et al., 2021). According to the above findings, we present the
hypotheses that the prognostic characteristic genes are highly
associated with different immune microenvironments in the two
groups. Subsequently, we conducted a correlation analysis of
TBIL-RBPs and immune cell infiltration. We found that the
expression of ADAR, FASTKD1 and SNRPD3 was negatively

FIGURE 10 |Chemotherapeutic response of MM patients in the low- and high-risk groups. (A). Comparison of IC50 of chemotherapeutic drugs between the high-
risk and low-risk groups. (B). Bortezomib treatment response of MM patients in the high-risk and low-risk groups.
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correlated with the infiltration, functions and pathways of
immune cells. The risk score was also negatively correlated
with the expression of immune checkpoints, indicating that
ADAR, FASTKD1 and SNRPD3 might interact with the
immune microenvironment of multiple myeloma. TBIL-RBPs
might further influence the immune response of MM patients,
response to treatment, and prognosis.

We finally analyzed the Genomics of Drug Sensitivity in
Cancer (GDSC) dataset to further validate the prognostic
effect of the risk score. The GDSC is a large dataset including
cell viability and response to drugs (Yang et al., 2013). We found
that the IC50 of 11 drugs in the low-risk group was significantly
higher than that in the high-risk group, indicating that patients in
the low-risk group might have greater sensitivity to these 11
drugs. Strikingly, the high-risk group presented less sensitivity to
bortezomib treatment. These results, together with previous
observations, supported the risk score based on TILB-RBPs
and demonstrated good accuracy for prognostic assessment.
The TILB-RBPs were shown to have prognostic value not only
for chemotherapy but also for immunotherapy. Nonetheless,
there are limitations of our current study. First the prognostic
model still needs to be further validated in other independent
large sample cohorts to ensure the reliability of the model before
clinical use. In addition, more functional experiments in vivo and
vitro are still needed to further reveal the possible mechanisms for
TILB-RBPs.

5 CONCLUSION

In conclusion, in this study, we identified 3 B lymphocyte-specific
RBPs significantly related to the overall survival of MM patients
and further established a risk model based on these genes. The

good predictive value of the model was verified in the validation
set. Application of the TBIL-RBPs to immunotherapy datasets
revealed that the risk model can assess not only chemotherapy but
also immunotherapy response. To the best of our knowledge, our
study is the first to investigate B lymphocyte specific RBPs inMM,
emphasizing the impact of TILB-RBPs on clinical outcomes and
treatment response. The results of this study could provide a basis
for individualized precision therapy in the future. The three
prognostic genes—ADAR, FASTKD1 and SNRPD3 -- could be
potential new prognostic and therapeutic biomarkers of MM.
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Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University,
Tianjin, China, 3Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and
Hospital, Tianjin Medical University, Tianjin, China

Gastric cancer is the fifth most common type of human cancer and the third leading cause
of cancer-related death. The purpose of this study is to investigate the immune infiltration
signatures of gastric cancer and their relation to prognosis. We identified two distinct
subtypes of gastric cancer (C1/C2) characterized by different immune infiltration
signatures. C1 is featured by immune resting, epithelial–mesenchymal transition, and
angiogenesis pathways, while C2 is featured by enrichment of the MYC target, oxidative
phosphorylation, and E2F target pathways. The C2 subtype has a better prognosis than
the C1 subtype (HR � 0.61, 95%CI: 0.44–0.85; log-rank test, p � 0.0029). The association
of C1/C2 with prognosis remained statistically significant (HR � 0.62, 95% CI: 0.44–0.87;
p � 0.006) after controlling for age, gender, and stage. The prognosis prediction of C1/C2
was verified in four independent cohorts (including an internal cohort). In summary, our
study is helpful for better understanding of the association between immune infiltration and
the prognosis of gastric cancer.

Keywords: gastric cancer, immune signature, molecular subtypes, prognosis, computational biology

INTRODUCTION

Gastric cancer (GC) ranks the fifth most commonly diagnosed cancer type globally and the third
leading cause for cancer-related death, which was attributed to its diagnosis usually made at an
advanced stage. Although gastric cancer incidence has declined in most countries over the past
century, the aging population may contribute to increased diagnosis of gastric cancer (Smyth et al.,
2020).

Gastric cancer is a highly heterogeneous disease characterized by histopathologic and
epidemiologic features based on molecular and phenotypic levels (Van Cutsem et al., 2016).
Next-generation sequencing has showed new insights into the heterogeneity of gastric cancer,
and subtyping systems have been proposed (Cancer Genome Atlas Research, 2014; Cristescu et al.,
2015; Sohn et al., 2017; Kim et al., 2019; Zhang et al., 2020). The Lauren classification system
categorizes gastric cancer into the intestinal and diffuse subtypes (Lauren, 1965), while the WHO
system divides gastric cancer into four subtypes (papillary, tubular, mucinous, and poorly cohesive)
(Hu et al., 2012). Apart from the aforementioned classification subtypes, researchers from TCGA
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proposed four subtypes for gastric cancer: Epstein–Barr virus
(EBV) positive, microsatellite unstable (MSI), genomically stable
(GS), and chromosomal instability (CIN). The EBV subtype has
the best prognosis among these four subtypes. Patients with the
CIN subtype experienced the greatest benefit from adjuvant
chemotherapy (Sohn et al., 2017). The Asia Cancer Research
Group (ACRG) proposed four molecular subtypes for GC based
on microsatellite instability, epithelial–mesenchymal transition,
and TP53 mutation: MSI, MSS/EMT, MSS/TP53+, and MSS/
TP53- (Cristescu et al., 2015). The EBV subtype and MSI subtype
were reported to potentially benefit from immunotherapy (Pang
et al., 2009; Le et al., 2017; Amatatsu et al., 2018; Sundar et al.,
2018). However, few gastric cancer subtypes development is
based on immune signature and can be used to predict the
prognosis of gastric cancer patients.

Immune processes play critical roles in carcinogenesis and
progression of solid tumors, and they also affect the treatment
and prognosis of patients. Researchers are confused with the
association between the immune environment and the prognosis,
and much attention has been paid to the tumor immune
environment (Cully, 2018; Lim et al., 2018; Kubota et al.,
2021). All tumors are potentially immunogenic, and the new
knowledge about the interactions between tumor cells, immune
cells, and tumor microenvironment allowed for reversal of
possible immune resistance (Refolo et al., 2020; Ceresoli and
Pasello, 2021). The immune response is a complex multistep
process that finely regulates the balance between the recognition
of non-self and the prevention of autoimmunity. Cancer cells can
use these pathways to suppress tumor immunity as a major
mechanism of immune resistance. The recent molecular
classifications of gastric cancer by The Cancer Genome Atlas
(TCGA) and by the Asian Cancer Research Group (ACRG)
networks, together with the identification of multiple
biomarkers, open new perspectives for stratification of patients
who might benefit from a long-term immune checkpoint therapy
(Newman et al., 2015; Jiang et al., 2018; Thorsson et al., 2019;
Ceresoli and Pasello, 2021).

The purposes of this study are to characterize different
potential molecular classification systems operative in gastric
cancer and to identify previously unreported significant
immune environments and independent prognosis factors for
patients with gastric cancer. We collected 1386 samples from five
datasets and applied molecular subtyping on each dataset. We
achieved two distinct molecular subtypes of gastric cancer
(i.e., C1/C2). The C2 subtype has a better prognosis and more
activated immune microenvironment than the C1 subtype.

METHODS

Data Collection and Processing
In total, our study included five gastric cancer datasets: TCGA
dataset, three datasets from Gene Expression Omnibus
(i.e., GSE62254, GSE15459, and GSE84437), and one internal
dataset. TCGA dataset was used as discovery set, whereas the
other four datasets as validation sets. The expression matrix of
each dataset was normalized individually. The

3151 immune-related genes were collected from previous
studies (Supplementary Table S1) (Thorsson et al., 2019). We
applied removeBatchEffect from the R limma package (version
3.34.9) to remove the batch effect while combining these five
datasets.

Consensus Molecular Subtyping
We conducted survival analysis in TCGA dataset. Genes
significant in survival analysis from TCGA dataset were
reversed in follow-up molecular subtyping. We applied
consensus non-negative matrix factorization (CNMF)
clustering for finding molecular patterns from high-
dimensional biological datasets. It is combined with a
quantitative evaluation of the robustness of the number of
clusters. The CNMF method is included in CancerSubtypes
(version 1.18.0), an R package for clustering cancer subtypes
(Brunet et al., 2004; Xu et al., 2017).

Survival Analysis and Multivariable Cox
Regression Analysis
The association of C1/C2 with overall survival was estimated
using Kaplan–Meier plots and log-rank tests. Multivariable Cox
regression analysis was used to evaluate independent prognostic
factors associated with overall survival, including age, gender, and
tumor stage. A p value of less than 0.05 was considered
statistically significant.

Statistical Analysis
Differentially expressed genes (DEGs) between C1 and C2 were
evaluated by edgeR package (version 3.28.1). The clusterProfiler
package (version 3.14.3) was used for pathway enrichment.

The CIBERSORT method was used to characterize the
composition of 22 kinds of immune cells from RNA
expression (Newman et al., 2015). The t-test was used for
comparing the CIBERSORT score, and a p value of less than
0.05 was considered statistically significant.

The mutation of significantly mutated genes (SMGs) in C1/C2
was compared in this part (Li et al., 2016). The chi-square test was
used for comparing the proportion of some somatic mutations in
between C1 and C2. A p value of less than 0.05 was considered
statistically significant.

Tumor mutational burden (TMB) was calculated as the
number of mutation events per sample. The t-test was used
for comparing the CIBERSORT score, and a p value of less
than 0.05 was considered statistically significant. All statistical
analyses were done by R software (version 3.4.3).

RESULTS

Patients and Clinical Information
The study flowchart was shown in Figure 1. In total, we
collected 1386 gastric cancer samples from five datasets.
These five datasets include 371 samples from TCGA
cohort, 300 from GSE62254, 192 from GSE15459, 433 from
GSE84437, and an internal dataset of 90 samples (Tianjin
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cohort). Patients’ stages ranged from stage 1 to stage 4 (stage
1: 9.5%; stage 2: 28.8%; stage 3: 44.2%; stage 4:15.8%), and all
these five cohorts have clinical information including overall
survival (OS), vital stage, age, gender, and tumor stage. In
addition to this, GSE62254 cohort and GSE15459 cohort also
has Lauren type information. In the GSE62254 cohort, 150

(50%) patients are intestinal type, 142 (47%) patients are
diffuse type, and 8 (3%) patients are mixed type. In the
GSE15459 cohort, 75 (38%) patients are intestinal type, 99
(52%) patients are diffuse type, and 18 (9%) patients are mixed
type. The basic information of these cohorts is reported in
Table 1.

TABLE 1 | Baseline characteristics.

TCGAa (n = 371) GSE62254 (n = 300) GSE15459 (n = 192) GSE84437 (n = 433) Tianjin (n = 90)

Gender
Male 238 (64%) 199 (67%) 125 (65%) 296 (68%) 59 (32%)
Female 133 (36%) 101 (33%) 67 (35%) 137 (32%) 34 (68%)
Age 68 (36–90) 64 (24–86) 67 (23–92) 62 (27–86) 58 (33–87)
Age ≤60 years male 78 (21%) 72 (24%) 31 (16%) 130 (30%) 28 (31%)
Age >60 years male 156 (42%) 127 (42%) 94 (49%) 166 (38%) 31 (35%)
Age ≤60 years female 31 (8%) 45 (15%) 28 (15%) 64 (15%) 21 (23%)
Age >60 years female 100 (27%) 56 (19%) 39 (20%) 73 (17%) 10 (11%)

Stage
1 50 (14%) 30 (10%) 31 (16%) 21 (5%) 0
2 111 (30%) 97 (32%) 29 (15%) 138 (32%) 24 (27%)
3 149 (40%) 96 (32%) 72 (38%) 274 (63%) 22 (24%)
4 38 (10%) 77 (26%) 60 (31%) 0 44 (49%)
Missing 23 (6%) 0 0 0 0

Lauren type
Intestinal NA 150 (50%) 75 (38%) NA NA
Diffuse NA 142 (47%) 99 (52) NA NA
Mixed NA 8 (3%) 18 (10%) NA NA
Survival time (years) 1.21 (0–5) 4.82 (0.08–8.81) 1.58 (0–13.15) 5.75 (0–13.42) 2.62 (0–13.81)

aIn TCGA cohort, six samples (2%) have no age information.

FIGURE 1 | Study flowchart. We incorporated 1386 gastric cancer (GC) samples in this study. TCGA cohort was used as a discovery set; after evaluating
prognosis-related genes, 390 genes were selected to predict GC subtypes. The CNMF model was used to develop GC subtypes on five cohorts; after molecular
subtyping, we did survival analysis, immune infiltration analysis, GSEA analysis, andmutation analysis to describe different characteristics between our subtypes. CNMF,
consensus non-negative matrix factorization; GSEA, gene set enrichment analysis.
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Classification of Gastric Cancer Molecular
Based on Immune Genes
After determining the correlation with prognosis, 390 genes were
chosen to be used to define subtype (Supplementary Table S2).
TCGA cohort was used as a discovery set, and four other cohorts
(GSE62254 cohort; GSE84437 cohort; GSE15459 cohort; Tianjin
cohort) were used as the validation sets. The clustering metrics
showed that the optimal cluster number is 2 among these five
datasets (Supplementary Figure S1). These two clusters were
regarded as two subtypes of gastric cancer, which are called C1
and C2. The heat map of C1 and C2 is shown in Figure 2, which
illustrated that the immune gene expression of C1/C2 was
significantly different in TCGA cohort. The C1/C2 subtype was
compared with other GC microenvironment signatures. The
results of Fisher’s exact test illustrate that C1/C2 has association
with TME signature and immune landscape subtypes in TCGA
cohort, and C1/C2 has association with ACRG subtypes in
GSE62254 cohort (p < 0.05) (Cristescu et al., 2015; Thorsson
et al., 2019; Zeng et al., 2019) (Supplementary Figure S2).

C1/C2 Predict the Survival of Gastric
Cancer
The prognosis of C2 is significantly better than that of C1 in
TCGA (HR � 0.61, 95% CI: 0.44–0.85, log-rank test: p � 0.0029),
GSE62254 (HR � 0.64, 95% CI: 0.46–0.88, log-rank test, p �

0.0055), GSE84437 (HR � 0.70, 95% CI: 0.53–0.92, log-rank test,
p � 0.0094),Tianjin (HR � 0.47, 95% CI: 0.25–0.86, log-rank test:
p � 0.012), and combined cohorts (HR � 0.67, 95% CI: 0.57–0.78,
log-rank test: p < 0.0001) (Figures 3A,B,D–F). The prognosis
with C1 and C2 in the GSE15459 cohort has the same trend as
other cohorts (GSE15459 cohort, HR � 0.78, 95% CI: 0.52–1.17,
log-rank test, p � 0.24) (Figure 3C). In the GSE62254 cohort, C2
has lower recurrence rate (38%) than C1 (56%) (Figure 4). The
chi-square test results showed a significant difference in the
recurrence rate of C1/C2 (p � 0.0048).

In addition, multivariable Cox regression in discovery set and
validation set demonstrates that together with age, gender, and
stage, C1 and C2 are still independent prognostic factors (TCGA
cohort, HR � 0.62, 95% CI: 0.44–0.87, log-rank test: p � 0.006;
GSE62254 cohort, HR � 0.66, 95% CI: 0.47–0.97, log-rank test,
p � 0.019; GSE15459 cohort, HR � 0.69, 95% CI: 0.45–1.05, log-
rank test, p � 0.08; GSE84437 cohort, HR � 0.73, 95% CI:
0.56–0.97, log-rank test, p � 0.029; Tianjin cohort, HR � 0.42,
95% CI: 0.22–0.80, log-rank test: p � 0.008) (Figures 5A–E). In
the combined cohort, the C2 subtype remained a better
prognostic factor than the C1 subtype (Figure 5F).

In the combined cohort, the proportion of C1/C2 in four
stages was calculated. The proportion of C1 is relatively higher in
advanced gastric cancer (stage 3: 42.3%; stage 4: 39.2%)
(Figure 6B). The proportion of C1/C2 in the Lauren type in
the GSE62254 and GSE15459 cohorts was calculated, and C1
accounted for 60.3%, 21.2, and 25.8%, respectively, in the diffuse

FIGURE 2 | Heat map of C1/C2 in TCGA cohort. TCGA cohort was used as a discovery set, and 390 immune-related genes were selected for the development of
subtypes. Data are presented in a matrix format, in which row represents an individual gene and each column represents a sample. The color in the cells reflects relatively
high (yellow) and low (blue) expression levels.
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type, intestinal type, and mixed type. It shows that a higher
proportion of C1 was found in the diffuse type, which is the most
malignant type (Figure 6C).

C1 and C2 successfully stratify patients by survival in several
gastric cancer cohorts. It is also an independent prognosis factor.
The results show the reproducibility and clinical significance of
C1/C2.

Biological Characteristics of C1/C2
The results of CIBERSORT demonstrated the immune
infiltration of C1/C2 in the combined cohort. Most of the
immune cells have significant differences between C1 and C2.
In C2, such as T-cell CD4 memory activated, NK cells
activated, mast cells activated, and dendritic cells activated,
the composition of all these four kinds of activated immune
cells was significantly higher than C1 (p < 0.05). In contrast, in
C1, such as B cells were naive, T-cell memory resting, dendritic
cells resting, and mast cells resting, and these kinds of immune
resting cells were significantly higher than C2 (p < 0.05)
(Figure 6D).

To further investigate the potential biological behavior of the
molecular subtype, the DEGs were used for pathway enrichment
in the combined cohort (Supplementary Table S3). Finally,
20 cancer-related pathways were enriched (Figure 6A). Genes
highly expressed in C1 were enriched in “Epithelial Mesenchymal
Transition,” “Angiogenesis,” and “UV Response.” Genes highly
expressed in C2 were enriched in “MYC Target,” “Oxidative
Phosphorylation,” and “E2F Target.”

The driver gene mutation between C1 and C2 was
compared in TCGA cohort. It was observed that C2 had
significantly more mutation events than C1 in APC (p �
0.0024), NBEA (p � 0.0026), PIC3CA (p � 0.0114), XIRP2
(p � 0.0131), RNF43 (p � 0.0211), SMAD4 (p � 0.0369), TP53
(p � 0.0398), KRAS (p � 0.043), and BNCA (p � 0.0459), while
C1 has significantly more mutation events than C2 in BNC2
(p � 0.0459), CDH1 (p � 0.0488), and CTNNB1 (p � 0.05). The
results showed differences in driver genes mutation of C1 and
C2 (Supplementary Table S1). The tumor mutation burden
(TMB) was also calculated, where C2 has higher TMB than C1
(p < 0.05) (Supplementary Figure S3).

FIGURE 3 | Survival analysis for C1/C2 subtype in (A) TCGA cohort, (B)GSE62254 cohort, (C)GSE15459 cohort, (D)GSE84437 cohort, (E) Tianjin cohort and (F)
Combined cohort in C1/C2. Kaplan–Meier plots of overall survival (OS) among patients stratified by C1/C2. Hazard ratio (HR) was calculated by Cox regression analysis.
A p value was obtained using the log-rank test.
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DISCUSSION

The clinical significance of the molecular subtype has been
demonstrated in many kinds of cancers. However, few researchers
have used immune signatures to predict gastric cancer subtypes.

A major clinically relevant finding in this study is based on
signature of 390 immune-related genes; we classify gastric cancer
into two prognostically distinct subgroups, namely, C1 and C2. The
prognostic significance of C1/C2 was independent of age, gender,
and stage. The C1 subtype is featured by “Epithelial Mesenchymal
Transition (EMT)” and “Angiogenesis,” which had poorer overall
survival, whereas the C2 subtype is characterized by “MYCTarget,”
“Oxidative Phosphorylation,” and “E2F Target,”with better overall
survival than those in C1. Notably, previous research studies
reported that EMT was shown to strongly enhance cancer cell
motility and dissemination; it plays an important role in cancer
metastasis (Brabletz, 2012; Brabletz et al., 2018). Angiogenesis is
essential for the late stages of carcinogenesis, allowing the tumor to
grow beyond 1–2 mm in diameter; it is associated with the
malignancy of tumor (Sharma et al., 2001; Albini et al., 2012).
Such processes may cause poor survival in C1.

FIGURE 5 | Multivarate Cox regression analysis of C1/C2 subtype in (A) TCGA cohort, (B) GSE62254 cohort, (C) GSE15459 cohort, (D) GSE84437 cohort, (E)
Tianjin cohort and (F) Combined cohort. Multivariable Cox regression analysis was used to evaluate independent prognostic factors associated with overall survival,
including age, gender, and tumor stage. A p value of less than 0.05 was considered statistically significant.

FIGURE 4 | C1/C2 has different recurrence rates in GSE62254 cohort.
In GSE62254 cohort, C2 has lower recurrence rate (38%) than C1 (56%). The
chi-square test results showed a significant difference in the recurrence rate of
C1/C2 (p � 0.0048).
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FIGURE 6 | Analysis of biological characteristics of C1/C2. (A) Highly expressed genes in C1/C2 were enriched in 20 cancer-related pathways. (B) Proportion of
C1/C2 in tumor stages 1–4. (C) Proportion of C1/C2 in Lauren type. (D) Result of CIBERSORT in C1/C2.
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The results of CIBERSORT suggest that C1 and C2 have very
different immune environments. In C2, such as CD4 memory
activated, NK cells activated, mast cells activated, and dendritic
cells activated, and the composition of all these four kinds of
activated immune cells are significantly higher than C1. In contrast,
in C1, such as B cells were naive, T cells memory resting, dendritic
cells (DC) resting, and mast cells resting, and these kinds of
immune resting cells significantly higher than C2. The
microenvironment between C1 and C2 shows a marked
difference. Previous research studies reported that memory CD4
T cells could make effector cytokines early in response and they
could enhance B-cell and CD8 T-cell responses, which enhance
immune response (MacLeod et al., 2009). NK cells are important
immune cells; they could swiftly kill multiple adjacent cells which
show surface markers associated with oncogenic transformation;
and they could also magnify immune responses (Shimasaki et al.,
2020). Mast cells are evolutionarily ancient cells, and they finely
modulate not only immune responses but also the mechanism of
several inflammatory disorders, including cancer, autoimmunity,
and infection (Frossi et al., 2017). DCs are a diverse group of
specialized antigen-presenting cells; they play key roles in the
initiation and regulation of innate and adaptive immune
responses (Wculek et al., 2020). The activation of these immune
cells in C2may indicate higher immune activity, which leads better
prognosis. The resting of these immune cells may cause poor
immune activity in C1, which leads to worse prognosis in C1.

The proportion of C1/C2 in four tumor stages demonstrates C1
has higher proportion in advanced gastric cancer, while C2 has
higher proportion in early stages. The proportion of C1/C2 in the
Lauren type shows that C1 has the highest proportion in the diffuse
type, while C2 has higher proportion in the intestinal type. This
indicates that C1 has some characteristics ofmalignant gastric cancer.

The somatic mutation event of SMGs shows significant
differences between C1 and C2, and C2 has higher TMB than
C1. Previous research reported that TMB can be used as an
indicator to predict the response to immunotherapy, and patients
with high TMB were observed to have better clinical outcomes
(Gibney et al., 2016; Gandara et al., 2018; Mandal et al., 2019). It
also reported that high TMB is associated with a better prognosis
in gastric cancer (Cai et al., 2020; Wang et al., 2021). The
differences in mutation characteristics may lead to different
clinical outcomes of C1/C2, and it also could offer some new
insights into immunotherapy in gastric cancer.

In total, in this research, we predict C1 and C2, two subtypes of
gastric cancer. Much evidence has shown that there are many
different biological characteristics between C1 and C2. It makes
two subtypes that could predict prognosis in gastric cancer
patients. However, this research still has some limitation. First,
the sample size is not large enough; therefore, research may not
cover all types of gastric cancer. Second, due to the lack of clinical
data, the subtypes in this research could only be used to predict the
survival of gastric cancer patients but could not predict their
response to chemoradiotherapy and immunotherapy. If more
gastric cancer chemotherapy and immunotherapy data could be
combined, C1/C2 could be given more clinical significance and
immune characteristics could provide more insights into gastric
cancer treatment.

Our research has developed two molecular subtypes of gastric
cancer, and we have analyzed their immune signature and biological
function. These findings may offer some new knowledge of
molecular mechanisms for study on treatment of gastric cancer.
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tumor microenvironment signature. (A) Association between C1/C2 and TME
signature in TCGA cohort. (B) Association between C1/C2 and immune
landscape subtype in TCGA cohort. (C) Association between C1/C2 and ACRG
subtype in GSE62254 cohort

Supplementary Figure S3 | TMB of C1/C2 in TCGA cohort. TMB of TCGA cohort
was calculated. In this part, TMB equal to mutation events occur in each sample.
TMB of C2 significantly higher than C1 (p <0.05).

Supplementary Table S1 |Mutation prevalence of driver genes in C1 versus C2 in
TCGA cohort.
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MoGCN: A Multi-Omics Integration
MethodBased onGraphConvolutional
Network for Cancer Subtype Analysis
Xiao Li1†, Jie Ma1†, Ling Leng2, Mingfei Han1, Mansheng Li1, Fuchu He1* and Yunping Zhu1*
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In light of the rapid accumulation of large-scale omics datasets, numerous studies have
attempted to characterize the molecular and clinical features of cancers from amulti-omics
perspective. However, there are great challenges in integrating multi-omics using machine
learning methods for cancer subtype classification. In this study, MoGCN, a multi-omics
integration model based on graph convolutional network (GCN) was developed for cancer
subtype classification and analysis. Genomics, transcriptomics and proteomics datasets
for 511 breast invasive carcinoma (BRCA) samples were downloaded from the Cancer
Genome Atlas (TCGA). The autoencoder (AE) and the similarity network fusion (SNF)
methods were used to reduce dimensionality and construct the patient similarity network
(PSN), respectively. Then the vector features and the PSN were input into the GCN for
training and testing. Feature extraction and network visualization were used for further
biological knowledge discovery and subtype classification. In the analysis of multi-
dimensional omics data of the BRCA samples in TCGA, MoGCN achieved the highest
accuracy in cancer subtype classification compared with several popular algorithms.
Moreover, MoGCN can extract the most significant features of each omics layer and
provide candidate functional molecules for further analysis of their biological effects. And
network visualization showed that MoGCN could make clinically intuitive diagnosis. The
generality of MoGCN was proven on the TCGA pan-kidney cancer datasets. MoGCN and
datasets are public available at https://github.com/Lifoof/MoGCN. Our study shows that
MoGCN performs well for heterogeneous data integration and the interpretability of
classification results, which confers great potential for applications in biomarker
identification and clinical diagnosis.

Keywords: multi-omics integration, graph convolutional network, autoencoder, similarity network fusion, cancer
subtype classification

1 INTRODUCTION

Owing to the recent rapid developments in high-throughput sequencing technology, multi-omics
research has strongly promoted the development of precision medicine. However, the application of
precision medicine for the prevention, diagnosis, and treatment of tumors is far from satisfactory (Lu
and Zhan, 2018). Multi-omics approaches are novel frameworks that can integrate multiple omics
datasets generated from the same patients (Heo et al., 2021); thus, an increasing number of studies
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have tried to characterize the molecular and clinical features of
cancers from a multi-omics perspective (Sun and Hu, 2016).

Integrated multi-omics approaches can be divided into two
types: the integration of Euclidean structure data or the
integration of non-Euclidean structure data (Eicher et al.,
2020). The first approach uses the expression matrix as the
input, and then trains machine learning models for clustering
and classification. For example, Chaudhary et al. were the first to
use a deep autoencoder (AE) (Hinton and Salakhutdinov, 2006)
model to predict the survival of patients with hepatocellular
carcinoma (Chaudhary et al., 2018); Chen et al. designed a
deep-learning framework, DeepType, that performs a joint
model of supervised classification, unsupervised clustering, and
dimensionality reduction to learn cancer-relevant data
representation (Chen et al., 2020). These methods can handle
large-scale datasets, but require substantial effort to interpret how
specific features contribute to the predicted results. On the other
hand, the non-Euclidean data integration approach trains models
using the network topology data. These methods can identify
cancer subtypes by fusing the similarities derived from various
omics data, such as similarity network fusion (SNF) (Wang et al.,
2014), GrassmannCluster (Ding et al., 2019), and high-order path
elucidated similarity (HOPES) (Xu et al., 2019). These network-
based processes are clinically intuitive, but existing studies have
focused on the unsupervised integration of multi-omics datasets.

Meanwhile, classification of tumor subtypes plays a leading
role in the treatment and prognosis of cancers. This is a multi-
class classification task and has always presented a challenge in
the field of integrating multi-omics using machine learning.
There is an urgent need for a multi-class network classification
model to handle cancer subtype classification and biomarker
identification. Graph convolutional network (GCN) (Kipf and
Welling, 2017) is a recently developed approach to incorporate
graph structures into a deep learning framework. It classifies
unlabeled nodes using information from the topology of the
network as well as the feature vectors of the nodes. The network
structure makes GCN naturally interpretable. Several studies have
been reported to use this model to predict the complex genome-
disease association (Xuan et al., 2019) and drug-disease
associations (Liu et al., 2020; Yu et al., 2021).

Herein, we developed MoGCN, a multi-omics integration
model based on graph convolutional network, for cancer
subtype analysis. This study creatively proposes developing a
network diagnosis model based on the pipeline of “integrating
multi-omics data first and then performing classification”.
Specifically, we utilized AE to integrate multi-omics expression
data and SNF to integrate a typical network topology data patient
similarity network (PSN) (Pai and Bader, 2018), to construct a
comprehensive view of cancer patients. Then, we used GCN to
combine the AE and SNF results and construct the final model for
cancer subtype classification. By applying MoGCN on the breast
invasive carcinoma (BRCA) data in The Cancer Genome Atlas
(TCGA, http://cancergenome.nih.gov/), we demonstrated that
MoGCN could achieve the best performance in cancer subtype
classification among the current algorithms. Similarly, MoGCN
achieved good results on the TCGA pan-kidney cancer validation
dataset. The case study for breast cancer also shows that our

method has great potential for heterogeneous data integration,
marker identification, and clinical diagnosis.

2 MATERIALS AND METHODS

MoGCN uses multi-omics expression datasets from patients as
inputs, including but not limited to genomics, transcriptomics,
and proteomics datasets. First, we applied the autoencoder model
to extract patient expression features (expression matrix), and
applied the similarity network fusion model to construct a patient
similarity network. Then, we used the GCN model to integrate
these two types of heterogeneous features and to train the cancer
subtype classification model. By integrating network and vector
characteristics, MoGCN was able to achieve good classification
performance, and effectively addressed the issue of deep learning
interpretability in clinical applications. MoGCN is a command-
line tool that allows users to integrate multi-omics datasets for
cancer subtyping classifications efficiently. The overall workflow
is shown in Figure 1.

2.1 Data Preparation
BRCA datasets were downloaded from the UCSC Xena browser
(https://xenabrowser.net/) and the Cancer Proteome Atlas
(TCPA) portal (https://tcpaportal.org/tcpa/) and processed.
Copy number variation (CNV) data at the genomic level,
RNA-seq data at the transcriptomic level, reverse phase
protein array data (RPPA) at the proteomic level, and clinical
data were all available. The breast tumors were classified into four
subtypes (Cancer Genome Atlas Network, 2012): Basal-like,
typically with no expres-sion of hormone receptors or ERBB2;
Her2-enriched, overexpressing the oncogene ERBB2; and
Luminal A and B, generally estrogen receptor (ER)-positive
tumors expressing epithelial markers (Luminal B shows a
higher Ki67 index and worse prognosis than Luminal A);
these were similar to results generated by the established and
widely used PAM50 assay. Common samples were collected from
each omics level; therefore, data from a total of 511 patients in the
BRCA dataset were obtained. The details of the dataset are shown
in Table 1.

A 10-fold cross validation method was applied to all
algorithms implemented in this study. The dataset of 511
samples was first divided randomly into 10 subsets. We
successively selected one subset to become a testing dataset,
while the others were used as a training dataset. Therefore, 10
combinations of the training dataset and testing dataset were
obtained. In each run, we used the training dataset to train the
model and the testing dataset to test the model’s performance; the
average result of the 10 runs was taken as the final result of
the model.

2.2 Multi-Modal Autoencoder
The autoencoder consists of two modules simultaneously: an
encoder and a decoder. The encoder (f) maps the original domain
X to a new domain named latent space Zwith dimension L. Then,
the decoder (g) maps Z back to the original input space X. The
encoder and decoder are defined as z = f (x) and ~x = g (z). By

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8068422

Li et al. MoGCN for Cancer Subtype Analysis

47

http://cancergenome.nih.gov/
https://xenabrowser.net/
https://tcpaportal.org/tcpa/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


minimizing the reconstruction loss, the model captures the
significant features of the data. The loss function to minimize
is formalized as: E = argminf,g [Loss (x, g (f (x)))].

As the input data are characterized by multi-omics data types
and represented bymultiple matricesX1, X2, Xn, corresponding to
the genome, transcriptome, proteome matrices, and so on, the
autoencoder must have multiple inputs and outputs. A multi-
modal autoencoder architecture is proposed. As shown in
Figure 1, the model consists of multiple encoders and
decoders, which share the same latent layer. The loss function
to minimize is formalized as:

E � argminf,g(αLoss1(x1, g1( f1(x1))) + . . .

+ βLoss2(x1, g1( f1(x1)))) (1)
Where α, . . . , β are the weights (prior knowledge) of each data
type, and α + . . . + β = 1.

2.3 Similarity Network Fusion
The SNF algorithm integrates different types of omics data,
creating a network for each data type, and ultimately
establishing a comprehensive view of the disease or biological
process. SNF is able to compute and fuse PSNs for each data type,
which enable the exploitation of complementary information
from multi-omics data types and outperforms other single
data analysis methods. Specifically, the algorithm computes

patient-patient similarity matrices for each data type and
constructs patient-patient similarity networks. Then, network
fusion is performed to enhance strong connections and
remove weak connections. Finally, a fused patient similarity
network is established.

Based on the assumption that there were n samples (such as
patients) and m different data types, for the vth (v = 1, 2, . . ., m)
data type, a scaled exponential similarity matrix was calculated:

W(i, j) � exp⎛⎝ − ρ2 (xi, xj)
μεi,j

⎞⎠ (2)

ρ(i, j) represents the Euclidean distance between the patient xi
and xj W(i, j) represents the n × n similarity matrix between
patient xi and xj µ is a hyperparameter that can be empirically set,
and ε is used to eliminate the scaling problem. Then, the similarity
matrix P(v) of all patients and K-nearest similarity matrix S(v) can
be defined as

P(i, j) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W(i, j)
2∑

k≠i
W (i, k), j ≠ i

1
2
, j � i

,

S(i, j) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

W(i, j)∑
k∈Ni

W(i, k) , j ∈ Ni

0, otherwise

(3)

Then, for the case in which there was two types of data, the
process was as follows:

a Calculate P(1), P(2), S(1), S(2). Let P(1)
t�0 = P(1) and P(2)

t�0 = P(2)
represent the initial two status matrices at t = 0.
b Iteratively update the similarity matrix.

P(1)
t+1 � S(1) × P(2)

t × (S(1))T, P(2)
t+1 � S(2) × P(1)

t × (S(2))T (4)

FIGURE 1 |MoGCNworkflow schematic. The input is the multi-omics data. First, the AE and SNF methods are used to reduce dimensionality and to construct the
patient similarity network, respectively. Next, the vector features and adjacency matrix are fed into the GCN for training. Feature extraction and network visualization can
be used for further biological knowledge discovery.

TABLE 1 | Summary of the BRCA dataset.

Number of samples Number of features

Basal-like 112 CNV 19,273
Her2-enriched 53 mRNA 19,580
Luminal A 248 RPPA 223
Luminal B 98 — —

Total 511 Total 39,076
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c After t steps, the overall state matrix can be calculated by:

P(t) � P(1)
t + P(2)

t

2
(5)

For the generalization of m > 2, the update process is:

P(v) � S(v) × ⎛⎝∑k≠vP
(k)

m − 1
⎞⎠ × (S(v))T, v � 1, 2, . . . , m (6)

2.4 Graph Convolutional Network
GCN analysis requires two inputs: the structure of the graph and
the features of each node. In this manual, one input is the multi-
omics feature matrix X ∈ Rn×d, where n is the number of nodes
and d is the number of features. Another input is the PSN, which
can be represented by the form of an adjacency matrix A ∈ Rn×n.
The GCN is built by stacking multiple convolutional layers.
Specifically, each layer is defined as:

H(1+1) � σ(LH(I)W(I)) (7)
Where L � ~D

−1
2 ~A ~D

−1
2 or L � ~D

−1 ~A denotes the normalized graph
laplacian; Ã � A + I denotes the adjacency matrix with added
self-connections; ~D is the degree matrix of ~A; W is the weight
matrix learned from training; σ denotes the nonlinear activation
function, generally the ReLU activation function; and H(l) is the
input of each layer, and notably, H(0) = X.

2.5 Interpretability of MoGCN
Machine learning has great potential for improving products,
processes, and research. However, computers usually do not
explain their predictions, which is a barrier to the adoption of
machine learning. In this study, the interpretability of MoGCN is
reflected in both AE feature extraction and PSN visualization. In
the autoencoder model, we used sensitivity analysis (Garson,
1991) for feature extraction: 1) multiplying the standard deviation
of each input node by its connection weights in the network; 2)
extracting top features every 10 epochs; and 3) merging and
sorting the extracted features. The weights analysis method allows
feature extraction during the training process, but consumes
relatively little extra time. Meanwhile, the visualization of the
PSN also provides an intuitive explanation for the clinical
diagnosis of patient subtyping.

Sensitivity analysis is a valuable method used to describe the
importance of input variables in neural networks quantitatively.
The importance of a node can be determined by the variance of
this feature (also known as variable sensitivity) and the weighted
connections that the node contributes to the network (also known
as weight sensitivity). Therefore, the importance score of a feature
xi can be defined as:

Si � σ i × ∑L
j�1

∣∣∣∣Wij

∣∣∣∣ (8)

Where σi represents the standard deviation of xi, L is the number
of nodes in the next layer, and W is the connection weight of the
input nodes to the output nodes.

In order to obtain stable characteristics of AE during training,
the process for each omics layer is as follows:

a Calculate Si and extract top N features every 10 epochs to get
feature sets G1, G2, . . ., Gm.
b After training, merge G1, G2, . . ., Gm and obtain the stable set
of essential genes.

The case study on breast cancer demonstrates the promising
potential of MoGCN in biological knowledge mining.

2.6Mainstream Feature ExtractionMethods
and Classification Methods
We compared AE with the following unsupervised feature
extraction algorithms: principal component analysis (PCA),
factor analysis (FA), independent component analysis (ICA),
and singular value decomposition (SVD). These methods were
implemented by calling the built-in functions in the Python
scikit-learn library (https://scikit-learn.org/stable/).

We compared GCN with the following state-of-the-art
methods: decision tree (DT), K-nearest neighbors (KNN),
Gaussian naïve Bayes (GNB), random forests (RF), support
vector machine (SVM), deep neural network (DNN) with four
layers, GrassmannCluster and HOPES. GrassmannCluster and
HOPES were implemented using Matlab. Moreover, other
methods were also implemented by calling the built-in
functions in the Python scikit-learn library (https://scikit-learn.
org/stable/).

2.7 Evaluation Index of Model Performance
In the classification tasks, the prediction results of a model have
four basic indicators: true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). The accuracy represents
the proportion of all samples judged correctly by the classifier,
and is defined as:

accuracy � TP + TN

TP + FP + TN + FN
(9)

The F1 score is a measure of classification tasks. It is often used
as the final evaluation index in most machine learning
competitions. It is the harmonic average of the precision rate
and the recall rate, which has a maximum of 1 and a minimum of
0. It is defined as:

F1 score � 2 ×
precision × recall

precision + recall
(10)

Where precision = TP
TP+FP, recall =

TP
TP+FN.

In addition, all results were subjected to 10-fold cross
validation.

2.8 Functional Enrichment Analysis
Biological Process (BP) annotation, Molecular Function (MF)
annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses for selected genes were
conducted using David (https://david.ncifcrf.gov/). Gene set
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variation analysis (GSVA) (Hanzelmann et al., 2013) was
performed on the MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb/) “c2. cp.reactome.v7.4. symbols.gmt” gene set using the
“GSVA” package in R software. p-value of <0.05 was considered
statistically significant.

2.9 Kaplan-Meier Survival Analysis
We used the validation breast cancer cohort (n = 1880) from
Kaplan–Meier (KM) plotter (https://kmplot.com/analysis/) to
validate the prognostic value of genes. 10-years overall survival
analysis was performed.

3 RESULTS

3.1 Multi-Omics Integration Using AE Can
Improve Classification Performance
Multi-omics data sets are inherently high-dimensional, and their
processing may be computationally intensive. Dimensionality
reduction is a general strategy to reduce computational
burden. Moreover, multi-omics data are highly heterogeneous
and the relationship between different data types (also named as
layers in data form) is not linear. The extraction of important
features from the various layers remains a huge challenge. Here,
we used random forest as a benchmark classifier to compare the
performance of different dimensionality reduction algorithms
(Tables 2, 3). The results in the rows show that AE performs
best in most cases. More importantly, the results in the columns
show that after the integration of different omics features, the
performance of AE-based classification improved, whereas that of
other methods slightly decreased or remained unchanged. The
potential reasons for this were: 1) a large amount of noise in
multi-omics data, so the classification relative information
density is low, which interferes with the traditional algorithms;
2) traditional algorithms are linear methods and cannot uncover
potential nonlinear relationships within complex biological data.

3.2 Integration of PSN for Greater
Performance Improvement
After integration of multi-omics data using the AE, we applied the
SNF model to construct the patient similarity network (PSN)
(Figure 1). Then, we used GCN to integrate the expression data
and PSNs to establish a complete pipeline for multi-omics
biological data. We compared MoGCN with DT, KNN, GNB,
RF, SVM, DNN, GrassmannCluster, and HOPES. Considering
that GrassmannCluster and HOPES are algorithms used to
construct PSNs and cannot be directly used for classification,
we used the GCN to integrate the GrassmannCluster or HOPES
algorithm for classification separately. The results showed that
the MoGCN method was able to achieve state-of-the-art
classification results (Figure 2). The standard deviation of
MoGCN was the smallest among all compared methods,
indicating that integration of the vector features and the PSN
can improve the overall prediction stability. In addition, we found
that using the features extracted by AE can help other
classification algorithms improve their classification
performance further (Supplementary Table S1). We also
implemented the ablation experiments to prove that a
combination of AE and SNF with GCN (MoGCN) can achieve
better prediction performance. As AE and SNF are both
unsupervised algorithms, the classifier method GCN is needed
for subtype prediction. As shown in Figure 2, MoGCN
performed better than AE + GCN and SNF + GCN in
accuracy and F1 score.

3.3 The Interpretability of MoGCN From AE
Feature Extraction and PSN Visualization
3.3.1 AE Captured Cancer Gene Mutation Patterns at
the CNV Level
We trained the AE for 100 epochs to converge, extracted top 100
genes with the highest scores every 10 epochs, and finally
obtained 183 genes. The BP enrichment analysis of the top-

TABLE 2 | The accuracy of different dimensionality reduction algorithms.

PCA FA ICA SVD AE

mRNA 0.8318 ± 0.0427 0.7808 ± 0.0351 0.6889 ± 0.0301 0.8278 ± 0.0380 0.8357 ± 0.0396
CNV 0.6008 ± 0.0417 0.5949 ± 0.0263 0.5030 ± 0.0339 0.6047 ± 0.0488 0.5695 ± 0.0497
RPPA 0.7730 ± 0.0199 0.7495 ± 0.0411 0.5440 ± 0.0294 0.7847 ± 0.0474 0.8082 ± 0.0438
mRNA + CNV + RPPA 0.8258 ± 0.0459 0.7044 ± 0.0440 0.6283 ± 0.0441 0.8337 ± 0.0402 0.8787 ± 0.0477

*10-fold cross validation (mean ± standard deviation).

TABLE 3 | The F1 score of different dimensionality reduction algorithms.

PCA FA ICA SVD AE

mRNA 0.8086 ± 0.0534 0.7499 ± 0.0450 0.6226 ± 0.0324 0.8129 ± 0.0428 0.8144 ± 0.0520
CNV 0.5578 ± 0.0504 0.5493 ± 0.0231 0.4295 ± 0.0410 0.5461 ± 0.0413 0.5209 ± 0.0548
RPPA 0.7313 ± 0.0388 0.7098 ± 0.0547 0.4430 ± 0.0438 0.7498 ± 0.0573 0.7935 ± 0.0489
mRNA + CNV + RPPA 0.8080 ± 0.0490 0.6541 ± 0.0489 0.5670 ± 0.0542 0.8172 ± 0.0493 0.8722 ± 0.0529

*10-fold cross validation (mean ± standard deviation).
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scoring genes using David showed that their biological function
focused on cell development, cell migration, cell death, signal
transduction, and response to estrogen (Figure 3A). The KEGG

annotation showed that these genes are significantly enriched in
the Wnt, ErbB, PI3K-AKT-mTOR, and tumor necrosis factor
(TNF) signaling pathways. The Wnt signaling pathway is highly

FIGURE 2 | Performance comparison of different algorithms. 10-fold cross validation (mean ± standard deviation).

FIGURE 3 | Copy number variation characteristics of breast cancer. (A) Biological Process (BP), Molecular Function (MF), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway annotations for the top-scoring genes using David (p < 0.05). (B) Hierarchical clustering heat map of the mutation distribution of the top-
scoring genes selected by AE.
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FIGURE 4 |mRNA molecular characteristics of breast cancer. (A) Hierarchical clustering heat map of the top-scoring genes selected by AE. (B) (C) List of genes
which are high expressed in basal-like breast cancer (BLBC) subtype and biological process (BP) annotation of these genes using David (p < 0.05). (D) 10-years overall
survival analysis (logrank p < 0.05) of CCL19, CXCL13, HLA-DQA2, KRT81, LCN2 and SLPI.
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conserved and it plays a key role in cancer progression. Mutations
in the PI3K-AKT-mTOR signaling pathway are the key drivers of
tumorigenesis and are related to the resistance of endocrine
therapy in breast cancer. The TNF family is a group of
cytokines that can cause cell apoptosis, and their expression is
strongly associated with the development of various cancers.
These results indicated that AE has captured genes with
significant mutation patterns in BRCA.

Furthermore, we performed hierarchical clustering analysis
of the selected mutation genes in all samples (Figure 3B). We
found the local co-amplification of ERBB2 in the Her2-enriched
subtype on 17q12-21. The role of ERBB2 as an important
predictor of patient outcome and response to various
therapies in breast cancer has been clearly established. It is
well known that amplification of the 17q12-q21 region is the
most common mechanism for ERBB2 activation in breast
cancer and that it leads to the simultaneous activation of
several other genes. These co-amplified and co-activated
genes may have an impact on disease progression and the
clinical behavior of ERBB2-positive tumors and thus
represent important targets of research (Kauraniemi and
Kallioniemi, 2006).

3.3.2 AE Captured the EMT and Epidermal
Development Characteristics of Basal-Like Subtype
on Transcriptome Level
Similar as CNV data, AE selected a total of 121 candidate genes at
the transcriptome level after training for 100 epochs. A cohort of
1880 patients from the KM plotter was used to validate the
prognostic value of these genes. We found 70 genes that were
significantly associated with 10-years overall survival (logrank p <
0.05), suggesting that they were potential biomarkers for BRCA
prognosis (Supplementary Table S2).

The expression heatmap (Figure 4A) of the 121 genes was
presented according to the four known subtypes (Luminal A
and B, Her2-enriched, and basal-like). The BLBC patients were
associated with aggressive behavior and poor prognosis, and do
not typically express hormone receptors or HER-2 (the “triple-
negative” phenotype). Therefore, patients with basal-like
cancers are unlikely to benefit from the currently available
targeted systemic therapy (Rakha et al., 2008). We focused
on those genes and found that this subtype was related to
epidermal development and the epithelial-to-mesenchymal
transition (EMT) (Figures 4B,C). Specifically, KRT5, KRT6B,
KRT14, and KRT17 are all well-described BLBC markers.
KRT81 is one of the main hair proteins that is expressed in
the hair cortex. However, it was reported that KRT81 is
expressed in clinical specimens from patients with breast
cancer (Nanashima et al., 2017). KM survival analysis
showed that KRT81 is associated with poor prognosis
(Figure 4D). Our results are consistent with previous studies
that BLBC expresses basal cytokeratin and other markers of
healthy breast myoepithelial cells. The EMT has been associated
with various tumor functions, including tumor initiation,
malignant progression, tumor stemness, tumor cell migration,
intravasation to the blood, metastasis, and resistance to therapy.
Matrix metalloproteinase (MMPs) are considered as target

genes of the EMT pathway and MMP expression is a late
event of the EMT (Han et al., 2018). PRAME plays a tumor-
promoting role in triple-negative breast cancer by increasing
cancer cell motility through EMT-gene reprogramming (Al-
Khadairi et al., 2019). ELF5 is a suppressor of EMT and
metastasis through the transcriptional repression of Snail2 in
breast cancer (Chakrabarti et al., 2012). LCN2 modulates the
degradation, allosteric events, and enzymatic activity of matrix
metalloprotease-9 (Santiago-Sanchez et al., 2020). And we
found LCN2 is an unfavourable prognostic factor
(Figure 4D). SLPI were overexpressed preferentially in
human patients that had lung-metastatic relapse (Zhang
et al., 2002), its poor prognosis (Figure 4D) suggests that it
may be widely related to the drivers of human cancer metastasis
progression. Additionally, we found some immune factors with
good prognosis, CCL19, CXCL13 and HLA-DQA2 (Figure 4D).
In conclusion, these characteristics of the basal-like subtype
were supported by the association between basal cytokeratins
and poor outcome.

3.3.3 Network Visualization and Pathway Analysis at
the Proteome Level
After training the model, we reclassified the subtypes of all
patients. We visualized the patient network using Cytoscape
(https://cytoscape.org/) and identified the two largest subgraphs
with high similarity and strong connections. These were
dominated by patients with the basal-like subtype and with
the Her2-enriched subtype (Figure 5A). We compared the
classification results with the immunohistochemistry results
(Figure 5B). In the basal-like subgroup, there were four
abnormal patients (Figure 5A). Specifically, the status of
GM-A2DH is ER-negative, PR-negative, HER2-negative, and
it is located in the center of the basal-like subgraph. Compared
with the original label Her2-enriched, it is more reasonable for
MoGCN to classify GM-A2DH as basal-like subtype. Although
E2-A1B0 (ER−, PR−, HER2+), BH-A209 (ER+, PR+, HER2−), and
A8-A08L (ER+, PR−, HER2−) were connected to basal-like
patients in the subgraph, their prediction results were
consistent with the original labels. We suggested that this
was the result of a combination of two features: 1) these
patients were located at the edge of the basal-like subgraph,
and 2) the multi-omics feature extracted by AE complemented
the decision-making of the network. In the Her2-enriched
subgroup, there were also four abnormal patients
(Figure 5A), which were all predicted by MoGCN predicted
as the Her2-enriched subtype. BH-A1F2, D8-A1J9, and BH-
A202 were HER2+, indicating that they could benefit from
HER2-targeting therapy. D8-A1JK (ER−, PR+, HER2−) did
not meet the classification criteria of Her2-enriched and
basal-like subtypes. Considering that it is in the Her2-
enriched subgroup, MoGCN diagnosed it as Her2-enriched.
These results suggested that by integrating the network
structure and multi-omics features, MoGCN was able to
make clinically interpretable decisions.

Considering the significant enrichment of the two
subgraphs of the basal-like subtype and the Her2-enriched
subtype, we performed GSVA analysis on the RPPA data of
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FIGURE 5 | Analysis of the results for the proteome and patient similarity network. (A) Visualization of basal-like and Her2-enriched subgroups using Cytoscape. (B)
The IHC, original label, and MoGCN -predicted label of patients. “−”, IHC-negative; “+”, IHC-positive; “?”, missing data. (C) GSVA of basal-like subgroup and Her2-
enriched subgroup (p < 0.05).
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these samples (Supplementary Table S3). The results showed
the statistically different pathways in two subgroups. The
basal-like subgroup was more enriched in intense cell cycle
activity, DNA damage repair, and the fibroblast growth factor
receptors (FGFR) pathways (Figure 5C). The basal-like cell
lines express an autocrine FGF2 signaling loop that may also be
targetable by monoclonal antibodies (Sharpe et al., 2011),
suggesting that patients harboring those tumors may be
candidates for FGFR-based targeted therapies. The Her2-
enriched subgroup overexpressed ErbB signaling, insulin
receptor signaling, and MTOR signaling pathways, which
was consistent with the genome level changes. Therefore,
combination therapy targeting HER2 can effectively
improve patient survival.

3.4 Validation of MoGCN on the TCGA
Pan-Kidney Cancer Dataset
To verify the generality of MoGCN, we applied this analysis
model to the TCGA pan-kidney cancer (KIPAN) dataset, which
consisted of three main subtypes: kidney chromophobe (KICH),
kidney clear cell carcinoma (KIRC), and kidney papillary cell
carcinoma (KIRP) (Figure 6A). The CNV, mRNA, and RPPA
data for the 698 patients were obtained (Figure 6B). In the
subtype analysis, the accuracy and F1 score of the MoGCN
model reached 97.71 and 97.68% and outperformed all other
compared methods (Figure 6C). These results showed that
MoGCN has potential applicability for a wide range of multi-
omics data mining.

4 DISCUSSION

Cancer has been widely regarded as a highly heterogeneous
disease, and the early diagnosis and prognostic of a cancer

type have become the focus of cancer research. The ultimate
goal of biology is to achieve systems biology understanding, that
is, the integration, interpretation and insight of multi-omics. In
the era of big data, efficient data mining of massive biomedical
data is an important challenge for bioinformatics research.

We developed MoGCN, a network-based multi-omics
integration pipeline for cancer subtype classification. Our study
focused on the issues of feature reduction and the interpretation
of prediction results. Notably, AE improved performance after
integrating multi-omics features, and it also achieved the most
optimal performance, which implied that it has the ability to
capture the complex nonlinear relationships between multi-omics
data. Whereas other mainstream algorithms slightly decreased or
remained unchanged. Moreover, by using GCN to integrate the
omics features and the PSN, the classification performance of our
method was further improved, and displayed the highest accuracy
(0.8982) and F1 score (0.9016) compared with the current
mainstream cancer subtype prediction algorithms.

MoGCN is interpretative in terms of feature extraction and
clinically intuitive diagnosis. Once the model has been trained,
MoGCNwas able to extract the most signification features of each
omics layer for downstream biological knowledge discovery. The
mutated genes at genome level were significantly enriched in
functions or signaling pathways for cancer development, such as
epidermal development, cell migration, Wnt signaling, ErbB
signaling, and mTOR signaling. In addition, the genes highly
expressed in the basal-like subtype with the worst clinical
prognosis were characterized by enrichment in epidermal
development and the epithelial-mesenchymal transition.
Finally, through the visualization of the PSN, we found that
the topological network and omics data features were
complementary and could provide intuitive information for
clinical diagnosis. The generality of MoGCN was proven on
the TCGA pan-kidney cancer dataset. These case studies show
that MoGCN performs well for heterogeneous data integration

FIGURE 6 | Performance of MoGCN on KIPAN dataset. (A), (B) Summary of the KIPAN dataset. (C) Performance comparison of different algorithms. 10-fold cross
validation (mean ± standard deviation).
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and the interpretability of classification results, which confers
great potential for applications in biomarker identification and
clinical diagnosis.

5 CONCLUSION

In conclusion, we developed an interpretable deep learning multi-
omics integration model, for cancer subtype analysis. The captured
features could reveal the molecular characteristics of cancer
subtypes and the patient similarity network could provide
intuitive information for clinical diagnosis. This study provided a
novel method of the multi-omics integration. And the graph-based
approach could provide new possibilities to the precision medicine.
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Background: The interleukin10 (IL-10) gene polymorphisms have been indicated to be
associated with breast cancer (BC) risk, but the findings are still controversial. To derive a
more precise evaluation, we performed a comprehensive meta-analysis.

Methods: A systematic literature search was conducted using PubMed, Embase, CNKI,
China biomedical (CBM), and Google Scholar to 29 March 2020. Revman5.3 and Stata
12.0 software analyzed the data, and the strength of the association was identified using
the odds ratio (OR) and the corresponding 95% confidence interval (CI).

Results: A total of 23 studies (7,250 cancer cases and 7,675 case-free controls) were included
in this meta-analysis. The results show that IL-10 gene polymorphisms were significantly
correlated with BC risk based on subgroup analysis by ethnicity. The IL-10 rs1800896
polymorphism was significantly associated with the risk of BC in Asians (G vs. A: OR =
0.78, 95% CI = 0.65–0.95, p = 0.01; GG vs. AA: OR = 0.51, 95% CI = 0.31–0.84, p = 0.007;
GA vs. AA: OR = 0.6, 95% CI = 0.44–0.81, p = 0.0009; GG + GA vs. AA: OR = 0.6, 95% CI =
0.45–0.81,p=0.0007);Moreover, an increasedBC risk in Asianswere also associatedwith the
IL-10 rs1800872 polymorphism (AA vs CC: OR = 0.74, 95%CI = 0.55–0.99, p = 0.04; A vs C:
OR = 0.85, 95%CI = 0.74–0.98, p = 0.03). In addition, The IL-10 rs1800871 (CT vs. TT: OR =
1.8, 95%CI = 1.03–3.13, p = 0.04) and rs1800872 polymorphism (A vs C: OR = 0.65, 95%CI
0.43–0.98, p = 0.04) were associated with BC risk in Caucasians.

Conclusion: Collectively, this meta-analysis demonstrated that IL-10 rs1800896 and
rs1800872 (AA vs. CC; A vs. C) polymorphisms significantly increased the risk of BC in
Asians, while the rs1800871 and rs1800872 (A vs. C) were associated with the risk of BC
in Caucasians. Therefore, this may provide new ideas for predicting and diagnosing BC
susceptibility through the detection of IL-10 gene polymorphism.

Systematic Review Registration: [https://www.crd.york.ac.uk/ PROSPERO], identifier
[CRD42021266635].

Keywords: interleukin-10, gene polymorphism, breast cancer, meta-analysis, species variation

Edited by:
Rodrigo Drummond,

A.C.Camargo Cancer Center, Brazil

Reviewed by:
Seyed Reza Mohebbi,

Shahid Beheshti University of Medical
Sciences, Iran

Hamidreza Mahboobi,
Tehran University of Medical

Sciences, Iran

*Correspondence:
Jiangang Cao

814709270@qq.com

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 05 December 2021
Accepted: 21 January 2022

Published: 04 February 2022

Citation:
Li L, Xiong W, Li D and Cao J (2022)

Association of Interleukin-10
Polymorphism (rs1800896,

rs1800871, and rs1800872) With
Breast Cancer Risk: An UpdatedMeta-

Analysis Based on Different
Ethnic Groups.

Front. Genet. 13:829283.
doi: 10.3389/fgene.2022.829283

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8292831

SYSTEMATIC REVIEW
published: 04 February 2022

doi: 10.3389/fgene.2022.829283

58

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.829283&domain=pdf&date_stamp=2022-02-04
https://www.frontiersin.org/articles/10.3389/fgene.2022.829283/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.829283/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.829283/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.829283/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.829283/full
https://www.crd.york.ac.uk/ PROSPERO
http://creativecommons.org/licenses/by/4.0/
mailto:814709270@qq.com
https://doi.org/10.3389/fgene.2022.829283
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.829283


INTRODUCTION

Breast cancer (BC) is the leading cause of female cancer-related
death worldwide and is one of the most common cancer forms
(Anastasiadi et al., 2017). BC incidence varies widely, ranging
from 27/100,0002 (Central-East Asia and Africa) to 85–94/
100,0002 (Australia, North America, and Western Europe).
And the incidence of BC in France is the highest in Europe
(Sancho-Garnier and Colonna, 2019). In Asian countries, the
incidence rate of BC has also been increasing rapidly (Mubarik
et al., 2020; Oblak et al., 2020). The pathogenesis of BC is
multifactorial. Hereditary BC accounts for only 5–10% of all
BC cases and germline mutations, with the two significant BC
susceptibility genes, BRCA1 and BRCA2 is responsible for
approximately 2–3% of all cases (Kwong et al., 2016). Besides
gene tests for identifying high-risk BRCA1 or BRCA2 mutations
carriers (Ha et al., 2017), the ability to predict BC development is
not well established yet. Although genetic, environmental, and
lifestyle factors are associated with BC occurrence, the biological
mechanism that causes BC remains unclear.

Inflammation plays a significant role in BC development and
is an important part of the BC microenvironment (Mohamed
et al., 2018). Interleukin-10 (IL-10) is an important anti-
inflammatory and immunomodulatory cytokine in the human
immune response. IL-10 is located on chromosome 1 (1q31-
1q32), composed of five exons and four introns (Roh et al., 2002).
Single nucleotide polymorphism (SNP) is the most common
genetic variation. In the SNP database (http://www.ncbi.nlm.
nih.gov/snp), three promoter SNPs of IL-10, rs1800896
(-1082A/G), rs1800871 (-819T/C), and rs1800872 (-592A/C)
were extensively investigated in many diseases. Because they
might affect IL-10 gene transcription and translation, resulting
in abnormal cell proliferation and cancer development (Howell
and Rose-Zerilli, 2007). The possible mechanism is that IL-10 is
activated by the Janus kinase (JAK)/signal transducer and
activator of transcription (STAT) signaling pathways through
its receptor IL-10 R1 which binds to STAT3. Then STAT3 is
translocated into the nucleus, where it binds to STAT-binding
elements in the promoters of proliferation-related genes. It has
been reported that IL-10 gene polymorphism plays an important
role in the occurrence and development of cancers such as BC,
gastric cancer, lung cancer (Bhattacharjee et al., 2016; Chen et al.,
2019; Zhao et al., 2019). And some studies reported the high IL-10
expression levels in the BC paraffin section and its expression is
correlated with worse outcomes in patients with malignant
tumors (Li et al., 2014; Zhao et al., 2015).

In recent years, several studies have reported the relationship
between IL-10 polymorphisms and BC susceptibility. A study found
that: rs1800896 (-1082A/G) polymorphism was correlated with
cancer staging and associated with the progression of BC at AA
genotype (Abedinzadeh et al., 2018). In the research based on
Caucasians, it was found that there was a significant association
between the IL10-1082 G/G genotype and the increased risk of BC
(Zhu et al., 2020). Another study found that the rs1800871 (-819T/C)
polymorphism increased the risk of BC in Han Chinese women (Li
et al., 2020). And a study shows the rare allele of rs1800872 (-592A/C)
polymorphismmay be a potential prognostic indicator of disease-free

survival in BC patients (Gerger et al., 2010). These suggest that IL-10
gene polymorphismmay affect the risk of human BC (Setrerrahmane
and Xu, 2017). However, these results are inconsistent. Moreover, IL-
10 polymorphism and BC susceptibility studies are constantly
updated, and adjustments vary between included studies based on
race, age, lifestyle, and other covariates (Patricia Gallegos-Arreola
et al., 2019). Considering the critical role of IL-10 in the development
of BC, we conducted this systematic review. And compared with
previous meta-analyses, we comprehensively included the latest
relevant studies to evaluate the association of IL-10 rs1800896,
rs1800871, and rs1800872 polymorphisms with the risk of BC in
different ethnic groups. It will provide theoretical evidence for the
genetic mechanism of BC.

METHODS

This meta-analysis was conducted according to the PRISMA
reporting criteria (Moher et al., 2009).

Search Strategy
Research articles on the relationship between IL-10 gene
polymorphisms and BC risk were searched in different
databases, including PubMed, Web of Knowledge, Embase,
CNKI, CBM, and Google Scholar up to 29 March 2020. And
we retrieved with the keywords: (“breast cancer” or “breast
tumor” or “breast neoplasm” or “malignant breast tumor” or
“breast carcinoma”) and (“Interleukin-10” or “IL-10”) and
(“polymorphism” or “SNP” or “single nucleotide
polymorphism” or “variation” or “mutation”).

Inclusion and Exclusion Criteria
Inclusion criteria: (1) Clinical BC patients were selected as the
case group and healthy people as the control group; (2) Case-
control or cohort studies about associations between IL-10 gene
polymorphism and BC in humans; (3) Full manuscript in English
or Chinese is retrievable; (4) Reporting the number of cases and
controls for each genotype and detailed genotyping data, or
knowing the odds ratio (OR) helped to calculate the 95%
confidence interval (CI).

Exclusion criteria: (1) Abstracts, reviews; (2) Studies on the
relationship between IL-10 gene polymorphism and prognosis of
BC; (3) studies on the apparent imbalance of baseline between the
case group and control group; (4) The cases and control sources
were not provided; (5) Repeatedly published literature. If multiple
studies from the same case series were available, the one including
the most individuals were used in the analysis.

Data Extraction
Two researchers selected the literature according to the inclusion and
exclusion criteria, extracted the data, and cross-checked them
independently into a standard data collection form. If there were
any disputes, we would reach an agreement by discussion or by a
third party and strive to reach a consensus on each project. Data were
collected from each article included: the first author, year of
publication, study location, type of study, ethnicity (classified as
Asian, Caucasian, or mixed descent), total number of cases and
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controls, genotype frequency, genotype detection method, and the
source of authority.

Sensitivity Analysis
Sensitivity analysis was performed to assess the stability of the results.
The Funnel plot, Begg’s test, and Egger’s test were used to evaluate
publication bias. RevMan5.3 and Stata 12.0 software was used for the
above statistical analysis.

Statistical Analysis
The correlation between IL-10 gene polymorphisms and BC risk
was evaluated by OR and 95% CI as the effect size. 95% CI
without one and P(OR) < 0.05 was considered statistically
significant. The Z-test determines the significance of the OR
value. The effects of heterogeneity were quantified by I2 and P(H)
values. In addition, the I2 value is used to quantify the degree of
heterogeneity (I2 < 25%: low/no heterogeneity; 25 < I2 < 75%:
moderate heterogeneity; I2 > 75%: extreme high heterogeneity).
The fixed-effect model is adopted when the I2 < 25%; otherwise,
the random effect model is adopted. We further carried out
subgroup analyses by ethnicity to get ethnic-specific results.

RESULTS

Search Results
We had a total of 78 articles after removing three duplicated pieces.
After the layer-by-layer screening, a total of 23 articles finally met the
criteria for inclusion in this meta-analysis. Eligible papers were
published between 2004 and 2019. This meta-analysis updated
three 2019 case-control studies compared to previous meta-
analyses (Dai et al., 2014; Abedinzadeh et al., 2018; Moghimi
et al., 2018). A flow diagram schematizing the inclusion and
exclusion process of identified articles with the inclusion criteria is
presented in Figure 1.

Data Extraction and Quality Assessment
The 23 eligible articles had a total sample size of 14,925
participants, including 7,250 BC patients and 7,675 healthy
controls (Smith et al., 2004; Abdolrahim-Zadeh et al., 2005;
Guzowski et al., 2005; Langsenlehner et al., 2005;
Balasubramanian et al., 2006; Onay et al., 2006; Scola et al.,
2006; Gonullu et al., 2007; Pharoah et al., 2007; Kong et al.,
2010; He et al., 2012; Pooja et al., 2012; Meijiang, 2014; Wang
et al., 2014; Vinod et al., 2015; AlSuhaibani et al., 2016; Atoum,
2016; Maruthi et al., 2017; Sabet et al., 2017; Tian et al., 2017; Azher
et al., 2019; Fanyu et al., 2019; Patricia Gallegos-Arreola et al.,
2019). The samples were involved in three IL-10 polymorphism
sites: rs1800896, rs1800871, and rs1800872. There were 17 studies
on rs1800896 (3,308 cases and 3,425 controls), twelve studies on
rs1800871 (2,530 cases and 2,698 controls), and 13 studies on
rs1800872 (4,702 cases and 4,818 controls). Ten studies were based
on Caucasians, six were based on Asians, and the remaining seven
studies were mixed-race in the 23 criteria studies. Of these studies,
eighteen were hospital-based, and five were population-based. The
Newcastle-Ottawa Scale (NOS) was used to assess the quality of the
included articles (Stang, 2010). And NOS scores ranged from zero
to nine. We considered the study’s methodological quality good if
the score was ≥ seven. Two authors independently completed our
data extraction and quality evaluation. Table 1 and Table 2 show
the basic characteristics of the included literature, the distribution
of polymorphisms at the studied gene sites, allele frequency, and
the quality assessment of the included studies.

Meta-Analysis Results
The association between IL-10 gene polymorphisms (rs1800896,
rs1800871, and rs1800872) and BC is shown in Table 3 and
Figures 2–5. Squares and horizontal lines correspond to study-
specific OR and 95% CI. The area of a square reflects the weight
(inversely proportional to the variance). The diamond represents the
sum of OR and 95% CI.

FIGURE 1 | Flowchart of study selection for the present study.
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Correlation Between rs1800896
Polymorphism and Breast Cancer
A total of 17 studies were conducted on the association between IL-10
rs1800896 polymorphism and BC risk, with a total sample size of
6,733 cases, including 3,308 patients and 3,425 healthy controls.
Overall population heterogeneity test I2 was 82%. The random-effect
model results showed that the comparison results of the five gene
models showed no statistical significance between rs1800896
polymorphism and BC (Table 3). Subgroups by ethnicity showed
that under the four genetic models (allele G vs. A: OR = 0.78, 95% CI
= 0.65–0.95, p = 0.01; homozygous GG vs. AA: OR = 0.51, 95% CI =
0.31–0.84, p = 0.007; heterozygous GA vs. AA: OR = 0.6, 95% CI =
0.44–0.81, p = 0.0009; dominant GG +GA vs. AA: OR = 0.6, 95% CI
= 0.45–0.81, p = 0.0007) (Figures 2A–D), rs1800896 polymorphism
was significantly associated with BC risk in Asians. This result
suggests that ethnicity is likely to be the source of heterogeneity,
and the rs1800896 polymorphism is significantly associated with the
BC risk in Asians.

Correlation Between rs1800871
Polymorphism and Breast Cancer
A total of 12 studies with 2,530 patients and 2,698 controls
evaluated the strength of the association between the IL-10
rs1800871 polymorphism and BC. There was no association
between BC risk and rs1800871 polymorphism in any genetic
model in the overall population. However, when stratified by
ethnicity, the rs1800871 polymorphism was associated with BC

risk in the heterozygous model in Caucasians (CT vs. TT: OR =
1.8, 95% CI = 1.03–3.13, p = 0.04) (Figure 3). This result indicates
that Caucasians with the rs1800871 heterozygous model are more
likely to develop BC than individuals with other genotypes.

Correlation Between rs1800872
Polymorphism and Breast Cancer
Thirteen studies (4,702 cases and 4,818 controls) assessed the
strength of the association between IL-10 rs1800872
polymorphism and BC susceptibility. As shown in Table 3,
the five gene model comparison results showed that the
association between IL-10 rs1800872 polymorphism and BC in
the overall population was not statistically significant. However,
after stratification by ethnicity, the homozygous model of
rs1800872 polymorphism was associated with BC risk in
Asians (AA vs. CC: OR = 0.74, 95% CI = 0.55–0.99, p = 0.04)
(Figure 4A). Allele model of rs1800872 polymorphism was
associated with the risk of BC in Asians (A vs. C: OR = 0.85,
95% CI = 0.74–0.98, p = 0.03) (Figure 4B) and Caucasians (A vs.
C: OR = 0.65, 95% CI = 0.43–0.98, p = 0.04) (Figure 4C).

Publication Bias
Funnel plot, Begg’s test, and Egger’s test were used to evaluate
the publication bias (Stata12.0). As shown in Figure 5, the
funnel plot was essentially symmetrical, and the p values of
Begg’s test and Egger’s test are all greater than 0.05. It was

TABLE 1 | Characteristics of the studies included in the meta-analysis.

First
author

Year Country Ethnicity Genotyping method SOC Case/control Study
design

SNP No. NOS score

Gallegos-Arreola 2019 Mexican Mixed PCR-RFLP HB 368/320 CC 3 8
Al-Ankoshy 2019 Iraq Caucasian PCR–SSP HB 70/70 CC 1 8
Zeng 2019 China Asian PCR-RFLP HB 208/215 CC 3 8
Sabet 2017 Egypt Caucasian PCR-RFLP HB 105/50 CC 1,2,3 7
Tian 2017 China Asian Mass ARRAY PB 312/312 CC 1,2,3 7
Maruthi 2017 India Mixed PCR-RFLP HB 285/285 CC 1 7
Atoum 2016 Jordan Mixed PCR-RFLP HB 202/210 CC 1,2,3 7
Alsuhaibani 2016 Egypt Caucasian PCR-RFLP HB 80/80 CC 1 7
Vinod 2015 India Mixed ASPCR HB 125/160 CC 1 8
Li 2014 China Asian PCR–SSP PB 128/128 CC 1,2 7
Wang 2014 China Asian PCR-RFLP HB 474/501 CC 2 8
Pooja 2012 India Mixed PCR-RFLP PB 200/200 CC 1,2,3 7
He 2012 China Asian MALDI-TOF MS HB 347/500 CC 2 7
Kong2010 2010 China Asian PCR-RFLP HB 315/322 CC 1,2,3 7
Pharoah 2007 European Caucasian TaqMan PB 2045/2218 CC 3 8
Gonullu 2007 Turkey Caucasian Mass ARRAY HB 38/24 CC 1,2,3 7
Scola 2006 Italy Caucasian PCR-RFLP HB 84/106 CC 1,2,3 7
Onay 2006 Canada Mixed TaqMan PB 398/372 CC 1 8
Balasu bramanian 2006 United Kingdom Caucasian TaqMan HB 497/498 CC 1 7
Guzowski 2005 America Mixed DHPLC HB 50/25 CC 1,2,3 7
Langsenlehner 2005 Australia Caucasian TaqMan PB 500/496 CC 3 8
Abdolrahim 2005 Iran Caucasian PCR-RFLP HB 275/320 CC 1,2,3 8
Smith 2004 United Kingdom Caucasian ARMS-PCR HB 144/263 CC 1 8

SOC, source of controls; HB: hospital-based; PB, population-based; CC, case–control; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; DHPLC,
denaturing highperformance liquid chromatography; EPIC, European Prospective Investigation of Cancer (a prospective study of diet and cancer being carried out in nine European
countries); ASPCR, allele-specific PCR; SNP, single-nucleotide polymorphisms; SNP No. 1, - 1082A > G (rs1800896); 2: - 819T > C (rs1800871); 3, - 592A > C (rs1800872); NOS,
Newcastle-ottawa scale.
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indicated that there was almost no obvious publication bias at
the three loci.

DISCUSSION

IL-10, known initially as cytokine synthesis inhibitory factor
(CSIF), is a potent anti-inflammatory cytokine. IL-10 can
stimulate the expression of carboxypeptidase B2 (CPB2) in
inflammatory BC cells. Thus it increases the cancer cells’
aggressiveness (Mohamed et al., 2018). Moreover, IL-10 is
involved in the abnormal proliferation of breast ducts and

lobules and stimulates mitotic activity, leading to increased
cancer risk (Kong et al., 2010; Moghimi et al., 2018). IL-10
can also induce tumor progression by inhibiting many
cytokines such as IL-1a, IL-1b, IL-6, IL-8, IL-12, and IL-18.
And IL-10 gene silencing down-regulates the expression of
phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and
B cell lymphoma 2 (Bcl2) and increases the expression levels of
BCL2 binding component 3(BBC3), Bax, and caspase3 (Alotaibi
et al., 2018). Studies on the mechanism of IL-10 promoting BC
have shown that the production of IL-10 may represent a new
escape mechanism for BC cells to escape the destruction of the
immune system. It might be closely related to the fact that

TABLE 2 | IL-10 polymorphisms genotype distribution and allele frequency in cases and controls.

First author Case Control Cases Control MAF

Genotypes Alleles Genotypes Alleles

-1082A > G rs1800896 AA AC CC A C AA AC CC A C
Atoum (2016) 202 210 157 29 16 343 61 151 42 17 344 76 0.181
AlSuhaibani et al. (2016) 80 80 16 47 17 79 81 14 50 16 78 82 0.512
Vinod et al. (2015) 125 160 76 31 18 183 67 67 78 15 212 108 0.337
Pooja et al. (2012) 200 200 132 60 8 324 76 145 50 5 34 60 0.638
Kong et al. (2010) 315 322 285 29 1 599 31 285 35 2 605 39 0.061
Gonullu et al. (2007) 38 24 13 22 3 48 28 16 7 1 39 9 0.187
Guzowski et al. (2005) 50 25 10 28 12 48 52 9 12 4 30 20 0.400
Sabet et al. (2017) 105 50 15 41 49 71 139 27 21 2 75 25 0.250
Tian et al. (2017) 312 312 51 132 129 234 390 27 154 131 208 416 0.666
Abdolrahim-Zadeh et al. (2005) 275 320 119 116 40 171 373 146 125 49 417 223 0.348
Scola et al. (2006) 84 106 28 40 16 96 72 40 45 21 125 87 0.410
Onay et al. (2006) 398 372 90 205 103 385 411 107 194 71 408 336 0.451
Balasubramanian et al. (2006) 497 498 121 253 123 499 495 117 260 121 494 502 0.504
Maruthi et al. (2017) 285 285 80 146 59 262 308 89 159 37 234 336 0.589
Azher et al. (2019) 70 70 36 10 24 97 43 16 17 37 44 96 0.690
Smith et al. (2004) 144 263 32 58 39 136 122 46 120 57 250 276 0.524
Li et al. (2014) 128 128 96 30 2 222 34 80 44 4 204 52 0.203
-819T > C (rs1800871) TT TC CC T C TT TC CC T C
Atoum (2016) 202 210 88 47 67 223 181 93 41 76 227 193 0.459
Wang et al. (2014) 474 501 90 198 186 378 570 48 219 234 315 687 0.685
Pooja et al. (2012) 200 200 54 92 54 200 200 65 78 57 208 192 0.480
Kong et al. (2010) 315 322 119 135 61 273 257 134 131 57 399 245 0.380
Gonullu et al. (2007) 38 24 5 17 16 27 49 4 10 10 18 30 0.625
Guzowski et al. (2005) 50 25 3 19 28 25 75 1 10 14 12 38 0.760
Sabet et al. (2017) 105 50 16 47 42 79 131 26 22 2 74 26 0.260
Tian et al. (2017) 312 312 124 141 47 389 235 144 128 40 416 208 0.333
Abdolrahim-Zadeh et al. (2005) 275 320 129 120 26 375 172 166 122 32 454 186 0.290
He et al. (2012) 347 500 177 141 29 495 199 229 223 44 681 311 0.313
Scola et al. (2006) 84 106 5 30 49 40 128 12 35 59 59 177 0.721
Li et al. (2014) 128 128 105 22 1 232 23 96 28 4 220 36 0.203
-592C > A (rs1800872) AA AC CC A C AA AC CC A C
Patricia Gallegos-Arreola et al. (2019) 368 320 42 154 172 238 498 11 100 209 122 518 0.190
Zeng et al. (2019) 208 215 10 88 110 108 308 22 95 98 139 291 0.323
Atoum (2016) 202 210 76 84 42 236 168 79 91 40 249 171 0.593
Pooja et al. (2012) 200 200 45 67 88 157 243 38 84 78 160 240 0.400
Kong et al. (2010) 315 322 119 135 61 373 257 134 131 57 399 245 0.620
Gonullu et al. (2007) 38 24 5 17 16 27 49 4 10 10 18 30 0.375
Guzowski et al. (2005) 50 25 3 17 30 23 77 3 10 12 16 34 0.320
Langsenlehner et al. (2005) 500 496 21 210 269 252 748 36 199 261 271 721 0.273
Sabet et al. (2017) 105 50 4 36 65 42 166 31 16 6 78 28 0.736
Tian et al. (2017) 312 312 131 130 51 392 232 141 127 44 409 215 0.655
Abdolrahim-Zadeh et al. (2005) 275 320 27 100 148 154 396 29 132 159 190 450 0.297
Scola et al. (2006) 84 106 5 30 49 40 128 12 35 59 59 153 0.278
Pharoah et al. (2007) 2045 218 116 679 1,251 367 3,181 116 764 1,338 996 3,440 0.225

MAFs: minor allele frequencies.
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polymorphic variations in the promoter sequences of the IL-10
gene might influence the gene expression and consequently play a
specific role in susceptibility and the clinical course of BC. The IL-10
promoter region polymorphisms affected IL-10 gene transcription
and translation, resulting in abnormal cell proliferation and cancer
development (Moghimi et al., 2018; Sheikhpour et al., 2018).

Studies have shown that the three most common single nucleotide
polymorphisms (SNPs) play an important role in regulating IL-10
activity. They are located at the transcriptional starting point of
rs1800896 (-1082A/G), rs1800871 (-819T/C), and rs1800872
(-592A/C). And they encode high (GCC), medium (ACC), and
low (ATA) expression of IL-10, respectively (Westendorp et al.,

TABLE 3 | Results of the association of IL-10 polymorphisms with BC risk.

Subgroup Genetic model Type of
model

Heterogeneity Odds Ratio

I2 (%) PH OR 95% CI Z test POR

rs1800896
Overall G vs. A Random 82 <0.00001 1.06 0.87–1.28 0.56 0.57

GG vs. AA Random 71 <0.00001 1.14 0.81–1.59 0.73 0.46
GA vs. AA Random 73 <0.00001 0.91 0.71–1.17 0.74 0.46
GG + GA vs. AA Random 79 <0.00001 0.99 0.76–1.28 0.11 0.92
GG vs. GA + AA Random 53 0.006 1.18 0.94–1.48 1.45 0.15

Ethnicity
Asian G vs. A Fixed 0 0.47 0.78 0.65–0.95 2.49 0.01

GG vs. AA Fixed 0 0.97 0.51 0.31–0.84 2.68 0.007
GA vs. AA Fixed 24 0.27 0.6 0.44–0.81 3.31 0.0009
GG + GA vs. AA Fixed 6 0.34 0.6 0.45–0.81 3.39 0.0007
GG vs. GA + AA Fixed 0 0.66 0.94 0.69–1.28 0.39 0.7

Caucasian G vs. A Random 0.0089 <0.00001 1.19 0.83–1.72 0.94 0.35
GG vs. AA Random 0.008 0.00001 1.21 0.67–2.16 0.63 0.53
GA vs. AA Random 72 0.0008 1.09 0.73–1.62 0.43 0.67
GG + GA vs. AA Random 84 <0.00001 1.19 0.74–1.91 0.7 0.48
GG vs. GA + AA Random 70 0.002 1.14 0.75–1.72 0.61 0.55

rs1800871

Overall C vs. T Random 84 <0.00001 1.11 088–1.39 0.87 0.39
CC vs. TT Random 75 <0.00001 1.12 0.75–1.66 0.55 0.58
CT vs. TT Random 67 0.0004 1.11 0.85–1.44 0.77 0.44
CC + CT vs. TT Random 78 <0.00001 1.12 0.84–1.50 0.77 0.44
CC vs. CT + TT Random 50 0.03 1 0.80–1.25 0.02 0.98

Ethnicity
Asian C vs. T Random 89 <0.00001 0.94 0.68–1.31 0.35 0.72

CC vs. TT Random 79 0.0008 0.81 0.48–1.40 0.74 0.46
CT vs. TT Random 76 0.002 0.86 0.61–1.21 0.88 0.38
CC + CT vs. TT Random 82 0.0001 0.84 0.58–1.22 0.93 0.35
CC vs. CT + TT Random 38 0.17 0.93 0.72–1.20 0.59 0.56

Caucasian C vs. T Random 88 <0.0001 1.57 0.81–3.05 1.33 0.18
CC vs. TT Random 84 0.0004 1.11 0.85–1.44 0.77 0.44
CT vs. TT Random 45 0.14 1.8 1.03–3.13 2.07 0.04
CC + CT vs. TT Random 79 0.002 2.13 0.89–5.13 1.69 0.09
CC vs. CT + TT Random 78 0.003 1.64 0.69–3.90 1.12 0.26

rs1800872

Overall A vs. C Random 89 <0.00001 0.82 0.66–1.03 1.7 0.09
AA vs. CC Random 83 <0.00001 0.71 0.46–1.08 1.6 0.11
AC vs. CC Random 59 0.004 0.93 0.78–1.11 0.8 0.43
AA + AC vs. CC Random 79 0.00001 0.86 0.68–1.08 1.31 0.19
AA vs. AC + CC Random 60 0.004 0.95 0.75–1.20 0.44 0.66

Ethnicity
Asian A vs. C Fixed 0 0.54 0.85 0.74–0.98 2.22 0.03

AA vs. CC Fixed 23 0.27 0.74 0.55–0.99 2.04 0.04
AC vs. CC Fixed 0 0.88 0.88 0.69–1.13 0.96 0.34
AA + AC vs. CC Fixed 0 0.81 0.82 0.65–1.04 1.65 0.1
AA vs. AC + CC Fixed 25 0.26 0.82 0.66–1.01 1.84 0.07

Caucasian A vs. C Random 93 <0.00001 0.65 0.43–0.98 2.07 0.04
AA vs. CC Random 89 <0.00001 0.43 0.19–1.00 1.96 0.05
AC vs. CC Random 48 0.09 0.89 0.72–1.11 1.02 0.31
AA + AC vs. CC Random 82 <0.00001 0.74 0.52–1.05 1.69 0.09
AA vs. AC + CC Random 36 0.18 0.87 0.62–1.21 0.84 0.4

OR, odds ratio; PH, p value of Heterogeneity; CI, confidence intervals; POR, p value of odds ratio. p value, significant at <0.05. Bold numbers denote statistical significance.
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FIGURE 2 | Forest plots showed a significant association of IL-10 rs1800896 polymorphism and breast cancer risk in Asians. (A) (allele model: G vs. A); (B)
(homozygous model: GG vs. AA); (C) (heterozygous model: GA vs. AA); (D) (dominant model: GG + GA vs. AA). The squares and horizontal lines correspond to the
study-specific odds ratio (OR) and 95% confidence interval (CI). The area of the squares reflects the weight (inverse of the variance). The diamond represents the
summary OR and 95% CI.

FIGURE 3 | Forest plots showed a significant association of IL-10 rs1800871 polymorphism and breast cancer risk in the Caucasians (heterozygous model: CT vs.
TT). The squares and horizontal lines correspond to the study-specific odds ratio (OR) and 95% confidence interval (CI). The area of the squares reflects the weight
(inverse of the variance). The diamond represents the summary OR and 95% CI.
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1997; Zupin et al., 2014; Hofmann et al., 2018). Several other
polymorphic loci of IL-10 (rs1800890, rs6703630, and rs6693899)
are also controversial, but few relevant studies are present. Many
studies have reported the relationship between race and IL-10 gene
polymorphism and BC risk in recent years. For example, the IL-10
rs1800872 polymorphism was associated with BC susceptibility in the
Mexican population (Patricia Gallegos-Arreola et al., 2019). Also, the
mutant allele and genotypes of IL-10 rs1800896 were significantly

associated with Indian postmenopausal BC (Pooja et al., 2012). Since
the IL-10 gene polymorphisms were associatedwith the risk of BC, we
hypothesized that race is the key to the association between IL-10 gene
polymorphisms and BC. This meta-analysis conducted the most
comprehensive analysis of the relationship between three IL-10
polymorphisms (rs1800896, rs1800871, and rs1800872) and the
BC risk of different races. In a subgroup analysis by ethnicity
(Asian and Caucasian/mixed race), the three IL-10 polymorphisms

FIGURE 4 | Forest plots showed a significant association of IL-10 rs1800872 polymorphism and breast cancer risk in Asians and Caucasians. (A) IL-10 rs1800872
polymorphism in Asians (homozygous model: AA vs. CC); (B) IL-10 rs1800872 polymorphism in Asians (allele model: A vs. C); (C) IL-10 rs1800872 polymorphism in
Caucasians (allele model: A vs. C). The squares and horizontal lines correspond to the study-specific odds ratio (OR) and 95% confidence interval (CI). The area of the
squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.

FIGURE 5 | Begg’s and Egger’s funnel plots of IL-10 gene polymorphism and breast cancer risk for publication bias test. (A) rs1800896; (B) rs1800871; (C)
rs1800872.
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(rs1800896, rs1800871, and rs1800872) were significantly associated
withBC. It showed that rs1800896 (alleleG vs. A:OR=0.78, 95%CI=
0.65–0.95, p = 0.01; homozygous GG vs. AA: OR = 0.51, 95% CI =
0.31–0.84, p = 0.007; heterozygous GA vs. AA: OR = 0.6, 95% CI =
0.44–0.81, p= 0.0009; dominantGG+GAvs. AA:OR=0.6, 95%CI=
0.45–0.81, p = 0.0007) were significantly correlated with BC risk in
Asians. The rs1800871 heterozygotemodel (CT vs. TT:OR= 1.8, 95%
CI = 1.03–3.13, p = 0.04) was associated with BC risk in Caucasians.
The rs1800872 homozygous model (AA vs CC: OR = 0.74, 95% CI =
0.55–0.99, p = 0.04) was associated with BC risk in Asians, and the
allelic model (A vs. C: OR = 0.85, 95% CI = 0.74–0.98, p = 0.03) was
associated with BC risk in Asians and Caucasians (A vs C: OR = 0.65,
95% = CI 0.43–0.98, p = 0.04). The above results indicate that the
ethnic subgroup of IL-10 gene polymorphisms is the key factor
affecting the susceptibility to BC. It is consistent with the results of
previous studies: the relationship between IL-10 gene polymorphism
and BC risk is strongly associated with ethnicity (Patricia Gallegos-
Arreola et al., 2019).

Previously, three researchers (Dai et al., 2014; Abedinzadeh et al.,
2018; Moghimi et al., 2018) have analyzed the correlation between IL-
10 gene polymorphisms and BC risk, but their analysis is not
comprehensive enough. Because there are few studies included and
the ethnic division is not accurate enough in their articles. In addition,
Xu andWang did ameta-analysis on the relationship between various
interleukins and BC. Still, their correlations between IL-10 gene
polymorphisms and BC risk were inconsistent with ours (Xu and
Wang, 2020). It may be related to the different criteria for inclusion
and exclusion and quality assessment of the article. Because the
quality, quantity, and new studies included in the meta-analysis
will directly affect the credibility and stability of the results, we
used a broad search strategy to capture all relevant information.
This meta-analysis conducted a more comprehensive analysis of the
relationship between three IL-10 polymorphisms (rs1800896,
rs1800871, and rs1800872) and BC risk by including 23 studies
(published between 2004 and 2019) and ruling out the researches
with low quality. Moreover, this meta-analysis showed no significant
publication bias, and the heterogeneity of the subgroups was small.
Sensitivity analysis results were also stable. Therefore, the conclusion
of the association between the three IL-10 gene polymorphisms
(rs1800896, rs1800871, and rs1800872) and BC in this meta-
analysis was reliable and had certain clinical guidance values.

However, this meta-analysis has several limitations that
should be acknowledged. Firstly, due to the limited research
on the interaction between these three polymorphic sites and
their interaction with the environment, it is impossible to
estimate the impact of gene-gene and gene-environment
interaction on the study results. Secondly, we found that
heterogeneity existed in the meta-analysis as indicated by the
I2 values. Despite using a random-effects model in some studies,
the heterogeneity remained. It is predictable because other factors

that affect BC should be considered, such as staging and grading
of tumors, age, genetic background, environment, and lifestyle.
However, due to the lack of some qualified original data, we
cannot calculate the impact of these factors on BC. Moreover, in
the future we need to consider more factors influencing BC, such
as age, menopausal state, environment, and lifestyle factors, to
further validate gene-gene and gene-environment interactions on
IL-10 polymorphisms and BC risk.

CONCLUSION

In summary, this meta-analysis provides a new idea for clinical,
genetic, and epidemiological studies of BC. Our results show that
alleles, homozygotes, and dominant genotypes of IL-10
rs1800896 are significantly associated with the risk of BC in
Asians. The homozygous and allele patterns of rs1800872
increase the risk of BC in Asians, while the heterozygous
pattern of rs1800871 and the allele pattern of rs1800872
increase the risk of BC in Caucasians. IL-10 gene
polymorphisms may be a key regulator of BC susceptibility.
Different ethnic groups can predict BC susceptibility by
detecting other IL-10 polymorphisms locus. However, the
etiology of BC is complex, so we strongly recommend further
genetic association studies to explore the effects of gene-gene
interactions on disease susceptibility. Large-scale multicenter
studies can be conducted in the future to verify further the
results of gene-gene and gene-environment interactions on IL-
10 gene polymorphisms and BC risk in different environments.
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An Effective Hypoxia-Related Long
Non-Coding RNA Assessment Model
for Prognosis of Lung
Adenocarcinoma
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Background: Lung adenocarcinoma (LUAD) represents one of the highest incidence
rates worldwide. Hypoxia is a significant biomarker associated with poor prognosis of
LUAD. However, there are no definitive markers of hypoxia-related long non-coding RNAs
(lncRNAs) in LUAD.

Methods: From The Cancer Genome Atlas (TCGA) and the Molecular Signatures
Database (MSigDB), we acquired the expression of hypoxia-related lncRNAs and
corresponding clinical information of LUAD patients. The hypoxia-related prognostic
model was constructed by univariable COX regression analysis, least absolute
shrinkage and selection operator (LASSO), and multivariable Cox regression analysis.
To assess the performance of the model, the Kaplan–Meier (KM) survival and receiver
operating characteristic (ROC) curve analyses were performed.

Results: We found seven lncRNAs, AC022613.1, AC026355.1, GSEC, LINC00941,
NKILA, HSPC324, and MYO16-AS1, as biomarkers of the potential hypoxia-related
prognostic signature. In the low-risk group, patients had a better overall survival (OS).
In addition, the results of ROC analysis indicated that the risk score predicted LUAD
prognosis exactly. Furthermore, combining the expression of lncRNAs with clinical
features, two predictive nomograms were constructed, which could accurately predict
OS and had high clinical application value.

Conclusion: In summary, the seven-lncRNA prognostic signature related to hypoxia
might be useful in predicting clinical outcomes and provided new molecular targets for the
research of LUAD patients.

Keywords: lung adenocarcinoma, hypoxia-related prognostic signature, immune infiltrates, long non-coding RNAs,
nomogram
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INTRODUCTION

LUAD is the most common pathological subtype in lung cancer,
accounting for 40% of all lung cancer incidences (Lemjabbar-Alaoui
et al., 2015; Shi et al., 2016). The mean 5-year survival rate of patients
was only 15% (Odintsov et al., 2021). The major reason for the high
mortality of LUAD is that LUAD is diagnosed at an advanced stage in
most patients. Currently, the diagnosis of LUAD is primarily based
on symptoms, which included the size and location of the tumor, the
location of the tumor in the lymph nodes, and where the cancer has
spread (Lemjabbar-Alaoui et al., 2015; Rami-Porta et al., 2017; Carter
et al., 2018). Although many potential biomarkers for early detection
of LUAD have been studied, such as autophagy-related survival
model, immune-related survival model, and ferroptosis-related gene
signature, there is still lack of clinically used biomarkers due to lack of
sensitivity and validity of these biomarkers on the development of
LUAD (Hirsch et al., 2017; Chen et al., 2021; Shi et al., 2021;Wu et al.,
2021; Jiang et al., 2021; Li et al., 2021).

As a non–protein-coding RNA, lncRNA has approximately 200
nucleotides in length, and it has attracted much attention because of
its ability to regulate gene expression in epigenetic, transcriptional,
and posttranscriptional dimensions (Chang et al., 2016; Fang and
Fullwood, 2016; Li et al., 2016; Bhan et al., 2017; Peng et al., 2017).
LncRNAs significantly affected the development of tumors (Chang
et al., 2016; Choudhry et al., 2016). Recently, lncRNA-related
prognostic models have been extensively developed for many
cancers, including gastric cancer, lung cancer, pancreatic cancer,
breast cancer, and colorectal cancer (Guo et al., 2020; Wang et al.,
2020; Zhang H et al., 2021).

Hypoxia is one of the main characteristics of the tumor
microenvironment (TME) and usually associated with poor
prognosis. According to the study, many lncRNAs play a

regulatory role in the hypoxia of tumors, such as participating in
the regulation of tumor growth, vascular formation, invasion, and
metastasis. Under hypoxic conditions, the lncRNA HABON could
promote growth and proliferation of hepatocarcinoma cells (Ma C
et al., 2021; Ma T et al., 2021). In the hypoxic environment of gastric
cancer, the expression of the lncRNA LINC00460 is upregulated and
promotes tumor invasiveness (Chen et al., 2020). The hypoxia-
regulated lncRNA H19 and PDK1 (pyruvate dehydrogenase kinase
1) expression exhibits strong correlations in primary breast
carcinomas, and they promote reprogramming of cancer stem
cells (Peng et al., 2018). However, there are no exact prognostic
markers related to hypoxia-related lncRNAs in LUAD.

In this study, we identified seven hypoxia-related lncRNAs
strongly associated with OS. Meanwhile, a risk signature was
constructed. By using the other cohort, the accuracy and
reliability of this model were validated. Moreover, we found that
the signature was independent of clinical features. In conclusion, we
successfully established a risk model associated with hypoxia.
Moreover, it may be used for clinical treatment and diagnosis.

MATERIALS AND METHODS

Ethics Statement
The RNA-sequencing and clinical data of LUAD were downloaded
fromTCGAdatabase (https://cancergenome.nih.gov/). Our study was
based on the open resource data that were free for researching and

FIGURE 1 | Flow chart of data acquisition and analysis.

TABLE 1 | Basic clinical information of 499 LUAD patients from TCGA.

Variables LUAD
patients (N = 499)

Gender
Female 270 (54%)
Male 229 (46%)
Age
≤65 years 240 (48%)
>65 years 259 (52%)
Pathologic T Stage
T1 170 (34%)
T2 263 (53%)
T3 45 (9%)
T4 18 (4%)
Unknown 3 (0%)
Pathologic M Stage
M0 331 (66%)
M1 24 (5%)
Unknown 144 (29%)
Pathologic N Stage
N0 322 (65%)
N1 95 (19%)
N2 69 (14%)
N3 2 (0%)
Unknown 11 (2%)
Pathologic Stage
Stage I 266 (53%)
Stage II 120 (24%)
Stage III 80 (16%)
Stage IV 25 (5%)
Unknown 8 (2%)

Note: T, tumor size; M, distant metastasis; N, lymph node.
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publishing relevant articles with no ethical issues and other conflicts of
interest. The process of this study is presented in Figure 1.

Data Acquirement of TCGA
The mRNA expression data were derived from 535 LUAD patients
and 59 healthy controls. Meanwhile, corresponding clinico-
pathological data, including gender; age; pathologic T, M, and
N stage; tumor clinical stage; and overall survival (OS) time were
also obtained from TCGA database. Twenty-three out of 522
patients were excluded due to lack of information of OS (or the
OS time was zero); therefore, lncRNA expression of 499 patients
and their clinico-pathologic data were used for analysis. We
presented the basic clinical information of these patients inTable 1.

Hypoxia-Related LnRNA Extraction
We performed Gene Set Enrichment Analysis (GSEA) to research
two datasets associated with hypoxia (HARRIS_HYPOXIA,
WINTER_HYPOXIA_METAGENE) from the MsigDB
database. Then, the genes in all samples were analyzed in the
abovementioned gene sets. There were 239 hypoxia-related genes
found from the statistically significant gene set. Finally, by
Pearson’s correlation analysis, we identified hypoxia-related
lncRNAs with the criteria of |correlation coefficient| > 0.3 and
p-value < 0.001 and then constructed an mRNA–lncRNA
coexpression network connected with hypoxia.

Identification of Hypoxia-Related LncRNAs
The Wilcoxon test was utilized to screen the differential expressed
lncRNAs (DELs) between tumor and normal samples. The genes
with p-value < 0.05 and |log2 fold-change (FC)| > 1 were defined as
DELs. Then, we utilized the R package “WGCNA” to construct a
scale-free coexpression network for the all hypoxia-related lncRNAs
by setting the soft threshold power value to 4. Finally, we selected two
models highly correlated with cancer samples for followed analysis.

Construction and Validation of the
Hypoxia-Related LncRNA Prognostic
Signature
We first took the intersection of 601 DELs and 617 lncRNAs in the
two modules (blue: 394, brown: 223). By using univariate Cox
analysis, survival-related lncRNAs associated with hypoxia were
identified. Then, LASSO regression analysis was used to further
screen genes. At this time, we randomly divided the LUAD samples
into two cohorts, training and validation cohorts. Finally, the
lncRNAs were selected to construct a multivariate Cox regression
model, and the risk score was calculated. Based on the median score
of the training cohort, the patients were divided into high- and low-
risk subgroups. Between the two groups, KM analysis was used to
compare the survival time, and the ROC curve was used to evaluate
the predictive power of the signature. In this way, the prognostic
signature was constructed. In addition, in the other cohort, we
performed the same procedure to evaluate the correctness of it.

Functional Enrichment Analysis
We utilized GSEA v4.1 (http://www.gsea-msigdb.org/gsea/index.
jsp) to perform GSEA between the low- and high-risk groups.

After that, we carried out the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses of the
differentially expressed mRNAs (DEGs) between the two groups,
using “limma” and “clusterProfiler” packages.

Correlation Analysis of the Tumor
Microenvironment in 33 theCancer Genome
Atlas Pan-Cancers
We then downloaded 33 cancer types from the UCSC Xena
database (https://xenabrowser.net/datapages/), and they are
adrenocortical carcinoma (ACC), bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA),
esophageal carcinoma (ESCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC), colon
adenocarcinoma (COAD), lymphoid neoplasm diffuse large
B-cell lymphoma (DLBC), glioblastoma multiforme (GBM),
head and neck squamous cell carcinoma (HNSC), kidney
chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), acute
myeloid leukemia (LAML), brain lower grade glioma (LGG),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), mesothelioma
(MESO), ovarian serous cystadenocarcinoma (OV), pancreatic
adenocarcinoma (PAAD), pheochromocytoma and
paraganglioma (PCPG), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), sarcoma (SARC), skin
cutaneous melanoma (SKCM), testicular germ cell tumors
(TGCT), thyroid carcinoma (THCA), thymoma (THYM),
uterine corpus endometrial carcinoma (UCEC), uterine
carcinosarcoma (UCS), cholangiocarcinoma (CHOL),
stomach adenocarcinoma (STAD), and uveal melanoma
(UVM). Meanwhile, six types of immune infiltration, namely,
C1 (wound healing), C2 (INF-r dominant), C3 (inflammatory),
C4 (lymphocyte depleted), C5 (immunologically quiet), and C6
(TGF-β dominant) were also downloaded from it. Spearman’s
analysis was used to calculate the association of the lncRNAs
with immune subtypes, tumor mutation burden (TMB), and
stemness score (RNAss and DNAss).

Statistical Analysis
All statistical analyses were accomplished with R software
(version 4.0.5). The DEGs were identified by the Wilcoxon
test. We used Pearson’s correlation analysis to calculate the
correlation between lncRNAs and mRNAs associated with
hypoxia. Meanwhile, we applied univariate and multivariate
Cox regression analyses to evaluate the correlation between
the risk score and clinical features. P-value < 0.05 was
regarded as a significant outcome.

RESULTS

Identification of Hypoxia-Related LncRNAs
in LUAD
Through GSEA, we found that the
WINTER_HYPOXIA_METAGEN gene set was significantly
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enriched [(FDR = 0.040), (Supplementary Table S1)], while the
HARRIS_HYPOXIA gene set was not [(FDR = 0.164), (Figures
2A,B)]. Next, 1,629 hypoxia-related lncRNAs were screened
according to the significant gene set (Supplementary Table S2).

We further studied hypoxia-related lncRNAs by the means of
the Wilcoxon test and the weighted gene co-expression network
(WGCNA) analysis, and we used the 601 differentially expressed
hypoxia-related lncRNAs between normal and tumor samples to
intersect with the 617 lncRNAs from the two modules of
WGCNA analysis (Figures 2C–F).

Construction of Hypoxia-Related LncRNA
Prognostic Signature for LUAD
After taking the intersection, we got 262 hypoxia-related
lncRNAs (Supplementary Table S3). We then used these
lncRNAs to construct the prognostic signature. First, 20
lncRNAs were screened by univariate Cox analysis [(p-value <
0.05), (Supplementary Table S4)]. Then, by using LASSO
analysis, 20 variables were reduced to 11 potential predictors
(Figures 3A,B). Finally, seven lncRNAs were identified by the
multivariate Cox regression analysis in the training cohort.

FIGURE 2 | Hypoxia-related lncRNA extraction. (A,B) GSEA analysis showing the most enriched hypoxia-related pathways. (C,D) Determination of the most
suitable power value for scale-free coexpression network. (E)Brown and bluemodules were themost correlated with the tumor state. (F) Identification of common genes
between DELs and the brown and the blue modules by overlapping them.
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LncRNAs, AC022613.1, AC026355.1, GSEC, LINC00941,
NKILA, HSPC324, and MYO16-AS1, were used to calculate
the risk score (Figures 3C–E). Prognostic risk genes correlated
with hypoxia were constructed (Table 2).

The unique risk score of patients was calculated through
multivariate Cox analysis and the expression level. Risk score =
expression of AC010980.2 × 0.490289217 +
expression of AC026355.1 × −0.417505811 +
expression of AL606489.1 × 0.293303854 +
expression of ITGB1-DT × 0.289653582 +
expression of AL034397.3 × −0.277395699 +
expression of LINC01116 × 0.192509771 +
expression of LINC01150 × −0.506323639. According to the
median of the risk score, there were 123 patients in the high-
and low-risk groups, respectively. Additionally, in the other

cohort, the number was 130 and 114 patients using the same
middle score.

By applying ROC curve analysis, in the training cohort, the
area under the curve (AUC) was 0.740 at year 3 and 0.736 at year
5. KM analysis also showed that the model could be a valid
prognostic indicator for patients (Figure 4A). Likewise, in the
other cohort, the AUC values were 0.600 and 0.634, respectively
(Figure 4B). From the result of KM analysis, we got the same
trend with the training cohort (Figures 4C,D). Meanwhile, we
found that in both cohorts, patients in the low-risk group had
more survival time than those in the high-risk group (Figures
4E,F). In addition, in the training cohort, the result of the C-index
was 0.715 and 0.643 in the other cohort.

Independent Prognostic Value of the
Signature
Among these lncRNAs, two lncRNAs in the training cohort
(AC026355.1 and HSPC324) were upregulated, while
MYO16−AS1, GSEC, NKILA, AC022613.1 and LINC00941
were downregulated in the low-risk group. In addition, similar
results were obtained in the validation cohort (Figures 5A,B).
Moreover, in both cohorts, we used univariate and multivariate
Cox regression analyses to assess whether the risk score could
serve as an independent prognostic factor. The risk score was an
independent factor revealed by the univariate Cox regression, and
the HR of it was 1.442. In the multivariate analysis, the risk score

FIGURE 3 | Identification and construction of a hypoxia-related lncRNA signature in the training cohort. (A,B) Robust lncRNAs were screened by LASSO analysis.
(C) Forest plot of the multivariate Cox regression model. (D) Sankey diagram shows the lncRNA–mRNA interaction about hypoxia. * represents p < 0.05, ** represents
p < 0.01, and *** represents p < 0.001.

TABLE 2 | Information of seven hypoxia-related lncRNAs associated with OS in
patients with LUAD.

lncRNA symbol Cox (β) HR

AC022613.1 0.100829689 1.106088246
AC026355.1 −0.29010788 0.748182849
GSEC 0.213042416 1.237437137
LINC00941 0.184433915 1.202537509
NKILA 0.080054987 1.083346635
HSPC324 −0.510440682 0.600231009
MYO16-AS1 0.094137118 1.098710388
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also remained an independent prognostic indicator [p < 0.001,
HR = 1.391, 95% CI: 1.258–1.540 (Figures 5C,D)] in the training
cohort. In the validation cohort, the risk score was an
independent prognostic indicator, too (Figures 5E,F).

In addition, to study the applicability of this model, we also
conducted validations in different clinical subgroups. The
patients were sorted by age (the 65 years or younger group
and the more than 65 years group), gender (the male group
and the female group), T stage of the tumor (the T1–T2 group
and the T3–T4 group), M stage of the tumor (the M0 group and
the M1 group), N stage of the tumor (the N0 group and the
N1–N3 group), and tumor stage (the stage I–II group and the
stage III–IV group). The results showed that the survival rate of
high-risk patients with different age, gender, M0, N0, T1–T2, and
stage I–II group was significantly different from that of low-risk
patients (p-value < 0.05) in the training cohort (Figures 6A–H).
In the validation cohort, we obtained the similar result
(Supplementary Figure S1).

We then constructed two nomograms that integrated the risk
score of the seven-lncRNA models and clinico-pathological
features to predict survival probability of patients. Based on
these, we predicted the patient’s 1-, 3-, 5-, and 10-year
survival probabilities (Figures 6I,J). In both the nomograms,
the higher the total points calculated, the worse the prognosis.
Meanwhile, the calibration plot for the prediction of 3-year and 5-
year survival also indicated the consistency between observation
and prediction in both the cohorts (Figures 6K–N).

Functional Analyses Based on the Risk
Model
We used GSEA software to perform KEGG analysis for exploring
which pathways were enriched. The results identified that in the
high-risk group, processes such as cell cycle, DNA replication,
and mismatch repair were enriched by using the training cohort
(Figures 7A,B).

FIGURE 4 | Risk score of the hypoxia-related lncRNA signature for survival prediction in the two cohorts. The ROC analysis showed that the signature was stable
(A) in the training and (B) in the validation cohorts. Between low- and high-risk groups, KM analysis was used for comparison of the OS (C) in the training and (D)
validation cohorts. Distributions of risk score, survival status, and expression of lncRNAs (E) in the training, and (F) validation cohorts.
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We further screened 660 different genes (adjust p-value < 0.05
and |log2FC (fold-change)| > 1) between the high- and low-risk
groups and carried out enrichment analysis based on these in the
training cohort. GO enrichment analysis indicated that many
nuclear biological processes or molecular functions were
significantly enriched (Figures 7C,D). Next, KEGG pathway
analysis indicated that the biological processes related to cell
proliferation were enriched, based on the upregulated genes,
while downregulated genes were highly correlated with the
immune process (Figures 7E,F and Supplementary Figures
S2, S3). It was further verified that hypoxia is related to cell
proliferation and immunity.

Comparison of Immune Cell Infiltration
Between Subgroups
We calculated the proportion of 22 immune cells of all samples in
the training and validation cohorts by using the CIBERSORT
algorithm (Figures 8A,C). The violin plot showed that patients in
the high-risk group had a higher proportion of activated memory
CD4+ T cells, resting NK cells, M0 macrophages, and activated
mast cells and a lower proportion of regulatory T cells, resting
mast cells, and resting dendritic cells than those in the low-risk
group in the training cohort (Figure 8B). In addition, in the
validation cohort, CD8+ T cells, activated memory CD4+ T cells,

resting NK cells, M0 macrophages, and activated mast cells were
higher in the high-risk group than in the other group, whereas
monocytes, M2 macrophages, resting mast cells, and resting
dendritic cells were lower (Figure 8D). This result indicated
that immune-related activities were associated with hypoxia.

In addition, based on the prognostic signature, there was an
observably different distribution between high- and low-risk
groups through the principal component analysis, which
indicated that there was a difference in the hypoxia phenotype
of the model (Figures 9A,B).

Association of Model LncRNAs With the
Tumor Microenvironment and Immune
Infiltration in Pan-Cancer
From the abovementioned results, the seven-model lncRNAs
played an important role in LUAD. We then downloaded 33
cancer types to understand the function of the lncRNAs and
selected AC022613.1, GSEC, LINC00941, and NKILA for further
study. We found that AC022613.1, GSEC, LINC00941, and
NKILA were mainly upregulated in tumor samples compared
with normal samples (Figures 9D–G). In addition, the expression
of these lncRNAs varied in different tumors (Figure 9C). The
expressions of LINC00941 and NKILA were highly expressed in
CHOL samples than those in the other tumors. In LUAD tissues,

FIGURE 5 | Forest plots of the univariate and multivariate Cox analysis in LUAD patients. Heatmap and clinico-pathologic features of the seven hypoxia-related
lncRNAs (A) in the training, and (B) validation cohorts. Univariate and multivariate analyses for OS (C,D) in the training and (E,F) validation cohorts.
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the expressions of the four lncRNAs were less than zero
(Figure 9H). In addition, we found that LINC00941 and
NKILA may have similar functions (Figure 9I).

By plotting KM curves for 32 cancer types, we found that only
AC022613.1 significantly affected the survival of patients in many
cancer types (Figures 10A–F). Furthermore, we used univariate
Cox analysis to investigate the relationship between the
expression of AC022613.1 and patient survival. The result
showed that the relationship was different in different tumors
(Figure 10G). We then explored their role in the six immune

subtypes, stromal, ESTIMATE, tumor purity, immune score,
tumor stem cells, and TMB. In LUAD patients, we found that
AC022613.1 was strongly connected with the tumor stage and
GSEC, LINC00941, and NKILA were significantly connected
with immune subtypes (Figures 10H,I). Based on the
ESTIMATE analysis, we researched the connection between
the four lncRNAs and tumor microenvironment in LUAD.
The results showed that GSEC had a negative association with
stromal, ESTIMATE, and immune score, while LINC00941 had
the opposite result (Figure 10J). Meanwhile, the results indicated

FIGURE 6 | Stratification analysis of various clinico-pathological factors, nomograms used to predict the OS prognosis, and calibration plots used to predict
prognosis in these patients with LUAD. KM curves of OS in the subgroups of (A,B) both the age groups, (C,D) both gender groups, (E) M0 group, (F) T0 group, (G)
clinical stage I–II group, and (H) T1–2 group. (I,J)Nomograms to predict the 1-, 3-, 5-, and 10-year OS. Calibration plots for 3-year survival and 5-year survival (K,L) in the
training and (M,N) validation cohorts.
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that in pan-cancer, the four lncRNAs were strongly associated
with immune subtypes (Figure 9J). Moreover, we found that they
were mainly positively connected with stromal, ESTIMATE, and
immune score, while there was a negative correlation between
these and tumor purity, RNAss, and DNAss in pan-cancer
(Figures 10K–N). Furthermore, we used the radar plots to
distribute their association between the four lncRNAs and
TMB. Distinctly, we found that NKILA and GSEC had
strongly correlation in LUAD patients (Figures 10O–R).

DISCUSSION

Overall, in this study, we obtained 239 hypoxia-related genes.
According to the expression levels of the 239 genes, we identified
1,629 hypoxia-related lncRNAs using Pearson’s correlation
analysis. |Correlation coefficient| > 0.3 and p-value < 0.001
were our selection criteria. In addition, there were many useful
tools that could help extract hypoxia-related lncRNAs, such as

BioSeq-BLM (Li et al., 2021), BioSeq-Analysis 2.0 (Liu et al.,
2019), and starBase v2.0 (Li et al., 2014). However, they were
mainly used for residue-level analysis and sequence-level
analysis. In this study, according to the expression levels of
the transcriptome, we used Pearson’s correlation analysis to
identify lncRNAs closely associated with hypoxia. The
correlation between the expression levels of mRNAs and
lncRNAs was fully considered. Meanwhile, this method was
widely used in the computational genomics field of tumors, such
as hepatocellular carcinoma (Zhou et al., 2021), bladder cancer
(Ma et al., 2021), soft tissue sarcomas (Zhang J et al., 2021), and
breast cancer (Zhang L et al., 2021). There were 601 DELs
associated with hypoxia between normal and tumor samples. Of
them, 530 differentially expressed hypoxia-related lncRNAs
were upregulated in the tumor samples, and 71 lncRNAs
were downregulated. In addition, by performing WGCNA,
we obtained 617 hypoxia-related lncRNAs that were
associated with tumor samples. By taking the intersection of
the 601 DELs related to hypoxia and 617 hypoxia-related

FIGURE 7 | Functional analysis. Bubble and barplot graph for (A,B) KEGG pathways and (C,D) GO enrichment based on the DEGs in the training cohort. (E,F)
KEGG pathways of GSEA analysis.
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lncRNAs, we got 262 hypoxia-related lncRNAs. Finally, we used
univariate Cox analysis, LASSO analysis, and multivariate Cox
analysis to generate the hypoxia-related lncRNA signature. We
identified seven lncRNAs associated with hypoxia as potential
prognostic biomarkers. KM analysis indicated that in the high-
risk group, the OS of patients was shorter than that of patients in
the low-risk group. Meanwhile, the seven-lncRNA signature was
highly sensitive in the prediction of OS time of LUAD patients
by taking the ROC analysis, and the results were further verified
in the validation cohort. Finally, we constructed two
nomograms to calculate a score representing the OS of
LUAD patients.

In the signature, there were seven different lncRNAs in total.
These lncRNAs were AC026355.1, AC022613.1, GSEC,
LINC00941, NKILA, HSPC324, and MYO16-AS1. Among
these hypoxia-related lncRNAs, according to reports,
AC026355.1 is connected with the development of multiple
tumors. It had important prognostic significance in both
immune- and autophagy-related models (Li et al., 2020; You
et al., 2021; Jiang et al., 2021). LINC00941 is one of the immune-
related prognostic models comprising 7 lncRNAs in LUAD (Jin
et al., 2020; Li et al., 2021). GSEC has only been described in
osteosarcoma cells. In osteosarcoma cells, the overexpression of
GSEC can enhance the proliferation and migration of tumor
cells (Liu et al., 2020). LINC00941 usually was the risk factor and
connected with worse survival (Chang et al., 2021; Fang et al.,
2021; Wang et al., 2021). Wang Jie et al. found that in pancreatic
cancer, LINC00941 was overexpressed and patients yielded
worse prognosis (Wang et al., 2021; Chang et al., 2021).

However, this lncRNA has not been reported in LUAD.
NKILA is a tumor suppressor that affects the proliferation
and metastasis of cancer cells by regulating the STAT3
pathway (Ashrafizadeh et al., 2021). LncRNA HSPC324 plays
a crucial role in tumorigenesis of LUAD (Jafarzadeh et al., 2020).
MYO16-AS1 was an oncogenic lncRNA in bladder cancer
(Jafarzadeh et al., 2020). It has rarely been reported in
LUAD. In conclusion, these lncRNAs all play a significant
role in the occurrence and development of tumors.

A growing body of evidence suggests that the prognosis of
tumor patients is connected with the level of immune invasion of
the tumor, and the state of immune invasion is a key determinant
of tumor development in the tumor microenvironment (Tao
et al., 2021). Hypoxia of tumor tissue plays a vital role in
promoting tumor immunosuppression and immunotherapy
resistance. In this state, there are often abundant tumor-
associated macrophages and Tregs, which inhibit the function
of CD8+T cells and CD4+T cells (Dehghani et al., 2012; Sanchez-
Martinez et al., 2018). Hypoxia inhibits the activity of effector
T cells and NK cells, leading to decreased immune function. In
our study CD8+ T cells; resting NK cells; M0, M1, and M2
macrophages; resting dendritic cells; and resting mast cells were
found to be differentially infiltrated in LUAD and normal tissues,
which is closely related to the development of tumors. This
finding supported that the hypoxia-related lncRNA signatures
reflected immune infiltration to some extent, providing
meaningful information for immunotherapy (Kumar and
Gabrilovich, 2014; Labiano et al., 2015; Aponte-Lopez and
Munoz-Cruz, 2020).

FIGURE 8 | Landscape of immune cell infiltration in LUAD. Immune landscape of the patients with LUAD (A) in the training and (C) validation cohorts. Relationships
between the risk score and immune cell infiltration (B) in the training and (D) validation cohorts. Red and green represent the high- and low-risk groups, respectively.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 76897110

Li and Sun lncRNA Prognostic Model for LUAD

78

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 9 | Expression of lncRNAs in pan-cancer which had more than five normal samples. Principal component analysis based on the lncRNAs of the model (A)
in the training and (B) validation cohorts. (C) Expression of lncRNAs of the model is shown by the boxplot in pan-cancer. (D–G) In 18 cancer types, the difference of the
expression of lncRNAs between tumor and normal samples is shown. (H) Heatmap showing the difference between normal and tumor samples of the expression of
lncRNAs. (I) Relationship calculated by Spearman’s correlation analysis of the lncRNAs in pan-cancer. (J) Association tested by ANOVA in all cancers of four
lncRNAs with six immune subtypes.
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FIGURE 10 | Correlation analysis between the four lncRNAs and patient prognosis and TMB in all cancer types. (A–F) Connection of the four lncRNAs with the
prognosis of patients in pan-cancer. (G) Forest plot showing the hazard ratio of AC022613.1 across all cancer types. The correlation between the four lncRNAs and (H)
immune subtypes and (I) clinical stage of LUAD. (J) Association of four lncRNAs with tumor stem cell scores and stromal, immune, and ESTIMATE score by Spearman’s
correlation analysis. (K–N) The correlation relationship between four lncRNAs and stromal, immune, ESTIMATE, and tumor purity score. In 33 TCGA cancer types,
the radar graph showing the association of the expression of (O) AC022613.1, (P) GSEC, (Q) LINC00941, and (R) NKILA with TMB. p < 0.05, p < 0.01, and p < 0.0001
were represented by *, **, and ***, respectively.
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CONCLUSION

In summary, our study demonstrated that hypoxia is connected
with the development of LUAD. Meanwhile, the two predictive
nomograms were established for predicting the prognosis of
LUAD patients. We anticipated that the study will provide an
important basis for studies on the correlation between hypoxia-
related genes and LUAD.
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Genome-wide Exploration of a
Pyroptosis-Related Long Non-Coding
RNA Signature Associated With the
Prognosis and Immune Response in
Patients With Bladder Cancer
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Background: Bladder cancer (BLCA) is a malignant tumor with a complex molecular
mechanism and high recurrence rate in the urinary system. Studies have shown that
pyroptosis regulates tumor cell proliferation and metastasis and affects the prognosis of
cancer patients. However, the role of pyroptosis-related (PR) genes or long non-coding
RNAs (lncRNAs) in BLCA development is not fully understood.

Methods:We comprehensively analyzed the molecular biological characteristics of PR genes
in BLCA, including copy number variation, mutations, expression and prognostic value based
on TCGA database. We then identified PR lncRNAs with prognostic value based on the
expression of PR genes and performed a consistent clustering analysis of 407 BLCA patients
according to the expression of prognosis-related PR lncRNAs and identified two clusters. The
least absolute shrinkage and selection operator (LASSO) regressionwas used to establish a PR
lncRNA signature and calculate the risk score associated with the prognosis of patients with
BLCA. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Set Enrichment Analysis (GSEA) were used to evaluate the possible functions of PR lncRNA
signature. We also evaluated the relationship between the risk score and tumor immune
microenvironment (TIME).

Results: A total of 33 PR genes were obtained in our study and 194 prognosis-related PR
lncRNAs were identified. We also constructed a signature consisting of eight-PR-lncRNAs and
divided patients into high- and low-risk groups. The overall survival rate of patients with a high
risk was significantly lower than patients with a low risk. The risk score was significantly
correlated with the degree of infiltration of multiple immune cell subtypes and positively
correlated with multiple immune checkpoint genes expression in BLCA. Enrichment
analyses showed that these lncRNAs are involved in human immune regulatory functions
and immune-related pathways.

Conclusion:Our study comprehensively studied themolecular biological characteristics of PR
genes BLCA, and the eight-PR-lncRNA signature we identifiedmight play a crucial role in tumor
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immunity and may be able to predict the prognosis of BLCA patients, providing a theoretical
basis for an in-depth study of the relationship between the prognosis and TIME.
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INTRODUCTION

Bladder cancer (BLCA) is the second-most common cause of
death from urological tumors, and the incidence is still on the rise
(Siegel et al., 2019). Non-muscle-invasive bladder cancer
(NMIBC) accounts for about 75% of all primary bladder
cancers. Unfortunately, 25% of cases have already developed
into muscle-invasive bladder cancer (MIBC) by the time of the
initial diagnosis (Kaufman et al., 2009). According to the
pathological characteristics of BLCA patients, the main clinical
treatments are surgery, radiotherapy, chemotherapy, bladder
irrigation therapy and combination therapy (Ghandour et al.,
2019). However, 10–30% of patients with NMIBC progress to
MIBC after recurrence (Malmström et al., 2017), which has a high
risk of metastasis and a poor prognosis, with only a minority of
patients surviving more than 5 years (Chou et al., 2016).
Immunotherapy is an emerging approach to oncology.
Immune checkpoint inhibitors (ICIs) effectively block the
escape of cancer cells from immune system surveillance, and
these agents have begun to change the treatment strategy for
BLCA. Recent studies have shown that infiltration of different
immune cells may affect the response to ICIs (Benitez et al.,
2020). Moreover, long non-coding RNAs (lncRNAs) are closely
related to the effect of immunotherapy in BLCA, e.g., knockdown
of lncRNA UCA1 significantly enhances the effect of immune
checkpoint PD-1 blockers (Zhen et al., 2018). BLCA has a
complex molecular biological mechanism, which is one of the
main reasons for the poor efficacy of most therapies, lncRNA
plays an important biological role in the progression, cell
proliferation and metastasis of BLCA, for example, LINC00958
can promote BLCA by targeting miR-490-3p and AURKA (Zhen
et al., 2021). lncRNAs can also act as competitive endogenous
RNAs (ceRNAs) targeting snuclear factor-kappaB (NF-κB)-
activated miRNAs to promote tumor development (Mirzaei
et al., 2021). In addition, lncRNAs are involved in BLCA drug
resistance and progression through various pathways (e.g. NF-κB,
PI3K/Akt, Wnt, FOXC2 and EZH2), which has important
implications for the treatment and prognosis of BLCA patients
(Barth et al., 2020; Ashrafizaveh et al., 2021; Mirzaei et al., 2022).
Therefore, the important role of lncRNA in BLCA has also been
gradually emphasized in recent years. The development of
genome sequencing and bioinformatics can help identify many
molecular biomarkers to guide the treatment of BLCA patients,
but only a few of these can be applied in a clinical setting (Zhang
et al., 2021). Therefore, identifying the drivers and inhibitors of
bladder carcinogenesis and understanding their mechanisms are
essential for detecting new therapeutic targets and prolonging the
survival of BLCA patients.

Pyroptosis, also known as inflammatory necrosis, is a form of
programmed cell death involving cellular swelling until the cell
membrane ruptures. The release of cellular contents leads to an

intense inflammatory response (Loveless et al., 2021). Pyroptosis
is also an essential part of the body’s natural immune response
and plays a vital role in the fight against infection (Shi et al., 2017).
Gasdermin D (GSDMD) is a key effector molecule in the
occurrence process of pyroptosis. Under stimulation with
foreign substances, the intracellular pattern recognition
receptor (nucleotide-binding domain leucine-rich repeat
containing [NLR]) binds to the precursor of caspase-1 through
the junction protein ASC and then forms a multi-protein
complex to activate caspase-1. The activated caspase-1 then
cleaves GSDMD to form a peptide containing the active
domain of GSDM-NT, which induces the release of contents,
cell membrane perforation and cell rupture, causing an
inflammatory response. It also activates IL-1β and IL-18,
which are released from the cell to recruit inflammatory cells
and expand the inflammatory response (Broz et al., 2020; Liu
et al., 2021). Pyroptosis may participate in the formation and
development of tumors, and different tissues and genetic
backgrounds of pyroptosis may have different effects on
cancer. It can inhibit tumors but form a microenvironment
suitable for the growth of tumor cells and then promote
tumor growth (Xia et al., 2019). Studies have shown that
pyroptosis can impact tumor cell proliferation, invasion and
metastasis and further affect the cancer prognosis (Al Mamun
et al., 2021). The expression of GSDMD in gastric cancer cells is
lower than that in non-cancer cells, and the low expression of
GSDMD promotes the proliferation of gastric cancer cells (Fang
et al., 2020). Abnormally up-regulated GSDMB can also enhance
the growth and invasive ability of bladder cancer cells (He et al.,
2021). In addition, pyroptosis regulates the tumor immune
microenvironment (TIME) and is involved in the body’s
immune response to tumors (Xi et al., 2019; Zhang et al.,
2020). It has been proven that tumor pyroptosis can enhance
tumor immunogenicity by attracting more anti-tumor
lymphocytes and reconstruct the local or systemic anti-tumor
immunity by reversing the immunosuppressive
microenvironment around tumor cells (Tan et al., 2021).
Therefore, ‘inducing tumor pyroptosis’ is considered a
potential cancer treatment strategy. Interestingly, lncRNAs are
also mediators of cancer pyroptosis (Chen et al., 2020; Tang et al.,
2021). However, the clinical significance of most pyroptosis-
related (PR) lncRNAs has not been clearly investigated.

With the deepening of research in pyroptosis, an increasing
number of PR genes have been identified. A PR signature has also
been identified in various types of tumors, such as ovarian cancer
(Ye et al., 2021), gastric cancer (Shao et al., 2021) and lung
adenocarcinoma (Lin et al., 2021). Moreover, PR genes signatures
have been established to predict the prognosis of patients with
BLCA (Chen et al., 2021; Fu and Wang, 2022). Several studies
have recently suggested that PR long non-coding RNAs
(lncRNAs) may also participate in the formation and
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development of tumors. miRNA-214 was reported to inhibit the
occurrence of glioma cells by directly targeting caspase-1 (Jiang
et al., 2017). LncRNA GAS5 overexpression may also induce
caspase-1 upregulation and promote pyroptosis in ovarian cancer
cells (Li et al., 2018). At present, PR lncRNAs signatures also have
been gradually developed in tumor research to predict the TIME
changes and prognosis of tumor patients. Fada et al. (Xia et al.,
2021) developed a 15 prognostic PR lncRNAs risk model to
predict colon adenocarcinoma patients’ prognosis and TIME
changes; Similar models have been developed in other tumor
types, such as hepatocellular carcinoma (Wu et al., 2021) and
kidney renal clear cell carcinoma (Tang et al., 2021). However, at
present, few published PR lncRNAs signatures can be used to
predict TIME changes and prognosis in patients with BLCA. The
role and prognostic value of PR lncRNAs in BLCA have not been
clarified.

In the present study, we comprehensively evaluated the
molecular characteristics of these PR genes in BLCA and then
identified PR lncRNAs with prognostic value based on the
expression of PR genes. We performed a consistent clustering
analysis of BLCA patients according to the expression of
prognosis-related PR lncRNAs and identified two clusters.
Based on these findings, the least absolute shrinkage and
selection operator (LASSO) regression was used to establish a
PR lncRNA signature and calculate the risk score associated with
the prognosis of patients with BLCA. We also evaluated the
relationship between the risk score and TIME. This study assesses
the link between pyroptosis and TIME in BLCA, as well as
provides a new reference to predict the prognosis of BLCA
patients and identify personalized treatment strategies.

MATERIALS AND METHODS

Acquisition of Data From Patients With
Bladder Cancer
We obtained BLCA transcriptome, gene mutation data and
clinical data from the TCGA database (https://portal.gdc.
cancer.gov/). The mRNA and lncRNA expression profile data
were derived from 414 BLCA tissues and 19 normal tissues, and
gene mutation data samples were derived from 411 BLCA tissues.
Gene copy number variation data were obtained from the UCSC
database (https://xenabrowser.net/datapages/), including 413
BLCA samples. The clinical data are shown in Supplementary
Table S1, we extracted clinical data from 412 patients. Samples
without complete clinical information will be excluded in the
subsequent clinical correlation analysis.

Analyses of Molecular Characteristics of
Pyroptosis-Related Genes in Bladder
Cancer
The 33 PR genes were shown in Supplementary Table S2, and
these genes have been proved to be associated with pyroptosis in
previously published studies (Man and Kanneganti, 2015; Wang
and Yin, 2017; Karki and Kanneganti, 2019; Xia et al., 2019; Chen
et al., 2021). We extracted the expression data of 33 PR genes

from the BLCA transcriptome data. Using the limma package for
the differential expression analysis, we extracted the copy number
variation data of 33 PR genes from the data obtained from the
UCSC database. We then counted the frequency of copy number
variation of these genes in all samples. The RCircos package was
used to visualize the change information of gene copy numbers.
Similarly, we used the maftools package to analyze the mutation
data of 33 PR genes from the mutation data obtained from the
TCGA database and counted the mutation frequencies.

We used the Search Tool for Interaction Genes (STRING)
database (https://string-db.org/cgi/input.pl) to construct PPI
networks for differentially expressed PR genes and used the
OncoLnc online analysis tool (http://www.oncolnc.org/) to
perform a prognostic analysis of these genes. The OncoLnc
tool can be used to analyze the correlation between mRNA,
miRNA or lncRNA expression and the prognosis of patients
with specific types of tumors based on the prognostic data of the
TCGA database (Anaya, 2016).

Identification of Pyroptosis-Related
lncRNAs
We removed the samples with incomplete survival data, and 407
BLCA samples remained after merging with the PR lncRNA
expression matrix. The co-expression method based on the
expression of 33 PR genes was used to identify PR lncRNAs. A
total of 812 PR lncRNAs were identified according to the criteria |
correlation coefficient| > 0.4 and p < 0.01. The Igraph package
was used to visualize the co-expression network. A univariate Cox
regression analysis was performed to screen prognosis-related PR
lncRNAs at p < 0.05.

Analyzing the Correlation Between Tumor
Clusters and Clinical Features
The ConsensusClusterPlus packet is an algorithm that can
identify cluster members and their number in datasets (such
as microarray gene expression profiles) (Wilkerson and Hayes,
2010). A consistent clustering analysis was used to determine the
optimal number of clusters (k) and verify the clustering
rationality by a resampling-based approach to assess the
stability of the clusters. We used this package to perform a
consistent clustering analysis based on the prognosis-related
PR lncRNA expression matrix and then performed a
prognostic correlation analysis of BLCA clusters. The degree
of immune cell infiltration in BLCA was evaluated using the
CIBERSORT algorithm (Newman et al., 2015). The results of the
correlation analysis between the BLCA clusters and immune cell
infiltration were considered significant at p < 0.05.

Construction of Pyroptosis-Related lncRNA
Signature
The BLCA patients were randomly divided into training and
testing groups in a 1:1 ratio using the caret R package. The
expression matrix of PR lncRNAs was combined with the
prognosis data of the patients. A LASSO regression analysis
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was used to develop a PR lncRNA signature in the training group.
The testing and entire groups were used to verify the established
signature. The risk score of each BLCA patient was calculated
according to the following formula:

Risk score = coefficient (lncRNA1) × expression
(lncRNA1) + coefficient (lncRNA2) × expression
(lncRNA2) + coefficient (lncRNA3) × expression
(lncRNA3) + . . . + coefficient (lncRNAn) ×
expression (lncRNAn).

The BLCA patients in all groups were then identified as high-
and low-risk patients based on the median risk score obtained
from the training group.

Analyzing the Prognostic Efficacy of the
lncRNA Signature in Bladder Cancer
To determine whether or not the prognosis of the signature
was independent of other clinical variables, univariate Cox
and multivariate Cox regression analyses were used to
calculate the values of the risk and other clinical features in
predicting the prognosis of patients. The time-dependent
receiver operating characteristic (ROC) curve was plotted
using the survROC package. The area under the curve
(AUC) at one, three and 5 years was calculated to
determine the accuracy and specificity of the signature in
predicting the prognosis.

Analyzing the Correlation Between Risk
Score and Other Factors
We analyzed the correlation between the patients’ clinical
characteristics (including age, gender, grade and stage), tumor
clusters and risk score. The expression of tumor immune
checkpoint genes (ICGs) PD-1, PD-L1, PD-L2, CTLA-4,
LAG3, CD47, CD4, CD8A and IDO1 in BLCA was
obtained from the expression profile. The correlation
between the risk score and ICGs was then analyzed. The
principal component analysis (PCA) of risk in all BLCA
patients was performed using the Rtsne R package to
determine whether or not the signature could distinguish
between high- and low-risk patients based on the
expression of eight lncRNAs.

A Gene Set Enrichment Analysis and Gene
Enrichment Analysis
To understand the pathways that differ between the two clusters
of BLCA in this study, a GSEA analysis among BLCA clusters was
performed using the GSEA 4.1.0 software program, and the
results of the pathway analysis were considered significant at a
false discovery rate (FDR) of <0.05. To understand the functions
and pathways that may be involved in differentially expressed
genes between high- and low-risk BLCA, the samples were
divided into high- and low-risk groups and then subjected to a
gene differential expression analysis. The screening criteria for

differentially expressed genes (DEGs) were FDR <0.05 and |log
fold change (FC)| > 1. After obtaining DEGs, the DAVID 6.8
database (https://david.ncifcrf.gov/) was used to perform GO and
KEGG analyses. All analysis results were considered significant at
FDR <0.05.

Statistical Analysis
Kaplan-Meier method was used to analyze the prognosis, and the
Log rank test was used to determine the difference. The
correlation between the two variables was tested by Spearman
correlation analysis. Wilcoxon test was used to analyze the
differences between high- and low-risk groups. The results of
the above statistical analysis were considered significant at p <
0.05. Statistical analyses were performed using R software
(version 4.1.2).

RESULTS

Molecular Characterization of
Pyroptosis-Related Genes and
Identification of Pyroptosis-Related
lncRNAs in Bladder Cancer
We extracted the expression data of 33 PR genes and analyzed
the differences in the expression between normal and tumor
tissues. We found that ELANE, IL6, NLRP1 and NLRP3 had a
low differential expression in BLCA; however, AIM2, CASP3,
CASP5, CASP6, CASP8, GPX4, GSDMB, GSDMD, NLRP2,
NLRP7, PLCG1 and PYCARD had a high differential
expression in BLCA (Figure 1A). The univariate Cox
regression analysis results showed that GSDMB, CASP9,
AIM2, CASP6, CASP8, CASP1 and GSDMD were
significantly correlated with the prognosis and were
protective factors (Figure 1B). The copy number variation
analysis results showed that the copy number changes were
consistent with their expression (Figure 1C), with the main
copy number changes of AIM2, GSDMC, GSDMD, NLRP7
and NLRP2 showing amplication (gain), and these genes were
also highly expressed in BLCA. A mutation analysis identified
the three genes (SCAF11, NLRP2 and NLRP7) with the highest
mutation rates (Figure 1D).

To clarify the relationships between the roles of pyroptosis
genes, we performed a PPI network analysis. We found that
PYCARD had the most network nodes, suggesting a possible
crucial regulatory role of PYCARD in BLCA (Supplementary
Figures S1A-S1B). A Kaplan-Meier survival analysis showed
that the expression of GSDMB and GSDMD was significantly
correlated with the survival of patients, and the prognosis of
patients with a high expression was better than that of patients
with a low expression (Figures 1E,F).

According to the criteria |correlation coefficient| > 0.4 and p <
0.01, a total of 812 PR lncRNAs were identified from the TCGA
BLCA expression profile data, and the co-expression network of PR
genes/lncRNAs was plotted (Supplementary Figure S1C). The
prognosis-related PR lncRNAs were screened using a univariate
Cox regression analysis, and 194 prognosis-related PR lncRNAs
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were obtained (Supplementary Figure S1D). These prognosis-
related PR lncRNAs were identified for subsequent research.

Results of Consistent Clustering Analysis of
BLCA Based on Pyroptosis-Related
lncRNAs
A consensus clustering algorithm was used to classify groups of
BLCA patients based on the expression of prognosis-related PR

lncRNAs. The k = 2-9 cumulative distribution function (CDF)
representing the clustering counts. k = 2 was determined as the
optimal clustering parameter based on the similarity of the expression
of prognosis-related PR lncRNAs and the ratio of the fuzzy clustering
metric. The 407 BLCA patients with complete survival information
were divided into 2 clusters: cluster 1 (n = 122) and cluster 2 (n = 285)
(Figure 2A; Supplementary Table S3).

The infiltration level of 23 immune cell subtypes in each sample of
BLCA was calculated using the CIBERSORT algorithm. The

FIGURE 1 | An analysis of the molecular characteristics of PR genes in BLCA. (A), An expression analysis of PR genes in tumor and normal tissues p < 0.05(*), p < 0.01(**)
and p < 0.001(***). (B), Co-expression and univariate Cox regression analyses of PR genes in BLCA. (C)CNV analysis of PR genes in BLCA. (D)Mutation frequency analysis of PR
genes in BLCA. (E) Kaplan-Meier survival analysis of GSDMB in BLCA. (F) Kaplan-Meier survival analysis of GSDMD in BLCA.
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FIGURE 2 | Consistent clustering analysis based on PR lncRNA of BLCA. (A), The TCGA BLCA cohort divided into two clusters at k = 2. (B), An analysis of the
relationship between clusters of BLCA and immune cell infiltration. (C) Kaplan-Meier survival analysis of patients with two clusters of BLCA. (D) Gene set enrichment
analysis (GSEA) predicted potential functions and pathways between the two clusters. (E-M), Expression analysis of immune checkpoint genes in two clusters of BLCA.
p < 0.05(*), p < 0.01(**) and p < 0.001(***).
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correlation analysis results between BLCA subtypes and infiltration
level of immune cells showed significant differences in T cells CD4+

memory activated, T cells regulatory (Tregs), Plasma cells,
Macrophages M1 and Neutrophils between different clusters (p <
0.05, Figure 2B). The overall survival of both clusters was calculated
by the Kaplan-Meier method, and cluster one had a better prognosis
than cluster 2 (p = 0.002, Figure 2C). In the GSEA analysis, we used
FDR <0.05 as a filter and found that mainly the following pathways
were activated between the two clusters: cell adhesionmolecules cams,
cell cycle, complement and coagulation cascades, cytokine-cytokine
receptor interaction,DNAreplication, ECMreceptor interaction, focal
adhesion and the p53 signaling pathway (Figure 2D).

In addition, we also analyzed the expression of ICGs among
different clusters. The expression of all ICGs in cluster two was
significantly higher than in cluster 1 (Figures 2E-M). It means
that patients in cluster two are more likely to benefit from
immunotargeted therapy.

Development of a PR lncRNA Signature
We then evaluated the reliability of PR lncRNAs for predicting the
prognosis of patients. The BLCA patients were randomly divided
into training (n = 204) and testing groups (n = 203). Eight significant
lncRNAs were identified in the training group using a LASSO
regression analysis: AC021321.1, LINC00426, STAG3L5P-

FIGURE 3 | Construction of the PR lncRNA signature in the training group. (A-B), The adjustment parameter (λ) selected in the LASSOmodel was cross-validated
by a factor of 10 of the minimum criterion. (C), The survival status and lncRNA expression heat map. (D), An analysis of the overall survival of high- and low-risk patients in
the training group. (E), ROC curves of sensitivity and specificity of the signature for predicting the prognosis.
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FIGURE 4 | Performance validation of the eight-PR-lncRNA signature. (A), A heat map of the survival status and lncRNA expression in high- and low-risk patients in
the testing group. (B), A heat map of the survival status and lncRNA expression in high- and low-risk patients in the entire group. (C), An analysis of the overall survival of
high- and low-risk patients in the testing group. (D), An analysis of the overall survival of high- and low-risk patients in the entire group. (E), An assessment of the
sensitivity and specificity of the prognostic prediction of the eight-PR-lncRNA signature in the testing group. (F), An assessment of the sensitivity and specificity of
the prognostic prediction of the eight-PR-lncRNA signature in the entire group.
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PVRIG2P-PILRB, SNHG16, NR2F2-AS1, AC068196.1, RBMS3-
AS3 and AC104825.1. The corresponding coefficient for each
lncRNA was then obtained (Figures 3A,B). Risk scores were
calculated for the training, testing and entire groups, as follows:

Risk score = -0.006334916 × expr (AC021321.1) - 0.123481702
× expr (LINC00426) - 0.095912859 × expr (STAG3L5P-
PVRIG2P-PILRB) + 0.0163094 × expr (SNHG16) +
0.835268684 × expr (NR2F2-AS1) - 1.751229658 × expr
(AC068196.1) + 0.095237679 × expr (RBMS3-AS3) -
0.042537256 × expr (AC104825.1).

The lncRNAs with positive coefficients in the formula are risk
factors (SNHG16, NR2F2-AS1 and RBMS3-AS3), while the
lncRNAs with negative coefficients are protective factors
(AC021321.1, LINC00426, STAG3L5P-PVRIG2P-PILRB,
AC068196.1 and AC104825.1).

The training group’s median risk score (0.8531) was used as
the cut-off value, and patients were identified as low- and high-
risk patients based on this cut-off value. The results in Figure 3C
revealed that the patients with a high risk might have a poor
prognosis. The OS analysis of the two groups showed that the OS
of the high-risk group was significantly lower than that of the low-
risk group (p < 0.001, Figure 3D). We used a time-dependent
ROC curve to test the sensitivity and specificity of the diagnostic
risk characteristics. In the training group, the AUC for predicting
the patient survival at 1 year was 0.777, the AUC for predicting
the survival at 3 years was 0.764, and the AUC for predicting the
survival at 5 years was 0.767 (Figure 3E).

Validation of the Signature in Other Groups
We then validated the predictive efficacy of the eight-PR-lncRNA
signature in the testing and entire groups. The patients in these two
groups were identified as high- and low-risk patients using the same
methods.Figure 4A and Figure 4B show the relationship between the
risk score and survival status in the two groups, respectively, and all
results were consistent with the training group. Figures 4C-D show
the prognostic differences between the high- and low-risk patients in
the testing and entire groups, respectively. These results were also
consistentwith the training group. The overall survival of the high-risk
group was significantly lower than that in the low-risk group (p <
0.001). The time-dependent ROC curve in the testing group is shown

in Figure 4E, and the time-dependent ROC curve in the entire group
is shown in Figure 4F; all of them obtained an ideal AUC value.

We used a PCA analysis to examine the distribution patterns
of the eight PR lncRNAs based on the expression profiles of all
BLCA patients. The PCA analysis results suggested that the eight-
PR-lncRNA signature could divide BLCA patients into high- and
low-risk populations (Figures 5A–C).

Correlation Between the Eight-PR-lncRNA
Signature and Clinical Features
The univariate and multivariate Cox analyses were used to analyze
the performance of the signature in the training, testing and entire
groups to identify independent factors for the overall survival (OS).
The results of the three groups showed that risk was an independent
factor associated with a poor prognosis in BLCA patients (p < 0.05;
Figures 6A–F). The same analysis was performed in the entire
group. The heat map visualized the differences in the expression of
eight selected PR lncRNAs between the high- and low-risk groups
and annotated clinical information (Figure 6G). Cluster two had a
significantly higher risk than cluster 1 (p < 0.001, Figure 6H),
consistent with the previous OS analysis results. In addition, the risk
score of a high grade for BLCA was significantly higher than that of
low-grade disease (Figure 6I). The same results were also obtained
for the stage (p < 0.001, Figure 6J), T stage (p < 0.001, Figure 6L)
and N stage (p = 0.0015, Figure 6M). However, there was no
significant difference between the high- and low-ImmuneScore
groups (p = 0.051, Figure 6K).

A prognostic analysis of high- and low-risk patients in specific
clinical characteristics subgroups (age, gender, grade, stage, T, M
and N) showed that the prognosis of high-risk patients was poor
in all clinical characteristics subgroups, except for the low-grade
and M1 subgroups (Figure 7).

Correlation Between Risk Score and Tumor
Immunity
To understand the relationship between the risk score and the TIME
of BLCA, we analyzed the correlation between the risk score and the
infiltration level of 23 immune cell subtypes, with the results shown

FIGURE 5 | PCA analysis of the different distribution patterns of eight PR lncRNAs on genome-wide expression profiles. (A), Training cohort. (B), Testing cohort.
(C), Entire cohort.
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FIGURE 6 | An independent prognostic analysis of the eight-PR-lncRNA signature and a correlation analysis between the risk score and clinical characteristics. (A)
Univariate Cox regression analysis in the training group. (B), Multivariate Cox regression analysis in the training group. (C)Univariate Cox regression analysis in the testing
group. (D)Multivariate Cox regression analysis in the testing group. (E) Univariate Cox regression analysis in the entire group. (F)Multivariate Cox regression analysis in
the entire group. (G) Heat map of the lncRNA expression and clinicopathological features in high- and low-risk patients. p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).
(H), The distribution of risk score in the two groups of consistent clustering results. (I-J), The distribution of risk score by grade and stage of BLCA. (K), The distribution of
risk score in the ImmuneScore-high and ImmuneScore-low groups. (L), The distribution of risk score by T stage. (M), The distribution of risk score by N stage.
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inFigure 8A. Interestingly, there was a degree of heterogeneity in the
levels of B-cell, T-cell, NK-cell andDendritic cell infiltration between
the high-risk and low-risk groups. We also examined the correlation
between the risk score and the expression of ICGs, and the results
showed that the risk score was significantly positively correlated with
multiple ICGs (p < 0.05; Figures 8B–J).

Expression and Function Analysis of the
Eight lncRNAs in the Signature
We also evaluated the expression of eight lncRNAs in BLCA. The
results showed that the expression of LINC00426, NR2F2-AS1,
RBMS3-AS3 and AC104825.1 in BLCA tissue was lower than
that in normal tissues, while the expression of AC021321.1,
STAG3L5P-PVRIG2P-PILRB, SNHG16 and AC068196.1 in
BLCA tissue was higher than that in normal tissues (Figures
9A,B). Figure 9C demonstrates the regulatory relationship
between these lncRNAs and PR genes. In addition, we also
analyzed the expression correlation between the ICGs and
lncRNAs in the signature. We found that AC021321.1,
AC104825.1, AC068196.1 had a negative correlation with all
ICGs, while LINC00426 had a positive correlation with all ICGs
(p < 0.05; Figure 9D). To understand the possible function and
mechanism of these eight lncRNAs in BLCA, we used a co-
expression method to find the protein-coding genes (PCGs) of

these eight lncRNAs, and the screening criteria were |Pearson
correlation coefficient| > 0.4 and p < 0.001 (Gao et al., 2019). A
total of 3141 PCGswere obtained, and these PCGswere submitted to
the functional enrichment analysis using the DAVID database with
FDR <0.05. GO enrichment results showed that these PCGs were
mainly enriched in human immune response functions, such as the
immune response (BP), inflammatory response (BP), T cell
costimulation, regulation of immune response (BP), MHC class II
protein complex (CC), T cell receptor complex (CC), immunological
synapse (CC), cytokine receptor activity (MF) and MHC class II
receptor activity (MF) (Figure 9E). The KEGG pathway enrichment
analysis showed that these genes were also mainly enriched in
immunomodulatory pathways, such as cytokine−cytokine
receptor interaction, T cell receptor signaling pathway, B cell
receptor signaling pathway and natural killer cell mediated
cytotoxicity (Figure 9F).

Results of a Functional Analysis Between
High- and Low-Risk Groups and
Construction of a Nomogram
We also analyzed the functions and pathways involved in the
DEGs in high- and low-risk groups. According to the screening
criteria |logFC| > 1 and FDR <0.05, a total of 1017 DEGs were
screened. Immune-related functions were found in the GO analysis

FIGURE 7 | Prognostic analysis of high- and low-risk patients in different clinical characteristics subgroups. (A), Age ≥ 70. (B), Age < 70. (C), Female. (D), Male. (E),
High grade. (F), M0. (G), N0-N1. (H), N2-N3. (I), Stage I-II. (J), Stage III-IV. (K), T0-T2. (L), T3-T4.
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FIGURE 8 | Correlation between risk score and immune cell infiltration and ICGs (A), Correlation analysis between risk score and immune cell infiltration. (B-J),
Correlation analysis between the risk score and immune checkpoint genes.
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results, including inflammatory response (BP) (Supplementary
Figure S2A), and the KEGG enrichment analysis also identified
immune-related pathways, such as cytokine-cytokine receptor
interaction (Supplementary Figure S2B).

To facilitate the clinical use of our signature to predict the
prognosis of BLCA patients, we also developed a nomogram
including risk classification and clinical risk characteristics to
predict the one-, three- and 5-year OS (Figure 10A). The risk
scores of the prognostic signature had superior predictive
power to other clinical factors. The calibration plots showed
that the observation and prediction rates of the OS had ideal
consistency (Figures 10B–D).

DISCUSSION

BLCA is a tumor of the urinary system with a high incidence. Due to
its complex pathogenesis, there are several different genetic subtypes
of tumors, and these subtypes may have different therapeutic
responses to the same treatment. If not correctly treated, BLCA
can have a high morbidity and mortality (Kamat et al., 2016).

Cell death is a common topic in life science. Tumor cells have
the ability to escape cell death contributes to the origin of tumors.
This ability also plays a crucial role in acquiring treatment
resistance, developing recurrence and metastasizing (Hanahan

and Weinberg, 2011). Pyroptosis is a type of programmed cell
death in inflammation mediated by GSDM (Lu et al., 2021). Our
findings found that patients with high GSDMD and GSDMB
expression had a better prognosis, and the results of the GSDMD
analysis were consistent with previously published studies (Fang
et al., 2020). However, the better prognosis of patients with high
GSDMB expression seems to contradict previous studies finding
that high expression of this gene in bladder cancer promotes
tumor cell proliferation (He et al., 2021). Currently, there is
controversy regarding the role of GSDMB in tumors. GSDMB is
also involved in pyroptosis, it can promote atypical pyroptosis by
enhancing the activity of caspase-4 and has the function of
inhibiting the proliferation of tumor cells (Li et al., 2020). It is
still not clear whether the GSDMB protein cleaved by caspase-3/-
6/-7 is involved in pyroptosis. Our results further confirm that the
role of GSDMB in tumorigenesis is controversial, indicating that
GSDMB has great research value in future research.

Human genome sequencing data has shown that most RNA
transcripts of non-protein-coding origin are transcribed from more
than 90% of the human genome (Mattick and Makunin, 2006). With
further research, more studies have shown that lncRNAs also play an
essential role in the development andmalignant progression of BLCA
(Li et al., 2020). It has been reported that lncRNAs are involved in the
pathological processes of various diseases through direct or indirect
actions on proteins related to the pyroptosis signaling pathway (He

FIGURE 9 | Expression and functional analyses of lncRNAs in the signature. (A,B), An expression analysis of the eight lncRNAs in BLCA tissues and normal tissues
p < 0.05(*), p < 0.01(**) and p < 0.001(***). (C), The regulatory relationship between the lncRNAs in the signature and PR genes. (D), An analysis of the correlation
between the immune checkpoint genes and the eight lncRNA expression (dotted frame). (E), Results of a GO enrichment analysis of the protein-coding genes (PCGs).
(F), Results of a KEGG analysis of PCGs.
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et al., 2020). The release of cytokines produced by pyroptosis changes
the TIME and promotes the growth of tumors by evading immune
surveillance (Loveless et al., 2021). However, at present, there are few
PR lncRNA signatures have been developed for BLCA.

We identified 812 PR lncRNAs based on the expression of
33 PR genes, and 194 prognosis-related PR lncRNAs were
screened by a univariate Cox regression analysis. The BLCA
cohort was then divided into two clusters based on the
prognosis-related PR lncRNAs expression using consistent
clustering. We found that the degree of infiltration of some
immune cells differed significantly among clusters. The
expression of the ICGs in cluster two was considerably higher
than that in cluster 1, suggesting that patients in cluster two were
more likely to have tumor immune escape and benefit from ICI
therapy. In addition, the OS of cluster one was better than that of
cluster 2, and the tumor grade of cluster one was also lower than
that of cluster 2. The results of a GSEA analysis suggested that the
following pathways were related to tumor development and

metastasis: cell adhesion molecules cams (Cohen et al., 1997;
Zhou et al., 2021), cell cycle (Li et al., 2021), cytokine-cytokine
receptor interaction (Tang et al., 2020), focal adhesion (Tong
et al., 2022) and p53 signaling pathway (Jiao et al., 2020). These
results suggest a potential relationship between PR lncRNAs and
the progression of BLCA. Consistent cluster analyses based on the
PR lncRNA expression may help improve the efficacy of
immunotherapy for BLCA.

We next applied LASSO regression to the training group to
construct eight-PR-lncRNA signature (including AC021321.1,
LINC00426, STAG3L5P-PVRIG2P-PILRB, SNHG16, NR2F2-AS1,
AC068196.1, RBMS3-AS3 and AC104825.1). LncRNAs play an
integral role in human epigenetic regulatory mechanisms. They
participate in biological processes through epigenetic,
transcriptional, post-transcriptional and translation regulatory
targets, including cell growth, metastasis and apoptosis (Mirzaei
et al., 2021, 2022). Their dysfunction is closely related to
tumorigenesis (Han et al., 2020; Shigeyasu et al., 2020). Previous

FIGURE 10 |Construction of a nomogram predicting the one-, three- and 5-year overall survival. (A), A nomogram of the probability of predicting prognosis. (B-D),
The calibration plot of the nomogram.
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studies have shown that LINC00426 and SNHG16 can promote
tumor development and participate in the regulation of TIME (Chen
et al., 2020; Tao et al., 2020). LINC00426 and SNHG16 play an
important role in the occurrence and development of tumors (Li et al.,
2020;Wan et al., 2022).NR2F2-AS1 can down-regulate the expression
of PDCD4 and inhibit the development of gastric cancer through
competitive binding with miR-320b, it can also inhibit miR-494
methylation to regulate oral squamous cell carcinoma cells
proliferation (Liang et al., 2022; Luo et al., 2022). Overexpression
of RBMS3-AS3 inhibits cell proliferation, migration, invasion,
angiogenesis and tumorigenicity of prostate cancer by up-
regulating VASH1 (Jiang et al., 2020). The published evidence
mentioned above suggests that these PR lncRNAs we identified are
indeed associated with tumor development. While other lncRNAs
AC021321.1, STAG3L5P-PVRIG2P-PILRB, AC068196.1 and
AC104825.1 in our signature have not been reported in any
published tumor studies, all were studied for the first time in our
study. Our findings may provide evidence for future studies of these
lncRNAs.

In the verification group, the signature also showed the same
predictive performance as the training group. The OS analysis results
indicated that an eight-PR-lncRNA signature could predict the
survival rate of BLCA patients to some extent. We also found that
risk score from eight-PR-lncRNA signature was an independent
prognosis factor for BLCA patients. Patients with high-grade
disease had a higher risk score than those with low-grade disease,
and the same results were obtained between clusters 1 and 2, which
was consistent with the conclusion that the OS of cluster one was
better than that of cluster 2. The results of the risk score and ICGs
correlation analysis suggested that patients with a high risk weremore
likely to experience tumor immune escape and benefit more from ICI
therapy than others (Gao et al., 2020). Our results were consistent with
the published results that pyroptosis can also increase the efficiency of
tumor immunotherapy by recruiting immune cells and activating the
immune system, its anti-tumor effect is also closely related to multiple
ICGs (such as PD-1 or PD-L1) (Li et al., 2021).

To understand the possible function of these eight lncRNAs in
BLCA, we used the co-expression method to find the co-expressed
PCGs of the eight lncRNAs. The results of PCGs functional
enrichment suggested that these eight lncRNAs may have
immunomodulatory functions. Similarly, the enrichment analysis
of genes that were differentially expressed between the high- and
low-risk groups also found immune-related processes and pathways,
such as inflammatory response (BP) and cytokine-cytokine receptor
interaction (KEGG) (Bao and Cao, 2016). Furthermore, we also
developed a nomogram containing risk classification and clinical risk
characteristics to facilitate the clinical development and utilization of
our findings (Iasonos et al., 2008). All these findings establish a close
association between PR lncRNAs and the prognosis of BLCA
patients as well as changes in TIME. The shortcoming of this
study was the lack of lncRNA expression data from other sources
for external validation, this is because we cannot find a suitable
dataset containing these eight lncRNAs probes in other source
datasets. Therefore, further external validation is needed to verify
the reliability of the signature, and experimental validation of the role
of these lncRNAs in BLCA cells should also be performed in the
future.

CONCLUSIONS

Our study systematically evaluated the molecular biological
characteristics and prognostic value of PR genes/lncRNAs in
BLCA and identified an eight-PR-lncRNA signature (including
AC021321.1, LINC00426, STAG3L5P-PVRIG2P-PILRB,
SNHG16, NR2F2-AS1, AC068196.1, RBMS3-AS3 and
AC104825.1) related to the prognosis of BLCA patients. We
also analyzed the role of this signature in the TIME and its
potential regulatory mechanisms, which provides an essential
basis for future studies concerning the relationship between PR
lncRNAs and BLCA immunity. Our findings will also help
identify novel prognostic biomarkers and therapeutic targets
for BLCA.
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Contributes to Cancer Progression
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Non-muscle-invasive bladder cancer (NMIBC) accounts for more than 70% of urothelial
cancer. More than half of NMIBC patients experience recurrence, progression, or
metastasis, which essentially reduces life quality and survival time. Identifying the high-
risk patients prone to progression remains the primary concern of risk management of
NMIBC. In this study, we included 1370 NMIBC transcripts data from nine public datasets,
identified nine tumor-infiltrating marker cells highly related to the survival of NMIBC,
quantified the cells’ proportion by self-defined differentially expressed signature genes,
and established a robust immuno-prognostic model dividing NMIBC patients into low-risk
versus high-risk progression groups. Our model implies that the loss of crosstalk between
tumor cells and adjacent normal epithelium, along with enriched cell proliferation signals,
may facilitate tumor progression. Thus, evaluating tumor progression should consider
various components in the tumor immunemicroenvironment instead of the single marker in
a single dimension. Moreover, we also appeal to the necessity of using appropriate meta-
analysis methods to integrate the evidence from multiple sources in the feature selection
step from large-scale heterogeneous omics data such as our study.

Keywords: non-muscle-invasive bladder cancer, tumor immune microenvironment, tumor progression, collagen
family, cancer-associated fibroblasts

Edited by:
Jianjiong Gao,

Memorial Sloan Kettering Cancer
Center, United States

Reviewed by:
Xin Gao,

Chinese Academy of Medical
Sciences and Peking Union Medical

College, China
Bing Shen,

Shanghai General Hospital, China

*Correspondence:
Jinrong Xu

275919672@qq.com
Mingming Li

limingming@smmu.edu.cn
Lei Liu

liulei_sibs@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 12 December 2021
Accepted: 28 April 2022
Published: 03 June 2022

Citation:
Sun X, Xu H, Liu G, Chen J, Xu J, Li M
and Liu L (2022) A Robust Immuno-

Prognostic Model of Non-Muscle-
Invasive Bladder Cancer Indicates

Dynamic Interaction in Tumor Immune
Microenvironment Contributes to

Cancer Progression.
Front. Genet. 13:833989.

doi: 10.3389/fgene.2022.833989

Abbreviations: AUA, American Urological Association; AUCs, areas under curves; BCG, Bacillus Calmette-Guerin; CAFs,
cancer-associated fibroblasts; CIS or Tis, carcinoma in situ; DCs, dendritic cells; DEGs, differentially expressed genes; DFS,
disease-free survival; EAU, European Association of Urology; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal
transition; EORTC, European Organisation for Research and Treatment of Cancer; FDR, false discovery rate; GEP, gene
expression profile; GO, gene ontology; HRs, hazard ratios; IPS, immune prognostic signature; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MIBC, muscle-invasive bladder cancer; NK cells, natural killer; NMIBC, non-muscle-invasive bladder
cancer; OS, overall survival; PFS, progression-free survival; ROCs, receiver operating characteristic curves; ssGSEA, single-
sample gene set enrichment analysis; sTIL, stromal tumor-infiltrating lymphocyte; SUO, Society of Urologic Oncology; TIME,
tumor immune microenvironment.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8339891

ORIGINAL RESEARCH
published: 03 June 2022

doi: 10.3389/fgene.2022.833989

100

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.833989&domain=pdf&date_stamp=2022-06-03
https://www.frontiersin.org/articles/10.3389/fgene.2022.833989/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.833989/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.833989/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.833989/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.833989/full
http://creativecommons.org/licenses/by/4.0/
mailto:275919672@qq.com
mailto:limingming@smmu.edu.cn
mailto:liulei_sibs@163.com
https://doi.org/10.3389/fgene.2022.833989
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.833989


INTRODUCTION

Bladder cancer contributed to 573,278 new cases and 212,536
deaths worldwide (Sung et al., 2021) in 2020. It is one of the
cancers with themost longitudinal costs and consumed resources.
Approximately 70–75% of newly diagnosed primary bladder
cancers are non-muscle-invasive bladder cancer (NMIBC)
(Lenis et al., 2020; Ottley et al., 2020). Up to 21–53% of them
eventually progress to life-threatening muscle-invasive bladder
cancer (MIBC) (Cookson et al., 1997; van den Bosch and Alfred
Witjes, 2011), depending on the stage and grade. Identifying the
NMIBC patients with a high progression potential at the early
treatment stage remains the primary object of bladder cancer
clinical practice.

Several risk classification frameworks have been suggested and
applied in NMIBC risk management. European Association of
Urology (EAU) prognostic factor risk groups updated the EAU
NMIBC Guidelines Panel in 2021 by dividing NMIBC patients
into four risk groups: low-, intermediate-, high-, and a new, very
high-risk group, with the probability of progression at 5-year of
<1%, 3.6–4.9%, 9.6–11%, and >40% (Sylvester et al., 2021).
Clinicopathological features employed in the panel included:
tumor stage, the World Health Organization (WHO) 1973 or
2004/2016 grade, concomitant carcinoma in situ (CIS or Tis),
number of tumors, tumor size, and age. American Urological
Association (AUA) and Society of Urologic Oncology (SUO) also
amended the AUA/SUO Joint Guideline in 2020 by classifying
NMIBC patients into low-, intermediate-, and high-risk groups
(Chang et al., 2016; Chang et al., 2020). Apart from the clinical
features used in the EAU Panel, AUA risk stratification also took
variant histology, preceding recurrent disease, Bacillus Calmette-
Guerin (BCG) treatment failure, and involvement of prostatic
urethral into consideration. Although such frameworks
essentially help the risk management of NMIBC patients and
are readily used in bedside patient care, a more precise solution is
always in need.

To fulfill the need, molecular subtyping and gene expression
modeling based on the omics analysis have become mainstream
in clinical decision support scenarios like diagnosis, treatment
response prediction, and prognostic stratification. The UROMOL
project, a European multicenter prospective study of NMIBC
spanning from 2008 to date, identified high-risk class 2a tumors
at the transcriptomic level and high-risk class GC3 tumors at the
genomic level (Lindskrog et al., 2021). They also revealed that
higher immune cell infiltration strongly correlated with lower
recurrence rates. However, the association between immune cell
infiltration and cancer progression remained unknown. Since
there were too few progression events for evaluating its effect on
progression-free survival (PFS), Zheng and colleagues developed
an immune prognostic signature (IPS) based on 14 overall
survival (OS) associated immune genes. Then they proved that
high-risk patients assessed by the IPS score had worse OS than
those with low-risk scores in validation datasets (Zheng et al.,
2020). Ottley et al. studied the correlations between 11 antibodies
relating to molecular subtypes or epithelial-to-mesenchymal
transition (EMT) and prognosis in high-risk non-muscle-
invasive (HGT1) bladder cancer. They found that both

stromal tumor-infiltrating lymphocyte (sTIL) levels in
noninvasive papillary urothelial carcinoma areas and increased
expression of the luminal markers FOXA1 and SCUBE2 are
significantly associated with better disease-free survival (DFS),
but no EMT markers showed any trend. They suggested that
molecular subtype markers, rather than EMT markers, might be
preferable to study biomarkers of HGT1 urothelial carcinoma
(Ottley et al., 2020). Rouanne et al. focused on stromal
lymphocyte infiltration by evaluating the percentage of stromal
area infiltrated by mononuclear inflammatory cells over the total
intratumoral stromal area (Rouanne et al., 2019). Similarly, a high
density of stromal TILs was associated with the tumor invasion
depth in pT1 NMIBC, implying tumor aggressiveness was
associated with an increased adaptive immune response, but
no association between the level of TILs and survival outcome
was observed. A clear clue has shown that the activated tumor
immune microenvironment (TIME) could prevent NMIBC
tumors from progressing. However, additional integration and
refinement of these findings are required to provide a robust
immuno-prognostic model for predicting progression in NMIBC
patients.

In this study, we reported an integrated analysis using a total of
1370 transcriptome data of NMIBC patients from nine public
datasets. Candidate tumor-infiltrating immune cells relating to
the well-established prognostic risk factors and survival were
filtered by a non-weighted voting system of six deconvolution
methods and the survival analysis. Differentially expressed genes
(DEGs) representing the candidate immune cells were identified.We
used the selected DEGs as predefined signature genes in the single-
sample gene set enrichment analysis (ssGSEA) to achieve unbiased
quantification of the tumor-infiltrating immune cells. Finally, we
developed a robust immune-prognosticmodel based on the immune
cell matrix for evaluating the progression of NMIBC patients.

MATERIALS AND METHODS

Transcriptomic Profiles Analyzed
We searched for public datasets using combined keywords of
“NMIBC”, “expression profile”, and “human” through GEO
(Barrett et al., 2013), ArrayExpress (Athar et al., 2019), and
PubMed® databases. Exclusion criteria of ineligible datasets were
as follows: 1) datasets lacking cancer grade or TNM stagemetadata;
2) datasets with only expression profiles of muscle-invasive bladder
cancer (MIBC) samples; 3) datasets providing only processed data
with negative expression values. Then we de-duplicated the same
samples collected from multiple sources. Notably, our study
allowed for the inclusion of datasets sequenced by RNA-Seq
and microarray platforms. We also allowed sampling of tumors
from both primary and recurrent lesions.

Deconvolution of Tumor-Infiltrating
Immune Cells
We employed six in silico deconvolution methods to estimate cell
composition in 1370 human transcriptome data. The xCell (Aran
et al., 2017) performed an enrichment analysis of 64 immune and
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stromal cell types, illustrating whether a particular type of cell was
present. The immunedeconv (Sturm et al., 2019), an integrated
deconvolution tool, implemented the other four cell-type
quantification algorithms, including quanTIseq (Finotello
et al., 2019), TIMER (Li et al., 2016), MCPCounter (Becht
et al., 2016), and EPIC (Racle et al., 2017). Moreover,
ESTIMATE (Yoshihara et al., 2013) was used to estimate
combined immune, stromal, and ESTIMATE scores without
giving any single cell-type proportion. In summary, we
assessed 64 tumor-infiltrating immune cell scores and six
immune infiltration biomarker scores for each processed
sample. Names of the cells and biomarkers with their
corresponding alias in the six deconvolution methods are
provided in Supplementary Table S3.

Correlations Between Clinicopathological
Features and Immune Cells
To avoid methodological bias, we adopted an unweighted voting
system to discover tumor-infiltrating immune cells significantly
related to the well-established prognostic risk factors of NMIBC
patients. In datasets providing age, sex, stage, grade, tumor size,
European Organisation for Research and Treatment of Cancer
(EORTC) risk score, and CIS in disease course status data, we
compared the distribution of 64 tumor-infiltrating cell
deconvolution scores across different levels of the risk factors.
Student’s t-test and box plots were performed by the “ggplot2”
(Wickham, 2016) package of R language (R Core Team, 2021). A
cell type in a specific dataset deconvoluted by a particular
algorithm with a false discovery rate (FDR) adjusted p-value of
student’s t-test in more than two levels less than 0.05 was counted
as one vote for the cell. All votes were categorized into 64 cell
types to reveal the tumor immune microenvironment that would
predict survival (Supplementary Table S4).

Identification of Differentially Expressed
Genes of Candidate Immune Cells
The “limma” (Ritchie et al., 2015) package of R language (R Core
Team, 2021) was used to identify differentially expressed genes
(DEGs) of each candidate immune cell type. Log2-transformed
fold changes (log2FC), p-values, and FDR adjusted p-values of
every “source dataset—deconvolution method—immune
cell—gene name” sets are provided in Supplementary Table
S5. Only genes with absolute log2FCs larger than one and
FDR p-values less than 0.05 were defined as DEGs for
corresponding cell types. Furthermore, we defined candidate “
cell-gene” combinations by the wFisher (Yoon et al., 2021)
p-value in all evaluable sets, along with the number of datasets
in which the combination was evaluable (Supplementary Table
S6). The gene with a mean absolute log2FC larger than 0.2 for NK
cells and 0.3 for other cells, a wFisher combined p-value less than
1.151e-6 (0.05/number of genes 43,440), and identified as
significant DEGs in more than three databases were defined as
representative gene of the immune cell. The “metapro” (Yoon
et al., 2021) package in R (R Core Team, 2021) was used to
calculate the combined wFisher p values.

Identification of Immune-Cell-Specific
DEGs Related to Survival
Faced with dozens to hundreds of DEGs representing one immune
cell type, we further narrowed the list by conducting survival analyses
in the Kaplan-Meier curve and the forest plot to remove genes that
contribute less to survival risk. Divided by the median of candidate
genes’ expression, we compared the PFS of E-MTAB-4321, DFS of
GSE32894, and OS of GSE13507 in low expressed versus high
expressed groups (results provided in Supplementary Table S7).
The Kaplan-Meier curve was fitted by the “survfit” function and
visualized by the “ggsurvplot” function. The forest plot was fitted by
the “coxph” function and visualized by the “ggforest” function. DEGs
with log-rank p-values of both analyses less than 0.05 and hazard
ratios (HRs) of Cox’s proportional hazards models larger than 2.5 or
less than 0.5 were defined as the final biomarker genes of the
candidate immune cells. All survival analyses were implemented
by the “survival” package (Therneau and Grambsch, 2000; Therneau,
2021) and visualized by the “ggplot2” (Wickham, 2016, 2) package in
R (R Core Team, 2021). The “ComplexHeatmap” (Gu et al., 2016)
package in R (R Core Team, 2021) was used to generate expression
heatmaps of the final gene list.

Gene Ontology and Pathway Enrichment of
Candidate DEGs
We conducted Gene Ontology (GO) (Ashburner et al., 2000;
Gene Ontology Consortium, 2021) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2021) pathway
enrichment analyses of the selected immune-cell-specific DEGs
by the “clusterProfiler” (Yu et al., 2012; Wu et al., 2021) package
in R (R Core Team, 2021).

Calculation of ssGSEA and Z-Score Based
Cell Enrichment Scores
Inspired by previous studies (Barbie et al., 2009; Motzer et al., 2020),
we employed two methods to evaluate the nine candidate immune
cells using gene lists generated by previous steps. The ssGSEA
analysis (Subramanian et al., 2005) was performed on the logged
expressionmatrix by the “GSVA” (Hänzelmann et al., 2013) package
in R (R Core Team, 2021), and z-score statistics were performed on
the non-logged expression matrix by in-house scripts.

Correlations Between Tumor-Infiltrating
Immune Cell Score and Survival
Patients in each dataset were divided by the median of enriched
immune cell scores into high and low immune infiltrated groups.
Survival analyses and log-rank tests of PFS, DFS, and OS in high
versus low immune cell infiltrated groups were conducted by the
“survfit” function of the “survival” (Therneau and Grambsch,
2000; Therneau, 2021) package. Kaplan-Meier curves were
visualized by the “ggsurvplot” function of the “ggplot2”
(Wickham, 2016, 2) package in R (R Core Team, 2021). p
values of both analyses and hazard ratios of high infiltrated
groups are provided in Supplementary Table S8.
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Establishment of the Immuno-Prognostic
Model
Using 454 samples from E-MTAB-4321 with evaluable PFS
records, we randomly re-sampled 5000 times to build training
and test sets in a 1:1 ratio. In each sampling scenario, we
established a ridge regression model with an estimated
enrichment score matrix of the nine tumor-infiltrating
immune cells to predict the risk of progression. In each
modeling process, tenfold cross-validation was used to select
the optimal fitted model. The prediction performance of the
models was evaluated by areas under curves (AUCs) of receiver
operating characteristic curves (ROCs) in training and test sets. In
R language (R Core Team, 2021), the “glmnet” (Friedman et al.,
2010) package was used to build the models, and the “pROC”
(Robin et al., 2011) package was used to visualize the results.

Statistical Analysis
p-Values less than 0.05 were considered significant in this study
unless otherwise specified.

RESULTS

Summary of Datasets and Basic Workflow
The study design and workflow to develop our model are
illustrated in Figure 1. After keyword searching and manual
refinement, we brought nine datasets into this study, including
1370 human transcriptome profiles spanning normal bladder
tissues, Ta, T1, and CIS urothelial cancers. Metadata of all the
datasets and clinicopathological information of all the samples
are provided in Table 1; Supplementary Tables S1,S2.

With the 1370 transcriptomic profiles, we initially screened
nine candidate immune cells associated with the well-established
NMIBC prognostic risk factors and then identified the
differentially expressed genes (DEGs) representing these cells
by significance and differentiation. Using the DEGs’
expression matrix, we estimated the proportions of tumor
infiltrated immune cells by the gene set enrichment analysis.
Using the estimated immune cell score matrix, we established the
immune-prognostic model by repeated random sampling, ridge
regression modeling, and optimal cutoff confirming.

FIGURE 1 | Overview of study design.
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Tumor-Infiltrating Immune Cells Related to
Key NMIBC Prognostic Factors
Several risk factors have been proven to be significantly related
to the prognosis of NMIBC patients (Liu et al., 2015; Douglas
et al., 2021). Tumor size greater than 3 cm, multifocal lesions,
concurrent CIS, more advanced cancer stage, higher histological
grade, higher EORTC risk score, and higher frequency of prior
recurrences were known risks implying higher rates of
recurrence or progression. We first conducted a comparative
analysis between these risk factors and 64 deconvoluted tumor-
infiltrating cell types in each dataset, then employed an
unweighted voting schema to identify top cell types that
might contribute to NMIBC prognosis. As shown in
Figure 2A, the top voted and most significant tumor-
infiltrating cells included cancer-associated fibroblasts
(CAFs), B cells, CD4+ T cells, CD8+ T cells, natural killer
(NK) cells, dendritic cells (DCs), macrophages, neutrophils,
and endothelial cells. Since xCell is typically used to
determine the presence or absence of a specific cell type,
rather than to calculate the cell proportion, we only used the
sum of votes from the other five methods to filter the most
relevant cell types (Supplementary Table S4). CD4+ T cells
ranked first, being voted in five, three, and six of nine eligible
datasets by TIMER (Li et al., 2016), quanTIseq (Finotello et al.,
2019), and EPIC (Racle et al., 2017), respectively. Followed by
CD4+ T cells, B cells, and CAFs.

Biomarker Genes Representing the
Candidate Tumor-Infiltrating Immune Cells
After targeting candidate tumor-infiltrating cells, we wished to
ascertain a set of biomarker genes that were representative of the
cells and that were also strongly associated with the survival of
NMIBC patients. In identifying differentially expressed genes
(DEGs) of the nine candidate immune cells, a total of
2757 “cell-DEG” pairs were recognized as repetitive patterns
and included in the following analysis (Supplementary Table
S6). We then analyzed all 972 nonredundant genes in the
2757 “cell-DEG” pairs with forest plot and Kaplan-Meier
(KM) curve survival analyses against PFS in E-MTAB-4321,
DFS in GSE32894, and OS in GSE13507 (Figure 2B). After
this, we narrowed the list to 149 unique genes as protective or
risk factors of PFS or OS in NMIBC patients. These genes with the
cells they represented comprised 368 unique “cell-DEG” pairs
(Table 2), of which 254 pairs were associated with PFS and 114
pairs with OS (Supplementary Table S7). DCs and CAFs were
the top two cell types, with more than sixty percent (92/149, 91/
149) of the biomarker genes associated with them (Table 2).

The expression of 110 PFS-related and 41 OS-related
biomarker DEGs was visualized in Figures 3A,B. All 99
biomarker DEGs of nine candidate tumor-infiltrating immune
cells were subjected to KEGG pathway, GO-biological process

TABLE 1 | Demographic and disease characteristics of the 1,370 samples
included in this study. Data are median (total number of assessable samples;
range; IQR) or n (%). IQR: interquartile range. PFS: progression-free survival. DFS:
disease-free survival. OS: overall survival.

Characteristics Value

Age (years) 69 (862; 20–96; 61–76.5)
Age category (years) —

20–60 198 (14%)
61–80 542 (40%)
> =80 122 (9%)
Not available 508 (37%)

Sex —

Male 797 (58%)
Female 219 (16%)
Not available 354 (26%)

Tumor Stage —

T0 91 (6%)
Ta 696 (51%)
Ta-T1 24 (2%)
T1 547 (40%)
CIS/Tis 12 (1%)

WHO 1973 Grade —

G1 58 (4%)
G2 199 (15%)
G3 285 (21%)
G0/Gx/Not available 828 (60%)

WHO 2004–2016 Grade —

Low 427 (31%)
High 289 (21%)
Not available 654 (48%)

CIS in the disease course —

CIS- 472 (34%)
CIS+ 103 (8%)
Not available 795 (58%)

Tumor size —

<=3 cm 311 (23%)
>3 cm 83 (6%)
Not available 976 (71%)

EORTC risk score —

0 286 (21%)
1 174 (13%)
Not available 910 (66%)

Recurrence —

FALSE 127 (9%)
TRUE 57 (4%)
Not available 1186 (87%)

Progression beyond the T2 stage —

FALSE 711 (52%)
TRUE 66 (5%)
Not available 593 (43%)

PFS (months) 33 (460; 0–74.9; 24–42.8)
Cancer-specific survival —

FALSE 271 (20%)
TRUE 6 (~0%)
Not available 1093 (80%)

DFS (months) 37.9 (173; 0.2–104.4; 21.2–60.2)
Vital status —

FALSE 144 (11%)
TRUE 42 (3%)
Not available 1184 (86%)

OS (months) 55.3 (104; 2.1–137; 26.4–80.3)
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(BP), GO-cellular component (CC), and GO-molecular function
(MF) terms enrichment analyses (Figures 3C–F). As expected, we
found strong evidence pointing to the crosstalk between tumor
cells and adjacent normal epithelium, represented by focal
adhesion and extracellular matrix (ECM)-receptor interaction.
Aberration of these pathways would directly affect the steadiness
of tumor cells and thereby cause progression. We also found
enriched cell proliferation signals like protein digestion and
absorption and the PI3K-Akt signaling pathway. They acted
either as energy suppliers or as signal transduction factors to
trigger or facilitate the cascade of invasive tumor progression. The

chemokine signaling pathway, on the other hand, would help to
recruit leukocytes to the site of the inflammation area.

Enrichment of Tumor-Infiltrating Immune
Cell Scores
Since the datasets included in our study differed in their
transcriptome profiling technologies, we cautiously practiced
the enrichment analyses with the logarithmic matrix of
original expression data. 43,440 transcripts in 1,370 samples
with and without log2-transformation were used to proceed

FIGURE 2 | Identification of progression-risk-related tumor-infiltrating cells and differentially expressed genes representing them. (A) The non-weighted voting
results of Student’s t-tests between tumor-infiltrating cells and well-established clinical progression risk factors. Tumor-infiltrating cell scores evaluated by six immune
deconvolution methods were used. Only significant results were counted as valid votes shown in the figure. (B) The network of differentially expressed genes (DEGs) with
their representing tumor-infiltrating cells. The blue circles refer to cell types. The pink circles refer to selected DEGs. The size of blue circles indicates the number of
DEGs. The thickness of lines indicates the negative log2 of wFisher combined p-value of differential expression testing. Only nodes with more than six adjacent neighbors
are shown.
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TABLE 2 | List of biomarker genes representing the nine tumor-infiltrating candidate immune cells.

Bcells DC Endothelial Fibroblasts Macrophages Neutrophils NK cells T cells_CD4+ T cells_CD8+

CD74 ADTRP ADCY4 AKAP12 AP1S2 CD74 ANXA10 CASP1 CASP1
COL3A1 AP1S2 AP1S2 ANXA10 BTBD16 IGKV1-17 BTBD16 CD74 CD74
CXCL13 APOL3 BGN AP1S2 C12orf75 MMP7 CLCA4 CFH CXCL13
DES ATF3 CD74 BGN CAT RARRES1 CRTAC1 COL1A1 DES
GIMAP7 ATP8B4 CLEC14A BMP5 CD74 S100A8 ENTPD3 COL3A1 ENPP2
HCLS1 BMP5 CLIC4 BTBD16 CFH FABP4 GIMAP7 FCER1A
IGHV1-69 CASP1 CLIP3 CCL11 CLIC4 FGFR3 GMFG GDF15
IGKV1-17 CCL18 COL18A1 CD74 CNN3 RAB4A IGKV1-17 GIMAP7
MMP7 CCL8 COL18A1 CLIC4 COL1A1 TMPRSS4 MMP7 IGKV1-17
POSTN CD3G COL1A1 CLIP3 COL3A1 TP63 MXRA5 SELENOP
RAC2 CD4 COL3A1 COL18A1 COL5A2 POSTN SPINK1
RARRES1 CD74 COL4A1 COL18A1 CPQ RAC2 SYNM
S100A8 CFH COL4A2 COL1A1 CTSE S100A8 TCF21
SELENOP CLIC4 COL5A2 COL3A1 DEGS1 TRIM22 TRIM22
SERPINE2 CLIP3 COL8A1 COL4A1 DES VCAN
TRIM22 COL1A1 CRTAC1 COL4A2 DKK3 XAF1

COL3A1 CYGB COL5A2 DOCK11
COL5A2 DEGS1 COL8A1 DSE
COL8A1 DES CRTAC1 ELOVL5
CSF2RB DKK3 CTSE ENPP2
CSRP1 EDNRA CXCL13 FBLN1
CXCL11 ENPP2 CYGB FCER1A
CXCL13 FBLN1 DEGS1 FERMT2
DEGS1 FBN1 DES FILIP1L
DES FERMT2 DKK3 FSTL1
DKK3 FILIP1L DOCK11 GIMAP7
DOCK11 FN1 DSE GLT8D2
DSE FSTL1 EDNRA HCLS1
EDNRA GEM EFHD1 LITAF
ENPP2 GIMAP7 FABP6 LRIG1
FBN1 GLT8D2 FAM174B MMD
FCER1A GUCY1A1 FAM3B MMP7
FERMT2 HCLS1 FBLN1 MXRA5
FGD2 ITGA1 FBN1 NUPR1
FGR LAMA4 FCER1A PLSCR4
FILIP1L LRRC32 FERMT2 PODN
FN1 MFNG FILIP1L POSTN
FPR1 NEURL1B FN1 PRDX3
FSTL1 NID1 FSTL1 RARRES1
GEM NID2 GEM RGS5
GIMAP7 NREP GIMAP7 RPL17
GLT8D2 OLFML1 GLT8D2 S1PR3
GMFG OLFML2A GPX8 SELENOP
GPX8 PCDH17 GUCY1A1 SERPINE2
GUCY1A1 PDGFRB HCLS1 SGCE
HCLS1 PLAC9 HOXB6 SH3BGRL
HLA-DQB2 PODN IGFBP6 SLC9A9
HLA-E POSTN ITGA1 STEAP1
IGFBP6 PRRX1 LAMA4 SULF1
IGHV1-69 RBPMS2 LRIG1 SYNM
IGKV1-17 RGS5 LRRC32 TCF21
INPP5D S100A8 MMD TM4SF1
LAMA4 S1PR3 MMP7 TM4SF1
LITAF SELENOP MRVI1 TMED7
LRIG1 SERPINE2 MXRA5 TMEM45A
LRRC32 SGCE NEURL1B TNC
MAF SULF1 NID1 TRIM22
MFNG SYNM NID2 TSPAN7
MMD TCF21 NREP VCAN
MMP7 TM4SF1 NUPR1 WDR72
MXRA5 TM4SF1 OLFML1
NEK6 TNC OLFML2A
NUPR1 TSPAN7 PDGFRB
NXN VCAN PLAC9

(Continued on following page)
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with ssGSEA and z-score-based immune cell enrichment
analyses. With the biomarker DEGs listed in Table 2 as
priori-defined sets of immune cell-specific genes, we quantified
the infiltration of all nine tumor-infiltrating immune cells in the
tumor microenvironment. Enrichment of the cell scores by
ssGSEA in all 1370 NMIBC transcriptomes is shown in
Figure 4A.

To assess the nine immune cells’ ability to distinguish NMIBC
patients with poor prognosis, we explored correlations between
PFS, DFS, and OS with every tumor-infiltrating immune cell
score calculated by ssGSEA and z-score methods. The survival
analysis (Supplementary Table S8) showed that B cells, DCs,
endothelial cells, CAFs, CD4+ T cells, and CD8+ T cells enriched
by the ssGSEA method were significantly related to PFS in
E-MTAB-4321 (Figure 4B). Macrophages and CD8+ T-cells
enriched by the ssGSEA method were significantly related to
OS in GSE13507 (Plots not shown). No cell types were
significantly related to DFS in GSE32894.

Robust Immuno-Prognostic Model
To achieve a robust prognostic model independent of the
heterogeneous clinical information in eligible datasets, we used
the score matrix of all nine candidate immune cells to build our
model, although only some subsets of the cells were significantly
related to PFS or OS. Since the primary goal of this study was to
predict prognosis and risk of progression by key immune
features, a total of 454 NMIBC samples from E-MTAB-4321
with assessable progression beyond T2 staging and PFS records

were used.With the data, we repeatedly built training and test sets
by randomly sampling 5000 times with a 1:1 ratio, fitted immune-
prognostic models with the ridge regression, determined the
optimal model with the minimum lambda, and evaluated the
models with AUCs of ROC curves. Although immune cell
enrichment score matrices calculated by both ssGSEA and
z-score methods were used in building the immuno-prognostic
model, only models built by ssGSEA matrices showed generally
higher AUCs (data not shown). The formula of the final model
was as follows:

Immuno-Prognostic score = - 0.4111588 + 2.5025813 * Bcells_score
- 1.8274560 *DC_score + 6.7589250 * Endothelial_score + 2.6983895 *
Fibroblasts_score - 0.1725197 * Macrophages_score + 1.0256969 *
Neutrophils_score - 1.8221146 * NKcells_score - 6.0485265 *
Tcells_CD4+_score—9.4937697 * Tcells_CD8+_score.

We visualized the prediction effect of the optimal model in
Figure 5A, the AUCs were 0.827, 0.888, and 0.947 in the training
set (n = 228), test set with all the other samples (n = 226), and test
set with balanced progression and non-progression patients (n =
30), respectively. The sampling groups of our optimal model are
recorded in the last three columns in Supplementary Table S2.
The optimal cutoff of the Immuno-Prognostic score dividing low-
risk and high-risk patients was 0.109. In Figures 5A,B
conspicuous differentiation of PFS (p < 0.0001, log-rank test)
was observed in patients with different predicted outcomes. We
also expanded our validation of the model in predicting other
types of clinical outcomes. The same trend has been observed, but
it showed less significance in predicting DFS (p = 0.21, log-rank

TABLE 2 | (Continued) List of biomarker genes representing the nine tumor-infiltrating candidate immune cells.

Bcells DC Endothelial Fibroblasts Macrophages Neutrophils NK cells T cells_CD4+ T cells_CD8+

OLFML1 PLN
PDGFRB PLSCR4
PLSCR4 PODN
PLXDC2 POSTN
PODN PRRX1
POSTN RAC2
PRRX1 RBPMS2
RAC2 RGS5
S100A8 S100A8
SELENOP S1PR3
SERPINA3 SELENOP
SERPINB9 SERPINA3
SERPINE2 SERPINE2
SGCE SGCE
SP110 SMTN
SULF1 SULF1
SYNM SYNM
TCF21 TCF21
TM4SF1 TEAD2
TM4SF1 TM4SF1
TMEM45A TM4SF1
TNC TMEM45A
TRIM22 TNC
TSPAN7 TPST1
VCAN TSPAN7
XAF1 VCAN
ZFP36 VSIG2
ZG16B
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test) and OS (p = 0.027, log-rank test). Furthermore, to test the
correlation between our model and the well-established survival
risk factors of NMIBC, we compared distributions of the

predicted immuno-prognostic scores against different levels of
CIS in the disease course, EORTC risk score, WHO 1973 or 2004/
2016 grade, recurrence, sex, tumor stage, and tumor size. All

FIGURE3 | Expression heatmaps and functional enrichment analyses of PFS- andOS-related immune cell-specific DEGs. Expression heatmaps of (A) PFS-related
and (B) OS-related DEGs. KEGG (C), GO-biological process (D), GO-cellular component (E), and GO-molecular function (F) enrichment of all the selected DEGs.
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FIGURE 4 | Proportion assessment and prognostic value of the nine candidate tumor-infiltrating cells. (A) Heatmap of candidate cells and clinical features of all the
eligible 1,370 samples included in this study. Grade73 and Grade98 refer to the WHO 1973 and WHO 2004/2016 Classification Systems for Urothelial Carcinoma,
respectively. (B) Kaplan-Meier curves of univariate Cox regression in low- versus high-infiltrated groups divided by the nine candidate immune or stromal cells.
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FIGURE 5 | Predictive performance of the immuno-prognostic model. (A) The ROC curve to predict PFS in the training set, test set with all the other samples, and
test set with balanced progressed and non-progressed samples. (B) The Kaplan-Meier curve to predict PFS, DFS, and OS*. (C) Box plots comparing risk scores
assessed by the immuno-prognostic model in different groups of clinical prognostic risk factors. * In the nine eligible datasets, PFS status was assessed in E-MTAB-
4321, GSE13507, and GSE32894, while only E-MTAB-4321 provided survival time. DFS status was assessed in GSE32894, GSE13507, and GSE48075, while
only GSE32894 provided survival time. OS status was assessed in GSE13507 and E-MTAB-1940, while only GSE13507 provided survival time. As we plotted here, the
survival analyses were only applicable to datasets E-MTAB-4321, GSE32894, and GSE13507.
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comparisons showed higher immuno-prognostic scores in higher
risk levels, but the trends were insignificant in recurrence status
and tumor size. In summary, our model could predict the risk to
the progression of NMIBC patients by evaluating the tumor-
infiltrating microenvironment. The immuno-prognostic score
well reflected the degree of progression risk.

DISCUSSION

With the assumption that cancer progression was associated with
immune cell infiltrating, we performed an integrated analysis for
developing a robust immuno-prognostic model to evaluate
progression risk in NMIBC patients. We identified nine critical
tumor-infiltrating cell types: innate immune cells including
macrophages, neutrophils, DCs, and NK cells; adaptive immune
cells including B cells, CD4+ T cells, and CD8+ T cells; and sentinel
cells including CAFs and endothelial cells. The quantification of
these immune cells was conducted by ssGSEA using the DEGs
recognized from all eligible datasets. Univariate Cox regression
supported that some cells could independently distinguish
patients with high progression risk. Based on this, we achieved a
more robust model using the enrichment matrix of all the nine
tumor-infiltrating immune cells and then validated its performance
in predicting different types of survival. The predicted risk scores and
survival status showed a high correlation with the actual clinical
outcomes; however, considering the precision and significance, we
suggested using our model in predicting the PFS of NMIBC patients
instead of DFS or OS.

We included nine immune cells in our model, even though some
showed no independent prognostic value, since we thought their
combination would better reflect the coordinated interaction
between innate and adaptive immune systems in preventing the
normal tissue from aggressive progression. For one thing, many
genes were identified as theDEGs formore than one type of immune
cells (Figure 2; Table 2); for another, the functional enrichment
analysis of the full set of signature DEGs showed strong evidence of
underlying drivers of tumor progression. The collagen family genes,
for instance, were independently related to the survival of NMIBC
and were simultaneously recognized as the DEG of tumor-
infiltrating B cells, CD4+ T cells, CD8+ T cells, DCs, CAFs,
macrophages, and endothelial cells. Xu and colleagues reviewed
themechanisms underlying this result (Xu et al., 2019). The complex
reticular structure composed of collagen-rich extracellular matrices
(ECM) andmultiple stromal cells formed dense stromal fibrosis and
thereby induced focal hypoxia, leading to increased tumor
proliferation and compromised immunotherapy effectiveness
(Daniel et al., 2019). The enriched KEGG pathways, including
focal adhesion and ECM-receptor interaction (Figure 3C), were
consistent with the previous description. The extensive interaction
between stromal/immune cells and cancer cancers depicted the
complexity of the tumor microenvironment, which was why we
used cells instead of genes to build our model.

Another detail of our study was that we emphasized the selection
of appropriatemeta-analysismethods in the feature selection step and
the careful use of renormalization methods. Toro-Domínguez and
colleagues reviewed the three main types of meta-analysis strategies

based on effect sizes, p-values combination, and rank combination
(Toro-Domínguez et al., 2021).We chose wFisher (Yoon et al., 2021),
a modified p-value combination method, to filter the DEGs
representing candidate immune cells. The wFisher method was
suitable for studies from different platforms or conditions. In our
case, combining the analysis of nine transcriptomic datasets
sequenced by both RNA-Seq and microarray platforms fit the
method’s usage characteristics. The method also allowed
combining results from heterogeneous analyses without rigorous
renormalization. This feature elicited the second focus of our
discussion: the renormalization of integrated transcriptomic data.
Normalization of bulk RNA data included quantifying transcripts
and standardizing data from different sources. The former was
thoroughly discussed in the review of RNA sequencing technology
(Stark et al., 2019). Here we mainly discussed the latter scenario, as
the complexity of cancer biology required integrative studies with
combined data from different researches. Shen and Wulff published
their evaluations of various normalization methods for integrating
large-scale metabolomics data, yielding the same conclusion that
choosing the proper normalization method according to the data
scale and downstream analysis would vastly improve the confidence
of research results (Shen et al., 2016; Wulff and Mitchell, 2018). For
transcriptome data, most studies still focused on the transcripts
quantification question in the single-source dataset (Dillies et al.,
2013; Li et al., 2015), while some of them also evaluated sophisticated
frameworks and proposed a protocol to deal with raw RNA-
Sequencing (RNA-Seq) data (Sahraeian et al., 2017). We found
that few discussion has been made on the systematic
renormalization of transcript data from multiple sources by
multiple sequencing technologies, but some attempts were
separately made and recommended in previous studies (Mooney
et al., 2013; Risso et al., 2014; Ayers et al., 2017; Danaher, 2018; Liu
et al., 2019). After modeling with both renormalized and non-
normalized data (results shown in our Github or Gitee
repositories listed in the Data Availability Statement section), we
believed the renormalization method combining RNA-Seq and
microarray data was still not well-established. We built our model
for predicting PFS in NMIBC patients based on RNA-Seq data alone.
We suggested that any further applications of our model should
consider using RNA-Seq data rather than microarrays.

In conclusion, we identified nine critical tumor-infiltrating
immune cells, quantified the cells’ proportion in the tumor
immune microenvironment with self-defined signature genes,
and established a robust immune-prognostic model for
predicting the progression of NMIBC patients. Our study
showed system-wide coordination of the immune and stromal
cells in defending aberrant cell proliferation and aggressive
tumor growth and invasion. Thus, modeling strategies regarding
the tumor microenvironment as a whole system may be optimal in
clinical decision support applications, which we believe is why
multi-omics and integrative studies were replacing single biomarker
and single dimension studies. In previous studies, single dimension
data, such as the density of stromal TILs evaluated by H&E-stained
slides, failed to predict survival outcomes independently (Rouanne
et al., 2019; Ottley et al., 2020). Rouanne and colleagues only proved
that the stromal TILs were associated with the tumor invasion depth
in pT1 NMIBCs. Ottley and colleagues combined the sTILs levels
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with IHC and ISH biomarkers to improve the prognostic potential.
In this shift to complex modeling with multiple dimension data, we
raised the importance of appropriate data preprocessing
procedures, including but not limited to the selection of
appropriate meta-analysis methods. Moreover, some limitations
of our research had to bementioned here.With the inspiration from
the UROMOL2021 study (Lindskrog et al., 2021), we initiated our
investigation with the hypothesis that dynamic interactions in
tumor immune microenvironment would reflect not only the
progression risk but also the response to local treatment like
intravesical instillation of chemotherapeutic or
immunotherapeutic agents. Several efficient predictive
biomarkers have been developed and widely evaluated in pan-
cancer scenarios, such as the 18-gene gene expression profile (GEP)
score (Ayers et al., 2017) has a high discriminatory value in
predicting the response to pembrolizumab in Keynote-001,
Keynote-012, and Keynote-028. Unfortunately, we did our
research and failed to get enough high-quality response data to
therapies in NMIBC patients. In the current study, we validated
only the prognostic value of our model. Nevertheless, we wish to
expand its usage in prognostic and predictive conditions in the
future.
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Background: Gene-agnostic genomic biomarkers were recently developed to identify
homologous recombination deficiency (HRD) tumors that are likely to respond to treatment
with PARP inhibitors. Two machine-learning algorithms that predict HRD status, CHORD,
and HRDetect, utilize various HRD-associated features extracted from whole-genome
sequencing (WGS) data and show high sensitivity in detecting patients with BRCA1/2 bi-
allelic inactivation in all cancer types. When using only DNA mutation data for the detection
of potential causes of HRD, both HRDetect and CHORD find that 30–40% of cases that
have been classified as HRD are due to unknown causes. Here, we examined the impact of
tumor-specific thresholds and measurement of promoter methylation of BRCA1 and
RAD51C on unexplained proportions of HRD cases across various tumor types.

Methods: We gathered published CHORD and HRDetect probability scores for 828
samples from breast, ovarian, and pancreatic cancer from previous studies, as well as
evidence of their biallelic inactivation (by either DNA alterations or promoter methylation) in
HR-related genes. ROC curve analysis evaluated the performance of each classifier in
specific cancer. Tenfold nested cross-validation was used to find the optimal threshold
values of HRDetect and CHORD for classifying HR-deficient samples within each
cancer type.

Results: With the universal threshold, HRDetect has higher sensitivity in the detection of
biallelic inactivation in BRCA1/2 than CHORD and resulted in a higher proportion of
unexplained cases. When promoter methylation was excluded, in ovarian carcinoma, the
proportion of unexplained cases increased from 26.8 to 48.8% for HRDetect and from
14.7 to 41.2% for CHORD. A similar increase was observed in breast cancer. Applying
cancer-type-specific thresholds led to similar sensitivity and specificity for both methods.
The cancer-type-specific thresholds for HRDetect reduced the number of unexplained
cases from 21 to 12.3% without reducing the 96% sensitivity to known events. For
CHORD, unexplained cases were reduced from 10 to 9% while sensitivity increased from
85.3 to 93.9%.
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Conclusion: These results suggest that WGS-based HRD classifiers should be adjusted
for tumor types. When applied, only ~10% of breast, ovarian, and pancreas cancer cases
are not explained by known events in our dataset.

Keywords: homologous recombination deficiency, HRDetect, CHORD, whole-genome sequencing, promoter
methylation

INTRODUCTION

The recognition of biallelic germline or somatic mutations in
BRCA1/2 is, to date, one of the most clinically relevant and
frequently used genetic biomarkers of homologous recombination
repair deficiency (HRD) in the clinics (Dougherty et al., 2017; Hoppe
et al., 2018). Patients harboring germline pathogenic variants (GPVs)
in BRCA1/2 have a higher risk of developing breast and/or ovarian
cancer (Mersch et al., 2015). Patients with germline or somatic
mutations have an enhanced benefit from targeted therapies such as
platinum-based chemotherapy or poly (ADP-ribose) polymerase
inhibitors (PARPi) (Hennessy et al., 2010). The terms “BRCAness”
or “HRDphenotype” refer to tumorswith similar clinicopathological
and molecular characteristics to tumors with BRCA1 and BRCA2
GPVs (Lord and Ashworth, 2016). Gene alterations occurring in
other homologous recombinant associated genes, such as PALB2
(Tischkowitz et al., 2007; Thomas and Brown, 2015) and RAD51C/D
(Kondrashova et al., 2017; Polak et al., 2017), have been linked to the
HRD phenotype. Inactivation through promoter methylation of
BRCA1 and RAD51C has also been found to result in HRD
tumors (Ruscito et al., 2014; Polak et al., 2017; Staaf et al., 2019),
and these tumors also demonstrate increased sensitivity to PARPi
and platinum (Kondrashova et al., 2018).

Advances in tumor sequencing resulted in the development of
methods to identify HRD tumors independently of identifying the
cause. Cancer genomes of patients with BRCA1/2 mutations are
enriched with particular mutational patterns as well as a high
number of distinct LOH regions. In addition, BRCA1/2-deficient
tumors include small deletions with ≥4 bp flanking homology.
Several structural variations are typical of BRCA1/2-deficient
cancer genomes, including deletions up to 100 kb, unclustered
tandem duplications of ~10 kb associated with BRCA1 mutations
(Willis et al., 2017), and deletions up to 1-10 kb in cancers are found
in patients with BRCA2mutations (Degasperi et al., 2020). A specific
single-base substitution signature (also known as single-nucleotide
variants), referred to as COSMIC signature 3, is strongly associated
with BRCA1/2 deficiency (Polak et al., 2017).

Whole-genome sequencing (WGS) data enable the detection
of different genomic alterations such as base substitutions, indels,
rearrangements, and copy number aberrations, which are the
result of homologous recombination deficiency. There are two
HRD classifiers that are based on features extracted from WGS
data. HRDetect (Davies et al., 2017) is a weighted logistic
regression model based on six input features: the proportion
of small deletions with microhomology at the breakpoint
junction, HRD index based on genomic scars, COSMIC
signatures 3 and 8, and two rearrangement signatures 3 and 5.
This model was trained on BRCA1/2-null breast cancers. The
classifier of Homologous Recombination Deficiency (CHORD)

(Nguyen et al., 2020) is a random forest model that uses relative
counts of somatic mutation contexts from WGS data.

Both classifiers classify >90% of tumors with biallelic
inactivation via DNA mutation of BRCA1/2 as HRD and have
generally high accuracy as measured by AUC~0.98 (area under
the curve) (Davies et al., 2017; Nguyen et al., 2020). Mutations in
PALB2, RAD51C/D, and BARD1 are associated with HRD
signatures (Polak et al., 2017; Matis et al., 2021) and account
for a small fraction of non-BRCA1/2-mutated HRD cases (Golan
et al., 2021). Nguyen et al. (2020), in the paper that introduced
CHORD, reported that a substantial proportion (~40%) of cancer
samples identified as HR-deficient did not harbor any mutation
in known HR-related genes (Nguyen et al., 2020), while Davies
et al. (2017) reported more than 30% of these cases. These
findings indicate that conventional testing for mutations in
HR genes will miss a considerable number of HRD tumors
where HRD is caused by unknown reasons.

The possible source of high unexplained cases could be either
technical or biological. Both HRDetect and CHORD are
continuous scores, designed to determine if a tumor exhibits
HRD. Both use a universal threshold that was not optimized for
specific cancer types. HRDetect threshold was developed based
on the breast cancer dataset but this cut-off has been used for
other cancer types. The CHORD study used a 0.5 cut-off. In
addition, BRCA1/RAD51C promoter methylation is not
measured in most WGS studies or on only one subset of these
samples.

Here, we aim to examine the range of missing proportions of
HRD samples across various three tumors where HRD is
frequently reported (breast, ovarian and pancreas cancer) and
determined the impact of cancer-type-specific thresholds as well
as of promoter methylation BRCA1/RAD51C for an available
subset of cases. To do so, we used published CHORD and
HRDetect scores for these three cancers (Davies et al., 2017;
Degasperi et al., 2020; Nguyen et al., 2020), as well as published
HRDdetect scores for pancreas cancer (Golan et al., 2021) and
CHORD scores that we calculated. In the case of ovarian and
breast cancers, we limited our study to the subset of patients with
available data for the methylation status of the BRCA1/RAD51C
promoter. We determined the proportion of unexplained cases if
we use cancer-type specific thresholds (for pancreas, ovarian, and
breast cancer) and promoter methylation status (for ovarian and
breast cancers).

MATERIALS AND METHODS

Datasets. Studies that performed homologous-recombination
deficiency detection analysis on the same samples using the
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CHORD (Nguyen et al., 2020) and HRDetect (Davies et al., 2017;
Degasperi et al., 2020) classifiers were selected. From the selected
studies, we made the largest unique intersection of sample names
containing prediction scores of HR deficiency for both classifiers,
CHORD and HRDetect. The dataset was divided into four major
groups of HR-related cancers: breast, pancreatic, and ovarian
(Supplementary Table S1), while other cancer types were put
into a separate category (Supplementary Table S2) due to the low
number of biallelic events and samples labeled as HRD. We
included only breast and ovarian cancer samples that had verified
BRCA1/2 with respect to methylation (Davies et al., 2017). The
methylation status of HR-related gene promotors was considered
to be an important underlying cause of HRD in tumors and we
wanted to include only samples with validated methylation status
to perform the downstream analysis. For the pancreatic dataset,
we used 391 pancreatic samples whose data alongside the
HRDetect classifier results were provided by Golan et al.
(2021). For pancreatic samples, we ran the CHORD classifier
using the default setting as it was previously described (Nguyen
et al., 2020). The final combined dataset consisted of discrete
datasets of 1) 371 breast cancers, 2) 66 ovarian cancers, 3) 391
pancreatic cancers, and 4) 1 238 samples belonging to other
cancer types. For each sample in selected studies, we extracted the
available methylation status of BRCA1/2 genes for the breast and
ovarian cancer samples alongside biallelic and monoallelic
alternations in HR-related genes for all cancer types. We
considered biallelic germline inactivation to be present when a
germline pathogenic variant (GPV) was the first hit with the
second hit being loss-of-heterozygosity (LOH) or somatic
mutation. Somatic biallelic inactivation was considered where
at least one hit was a somatic mutation, while promoter
hypermethylation biallelic inactivation was defined as when
one hit was promoter methylation and the other one was
somatic or LOH. Monoallelic inactivation was considered
when only one gene had any mutation other than LOH.
Samples carrying biallelic inactivation in HR-related genes
were considered to be true HR-deficient tumors. A detailed
summary of all biallelic and monoallelic alterations in
analyzed HR-related genes can be found in Supplementary
Table S1 and Supplementary Table S2, alongside the source
of information regarding these gene alterations.

Assessment of the accuracy of CHORD and HRDetect
classifiers through ROC and precision-recall curves. To
assess the accuracy of each classifier for each of the four
major cancer types, we calculated receiver operating
characteristics (ROCs) using the R function “roc” from
package “pROC” (Robin et al., 2011) and precision-recall
(PR) curves using R function “pr.curve” from package
“PRROC” (Grau et al., 2015) by comparing CHORD and
HRDetect probability scores against samples carrying
biallelic inactivation in HR-related genes. Bootstrapping
(2000 samples) was performed to estimate the 95% CI of
the area under the ROC curve (AUC). Additionally, we
compared the performance of these classifiers when no
methylation data are available for breast and ovarian
cancers to highlight the importance of promoter
hypermethylation in HR-deficient tumors.

Determining the optimal threshold. We applied a tenfold
nested cross-validation approach to find the optimal threshold
values of HRDetect and CHORD for classifying samples as HR-
deficient or -proficient within breast, pancreatic, and ovarian
cancers. The inner tenfolds were used to calculate the average
optimal threshold, while the outer folds in the cross-validation
process containing 10% of test data were used to assess the
accuracy of the classification of HR-deficient samples. The
reported optimal threshold for each classifier was calculated as
the mean of all the average thresholds in outer loops for each
cancer type.

Statistical analysis. Probabilistic scores from CHORD and
HRDetect classifiers were compared with Spearman correlation
(Spearman, 1987) using R functions cor () or cor. test (). The one-
sided partially overlapping samples z-test for dichotomous
variables with R function “Prop.test” from package
“Partiallyoverlapping” (Derrick, 2018) was used to determine
the statistically significant differences in the proportion of
samples classified as HRD samples with and without evidence
between CHORD and HRDetect. An one-sided Fisher’s exact test
using the R function “pairwise_fisher_test” from package
“rstatix” (Kassambara, 2021) was used for testing the
differences of explained and unexplained classifications
between cancer types within each classifier. For comparison of
the different ROC curves, we used the DeLong’s test (two-sided,
paired-samples) for two correlated ROC curves using the R
function “roc.test” from package “pROC” (Robin et al., 2011).
Corrections for multiple hypothesis testing were done using
Bonferroni correction, and adjusted p-values were reported.
All the analyses were carried out in R statistical programming
language version 4.1.0.

RESULTS

Large Proportion of Homologous
Recombination Repair Deficiency
Classified Tumors Is Explained by Biallelic
Inactivation of BRCA1/2
To investigate the performance of CHORD and HRDetect
classifiers on the same samples, we utilized the classifiers’
results from previous studies (Davies et al., 2017; Degasperi
et al., 2020; Nguyen et al., 2020; Golan et al., 2021) across
2,066 samples from 10 cancer types. Here, we have focused on
comparing HRDetect and CHORD scores for a total of 828
tumors, composed of three cancers associated with HR
deficiency: breast (n = 371), pancreatic (n = 391), ovarian (n =
66) (Figure 1A), while the remaining seven cancers are shown in
the supplementary (Supplementary Figure S2, Supplementary
Table S2). When comparing the probability score of a tumor
possessing HRD for each sample, we see that CHORD and
HRDetect have similar probability scores (Supplementary
Figure S1, Spearman correlation of 0.67). Of the total 828
samples belonging to the three important HRD-related
cancers, biallelic alterations (either somatic, germline, deep
deletion, or promoter hypermethylation) of HR-related genes
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were found in 163 samples. As expected, samples with higher
HRD probability scores (in both classifiers) had a higher number
of biallelic inactivation events in BRCA1/2 genes compared to
samples with lower scores (Figure 1B). Somatic homozygous
deletion, labeled as deep deletion, were observed in BRCA2 in a
single breast cancer patient and in pancreatic cancer (RAD51B (n
= 2), RAD51C (n = 2) and XRCC2 (n = 1)) (Supplementary
Table S1).

Among other cancer types, we observed four prostate samples
with high HRD scores from both classifiers containing biallelic
inactivation in BRCA1/2 and one biliary sample with a germline
BRCA1 alteration where both HRD scores were above default
(Supplementary Figure S1). Due to lack of evidence for HR
deficiency in other cancers and the smaller sample size of
identified HRD samples, other cancers were excluded for the
downstream analysis and we only benchmarked results for breast,
ovarian, and pancreatic cancer samples.

We proceeded to compare the fraction of HRD classified cases
that are explained by the different types of biallelic inactivation in
BRCA1/2 based on HRDetected and CHORD. The most
abundant biallelic inactivation patterns in the dataset included
gBRCA1/2 (n = 52 + 54) and sBRCA1/2 mutations (n = 12 + 11)
(Supplementary Table S1). The BRCA1 promoter methylation
status was available only for breast and ovarian (n = 23) and it
accounted for a significant number of the total biallelic events (23
out of 175, 12.8% (95% CI [8.7–19.3])). Nearly all of the cases
with known biallelic inactivation (157 out of 163, 96.4% (95% CI
[91.8–98.5])) were in tumors that are above the default threshold
of either of the classifiers.

The largest proportion of unexplained HRD cases was
observed in ovarian cancer (14.7%, 95% CI [5.5–31.8]) using
CHORD and in pancreatic samples (28.2%, 95% CI [59.7–81.6])
using HRDetect (Table 1; Figure 2). Larger fractions of
unexplained cases were obtained using HRDetect compared to
CHORD with the default threshold value (one-sided z-test for
partially overlapping samples, p-value < 10–13) (Figure 2),
ranging from around 10 to 28% depending on the cancer type.
When looking at each classifier closely, we see that the highest
difference is between breast and pancreatic cancers and HRD
unexplained cases for HRDetect (one-sided Fisher’s exact test,
p-value = 0.0375). Multiple biallelic inactivation events can occur
in HR genes in the same patients; for instance, one ovarian sample
contained sBRCA1 and promoter hypermethylation of RAD51C,
while a pancreatic sample had a somatic deep deletion of both
RAD51B and RAD51C (Supplementary Table S1).

Performance of CHORD and HRDetect
Classifiers
As previously reported, both classifiers, CHORD and HRDetect,
achieved exceptional performance in identifying biallelic events
in breast and ovarian cancer types as shown by the high area
under the ROC curve (AUC) above 0.96 and 0.9, respectively
(Figure 3). In addition, we calculated the area under the
precision-recall curve (AUPRC) that was high and well above
90% across all cancer types. No statistically significant difference
was detected between CHORD and HRDetect AUC values (p >
0.05, DeLong’s test).

FIGURE 1 |Co-mutation plots for breast, pancreas, and ovarian cancers. (A)Mirror bar plot showing the probability score of CHORD (orange) and HRDetect (blue)
classifiers for each sample alongside the default threshold value for each classifier (horizontal dashed line, 0.5 for CHORD and 0.7 for HRDetect). Samples are ordered by
the CHORD probability score from the lowest to the highest. (B) The biallelic inactivation in genes related to HR deficiency. HRD types (BRCA1 and BRCA2 types) were
assigned by the CHORD classifier.
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Impact of Exclusion of Promoter
Methylation on the Performance
To assess the importance of promoter methylation in the
evaluation of HRD classifiers’ performance, we removed the
methylation data of BRCA1/RAD51C promoters in breast and
ovarian the only cancer types for which methylation data were
available. We observed a significant drop in classifiers’
performance for breast and ovarian samples (Figure 3). In
ovarian cancer, the drop in AUC values was significantly
affected, falling from 0.987 to 0.873 for CHORD (p-value =
0.044, DeLong’s test) and from 0.987 to 0.828 for HRDetect
(p-value = 0.011, DeLong’s test). In contrast, the breast

cancer AUC values were still above 0.96 for both classifiers
(p-value = 0.057 for CHORD and 0.055 for HRDetect,
DeLong’s test) and AUPRC values were slightly above 0.7
compared to 0.949 when methylation status was included.

Revisiting Threshold Values for
Homologous Recombination Repair
Deficiency Classification of Different
Cancer Types
The current threshold ofHRDetect( 0.7) was determined based on the
breast dataset, while CHORD 0.5 was arbitrarily chosen. Considering

TABLE 1 | Summary of tumor samples classified to possess HRD by CHORD and HRDetect within an individual cancer type.

Evidence of Biallelic Inactivation No Evidence of Bi-allelic Inactivation

Count Proportion (95% CI) Count Proportion (95% CI)

CHORD

Breast 69 90.8 (81.4-95.9) 7 9.2 (4.1-18.6)
Ovary 29 85.3 (68.2-94.5) 5 14.7 (5.5-31.8)
Pancreas 41 89.1 (75.6-95.9) 5 10.9 (4.1-24.4)

HRDetect

Breast 76 87.4 (78.1-93.2) 11 12.6 (6.8-21.9)
Ovary 30 73.2 (56.8-85.2) 11 26.8 (14.8-43.2)
Pancreas 51 71.8 (59.7-81.6) 20 28.2 (18.4-40.3)

FIGURE 2 | Proportion of samples with and without biallelic alteration in HR-genes classified as HR-deficient with default threshold of (A) HRDetect of 0.7 and (B)
CHORD classifiers of 0.5. Only one alteration in the gene is shown per sample based on the hierarchical order of genes as follows: BRCA1, BRCA2, RAD51C, PALB2,
and XRCC2.
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different machine-learning algorithms underlying CHORD and
HRDetect for classifying HRD in samples and different training
data, we sought to determine an optimal threshold value for the
individual cancer types in our cohort. For each cancer type and
classifier, we performed 10-fold nested cross-validation to calculate
the optimal threshold value (given in detail in the Methods section).
The accuracy of both classifiers with default threshold values was
similar across cancers, while the most considerable increase was
detected in ovarian cancer (accuracy CHORD 0.91 and HRDetect
0.83) (Table 2). Cancer-type-specific (optimal) threshold values differ
from the classifiers’ default ones, but the overall accuracy improves
slightly or remains the same. The only exception is the optimal value
of HRDetect in ovarian cancer where the accuracy improved by
12%. The number of samples with evidence of bi-allelic alterations in

HR-related genes and classification as HR deficient by the classifiers
were more abundant in optimal values of the CHORD classifier in
breast and pancreatic cancers compared to the default threshold in the
same cancer type. The proportion of classified HRD cases in the
dataset without known biallelic evidence decreased for both
CHORD, 10.9–8.9%, and HRDetect, 21.1–12.3%. Monoallelic
mutations were found in pancreatic cancer (Supplementary
Figure S3). Using default threshold values, the majority of
monoallelic mutation in HR-related genes occurs in
homologous recombination proficient (HRP) samples, where
HRDetect has more HRD unexplained cases and two
monoallelic mutations in HR-related genes. The monoallelic
alterations were detected in HRD-labeled samples only with
HRDetect with default and an optimal threshold value.

FIGURE 3 | Receiver operating characteristics (ROCs) with the respective area under the curve (AUC) and precision-recall curves (PR) with the area under the
precision-recall curve (AUCPR) showing the performance of CHORD and HRDetect classifier with and without methylation data for breast (A) and ovarian cancers (B).
Pancreas (C) cancer data do not have methylation data.
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DISCUSSION

Our study shows an integrated overview of detecting
homologous recombination deficiency in cancers using
CHORD and HRDetect classifiers. Here, we have mainly
focused on three cancers most commonly associated with
HRD: breast, ovarian, and pancreatic cancers. We observed
that biallelic inactivation of genes explains a large fraction of
samples possessing HRD when using a universal default
threshold, as was demonstrated in previous studies (Davies
et al., 2017; Nguyen et al., 2020; Golan et al., 2021). However,
around 10–28% of patients without known underlying causes
were detected by these classifiers despite their high
performance based on the default threshold. In this study,
we found that by applying a cancer-type-specific threshold the
number of unexplained cases reduced to around 8.9–12.3%
without decreasing the sensitivity of 96%. We estimate that in
this dataset up to ~10% of HRD cases are caused by types of
alterations that still have not been associated with HRD and
therefore gene-centric testing for mutations in HR genes will
likely fail to identify them. Similar results apply to the analysis
of other cancer types in which the HRD cancers are rarer in
comparison to the four well-known HRD cancers. The low
number of HRD mutations in prostate samples and other
cohorts did not allow the determination of a reliable
cancer-type-specific threshold. The small fraction of
unexplained cases is consistent with our previous proposal
(Foulkes and Polak, 2019; Matis et al., 2021) that if alterations
in novel genes lead to HRD, taken together, they will all
account for only a very small proportion of all HRD cases.

The different cut-offs that we observed may be due to subtle
differences across cancer in the mutational landscape even for
tumors with different same gene defects, especially in
mutational signatures (Degasperi et al., 2020). Furthermore,
as it was highlighted by Nguyen et al. (2020), additional
threshold optimization and validations are also required
when applying classifiers to WGS data generated by other

variant calling pipelines. Our cohort contained data generated
by various pipelines for CHORD and HRDetect in each cancer
type, which may affect the overall comparison of results
between these classifiers. In addition to the threshold value,
it is important to investigate other features affecting the
mutation landscape of tumors, such as deficiency in
mismatch repair (MMR), which may have a negative impact
on the overall performance of classifiers in specific tumors. It
was noted by Golan et al. (2021) that one pancreatic sample
with biallelic inactivation in BRCA2 and PMS2 (responsible for
MMR) was misclassified by HRDetect and CHORD classifier
and had both scores near zero.

In addition to cancer-type-specific thresholds that reduce the
number of unexplained cases, we demonstrated the importance of
including the promoter methylation status of BRCA1 and
RAD51C in order to evaluate the fraction of HRD cases that
are explained by known causes. In breast and ovarian cancers, for
which methylation analysis is most often conducted, promoter
methylation of BRCA1 accounts for at least 20% of explained
biallelic inactivation cases of HRD, labeled by either of the
classifiers, and lack of methylation data significantly affects the
performance of classifiers. The proportion of unexplained cases in
other cancer types may have been reduced if methylation analysis
data existed, especially in pancreatic cancer where some detected
monoallelic PVs could have other events such as promoter
methylation that would explain their HRD. These observations
highlight the advantage of using these classifiers alongside
conventional testing for patient selection and stratification in
clinics, as was already suggested by several studies (Zhao et al.,
2017; Staaf et al., 2019; Chopra et al., 2020). The relationship
between the presence of HRD and response to therapies such as
PARP inhibitors is not precise and there is currently no “ground
truth” for measuring HRD. Resistance to PARP inhibitors can co-
exist with HRD (Dias et al., 2021), so the presence of HRD is
not by itself a direct predictor of response to PARP inhibitors
and other drugs such as platinum that cause double-strand
DNA breaks. Combinations of different approaches such as

TABLE 2 | Summary table of confusion matrix results with accuracy for default and optimal (cancer-type-specific) threshold values of CHORD and HRDetect classifiers for
classifying samples as homologous recombination deficient (HRD) or homologous recombination proficient (HRP).

CHORD HRDetect

HRD HRP HRD HRP

Bi-allelic Evidence Yes No Yes No Threshold Accuracy Yes No Yes No Threshold Accuracy

Breast

default 69 7 9 286 0.50 0.96 76 11 2 282 0.70 0.96
optimal 75 9 3 284 0.10 0.97 77 11 1 282 0.68 0.97

Ovary

default 29 5 1 31 0.50 0.91 30 11 0 25 0.70 0.83
optimal 29 1 1 35 0.84 0.97 29 2 1 34 0.99 0.95

Pancreas

default 41 5 14 331 0.50 0.95 51 20 4 316 0.70 0.94
optimal 49 5 6 331 0.13 0.97 50 9 5 327 0.98 0.96

aHRD and HRP categories are determined by CHORD and HRDetect based on default or optimal (cancer-type-specific) thresholds.
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WGS-based, FDA-approved assays, and newer functional assays
such as the RAD51 foci assay (Pellegrino et al., 2022) will
ultimately lead to a better selection of HRD patients for
appropriate therapies. Hence, our review re-analysis
emphasizes the power of both CHORD and HRDetect in the
stratification of patients possessing HRD phenotype across
various cancers, as well as the importance of identification and
further validation of new unrevealed oncogenic mutations.
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RNA-SSNV: A Reliable Somatic Single
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Education, Guangzhou, China

The usage of expressed somatic mutations may have a unique advantage in identifying
active cancer driver mutations. However, accurately calling mutations from RNA-seq data
is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap
alignment. In the present study, we proposed a framework (named RNA-SSNV, https://
github.com/pmglab/RNA-SSNV) to call somatic single nucleotide variants (SSNV) from
tumor bulk RNA-seq data. Based on a comprehensive multi-filtering strategy and a
machine-learning classification model trained with comprehensively curated features,
RNA-SSNV achieved the best precision–recall rate (0.880–0.884) in a testing dataset
and robustly retained 0.94 AUC for the precision–recall curve in three validation adult-
based TCGA (The Cancer Genome Atlas) datasets. We further showed that the somatic
mutations called by RNA-SSNV tended to have a higher functional impact and therapeutic
power in known driver genes. Furthermore, VAF (variant allele fraction) analysis revealed
that subclonal harboring expressed mutations had evolutional selection advantage and
RNA had higher detection power to rescue DNA-omitted mutations. In sum, RNA-SSNV
will be a useful approach to accurately call expressed somatic mutations for a more
insightful analysis of cancer drive genes and carcinogenic mechanisms.

Keywords: cancer, somatic mutation, RNA, RNA-Seq, machine learning, RNA-SSNV

INTRODUCTION

Cancer is the leading cause of death and an important barrier to increasing life expectancy (Sung
et al., 2021). According to GLOBOCAN 2020 estimates of cancer incidence and mortality, 19.3
million new cancer cases and 10.0 million cancer deaths occurred in 2020 (Sung et al., 2021). Somatic
mutations are usually induced by environmental factors, and it is well known that their accumulation
with aging and evolution in human cells will lead to malignant transformation and eventually cancer
(Watson et al., 2013). Thus, comprehensive somatic mutation identification in cancer such as the
Catalogue Of Somatic Mutations In Cancer (Tate et al., 2019) (COSMIC database) can help
characterize its genomic complexities (Watson et al., 2013) and discover oncogenic mutations
and driver genes which significantly influence cancer development (Bailey et al., 2018). Furthermore,
person-level somatic mutations also have their own oncogenic and therapeutic implications in
multiple cancers (lung cancer (Skoulidis and Heymach,2019), bladder cancer (Cazier et al., 2014;
Wen et al., 2021), and glioblastoma (Lin et al., 2021; McDonald et al., 2015)), targeting the
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corresponding mutant proteins or pathways. Currently, most
somatic mutation identification studies were based on DNA-
level, actionable practices in somatic mutation detection within
whole-genome or whole-exome sequencing data have been
developed to facilitate precision oncology (Xiao et al., 2021).

Mutations within exons are supposed to be transcribed into
RNA, and be reflected in the translated protein. However, many
DNAmutations within exons were not found in RNA because they
were located in the non-transcribed allele or had no or low
expression (O Brien et al., 2015). Yizhak et al. (2019) reported
that 65% of DNA somatic mutations within 243 TCGA tumor
samples were not detected in RNA. Rashid et al.(2014) found that
only 27% ofmutated alleles got expressed inmultiple myeloma. The
significant lack of DNA mutations in RNA indicated that not all
DNA mutations have certain effects finally. RNA can be a reliable
source to distinguish mutations that have been expressed to affect
cellular functions. Although RNA-seq is mainly used for gene
expression and fusion discoveries in clinical oncology (Wang
et al., 2020), previous studies showed that calling genomic
variants in expressed exons using RNA-seq data was feasible and
cost-effective (Chepelev et al., 2009; Cirulli et al., 2010; Gonorazky
et al., 2019; Piskol et al., 2013; Quinn et al., 2013). The advantages
included making the most abundant RNA-seq data resources and
discovering rare somatic mutations with the low-level DNA allele
fraction at higher sequencing depths in sufficiently expressed genes
(Chepelev et al., 2009; Cirulli et al., 2010; Gonorazky et al., 2019;
Piskol et al., 2013; Quinn et al., 2013; Liu et al., 2014). However,
calling somatic mutations within RNA-seq data was challenging
compared with calling variants in WES data. The main challenge
was the high false-positive rate, deriving from errors during reverse
transcription, misalignment near splicing junctions (exon ends),
RNA editing, and modification during post-transcriptional
processing (Cirulli et al., 2010; Xu, 2018). Multiple RNA somatic
mutation calling tools and pipelines have been developed to remove
these false-positive calls, which can be divided into two categories:
statistical filtering strategy-based (García-Nieto et al., 2019; Neums
et al., 2018; Yizhak et al., 2019) and machine learning–based
approaches (Muyas et al., 2020; Sheng et al., 2016). For instance,
GLMVC (Sheng et al., 2016) calls RNA somatic mutations based on
a bias-reduced generalized linear model trained by the
characteristics of RNA-seq data. VaDiR (Neums et al., 2018)
integrates results from three variant callers and produced higher
precision results through consensus combination but sacrificed
sensitivity. RNA-MuTect (Yizhak et al., 2019) comprehensively
filtered mutations within artifact sites and achieved optimal
performance. RF-RNAMut (Muyas et al., 2020) utilized a
machine learning model to distinguish somatic variants from
germline variants identified in RNA-seq data. Although existed
tools have their advantages and highlights, they had their
limitations: (1) unsatisfying precision–recall performance with
the maximum reported precision–recall to be 0.87–0.72 (Yizhak
et al., 2019), (2) required restricted resources such as DNA and
RNA panel of normal (PoN) calls from ~6500 GTEx samples to
achieve a desired result (Yizhak et al., 2019), and (3) model not
specifically trained to recognize excessive artifacts in RNA but to
identify germline mutations as negative (Muyas et al., 2020).

Here, we introduce a framework named RNA-SSNV
(https://github.com/pmglab/RNA-SSNV). It is a unified
framework containing a universal pipeline to call RNA
somatic single nucleotide variants from the combination of
tumor RNA-seq and normal WES data, a multi-filtering
strategy to remove doubtful calls with little loss of
sensitivity and a supervised machine learning model to
identify somatic mutations and artifacts. Our framework
achieved the best overall performance for precision and
recall, requiring only public reference resources. To
validate the generalization performance of our framework,
we utilized RNA-SSNV within TCGA lung squamous cell
carcinoma (LUSC), bladder urothelial carcinoma (BLCA),
and glioblastoma multiforme (GBM) independent datasets.
RNA-SSNV achieved similar performance in the area under
curve (AUC) for the precision–recall curve with 0.94 for all
three datasets. Given its high precision–recall performance,
RNA-SSNV will help exploit expressed somatic variants,
further extend the range of RNA-seq applications and
make full use of abundant RNA-seq data resources.

MATERIALS AND METHODS

Framework Overview
Our RNA somatic single nucleotide variant identification
framework (RNA-SSNV) consists of three major
components, including a RNA somatic mutation calling
step, a multi-step filtering process and a machine-learning
based prediction (Figure 1). The underlying hypothesis of
RNA-SSNV is that RNA-specific mutations have unique
biological and technique features; thus, a comprehensive
filtration process and a machine learning model based on
these features can substantially improve the accuracy of RNA
somatic mutation calling.

Datasets
Our datasets were retrieved from GDC, which had harmonized
pipelines (https://docs.gdc.cancer.gov/Data/Introduction/) to
generate RNA-seq and DNA-seq data. All RNA-seq datasets
were aligned to GRCh38 build using a two-pass method with
STAR, which required preprocessing before mutation calling. All
DNA-seq datasets were aligned to the GRCh38 reference using
bwa (Li and Durbin, 2009) and co-cleaned using the GATK
toolkit (McKenna et al., 2010), which can directly be utilized in
mutation calling.

We chose the TCGA lung adenocarcinoma (LUAD) cohort
as the training dataset that contained the largest patient scale
(511) compared with other available cancer cohorts. Our
training dataset comprised paired tumor RNA-seq and
tumor/normal WES data derived from 511 LUAD patients,
which simultaneously generated DNA and RNA somatic
mutations. Our independent validation datasets comprised
paired tumor RNA-seq and normal WES data derived from
498 LUSC, 441 BLCA, and 198 GBM patients, for which we
called RNA somatic mutations to get validating records.
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Mutation Calling
Theoretically, calling somatic mutations within RNA-seq data
can be easily conducted using callers designed for DNA.
Haplotype-based callers (GATK Mutect2 (Benjamin et al.,
2019; Cibulskis et al., 2013), TNscope) had been proven to
outperform position-based variant callers due to their
inherent technical advantage in complex variants and high
mutation loading regions (Pei et al., 2020; Xu, 2018). In
addition, we queried the TCGA helpdesk and learned that
our RNA-seq data (TCGA LUAD, LUSC, GBM, and BLCA
projects) were sequenced by the UNC center using poly-T
mRNA enriching strategy, which indicated that only
transcribed exon regions (GENCODE v22 annotated exon
regions) within mature mRNA can be sequenced (Kukurba
and Montgomery, 2015) and our paired normal targeted
capture exome sequencing (WES) data had a canonical
target region (Agilent SureSelect TargetInterval). Thus, we
chose to utilize Mutect2 to perform somatic variant calling
and only retain mutations within targeted coding regions
(overlap of exons and WES targets).

Normally, our STAR-2-pass aligned RNA-seq data required a
co-cleaning process to conduct mutation calling. Following
GATK recommended procedures (RNAseq Best Practice), our
aligned RNA-seq bam was passed to the MarkDuplicates tool to
identify duplicate reads and help remove PCR-related artifacts.
Next, SplitNCigarReads hard-clipped and reformat some
alignments which span introns causing large-scale mistaken
indels. Finally, it shall undergo base quality recalibration
conducted by BaseRecalibrator and ApplyBQSR to detect and
correct patterns of systematic errors in the base quality scores.

After obtaining analysis-ready bam files, we utilized Mutect2
to call RNA somatic mutations from paired tumor RNA-seq and
normal WES data, DNA somatic mutations from tumor and
normal WES data. For the TCGA LUAD training set, we called
RNA and DNA somatic mutations to help construct the training
dataset. For TCGA LUSC, GBM, and BLCA validation sets,
calling RNA somatic mutations were sufficient to validate our
framework’s performance. For DNA somatic mutations omitted
in RNA which required verification, we applied the force-calling
mode in Mutect2 to retrieve their RNAmutational status. Finally,

FIGURE 1 | Schematic overview of the framework for RNA somatic mutation identification. RNA calling: RNA-seq and WES data were aligned and co-cleaned
accordingly. Mutect2 was used to conduct RNA somatic calling with paired tumor RNA-seq and normal WES data. Features were extracted from outputs of
FilterMutectCalls and Funcotator. Multi-filtering: multi-filtering strategy was conducted in Mutect2 called mutations by removing multiallelic, RNA-editing, immunoglobin,
and HLA sites. Model prediction: using the trained model, mutations with extracted features were predicted as positive or negative, only positives were regarded as
reliable mutations. Result analysis: pairwise analysis can be conducted when DNA evidence was available. RNA-SSNV will output a generic entry table containing all
features and predicting information to facilitate downstream analysis.
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we utilized FilterMutectCalls to generate quality information as
training features and assess the performance for Mutect2’s default
filtering, Funcotator to annotate variants and facilitate
downstream analysis.

Multi-Filtering Strategy
Before model training or predicting, RNA somatic mutations
shall be comprehensively filtered to remove known possible
artifacts (García-Nieto et al., 2019; Yizhak et al., 2019). Our
multi-filtering strategy included removing multi-allelic
mutations, RNA-editing sites, IgG, and HLA regions. For
multi-allelic mutations, we removed mutations containing
three or more allele types to avoid misaligning artifacts. For
RNA editing events, we combined A-to-I RNA editing
information from the REDIportal (Mansi et al., 2021) database
and further editing information from the DARNED (Kiran et al.,
2013) database. We removed all mutations which located in the
union set of RNA editing events to prevent these false-positive
calls. For IgG regions, we removed mutations falling into IgG
genes to avoid noisy alignments (Ye et al., 2013). For HLA
regions, we removed the HLA mutations in chromosome 6
which contained a high density of germline variants (Buhler
and Sanchez-Mazas, 2011).

Construct a Training Dataset
For all TCGA projects involved in our study, the GDC Data
Portal (https://portal.gdc.cancer.gov/) already provided open-
access DNA somatic mutations detected by four different
callers MuSE, MuTect2, SomaticSniper, and VarScan (Ellrott
et al., 2018) with stringent thresholds. Using the GDC MAF
Concatenation Tool (https://github.com/wwysoc2/gdc-maf-
tool), we combined the curated mutations from four callers,
and constructed a union set of all available DNA somatic
mutations for each cancer type (LUAD, LUSC, BLCA, and
GBM) to maximize the sensitivity. In addition, given that
GDC somatic variant calling pipeline had strict criteria leading
to the loss of some true positive somatic mutations, we called our
own DNA somatic mutations using raw sequencing data and
retrieved GDC-omitted DNA somatic mutations.

Normally, variations in DNA will be passed and presented in
RNA through transcription. Reciprocally, any RNA somatic
mutations presented in DNA should be true positive since
they have got evidence from DNA. Moreover, other RNA
somatic mutations lacking support from DNA will be regarded
as true negative. To construct a reliable training dataset for model
training, we split our RNA somatic mutations into three
categories (Figure 2) based on evidence from the GDC
database and GDC-omitted DNA somatic mutations. Finally,
based on the information from FilterMutectCalls output and
annotation information of Funcotator, we systematically
extracted features for each training record with three
categories: variant, genotype, and annotation levels
(Supplementary Table S1).

Performance Metrics
Due to the extreme distribution bias for true positive and true
negative classes (TP : TN = 1:8), our main purpose was to identify
true positive RNA somatic mutations correctly. We chose
precision, recall, F1 scores, and areas under the
precision–recall curve (PR-AUC) as major performance
metrics in our study because they are insensitive to class
imbalance. Other metrics derived from the confusion matrix
(Table 1) were also introduced for evaluation.

Precision � True Positive
True Positive + False Positive

,

Recall � True Positive
True Positive + False Negative

,

F1 � 2 p
Precision p Recall
Precision + Recall

,

False positive rate � False Positive
False Positive + True Negative

,

False negative rate � False Negative
False Negative + True Negative

,

True negative rate � True Negative
False Negative + True Negative

.

Model Training and Validation
Records within the training dataset were split into training and
testing subsets (9:1). We utilized the training subset for model
parameter tuning, feature selection, and model training. For the
testing subset, we utilized them for testing the model’s
generalization performance.

To handle the imbalanced distribution for TP and TN classes,
we chose a weighted random forest classifier
(RandomForestClassifier, scikit-learn 0.24.2) to reduce the bias

FIGURE 2 | Venn diagram of training dataset categories. True positive:
RNA somatic mutations overlapping with GDC mutations. Ambiguity: RNA
somatic mutations overlapping with GDC omitted somatic mutations. True
negative: RNA somatic mutations without DNA support.

TABLE 1 | Confusion matrix demonstration.

Predicted condition

Label Positive Negative

True condition Positive True positive False negative
Negative False positive True negative
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by assigning inversely proportioned weights to different classes
(Zhu and Pierskalla, 2016). First, we utilized recursive feature
elimination with 10-fold cross-validation (RFECV, scikit-learn
0.24.2) to select optimal features. Second, we utilized a 10-fold
cross-validated grid-search over a parameter grid
(GridSearchCV, scikit-learn 0.24.2) to fine-tune optimal
parameters (max_depth, min_samples_split, min_samples_leaf,
max_features, etc.). Finally, we constructed a machine learning
model for RNA somatic mutation identification with optimal
features and parameters, and applied it in testing subset to assess
its generalization performance.

Following the procedures mentioned earlier, we conducted
somatic single nucleotide variants calling in LUSC, BLCA, and
GBM cohorts, utilized a multi-filtering strategy and built
validation datasets based on extracted features. We applied our
discriminant model in these validation datasets and retrieved
assessing metrics to further demonstrate the generalization
performance.

Also, we validated the necessity of introducing a new training
dataset from another cancer type. We added the GBM dataset
into the initial training dataset and constructed a new random-
forest classifier. After retrieving and assessing metrics for the new
random-forest classifier within LUSC and BLCA independent
validation datasets, we compared them with our initial model’s
performance.

Model Interpretation and Visualization
We utilized impurity-based feature importance for tree-based
machine learning models to help interpret features’ contributions
within our model. The higher its contribution, the more
important the feature. Impurity-based feature importance
(Gini importance) is computed as the total reduction of the
criterion brought by that feature and retrieved through our
model’s attribute feature_importances_. Because traditional
feature importance mainly focused on overall model
interpretation, we also introduced the SHAP (SHapley
Additive exPlanations, https://github.com/slundberg/shap)
(Lundberg and Lee, 2017) python package to help visualize
prediction (Lundberg et al., 2018) and provide local
explanations (Lundberg et al., 2020). We provided feature
contributions calculated by SHAP for predicted probability
and conducted a single prediction’s visualization by invoking
the force_plot function. We also investigated the feature
contributions of the training dataset. We calculated and
visualized the sum of SHAP value magnitudes by summary_
plot function in SHAP to show the distribution of each feature’s
impacts on themodel output (lift or lower prediction probability).

Whole Framework Implementation
We built our whole framework using Snakemake (Köster and
Rahmann, 2012) and class-oriented python scripts. Snakemake
(https://github.com/snakemake/snakemake) was applied to
manage standard bioinformatic workflows involved in this
study (co-cleaning, calling, and annotation) and conduct task
auto-management without complicating shell scripts. Function-
oriented python scripts contained feature extraction, model
training and testing, and model utilizing function. Both

Snakemake-based workflows and python scripts were available
within our project repository (https://github.com/pmglab/RNA-
SSNV), which helped create reproducible analysis.

Analyze RNA Mutations With DNA Evidence
We integrated predicted RNA somatic mutations with known
DNA mutations to analyze the relevance between RNA and
DNA. We examined their intersectionality and split them into
three parts (RNA–DNA overlap, DNA-only, and RNA-only)
and two sub-categories (positive and negative class, Figure 3).
Each part and sub-category had its biological implication and
interpretation requiring further investigation. The RNA–DNA
overlap part stood for RNA mutations with DNA evidence
support. DNA-only part stood for DNA mutations not
detected in RNA, and we utilized the Mutect2 force-call
mode to inspect their coverage status in RNA. RNA-only
part stood for RNA mutations not detected in DNA, and
most of them were artifacts due to lack of DNA evidence or
low sequence qualities.

Cancer driver genes were under positive selection during
tumorigenesis (Martinez-Jimenez et al., 2020). Here, we
focused on cancer-specific driver genes (https://www.intogen.
org/) to explore their enrichment patterns (number
distribution, functional impact, and therapeutic power)
between expressed (RNA–DNA overlap part) and un-
expressed (DNA-only part) somatic mutation panels. For
pathogenicity prediction, Combined Annotation–Dependent
Depletion (CADD) (Rentzsch et al., 2019), Eigen Principal
Components (Eigen-PC) (Ionita-Laza et al., 2016),
Polymorphism Phenotyping version 2 (PolyPhen-2) (Adzhubei
et al., 2010), Protein Variation Effect Analyzer (PROVEAN)
(Choi et al., 2012), UMD-Predictor (Ioannidis et al., 2016),
Rare Exome Variant Ensemble Learner (REVEL) (Frederic
et al., 2009), and Sorting Intolerant From Tolerant (SIFT) (Ng,
2003) were top-performing prediction tools on somatic variants

FIGURE 3 |Graphical introduction for the DNA-only, DNA–RNA overlap,
and RNA-only parts. Graphical introduction for detailed combination of RNA
and DNA somatic mutations. DNA-only: DNA somatic mutations not detected
(expressed) in RNA. RNA–DNA overlap: somatic mutations detected in
both RNA and DNA. RNA-only: RNA somatic mutations without any DNA
evidence.
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(Suybeng et al., 2020). Thus, we used the dbNSFP v4.1a (Liu et al.,
2020) database to annotate missense mutations with the
aforementioned prediction scores. The chi-squared test was
used to calculate the significance (p-value) of enriched
distribution and odds ratio (OR). A two-sided independent
t-test was used to determine the significance (p-value) of the
difference between the means of two prediction groups.

We also conducted an analysis of transcriptome-wide allele-
specific expression (ASE) to identify ASE events in somatic

mutations and their impacts on gene expression which affected
carcinogenesis. We chose cases containing both tumor and
paired-normal RNA-seq data from LUSC and BLCA cohorts
(LUSC: 49 cases, BLCA: 19 cases), and curated their gene
expression profiles from the UCSC Xena database (https://
xena.ucsc.edu/). Then, we chose only heterozygous SNVs in
both tumor RNA-seq andWES data (RNA–DNA overlap part),
and implemented chi-squared tests on the RNA and DNA
allelic depths with a significance cutoff of p-value 0.01 to

FIGURE 4 |Multi-filtering strategy and machine-learning model performance in testing and validation datasets. (A) Loss of GDCmutations (true positive) and non-
GDC mutations after the removal of multiallelic, RNA-editing, immunoglobulin, and HLA sites. (B) Change in cross-validated F1 score with the number of features
decreasing using the Recursive Feature Elimination with Cross-Validation (RFECV) method. Initial number of features was 40 and each iteration removed one least
important feature. (C) P–R (blue) curve for the testing dataset. RNA-SSNV achieved 0.880 precision and 0.884 recall rate (red point) in the testing dataset under the
default 0.5 threshold. RNA-Mutect (green point) and RF-RNAmut (orange point) had reported precision–recall with 0.87–0.72 and 0.85–0.71, respectively. (D)
Probability distribution of the predicted scores for the testing dataset. Most somatic mutation records were at the upper or lower ends of the plot, conforming a clear
classification boundary. (E) P–R curves for independent validation datasets. P–R curves for LUSC (blue), BLCA (orange), and GBM (green) had identical 0.94 AUC. The
peaks meant slightly different P–R performances for our model using the default 0.5 threshold in three datasets: LUSC (0.872–0.894), BLCA (0.876–0.870), and GBM
(0.902–0.825). P–Rs for RNA-Mutect and RF-RNAmut were also used for comparison. (F) Precision and recall distribution for each case across three types of cancer
(LUSC, BLCA, and GBM). Box plots showedmedian, 25th and 75th quantiles, outliers were presented as dots. (G) Relative importance distribution for each feature. Gini
impurity-based feature importance values were normalized to sum to one.
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identify somatic SNV ASEs (Heap et al., 2010; Liu et al., 2016).
Finally, we compared the TPM value of tumor and paired-
normal samples of cases harboring the somatic SNV ASEs to
examine the alteration of total gene expression, and defined the
TPM fold change (FC) of 2 and 1/2 as the thresholds of
upregulated and downregulated genes (Liu et al., 2018).

RESULTS

General Performance of the Framework
After the initial RNA somatic mutation calling andmulti-filtering
step, we collected 467,654 mutations in the LUAD training
dataset and 721,234, 323,323, and 126,449 mutations in LUSC,
BLCA, and GBM independent validation datasets, respectively.
To evaluate the effectiveness of multi-filtering strategy, we
validated the loss of GDC mutations in the LUAD training
dataset (Figure 4A) and LUSC, BLCA, and GBM independent
validation datasets (Supplementary Figure S1). We found that
the loss was negligible (0.1%), whereas the reduction of possible
artifact calls was rather significant (70%); such preprocessing
guaranteed a relatively pure mutation set for training and
predicting. Furthermore, our framework’s built-in machine
learning model was trained and fine-tuned by 10-fold cross-
validation. In total, 37 features from three categories were kept for
model training after feature selection conducted in the initial 40
features (Figure 4B). Finally, our framework achieved 88.0%
precision and 88.4% recall rate within the testing dataset
(Figure 4C), and other assessing metrics (Table 2) were also
satisfying. For example, the false-positive rate was 0.014, the false-
negative rate was 0.013, and the true-negative rate was 0.987.
Moreover, most RNA somatic mutations were at the upper or
lower ends of the bay plan plot according to the predicted
probability distribution of the testing dataset (Figure 4D),
which suggested a clear classification result.

To inspect the generalization performance of our framework,
we applied our RNA somatic mutation discriminant model to
three independent validation datasets. As a result, RNA-SSNV
successfully discriminated GDC high confidence somatic variants
from WES-targeted coding RNA mutations with significantly
higher precision, recall, and PR-AUC (LUSC P–R: 0.872–0.894,
BLCA P–R: 0.876–0.870, and GBMP–R: 0.902–0.825, Figure 4E),
compared with other RNA somatic detection tools such as RNA-
Mutect (Yizhak et al., 2019) (precision: 0.87, recall: 0.72) and RF-
RNAmut (Muyas et al., 2020) (precision: 0.85, recall: 0.71).
Specially, RNA somatic mutations within cancer-specific driver
genes had better performance (LUSC P–R: 0.924–0.921, BLCA
P–R: 0.929–0.896, and GBM P–R: 0.921–0.883) and they had
higher coverages than total RNA somatic mutations (median

sequencing coverages—LUSC overall: 42, driver: 60, two-sided
independent t-test p-value: 1.06e-7; BLCA overall: 41, driver: 44,
p-value: 7.35e-7; GBM overall: 46, driver: 76, p-value: 1.12 e-8).
Thus, critical mutations within cancer driver genes can be reliably
identified in RNA-seq data, which also guarantees our
framework’s clinical value.

For case-level performance, as expected, LUSC and BLCA
retained a median precision of 0.885 and 0.876 across cases, but
GBM only reached 0.739 median precision (Figure 4F),
contradicting its general precision of 0.902. Such contradiction
was caused by four high-mutation-rate (harbored more than 100
DNA mutations) cases having high precision (>0.950). In
contrast, most GBM cases had extremely low somatic
mutation rates with less than 30 DNA mutations transcribed
in RNA. Thus, some less identifiable RNA editing events and
novel mutations rescued by RNA can easily twist GBM’s case-
level precision but are hard to affect GBM’s general precision. In
addition, LUSC, BLCA, and GBM reached a median recall of
0.905, 0.880, and 0.857, concordant with their general recall. Also,
RNA somatic mutation counts were highly correlated with DNA
(Pearson correlation coefficient: LUSC: 0.905, BLCA: 0.937, and
GBM: 0.607, Supplementary Figure S2) after excluding outlier
cases with extreme mutation counts, suggesting the high accuracy
of our framework.

We investigated the contributions of 37 features using an
importance plot based on Gini impurity (Figure 4G) which
showed that STRANDQ was the most important feature for
discriminating RNA somatic mutations, followed by AF_tumor,
TLOD, ROQ, and ECNT with nontrivial feature importance
scores. In addition, features containing other sequencing qualities
and population allele frequencies also played a role in prediction
because they representedmutations’ reliability and germline evidence.
We found that the prevalent RNA editing allelic changes “A>G” came
at the bottom of the importance list, which indicated that our multi-
filtering strategy adequately removed these editing sites and reduced
their influence. Furthermore, we, in detail, illustrated the effects of 37
features on the prediction model by SHAP (Muyas et al., 2020) and
ascertained whether their variations lowered or lifted the predicted
probability (Supplementary Figure S3). After feature selection, we
excluded “A>C,” “A>T,” and “MMQ_alt” features. Among all allelic
change features, “A>G,” “C>A,” “C>G,” and “G>A” were retained.
Out of which, “A>G” and “G>A” represented A-to-I (Wang et al.,
2021) and C-to-U (Lerner et al., 2019) RNA editing events, and their
existence had negative impacts on the model output. On the contrary,
“C>A” and “C>G” represented RNA-editing exclusive allelic changes
that exhibited positive impacts. Interestingly, we also found that high
tumor allele depth for reference base and alternative base had opposite
impacts, which indicated that RNA somatic mutations with high
reference allele depth or low alternative allele depth in the tumor
sample tended to be artifacts.

Applications
Evaluation With Known DNA Evidence
We compared RNA-level somatic mutations with DNA-level to
investigate the biological mechanisms for their intersection and
uniqueness. As a result, we made a tabular overview (Table 3) and
Venn diagrams (Supplementary Figure S4) to illustrate detailed

TABLE 2 | Confusion matrix for the holdout testing dataset.

Predicted condition

Label Positive Negative

True condition Positive 4,165 546
Negative 566 41,129

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8653137

Long et al. RNA Somatic SNV Identification Framework

130

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


distribution for the combination of RNA and DNA-level somatic
mutations. Here, our framework successfully identified authentic
mutations from the RNA-only part (which got ignored/not
covered in WES data) to increase information gain and
improve diagnostic yield. For all three parts, the RNA-only
part had the largest mutation counts. The vast majority were
labeled as negative (97.7–99.2%), indicating that our framework
had successfully identified most artifacts in RNA because all these
negative calls shall be filtered in the final output. Interestingly,
when comparing mutation counts of the DNA-only part with the
RNA–DNA overlap part, we found that less than 1/3 DNA
somatic mutations got expressed in RNA. Such phenomenon
was concordant with another study, mainly due to insufficient
sequence coverage in low-expression or un-expression genes
(Yizhak et al., 2019). Further analysis was listed in the
following section for elaborate explanations.

Variably RNA-Expressed Mutations Harbored a
Special Enrichment Pattern
In detail, we explored the RNA expression ratios (number of
expressed DNA somatic mutations/number of all DNA somatic
mutations) for each case of three cancer types (Figure 5A),
median expression ratios for LUSC, BLCA, and GBM were
0.312, 0.349, and 0.256, respectively. Highly variable
expression ratios (0.000–0.632) in three types of cancer
suggested that different DNA somatic mutations had various
expression statuses in RNA. Notably, although the brain has a
high number of expressed genes than other human tissues
(Naumova et al., 2013), expression ratios of GBM were still
significantly lower than those of LUSC or BLCA. These results
indicated that DNA somatic mutations might be variably
expressed or not expressed at all, and RNA somatic mutations
were important to evaluate possible expression status.

To investigate whether the RNA-expressed somatic mutations
tended to have larger functional impacts than those that only
existed in DNA, probably resulting from the positive selection of
cancer subclonal, we compared the impact scores of mutations
within cancer-specific driver genes (Martinez-Jimenez et al.,
2020) between RNA–DNA overlap and DNA-only parts.
Interestingly, the cancer driver genes’ mutations were enriched
in the RNA–DNA overlap part (LUSC: OR = 2.01, p = 1.14 e-68,
BLCA: OR = 2.57, p = 9.89 e-119, GBM: OR = 2.70, p = 1.73 e-16.
Supplementary Table S2), even though the DNA-only part had

excessive mutation counts than the RNA–DNA overlap part
(DNA-only/RNA–DNA overlap: ~2/1). Moreover, we
compared the predicted pathogenicity scores for missense
mutations located within cancer driver genes between
RNA–DNA overlap and DNA-only parts, and found that all
RNA–DNA overlap parts had significantly higher pathogenicity
scores across three cancer types and seven prediction tools
(p-value < 1 e-5, Figure 5B). The significantly higher
prediction scores implied that predicted damaging mutations
tended to be selectively expressed in driving tumorigenesis,
and our RNA-level somatic mutation identification framework
effectively enriched the functional mutations.

Furthermore, we want to explore whether actionable
mutations tend to get expressed in RNA and exhibit
clinical effects. Thus, we assessed the therapeutic power
for mutations in cancer driver genes between RNA–DNA
overlap and DNA-only variants using the OncoKB database
(Chakravarty et al., 2017) (https://www.oncokb.org/,
Supplementary Table S3). Therapeutic sites within the
RNA–DNA overlap part were far more than DNA-only
across three cancer types (LUSC: OR = 13.34, p = 8.35e-
19, BLCA: OR = 3.27, p = 4.26e-16, GBM: OR = 4.26, p = 3.
66e-4, Table 4), indicating that the RNA-level somatic
mutations calling can enrich clinical therapeutic variants.
Notably, we observed that some therapeutic mutations from
the OncoKB database also occurred in the DNA-only part.
For example, except for 52 RNA–DNA overlap somatic
mutations in BLCA, PIK3CA also had 12 DNA-only
somatic mutations with “Level_3B″ OncoKB annotation
(Chakravarty et al., 2017). We found that even if the 12
TCGA BLCA cases containing 12 DNA-only somatic
mutations had sufficient expression level for the PIK3CA
gene (TPM: 23.7–51.7, curated from UCSC Xena(Goldman
et al., 2020) dataset), the 12 mutations’ alternative allele still
got un-expressed (median alt allele-depth: 0) leading to
unlikely benefit from certain targeted therapies. Therefore,
although PIK3CA is a valuable therapeutic target for
inhibitors of PI3K/AKT/mTOR pathways in advanced
bladder cancer (Ross et al., 2016; Willis et al., 2020), the
detailed expression status of the mutations should be
carefully evaluated when the targeted therapy is
considered. Such phenomenon was opposed to the
assumption that mutations located within sufficiently

TABLE 3 | Overview of RNA somatic mutations combined with DNA.

Cancer type RNA initial RNA DNA overlap RNA only DNA only P–R

Positive Negative Positive Negative

LUSC 721,234 49,527 5,873 6,963 658,871 105,644 0.877–0.894
BLCA 323,323 43,945 6,557 6,206 266,615 71,614 0.876–0.870
GBM 126,449 9,153 1,947 970 114,379 16,104 0.904–0.825

Notes: Cancer type—LUSC: lung squamous cell carcinoma, BLCA: bladder urothelial carcinoma, GBM: glioblastoma multiforme.
DNA only—Counts of mutations only observed in the GDC DNA mutation set (not in RNA).
RNA–DNA overlap—Counts of mutations observed in both GDC DNA mutation set and RNA mutation set.
RNA only—Counts of mutations only observed in the RNA somatic mutation set (not in DNA).
RNA total—Counts of mutations observed in the total RNA somatic mutation set.
P–R—Precision–recall metric for RNA somatic mutations with GDC mutations as a golden standard dataset.
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expressed genes had undoubtful effects making them
potential therapeutic targets, and RNA-level mutations
were required to validate these targets’ transcription status.

Given that RNAs were enriched with mutations of higher
functional impact and therapeutic value, we assessed the
performance of RNA-level somatic mutations for discovering

FIGURE 5 | Evaluation of RNA somatic mutations and integrative analysis with DNA evidence. (A) Distribution of RNA expression ratios for known DNA somatic
mutations across three types of cancer. Box plots’ heights ranged from 0.000 to 0.632. The comparisons utilized two-sided independent t-test with p-value < 1e-5. (B)
Distributions of seven pathogenicity prediction scores for missense mutations within cancer driver genes across three cancer types (LUSC, BLCA, and GBM). DNA-only
and RNA–DNA overlap parts in each cancer type were used for comparison (all comparisons passed two-sided independent t-test with p-value < 1e-5). (C) Variant
allele fraction (VAF) distributions of DNA-only and RNA–DNA overlap parts within three cancer types. Left box: VAF distribution for DNA somatic mutations in DNA-only
part. Middle box: VAF distribution for DNA somatic mutations in the RNA–DNA-overlap part. Right box: VAF distribution for RNA somatic mutations in the RNA–DNA-
overlap part. The comparisons utilized two-sided independent t-test with p-value < 1e-5. (D) TPM fold change (FC) distributions for BLCA and LUSC. The comparisons
utilized the Wilcoxon rank-sum test with p-value < 1e-5.
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cancer driver genes by other statistical methods. Here, WITER
(Jiang et al., 2019) was adopted to test the enrichment of somatic
mutations due to positive selection in tumorigenesis (Jiang et al.,
2019; Martinez-Jimenez et al., 2020). We compared the
significant genes based on RNA-level somatic mutations to
those based on the DNA-level somatic mutations in three
cancer datasets. Among all significant genes (FDR < 0.1), the
RNA somatic mutations led to a higher proportion of known
cancer driver genes from the Intogen database (Martinez-Jimenez
et al., 2020) in two of the three datasets than DNA (LUSC: 6/7 vs.
6/9 and GBM: 5/5 vs. 5/18, see details in Supplementary Tables
S4, S5) with identical cancer-driver genes, another cancer type
(BLCA: 12/18 vs. 15/19) also had a similar proportion. This result
suggested that the RNA-level may lead to fewer false-positive
estimations for driver genes than DNA-level.

In addition to known cancer driver genes, other significant genes
based on the RNA-level somatic mutations, though un-registered in
the Intogen database, were also functionally important to cancer
development. CTNNB1, for example, had a significant q-value of
0.081 in BLCA. CTNNB1’s mutations have been found to cause
aberrant WNT/CTNNB1 signaling and are associated with the
susceptibility and prognosis of breast, endometrial, and gastric
cancers (Kurnit et al., 2017; van Schie and van Amerongen, 2020;
Wang et al., 2012). CHEK2 (q = 0.087 in LUSC, q = 0.052 in BLCA)
played an important role in the repair of DNA damage, and its
heterozygous mutations had been found to be causing genetic
susceptibility to lung cancer (Wang et al., 2014) and bladder
cancer (Złowocka et al., 2008). Although our detected CHEK2
somatic mutations were not inherited or passed on, their
heterozygosity was similar and induced cancer risk. In a word,
RNA can also prioritize potential cancer driver genes.

RNA Increased Mutation Detection Power.
VAF (variant allele fraction) was the fraction of sequencing
reads harboring the mutation when performing NGS
(Friedlaender et al., 2021), measuring the subclonal
prevalence of specific mutations (Benard et al., 2021). We
compared the DNA VAF distribution for DNA-only and
RNA–DNA overlap parts within three cancer types to

examine the subclonal selection advantage for expressed
mutations. Higher DNA VAF was observed in expressed
DNA somatic mutations (Figure 5C left comparison, p < 1 e-
5), indicating the trend of cancer evolution for subclonal
harboring RNA somatic mutations. Interestingly, RNA VAF
was significantly higher than DNA VAF within expressed
mutations of RNA–DNA overlap part (Figure 5C right
comparison, p < 1 e-5), suggesting an expression tendency
for the mutant allele. The common cancer WES study has a
mutation limit of detection (LoD) at 5% VAF, and reporting
these subclonal mutations incurs the risk of sequencing
error–induced false positives (Yan et al., 2021). For these
low-VAF (<0.05) DNA somatic mutations, their RNA VAFs
were much higher, with median values of 0.374 in LUSC, 0.342
in BLCA, and 0.241 in GBM. Therefore, RNA somatic
mutations exhibited subclonal selection superiority and
increased the power for low-VAF mutation detection.

Here, we, in detail, demonstrated the recovery of DNA-
omitted mutations for our framework. For the RNA-only part,
we found that our framework helped rescue ~10% of mutations
(Table 3) which were missed based on DNA sequencing data.
Most of the rescued mutations had low alternative allele depth
(median: 0–1) or alternative allele fraction (median: 0–0.03) in
WES data but opposite situations (median alt allele depth: 8–10,
median alt allele fraction: 0.31–0.67) in RNA-seq data. There
were also 102, 120, and 8 mutations located within cancer driver
genes out of 6,997, 6,233, and 969 positive mutations from LUSC,
BLCA, and GBM, respectively (Supplementary Table S6).
Furthermore, we discovered biologically important cancer
variants within these overlooked “driver” mutations using the
DoCM database (Ainscough et al., 2016) (http://docm.info). We
found that 17 out of 102, 14 out of 120, and 2 out of 8 DNA-
overlooked “driver” mutations in LUSC, BLCA, and GBM had
literature support from one or more publications
(Supplementary Table S7). For example, TCGA-FD-A5BS
had TP53 p.R282W mutation rescued by RNA with its
reference-alternative allele depth in DNA: 19-1, RNA: 17-14.
The R282W mutant had been found to cause the gain of novel
oncogenic functions (GOF) in p53 proteins and associate with

TABLE 4 | Overview of therapeutic mutation distribution in three types of cancer.

Therapeutic level LUSC BLCA GBM

RNA–DNA overlap DNA only RNA–DNA overlap DNA only RNA–DNA overlap DNA only

Level_1 FDA-approved drug 0 0 43 1 0 0
Level_2 standard care 0 0 0 0 1 0
Level_3 clinical evidence 58 3 140 40 13 1
Level_4 biological evidence 85 10 96 22 28 7
Counts sum 143 13 279 63 42 8
Total 1,240 1,333 1,565 1,014 175 116
OR (p_value) 13.34 (8.35 e-19) 3.27 (4.26 e-16) 4.26 (3.66 e-4)

Notes: Level_1: FDA-recognized biomarker predictive of response to an FDA-approved drug.
Level_2: Standard care biomarker recommended by the NCCN predictive of response to an FDA approved drug.
Level_3–3A: Compelling clinical evidence supports the biomarker as being predictive of response to a drug; 3B: standard care or investigational biomarker predictive of response to an
FDA-approved or investigational drug.
Level_4: Compelling biological evidence supports the biomarker as being predictive of response to a drug.
Counts sum: Sum of therapeutic mutation counts.
Total: Total counts for mutations located within cancer-specific driver genes.
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poorer cancer outcomes with a more prominent GOF effect
(Zhang et al., 2016).

Low tumor purity can bias somatic mutation detection with
the positive correlation between mutation numbers and tumor
purities (Cheng et al., 2020). For example, TCGA-90-6837 in
LUSCwith its CPE (Aran et al., 2015) (consensus measurement of
purity estimations) lower than average (0.56 vs. 0.68) had no
official DNA mutation (WES failed to detect), we investigated its
RNA somatic mutations identified by our framework to confirm
its mutational status. We found that out of its 192 RNA somatic
mutations, six mutations fell within cancer driver genes, and their
existence had been ignored by WES (Table 5). Among these
mutations, KMT2D is a lung tumor suppressor gene (Alam et al.,
2020), and its mutation was one of the most significant prognostic
factors in LUSC(Ardeshir-Larijani et al., 2018). We found that
KMT2D p.E869p mutation could cause its truncation leading to
tumor progression. In addition, TP53 p.A276G mutation had
been found to locate within the DNA binding domain of the TP53
protein and presumably have deleterious impacts on protein
functions (Chang et al., 2021) with pathogenic ClinVar
database (Landrum et al., 2020) interpretation (Accession:
VCV000185319.3). These findings confirmed that RNA-seq
data could provide valuable supplementary information useful
for clinical decisions and improve diagnostic yield in extreme
cases when DNA failed to detect actionable mutations.

Transcriptome-Wide Allele-Specific Expression
Analysis
We calculated the TPM fold change (FC) to measure gene
differential expression status. After excluding infinite FC
values, we found that the median gene FC for RNA-expressed
mutations was significantly higher than unexpressed mutations
(Figure 5D). Thus, genes harboring RNA-expressed somatic
mutations tended to have higher expression level in tumor
samples than in paired normal samples.

We detected somatic SNV-level ASEs, and found that 24.8% of
3876 and 23.2% of 1700 somatic mutations exhibited ASE events
in LUSC and BLCA RNA–DNA overlap parts. As expected, most
(~90%) ASE somatic mutations had over-expressed mutant
alleles. The results showed that certain expressed somatic
mutations had higher expression superiority in the mutant
allele than the wild allele, which further enhanced the
mutation detection power in RNA. Furthermore, we curated
gene lists for 10 signaling pathways in cancer (Sanchez-Vega
et al., 2018) and explored the functional alteration on signaling

pathways for ASE somatic mutations. Ideally, if the ASE somatic
mutation is functional, the direction of ASE event for the mutant
allele should be the same as the direction of gene expression
alteration for tumor vs. paired-normal samples (Liu et al., 2018).
Thus, we mapped ASE somatic mutations to genes involving
cancer signaling pathways with identical expression change
direction. Finally, we identified several pathways (cell cycle,
HIPPO, RTK RAS, TGF-Beta, and WNT) containing heavily
altered genes with ASE events (Supplementary Table S8).
Interestingly, seemly “benign” synonymous mutations also
contained ASE events and altered gene expression level. For
example, NF1 is a tumor suppressor that negatively regulates
RAS signaling (Redig et al., 2016). NF1 p.L43L mutation in
TCGA-39-5040 had an over-expressing mutant allele (DNA
VAF: 0.32, RNA VAF: 0.63) and showed an upregulated gene
expression (tumor/paired-normal fold change: 2.53), which
activated NF1 function to under-regulate the RAS signaling
pathway and suppressed carcinogenesis.

DISCUSSION

Although common somatic mutation detection practices come with
WES, important and actionable mutations are often conserved in
RNA-seq. Therefore, we developed RNA-SSNV, an integrative
framework to identify RNA somatic single nucleotide variants
called within tumor RNA-seq and paired-normal WES data. To
maximize performance, we combined multi-filtering strategies and
a machine-learning model. For the multi-filtering strategy, we found
that it removed massive artifacts (~70%) while omitting few true
positive calls (~0.1%). Before constructing the classification model, we
also evaluated the performance of the GATK-recommended filtering
tool (FilterMutectCalls) for the LUAD training dataset and LUSC,
BLCA, and GBM validating datasets using precision–recall metrics.
The result showed that FilterMutectCalls achieved a satisfying recall
but a low precision rate (LUAD P–R: 0.380–0.865, LUSC P–R:
0.399–0.871, BLCA P–R: 0.442–0.886, and GBM P–R:
0.540–0.881), which may lead to large false-positive calls. Because
FilterMutectCalls was originally designed based on DNA somatic
mutation filtering strategy, which may not be fully compatible with
RNA, we adopted a machine learning model with comprehensive
features to conduct classification. For model training, we adopted
various techniques to ensure its reliability. To construct a high-quality
training dataset, we usedGDCDNAmutations as the golden standard
and self-called DNA mutations as important supplementary

TABLE 5 | RNA somatic mutation within cancer-driver genes in TCGA-90-6837.

Mutation Gene RNA DNA Protein change

RefDepth AltDepth RefDepth AltDepth

chr4:186633790 T>C FAT1 4 27 95 0 K1406R
chr8:116866708 G>A RAD21 45 36 36 0 L8F
chr12:49051078 C>A KMT2D 12 7 73 1 E869*
chr17:7673793 G>C TP53 36 64 23 0 A276G
chr19:33026624 G>A RHPN2 18 6 87 0 T65I
chr22:41178035 G>A EP300 78 51 54 0 Q2108Q
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information to separate pure true positive and true negative sets from
multi-filtered RNA mutations. In a comparison of using two data
sources (RNA mutations and golden-standard DNA mutations) to
construct the training dataset, the introduction of self-called DNA
mutations significantly improved our machine model’s performance
(increased precision–recall from 0.843-0.875 to current 0.883–0.885 by
4%). We also conducted feature selection and fine-tuning to improve
the model’s performance. Eventually, our trained model achieved
superior performance of 88.0% precision and 88.4% recall rate in
the testing dataset compared with other state-of-art RNA somatic
mutation detection tools such as RNA-Mutect (Yizhak et al., 2019)
(precision: 0.87, recall: 0.72) and RF-RNAmut (Muyas et al., 2020)
(precision: 0.85, recall: 0.71).

When utilized in independent validation datasets (TCGA
LUSC, BLCA, and GBM), RNA-SSNV achieved similar
performance as in the testing dataset, which had
0.871–0.895, 0.876–0.871, and 0.902–0.830 precision–recall
rate, respectively. Not only can our framework reliably
detect RNA somatic mutations, but it also can conduct
pairwise analysis with provided DNA mutations. Although
our framework achieved satisfying performance within
somatic RNA single-nucleotide variants’ identification,
limited scenarios in which only RNA somatic mutations can
be retrieved such as the GTEx project (Lonsdale et al., 2013)
(contained RNA-seq data from ~6700 samples across 29
normal tissues). Common RNA-seq practices involving
research always included DNA-seq data which generated
somatic DNA mutations simultaneously; thus, the
investigation for the relationship between DNA-level and
RNA-level somatic mutations was essential. Multiple studies
have found that combining DNA-level and RNA-level somatic
mutation can achieve maximum performance for mutational
investigation (Krug et al., 2018; Newman et al., 2021;
Wilkerson et al., 2014; Zhang et al., 2020). Thus, we split
DNA and RNA somatic mutations into three parts:
DNA–RNA overlap part, DNA-only part, and RNA-only
part; and each part had positive and negative sub-parts
representing our model’s classifications. The DNA–RNA
overlap part represented orthogonal validated DNA and
RNA mutations; its positive sub-part contained reliable
cancer somatic mutations with clinical usage, but its
negative sub-part contained false-negative calls misclassified
by our model. When using SHAP to analyze these false-
negative calls (Supplementary Figure S5), we found that
G>A mutant status had significant impacts, which
implicated that APOBEC-mediated C-to-U RNA editing
events (Lerner et al., 2019) contributed to misclassification
and current RNA editing resources were insufficient to filter
C>U editing sites. DNA-only part represented DNAmutations
omitted in RNA somatic mutation calling, and we found that
some DNAmutations’ reference allele got selectively expressed
while their alternative allele got silenced. To explore how many
DNA-only somatic mutations got selectively expressed, we
calculated the selective expression ratios (number of
mutations with reference allelic depth>10/number of DNA
somatic mutations not identified in RNA) for DNA-only parts
across three cancer types (Supplementary Figure S6). The

median mutation selective expression ratios for LUSC, BLCA,
and GBM were 0.134, 0.120, and 0.154, respectively,
confirming that DNA somatic mutations within GBM had
higher selective expression tendency than LUSC (p = 0.003)
and BLCA (p = 5.63 e-6), possibly due to innate upregulation
of DNA repair mechanisms (Ferri et al., 2020). We retrieved
their information in RNA using Mutect2’s force-calling mode
and utilized our model to classify them. Most of them were
predicted negative as expected, but a small portion (1.9%) was
predicted as positive, suggesting that our selected caller
(Mutect2) might have a little neglection. We also observed
that mutations’ reference allele–specific expression within
driver genes leads to doubtful translation effects. In
addition, most mutations located within collagen-related
genes (COL11A1, COL6A3, COL5A2, etc.) were found
silenced while these genes got sufficiently expressed in RNA
(Supplementary Table S9). Interestingly, the proteome
database (Human Cancer Proteome Variation Database)
also contains nearly no evidence for mutant collagen
proteins across three cancer types which were abnormal
because massive DNA somatic mutations had been found in
these genes. The RNA-only part represented RNA mutations
without DNA evidence support. Its negative sub-part was
artifacts, but its positive sub-part included RNA-rescued
mutations missing in DNA that contained mutations within
cancer driver genes (1.4%) to provide more therapeutic targets
and help with clinical decisions. A major shortcoming of WES
is uneven coverage of sequence reads over the exome targets
contributing to many low-coverage regions (Wang et al., 2017;
Xiao et al., 2021), and substantial inter-individual variation in
coverage of medically implicated genes caused false-negative
mutation calls due to low coverage (Barbitoff et al., 2020; Kong
et al., 2018). Although using replicate exome-sequencing can
improve WES coverage by 4.3–12.7% (Cherukuri et al., 2015),
improve variant calling accuracy (Zhang et al., 2014), and
enhance clinical interpretation, information redundancy and
excess costs limited its usage. Compared with replicate exome-
sequencing, RNA-seq has improved somatic single nucleotide
variants, and clinically actionable mutations are often
conserved in RNA.

We also examined the potential of improving our model’s
performance by introducing additional training data from different
cancer types. After adding GBM cancer–type data into the training
dataset, we only observed a slight improvement within the testing
dataset (recall rate increased 1.3%) and the AUC for P–R curves for
TCGA LUSC, BLCA–independent validation datasets remained stable
at 0.94 (Supplementary Figure S7). The unchanged performance
suggested that our model trained with LUAD datasets probably has
already contained key features of RNA somatic mutation in cancer
cells and is applicable for other cancers. Although the general
performance for our model was identical across three validation
datasets, performances under default threshold (0.5) slightly differed
and a dynamic shift of threshold according to different aims (prefer
higher precision or recall) was required. In addition, due to insufficient
C-to-U RNA editing database resources, the current model sacrificed
high recall to ensure removing editing events for the G>A mutation
type. The high distribution ofG>Amutations (52.3%) in false-negative
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sets of TCGA LUSC–independent validation dataset reflected this
imperfection. Therefore, we recommended that users manually review
predicted-negative G>A mutations within known driver genes to
improve diagnosis. To facilitate user to inspect predictions, we
provided codes to visualize the contribution of important features
using SHAP library and a canonical table to exhibit all useful
information for user-specified records. A major limitation of our
framework was that it was designed to identify RNA somatic
mutations only from tumor RNA-seq and paired-normal WES
data. Future works will include extending RNA somatic mutation
identification scope into other sequencing data types (single-cell RNA-
seq or whole-genome DNA-seq).

For cancer research involving both WES and RNA-seq data, the
conventional analysis strategy uses WES data to call somatic
mutations and then validates whether somatic mutations exist in
RNA-seq data. However, the conventional strategy may still omit
some somatic mutations in RNA-seq data. Our study significantly
improved the capability to call RNA somatic mutations and further
revealed the association between somatic mutations derived from
RNA and DNA, providing valuable supplementary information for
conventional cancer somatic mutation analysis.
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Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Exosomes
have great potential as liquid biopsy specimens due to their presence and stability in body
fluids. However, the function and diagnostic values of exosomal genes in CRC are poorly
understood. In the present study, exosomal data of CRC and healthy samples from the
exoRBase 2.0 andGeneExpressionOmnibus (GEO) databaseswere used, and 38 common
exosomal geneswere identified. Through the least absolute shrinkage and selection operator
(Lasso) analysis, support vector machine recursive feature elimination (SVM-RFE) analysis,
and logistic regression analysis, a diagnosticmodel of the training setwas constructed based
on 6 exosomal genes. The diagnostic model was internally validated in the test and
exoRBase 2.0 database and externally validated in the GEO database. In addition, the
co-expression analysis was used to cluster co-expression modules, and the enrichment
analysis was performed onmodule genes. Then a protein–protein interaction and competing
endogenousRNAnetworkwere constructed and 10 hub geneswere identified usingmodule
genes. In conclusion, the results provided a comprehensive understanding of the functions of
exosomal genes in CRC as well as a diagnostic model related to exosomal genes.

Keywords: exosome, diagnostic model, functions, colorectal cancer, bioinformatics analysis

INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract and
presents the second-highest mortality rate (9.2%) among all cancers (Arnold et al., 2017; Bray et al.,
2018). Tumor metastases and invasion are associated with poor prognosis and lead to a low five-year
survival rate in CRC patients (Siegel et al., 2018). CRC is typically detected by colonoscopy,
measuring carcinoembryonic antigen (CEA) levels, multitarget stool DNA testing, and the septin 9
gene methylation blood test (Ahluwalia et al., 2021). Although colonoscopy is a highly sensitive
method, it is invasive and uncomfortable for patients and its accuracy depends on the skill level and
experience of the endoscopist (Schreuders et al., 2015). CEA levels have been widely used as tumor
markers for the detection of CRC. However, it is still limited in terms of sensitivity and specificity.
Therefore, there is an urgent need to identify more effective and less invasive surrogate CRC-specific
diagnostic markers for the rapid, noninvasive, and high sensitivity screening of patients.

The use of exosomes as a new noninvasive approach for diagnosing diseases has attracted growing
attention (Mousavi et al., 2019). Exosomes are extracellular vesicles containing messenger RNAs
(mRNA), microRNAs (miRNA), long noncoding RNAs (lncRNA), circular RNAs (circRNA), DNA,
lipids, and proteins with sizes between 40 and 150 nm and density between 1.13 and 1.19 g/ml (Yáñez-
Mó et al., 2015; Shi et al., 2021). Notably, exosomal biomarkers and molecule information remain
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relatively stable in most body fluids because they are protected
from degradation and external impact (Xiao et al., 2019).
Therefore, exosomes have great potential as liquid biopsy
specimens for various diseases (Wang et al., 2017; Liu et al.,
2019). In particular, cancer cells secrete significantly more
exosomes than normal cells (Mousavi et al., 2019; Nabariya
et al., 2020). Cancer-derived exosomes likely serve as new
circulating biomarkers for the early detection of cancer as they
carry cargo reflective of genetic or signaling alterations in the
cancer cells of origin (Li et al., 2015; Melo et al., 2015). Therefore,
exosomes may be an ideal candidate to act as a biomarker for CRC.

In the present study, we identified several differentially expressed
exosomal genes from public databases to understand the underlying
molecular changes and biological mechanisms. For the diagnosis of
CRC patients, we established a 6–exosomal gene diagnosis model
using the least absolute shrinkage and selection operator (LASSO),
support vector machine recursive feature elimination (SVM-RFE),
and logistic regression analyses. This model was verified using a
receiver operating characteristic (ROC) curve in internal and
external sets. In addition, the co-expression analysis was used to
cluster co-expression modules, and the enrichment analysis was
performed on module genes. We also established protein–protein
interaction (PPI) networks to investigate hub genes and constructed
competing endogenous RNA (ceRNA) networks related to serum
exosomal genes in CRC. The purpose of the present study was to
obtain further insight into the underlying functions of exosomal
genes and to identify any potential diagnostic exosomal genes using
the bioinformatics analysis in CRC.

MATERIALS AND METHODS

Data Source and Identification of
Differentially Expressed Exosomal Genes
The flowchart of this study is presented in Supplementary Figure S1.
We extracted serum exosomal data relative to mRNA, lncRNA, and
circRNA from 35 CRC patients and 118 healthy persons from the
exoRBase 2.0 database (Li S. et al., 2018) (http://www.exorbase.org/).
We also downloaded serum exosomal data from theGene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The
GSE100063 andGSE100206 datasets contain exosomal data (mRNA)
from 12 CRC patients and 32 normal persons. All CRC and healthy
exosomal data were available and included in the study. After data
normalization and log base 2 transformations, differentially expressed
genes between CRC patients and healthy individuals were identified
using the limma R package (Ritchie et al., 2015). Differentially
expressed genes were defined as those whose expression
differences were associated with an adjusted p <0.05. This study
was approved by the Ethics Committee of the First AffiliatedHospital
of Sun Yat-sen University [Approval number (2021)687].

Identification of the Diagnosis-Related
Exosomal Gene Signature Associated With
Colorectal Cancer
Genes that were differentially expressed (adjusted p <0.05) in the
exoRBase 2.0, GSE100063, and GSE100206 datasets were

selected. First, 70% of the samples in exoRBase 2.0 were
randomly selected as a training set. The LASSO regression
analysis was used to obtain diagnostic exosomal genes from
the training set. The SVM-RFE analysis was used
simultaneously to screen exosomal genes in the training set for
CRC diagnosis. Then, we combined the LASSO and SVM-RFE
analyses to obtain the common exosomal genes. Next, we selected
common exosomal genes that were regulated (up- or
downregulated) in the same direction to build a diagnosis-
related exosomal gene signature by the multivariate logistic
regression analysis. Finally, the ROC curve analysis and the
area under the curve (AUC) were used to estimate the
diagnostic value of the diagnosis-related exosomal gene
signature using the pROC package in R (Robin et al., 2011).

Validation of the Diagnosis-Related
Exosomal Gene Signature
As a validation set, 30% of the samples in exoRBase 2.0,
GSE100063, and GSE100206 datasets were selected. To
validate whether candidate exosomal genes had an important
diagnostic value in patients with CRC, we also measured the ROC
curve and the AUC value in the validation datasets. p <0.05 is
considered statistically significant.

Cell Culture, Human Plasma Samples, and
Isolation of Exosomes
HCoEpiC, HCT116, and SW480 cell lines (purchased from
ATCC) were cultured in a DMEM medium (Cellmax)
containing 10% fetal calf serum, and 100 U/ml each of
penicillin and streptomycin at 37°C with 5% CO2. HCoEpiC,
HCT116, and SW480 cells were cultured with a full medium at
80% confluency and replaced with a fresh medium without fetal
bovine serum. After a 48-h culture, the cell medium was
harvested. In addition, thirty-two CRC patient serums and
seventeen healthy human serums were collected in the First
Affiliated Hospital of Sun Yat-sen University in December
2021. The samples were stored at −80 before exosome
extraction. The exosomes were collected from the cell culture
supernatant by differential centrifugations. In addition, exosome
morphology was identified by transmission electron microscopy
(TEM), the nanoparticle tracking analysis (NTA), and the
expression of exosome surface markers CD9, TSG101, and
HSP70 were evaluated by the Western blotting analysis.

Validation of Exosomal Gene Expression
Levels
Total RNA from exosomes was extracted using the TRIzol
reagent (Invitrogen, NYC, United States) and reverse
transcribed with the PrimeScript RT kit (Takara, China). Real-
time PCR was carried out using the SYBR PreMix Ex Taq II kit
(Takara, China). GAPDH was used as the normalized control of
mRNA. The relative expression levels of mRNA in exosomes were
calculated by the 2−ΔΔCT method. The primer sequences used in
this study are listed in Supplementary Table S1.
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The Co-Expression Analysis
The weighted gene co-expression network analysis (WGCNA) was
used to identify the co-expression network of differentially expressed
exosomal genes in exoRBase 2.0 using the WGCNA package in R
(Langfelder and Horvath, 2008). A weighted adjacency was
constructed by calculating using the Pearson correlations of all
gene pairs. Soft power β = 7 was selected to construct a standard
scale-free network. The similarity matrix, which was constructed
using the Pearson’s correlation coefficients of all gene pairs, was
transformed into a topological overlap matrix (TOM) as well as the
corresponding dissimilarity (1-TOM). Then, a hierarchical
clustering dendrogram of the 1-TOM matrix was used to classify
similar gene expressions into different gene co-expression modules.
Afterward, a module-clinical trait association was calculated to
identify functional modules in a co-expression network. The
brown and gray modules were selected for further analysis.

The Gene Ontology Term and Kyoto
Encyclopedia of Genes and Genomes
Functional Enrichment Analyses
To further clarify the potential biological functions of the
exosomal genes in the modules, we performed the Gene
Ontology (GO) term and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses using the clusterProfiler
package in R (Yu et al., 2012). The GO terms and KEGG
pathways with p <0.05 were considered significantly enriched.

Protein–Protein Interaction Network
Construction and Hub Gene Identification
In this study, the exosomal genes in the brown and graymodules were
analyzed. The PPI network was constructed by the online STRING
database (https://string-db.org), and interaction with a combined
score >0.7 was considered statistically significant. Cytoscape, an
open-source bioinformatics software platform, was used to visualize
molecular interaction networks. Hub genes were identified using the
Degree algorithm of the cytoHubba plugin in Cytoscape.

Exosomal ceRNA Network Construction
The TargetScan database (www.targetscan.org) andmiRanda (http://
cbio.mskcc.org/microrna_data/miRanda-aug2010.tar.gz) statistical
models that predict the effects of miRNAs binding to canonical
sites of mRNAwere used to accomplishmiRNAprediction. miRNA/
circRNA and miRNA/lncRNA interactions were predicted using
ENCORI (http://starbase.sysu.edu.cn/) and miRcode (http://www.
mircode.org/), respectively. The ceRNA regulatory network was
constructed according to the ceRNA regulatory mechanism and
the differentially expressed lncRNAs, circRNAs, and mRNAs in
exosomes, and the network were visualized by Cytoscape.

RESULTS

Identification of Differential Expression of
Exosomal Genes
The RNA sequencing exosomal data for CRC and healthy samples
were downloaded from the exoRBase 2.0 and GEO databases. A

total of 2839 differentially expressed exosomal genes were obtained
from the exoRBase 2.0 dataset (Figure 1A) and 475 differentially
expressed exosomal genes in the GSE100063 and GSE100206
datasets (Figure 1B). A total of 38 differentially expressed
exosomal genes were common in the two databases (Figure 1C).

Development and Verification of the
Diagnostic Model
We randomly split all the samples in the exoRBase 2.0 dataset into a
training set (70%) and a validation set (30%). We combined the
LASSO and SVM-RFEmethods to obtain 9 common exosomal genes
(Figures 1D–F). Next, in the training and validation set, we selected
common exosomal genes that were in the same regulated direction to
build a diagnosis-related exosomal gene signature using the
multivariate logistic regression analysis (Figures 2A,B). Therefore,
we obtained 6 exosomal genes including H3F3A, MYL6, FBXO7,
TUBA1C,MEF2C, and BANK1. Furthermore, these 6 exosomal genes
were identified based on the model according to the following
formula: index = H3F3A × (3.67971578945741) + MYL6 ×
(2.01995321634272) + FBXO7 × (−0.86536340517915) +
TUBA1C × (0.184108184598825) + MEF2C ×
(−3.86524121779742) + BANK1 × (−5.35388054514927). The AUC
for the gene signature was 0.981 in the training set (Figure 2C) and
0.923 in the internal test set (Figure 2D). Importantly, we also used
external datasets to validate the gene signature: it showed good
diagnostic ability, with an AUC of 0.995 (Figure 2E).

Validation of Exosomal Gene Expression
Levels
To further validate the expression levels of these model exosomal
genes, we extracted exosomes from HCoEpiC, HCT116, SW480
cells, and human plasmas. The purification of the exosomes was
validated by TEM, NTA, and Western blotting analysis. TEM
detected double-layer spherical vesicles ranging from 30 to
160 nm in size, which confirmed the presence of exosomes
(Supplementary Figure S2A). NTA characterized the size and
concentration of exosomes (Supplementary Figure S2B).
Western blotting analysis estimated the quantity and purity of
exosomes by detecting exosomal marker proteins (CD9, TSG101,
and HSP70) (Supplementary Figure S2C). Next, we validated the
expression of signature exosomal genes in the exosomes obtained
by RT-qPCR. The results showed that H3F3A, MYL6, and
TUBA1C were significantly upregulated in CRC cells, and
MEF2C and FBXO7 were significantly downregulated in CRC
cells. However, no significant differences were observed in
BANK1 expression between HCT116 and SW480 cells and
HCoEpic cells (Supplementary Figure S2D). Furthermore, we
validated the expression levels of the model exosomal genes in the
serums from the CRC patients and healthy humans. The results
showed that the mRNA levels of three genes (H3F3A, TUBA1C,
and MYL6) were significantly elevated in the CRC exosomes,
whereas BANK1,MEF2C, and FBXO7 were downregulated in the
CRC exosomes when compared with those in the healthy human
exosomes (Figure 3). These results were consistent with the
results of the exoRBase 2.0 and GEO databases.
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The Weighted Gene Co-Expression
Network Analysis and Key Module
Identification
To identify exosomal genes associated with CRC, we analyzed
differentially expressed exosomal genes between CRC and healthy
samples in the exoRBase 2.0 database using WGCNA. The included
samples were clustered with the hierarchical average linkage clustering
method (Figure 4A). The optimal soft power threshold for WGCNA
was set to 7 to preserve the scale-free topology and effective
connectivity (Figure 4B). Four co-expression modules of
differentially expressed exosomal genes were established
(Figure 4C). The brown and gray modules were found to have a
positive correlation with CRC.

Enrichment of Module Genes
To explore the potential function of exosomal genes in the
brown and gray modules, the enrichment analysis of GO and
KEGG was performed. The GO analysis of these
differentially expressed exosomal genes revealed that
“small molecule catabolic process,” “contractile fiber,” and
“structural constituent of muscle” were the most frequent
biological terms for biological process, cellular components,

and molecular functions, respectively (Figure 4D). The
KEGG analysis revealed that these exosomal genes were
mainly enriched in the “apelin signaling pathway,”
“ubiquitin mediated proteolysis,” “spinocerebellar ataxia,”
and “tight junction” (Figure 4E).

Protein–Protein Interaction Network
Construction and Hub Genes Screening
The PPI network of the exosomal genes in the brown and gray
modules was constructed through the STRING database and
visualized with Cytoscape. The PPI network and hub genes
identified from the network were obtained through the degree
algorithm of the CytoHubba plugin. According to degree scores,
the top-scoring genes, includingHIST1H3E,HIST1H3J,HIST1H3A,
HIST1H2BC, SEH1L, H3F3A, HIST1H2BJ, HIST1H2BF,
HIST1H2BB, andRHEB, were considered the hub genes (Figure 4F).

Construction of the Exosomal ceRNA
Network
After the differentially expressed exosomal genes were
identified in the brown and gray co-expression modules,

FIGURE 1 | Differentially expressed exosomal genes and identification of diagnostic exosomal genes in CRC. (A) Differentially expressed exosomal genes between
CRC patients and controls in the exoRBase 2.0 database. (B) Exosomal genes differentially expressed between CRC patients and controls in the GSE100063 and
GSE100206 datasets. (C) The intersection of differentially expressed exosomal genes in the exoRBase 2.0, the GSE100063, and the GSE100206 dataset. (D) The
LASSO method identified 13 diagnostic exosomal genes. (E) The SVM-RFE method identified 19 diagnostic exosomal genes. (F) The intersection of diagnostic
exosomal genes in the two analyses. CRC, colorectal cancer; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive
feature elimination.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 8637474

Lei et al. Exosomal Genes in Colorectal Cancer

142

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 2 | Potential exosomal genes for the diagnosis of CRC. The relative expression level of diagnostic exosomal genes (A) between CRC serum and healthy
samples in the training set and (B) in the external validation dataset. ROC curves of the exosomal gene signature in the (C) training set and (D) in the internal validation set
of the exoRBase 2.0 database. (E) ROC curves of the exosomal gene signature in the external validation set of the GSE100063 and GSE100206 database. CRC,
colorectal cancer; ROC, receiver operating characteristic.

FIGURE 3 | Validation of exosomal gene expression levels in CRC patient serums and controls. ppppp < 0.0001; ppp < 0.01; pp < 0.05; CRC, colorectal cancer.
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these exosomal genes were used to construct ceRNA networks.
Exosomal lncRNA and circRNA that were differentially
expressed (adjusted p <0.05) in exoRBase 2.0 were selected.
Based on mRNA, lncRNA, circRNA, and the predicted
corresponding miRNA, we constructed a ceRNA network.
The ceRNA network consisted of 5 circRNA nodes, 2
lncRNA nodes, 40 miRNA nodes, and 72 mRNA nodes
(Figure 5).

DISCUSSION

CRC is a highly malignant cancer with a poor prognosis. CRC
patients are at substantial risk of recurrence and metastasis.
Therefore, early diagnosis is very important to improve the
clinical prognosis of CRC patients. Liquid biopsy, a recent and
hot topic in cancer detection, has been considered for the early
diagnosis of cancer (Chang et al., 2019). The functional states of

FIGURE 4 | Identifying the functions of CRC-associated exosomal genes. (A)Clustering dendrogram. (B)Determination of soft-thresholding power in the weighted
gene co-expression network analysis. (C) Module–trait associations evaluated by correlations between CRC and clinical traits. (D) The GO enrichment analysis of the
exosomal genes in the brown and gray modules. (E) The KEGG pathway of the exosomal genes in the brown and gray modules. (F) The PPI network of genes in the
brown and gray modules and hub genes screening. CRC, colorectal cancer; PPI, protein–protein interaction
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cancer cells could be assessed by testing the exosome they secreted,
which provides the basis for exosome-mediated noninvasive cancer
liquid biopsy (Yang et al., 2020). Currently, various studies show
that the increased or decreased expression of exosomes plays an
important role in different kinds of cancer, including CRC (Hon
et al., 2017; Galamb et al., 2019; Xiao et al., 2020). Thus, exosomes
are crucial potential candidates for the early detection of CRC.

To date, exosomal gene–based diagnostic models have not been
described for CRC, although considerable efforts have been made to
develop prognostic signatures based on differentially expressed genes
(Chen et al., 2019; Dai et al., 2020; Wang et al., 2020). The present
study analyzed differences in exosomal gene expression between
CRC patients and healthy humans. Importantly, we identified
diagnostic exosomal genes based on a comprehensive analysis
that could serve as valuable biomarkers in the clinical setting.

Potential exosomal gene modules related to CRC were
identified with the WGCNA analysis. The brown and gray
modules were found to have a positive correlation with CRC.
To better understand the potential function of exosomal genes
among the brown and gray modules, the GO and KEGG
enrichment analysis and the PPI network were conducted. The
results of the functional and pathway enrichment analyses
showed that the exosomal genes in the modules were mainly
enriched in the structural components of the muscle and apelin

signaling pathway. The PPI network of exosomal genes in the
brown and gray modules was constructed and 10 hub genes were
selected using the CytoHubba plugin in Cytoscape. Among these
genes, H3F3A, as a diagnostic biomarker in the present study, was
also identified as a hub gene, and maybe as a promoter of CRC
progression and metastasis. The ceRNA network played a critical
role in the initiation and progression of CRC (Ke et al., 2019; Ma
et al., 2020). In the present study, we further constructed ceRNA
networks based on those key exosomal genes. This approach
provided a novel view of the RNA–RNA crosstalk in the exosome
and indicated the potential diagnostic and therapeutic functions
of exosomal ceRNA networks in CRC.

Our exosomal gene–based model highlighted 6 exosomal
genes, that is, H3F3A, MYL6, FBXO7, TUBA1C, MEF2C, and
BANK1. These genes and their biological functions have been
studied in some tumors. H3F3A is one of two genes encoding
histone H3.3, a noncanonical histone variant, and has been
established as a major driver gene of malignant gliomas
(Schwartzentruber et al., 2012; Sturm et al., 2012; Wu et al.,
2012). MYL6, a gene that encodes hexameric ATPase cellular
motor protein, is upregulated in circulating tumor cells of many
cancers (Yadavalli et al., 2017). FBXO7 may have a proto-
oncogenic role in epithelial tumors (Laman et al., 2005).
TUBA1C, as a type of tubulin, is associated with tumor cell

FIGURE 5 | A competing endogenous RNA network associated with exosomal genes.
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death and cell proliferation, and TUBA1C overexpression is
predicted to have a poor prognosis (Li C.-W. et al., 2018; Li
et al., 2020). MEF2C was traditionally considered a development-
associated factor and can inhibit tumor growth in vitro and in vivo
(Bai et al., 2015). BANK1, which encodes a protein adaptor that is
predominantly expressed in B cells, is a putative tumor suppressor
gene in B-cell lymphomagenesis (Yan et al., 2014). Our results
showed that diagnostic exosomal genes may participate in the
development of human CRC; however, the underlying molecular
mechanism of these genes in the prognosis of CRC requires further
investigation. Our experimental results showed that the differential
expression levels of diagnostic exosomal genes in cell lines were
approximately in agreement with the serum exosomal data in these
public databases.

To the best of our knowledge, this is the first reported
exosomal gene–based model for CRC. However, the potential
limitations of this study should also be considered when
interpreting the findings. First, we could not explore the
association between these exosomal genes and the prognosis of
CRC patients due to the lack of therapeutic and prognostic
information. Second, because the data we analyzed were
obtained from public databases, further experimental studies
are necessary to validate our findings.

To conclude, we investigated the potential functions and
diagnostic values of exosomal genes in CRC through a
comprehensive bioinformatics analysis. A diagnostic exosomal
gene model was constructed. This model can assess the value of
exosomal genes to diagnose CRC using a noninvasive method
and might be useful for the development of individualized
treatment for CRC patients, but the feasibility of its use in the
population needs to be further validated.
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